
Version 2.02
PowerPC Virtual Environment Architecture

Book II

Version 2.02

January 28, 2005

Manager:

Joe Wetzel/Poughkeepsie/IBM

Technical Content:

Ed Silha/Austin/IBM Cathy May/Watson/IBM Brad Frey/Austin/IBM

Junichi Furukawa/Austin/IBM Giles Frazier/Austin/IBM
 i

Version 2.02
The following paragraph does not apply to the United
Kingdom or any country or state where such provisions
are inconsistent with local law.

The specifications in this manual are subject to change
without notice. This manual is provided “AS IS”. Inter-
national Business Machines Corp. makes no warranty
of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability
and fitness for a particular purpose.

International Business Machines Corp. does not war-
rant that the contents of this publication or the accom-
panying source code examples, whether individually or
as one or more groups, will meet your requirements or
that the publication or the accompanying source code
examples are error-free.

This publication could include technical inaccuracies or
typographical errors. Changes are periodically made to
the information herein; these changes will be incorpo-
rated in new editions of the publication.

Address comments to IBM Corporation, Internal Zip
9630, 11400 Burnett Road, Austin, Texas 78758-3493.
IBM may use or distribute whatever information you
supply in any way it believes appropriate without incur-
ring any obligation to you.

The following terms are trademarks of the International
Business Machines Corporation in the United States
and/or other countries:

IBM PowerPC RISC/System 6000 POWER
POWER2 POWER4 POWER4+ IBM System/370

Notice to U.S. Government Users&mdash.Documenta-
tion Related to Restricted Rights&mdash.Use, duplica-
tion or disclosure is subject to restrictions set fourth in
GSA ADP Schedule Contract with IBM Corporation.

© Copyright International Business Machines Corpora-
tion, 1994, 2003. All rights reserved.
ii PowerPC Virtual Environment Architecture

Version 2.02
Preface

This document defines the additional instructions and
facilities, beyond those of the PowerPC User Instruc-
tion Set Architecture, that are provided by the PowerPC
Virtual Environment Architecture. It covers the storage
model and related instructions and facilities available to
the application programmer, and the Time Base as
seen by the application programmer.

Other related documents define the PowerPC User
Instruction Set Architecture, the PowerPC Operating
Environment Architecture, and PowerPC Implementa-
tion Features. Book I, PowerPC User Instruction Set
Architecture defines the base instruction set and
related facilities available to the application program-
mer. Book III, PowerPC Operating Environment Archi-
tecture defines the system (privileged) instructions and
related facilities. Book IV, PowerPC Implementation
Features defines the implementation-dependent
aspects of a particular implementation.

As used in this document, the term "PowerPC Architec-
ture" refers to the instructions and facilities described in
Books I, II, and III. The description of the instantiation
of the PowerPC Architecture in a given implementation
includes also the material in Book IV for that implemen-
tation.

Note: Change bars indicate changes from Version
2.01.
 Preface iii

Version 2.02
iv PowerPC Virtual Environment Architecture

Version 2.02
Table of Contents

Chapter 1. Storage Model 1
1.1 Definitions and Notation 1
1.2 Introduction. 2
1.3 Virtual Storage 2
1.4 Single-copy Atomicity 3
1.5 Cache Model 4
1.6 Storage Control Attributes 5
1.6.1 Write Through Required 5
1.6.2 Caching Inhibited 5
1.6.3 Memory Coherency Required 5
1.6.4 Guarded . 6
1.7 Shared Storage 7
1.7.1 Storage Access Ordering 7
1.7.2 Storage Ordering of I/O Accesses . 9
1.7.3 Atomic Update 9
1.7.3.1 Reservations 10
1.7.3.2 Forward Progress 11
1.8 Instruction Storage 11
1.8.1 Concurrent Modification and Execu-

tion of Instructions. 13

Chapter 2. Effect of Operand
Placement on Performance 15

2.1 Instruction Restart 16

Chapter 3. Storage Control
Instructions 17

3.1 Parameters Useful to Application Pro-
grams . 17

3.2 Cache Management Instructions . . 18
3.2.1 Instruction Cache Instruction 18
3.2.2 Data Cache Instructions 19
3.3 Synchronization Instructions. 22
3.3.1 Instruction Synchronize Instruction .

22
3.3.2 Load and Reserve and Store Condi-

tional Instructions 23
3.3.3 Memory Barrier Instructions. 26

Chapter 4. Time Base 29
4.1 Time Base Instructions 30
4.2 Reading the Time Base 30
4.3 Computing Time of Day From the Time

Base . 31

Chapter 5. Optional Facilities and
Instructions 33

5.1 External Control 33
5.1.1 External Access Instructions 34
5.2 Storage Control Instructions 35
5.2.1 Cache Management Instructions 35
5.2.1.1 Data Cache Instructions 35
5.3 Little-Endian 42

Appendix A. Assembler Extended
Mnemonics 43

A.1 Data Cache Block Flush Mnemonics .
43

A.2 Synchronize Mnemonics. 43

Appendix B. Programming Examples
for Sharing Storage 45

B.1 Atomic Update Primitives 45
B.2 Lock Acquisition and Release, and

Related Techniques 47
B.2.1 Lock Acquisition and Import Barriers

47
B.2.1.1 Acquire Lock and Import Shared

Storage . 47
B.2.1.2 Obtain Pointer and Import Shared

Storage . 47
B.2.2 Lock Release and Export Barriers 48
B.2.2.1 Export Shared Storage and

Release Lock. 48
B.2.2.2 Export Shared Storage and

Release Lock using eieio or lwsync. . . . 48
B.2.3 Safe Fetch 48
B.3 List Insertion 49
B.4 Notes . 49

Appendix C. Cross-Reference for
Changed POWER Mnemonics 51

Appendix D. New Instructions 53

Appendix E. PowerPC Virtual
Environment Instruction Set. 55
 Table of Contents v

Version 2.02
vi PowerPC Virtual Environment Architecture

Version 2.02
Figures

1. Performance effects of storage operand
placement . 15

2. Time Base . 29
3. Performance effects of storage operand placement,

Little-Endian mode . 42
 Figures vii

Version 2.02
viii PowerPC Virtual Environment Architecture

Version 2.02
Chapter 1. Storage Model

1.1 Definitions and Notation 1
1.2 Introduction. 2
1.3 Virtual Storage 2
1.4 Single-copy Atomicity 3
1.5 Cache Model 4
1.6 Storage Control Attributes 5
1.6.1 Write Through Required 5
1.6.2 Caching Inhibited 5
1.6.3 Memory Coherency Required 5
1.6.4 Guarded . 6

1.7 Shared Storage 7
1.7.1 Storage Access Ordering 7
1.7.2 Storage Ordering of I/O Accesses . 9
1.7.3 Atomic Update 9
1.7.3.1 Reservations 10
1.7.3.2 Forward Progress 11
1.8 Instruction Storage 11
1.8.1 Concurrent Modification and Execu-

tion of Instructions 13

1.1 Definitions and Notation

The following definitions, in addition to those specified
in Book I, are used in this Book. In these definitions,
“Load instruction" includes the Cache Management
and other instructions that are stated in the instruction
descriptions to be "treated as a Load", and similarly for
"Store instruction".

� processor
A hardware component that executes the instruc-
tions specified in a program.

� system
A combination of processors, storage, and associ-
ated mechanisms that is capable of executing pro-
grams. Sometimes the reference to system
includes services provided by the operating sys-
tem.

� main storage
The level of storage hierarchy in which all storage
state is visible to all processors and mechanisms
in the system.

� instruction storage
The view of storage as seen by the mechanism
that fetches instructions.

� data storage
The view of storage as seen by a Load or Store
instruction.

� program order
The execution of instructions in the order required
by the sequential execution model. (See the sec-

tion entitled "Instruction Execution Order" in Book
I. A dcbz instruction that modifies storage which
contains instructions has the same effect with
respect to the sequential execution model as a
Store instruction as described there.)

� storage location
A contiguous sequence of bytes in storage. When
used in association with a specific instruction or
the instruction fetching mechanism, the length of
the sequence of bytes is typically implied by the
operation. In other uses, it may refer more
abstractly to a group of bytes which share common
storage attributes.

� storage access
An access to a storage location. There are three
(mutually exclusive) kinds of storage access.

- data access
An access to the storage location specified by a
Load or Store instruction, or, if the access is per-
formed "out-of-order" (see Book III), an access to
a storage location as if it were the storage loca-
tion specified by a Load or Store instruction.

- instruction fetch
An access for the purpose of fetching an instruc-
tion.
Chapter 1. Storage Model 1

Version 2.02
- implicit access
An access by the processor for the purpose of
address translation or reference and change
recording (see Book III).

� caused by, associated with

- caused by
A storage access is said to be caused by an
instruction if the instruction is a Load or Store
and the access (data access) is to the storage
location specified by the instruction.

- associated with
A storage access is said to be associated with an
instruction if the access is for the purpose of
fetching the instruction (instruction fetch), or is a
data access caused by the instruction, or is an
implicit access that occurs as a side effect of
fetching or executing the instruction.

� prefetched instructions
Instructions for which a copy of the instruction has
been fetched from instruction storage, but the
instruction has not yet been executed.

� uniprocessor
A system that contains one processor.

� multiprocessor
A system that contains two or more processors.

� shared storage multiprocessor
A multiprocessor that contains some common stor-
age, which all the processors in the system can
access.

� performed
A load or instruction fetch by a processor or mech-
anism (P1) is performed with respect to any pro-
cessor or mechanism (P2) when the value to be
returned by the load or instruction fetch can no
longer be changed by a store by P2. A store by P1
is performed with respect to P2 when a load by P2
from the location accessed by the store will return
the value stored (or a value stored subsequently).
An instruction cache block invalidation by P1 is
performed with respect to P2 when an instruction
fetch by P2 will not be satisfied from the copy of
the block that existed in its instruction cache when
the instruction causing the invalidation was exe-
cuted, and similarly for a data cache block invalida-
tion.

The preceding definitions apply regardless of
whether P1 and P2 are the same entity.

� page
An aligned unit of storage for which protection and
control attributes are independently specifiable
and for which reference and change status are
independently recorded. Two virtual page sizes
are supported simultaneously, 4 KB and a larger
size. The larger size is an implementation-depen-

dent power of 2 (bytes). Real pages are always 4
KB.

� block
The aligned unit of storage operated on by each
Cache Management instruction. The size of a
block can vary by instruction and by implementa-
tion. The maximum block size is 4 KB.

� aligned storage access
A load or store is aligned if the address of the tar-
get storage location is a multiple of the size of the
transfer effected by the instruction.

1.2 Introduction
The PowerPC User Instruction Set Architecture, dis-
cussed in Book I, defines storage as a linear array of
bytes indexed from 0 to a maximum of 264 - 1. Each
byte is identified by its index, called its address, and
each byte contains a value. This information is suffi-
cient to allow the programming of applications that
require no special features of any particular system
environment. The PowerPC Virtual Environment Archi-
tecture, described herein, expands this simple storage
model to include caches, virtual storage, and shared
storage multiprocessors. The PowerPC Virtual Envi-
ronment Architecture, in conjunction with services
based on the PowerPC Operating Environment Archi-
tecture (see Book III) and provided by the operating
system, permits explicit control of this expanded stor-
age model. A simple model for sequential execution
allows at most one storage access to be performed at a
time and requires that all storage accesses appear to
be performed in program order. In contrast to this sim-
ple model, the PowerPC Architecture specifies a
relaxed model of storage consistency. In a multipro-
cessor system that allows multiple copies of a storage
location, aggressive implementations of the architec-
ture can permit intervals of time during which different
copies of a storage location have different values. This
chapter describes features of the PowerPC Architec-
ture that enable programmers to write correct programs
for this storage model.

1.3 Virtual Storage
The PowerPC system implements a virtual storage
model for applications. This means that a combination
of hardware and software can present a storage model
that allows applications to exist within a “virtual”
address space larger than either the effective address
space or the real address space.

Each program can access 264 bytes of "effective
address" (EA) space, subject to limitations imposed by
the operating system. In a typical PowerPC system ,
each program's EA space is a subset of a larger "virtual
2 PowerPC Virtual Environment Architecture

Version 2.02
address" (VA) space managed by the operating sys-
tem.

Each effective address is translated to a real address
(i.e., to an address of a byte in real storage or on an I/O
device) before being used to access storage. The
hardware accomplishes this, using the address transla-
tion mechanism described in Book III. The operating
system manages the real (physical) storage resources
of the system, by setting up the tables and other infor-
mation used by the hardware address translation
mechanism.

Book II deals primarily with effective addresses that are
in “segments” translated by the “address translation
mechanism” (see Book III). Each such effective
address lies in a “virtual page”, which is mapped to a
“real page” (4 KB virtual page) or to a contiguous
sequence of real pages (large virtual page) before data
or instructions in the virtual page are accessed.

In general, real storage may not be large enough to
map all the virtual pages used by the currently active
applications. With support provided by hardware, the
operating system can attempt to use the available real
pages to map a sufficient set of virtual pages of the
applications. If a sufficient set is maintained, "paging"
activity is minimized. If not, performance degradation
is likely.

The operating system can support restricted access to
virtual pages (including read/write, read only, and no
access; see Book III), based on system standards (e.g.,
program code might be read only) and application
requests.

1.4 Single-copy Atomicity
An access is single-copy atomic, or simply atomic, if it
is always performed in its entirety with no visible frag-
mentation. Atomic accesses are thus serialized: each
happens in its entirety in some order, even when that
order is not specified in the program or enforced
between processors.

In PowerPC the following single-register accesses are
always atomic:

� byte accesses (all bytes are aligned on byte
boundaries)

� halfword accesses aligned on halfword boundaries
� word accesses aligned on word boundaries
� doubleword accesses aligned on doubleword

boundaries

An access that is not atomic is performed as a set of
smaller disjoint atomic accesses.

� any Load or Store instruction for which the oper-
and is unaligned

� lmw, stmw, lswi, lswx, stswi, stswx
� any Cache Management instruction

An access that is not atomic is performed as a set of
smaller disjoint atomic accesses. The number and
alignment of these accesses are implementation-
dependent, as is the relative order in which they are
performed.

The results for several combinations of loads and
stores to the same or overlapping locations are
described below.

1. When two processors execute atomic stores to
locations that do not overlap, and no other stores
are performed to those locations, the contents of
those locations are the same as if the two stores
were performed by a single processor.

2. When two processors execute atomic stores to the
same storage location, and no other store is per-
formed to that location, the contents of that loca-
tion are the result stored by one of the processors.

3. When two processors execute stores that have the
same target location and are not guaranteed to be
atomic, and no other store is performed to that
location, the result is some combination of the
bytes stored by both processors.

4. When two processors execute stores to overlap-
ping locations, and no other store is performed to
those locations, the result is some combination of
the bytes stored by the processors to the overlap-
ping bytes. The portions of the locations that do
not overlap contain the bytes stored by the proces-
sor storing to the location.

5. When a processor executes an atomic store to a
location, a second processor executes an atomic
load from that location, and no other store is per-
formed to that location, the value returned by the
load is the contents of the location before the store
or the contents of the location after the store.

6. When a load and a store with the same target loca-
tion can be executed simultaneously, and no other
store is performed to that location, the value
returned by the load is some combination of the
contents of the location before the store and the
contents of the location after the store.
Chapter 1. Storage Model 3

Version 2.02
1.5 Cache Model
A cache model in which there is one cache for instruc-
tions and another cache for data is called a "Harvard-
style" cache. This is the model assumed by the Pow-
erPC Architecture, e.g., in the descriptions of the
Cache Management instructions in Section 3.2, “Cache
Management Instructions” on page 18. Alternative
cache models may be implemented(e.g., a "combined
cache" model, in which a single cache is used for both
instructions and data, or a model in which there are
several levels of caches), but they support the pro-
gramming model implied by a Harvard-style cache.

The processor is not required to maintain copies of
storage locations in the instruction cache consistent
with modifications to those storage locations (e.g.,
modifications caused by Store instructions).

A location in the data cache is considered to be modi-
fied in that cache if the location has been modified
(e.g., by a Store instruction) and the modified data have
not been written to main storage.

Cache Management instructions are provided so that
programs can manage the caches when needed. For
example, program management of the caches is
needed when a program generates or modifies code
that will be executed (i.e., when the program modifies
data in storage and then attempts to execute the modi-
fied data as instructions). The Cache Management
instructions are also useful in optimizing the use of
memory bandwidth in such applications as graphics
and numerically intensive computing. The functions
performed by these instructions depend on the storage
control attributes associated with the specified storage
location (see Section 1.6, “Storage Control Attributes”).

