

Contents

iii

CONTENTS

Paragraph
Number Title Page

Number

About This Book

Audience ... xxii
Organization.. xxii
Suggested Reading... xxiii
Conventions ... xxiv
Acronyms and Abbreviations ..xxv
Terminology Conventions ... xxviii

Chapter 1

Overview

1.1 Overview.. 1-1
1.1.1 PowerPC 604 Microprocessor Features... 1-2
1.2 PowerPC 604 Microprocessor Hardware Implementation 1-7
1.2.1 Instruction Flow... 1-8
1.2.1.1 Fetch Unit .. 1-8
1.2.1.2 Decode/Dispatch Unit.. 1-9
1.2.1.3 Branch Processing Unit (BPU).. 1-9
1.2.1.4 Completion Unit .. 1-9
1.2.1.5 Rename Buffers ... 1-10
1.2.2 Execution Units.. 1-10
1.2.2.1 Integer Units (IUs) ... 1-10
1.2.2.2 Floating-Point Unit (FPU) ... 1-11
1.2.2.3 Load/Store Unit (LSU) .. 1-11
1.2.3 Memory Management Units (MMUs)... 1-12
1.2.4 Cache Implementation ... 1-12
1.2.4.1 Instruction Cache ... 1-13
1.2.4.2 Data Cache... 1-13
1.2.5 System Interface/Bus Interface Unit (BIU) ... 1-14
1.2.5.1 Memory Accesses .. 1-16
1.2.5.2 Signals.. 1-16
1.2.5.3 Signal Configuration.. 1-17
1.2.6 Clocking... 1-18
1.3 PowerPC 604 Microprocessor Execution Model... 1-19

iv

PowerPC 604 RISC Microprocessor User’s Manual

CONTENTS

Paragraph
Number Title Page

Number

1.3.1 Levels of the PowerPC Architecture ... 1-19
1.3.2 Registers and Programming Model ... 1-20
1.3.2.1 General-Purpose Registers (GPRs).. 1-22
1.3.2.2 Floating-Point Registers (FPRs) .. 1-22
1.3.2.3 Condition Register (CR) .. 1-22
1.3.2.4 Floating-Point Status and Control Register (FPSCR) 1-23
1.3.2.5 Machine State Register (MSR).. 1-23
1.3.2.6 Segment Registers (SRs) ... 1-23
1.3.2.7 Special-Purpose Registers (SPRs) ... 1-23
1.3.2.7.1 User-Level SPRs.. 1-23
1.3.2.7.2 Supervisor-Level SPRs.. 1-23
1.3.3 Instruction Set and Addressing Modes .. 1-25
1.3.3.1 PowerPC Instruction Set and Addressing Modes 1-25
1.3.3.1.1 Instruction Set.. 1-25
1.3.3.1.2 Calculating Effective Addresses.. 1-27
1.3.4 Exception Model.. 1-28
1.3.5 Instruction Timing ... 1-33
1.4 Power Management—Nap Mode .. 1-35
1.5 Performance Monitor ... 1-35

Chapter 2

PowerPC 604 Processor Programming Model

2.1 The PowerPC 604 Processor Register Set ... 2-1
2.1.1 Register Set .. 2-2
2.1.2 604-Specific Registers ... 2-8
2.1.2.1 Instruction Address Breakpoint Register (IABR).. 2-8
2.1.2.2 Processor Identification Register (PIR) ... 2-9
2.1.2.3 Hardware Implementation-Dependent Register 0 2-10
2.1.2.4 Performance Monitor Registers ... 2-11
2.1.2.4.1 Monitor Mode Control Register 0 (MMCR0) 2-11
2.1.2.4.2 Performance Monitor Counter Registers (PMC1 and PMC2)............... 2-13
2.1.2.4.3 Sampled Instruction Address Register (SIA) .. 2-15
2.1.2.4.4 Sampled Data Address Register (SDA)... 2-16
2.2 Operand Conventions... 2-16
2.2.1 Floating-Point Execution Models—UISA... 2-16
2.2.2 Data Organization in Memory and Data Transfers.. 2-17
2.2.3 Alignment and Misaligned Accesses... 2-17
2.2.4 Floating-Point Operand.. 2-17
2.2.5 Effect of Operand Placement on Performance .. 2-19
2.3 Instruction Set Summary.. 2-19
2.3.1 Classes of Instructions ... 2-21
2.3.1.1 Definition of Boundedly Undefined .. 2-21

Contents

v

CONTENTS

Paragraph
Number Title Page

Number

2.3.1.2 Defined Instruction Class .. 2-21
2.3.1.3 Illegal Instruction Class ... 2-22
2.3.1.4 Reserved Instruction Class .. 2-23
2.3.2 Addressing Modes ... 2-23
2.3.2.1 Memory Addressing .. 2-23
2.3.2.2 Memory Operands ... 2-23
2.3.2.3 Effective Address Calculation ... 2-24
2.3.2.4 Synchronization ... 2-24
2.3.2.4.1 Context Synchronization ... 2-24
2.3.2.4.2 Execution Synchronization.. 2-25
2.3.2.4.3 Instruction-Related Exceptions.. 2-25
2.3.3 Instruction Set Overview ... 2-26
2.3.4 PowerPC UISA Instructions .. 2-26
2.3.4.1 Integer Instructions .. 2-26
2.3.4.1.1 Integer Arithmetic Instructions.. 2-26
2.3.4.1.2 Integer Compare Instructions .. 2-28
2.3.4.1.3 Integer Logical Instructions... 2-28
2.3.4.1.4 Integer Rotate and Shift Instructions ... 2-29
2.3.4.2 Floating-Point Instructions .. 2-30
2.3.4.2.1 Floating-Point Arithmetic Instructions .. 2-30
2.3.4.2.2 Floating-Point Multiply-Add Instructions ... 2-31
2.3.4.2.3 Floating-Point Rounding and Conversion Instructions 2-31
2.3.4.2.4 Floating-Point Compare Instructions... 2-32
2.3.4.2.5 Floating-Point Status and Control Register Instructions 2-32
2.3.4.2.6 Floating-Point Move Instructions .. 2-33
2.3.4.3 Load and Store Instructions ... 2-33
2.3.4.3.1 Self-Modifying Code ... 2-34
2.3.4.3.2 Integer Load and Store Address Generation.. 2-35
2.3.4.3.3 Register Indirect Integer Load Instructions ... 2-35
2.3.4.3.4 Integer Store Instructions... 2-36
2.3.4.3.5 Integer Load and Store with Byte Reverse Instructions 2-37
2.3.4.3.6 Integer Load and Store Multiple Instructions.. 2-38
2.3.4.3.7 Integer Load and Store String Instructions.. 2-39
2.3.4.3.8 Floating-Point Load and Store Address Generation.............................. 2-40
2.3.4.3.9 Floating-Point Store Instructions... 2-41
2.3.4.4 Branch and Flow Control Instructions... 2-43
2.3.4.4.1 Branch Instruction Address Calculation.. 2-44
2.3.4.4.2 Branch Instructions.. 2-44
2.3.4.4.3 Condition Register Logical Instructions.. 2-45
2.3.4.4.4 Trap Instructions.. 2-45
2.3.4.5 System Linkage Instruction—UISA.. 2-46
2.3.4.6 Processor Control Instructions—UISA ... 2-46
2.3.4.6.1 Move to/from Condition Register Instructions...................................... 2-46

vi

PowerPC 604 RISC Microprocessor User’s Manual

CONTENTS

Paragraph
Number Title Page

Number

2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)............... 2-47
2.3.4.7 Memory Synchronization Instructions—UISA ... 2-47
2.3.5 PowerPC VEA Instructions ... 2-48
2.3.5.1 Processor Control Instructions—VEA .. 2-48
2.3.5.2 Memory Synchronization Instructions—VEA .. 2-49
2.3.5.3 Memory Control Instructions—VEA .. 2-50
2.3.5.3.1 User-Level Cache Instructions—VEA .. 2-50
2.3.5.4 Optional External Control Instructions.. 2-52
2.3.6 PowerPC OEA Instructions ... 2-52
2.3.6.1 System Linkage Instructions—OEA ... 2-52
2.3.6.2 Processor Control Instructions—OEA .. 2-52
2.3.6.3 Memory Control Instructions—OEA .. 2-54
2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA) 2-54
2.3.6.3.2 Segment Register Manipulation Instructions (OEA)............................. 2-55
2.3.6.3.3 Translation Lookaside Buffer Management Instructions—(OEA) 2-55
2.3.7 Recommended Simplified Mnemonics.. 2-57

Chapter 3

Cache and Bus Interface Unit Operation

3.1 Data Cache Organization ... 3-3
3.2 Instruction Cache Organization ... 3-4
3.3 MMUs/Bus Interface Unit ... 3-5
3.4 Memory Coherency Actions .. 3-8
3.4.1 604-Initiated Load and Store Operations... 3-8
3.5 Sequential Consistency .. 3-9
3.5.1 Sequential Consistency Within a Single Processor ... 3-9
3.5.2 Weak Consistency between Multiple Processors .. 3-9
3.5.3 Sequential Consistency Within Multiprocessor Systems 3-10
3.6 Memory and Cache Coherency.. 3-10
3.6.1 Data Cache Coherency Protocol .. 3-11
3.6.2 Coherency and Secondary Caches... 3-13
3.6.3 Page Table Control Bits ... 3-13
3.6.4 MESI State Diagram.. 3-13
3.6.5 Coherency Paradoxes in Single-Processor Systems 3-14
3.6.6 Coherency Paradoxes in Multiple-Processor Systems................................... 3-15
3.7 Cache Configuration .. 3-15
3.8 Cache Control Instructions .. 3-16
3.8.1 Instruction Cache Block Invalidate (

icbi

).. 3-16
3.8.2 Instruction Synchronize (

isync

)... 3-17
3.8.3 Data Cache Block Touch (

dcbt

) and
Data Cache Block Touch for Store (

dcbtst

).. 3-17
3.8.4 Data Cache Block Set to Zero (

dcbz

) .. 3-17

Contents

vii

CONTENTS

Paragraph
Number Title Page

Number

3.8.5 Data Cache Block Store (

dcbst

) .. 3-17
3.8.6 Data Cache Block Flush (

dcbf

) ... 3-18
3.8.7 Data Cache Block Invalidate (

dcbi

) .. 3-18
3.9 Basic Cache Operations ... 3-18
3.9.1 Cache Reloads.. 3-18
3.9.2 Cache Cast-Out Operation ... 3-18
3.9.3 Cache Block Push Operation ... 3-18
3.9.4 Atomic Memory References.. 3-19
3.9.5 Snoop Response to Bus Operations ... 3-19
3.9.6 Cache Reaction to Specific Bus Operations .. 3-19
3.9.7 Enveloped High-Priority Cache Block Push Operation 3-22
3.9.8 Bus Operations Caused by Cache Control Instructions................................. 3-22
3.9.9 Cache Control Instructions .. 3-23
3.10 Cache Actions .. 3-23
3.11 Access to Direct-Store Segments... 3-44

Chapter 4

Exceptions

4.1 PowerPC 604 Microprocessor Exceptions... 4-2
4.2 Exception Recognition and Priorities .. 4-5
4.3 Exception Processing ... 4-6
4.3.1 Enabling and Disabling Exceptions... 4-9
4.3.2 Steps for Exception Processing.. 4-10
4.3.3 Setting MSR[RI] .. 4-10
4.3.4 Returning from an Exception Handler... 4-11
4.4 Process Switching .. 4-11
4.5 Exception Definitions .. 4-12
4.5.1 System Reset Exception (0x00100)... 4-13
4.5.2 Machine Check Exception (0x00200) ... 4-13
4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)................................ 4-14
4.5.2.2 Checkstop State (MSR[ME] = 0) .. 4-15
4.5.3 DSI Exception (0x00300) .. 4-16
4.5.4 ISI Exception (0x00400).. 4-16
4.5.5 External Interrupt Exception (0x00500) .. 4-16
4.5.6 Alignment Exception (0x00600) ... 4-17
4.5.7 Program Exception (0x00700)... 4-17
4.5.8 Floating-Point Unavailable Exception (0x00800) ... 4-18
4.5.9 Decrementer Exception (0x00900).. 4-19
4.5.10 System Call Exception (0x00C00) .. 4-19
4.5.11 Trace Exception (0x00D00)... 4-19
4.5.12 Floating-Point Assist Exception (0x00E00) .. 4-19

viii

PowerPC 604 RISC Microprocessor User’s Manual

CONTENTS

Paragraph
Number Title Page

Number

4.5.13 Performance Monitoring Interrupt (0x00F00)... 4-20
4.5.14 Instruction Address Breakpoint Exception (0x01300) 4-20
4.5.15 System Management Interrupt (0x01400) ... 4-20
4.5.16 Power Management ... 4-21

Chapter 5

Memory Management

5.1 MMU Overview... 5-2
5.1.1 Memory Addressing .. 5-4
5.1.2 MMU Organization.. 5-4
5.1.3 Address Translation Mechanisms.. 5-9
5.1.4 Memory Protection Facilities... 5-11
5.1.5 Page History Information... 5-12
5.1.6 General Flow of MMU Address Translation... 5-12
5.1.6.1 Real Addressing Mode and Block Address Translation Selection 5-12
5.1.6.2 Page and Direct-Store Interface Address Translation Selection............... 5-14
5.1.6.3 Selection of Page Address Translation .. 5-16
5.1.6.4 Selection of Direct-Store Interface Address Translation........................... 5-16
5.1.7 MMU Exceptions Summary .. 5-16
5.1.8 MMU Instructions and Register Summary.. 5-18
5.1.9 TLB Entry Invalidation.. 5-19
5.2 Real Addressing Mode... 5-20
5.3 Block Address Translation... 5-20
5.4 Memory Segment Model ... 5-20
5.4.1 Page History Recording ... 5-21
5.4.1.1 Referenced Bit ... 5-22
5.4.1.2 Changed Bit ... 5-22
5.4.1.3 Scenarios for Referenced and Changed Bit Recording 5-23
5.4.2 Page Memory Protection ... 5-24
5.4.3 TLB Description .. 5-24
5.4.3.1 TLB Organization.. 5-24
5.4.3.2 TLB Invalidation ... 5-26
5.4.4 Page Address Translation Summary.. 5-27
5.4.5 Page Table Search Operation... 5-29
5.4.6 Page Table Updates ... 5-33
5.4.7 Segment Register Updates ... 5-34
5.5 Direct-Store Interface Address Translation ... 5-35
5.5.1 Direct-Store Interface Accesses... 5-35
5.5.2 Direct-Store Segment Protection ... 5-35
5.5.3 Instructions Not Supported in Direct-Store Segments................................... 5-36
5.5.4 Instructions with No Effect in Direct-Store Segments 5-36
5.5.5 Direct-Store Segment Translation Summary Flow.. 5-36

Contents

ix

CONTENTS

Paragraph
Number Title Page

Number

Chapter 6

Instruction Timing

6.1 Terminology and Conventions... 6-1
6.2 Instruction Timing Overview... 6-3
6.2.1 Pipeline Structures ... 6-5
6.2.1.1 Description of Pipeline Stages... 6-7
6.2.1.1.1 Fetch Stage .. 6-8
6.2.1.1.2 Decode Stage ... 6-9
6.2.1.1.3 Dispatch Stage ... 6-9
6.2.1.1.4 Execute Stage .. 6-10
6.2.1.1.5 Complete Stage.. 6-11
6.2.1.1.6 Write-Back Stage... 6-12
6.3 Memory Performance Considerations ... 6-12
6.3.1 MMU Overview... 6-13
6.3.2 Cache Overview... 6-13
6.3.3 Bus Interface Overview ... 6-15
6.3.4 Memory Operations ... 6-15
6.3.4.1 Write-Back Mode .. 6-15
6.3.4.2 Write-Through Mode... 6-16
6.3.4.3 Cache-Inhibited Mode ... 6-16
6.4 Timing Considerations... 6-17
6.4.1 General Instruction Flow ... 6-17
6.4.2 Instruction Fetch Timing ... 6-18
6.4.2.1 Cache Hit Timing Example ... 6-18
6.4.2.2 Cache Miss Timing Example... 6-22
6.4.3 Cache Arbitration... 6-24
6.4.4 Branch Prediction .. 6-24
6.4.4.1 Branch Timing Examples .. 6-25
6.4.4.1.1 Timing Example—Branch Timing for a BTAC Hit.............................. 6-25
6.4.4.1.2 Timing Example—Branch with BTAC Miss/Decode Correction......... 6-26
6.4.4.1.3 Timing Example—Branch with BTAC Miss/Dispatch Correction....... 6-28
6.4.4.1.4 Timing Example—Branch with BTAC Miss/Execute Correction 6-28
6.4.5 Speculative Execution.. 6-29
6.4.6 Instruction Dispatch and Completion Considerations 6-30
6.4.6.1 Rename Register Operation... 6-31
6.4.6.2 Execution Unit Considerations .. 6-33
6.4.7 Instruction Serialization... 6-33
6.4.7.1 Dispatch Serialization Mode.. 6-34
6.4.7.2 Execution Serialization Mode.. 6-34
6.4.7.3 Postdispatch Serialization Mode.. 6-34
6.4.7.4 Serialization of String/Multiple Instructions ... 6-35
6.4.7.5 Serialization of Input/Output ... 6-35

x

PowerPC 604 RISC Microprocessor User’s Manual

CONTENTS

Paragraph
Number Title Page

Number

6.5 Execution Unit Timings... 6-35
6.5.1 Branch Unit Instruction Timings ... 6-35
6.5.2 Integer Unit Instruction Timings ... 6-35
6.5.3 Floating-Point Unit Instruction Timings.. 6-37
6.5.4 Load/Store Unit Instruction Timings... 6-39
6.5.5

isync

,

rfi

, and

sc

 Instruction Timings.. 6-41
6.6 Instruction Scheduling Guidelines... 6-42
6.6.1 Instruction Dispatch Rules... 6-42
6.6.2 Additional Programming Tips for the PowerPC 604 Processor 6-43
6.7 Instruction Latency Summary.. 6-45

Chapter 7

Signal Descriptions

7.1 Signal Configuration.. 7-2
7.2 Signal Descriptions .. 7-3
7.2.1 Address Bus Arbitration Signals.. 7-3
7.2.1.1 Bus Request (BR)—Output ... 7-4
7.2.1.2 Bus Grant (BG)—Input ... 7-4
7.2.1.3 Address Bus Busy (ABB).. 7-5
7.2.1.3.1 Address Bus Busy (ABB)—Output... 7-5
7.2.1.3.2 Address Bus Busy (ABB)—Input ... 7-5
7.2.2 Address Transfer Start Signals .. 7-6
7.2.2.1 Transfer Start (TS) ... 7-6
7.2.2.1.1 Transfer Start (TS)—Output.. 7-6
7.2.2.1.2 Transfer Start (TS)—Input .. 7-6
7.2.2.2 Extended Address Transfer Start (XATS) ... 7-6
7.2.2.2.1 Extended Address Transfer Start (XATS)—Output................................ 7-6
7.2.2.2.2 Extended Address Transfer Start (XATS)—Input 7-7
7.2.3 Address Transfer Signals ... 7-7
7.2.3.1 Address Bus (A0–A31).. 7-7
7.2.3.1.1 Address Bus (A0–A31)—Output (Memory Operations) 7-7
7.2.3.1.2 Address Bus (A0–A31)—Input (Memory Operations) 7-7
7.2.3.1.3 Address Bus (A0–A31)—Output (Direct-Store Operations) 7-8
7.2.3.1.4 Address Bus (A0–A31)—Input (Direct-Store Operations) 7-8
7.2.3.2 Address Bus Parity (AP0–AP3)... 7-8
7.2.3.2.1 Address Bus Parity (AP0–AP3)—Output ... 7-8
7.2.3.2.2 Address Bus Parity (AP0–AP3)—Input .. 7-9
7.2.3.3 Address Parity Error (APE)—Output .. 7-9
7.2.4 Address Transfer Attribute Signals.. 7-9
7.2.4.1 Transfer Type (TT0–TT4) ... 7-10
7.2.4.1.1 Transfer Type (TT0–TT4)—Output .. 7-10
7.2.4.1.2 Transfer Type (TT0–TT4)—Input... 7-10

Contents

xi

CONTENTS

Paragraph
Number Title Page

Number

7.2.4.2 Transfer Size (TSIZ0–TSIZ2) ... 7-11
7.2.4.2.1 Transfer Size (TSIZ0–TSIZ2)—Output .. 7-12
7.2.4.2.2 Transfer Size (TSIZ0–TSIZ2)—Input... 7-12
7.2.4.3 Transfer Burst (TBST)... 7-13
7.2.4.3.1 Transfer Burst (TBST)—Output.. 7-13
7.2.4.3.2 Transfer Burst (TBST)—Input .. 7-13
7.2.4.4 Transfer Code (TC0–TC2)—Output ... 7-13
7.2.4.5 Cache Inhibit (CI)—Output ... 7-14
7.2.4.6 Write-Through (WT)—Output .. 7-15
7.2.4.7 Global (GBL)... 7-15
7.2.4.7.1 Global (GBL)—Output.. 7-15
7.2.4.7.2 Global (GBL)—Input .. 7-15
7.2.4.8 Cache Set Element (CSE0–CSE1)—Output ... 7-15
7.2.5 Address Transfer Termination Signals .. 7-16
7.2.5.1 Address Acknowledge (AACK)—Input.. 7-16
7.2.5.2 Address Retry (ARTRY) ... 7-16
7.2.5.2.1 Address Retry (ARTRY)—Output .. 7-16
7.2.5.2.2 Address Retry (ARTRY)—Input... 7-17
7.2.5.3 Shared (SHD)... 7-17
7.2.5.3.1 Shared (SHD)—Output ... 7-17
7.2.5.3.2 Shared (SHD)—Input .. 7-18
7.2.6 Data Bus Arbitration Signals ... 7-18
7.2.6.1 Data Bus Grant (DBG)—Input .. 7-18
7.2.6.2 Data Bus Write Only (DBWO)—Input ... 7-18
7.2.6.3 Data Bus Busy (DBB) ... 7-19
7.2.6.3.1 Data Bus Busy (DBB)—Output .. 7-19
7.2.6.3.2 Data Bus Busy (DBB)—Input ... 7-19
7.2.7 Data Transfer Signals... 7-20
7.2.7.1 Data Bus (DH0–DH31, DL0–DL31)... 7-20
7.2.7.1.1 Data Bus (DH0–DH31, DL0–DL31)—Output...................................... 7-20
7.2.7.1.2 Data Bus (DH0–DH31, DL0–DL31)—Input .. 7-21
7.2.7.2 Data Bus Parity (DP0–DP7) .. 7-21
7.2.7.2.1 Data Bus Parity (DP0–DP7)—Output ... 7-21
7.2.7.2.2 Data Bus Parity (DP0–DP7)—Input.. 7-21
7.2.7.3 Data Parity Error (DPE)—Output ... 7-22
7.2.7.4 Data Bus Disable (DBDIS)—Input ... 7-22
7.2.8 Data Transfer Termination Signals.. 7-22
7.2.8.1 Transfer Acknowledge (TA)—Input ... 7-23
7.2.8.2 Data Retry (DRTRY)—Input .. 7-23
7.2.8.3 Transfer Error Acknowledge (TEA)—Input ... 7-24
7.2.9 System Interrupt, Checkstop, and Reset Signals ... 7-24
7.2.9.1 Interrupt (INT)—Input... 7-25
7.2.9.2 System Management Interrupt (SMI)—Input ... 7-25

xii

PowerPC 604 RISC Microprocessor User’s Manual

CONTENTS

Paragraph
Number Title Page

Number

7.2.9.3 Machine Check Interrupt (MCP)—Input... 7-25
7.2.9.4 Checkstop Input(CKSTP_IN)—Input ... 7-26
7.2.9.5 Checkstop Output (CKSTP_OUT)—Output ... 7-26
7.2.9.6 Reset Signals.. 7-27
7.2.9.6.1 Hard Reset (HRESET)—Input .. 7-27
7.2.9.6.2 Soft Reset (SRESET)—Input .. 7-27
7.2.10 Processor Configuration Signals.. 7-28
7.2.10.1 Timebase Enable (TBEN)—Input ... 7-28
7.2.10.2 Reservation (RSRV)—Output ... 7-28
7.2.10.3 L2 Intervention (L2_INT)—Input ... 7-28
7.2.10.4 Run (RUN)—Input .. 7-29
7.2.10.5 Halted (HALTED) —Output ... 7-29
7.2.11 COP/Scan Interface.. 7-29
7.2.12 Clock Signals ... 7-30
7.2.12.1 System Clock (SYSCLK)—Input.. 7-30
7.2.12.2 Test Clock (CLK_OUT)—Output ... 7-31
7.2.12.3 Analog VDD (AVDD)—Input .. 7-31
7.2.12.4 PLL Configuration (PLL_CFG0–PLL_CFG3)—Input 7-31

Chapter 8

System Interface Operation

8.1 PowerPC 604 Microprocessor System Interface Overview................................. 8-1
8.1.1 Operation of the Instruction and Data Caches ... 8-2
8.1.2 Operation of the System Interface ... 8-4
8.1.3 Direct-Store Accesses .. 8-5
8.2 Memory Access Protocol... 8-6
8.2.1 Arbitration Signals... 8-7
8.2.2 Address Pipelining and Split-Bus Transactions... 8-9
8.3 Address Bus Tenure... 8-10
8.3.1 Address Bus Arbitration .. 8-10
8.3.2 Address Transfer.. 8-12
8.3.2.1 Address Bus Parity .. 8-13
8.3.2.2 Address Transfer Attribute Signals ... 8-13
8.3.2.2.1 Transfer Type (TT0–TT4) Signals .. 8-13
8.3.2.2.2 Transfer Size (TSIZ0–TSIZ2) Signals... 8-13
8.3.2.3 Burst Ordering During Data Transfers .. 8-14
8.3.2.4 Effect of Alignment in Data Transfers .. 8-14
8.3.2.4.1 Alignment of External Control Instructions .. 8-16
8.3.2.5 Transfer Code (TC0–TC2) Signals.. 8-17
8.3.3 Address Transfer Termination .. 8-18
8.4 Data Bus Tenure .. 8-20
8.4.1 Data Bus Arbitration.. 8-20

Contents

xiii

CONTENTS

Paragraph
Number Title Page

Number

8.4.1.1 Effect of ARTRY Assertion on Data Transfer and Arbitration................. 8-21
8.4.1.2 Using the DBB Signal ... 8-22
8.4.2 Data Bus Write Only.. 8-23
8.4.3 Data Transfer ... 8-23
8.4.4 Data Transfer Termination... 8-24
8.4.4.1 Normal Single-Beat Termination .. 8-25
8.4.4.2 Data Transfer Termination Due to a Bus Error ... 8-28
8.4.5 Memory Coherency—MESI Protocol ... 8-29
8.5 Timing Examples ... 8-32
8.6 Direct-Store Operation... 8-38
8.6.1 Direct-Store Transactions .. 8-40
8.6.1.1 Store Operations .. 8-41
8.6.1.2 Load Operations... 8-41
8.6.2 Direct-Store Transaction Protocol Details ... 8-42
8.6.2.1 Packet 0.. 8-43
8.6.2.2 Packet 1.. 8-44
8.6.3 I/O Reply Operations ... 8-44
8.6.4 Direct-Store Operation Timing.. 8-46
8.7 Optional Bus Configuration... 8-48
8.7.1 Fast-L2/Data Streaming Mode... 8-48
8.7.1.1 Fast-L2/Data Streaming Mode Design Considerations 8-49
8.7.1.2 Data Streaming in the Fast-L2/Data Streaming Mode 8-49
8.7.1.3 Data Valid Window in the Fast-L2/Data Streaming Mode 8-50
8.8 Interrupt, Checkstop, and Reset Signals .. 8-50
8.8.1 External Interrupts ... 8-50
8.8.2 Checkstops ... 8-51
8.8.3 Reset Inputs.. 8-51
8.8.4 PowerPC 604 Microprocessor Configuration during HRESET 8-51
8.9 Processor State Signals .. 8-52
8.9.1 Support for the

lwarx/stwcx.

 Instruction Pair ... 8-52
8.10 IEEE 1149.1-Compliant Interface ... 8-52
8.10.1 IEEE 1149.1 Interface Description.. 8-52
8.11 Using Data Bus Write Only ... 8-53

Chapter 9

Performance Monitor

9.1 Performance Monitor Interrupt .. 9-2
9.1.1 Special-Purpose Registers Used by Performance Monitor.............................. 9-2
9.1.1.1 Performance Monitor Counter Registers (PMC1 and PMC2)..................... 9-3
9.1.1.1.1 PMC1 Selectable Events ... 9-3
9.1.1.1.2 PMC2 Selectable Events ... 9-5

xiv

PowerPC 604 RISC Microprocessor User’s Manual

CONTENTS

Paragraph
Number Title Page

Number

9.1.1.2 SIA and SDA Registers ... 9-6
9.1.1.2.1 Sampled Instruction Address Register (SIA) .. 9-6
9.1.1.2.2 Sampled Data Address Register (SDA)... 9-6
9.1.1.2.3 Updating SIA and SDA ... 9-6
9.1.1.3 Monitor Mode Control Register 0 (MMCR0) ... 9-6
9.1.2 Event Counting .. 9-8
9.1.2.1 Event Selection .. 9-9
9.1.2.2 Threshold Events ... 9-10
9.1.2.2.1 Threshold Conditions .. 9-10
9.1.2.2.2 Lateral L2 Cache Intervention ... 9-10
9.1.2.2.3 Warnings.. 9-11
9.1.2.3 Nonthreshold Events.. 9-11

Appendix A
PowerPC Instruction Set Listings

A.1 Instructions Sorted by Mnemonic... A-1
A.2 Instructions Sorted by Opcode.. A-10
A.3 Instructions Grouped by Functional Categories ... A-18
A.4 Instructions Sorted by Form.. A-28
A.5 Instruction Set Legend .. A-39

Appendix B
Invalid Instruction Forms

B.1 Invalid Forms Excluding Reserved Fields...B-1
B.2 Invalid Forms with Reserved Fields (Bit 31 Exclusive)......................................B-2
B.3 Invalid Form with Only Bit 31 Set ..B-5
B.4 Invalid Forms from Invalid BO Field Encodings ..B-6

Glossary of Terms and Abbreviations

Index

Illustrations

xv

ILLUSTRATIONS

Figure
Number Title Page

 Number

1-1 Block Diagram ... 1-3
 1-2 Block Diagram—Internal Data Paths... 1-7
 1-3 Cache Unit Organization.. 1-14
 1-4 System Interface ... 1-15
 1-5 PowerPC 604 Microprocessor Signal Groups.. 1-18
 1-6 Programming Model—PowerPC 604 Microprocessor Registers 1-21
 1-7 Pipeline Diagram.. 1-33
 2-1 Programming Model—PowerPC 604 Microprocessor Registers 2-3
 2-2 Instruction Address Breakpoint Register ... 2-9
 2-3 Processor Identification Register ... 2-9
 3-1 Cache Organization .. 3-2
 3-2 Cache Integration ... 3-3
 3-3 Bus Interface Unit and MMU... 3-6
 3-4 Memory Queue Organization... 3-7
 3-5 MESI States.. 3-12
 3-6 MESI Cache Coherency Protocol—State Diagram (WIM = 001) 3-14
 4-1 Machine Status Save/Restore Register 0.. 4-6
 4-2 Machine Status Save/Restore Register 1.. 4-6
 4-3 Machine State Register (MSR) .. 4-7
 5-1 MMU Conceptual Block Diagram—32-Bit Implementations 5-6
 5-2 PowerPC 604 Microprocessor IMMU Block Diagram.. 5-7
 5-3 PowerPC 604 Microprocessor DMMU Block Diagram .. 5-8
 5-4 Address Translation Types... 5-10
 5-5 General Flow of Address Translation (Real Addressing Mode and Block) 5-13
 5-6 General Flow of Page and Direct-Store Interface Address Translation............... 5-15
 5-7 Segment Register and DTLB Organization ... 5-25
 5-8 Page Address Translation Flow—TLB Hit .. 5-28
 5-9 Primary Page Table Search .. 5-31
 5-10 Secondary Page Table Search Flow ... 5-32
 5-11 Direct-Store Segment Translation Flow... 5-37
 6-1 PowerPC 604 Microprocessor Block Diagram Showing Data Paths..................... 6-4
 6-2 GPR Reservation Stations and Result Buses.. 6-5
 6-3 Pipeline Diagram.. 6-6
 6-4 PowerPC 604 Microprocessor Pipeline Stages .. 6-7
 6-5 Instruction Fetch Address Generation.. 6-8

xvi

PowerPC 604 RISC Microprocessor User’s Manual

ILLUSTRATIONS

Figure
Number Title Page

Number

 6-6 Data Caches and Memory Queues ... 6-14
 6-7 Instruction Timing—Cache Hit.. 6-19
 6-8 Instruction Timing—Instruction Cache Miss (BTAC Hit) 6-22
 6-9 Instruction Timing—Branch with BTAC Hit .. 6-25
 6-10 Instruction Timing—Branch with BTAC Miss/Decode Correction 6-27
 6-11 Instruction Timing—Branch with BTAC Miss/Dispatch Correction 6-28
 6-12 Instruction Timing—Branch with BTAC Miss/Execute Correction.................... 6-29
 6-13 GPR Rename Register.. 6-32
 6-14 SCIU Block Diagram ... 6-36
 6-15 MCIU Block Diagram.. 6-37
 6-16 FPU Block Diagram ... 6-38
 6-17 LSU Block Diagram... 6-40
 6-18 Store Queue Structure .. 6-41
 7-1 PowerPC 604 Microprocessor Signal Groups.. 7-3
 7-2 IEEE 1149.1-Compliant Boundary Scan Interface .. 7-30
 8-1 PowerPC 604 Microprocessor Block Diagram .. 8-3
 8-2 Timing Diagram Legend .. 8-5
 8-3 Overlapping Tenures on the PowerPC 604 Microprocessor Bus for a Single-Beat

Transfer.. 8-6
 8-4 Address Bus Arbitration... 8-10
 8-5 Address Bus Arbitration Showing Bus Parking... 8-11
 8-6 Address Bus Transfer ... 8-12
 8-7 Snooped Address Cycle with ARTRY... 8-19
 8-8 Data Bus Arbitration .. 8-20
 8-9 Qualified DBG Generation Following ARTRY... 8-22
 8-10 Normal Single-Beat Read Termination.. 8-25
 8-11 Normal Single-Beat Write Termination ... 8-26
 8-12 Normal Burst Transaction .. 8-26
 8-13 Termination with DRTRY ... 8-27
 8-14 Read Burst with TA Wait States and DRTRY... 8-28
 8-15 MESI Cache Coherency Protocol—State Diagram (WIM = 001) 8-31
 8-16 Fastest Single-Beat Reads .. 8-32
 8-17 Fastest Single-Beat Writes ... 8-33
 8-18 Single-Beat Reads Showing Data-Delay Controls... 8-34
 8-19 Single-Beat Writes Showing Data Delay Controls .. 8-35
 8-20 Burst Transfers with Data Delay Controls ... 8-36
 8-21 Use of Transfer Error Acknowledge (TEA)... 8-37
 8-22 Direct-Store Tenures .. 8-40
 8-23 Direct-Store Operation—Packet 0 ... 8-43
 8-24 Direct-Store Operation—Packet 1 ... 8-44
 8-25 I/O Reply Operation ... 8-45
 8-26 Direct-Store Interface Load Access Example .. 8-47
 8-27 Direct-Store Interface Store Access Example .. 8-48

Illustrations

xvii

ILLUSTRATIONS

Figure
Number Title Page

Number

 8-28 Data Transfer in Fast-L2/Data Streaming Mode.. 8-50
 8-29 Data Bus Write Only Transaction .. 8-53

xviii

PowerPC 604 RISC Microprocessor User’s Manual

ILLUSTRATIONS

Figure
Number Title Page

Number

Tables

xvii

TABLES

Table
Number Title Page

Number

 i Acronyms and Abbreviated Terms...xxv
 ii Terminology Conventions .. xxviii
 iii Instruction Field Conventions .. xxviii
 1-1 Exception Classifications ... 1-30
 1-2 Overview of Exceptions and Conditions.. 1-30
 2-1 MSR[PM] Bit ... 2-6
 2-2 Instruction Address Breakpoint Register Bit Settings.. 2-9
 2-3 Hardware Implementation-Dependent Register 0 Bit Settings 2-10
 2-4 MMCR0 Bit Settings.. 2-12
 2-5 Selectable Events—PMC1 ... 2-14
 2-6 Selectable Events—PMC2 ... 2-15
 2-7 Floating-Point Operand Data Type Behavior... 2-18
 2-8 Floating-Point Result Data Type Behavior .. 2-19
 2-9 Integer Arithmetic Instructions... 2-26
 2-10 Integer Compare Instructions ... 2-28
 2-11 Integer Logical Instructions.. 2-28
 2-12 Integer Rotate Instructions ... 2-29
 2-13 Integer Shift Instructions .. 2-30
 2-14 Floating-Point Arithmetic Instructions... 2-30
 2-15 Floating-Point Multiply-Add Instructions.. 2-31
 2-16 Floating-Point Rounding and Conversion Instructions .. 2-32
 2-17 Floating-Point Compare Instructions ... 2-32
 2-18 Floating-Point Status and Control Register Instructions 2-32
 2-19 Floating-Point Move Instructions... 2-33
 2-20 Integer Load Instructions.. 2-35
 2-21 Integer Store Instructions ... 2-37
 2-22 Integer Load and Store with Byte Reverse Instructions 2-38
 2-23 Integer Load and Store Multiple Instructions... 2-39
 2-24 Integer Load and Store String Instructions... 2-39
 2-25 Floating-Point Load Instructions.. 2-41
 2-26 Floating-Point Store Instructions.. 2-41
 2-27 Store Floating-Point Single Behavior... 2-42
 2-28 Store Floating-Point Double Behavior ... 2-43
 2-29 Branch Instructions... 2-44
 2-30 Condition Register Logical Instructions... 2-45
 2-31 Trap Instructions... 2-45

xviii

PowerPC 604 RISC Microprocessor User’s Manual

CONTENTS

Paragraph
Number Title Page

Number

 2-32 System Linkage Instruction—UISA... 2-46
 2-33 Move to/from Condition Register Instructions... 2-46
 2-34 Move to/from Special-Purpose Register Instructions (UISA).............................. 2-47
 2-35 Memory Synchronization Instructions—UISA.. 2-47
 2-36 Move from Time Base Instruction ... 2-48
 2-37 Memory Synchronization Instructions—VEA ... 2-49
 2-38 User-Level Cache Instructions ... 2-51
 2-39 External Control Instructions ... 2-52
 2-40 System Linkage Instructions—OEA .. 2-52
 2-41 Move to/from Machine State Register Instructions.. 2-53
 2-42 Move to/from Special-Purpose Register Instructions (OEA)............................... 2-53
 2-43 SPR Encodings for 604-Defined Registers

 (mfspr)

.. 2-53
 2-44 Cache Management Supervisor-Level Instruction ... 2-54
 2-45 Segment Register Manipulation Instructions ... 2-55
 2-46 Translation Lookaside Buffer Management Instruction....................................... 2-56
 3-1 Memory Coherency Actions on Load Operations.. 3-8
 3-2 Memory Coherency Actions on Store Operations.. 3-9
 3-3 MESI State Definitions... 3-11
 3-4 Response to Bus Transactions .. 3-20
 3-5 604 Bus Operations Initiated by Cache Control Instructions 3-23
 3-6 Cache Actions... 3-24
 4-1 Exception Classifications ... 4-3
 4-2 Exceptions and Conditions—Overview ... 4-3
 4-3 MSR Bit Settings.. 4-7
 4-4 IEEE Floating-Point Exception Mode Bits .. 4-9
 4-5 MSR Setting Due to Exception .. 4-12
 4-6 System Reset Exception—Register Settings .. 4-13
 4-7 Machine Check Enable Bits ... 4-14
 4-8 Machine Check Exception—Register Settings .. 4-15
 4-9 Other MMU Exception Conditions .. 4-16
 4-10 Trace Exception—SRR1 Settings .. 4-19
 5-1 MMU Feature Summary... 5-3
 5-2 Access Protection Options for Pages.. 5-11
 5-3 Translation Exception Conditions .. 5-17
 5-4 Other MMU Exception Conditions for the PowerPC 604 Processor 5-18
 5-5 PowerPC 604 Microprocessor Instruction Summary—Control MMUs 5-19
 5-6 PowerPC 604 Microprocessor MMU Registers ... 5-19
 5-7 Search Operations to Update History Bits—TLB Hit Case 5-21
 5-8 Model for Guaranteed R and C Bit Settings... 5-23
 6-1 Execution Latencies and Throughputs ... 6-7
 6-2 Instruction Execution Timing... 6-46
 7-1 Transfer Encoding for PowerPC 604 Processor Bus Master................................ 7-10
 7-2 Data Transfer Size .. 7-12

Tables

xix

TABLES

Table
Number Title Page

Number

 7-3 Encodings for TC0–TC2 Signals.. 7-13
 7-4 Data Bus Lane Assignments... 7-20
 7-5 DP0–DP7 Signal Assignments ... 7-21
 7-6 PLL Configuration.. 7-31
 8-1 PowerPC 604 Microprocessor Bus Arbitration Signals ... 8-8
 8-2 Transfer Size Signal Encodings.. 8-14
 8-3 PowerPC 604 Microprocessor Burst Ordering... 8-14
 8-4 Aligned Data Transfers... 8-15
 8-5 Misaligned Data Transfers (Four-Byte Examples)... 8-16
 8-6 Transfer Code Encoding... 8-17
 8-7 CSE0–CSE1 Signals... 8-31
 8-8 Direct-Store Bus Operations... 8-40
 8-9 Address Bits for I/O Reply Operations .. 8-45
 8-10 PowerPC 604 Microprocessor Mode Configuration during HRESET................. 8-51
 8-11 IEEE Interface Pin Descriptions... 8-52
 9-1 Performance Monitor SPRs.. 9-3
 9-2 PMC1 Events—MMCR0 [19–25] Select Encodings ... 9-4
 9-3 PMC2 Events—MMCR0 [26–31] Select Encoding... 9-5
 9-4 MMCR0 Bit Settings.. 9-7
 A-1 Complete Instruction List Sorted by Mnemonic ... A-1
 A-2 Complete Instruction List Sorted by Opcode .. A-10
 A-3 Integer Arithmetic Instructions.. A-18
 A-4 Integer Compare Instructions .. A-19
 A-5 Integer Logical Instructions... A-19
 A-6 Integer Rotate Instructions .. A-20
 A-7 Integer Shift Instructions ... A-20
 A-8 Floating-Point Arithmetic Instructions.. A-20
 A-9 Floating-Point Multiply-Add Instructions... A-21
 A-10 Floating-Point Rounding and Conversion Instructions A-21
 A-11 Floating-Point Compare Instructions .. A-21
 A-12 Floating-Point Status and Control Register Instructions A-22
 A-13 Integer Load Instructions... A-22
 A-14 Integer Store Instructions .. A-23
 A-15 Integer Load and Store with Byte Reverse Instructions A-23
 A-16 Integer Load and Store Multiple Instructions.. A-23
 A-17 Integer Load and Store String Instructions.. A-24
 A-18 Memory Synchronization nstructions.. A-24
 A-19 Floating-Point Load Instructions... A-24
 A-20 Floating-Point Store Instructions... A-24
 A-21 Floating-Point Move Instructions.. A-25
 A-22 Branch Instructions.. A-25
 A-23 Condition Register Logical Instructions.. A-25
 A-24 System Linkage Instructions ... A-26

xx

PowerPC 604 RISC Microprocessor User’s Manual

CONTENTS

Paragraph
Number Title Page

Number

 A-25 Trap Instructions.. A-26
 A-26 Processor Control Instructions .. A-26
 A-27 Cache Management Instructions ... A-26
 A-28 Segment Register Manipulation Instructions .. A-27
 A-29 Lookaside Buffer Management Instructions ... A-27
 A-30 External Control Instructions .. A-27
 A-31 I-Form.. A-28
 A-32 B-Form .. A-28
 A-33 SC-Form .. A-28
 A-34 D-Form .. A-28
 A-35 DS-Form.. A-30
 A-36 X-Form .. A-30
 A-37 XL-Form.. A-34
 A-38 XFX-Form ... A-35
 A-39 XFL-Form.. A-35
 A-40 XS-Form.. A-36
 A-41 XO-Form ... A-36
 A-42 A-Form .. A-37
 A-43 M-Form.. A-38
 A-44 MD-Form... A-38
 A-45 MDS-Form .. A-38
 A-46 PowerPC Instruction Set Legend... A-39
 B-1 Invalid Forms (Excluding Reserved Fields)...B-1
 B-2 Invalid Forms with Reserved Fields (Bit 31 Exclusive) ..B-2

About This Book

 xxi

About This Book

The primary objective of this manual is to help hardware and software designers who are
working with the PowerPC 604™ microprocessor. This book is intended as a companion
to the

PowerPC

™

 Microprocessor Family: The Programming Environments

, referred to as

The

Programming Environments Manual

. Because the PowerPC Architecture™ is
designed to be flexible to support a broad range of processors,

The

Programming
Environments Manual

 provides a general description of features that are common to
PowerPC processors and indicates those features that are optional or that may be
implemented differently in the design of each processor.

