
This article provides an overview of various
aspects of the AIX linker and system loader
important in developing new applications
on AIX and in porting existing UNIX appli-
cations from other platforms to AIX. It
shows several examples, including source
code, makefiles, suggested command-line
options, and other details.

In the past, program compilation was
always limited to static linking. This
technique combined together multiple

libraries and multiple object files along with
their code and data, and created an exe-
cutable file. This single and often very large
file contained all the symbol definitions
within it. Although this made the linking
and execution process fast and simple, every
running process had to load into memory
its own private copy of every library func-
tion it used.

The need to share libraries that were
already loaded in memory by other pro-
grams led to the concept of shared libraries.
When a program is linked with a shared
library, the code within the shared library
is not included in the generated exe-
cutable. Instead, enough information is
saved in the program to find and load the
library when needed.

Shared library code is loaded into global
system memory by the first program, then
it is shared by all subsequent programs. This

technique reduces memory usage and load-
ing time. Additionally, enhancements to the
shared libraries can be added without
relinking the executable.

This approach works well if the location
of symbol definitions is known when the
program is initially linked. When the loca-
tion of some symbol definitions is not
known at link time or if alternate defini-
tions are to be provided for some functions,
a more flexible linker is needed. AIX® 4.3
provides this flexibility via its runtime linker,
which allows programs to dynamically load
shared objects into the running process via
the libdl.a routines.

This article describes the new linking
and loading features available in AIX 4.3,
including code examples.

Symbol Resolution in AIX 4.3
Without the runtime linker in AIX, all sym-
bols must be accounted for when the
module is linked. The undefined symbols
must be listed in the module’s import list or
be deferred. Symbols are deferred if they are
listed as being defined by #! in the import
list, which provides the name of the defin-
ing module for each listed symbol. These
symbols are resolved during load-time.

Deferred Symbols
The linker and loader effectively ignore
deferred symbols because they are resolved
later. This is usually done by dynamic

AIXpert Magazine • July 1999 • Linking & Loading in AIX 4.3PLUS

AIX
a i

x

AIX

Steve Peckham

Linking
and Loading

in AIX 4.3
By Gary R. Hook, Vandana Kumar, and Steve Peckham

Vandana Kumar

Gary R. Hook

loading of the defining module into the
running process by the load() or
dlopen() calls. All modules that are
opened in the address space of the execut-
ing process cause the outstanding deferred
imports to be resolved. This happens
according to the scope of the flags speci-
fied in the dlopen() and dlsym() func-
tion calls. Note that the defining module
has to export the referenced symbols for
the referencing module to find them.

When using the runtime linker, how-
ever, symbols can be left undefined at link-
time. These symbols are marked as being
imported from “..” in the module’s symbol
table, which can be listed by using the
dump -HTv <module name> command. The
runtime linker resolves these symbols later.
Import lists are not needed in this case.

The functioning of the deferred symbols
does not change under runtime linking. All
deferred symbols must be listed as defined
by #! in the import file. The runtime linker
ignores these symbols when they are desig-
nated as deferred. If no deferred symbols are
identified, the linker treats all undefined
symbols as “..” imports, and the runtime
linker searches and resolves these symbols
at load-time. If the runtime linker is unsuc-
cessful in locating the definition of any of
the referenced symbols, the module fails to
load and the program exits.

Deferred imports (also called anonymous
imports) are listed as being imported from
[noIMPid] in the symbol table section of
the dump -HTv <module > output.

Third-Party Plug-in Software
Programs often provide stubs for third-party
plug-in software so that some function sym-
bols referenced by the program are executed
only if the plug-in software is available. If
this software is unavailable, the symbols are
referenced but never get defined or used.

The runtime linker cannot handle these
symbols because the load-time search
among all exported symbol definitions
yields nothing. Therefore, they should be
marked as deferred to get past the loading
phase. Once the module is loaded, the
deferred symbols must be defined before
the functions in question are ever called,

otherwise they can be left undefined. If a
call is ever made to an unresolved deferred
import, the application will terminate with
a segmentation fault in the glink code (glue
code for branching between modules).