The Cache Management instructions allow the pro-
gram to do the following.

� invalidate the copy of storage in an instruction
cache block (icbi)

� provide a hint that the program will probably soon
access a specified data cache block (dcbt, dcbtst)

� set the contents of a data cache block to zeros
(dcbz)

� copy the contents of a modified data cache block
to main storage (dcbst)

� copy the contents of a modified data cache block
to main storage and make the copy of the block in
the data cache invalid (dcbf[l])
4 PowerPC Virtual Environment Architecture

Version 2.02
1.6 Storage Control Attributes
Some operating systems may provide a means to allow
programs to specify the storage control attributes
described in this section. Because the support pro-
vided for these attributes by the operating system may
vary between systems, the details of the specific sys-
tem being used must be known before these attributes
can be used.

Storage control attributes are associated with units of
storage that are multiples of the page size. Each stor-
age access is performed according to the storage con-
trol attributes of the specified storage location, as
described below. The storage control attributes are the
following.

� Write Through Required
� Caching Inhibited
� Memory Coherence Required
� Guarded

These attributes have meaning only when an effective
address is translated by the processor performing the
storage access. All combinations of these attributes
are supported except Write Through Required with
Caching Inhibited.

In the remainder of this section, "Load instruction"
includes the Cache Management and other instructions
that are stated in the instruction descriptions to be
“treated as a Load”, and similarly for “Store instruction”.

1.6.1 Write Through Required

A store to a Write Through Required storage location is
performed in main storage. A Store instruction that
specifies a location in Write Through Required storage
may cause additional locations in main storage to be
accessed. If a copy of the block containing the speci-
fied location is retained in the data cache, the store is
also performed in the data cache. The store does not

cause the block to be considered to be modified in the
data cache.

In general, accesses caused by separate Store instruc-
tions that specify locations in Write Through Required
storage may be combined into one access. Such com-
bining does not occur if the Store instructions are sepa-
rated by a sync instruction or by an eieio instruction.

1.6.2 Caching Inhibited

An access to a Caching Inhibited storage location is
performed in main storage. A Load instruction that
specifies a location in Caching Inhibited storage may
cause additional locations in main storage to be
accessed unless the specified location is also Guarded.
An instruction fetch from Caching Inhibited storage may
cause additional words in main storage to be accessed.
No copy of the accessed locations is placed into the
caches.

In general, non-overlapping accesses caused by sepa-
rate Load instructions that specify locations in Caching
Inhibited storage may be combined into one access, as
may non-overlapping accesses caused by separate
Store instructions that specify locations in Caching
Inhibited storage. Such combining does not occur if the
Load or Store instructions are separated by a sync
instruction, or by an eieio instruction if the storage is
also Guarded.

1.6.3 Memory Coherency
Required

An access to a Memory Coherence Required storage
location is performed coherently, as follows.

Memory coherence refers to the ordering of stores to a
single location. Atomic stores to a given location are
coherent if they are serialized in some order, and no
processor or mechanism is able to observe any subset
of those stores as occurring in a conflicting order. This
serialization order is an abstract sequence of values;
the physical storage location need not assume each of
the values written to it. For example, a processor may
update a location several times before the value is writ-
ten to physical storage. The result of a store operation
is not available to every processor or mechanism at the
same instant, and it may be that a processor or mecha-
nism observes only some of the values that are written
to a location. However, when a location is accessed
atomically and coherently by all processor and mecha-
nisms, the sequence of values loaded from the location
by any processor or mechanism during any interval of
time forms a subsequence of the sequence of values
that the location logically held during that interval. That
is, a processor or mechanism can never load a "newer"
value first and then, later, load an "older" value.

The Write Through Required and Caching Inhibited
attributes are mutually exclusive because, as
described below, the Write Through Required
attribute permits the storage location to be in the
data cache while the Caching Inhibited attribute
does not.

Storage that is Write Through Required or Caching
Inhibited is not intended to be used for general-pur-
pose programming. For example, the lwarx, ldarx,
stwcx., and stdcx. instructions may cause the sys-
tem data storage error handler to be invoked if they
specify a location in storage having either of these
attributes.

Programming Note
Chapter 1. Storage Model 5

Version 2.02
Memory coherence is managed in blocks called coher-
ence blocks. Their size is implementation-dependent
(see the Book IV, PowerPC Implementation Features
document for the implementation), but is larger than a
word and is usually the size of a cache block.

For storage that is not Memory Coherence Required,
software must explicitly manage memory coherence to
the extent required by program correctness. The oper-
ations required to do this may be system-dependent.

Because the Memory Coherence Required attribute for
a given storage location is of little use unless all pro-
cessors that access the location do so coherently, in
statements about Memory Coherence Required stor-
age elsewhere in Books I - III it is generally assumed
that the storage has the Memory Coherence Required
attribute for all processors that access it.

1.6.4 Guarded

A data access to a Guarded storage location is per-
formed only if either (a) the access is caused by an
instruction that is known to be required by the sequen-
tial execution model, or (b) the access is a load and the
storage location is already in a cache. If the storage is
also Caching Inhibited, only the storage location speci-
fied by the instruction is accessed; otherwise any stor-
age location in the cache block containing the specified
storage location may be accessed.

Instructions are not fetched from virtual storage that is
Guarded. If the effective address of the current instruc-
tion is in such storage, the system instruction storage
error handler is invoked.

Operating systems that allow programs to request
that storage not be Memory Coherence Required
should provide services to assist in managing
memory coherence for such storage, including all
system-dependent aspects thereof.

In most systems the default is that all storage is
Memory Coherence Required. For some applica-
tions in some systems, software management of
coherence may yield better performance. In such
cases, a program can request that a given unit of
storage not be Memory Coherence Required, and
can manage the coherence of that storage by using
the sync instruction, the Cache Management
instructions, and services provided by the operat-
ing system.

Programming Note In some implementations, instructions may be exe-
cuted before they are known to be required by the
sequential execution model. Because the results
of instructions executed in this manner are dis-
carded if it is later determined that those instruc-
tions would not have been executed in the
sequential execution model, this behavior does not
affect most programs.

This behavior does affect programs that access
storage locations that are not "well-behaved" (e.g.,
a storage location that represents a control register
on an I/O device that, when accessed, causes the
device to perform an operation). To avoid unin-
tended results, programs that access such storage
locations should request that the storage be
Guarded, and should prevent such storage loca-
tions from being in a cache (e.g., by requesting that
the storage also be Caching Inhibited).

Programming Note
6 PowerPC Virtual Environment Architecture

Version 2.02
1.7 Shared Storage
This architecture supports the sharing of storage
between programs, between different instances of the
same program, and between processors and other
mechanisms. It also supports access to a storage loca-
tion by one or more programs using different effective
addresses. All these cases are considered storage
sharing. Storage is shared in blocks that are an inte-
gral number of pages.

When the same storage location has different effective
addresses, the addresses are said to be aliases. Each
application can be granted separate access privileges
to aliased pages.

1.7.1 Storage Access Ordering

The storage model for the ordering of storage accesses
is weakly consistent. This model provides an opportu-
nity for improved performance over a model that has
stronger consistency rules, but places the responsibility
on the program to ensure that ordering or synchroniza-
tion instructions are properly placed when storage is
shared by two or more programs.

The order in which the processor performs storage
accesses, the order in which those accesses are per-
formed with respect to another processor or mecha-
nism, and the order in which those accesses are
performed in main storage may all be different. Several
means of enforcing an ordering of storage accesses
are provided to allow programs to share storage with
other programs, or with mechanisms such as I/O
devices. These means are listed below. The phrase
"to the extent required by the associated Memory
Coherence Required attributes" refers to the Memory
Coherence Required attribute, if any, associated with
each access.

� If two Store instructions specify storage locations
that are both Caching Inhibited and Guarded, the
corresponding storage accesses are performed in
program order with respect to any processor or
mechanism.

� If a Load instruction depends on the value returned
by a preceding Load instruction (because the
value is used to compute the effective address
specified by the second Load), the corresponding
storage accesses are performed in program order
with respect to any processor or mechanism to the
extent required by the associated Memory Coher-
ence Required attributes. This applies even if the
dependency has no effect on program logic (e.g.,
the value returned by the first Load is ANDed with
zero and then added to the effective address spec-
ified by the second Load).

� When a processor (P1) executes a Synchronize or
eieio instruction a memory barrier is created,
which orders applicable storage accesses pair-
wise, as follows. Let A be a set of storage
accesses that includes all storage accesses asso-
ciated with instructions preceding the barrier-creat-
ing instruction, and let B be a set of storage
accesses that includes all storage accesses asso-
ciated with instructions following the barrier-creat-
ing instruction. For each applicable pair ai,bj of
storage accesses such that ai is in A and bj is in B,
the memory barrier ensures that ai will be per-
formed with respect to any processor or mecha-
nism, to the extent required by the associated
Memory Coherence Required attributes, before bj
is performed with respect to that processor or
mechanism.

The ordering done by a memory barrier is said to
be "cumulative" if it also orders storage accesses
that are performed by processors and mecha-
nisms other than P1, as follows.

- A includes all applicable storage accesses by
any such processor or mechanism that have
been performed with respect to P1 before the
memory barrier is created.

- B includes all applicable storage accesses by
any such processor or mechanism that are
performed after a Load instruction executed
by that processor or mechanism has returned
the value stored by a store that is in B.

No ordering should be assumed among the storage
accesses caused by a single instruction (i.e, by an
instruction for which the access is not atomic), and no
means are provided for controlling that order.
Chapter 1. Storage Model 7

Version 2.02
Programming Note

Because stores cannot be performed "out-of-order"
(see Book III, PowerPC Virtual Environment Architec-
ture), if a Store instruction depends on the value
returned by a preceding Load instruction (because the
value returned by the Load is used to compute either
the effective address specified by the Store or the value
to be stored), the corresponding storage accesses are
performed in program order. The same applies if
whether the Store instruction is executed depends on a
conditional Branch instruction that in turn depends on
the value returned by a preceding Load instruction.

Because an isync instruction prevents the execution of
instructions following the isync until instructions pre-
ceding the isync have completed, if an isync follows a
conditional Branch instruction that depends on the
value returned by a preceding Load instruction, the
load on which the Branch depends is performed before
any loads caused by instructions following the isync.
This applies even if the effects of the "dependency" are
independent of the value loaded (e.g., the value is
compared to itself and the Branch tests the EQ bit in
the selected CR field), and even if the branch target is
the sequentially next instruction.

With the exception of the cases described above and
earlier in this section, data dependencies and control
dependencies do not order storage accesses. Exam-
ples include the following.

� If a Load instruction specifies the same storage
location as a preceding Store instruction and the
location is in storage that is not Caching Inhibited,
the load may be satisfied from a "store queue" (a
buffer into which the processor places stored val-
ues before presenting them to the storage sub-
system), and not be visible to other processors
and mechanisms. A consequence is that if a sub-
sequent Store depends on the value returned by
the Load, the two stores need not be performed in
program order with respect to other processors
and mechanisms.

� Because a Store Conditional instruction may com-
plete before its store has been performed, a condi-
tional Branch instruction that depends on the CR0
value set by a Store Conditional instruction does
not order the Store Conditional's store with respect

to storage accesses caused by instructions that
follow the Branch.

� Because processors may predict branch target
addresses and branch condition resolution, control
dependencies (e.g., branches) do not order stor-
age accesses except as described above. For
example, when a subroutine returns to its caller the
return address may be predicted, with the result
that loads caused by instructions at or after the
return address may be performed before the load
that obtains the return address is performed.

Because processors may implement nonarchitected
duplicates of architected resources (e.g., GPRs, CR
fields, and the Link Register), resource dependencies
(e.g., specification of the same target register for two
Load instructions) do not order storage accesses.

Examples of correct uses of dependencies, sync,
lwsync, and eieio to order storage accesses can be
found in Appendix B. “Programming Examples for
Sharing Storage” on page 45.

Because the storage model is weakly consistent, the
sequential execution model as applied to instructions
that cause storage accesses guarantees only that
those accesses appear to be performed in program
order with respect to the processor executing the
instructions. For example, an instruction may com-
plete, and subsequent instructions may be executed,
before storage accesses caused by the first instruction
have been performed. However, for a sequence of
atomic accesses to the same storage location, if the
location is in storage that is Memory Coherence
Required the definition of coherence guarantees that
the accesses are performed in program order with
respect to any processor or mechanism that accesses
the location coherently, and similarly if the location is in
storage that is Caching Inhibited.

Because accesses to storage that is Caching Inhibited
are performed in main storage, memory barriers and
dependencies on Load instructions order such
accesses with respect to any processor or mechanism
even if the storage is not Memory Coherence Required.

8 PowerPC Virtual Environment Architecture

Version 2.02

1.7.2 Storage Ordering of I/O
Accesses

A “coherence domain” consists of all processors and all
interfaces to main storage. Memory reads and writes
initiated by mechanisms outside the coherence domain
are performed within the coherence domain in the
order in which they enter the coherence domain and
are performed as coherent accesses.

1.7.3 Atomic Update

The Load And Reserve and Store Conditional instruc-
tions together permit atomic update of a storage loca-
tion. There are word and doubleword forms of each of
these instructions. Described here is the operation of
the word forms lwarx and stwcx.; operation of the dou-

bleword forms ldarx and stdcx. is the same except for
obvious substitutions.

The lwarx instruction is a load from a word-aligned
location that has two side effects. Both of these side
effects occur at the same time that the load is per-
formed.

1. A reservation for a subsequent stwcx. instruction
is created.

2. The storage coherence mechanism is notified that
a reservation exists for the storage location speci-
fied by the lwarx.

The stwcx. instruction is a store to a word-aligned loca-
tion that is conditioned on the existence of the reserva-
tion created by the lwarx and on whether the same
storage location is specified by both instructions. To
emulate an atomic operation with these instructions, it
is necessary that both the lwarx and the stwcx. spec-
ify the same storage location.

A stwcx. performs a store to the target storage location
only if the storage location specified by the lwarx that
established the reservation has not been stored into by
another processor or mechanism since the reservation
was created. If the storage locations specified by the
two instructions differ, the store is not necessarily per-
formed.

A stwcx. that performs its store is said to “succeed”.

Examples of the use of lwarx and stwcx. are given in
Appendix B. “Programming Examples for Sharing Stor-
age” on page 45.

A successful stwcx. to a given location may complete
before its store has been performed with respect to
other processors and mechanisms. As a result, a sub-
sequent load or lwarx from the given location by
another processor may return a “stale” value. How-
ever, a subsequent lwarx from the given location by the
other processor followed by a successful stwcx. by
that processor is guaranteed to have returned the value
stored by the first processor’s stwcx. (in the absence of
other stores to the given location).

The first example below illustrates cumulative
ordering of storage accesses preceding a memory
barrier, and the second illustrates cumulative order-
ing of storage accesses following a memory barrier.
Assume that locations X, Y, and Z initially contain
the value 0.

Example1:

Processor A:
stores the value 1 to location X

Processor B:
loads from location X obtaining the value
1, executes a sync instruction, then
stores the value 2 to location Y

Processor C:
loads from location Y obtaining the value
2, executes a sync instruction, then loads
from location X

Example 2:

Processor A:
stores the value 1 to location X, executes
a sync instruction, then stores the value 2
to location Y

Processor B:
loops loading from location Y until the
value 2 is obtained, then stores the value
3 to location Z

Processor C:
loads from location Z obtaining the value
3, executes a sync instruction, then loads
from location X

In both cases, cumulative ordering dictates that the
value loaded from location X by processor C is 1.

Programming Note

The store caused by a successful stwcx. is
ordered, by a dependence on the reservation, with
respect to the load caused by the lwarx that estab-
lished the reservation, such that the two storage
accesses are performed in program order with
respect to any processor or mechanism.

Programming Note
Chapter 1. Storage Model 9

Version 2.02
 1.7.3.1 Reservations

The ability to emulate an atomic operation using lwarx
and stwcx. is based on the conditional behavior of
stwcx., the reservation created by lwarx, and the
clearing of that reservation if the target location is mod-
ified by another processor or mechanism before the
stwcx. performs its store.