Note that

The

Programming Environments Manual

 does not attempt to replace the
PowerPC architecture specification (documented in

The PowerPC Architecture: A
Specification for a New Family of RISC Processors

), which defines the architecture from
the perspective of the three programming environments and which remains the defining
document for the PowerPC architecture.

The

PowerPC 604 RISC Microprocessor User’s Manual

 summarizes features of the 604
that are not defined by the architecture. This document and

The

Programming
Environments Manual

distinguishes between the three levels, or programming
environments, of the PowerPC architecture, which are as follows:

• PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

• PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices can
access external memory, defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for optimizing memory accesses and for managing resources in
an environment in which other processors and other devices can access external
memory.

xxii

PowerPC 604 RISC Microprocessor User's Manual

• PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

It is important to note that some resources are defined more generally at one level in the
architecture and more specifically at another. For example, conditions that can cause a
floating-point exception are defined by the UISA, while the exception mechanism itself is
defined by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book.

For ease in reference, this book has arranged topics described by the architecture
information into topics that build upon one another, beginning with a description and
complete summary of 604-specific registers and progressing to more specialized topics
such as 604-specific details regarding the cache, exception, and memory management
models. As such, chapters may include information from multiple levels of the architecture.
(For example, the discussion of the cache model uses information from both the VEA and
the OEA.)

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers’ responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative.

Audience

This manual is intended for system software and hardware developers and application
programmers who want to develop products for the 604. It is assumed that the reader
understands operating systems, microprocessor system design, the basic principles of RISC
processing, and details of the PowerPC architecture.

Organization

Following is a summary and a brief description of the major sections of this manual:

• Chapter 1, “Overview,” is useful for those who want a general understanding of the
features and functions of the PowerPC architecture. This chapter describes the
flexible nature of the PowerPC architecture definition, and provides an overview of
how the PowerPC architecture defines the register set, operand conventions,
addressing modes, instruction set, cache model, exception model, and memory
management model.

About This Book

 xxiii

• Chapter 2, “PowerPC 604 Processor Programming Model,” is useful for software
engineers who need to understand the 604-specific registers, operand conventions,
and details regarding how PowerPC instructions are implemented on the 604.

• Chapter 3, “Cache and Bus Interface Unit Operation,” provides a discussion of the
cache and memory model as implemented on the 604.

• Chapter 4, “Exceptions,” describes the exception model as implemented on the 604.

• Chapter 5, “Memory Management,” provides descriptions of the PowerPC address
translation and memory protection mechanism as implemented on the 604.

• Chapter 6, “Instruction Timing,” describes instruction timing in the 604.

• Chapter 7, “Signal Descriptions,” describes individual signals defined for the 604.

• Chapter 8, “System Interface Operation,” describes interface operations on the 604.

• Chapter 9, “Performance Monitor,” describes the operation of the performance
monitor diagnostic tool incorporated in the 604.

• Appendix A, “PowerPC Instruction Set Listings,” lists all the PowerPC instructions.
Instructions are grouped according to mnemonic, opcode, function, and form.

• Appendix B, “Invalid Instruction Forms,” describes how invalid instructions are
treated by the 604.

• This manual also includes a glossary and an index.

In this document, the terms “PowerPC 604 Microprocessor” and “604” are used to denote
a microprocessor from the PowerPC architecture family. The PowerPC 604
microprocessors are available from IBM as PPC604 and from Motorola as MPC604.

Suggested Reading

This section lists additional reading that provides background for the information in this
manual.

• PowerPC Microprocessor Family: The Programming Environments

, MPCFPE/AD
(Motorola Order Number) and MPRPPCFPE-01 (IBM Order Number)

•

The PowerPC Architecture: A Specification for a New Family of RISC Processors

,
Second Edition, Morgan Kaufmann Publishers, Inc., San Francisco, CA

• John L. Hennessy and David A. Patterson,

Computer Architecture: A Quantitative
Approach

, Morgan Kaufmann Publishers, Inc., San Mateo, CA

•

PowerPC 601 RISC Microprocessor User’s Manual

, Rev 1
MPC601UM/AD (Motorola Order Number) and 52G7484/(MPR601UMU-02)
(IBM Order Number)

•

PowerPC 601 RISC Microprocessor Technical Summary

, Rev 1
MPC601/D (Motorola order number) and MPR601TSU-02 (IBM order number)

•

PowerPC 603 RISC Microprocessor User’s Manual

, MPC603UM/AD (Motorola
order number) and MPR603UMU-01 (IBM order number)

xxiv

PowerPC 604 RISC Microprocessor User's Manual

•

PowerPC 603 RISC Microprocessor Technical Summary

, Rev 3
MPC603/D (Motorola order number) and MPR603TSU-03 (IBM order number)

•

PowerPC 604 RISC Microprocessor Technical Summary

, Rev 1
MPC604/D (Motorola order number) and MPR604TSU-02 (IBM order number)

•

PowerPC 620 RISC Microprocessor Technical Summary

, MPC620/D (Motorola
order number) and MPR620TSU-01 (IBM order number)

Additional literature on PowerPC implementations is being released as new processors
become available.

Conventions
This document uses the following notational conventions:

ACTIVE_HIGH Names for signals that are active high are shown in uppercase text
without an overbar.

ACTIVE_LOW A bar over a signal name indicates that the signal is active low—for
example, ARTRY (address retry) and TS (transfer start). Active-low
signals are referred to as asserted (active) when they are low and
negated when they are high. Signals that are not active low, such as
AP0–AP3 (address bus parity signals) and TT0–TT4 (transfer type
signals) are referred to as asserted when they are high and negated
when they are low.

mnemonics Instruction mnemonics are shown in lowercase bold.

OPERATIONS Address-only bus operations that are named for the instructions that
generate them are identified in uppercase letters, for example, ICBI,
SYNC, TLBSYNC, and EIEIO operations.

italics Italics indicate variable command parameters, for example, bcctrx

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rA|0 The contents of a specified GPR or the value 0.

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source FPR

frD Instruction syntax used to identify a destination FPR

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets. For example,
MSR[LE] refers to the little-endian mode enable bit in the machine
state register.

About This Book xxv

x In certain contexts, such as a signal encoding, this indicates a don’t
care.

n Used to express an undefined numerical value.

Acronyms and Abbreviations
The Table i contains acronyms and abbreviations that are used in this document. Note that
the meanings for some acronyms (such as SDR1 and XER) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning

ALU Arithmetic logic unit

ASR Address space register

BAT Block address translation

BIST Built-in self test

BIU Bus interface unit

BHT Branch history table

BPU Branch processing unit

BTAC Branch target address cache

BUID Bus unit ID

COP Common on-chip processor

CR Condition register

CTR Count register

DABR Data address breakpoint register

DAR Data address register

DBAT Data BAT

DEC Decrementer (register)

DEQ Decode queue

DISQ Dispatch queue

DSISR Register used for determining the source of a DSI exception

DTLB Data translation look-aside buffer

EA Effective address

EAR External access register

ECC Error checking and correction

FIFO First-in, first out

FLQ Finish load queue

xxvi PowerPC 604 RISC Microprocessor User's Manual

FPR Floating-point register

FPSCR Floating-point status and control register

FPU Floating-point unit

GPR General-purpose register

HID0 Hardware implementation dependent (register) 0

IABR Instruction address breakpoint register

IBAT Instruction BAT

IEEE Institute of Electrical and Electronics Engineers

ITLB Instruction translation look-aside buffer

IU Integer unit

JTAG Joint Test Action Group

L2 Secondary cache

LR Link register

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

LSU Load/store unit

MCIU Multiple-cycle integer unit

MESI Modified/exclusive/shared/invalid—cache coherency protocol

MMCRn Monitor mode control register n

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register

NaN Not a number

No-Op No operation

OEA Operating environment architecture

PID Processor identification tag

PLL Phase-locked loop

PMCn Performance monitor control (register) n

PMI Performance monitor interrupt

PTE Page table entry

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning

About This Book xxvii

PTEG Page table entry group

PVR Processor version register

RISC Reduced instruction set computing/computer

ROB Reorder buffer

RTL Register transfer language

RWITM Read with intent to modify

SCIU Single-cycle integer unit

SDA Sampled data address (register)

SDR1 Register that specifies the page table base address for virtual-to-physical address translation

SIA Sampled instruction address (register)

SIMM Signed immediate value

SLB Segment look-aside buffer

SPR Special-purpose register

SPRGn Registers available for general purposes

SR Segment register

SRR0 (Machine status) save/restore register 0

SRR1 (Machine status) save/restore register 1

TB Time base register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

UISA User instruction set architecture

VEA Virtual environment architecture

XATC Extended address transfer code

XER Register used for indicating conditions such as carries and overflows for integer operations

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning

xxviii PowerPC 604 RISC Microprocessor User's Manual

Terminology Conventions
Table ii lists certain terms used in this manual that differ from the architecture terminology
conventions.

Table iii describes instruction field notation conventions used in this manual.

Table ii. Terminology Conventions

The Architecture Specification This Manual

Data storage interrupt (DSI) DSI exception

Extended mnemonics Simplified mnemonics

Instruction storage interrupt (ISI) ISI exception

Interrupt* Exception

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

* For a detailed discussion of how the terms interrupt and exception are used in this document, see the introduction
to Chapter 4, “Exceptions.”

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

/, //, /// 0...0 (shaded)

Chapter 1. Overview 1-1

Chapter 1
Overview
10
10

This chapter provides an overview of the PowerPC 604™ microprocessor. It includes the
following:

• A summary of 604 features

• Details about the 604 hardware implementation. This includes descriptions of the
604’s execution units, cache implementation, memory management units (MMUs),
and system interface.

• A description of the 604 execution model. This section includes information about
the programming model, instruction set, exception model, and instruction timing.

1.1 Overview
This section describes the features of the 604, provides a block diagram showing the major
functional units, and describes briefly how those units interact.

The 604 is an implementation of the PowerPC™ family of reduced instruction set computer
(RISC) microprocessors. The 604 implements the PowerPC Architecture™ as it is specified
for 32-bit addressing, which provides 32-bit effective (logical) addresses, integer data types
of 8, 16, and 32 bits, and floating-point data types of 32 and 64 bits (single-precision and
double-precision).

The 604 is a superscalar processor capable of issuing four instructions simultaneously. As
many as six instructions can finish execution in parallel. The 604 has six execution units
that can operate in parallel:

• Floating-point unit (FPU)

• Branch processing unit (BPU)

• Load/store unit (LSU)

• Three integer units (IUs):

— Two single-cycle integer units (SCIUs)

— One multiple-cycle integer unit (MCIU)

1-2 PowerPC 604 RISC Microprocessor User's Manual

This parallel design, combined with the PowerPC architecture’s specification that
instructions be of uniform length, allows for rapid execution times, yields high efficiency
and throughput. The 604’s rename buffers, reservation stations, dynamic branch prediction,
and completion unit increase instruction throughput, guarantee in-order completion, and
ensure a precise exception model. (Note that the PowerPC architecture specification refers
to all exceptions as interrupts.)

The 604 has separate memory management units (MMUs) and separate 16-Kbyte on-chip
caches for instructions and data. The 604 implements two 128-entry, two-way set (64 x 2)
associative translation lookaside buffers (TLBs), one for instructions and one for data. The
604 also provides support for demand-paged virtual memory address translation and
variable-sized block translation. The TLBs and the cache use least-recently used (LRU)
replacement algorithms.

The 604 has a 64-bit external data bus and a 32-bit address bus. The 604 interface protocol
allows multiple masters to compete for system resources through a central external arbiter.
Additionally, on-chip snooping logic maintains data cache coherency for multiprocessor
applications. The 604 supports single-beat and burst data transfers for memory accesses
and memory-mapped I/O accesses.

The 604 uses an advanced, 3.3-V CMOS process technology and is fully compatible with
TTL devices.

1.1.1 PowerPC 604 Microprocessor Features
This section summarizes features of the 604’s implementation of the PowerPC architecture.

Figure 1-1 provides a block diagram showing features of the 604. Note that this is a
conceptual block diagram intended to show the basic features rather than an attempt to
show how these features are physically implemented on the chip.

Chapter 1. Overview 1-3

Figure 1-1. Block Diagram

B
ra

n
ch

 P
ro

ce
ss

in
g

 U
n

it

64
-B

IT
 D

A
T

A
 B

U
S

32
-B

IT
 A

D
D

R
E

S
S

 B
U

S

In
st

ru
ct

io
n

Q
ue

ue
 (

8
w

or
d)

IN
S

T
R

U
C

T
IO

N
 U

N
IT

F
lo

at
in

g
-

P
o

in
t

U
n

it

+
*

/ F
P

S
C

R B
U

S
 IN

T
E

R
F

A
C

E
U

N
IT

64
 B

it

32
 B

it

12
8

B
it

C
O

M
P

LE
T

IO
N

U

N
IT

 1
6-

E
nt

ry

R
eo

rd
er

 B
uf

fe
rT

im
e-

B
as

e
 C

ou
nt

er
/D

ec
re

m
en

te
r

C
lo

ck
M

ul
tip

lie
r

JT
A

G
/C

O
P

In
te

rf
ac

e

12
8

B
it

64
 B

it

64
 B

it

12
8

B
it

D
is

pa
tc

h
U

ni
t

+
/

M
u

lt
ip

le
-

 C
yc

le
 In

te
g

er
U

n
it

I M
M

U

S
R

s

IT
LB

IB
A

T
A

rr
ay

C
R

R

en
am

e-
B

uf
fe

rs
(8

)

C
T

R

C
R

LR

B
T

A
C

B
H

T

*
/

S
in

g
le

-
C

yc
le

 In
te

g
er

U

n
it

s
+

32
 B

it

32
 B

it
32

 B
it

32
 B

it

16
-K

by
te

I C
ac

he
T

ag
s

16
-K

by
te

D
 C

ac
he

T
ag

s

G
P

R
 F

ile
 R

en
am

e
B

uf
fe

rs
 (

12
)

F
P

R
 F

ile
R

en
am

e
B

uf
fe

rs
 (

8)
64

 B
it

64
 B

it

D
 M

M
U

S
R

s

D
T

LB

D
B

A
T

ar
ra

y

R
es

er
va

tio
n

S
ta

tio
n

(2
 E

nt
ry

)

R
es

er
va

tio
n

S
ta

tio
n

(2
 E

nt
ry

)
R

es
er

va
tio

n
S

ta
tio

n
(2

 E
nt

ry
)

R
es

er
va

tio
n

S
ta

tio
n

(2
 E

nt
ry

)

F
in

is
h

Lo
ad

Q
ue

ue
S

to
re

 Q
ue

ue

S
no

op

F
et

ch
er

L
o

ad
/S

to
re

U

n
it

E
A

C
al

cu
la

ti
o

n

+

1-4 PowerPC 604 RISC Microprocessor User's Manual

Major features of the 604 are as follows:

• High-performance, superscalar microprocessor

— As many as four instructions can be issued per clock cycle.

— As many as six instructions can start executing per clock (including three integer
instructions).

— Single clock cycle execution for most instructions

• Six independent execution units and two register files

— BPU featuring dynamic branch prediction

– Speculative execution through two branches

– 64-entry fully-associative branch target address cache (BTAC)

– 512-entry, direct-mapped branch history table (BHT) with two bits per entry
for four levels of prediction—not-taken, strongly not-taken, taken, strongly
taken

— Two single-cycle IUs (SCIUs) and one multiple-cycle IU (MCIU)

– Instructions that execute in the SCIU take one cycle to execute; most
instructions that execute in the MCIU take multiple cycles to execute.

– Each SCIU has a two-entry reservation station to minimize stalls.

– The MCIU has a two-entry reservation station and provides early exit (three
cycles) for 16- x 32-bit and overflow operations.

– Thirty-two GPRs for integer operands

– Twelve rename buffers for GPRs

— Three-stage floating-point unit (FPU)

– Fully IEEE 754-1985 compliant FPU for both single- and double-precision
operations

– Supports non-IEEE mode for time-critical operations

– Fully pipelined, single-pass double-precision design

– Hardware support for denormalized numbers

– Two-entry reservation station to minimize stalls

– Thirty-two 64-bit FPRs for single- or double-precision operands

— Load/store unit (LSU)

– Two-entry reservation station to minimize stalls

– Single-cycle, pipelined cache access

– Dedicated adder performs EA calculations

– Performs alignment and precision conversion for floating-point data

– Performs alignment and sign extension for integer data

Chapter 1. Overview 1-5

– Four-entry finish load queue (FLQ) provides load miss buffering

– Six-entry store queue

– Supports both big- and little-endian modes

• Rename buffers

— Twelve GPR rename buffers

— Eight FPR rename buffers

— Eight condition register (CR) rename buffers

The 604 rename buffers are described in Section 1.2.1.5, “Rename Buffers.”

• Completion unit

— Retires an instruction from the 16-entry reorder buffer when all instructions
ahead of it have been completed and the instruction has finished execution

— Guarantees sequential programming model (precise exception model)

— Monitors all dispatched instructions and retires them in order

— Tracks unresolved branches and removes speculatively executed, dispatched,
and fetched instructions if branch is mispredicted

— Retires as many as four instructions per clock

• Separate on-chip instruction and data caches (Harvard architecture)

— 16-Kbyte, four-way set-associative instruction and data caches

— LRU replacement algorithm

— 32-byte (eight word) cache block size

— Physically indexed; physical tags. Note that the PowerPC architecture refers to
physical address space as real address space.

— Cache write-back or write-through operation programmable on a per page or per
block basis

— Instruction cache can provide four instructions per clock cycle; data cache can
provide two words per clock cycle.

— Caches can be disabled in software

— Caches can be locked

— Parity checking performed on both caches

— Data cache coherency (MESI) maintained in hardware

— Secondary data cache support provided

— Instruction cache coherency maintained in software

— Provides a no-DRTRY/data streaming mode, which allows consecutive burst
read data transfers to occur without intervening dead cycles. This mode also
disables data retry operations.

• Separate memory management units (MMUs) for instructions and data

1-6 PowerPC 604 RISC Microprocessor User's Manual

— Address translation facilities for 4-Kbyte page size, variable block size, and
256-Mbyte segment size

— Separate instruction and data translation lookaside buffers (TLBs)

— Both TLBs are 128-entry and two-way set associative

— Separate IBATs and DBATs (four each) also defined as SPRs

— LRU replacement algorithm

— Hardware table search (caused by TLB misses) through hashed page tables

— 52-bit virtual address; 32-bit physical address

• Bus interface features include the following:

— Selectable processor-to-bus clock frequency ratios (1:1, 1.5:1, 2:1, and 3:1)

— A 64-bit split-transaction external data bus with burst transfers

— Support for address pipelining and limited out-of-order bus transactions

— Additional signals and signal redefinition for direct-store operations

• Multiprocessing support features include the following:

— Hardware enforced, four-state cache coherency protocol (MESI) for data cache.
Bits are provided in the instruction cache to indicate only whether a cache block
is valid or invalid.

— Separate port into data cache tags for bus snooping

— Load/store with reservation instruction pair for atomic memory references,
semaphores, and other multiprocessor operations

• Power management

— Operating voltage is 3.3 ± 0.3 V

— Software-initiated NAP mode suspends instruction dispatch and waits for all
activity in progress, including active and pending bus transactions, to complete.
It then shuts down the internal chip clocks, and enters nap mode.

• Performance monitor can be used to help in debugging system designs and
improving software efficiency, especially in multiprocessor systems.

• In-system testability and debugging features through JTAG boundary-scan
capability

Chapter 1. Overview 1-7

1.2 PowerPC 604 Microprocessor Hardware
Implementation

This section provides an overview of the 604’s hardware implementation, including
descriptions of the functional units, shown in Figure 1-2, the cache implementation, MMU,
and the system interface.

Note that Figure 1-2 provides a more detailed block diagram than that presented in
Figure 1-1—showing the additional data paths that contribute to the improved efficiency in
instruction execution and more clearly indicating the relationships between execution units
and their associated register files.

Figure 1-2. Block Diagram—Internal Data Paths

Fetch Unit

Branch

(Four-instruction
Dispatch Unit

BPU

16-Kbyte data cache
4-way, 8 words/block

Instruction

Instruction Dispatch Buses

Result Status Buses

Correction

FPR Operand Buses

LSUMCIUSCIUSCIU FPU

Result Buses
Operand Buses

dispatch)

RS(2)

Completion Unit Dispatch Buses

GPR Operand Buses

GPR Result Buses

RS(2)RS(2)RS(2)RS(2) RS(2)

FPR Result Buses

F
P

R
R

en
am

e
B

uf
fe

rs
 (

8)

G
P

R
R

en
am

e
B

uf
fe

rs
 (

12
)

32
 G

P
R

s

32
 F

P
R

s

1-8 PowerPC 604 RISC Microprocessor User's Manual

1.2.1 Instruction Flow
Several units on the 604 ensure the proper flow of instructions and operands and guarantee
the correct update of the architectural machine state. These units include the following:

• Fetch unit—Using the next sequential address or the address supplied by the BPU
when a branch is predicted or resolved, the fetch unit supplies instructions to the
eight-word instruction buffer.

• Decode/dispatch unit—The decode/dispatch unit decodes instructions and
dispatches them to the appropriate execution unit. During dispatch, operands are
provided to the execution unit (or reservation station) from the register files, rename
buffers, and result buses.

• Branch processing unit (BPU)—In addition to providing the fetcher with predicted
target instructions when a branch is predicted (and a mispredict-recovery address if
a branch is incorrectly predicted), the BPU executes all condition register logical and
flow control instructions.

• Completion unit—The completion unit retires executed instructions in program
order and controls the updating of the architectural machine state.

1.2.1.1 Fetch Unit
The fetch unit provides instructions to the eight-entry instruction queue by accessing the
on-chip instruction cache. Typically, the fetch unit continues fetching sequentially as many
as four instructions at a time.

The address of the next instruction to be fetched is determined by several conditions, which
are prioritized as follows:

1. Detection of an exception. Instruction fetching begins at the exception vector.

2. The BPU recovers from an incorrect prediction when a branch instruction is in the
execute stage. Undispatched instructions are flushed and fetching begins at the
correct target address.

3. The BPU recovers from an incorrect prediction when a branch instruction is in the
dispatch stage. Undispatched instructions are flushed and fetching begins at the
correct target address.

4. The BPU recovers from an incorrect prediction when a branch instruction is in the
decode stage. Subsequent instructions are flushed and fetching begins at the correct
target address.

5. A fetch address is found in the BTAC. As a cache block is fetched, the branch target
address cache (BTAC) and the branch history table (BHT) are searched with the
fetch address. If it is found in the BTAC, the target address from the BTAC is the first
candidate for being the next fetch address.

6. If none of the previous conditions exist, the instruction is fetched from the next
sequential address.

Chapter 1. Overview 1-9

1.2.1.2 Decode/Dispatch Unit
The decode/dispatch unit provides the logic for decoding instructions and issuing them to
the appropriate execution unit. The eight-entry instruction queue consists of two four-entry
queues—a decode queue (DEQ) and a dispatch queue (DISQ).

The decode logic decodes the four instructions in the decode queue. For many branch
instructions, these decoded instructions along with the bits in the BHT, are used during the
decode stage for branch correction.

The dispatch logic decodes the instructions in the DISQ for possible dispatch. The dispatch
logic resolves unconditional branch instructions and predicts conditional branch
instructions using the branch decode logic, the BHT, and values in the CTR.

The 512-entry BHT provides two bits per entry, indicating four levels of dynamic
prediction—strongly not-taken, not-taken, taken, and strongly taken. The history of a
branch’s direction is maintained in these two bits. Each time a branch is taken the value is
incremented (with a maximum value of three meaning strongly-taken); when it is not taken,
the bit value is decremented (with a minimum value of zero meaning strongly not-taken).
If the current value predicts taken and the next branch is taken again, the BHT entry then
predicts strongly taken. If the next branch is not taken, the BHT then predicts taken.

The dispatch logic also allocates each instruction to the appropriate execution unit. A
reorder buffer (ROB) entry is allocated for each instruction, and dependency checking is
done between the instructions in the dispatch queue. The rename buffers are searched for
the operands as the operands are fetched from the register file. Operands that are written by
other instructions ahead of this one in the dispatch queue are given the tag of that
instruction’s rename buffer; otherwise, the rename buffer or register file supplies either the
operand or a tag. As instructions are dispatched, the fetch unit is notified that the dispatch
queue can be updated with more instructions.

1.2.1.3 Branch Processing Unit (BPU)
The BPU is used for branch instructions and condition register logical operations. All
branches, including unconditional branches, are placed in a reservation station until
conditions are resolved and they can be executed. At that point, branch instructions are
executed in order—the completion unit is notified whether the prediction was correct.

The BPU also executes condition register logical instructions, which flow through the
reservation station like the branch instructions.

1.2.1.4 Completion Unit
The completion unit retires executed instructions from the reorder buffer (ROB) in the
completion unit and updates register files and control registers. The completion unit
recognizes exception conditions and discards any operations being performed on
subsequent instructions in program order. The completion unit can quickly remove
instructions from a mispredicted branch, and the decode/dispatch unit begins dispatching
from the correct path.

1-10 PowerPC 604 RISC Microprocessor User's Manual

The instruction is retired from the reorder buffer when it has finished execution and all
instructions ahead of it have been completed. The instruction’s result is written into the
appropriate register file and is removed from the rename buffers at or after completion. At
completion, the 604 also updates any other resource affected by this instruction. Several
instructions can complete simultaneously. Most exception conditions are recognized at
completion time.

1.2.1.5 Rename Buffers
To avoid contention for a given register location, the 604 provides rename registers for
storing instruction results before the completion unit commits them to the architected
register. Twelve rename registers are provided for the GPRs, eight for the FPRs, and eight
for the condition register. GPRs are described in Section 1.3.2.1, “General-Purpose
Registers (GPRs),” FPRs are described in Section 1.3.2.2, “Floating-Point Registers
(FPRs),” and the condition register is described in Section 1.3.2.3, “Condition Register
(CR).”

When the dispatch unit dispatches an instruction to its execution unit, it allocates a rename
register for the results of that instruction. The dispatch unit also provides a tag to the
execution unit identifying the result that should be used as the operand. When the proper
result is returned to the rename buffer it is latched into the reservation station. When all
operands are available in the reservation station, execution can begin.

The completion unit does not transfer instruction results from the rename registers to the
registers until any speculative branch conditions preceding it in the completion queue are
resolved and the instruction itself is retired from the completion queue without exceptions.
If a speculatively executed branch is found to have been incorrectly predicted, the
speculatively executed instructions following the branch are flushed from the completion
queue and the results of those instructions are flushed from the rename registers.

1.2.2 Execution Units
The following sections describe the 604’s arithmetic execution units—the two single-cycle
IUs, the multiple cycle IU, and the FPU. When the reservation station sees the proper result
being written back, it will grab it directly from one of the result buses. Once all operands
are in the reservation station for an instruction, it is eligible to be executed. Reservation
stations temporarily store dispatched instructions that cannot be executed until all of the
source operands are valid.

1.2.2.1 Integer Units (IUs)
The two single-cycle IUs (SCIUs) and one multiple-cycle IU (MCIU) execute all integer
instructions. These are shown in Figure 1-1 and Figure 1-2. Each IU has a dedicated result
bus that connects to rename buffers and to all reservation stations. Each IU has a two-entry
reservation station to reduce stalls. The reservation station can receive instructions from the
decode/dispatch unit and operands from the GPRs, the rename buffers, or the result buses.

Chapter 1. Overview 1-11

Each SCIU consists of three single-cycle subunits—a fast adder/comparator, a subunit for
logical operations, and a subunit for performing rotates, shifts, and count-leading-zero
operations. These subunits handle all one-cycle arithmetic instructions; only one subunit
can execute an instruction at a time.

The MCIU consists of a 32-bit integer multiplier/divider and supports early exit on
16- x 32-bit multiplication operations. The MCIU executes mfspr and mtspr instructions,
which are used to read and write special-purpose registers. The MCIU can execute an
mtspr or mfspr instruction at the same time that it executes a multiply or divide instruction.
These instructions are allowed to complete out-of-order.

Note that the load and store instructions that update their address base register (specified by
the rA operand) pass the update results on the MCIU’s result bus. Otherwise, the MCIU’s
result bus is dedicated to MCIU operations.

1.2.2.2 Floating-Point Unit (FPU)
The FPU, shown in Figure 1-1 and Figure 1-2, is a single-pass, double-precision execution
unit; that is, both single- and double-precision operations require only a single pass, with a
latency of three cycles.

As the decode/dispatch unit issues instructions to the FPU’s two reservation stations, source
operand data may be accessed from the FPRs, the floating-point rename buffers, or the
result buses. Results in turn are written to the floating-point rename buffers and to the
reservation stations and are made available to subsequent instructions. Instructions are
executed from each reservation station in dispatch order.

1.2.2.3 Load/Store Unit (LSU)
The LSU, shown in Figure 1-1 and Figure 1-2, transfers data between the data cache and
the result buses, which route data to other execution units. The LSU supports the address
generation and handles any alignment for transfers to and from system memory. The LSU
also supports cache control instructions and load/store multiple/string instructions. As
noted above, load and store instructions that update the base address register pass their
results on the MCIU’s result bus. This is the only exception to the dedicated use of result
buses.

The LSU includes a 32-bit adder dedicated for EA calculation. Data alignment logic
manipulates data to support aligned or misaligned transfers with the data cache. The LSU’s
load and store queues are used to buffer instructions that have been executed and are
waiting to be completed. The queues are used to monitor data dependencies generated by
data forwarding and out-of-order instruction execution ensuring a sequential model.

The LSU allows load operations to precede pending store operations and resolves any
dependencies incurred when a pending store is to the same address as the load. If such a
dependency exists, the LSU delays the load operation until the correct data can be
forwarded. If only the low-order 12 bits of the EAs match, both addresses may be aliases

1-12 PowerPC 604 RISC Microprocessor User's Manual

for the same physical address, in which case, the load operation is delayed until the store
has been written back to the cache, ensuring that the load operation retrieves the correct
data.

The LSU does not allow the following operations to be speculatively performed on
unresolved branches:

• Store operations
• Loading of noncacheable data or cache miss operations
• Loading from direct-store segments

1.2.3 Memory Management Units (MMUs)
The primary functions of the MMUs are to translate logical (effective) addresses to physical
addresses for memory accesses, I/O accesses (most I/O accesses are assumed to be
memory-mapped), and direct-store accesses, and to provide access protection on blocks
and pages of memory.

The PowerPC MMUs and exception model support demand-paged virtual memory. Virtual
memory management permits execution of programs larger than the size of physical
memory; demand-paged implies that individual pages are loaded into physical memory
from system memory only when they are first accessed by an executing program.

The hashed page table is a variable-sized data structure that defines the mapping between
virtual page numbers and physical page numbers. The page table size is a power of 2, and
its starting address is a multiple of its size.

Address translations are enabled by setting bits in the MSR—MSR[IR] enables instruction
address translations and MSR[DR] enables data address translations.

The 604’s MMUs support up to 4 Petabytes (252) of virtual memory and 4 Gigabytes (232)
of physical memory. The MMUs support block address translations, direct-store segments,
and page translation of memory segments. Referenced and changed status are maintained
by the processor for each page to assist implementation of a demand-paged virtual memory
system.

Separate but identical translation logic is implemented for data accesses and for instruction
accesses. The 604 implements two 128-entry, two-way set associative translation lookaside
buffers (TLBs), one for instructions and one for data. These TLBs can be accessed
simultaneously.

1.2.4 Cache Implementation
The 604 implements separate 16-Kbyte, four-way set-associative data and instruction
caches (Harvard architecture). The PowerPC architecture defines the unit of coherency as
a cache block, which for the 604 is a 32-byte (eight-word) line.

Chapter 1. Overview 1-13

PowerPC implementations can control the following memory access modes on a page or
block basis:

• Write-back/write-through mode
• Cache-inhibited mode
• Memory coherency
• Guarded memory (prevents access for speculative execution)

The caches implement an LRU replacement algorithm.

1.2.4.1 Instruction Cache
The 604’s 16-Kbyte, four-way set associative instruction cache is physically indexed.
Within a single cycle, the instruction cache provides up to four instructions. Instruction
cache coherency is not maintained by hardware.

The PowerPC architecture defines a special set of instructions for managing the instruction
cache. The instruction cache can be invalidated entirely or on a cache-block basis. The
instruction cache can be disabled/enabled and invalidated by setting the HID0[16] and
HID0[20] bits, respectively. The instruction cache can be locked by setting HID0[18].

1.2.4.2 Data Cache
The 604’s data cache is a 16-Kbyte, four-way set associative cache. It is a
physically-indexed, nonblocking, write-back cache with hardware support for reloading on
cache misses. Within one cycle, the data cache provides double-word access to the LSU.

The data cache tags are dual-ported, so the process of snooping does not affect other
transactions on the system interface. If a snoop hit occurs, the LSU is blocked internally for
one cycle to allow the eight-word block of data to be copied to the write-back buffer.

To ensure cache coherency, the 604 data cache supports the four-state MESI
(modified/exclusive/shared/invalid) protocol.

These four states indicate the state of the cache block as follows:

• Modified (M)—The cache block is modified with respect to system memory; that is,
data for this address is valid only in the cache and not in system memory.

• Exclusive (E)—This cache block holds valid data that is identical to the data at this
address in system memory. No other cache has this data.

• Shared (S)—This cache block holds valid data that is identical to this address in
system memory and at least one other caching device.

• Invalid (I)—This cache block does not hold valid data.

Like the instruction cache, the data cache can be invalidated all at once or on a per cache
block basis. The data cache can be disabled/enabled and invalidated by setting the
HID0[17] and HID0[21] bits, respectively. The data cache can be locked by setting
HID0[19].

1-14 PowerPC 604 RISC Microprocessor User's Manual

Each cache line contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bits A27–A31 of the logical addresses are zero); thus, a cache
line never crosses a page boundary. Accesses that cross a page boundary can incur a
performance penalty.

Figure 1-3. Cache Unit Organization

1.2.5 System Interface/Bus Interface Unit (BIU)
The 604 provides a versatile bus interface that allows a wide variety of system design
options. The interface includes a 72-bit data bus (64 bits of data and 8 bits of parity), a
36-bit address bus (32 bits of address and 4 bits of parity), and sufficient control signals to
allow for a variety of system-level optimizations. The 604 uses one-beat and four-beat data
transactions, although it is possible for other bus participants to perform longer data
transfers. The 604 clocking structure supports processor-to-bus clock ratios of 1:1, 1.5:1,
2:1, and 3:1, as described in Section 1.2.6, “Clocking.”

The system interface is specific for each PowerPC processor implementation. The 604
system interface is shown in Figure 1-4.

Address Tag 1

Address Tag 2

Address Tag 3

Block 1

Block 2

Block 3

128 Sets

Address Tag 0Block 0

8 Words/Block

State

State

State

State

Words 0–7

Words 0–7

Words 0–7

Words 0–7

Chapter 1. Overview 1-15

Figure 1-4. System Interface

Four-beat burst-read memory operations that load an eight-word cache block into one of the
on-chip caches are the most common bus transactions in typical systems, followed by
burst-write memory operations, direct-store operations, and single-beat (noncacheable or
write-through) memory read and write operations. Additionally, there can be address-only
operations, variants of the burst and single-beat operations (global memory operations that
are snooped and atomic memory operations, for example), and address retry activity (for
example, when a snooped read access hits a modified line in the data cache).

The BIU implements the critical double-word first access where the double-word requested
by the fetcher or the load/store unit is fetched first and the remaining words in the line are
fetched later. The critical double-word as well as other words in the cache block are
forwarded to the fetcher or to the LSU before they are written to the cache.

Memory accesses can occur in single-beat or four-beat burst data transfers. The address and
data buses are independent for memory accesses to support pipelining and split
transactions. The 604 supports bus pipelining and out-of-order split-bus transactions. In
general, the bus-pipelining mechanism allows as many as three address tenures to be
outstanding before a data tenure is initiated. Address tenures for address-only transactions
can exceed this limit.

Typically, memory accesses are weakly-ordered. Sequences of operations, including
load/store string/multiple instructions, do not necessarily complete in the same order in
which they began—maximizing the efficiency of the bus without sacrificing coherency of
the data. The 604 allows load operations to precede store operations (except when a
dependency exists, of course). In addition, the 604 provides a separate queue for snoop push
operations so these operations can access the bus ahead of previously queued operations.
The 604 dynamically optimizes run-time ordering of load/store traffic to improve overall
performance.