Dealing with undefined symbols that do
not have a definition at module load-time
requires some extra work. However, it
ensures symbol availability in advance for
better execution performance. Note that for
the best performance on any platform, the
symbols under runtime linker control
should be kept to a minimum.

Shared Modules
Generally in AIX, a shared module used as
input is listed only if a symbol in the shared
module is actually referenced. If so, it would
be listed in the loader section of the symbol
table of the output file. When the runtime
linker is used, however, it might be neces-
sary to have the shared modules listed in
the loader section, even if there are no sym-
bols referenced.

By using runtime linking (via the -brtl
option), all shared modules (those that are
not archive members) on the command line
are listed as dependents (preserving the
command-line order). The system loader
loads all such shared modules when the
program runs, and the symbols exported
by these shared modules are used by the
runtime linker. Shared modules that are
members of archives are listed as depend-
ents only if they are referenced. The linker
does not assume that archive members will
be needed. Some archive members may
have requirements that cannot be satisfied
at program load-time, thereby causing load-
ing failure.

In AIX, system libraries are often
archives of multiple object files, which
could reference one another or have
dependencies of their own (which may or

AIXpert Magazine • July 1999 • Linking & Loading in AIX 4.3PLUS

In AIX, libraries are often archives

of multiple object files, which could

reference one another or have

dependencies of their own.

may not be available at runtime). Also, all
archive members of system libraries are not
necessarily shared objects. For this reason, it
is not enough to simply add a reference to
them in the main executable. All required
system libraries must be linked in to build
each shared module. By linking with system
libraries, all local definitions of symbols get
resolved within the shared module.

To force a module in an archive to be
loaded, an import must be used with the
autoload keyword and the member name.
For example, to enable autoloading for an
archive member foo.so, create a file with
the following lines, and add the file as a
member to the archive:

autoload
#! (foo.so)

For the module load to be successful, all
its dependent modules must also load suc-
cessfully. Therefore, if a shared module ref-
erences symbols defined by other shared
modules, those modules also must be
loaded to resolve symbols referenced by the
first module. This continues until no more
modules need to be loaded. Only deferred
imports do not cause a search and load of
the defining module at load-time.

The next section explores the runtime
linker in more detail, including code
examples.

Runtime Linking
Runtime linking is the ability to resolve sym-
bols in shared modules after the program
has begun to execute. It is a mechanism
that provides runtime definitions and
symbol rebinding capabilities.

Note that the main application must be
built to enable runtime linking. Simply link-
ing a module with the runtime linking
capability is not sufficient. This structure
allows a module to be built to support run-
time linking (such as third-party modules),
yet continues to function in an application
that has not been so enabled. See Figure 1.

The option -G , which is used to enable
runtime linking in shared modules, is a com-
bination of the options found in Figure 2.

AIXpert Magazine • July 1999 • Linking & Loading in AIX 4.3PLUS

Call to imported function:

Compiler generates the call as

bl .w
nop

Pictorial view of modules at runtime:
Module #1 Module #2

B()
{
 W();
}

Glue Code

Function DescriptorTOC Pointer

B()
{
 W();
}

W()
{
}

Indirect Branch

-berok Enables creation of the object file even if
there are unresolved references.

-brtl Enables runtime linking. All shared objects
listed on the command line (those that are
not part of an archive member) are listed
in the output file. The system loader loads
all such shared modules when the pro-
gram runs, and the symbols exported by
these shared objects may be used by the
runtime linker.

-bnosymbolic Assigns this attribute to most symbols
exported without an explicit attribute.

-bnortllib Removes a reference to the runtime linker
libraries. This means that the module
built with -G option (which contains the
-bnortllib option) will be enabled for
runtime linking, but the reference to the run-
time linker libraries will be removed. Note
that the runtime linker libraries should be ref-
erenced to link the main executable only.

-bnoautoexp Prevents automatic exportation of any
symbol.

-bM:SRE Build this module to be shared and
reusable.

Figure 2. The -G option

Figure 1. Generated code

The option -brtl alone should be used to
enable runtime linking in main executables.

For a simple introduction to runtime
linking, see Example 1 in this article. In this
example, the runtime linker searches and
locates the undefined symbols during pro-
gram execution. This eliminates the need
for programmers to track which module
calls and defines which symbols, or to keep
the export/import lists updated.