A reservation is held on an aligned unit of real storage
called a reservation granule. The size of the reserva-
tion granule is 2n bytes, where n is implementation-
dependent but is always at least 4 (thus the minimum
reservation granule size is a quadword). The reserva-
tion granule associated with effective address EA con-
tains the real address to which EA maps.
(“real_addr(EA)” in the RTL for the Load And Reserve
and Store Conditional instructions stands for “real
address to which EA maps”.)

A processor has at most one reservation at any time. A
reservation is established by executing a lwarx or ldarx
instruction, and is lost (or may be lost, in the case of the
third, fourth, and sixth bullet) if any of the following
occur.

� The processor holding the reservation executes
another lwarx or ldarx: this clears the first reser-
vation and establishes a new one.

� The processor holding the reservation executes
any stwcx. or stdcx., regardless of whether the
specified address matches the address specified
by the lwarx or ldarx that established the reserva-
tion.

� The processor holding the reservation executes a
dcbf[l] to the reservation granule: whether the res-
ervation is lost is undefined.

� The processor holding the reservation modifies a
Reference or Change bit (see Book III, PowerPC
Operating Environment Architecture) in the same
reservation granule: whether the reservation is
lost is undefined.

� Some other processor executes a Store or dcbz to
the same reservation granule, or modifies a Refer-
ence or Change bit in the same reservation gran-
ule.

� Some other processor executes a dcbtst, dcbst,
dcbf (but not dcbfl) to the same reservation gran-
ule: whether the reservation is lost is undefined.

� Some other mechanism modifies a storage loca-
tion in the same reservation granule.

Interrupts (see Book III, PowerPC Operating Environ-
ment Architecture) do not clear reservations (however,
system software invoked by interrupts may clear reser-
vations).

One use of lwarx and stwcx. is to emulate a “Com-
pare and Swap” primitive like that provided by the
IBM System/370 Compare and Swap instruction;
see Section B.1, “Atomic Update Primitives” on
page 45. A System/370-style Compare and Swap
checks only that the old and current values of the
word being tested are equal, with the result that
programs that use such a Compare and Swap to
control a shared resource can err if the word has
been modified and the old value subsequently
restored. The combination of lwarx and stwcx.
improves on such a Compare and Swap, because
the reservation reliably binds the lwarx and stwcx.
together. The reservation is always lost if the word
is modified by another processor or mechanism
between the lwarx and stwcx., so the stwcx.
never succeeds unless the word has not been
stored into (by another processor or mechanism)
since the lwarx.

In general, programming conventions must ensure
that lwarx and stwcx. specify addresses that
match; a stwcx. should be paired with a specific
lwarx to the same storage location. Situations in
which a stwcx. may erroneously be issued after
some lwarx other than that with which it is intended
to be paired must be scrupulously avoided. For
example, there must not be a context switch in
which the processor holds a reservation in behalf of
the old context, and the new context resumes after
a lwarx and before the paired stwcx.. The stwcx.
in the new context might succeed, which is not
what was intended by the programmer. Such a sit-
uation must be prevented by executing a stwcx. or
stdcx. that specifies a dummy writable aligned
location as part of the context switch; see the sec-
tion entitled “Interrupt Processing” in Book III.

Programming Note

Programming Note
10 PowerPC Virtual Environment Architecture

Version 2.02

1.7.3.2 Forward Progress

Forward progress in loops that use lwarx and stwcx. is
achieved by a cooperative effort among hardware, sys-
tem software, and application software.

The architecture guarantees that when a processor
executes a lwarx to obtain a reservation for location X
and then a stwcx. to store a value to location X, either

1. the stwcx. succeeds and the value is written to
location X, or

2. the stwcx. fails because some other processor or
mechanism modified location X, or

3. the stwcx. fails because the processor’s reserva-
tion was lost for some other reason.

In Cases 1 and 2, the system as a whole makes
progress in the sense that some processor successfully
modifies location X. Case 3 covers reservation loss
required for correct operation of the rest of the system.
This includes cancellation caused by some other pro-
cessor writing elsewhere in the reservation granule for
X, as well as cancellation caused by the operating sys-
tem in managing certain limited resources such as real
storage. It may also include implementation-dependent
causes of reservation loss.

An implementation may make a forward progress guar-
antee, defining the conditions under which the system
as a whole makes progress. Such a guarantee must
specify the possible causes of reservation loss in Case
3. While the architecture alone cannot provide such a
guarantee, the characteristics listed in Cases 1 and 2
are necessary conditions for any forward progress

guarantee. An implementation and operating system
can build on them to provide such a guarantee.

1.8 Instruction Storage
The instruction execution properties and requirements
described in this section, including its subsections,
apply only to instruction execution that is required by
the sequential execution model.

 In this section, including its subsections, it is assumed
that all instructions for which execution is attempted are
in storage that is not Caching Inhibited and (unless
instruction address translation is disabled; see Book III)
is not Guarded, and from which instruction fetching
does not cause the system error handler to be invoked
(e.g., from which instruction fetching is not prohibited
by the “address translation mechanism” or the “storage
protection mechanism”; see Book III).

For each instance of executing an instruction from loca-
tion X, the instruction may be fetched multiple times.

The instruction cache is not necessarily kept consistent
with the data cache or with main storage. It is the
responsibility of software to ensure that instruction stor-
age is consistent with data storage when such consis-
tency is required for program correctness.

After one or more bytes of a storage location have been
modified and before an instruction located in that stor-
age location is executed, software must execute the
appropriate sequence of instructions to make instruc-
tion storage consistent with data storage. Otherwise
the results of attempting to execute the instruction are
boundedly undefined except as described in
Section 1.8.1, “Concurrent Modification and Execution
of Instructions” on page 13.

Because the reservation is lost if another processor
stores anywhere in the reservation granule, lock
words (or doublewords) should be allocated such
that few such stores occur, other than perhaps to
the lock word itself. (Stores by other processors to
the lock word result from contention for the lock,
and are an expected consequence of using locks to
control access to shared storage; stores to other
locations in the reservation granule can cause
needless reservation loss.) Such allocation can
most easily be accomplished by allocating an entire
reservation granule for the lock and wasting all but
one word. Because reservation granule size is
implementation-dependent, portable code must do
such allocation dynamically.

Similar considerations apply to other data that are
shared directly using lwarx and stwcx. (e.g., point-
ers in certain linked lists; see Section B.3, “List
Insertion” on page 49).

Programming Note

The architecture does not include a “fairness guar-
antee”. In competing for a reservation, two proces-
sors can indefinitely lock out a third.

The results of attempting to execute instructions
from storage that does not satisfy this assumption
are described in Sections 1.6.2 and 1.6.4 of
this Book and in Book III.

Programming Note

Programming Note
Chapter 1. Storage Model 11

Version 2.02
Programming Note

Following are examples of how to make instruction
storage consistent with data storage. Because the opti-
mal instruction sequence to make instruction storage
consistent with data storage may vary between sys-
tems, many operating systems will provide a system
service to perform this function

Case 1: The given program does not modify instruc-
tions executed by another program nor does another
program modify the instructions executed by the given
program.

Assume that location X previously contained the
instruction A0; the program modified one of more bytes
of that location such that, in data storage, the location
contains the instruction A1; and location X is wholly
contained in a single cache block. The following
instruction sequence will make instruction storage con-
sistent with data storage such that if the isync was in
location X-4, the instruction A1 in location X would be
executed immediately after the isync.

dcbst X #copy the block to main storage
sync #order copy before invalidation
icbi X #invalidate copy in instr cache
isync #discard prefetched instructions

Case 2: One or more programs execute the instruc-
tions that are concurrently being modified by another
program.

Assume program A has modified the instruction at loca-
tion X and other programs are waiting for program A
to signal that the new instruction is ready to execute.
The following instruction sequence will make instruc-
tion storage consistent with data storage and then set a
flag to indicate to the waiting programs that the new
instruction can be executed.

dcbst X #copy the block in main storage
sync #order copy before invalidation
icbi X #invalidate copy in instr cache
sync #order invalidation before store

to flag
stw r0,flag(3) #set flag indicating instruction

storage is now consistent

The following instruction sequence, executed by the
waiting program, will prevent the waiting programs
from executing the instruction at location X until loca-
tion X in instruction storage is consistent with data stor-
age, and then will cause any prefetched instructions to
be discarded.

lwz r0,flag(3) #loop until flag = 1 (when 1
cmpwi r0,1 # is loaded, location X in
bne $-8 # instruction storage is

consistent with location X
in data storage)

isync #discard any prefetched inst’ns

In the preceding instruction sequence any context syn-
chronizing instruction (e.g., rfid) can be used instead of
isync. (For Case 1 only isync can be used.)

For both cases, if two or more instructions in separate
data cache blocks have been modified, the dcbst
instruction in the examples must be replaced by a
sequence of dcbst instructions such that each block
containing the modified instructions is copied back to
main storage. Similarly, for icbi the sequence must
invalidate each instruction cache block containing a
location of an instruction that was modified. The sync
instruction that appears above between “dcbst X” and
“icbi X” would be placed between the sequence of
dcbst instructions and the sequence of icbi instruc-
tions.
12 PowerPC Virtual Environment Architecture

Version 2.02
1.8.1 Concurrent Modification and
Execution of Instructions

The phrase “concurrent modification and execution of
instructions” (CMODX) refers to the case in which a
processor fetches and executes an instruction from
instruction storage which is not consistent with data
storage or which becomes inconsistent with data stor-
age prior to the completion of its processing. This sec-
tion describes the only case in which executing this
instruction under these conditions produces defined
results.

In the remainder of this section the following terminol-
ogy is used.

� Location X is an arbitrary word-aligned storage
location.

� X0 is the value of the contents of location X for
which software has made the location X in instruc-
tion storage consistent with data storage.

� X1, X2, ..., Xn are the sequence of the first n values
occupying location X after X0.

� Xn is the first value of X subsequent to X0 for which
software has again made instruction storage con-
sistent with data storage.

� The “patch class” of instructions consists of the I-
form Branch instruction (b[l][a]) and the preferred
no-op instruction (ori 0,0,0).

If the instruction from location X is executed after the
copy of location X in instruction storage is made consis-
tent for the value X0 and before it is made consistent for
the value Xn, the results of executing the instruction are
defined if and only if the following conditions are satis-
fied.

1. The stores that place the values X1, ..., Xn into
location X are atomic stores that modify all four
bytes of location X.

2. Each Xi, 0 � i � n, is a patch class instruction.

3. Location X is in storage that is Memory Coherence
Required.

If these conditions are satisfied, the result of each exe-
cution of an instruction from location X will be the exe-
cution of some Xi, 0 � i � n. The value of the ordinate i
associated with each value executed may be different
and the sequence of ordinates i associated with a
sequence of values executed is not constrained, (e.g.,
a valid sequence of executions of the instruction at
location X could be the sequence Xi, Xi+2, then Xi-1). If
these conditions are not satisfied, the results of each
such execution of an instruction from location X are
boundedly undefined, and may include causing incon-
sistent information to be presented to the system error
handler.

An example of how failure to satisfy the require-
ments given above can cause inconsistent informa-
tion to be presented to the system error handler is
as follows. If the value X0 (an illegal instruction) is
executed, causing the system illegal instruction
handler to be invoked, and before the error handler
can load X0 into a register, X0 is replaced with X1,
an Add Immediate instruction, it will appear that a
legal instruction caused an illegal instruction
exception.

It is possible to apply a patch or to instrument a
given program without the need to suspend or halt
the program. This can be accomplished by modify-
ing the example shown above where one program
is creating instructions to be executed by one or
more other programs.

In place of the Store to a flag to indicate to the other
programs that the code is ready to be executed, the
program that is applying the patch would replace a
patch class instruction in the original program with
a Branch instruction that would cause any program
executing the Branch to branch to the newly cre-
ated code. The first instruction in the newly created
code must be an isync, which will cause any
prefetched instructions to be discarded, ensuring
that the execution is consistent with the newly cre-
ated code. The instruction storage location con-
taining the isync instruction in the patch area must
be consistent with data storage with respect to the
processor that will execute the patched code
before the Store which stores the new Branch
instruction is performed.

It is believed that all processors that comply with
versions of the architecture that precede Version
2.01 support concurrent modification and execution
of instructions as described in this section if the
requirements given above are satisfied, and that
most such processors yield boundedly undefined
results if the requirements given above are not sat-
isfied. However, in general such support has not
been verified by processor testing. Also, one such
processor is known to yield undefined results in
certain cases if the requirements given above are
not satisfied.

Programming Note

Programming Note

Programming Note
Chapter 1. Storage Model 13

Version 2.02
14 PowerPC Virtual Environment Architecture

Version 2.02
Chapter 2. Effect of Operand Placement on Performance

2.1 Instruction Restart 16

The placement (location and alignment) of operands in
storage affects relative performance of storage
accesses, and may affect it significantly. The best per-
formance is guaranteed if storage operands are
aligned. In order to obtain the best performance across
the widest range of implementations, the programmer
should assume the performance model described in
Figure 1 with respect to the placement of storage oper-
ands. Performance of accesses varies depending on
the following:

1. Operand Size
2. Operand Alignment
3. Crossing no boundary
4. Crossing a cache block boundary
5. Crossing a virtual page boundary
6. Crossing a segment boundary (see Book III, Pow-

erPC Operating Environment Architecture for a
description of storage segments)

The Move Assist instructions have no alignment
requirements.

Figure 1. Performance effects of storage operand
placement

Operand Boundary Crossing

Size
Byte
Align. None

Cache
Block

Virtual
Page2 Seg.

Integer

8 Byte 8
4
<4

optimal
good
good

 -
good
good

-
good
good

 -
poor
poor

4 Byte 4
<4

optimal
good

-
good

-
good

-
poor

2 Byte 2
<2

optimal
good

 -
good

-
good

-
poor

1 Byte 1 optimal - - -

lmw,
stmw

4
<4

good
poor

good
poor

good
poor

poor
poor

string good good good poor

Float

8 Byte 8
4
<4

optimal
good
poor

-
good
poor

-
poor
poor

 -
poor
poor

4 Byte 4
<4

optimal
poor

-
poor

-
poor

-
poor

1 If an instruction causes an access that is not atomic
and any portion of the operand is in storage that is
Write Through Required or Caching Inhibited, per-
formance is likely to be poor.

2 If the storage operand spans two virtual pages that
have different storage control attributes, perfor-
mance is likely to be poor.
Chapter 2. Effect of Operand Placement on Performance 15

Version 2.02
2.1 Instruction Restart
In this section, “Load instruction” includes the Cache
Management and other instructions that are stated in
the instruction descriptions to be “treated as a Load”,
and similarly for “Store instruction”.

The following instructions are never restarted after hav-
ing accessed any portion of the storage operand
(unless the instruction causes a “Data Address Com-
pare match” or a “Data Address Breakpoint match”, for
which the corresponding rules are given in Book III).

1. A Store instruction that causes an atomic access

2. A Load instruction that causes an atomic access to
storage that is both Caching Inhibited and
Guarded

Any other Load or Store instruction may be partially
executed and then aborted after having accessed a
portion of the storage operand, and then re-executed
(i.e., restarted, by the processor or the operating sys-
tem). If an instruction is partially executed, the con-
tents of registers are preserved to the extent that the
correct result will be produced when the instruction is
re-executed.

There are many events that might cause a Load or
Store instruction to be restarted. For example, a
hardware error may cause execution of the instruc-
tion to be aborted after part of the access has been
performed, and the recovery operation could then
cause the aborted instruction to be re-executed.

When an instruction is aborted after being partially
executed, the contents of the instruction pointer
indicate that the instruction has not been executed,
however, the contents of some registers may have
been altered and some bytes within the storage
operand may have been accessed. The following
are examples of an instruction being partially exe-
cuted and altering the program state even though it
appears that the instruction has not been executed.

1. Load Multiple, Load String: Some registers in
the range of registers to be loaded may have
been altered.

2. Any Store instruction, dcbz: Some bytes of
the storage operand may have been altered.

3. Any floating-point Load instruction: The target
register (FRT) may have been altered.

Programming Note
16 PowerPC Virtual Environment Architecture

Version 2.02
Chapter 3. Storage Control Instructions

3.1 Parameters Useful to Application Pro-
grams . 17

3.2 Cache Management Instructions . . 18
3.2.1 Instruction Cache Instruction 18
3.2.2 Data Cache Instructions 19
3.3 Synchronization Instructions. 22

3.3.1 Instruction Synchronize Instruction .
22

3.3.2 Load and Reserve and Store Condi-
tional Instructions. 23

3.3.3 Memory Barrier Instructions 26

3.1 Parameters Useful to Application Programs

It is suggested that the operating system provide a ser-
vice that allows an application program to obtain the
following information.