PowerPC 604
Processor

Address Bus

Address Arbitration

Address Transfer Start

Address Transfer

Transfer Attribute

Address Transfer Termination

Clocks

Data Bus

Data Arbitration

Data Transfer

Data Transfer Termination

Processor State

System Status

Test/Control/Miscellaneous

+3.3 V

1-16 PowerPC 604 RISC Microprocessor User's Manual

In addition, the 604 implements a data bus write only signal (DBWO) that can be used for
reordering write operations. Asserting DBWO causes the first write operation to occur
before any read operations on a given processor. Although this may be used with any write
operations, it can also be used to reorder a snoop push operation.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the 604 to be integrated into systems that use various fairness and bus-parking
procedures to avoid arbitration overhead. Additional multiprocessor support is provided
through coherency mechanisms that provide snooping, external control of the on-chip
caches and TLBs, and support for a secondary cache. The PowerPC architecture provides
the load/store with reservation instruction pair (lwarx/stwcx.) for atomic memory
references and other operations useful in multiprocessor implementations.

The following sections describe the 604 bus support for memory and direct-store
operations. Note that some signals perform different functions depending upon the
addressing protocol used.

1.2.5.1 Memory Accesses
Memory accesses allow transfer sizes of 8, 16, 24, 32, 40, 48, 56, or 64 bits in one bus clock
cycle. Data transfers occur in either single-beat transactions or four-beat burst transactions.
A single-beat transaction transfers as much as 64 bits. Single-beat transactions are caused
by noncached accesses that access memory directly (that is, reads and writes when caching
is disabled, cache-inhibited accesses, and stores in write-through mode). Burst transactions,
which always transfer an entire cache block (32 bytes), are initiated when a block in the
cache is read from or written to memory. Additionally, the 604 supports address-only
transactions used to invalidate entries in other processors’ TLBs and caches.

Typically I/O accesses are performed using the same protocol as memory accesses. Refer
to Chapter 8, “System Interface Operation,” for more information.

1.2.5.2 Signals
The 604’s signals are grouped as follows:

• Address arbitration signals—The 604 uses these signals to arbitrate for address bus
mastership.

• Address transfer start signals—These signals indicate that a bus master has begun a
transaction on the address bus.

• Address transfer signals—These signals, which consist of the address bus, address
parity, and address parity error signals, are used to transfer the address and to ensure
the integrity of the transfer.

• Transfer attribute signals—These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted,
write-through, or cache-inhibited.

Chapter 1. Overview 1-17

• Address transfer termination signals—These signals are used to acknowledge the
end of the address phase of the transaction. They also indicate whether a condition
exists that requires the address phase to be repeated.

• Data arbitration signals—The 604 uses these signals to arbitrate for data bus
mastership.

• Data transfer signals—These signals, which consist of the data bus, data parity, and
data parity error signals, are used to transfer the data and to ensure the integrity of
the transfer.

• Data transfer termination signals—Data termination signals are required after each
data beat in a data transfer. In a single-beat transaction, the data termination signals
also indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the final
data beat. They also indicate whether a condition exists that requires the data phase
to be repeated.

• System status signals—These signals include the interrupt signal, checkstop signals,
and both soft- and hard-reset signals. These signals are used to interrupt and, under
various conditions, to reset the processor.

• Processor state signals—These two signals are used to set the reservation coherency
bit and set the size of the 604’s output buffers.

• Miscellaneous signals—These signals are used in conjunction with such resources
as secondary caches and the time base facility.

• Test/COP interface signals—The common on-chip processor (COP) unit is the
master clock control unit and it provides a serial interface to the system for
performing built-in self test (BIST).

• Clock signals—These signals determine the system clock frequency. These signals
can also be used to synchronize multiprocessor systems.

NOTE
A bar over a signal name indicates that the signal is active
low—for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active-low, such as AP0–AP3 (address bus parity
signals) and TT0–TT4 (transfer type signals) are referred to as
asserted when they are high and negated when they are low.

1.2.5.3 Signal Configuration
Figure 1-5 illustrates the logical pin configuration of the 604, showing how the signals are
grouped.

1-18 PowerPC 604 RISC Microprocessor User's Manual

Figure 1-5. PowerPC 604 Microprocessor Signal Groups

1.2.6 Clocking
The 604 has a phase-locked loop (PLL) that generates the internal processor clock. The
input, or reference signal, to the PLL is the bus clock. The feedback in the PLL guarantees
that the processor clock is phase-locked to the bus clock, regardless of process variations,
temperature changes, or parasitic capacitances. The PLL also ensures a 50% duty cycle for
the processor clock.

The 604 supports the following processor-to-bus clock frequency ratios—1:1, 1.5:1, 2:1,
and 3:1, although not all ratios are available for all frequencies. For more information, refer
to the 604 hardware specifications.

+3.3 V

1
1
1

1
1

32
4
1

5
1
3
1
1
1
2
3

1
1
1

1
1
1

64
8
1
1

1
1
1

2
1
2
2
2

1
2
1
1
1
1

1
1
4
1

5

604

ADDRESS
ARBITRATION

ADDRESS
START

ADDRESS
TRANSFER

TRANSFER
ATTRIBUTE

ADDRESS
TERMINATION

BR
BG

ABB

TS

XATS

A0–A31
AP0–AP3

APE

TT0–TT4
TBST

TSIZ0–TSIZ2
GBL
CI
WT

CSE0–CSE1
TC0–TC2

AACK
ARTRY

SHD

DBG
DBWO
DBB

DH0–DH31, DL0–DL31

DP0–DP7
DPE

DBDIS

TA
DRTRY

TEA

INT, SMI
MCP

CKSTP_IN
CKSTP_OUT

HRESET, SRESET

RSRV
DRVMOD

TBEN
L2_INT

RUN
HALTED

SYSCLK
CLK_OUT

PLL_CFG0–PLL_CFG3
AVDD

TRST, TCK, TMS, TDI, TD0

DATA
ARBITRATION

DATA
TRANSFER

DATA
TERMINATION

SYSTEM
STATUS

PROCESSOR
CONFIGURATION

CLOCKS

JTAG/COP
INTERFACE

Chapter 1. Overview 1-19

1.3 PowerPC 604 Microprocessor Execution Model
This section describes the following characteristics of the 604’s execution model:

• The PowerPC architecture
• The 604 register set and programming model
• The 604 instruction set
• The 604 exception model
• Instruction timing on the 604

1.3.1 Levels of the PowerPC Architecture
The PowerPC architecture is derived from the IBM POWER Architecture™ (Performance
Optimized with Enhanced RISC architecture). The PowerPC architecture shares the
benefits of the POWER architecture optimized for single-chip implementations. The
architecture design facilitates parallel instruction execution and is scalable to take
advantage of future technological gains.

The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be measured in terms of which of the following levels of the architecture
is implemented. For example, if a processor adheres to the virtual environment architecture,
it is assumed that it meets the user instruction set architecture specification.

• PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software must conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers. Note
that the PowerPC architecture refers to user level as problem state.

• PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices can
access external memory, defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for managing resources in an environment in which other
processors and other devices can access external memory.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but
may not necessarily adhere to the OEA.

• PowerPC operating environment architecture (OEA)—The OEA defines
supervisor-level resources typically required by an operating system. The OEA
defines the PowerPC memory management model, supervisor-level registers, and
the exception model. Note that the PowerPC architecture refers to the supervisor
level as privileged state.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

1-20 PowerPC 604 RISC Microprocessor User's Manual

The 604 complies with all three levels of the PowerPC architecture. Note that the PowerPC
architecture defines additional instructions for 64-bit data types. These instructions cause
an illegal instruction exception on the 604. PowerPC processors are allowed to have
implementation-specific features that fall outside, but do not conflict with, the PowerPC
architecture specification. Examples of features that are specific to the 604 include the
performance monitor and nap mode.

The 604 is a high-performance, superscalar PowerPC implementation of the PowerPC
architecture. Like other PowerPC processors, it adheres to the PowerPC architecture
specifications but also has additional features not defined by the architecture. These
features do not affect software compatibility. The PowerPC architecture allows optimizing
compilers to schedule instructions to maximize performance through efficient use of the
PowerPC instruction set and register model. The multiple, independent execution units in
the 604 allow compilers to maximize parallelism and instruction throughput. Compilers
that take advantage of the flexibility of the PowerPC architecture can additionally optimize
instruction processing of the PowerPC processors.

1.3.2 Registers and Programming Model
The PowerPC architecture defines register-to-register operations for most computational
instructions. Source operands for these instructions are accessed from the registers or are
provided as immediate values embedded in the instruction opcode. The three-register
instruction format allows specification of a target register distinct from the two source
operands. Load and store instructions transfer data between registers and memory.

During normal execution, a program can access the registers, shown in Figure 1-6,
depending on the program’s access privilege (supervisor or user, determined by the
privilege level (PR) bit in the machine state register (MSR)). Note that registers such as the
general-purpose registers (GPRs) and floating-point registers (FPRs) are accessed through
operands that are part of the instructions. Access to registers can be explicit (that is, through
the use of specific instructions for that purpose such as Move to Special-Purpose Register
(mtspr) and Move from Special-Purpose Register (mfspr) instructions) or implicitly as the
part of the execution of an instruction. Some registers are accessed both explicitly and
implicitly.

The numbers to the right of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register.

Figure 1-6 shows the registers implemented in the 604, indicating those that are defined by
the PowerPC architecture and those that are 604-specific. Note that all of these registers
except the FPRs are 32 bits wide.

Chapter 1. Overview 1-21

Figure 1-6. Programming Model—PowerPC 604 Microprocessor Registers

SPR 1

USER MODEL
UISA

Floating-Point Status
and Control Register

CR

FPSCR

Condition Register

GPR0

GPR1

GPR31

General-Purpose
Registers

Floating-Point
Registers

XER

XER

SPR 8

Link Register

LR

TBR 268

Time Base Facility
(For Reading)

TBR 269

SUPERVISOR MODEL
OEA

Machine State
Register

MSR

Processor Version
Register

SPR 287PVR

DSISR

SPR 18DSISR

Data Address Register

SPR 19DAR

Save and Restore
Registers

SPR 26SRR0

SPR 27SRR1

SPRGs

SPR 272SPRG0

SPR 273SPRG1

SPR 274SPRG2

SPR 275SPRG3

SPR 22

Decrementer

DEC

Time Base Facility
(For Writing)

SPR 284TBL

SPR 285TBU

SPR 282

External Address Register (Optional)

EAR

SDR1

SPR 25SDR1

Instruction BAT
Registers

SPR 528IBAT0U

SPR 529IBAT0L

SPR 530IBAT1U

SPR 531IBAT1L

SPR 532IBAT2U

SPR 533IBAT2L

SPR 534IBAT3U

SPR 535IBAT3L

Data BAT Registers

SPR 536DBAT0U

SPR 537DBAT0L

SPR 538DBAT1U

SPR 539DBAT1L

SPR 540DBAT2U

SPR 541DBAT2L

SPR 542DBAT3U

SPR 543DBAT3L

SPR 9

Count Register

CTR

Configuration Registers

Memory Management Registers

Exception Handling Registers

Miscellaneous Registers

USER MODEL
VEA

Hardware Implementation
Dependent Register1

SPR 1008HID0

SPR 1010IABR

Instruction Address
Breakpoint Register1

Segment Registers

SR0

SR1

SR15

FPR0

FPR1

FPR31
Performance
Monitor Counters1

SPR 953PMC1

SPR 954PMC2

Monitor Control1

SPR 952MMCR0

Performance Monitor

SPR959SDA

SPR 955SIA

Sampled Data/
Instruction Address1

TBL

TBU

1 604-specific—not defined by the PowerPC architecture

SPR 1013DABR

Data Address
Breakpoint Register

SPR 1023

Processor Identification
Register1 (Optional)

PIR

1-22 PowerPC 604 RISC Microprocessor User's Manual

PowerPC processors have two levels of privilege—supervisor mode of operation (typically
used by the operating environment) and one that corresponds to the user mode of operation
(used by application software). As shown in Figure 1-6, the programming model
incorporates 32 GPRs, 32 FPRs, special-purpose registers (SPRs), and several
miscellaneous registers. Note that each PowerPC implementation has its own unique set of
implementation-dependent registers that are typically used for debugging, configuration,
and other implementation-specific operations.

Some registers are accessible only by supervisor-level software. This division allows the
operating system to control the application environment (providing virtual memory and
protecting operating-system and critical machine resources). Instructions that control the
state of the processor, the address translation mechanism, and supervisor registers can be
executed only when the processor is in supervisor mode.

The following sections summarize the PowerPC registers that are implemented in the 604.

1.3.2.1 General-Purpose Registers (GPRs)
The PowerPC architecture defines 32 user-level, general-purpose registers (GPRs). These
registers are 32 bits wide in 32-bit PowerPC implementations and 64 bits wide in 64-bit
PowerPC implementations. The 604 also has 12 GPR rename buffers, which provide a way
to buffer data intended for the GPRs, reducing stalls when the results of one instruction are
required by a subsequent instruction. The use of rename buffers is not defined by the
PowerPC architecture, and they are transparent to the user with respect to the architecture.
The GPRs and their associated rename buffers serve as the data source or destination for
instructions executed in the IUs.

1.3.2.2 Floating-Point Registers (FPRs)
The PowerPC architecture also defines 32 floating-point registers (FPRs). These 64-bit
registers typically are used to provide source and target operands for user-level,
floating-point instructions. The 604 has eight FPR rename buffers that provide a way to
buffer data intended for the FPRs, reducing stalls when the results of one instruction are
required by a subsequent instruction. The rename buffers are not defined by the PowerPC
architecture. The FPRs and their associated rename buffers can contain data objects of
either single- or double-precision floating-point formats.

1.3.2.3 Condition Register (CR)
The CR is a 32-bit user-level register that consists of eight four-bit fields that reflect the
results of certain operations, such as move, integer and floating-point compare, arithmetic,
and logical instructions, and provide a mechanism for testing and branching. The 604 also
has eight CR rename buffers, which provide a way to buffer data intended for the CR. The
rename buffers are not defined by the PowerPC architecture.

Chapter 1. Overview 1-23

1.3.2.4 Floating-Point Status and Control Register (FPSCR)
The floating-point status and control register (FPSCR) is a user-level register that contains
all exception signal bits, exception summary bits, exception enable bits, and rounding
control bits needed for compliance with the IEEE 754 standard.

1.3.2.5 Machine State Register (MSR)
The machine state register (MSR) is a supervisor-level register that defines the state of the
processor. The contents of this register are saved when an exception is taken and restored
when the exception handling completes. The 604 implements the MSR as a 32-bit register;
64-bit PowerPC processors use a 64-bit MSR that provides a superset of the 32-bit
functionality.

1.3.2.6 Segment Registers (SRs)
For memory management, 32-bit PowerPC implementations use sixteen 32-bit segment
registers (SRs).

1.3.2.7 Special-Purpose Registers (SPRs)
The PowerPC operating environment architecture defines numerous special-purpose
registers that serve a variety of functions, such as providing controls, indicating status,
configuring the processor, and performing special operations. Some SPRs are accessed
implicitly as part of executing certain instructions. All SPRs can be accessed by using the
move to/from SPR instructions, mtspr and mfspr.

In the 604, all SPRs are 32 bits wide.

1.3.2.7.1 User-Level SPRs
The following SPRs are accessible by user-level software:

• Link register (LR)—The link register can be used to provide the branch target
address and to hold the return address after branch and link instructions. The LR is
32 bits wide.

• Count register (CTR)—The CTR is decremented and tested automatically as a result
of branch and count instructions. The CTR is 32 bits wide.

• XER—The 32-bit XER contains the integer carry and overflow bits.

• The time base registers (TBL and TBU) can be read by user-level software, but can
be written to only by supervisor-level software.

1.3.2.7.2 Supervisor-Level SPRs
The 604 also contains SPRs that can be accessed only by supervisor-level software. These
registers consist of the following:

• The 32-bit data DSISR defines the cause of DSI and alignment exceptions.

• The data address register (DAR) is a 32-bit register that holds the address of an
access after an alignment or DSI exception.

1-24 PowerPC 604 RISC Microprocessor User's Manual

• The decrementer register (DEC) is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay. In the
604, the decrementer frequency is 1/4th of the bus clock frequency (as is the time
base frequency).

• The 32-bit SDR1 register specifies the location and page table format used in
logical-to-physical address translation for pages.

• The machine status save/restore register 0 (SRR0) is a 32-bit register that is used by
the 604 for saving the address of the instruction that caused the exception, and the
address to return to when a Return From Interrupt (rfi) instruction is executed.

• The machine status save/restore register 1 (SRR1) is a 32-bit register used to save
machine status on exceptions and to restore machine status when an rfi instruction
is executed.

• SPRG0–SPRG3 registers are 32-bit registers provided for operating system use.

• The external access register (EAR) is a 32-bit register that controls access to the
external control facility through the External Control In Word Indexed (eciwx) and
External Control Out Word Indexed (ecowx) instructions.

• The processor version register (PVR) is a 32-bit, read-only register that identifies the
version (model) and revision level of the PowerPC processor.

• The time base registers (TBL and TBU) together provide a 64-bit time base register.
The registers are implemented as a 64-bit counter, with the least-significant bit being
the most frequently incremented. The PowerPC architecture defines that the time
base frequency be provided as a subdivision of the processor clock frequency. In the
604, the time base frequency is 1/4th of the bus clock frequency (as is the
decrementer frequency). Counting is enabled by the Time Base Enable signal
(TBEN).

• Block address translation (BAT) registers—The PowerPC architecture defines 16
BAT registers, divided into four pairs of data BATs (DBATs) and four pairs of
instruction BATs (IBATs).

The 604 includes the following registers not defined by the PowerPC architecture:

• Instruction address breakpoint register (IABR)—This register can be used to cause
a breakpoint exception to occur if a specified instruction address is encountered.

• Data address breakpoint register (DABR)—This register can be used to cause a
breakpoint exception to occur if a specified data address is encountered.

• Hardware implementation-dependent register 0 (HID0)—This register is used to
control various functions within the 604, such as enabling checkstop conditions, and
locking, enabling, and invalidating the instruction and data caches.

• Processor identification register (PIR)—The PIR is a supervisor-level register that
has a right-justified, four-bit field that holds a processor identification tag used to
identify a particular 604. This tag is used to identify the processor in multiple-master
implementations.

Chapter 1. Overview 1-25

• Performance monitor counter registers (PMC1 and PMC2). The counters are used to
record the number of times a certain event has occurred.

• Monitor mode control register 0 (MMCR0)—This is used for enabling various
performance monitoring interrupt conditions and establishes the function of the
counters.

• Sampled instruction address and sampled data address registers (SIA and
SDA)—These registers hold the addresses for instruction and data used by the
performance monitoring interrupt.

Note that while it is not guaranteed that the HID registers, or other implementation-specific
registers, be consistent among PowerPC processors.

1.3.3 Instruction Set and Addressing Modes
The following subsections describe the PowerPC instruction set and addressing modes in
general.

1.3.3.1 PowerPC Instruction Set and Addressing Modes
All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats
are consistent among all instruction types, permitting efficient decoding to occur in parallel
with operand accesses. This fixed instruction length and consistent format greatly simplifies
instruction pipelining.

1.3.3.1.1 Instruction Set
The 604 implements the entire PowerPC instruction set (for 32-bit implementations) and
most optional PowerPC instructions. The PowerPC instructions can be loosely grouped into
the following general categories:

• Integer instructions—These include computational and logical instructions.

— Integer arithmetic instructions
— Integer compare instructions
— Logical instructions
— Integer rotate and shift instructions

• Floating-point instructions—These include floating-point computational
instructions, as well as instructions that affect the FPSCR. Floating-point
instructions include the following:

— Floating-point arithmetic instructions
— Floating-point multiply/add instructions
— Floating-point rounding and conversion instructions
— Floating-point compare instructions
— Floating-point move instructions
— Floating-point status and control instructions
— Optional floating-point instructions (listed with the optional instructions below)

1-26 PowerPC 604 RISC Microprocessor User's Manual

The 604 supports all IEEE 754-1985 floating-point data types (normalized,
denormalized, NaN, zero, and infinity) in hardware, eliminating the latency incurred
by software exception routines.

The PowerPC architecture also supports a non-IEEE mode, controlled by a bit in the
FPSCR. In this mode, denormalized numbers, NaNs, and some IEEE invalid
operations are not required to conform to IEEE standards and can execute faster.
Note that all single-precision arithmetic instructions are performed using a
double-precision format. The floating-point pipeline is a single-pass implementation
for double-precision products. For almost all floating-point instructions, a
single-precision instruction using only single-precision operands in
double-precision format performs the same as its double-precision equivalent.

• Load/store instructions—These include integer and floating-point load and store
instructions.

— Integer load and store instructions
— Integer load and store multiple instructions
— Integer load and store string instructions
— Floating-point load and store

• Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

— Branch and trap instructions
— System call and rfi instructions
— Condition register logical instructions

• Synchronization instructions—The PowerPC architecture defines instructions for
memory synchronizing, especially useful for multiprocessing:

— Load and store with reservation instructions—These UISA-defined instructions
provide primitives for synchronization operations such as test and set, compare
and swap, and compare memory.

— The Synchronize instruction (sync)—This UISA-defined instruction is useful for
synchronizing load and store operations on a memory bus that is shared by
multiple devices.

— The Instruction Synchronize instruction (isync)—This instruction causes the
604 to purge its instruction buffers and fetch the double word containing the next
sequential instruction.

— The Enforce In-Order Execution of I/O instruction (eieio)—The eieio
instruction, defined by the VEA, can be used instead of the sync instruction when
only memory references seen by I/O devices need to be ordered.

• Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. These
instructions include move to/from special-purpose register instructions (mtspr and
mfspr).

Chapter 1. Overview 1-27

• Memory/cache control instructions—These instructions provide control of caches,
TLBs, and segment registers.

— User- and supervisor-level cache instructions
— Segment register manipulation instructions
— Translation lookaside buffer management instructions

• Optional instructions—the 604 implements the following optional instructions:

— The eciwx/ecowx instruction pair
— The TLB Synchronize instruction (tlbsync)
— Optional graphics instructions:

– Store Floating-Point as Integer Word Indexed (stfiwx)
– Floating Reciprocal Estimate Single (fres)
– Floating Reciprocal Square Root Estimate (frsqrte)
– Floating Select (fsel)

Note that this grouping of the instructions does not indicate which execution unit executes
a particular instruction or group of instructions.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision (one word) and double-precision (one double
word) floating-point operands. The PowerPC architecture uses instructions that are four
bytes long and word-aligned. It provides for byte, half-word, and word operand loads and
stores between memory and a set of 32 GPRs. It also provides for word and double-word
operand loads and stores between memory and a set of 32 FPRs.

Computational instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written back to the target location with
specific store instructions.

PowerPC processors follow the program flow when they are in the normal execution state.
However, the flow of instructions can be interrupted directly by the execution of an
instruction or by an asynchronous event. Either kind of exception may cause one of several
components of the system software to be invoked.

1.3.3.1.2 Calculating Effective Addresses
The effective address (EA) is the 32-bit address computed by the processor when executing
a memory access or branch instruction or when fetching the next sequential instruction.

The PowerPC architecture supports two simple memory addressing modes:

• EA = (rA|0) + offset (including offset = 0) (register indirect with immediate index)
• EA = (rA|0) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.
Calculation of the effective address for aligned transfers occurs in a single clock cycle.

1-28 PowerPC 604 RISC Microprocessor User's Manual

For a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the storage operand is considered to wrap around
from the maximum effective address to effective address 0.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

1.3.4 Exception Model
The following subsections describe the PowerPC exception model and the 604
implementation, respectively.

The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to various registers and the processor begins execution at an address (exception vector)
predetermined for each exception and the processor changes to supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the FPSCR. Additionally, specific exception
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular PowerPC processor may recognize exception conditions out of order,
exceptions are handled strictly in order. When an instruction-caused exception is
recognized, any unexecuted instructions that appear earlier in the instruction stream,
including any that have not yet entered the execute state, are required to complete before
the exception is taken. Any exceptions caused by those instructions must be handled first.
Likewise, exceptions that are asynchronous and precise are recognized when they occur
(unless they are masked) and the reorder buffer is drained. The address of next instruction
to be executed is saved in SRR0 so execution can resume at the proper place when the
exception handler returns control to the interrupted process.

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, a single instruction encounters multiple
exception conditions, those conditions are encountered sequentially. After the exception
handler handles an exception, the instruction execution continues until the next exception
condition is encountered. This method of recognizing and handling exception conditions
sequentially guarantees that exceptions are recoverable.

Exception handlers should save the information stored in SRR0 and SRR1 early to prevent
the program state from being lost due to a system reset or machine check exception or to
an instruction-caused exception in the exception handler.

Chapter 1. Overview 1-29

The PowerPC architecture supports the following types of exceptions:

• Synchronous, precise—These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occurs is known and can be completely restored.

• Synchronous, imprecise—The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. The 604
implements only the imprecise nonrecoverable mode. The imprecise, recoverable
mode is treated as the precise mode in the 604.

• Asynchronous—The OEA portion of the PowerPC architecture defines two types of
asynchronous exceptions:

— Asynchronous, maskable—The PowerPC architecture defines the external
interrupt and decrementer interrupt, which are maskable and asynchronous
exceptions. In the 604, and in many PowerPC processors, the hardware interrupt
is generated by the assertion of the Interrupt (INT) signal, which is not defined
by the architecture. In addition, the 604 implements the system management
interrupt, which performs similarly to the external interrupt, and is generated by
the assertion of the System Management Interrupt (SMI) signal, and the
performance monitor interrupt.

When these exceptions occur, their handling is postponed until all instructions,
and any exceptions associated with those instructions, complete execution.
These exceptions are maskable by setting MSR[EE].

— Asynchronous, nonmaskable—There are two nonmaskable asynchronous
exceptions that are imprecise: system reset and machine check exceptions. Note
that the OEA portion of the PowerPC architecture, which defines how these
exceptions work, does not define the causes or the signals used to cause these
exceptions. These exceptions may not be recoverable, or may provide a limited
degree of recoverability for diagnostic purposes.

The PowerPC architecture defines two bits in the machine state register (MSR)—FE0 and
FE1—that determine how floating-point exceptions are handled. There are four
combinations of bit settings, of which the 604 implements three. These are as follows:

• Ignore exceptions mode (FE0 = FE1 = 0). In this mode, the instruction dispatch logic
feeds the FPU as fast as possible and the FPU uses an internal pipeline to allow
overlapped execution of instructions. In this mode, floating-point exception
conditions return a predefined value instead of causing an exception.

• Precise interrupt mode (FE0 = 1; FE1 = x). This mode includes both the precise
mode and imprecise recoverable mode defined in the PowerPC architecture. In this
mode, a floating-point instruction that causes a floating-point exception brings the
machine to a precise state. In doing so, the 604 takes floating-point exceptions as
defined by the PowerPC architecture.

1-30 PowerPC 604 RISC Microprocessor User's Manual

• Imprecise nonrecoverable mode (FE0 = 0; FE1 = 1). In this mode, when a
floating-point instruction causes a floating point exception, the save restore
register 0 (SRR0) may point to an instruction following the instruction that caused
the exception.

The 604 exception classes are shown in Table 1-1.

The 604’s exceptions, and a general description of conditions that cause them, are listed in
Table 1-2.

Table 1-1. Exception Classifications

Type Exception

Asynchronous/nonmaskable Machine check
System reset

Asynchronous/maskable External interrupt
Decrementer
System management interrupt (not defined by the PowerPC architecture)

Synchronous/precise Instruction-caused exceptions

Synchronous/imprecise Floating-point exceptions (imprecise nonrecoverable mode)

Table 1-2. Overview of Exceptions and Conditions

Exception
Type

Vector Offset
(hex)

Causing Conditions

Reserved 00000 —

System reset 00100 A system reset is caused by the assertion of either the soft reset or hard reset
signal.

Machine check 00200 A machine check exception is signaled by the assertion of a qualified TEA
indication on the 604 bus, or the machine check interrupt (MCP) signal. If
MSR[ME] is cleared, the processor enters the checkstop state when one of
these signals is asserted. Note that MSR[ME] is cleared when an exception is
taken. The machine check exception is also caused by parity errors on the
address or data bus or in the instruction or data caches.

The assertion of the TEA signal is determined by load and store operations
initiated by the processor; however, it is expected that the TEA signal would be
used by a memory controller to indicate that a memory parity error or an
uncorrectable memory ECC error has occurred.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.

Chapter 1. Overview 1-31

DSI 00300 The cause of a DSI exception can be determined by the bit settings in the
DSISR, listed as follows:
0 Set if a load or store instruction results in a direct-store program exception;

otherwise cleared.
1 Set if the translation of an attempted access is not found in the primary table

entry group (PTEG), or in the secondary PTEG, or in the range of a BAT
register; otherwise cleared.

4 Set if a memory access is not permitted by the page or BAT protection
mechanism; otherwise cleared.

5 If SR[T] = 1, set by an eciwx, ecowx, lwarx, or stwcx. instruction; otherwise
cleared. Set by an eciwx or ecowx instruction if the access is to an address
that is marked as write-through.

6 Set for a store operation and cleared for a load operation.
9 Set if an EA matches the address in the DABR while in one of the three

compare modes.
10Set if the segment table search fails to find a translation for the effective

address; otherwise cleared.
11Set if eciwx or ecowx is used and EAR[E] is cleared.

ISI 00400 An ISI exception is caused when an instruction fetch cannot be performed for
any of the following reasons:
• The effective address cannot be translated. That is, there is a page fault for

this portion of the translation, so an ISI exception must be taken to retrieve
the translation from a storage device such as a hard disk drive.

• The fetch access is to a direct-store segment.
• The fetch access violates memory protection. If the key bits (Ks and Kp) in

the segment register and the PP bits in the PTE or BAT are set to prohibit
read access, instructions cannot be fetched from this location.

External
interrupt

00500 An external interrupt occurs when the external exception signal, INT, is
asserted. This signal is expected to remain asserted until the exception handler
begins execution. Once the signal is detected, the 604 stops dispatching
instructions and waits for all dispatched instructions to complete. Any
exceptions associated with dispatched instructions are taken before the
interrupt is taken.

Alignment 00600 An alignment exception is caused when the processor cannot perform a
memory access for the following reasons:
A floating-point load, store, lmw, stmw, lwarx, stwcx., eciwx, or ecowx
instruction is not word-aligned.
A dcbz instruction refers to a page that is marked either cache-inhibited or
write-through.
A dcbz instruction has executed when the 604 data cache is locked or disabled.
An access is not naturally aligned in little-endian mode.
An lmw, stmw, lswi, lswx, stswi, or stswx instruction is issued in little-endian
mode.

Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

1-32 PowerPC 604 RISC Microprocessor User's Manual

Program 00700 A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:
• Floating-point exceptions—A floating-point enabled exception condition

causes an exception when FPSCR[FEX] is set and depends on the values
in MSR[FE0] and MSR[FE1].
FPSCR[FEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a “move to FPSCR”
instruction that results in both an exception condition bit and its
corresponding enable bit being set in the FPSCR.

• Illegal instruction—An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as no-ops).

• Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and
the MSR user privilege bit, MSR[PR], is set. This exception is also
generated for mtspr or mfspr with an invalid SPR field if SPR[0] = 1 and
MSR[PR] = 1.

• Trap—A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

Floating-point
unavailable

00800 A floating-point unavailable exception is caused by an attempt to execute a
floating-point instruction (including floating-point load, store, and move
instructions) when the floating-point available bit is disabled (MSR[FP] = 0).

Decrementer 00900 The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from 0 to 1.

Reserved 00A00–00BFF —

System call 00C00 A system call exception occurs when a System Call (sc) instruction is executed.

Trace 00D00 Either MSR[SE] = 1 and any instruction (except rfi) successfully completed or
MSR[BE] = 1 and a branch instruction is completed.

Floating-point
assist

00E00 Defined by the PowerPC architecture, but not required in the 604.

Reserved 00E10–00EFF —

Performance
monitoring
interrupt

00F00 The performance monitoring interrupt is a 604-specific exception and is used
with the 604 performance monitor, described in Section 1.5, “Performance
Monitor.”
The performance monitoring facility can be enabled to signal an exception
when the value in one of the performance monitor counter registers (PMC1 or
PMC2) goes negative. The conditions that can cause this exception can be
enabled or disabled in the monitor mode control register 0 (MMCR0).
Although the exception condition may occur when the MSR EE bit is cleared,
the actual interrupt is masked by the EE bit and cannot be taken until the EE bit
is set.

Reserved 01000–012FF —

Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

Chapter 1. Overview 1-33

1.3.5 Instruction Timing
As shown in Figure 1-7, the common pipeline of the 604 has six stages through which all
instructions must pass. Some instructions occupy multiple stages simultaneously and some
individual execution units have additional stages. For example, the floating-point pipeline
consists of three stages through which all floating-point instructions must pass.

Figure 1-7. Pipeline Diagram

Instruction
address
breakpoint

01300 An instruction address breakpoint exception occurs when the address (bits 0 to
29) in the IABR matches the next instruction to complete in the completion unit,
and the IABR enable bit IABR[30] is set.

System
management
interrupt

01400 A system management interrupt is caused when MSR[EE] = 1 and the SMI
input signal is asserted. This exception is provided for use with the nap mode,
which is described in Section 1.4, “Power Management—Nap Mode.”

Reserved 01500–02FFF Reserved, implementation-specific exceptions. These are not implemented in
the 604.

Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

Dispatch (DS)

Complete (C)

Write-Back (W)

(Four-instruction dispatch per clock cycle in
any combination)

SCIU1 SCIU2 MCIU FPU LSUBPU

Execute Stage

Fetch (IF)

Decode (ID)

1-34 PowerPC 604 RISC Microprocessor User's Manual

The common pipeline stages are as follows:

• Instruction fetch (IF)—During the IF stage, the fetch unit loads the decode queue
(DEQ) with instructions from the instruction cache and determines from what
address the next instruction should be fetched.

• Instruction decode (ID)—During the ID stage, all time-critical decoding is
performed on instructions in the dispatch queue (DISQ). The remaining decode
operations are performed during the instruction dispatch stage.

• Instruction dispatch (DS)—During the dispatch stage, the decoding that is not
time-critical is performed on the instructions provided by the previous ID stage.
Logic associated with this stage determines when an instruction can be dispatched
to the appropriate execution unit. At the end of the DS stage, instructions and their
operands are latched into the execution input latches or into the unit’s reservation
station. Logic in this stage allocates resources such as the rename registers and
reorder buffer entries.

• Execute (E)—While the execution stage is viewed as a common stage in the 604
instruction pipeline, the instruction flow is split among the six execution units, some
of which consist of multiple pipelines. An instruction may enter the execute stage
from either the dispatch stage or the execution unit’s dedicated reservation station.

At the end of the execute stage, the execution unit writes the results into the
appropriate rename buffer entry and notifies the completion stage that the instruction
has finished execution.

The execution unit reports any internal exceptions to the completion stage and
continues execution, regardless of the exception. Under some circumstances, results
can be written directly to the target registers, bypassing the rename buffers.

• Complete (C)—The completion stage ensures that the correct machine state is
maintained by monitoring instructions in the completion buffer and the status of
instruction in the execute stage.

When instructions complete, they are removed from the reorder buffer (ROB).
Results may be written back from the rename buffers to the register as early as the
complete stage. If the completion logic detects an instruction containing exception
status or if a branch has been mispredicted, all subsequent instructions are cancelled,
any results in rename buffers are discarded, and instructions are fetched from the
correct instruction stream.

The CR, CTR, and LR are also updated during the complete stage.

• Writeback (W)—The writeback stage is used to write back any information from the
rename buffers that was not written back during the complete stage.

All instructions are fully pipelined except for divide operations and some integer multiply
operations. The integer multiplier is a three-stage pipeline. Integer divide instructions
iterate in stage two of the multiplier. SPR operations can execute in the MCIU in parallel
with multiply and divide operations.

Chapter 1. Overview 1-35

The floating-point pipeline has three stages. Floating-point divide operations iterate in the
first stage.

1.4 Power Management—Nap Mode
The 604 provides a power-saving mode, called nap mode, in which all internal processing
and bus operations are suspended. Software initiates nap mode by setting the MSR[POW]
bit. After this bit is set, the 604 suspends instruction dispatch and waits for all activity in
progress, including active and pending bus transactions, to complete. It then powers down
the internal clocks, and indicates nap mode by asserting the HALTED output signal.

When the 604 is in nap mode, all internal activity stops except for decrementer, time base,
and interrupt logic, and the 604 does not snoop bus activity unless the system asserts the
RUN input signal. Asserting the RUN signal causes the HALTED signal to be negated.

Nap mode is exited (clocks resume and MSR[POW] cleared) when any asynchronous
interrupt is detected.

1.5 Performance Monitor
The 604 incorporates a performance monitor facility that system designers can use to help
bring up, debug, and optimize software performance, especially in multiprocessing
systems. The performance monitor is a software-accessible mechanism that provides
detailed information concerning the dispatch, execution, completion, and memory access
of PowerPC instructions.

The monitor mode control register 0 (MMCR0) can be used to specify the conditions for
which a performance monitoring interrupt is taken. For example, one such condition is
associated with one of the counter registers (PMC1 or PMC2) incrementing until the most
significant bit indicates a negative value. Additionally, the sampled instruction address and
sampled data address registers (SIA and SDA) are used to hold addresses for instruction
and data related to the performance monitoring interrupt.

1-36 PowerPC 604 RISC Microprocessor User's Manual

Chapter 2. PowerPC 604 Processor Programming Model 2-1

Chapter 2
PowerPC 604 Processor Programming
Model
20
20

This chapter describes the PowerPC programming model with respect to the 604. It consists
of three major sections, which describe the following:

• Registers implemented in the 604
• Operand conventions
• The 604 instruction set

2.1 The PowerPC 604 Processor Register Set
This section describes the registers in the 604 and includes an overview of the registers
defined by the PowerPC architecture and a more detailed description of 604-specific
registers and differences in how the registers defined by the PowerPC architecture are
implemented in the 604. Full descriptions of the basic register set defined by the PowerPC
architecture are provided in Chapter 2, “PowerPC Register Set,” in The Programming
Environments Manual.

Note that registers are defined at all three levels of the PowerPC architecture—user
instruction set architecture (UISA), virtual environment architecture (VEA), and operating
environment architecture (OEA). The PowerPC architecture defines register-to-register
operations for all computational instructions. Source data for these instructions are
accessed from the on-chip registers or are provided as immediate values embedded in the
opcode. The three-register instruction format allows specification of a target register
distinct from the two source registers, thus preserving the original data for use by other
instructions and reducing the number of instructions required for certain operations. Data
is transferred between memory and registers with explicit load and store instructions only.

2-2 PowerPC 604 RISC Microprocessor User's Manual

2.1.1 Register Set
The PowerPC UISA registers, shown in Figure 2-1, are user-level. The general-purpose
registers (GPRs) and floating-point registers (FPRs) are accessed through instruction
operands. Access to registers can be explicit (that is, through the use of specific instructions
for that purpose such as Move to Special-Purpose Register (mtspr) and Move from
Special-Purpose Register (mfspr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

The number to the right of the special-purpose registers (SPRs) indicates the number that
is used in the syntax of the instruction operands to access the register (for example, the
number used to access the integer exception register (XER) is SPR 1). These registers can
be accessed using the mtspr and mfspr instructions.

Implementation Note—The 604 fully decodes the SPR field of the instruction. If the SPR
specified is undefined, the illegal instruction program exception occurs.

Chapter 2. PowerPC 604 Processor Programming Model 2-3

Figure 2-1. Programming Model—PowerPC 604 Microprocessor Registers

1 604-specific—not defined by the PowerPC architecture

SPR 1

USER MODEL
UISA

Floating-Point Status
and Control Register

CR

FPSCR

Condition Register

GPR0

GPR1

GPR31

General-Purpose
Registers

Floating-Point
Registers

XER

XER

SPR 8

Link Register

LR

TBR 268

Time Base Facility
(For Reading)

TBR 269

SUPERVISOR MODEL
OEA

Machine State
Register

MSR

Processor Version
Register

SPR 287PVR

DSISR

SPR 18DSISR

Data Address Register

SPR 19DAR

Save and Restore
Registers

SPR 26SRR0

SPR 27SRR1

SPRGs

SPR 272SPRG0

SPR 273SPRG1

SPR 274SPRG2

SPR 275SPRG3

SPR 22

Decrementer

DEC

Time Base Facility
(For Writing)

SPR 284TBL

SPR 285TBU

SPR 282

External Address Register (Optional)

EAR

SDR1

SPR 25SDR1

Instruction BAT
Registers

SPR 528IBAT0U

SPR 529IBAT0L

SPR 530IBAT1U

SPR 531IBAT1L

SPR 532IBAT2U

SPR 533IBAT2L

SPR 534IBAT3U

SPR 535IBAT3L

Data BAT Registers

SPR 536DBAT0U

SPR 537DBAT0L

SPR 538DBAT1U

SPR 539DBAT1L

SPR 540DBAT2U

SPR 541DBAT2L

SPR 542DBAT3U

SPR 543DBAT3L

SPR 9

Count Register

CTR

Configuration Registers

Memory Management Registers

Exception Handling Registers

Miscellaneous Registers

USER MODEL
VEA

Hardware Implementation
Dependent Register1

SPR 1008HID0

SPR 1010IABR

Instruction Address
Breakpoint Register1

Segment Registers

SR0

SR1

SR15

FPR0

FPR1

FPR31

Performance
Monitor Counters1

SPR 953PMC1

SPR 954PMC2

Monitor Mode Control
Register 01

SPR 952MMCR0

Performance Monitor

SPR959SDA

SPR 955SIA

Sampled Data/
Instruction Address1

TBL

TBU SPR 1013DABR

Data Address
Breakpoint Register

SPR 1023

Processor Identification
Register1 (Optional)

PIR

2-4 PowerPC 604 RISC Microprocessor User's Manual

The PowerPC’s user-level registers are described as follows:

• User-level registers (UISA)—The user-level registers can be accessed by all
software with either user or supervisor privileges. The user-level register set
includes the following:

— General-purpose registers (GPRs). The PowerPC general-purpose register file
consists of thirty-two GPRs designated as GPR0–GPR31. The GPRs serve as
data source or destination registers for all integer instructions and provide data
for generating addresses. See “General Purpose Registers (GPRs),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual for more
information.