In general, to take advantage of the AIX
architecture, the shared modules should be
built to be as self-contained as possible.
Note that AIX performance and efficiency is
best exploited by a well-organized applica-
tion structure with a well-defined interface
between modules.

Rebinding Symbols
It is often necessary to rebind function sym-
bols so that a new definition for them may
be used instead of the definition from which
the module was originally built. In this case,
the main program must be linked with the
runtime linker, and the module providing
the alternate definition must export the
symbol and must be listed before the original
module on the command line.

Based on how the module was linked,
some references to exported symbols are
bound at link-time and cannot be rebound.
For example, if a symbol is referenced in the
same file that also defines it, the symbol will
be bound at link-time and cannot be rebound.

When runtime linking is used, a refer-
ence to a symbol in the same module can
only be rebound if the symbol is exported
with the proper attributes. References to
symbols with the “symbolic” attribute
cannot be rebound. References to symbols
with the “nosymbolic” attribute can be
rebound if the symbols are variables. For
function symbols, calls using a function
pointer can be rebound, but direct function
calls cannot. The “nosymbolic-” attribute,
which is the default, is provided for compat-
ibility with previous versions of AIX.

When a symbol is rebound, a depend-
ency is added from the module using
the symbol to the module defining the
symbol. This dependency prevents
modules from being removed from the

address space prematurely. This is important
when a module loaded by the dlopen() sub-
routine defines a symbol that is still being
used when an attempt is made to unload the
module with the dlclose() call.

It is also possible to rebind the defini-
tions of system library symbols. For exam-
ple, an application can define its own
malloc() to override or extend the func-
tionality of the system-defined malloc() in
libc.a. For this, the defining shared
module (in this case shr.o in libc.a) has
to be rebuilt using rtl_enable so that the
references internal to the module become
hookable. Once this is done, the runtime
linker can override all references to
malloc(). Without rebuilding libc.a via
rtl_enable, the internal workings of
libc.a remain “tight” and cannot be
rebound.

New Features
AIX 4.3 provides several new linker/loader
options. These options, which give addi-
tional programmatic control over the
behavior of the modules, are listed and
described briefly in this section.

libdl.a routines: Provides the standard
routines dlopen(), dlclose(), dlsym(),
and dlerror() in libdl.a. These routines
can be used with or without runtime link-
ing. A new flag, RTLD_MEMBER can be passed
to dlopen(), which allows an archive
member to be loaded.

init/fini routines: Provides module
initialization and termination routines via
the -binitfini option.

Loading of archive members: Allows
loading of archive members by passing
the flag L_LOADMEMBER to load() or
loadAndInit(). It may also be passed to
dlopen(); the name of the flag is
RTLD_MEMBER in the dlopen() case. This

AIXpert Magazine • July 1999 • Linking & Loading in AIX 4.3PLUS

When runtime linking is used, a reference

to a symbol in the same module can

only be rebound if the symbol is exported

with the proper attributes.

function loads member shr.o from archive
lib1.a. For example:

-bexpall option: Exports most sym-
bols. Exports all global symbols (except
imported symbols, unreferenced symbols
defined in archive members, and symbols
beginning with an underscore). Additional
symbols may be exported by listing them in
an export list. Any symbol with a leading
underscore will not be exported by this
option. These symbols must be listed in an
exports list to be exported. Linking the
module with the makeC++SharedLib script
will also export these symbols. Note that
the makeC++SharedLib script generates a
complete export list for C++ modules by
default, without specifying the -bexpall
option in its command line.

Visibility attributes: Allows visibility
specification of all symbols via the
-bsymbolic/-bnosymbolic/-bnosymbolic-
flags. This feature can be used to control
which references can be rebound by the
runtime linker. Visibility keywords also can
be used in an import file to control the visi-
bility of individual symbols.

-bdynamic/-bstatic: Controls whether
shared objects used as input files should be
treated as regular files. These options are
toggles and can be used repeatedly in the
same link line. When -bdynamic is in effect,
shared objects are used in the usual way.
When -bstatic is in effect, shared objects
are treated as regular files. Additionally,
when -brtl is specified and -bdynamic is in
effect, the -l flag will search for files ending
in .so as well as those ending in .a. Figure 3
shows an example.