1. The two virtual page sizes
2. Coherence block size
3. Granule sizes for reservations
4. An indication of the cache model implemented

(e.g., Harvard-style cache, combined cache)
5. Instruction cache size
6. Data cache size
7. Instruction cache line size (see Book IV, PowerPC

Implementation Features)
8. Data cache line size (see Book IV)
9. Block size for icbi

10. Block size for dcbt and dcbtst
11. Block size for dcbz, dcbst, dcbf[l]
12. Instruction cache associativity
13. Data cache associativity
14. Number of stream IDs supported for the stream

variant of dcbt
15. Factors for converting the Time Base to seconds

If the caches are combined, the same value should be
given for an instruction cache attribute and the corre-
sponding data cache attribute.
Chapter 3. Storage Control Instructions 17

Version 2.02
3.2 Cache Management Instructions

The Cache Management instructions obey the sequen-
tial execution model except as described in
Section 3.2.1, “Instruction Cache Instruction”.

In the instruction descriptions the statements “this
instruction is treated as a Load” and “this instruction is
treated as a Store” mean that the instruction is treated

as a Load (Store) from (to) the addressed byte with
respect to address translation, the definition of program
order on page i, storage protection, reference and
change recording, and the storage access ordering
described in Section 1.7.1, “Storage Access Ordering”
on page 7.

3.2.1 Instruction Cache Instruction

Instruction Cache Block Invalidate X-form

icbi RA,RB

Let the effective address (EA) be the sum (RA|0)+(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required and a
block containing the byte addressed by EA is in the
instruction cache of any processors, the block is invali-
dated in those instruction caches.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required and a
block containing the byte addressed by EA is in the
instruction cache of this processor, the block is invali-
dated in that instruction cache.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited.

This instruction is treated as a Load (see Section 3.2,
“Cache Management Instructions”), except that refer-
ence and change recording need not be done.

Special Registers Altered:
None

31 /// RA RB 982 /
0 6 11 16 21 31

As stated above, the effective address is translated
using translation resources that are used for data
accesses, even though the block being invalidated
was copied into the instruction cache based on
translation resources used for instruction fetches
(see Book III, PowerPC Operating Environment
Architecture).

The invalidation of the specified block need not
have been performed with respect to the processor
executing the icbi instruction until a subsequent
isync instruction has been executed by that pro-
cessor. No other instruction or event has the corre-
sponding effect.

Programming Note

Programming Note
18 PowerPC Virtual Environment Architecture

Version 2.02
3.2.2 Data Cache Instructions

Data Cache Block Touch X-form

dcbt RA,RB

Let the effective address (EA) be the sum (RA|0)+(RB).

The dcbt instruction provides a hint that the program
will probably soon load from the block containing the
byte addressed by EA. The hint is ignored if the block
is Caching Inhibited or Guarded.

The only operation that is "caused by" the dcbt instruc-
tion is the providing of the hint. The actions (if any)
taken by the processor in response to the hint are not
considered to be “caused by” or “associated with” the
dcbt instruction (e.g., dcbt is considered not to cause
any data accesses). No means are provided by which
software can synchronize these actions with the execu-
tion of the instruction stream. For example, these
actions are not ordered by memory barriers.

The dcbt instruction may complete before the opera-
tion it causes has been performed.

This instruction is treated as a Load (see Section 3.2),
except that the system data storage error handler is not
invoked, and reference and change recording need not
be done.

Special Registers Altered:
None

Data Cache Block Touch for Store X-form

dcbtst RA,RB

Let the effective address (EA) be the sum (RA|0)+(RB).

The dcbtst instruction provides a hint that the program
will probably soon store to the block containing the byte
addressed by EA. The hint is ignored if the block is
Caching Inhibited or Guarded.

The only operation that is "caused by" the dcbtst
instruction is the providing of the hint. The actions (if
any) taken by the processor in response to the hint are
not considered to be “caused by” or “associated with”
the dcbtst instruction (e.g., dcbtst is considered not to
cause any data accesses). No means are provided by
which software can synchronize these actions with the
execution of the instruction stream. For example,
these actions are not ordered by memory barriers.

The dcbtst instruction may complete before the opera-
tion it causes has been performed.

This instruction is treated as a Load (see Section 3.2),
except that the system data storage error handler is not
invoked, and reference and change recording need not
be done.

Special Registers Altered:
None

31 /// RA RB 278 /
0 6 11 16 21 31

The processor's response to the hint provided by
dcbt or dcbtst is to take actions that reduce the
latency of subsequent loads or stores that access
the specified block. (Such actions may include
prefetching the block into levels of the storage hier-
archy that are "near" the processor.)

Processors that comply with versions of the archi-
tecture that precede Version 2.00 do not necessar-
ily ignore the hint provided by dcbt and dcbtst if
the specified block is in storage that is Guarded
and not Caching Inhibited.

Programming Note

31 /// RA RB 246 /
0 6 11 16 21 31
Chapter 3. Storage Control Instructions 19

Version 2.02
Data Cache Block set to Zero X-form

dcbz RA,RB

[POWER mnemonic: dclz]

if RA = 0 then b � 0
else b � (RA)
EA � b + (RB)
n � block size (bytes)
m � log2(n)
ea � EA0:63-m ||

m0
MEM(ea, n) � n0x00

Let the effective address (EA) be the sum (RA|0)+(RB).

All bytes in the block containing the byte addressed by
EA are set to zero.

This instruction is treated as a Store (see Section 3.2).

Special Registers Altered:
None

31 /// RA RB 1014 /
0 6 11 16 21 31

dcbz does not cause the block to exist in the data
cache if the block is in storage that is Caching
Inhibited.

For storage that is neither Write Through Required
nor Caching Inhibited, dcbz provides an efficient
means of setting blocks of storage to zero. It can
be used to initialize large areas of such storage, in
a manner that is likely to consume less memory
bandwidth than an equivalent sequence of Store
instructions.

For storage that is either Write Through Required
or Caching Inhibited, dcbz is likely to take signifi-
cantly longer to execute than an equivalent
sequence of Store instructions.

See the section entitled “Cache Management
Instructions” in Book III, PowerPC Operating Envi-
ronment Architecture for additional information
about dcbz.

Programming Note
20 PowerPC Virtual Environment Architecture

Version 2.02
Data Cache Block Store X-form

dcbst RA,RB

Let the effective address (EA) be the sum (RA|0)+(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required and a
block containing the byte addressed by EA is in the
data cache of any processor and any locations in the
block are considered to be modified there, those loca-
tions are written to main storage, additional locations in
the block may be written to main storage, and the block
ceases to be considered to be modified in that data
cache.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required and
the block is in the data cache of this processor and any
locations in the block are considered to be modified
there, those locations are written to main storage, addi-
tional locations in the block may be written to main stor-
age, and the block ceases to be considered to be
modified in that data cache.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited.

This instruction is treated as a Load (see Section 3.2),
except that reference and change recording need not
be done.

Special Registers Altered:
None

Data Cache Block Flush X-form

dcbf RA,RB

Let the effective address (EA) be the sum (RA|0)+(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required and a
block containing the byte addressed by EA is in the
data cache of any processor and any locations in the
block are considered to be modified there, those loca-
tions are written to main storage and additional loca-
tions in the block may be written to main storage. The
block is invalidated in the data caches of all processors.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required and
the block is in the data cache of this processor and any
locations in the block are considered to be modified
there, those locations are written to main storage and
additional locations in the block may be written to main
storage. The block is invalidated in the data cache of
this processor.

The function of this instruction is independent of
whether the block containing the byte addressed by EA
is in storage that is Write Through Required or Caching
Inhibited.

This instruction is treated as a Load (see Section 3.2),
except that reference and change recording need not
be done.

Special Registers Altered:
None

31 /// RA RB 54 /
0 6 11 16 21 31

31 /// RA RB 86 /
0 6 11 16 21 31
Chapter 3. Storage Control Instructions 21

Version 2.02
3.3 Synchronization Instructions

3.3.1 Instruction Synchronize
Instruction

Instruction Synchronize XL-form

isync

[POWER mnemonic: ics]

Executing an isync instruction ensures that all instruc-
tions preceding the isync instruction have completed
before the isync instruction completes, and that no
subsequent instructions are initiated until after the
isync instruction completes. It also ensures that all
instruction cache block invalidations caused by icbi
instructions preceding the isync instruction have been
performed with respect to the processor executing the
isync instruction, and then causes any prefetched
instructions to be discarded.

Except as described in the preceding sentence, the
isync instruction may complete before storage
accesses associated with instructions preceding the
isync instruction have been performed.

This instruction is context synchronizing (see Book III,
PowerPC Operating Environment Architecture).

Special Registers Altered:
None

19 /// /// /// 150 /
0 6 11 16 21 31
22 PowerPC Virtual Environment Architecture

Version 2.02
3.3.2 Load and Reserve and Store Conditional Instructions

The Load And Reserve and Store Conditional instruc-
tions can be used to construct a sequence of instruc-
tions that appears to perform an atomic update
operation on an aligned storage location. See
Section 1.7.3, “Atomic Update” on page 9 for additional
information about these instructions.

The Load And Reserve and Store Conditional instruc-
tions are fixed-point Storage Access instructions; see
the section entitled “Fixed-Point Storage Access
Instructions” in Book I, PowerPC User Instruction Set
Architecture.

The storage location specified by the Load And
Reserve and Store Conditional instructions must be in
storage that is Memory Coherence Required if the loca-
tion may be modified by other processors or mecha-
nisms. If the specified location is in storage that is
Write Through Required or Caching Inhibited, the sys-
tem data storage error handler or the system alignment
error handler is invoked.

The Memory Coherence Required attribute on
other processors and mechanisms ensures that
their stores to the reservation granule will cause
the reservation created by the Load And Reserve
instruction to be lost.

Because the Load And Reserve and Store Condi-
tional instructions have implementation dependen-
cies (e.g., the granularity at which reservations are
managed), they must be used with care. The oper-
ating system should provide system library pro-
grams that use these instructions to implement the
high-level synchronization functions (Test and Set,
Compare and Swap, locking, etc.; see Appendix B)
that are needed by application programs. Applica-
tion programs should use these library programs,
rather than use the Load And Reserve and Store
Conditional instructions directly.

Programming Note

Programming Note
Chapter 3. Storage Control Instructions 23

Version 2.02
Load Word And Reserve Indexed X-form

lwarx RT,RA,RB

if RA = 0 then b � 0
else b � (RA)
EA � b +(RB)
RESERVE � 1
RESERVE_ADDR � real_addr(EA)
RT � 320 || MEM(EA, 4)

Let the effective address (EA) be the sum (RA|0)+(RB).
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

This instruction creates a reservation for use by a Store
Word Conditional instruction. An address computed
from the EA as described in Section 1.7.3.1 is associ-
ated with the reservation, and replaces any address
previously associated with the reservation.

EA must be a multiple of 4. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
None

 Load Doubleword And Reserve Indexed
X-form

ldarx RT,RA,RB

if RA = 0 then b � 0
else b � (RA)
EA � b +(RB)
RESERVE � 1
RESERVE_ADDR � real_addr(EA)
RT � MEM(EA, 8)

Let the effective address (EA) be the sum (RA|0)+(RB).
The doubleword in storage addressed by EA is loaded
into RT.

This instruction creates a reservation for use by a Store
Doubleword Conditional instruction. An address com-
puted from the EA as described in Section 1.7.3.1 is
associated with the reservation, and replaces any
address previously associated with the reservation.

EA must be a multiple of 8. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
None

31 RT RA RB 20 /
0 6 11 16 21 31 31 RT RA RB 84 /

0 6 11 16 21 31
24 PowerPC Virtual Environment Architecture

Version 2.02
Store Word Conditional Indexed X-form

stwcx. RS,RA,RB

if RA = 0 then b � 0
else b � (RA)
EA � b + (RB)
if RESERVE then
 if RESERVE_ADDR = real_addr(EA) then
 MEM(EA, 4) � (RS)32:63
 CR0 � 0b00 || 0b1 || XERSO
 else
 u1 � undefined 1-bit value
 if u1 then
 MEM(EA, 4) � (RS)32:63
 u2 � undefined 1-bit value
 CR0 � 0b00 || u2 || XERSO
 RESERVE � 0
else
 CR0 � 0b00 || 0b0 || XERSO

Let the effective address (EA) be the sum (RA|0)+(RB).

If a reservation exists and the storage location specified
by the stwcx. is the same as the location specified by
the Load And Reserve instruction that established the
reservation, (RS)32:63 are stored into the word in stor-
age addressed by EA and the reservation is cleared.

If a reservation exists but the storage location specified
by the stwcx. is not the same as the location specified
by the Load And Reserve instruction that established
the reservation, the reservation is cleared, and it is
undefined whether (RS)32:63 are stored into the word in
storage addressed by EA.

If a reservation does not exist, the instruction com-
pletes without altering storage.

CR Field 0 is set as follows. n is a 1-bit value that indi-
cates whether the store was performed, except that if a
reservation exists but the storage location specified by
the stwcx. is not the same as the location specified by
the Load And Reserve instruction that established the
reservation the value of n is undefined.

CR0LT GT EQ SO = 0b00 || n || XERSO

EA must be a multiple of 4. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
CR0

Store Doubleword Conditional Indexed
X-form

stdcx. RS,RA,RB

if RA = 0 then b � 0
else b � (RA)
EA � b + (RB)
if RESERVE then
 if RESERVE_ADDR = real_addr(EA) then
 MEM(EA, 8) � (RS)
 CR0 � 0b00 || 0b1 || XERSO
 else
 u1 � undefined 1-bit value
 if u1 then
 MEM(EA, 8) � (RS)
 u2 � undefined 1-bit value
 CR0 � 0b00 || u2 || XERSO
 RESERVE � 0
else
 CR0 � 0b00 || 0b0 || XERSO

Let the effective address (EA) be the sum (RA|0)+(RB).

If a reservation exists and the storage location specified
by the stdcx. is the same as the location specified by
the Load And Reserve instruction that established the
reservation, (RS) is stored into the doubleword in stor-
age addressed by EA and the reservation is cleared.

If a reservation exists but the storage location specified
by the stdcx. is not the same as the location specified
by the Load And Reserve instruction that established
the reservation, the reservation is cleared, and it is
undefined whether (RS) is stored into the doubleword
in storage addressed by EA.

If a reservation does not exist, the instruction com-
pletes without altering storage.

CR Field 0 is set as follows. n is a 1-bit value that indi-
cates whether the store was performed, except when a
reservation exists but the storage location specified by
the stwcx. is not the same as the location specified by
the Load And Reserve instruction that established the
reservation, the value of n is undefined.

CR0LT GT EQ SO = 0b00 || n || XERSO

EA must be a multiple of 8. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

Special Registers Altered:
CR0

31 RS RA RB 150 1
0 6 11 16 21 31 31 RS RA RB 214 1

0 6 11 16 21 31
Chapter 3. Storage Control Instructions 25

Version 2.02
3.3.3 Memory Barrier Instructions

The Memory Barrier instructions can be used to control
the order in which storage accesses are performed.
Additional information about these instructions and
about related aspects of storage management can be
found in Book III, PowerPC Operating Environment
Architecture.

Extended mnemonics for Synchronize

Extended mnemonics are provided for the Synchronize
instruction so that it can be coded with the L value as
part of the mnemonic rather than as a numeric oper-
and. These are shown as examples with the instruc-
tion. See Appendix A. “Assembler Extended
Mnemonics” on page 43.

Synchronize X-form

sync L

[POWER mnemonic: dcs]

The sync instruction creates a memory barrier (see
Section 1.7.1). The set of storage accesses that is
ordered by the memory barrier depends on the value of
the L field.

L = 0 (“heavyweight sync”)

The memory barrier provides an ordering function
for the storage accesses associated with all
instructions that are executed by the processor
executing the sync instruction. The applicable
pairs are all pairs ai,bj in which bj is a data access,
except that if ai is the storage access caused by an
icbi instruction then bj may be performed with
respect to the processor executing the sync
instruction before ai is performed with respect to
that processor.

L = 1 (“lightweight sync”)

The memory barrier provides an ordering function
for the storage accesses caused by Load, Store,
and dcbz instructions that are executed by the
processor executing the sync instruction and for
which the specified storage location is in storage
that is Memory Coherence Required and is neither
Write Through Required nor Caching Inhibited.
The applicable pairs are all pairs ai,bj of such
accesses except those in which ai is an access
caused by a Store or dcbz instruction and bj is an
access caused by a Load instruction.