— Floating-point registers (FPRs). The floating-point register file consists of
thirty-two FPRs designated as FPR0–FPR31, which serves as the data source or
destination for all floating-point instructions. These registers can contain data
objects of either single- or double-precision floating-point format. For more
information, see “Floating-Point Registers (FPRs),” in Chapter 2, “PowerPC
Register Set,” of The Programming Environments Manual.

— Condition register (CR). The CR is a 32-bit register, divided into eight 4-bit
fields, CR0–CR7, that reflects the results of certain arithmetic operations and
provides a mechanism for testing and branching. For more information, see
“Condition Register (CR),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual.

Implementation Note—The PowerPC architecture indicates that in some
implementations the Move to Condition Register Fields (mtcrf) instruction may
perform more slowly when only a portion of the fields are updated as opposed to
all of the fields. The condition register access latency for the 604 is the same in
both cases. In the 604, an mtcrf instruction that sets only a single field performs
significantly faster than one that sets either no fields or multiple fields. For more
information regarding the most efficient use of the mtcrf instruction, see
Section 6.6, “Instruction Scheduling Guidelines.”

— Floating-point status and control register (FPSCR). The FPSCR contains all
floating-point exception signal bits, exception summary bits, exception enable
bits, and rounding control bits needed for compliance with the IEEE 754
standard. For more information, see “Floating-Point Status and Control Register
(FPSCR),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual.

Implementation Note—The PowerPC architecture states that in some
implementations, the Move to FPSCR Fields (mtfsf) instruction may perform
more slowly when only a portion of the fields are updated as opposed to all of the
fields. In the 604 implementation, there is no degradation of performance.

The remaining user-level registers are SPRs. Note that the PowerPC architecture
provides a separate mechanism for accessing SPRs (the mtspr and mfspr
instructions). These instructions are commonly used to explicitly access certain

Chapter 2. PowerPC 604 Processor Programming Model 2-5

registers, while other SPRs may be more typically accessed as the side effect of
executing other instructions.

— Integer exception register (XER). The XER indicates overflow and carries for
integer operations. It is set implicitly by many instructions. See “XER Register
(XER),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for more information.

— Link register (LR). The LR provides the branch target address for the Branch
Conditional to Link Register (bclrx) instruction, and can optionally be used to
hold the logical address of the instruction that follows a branch and link
instruction, typically used for linking to subroutines. For more information, see
“Link Register (LR),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual.

— Count register (CTR). The CTR holds a loop count that can be decremented
during execution of appropriately coded branch instructions. The CTR can also
provide the branch target address for the Branch Conditional to Count Register
(bcctrx) instruction. For more information, see “Count Register (CTR),” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual.

• User-level registers (VEA)—The PowerPC VEA introduces the time base facility
(TB), a 64-bit structure that maintains and operates an interval timer. The TB
consists of two 32-bit registers—time base upper (TBU) and time base lower (TBL).
Note that the time base registers can be accessed by both user- and supervisor-level
instructions. In the context of the VEA, user-level applications are permitted
read-only access to the TB. The OEA defines supervisor-level access to the TB for
writing values to the TB. For more information, see “PowerPC VEA Register
Set—Time Base,” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual.

• Supervisor-level registers (OEA)—The OEA defines the registers that are used
typically by an operating system for such operations as memory management,
configuration, and exception handling. The supervisor-level registers defined by the
PowerPC architecture for 32-bit implementations are describes as follows:

— Configuration registers

– Machine state register (MSR). The MSR defines the state of the processor.
The MSR can be modified by the Move to Machine State Register (mtmsr),
System Call (sc), and Return from Exception (rfi) instructions. It can be read
by the Move from Machine State Register (mfmsr) instruction. See “Machine
State Register (MSR),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual for more information.

2-6 PowerPC 604 RISC Microprocessor User's Manual

Implementation Note—Note that the 604 defines MSR[29] as the performance monitor
marked mode bit (PM). This additional bit is described in Table 2-1.

– Processor version register (PVR). This register is a read-only register that
identifies the version (model) and revision level of the PowerPC processor.
For more information, see “Processor Version Register (PVR),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual.

Implementation Note—The processor version number is 4 for the 604. The
processor revision level starts at 0x0000 and is different for each revision of
the chip. The revision level is updated for each silicon revision.

— Memory management registers

– Block-address translation (BAT) registers. The PowerPC OEA includes eight
block-address translation registers (BATs), consisting of four pairs of
instruction BATs (IBAT0U–IBAT3U and IBAT0L–IBAT3L) and four pairs of
data BATs (DBAT0U–DBAT3U and DBAT0L–DBAT3L). See Figure 2-1 for
a list of the SPR numbers for the BAT registers. For more information, see
“BAT Registers,” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual. Because BAT upper and lower words are loaded
separately, software must ensure that BAT translations are correct during the
time that both BAT entries are being loaded.

– SDR1. The SDR1 register specifies the page table base address used in
virtual-to-physical address translation. For more information, see “SDR1,” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual for more information.”

– Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment
registers (SR0–SR15). Note that the SRs are implemented on 32-bit
implementations only. The fields in the segment register are interpreted
differently depending on the value of bit 0. See “Segment Registers,” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual for more information.

— Exception handling registers

– Data address register (DAR). After a DSI or an alignment exception, DAR is
set to the effective address generated by the faulting instruction. See “Data
Address Register (DAR),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual for more information.

Table 2-1. MSR[PM] Bit

Bit Name Description

29 PM Performance monitor marked mode
0 Process is not a marked process.
1 Process is a marked process.
This bit is specific to the 604, and is defined as reserved by the PowerPC architecture. For more
information about the performance monitor, see Chapter 9, “Performance Monitor.”

Chapter 2. PowerPC 604 Processor Programming Model 2-7

– SPRG0–SPRG3. The SPRG0–SPRG3 registers are provided for operating
system use. See “SPRG0–SPRG3,” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

– DSISR. The DSISR register defines the cause of DSI and alignment
exceptions. See “DSISR,” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual for more information.

– Machine status save/restore register 0 (SRR0). The SRR0 register is used to
save machine status on exceptions and to restore machine status when an rfi
instruction is executed. See “Machine Status Save/Restore Register 0
(SRR0),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for more information.

– Machine status save/restore register 1 (SRR1). The SRR1 register is used to
save machine status on exceptions and to restore machine status when an rfi
instruction is executed. See “Machine Status Save/Restore Register 1
(SRR1),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for more information.

— Miscellaneous registers

– Time Base (TB). The TB is a 64-bit structure that maintains the time of day
and operates interval timers. The TB consists of two 32-bit registers—time
base upper (TBU) and time base lower (TBL). Note that the time base
registers can be accessed by both user- and supervisor-level instructions. See
“Time Base Facility (TB)—OEA,” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

– Decrementer register (DEC). This register is a 32-bit decrementing counter
that provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clock.
See “Decrementer Register (DEC),” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

Implementation Note—In the 604, the decrementer register is decremented
at a speed that is one-fourth the speed of the bus clock.

– Data address breakpoint register (DABR)—This optional register can be used
to cause a breakpoint exception to occur if a specified data address is
encountered. See “Data Address Breakpoint Register (DABR),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual for
more information.

– External access register (EAR). This optional register is used in conjunction
with the eciwx and ecowx instructions. Note that the EAR register and the
eciwx and ecowx instructions are optional in the PowerPC architecture and
may not be supported in all PowerPC processors that implement the OEA. See
“External Access Register (EAR),” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

2-8 PowerPC 604 RISC Microprocessor User's Manual

• Hardware implementation registers—The PowerPC architecture allows
implementations to include SPRs not defined by the PowerPC architecture. Those
incorporated in the 604 are described as follows. Note that in the 604, these registers
are all supervisor-level registers.

— Instruction address breakpoint register (IABR)—This register can be used to
cause a breakpoint exception to occur if a specified instruction address is
encountered.

— Hardware implementation-dependent register 0 (HID0)—This register is used to
control various functions within the 604, such as enabling checkstop conditions,
and locking, enabling, and invalidating the instruction and data caches.

— Processor identification register (PIR)—The PIR is a supervisor-level register
that has a right-justified, four-bit field that holds a processor identification tag
used to identify a particular 604. This tag is used to identify the processor in
multiple-master implementations. Note that although the SPR number is defined
by the OEA, the register definition is implementation-specific.

— Performance monitor counter registers (PMC1 and PMC2). The counters are
used to record the number of times a certain event has occurred.

— Monitor mode control register 0 (MMCR0)—This is used for enabling various
performance monitoring interrupt conditions and establishes the function of the
counters.

— Sampled instruction address and sampled data address registers (SIA and
SDA)—These registers hold the addresses for instruction and data used by the
performance monitoring interrupt.

Note that while it is not guaranteed that the implementation of HID registers is consistent
among PowerPC processors, other processors may be implemented with similar or
identical HID registers.

2.1.2 604-Specific Registers
This section describes registers that are defined for the 604 but are not included in the
PowerPC architecture. This section also includes a description of the PIR, which is assigned
an SPR number by the architecture but is not defined by it. Note that these are all
supervisor-level registers.

2.1.2.1 Instruction Address Breakpoint Register (IABR)
The 604 also implements an Instruction Address Breakpoint Register (IABR). When
enabled, instruction fetch addresses will be compared with an effective address that is
stored in the IABR. The granularity of these compares will be a word. If the word specified
by the IABR is fetched, the instruction breakpoint handler will be invoked. The instruction
which triggers the breakpoint will not be executed before the handler is invoked.

The IABR is shown in Figure 2-2.

Chapter 2. PowerPC 604 Processor Programming Model 2-9

Figure 2-2. Instruction Address Breakpoint Register

The instruction address breakpoint register is used in conjunction with the instruction
address breakpoint exception, which occurs when an attempt is made to execute an
instruction at an address specified in the IABR. The bits in the IABR are defined as shown
in Table 2-2.

The instruction that triggers the instruction address breakpoint exception is executed before
the exception handler is invoked. For more information about the IABR exception, see
Section 4.5.14, “Instruction Address Breakpoint Exception (0x01300).”

The IABR can be accessed with the mtspr and mfspr instructions using the SPR number,
1010.

2.1.2.2 Processor Identification Register (PIR)
The processor identification register (PIR) is a 32-bit register that holds a processor
identification tag in the four least significant bits (PIR[28–31]). This tag is useful for
processor differentiation in multiprocessor system designs. In addition, this tag is used for
several direct-store bus operations in the form of a “bus transaction from” tag.

Figure 2-3. Processor Identification Register

Table 2-2. Instruction Address Breakpoint Register Bit Settings

Bit Description

0–29 Word address to be compared

30 Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.

31 Translation enabled. This bit is compared with the MSR[IR] bit. An IABR match is
signaled only if these bits also match.

0 29 30 31

ADDRESS BE TE

PIR

0 27 28 31

Reserved

0 PID

2-10 PowerPC 604 RISC Microprocessor User's Manual

The PIR can be accessed with the mtspr and mfspr instructions using the SPR number,
1013. Note that although this number is defined by the OEA, the register structure is defined
by each implementation that implements this optional register.

2.1.2.3 Hardware Implementation-Dependent Register 0
The hardware implementation dependent register 0 (HID0) is an SPR that controls the state
of several functions within the 604.

Table 2-3. Hardware Implementation-Dependent Register 0 Bit Settings

Bit Description

0 Enable machine check input pin
0 The assertion of the MCP does not cause a machine check exception.
1 Enables the entry into a machine check exception based on assertion of the MCP input, detection of a

Cache Parity Error, detection of an address parity error, or detection of a data parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

1 Enable cache parity checking
0 The detection of a cache parity error does not cause a machine check exception.
1 Enables the entry into a machine check exception based on the detection of a cache parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

2 Enable machine check on address bus parity error
0 The detection of a address bus parity error does not cause a machine check exception.
1 Enables the entry into a machine check exception based on the detection of an address parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

3 Enable machine check on data bus parity error
0 The detection of a data bus parity error does not cause a machine check exception.
1 Enables the entry into a machine check exception based on the detection of a data bus parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

7 Disable snoop response high state restore
HID bit 7, if active, alters bus protocol slightly by preventing the processor from driving the SHD and ARTRY
signals to the high (negated) state. If this is done, then the system must restore the signals to the high state.

15 Not hard reset
0 A hard reset occurred if software had previously set this bit
1 A hard reset has not occurred.

16 Instruction cache enable
0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were marked

cache-inhibited (WIM = X1X). All potential cache accesses from the bus (snoop, cache ops) are ignored.
1 The instruction cache is enabled

17 Data cache enable
0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked

cache-inhibited (WIM = X1X). All potential cache accesses from the bus (snoop, cache ops) are ignored.
1 The data cache is enabled.

Chapter 2. PowerPC 604 Processor Programming Model 2-11

2.1.2.4 Performance Monitor Registers
The remaining five registers defined for use with the 604 are used by the performance
monitor. For more information about the performance monitor, see Chapter 9,
“Performance Monitor.”

2.1.2.4.1 Monitor Mode Control Register 0 (MMCR0)
The monitor mode control register 0 (MMCR0) is a 32-bit SPR (SPR 952) whose bits are
partitioned into bit fields that determine the events to be counted and recorded. The
selection of allowable combinations of events causes the counters to operate concurrently.

18 Instruction cache lock
0 Normal operation
1 All misses are treated as cache-inhibited. Hits occur as normal. Snoop and cache operations continue to

work as normal. This is the only method for “deallocating” an entry.

19 Data cache lock
0 Normal operation
1 All misses are treated as cache-inhibited. Hits occur as normal. Snoop and cache operations continue to

work as normal. This is the only method for “deallocating” an entry. The dcbz instruction takes an
alignment exception if the data cache is locked when it is executed, provided the target address had
been translated correctly.

20 Instruction cache invalidate all
0 The instruction cache is not invalidated.
1 When set, an invalidate operation is issued that marks the state of each clock in the instruction cache as

invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the invalidate-all operation is in
progress.

The bit is cleared when the invalidation operation begins (usually the cycle immediately following the write
operation to the register). Note that the instruction cache must be enabled for the invalidation to occur.

21 Data cache invalidate all
0 The data cache is not invalidated.
1 When set, an invalidate operation is issued that marks the state of each clock in the data cache as

invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the invalidate-all operation is in
progress.

The bit is cleared when the invalidation operation begins (usually the cycle immediately following the write
operation to the register). Note that the data cache must be enabled for the invalidation to occur.

24 Serial instruction execution disable
0 The 604 executes one instruction at a time. The 604 does not post a trace exception after each

instruction completes, as it would if MSR[SE] or MSR[BE] were set.
1 Instruction execution is not serialized.

29 Branch history table enable
0 The 604 uses static branch prediction as defined by the PowerPC architecture (UISA) for those branch

instructions that the BHT would have otherwise been used to predict (that is, those that use the CR as
the only mechanism to determine direction. For more information on static branch prediction, see
section “Conditional Branch Control,” in Chapter 4 of The Programming Environments Manual.

1 Allows the use of the 512-entry branch history table (BHT).
The BHT is initialized and disabled at power-on reset. The BHT is updated while it is disabled, so it can be
initialized before it is enabled.

Table 2-3. Hardware Implementation-Dependent Register 0 Bit Settings (Continued)

Bit Description

2-12 PowerPC 604 RISC Microprocessor User's Manual

The MMCR0 can be written to or read only in supervisor mode. The MMCR0 includes
controls, such as counter enable control, counter overflow interrupt control, counter event
selection, and counter freeze control.

This register must be cleared at power up. Reading this register does not change its
contents. The fields of the register are defined in Table 2-4.

Table 2-4. MMCR0 Bit Settings

Bit Name Description

0 DIS Disable counting unconditionally
0 The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.

1 DP Disable counting while in supervisor mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters

are not changed by hardware.

2 DU Disable counting while in user mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in user mode (MSR[PR] is set), the PMC counters are not

changed by hardware.

3 DMS Disable counting while MSR[PM] is set
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.

4 DMR Disable counting while MSR(PM) is zero.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.

5 ENINT Enable performance monitoring interrupt signaling.
0 Interrupt signaling is disabled.
1 Interrupt signaling is enabled.
This bit is cleared by hardware when a performance monitor interrupt is signaled.
To reenable these interrupt signals, software must set this bit after servicing the
performance monitor interrupt. The IPL ROM code clears this bit before passing
control to the operating system.

6 DISCOUNT Disable counting of PMC1 and PMC2 when a performance monitor interrupt is
signaled (that is, ((PMCnINTCONTROL = 1) & (PMCn[0] = 1) & (ENINT = 1)) or
the occurrence of an enabled time base transition with ((INTONBITTRANS =1) &
(ENINT = 1)).
0 The signalling of a performance monitoring interrupt has no effect on the

counting status of PMC1 and PMC2.
1 The signalling of a performance monitoring interrupt prevents the changing

of the PMC1 counter. The PMC2 counter will not change if
PMC2COUNTCTL = 0.

Because a time base signal could have occurred along with an enabled counter
negative condition, software should always reset INTONBITTRANS to zero, if the
value in INTONBITTRANS was a one.

7–8 RTCSELECT 64-bit time base, bit selection enable
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11 Pick bit 47 to count

Chapter 2. PowerPC 604 Processor Programming Model 2-13

2.1.2.4.2 Performance Monitor Counter Registers (PMC1 and PMC2)
PMC1 and PMC2 are 32-bit counters that can be programmed to generate interrupt signals
when they are negative. Counters are considered to be negative when the high-order bit (the
sign bit) becomes set; that is, they reach the value 2147483648 (0x8000_0000). However,
an interrupt is not signaled unless both PCMn[INTCONTROL] and MMCR0[ENINT] are
also set.

Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal condition
may occur with MSR[EE] cleared, but the interrupt is not taken until the EE bit is set.
Setting MMCR0[DISCOUNT] forces the counters stop counting when a counter interrupt
occurs.

PMC1 and PMC2 are SPRs 953 and 954, respectively, and can be read and written to by
using the mfspr and mtspr instructions. Software is expected to use the mtspr instruction
to explicitly set the PMC register to non-negative values. If software sets a negative value,
an erroneous interrupt may occur. For example, if both PCMn[INTCONTROL] and
MMCR0[ENINT] are set and the mtspr instruction is used to set a negative value, an
interrupt signal condition may be generated prior to the completion of the mtspr and the

9 INTONBITTRANS Cause interrupt signalling on bit transition (identified in RTCSELECT) from off to
on
0 Do not allow interrupt signal if chosen bit transitions.
1 Signal interrupt if chosen bit transitions.
Software is responsible for setting and clearing INTONBITTRANS.

10–15 THRESHOLD Threshold value. All 6 bits are supported by the 604; allowing threshold values
from 0 to 63. The intent of the THRESHOLD support is to be able to characterize
L1 data cache misses.

16 PMC1INTCONTROL Enable interrupt signaling due to PMC1 counter negative.
0 Disable PMC1 interrupt signaling due to PMC1 counter negative
1 Enable PMC1 Interrupt signaling due to PMC1 counter negative

17 PMC2INTCONTROL Enable interrupt signalling due to PMC2 counter negative. This signal overrides
the setting of DISCOUNT.
0 Disable PMC2 interrupt signaling due to PMC2 counter negative
1 Enable PMC2 Interrupt signaling due to PMC2 counter negative

18 PMC2COUNTCTL May be used to trigger counting of PMC2 after PMC1 has become negative or
after a performance monitoring interrupt is signaled.
0 Enable PMC2 counting
1 Disable PMC2 counting until PMC1 bit 0 is set or until a performance monitor

interrupt is signaled
This signal can be used to trigger counting of PMC2 after PMC1 has become
negative. This provides a triggering mechanism for counting after a certain
condition occurs or after a preset time has elapsed. It can be used to support
getting the count associated with a specific event.

19-25 PMC1SELECT PMC1 input selector, 128 events selectable; 25 defined. See Table 2-5.

26–31 PMC2SELECT PMC2 input selector, 64 events selectable; 21 defined. See Table 2-6.

Table 2-4. MMCR0 Bit Settings (Continued)

Bit Name Description

2-14 PowerPC 604 RISC Microprocessor User's Manual

values of the SIA and SDA may not have any relationship to the type of instruction being
counted.

The event that is to be monitored can be chosen by setting the appropriate bits in the
MMCR0[19–31]. The number of occurrences of these selected events is counted from the
time the MMCR0 was set either until a new value is introduced into the MMCR0 register
or until a performance monitor interrupt is generated. Table 2-5 lists the selectable events
with their appropriate MMCR0 encodings.

Table 2-5. Selectable Events—PMC1

MMCR0[19–25]
 Encoding

Description

000 0000 Nothing

000 0001 Processor cycles

000 0010 Number of instructions completed

000 0011 RTCSELECT bit transition

000 0100 Number of instructions dispatched

000 0101 Icache misses

000 0110 dtlb misses

000 0111 Branch predicted incorrectly

000 1000 Number of reservations requested (LARX is ready for execution)

000 1001 Number of load dcache misses that exceeded the threshold value with lateral L2 intervention

000 1010 Number of store dcache misses that exceeded the threshold value with lateral L2 intervention

000 1011 Number of mtspr instructions dispatched

000 1100 Number of sync instructions

000 1101 Number of eieio instructions

000 1110 Number of integer instructions being completed every cycle (no loads or stores)

000 1111 Number of floating-point instructions being completed every cycle (no loads or stores)

001 0000 LSU produced result

001 0001 SCIU1 produced result

001 0010 FPU produced result

001 0011 Instructions dispatched to the LSU

001 0100 Instructions dispatched to the SCIU1

001 0101 Instructions dispatched to the FP unit

001 0110 Snoop requests received

001 0111 Number of load dcache misses that exceeded the threshold value without lateral L2 intervention

001 1000 Number of store dcache misses that exceeded the threshold value without lateral L2 intervention

Chapter 2. PowerPC 604 Processor Programming Model 2-15

Bits MMCR0[26–31] are used for selecting events associated with PMC2. These settings are
shown in Table 2-6.

2.1.2.4.3 Sampled Instruction Address Register (SIA)
The two address registers contain the addresses of the data or the instruction that caused a
threshold-related performance monitor interrupt. For more information on
threshold-related interrupts, see Section 9.1.2.2, “Threshold Events.”

The SIA contains the effective address of an instruction executing at or around the time that
the processor signals the performance monitor interrupt condition. If the performance
monitor interrupt was triggered by a threshold event, the SIA contains the exact instruction
that caused the counter to become negative. The instruction whose effective address is put
in the SIA is called the sampled instruction.

Table 2-6. Selectable Events—PMC2

MMCR0[26–31]
 Select Encoding

Description

00 0000 Nothing

00 0001 Processor cycles

00 0010 Number of instructions completed

00 0011 RTCSELECT bit transition

00 0100 Number of instructions dispatched

00 0101 Number of cycles a load miss takes

00 0110 Data cache misses

00 0111 Instruction tlb misses

00 1000 Branches completed

00 1001 Number of reservations successfully obtained (STCX succeeded)

00 1010 Number of mfspr instructions dispatched

00 1011 Number of icbi instructions

00 1100 Number of isync instructions

00 1101 Branch unit produced result

00 1110 SCIU0 produced result

00 1111 MCIU produced result

01 0000 Instructions dispatched to the branch unit

01 0001 Instructions dispatched to the SCIU0

01 0010 Number of loads completed

01 0011 Instructions dispatched to the MCIU

01 0100 Number of snoop hit occurred

2-16 PowerPC 604 RISC Microprocessor User's Manual

If the performance monitor interrupt was caused by something besides a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA
contains an effective address that is not guaranteed to match the instruction in the SIA. The
SIA and SDA are supervisor-level SPRs.

The SIA can be read by using the mfspr instruction and written to by using the mtspr
instruction (SPR 955).

2.1.2.4.4 Sampled Data Address Register (SDA)
The SDA contains the effective address of an operand of an instruction executing at or
around the time that the processor signals the performance monitor interrupt condition. In
this case the SDA is not meant to have any connection with the value in the SIA. If the
performance monitor interrupt was triggered by a threshold event, the SDA contains the
effective address of the operand of the SIA.

If the performance monitor interrupt was caused by something other than a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA
contains an effective address that is not guaranteed to match the instruction in the SIA. The
SIA and SDA are supervisor-level SPRs.

The SDA can be read by using the mfspr instruction and written to by using the mtspr
instruction (SPR 959).

2.2 Operand Conventions
This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture—UISA and VEA. Detailed descriptions are provided of conventions
used for storing values in registers and memory, accessing PowerPC registers, and
representation of data in these registers.

2.2.1 Floating-Point Execution Models—UISA
The IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The standard
requires that single-precision arithmetic be provided for single-precision operands. The
standard permits double-precision arithmetic instructions to have either (or both)
single-precision or double-precision operands, but states that single-precision arithmetic
instructions should not accept double-precision operands.

• Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

• Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done
explicitly by software, while conversion from single- to double-precision is done implicitly
by the processor.

Chapter 2. PowerPC 604 Processor Programming Model 2-17

All PowerPC implementations provide the equivalent of the following execution models to
ensure that identical results are obtained. The definition of the arithmetic instructions for
infinities, denormalized numbers, and NaNs follow conventions described in the following
sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is one:

• Underflow during multiplication using a denormalized operand
• Overflow during division using a denormalized divisor

2.2.2 Data Organization in Memory and Data Transfers
Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

2.2.3 Alignment and Misaligned Accesses
The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 2-7. (Although not permitted as memory operands, quad words are shown because
quad-word alignment is desirable for certain memory operands).

The concept of alignment is also applied more generally to data in memory. For example,
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment may affect performance. For single-register memory access instructions, the best
performance is obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned.

2.2.4 Floating-Point Operand
The 604 provides hardware support for all single- and double-precision floating-point
operations for most value representations and all rounding modes. This architecture
provides for hardware to implement a floating-point system as defined in ANSI/IEEE

2-18 PowerPC 604 RISC Microprocessor User's Manual

standard 754-1985, IEEE Standard for Binary Floating Point Arithmetic. Detailed
information about the floating-point execution model can be found in Chapter 3, “Operand
Conventions,” in The Programming Environments Manual.

The 604 supports non-IEEE mode whenever FPSCR[29] is set. In this mode, denormalized
numbers, NaNs, and some IEEE invalid operations are treated in a non-IEEE conforming
manner. This is accomplished by delivering results that approximate the values required by
the IEEE standard. Table 2-7 summarizes the conditions and mode behavior for operands.

Table 2-7. Floating-Point Operand Data Type Behavior

Operand A
Data Type

Operand B
Data Type

Operand C
Data Type

IEEE Mode
(NI = 0)

Non-IEEE Mode
(NI = 1)

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalize all three Zero all three

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalized or zero Normalize A and B Zero A and B

Normalized or zero Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalize B and C Zero B and C

Single denormalized
Double denormalized

Normalized or zero Single denormalized
Double denormalized

Normalize A and C Zero A and C

Single denormalized
Double denormalized

Normalized or zero Normalized or zero Normalize A Zero A

Normalized or zero Single denormalized
Double denormalized

Normalized or zero Normalize B Zero B

Normalized or zero Normalized or zero Single denormalized
Double denormalized

Normalize C Zero C

Single QNaN
Single SNaN
Double QNaN
Double SNaN

Don’t care Don’t care QNaN[1] QNaN[1]

Don’t care Single QNaN
Single SNaN
Double QNaN
Double SNaN

Don’t care QNaN[1] QNaN[1]

Don’t care Don’t care Single QNaN
Single SNaN
Double QNaN
Double SNaN

QNaN[1] QNaN[1]

Single normalized
Single infinity
Single zero
Double normalized
Double infinity
Double zero

Single normalized
Single infinity
Single zero
Double normalized
Double infinity
Double zero

Single normalized
Single infinity
Single zero
Double normalized
Double infinity
Double zero

Do the operation Do the operation

1 Prioritize according to Chapter 3, “Operand Conventions,” in The Programming Environments Manual.

Chapter 2. PowerPC 604 Processor Programming Model 2-19

Table 2-8 summarizes the mode behavior for results.

2.2.5 Effect of Operand Placement on Performance
The PowerPC VEA states that the placement (location and alignment) of operands in
memory may affect the relative performance of memory accesses. The best performance is
guaranteed if memory operands are aligned on natural boundaries. To obtain the best
performance across the widest range of PowerPC processor implementations, the
programmer should assume the performance model described in Chapter 3, “Operand
Conventions,” in The Programming Environments Manual.

2.3 Instruction Set Summary
This chapter describes instructions and addressing modes defined for the 604. These
instructions are divided into the following functional categories:

• Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, “Integer Instructions.”

• Floating-point instructions—These include floating-point arithmetic instructions, as
well as instructions that affect the floating-point status and control register (FPSCR).
For more information, see Section 2.3.4.2, “Floating-Point Instructions.”

Table 2-8. Floating-Point Result Data Type Behavior

Precision Data Type IEEE Mode (NI = 0) Non-IEEE Mode (NI = 1)

Single Denormalized Return single-precision
denormalized number with trailing
zeros.

Return zero.

Single Normalized
Infinity
Zero

Return the result. Return the result.

Single QNaN
SNaN

Return QNaN. Return QNaN.

Single INT Place integer into low word of FPR. If (Invalid Operation)
 then
 Place (0x8000) into FPR[32–63]
 else
 Place integer into FPR[32–63].

Double Denormalized Return double precision
denormalized number.

Return zero.

Double Normalized
Infinity
Zero

Return the result. Return the result.

Double QNaN
SNaN

Return QNaN. Return QNaN.

Double INT Not supported by 604 Not supported by 604

2-20 PowerPC 604 RISC Microprocessor User's Manual

• Load and store instructions—These include integer and floating-point load and store
instructions. For more information, see Section 2.3.4.3, “Load and Store
Instructions.”

• Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 2.3.4.4, “Branch and Flow
Control Instructions.”

• Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. For more
information, see Section 2.3.4.6, “Processor Control Instructions—UISA,”
Section 2.3.5.1, “Processor Control Instructions—VEA,” and Section 2.3.6.2,
“Processor Control Instructions—OEA.”

• Memory synchronization instructions—These instructions are used for memory
synchronizing. See Section 2.3.4.7, “Memory Synchronization
Instructions—UISA,” Section 2.3.5.2, “Memory Synchronization
Instructions—VEA,” for more information.

• Memory control instructions—These instructions provide control of caches, TLBs,
and segment registers. For more information, see Section 2.3.5.3, “Memory Control
Instructions—VEA,” and Section 2.3.6.3, “Memory Control Instructions—OEA.”

• External control instructions—These include instructions for use with special
input/output devices. For more information, see Section 2.3.5.4, “Optional External
Control Instructions.”

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. This information, which is useful
in taking full advantage of the 604’s superscalar parallel instruction execution, is provided
in Chapter 6, “Instruction Timing.”

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and double-precision floating-point operands. The PowerPC architecture
uses instructions that are four bytes long and word-aligned. It provides for byte, half-word,
and word operand loads and stores between memory and a set of 32 general-purpose
registers (GPRs). It also provides for word and double-word operand loads and stores
between memory and a set of 32 floating-point registers (FPRs).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for some of the frequently-used instructions; see Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual for a complete list of simplified

Chapter 2. PowerPC 604 Processor Programming Model 2-21

mnemonics. Note that the architecture specification refers to simplified mnemonics as
extended mnemonics. Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in that
document.

2.3.1 Classes of Instructions
The 604 instructions belong to one of the following three classes:

• Defined
• Illegal
• Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, a PowerPC
instruction defined for 64-bit implementations are treated as illegal by 32-bit
implementations such as the 604.

The class is determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of a reserved instruction, the instruction is illegal.

Instruction encodings that are now illegal may become assigned to instructions in the
architecture or may be reserved by being assigned to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined
If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly undefined results for a given instruction may vary between implementations,
and between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class
Defined instructions are guaranteed to be supported in all PowerPC implementations,
except as stated in the instruction descriptions in Chapter 8, “Instruction Set,” in The
Programming Environments Manual. The 604 provides hardware support for all
instructions defined for 32-bit implementations.

A PowerPC processor invokes the illegal instruction error handler (part of the program
exception) when the unimplemented PowerPC instructions are encountered so they may be
emulated in software, as required. Note that the architecture specification refers to
exceptions as interrupts.

The 604 provides hardware support for all instructions defined for 32-bit implementations.
The 604 does not support the optional fsqrt, fsqrts, and tlbia instructions.

2-22 PowerPC 604 RISC Microprocessor User's Manual

A defined instruction can have invalid forms. The 604 provides limited support for
instructions that are represented in an invalid form. Appendix B, “Invalid Instruction
Forms,” lists all invalid instruction forms and specifies the operation of the 604 upon
detecting each.

2.3.1.3 Illegal Instruction Class
Illegal instructions can be grouped into the following categories:

• Instructions not defined in the PowerPC architecture.The following primary
opcodes are defined as illegal but may be used in future extensions to the
architecture:

1, 4, 5, 6, 9, 22, 56, 57, 60, 61

Future versions of the PowerPC architecture may define any of these instructions to
perform new functions.

• Instructions defined in the PowerPC architecture but not implemented in a specific
PowerPC implementation. For example, instructions that can be executed on 64-bit
PowerPC processors are considered illegal by 32-bit processors such as the 604.

The following primary opcodes are defined for 64-bit implementations only and are
illegal on the 604:

2, 30, 58, 62

• All unused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, “Instructions Sorted by Opcode,” and
Section 2.3.1.4, “Reserved Instruction Class.” Notice that extended opcodes for
instructions defined only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa. The following primary opcodes have unused
extended opcodes.

17, 19, 31, 59, 63 (Primary opcodes 30 and 62 are illegal for all 32-bit
implementations, but as 64-bit opcodes they have some unused extended opcodes.)

• An instruction consisting of only zeros is guaranteed to be an illegal instruction. This
increases the probability that an attempt to execute data or uninitialized memory
invokes the system illegal instruction error handler (a program exception). Note that
if only the primary opcode consists of all zeros. The instruction is considered a
reserved instruction, as described in Section 2.3.1.4, “Reserved Instruction Class.”

The 604 invokes the system illegal instruction error handler (a program exception) when it
detects any instruction from this class or any instructions defined only for 64-bit
implementations.

See Section 4.5.7, “Program Exception (0x00700),” for additional information about illegal
and invalid instruction exceptions. With the exception of the instruction consisting entirely
of binary zeros, the illegal instructions are available for further additions to the PowerPC
architecture.

Chapter 2. PowerPC 604 Processor Programming Model 2-23

2.3.1.4 Reserved Instruction Class
Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
“Program Exception (0x00700),” in Chapter 6, “Exceptions,” in The Programming
Environments Manual for additional information about illegal and invalid instruction
exceptions.

The PowerPC architecture defines four types of reserved instructions:

• Instructions in the POWER architecture not part of the PowerPC UISA

POWER architecture incompatibilities and how they are handled by PowerPC
processors are listed in Appendix B, “POWER Architecture Cross Reference,” in
The Programming Environments Manual.

• Implementation-specific instructions required to conform to the PowerPC
architecture

• Architecturally-allowed extended opcodes

• Implementation-specific instructions

2.3.2 Addressing Modes
This section provides an overview of conventions for addressing memory and for
calculating effective addresses as defined by the PowerPC architecture for 32-bit
implementations. For more detailed information, see “Conventions,” in Chapter 4,
“Addressing Modes and Instruction Set Summary,” of The Programming Environments
Manual.

2.3.2.1 Memory Addressing
A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

2.3.2.2 Memory Operands
Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The PowerPC architecture supports both
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian.
See “Byte Ordering,” in Chapter 3, “Operand Conventions,” of The Programming
Environments Manual for more information about big- and little-endian byte ordering.

2-24 PowerPC 604 RISC Microprocessor User's Manual

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about
memory operands, see Chapter 3, “Operand Conventions,” of The Programming
Environments Manual.

2.3.2.3 Effective Address Calculation
An effective address (EA) is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

Load and store operations have three categories of effective address generation:

• Register indirect with immediate index mode
• Register indirect with index mode
• Register indirect mode

Refer to Section 2.3.4.3.2, “Integer Load and Store Address Generation,” for a detailed
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

• Immediate
• Link register indirect
• Count register indirect

2.3.2.4 Synchronization
The synchronization described in this section refers to the state of the processor that is
performing the synchronization.

2.3.2.4.1 Context Synchronization
The System Call (sc) and Return from Interrupt (rfi) instructions perform context
synchronization by allowing previously issued instructions to complete before performing
a change in context. Execution of one of these instructions ensures the following:

• No higher priority exception exists (sc).

• All previous instructions have completed to a point where they can no longer cause
an exception. If a prior memory access instruction causes direct-store error
exceptions, the results are guaranteed to be determined before this instruction is
executed.

Chapter 2. PowerPC 604 Processor Programming Model 2-25

• Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

• The instructions following the sc or rfi instruction execute in the context established
by these instructions.

2.3.2.4.2 Execution Synchronization
An instruction is execution synchronizing if all previously initiated instructions appear to
have completed before the instruction is initiated or, in the case of sync and isync, before
the instruction completes. For example, the Move to Machine State Register (mtmsr)
instruction is execution synchronizing. It ensures that all preceding instructions have
completed execution and will not cause an exception before the instruction executes, but
does not ensure subsequent instructions execute in the newly established environment. For
example, if the mtmsr sets the MSR[PR] bit, unless an isync immediately follows the
mtmsr instruction, a privileged instruction could be executed or privileged access could be
performed without causing an exception even though the MSR[PR] bit indicates user mode.

2.3.2.4.3 Instruction-Related Exceptions
There are two kinds of exceptions in the 604—those caused directly by the execution of an
instruction and those caused by an asynchronous event (or interrupts). Either may cause
components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

• An attempt to execute an illegal instruction causes the illegal instruction (program
exception) handler to be invoked. An attempt by a user-level program to execute the
supervisor-level instructions listed below causes the privileged instruction (program
exception) handler to be invoked. The 604 provides the following supervisor-level
instructions: dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi,
tlbie, and tlbsync. Note that the privilege level of the mfspr and mtspr instructions
depends on the SPR encoding.

• An attempt to access memory that is not available (page fault) causes the ISI
exception handler to be invoked.

• An attempt to access memory with an effective address alignment that is invalid for
the instruction causes the alignment exception handler to be invoked.

• The execution of an sc instruction invokes the system call exception handler that
permits a program to request the system to perform a service.

• The execution of a trap instruction invokes the program exception trap handler.

• The execution of a floating-point instruction when floating-point instructions are
disabled invokes the floating-point unavailable handler.

• The execution of an instruction that causes a floating-point exception while
exceptions are enabled in the MSR invokes the program exception handler.

Exceptions caused by asynchronous events are described in Chapter 4, “Exceptions.”

2-26 PowerPC 604 RISC Microprocessor User's Manual

2.3.3 Instruction Set Overview
This section provides a brief overview of the PowerPC instructions implemented in the 604
and highlights any special information with respect to how the 604 implements a particular
instruction. Note that the categories used in this section correspond to those used in
Chapter 4, “Addressing Modes and Instruction Set Summary,” in The Programming
Environments Manual. These categorizations are somewhat arbitrary and are provided for
the convenience of the programmer and do not necessarily reflect the PowerPC architecture
specification.

Note that some instructions have the following optional features:

• CR Update—The dot (.) suffix on the mnemonic enables the update of the CR.
• Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

2.3.4 PowerPC UISA Instructions
The PowerPC UISA includes the base user-level instruction set (excluding a few user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:

• Integer arithmetic instructions
• Integer compare instructions
• Integer logical instructions
• Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the integer exception register (XER), and into condition register (CR) fields.

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-9 lists the integer arithmetic instructions for the PowerPC processors.