-bautoexp option: Exports a symbol
automatically if any command-line shared
module imports the symbol from the spe-
cial dot (.) file, or the module being linked
contains a local definition of the symbol.
The default is -bautoexp.

-bipath/-bnoipath options: Saves/
discards the full path name of the shared
module on the command line. The full
path is saved in the loader section of the
module. The -bipath option is the default.

If -bnoipath is used, then only the base
names will be saved in the output files
loader section. For example:

This will cause the full specified path to
be saved for mylib.so and otherlib.a. At
load-time, the loader will always use these
paths to find the shared objects. If the
-bnoipath option was specified, only the
base names would have been saved in the
loader section.

-blazy option: Lazy loading is a mecha-
nism for deferring the loading of modules
until one of its functions is required to be
executed. By default, the system loader auto-
matically loads all of the module’s depend-
ents at the same time. By linking a module
with the -blazy option, the module is loaded
only when a function within it is called for
the first time. Note that lazy-loading works
only if runtime linking is not enabled. Also,
only the modules referenced for their func-
tion definitions can be lazy-loaded.

Runtime linking: Consists of the -G
and the -brtl options.

(-G option) Enables runtime linking. It is
equivalent to the following: -berok -brtl
-bnortllib -bnosymbolic -bnoautoexp
-bM:SRE. These options can be overridden
by subsequent options. The -G option is
used to build runtime-enabled shared
libraries, without actually linking in the
runtime linker libraries.

(-brtl option) Enables runtime linking.
It is equivalent to -brtllib -bsymbolic.
The -brtl option is used to build runtime-
enabled main executable and includes a
reference to the runtime linker libraries in
the link line.

AIXpert Magazine • July 1999 • Linking & Loading in AIX 4.3PLUS

cc -o main main.o -bstatic -lx -Lnewpath -bdynamic
-> libx.a treated as a regular object file
-> libc.a processed as a shared library

cc -o main main.o -brtl -lx -Lpath1 -Lpath2
-> Search path1/libx.so, then path1/libx.a
-> Search path2/libx.so, then path2/libx.a

Figure 3. -bdynamic/-bstatic

cc -o main main.o dir/mylib.so /usr/lib/otherlib.a

dlopen("lib1.a(shr.o)", RTLD_NOW|RTLD_MEMBER);

Under the influence of runtime linking,
all shared objects listed on the command
line (those that are not archive members)
are listed as dependent modules, which pre-
serves the command-line order.

This option is also useful since it allows
the .so files to be found with the -l flag.
If the .so files are to be found but runtime
linking is not needed, use -brtl and
-bnortllib together.

“..” imports: Marks the undefined
imported symbols as ones that will be
resolved by the runtime linker. If a dump
-HTv <shared module> output contains
“..” as the IMPid for any symbol in the
symbol table, the runtime linker will search
for and resolve that particular symbol.

“.” imports: Marks the undefined
symbol as being defined in the main exe-
cutable. For example:

#! .
foo

The runtime linker is not needed since
the system loader resolves these “.” sym-
bols. However, the main program must still
export these symbols.

rtl_enable command: Relinks
modules to enable runtime linking. The
shared libraries shipped with AIX are not
enabled for runtime linking, but they can
be enabled by using this command. For
example, if a program uses its own version
of malloc(), a new instance of libc.a
must first be created as follows:

rtl_enable -o /usr/local/lib/libc.a
/lib/libc.a

Then the program must be relinked:

cc ... mymalloc.o -L /usr/local/lib
-brtl -bE:myexports

In this example, mymalloc.o defines
malloc() and myexports causes malloc()
to be exported from the main program. Calls
to malloc() from within libc.a will now
go to malloc() defined in mymalloc.o.

-brtllib/-bnortllib: Enables or disables
runtime linking. Default is -bnortllib. In
general, it is recommended that runtime link-
ing be enabled by linking in the -brtl option
and not by the -brtllib option directly.

Tips and Techniques
The following tips and tricks can be used to
help linking and loading on AIX 4.3.