L = 2

The set of storage accesses that is ordered by the
memory barrier is described in the section entitled
“Synchronize Instruction” in Book III, as are addi-
tional properties of the sync instruction with L=2.

The ordering done by the memory barrier is cumulative.

If L=0 (or L=2), the sync instruction has the following
additional properties.

� Executing the sync instruction ensures that all
instructions preceding the sync instruction have
completed before the sync instruction completes,
and that no subsequent instructions are initiated
until after the sync instruction completes.

� The sync instruction is execution synchronizing
(see Book III, PowerPC Operating Environment
Architecture). However, address translation and
reference and change recording (see Book III)
associated with subsequent instructions may be
performed before the sync instruction completes.

� The memory barrier provides the additional order-
ing function such that if a given instruction that is
the result of a Store in set B is executed, all appli-
cable storage accesses in set A have been per-
formed with respect to the processor executing the
instruction to the extent required by the associated
memory coherence properties. The single excep-
tion is that any storage access in set A that is
caused by an icbi instruction executed by the pro-
cessor executing the sync instruction (P1) may not
have been performed with respect to P1 (see the
description of the icbi instruction on page 18).

The cumulative properties of the barrier apply to
the execution of the given instruction as they
would to a Load that returned a value that was the
result of a Store in set B.

� The sync instruction provides an ordering function
for the operations caused by dcbt instructions with
TH0 = 1.

The value L=3 is reserved.

The sync instruction may complete before storage
accesses associated with instructions preceding the
sync instruction have been performed. The sync
instruction may complete before operations caused by
dcbt instructions with TH0 = 1 preceding the sync
instruction have been performed.

31 /// L /// /// 598 /
0 6 9 11 16 21 31
26 PowerPC Virtual Environment Architecture

Version 2.02
Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Synchronize:

Except in the sync instruction description in this sec-
tion, references to “sync” in Books I - III imply L=0
unless otherwise stated or obvious from context; the
appropriate extended mnemonics are used when other
L values are intended.

Extended: Equivalent to:
sync sync 0
lwsync sync 1
ptesync sync 2

Section 1.8, “Instruction Storage” on page 11 con-
tains a detailed description of how to modify
instructions such that a well-defined result is
obtained.

sync serves as both a basic and an extended mne-
monic. The Assembler will recognize a sync mne-
monic with one operand as the basic form, and a
sync mnemonic with no operand as the extended
form. In the extended form the L operand is omit-
ted and assumed to be 0.

Programming Note

Programming Note

The sync instruction can be used to ensure that all
stores into a data structure, caused by Store
instructions executed in a “critical section” of a pro-
gram, will be performed with respect to another
processor before the store that releases the lock is
performed with respect to that processor; see
Section B.2, “Lock Acquisition and Release, and
Related Techniques” on page 47.

The memory barrier created by a sync instruction
with L=0 or L=1 does not order implicit storage
accesses. The memory barrier created by a sync
instruction with any L value does not order instruc-
tion fetches.

(The memory barrier created by a sync instruction
with L=0 -- or L=2; see Book III -- appears to order
instruction fetches for instructions preceding the
sync instruction with respect to data accesses
caused by instructions following the sync instruc-
tion. However, this ordering is a consequence of
the first “additional property” of sync with L=0, not
a property of the memory barrier.)

In order to obtain the best performance across the
widest range of implementations, the programmer
should use either the sync instruction with L=1 or
the eieio instruction if either of these is sufficient for
his needs; otherwise he should use sync with L=0.
sync with L=2 should not be used by application
programs.

The functions provided by sync with L=1 are a
strict subset of those provided by sync with L=0.
(The functions provided by sync with L=2 are a
strict superset of those provided by sync with L=0;
see Book III.)

Programming Note

Programming Note
Chapter 3. Storage Control Instructions 27

Version 2.02
Enforce In-order Execution of I/O X-form

eieio

The eieio instruction creates a memory barrier (see
Section 1.7.1, “Storage Access Ordering”), which pro-
vides an ordering function for the storage accesses
caused by Load, Store, dcbz, eciwx, and ecowx
instructions executed by the processor executing the
eieio instruction. These storage accesses are divided
into two sets, which are ordered separately. The stor-
age access caused by an eciwx instruction is ordered
as a load, and the storage access caused by a dcbz or
ecowx instruction is ordered as a store.

1. Loads and stores to storage that is both Caching
Inhibited and Guarded, and stores to main storage
caused by stores to storage that is Write Through
Required

The applicable pairs are all pairs ai,bj of such
accesses.

The ordering done by the memory barrier for
accesses in this set is not cumulative.

2. Stores to storage that is Memory Coherence
Required and is neither Write Through Required
nor Caching Inhibited

The applicable pairs are all pairs ai,bj of such
accesses.

The ordering done by the memory barrier for
accesses in this set is cumulative.

The operations caused by dcbt instructions with
TH0 = 1 are ordered by eieio as a third set of opera-
tions, which is independent of the two sets specified
above.

The eieio instruction may complete before storage
accesses associated with instructions preceding the
eieio instruction have been performed. The eieio
instruction may complete before operations caused by
dcbt instructions having TH0 = 1 preceding the eieio
instruction have been performed.

Special Registers Altered:
None

31 /// /// /// 854 /
0 6 11 16 21 31

The eieio instruction is intended for use in manag-
ing shared data structures (see Appendix
B. “Programming Examples for Sharing Storage”
on page 45), in doing memory-mapped I/O, and in
preventing load/store combining operations in main
storage (see Section 1.6, “Storage Control
Attributes” on page 5).

Because stores to storage that is both Caching
Inhibited and Guarded are performed in program
order (see Section 1.7.1, “Storage Access Order-
ing” on page 7), eieio is needed for such storage
only when loads must be ordered with respect to
stores or with respect to other loads, or when load/
store combining operations must be prevented.

For accesses in set 1, ai and bj need not be the
same kind of access or be to storage having the
same storage control attributes. For example, ai
can be a load to Caching Inhibited, Guarded stor-
age, and bj a store to Write Through Required stor-
age.

If stronger ordering is desired than that provided by
eieio, the sync instruction must be used, with the
appropriate value in the L field.

The functions provided by eieio are a strict subset
of those provided by sync with L=0. The functions
provided by eieio for its second set are a strict sub-
set of those provided by sync with L=1.

Programming Note

Programming Note
28 PowerPC Virtual Environment Architecture

Version 2.02
Chapter 4. Time Base

4.1 Time Base Instructions 30
4.2 Reading the Time Base 30

4.3 Computing Time of Day From the Time
Base . 31

The Time Base (TB) is a 64-bit register (see Figure 2)
containing a 64-bit unsigned integer that is incremented
periodically. Each increment adds 1 to the low-order bit
(bit 63). The frequency at which the integer is updated
is implementation-dependent.

Figure 2. Time Base

The Time Base increments until its value becomes
0xFFFF_FFFF_FFFF_FFFF (264 - 1). At the next
increment, its value becomes
0x0000_0000_0000_0000. There is no explicit indica-
tion (such as an interrupt; see Book III, PowerPC Oper-
ating Environment Architecture) that this has occurred.

The period of the Time Base depends on the driving
frequency. As an order of magnitude example, sup-
pose that the CPU clock is 1 GHz and that the Time
Base is driven by this frequency divided by 32. Then
the period of the Time Base would be

 TTB = = 5.90 x 1011 seconds

which is approximately 18,700 years.

The PowerPC Architecture does not specify a relation-
ship between the frequency at which the Time Base is
updated and other frequencies, such as the CPU clock
or bus clock, in a PowerPC system. The Time Base
update frequency is not required to be constant. What
is required, so that system software can keep time of
day and operate interval timers, is one of the following.

� The system provides an (implementation-depen-
dent) interrupt to software whenever the update
frequency of the Time Base changes, and a means
to determine what the current update frequency is.

� The update frequency of the Time Base is under
the control of the system software.

TBU TBL

0 32 63

Field Description
TBU Upper 32 bits of Time Base
TBL Lower 32 bits of Time Base

264 32×
1GHz

If the operating system initializes the Time Base on
power-on to some reasonable value and the
update frequency of the Time Base is constant, the
Time Base can be used as a source of values that
increase at a constant rate, such as for time stamps
in trace entries.

Even if the update frequency is not constant, val-
ues read from the Time Base are monotonically
increasing (except when the Time Base wraps from
264-1 to 0). If a trace entry is recorded each time
the update frequency changes, the sequence of
Time Base values can be post-processed to
become actual time values.

Successive readings of the Time Base may return
identical values.

Programming Note
Chapter 4. Time Base 29

Version 2.02
4.1 Time Base Instructions

Extended mnemonics

Extended mnemonics are provided for the Move From
Time Base instruction so that it can be coded with the
TBR name as part of the mnemonic rather than as a
numeric operand. See the appendix entitled “Assem-
bler Extended Mnemonics” in Book III, PowerPC Oper-
ating Environment Architecture.

Move From Time Base XFX-form

mftb RT,TBR

n � tbr5:9 || tbr0:4
if n = 268 then
 RT � TB
else if n = 269 then
 RT � 320 || TB0:31

The TBR field denotes either the Time Base or Time
Base Upper, encoded as shown in the table below. The
contents of the designated register are placed into reg-
ister RT. When reading Time Base Upper, the high-
order 32 bits of register RT are set to zero.

If the TBR field contains any value other than one of the
values shown above then one of the following occurs.

� The system illegal instruction error handler is
invoked.

� The system privileged instruction error handler is
invoked.

� The results are boundedly undefined.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Move From Time Base:

4.2 Reading the Time Base
The contents of the Time Base can be read into a GPR
by the mftb extended mnemonic. To read the contents
of the Time Base into register Rx, execute:

mftb Rx

Reading the Time Base has no effect on the value it
contains or on the periodic incrementing of that value.

31 RT tbr 371 /
0 6 11 21 31

 TBR* Register

decimal tbr5:9 tbr0:4 Name

 268 01000 01100 TB

 269 01000 01101 TBU

* Note that the order of the two 5-bit
halves of the TBR number is reversed.

Extended: Equivalent to:
mftb Rx mftb Rx,268
mftbu Rx mftb Rx,269

mftb serves as both a basic and an extended mne-
monic. The Assembler will recognize an mftb
mnemonic with two operands as the basic form,
and an mftb mnemonic with one operand as the
extended form. In the extended form the TBR
operand is omitted and assumed to be 268 (the
value that corresponds to TB).

The TBR number coded in assembler language
does not appear directly as a 10-bit binary number
in the instruction. The number coded is split into
two 5-bit halves that are reversed in the instruction,
with the high-order 5 bits appearing in bits 16:20 of
the instruction and the low-order 5 bits in bits 11:15.

Programming Note

Compiler and Assembler Note
30 PowerPC Virtual Environment Architecture

Version 2.02
4.3 Computing Time of Day
From the Time Base
Since the update frequency of the Time Base is imple-
mentation-dependent, the algorithm for converting the
current value in the Time Base to time of day is also
implementation-dependent.

As an example, assume that the Time Base is incre-
mented at a constant rate of once for every 32 cycles of
a 1 GHz CPU instruction clock. What is wanted is the
pair of 32-bit values comprising a POSIX standard
clock:1 the number of whole seconds that have passed
since midnight January 0, 1970, and the remaining
fraction of a second expressed as a number of nano-
seconds.

Assume that:

� The value 0 in the Time Base represents the start
time of the POSIX clock (if this is not true, a simple
64-bit subtraction will make it so).

� The integer constant ticks_per_sec contains the
value

 = 31,250,000

which is the number of times the Time Base is
updated each second.

� The integer constant ns_adj contains the value

 = 32

which is the number of nanoseconds per tick of the
Time Base.

The POSIX clock can be computed with an instruction
sequence such as this:

mftb Ry # Ry = Time Base
lwz Rx,ticks_per_sec
divd Rz,Ry,Rx# Rz = whole seconds
stw Rz,posix_sec
mulld Rz,Rz,Rx# Rz = quotient * divisor
sub Rz,Ry,Rz# Rz = excess ticks
lwz Rx,ns_adj
mulld Rz,Rz,Rx# Rz = excess nanoseconds
stw Rz,posix_ns

Non-constant update frequency

In a system in which the update frequency of the Time
Base may change over time, it is not possible to con-
vert an isolated Time Base value into time of day.
Instead, a Time Base value has meaning only with
respect to the current update frequency and the time of
day that the update frequency was last changed. Each
time the update frequency changes, either the system
software is notified of the change via an interrupt (see
Book III, PowerPC Operating Environment Architec-
ture), or the change was instigated by the system soft-
ware itself. At each such change, the system software
must compute the current time of day using the old
update frequency, compute a new value of
ticks_per_sec for the new frequency, and save the time
of day, Time Base value, and tick rate. Subsequent
calls to compute time of day use the current Time Base
value and the saved data.

1. Described in POSIX Draft Standard P1003.4/D12, Draft Standard for Information Technology -- Portable Operating System Interface (POSIX) --
Part 1: System Application Program Interface (API) - Amendment 1: Real-time Extension [C Language]. Institute of Electrical and Electronics Engi-
neers, Inc., Feb. 1992.

1 GHz
32

1,000,000,000
31,250,000

Chapter 4. Time Base 31

Version 2.02
32 PowerPC Virtual Environment Architecture

Version 2.02
Chapter 5. Optional Facilities and Instructions

5.1 External Control 33
5.1.1 External Access Instructions 34
5.2 Storage Control Instructions 35
5.2.1 Cache Management Instructions 35

5.2.1.1 Data Cache Instructions 35
5.3 Little-Endian 42

The facilities and instructions described in this chapter
are optional. An implementation may provide all, some,
or none of them, except as described below.

5.1 External Control
The External Control facility permits a program to com-
municate with a special-purpose device. Two instruc-
tions are provided, both of which must be implemented
if the facility is provided.

� External Control In Word Indexed (eciwx), which
does the following:

- Computes an effective address (EA) as for
any X-form instruction

- Validates the EA as would be done for a load
from that address

- Translates the EA to a real address
- Transmits the real address to the device
- Accepts a word of data from the device and

places it into a General Purpose Register

� External Control Out Word Indexed (ecowx),
which does the following:

- Computes an effective address (EA) as for
any X-form instruction

- Validates the EA as would be done for a store
to that address

- Translates the EA to a real address
- Transmits the real address and a word of data

from a General Purpose Register to the
device

Permission to execute these instructions and identifica-
tion of the target device are controlled by two fields,
called the E bit and the RID field respectively. If
attempt is made to execute either of these instructions
when E=0 the system data storage error handler is

invoked. The location of these fields is described in
Book III, PowerPC Operating Environment Architec-
ture.

The storage access caused by eciwx and ecowx is
performed as though the specified storage location is
Caching Inhibited and Guarded, and is neither Write
Through Required nor Memory Coherence Required.

Interpretation of the real address transmitted by eciwx
and ecowx and of the 32-bit value transmitted by
ecowx is up to the target device, and is not specified by
the PowerPC Architecture. See the System Architec-
ture documentation for a given PowerPC system for
details on how the External Control facility can be used
with devices on that system.

Example

An example of a device designed to be used with the
External Control facility might be a graphics adapter.
The ecowx instruction might be used to send the
device the translated real address of a buffer containing
graphics data, and the word transmitted from the Gen-
eral Purpose Register might be control information that
tells the adapter what operation to perform on the data
in the buffer. The eciwx instruction might be used to
load status information from the adapter.

A device designed to be used with the External Control
facility may also recognize events that indicate that the
address translation being used by the processor has
changed. In this case the operating system need not
“pin” the area of storage identified by an eciwx or
ecowx instruction (i.e., need not protect it from being
paged out).
Chapter 5. Optional Facilities and Instructions 33

Version 2.02
5.1.1 External Access Instructions

In the instruction descriptions the statements “this
instruction is treated as a Load” and “this instruction is
treated as a Store” have the same meanings as for the

Cache Management instructions; see Section 3.2,
“Cache Management Instructions” on page 18.

External Control In Word Indexed X-form

eciwx RT,RA,RB

if RA = 0 then b � 0
else b � (RA)
EA � b + (RB)
raddr � address translation of EA
send load word request for raddr to
 device identified by RID
RT � 320 || word from device

Let the effective address (EA) be the sum (RA|0)+(RB).

A load word request for the real address corresponding
to EA is sent to the device identified by RID, bypassing
the cache. The word returned by the device is placed
into RT32:63. RT0:31 are set to 0.