Table 2-9. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax

Add Immediate addi rD,rA,SIMM

Add Immediate Shifted addis rD,rA,SIMM

Add add (add. addo addo.) rD,rA,rB

Subtract From subf (subf. subfo subfo.) rD,rA,rB

Add Immediate Carrying addic rD,rA,SIMM

Add Immediate Carrying and Record addic. rD,rA,SIMM

Chapter 2. PowerPC 604 Processor Programming Model 2-27

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. The subf instructions subtract the second operand (rA) from the
third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for examples.

The UISA states that for some implementations that execute instructions that set the
overflow bit (OE) or the carry bit (CA) it may either execute these instructions slowly or it
may prevent the execution of the subsequent instruction until the operation is complete. The
604 arithmetic instructions may suffer this penalty. The summary overflow bit (SO) and
overflow bit (OV) in the integer exception register are set to reflect an overflow condition
of a 32-bit result. This may only occur when the overflow enable bit is set (OE = 1).

Subtract from Immediate Carrying subfic rD,rA,SIMM

Add Carrying addc (addc. addco addco.) rD,rA,rB

Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB

Add Extended adde (adde. addeo addeo.) rD,rA,rB

Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB

Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA

Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA

Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA

Negate neg (neg. nego nego.) rD,rA

Multiply Low Immediate mulli rD,rA,SIMM

Multiply Low mullw (mullw. mullwo mullwo.) rD,rA,rB

Multiply High Word mulhw (mulhw.) rD,rA,rB

Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB

Divide Word divw (divw. divwo divwo.) rD,rA,rB

Divide Word Unsigned divwu divwu. divwuo divwuo. rD,rA,rB

Table 2-9. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax

2-28 PowerPC 604 RISC Microprocessor User's Manual

2.3.4.1.2 Integer Compare Instructions
The integer compare instructions algebraically or logically compare the contents of register
rA with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of register rB. The comparison is signed for the cmpi
and cmp instructions, and unsigned for the cmpli and cmpl instructions. Table 2-10
summarizes the integer compare instructions.

The crfD operand can be omitted if the result of the comparison is to be placed in CR0.
Otherwise the target CR field must be specified in the instruction crfD field, using an
explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual.

2.3.4.1.3 Integer Logical Instructions
The logical instructions shown in Table 2-11 perform bit-parallel operations on the
specified operands. Logical instructions with the CR updating enabled (uses dot suffix) and
instructions andi. and andis. set CR field CR0 to characterize the result of the logical
operation. Logical instructions do not affect the XER[SO], XER[OV], and XER[CA] bits.

See Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
simplified mnemonic examples for integer logical operations.

Table 2-10. Integer Compare Instructions

Name Mnemonic Operand Syntax

Compare Immediate cmpi crfD,L,rA,SIMM

Compare cmp crfD,L,rA,rB

Compare Logical Immediate cmpli crfD,L,rA,UIMM

Compare Logical cmpl crfD,L,rA,rB

Table 2-11. Integer Logical Instructions

Name Mnemonic
Operand
Syntax

AND Immediate andi. rA,rS,UIMM

AND Immediate Shifted andis. rA,rS,UIMM

OR Immediate ori rA,rS,UIMM

OR Immediate Shifted oris rA,rS,UIMM

XOR Immediate xori rA,rS,UIMM

XOR Immediate Shifted xoris rA,rS,UIMM

AND and (and.) rA,rS,rB

OR or (or.) rA,rS,rB

Chapter 2. PowerPC 604 Processor Programming Model 2-29

2.3.4.1.4 Integer Rotate and Shift Instructions
Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is 0 the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

The integer rotate instructions are summarized in Table 2-12.

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual) are provided to make coding of
such shifts simpler and easier to understand.

XOR xor (xor.) rA,rS,rB

NAND nand (nand.) rA,rS,rB

NOR nor (nor.) rA,rS,rB

Equivalent eqv (eqv.) rA,rS,rB

AND with Complement andc (andc.) rA,rS,rB

OR with Complement orc (orc.) rA,rS,rB

Extend Sign Byte extsb (extsb.) rA,rS

Extend Sign Half Word extsh (extsh.) rA,rS

Count Leading Zeros Word cntlzw (cntlzw.) rA,rS

Table 2-12. Integer Rotate Instructions

Name Mnemonic Operand Syntax

Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm.) rA,rS,SH,MB,ME

Rotate Left Word then AND with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) rA,rS,SH,MB,ME

Table 2-11. Integer Logical Instructions (Continued)

Name Mnemonic
Operand
Syntax

2-30 PowerPC 604 RISC Microprocessor User's Manual

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts,” in The Programming Environments Manual. The integer shift instructions are
summarized in Table 2-13.

2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

• Floating-point arithmetic instructions
• Floating-point multiply-add instructions
• Floating-point rounding and conversion instructions
• Floating-point compare instructions
• Floating-point status and control register instructions
• Floating-point move instructions

See Section 2.3.4.3, “Load and Store Instructions,” for information about floating-point
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754
standard, but requires software support to conform with that standard. All floating-point
operations conform to the IEEE 754 standard, except if software sets the non-IEEE mode
bit (NI) in the FPSCR.

2.3.4.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 2-14.

Table 2-13. Integer Shift Instructions

Name Mnemonic Operand Syntax

Shift Left Word slw (slw.) rA,rS,rB

Shift Right Word srw (srw.) rA,rS,rB

Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH

Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

Table 2-14. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax

Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB

Floating Add Single fadds (fadds.) frD,frA,frB

Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB

Floating Subtract Single fsubs (fsubs.) frD,frA,frB

Floating Multiply (Double-Precision) fmul (fmul.) frD,frA,frC

Floating Multiply Single fmuls (fmuls.) frD,frA,frC

Floating Divide (Double-Precision) fdiv (fdiv.) frD,frA,frB

Chapter 2. PowerPC 604 Processor Programming Model 2-31

All single-precision arithmetic instructions are performed using a double-precision format.
The floating-point architecture is a single-pass implementation for double-precision
products. In most cases, a single-precision instruction using only single-precision
operands, in double-precision format, has the same latency as its double-precision
equivalent.

2.3.4.2.2 Floating-Point Multiply-Add Instructions
These instructions combine multiply and add operations without an intermediate rounding
operation. The floating-point multiply-add instructions are summarized in Table 2-15.

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions
The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The
floating-point convert instructions convert a 64-bit double-precision floating-point number
to a 32-bit signed integer number.

Floating Divide Single fdivs (fdivs.) frD,frA,frB

Floating Square Root (Double-Precision) fsqrt (fsqrt.) frD,frB

Floating Square Root Single fsqrts (fsqrts.) frD,frB

Floating Reciprocal Estimate Single fres (fres.) frD,frB

Floating Reciprocal Square Root Estimate frsqrte (frsqrte.) frD,frB

Floating Select fsel frD,frA,frC,frB

Table 2-15. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax

Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB

Floating Multiply-Add Single fmadds (fmadds.) frD,frA,frC,frB

Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB

Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB

Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB

Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frA,frC,frB

Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frA,frC,frB

Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) frD,frA,frC,frB

Table 2-14. Floating-Point Arithmetic Instructions (Continued)

Name Mnemonic Operand Syntax

2-32 PowerPC 604 RISC Microprocessor User's Manual

Examples of uses of these instructions to perform various conversions can be found in
Appendix D, “Floating-Point Models,” in The Programming Environments Manual.

2.3.4.2.4 Floating-Point Compare Instructions
Floating-point compare instructions compare the contents of two floating-point registers.
The comparison ignores the sign of zero (that is +0 = –0). The floating-point compare
instructions are summarized in Table 2-17.

Within the PowerPC architecture, an fcmpu or fcmpo instruction with the Rc bit set can
cause an illegal instruction program exception or produce a boundedly undefined result. In
the 604, crfD should be treated as undefined.

2.3.4.2.5 Floating-Point Status and Control Register Instructions
Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that all
floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. The FPSCR instructions are summarized in Table 2-18.

Table 2-16. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax

Floating Round to Single frsp (frsp.) frD,frB

Floating Convert to Integer Word fctiw (fctiw.) frD,frB

Floating Convert to Integer Word with Round toward Zero fctiwz (fctiwz.) frD,frB

Table 2-17. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax

Floating Compare Unordered fcmpu crfD,frA,frB

Floating Compare Ordered fcmpo crfD,frA,frB

Table 2-18. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax

Move from FPSCR mffs (mffs.) frD

Move to Condition Register from FPSCR mcrfs crfD,crfS

Move to FPSCR Field Immediate mtfsfi (mtfsfi.) crfD,IMM

Move to FPSCR Fields mtfsf (mtfsf.) FM,frB

Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) crbD

Move to FPSCR Bit 1 mtfsb1 (mtfsb1.) crbD

Chapter 2. PowerPC 604 Processor Programming Model 2-33

2.3.4.2.6 Floating-Point Move Instructions
Floating-point move instructions copy data from one FPR to another. The floating-point
move instructions do not modify the FPSCR. The CR update option in these instructions
controls the placing of result status into CR1. Table 2-19 summarizes the floating-point
move instructions.

2.3.4.3 Load and Store Instructions
Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

• Integer load instructions
• Integer store instructions
• Integer load and store with byte reverse instructions
• Integer load and store multiple instructions
• Floating-point load instructions
• Floating-point store instructions
• Memory synchronization instructions

Implementation Notes—The following describes how the 604 handles misalignment:

• If an unaligned memory access crosses a 4-Kbyte page boundary, within a normal
segment, an exception may occur when the boundary is crossed (that is, a protection
violation occurs on the new page). In these cases, the 604 triggers a DSI exception
and the instruction may have partially completed.

• Some misaligned memory accesses suffer performance degradation as compared to
an aligned access of the same type. Memory accesses that cross a word boundary are
broken into multiple discrete accesses by the load/store unit, except floating-point
doubles aligned on a double-word boundary. Any noncacheable access that crosses
a double-word boundary is broken into multiple external bus tenures.

Table 2-19. Floating-Point Move Instructions

Name Mnemonic Operand Syntax

Floating Move Register fmr (fmr.) frD,frB

Floating Negate fneg (fneg.) frD,frB

Floating Absolute Value fabs (fabs.) frD,frB

Floating Negative Absolute Value fnabs (fnabs.) frD,frB

2-34 PowerPC 604 RISC Microprocessor User's Manual

• Any operation that crosses a word boundary (double word for floating-point doubles
aligned on a double-word boundary) is broken into two accesses. Each of these
accesses is translated. If either translation results in a data memory violation, a DSI
exception is signaled. If two translations cross from T = 1 into T = 0 space (a
programming error), the 604 completes all of the accesses for the operation, the
segment information from the T = 1 space is presented on the bus for every access
of the operation, and he 604 requires a direct-store protocol “Reply” from the
device. If two translations cross from T = 0 into T = 1 space, a DSI exception is
signaled.

• In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the
integer load indexed instructions (lbzx, lbzux, lhzx, lhzux, lhax, lhaux, lwzx,
lwzux), the integer store indexed instructions (stbx, stbux, sthx, sthux, stwx,
stwux), the load and store with byte-reversal instructions (lhbrx, lwbrx, sthbrx,
stwbrx), the string instructions (lswi, lswx, stswi, stswx), and the synchronization
instructions (sync, lwarx). In the 604, executing one of these invalid instruction
forms causes CR0 to be set to an undefined value. The floating-point load and store
indexed instructions (lfsx, lfsux, lfdx, lfdux, stfsx, stfsux, stfdx, stfdux) are also
invalid when the Rc bit is one. In the 604, executing one of these invalid instruction
forms causes CR0 to be set to an undefined value.

2.3.4.3.1 Self-Modifying Code
When a processor modifies a memory location that may be contained in the instruction
cache, software must ensure that memory updates are visible to the instruction fetching
mechanism. This can be achieved by the following instruction sequence:

dcbst |update memory
sync |wait for update
icbi |remove (invalidate) copy in instruction cache
sync |wait for icbi to be globally performed
isync |remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Since
instruction fetching bypasses the data cache, changes to items in the data cache may not be
reflected in memory until the fetch operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement unified
secondary caches, and designers should carefully follow the guidelines for maintaining
cache coherency that are provided in the VEA, and discussed in Chapter 5, “Cache Model
and Memory Coherency,” in The Programming Environments Manual. Because the 604
does not broadcast the M bit for instruction fetches, external caches are subject to
coherency paradoxes.

Chapter 2. PowerPC 604 Processor Programming Model 2-35

2.3.4.3.2 Integer Load and Store Address Generation
Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, “Effective Address Calculation,” for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally
aligned may suffer performance degradation. Refer to Section 4.5.6, “Alignment Exception
(0x00600),” for additional information about load and store address alignment exceptions.

2.3.4.3.3 Register Indirect Integer Load Instructions
For integer load instructions, the byte, half word, word, or double word addressed by the
EA (effective address) is loaded into rD. Many integer load instructions have an update
form, in which rA is updated with the generated effective address. For these forms, if
rA ≠ 0 and rA ≠ rD (otherwise invalid), the EA is placed into rA and the memory element
(byte, half word, word, or double word) addressed by the EA is loaded into rD. Note that
the PowerPC architecture defines load with update instructions with operand rA = 0 or
rA = rD as invalid forms.

Implementation Notes—The following notes describe the 604 implementation of integer
load instructions:

• In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the
integer load indexed instructions (lbzx, lbzux, lhzx, lhzux, lhax, lhaux, lwzx, and
lwzux). In the 604, executing one of these invalid instruction forms causes CR0 to
be set to an undefined value.

• For load with update instructions (lbzu, lbzux, lhzu, lhzux, lhau, lhaux, lwzu,
lwzux, lfsu, lfsux, lfdu, lfdux), when rA = 0 or rA = rD the instruction form is
considered invalid. If rA = 0, the 604 sets GPR0 to an undefined value. If rA = rD,
the 604 sets rD to an undefined value.

• The PowerPC architecture cautions programmers that some implementations of the
architecture may execute the Load Half Algebraic (lha, lhax) instructions with
greater latency than other types of load instructions. This is not the case for the 604.

Table 2-20 summarizes the integer load instructions.

Table 2-20. Integer Load Instructions

Name Mnemonic Operand Syntax

Load Byte and Zero lbz rD,d(rA)

Load Byte and Zero Indexed lbzx rD,rA,rB

Load Byte and Zero with Update lbzu rD,d(rA)

Load Byte and Zero with Update Indexed lbzux rD,rA,rB

Load Half Word and Zero lhz rD,d(rA)

Load Half Word and Zero Indexed lhzx rD,rA,rB

2-36 PowerPC 604 RISC Microprocessor User's Manual

2.3.4.3.4 Integer Store Instructions
For integer store instructions, the contents of rS are stored into the byte, half word, word or
double word in memory addressed by the EA (effective address). Many store instructions
have an update form, in which rA is updated with the EA. For these forms, the following
rules apply:

• If rA ≠ 0, the effective address is placed into rA.

• If rS = rA, the contents of register rS are copied to the target memory element, then
the generated EA is placed into rA (rS).

The PowerPC architecture defines store with update instructions with rA = 0 as an invalid
form. In addition, it defines integer store instructions with the CR update option enabled
(Rc field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 2-21
summarizes the integer store instructions.

Load Half Word and Zero with Update lhzu rD,d(rA)

Load Half Word and Zero with Update Indexed lhzux rD,rA,rB

Load Half Word Algebraic lha rD,d(rA)

Load Half Word Algebraic Indexed lhax rD,rA,rB

Load Half Word Algebraic with Update lhau rD,d(rA)

Load Half Word Algebraic with Update Indexed lhaux rD,rA,rB

Load Word and Zero lwz rD,d(rA)

Load Word and Zero Indexed lwzx rD,rA,rB

Load Word and Zero with Update lwzu rD,d(rA)

Load Word and Zero with Update Indexed lwzux rD,rA,rB

Table 2-20. Integer Load Instructions (Continued)

Name Mnemonic Operand Syntax

Chapter 2. PowerPC 604 Processor Programming Model 2-37

Implementation Notes—The following notes describe the 604 implementation of integer
store instructions:

• In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the
integer store indexed instructions (stbx, stbux, sthx, sthux, stwx, stwux). In the
604, executing one of these invalid instruction forms causes CR0 to be set to an
undefined value.

• For the store with update instructions (stbu, stbux, sthu, sthux, stwu, stwux, stfsu,
stfsux, stfdu, stfdux), when rA = 0, the instruction form is considered invalid. In
this case, the 604 sets GPR0 to an undefined value.

2.3.4.3.5 Integer Load and Store with Byte Reverse Instructions
Table 2-22 describes integer load and store with byte reverse instructions. When used in a
PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a
PowerPC system operating with little-endian byte order, these instructions have the effect
of loading and storing data in big-endian order. For more information about big-endian and
little-endian byte ordering, see Section 3.2.2, “Byte Ordering,” in The Programming
Environments Manual.

Implementation Note—In the PowerPC architecture, the Rc bit must be zero for almost
all load and store instructions. If the Rc bit is one, the instruction form is invalid. These
include the load and store with byte-reversal instructions (lhbrx, lwbrx, sthbrx, stwbrx).

Table 2-21. Integer Store Instructions

Name Mnemonic Operand Syntax

Store Byte stb rS,d(rA)

Store Byte Indexed stbx rS,rA,rB

Store Byte with Update stbu rS,d(rA)

Store Byte with Update Indexed stbux rS,rA,rB

Store Half Word sth rS,d(rA)

Store Half Word Indexed sthx rS,rA,rB

Store Half Word with Update sthu rS,d(rA)

Store Half Word with Update Indexed sthux rS,rA,rB

Store Word stw rS,d(rA)

Store Word Indexed stwx rS,rA,rB

Store Word with Update stwu rS,d(rA)

Store Word with Update Indexed stwux rS,rA,rB

2-38 PowerPC 604 RISC Microprocessor User's Manual

In the 604, executing one of these invalid instruction forms causes CR0 to be set to an
undefined value.

2.3.4.3.6 Integer Load and Store Multiple Instructions
The load/store multiple instructions are used to move blocks of data to and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a DSI exception associated with the address translation of the second page.

Implementation Notes—The following describes the 604 implementation of the
load/store multiple instruction:

• The PowerPC architecture requires that memory operands for Load Multiple and
Store Multiple instructions (lmw and stmw) be word-aligned. If the operands to
these instructions are not word-aligned, an alignment exception occurs. The 604
provides hardware support for lmw, stmw, lswi, lswx, stswi, and stswx instructions
to cross a page boundary. However, a DSI exception may occur when the boundary
is crossed (for example, if a protection violation occurs on the new page).

• Executing an lmw instruction in which rA is in the range of registers to be loaded
or in which RA = RT = 0 is invalid in the architecture. In the 604, all registers loaded
are set to undefined values. Any exceptions resulting from a memory access cause
the system error handler normally associated with the exception to be invoked.

• The 604’s implementation of the lmw instruction allows one word of data to be
transferred to the GPRs per internal clock cycle (that is, one register is filled per
clock) whenever the data is found in the cache. For the stmw instruction, data is
transferred from the GPRs to the cache at a rate of one word (GPR) per clock cycle.

• When an lmw or stmw access is to noncacheable memory, data is transferred on the
external bus at a rate of one word per external bus tenure. Bus tenures are pipelined,
allowing a maximum tenure rate of one address tenure every three bus-clock cycles.

• The load multiple and load string instructions can be interrupted after the instruction
has partially completed. If rA has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new value of rA,
which might be anywhere in memory; therefore, the system error handler may be
invoked.

Table 2-22. Integer Load and Store with Byte Reverse Instructions

Name Mnemonic Operand Syntax

Load Half Word Byte-Reverse Indexed lhbrx rD,rA,rB

Load Word Byte-Reverse Indexed lwbrx rD,rA,rB

Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB

Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

Chapter 2. PowerPC 604 Processor Programming Model 2-39

The PowerPC architecture defines the load multiple word (lmw) instruction with rA in the
range of registers to be loaded as an invalid form.

2.3.4.3.7 Integer Load and Store String Instructions
The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results. Table 2-24
summarizes the integer load and store string instructions.

In other PowerPC implementations operating with little-endian byte order, execution of a
load or string instruction causes the system alignment error handler to be invoked; see
Section 3.2.2, “Byte Ordering,” in The Programming Environments Manual for more
information.

Load string and store string instructions may involve operands that are not word-aligned.

As described in Section 4.5.6, “Alignment Exception (0x00600),” a misaligned string
operation suffers a performance penalty compared to an aligned operation of the same type.
A non–word-aligned string operation that crosses a 4-Kbyte boundary, or a word-aligned
string operation that crosses a 256-Mbyte boundary always causes an alignment exception.
A non–word-aligned string operation that crosses a double-word boundary is also slower
than a word-aligned string operation.

Table 2-23. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Syntax

Load Multiple Word lmw rD,d(rA)

Store Multiple Word stmw rS,d(rA)

Table 2-24. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax

Load String Word Immediate lswi rD,rA,NB

Load String Word Indexed lswx rD,rA,rB

Store String Word Immediate stswi rS,rA,NB

Store String Word Indexed stswx rS,rA,rB

2-40 PowerPC 604 RISC Microprocessor User's Manual

Implementation Note—The following describes the 604 implementation of the load/store
string instruction:

• The 604 provides hardware support for lmw, stmw, lswi, lswx, stswi, and stswx
instructions to cross a page boundary. However, a DSI exception may occur when
the boundary is crossed (for example, if a protection violation occurs on the new
page).

• An lswi or lswx instruction in which rA or rB is in the range of registers potentially
to be loaded or in which rA = rD = 0 is an invalid instruction form. In the 604, all
registers loaded are set to undefined values. Any exceptions resulting from a
memory access cause the system error handler normally associated with the
exception to be invoked.

• The load multiple and load string instructions can be interrupted after the instruction
has partially completed. If rA has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new value of rA,
which might be anywhere in memory; therefore, the system error handler may be
invoked.

• The 604 executes load string operations to cacheable memory at two cycles per word
if they are word-aligned. Two additional cycles per instruction are required if they
are not word-aligned. Cache-inhibited load string instructions require one bus tenure
per word if they are aligned. An additional tenure per instruction is required if a
cache-inhibited load string operation is not word aligned.

• The 604 executes store string operations to cacheable memory at a rate of one cycle
per word if they are word-aligned. Cacheable store string operations that are not
word-aligned require five cycles per word. Cache-inhibited store string instructions
require one bus tenure per word if they are word-aligned. Two bus tenures per word
are required if a store string operation is not word aligned.

• The load multiple and load string instructions can be interrupted after the instruction
has partially completed. If rA has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new value of rA,
which might be anywhere in memory; therefore, the system error handler may be
invoked.

2.3.4.3.8 Floating-Point Load and Store Address Generation
Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode. Floating-point loads and stores are not supported for direct-store accesses. The use
of floating-point loads and stores for direct-store access results in an alignment exception.

There are two forms of the floating-point load instruction—single-precision and
double-precision operand formats. Because the FPRs support only the floating-point
double-precision format, single-precision floating-point load instructions convert
single-precision data to double-precision format before loading the operands into the target
FPR.

Chapter 2. PowerPC 604 Processor Programming Model 2-41

Implementation Notes—The following notes characterize how the 604 treats exceptions:

• On the 604, if a floating-point number is not aligned on a word boundary, an
alignment exception occurs.

• The floating-point load and store indexed instructions (lfsx, lfsux, lfdx, lfdux, stfsx,
stfsux, stfdx, stfdux) are invalid when the Rc bit is one. In the 604, executing one
of these invalid instruction forms causes CR0 to be set to an undefined value.

Note that the PowerPC architecture defines load with update instructions with rA = 0 as an
invalid form.

2.3.4.3.9 Floating-Point Store Instructions
This section describes floating-point store instructions. There are three basic forms of the
store instruction—single-precision, double-precision, and integer. The integer form is
supported by the optional stfiwx instruction. Because the FPRs support only floating-point,
double-precision format for floating-point data, single-precision floating-point store
instructions convert double-precision data to single-precision format before storing the
operands. Table 2-26 summarizes the floating-point store instructions.

Table 2-25. Floating-Point Load Instructions

Name Mnemonic Operand Syntax

Load Floating-Point Single lfs frD,d(rA)

Load Floating-Point Single Indexed lfsx frD,rA,rB

Load Floating-Point Single with Update lfsu frD,d(rA)

Load Floating-Point Single with Update Indexed lfsux frD,rA,rB

Load Floating-Point Double lfd frD,d(rA)

Load Floating-Point Double Indexed lfdx frD,rA,rB

Load Floating-Point Double with Update lfdu frD,d(rA)

Load Floating-Point Double with Update Indexed lfdux frD,rA,rB

Table 2-26. Floating-Point Store Instructions

Name Mnemonic Operand Syntax

Store Floating-Point Single stfs frS,d(rA)

Store Floating-Point Single Indexed stfsx frS,r B

Store Floating-Point Single with Update stfsu frS,d(rA)

Store Floating-Point Single with Update Indexed stfsux frS,r B

Store Floating-Point Double stfd frS,d(rA)

Store Floating-Point Double Indexed stfdx frS,rB

Store Floating-Point Double with Update stfdu frS,d(rA)

2-42 PowerPC 604 RISC Microprocessor User's Manual

Some floating-point store instructions require conversions in the LSU. Table 2-27 shows
the conversions made by the LSU when performing a Store Floating-Point Single
instruction.

Store Floating-Point Double with Update Indexed stfdux frS,r B

Store Floating-Point as Integer Word Indexed stfiwx frS,rB

Table 2-27. Store Floating-Point Single Behavior

FPR Precision Data Type Action

Single Normalized Store

Single Denormalized Store

Single Zero
Infinity
QNaN

Store

Single SNaN Store

Double Normalized If(exp ≤ 896)
then Denormalize and Store
else
 Store

Double Denormalized Store Zero

Double Zero
Infinity
QNaN

Store

Double SNaN Store

Table 2-26. Floating-Point Store Instructions (Continued)

Name Mnemonic Operand Syntax

Chapter 2. PowerPC 604 Processor Programming Model 2-43

Table 2-28 shows the conversions made when performing a Store Floating-Point Double
instruction. Most entries in the table indicate that the floating-point value is simply stored.
Only in a few cases are any other actions taken.

Architecturally, all floating-point numbers are represented in double-precision format
within the 604. Execution of a store floating-point single (stfs, stfsu, stfsx, stfsux)
instruction requires conversion from double- to single-precision format. If the exponent is
not greater than 896, this conversion requires denormalization. The 604 supports this
denormalization by shifting the mantissa one bit at a time. Anywhere from 1 to 23 clock
cycles are required to complete the denormalization, depending upon the value to be stored.

Because of how floating-point numbers are implemented in the 604, there is also a case
when execution of a store floating-point double (stfd, stfdu, stfdx, stfdux) instruction can
require internal shifting of the mantissa. This case occurs when the operand of a store
floating-point double instruction is a denormalized single-precision value. The value could
be the result of a load floating-point single instruction, a single-precision arithmetic
instruction, or a floating round to single-precision instruction. In these cases, shifting the
mantissa takes from 1 to 23 clock cycles, depending upon the value to be stored. These
cycles are incurred during the store.

2.3.4.4 Branch and Flow Control Instructions
Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

Table 2-28. Store Floating-Point Double Behavior

FPR Precision Data Type Action

Single Normalized Store

Single Denormalized Normalize and Store

Single Zero
Infinity
QNaN

Store

Single SNaN Store

Double Normalized Store

Double Denormalized Store

Double Zero
Infinity
QNaN

Store

Double SNaN Store

2-44 PowerPC 604 RISC Microprocessor User's Manual

2.3.4.4.1 Branch Instruction Address Calculation
Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the PowerPC processors ignore the two low-order
bits of the generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

• Branch relative

• Branch conditional to relative address

• Branch to absolute address

• Branch conditional to absolute address

• Branch conditional to link register

• Branch conditional to count register

Note that in the 604, all branch instructions (b, ba, bl, bla, bc, bca, bcl, bcla, bclr, bclrl,
bcctr, bcctrl) and condition register logical instructions (crand, cror, crxor, crnand,
crnor, crandc, creqv, crorc, and mcrf) are executed by the BPU. Some of these
instructions can redirect instruction execution conditionally based on the value of bits in the
CR. Whenever the CR bits resolve, the branch direction is either marked as correct or
mispredicted. Correcting a mispredicted branch requires that the 604 flush speculatively
executed instructions and restore the machine state to immediately after the branch. This
correction can be done immediately upon resolution of the condition registers bits.

2.3.4.4.2 Branch Instructions
Table 2-29 lists the branch instructions provided by the PowerPC processors. To simplify
assembly language programming, a set of simplified mnemonics and symbols is provided
for the most frequently used forms of branch conditional, compare, trap, rotate and shift,
and certain other instructions. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a list of simplified mnemonic examples.

Table 2-29. Branch Instructions

Name Mnemonic Operand Syntax

Branch b (ba bl bla) target_addr

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr

Branch Conditional to Link Register bclr (bclrl) BO,BI

Branch Conditional to Count Register bcctr (bcctrl) BO,BI

Chapter 2. PowerPC 604 Processor Programming Model 2-45

2.3.4.4.3 Condition Register Logical Instructions
Condition register logical instructions, shown in Table 2-30, and the Move Condition
Register Field (mcrf) instruction are also defined as flow control instructions.

Note that if the LR update option is enabled for any of these instructions, the PowerPC
architecture defines these forms of the instructions as invalid.

2.3.4.4.4 Trap Instructions
The trap instructions shown in Table 2-31 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally.

See Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
a complete set of simplified mnemonics.

Table 2-30. Condition Register Logical Instructions

Name Mnemonic Operand Syntax

Condition Register AND crand crbD,crbA,crbB

Condition Register OR cror crbD,crbA,crbB

Condition Register XOR crxor crbD,crbA,crbB

Condition Register NAND crnand crbD,crbA,crbB

Condition Register NOR crnor crbD,crbA,crbB

Condition Register Equivalent creqv crbD,crbA, crbB

Condition Register AND with Complement crandc crbD,crbA, crbB

Condition Register OR with Complement crorc crbD,crbA, crbB

Move Condition Register Field mcrf crfD,crfS

Table 2-31. Trap Instructions

Name Mnemonic Operand Syntax

Trap Word Immediate twi TO,rA,SIMM

Trap Word tw TO,rA,rB

2-46 PowerPC 604 RISC Microprocessor User's Manual

2.3.4.5 System Linkage Instruction—UISA
This section describes the System Call (sc) instruction that permits a program to call on the
system to perform a service. See also Section 2.3.6.1, “System Linkage
Instructions—OEA,” for additional information.

2.3.4.6 Processor Control Instructions—UISA
Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs). See
Section 2.3.5.1, “Processor Control Instructions—VEA,” for the mftb instruction and
Section 2.3.6.2, “Processor Control Instructions—OEA,” for information about the
instructions used for reading from and writing to the MSR and SPRs.

2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-33 summarizes the instructions for reading from or writing to the condition register.

Note that the performance of the mtcrf instruction depends greatly on whether only one
field is being accessed or either no fields or multiple fields are accessed as follows:

• Those mtcrf instructions that update only one field are executed in either of the
SCIUs and the CR field is renamed as with any other SCIU instruction.

• Those mtcrf instructions that update either multiple fields or no fields are dispatched
to the MCIU and a count/link scoreboard bit is set. When that bit is set, no more
mtcrf instructions of the same type, mtspr instructions that update the count or link
registers, branch instructions that depend on the condition register and CR logical
instructions can be dispatched to the MCIU. The bit is cleared when the mtctr,
mtcrf, or mtlr instruction that the bit is executed.

Table 2-32. System Linkage Instruction—UISA

Name Mnemonic Operand Syntax

System Call sc —

Table 2-33. Move to/from Condition Register Instructions

Name Mnemonic Operand Syntax

Move to Condition Register Fields mtcrf CRM,rS

Move to Condition Register from XER mcrxr crfD

Move from Condition Register mfcr rD

Chapter 2. PowerPC 604 Processor Programming Model 2-47

Because mtcrf instructions that update a single field do not require such synchronization
that other mtcrf instructions do, and because two such single-field instructions can execute
in parallel, it is typically more efficient to use multiple mtcrf instructions that update only
one field apiece than to use one mtcrf instruction that updates multiple fields. A rule of
thumb follows:

• It is always more efficient to use two mtcrf instructions that update only one field
apiece than to use one mtcrf instruction that updates two fields.

— It is almost always more efficient to use three or four mtcrf instructions that
update only one field apiece than to use one mtcrf instruction that updates three
fields.

— It is often more efficient to use more than four mtcrf instructions that update only
one field than to use one mtcrf instruction that updates four fields.

2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)
Table 2-34 lists the mtspr and mfspr instructions.

2.3.4.7 Memory Synchronization Instructions—UISA
Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Cache and
Bus Interface Unit Operation,” for additional information about these instructions and
about related aspects of memory synchronization.

The proper paired use of the lwarx with stwcx. instructions allows programmers to emulate
common semaphore operations such as “test and set,” “compare and swap,” “exchange
memory,” and “fetch and add.” The lwarx instruction must be paired with an stwcx.
instruction with the same effective address used for both instructions of the pair. Note that
the reservation granularity is implementation-dependent. See 2.3.5.2, “Memory
Synchronization Instructions—VEA,” for details about additional memory synchronization
(eieio and isync) instructions.

Table 2-34. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Operand Syntax

Move to Special Purpose Register mtspr SPR,rS

Move from Special Purpose Register mfspr rD,SPR

Table 2-35. Memory Synchronization Instructions—UISA

Name Mnemonic Operand Syntax

Load Word and Reserve Indexed lwarx rD,rA,rB

Store Word Conditional Indexed stwcx. rS,rA,rB

Synchronize sync —

2-48 PowerPC 604 RISC Microprocessor User's Manual

Implementation Notes—The following notes describe the 604 implementation of memory
synchronization instructions:

• The PowerPC architecture requires that memory operands for Load and Reserve
(lwarx) and Store Conditional (stwcx.) instructions must be word-aligned. If the
operands to these instructions are not word-aligned on the 604, an alignment
exception occurs.

• The PowerPC architecture indicates that the granularity with which reservations for
lwarx and stwcx. instructions are managed is implementation-dependent. In the 604
reservations, this granularity is a 32-byte cache block.

• The sync instruction causes the 604 to serialize. The sync instruction can be
dispatched with other instructions that are before it, in program order. However, no
more instructions can be dispatched until the sync instruction completes.
Instructions already in the instruction buffer, due to prefetching, are not refetched
after the sync completes. If reflecting is required, isync should be executed to flush
the instruction buffer after the sync. The sync is dispatched to the LSU and is
broadcast onto the external bus.

In the PowerPC architecture, the Rc bit must be zero for almost all load and store
instructions. If the Rc bit is one, the instruction form is invalid. These include the sync and
lwarx instructions. In the 604, executing one of these invalid instruction forms causes CR0
to be set to an undefined value. The stwcx. instruction is the only load/store instruction that
has a valid form if Rc is set. If the Rc bit is zero, the result of executing this instruction in
the 604 causes CR0 to be set to an undefined value.

2.3.5 PowerPC VEA Instructions
The PowerPC virtual environment architecture (VEA) describes the semantics of the
memory model that can be assumed by software processes, and includes descriptions of the
cache model, cache control instructions, address aliasing, and other related issues.
Implementations that conform to the VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

2.3.5.1 Processor Control Instructions—VEA
In addition to the move to condition register instructions (specified by the UISA), the VEA
defines the mftb instruction (user-level instruction) for reading the contents of the time base
register; see Chapter 3, “Cache and Bus Interface Unit Operation,” for more information.
Table 3-34 shows the mftb instruction.

Table 2-36. Move from Time Base Instruction

Name Mnemonic Operand Syntax

Move from Time Base mftb rD, TBR

Chapter 2. PowerPC 604 Processor Programming Model 2-49

Simplified mnemonics are provided for the mftb instruction so it can be coded with the
TBR name as part of the mnemonic rather than requiring it to be coded as an operand. See
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
simplified mnemonic examples and for simplified mnemonics for Move from Time Base
(mftb) and Move from Time Base Upper (mftbu), which are variants of the mftb
instruction rather than of mfspr. The mftb instruction serves as both a basic and simplified
mnemonic. Assemblers recognize an mftb mnemonic with two operands as the basic form,
and an mftb mnemonic with one operand as the simplified form.

Implementation Notes—The following information is useful with respect to using the
time base implementation in the 604:

• The 604 allows user-mode read access to the time base counter through the use of
the Move from Time Base (mftb) and the Move from Time Base Upper (mftbu)
instructions. As a 32-bit PowerPC implementation, the 604 supports separate access
to the TBU and TBL, whereas 64-bit implementations can access the entire TB
register at once.

• The time base counter is clocked at a frequency that is one-fourth that of the bus
clock. Counting is enabled by assertion of the timebase enable (TBE) input signal.

2.3.5.2 Memory Synchronization Instructions—VEA
Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “Cache and
Bus Interface Unit Operation,” for additional information about these instructions and
about related aspects of memory synchronization.

Table 2-37 describes the memory synchronization instruction s defined by the VEA.

Table 2-37. Memory Synchronization Instructions—VEA

Name Mnemonic
Operand
Syntax

Implementation Notes

Enforce In-Order
Execution of I/O

eieio — The eieio instruction is dispatched by the 604 to the LSU. The
eieio instruction executes after all preceding cache-inhibited
or write-through memory instructions execute; all following
cache-inhibited or write-through instructions execute after the
eieio instruction executes. When the eieio instruction
executes, an EIEIO address-only operation is broadcast on
the external bus to allow ordering to be enforced in the
external memory system.

Instruction
Synchronize

isync — The isync instruction causes the 604 to purge its instruction
buffers and fetch the double word containing the next
sequential instruction.

2-50 PowerPC 604 RISC Microprocessor User's Manual

System designs that use a second-level cache should take special care to recognize the
hardware signaling caused by a SYNC bus operation and perform the appropriate actions
to guarantee that memory references that may be queued internally to the second-level
cache have been performed globally.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce
In-Order Execution of I/O (eieio) and Instruction Synchronize (isync) instructions. The
number of cycles required to complete an eieio instruction depends on system parameters
and on the processor's state when the instruction is issued. As a result, frequent use of this
instruction may degrade performance slightly.

The isync instruction causes the processor to wait for any preceding instructions to
complete, discard all prefetched instructions, and then branch to the next sequential
instruction (which has the effect of clearing the pipeline behind the isync instruction).

2.3.5.3 Memory Control Instructions—VEA
Memory control instructions include the following types:

• Cache management instructions (user-level and supervisor-level)
• Segment register manipulation instructions
• Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA.
See 2.3.6.3, “Memory Control Instructions—OEA,” for information about supervisor-level
cache, segment register manipulation, and translation lookaside buffer management
instructions.

2.3.5.3.1 User-Level Cache Instructions—VEA
The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches if they are implemented. See Chapter 3, “Cache and Bus Interface
Unit Operation,” for more information about cache topics.

The user-level cache instructions provide software a way to help manage processor caches.
The following sections describe how these operations are treated with respect to the 604’s
cache.

As with other memory-related instructions, the effect of the cache management instructions
on memory are weakly-ordered. If the programmer needs to ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, a sync instruction must be placed in the program following those instructions.

Note that this discussion does not apply to direct-store segment accesses because these are
defined to be cache-inhibited and instruction fetch from them is not allowed. Cache
operations that access direct-store segment are treated as no-ops. Table 2-38 summarizes
the cache instructions defined by the VEA. Note that these instructions are accessible to
user-level programs.

Chapter 2. PowerPC 604 Processor Programming Model 2-51

Table 2-38. User-Level Cache Instructions

Name Mnemonic
Operand
Syntax

Implementation Notes

Data
Cache
Block Touch

dcbt rA,rB The VEA defines this instruction to allow for potential system
performance enhancements through the use of software-initiated
prefetch hints. Implementations are not required to take any action based
off the execution of this instruction, but they may choose to prefetch the
cache block corresponding to the effective address into their cache. The
604 performs the prefetch when the address hits in the TLB or the BAT, is
permitted load access from the addressed page, is not directed to a
direct-store segment, and is directed at a cacheable page. If the
operation does not meet these criteria, it is treated as a no-op. The data
brought into the cache as a result of this instruction is validated in the
same way a load instruction would be (that is, if no other bus participant
has a copy, it is marked as Exclusive, otherwise it is marked as Shared).
The memory reference of a dcbt causes the reference bit to be set.
A successful dcbt instruction affects the state of the TLB and cache LRU
bits as defined by the LRU algorithm.

Data
Cache
Block
Touch for
Store

dcbtst rA,rB This instructions behaves like the dcbt instruction.

Data
Cache
Block Set
to Zero

dcbz rA,rB The effective address is computed, translated, and checked for
protection violations as defined in the VEA. If the 604 does not have
exclusive access to the block, it presents an operation onto the 604 bus
interface that instructs all other processors to invalidate copies of the
block that may reside in their cache (this is the kill operation on the bus).
After it has exclusive access, the 604 writes all zeros into the cache
block. If the 604 already has exclusive access, it immediately writes all
zeros into the cache block. If the addressed block is within a
noncacheable or a write-through page, or if the cache is locked or
disabled, the an alignment exception occurs.
If the operation is successful, the cache block is marked modified.