◆ Shared modules that use any C++ code
must always be linked using the
makeC++SharedLib script. This script is a
wrapper around the ld command and
does some C++ related processing before
linking the module. Check the compiler
documentation for details on its use.

◆ The dump -HTv <module name> com-
mand provides information about the
shared module’s symbol table.

◆ The genkld command provides a
listing of the currently loaded shared
libraries. This command is part of the
perfagent.tools fileset.

◆ The shared modules built in AIX 4.1.5 can
be referenced by an AIX 4.3 binary if the
symbols are not under the runtime linker
control. The AIX 4.1.5 modules should be
manually loaded into the executable’s
address space using dlopen() calls.

◆ Diagnose problems in case of a linking fail-
ure by using the binder options as follows:

-bloadmap:<file>
-bmap:<file>

◆ In AIX, libraries can be listed multiple
times and in any order (except when
symbols are rebound). The first occur-
rence of a symbol wins, although warn-
ings appear on additional occurrences.

◆ At link-time for every shared module, all
needed system libraries must be linked
in, including (but not limited to)

-lc -lC -lm -lX11

◆ If the makeC++SharedLib script is used to
build shared libraries and export symbols,
make sure that the system libraries are
always specified with an -l option (for
example, -lc) and never by name on the
script_s command line. This allows the
system libraries to be simply referenced

AIXpert Magazine • July 1999 • Linking & Loading in AIX 4.3PLUS

and not go through special C++ related
processing.

◆ If large parts of the shared libraries are
paged in all at once because of C++ calls
or many references between libraries, it
may be faster to read the library rather
than demand-page it into memory.
Remove read-other permission from all
shared libraries and see if the loading per-
formance improves. If it does, then reset
the original permissions and set the fol-
lowing environment variable:

LDR_CNTRL=PREREAD_SHLIB

By using this environment variable,
the libraries are read very fast into the
shared memory segment.

◆ If a loader error occurs at program
execution time in which a certain library
cannot be found (even though the LIBPATH
clearly points to it), check the following:

• The library should have read permission.

• The loader section of the calling
module’s dump output should point to
the correct directory.

• The -bnoipath option should not be
used with the library to link the
module; all dependent modules of the
library should be available for loading.

• All dependent modules of the loading
module have to load successfully, so
follow the module tree to see which leaf
did not load (possibly due to wrong
LIBPATH or disabled read permissions).

◆ If linking or loading difficulties arise, it is
best to simplify the environment (includ-
ing disabling the version control system)
and debug the problem by taking one
step at a time.

Examples
This section begins with a few basic C files
(shown in Figure 4), which will be used to
illustrate several examples later in this section.

AIXpert Magazine • July 1999 • Linking & Loading in AIX 4.3PLUS

a.c

#include <stdlib.h>
#include <stdio.h>

extern int b();

int a()
{

printf(“Now in function a()\n”);
b();
return(0);

}

b.c

#include <stdlib.h>
#include <stdio.h>

extern void c1();

int b()
{

printf(“Now in function b()\n”);
c1();
return(0);

}

c1.c

#include <stdlib.h>
#include <stdio.h>

int c1()
{

printf(“Now in function c1()\n”);
return(0);

}

hello.c

#include <stdlib.h>
#include <stdio.h>

extern int a();

int main()
{

printf(“\nHello World\n”);
a();
return(0);

}

Figure 4. Basic C files

Example 1
The example in Figure 5 shows building a
shared library in AIX 4.3 using the runtime
linker.

Figure 6 shows symbol table information
for liba.so obtained by the command
dump -HTv liba.so.

The loader symbol table output in Figure
6 means that the symbol printf comes
from the shared module shr.o, an archive
member of the system library libc.a. The
runtime library will search for the symbol b
when liba.so is loaded. This is indicated

by the “ .. ” in the IMPid column for
symbol b in Figure 6 (recall that runtime
symbol lookup is only performed if the
main application is built with runtime link-
ing enabled).

Figure 7 shows how to build the final
executable.