The E bit must be 1. If it is not, the data storage error
handler is invoked.

EA must be a multiple of 4. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

This instruction is treated as a Load.

See Book III, PowerPC Operating Environment Archi-
tecture for additional information about this instruction.

Special Registers Altered:
None

External Control Out Word Indexed X-
form

ecowx RS,RA,RB

if RA = 0 then b � 0
else b � (RA)
EA � b + (RB)
raddr � address translation of EA
send store word request for raddr to
 device identified by RID
send (RS)32:63 to device

Let the effective address (EA) be the sum (RA|0)+(RB).

A store word request for the real address correspond-
ing to EA and the contents of RS32:63 are sent to the
device identified by RID, bypassing the cache.

The E bit must be 1. If it is not, the data storage error
handler is invoked.

EA must be a multiple of 4. If it is not, either the system
alignment error handler is invoked or the results are
boundedly undefined.

This instruction is treated as a Store, except that its
storage access is not performed in program order with
respect to accesses to other Caching Inhibited and
Guarded storage locations unless software explicitly
imposes that order.

See Book III, PowerPC Operating Environment Archi-
tecture for additional information about this instruction.

Special Registers Altered:
None

31 RT RA RB 310 /
0 6 11 16 21 31

The eieio instruction can be used to ensure that
the storage accesses caused by eciwx and ecowx
are performed in program order with respect to
other Caching Inhibited and Guarded storage
accesses.

Programming Note

31 RS RA RB 438 /
0 6 11 16 21 31
34 PowerPC Virtual Environment Architecture

Version 2.02
5.2 Storage Control Instructions

5.2.1 Cache Management Instructions

5.2.1.1 Data Cache Instructions

The optional version of the Data Cache Block Touch
instruction permits a program to provide a hint regard-
ing a sequence of contiguous data cache blocks. Such
a sequence is called a “data stream”. A dcbt instruc-
tion in which TH0 3 � 0b00 is said to be a “data stream
variant” of dcbt. In the remainder of this section, “data
stream” may be abbreviated to “stream”.

Warning: The variants of dcbt in which TH3 = 1 are
being phased out of the architecture.

The optional version of the Data Cache Block Flush
instruction permits a program to limit the scope of the
"flush" operation.

Extended mnemonics for Data Cache
Block Flush

Extended mnemonics are provided for the Data Cache
Block Flush instruction so that it can be coded with the
L value as part of the mnemonic rather than as a
numeric operand. These are shown as examples with
the instruction. See Appendix A. “Assembler Extended
Mnemonics” on page 43.

Data Cache Block Touch X-form

dcbt RA,RB,TH

Let the effective address (EA) be the sum (RA|0)+(RB).

The dcbt instruction provides a hint that describes a
block or data stream, or indicates the expected use
thereof. The nature of the hint depends, in part, on the
value of bit 0 of the TH field. A hint that the program
will probably soon load from a given storage location is
ignored if the location is Caching Inhibited or Guarded.

When, and how often, effective addresses for a data
stream are translated is implementation-dependent.

When TH0 = 0 the dcbt instruction provides a hint that
the program will probably soon load from the specified
block or data stream.

The encodings of the TH field in which TH0 = 0 are as
follows.

TH Description

0000 The program will probably soon load from the
block containing the byte addressed by EA.

0001 The program will probably soon load from the
data stream consisting of the block containing
the byte addressed by EA and an unlimited
number of sequentially following blocks.

0011 The program will probably soon load from the
data stream consisting of the block containing
the byte addressed by EA and an unlimited
number of sequentially preceding blocks.

When TH0 = 1 the dcbt instruction provides a hint that
describes a data stream, or indicates that the program
will probably soon load from data streams that have
been thus described or will probably no longer load
from such data streams.

The address and length of such data streams are spec-
ified in terms of aligned 128-byte units of storage; in the
remainder of this instruction description, “aligned 128-
byte unit of storage” is abbreviated to “unit”.

Each such data stream is associated, by software, with
a stream ID, which is a resource that the processor
uses to distinguish the data stream from other such
data streams. The number of stream IDs is an imple-
mentation-dependent value in the range 1:16 (see the
Book IV, PowerPC AS Implementation Features docu-
ment for the implementation). Stream IDs are num-
bered sequentially starting from 0.

31 / TH RA RB 278 /
0 6 7 11 16 21 31

Architecturally, stream IDs are not used for data
streams that are specified using dcbt instructions
in which TH3 = 1, or for “hardware-detected data
streams” (defined in a subsequent Programming
Note). Therefore, elsewhere in this instruction
description, references to data streams associated
with stream IDs apply only to data streams that are
specified using dcbt instructions in which TH0 = 1.

Programming Note
Chapter 5. Optional Facilities and Instructions 35

Version 2.02
The encodings of the TH field in which TH0 = 1, and of
the corresponding EA values, are as follows. In the EA
layout diagrams, fields shown as “/”s are reserved.
These fields, and reserved values of defined EA fields,
are treated in the same manner as the corresponding
cases for instruction fields (see the section entitled
"Reserved Fields and Reserved Values" in Book I),
except that a reserved value in a defined EA field does
not make the instruction form invalid. If a defined EA
field contains a reserved value, the hint provided by the
instruction is undefined.

TH Description

1000 The dcbt instruction provides a hint that
describes certain attributes of a data stream,
and optionally indicates that the program will
probably soon load from the stream.

The EA is interpreted as follows.

Bit(s) Description

0:56 EATRUNC

High-order 57 bits of effective address
of first unit of data stream (i.e., the
effective address of the first unit of the
stream is EATRUNC || 70)

57 Direction (D)

0 Subsequent units are the sequen-
tially following units.

1 Subsequent units are the sequen-
tially preceding units.

58 Unlimited/GO (UG)

0 No information is provided by the
UG field.

1 The number of units in the data
stream is unlimited, the program’s
need for each block of the stream
is not likely to be transient, and the
program will probably soon load
from the stream.

59 Reserved

60:63 Stream ID (ID)

Stream ID to use for this data stream

1010 The dcbt instruction provides a hint that
describes certain attributes of a data stream,
or indicates that the program will probably
soon load from data streams that have been
described using dcbt instructions in which
TH0 = 1 or will probably no longer load from
such data streams.

The EA is interpreted as follows. If GO = 1
and S � 0b00 the hint provided by the instruc-

tion is undefined; the remainder of this instruc-
tion description assumes that this combination
is not used.

Bit(s) Description

0:31 Reserved

32 GO

0 No information is provided by the
GO field.

1 The program will probably soon
load from all nascent data streams
that have been completely
described, and will probably no
longer load from all other nascent
data streams. All other fields of the
EA are ignored. (“Nascent” and
“completely described” are defined
below.)

33:34 Stop (S)

00 No information is provided by the S
field.

01 Reserved
10 The program will probably no

longer load from the data stream (if
any) associated with the specified
stream ID. (All other fields of the
EA except the ID field are ignored.)

11 The program will probably no
longer load from the data streams
associated with all stream IDs. (All
other fields of the EA are ignored.)

35:46 Reserved

47:56 UNITCNT

Number of units in data stream

57 Transient (T)

If T=1, the program’s need for each
block of the data stream is likely to be
transient (i.e., the time interval during
which the program accesses the block
is likely to be short).

58 Unlimited (U)

If U=1, the number of units in the data
stream is unlimited (and the UNITCNT
field is ignored).

59 Reserved

60:63 Stream ID (ID)

Stream ID to use for this data stream
(GO = 0 and S = 0b00), or stream ID
associated with the data stream from

EATRUNC D UG / ID
0 57 59 60 63

/// GO S /// UNITCNT T U / ID
0 32 35 47 57 59 60 63
36 PowerPC Virtual Environment Architecture

Version 2.02
which the program will probably no
longer load (S = 0b10)

If the specified stream ID value is greater than m -1,
where m is the number of stream IDs provided by the
implementation, and either (a) TH = 0b1000 or (b) TH =
0b1010 and GO = 0 and S � 0b11, no hint is provided
by the instruction.

All TH values that are not shown above are reserved. If
the TH field contains a reserved value, the hint pro-
vided by the instruction is undefined.

The only operation that is performed by the dcbt
instruction is the providing of the hint. The actions (if
any) taken by the processor in response to the hint are
not considered to be “caused by” or “associated with”
the dcbt instruction (e.g., dcbt is considered not to
cause any data accesses). No means are provided by
which software can synchronize these actions with the
execution of the instruction stream. For example,
these actions are not ordered by the memory barrier
created by a sync instruction.

The dcbt instruction may complete before the opera-
tion it causes has been performed.

If TH � 0b1010 this instruction is treated as a Load (see
Section 3.2), except that the system data storage error
handler is not invoked, and reference and change
recording need not be done.

Special Registers Altered:
 None

The remainder of this instruction description
applies only to dcbt instructions in which TH0 = 1
and to data streams specified thereby. Correspond-
ing material for dcbt instructions in which TH = 0b0000
can be found in the dcbt instruction description in Sec-
tion 3.2.2; corresponding material for dcbt instructions
in which TH3 = 1 can be found in Section 5.2.1.1 of
Version 2.01 of the architecture specification.

The following terminology is used to describe the state
of a data stream. Except as described in the paragraph
after the next paragraph, the state of a data stream at a
given time is determined by the most recently provided
hint for the stream.

� A data stream for which only descriptive hints have
been provided (by dcbt instructions with
TH = 0b1000 and UG = 0 or with TH = 0b1010 and
GO = 0 and S = 0b00) is said to be “nascent”. A
nascent data stream for which both kinds of
descriptive hint have been provided (by both of the
dcbt usages listed in the preceding sentence) is
considered to be “completely described”.

� A data stream for which a hint has been provided
(by a dcbt instruction with TH = 0b1000 and
UG = 1 or with TH = 0b1010 and GO = 1) that the
program will probably soon load from it is said to
be “active”.

� A data stream that is either nascent or active is
considered to “exist”.

� A data stream for which a hint has been provided
(e.g., by a dcbt instruction with TH = 0b1010 and
S � 0b00) that the program will probably no longer
load from it is considered no longer to exist.

The hint provided by a dcbt instruction with
TH = 0b1000 and UG = 1 implicitly includes a hint that
the program will probably no longer load from the data
stream (if any) previously associated with the specified
stream ID. The hint provided by a dcbt instruction with
TH = 0b1000 and UG = 0 or with TH = 0b1010 and
GO = 0 and S = 0b00 implicitly includes a hint that the

dcbt serves as both a basic and an extended mne-
monic. The Assembler will recognize a dcbt mne-
monic with three operands as the basic form, and a
dcbt mnemonic with two operands as the extended
form. In the extended form the TH operand is omit-
ted and assumed to be 0b0000.

If TH = 0b0000, the instruction operates as
described in Section 3.2.2, “Data Cache Instruc-
tions” on page 19.

Programming Note

Programming Note

Warning: The variants of dcbt in which TH3 = 1
are being phased out of the architecture. On future
implementations these variants are likely to be
treated as if TH = 0b0000. On implementations
that support both kinds of data stream variant
(TH0 = 1 and TH3 = 1), performance is likely to be
degraded if a program uses both kinds. Therefore
the variants in which TH3 = 1 should be used only
in programs that will run on implementations that
do not support the variants in which TH0 = 1. For
other programs, each existing instance of a dcbt
instruction with TH = 0b00d1 can be replaced by a
dcbt instruction with TH = 0b1000, D = d, and
UG = 1.

Programming Note
Chapter 5. Optional Facilities and Instructions 37

Version 2.02
program will probably no longer load from the active
data stream (if any) previously associated with the
specified stream ID.

Interrupts (see Book III) cause all existing data streams
to cease to exist. In addition, depending on the imple-
mentation, certain conditions and events may cause an
existing data stream to cease to exist.

Processors that support only the two-bit version of
the TH field occupying instruction bits 9:10 (i.e.
those that support versions 2.00 or 2.01 of the
architecture, e.g. POWER4 and POWER4+) treat
both TH = 0b1000 and TH = 0b1010 as if
TH = 0b0000. (For those processors and versions
of the architecture, TH = 0b10 was a reserved
value and was treated as if TH = 0b00.)

Processors that do not support the TH field at all
(i.e. those that comply with versions of the architec-
ture that precede Version 2.00) treat both
TH = 0b1000 and TH = 0b1010 as if TH = 0b0000.
(For those processors and versions of the architec-
ture, the TH field was reserved and ignored, so that
all instances of dcbt would behave as specified in
Section 3.2.2.) However, note that whereas newer
processors will ignore any dcbt for which the spec-
ified block is Caching Inhibited or Guarded, proces-
sors complying with versions of the architecture
that precede Version 2.00 do not necessarily ignore
the hint if the specified block is Guarded and not
Caching Inhibited.

Programming Note
38 PowerPC Virtual Environment Architecture

Version 2.02
Programming Note

To obtain the best performance across the widest range
of implementations that support the variants of dcbt in
which TH0 = 1, the programmer should assume the fol-
lowing model when using those variants.

� The processor’s response to a hint that the pro-
gram will probably soon load from a given data
stream is to take actions that reduce the latency of
loads from the first few blocks of the stream. (Such
actions may include prefetching the blocks into lev-
els of the storage hierarchy that are “near” the pro-
cessor.) Thereafter, as the program loads from
each successive block of the stream, the proces-
sor takes latency-reducing actions for additional
blocks of the stream, pacing these actions with the
program’s loads (i.e., taking the actions for only a
limited number of blocks ahead of the block that
the program is currently loading from).
The processor’s response to a hint that the pro-
gram will probably no longer load from a given
data stream, or to the cessation of existence of a
data stream, is to stop taking latency-reducing
actions for the stream.

� A data stream having finite length ceases to exist
when the latency-reducing actions have been
taken for all blocks of the stream.

� If the program ceases to need a given data stream
before having loaded from all blocks of the stream
(always the case for streams having unlimited
length), performance may be improved if the pro-
gram then provides a hint that it will no longer load

from the stream (e.g., by executing the appropriate
dcbt instruction with TH = 0b1010 and S � 0b00).

� At each level of the storage hierarchy that is “near”
the processor, blocks of a data stream that is spec-
ified as transient are most likely to be replaced. As
a result, it may be desirable to stagger addresses
of streams (choose addresses that map to different
cache congruence classes) to reduce the likeli-
hood that a unit of a transient stream will be
replaced prior to being accessed by the program.

� On some implementations, data streams that are
not specified by software may be detected by the
processor. Such data streams are called “hard-
ware-detected data streams”. On some such
implementations, data stream resources
(resources that are used primarily to support data
streams) are shared between software-specified
data streams and hardware-detected data
streams. On these latter implementations, the pro-
gramming model includes the following.

- Software-specified data streams take prece-
dence over hardware-detected data streams
in use of data stream resources.

- The processor’s response to a hint that the
program will probably no longer load from a
given data stream, or to the cessation of exist-
ence of a data stream, includes releasing the
associated data stream resources, so that
they can be used by hardware-detected data
streams.
Chapter 5. Optional Facilities and Instructions 39

Version 2.02
Programming Note

This Programming Note describes several aspects of
using dcbt instructions in which TH0 = 1.

� A non-transient data stream having unlimited
length can be completely specified, including pro-
viding the hint that the program will probably soon
load from it, using one dcbt instruction. The corre-
sponding specification for a data stream having
other attributes requires three dcbt instructions.
However, one dcbt instruction with TH = 0b1010
and GO = 1 can apply to a set of the data streams
described in the preceding sentence, so the corre-
sponding specification for n such data streams
requires 2�n + 1 dcbt instructions. (There is no
need to execute a dcbt instruction with TH =
0b1010 and S = 0b10 for a given stream ID before
using the stream ID for a new data stream; the
implicit portion of the hint provided by dcbt instruc-
tions that describe data streams suffices.)

� If it is desired that the hint provided by a given
dcbt instruction be provided in program order with
respect to the hint provided by another dcbt
instruction, the two dcbt instructions must be sep-
arated by an eieio (or sync) instruction. For
example, if a dcbt instruction with TH = 0b1010
and GO = 1 is intended to indicate that the pro-
gram will probably soon load from nascent data
streams described (completely) by preceding dcbt
instructions, and is intended not to indicate that the
program will probably soon load from nascent data
streams described (completely) by following dcbt
instructions, an eieio instruction must separate the
dcbt instruction with GO = 1 from the preceding
dcbt instructions, and another eieio instruction

must separate that dcbt instruction from the fol-
lowing dcbt instructions.