Data
Cache
Block Store

dcbst rA,rB The effective address is computed, translated, and checked for
protection violations as defined in the VEA. If the 604 does not have
exclusive access to the block, it broadcasts the essence of the instruction
onto the 604 bus (using the clean operation, described in Table 3-4). If
the 604 has modified data associated with the block, the processor
pushes the modified data out of the cache and into the memory queue for
future arbitration onto the 604 bus. In this situation, the cache block is
marked exclusive. Otherwise this instruction is treated as a no-op.

Data
Cache
Block Flush

dcbf rA,rB The effective address is computed, translated, and checked for
protection violations as defined by the VEA. If the 604 does not have
exclusive access to the block, it broadcasts the essence of the instruction
onto the 604 bus (using the flush operation described in Table 3-4). In
addition, if the addressed block is present in the cache, the 604 marks
this data as invalid. On the other hand, if the 604 has modified data
associated with the block, the processor pushes the modified data out of
the cache and into the memory queue for future arbitration onto the 604
bus. In this situation, the cache block is marked invalid.

2-52 PowerPC 604 RISC Microprocessor User's Manual

2.3.5.4 Optional External Control Instructions
The external control instructions allow a user-level program to communicate with a
special-purpose device. Two instructions are provided and are summarized in Table 2-39.

The eciwx and ecowx instructions cause an alignment exception if they are not
word-aligned.

2.3.6 PowerPC OEA Instructions
The PowerPC operating environment architecture (OEA) includes the structure of the
memory management model, supervisor-level registers, and the exception model.
Implementations that conform to the OEA also adhere to the UISA and the VEA. This
section describes the instructions provided by the OEA

2.3.6.1 System Linkage Instructions—OEA
This section describes the system linkage instructions (see Table 2-40). The sc instruction
is a user-level instruction that permits a user program to call on the system to perform a
service and causes the processor to take an exception. The rfi instruction is a
supervisor-level instruction that is useful for returning from an exception handler.

2.3.6.2 Processor Control Instructions—OEA
This section describes the processor control instructions that are used to read from and
write to the MSR and the SPRs.

Instruction
Cache
Block
Invalidate

icbi rA,rB The effective address is computed, translated, and checked for
protection violations as defined in the PowerPC architecture. If the
addressed block is in the instruction cache, the 604 marks it invalid. This
instruction changes neither the content nor status of the data cache. In
addition, the ICBI operation is broadcast on the 604 bus unconditionally
to support this function throughout multilayer memory hierarchy.

Table 2-39. External Control Instructions

Name Mnemonic Operand Syntax

External Control In Word Indexed eciwx rD,rA,rB

External Control Out Word Indexed ecowx rS,rA,rB

Table 2-40. System Linkage Instructions—OEA

Name Mnemonic Operand Syntax

System Call sc —

Return from Interrupt rfi —

Table 2-38. User-Level Cache Instructions (Continued)

Name Mnemonic
Operand
Syntax

Implementation Notes

Chapter 2. PowerPC 604 Processor Programming Model 2-53

Table 2-41 summarizes the instructions used for reading from and writing to the MSR.

The OEA defines encodings of the mtspr and mfspr instructions to provide access to
supervisor-level registers. The instructions are listed in Table 2-42.

Encodings for the 604-specific SPRs are listed in Table 2-43.

Simplified mnemonics are provided for the mtspr and mfspr instructions in Appendix F,
“Simplified Mnemonics,” in The Programming Environments Manual. For a discussion of
context synchronization requirements when altering certain SPRs, refer to Appendix E,
“Synchronization Programming Examples,” in The Programming Environments Manual.

Table 2-41. Move to/from Machine State Register Instructions

Name Mnemonic Operand Syntax

Move to Machine State Register mtmsr rS

Move from Machine State Register mfmsr rD

Table 2-42. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Operand Syntax

Move to Special Purpose Register mtspr SPR,rS

Move from Special Purpose Register mfspr rD,SPR

Table 2-43 SPR Encodings for 604-Defined Registers (mfspr)

SPR
1

Register Name
Decimal spr[5–9] spr[0–4]

952 11101 11000 MMCR0

953 11101 11001 PMC1

954 11101 11010 PMC2

955 11101 11011 SIA

959 11101 11111 SDA

1010 11111 10010 IABR

1023 11111 11111 PIR

1Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction
coding.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as
a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are reversed in
the instruction, with the high-order 5 bits appearing in bits 16–20 of the instruction and the low-order 5 bits in
bits 11–15.

2-54 PowerPC 604 RISC Microprocessor User's Manual

For information on SPR encodings (both user- and supervisor-level) see Chapter 8,
“Instruction Set,” in The Programming Environments Manual. Note that there are
additional SPRs specific to each implementation; for implementation-specific SPRs, see
the user’s manual for that particular processor.

2.3.6.3 Memory Control Instructions—OEA
Memory control instructions include the following types of instructions:

• Cache management instructions (supervisor-level and user-level)
• Segment register manipulation instructions
• Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. See Section 2.7.3,
“Memory Control Instructions—VEA,” for more information about user-level cache
management instructions.

2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA)
Table 2-44 lists the only supervisor-level cache management instruction.

See Section 2.7.3.1, “User-Level Cache Instructions—VEA,” for cache instructions that
provide user-level programs the ability to manage the on-chip caches. If the effective
address references a direct-store segment, the instruction is treated as a no-op. Note that any
cache control instruction that generates an effective address that corresponds to a
direct-store segment (segment descriptor[T] = 1) is treated as a no-op.

Table 2-44. Cache Management Supervisor-Level Instruction

Name Mnemonic Operand Syntax Implementation Notes

Data
Cache
Block
Invalidate

dcbi rA,rB The EA is computed, translated, and checked for protection
violations as defined in the OEA.
The 604 broadcasts the essence of the instruction onto the 604
bus (using the kill operation). In addition, if the addressed block
is present in the cache, the 604 marks this data as invalid
regardless of whether the data is clean or modified. Note that
this can have the effect of destroying modified data which is
why the instruction is privileged and has store semantics with
respect to protection.

Chapter 2. PowerPC 604 Processor Programming Model 2-55

2.3.6.3.2 Segment Register Manipulation Instructions (OEA)
The instructions listed in Table 2-45 provide access to the segment registers for 32-bit
implementations. These instructions operate completely independently of the MSR[IR] and
MSR[DR] bit settings. Refer to “Synchronization Requirements for Special Registers and
for Lookaside Buffers,” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for serialization requirements and other recommended precautions
to observe when manipulating the segment registers.

2.3.6.3.3 Translation Lookaside Buffer Management Instructions—(OEA)
The address translation mechanism is defined in terms of segment descriptors and page
table entries (PTEs) used by PowerPC processors to locate the logical to physical address
mapping for a particular access. These segment descriptors and PTEs reside in segment
tables and page tables in memory, respectively.

Refer to Chapter 7, “Memory Management” for more information about TLB operation.
Table 2-46 summarizes the operation of the TLB instructions in the 604.

Table 2-45. Segment Register Manipulation Instructions

Name Mnemonic Operand Syntax

Move to Segment Register mtsr SR,rS

Move to Segment Register Indirect mtsrin rS,rB

Move from Segment Register mfsr rD,SR

Move from Segment Register Indirect mfsrin rD,rB

2-56 PowerPC 604 RISC Microprocessor User's Manual

Implementation Note—The tlbia instruction is optional for an implementation if its
effects can be achieved through some other mechanism. As described above, the tlbie
instruction can be used to invalidate a particular index of the TLB based on EA[14–19].
With that concept in mind, a sequence of 64 tlbie instructions followed by a single tlbsync
instruction would cause all the 604 TLB structures to be invalidated (for EA[14–19] = 0, 1,
2,..., 63). Therefore the tlbia instruction is not implemented on the 604. Execution of a tlbia
instruction causes an illegal instruction program exception.

Table 2-46. Translation Lookaside Buffer Management Instruction

Name Mnemonic
Operand
Syntax

Implementation Notes

TLB
Invalidate
Entry

tlbie rB Execution of this instruction causes all entries in the congruence class
corresponding to the specified EA to be invalidated in the processor
executing the instruction and in the other processors attached to the
same bus by causing a TLB invalidate operation on the bus as
described in Section 7.2.4, “Address Transfer Attribute Signals.”
The OEA requires that a synchronization instruction be issued to
guarantee completion of a tlbie across all processors of a system.
The 604 implements the tlbsync instruction which causes a
TLBSYNC operation to appear on the bus as a distinct operation,
different from a SYNC operation. It is this bus operation that causes
synchronization of snooped tlbie instructions. Multiple tlbie
instructions can be executed correctly with only one tlbsync
instruction, following the last tlbie, to guarantee all previous tlbie
instructions have been performed globally.
Software must ensure that instruction fetches or memory references
to the virtual pages specified by the tlbie have been completed prior
to executing the tlbie instruction.
When a snooping 604 detects a TLB invalidate entry operation on the
bus, it accepts the operation only if no TLB invalidate entry operation
is being executed by this processor and all processors on the bus
accept the operation (ARTRY is not asserted). Once accepted, the
TLB invalidation is performed unless the processor is executing a
multiple/string instruction, in which case the TLB invalidation is
delayed until it has completed.
Other than the possible TLB miss on the next instruction prefetch, the
tlbie does not affect the instruction fetch operation—that is, the
prefetch buffer is not purged and does not cause these instructions to
be refetched.

TLB
Synchronize

tlbsync — The TLBSYNC operation appears on the bus as a distinct operation,
different from a SYNC operation. It is this bus operation that causes
synchronization of snooped tlbie instructions.
See the tlbie description above for information regrading using the
tlbsync instruction with the tlbie instruction. For more information
about how other processors react to TLB operations broadcast on the
system bus of a multiprocessing system, see Section 3.9.6, “Cache
Reaction to Specific Bus Operations.”

Chapter 2. PowerPC 604 Processor Programming Model 2-57

Because the presence and exact semantics of the TLB management instructions is
implementation-dependent, system software should incorporate uses of these instructions
into subroutines to minimize compatibility problems.

2.3.7 Recommended Simplified Mnemonics
To simplify assembly language coding, a set of alternative mnemonics is provided for some
frequently used operations (such as no-op, load immediate, load address, move register, and
complement register). Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in this
document.

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics,” in
The Programming Environments Manual.

2-58 PowerPC 604 RISC Microprocessor User's Manual

Chapter 3. Cache and Bus Interface Unit Operation 3-1

Chapter 3
Cache and Bus Interface Unit Operation
30
30

This chapter describes the organization of the 604’s on-chip cache system, the MESI cache
coherency protocol, special concerns for cache coherency in single- and multiple-processor
systems, cache control instructions, various cache operations, and the interaction between
the cache and the memory unit.

To minimize the number of bus accesses, the 604 contains separate 16-Kbyte, four-way set-
associative instruction and data caches and also provides support for secondary (L2)
caching. The cache block size is 32 bytes. The cache is designed to adhere to a write-back
policy, but the 604 allows control of cacheability, write policy, and memory coherency at
the page and block level, as defined by the PowerPC architecture. The caches use a least
recently used (LRU) replacement policy.

The 604 cache implementation has the following characteristics:

• Separate 16-Kbyte instruction and data caches (Harvard architecture)

• Instruction and data caches are four-way set associative.

• Caches implement an LRU replacement algorithm within each set.

• The cache directories are physically addressed. The physical (real) address tag is
stored in the cache directory.

• Both the instruction and data caches have 32-byte cache blocks. A cache block is the
block of memory that a coherency state describes, also referred to as a cache line.

• The coherency state bits for each block of the data cache allow encoding for all four
possible MESI states:

— Modified (Exclusive) (M)

— Exclusive (Unmodified) (E)

— Shared (S)

— Invalid (I)

3-2 PowerPC 604 RISC Microprocessor User's Manual

• The coherency state bit for each cache block of the instruction cache allows
encoding for two possible states:

— Invalid (INV)

— Valid (VAL)

• Each cache can be invalidated or locked by setting the appropriate bits in the
hardware implementation dependent register 0 (HID0), a special-purpose register
(SPR) specific to the 604.

The 604 uses eight-word burst transactions to transfer cache blocks to and from memory.
When requesting burst reads, the 604 presents a double-word–aligned address. Memory
controllers are expected to transfer this double word of data first, followed by double words
from increasing addresses, wrapping back to the beginning of the eight-word block as
required.

Burst misses can be buffered into two 8-word line-fill buffers before being loaded into the
cache. Writes of cache blocks by the 604 (for a copy-back operation) always present the
first address of the block, and transfer data beginning at the start of the block. However, this
does not preclude other masters from transferring critical double words first on the bus for
writes.

Note that in this chapter the terms multiprocessor and multiple-processor are used in the
context of maintaining cache coherency. These devices could be processors or other devices
that can access system memory, maintain their own caches, and function as bus masters
requiring cache coherency.

The organization of the 604 instruction and data caches is shown in Figure 3-1.

Figure 3-1. Cache Organization

Address Tag 1

Address Tag 2

Address Tag 3

Block 1

Block 2

Block 3

128 Sets

Address Tag 0Block 0

8 Words/Block

State

State

State

State

Words 0–7

Words 0–7

Words 0–7

Words 0–7

Chapter 3. Cache and Bus Interface Unit Operation 3-3

As shown in Figure 3-2, the instruction cache is connected to the bus interface unit (BIU)
with a 64-bit bus; likewise, the data cache is connected both to the BIU and the load/store
unit (LSU) with a 64-bit bus. The 64-bit bus allows two instructions to be loaded into the
instruction cache or a double word (for example, a double-precision floating-point operand)
to be loaded into the data cache in a single clock. The instruction cache provides a 128-bit
interface to the instruction fetcher, so four instructions can be made available to the
instruction unit in a single clock cycle.

Figure 3-2. Cache Integration

3.1 Data Cache Organization
As shown in Figure 3-2, the physically-addressed data cache lies between the load/store
instruction unit (LSU) and the bus interface unit (BIU), and provides the ability to read and
write data in memory by reducing the number of system bus transactions required for
execution of load/store instructions.

The LSU transfers data between the data cache and the result bus, which routes data to the
other execution units. The LSU supports the address generation and all the data alignment
to and from the data cache. The LSU also handles other types of instructions that access
memory, such as cache control instructions, and supports out-of-order loads and stores
while ensuring the integrity of data.

Data Cache

16-Kbyte
Four-Way Set Associative

Cache
Tags

Cache
Logic

Instruction Unit Load/Store Unit (LSU)

MMU/Bus Interface Unit (BIU)

Instructions (0–63)

Instructions (0–127) EA (20–31)

PA (0–19)

PA (0–31) Data (0–63)

Data (0–63)

PA: Physical Address
EA: Effective Address

Instruction Cache

16-Kbyte
Four-Way Set Associative

Cache
Tags

Cache
Logic

3-4 PowerPC 604 RISC Microprocessor User's Manual

The 16-Kbyte, four-way set data cache is nonblocking write-back cache with hardware
reload. The data cache can continue to process loads and stores while as many as four block
fill requests are in progress.

The set associativity of the data cache is shown in Figure 3-1.

Each cache block contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bits A27–A31 of the EA are zero); as a result, cache blocks
are aligned with page boundaries. Within a single cycle, the data cache provides a double-
word access to the LSU.

The data cache supports a coherent memory system using the four-state MESI coherency
(modified/exclusive/shared/invalid) protocol. Dual-ported data cache tags are implemented
to prevent snooping accesses from affecting other bus traffic, except when snooping hits
modified data. The LSU is blocked for one cycle to copy the cache block of data into a
write-back buffer. The data cache can be invalidated on a block or invalidate-all granularity.
Also, data cache enable, lock, and parity checking enable bits can be set in hardware
implementation register 0 (HID0).

3.2 Instruction Cache Organization
The 16-Kbyte, four-way set-associative instruction cache is physically-indexed. The
organization of the instruction cache, shown in Figure 3-1, is identical to that of the data
cache. Each cache block contains eight contiguous words from memory that are loaded
from an eight-word boundary (that is, bits A27–A31 of the effective addresses are zero); as
a result, cache blocks are aligned with page boundaries.

Within a single cycle, the instruction cache provides as many as four instructions to the
instruction fetch unit. The instruction cache coherency is software-controlled. The
instruction cache can be invalidated on a block or invalidate-all granularity. The instruction
cache can be enabled, locked, and checked for parity depending on the setting of enable bits
provided in HID0.

The instruction cache differs from the data cache in that it does not implement MESI cache
coherency protocol, and a single state bit is implemented that indicates only whether a
cache block is valid or invalid. If a processor modifies a memory location that may be
contained in the instruction cache, software must ensure that memory updates are visible to
the instruction fetching mechanism. This can be achieved by the following instruction
sequence:

dcbst # update memory
sync # wait for update
icbi # remove (invalidate) copy in instruction cache
sync # wait for ICBI operation to be globally performed
isync # remove copy in own instruction buffer

Chapter 3. Cache and Bus Interface Unit Operation 3-5

These operations are necessary because the data cache is a write-back cache. Because
instruction fetching bypasses the data cache, changes made to items in the data cache may
not be reflected in memory until after a fetch operation completes.

3.3 MMUs/Bus Interface Unit
The bus interface unit (BIU) is compatible with those of the PowerPC 601™ and
PowerPC 603™ microprocessors. It implements both tenured and split-transaction modes
and can handle as many as three outstanding transactions in pipelined mode. If permitted,
the BIU can complete one or more write transactions between the address and data tenures
of a read transaction. The BIU has 32-bit address and 64-bit data buses protected by byte
parity.

The BIU implements the critical-double-word-first access where the double word requested
by the fetcher or the LSU is fetched first and the remaining words in the line are fetched
later. The critical double word as well as other words in the cache block are forwarded to
the fetcher or to the LSU before they are written to the cache.

The bus can be run at 1x, 2/3x, 1/2x or 1/3x the speed of the processor. The programmable
on-chip phase-locked loop (PLL) generates the necessary processor clocks from the bus
clock.

When a memory access fails to hit in the cache, the 604 accesses system memory through
the bus interface unit. These operations must arbitrate for bus access.

The memory management units (MMUs) provide address translation as specified by the
PowerPC OEA, including block address translation and page translation of memory
segments. The MMUs and the bus interface unit are shown in Figure 3-3.

The 604 implements separate MMUs, one for instruction accesses and one for data
accesses. Virtual address translation uses two 128-entry, two-way set-associative (64 x 2)
translation lookaside buffers (TLBs), one for instruction accesses and one for data accesses.
The 604 provides hardware that performs the TLB reload (also known as page table walk)
when a translation is not in a TLB. Memory management is described in Chapter 5,
“Memory Management.”

The BIU handles block fill and write-back requests from either cache, as well as all
noncacheable reads and writes.

3-6 PowerPC 604 RISC Microprocessor User's Manual

Figure 3-3. Bus Interface Unit and MMU

As shown in Figure 3-4, the 604 implements four types of memory queues to support the
four types of operations—line-fill, write, copy-back, and invalidation operations. For a line-
fill operation, the line-fill address from either the instruction or data cache is kept in the
memory address queue until the address can be sent out in an address tenure. After the
address tenure, the address is transferred to the line-fill address queue, which releases the
address bus for other transactions in split-transaction mode. As each double word for the
line-fill operation is returned, it is transferred to the line-fill buffer, where it is forwarded to
the LSU.

Load/Store Unit

Data MMU

In
st

ru
ct

io
n

C
ac

he
Instruction Unit

Instruction MMU

Bus Interface Unit

Bus

TLB Reload

D
at

a
C

ac
he

Chapter 3. Cache and Bus Interface Unit Operation 3-7

Figure 3-4. Memory Queue Organization

For write operations, the address is kept in the memory address queue and the data is kept
in the write buffer until both can be sent out in a write transaction. Similarly, for copy-back
operations the address is kept in the copy-back address queue and the data is kept in the
copy-back buffer until both can be sent out in a burst write transaction. For a cache control
instruction or a store to a shared cache block, the address is kept in the cache control address
queue until an address-only transaction is sent out to broadcast the cache control command.
Because all address queues in the 604 are treated as part of the coherent memory system,
they are checked against the data cache and snoop addresses to ensure data consistency and
to maintain MESI coherency protocol.

Ic
ac

he
 A

dd
re

ss

D
ca

ch
e

A
dd

re
ss

I-
Li

ne
 F

ill
 A

dd
re

ss

S
to

re
 D

at
a

(2
 w

or
d)

Address Bus Data Bus

Snoop Address
to Data Cache

Memory Address
Q0

Memory Address
Q1

Share-Invalidate
Queue

Write Data
Q0 (2 word)

Write Data
Q1 (2 word)

Copy-Back Address
Q0

Copy-Back Address
Q1

Snoop Address
Register

Address Bus
Register

I–Line Fill
Address Q

D–Line Fill
Address Q0

D–Line Fill
Address Q1

Data In
Register

D
-L

in
e

F
ill

 A
dd

re
ss

D
-L

in
e

F
ill

 D
at

a

I-
Li

ne
 F

ill
 D

at
a

Data Bus
Register

Copy-Back Data
Q0 (8 word)

Copy-Back Data
Q1 (8 word)

Line Fill Data
Q0 (8 word)

Line Fill Data
Q1 (8 word)

3-8 PowerPC 604 RISC Microprocessor User's Manual

To support the increased bandwidth of the nonblocking caches, the BIU can handle as many
as three pipelined transactions before data has to be provided by the memory system. The
three outstanding transactions can be any combination of the following—two noncacheable
or write-through write operations, two data cache reloads, one instruction cache reload, and
two cache block copybacks. In addition, address-only transactions are not counted in the
three outstanding transactions.

For details concerning the signals, see Chapter 7, “Signal Descriptions,” and for
information regarding bus protocol, see Chapter 8, “System Interface Operation.”

3.4 Memory Coherency Actions
The following sections describe memory coherency actions in response to various
operations and instructions.

3.4.1 604-Initiated Load and Store Operations
The following tables provide an overview of the behavior of the 604 with respect to load
and store operations. Table 3-1 does not include noncacheable cases. The first three cases
(load when the cache block is marked I) also involve selecting a replacement class and
copying back any modified data that may have resided in that replacement class.

Table 3-2 does not address the noncacheable or write-through cases and does not
completely describe the exact mechanisms for the operations described. The first two cases
also involve selecting a replacement class and copying back any modified data that may
have resided in that replacement class. The state of the SHD signal is unimportant in this
table.

Table 3-1. Memory Coherency Actions on Load Operations

Cache State Bus Operation Snoop Response Action

I Read –ARTRY
–SHD

Load data and mark E

I Read –ARTRY
SHD

Load data and mark S

I Read ARTRY Retry read operation

S None Don’t care Read from cache

E None Don’t care Read from cache

M None Don’t care Read from cache

Chapter 3. Cache and Bus Interface Unit Operation 3-9

3.5 Sequential Consistency
The following sections describe issues related to sequential consistency with respect to
single processor and multiprocessor systems.

3.5.1 Sequential Consistency Within a Single Processor
The PowerPC architecture requires that all memory operations executed by a single
processor be sequentially consistent with respect to that processor. This means that all
memory accesses appear to be executed in the order specified by the program with respect
to exceptions and data dependencies. Note that all potential precise exceptions are resolved
before memory accesses that miss in the cache are forwarded onto the memory queue for
arbitration onto the bus. In addition, although subsequent memory accesses can address the
cache, full coherency checking between the cache and the memory queue is provided to
avoid dependency conflicts.

3.5.2 Weak Consistency between Multiple Processors
The PowerPC architecture requires only weak consistency among processors—that is,
memory accesses between processors need not be sequentially consistent and memory
accesses among processors can occur in any order. The ability to order memory accesses
weakly provides opportunities for more efficient use of the system bus. Unless a
dependency exists, the 604 allows read operations to precede store operations.

Note that strong ordering of memory accesses with respect to the bus (and therefore, as
observed by other processors and other bus participants) can be accomplished by following
instructions that access memory with the SYNC instruction.

Table 3-2. Memory Coherency Actions on Store Operations

Cache State Bus Operation Snoop Response Action

I RWITM –ARTRY Load data, modify it, mark M

I RWITM ARTRY Retry the RWITM

S Kill –ARTRY Modify cache, mark M

S Kill ARTRY Retry the kill

E None Don’t care Modify cache, mark M

M None Don’t care Modify cache

3-10 PowerPC 604 RISC Microprocessor User's Manual

3.5.3 Sequential Consistency Within Multiprocessor Systems
The PowerPC architecture defines a load operation to have been performed with respect to
all other processors (and mechanisms) when the value to be returned by the load can no
longer be changed by a subsequent store by any processor (or other mechanism). In
addition, it defines a store operation to be performed with respect to all other processors
(and mechanisms) when any load operation from the same location returns the value stored
(or a subsequently stored value).

In the 604, cacheable load operations and cacheable, non–write-through store operations
are performed with respect to all other processors (and mechanisms) when they have
arbitrated to address the cache. If a cache miss occurs, these operations may drop a memory
request into the processor’s memory queue, which is considered an extension to the state of
the cache with respect to snooping bus operations.

However, cache-inhibited load operations and cache-inhibited or write-through store
operations are performed with respect to other processors (and mechanisms) when they
have been successfully presented onto the 604 bus interface. As a result, if multiple
processors are performing these types of memory operations to the same addresses without
properly synchronizing one another (through the use of the lwarx/stwcx. instructions), the
results of these instructions are sensitive to the race conditions associated with the order in
which the processors are granted bus access.

If the 604 uses an L2 cache, the system designer must ensure the memory system responds
to the SYNC and EIEIO bus operations in such a way that the required ordering of memory
operations is preserved.

3.6 Memory and Cache Coherency
The 604 can support a fully coherent 4-Gbyte (232) memory address space. Bus snooping
is used to drive a four-state (MESI) cache coherency protocol which ensures the coherency
of all processor and direct-memory access (DMA) transactions to and from global memory
with respect to each processor’s cache. It is important that all bus participants employ
similar snooping and coherency control mechanisms. The coherency of memory is
maintained at a granularity of 32-byte cache blocks (this size is also called the coherency
or cache-block size).

All instruction and data accesses are performed under the control of the four memory/cache
access attributes:

• Write-through (W attribute)
• Caching-inhibited (I attribute)
• Memory coherency (M attribute)
• Guarded (G attribute)

Chapter 3. Cache and Bus Interface Unit Operation 3-11

These attributes are programmed by the operating system for each page and block. The W
and I attributes control how the processor performing an access uses its own cache. The
M attribute ensures that coherency is maintained for all copies of the addressed memory
location. The G attribute prevents speculative loading and prefetching from the addressed
memory location.

3.6.1 Data Cache Coherency Protocol
Each 32-byte cache block in the 604 data cache is in one of four states. Addresses presented
to the cache are indexed into the cache directory and are compared against the cache
directory tags. If no tags match, the result is a cache miss. If a tag match occurs, a cache hit
has occurred and the directory indicates the state of the block through three state bits kept
with the tag.

The four possible states for a block in the cache are the invalid state (I), the shared state (S),
the exclusive state (E), and the modified state (M). The four MESI states are defined in
Table 3-3 and illustrated in Figure 3-5.

The primary objective of a coherent memory system is to provide the same image of
memory to all processors in the system. This is an important feature of multiprocessor
systems since it allows for synchronization, task migration, and the cooperative use of
shared resources. An incoherent memory system could easily produce unreliable results
depending on when and which processor executed a task. For example, when a processor
performs a store operation, it is important that the processor have exclusive access to the
addressed block before the update is made. If not, another processor could have a copy of
the old (or stale) data. Two processors reading from the same memory location would get
different answers.

To maintain a coherent memory system, each processor must follow simple rules for
managing the state of the cache. These include externally broadcasting the intention to read
a cache block not in the cache and externally broadcasting the intention to write into a block
that is not owned exclusively. Other processors respond to these broadcasts by snooping
their caches and reporting status back to the originating processor. The status returned
includes a shared indicator (that is, another processor has a copy of the addressed block)

Table 3-3. MESI State Definitions

MESI State Definition

Modified (M) The addressed block is valid in the cache and in only this cache. The block is modified with respect
to system memory—that is, the modified data in the block has not been written back to memory.

Exclusive (E) The addressed block is in this cache only. The data in this block is consistent with system memory.

Shared (S) The addressed block is valid in the cache and in at least one other cache. This block is always
consistent with system memory. That is, the shared state is shared-unmodified; there is no shared-
modified state.

Invalid (I) This state indicates that the addressed block is not resident in the cache and/or any data contained
is considered not useful.

3-12 PowerPC 604 RISC Microprocessor User's Manual

and a retry indicator (that is, another processor either has a modified copy of the addressed
block that it needs to push out of the chip, or another processor had a queuing problem that
prevented appropriate snooping from occurring).

To maximize performance, the 604 provides a second path into the data cache directory for
snooping. This allows the mainstream instruction processing to operate concurrently with
the snooping operation. The instruction processing is affected only when the snoop control
logic detects a situation where a snoop push of modified data is required to maintain
memory coherency.

Figure 3-5. MESI States

Modified in Cache A

Cache A Cache B

System Memory

Cache A Cache B

System Memory

Cache A Cache B Cache A Cache B

System Memory

Valid DataM Data invalid\
not congruent

Shared in Cache A

Valid Data Valid DataS S

Valid Data

Exclusive in Cache A

E Valid Data

Valid Data

Don’t CareX

Invalid in Cache A

System Memory

Don’t Care

Data invalid\
not congruent

Data invalid\
not congruent Invalid DateI

Chapter 3. Cache and Bus Interface Unit Operation 3-13

3.6.2 Coherency and Secondary Caches
The 604 supports the use of a larger secondary cache that can be implemented in different
configurations. The use of an L2 cache can serve to further improve performance by further
reducing the number of bus accesses. The L2 cache must operate with respect to the
memory system in a manner that is consistent with the intent of the PowerPC architecture.

L2 caches must forward all relevant system bus traffic onto the 604 so the 604 can take the
appropriate actions to maintain memory coherency as defined by the PowerPC architecture.

3.6.3 Page Table Control Bits
The PowerPC architecture allows certain memory characteristics to be set on a page and on
a block basis. These characteristics include the following:

• Write-back/write-through (using the W bit)
• Cacheable/noncacheable (using the I bit)
• Memory coherency enforced/not enforced (using the M bit)

An additional page control bit, G, handles guarded storage and is not considered here. This
ability allows both single- and multiple-processor system designs to exploit numerous
system-level performance optimizations.

The PowerPC architecture defines two of the possible eight decodings of these bits to be
unsupported (WIM = 110 or 111).

Note that software must exercise care with respect to the use of these bits if coherent
memory support is desired. Careless specification of these bits may create situations that
present coherency paradoxes to the processor. In particular, this can happen when the state
of these bits is changed without appropriate precautions (such as flushing the pages that
correspond to the changed bits from the caches of all processors in the system) or when the
address translations of aliased real addresses specify different values for any of the WIM
bits. These coherency paradoxes can occur within a single processor or across several
processors.

It is important to note that in the presence of a paradox, the operating system software is
responsible for correctness. The next section provides a few simple examples to convey the
meaning of a paradox.

3.6.4 MESI State Diagram
The 604 provides dedicated hardware to provide data cache coherency by snooping bus
transactions. The address retry capability of the 604 enforces the MESI protocol, as shown
in Figure 3-6. Figure 3-6 assumes that the WIM bits are set to 001; that is, write-back,
caching-not-inhibited, and memory coherency enforced.

3-14 PowerPC 604 RISC Microprocessor User's Manual

Figure 3-6. MESI Cache Coherency Protocol—State Diagram (WIM = 001)

Table 3-6 gives a detailed list of MESI transitions for various operations and WIM bit
settings.

3.6.5 Coherency Paradoxes in Single-Processor Systems
The following coherency paradoxes can be encountered within a single processor:

• Load or store operations to a page with WIM = 0b011 and a cache hit occurs.
Caching was supposed to be inhibited for this page. Any load operation to a cache-
inhibited page that hits in the cache presents a paradox to the processor. The 604
ignores the data in the cache and the state of the cache block is unchanged.

• Store operation to a page with WIM = 0b10X and a cache hit on a modified cache
block occurs. This page was marked as write-through yet the processor was given
access to the cache (write-through page are always main memory). Any store

LR
U

re
pl

ac
em

en
t

SHARED

SHR

RH

RH

EXCLUSIVE

SHW

RMS

S
H

R

SHWSHR

RME WH

WH

WH

RH

MODIFIED

S
H

W

INVALID

W
M

Bus Transactions

RH = Read hit = Snoop push
RMS = Read miss, shared
RME = Read miss, exclusive = Invalidate transaction

WH = Write hit
WM = Write miss = Read-with-intent-to-modify

SHR = Snoop hit on a read
SHW = Snoop hit on a write or = Read

read-with-intent-to-modify

Chapter 3. Cache and Bus Interface Unit Operation 3-15

operation to a write-through page that hits a modified cache block in the cache
presents a coherency paradox to the processor. The 604 writes the data both to the
cache and to main memory (note that only the data for this store is written to main
memory and not the entire cache block). The state of the cache block is unchanged.

3.6.6 Coherency Paradoxes in Multiple-Processor Systems
It is possible to create a coherency paradox across multiple processors. Such paradoxes are
particularly difficult to handle since some scenarios could result in the purging of modified
data, and others may lead to unforeseen bus deadlocks.

Most of these paradoxes center around the interprocessor coherency of the memory
coherency bit (or the M bit). Improper use of this bit can lead to multiple processors
accepting a cache block into their caches and marking the data as exclusive. In turn, this can
lead to a state where the same cache block is modified in multiple processor caches.

Additional information on what bus operations are generated for the various instructions
and state conditions can be found in Chapter 8, “System Interface Operation.”

3.7 Cache Configuration
There are several bits in the HID0 register that can be used to configure the instruction and
data cache. These are described as follows:

• Bit 1—Enable cache parity checking. Enables a machine check exception based on
the detection of a cache parity error. If this bit is cleared, cache parity errors are
ignored. Note that the machine check exception is further affected by the MSR[ME]
bit, which specifies whether the processor enters checkstop state or continues
processing.

• Bit 7—Disable snoop response high state restore. If this bit is set, the processor
cannot drive the SHD and ARTRY signals to the high (negated) state, and the system
must restore the signals to the high state. See Chapter 7, “Signal Descriptions,” for
more information.

• Bit 16—Instruction cache enable. If this bit is cleared, the instruction cache is
neither accessed nor updated. Disabling the caches forces all pages to be accessed
as if they were marked cache-inhibited (WIM = X1X). All potential cache accesses
from the bus are ignored.

• Bit 17—Data cache enable. If this bit is cleared, the data cache is neither accessed
nor updated. Disabling the cache forces all pages to be accessed as if they were
marked cache-inhibited (WIM = X1X). All potential cache accesses from the bus,
such as snoop and cache operations are ignored.

• Bit 18—Instruction cache lock. Setting this bit locks the instruction cache, in which
case all cache misses are treated as cache-inhibited. Cache hits occur as normal.
Cache operations and the icbi instruction continue to work as normal.

3-16 PowerPC 604 RISC Microprocessor User's Manual

• Bit 19—Data cache lock. Setting this bit locks the data cache, in which case all
cache misses are treated as cache-inhibited. Cache hits occur as normal, and cache
snoops and other operations continue to work as normal. This is the only way to
deallocate an entry. If the data cache is locked when the dcbz instruction is executed,
it takes an alignment exception, provided the target address had been translated
correctly.

• Bit 20—Instruction cache invalidate all. When this bit is set, the instruction cache
begins an invalidate operation marking the state of each cache block in the desired
cache as invalid without copying back any data to memory. It is assumed that no data
in the instruction cache is modified. Access to the cache is blocked during this time.
The bits are reset when the invalidation operation begins (usually the cycle
immediately following the write to the register beginning an invalidate operation).

• Bit 21—Data cache invalidate all. When this bit is set, the data cache begins an
invalidate operation marking the state of each cache block in the desired cache as
invalid without copying back any modified lines to memory. Access to the cache is
blocked during this time. The bits are reset when the invalidation operation begins
(usually the cycle immediately following the write to the register). Any accesses to
the cache from the bus are signaled as a miss during the time that the invalidate-all
operation is in progress.

The HID0 register can be accessed with the mtspr and mfspr instructions.

3.8 Cache Control Instructions
The VEA and OEA portions of the PowerPC architecture define instructions that can be
used for controlling caches in both single- and multiprocessor systems. The exact behavior
of these instruction in the 604 is described in the following sections.

Several of these instructions are required to broadcast their essence (such as a kill, clean, or
flush operation) onto the 604 bus interface so that all processors in a multiprocessor system
can take the appropriate actions. The 604 contains snooping logic to monitor the bus for
these commands and control logic to keep the cache and the memory queue coherent.
Additional details on the specific bus operations can be found in Chapter 7, “Signal
Descriptions.”

3.8.1 Instruction Cache Block Invalidate (icbi)
The effective address is computed, translated, and checked for protection violations as
defined in the PowerPC architecture. If the addressed block is in the instruction cache, the
604 marks this instruction cache block as invalid. This instruction changes neither the
content nor status of the data cache. The ICBI operation is broadcast on the 604 bus
unconditionally to support this function throughout a system’s memory hierarchy.

Chapter 3. Cache and Bus Interface Unit Operation 3-17

3.8.2 Instruction Synchronize (isync)
The isync instruction causes the 604 to purge its instruction buffers and fetch the next
sequential instruction.

3.8.3 Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst)

The Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst)
instructions provide potential system performance improvement through the use of
software-initiated prefetch hints. The 604 treats these instructions identically. Note that
PowerPC implementations are not required to take any action based on the execution of this
instruction, but they may choose to prefetch the cache block corresponding to the effective
address into their cache. The 604 fetches the data into the cache when the address hits in
the TLB or the BAT, is permitted load access from the addressed page, is not directed to a
direct-store segment, and is directed at a cacheable page. Otherwise, the 604 treats these
instructions as no-ops.

Regarding MESI cache coherency, the data brought into the cache as a result of these
instructions is validated in the same manner that a load instruction would be (that is, if no
other bus participant has a copy, it is marked as exclusive; otherwise it is marked as shared).
The memory reference of a dcbt instruction causes the reference bit to be set.

Note also that the successful execution of the dcbt instruction affects the state of the TLB
and cache LRU bits as defined by the LRU algorithm.

3.8.4 Data Cache Block Set to Zero (dcbz)
As defined in the VEA, when the dcbz instruction is executed the effective address is
computed, translated, and checked for protection violations. If the 604 does not already
have exclusive access to this cache block, it presents a kill operation onto the 604 bus—a
kill operation instructs all other processors to invalidate copies of the cache block that may
reside in their caches. After it has exclusive access to the cache block, the 604 writes all
zeros into the cache block. In the event that the 604 already has exclusive access, it
immediately writes all zeros into the cache block. If the addressed block is within a
noncacheable or a write-through page, or if the cache is locked or disabled, an alignment
exception occurs.

3.8.5 Data Cache Block Store (dcbst)
As defined in the VEA, when a Data Cache Block Store (dcbst) instruction is executed, the
effective address is computed, translated, and checked for protection violations. If the 604
does not have modified data in this block, the 604 broadcasts a clean operation onto the bus.
If modified (dirty) data is associated with the cache block, the processor pushes the
modified data out of the cache and into the memory queue for future arbitration onto the
604 bus. In this situation, the cache block is marked as exclusive. Otherwise this instruction
is treated as a no-op.

3-18 PowerPC 604 RISC Microprocessor User's Manual

3.8.6 Data Cache Block Flush (dcbf)
As defined in the VEA, when a Data Cache Block Flush (dcbf) instruction is executed, the
effective address is computed, translated, and checked for protection violations. If the 604
does not have modified data in this cache block, it broadcasts a flush operation onto the 604
bus. If the addressed cache block is in the cache, the 604 marks this data as invalid.
However, if the cache block is present and modified, the processor pushes the modified data
into the memory queue for arbitration onto the 604 bus and the cache block is marked as
invalid.

3.8.7 Data Cache Block Invalidate (dcbi)
As defined in the OEA, when a Data Cache Block Invalidate (dcbi) instruction is executed,
the effective address is computed, translated, and checked for protection violations.

The 604 broadcasts a kill operation onto the 604 bus. If the addressed cache block is in the
cache, the 604 marks this data as invalid regardless of whether the data is modified. Because
this instruction may effectively destroy modified data, it is privileged and has store
semantics with respect to protection; that is, write permission is required for the DCBI (kill)
operation.

3.9 Basic Cache Operations
This section describes operations that can occur to the cache, and how these operations are
implemented in the 604.

3.9.1 Cache Reloads
A cache block is reloaded after a read miss occurs in the cache. The cache block that
contains the address is updated by a burst transfer of the data from system memory. Note
that if a read miss occurs in a multiprocessor system, and the data is modified in another
cache, the modified data is first written to external memory before the cache reload occurs.

3.9.2 Cache Cast-Out Operation
The 604 uses an LRU replacement algorithm to determine which of the four possible cache
locations should be used for a cache update. Updating a cache block causes any modified
data associated with the least-recently used element to be written back, or cast out, to
system memory.