AIXpert Magazine • July 1999 • Linking & Loading in AIX 4.3PLUS

cc -c a.c -o a.o
cc -c b.c -o b.o
cc -c c1.c -o c1.o
cc -c hello.c -o hello.o

ld -o liba.so a.o -bnoentry -G -bexpall -lc

Figure 5. Build shared library with runtime linker

Loader Section

Loader Header Information
VERSION# #SYMtableENT #RELOCent LENidSTR
0x00000001 0x00000003 0x00000006 0x00000023

#IMPfilID OFFidSTR LENstrTBL OFFstrTBL
0x00000003 0x000000b0 0x00000000 0x00000000

Import File Strings

INDEX PATH BASE MEMBER
0 /usr/lib:/lib
1 libc.a shr.o
2 ..

Loader Symbol Table Information

[Index] Value Scn IMEX Sclass Type IMPid Name

[0] 0x00000000 undef IMP DS EXTref libc.a(shr.o) printf
[1] 0x00000018 .data EXP DS SECdef [noIMid] a
[2] 0x00000000 undef IMP DS EXTref .. b

Figure 6. Symbol table information for liba.so

Figure 7. Building the final executable

ld -o libb.so b.o -bnoentry -G -bexpall -lc
ld -o libc1.so c1.o -bnoentry -G -bexpall -lc
xlc -o hello liba.so libb.so libc1.so hello.o -L. -brtl

On executing "hello":

>hello

Hello World
Now in function a()
Now in function b()
Now in function c1()

Example 2
Figure 8 shows a rebinding example.

AIXpert Magazine • July 1999 • Linking & Loading in AIX 4.3PLUS

f1.c

#include <stdio.h>
int func1()
{

printf("\tinside of func1()/%s...\n", __FILE__);
printf("Calling func2()...\n");
func2();

}

f2.c

#include <stdio.h>

int func2()
{

printf("\tinside of func2()/%s...\n", __FILE__);
printf("Calling func3()...\n");
func3();

}

f3.c

#include <stdio.h>

int func3()
{

printf("\tinside of func3()/%s...\n", __FILE__);
printf("Calling func4()...\n");
func4();

}

f4.c

#include <stdio.h>

int func4()
{

printf("\tinside of func4()/%s...\n", __FILE__);
}

main.c:

#include <stdio.h>

int func4() /* func4 is being redefined here in main.c */
{

printf(“\tinside of func4()/%s...\n”, __FILE__);
}

extern int func1();

main()
{

printf(“Calling func1()...\n”);
func1();

}

Figure 8. Rebinding example

(continued on following page)

Example 3
Figure 9 shows an example of runtime linking and dynamic loading of non-linked objects.

AIXpert Magazine • July 1999 • Linking & Loading in AIX 4.3PLUS

Compiling and linking:

xlc -D_POSIX_SOURCE -D_ALL_SOURCE -g -qextchk -c main.c
xlc -D_POSIX_SOURCE -D_ALL_SOURCE -g -qextchk -c f1.c
xlc -D_POSIX_SOURCE -D_ALL_SOURCE -g -qextchk -c f2.c
xlc -D_POSIX_SOURCE -D_ALL_SOURCE -g -qextchk -c f3.c
xlc -D_POSIX_SOURCE -D_ALL_SOURCE -g -qextchk -c f4.c
ld -o libshr2.so f3.o f4.o -G -bnoentry -bexpall
ld -o libshr1.so f1.o f2.o -lshr2 -G -bnoentry -L. -bexpall
xlc -o main main.o -lshr1 -lshr2 -L. -brtl -bE:main.exp

The following WARNING message will be emitted by the binder:

ld: 0711-224 WARNING: Duplicate symbol: .func4
ld: 0711-224 WARNING: Duplicate symbol: func4
ld: 0711-345 Use the -bloadmap or -bnoquiet option to obtain more information.

Since main.o appears before libshr1.so and libsh2.so, the func4() that is defined by
main is used. The results of running main are as follows:

Calling func1()...
inside of func1()/f1.c...

Calling func2()...
inside of func2()/f2.c...

Calling func3()...
inside of func3()/f3.c...

Calling func4()...
inside of func4()/main.c...

Note that symbol func4 has been rebound to the one defined in main.c.