� In practice, the second eieio described above can
sometimes be omitted. For example, if the pro-
gram consists of an outer loop that contains the
dcbt instructions and an inner loop that contains
the Load instructions that load from the data
streams, the characteristics of the inner loop and
of the implementation’s branch prediction mecha-
nisms may make it highly unlikely that hints corre-
sponding to a given iteration of the outer loop will
be provided out of program order with respect to
hints corresponding to the previous iteration of the
outer loop. (Also, any providing of hints out of pro-
gram order affects only performance, not program
correctness.)

� To mitigate the effects of interrupts on data
streams, it may be desirable to specify a given
“logical” data stream as a sequence of shorter,
component data streams. Similar considerations
apply to conditions and events that, depending on
the implementation, may cause an existing data
stream to cease to exist; see Book IV.

� If it is desired to specify data streams without
regard to the number of stream IDs provided by
the implementation, stream IDs should be
assigned to data streams in order of decreasing
stream importance (stream ID 0 to the most impor-
tant stream, stream ID 1 to the next most important
stream, etc.). This order ensures that the hints for
the most important data streams will be provided.
40 PowerPC Virtual Environment Architecture

Version 2.02
Data Cache Block Flush X-form

dcbf RA,RB,L

Let the effective address (EA) be the sum (RA|0)+(RB).

 L = 0

If the block containing the byte addressed by EA is
in storage that is Memory Coherence Required
and a block containing the byte addressed by EA
is in the data cache of any processor and any loca-
tions in the block are considered to be modified
there, those locations are written to main storage
and additional locations in the block may be written
to main storage. The block is invalidated in the
data caches of all processors.

If the block containing the byte addressed by EA is
in storage that is not Memory Coherence Required
and the block is in the data cache of this processor
and any locations in the block are considered to be
modified there, those locations are written to main
storage and additional locations in the block may
be written to main storage. The block is invali-
dated in the data cache of this processor.

L = 1 ("dcbf local")

If the block containing the byte addressed by EA is
in the data cache of this processor and any loca-
tions in the block are considered to be modified
there, those locations are written to main storage
and additional locations in the block may be written
to main storage. The block is invalidated in the
data cache of this processor.

The function of this instruction is independent of
whether the block containing the byte addressed
by EA is in storage that is Write Through Required
or Caching Inhibited. If L = 1, the function of this
instruction is also independent of whether the
block containing the byte addressed by EA is in
storage that is Memory Coherence Required.

This instruction is treated as a Load (see Section
3.2), except that reference and change recording
need not be done.

Special Registers Altered:
None

Extended Mnemonics:

Extended Mnemonics for Data Cache Block Flush:

Except in the dcbf instruction description in this sec-
tion, references to "dcbf" in Books I - III imply L = 0
unless otherwise stated or obvious from context;
"dcbfl" is used for when L = 1 is intended.

31 /// L RA RB 86 /
0 6 10 11 16 21 31

Extended: Equivalent to:
dcbf RA,RB dcbf RA,RB,0

dcbfl RA,RB dcbf RA,RB,1

dcbf serves as both a basic and an extended mne-
monic. The Assembler will recognize a dcbf mne-
monic with three operands as the basic form, and a
dcbf mnemonic with two operands as the extended
form. In the extended form the L operand is omit-
ted and assumed to be 0.

dcbf with L = 1 can be used to cause a block that
will not be reused soon to be removed from the
processor's data cache, and thereby potentially to
cause that data cache to be used more efficiently.

The functions provided by dcbf with L = 1 are iden-
tical to those that would be provided if L were 0 and
the specified block were in storage that is not Mem-
ory Coherence Required.

Extended: Equivalent to:

Programming Note

Programming Note

Programming Note
Chapter 5. Optional Facilities and Instructions 41

Version 2.02
5.3 Little-Endian
If the optional Little-Endian facility is implemented (see
the section entitled “Little-Endian” in Book I, PowerPC
User Instruction Set Architecture), the programmer
should assume the performance model described in
Figure 3 with respect to the placement of storage oper-
ands that are accessed in Little-Endian mode.

Figure 3. Performance effects of storage operand
placement, Little-Endian mode

Operand Boundary Crossing

Size
Byte
Align. None

Cache
Block

Virtual
Page2 Seg.

 Integer

8 Byte 8
4
<4

optimal
good
poor

-
good
poor

-
poor
poor

-
poor
poor

4 Byte 4
<4

optimal
good

-
good

-
poor

-
poor

2 Byte 2
<2

optimal
good

-
good

-
poor

-
poor

1 Byte 1 optimal - - -

Float

8 Byte 8
4
<4

optimal
good
poor

-
good
poor

-
poor
poor

 -
poor
poor

4 Byte 4
<4

optimal
poor

-
poor

-
poor

-
poor

1 If an instruction causes an access that is not atomic
and any portion of the operand is in storage that is
Write Through Required or Caching Inhibited, per-
formance is likely to be poor.

2 If the storage operand spans two virtual pages that
have different storage control attributes, perfor-
mance is likely to be poor.
42 PowerPC Virtual Environment Architecture

Version 2.02
Appendix A. Assembler Extended Mnemonics

In order to make assembler language programs simpler
to write and easier to understand, a set of extended
mnemonics and symbols is provided for certain instruc-
tions. This appendix defines extended mnemonics and
symbols related to instructions defined in Book II.

Assemblers should provide the extended mnemonics
and symbols listed here, and may provide others.

A.1 Data Cache Block Flush
Mnemonics
The L field in the optional version of the Data Cache
Block Flush instruction controls the scope of the flush
function performed by the instruction. Extended mne-
monics are provided that represent the L value in the
mnemonic rather than requiring it to be coded as a
numeric operand.

Note: dcbf serves as both a basic and an extended
mnemonic. The Assembler will recognize a dcbf mne-
monic with three operands as the basic form, and a
dcbf mnemonic with two operands as the extended
form. In the extended form the L operand is omitted
and assumed to be 0.

A.2 Synchronize Mnemonics
The L field in the Synchronize instruction controls the
scope of the synchronization function performed by the
instruction. Extended mnemonics are provided that
represent the L value in the mnemonic rather than
requiring it to be coded as a numeric operand.

Note: sync serves as both a basic and an extended
mnemonic. The Assembler will recognize a sync mne-
monic with one operand as the basic form, and a sync
mnemonic with no operand as the extended form. In
the extended form the L operand is omitted and
assumed to be 0.

dcbf RA,RB (equivalent to: dcbf RA,RB,0)

dcbfl RA,RB (equivalent to: dcbfl RA,RB,1)

sync (equivalent to: sync 0)

lwsync (equivalent to: sync 1)
ptesync (equivalent to: sync 2)
Appendix A. Assembler Extended Mnemonics 43

Version 2.02
44 PowerPC Virtual Environment Architecture

Version 2.02
Appendix B. Programming Examples for Sharing
Storage

This appendix gives examples of how dependencies
and the Synchronization instructions can be used to
control storage access ordering when storage is shared
between programs.

Many of the examples use extended mnemonics (e.g.,
bne, bne-, cmpw) that are defined in the Appendix
entitled “Assembler Extended Mnemonics” in Book I,
PowerPC User Instruction Set Architecture.

Many of the examples use the Load And Reserve and
Store Conditional instructions, in a sequence that
begins with a Load And Reserve instruction and ends
with a Store Conditional instruction (specifying the
same storage location as the Load Conditional) fol-
lowed by a Branch Conditional instruction that tests
whether the Store Conditional instruction succeeded.

In these examples it is assumed that contention for the
shared resource is low; the conditional branches are
optimized for this case by using “+” and “-” suffixes
appropriately.

The examples deal with words; they can be used for
doublewords by changing all word-specific mnemonics
to the corresponding doubleword-specific mnemonics
(e.g., lwarx to ldarx, cmpw to cmpd).

In this appendix it is assumed that all shared storage
locations are in storage that is Memory Coherence
Required, and that the storage locations specified by
Load And Reserve and Store Conditional instructions
are in storage that is neither Write Through Required
nor Caching Inhibited.

B.1 Atomic Update Primitives
This section gives examples of how the Load And
Reserve and Store Conditional instructions can be
used to emulate atomic read/modify/write operations.

An atomic read/modify/write operation reads a storage
location and writes its next value, which may be a func-
tion of its current value, all as a single atomic operation.
The examples shown provide the effect of an atomic
read/modify/write operation, but use several instruc-
tions rather than a single atomic instruction.

Fetch and No-op

The “Fetch and No-op” primitive atomically loads the
current value in a word in storage.

In this example it is assumed that the address of the
word to be loaded is in GPR 3 and the data loaded are
returned in GPR 4.

loop: lwarx r4,0,r3 #load and reserve
stwcx. r4,0,r3 #store old value if

still reserved
bne- loop #loop if lost reservation

Note:

1. The stwcx., if it succeeds, stores to the target
location the same value that was loaded by the
preceding lwarx. While the store is redundant with
respect to the value in the location, its success
ensures that the value loaded by the lwarx is still

the current value at the time the stwcx. is exe-
cuted.

Fetch and Store

The “Fetch and Store” primitive atomically loads and
replaces a word in storage.

In this example it is assumed that the address of the
word to be loaded and replaced is in GPR 3, the new
value is in GPR 4, and the old value is returned in GPR
5.

loop: lwarx r5,0,r3 #load and reserve
stwcx. r4,0,r3 #store new value if

still reserved
bne- loop loop if lost reservation
Appendix B. Programming Examples for Sharing Storage 45

Version 2.02
Fetch and Add

The “Fetch and Add” primitive atomically increments a
word in storage.

In this example it is assumed that the address of the
word to be incremented is in GPR 3, the increment is in
GPR 4, and the old value is returned in GPR 5.

loop: lwarx r5,0,r3 #load and reserve
add r0,r4,r5 #increment word
stwcx. r0,0,r3 #store new value if

still reserved
bne- loop #loop if lost reservation

Fetch and AND

The “Fetch and AND” primitive atomically ANDs a
value into a word in storage.

In this example it is assumed that the address of the
word to be ANDed is in GPR 3, the value to AND into it
is in GPR 4, and the old value is returned in GPR 5.

loop: lwarx r5,0,r3 #load and reserve
and r0,r4,r5 #AND word
stwcx. r0,0,r3 #store new value if

still reserved
bne- loop #loop if lost reservation

Note:

1. The sequence given above can be changed to per-
form another Boolean operation atomically on a
word in storage, simply by changing the and
instruction to the desired Boolean instruction (or,
xor, etc.).

Test and Set

This version of the “Test and Set” primitive atomically
loads a word from storage, sets the word in storage to a
nonzero value if the value loaded is zero, and sets the
EQ bit of CR Field 0 to indicate whether the value
loaded is zero.

In this example it is assumed that the address of the
word to be tested is in GPR 3, the new value (nonzero)
is in GPR 4, and the old value is returned in GPR 5.

loop: lwarx r5,0,r3 #load and reserve
cmpwi r5,0 #done if word
bne- $+12 # not equal to 0
stwcx. r4,0,r3 #try to store non-0
bne- loop #loop if lost reservation

Compare and Swap

The “Compare and Swap” primitive atomically com-
pares a value in a register with a word in storage, if they
are equal stores the value from a second register into
the word in storage, if they are unequal loads the word
from storage into the first register, and sets the EQ bit
of CR Field 0 to indicate the result of the comparison.

In this example it is assumed that the address of the
word to be tested is in GPR 3, the comparand is in GPR
4 and the old value is returned there, and the new value
is in GPR 5.

loop: lwarx r6,0,r3 #load and reserve
cmpw r4,r6 #1st 2 operands equal?
bne- exit #skip if not
stwcx. r5,0,r3 #store new value if

still reserved
bne- loop #loop if lost reservation

exit: mr r4,r6 #return value from storage

Notes:

1. The semantics given for “Compare and Swap”
above are based on those of the IBM System/370
Compare and Swap instruction. Other architec-
tures may define a Compare and Swap instruction
differently.

2. “Compare and Swap” is shown primarily for peda-
gogical reasons. It is useful on machines that lack
the better synchronization facilities provided by
lwarx and stwcx.. A major weakness of a Sys-
tem/370-style Compare and Swap instruction is
that, although the instruction itself is atomic, it
checks only that the old and current values of the
word being tested are equal, with the result that
programs that use such a Compare and Swap to
control a shared resource can err if the word has
been modified and the old value subsequently
restored. The sequence shown above has the
same weakness.

3. In some applications the second bne- instruction
and/or the mr instruction can be omitted. The
bne- is needed only if the application requires that
if the EQ bit of CR Field 0 on exit indicates “not
equal” then (r4) and (r6) are in fact not equal. The
mr is needed only if the application requires that if
the comparands are not equal then the word from
storage is loaded into the register with which it was
compared (rather than into a third register). If
either or both of these instructions is omitted, the
resulting Compare and Swap does not obey Sys-
tem/370 semantics.
46 PowerPC Virtual Environment Architecture

Version 2.02
B.2 Lock Acquisition and Release, and Related Techniques

This section gives examples of how dependencies and
the Synchronization instructions can be used to imple-

ment locks, import and export barriers, and similar con-
structs.

B.2.1 Lock Acquisition and Import
Barriers

An “import barrier” is an instruction or sequence of
instructions that prevents storage accesses caused by
instructions following the barrier from being performed
before storage accesses that acquire a lock have been
performed. An import barrier can be used to ensure
that a shared data structure protected by a lock is not
accessed until the lock has been acquired. A sync
instruction can be used as an import barrier, but the
approaches shown below will generally yield better per-
formance because they order only the relevant storage
accesses.

B.2.1.1 Acquire Lock and Import
Shared Storage

If lwarx and stwcx. instructions are used to obtain the
lock, an import barrier can be constructed by placing an
isync instruction immediately following the loop con-
taining the lwarx and stwcx.. The following example
uses the “Compare and Swap” primitive to acquire the
lock.

In this example it is assumed that the address of the
lock is in GPR 3, the value indicating that the lock is
free is in GPR 4, the value to which the lock should be
set is in GPR 5, the old value of the lock is returned in
GPR 6, and the address of the shared data structure is
in GPR 9.

loop: lwarx r6,0,r3 #load lock and reserve
cmpw r4,r6 #skip ahead if
bne- wait # lock not free
stwcx. r5,0,r3 #try to set lock
bne- loop #loop if lost reservation
isync #import barrier
lwz r7,data1(r9)#load shared data
.
.

wait ... #wait for lock to free

The second bne- does not complete until CR0 has
been set by the stwcx.. The stwcx. does not set CR0
until it has completed (successfully or unsuccessfully).
The lock is acquired when the stwcx. completes suc-
cessfully. Together, the second bne- and the subse-
quent isync create an import barrier that prevents the
load from “data1” from being performed until the branch
has been resolved not to be taken.

If the shared data structure is in storage that is neither
Write Through Required nor Caching Inhibited, an
lwsync instruction can be used instead of the isync
instruction. If lwsync is used, the load from “data1”
may be performed before the stwcx.. But if the stwcx.
fails, the second branch is taken and the lwarx is reex-
ecuted. If the stwcx. succeeds, the value returned by
the load from “data1” is valid even if the load is per-
formed before the stwcx., because the lwsync
ensures that the load is performed after the instance of
the lwarx that created the reservation used by the suc-
cessful stwcx..

B.2.1.2 Obtain Pointer and Import
Shared Storage

If lwarx and stwcx. instructions are used to obtain a
pointer into a shared data structure, an import barrier is
not needed if all the accesses to the shared data struc-
ture depend on the value obtained for the pointer. The
following example uses the “Fetch and Add” primitive to
obtain and increment the pointer.

In this example it is assumed that the address of the
pointer is in GPR 3, the value to be added to the pointer
is in GPR 4, and the old value of the pointer is returned
in GPR 5.

loop: lwarx r5,0,r3 #load pointer and reserve
add r0,r4,r5 #increment the pointer
stwcx. r0,0,r3 #try to store new value
bne- loop #loop if lost reservation
lwz r7,data1(r5) #load shared data

The load from “data1” cannot be performed until the
pointer value has been loaded into GPR 5 by the
lwarx. The load from “data1” may be performed before
the stwcx.. But if the stwcx. fails, the branch is taken
and the value returned by the load from “data1” is dis-
carded. If the stwcx. succeeds, the value returned by
the load from “data1” is valid even if the load is per-
formed before the stwcx., because the load uses the
pointer value returned by the instance of the lwarx that
created the reservation used by the successful stwcx..