3.9.3 Cache Block Push Operation
When a cache block in the 604 is snooped and hit by another processor and the data is
modified, the cache block must be written to memory and made available to the snooping
device. The cache block that is hit is said to be pushed out onto the bus. The 604 supports
two kinds of push operations—normal push operations and enveloped high-priority push
operations, which are described in Section 3.9.7, “Enveloped High-Priority Cache Block
Push Operation.”

Chapter 3. Cache and Bus Interface Unit Operation 3-19

3.9.4 Atomic Memory References
The lwarx/stwcx. instruction combination can be used to emulate atomic memory
references. These instructions are described in Chapter 2, “PowerPC 604 Processor
Programming Model.”

3.9.5 Snoop Response to Bus Operations
When the 604 is not the bus master, it monitors bus traffic and performs cache and memory-
queue snooping as appropriate. The snooping operation is triggered by the receipt of a
qualified snoop request. A qualified snoop request is generated by the simultaneous
assertion of the TS and GBL bus signals.

Instruction processing is interrupted for one clock cycle only when a snoop hit occurs and
the snoop state machine determines a push-out operation is required.

The 604 maintains a write queue of bus operations in progress and/or pending arbitration.
This write queue is also snooped in response to qualified snoop requests. Note that block-
length (four beat) write operations are always snooped in the write queue; however, single-
beat writes are not snooped. Coherency for single-beat writes is maintained through the use
of cache operations that are broadcast with the write on the system interface or the
lwarx/stwcx. instructions.

The 604 drives two snoop status signals (ARTRY and SHD) in response to a qualified snoop
request that hits. These signals provide information about the state of the addressed block
for the current bus operation. For more information about these signals, see Chapter 7,
“Signal Descriptions.”

3.9.6 Cache Reaction to Specific Bus Operations
There are several bus transaction types defined for the 604 bus. The 604 must snoop these
transactions and perform the appropriate action to maintain memory coherency; see
Table 3-4. For example, because single-beat write operations are not snooped when they are
queued in the memory unit, additional operations such as flush or kill operations, must be
broadcast when the write is passed to the system interface to ensure coherency.

A processor may assert ARTRY for any bus transaction due to internal conflicts that prevent
the appropriate snooping. In general, if ARTRY is not asserted, each snooping processor
must take full ownership for the effects of the bus transaction with respect to the state of the
processor.

The transactions in Table 3-4 correspond to the transfer type signals TT0–TT4, which are
described in Section 7.2.4.1, “Transfer Type (TT0–TT4).”

3-20 PowerPC 604 RISC Microprocessor User's Manual

Table 3-4. Response to Bus Transactions

Transaction Response

Clean block The clean operation is an address-only bus transaction, initiated by executing a dcbst
instruction. This operation affects only blocks marked as modified (M). Assuming the
GBL signal is asserted, modified blocks are pushed out to memory, changing the state
to E.

Flush block The flush operation is an address-only bus transaction initiated by executing a dcbf
instruction. Assuming the GBL signal is asserted, the flush block operation results in the
following:

• If the addressed block is in the S or E state, the state of the addressed block is
changed to I.

• If the addressed block is in the M state, the snooping device asserts ARTRY and SHD,
the modified block is pushed out of the cache, and its state is changed to I.

Write-with-flush
Write-with-flush-atomic

Write-with-flush and write-with-flush-atomic operations are issued by a processor after
executing stores or stwcx., respectively to memory in a variety of different states,
particularly noncacheable and write-through. 60x processors do not use this transaction
code for burst transfers, but system use for bursts is not precluded. If they appear on the
bus and the GBL bit is asserted, the 60x processors have the same snoop response as
for flush block, except that a hit on the reservation address causes loss of the
reservation.

Kill block Kill block is an address-only transaction issued by a processor after executing a dcbi
instruction, a dcbz instruction to a location marked I or S, or a write operation to a block
marked S. If a kill-block transaction appears on the bus, and the GBL bit is asserted, the
addressed block is forced to the I state if it is in the cache.

Write-with-kill In a write-with-kill operation, the processor snoops the cache for a copy of the
addressed block. If one is found, an additional snoop action is initiated internally and the
block is forced to the I state, killing modified data that may have been in the block. In
addition to snooping the cache, the three-entry write queue is also snooped. A kill
operation that hits an entry in the write queue purges that entry from the queue.

Read
Read-atomic

Read is used by most single-beat or burst reads on the bus. A read on the bus with the
GBL bit asserted causes the following snoop responses:

• If the addressed block is in the cache in the I state, the processor takes no action.
• If the addressed block is in the cache in the S state, the processor asserts the SHD

snoop status signal.
• If the addressed block is in the cache in the E state, the processor asserts the SHD

snoop status signal and changes the state of that cache block to S.
• If the addressed block is in the cache in the M state, the processor asserts both the

ARTRY and SHD snoop status signals and changes the state of that block in the
cache from E to S.

Read-atomic operations appear on the bus in response to lwarx instruction and receive
the same snooping treatment as a read operation.

Chapter 3. Cache and Bus Interface Unit Operation 3-21

Read-with-intent-to-
modify (RWITM)
RWITM atomic

The RWITM transaction is issued to acquire exclusive use of a memory location for the
purpose of modifying it. One example is a processor that writes to a block that is not
currently in its cache. When GBL is asserted, RWITM transactions on the bus cause the
processors to take the following snoop actions:

• If the addressed block is not in the cache, it takes no action.
• If the addressed block is in the cache in the S or E state, the processor changes the

state of that block in the cache to I.
• If the addressed block is present in the cache in the XM state, then the 60x asserts

both the ARTRY and the SHARED snoop status signals, pushes the dirty block out of
the cache and changes the state of that block in the cache from XM to INV.

RWITM atomic appears on the bus in response to the stwcx. instruction and receives
the same snooping treatment as RWITM.

TLBSYNC This TLB synchronize operation is an address-only transaction placed onto the bus by a
604 when it executes a tlbsync instruction.

When the TLBSYNC bus operation is detected by a snooping 604, the 604 asserts the
ARTRY snoop status if any operations based on an invalidated TLB are pending.

TLB invalidate A TLB invalidate transaction is an address-only transaction issued by a processor when
it executes a tlbie instruction. The address transmitted as part of this transaction
contains bits 12–19 of the EA in their correct respective bit positions.

In response to a TLB invalidate operation, snooping processors invalidate the entire
congruence class in any TLBs associated with the specified EA. In addition, a snooping
604 also asserts the ARTRY snoop status when it has a pending TLB invalidate
operation, and a second TLB invalidate operation is detected.

For more information on the tlbie instruction, see Section 2.3.6.3.3, “Translation
Lookaside Buffer Management Instructions—(OEA).”

I/O reply The I/O reply operation is part of the direct-store operation. It serves as the final bus
operation in the series of bus operations that service a direct-store operation.

EIEIO An EIEIO operation is put onto the bus as a result of executing an eieio instruction. The
eieio instruction enforces ordered execution of accesses to noncacheable memory. The
604s internally enforce ordering of such accesses with respect to the eieio instruction in
that noncacheable accesses due to instructions that occur before the eieio instruction in
the program order are placed on the bus before any noncacheable accesses that result
from instructions that occur after the eieio instruction with the EIEIO bus operation
separating the two sets of bus operations.

If the system implements a mechanism that allows reordering of noncacheable
requests, the appearance of an EIEIO operation should cause it to force ordering
between accesses that occurred before and those that occur after.

SYNC The sync instruction generates an address-only transaction, which the 604 places onto
the bus.
When a 604 detects a SYNC operation on the bus, it asserts the ARTRY snoop status if
any other snooped cache operations are pending in the device.

Read-with-no-intent-to-
cache (RWNITC)

A RWNITC operation is issued by a bus-attached device as TT(4,0–3) = 0b10101—like
a read, but with TT4 = 1). The 604 snoops this operation and if it gets a cache hit on a
block marked M, it writes the block back to memory and marks it E.

This operation is useful for a graphics adapter that reads display data from memory.
This data may be in the processor’s cache and may be updated frequently. Because the
adapter does not cache the data, the processor need not leave the block in the S state,
requiring a bus operation to regain exclusive access.

Table 3-4. Response to Bus Transactions (Continued)

Transaction Response

3-22 PowerPC 604 RISC Microprocessor User's Manual

3.9.7 Enveloped High-Priority Cache Block Push Operation
If the 604 has a read operation outstanding on the bus and another pipelined bus operation
hits against a modified block, the 604 provides a high-priority push operation. This
transaction can be enveloped within the address and data tenures of a read operation. This
feature prevents deadlocks in system organizations that support multiple memory-mapped
buses. More specifically, the 604 internally detects the scenario where one or more load
requests are outstanding and the processor has pipelined a write operation on top of the
load. Normally, when the data bus is granted to the 604, the resulting data bus tenure is used
for the load operation.

The enveloped high-priority cache block push feature defines a bus signal, the data bus
write only qualifier (DBWO), which, when asserted with a qualified data bus grant,
indicates that the resulting data tenure should be used for the first store operation instead.
If no store operation is pending, the first read operation is performed. If no write operation
is pending, the 604 can perform a read operation. This signal is described in detail in
Section 8.11, “Using Data Bus Write Only.” Note that the enveloped copy-back operation
is an internally pipelined bus operation.

3.9.8 Bus Operations Caused by Cache Control Instructions
Table 3-5 provides an overview of the bus operations initiated by cache control instructions.
Note that Table 3-5 assumes that the WIM bits are set to 001; that is, since the cache is
operating in write-back mode, caching is permitted and coherency is enforced.

XFERDATA XFERDATA read and write operations are bus transactions that result from execution of
the eciwx or ecowx instructions, respectively. These instructions assist certain adapter
types (especially displays) to make high-speed data transfers. They do this by
calculating an effective address, translating it, and presenting the resulting physical
address to the adapter.

The XFERDATA read and write operations transfer a word of data to or from the
processor, respectively. They also present the 4-bit resource ID (RID) field, using the
concatenation of the bits TBST || TSIZ[0–2]. These transactions are unique in the sense
that the address that is transferred does not select the slave device; it is simply being
passed to the slave device for use in a subsequent transaction. Rather, the RID bits are
used to select among the slave devices.

Although the intent of these instructions is that the slave device that is selected by the
RID bits will use the address that is transferred in a subsequent data transfer, the exact
nature of this data transfer is not defined by 604 bus specifications. It is a private
transfer that can be defined by the system like any other direct memory access.

Table 3-4. Response to Bus Transactions (Continued)

Transaction Response

Chapter 3. Cache and Bus Interface Unit Operation 3-23

3.9.9 Cache Control Instructions
Table 3-5 lists bus operations performed by the 604 when they execute cache control
instructions.

Table 3-5 does not include noncacheable or write-through cases, nor does it completely
describe the mechanisms for the operations described. For more information, see
Section 3.10, “Cache Actions.”

Chapter 3, “Addressing Modes and Instruction Set Summary,” and Chapter 8, “Instruction
Set,” in The Programming Environments Manual describe the cache control instructions in
detail. Several of the cache control instructions broadcast onto the 604 interface so that all
processors in a multiprocessor system can take appropriate actions. The 604 contains
snooping logic to monitor the bus for these commands and the control logic required to
keep the cache and the memory queues coherent. For additional details about the specific
bus operations performed by the 604, see Chapter 8, “System Interface Operation.”

3.10 Cache Actions
Table 3-6 lists the actions that occur for various operations depending on different WIM bit
settings.

Table 3-5. 604 Bus Operations Initiated by Cache Control Instructions

Instruction Cache State Next Cache State Bus Operation Comment

sync Don’t care No change SYNC First clears memory queue

eieio Don’t care No change EIEIO No clear meaning

icbi Don’t care I ICBI —

dcbi
(invalidate)

Don’t care I Kill —

dcbf
(flush)

E, S, I I Flush —

M I Write-with-kill Marked as write-through

dcbst
(store)

E, S, I No change Clean —

M E Write-with-kill Marked as write-through

dcbz
(zero)

I M Kill May also replace

S M Kill —

M, E M None Write over modified data

dcbt, dcbtst I E, S Read State change on reload

M, E, S No Change None —

tlbsync Don’t care No change TLBSYNC —

3-24 PowerPC 604 RISC Microprocessor User's Manual

Table 3-6. Cache Actions

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

000 I Load Read 000 01010 (n/a) (None) Load the block of data into cache
forward data from load
mark cache block E

000 I Load Read 000 01010 (n/a) SHD Load the block of data into cache
load from cache
mark cache block S

000 I Load Read 000 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 M E
S

Load (None) (n/a) (n/a) (n/a) (n/a) Load from cache

001 I Load Read 001 01010 (n/a) (None) Load the block of data into cache
mark cache block E
load from cache

001 I Load Read 001 01010 (n/a) SHD Load the block of data into cache
load from cache
mark cache block S

001 I Load Read 001 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 M E
S

Load (None) (n/a) (n/a) (n/a) (n/a) Load from cache

011
010
110
111

E S I Load Single-
beat read

01M
11M

01010 (n/a) (None) or
SHD

Load from main memory

011
010
110
111

E S I Load Single-
beat read

01M
11M

01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010
110
111

M Load Single-
beat read

01M
11M

01010 (n/a) (None) or
SHD

Paradox—cache should be I
load from main memory

011
010
110
111

M Load Single-
beat read

01M
11M

01010 (n/a) ARTRY or
ARTRY&SHD

Paradox—cache should be I
release the bus
retry the operation

100 I Load Read 100 01010 (n/a) (None) Load the block of data into cache
load from cache
mark the cache block E

100 I Load Read 100 01010 (n/a) SHD Load the block of data into cache
load from cache
mark cache block S

Chapter 3. Cache and Bus Interface Unit Operation 3-25

100 I Load Read 100 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

100 M E
S

Load (None) (n/a) (n/a) (n/a) (n/a) Load from cache

101 I Load Read 101 01010 (n/a) (None) Load the block of data into cache
load from cache
mark cache E

101 I Load Read 101 01010 (n/a) SHD Load the block of data into cache
load from cache
mark cache block S

101 I Load Read 101 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

101 M E
S

Load (None) (n/a) (n/a) (n/a) (n/a) Load from cache

000 I lwarx Read
atomic

000 11010 Set
by
this op

(None) Load the block of data into cache
set reservation
load from cache
mark cache block E

000 I lwarx Read
atomic

000 11010 Set
by
this op

SHD Load the block of data into cache
set reservation
load from cache
mark cache block S

000 I lwarx Read
atomic

000 11010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 M E
S

lwarx lwarx
reservation
 set

000 00001 Set
by
this op

(None) or
SHD

Set reservation
load from cache

000 M E
S

lwarx lwarx
reservation
 set

000 00001 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 I lwarx Read
atomic

001 11010 Set
by
this op

(None) Load the block of data into cache
mark cache block E
set reservation
load from cache

001 I lwarx Read
atomic

001 11010 Set
by
this op

SHD Load the block of data into cache
set reservation
load from cache
mark cache block S

001 I lwarx Read
atomic

001 11010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 M E
S

lwarx lwarx
reservation
 set

001 00001 Set
by
this op

(None) or
SHD

Set reservation
load from cache

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

3-26 PowerPC 604 RISC Microprocessor User's Manual

001 M E
S

lwarx lwarx
reservation
 set

001 00001 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010

I lwarx Single-
beat read
atomic

01M 11010 Set
by
this op

(None) or
SHD

Set reservation
load from main memory

011
010

I lwarx Single-
beat read
atomic

01M 11010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010

E S lwarx Single-
beat read
atomic

01M 11010 Set
by
this op

(None) or
SHD

Set the reservation
load from main memory

011
010

E S lwarx Single-
beat read
atomic

01M 11010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010

M lwarx Single-
beat read
atomic

01M 11010 Set
by
this op

(None) or
SHD

Paradox—cache should be I
set the reservation
load from main memory

011
010

M lwarx Single-
beat read
atomic

01M 11010 (n/a) ARTRY or
ARTRY&SHD

Paradox—cache should be I
release the bus
retry the operation

100
101

I lwarx (n/a) (n/a) (n/a) (n/a) (n/a) A lwarx to a page marked write-
through causes a data access
exception; therefore no bus
transaction results.

101 (n/a) lwarx (n/a) (n/a) (n/a) (n/a) (n/a) A lwarx to a page marked write-
through causes a data access
exception; therefore no bus
transaction results.

000 I Store RWITM 000 01110 (n/a) (None) or
SHD

Load the block of data into cache
store to cache
mark cache M

000 I Store RWITM 000 01110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 S Store Kill 000 01100 (n/a) (None) or
SHD

Wait for the kill to be successfully
presented
store to cache
mark cache block M

000 S Store Kill 000 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 E Store (None) (n/a) (n/a) (n/a) (n/a) Store to cache
mark cache block M

000 M Store (None) (n/a) (n/a) (n/a) (n/a) Store to cache

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

Chapter 3. Cache and Bus Interface Unit Operation 3-27

001 I Store RWITM 001 01110 (n/a) (None) or
SHD

Load the block of data into cache
mark cache block E
store to cache
mark cache block M

001 I Store RWITM 001 01110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 S Store Kill 001 01100 (n/a) (None) or
SHD

Wait for kill to be successfully
presented
mark cache block E
store to cache
mark cache block M

001 S Store Kill 001 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 E Store (None) (n/a) (n/a) (n/a) (n/a) Store to cache
mark cache block M

001 M Store (None) (n/a) (n/a) (n/a) (n/a) Store to cache

011
010
110
111

I Store Write with
flush

01M
11M

00010 (n/a) (None) or
SHD

Store to main memory

011
010
110
111

I Store Write with
flush

01M
11M

00010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010
110
111

E S Store Write with
flush

01M
11M

00010 (n/a) (None) or
SHD

Paradox—cache should be I
store to main memory

011
010
110
111

E S Store Write with
flush

01M
11M

00010 (n/a) ARTRY or
ARTRY&SHD

Paradox—cache should be I
release the bus
retry the operation

011
010
110
111

M Store Write with
flush

01M
11M

00010 (n/a) (None) or
SHD

Paradox—cache should be I
store to main memory

011
010
110
111

M Store Write with
flush

01M
11M

00010 (n/a) ARTRY or
ARTRY&SHD

Paradox—cache should be I
release the bus
retry the operation

100 I Store Write with
flush

100 00010 (n/a) (None) or
SHD

Store to main memory

100 M E
S I

Store Write with
flush

100 00010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

3-28 PowerPC 604 RISC Microprocessor User's Manual

100 M E
S

Store Write with
flush

100 00010 (n/a) (None) or
SHD

Store to cache
store to main memory

101 I Store Write with
flush

101 00010 (n/a) (None) or
SHD

Write to main memory
(note: no reload on a store miss)

101 M E
S I

Store Write with
flush

101 00010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

101 M E
S

Store Write with
flush

101 00010 (n/a) (None) or
SHD

Store to cache
store to main memory

000 S I stwcx. (None) (n/a) (n/a) None (n/a) Update condition register

000 I stwcx. RWITM
atomic

000 11110 Yes
(and
reset)

(None) or
SHD

Load the block of data into cache
release the reservation
update the condition register
store to cache
mark cache M

000 I stwcx. RWITM
atomic

000 11110 Yes ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 S stwcx. Kill 000 01100 Yes
(and
reset)

(None) or
SHD

Wait for the kill to be successfully
presented
release reservation
update condition register
store to cache
mark cache block M

000 S stwcx. Kill 000 01100 Yes ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 M E stwcx. (None) (n/a) (n/a) None (n/a) Update condition register

000 E stwcx. (None) (n/a) (n/a) Yes
(and
reset)

(n/a) Release reservation
update condition register
store to cache
mark cache block M

000 M E stwcx. (None) (n/a) (n/a) Yes
(and
reset)

(n/a) (n/a)

000 M stwcx. (None) (n/a) (n/a) Yes
(and
reset)

(n/a) Release reservation
update condition register
store to cache

001 S I stwcx. (None) (n/a) (n/a) None (n/a) Update condition register

001 I stwcx. RWITM
atomic

001 11110 Yes
(and
reset)

(None) or
SHD

Load the block of data into cache
release the reservation
update the condition register
store to cache
mark cache M

001 I stwcx RWITM
atomic

001 11110 Yes ARTRY or
ARTRY&SHD

Release the bus
retry the operation

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

Chapter 3. Cache and Bus Interface Unit Operation 3-29

001 S stwcx. Kill 001 01100 Yes
(and
reset)

(None) or
SHD

Release reservation
update condition register
mark cache block E
store to cache
mark cache block M

001 S stwcx. Kill 001 01100 Yes ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 E stwcx. (None) (n/a) (n/a) None (n/a) Update condition register

001 M E stwcx. (None) (n/a) (n/a) Yes
(and
reset)

(n/a) Release reservation
update condition register
store to cache
mark cache block M

001 M E stwcx. (None) (n/a) (n/a) Yes (n/a) (n/a)

001 M stwcx. (None) (n/a) (n/a) Yes
(and
reset)

(n/a) Release reservation
update condition register
store to cache

011
010

I stwcx. (None) (n/a) (n/a) None (n/a) Update condition register

011
010

I stwcx. Write with
flush
atomic

01M 10010 Yes
(and
reset)

(None) or
SHD

Release reservation
update condition register
store to main memory

011
010

I stwcx. Write with
flush
atomic

01M 10010 Yes ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010

M E
S

stwcx. (None) (n/a) (n/a) None (n/a) Paradox—cache should be I
update condition register

011
010

M E
S

stwcx. Write with
flush
atomic

01M 10010 Yes
(and
reset)

(None) or
SHD

Paradox—cache should be I
check/release reservation
update condition register
store to main memory

011
010

M E
S

stwcx. Write with
flush
atomic

01M 10010 Yes ARTRY or
ARTRY&SHD

Paradox—cache should be I
release the bus
retry the operation

011
010

M stwcx. (n/a) (n/a) (n/a) None (n/a) (n/a)

100
101
11X

(n/a) stwcx. (n/a) (n/a) (n/a) (n/a) (n/a) A stwcx. to a page marked write-
though causes a data access
exception; therefore, no bus
transaction results.

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

3-30 PowerPC 604 RISC Microprocessor User's Manual

100
101
11X

(n/a) stwcx. (n/a) (n/a) (n/a) Yes (n/a) An stwcx. to a page marked
write-though causes a data
access exception; therefore, no
bus transaction results.

000 I dcbt Read 000 01010 (n/a) (None) Load the block of data into cache
mark the cache E

000 I dcbt Read 000 01010 (n/a) SHD Load the block of data into cache
mark the cache S

000 I dcbt Read 000 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 M E
S

dcbt (None) (n/a) (n/a) (n/a) (n/a) No-op

001 I dcbt Read 001 01010 (n/a) (None) Load the block of data into cache
mark the cache E

001 I dcbt Read 001 01010 (n/a) SHD Load the block of data into cache
mark the cache S

001 I dcbt Read 001 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 M E
S

dcbt (None) (n/a) (n/a) (n/a) (n/a) No-op

011
010
110
111

I dcbt (None) 01M
11M

(n/a) (n/a) (n/a) No-op

011
010
110
111

E S dcbt (None) (n/a) (n/a) (n/a) (n/a) No-op

011
010
110
111

M dcbt (None) (n/a) (n/a) None (n/a) No-op

011
010
110
111

M dcbt (n/a) (n/a) (n/a) None (n/a) (n/a)

100 I dcbt Read 100 01010 (n/a) (None) Load the block of data into cache
mark the cache E

100 I dcbt Read 100 01010 (n/a) SHD Load the block of data into cache
mark the cache S

100 I dcbt Read 100 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

Chapter 3. Cache and Bus Interface Unit Operation 3-31

100 M E
S

dcbt (None) (n/a) (n/a) (n/a) (n/a) No-op

101 I dcbt Read 101 01010 (n/a) (None) Load the block of data into cache
mark the cache E

101 I dcbt Read 101 01010 (n/a) SHD Load the block of data into cache
mark the cache S

101 I dcbt Read 101 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

101 M E
S

dcbt (None) (n/a) (n/a) (n/a) (n/a) No-op

000 I dcbtst Read 000 01010 (n/a) (None) Load the block of data into cache
mark the cache E

000 I dcbtst Read 000 01010 (n/a) SHD Load the block of data into cache
mark the cache S

000 I dcbtst Read 000 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 S dcbtst (None) (n/a) (n/a) (n/a) (n/a) No-op

000 M E dcbtst (None) 000 (n/a) (n/a) (n/a) No-op

001 I dcbtst Read 001 01010 (n/a) (None) Load the block of data into cache
mark the cache E

001 I dcbtst Read 001 01010 (n/a) SHD Load the block of data into cache
mark the cache S

001 I dcbtst Read 001 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 M E
S

dcbtst (None) (n/a) (n/a) (n/a) (n/a) No-op

011
010
110
111

I dcbtst (None) 01M
11M

(n/a) (n/a) (n/a) No-op

011
010
110
111

E S dcbtst (None) (n/a) (n/a) (n/a) (n/a) No-op

011
010
110
111

M dcbtst (None) (n/a) (n/a) None (n/a) No-op

011
010
110
111

M dcbtst (n/a) (n/a) (n/a) None (n/a) (n/a)

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

3-32 PowerPC 604 RISC Microprocessor User's Manual

100 I dcbtst Read 100 01010 (n/a) (None) Load the block of data into cache
mark cache E

100 I dcbtst Read 100 01010 (n/a) SHD Load the block of data into cache
mark cache as block S

100 I dcbtst Read 100 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

100 M E
S

dcbtst (None) (n/a) (n/a) (n/a) (n/a) No-op

101 I dcbtst Read 101 01010 (n/a) (None) Load the block of data into cache
mark cache block E

101 I dcbtst Read 101 01010 (n/a) SHD Load the block of data into cache
mark cache block S

101 I dcbtst Read 101 01010 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

101 S
E

dcbtst (None) (n/a) (n/a) (n/a) (n/a) No-op

101 M dcbtst (None) (n/a) (n/a) (n/a) (n/a) No-op

000 I dcbz Kill 000 01100 (n/a) (None) or
SHD

Establish the block in data cache
without fetching the block from
main memory
clear all bytes
mark cache block M

000 S I dcbz Kill 000 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 S dcbz Kill 000 01100 (n/a) (None) or
SHD

Clear all bytes in the block
mark cache block M

000 E dcbz (None) 000 (n/a) (n/a) (n/a) Clear all bytes in the block
mark cache block M

000 M dcbz (None) (n/a) (n/a) (n/a) (n/a) Write zeros to all bytes in the
cache block

001 I dcbz Kill 001 01100 (n/a) (None) or
SHD

Establish the block in data cache
without fetching the block from
main memory
clear all bytes
mark cache block M

001 I dcbz Kill 001 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 S dcbz Kill 001 01100 (n/a) (None) or
SHD

Mark cache block E
set all bytes of the block to zero
mark the cache block M

001 S dcbz Kill 001 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
Retry the operation

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

Chapter 3. Cache and Bus Interface Unit Operation 3-33

001 E dcbz (None) (n/a) (n/a) (n/a) (n/a) Write zeros to all bytes in the
Cache block
mark cache block M

001 M dcbz (None) (n/a) (n/a) (n/a) (n/a) Write zeros to all bytes in the
cache block

010
011
110
111
100
101

M E
S I

dcbz (n/a) (n/a) (n/a) (n/a) (n/a) A dcbz to a page marked cache
inhibited or write-through causes
an alignment exception;
therefore this transaction does
not occur on the bus

000 E S I dcbst Clean 000 00000 (n/a) (None) or
SHD

No-op

000 E S I dcbst Clean 000 00000 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 M dcbst Write with
kill

100 00110 (n/a) (None) or
SHD

Write the block to main memory
mark cache block E

000 M dcbst Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 E S I dcbst Clean 001 00000 (n/a) (None) or
SHD

No-op

001 E S I dcbst Clean 001 00000 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 M dcbst Write with
kill

100 00110 (n/a) (None) or
SHD

Write all bytes in the cache block
to main memory
mark cache block E

001 M dcbst Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010
110
111

E S I dcbst Clean W1M 00000 (n/a) (None) or
SHD

No-op

011
010
110
111

I dcbst Clean W1M 00000 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010
110
111

M dcbst Write with
kill

100 00110 (n/a) (None) or
SHD

Write all bytes in the cache block
to main memory
Mark cache block E

011
010
110
111

M dcbst Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

3-34 PowerPC 604 RISC Microprocessor User's Manual

100 E S I dcbst Clean 100 00000 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

100 E S I dcbst Clean 100 00000 (n/a) (None) or
SHD

No-op

100 M dcbst Write with
kill

100 00110 (n/a) (None) or
SHD

Write the block back to memory
mark cache block E

100 M dcbst Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

101 E S I dcbst Clean 101 00000 (n/a) (None) or
SHD

No-op

101 E S I dcbst Clean 101 00000 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

101 M dcbst Write with
kill

100 00110 (n/a) (None) or
SHD

Write the block back to memory
mark cache block E

101 M dcbst Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 I dcbf Flush 000 00100 (n/a) (None) or
SHD

No-op

000 I dcbf Flush 000 00100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 E S dcbf Flush 000 00100 (n/a) (None) or
SHD

Mark cache block I

000 E S dcbf Flush 000 00100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 M dcbf Write with
kill

100 00110 (n/a) (None) or
SHD

Write the block of data back to
main memory
mark the cache block I

000 M dcbf Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 I dcbf Flush 001 00100 (n/a) (None) or
SHD

No-op

001 E S dcbf Flush 001 00100 (n/a) (None) or
SHD

Mark cache block I

001 E S I dcbf Flush 001 00100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 M dcbf Write with
kill

100 00110 (n/a) (None) or
SHD

Write all bytes in the cache block
to main memory
mark cache block I

001 M dcbf Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

Chapter 3. Cache and Bus Interface Unit Operation 3-35

011
010
110
111

I dcbf Flush W1M 00100 (n/a) (None) or
SHD

No-op

011
010
110
111

I dcbf Flush W1M 00100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010
110
111

E S dcbf Flush W1M 00100 (n/a) (None) or
SHD

Mark cache block I

011
010
110
111

E S dcbf Flush W1M 00100 (n/a) ARTRY or
ARTRY&SHD

Retry the operation

011
010
110
111

M dcbf Write with
kill

100 00110 (n/a) (None) or
SHD

Flush the block
mark cache block I

011
010
110
111

M dcbf Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

100 I dcbf Flush 100 00100 (n/a) (None) or
SHD

No-op

100 E S dcbf Flush 100 00100 (n/a) (None) or
SHD

Mark cache block I

100 E S I dcbf Flush 100 00100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

100 M dcbf Write with
kill

100 00110 (n/a) (None) or
SHD

Write the block back to memory
mark cache block I

100 M dcbf Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

101 I dcbf Flush 101 00100 (n/a) (None) or
SHD

No-op

101 E S dcbf Flush 101 00100 (n/a) (None) or
SHD

Mark cache block I

101 E S I dcbf Flush 101 00100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

101 M dcbf Write with
kill

100 00110 (n/a) (None) or
SHD

Flush the block
mark cache block I

101 M dcbf Write with
kill

100 00110 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

3-36 PowerPC 604 RISC Microprocessor User's Manual

000 I dcbi Kill 000 01100 (n/a) (None) or
SHD

No-op

000 M E
S

dcbi Kill 000 01100 (n/a) (None) or
SHD

Mark the cache block I

000 M E
S I

dcbi Kill 000 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 I dcbi Kill 001 01100 (n/a) (None) or
SHD

No-op

001 I dcbi Kill 001 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 S dcbi Kill 001 01100 (n/a) (None) or
SHD

Mark cache block I

001 S dcbi Kill 001 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 E M dcbi Kill 001 01100 (n/a) (None) or
SHD

Mark cache block I

001 E M dcbi Kill 001 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010
110
111

I dcbi Kill W1M 01100 (n/a) (None) or
SHD

No-op

011
010
110
111

M E
S

dcbi Kill W1M 01100 (n/a) (None) or
SHD

Mark cache block I

011
010
110
111

M E
S I

dcbi Kill W1M 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

100 I dcbi Kill 100 01100 (n/a) (None) or
SHD

No-op

100 M E
S I

dcbi Kill 100 01100 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

100 M E
S

dcbi Kill 100 01100 (n/a) (None) or
SHD

Mark cache block I

101 I dcbi Kill 101 01100 (n/a) (None) or
SHD

No-op

101 M E
S I

dcbi Kill 101 01100 (n/a) ARTRY or
ARTR&SHD

Release the bus
retry the operation

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

Chapter 3. Cache and Bus Interface Unit Operation 3-37

101 M E
S

dcbi Kill 101 01100 (n/a) (None) or
SHD

Mark cache block I

000 INV icbi ICBI 000 01101 (n/a) (None) or
SHD

No-op

000 INV icbi ICBI 000 01101 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

000 VAL icbi ICBI 000 01101 (n/a) (None) or
SHD

Mark icache block INV

000 VAL icbi ICBI 000 01101 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 INV icbi ICBI 001 01101 (n/a) (None) or
SHD

No-op

001 INV
VAL

icbi ICBI 001 01101 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

001 VAL icbi ICBI 001 01101 (n/a) (None) or
SHD

Mark icache block INV

011
010
110
111

INV icbi ICBI 01M
11M

01101 (n/a) (None) or
SHD

No-op

011
010
110
111

INV
VAL

icbi ICBI 01M
11M

01101 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

011
010
110
111

VAL icbi ICBI 01M
11M

01101 (n/a) (None) or
SHD

Mark icache block INV

100 INV icbi ICBI 100 01101 (n/a) (None) or
SHD

No-op

100 INV
VAL

icbi ICBI 100 01101 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

100 VAL icbi ICBI 100 01101 (n/a) (None) or
SHD

Mark icache block INV

101 INV icbi ICBI 101 01101 (n/a) (None) or
SHD

No-op

101 INV
VAL

icbi ICBI 101 01101 (n/a) ARTRY or
ARTRY&SHD

Release the bus
retry the operation

101 VAL icbi ICBI 101 01101 (n/a) (None) or
SHD

Mark icache block INV

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

3-38 PowerPC 604 RISC Microprocessor User's Manual

(n/a) (n/a) sync SYNC xx1 01000 (n/a) (None) or
SHD

The sync instruction completed.
(Note: This table does not give
an accurate representation of
what the sync instruction does.)

(n/a) (n/a) sync SYNC xx1 01000 (n/a) ARTRY or
ARTRY&SHD

Release the bus.
Retry the operation.

(n/a) (n/a) eieio EIEIO xx1 10000 (n/a) (None) or
SHD

The eieio instruction has
completed.
(Note: This table does not give
an accurate representation of
what the eieio instruction does.)

(n/a) (n/a) eieio EIEIO xx1 10000 (n/a) ARTRY or
ARTRY&SHD

Release the bus.
Retry the operation.

(n/a) (n/a) tlbie TLB
invalidate

xx1 11000 (n/a) (None) or
SHD

Hold off any new storage
instructions.
Wait for the completion of any
outstanding storage instructions
Invalidate the requested TLB
entry
(Note: This table does not
thoroughly characterize the tlbie
instruction.)

(n/a) (n/a) tlbie TLB
invalidate

xx1 11000 (n/a) ARTRY or
ARTRY&SHD

Release the bus.
Retry the operation

tlbsync TLB sync xx1 01001 (n/a) (None) or
SHD

The TLB sync instruction has
completed.
(Note: This table does not
thoroughly characterize the
tlbsync instruction.)

tlbsync TLB sync xx1 01001 (n/a) ARTRY or
ARTRY&SHD

Release the bus.
Retry the operation.

I Snoop-kill xx1 01100 None (None) No-op

I Snoop-kill xx1 01100 Yes
(and
reset)

(None) Release reservation.

M E
S

Snoop-kill xx1 01100 None (None) Mark cache block I.

M E
S

Snoop-kill xx1 01100 Yes
(and
reset)

(None) Mark cache block I.
Release reservation.

I Snoop-
read

xx1 01010 None (None) No-op

I Snoop-
read

xx1 01010 Yes SHD No-op

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

Chapter 3. Cache and Bus Interface Unit Operation 3-39

S Snoop-
read

xx1 01010 (n/a) SHD No-op

E Snoop-
read

xx1 01010 (n/a) SHD Mark cache block S.

M Snoop-
read

x01 01010 (n/a) ARTRY&SHD Attempt to write cache block
back to main memory;
if successful, mark cache block S

M Snoop-
read

x11 01010 (n/a) ARTRY&SHD Attempt to write cache block
back to main memory;
If successful, mark cache block S

I Snoop-
read
atomic

xx1 11010 None (None) No-op

I Snoop-
read
atomic

xx1 11010 Yes SHD No-op

S Snoop-
read
atomic

xx1 11010 (n/a) SHD No-op

E Snoop-
read
atomic

xx1 11010 (n/a) SHD Mark cache block S

M Snoop-
read
atomic

xx1 11010 (n/a) ARTRY&SHD Attempt to write cache block
back to main memory; if
successful, mark cache block S.

I Snoop-
RWITM

xx1 01110 None (None) No-op

I Snoop-
RWITM

xx1 01110 Yes
(and
reset)

(None) Release reservation.

E S Snoop-
RWITM

xx1 01110 None (None) Mark cache block I.

E S Snoop-
RWITM

xx1 01110 Yes
(and
reset)

(None) Mark cache block I.
Release reservation.

M Snoop-
RWITM

xx1 01110 None ARTRY&SHD Attempt to write cache block
back to main memory;
if successful, mark cache block I.

M Snoop-
RWITM

xx1 01110 Yes
(and
reset)

ARTRY&SHD Attempt to write cache block
back to main memory;
if successful, mark cache block I,
release reservation

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

3-40 PowerPC 604 RISC Microprocessor User's Manual

I Snoop-
RWITM
atomic

xx1 11110 None (None) No-op

I Snoop-
RWITM
atomic

xx1 11110 Yes
(and
reset)

(None) Release reservation.

S
E

Snoop-
RWITM
atomic

xx1 11110 None (None) Mark cache block I.

S
E

Snoop-
RWITM
atomic

xx1 11110 Yes
(and
reset)

(None) Mark cache block I.
Release reservation.

M Snoop-
RWITM
atomic

xx1 11110 None ARTRY&SHD Attempt to write cache block
back to main memory;
if successful, mark cache block I.

M Snoop-
RWITM
atomic

xx1 11110 Yes
(and
reset)

ARTRY&SHD Attempt to write cache block
back to main memory;
if successful, mark cache block I,
release reservation.

I Snoop-
flush

xx1 00100 None (None) No-op

I Snoop-
flush

xx1 00100 Yes (None) No-op

S E Snoop-
flush

xx1 00100 (n/a) (None) Mark cache block I.

M Snoop-
flush

xx1 00100 (n/a) ARTRY&SHD Attempt to write cache block
back to main memory;
if successful:
mark cache block I.

E S I Snoop-
clean

xx1 00000 (n/a) (None) No-op

M Snoop-
clean

xx1 00000 (n/a) ARTRY&SHD Attempt to write cache block
back to main memory; if
successful, mark cache block E.

I Snoop-
write with
flush

xx1 00010 None (None) No-op

I Snoop-
write with
flush

xx1 00010 Yes
(and
reset)

(None) Release reservation.

S Snoop-
write with
flush

xx1 00010 None (None) Mark cache block I.

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

Chapter 3. Cache and Bus Interface Unit Operation 3-41

S Snoop-
write with
flush

xx1 00010 Yes
(and
reset)

(None) Mark cache block I.
Release reservation.

E Snoop-
write with
flush

xx1 00010 None (None) Paradox—no one else should be
writing if this cache is E.
Mark cache block I

E Snoop-
write with
flush

xx1 00010 Yes
(and
reset)

(None) Paradox—no one else should be
writing if this cache is E.
Mark cache block I.
Release reservation.

M Snoop-
write with
flush

xx1 00010 None ARTRY&SHD Paradox—no one else should be
writing if this cache is M.
Attempt to write cache block
back to main memory;
if successful, mark cache block I

M Snoop-
write with
flush

xx1 00010 Yes
(and
reset)

ARTRY&SHD Paradox—no one else should be
writing if this cache is M.
Attempt to write cache block
back to main memory;
if successful, mark cache block I,
release reservation

I Snoop-
write with
kill

xx1 00110 None (None) No-op

I Snoop-
write with
kill

xx1 00110 Yes
(and
reset)

(None) Release reservation.

S Snoop-
write with
kill

xx1 00110 None (None) Mark cache block I.

S Snoop-
write with
kill

xx1 00110 Yes
(and
reset)

(None) Mark cache block I.
Release reservation.

E Snoop-
write with
kill

xx1 00110 None (None) Paradox—no one else should be
writing if this cache is E.
Mark cache block I.

E Snoop-
write with
kill

xx1 00110 Yes
(and
reset)

(None) Paradox—no one else should be
writing if this cache is E.
Mark cache block I.
Release reservation.

M Snoop-
write with
kill

xx1 00110 None (None) Paradox—no one else should be
writing if this cache is M.
Mark cache block I.

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

3-42 PowerPC 604 RISC Microprocessor User's Manual

M Snoop-
write with
kill

xx1 00110 Yes
(and
reset)

(None) Paradox—no one else should be
writing if this cache is M.
Mark cache block I.
Release reservation.