(continued from previous page)

Figure 8. Rebinding example

main.c

#include <stdio.h>

int main()
{

vmap_routine();
usr_preempt();

}

void main_routine()
{

printf("in main_routine in main.c\n");
}

Figure 9. Runtime linking and dynamic loading of non-linked objects

(continued on following page)

AIXpert Magazine • July 1999 • Linking & Loading in AIX 4.3PLUS

vmap.c

#include <stdio.h>

void vmap_routine()
{

printf("in vmap_routine in vmap.c\n");
main_routine();
usr_routine();

}

void vmap_axs_routine()
{

printf("in vmap_axs_routine in vmap.c\n");
}

void usr_preempt()
{

printf("in standard usr_preempt routine in vmap.c\n");
}

usr.c

#include <stdio.h>
#include <dlfcn.h>

typedef void (*void_fn)();

void usr_routine()
{

printf(“in usr_routine usr.c\n”);
axs_routine();

}

void usr_preempt()
{

void_fn routine;

printf(“in correct usr_preempt routine in usr.c\n”);
routine = (void_fn) dlsym(dlopen(“./libvmap.so”, RTLD_NOW), “usr_preempt”);
routine();
routine = (void_fn) dlsym(dlopen(“./libext.so”, RTLD_NOW), “ext_routine”);
routine();

}

axs.c

#include <stdio.h>

void axs_routine()
{

printf("in axs_routine in axs.c\n");
vmap_axs_routine();

}

Figure 9. Runtime linking and dynamic loading of non-linked objects

(continued from the previous page)

(continued on following page)

This example is particularly interesting.
First, symbol usr_preempt() is defined in
two modules: libvmap.so and libusr.so.
Second, symbol usr_preempt() in usr.c
(libusr.so) uses the same symbol as
defined in vmap.c (inlibvmap.so) via an
explicit dlopen() of libvmap.so. Third, an

explicit dlopen() of module libext.so
is not linked to the main module.

Example 4
Figure 10 shows an example of calling
an AIX 4.1.5 shared library from AIX 4.3
binary.

AIXpert Magazine • July 1999 • Linking & Loading in AIX 4.3PLUS

ext.c

#include <stdio.h>

void ext_routine()
{

printf("in ext_routine in ext.c\n");
}

Compile and link:

xlc -c -g usr.c axs.c ext.c main.c vmap.c -D_ALL_SOURCE
ld -o libusr.so usr.o -bnoentry -G -bexpall -bM:SRE -lc -ldl
ld -o libvmap.so vmap.o -bnoentry -G -bexpall -bM:SRE -lc
ld -o libaxs.so axs.o -bnoentry -G -bexpall -bM:SRE -lc
ld -o libext.so ext.o -bnoentry -G -bexpall -bM:SRE -lc
cc -o main main.o libusr.so libvmap.so libaxs.so -brtl -L.

Ignore the ld warning regarding duplicate symbols in this instance; there are two instances
of usr_preempt. The output produced by this program is, as expected:

> main
in vmap_routine in vmap.c
in main_routine in main.c
in usr_routine usr.c
in axs_routine in axs.c
in vmap_axs_routine in vmap.c
in correct usr_preempt routine in usr.c
in standard usr_preempt routine in vmap.c
in ext_routine in ext.c

(continued from the previous page)

Figure 9. Runtime linking and dynamic loading of non-linked objects

main.c

#include <stdio.h>
#include <dlfcn.h>

main()
{

void *handle;
void (*fct)();

printf("hello from main\n");

Figure 10. Calling AIX 4.1.5 shared library from AIX 4.3 binary

(continued on following page)

AIXpert Magazine • July 1999 • Linking & Loading in AIX 4.3PLUS

/* main() needs to run foo_() which is defined by libfoo.so.
* libfoo.so has been previously built on AIX 4.1.5.
*/
handle=dlopen("libfoo.so",RTLD_NOW);
if (handle==NULL)
{

perror("dlopen");
exit(1);

}

fct=(void (*)())dlsym(handle,"foo_");

if (fct==NULL)
{

perror("dlsym");
exit(1);

}

(*fct)();
printf("exit from main\n");

}

foo.c

#include <stdio.h>
void foo_()
{

printf("hello from foo()\n");
}

To build main on AIX 4.3:

xlc -brtl -g -o main main.o -L. -ldl

To build libfoo.so in AIX 4.1.5:

ld -o libfoo.so foo.o -bM:SRE -bE:exp.lst -bnoentry -lc

Where exp.lst contains the symbol foo_.