An isync instruction could be placed between the bne-
and the subsequent lwz, but no isync is needed if all
accesses to the shared data structure depend on the
value returned by the lwarx.
Appendix B. Programming Examples for Sharing Storage 47

Version 2.02
B.2.2 Lock Release and Export
Barriers

An “export barrier” is an instruction or sequence of
instructions that prevents the store that releases a lock
from being performed before stores caused by instruc-
tions preceding the barrier have been performed. An
export barrier can be used to ensure that all stores to a
shared data structure protected by a lock will be per-
formed with respect to any other processor before the
store that releases the lock is performed with respect to
that processor.

B.2.2.1 Export Shared Storage and
Release Lock

A sync instruction can be used as an export barrier
independent of the storage control attributes (e.g.,
presence or absence of the Caching Inhibited attribute)
of the storage containing the shared data structure.
Because the lock must be in storage that is neither
Write Through Required nor Caching Inhibited, if the
shared data structure is in storage that is Write
Through Required or Caching Inhibited a sync instruc-
tion must be used as the export barrier.

In this example it is assumed that the shared data
structure is in storage that is Caching Inhibited, the
address of the lock is in GPR 3, the value indicating
that the lock is free is in GPR 4, and the address of the
shared data structure is in GPR 9.

stw r7,data1(r9)#store shared data (last)
sync #export barrier
stw r4,lock(r3)#release lock

The sync ensures that the store that releases the lock
will not be performed with respect to any other proces-
sor until all stores caused by instructions preceding the
sync have been performed with respect to that proces-
sor.

B.2.2.2 Export Shared Storage and
Release Lock using eieio or lwsync

If the shared data structure is in storage that is neither
Write Through Required nor Caching Inhibited, an
eieio instruction can be used as the export barrier.
Using eieio rather than sync will yield better perfor-
mance in most systems.

In this example it is assumed that the shared data
structure is in storage that is neither Write Through
Required nor Caching Inhibited, the address of the lock
is in GPR 3, the value indicating that the lock is free is
in GPR 4, and the address of the shared data structure
is in GPR 9.

stw r7,data1(r9)#store shared data (last)
eieio #export barrier
stw r4,lock(r3)#release lock

The eieio ensures that the store that releases the lock
will not be performed with respect to any other proces-
sor until all stores caused by instructions preceding the
eieio have been performed with respect to that proces-
sor.

However, for storage that is neither Write Through
Required nor Caching Inhibited, eieio orders only
stores and has no effect on loads. If the portion of the
program preceding the eieio contains loads from the
shared data structure and the stores to the shared data
structure do not depend on the values returned by
those loads, the store that releases the lock could be
performed before those loads. If it is necessary to
ensure that those loads are performed before the store
that releases the lock, lwsync should be used instead
of eieio. Alternatively, the technique described in Sec-
tion B.2.3 can be used.

B.2.3 Safe Fetch

If a load must be performed before a subsequent store
(e.g., the store that releases a lock protecting a shared
data structure), a technique similar to the following can
be used.

In this example it is assumed that the address of the
storage operand to be loaded is in GPR 3, the contents
of the storage operand are returned in GPR 4, and the
address of the storage operand to be stored is in GPR
5.

lwz r4,0(r3) #load shared data
cmpw r4,r4 #set CR0 to “equal”
bne- $-8 #branch never taken
stw r7,0(r5) #store other shared data

An alternative is to use a technique similar to that
described in Section B.2.1.2, by causing the stw to
depend on the value returned by the lwz and omitting
the cmpw and bne-. The dependency could be cre-
ated by ANDing the value returned by the lwz with zero
and then adding the result to the value to be stored by
the stw. If both storage operands are in storage that is
neither Write Through Required nor Caching Inhibited,
another alternative is to replace the cmpw and bne-
with an lwsync instruction.
48 PowerPC Virtual Environment Architecture

Version 2.02
B.3 List Insertion
This section shows how the lwarx and stwcx. instruc-
tions can be used to implement simple insertion into a
singly linked list. (Complicated list insertion, in which
multiple values must be changed atomically, or in which
the correct order of insertion depends on the contents
of the elements, cannot be implemented in the manner
shown below and requires a more complicated strategy
such as using locks.)

The “next element pointer” from the list element after
which the new element is to be inserted, here called the
“parent element”, is stored into the new element, so
that the new element points to the next element in the
list; this store is performed unconditionally. Then the
address of the new element is conditionally stored into
the parent element, thereby adding the new element to
the list.

In this example it is assumed that the address of the
parent element is in GPR 3, the address of the new ele-
ment is in GPR 4, and the next element pointer is at off-
set 0 from the start of the element. It is also assumed
that the next element pointer of each list element is in a
reservation granule separate from that of the next ele-
ment pointer of all other list elements.

loop: lwarx r2,0,r3 #get next pointer
stw r2,0(r4) #store in new element
eieio #order stw before stwcx.
stwcx. r4,0,r3 #add new element to list
bne- loop #loop if stwcx. failed

In the preceding example, lwsync can be used instead
of eieio.

In the preceding example, if two list elements have next
element pointers in the same reservation granule then,
in a multiprocessor, “livelock” can occur. (Livelock is a
state in which processors interact in a way such that no
processor makes forward progress.)

If it is not possible to allocate list elements such that
each element’s next element pointer is in a different
reservation granule, then livelock can be avoided by
using the following, more complicated, sequence.

lwz r2,0(r3) #get next pointer
loop1:mr r5,r2 #keep a copy

stw r2,0(r4) #store in new element
sync #order stw before stwcx.

and before lwarx
loop2:lwarx r2,0,r3 #get it again

cmpw r2,r5 #loop if changed (someone
bne- loop1 # else progressed)
stwcx. r4,0,r3 #add new element to list
bne- loop2 #loop if failed

In the preceding example, livelock is avoided by the
fact that each processor reexecutes the stw only if
some other processor has made forward progress.

B.4 Notes
1. To increase the likelihood that forward progress is

made, it is important that looping on lwarx/stwcx.
pairs be minimized. For example, in the “Test and
Set” sequence shown in Section B.1, this is
achieved by testing the old value before attempting
the store; were the order reversed, more stwcx.
instructions might be executed, and reservations
might more often be lost between the lwarx and
the stwcx..

2. The manner in which lwarx and stwcx. are com-
municated to other processors and mechanisms,
and between levels of the storage hierarchy within
a given processor, is implementation-dependent.
In some implementations performance may be
improved by minimizing looping on a lwarx instruc-
tion that fails to return a desired value. For exam-
ple, in the “Test and Set” sequence shown in
Section B.1, if the programmer wishes to stay in
the loop until the word loaded is zero, he could
change the “bne- $+12” to “bne- loop”. However,
in some implementations better performance may
be obtained by using an ordinary Load instruction
to do the initial checking of the value, as follows.

loop: lwz r5,0(r3) #load the word
cmpwi r5,0 #loop back if word
bne- loop # not equal to 0
lwarx r5,0,r3 #try again, reserving
cmpwi r5,0 # (likely to succeed)
bne- loop
stwcx. r4,0,r3 #try to store non-0
bne- loop #loop if lost reserv’n

3. In a multiprocessor, livelock is possible if there is a
Store instruction (or any other instruction that can
clear another processor’s reservation; see Section
1.7.3.1) between the lwarx and the stwcx. of a
lwarx/stwcx. loop and any byte of the storage
location specified by the Store is in the reservation
granule. For example, the first code sequence
shown in Section B.3 can cause livelock if two list
elements have next element pointers in the same
reservation granule.
Appendix B. Programming Examples for Sharing Storage 49

Version 2.02
50 PowerPC Virtual Environment Architecture

Version 2.02
Appendix C. Cross-Reference for Changed POWER
Mnemonics

The following table lists the POWER instruction mne-
monics that have been changed in the PowerPC Virtual
Environment Architecture, sorted by POWER mne-
monic.

To determine the PowerPC mnemonic for one of these
POWER mnemonics, find the POWER mnemonic in
the second column of the table: the remainder of the

line gives the PowerPC mnemonic and the page on
which the instruction is described, as well as the
instruction names.

POWER mnemonics that have not changed are not
listed.

Page
POWER PowerPC
Mnemonic Instruction Mnemonic Instruction

 20 dclz Data Cache Line Set to Zero dcbz Data Cache Block set to Zero
 26 dcs Data Cache Synchronize sync Synchronize
 22 ics Instruction Cache Synchronize isync Instruction Synchronize
Appendix C. Cross-Reference for Changed POWER Mnemonics 51

Version 2.02
52 PowerPC Virtual Environment Architecture

Version 2.02
Appendix D. New Instructions

The following instructions in the PowerPC Virtual Envi-
ronment Architecture are new: they are not in the
POWER Architecture. The eciwx and ecowx instruc-
tions are optional.

dcbf Data Cache Block Flush
dcbst Data Cache Block Store
dcbt Data Cache Block Touch
dcbtst Data Cache Block Touch for Store
eciwx External Control In Word Indexed
ecowx External Control Out Word Indexed
eieio Enforce In-order Execution of I/O
icbi Instruction Cache Block Invalidate
ldarx Load Doubleword And Reserve Indexed
lwarx Load Word And Reserve Indexed
mftb Move From Time Base
stdcx. Store Doubleword Conditional Indexed
stwcx. Store Word Conditional Indexed
Appendix D. New Instructions 53

Version 2.02
54 PowerPC Virtual Environment Architecture

Version 2.02
Appendix E. PowerPC Virtual Environment
Instruction Set

1Key to Mode Dependency Column

Except as described in the section entitled “Effective
Address Calculation” in Book I, all instructions in the
PowerPC Virtual Environment Architecture are inde-
pendent of whether the processor is in 32-bit or 64-bit
mode.

 Form

Opcode
Mode
Dep.1

Page Mnemonic Instruction
Primary Extend

 X 31 86 21, 41 dcbf Data Cache Block Flush
 X 31 54 21 dcbst Data Cache Block Store
 X 31 278 19, 35 dcbt Data Cache Block Touch
 X 31 246 19 dcbtst Data Cache Block Touch for Store
 X 31 1014 20 dcbz Data Cache Block set to Zero
 X 31 310 34 eciwx External Control In Word Indexed
 X 31 438 34 ecowx External Control Out Word Indexed
 X 31 854 28 eieio Enforce In-order Execution of I/O
 X 31 982 18 icbi Instruction Cache Block Invalidate
 XL 19 150 22 isync Instruction Synchronize
 X 31 84 24 ldarx Load Doubleword And Reserve Indexed
 X 31 20 24 lwarx Load Word And Reserve Indexed
 XFX 31 371 30 mftb Move From Time Base
 X 31 214 25 stdcx. Store Doubleword Conditional Indexed
 X 31 150 25 stwcx. Store Word Conditional Indexed
 X 31 598 26 sync Synchronize
Appendix E. PowerPC Virtual Environment Instruction Set 55

Version 2.02
56 PowerPC Virtual Environment Architecture

Version 2.02
Index

A

aliasing 7
alignment

effect on performance 15, 42
atomic operation 9
atomicity 3

single-copy 3

B

block 2

C

cache management instructions 18, 35
cache model 4
cache parameters 17
Caching Inhibited 5
consistency 7

D

data cache instructions 19, 35
data storage 1
dcbf instruction 21, 41
dcbfl instruction 41
dcbst instruction 12, 21
dcbt instruction 19, 35
dcbtst instruction 19
dcbz instruction 20

E

eciwx instruction 33, 34
ecowx instruction 33, 34
eieio instruction 7, 28
extended mnemonics 43

F

forward progress 11

G

Guarded 6

I

icbi instruction 12, 18
instruction cache instructions 18
instruction restart 16
instruction storage 1
instructions

dcbf 21, 41
dcbst 12, 21
dcbt 19, 35
dcbtst 19
dcbz 20
eciwx 33, 34
ecowx 33, 34
eieio 7, 28
icbi 12, 18
isync 12, 22
ldarx 9, 24
lwarx 9, 24
lwsync 26
mftb 30
ptesync 26
rfid 12
stdcx. 9, 25
storage control 17, 35
stwcx. 9, 25
sync 12, 26

isync instruction 12, 22

L

ldarx instruction 9, 24
lwarx instruction 9, 24
lwsync instruction 26

M

main storage 1
memory barrier 7
Memory Coherence Required 5
mftb instruction 30

O

optional instructions 33
dcbt 35
eciwx 34
ecowx 34
 Index 57

Version 2.02
P

page 2
performed 2
program order 1
ptesync instruction 26

R

registers
Time Base 29

rfid instruction 12

S

single-copy atomicity 3
stdcx. instruction 9, 25
storage

access order 7
atomic operation 9
instruction restart 16
order 7
ordering 7, 26, 28
reservation 10
shared 7

storage access 1
definitions

program order 1
storage access ordering 45
storage control attributes 5
storage control instructions 17, 35
storage location 1
stwcx. instruction 9, 25
sync instruction 12, 26
Synchronize 7

T

TB 29
TBL 29
TBU 29
Time Base 29

V

virtual storage 2

W

Write Through Required 5
58 PowerPC Virtual Environment Architecture

Version 2.02
Last Page - End of Document
 Last Page - End of Document 59

Version 2.02
60 PowerPC Virtual Environment Architecture

	Preface
	Table of Contents
	Figures
	Chapter 1. Storage Model
	1.1� Definitions and Notation
	1.2� Introduction
	1.3� Virtual Storage
	1.4� Single-copy Atomicity
	1.5� Cache Model
	1.6� Storage Control Attributes
	1.6.1� Write Through Required
	1.6.2� Caching Inhibited
	1.6.3� Memory Coherency Required
	1.6.4� Guarded

	1.7� Shared Storage
	1.7.1� Storage Access Ordering
	1.7.2� Storage Ordering of I/O Accesses
	1.7.3� Atomic Update
	1.7.3.1� Reservations
	1.7.3.2� Forward Progress

	1.8� Instruction Storage
	1.8.1� Concurrent Modification and Execution of Instructions

	Chapter 2. Effect of Operand Placement on Performance
	2.1� Instruction Restart

	Chapter 3. Storage Control Instructions
	3.1� Parameters Useful to Application Programs
	3.2� Cache Management Instructions
	3.2.1� Instruction Cache Instruction
	Instruction Cache Block Invalidate X-form

	3.2.2� Data Cache Instructions
	Data Cache Block Touch X-form
	Data Cache Block Touch for Store X-form
	Data Cache Block set to Zero X-form
	Data Cache Block Store X-form
	Data Cache Block Flush X-form

	3.3� Synchronization Instructions
	3.3.1� Instruction Synchronize Instruction
	Instruction Synchronize XL-form

	3.3.2� Load and Reserve and Store Conditional Instructions
	Load Word And Reserve Indexed X-form
	Load Doubleword And Reserve Indexed X-form
	Store Word Conditional Indexed X-form
	Store Doubleword Conditional Indexed X-form

	3.3.3� Memory Barrier Instructions
	Synchronize X-form
	Enforce In-order Execution of I/O X-form

	Chapter 4. Time Base
	4.1� Time Base Instructions
	Move From Time Base XFX-form

	4.2� Reading the Time Base
	4.3� Computing Time of Day From the Time Base

	Chapter 5. Optional Facilities and Instructions
	5.1� External Control
	5.1.1� External Access Instructions
	External Control In Word Indexed X-form
	External Control Out Word Indexed X- form

	5.2� Storage Control Instructions
	5.2.1� Cache Management Instructions
	5.2.1.1� Data Cache Instructions
	Data Cache Block Touch X-form
	Data Cache Block Flush X-form

	5.3� Little-Endian

	Appendix A. Assembler Extended Mnemonics
	A.1� Data Cache Block Flush Mnemonics
	A.2� Synchronize Mnemonics

	Appendix B. Programming Examples for Sharing Storage
	B.1� Atomic Update Primitives
	B.2� Lock Acquisition and Release, and Related Techniques
	B.2.1� Lock Acquisition and Import Barriers
	B.2.1.1� Acquire Lock and Import Shared Storage
	B.2.1.2� Obtain Pointer and Import Shared Storage

	B.2.2� Lock Release and Export Barriers
	B.2.2.1� Export Shared Storage and Release Lock
	B.2.2.2� Export Shared Storage and Release Lock using eieio or lwsync

	B.2.3� Safe Fetch

	B.3� List Insertion
	B.4� Notes

	Appendix C. Cross-Reference for Changed POWER Mnemonics
	Appendix D. New Instructions
	Appendix E. PowerPC Virtual Environment Instruction Set
	Index
	Last Page - End of Document