Running main yields the following output:

> main
hello from main
hello from foo()
exit from main

(continued from the previous page)

Figure 10. Calling AIX 4.1.5 shared library from AIX 4.3 binary

Example 5
Figure 11 shows autoloading of archive members.

AIXpert Magazine • July 1999 • Linking & Loading in AIX 4.3PLUS

main.c

main()
{

bar();
}

bar.c

int bar()
{

printf("in bar()\n");
foo();

}

foo.c

#include <stdio.h>

int foo()
{

printf("in foo() which is correct...\n");
}

barfoo.c

#include <stdio.h>

int foo()
{

printf("in barfoo() which is wrong...\n");
}

foo.auto

#!
autoload
#! (shr.o)

Makefile

all: libbar.so libfoo.a main

main: main.o
cc -o main main.o -L. -lfoo -lbar -brtl

libbar.so: bar.o barfoo.o
ld -G -o libbar.so -lc -bexpall bar.o barfoo.o -bnoentry

libfoo.a: foo.o foo.auto
ld -G -o shr.o foo.o -bexpall -lc -bnoentry
$(AR) $(ARFLAGS) $@ shr.o foo.auto

clean: -rm -f *.o *.a *.so core main *.lst *.map

Figure 11. Autoloading archive members

The goal for the example in Figure 11 is
to provide a module that will override a def-
inition from another module. Looking at
the rules for building main, we see that
libfoo.a is listed before libbar.so. This
latter module contains a definition for
bar(), which calls foo(). The definition for
foo() is in the same module, libbar.so.

When building libfoo.a, the shared
module containing an alternate definition for
foo() is in another shared module, which is
then placed within an archive. The linker will
not (even when using runtime linking) auto-
matically create references to shared modules
within archives. To force it to accept and ref-
erence a module within an archive, an
autoload script is used (foo.auto).

This script tells the linker that the
named module within the archive contain-
ing the script is to be referenced by the
module being built. Therefore, when linking
main, the linker examines libfoo.a first,
sees the autoload script, and understands
that a reference to the module shr.o within
libfoo.a is to be placed in the loader sec-
tion. The linker then examines libbar.so,
sees the definition of the referenced symbol
bar(), and creates a loader section refer-
ence to that file.

Since runtime linking is enabled in this
example, the loader section will list
modules in the order in which they were
specified on the linker’s command line. At
runtime, the definition for foo() resolves
all references from any module. This will

then override the definition provided by the
module libbar.so. Therefore, the correct
output will be as follows:

> main
in bar()
in foo()

References
Online documentation is available at:

Gary R. Hook, IBM Corporation, 11400 Burnet Road,
Austin, TX 78758. Mr. Hook joined IBM in 1990 and is
currently an advisory software engineer in the IBM Server
Group. He is the author of the Shared Libraries Hookable
Symbols/6000 product and is currently a member of the AIX
kernel development team, working on object file tools and the
system loader. Mr. Hook has a BS in Electrical Engineering
from the University of New Mexico.

Vandana Kumar, IBM Corporation, 11400 Burnet Road,
Austin, TX 78758. Ms. Kumar is an advisory engineer in the
IBM Server Group. She has worked with several AIX applica-
tion vendors in porting, enabling, and tuning their software on
the RS/6000 platform. Ms. Kumar has a MS in Electrical
Engineering from Wayne State University.

Stephen Peckham, IBM Corporation, 11400 Burnet Road,
Austin, TX 78758. Dr. Peckham is an advisory software
engineer in the IBM Server Group. He developed the AIX
Version 4 link editor and, for the past several years, he has
been a member of the AIX kernel development team, working
on the system loader and runtime linker. Dr. Peckham has a
Ph.D. in Computer Science from Cornell University.

AIXpert Magazine • July 1999 • Linking & Loading in AIX 4.3PLUS

AIX
a i

x

http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixgen/