I Snoop-
write with
flush
atomic

xx1 10010 None (None) No-op

I Snoop-
write with
flush
atomic

xx1 10010 Yes
(and
reset)

(None) Release reservation.

S Snoop-
write with
flush
atomic

xx1 10010 None (None) Mark cache block I.

S Snoop-
write with
flush
atomic

xx1 10010 Yes
(and
reset)

(None) Mark cache block I.
Release reservation.

E Snoop-
write with
flush
atomic

xx1 10010 None (None) Paradox—no one else should be
writing if this cache is E.
Mark cache block I.

E Snoop-
write with
flush
atomic

xx1 10010 Yes
(and
reset)

(None) Paradox—no one else should be
writing if this cache is E.
Mark cache block I,
release reservation.

M Snoop-
write with
flush
atomic

xx1 10010 None ARTRY&SHD Paradox—no one else should be
writing if this cache is M.
Attempt to write block back to
main memory;
if successful, mark cache block I

M Snoop-
write with
flush
atomic

xx1 10010 Yes
(and
reset)

ARTRY&SHD Paradox—no one else should be
writing if this cache is M.
Attempt to write block back to
main memory;
if successful: mark cache block I,
release reservation.

(n/a) Snoop-
TLB
invalidate

xx1 11000 (n/a) (None) Respond with (none) when the
TLB has been invalidated.

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

Chapter 3. Cache and Bus Interface Unit Operation 3-43

(n/a) Snoop-
TLB
invalidate

xx1 11000 (n/a) (None) but
ARTRY is
activated on
the bus from
another
processor

Do not perform the TLB
invalidate—this is to prevent a
deadlock condition from
occurring.

(n/a) Snoop-
TLB
invalidate

xx1 11000 (n/a) ARTRY Respond with retry until the TLB
has been invalidated.

(n/a) Snoop-
SYNC

xx1 01000 (n/a) (None) If no TLB invalidates are
pending, no-op.

(n/a) Snoop-
SYNC

xx1 01000 (n/a) ARTRY If a TLB invalidate is pending,
respond with retry.

(n/a) Snoop-
TLBSYNC

xx1 01001 (n/a) (None) If no TLB invalidates are
pending, no-op.

(n/a) Snoop-
TLBSYNC

xx1 01001 (n/a) ARTRY If a TLB invalidate is pending,
respond with retry.

(n/a) Snoop-
EIEIO

xx1 10000 (n/a) (None) No-op

(n/a) Snoop-
EIEIO

xx1 10000 (n/a) ARTRY No-op

I Snoop-
ICBI

xx1 01101 (n/a) (None) No-op

VAL Snoop-
ICBI

xx1 01101 (n/a) (None) Invalidate entry in icache

I Snoop-
RWNITC

xx1 01011 None (None) No-op

I Snoop-
RWNITC

xx1 01011 Yes SHD No-op

E S Snoop-
RWNITC

xx1 01011 (n/a) SHD No-op

M Snoop-
RWNITC

xx1 01011 (n/a) ARTRY&SHD Attempt to write cache block
back to main memory; if
successful, mark cache block E.

Table 3-6. Cache Actions (Continued)

Cache
WIM

MESI
State

Action
Bus

Operation
Bus
WIM

TT0-4 Rsv’n
Snoop

Response
Action

3-44 PowerPC 604 RISC Microprocessor User's Manual

3.11 Access to Direct-Store Segments
The 604 supports both memory-mapped and I/O-mapped access to I/O devices. In addition
to the high-performance bus protocol for memory-mapped I/O accesses, the 604 provides
the ability to map memory areas to the direct-store interface (SR[T] = 1) with the following
two kinds of operations:

• Direct-store operations. These operations are considered to address the noncoherent
and noncacheable direct-store; therefore, the 604 does not maintain coherency for
these operations, and the cache is bypassed completely.

• Memory-forced direct-store operations. These operations are considered to address
memory space and are therefore subject to the same coherency control as memory
accesses. These operations are global memory references within the 604 and are
considered to be noncacheable.

Cache behavior (write-back, cache-inhibition, and enforcement of MESI coherency) for
these operations is determined by the settings of the WIM bits.

Chapter 4. Exceptions 4-1

Chapter 4
Exceptions
40
40

The OEA portion of the PowerPC architecture defines the mechanism by which PowerPC
processors implement exceptions (referred to as interrupts in the architecture specification).
Exception conditions may be defined at other levels of the architecture. For example, the
UISA defines conditions that may cause floating-point exceptions; the OEA defines the
mechanism by which the exception is taken.

PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to certain registers and the processor begins execution at an address (exception vector)
predetermined for each exception. Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the floating-point status and control register
(FPSCR). Additionally, certain exception conditions can be explicitly enabled or disabled
by software.

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an instruction-
caused exception is recognized, any unexecuted instructions that appear earlier in the
instruction stream, including any that have not yet entered the execute state, are required to
complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled sequentially.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until all instructions currently in the execute stage successfully
complete execution and report their results.

Note that exceptions can occur while an exception handler routine is executing, and
multiple exceptions can become nested. It is up to the exception handler to save the states
if it is desired to allow control to ultimately return to the excepting program.

4-2 PowerPC 604 RISC Microprocessor User’s Manual

In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the
next exception condition is encountered. This method of recognizing and handling
exception conditions sequentially guarantees that the machine state is recoverable and
processing can resume without losing instruction results.

To prevent the loss of state information, exception handlers must save the information
stored in SRR0 and SRR1 soon after the exception is taken to prevent this information from
being lost due to another exception being taken.

In this chapter, the following terminology is used to describe the various stages of exception
processing:

Recognition Exception recognition occurs when the condition that can cause an
exception is identified by the processor.

Taken An exception is said to be taken when control of instruction
execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is begun in supervisor-
level (referred to as privileged state in the architecture specification).

Note that the PowerPC architecture documentation refers to exceptions as interrupts. In this
book, the term interrupt is reserved to refer to asynchronous exceptions, and sometimes to
the event that causes the exception to be taken. Also, the PowerPC architecture uses the
word exception to refer to IEEE-defined floating-point exceptions, conditions that may
cause a program exception to be taken (See Section 4.5.7, “Program Exception (0x00700).)
The occurrence of these IEEE exceptions may in fact not cause an exception to be taken.
IEEE-defined exceptions are referred to as IEEE floating-point exceptions or floating-point
exceptions.

4.1 PowerPC 604 Microprocessor Exceptions
As specified by the PowerPC architecture, all exceptions can be described as either precise
or imprecise and either synchronous or asynchronous. Asynchronous exceptions are caused
by events external to the processor’s execution; synchronous exceptions are caused by
instructions.

The types of exceptions are shown in Table 4-1. Note that all exceptions except for the
system management interrupt and performance monitoring exception are defined by the
PowerPC architecture.

Chapter 4. Exceptions 4-3

Exceptions implemented in the 604, and conditions that cause them, are listed in Table 4-2.

Table 4-1. Exception Classifications

Type Exception

Asynchronous/nonmaskable Machine Check
System Reset

Asynchronous/maskable External interrupt
Decrementer interrupt
System management interrupt (604-specific)
Performance monitoring exception (604-specific)

Synchronous/precise Instruction-caused exceptions

Synchronous/imprecise Instruction-caused imprecise exceptions
(Floating-point imprecise exceptions)

Table 4-2. Exceptions and Conditions—Overview

Exception
Type

Vector Offset
(hex)

Causing Conditions

Reserved 00000 —

System reset 00100 The causes of system reset exceptions are implementation-dependent. In the
604 a system reset is caused by the assertion of either the soft reset or hard
reset signal.

If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRR0 and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the RI bit copied from the MSR to SRR1
is cleared.

Machine check 00200 On the 604 a machine check exception is signaled by the assertion of a qualified
TEA indication on the 604 bus, or the machine check input (MCP) signal. If the
MSR[ME] is cleared, the processor enters the checkstop state when one of
these signals is asserted. Note that MSR[ME] is cleared when an exception is
taken. The machine check exception is also caused by parity errors on the
address or data bus or in the instruction or data caches.

The assertion of the TEA signal is determined by read, write, and instruction
fetch operations initiated by the processor; however, it is expected that the TEA
signal would be used by a memory controller to indicate that a memory parity
error or an uncorrectable memory ECC error has occurred.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.

The machine check exception is disabled when MSR[ME] = 0. If a machine
check exception condition exists and the ME bit is cleared, the processor goes
into the checkstop state. (Note that, physical address is referred to as the real
address in the architecture specification.)

If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRR0 and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the RI bit copied from the MSR to SRR1
is cleared.

4-4 PowerPC 604 RISC Microprocessor User’s Manual

DSI 00300 A DSI exception occurs when a data memory access cannot be performed for
any of the reasons described in Section 4.5.3, “DSI Exception (0x00300).” Such
accesses can be generated by load/store instructions, certain memory control
instructions, and certain cache control instructions.

ISI 00400 An ISI exception occurs when an instruction fetch cannot be performed for a
variety of reasons described in Section 4.5.4, “ISI Exception (0x00400).”

External
interrupt

00500 An external interrupt occurs when the external exception signal, INT, is
asserted. This signal is expected to remain asserted until the exception handler
begins execution. Once the signal is detected, the 604 stops dispatching
instructions and waits for all dispatched instructions to complete. Any exceptions
associated with dispatched instructions are taken before the interrupt is taken.

Alignment 00600 An alignment exception may occur when the processor cannot perform a
memory access for reasons described in Section 4.5.6, “Alignment Exception
(0x00600).” Note that the PowerPC architecture defines a wider range of
conditions that may cause an alignment exception than required in the 604. In
these cases, the 604 provides logic to handle these conditions without requiring
the processor to invoke the alignment exception handler.

Program 00700 A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:
• Floating-point enabled exception—A floating-point enabled exception

condition is generated when either MSR[FE0] or MSR[FE1] and
FPSCR[FEX] are set. The settings of FE0 and FE1 are described in
Table 4-4.
FPSCR[FEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a Move to FPSCR
instruction that sets both an exception condition bit and its corresponding
enable bit in the FPSCR. These exceptions are described in Chapter 3 of
The Programming Environments Manual.

• Illegal instruction—An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as no-ops).
The PowerPC instruction set is described in Section 2.3, “Instruction Set
Summary.”

• Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
MSR register user privilege bit, MSR[PR], is set. This exception is also
generated for mtspr or mfspr with an invalid SPR field if spr[0]=1 and
MSR[PR] = 1.

• Trap—A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

For more information, refer to Section 4.5.7, “Program Exception (0x00700).”

Floating-point
unavailable

00800 Defined by the PowerPC architecture, but not implemented in the 604.

Decrementer 00900 The decrementer interrupt exception is taken if the interrupt is enabled and the
exception is pending. The exception is created when the most significant bit
changes from 0 to 1. If it is not enabled, the exception remains pending until it is
taken.

Table 4-2. Exceptions and Conditions—Overview (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

Chapter 4. Exceptions 4-5

4.2 Exception Recognition and Priorities
Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions—
system reset and machine check exceptions (although the machine check exception
condition can be disabled so the condition causes the processor to go directly into
the checkstop state). These exceptions cannot be delayed, and do not wait for the
completion of any precise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

3. Imprecise exceptions (imprecise mode floating-point enabled exceptions) are
caused by instructions and they are delayed until higher priority exceptions are
taken.

4. Maskable asynchronous exceptions (external interrupt and decrementer exceptions)
are delayed until higher priority exceptions are taken.

Reserved 00A00 Reserved for implementation-specific exceptions. For example, the 601 uses
this vector offset for direct-store exceptions.

Reserved 00B00 —

System call 00C00 A system call exception occurs when a System Call (sc) instruction is executed.

Trace 00D00 The trace exception, which is implemented in the 604, is defined by the
PowerPC architecture but is optional. A trace exception occurs if either
MSR[SE] = 1 and any instruction (except rfi) successfully completed or
MSR[BE] = 1 and a branch instruction is completed.

Performance
monitoring
interrupt

00F00 The performance monitoring interrupt is a 604-specific exception and is used
with the 604 performance monitor, described in Section 4.5.13, “Performance
Monitoring Interrupt (0x00F00).”

The performance monitoring facility can be enabled to signal an exception when
the value in one of the performance monitor counter registers (PMC1 or PMC2)
goes negative. The conditions that can cause this exception can be enabled or
disabled by through bits in the monitor mode control register 0 (MMCR0).
Although the exception condition may occur when the MSR[EE] bit is cleared,
the actual interrupt is masked by the EE bit and cannot be taken until the EE bit
is set.

Reserved 01000–012FF Reserved for implementation-specific exceptions not implemented on the 604.

Instruction
address
breakpoint

01300 An instruction address breakpoint exception occurs when the address (bits 0 to
29) in the IABR matches the next instruction to complete in the completion unit,
and the IABR enable bit (bit 30) is set to 1.

System
management
interrupt

01400 A system management interrupt is caused when MSR[EE] = 1 and the SMI
input signal is asserted. This exception is provided for use with the nap mode.

Reserved 014FF–02FFF Reserved for implementation-specific exceptions not implemented on the 604.

Table 4-2. Exceptions and Conditions—Overview (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

4-6 PowerPC 604 RISC Microprocessor User’s Manual

Exception priorities are described in “Exception Priorities,” in Chapter 6, “Exceptions,” in
The Programming Environments Manual.

System reset and machine check exceptions may occur at any time and are not delayed even
if an exception is being handled. As a result, state information for the interrupted exception
may be lost; therefore, these exceptions are typically nonrecoverable.

All other exceptions have lower priority than system reset and machine check exceptions,
and the exception may not be taken immediately when it is recognized.

If an imprecise exception is not forced by either the context or the execution synchronizing
mechanism and if the instruction addressed by SRR0 did not cause the exception then that
instruction appears not to have begun execution. For more information on context-
synchronization, see Chapter 6, “Exceptions,” in The Programming Environments Manual.

4.3 Exception Processing
When an exception is taken, the processor uses the save/restore registers, SRR0 and SRR1,
to save the contents of the machine state register for user-level mode and to identify where
instruction execution should resume after the exception is handled.

When an exception occurs, the address saved in machine status save/restore register 0
(SRR0) is used to help calculate where instruction processing should resume when the
exception handler returns control to the interrupted process. Depending on the exception,
this may be the address in SRR0 or at the next address in the program flow. All instructions
in the program flow preceding this one will have completed execution and no subsequent
instruction will have begun execution. This may be the address of the instruction that
caused the exception or the next one (as in the case of a system call or trap exception). The
SRR0 register is shown in Figure 4-1.

Figure 4-1. Machine Status Save/Restore Register 0

SRR0 is 32 bits wide in 32-bit implementations.

The save/restore register 1(SRR1) is used to save machine status (selected bits from the
MSR and possibly other status bits as well) on exceptions and to restore those values when
rfi is executed. SRR1 is shown in Figure 4-2.

Figure 4-2. Machine Status Save/Restore Register 1

SRR0 (holds EA for instruction in interrupted program flow)

0 31

0 31

Exception-specific information and MSR bit values

Chapter 4. Exceptions 4-7

Typically, when an exception occurs, bits 2–4 and 10–12 of SRR1 are loaded with
exception-specific information and bits 5–9, and 16–31 of MSR are placed into the
corresponding bit positions of SRR1.

Note that in other implementations every instruction fetch that occurs when MSR[IR] = 1,
and every instruction execution requiring address translation when MSR[DR] = 1, may
modify SRR1.

In the 604 and in other 32-bit PowerPC implementations, the MSR is 32 bits wide as shown
in Figure 4-3.

Figure 4-3. Machine State Register (MSR)

The MSR bits are defined in Table 4-3. Full function reserved bits are saved in SRR1 when
an exception occurs; partial function reserved bits are not saved.

Table 4-3. MSR Bit Settings

Bit(s) Name Description

0 — Reserved. Full Function.

1–4 — Reserved. Partial function.

5–9 — Reserved. Full function.

10–12 — Reserved. Partial function.

13 POW Power management enable
0 Power management disabled (normal operation mode).
1 Power management enabled (reduced power mode).
Note that power management functions are implementation-dependent.

14 — Reserved—Implementation-specific

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to
select the endian mode for the context established by the exception.

16 EE External interrupt enable
0 While the bit is cleared the processor delays recognition of external interrupts and

decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

0 12 13 14 15 16 17 18 19 20 21 22 23 24 252627282930 31

Reserved

0 0 0 0 0 0 0 0 0 0 0 0 0 POW 0 ILE EE PR FP ME FE0 SE BE FE1 0 IP IR DR 0 PM RI LE

4-8 PowerPC 604 RISC Microprocessor User’s Manual

18 FP Floating-point available
0 The processor prevents dispatch of floating-point instructions, including floating-point

loads, stores, and moves.
1 The processor can execute floating-point instructions, and can take floating-point enabled

exception type program exceptions.

19 ME Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

20 FE0 IEEE floating-point exception mode 0 (See Table 4-4).

21 SE Single-step trace enable
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful execution of

the next instruction (unless that instruction is an rfi instruction). Successful execution
means that the instruction caused no other exception.

22 BE Branch trace enable
0 The processor executes branch instructions normally.
1 The processor generates a branch type trace exception upon the successful execution of

a branch instruction.

23 FE1 IEEE floating-point exception mode 1 (See Table 4-4).

24 — Reserved. This bit corresponds to the AL bit of the POWER architecture.

25 IP Exception prefix. The setting of this bit specifies whether an exception vector offset is
prepended with Fs or 0s. In the following description, nnnnn is the offset of the exception.
0 Exceptions are vectored to the physical address 0x000n_nnnn.
1 Exceptions are vectored to the physical address 0xFFFn_nnnn.

26 IR Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information see Chapter 5, “Memory Management.”

27 DR Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information see Chapter 5, “Memory Management.”

28 — Reserved, full function.

29 PM Performance monitor marked mode
0 Process is not a marked process.
1 Process is a marked process.
This bit is specific to the 604, and is defined as reserved by the PowerPC architecture. For
more information about the performance monitor, see Section 4.5.13, “Performance Monitoring
Interrupt (0x00F00).”

Table 4-3. MSR Bit Settings (Continued)

Bit(s) Name Description

Chapter 4. Exceptions 4-9

The IEEE floating-point exception mode bits (FE0 and FE1) together define whether
floating-point exceptions are handled precisely, imprecisely, or whether they are taken at
all. The possible settings and default conditions for the 604 are shown in Table 4-4. For
further details, see Chapter 6, “Exceptions,” of The Programming Environments Manual.

MSR bits are guaranteed to be written to SRR1 when the first instruction of the exception
handler is encountered.

4.3.1 Enabling and Disabling Exceptions
When a condition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition.

• IEEE floating-point enabled exceptions (a type of program exception) are ignored
when both MSR[FE0] and MSR[FE1] are cleared. If either of these bits are set, all
IEEE enabled floating-point exceptions are taken and cause a program exception.

• Asynchronous, maskable exceptions (that is, the external and decrementer
interrupts) are enabled by setting the MSR[EE] bit. When MSR[EE] = 0, recognition
of these exception conditions is delayed. MSR[EE] is cleared automatically when an
exception is taken, to delay recognition of conditions causing those exceptions.

• A machine check exception can occur only if the machine check enable bit,
MSR[ME], is set. If MSR[ME] is cleared, the processor goes directly into checkstop
state when a machine check exception condition occurs. Individual machine check
exceptions can be enabled and disabled through bits in the HID0 register, which is
described in Table 4-7.

30 RI Indicates whether system reset or machine check exception is recoverable.
0 Exception is not recoverable.
1 Exception is recoverable.
The RI bit indicates whether from the perspective of the processor, it is safe to continue (that is,
processor state data such as that saved to SRR0 is valid), but it does not guarantee that the
interrupted process is recoverable.

31 LE Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

Table 4-4. IEEE Floating-Point Exception Mode Bits

FE0 FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Floating-point imprecise nonrecoverable

1 0 Floating-point imprecise recoverable. In the 604, this bit setting causes the 604 to operate in floating-
point precise mode.

1 1 Floating-point precise mode

Table 4-3. MSR Bit Settings (Continued)

Bit(s) Name Description

4-10 PowerPC 604 RISC Microprocessor User’s Manual

• System reset exceptions cannot be masked.

4.3.2 Steps for Exception Processing
After it is determined that the exception can be taken (by confirming that any instruction-
caused exceptions occurring earlier in the instruction stream have been handled, and by
confirming that the exception is enabled for the exception condition), the processor does
the following:

1. The machine status save/restore register 0 (SRR0) is loaded with an instruction
address that depends on the type of exception. See the individual exception
description for details about how this register is used for specific exceptions.

2. Bits 1–4 and 10–15 of SRR1 are loaded with information specific to the exception
type.

3. Bits 5–9 and 16–31 of SRR1 are loaded with a copy of the corresponding bits of the
MSR. Note that depending on the implementation, reserved bits may not be copied.

4. The MSR is set as described in Table 4-3. The new values take effect beginning with
the fetching of the first instruction of the exception-handler routine located at the
exception vector address.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address translation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

5. Instruction fetch and execution resumes, using the new MSR value, at a location
specific to the exception type. The location is determined by adding the exception's
vector (see Table 4-2) to the base address determined by MSR[IP]. If IP is cleared,
exceptions are vectored to the physical address 0x000n_nnnn. If IP is set, exceptions
are vectored to the physical address 0xFFFn_nnnn. For a machine check exception
that occurs when MSR[ME] = 0 (machine check exceptions are disabled), the
checkstop state is entered (the machine stops executing instructions). See
Section 4.5.2, “Machine Check Exception (0x00200).”

4.3.3 Setting MSR[RI]
The operating system should handle MSR[RI] as follows:

• In the machine check and system reset exceptions—If SRR1[RI] is cleared, the
exception is not recoverable. If it is set, the exception is recoverable with respect to
the processor.

• In each exception handler—When enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSR[RI].

• In each exception handler—Clear MSR[RI], set the SRR0 and SRR1 registers
appropriately, and then execute rfi.

Chapter 4. Exceptions 4-11

• Not that the RI bit being set indicates that, with respect to the processor, enough
processor state data is valid for the processor to continue, but it does not guarantee
that the interrupted process can resume.

4.3.4 Returning from an Exception Handler
The Return from Interrupt (rfi) instruction performs context synchronization by allowing
previously issued instructions to complete before returning to the interrupted process. In
general, execution of the rfi instruction ensures the following:

• All previous instructions have completed to a point where they can no longer cause
an exception. If a previous instruction causes a direct-store interface error exception,
the results must be determined before this instruction is executed.

• Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

• The rfi instruction copies SRR1 bits back into the MSR.

• The instructions following this instruction execute in the context established by this
instruction.

For a complete description of context synchronization, refer to Chapter 6, “Exceptions,” of
The Programming Environments Manual.

4.4 Process Switching
The operating system should execute one of the following when processes are switched:

• The sync instruction, which orders the effects of instruction execution. All
instructions previously initiated appear to have completed before the sync
instruction completes, and no subsequent instructions appear to be initiated until the
sync instruction completes. For an example showing use of the sync instruction, see
Chapter 2, “PowerPC Register Set,” of The Programming Environments Manual.

• The isync instruction, which waits for all previous instructions to complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation,
protection, etc.) established by the previous instructions.

• The stwcx. instruction, to clear any outstanding reservations, which ensures that an
lwarx instruction in the old process is not paired with an stwcx. instruction in the
new process.

The operating system should set the MSR[RI] bit as described in Section 4.3.3, “Setting
MSR[RI].”

4-12 PowerPC 604 RISC Microprocessor User’s Manual

4.5 Exception Definitions
Table 4-5 shows all the types of exceptions that can occur with the 604 and the MSR bit
settings when the processor transitions to supervisor mode due to an exception. Depending
on the exception, certain of these bits are stored in SRR1 when an exception is taken.

The setting of the exception prefix bit (IP) determines how exceptions are vectored. If the
bit is cleared, exceptions are vectored to the physical address 0x000n_nnnn (where nnnnn
is the vector offset); if IP is set, exceptions are vectored to the physical address
0xFFFn_nnnn. Table 4-2 shows the exception vector offset of the first instruction of the
exception handler routine for each exception type.

4.5.1 System Reset Exception (0x00100)
The 604 implements the system reset exception as defined in the PowerPC architecture
(OEA). The system reset exception is a nonmaskable, asynchronous exception signaled to

Table 4-5. MSR Setting Due to Exception

Exception
Type

MSR Bit

POW ILE EE PR FP ME FE0 SE BE FE1 IP IR DR RI LE

System reset 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Machine
check

0 — 0 0 0 0 0 0 0 0 — 0 0 0 ILE

DSI 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

ISI 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

External 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Alignment 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Program 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Floating-
point
unavailable

0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Decrementer 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

System call 0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Trace
exception

0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

System
management

0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

Performance
 monitor

0 — 0 0 0 — 0 0 0 0 — 0 0 0 ILE

0 Bit is cleared.
ILE Bit is copied from the ILE bit in the MSR.
— Bit is not altered
Reserved bits are read as if written as 0.

Chapter 4. Exceptions 4-13

the processor through the assertion of system-defined signals. In the 604, the exception is
signaled by the assertion of either the SRESET or HRESET inputs, described more fully in
Chapter 7, “Signal Descriptions.”.

The SRESET input provides a “warm” reset capability. This input is used to avoid causing
the 604 to perform the entire power-on reset sequence, thereby preserving the contents of
the architected registers. This capability is useful when recovering from certain checkstop
or machine check states. When a system reset exception is taken, instruction execution
continues at offset 0x00100 from the physical base address indicated by MSR[IP].

4.5.2 Machine Check Exception (0x00200)
The 604 implements the machine check exception as defined in the PowerPC architecture
(OEA). It conditionally initiates a machine check exception after an address or data parity
error occurred on the bus or in a cache, after receiving a qualified transfer error
acknowledge (TEA) indication on the 604 bus, or after the machine check interrupt (MCP)
signal had been asserted. As defined in the OEA, the exception is not taken if the MSR[ME]
is cleared.

Machine check conditions can be enabled and disabled using bits in the HID0 described in
Table 4-7.

Table 4-6. System Reset Exception—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent bits from the MSR
1–4 Cleared
5–9 Loaded with equivalent bits from the MSR
10–15 Cleared
16–31 Loaded with equivalent bits of the MSR
Note that if the processor state is corrupted to the extent that execution cannot resume reliably, the
MSR[RI] bit (SRR1[30]) is cleared.

MSR POW 0 BE 0
ILE --- FE1 0
EE 0 IP —
PR 0 IR 0
FP 0 DR 0
ME --- RI 0
FE0 0 LE Set to value of ILE
SE 0

Table 4-7. Machine Check Enable Bits

HID0 Bit Description

0 Enable machine check input pin

1 Enable cache parity checking

4-14 PowerPC 604 RISC Microprocessor User’s Manual

A TEA indication on the bus can result from any load or store operation initiated by the
processor. In general, the TEA signal is expected to be used by a memory controller to
indicate that a memory parity error or an uncorrectable memory ECC error has occurred.
Note that the resulting machine check exception is imprecise and unordered with respect to
the instruction that originated the bus operation.

If the MSR[ME] bit and the appropriate bits in HID0 are set, the exception is recognized
and handled; otherwise, the processor generates an internal checkstop condition. When a
processor is in checkstop state, instruction processing is suspended and generally cannot
continue without restarting the processor. Note that many conditions may lead to the
checkstop condition; the disabled machine check exception is only one of these.

Machine check exceptions are enabled when MSR[ME] = 1; this is described in
Section 4.5.2.1, “Machine Check Exception Enabled (MSR[ME] = 1).” If MSR[ME] = 0
and a machine check occurs, the processor enters the checkstop state. Checkstop state is
described in Section 4.5.2.2, “Checkstop State (MSR[ME] = 0).”

4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
When a machine check exception is taken, registers are updated as shown in Table 4-8.

2 Enable machine check on address bus parity error.

3 Enable machine check on data bus parity error.

Table 4-7. Machine Check Enable Bits

HID0 Bit Description

Chapter 4. Exceptions 4-15

The machine check exception is usually unrecoverable in the sense that execution cannot
resume in the same context that existed before the exception. If the condition that caused
the machine check does not otherwise prevent continued execution, MSR[ME] is set to
allow the processor to continue execution at the machine check exception vector address.
Typically earlier processes cannot resume; however, the operating systems can then use the
machine check exception handler to try to identify and log the cause of the machine check
condition.

When a machine check exception is taken, instruction execution resumes at offset 0x00200
from the physical base address indicated by MSR[IP].

4.5.2.2 Checkstop State (MSR[ME] = 0)
When a processor is in the checkstop state, instruction processing is suspended and
generally cannot resume without the processor being reset. The contents of all latches are
frozen within two cycles upon entering checkstop state.

A machine check exception may result from referencing a nonexistent physical address,
either directly (with MSR[DR] = 0), or through an invalid translation. On such a system,
for example, execution of a Data Cache Block Set to Zero (dcbz) instruction that introduces
a block into the cache associated with a nonexistent physical address may delay the
machine check exception until an attempt is made to store that block to main memory.

Table 4-8. Machine Check Exception—Register Settings

Register Setting Description

SRR0 On a best-effort basis implementations can set this to an EA of some instruction that was executing
or about to be executing when the machine check condition occurred.

SRR1 0–9 Cleared
10 Set when a data cache parity error is detected, otherwise zero
11 Set when a instruction cache parity error is detected, otherwise zero
12 Set when Machine Check Pin (MCP) is asserted, otherwise zero
13 Set when TEA pin is asserted, otherwise zero
14 Set when a data bus parity error is detected, otherwise zero
15 Set when an address bus parity error is detected, otherwise zero
16–29 MSR(16–29)
30 Zero
31 MSR(31)

MSR POW 0 BE 0
ILE --- FE1 0
EE 0 IP —
PR 0 IR 0
FP 0 DR 0
ME* 0 RI 0
FE0 0 LE Set to value of ILE
SE 0

* Note that when a machine check exception is taken, the exception handler should set MSR[ME] as soon
as it is practical to handle another machine check exception. Otherwise, subsequent machine check
exceptions cause the processor to automatically enter the checkstop state.

4-16 PowerPC 604 RISC Microprocessor User’s Manual

Note that not all PowerPC processors provide the same level of error checking. The reasons
a processor can enter checkstop state are implementation-dependent.

4.5.3 DSI Exception (0x00300)
A DSI exception occurs when no higher priority exception exists and a data memory access
cannot be performed. The DSI exception is implemented as it is defined in the PowerPC
architecture (OEA). Note that there are some conditions for which the PowerPC
architectures allow implementations to optionally take a DSI exception. Table 4-9 lists
conditions defined by the architecture that optionally may cause a DSI exception.

4.5.4 ISI Exception (0x00400)
An ISI exception occurs when no higher priority exception exists and an attempt to fetch
the next instruction fails. This exception is implemented as it is defined by the PowerPC
architecture (OEA). In addition, an instruction fetch from a no-execute segment results in
an ISI exception.

When an ISI exception is taken, instruction execution resumes at offset 0x00400 from the
physical base address indicated by MSR[IP].

4.5.5 External Interrupt Exception (0x00500)
An external interrupt is signaled to the processor by the assertion of the external interrupt
signal (INT). The INT signal is expected to remain asserted until the 604 takes the external
interrupt exception. If the external interrupt signal is negated early, recognition of the
interrupt request is not guaranteed. After the 604 begins execution of the external interrupt
handler, the system can safely negate the INT. When the signal is detected, the 604 stops
dispatching instructions and waits for all pending instructions to complete. This allows any
instructions in progress that need to take an exception to do so before the external interrupt
is taken. After all instructions have cleared, the 604 takes the external interrupt exception
as defined in the PowerPC architecture (OEA).

The interrupt may be delayed by other higher priority exceptions or if the MSR[EE] bit is
cleared when the exception occurs. Register settings for this exception are described in
Chapter 6, “Exceptions,” in The Programming Environments Manual.

Table 4-9. Other MMU Exception Conditions

Condition Description DSISR

lwarx or stwcx. with W = 1 Reservation instruction to write-through segment or block DSISR[5] = 1

lwarx, stwcx., eciwx, or ecowx
instruction to direct-store segment

Reservation instruction or external control instruction
when SR[T] = 1 or STE[T] = 1

DSISR[5] = 1

Load or store that results in a direct-
store error

Direct-store interface protocol signalled with an error
condition

DSISR[0] = 1

eciwx or ecowx attempted when
external control facility disabled

eciwx or ecowx attempted with EAR[E] = 0 DSISR[11] = 1

Chapter 4. Exceptions 4-17

When an external interrupt exception is taken, instruction execution resumes at offset
0x00500 from the physical base address indicated by MSR[IP].

4.5.6 Alignment Exception (0x00600)
The 604 implements the alignment exception as defined by the PowerPC architecture
(OEA). An alignment exception is initiated when any of the following conditions are met:

• A floating-point load or store, lmw, stmw, lwarx, or stwcx. instruction is not word-
aligned.

• If a floating-point number is not word-aligned. The 604 provides hardware support
for misaligned storage accesses for other memory access instructions. If a
misaligned memory access crosses a 4-Kbyte page boundary within a memory
segment, an exception may occur when the boundary is crossed (that is, there is a
protection violation on an attempt to access the new page). In these cases, a DSI
exception occurs and the instruction may complete partially.

• Some types of misaligned memory accesses are slower than aligned accesses.
Accesses that cross a word boundary (and double-precision values aligned on a
double-word boundary) are broken into multiple accesses by the LSU. More
dramatically, any noncacheable memory access that crosses a double-word
boundary requires multiple external bus tenures.

• Operations that cross a word boundary (and operations involving double-precision
values aligned on a double-word boundary) require two accesses, which are
translated separately. If either translation creates a DSI exception condition, that
exception is signaled.

• If the T-bit settings are not the same for both portions of a misaligned memory
access, (which is considered to be a programming error), the 604 completes all of
the accesses for the operation, the segment information from the T = 1 space is
presented on the bus for every access of the operation, and the 604 requires a direct-
store access reply from the device. If two translations cross memory locations that
are T = 0 into T = 1, a DSI exception is signaled.

• A dcbz instruction references a page that is marked either cache-inhibited or write-
through or has executed when the 604 data cache is locked or disabled. Note that this
condition may not cause an alignment exception in other PowerPC processors.

• An access is not naturally aligned in little-endian mode.
• An ecowx or eciwx is not word-aligned.
• A lmw, stmw, lswi, lswx, stswi, or stswx instruction is issued in little-endian mode.

4.5.7 Program Exception (0x00700)
The 604 implements the program exception as it is defined by the PowerPC architecture
(OEA). A program exception occurs when no higher priority exception exists and one or
more of the exception conditions defined in the OEA occur.

The 604 invokes the system illegal instruction program exception when it detects any
instruction from the illegal instruction class.

4-18 PowerPC 604 RISC Microprocessor User’s Manual

The 604 fully decodes the SPR field of the instruction. If an undefined SPR is specified, a
program exception is taken.

The UISA defines the mtspr and mfspr instructions with the record bit (Rc) set to cause a
program exception or provide a boundedly undefined result. In the 604, the appropriate CR
should be treated as undefined. Likewise, the PowerPC architecture states that the Floating
Compared Unordered (fcmpu) or Floating Compared Ordered (fcmpo) instruction with the
record bit set can either cause a program exception or provide a boundedly undefined result.
In the 604, CR field BF for these cases should be treated as undefined.

When a program exception is taken, instruction execution resumes at offset 0x00700 from
the physical base address indicated by MSR[IP].

Note that the 604 supports one of the two floating-point imprecise modes supported by the
PowerPC architecture. The three modes supported by the 604 are described as follows:

• Ignore exceptions mode (MSR[FE0] = MSR[FE1] = 0)—In ignore exceptions
mode, the instruction dispatch logic feeds the FPU as fast as possible, and the FPU
uses an internal pipeline to allow overlapped execution of instructions. IEEE
floating-point exception conditions (as defined in the PowerPC architecture) do not
cause any exceptions.

• Precise exceptions mode (MSR[FE0] = 1; MSR[FE1] = x)—In this mode, a floating
point instruction that causes a floating-point exception brings the machine to a
precise state. In doing so, the 604 sequencer unit can detect floating-point exception
conditions and take floating-point exceptions as defined by the PowerPC
architecture. Note that the imprecise recoverable mode supported by the PowerPC
architecture (MSR[FE0] = 1; MSR[FE1] = 0) is implemented identically to precise
exceptions mode in the 604.

• Imprecise nonrecoverable mode (MSR[FE0] = 0; MSR[FE1] = 1)—In this mode,
floating-point exception conditions cause a floating-point exception to be taken,
SRR0 may point to some instruction following the instruction that caused the
exception.

Register settings for this exception are described in Chapter 6, “Exceptions,” in The
Programming Environments Manual.

4.5.8 Floating-Point Unavailable Exception (0x00800)
The floating-point unavailable exception is implemented as defined in the PowerPC
architecture. A floating-point unavailable exception occurs when no higher priority
exception exists, an attempt is made to execute a floating-point instruction (including
floating-point load, store, or move instructions), and the floating-point available bit in the
MSR is disabled, (MSR[FP] = 0). Register settings for this exception are described in
Chapter 6, “Exceptions,” in The Programming Environments Manual.

When a floating-point unavailable exception is taken, instruction execution resumes at
offset 0x00800 from the physical base address indicated by MSR[IP].

Chapter 4. Exceptions 4-19

4.5.9 Decrementer Exception (0x00900)
The decrementer exception is implemented in the 604 as it is defined by the PowerPC
architecture. The decrementer exception occurs when no higher priority exception exists, a
decrementer exception condition occurs (for example, the decrementer register has
completed decrementing), and MSR[EE] = 1. In the 604, the decrementer register is
decremented at one fourth the bus clock rate. Register settings for this exception are
described in Chapter 6, “Exceptions,” in The Programming Environments Manual.

When a decrementer exception is taken, instruction execution resumes at offset 0x00900
from the physical base address indicated by MSR[IP].

4.5.10 System Call Exception (0x00C00)
A system call exception occurs when a System Call (sc) instruction is executed. In the 604,
the system call exception is implemented as it is defined in the PowerPC architecture.
Register settings for this exception are described in Chapter 6, “Exceptions,” in The
Programming Environments Manual.

When a system call exception is taken, instruction execution resumes at offset 0x00C00
from the physical base address indicated by MSR[IP].

4.5.11 Trace Exception (0x00D00)
The trace exception is taken when the single step trace enable bit (MSR[SE]) or the branch
trace enable bit (MSR[BE]) is set and an instruction successfully completes. When a trace
exception is taken, the values written to SRR1 are implementation-specific; those values for
the 604 are shown in Table 4-10.

When a trace exception is taken, instruction execution resumes as offset 0x00D00 from the
base address indicated by MSR[IP].

4.5.12 Floating-Point Assist Exception (0x00E00)
The optional floating-point assist exception defined by the PowerPC architecture is not
implemented in the 604.

Table 4-10. Trace Exception—SRR1 Settings

Register Setting

SRR1 0–2 010
3 Set for a load instruction, otherwise cleared
4 Set for a store instruction, otherwise cleared
5–9 Cleared
10 Set for lswx or stswx, otherwise cleared
11 Set for mtspr to SDR1, EAR, HID0, PIR, IBATs, DBATs, SRs
12 Set for taken branch, otherwise cleared
13–15 Cleared
16–31 MSR(16–31).

4-20 PowerPC 604 RISC Microprocessor User’s Manual

4.5.13 Performance Monitoring Interrupt (0x00F00)
The PowerPC 604 performance monitor is a software-accessible mechanism that provides
detailed information concerning the dispatch, execution, completion, and memory access
of PowerPC instructions. The performance monitor is provided to help system developers
to debug their systems and to increase system performance with efficient software,
especially in a multiprocessor system where memory hierarchy behavior must be
monitored and studied in order to develop algorithms that schedule tasks (and perhaps
partition them) and distribute data optimally.

The performance monitor uses the following SPRs:

• Performance monitor counters 1 and 2 (PMC1 and PMC2)—two 32-bit counters
used to store the number of times a certain event has occurred.

• The monitor mode control register 0 (MMCR0), which establishes the function of
the counters.

• Sampled instruction address and sampled data address registers (SIA and SDA). The
two address registers contain the addresses of the data and of the instruction that
caused a threshold-related performance monitor interrupt.

The 604 supports a performance monitor interrupt that is caused by a counter negative
condition or by a time-base flipped bit counter defined in the MMCR0 register.

As with other PowerPC interrupts, the performance monitoring interrupt follows the
normal PowerPC exception model with a defined exception vector offset (0x00F00). The
priority of the performance monitoring interrupt is below the external interrupt and above
the decrementer interrupt. The contents of the SIA and SDA are described in
Section 2.1.2.4, “Performance Monitor Registers.” The performance monitor is described
in Chapter 9, “Performance Monitor.”

4.5.14 Instruction Address Breakpoint Exception (0x01300)
The instruction address breakpoint exception occurs when an attempt is made to execute an
instruction that matches the address in the instruction address breakpoint register (IABR)
and the breakpoint is enabled (IABR[30] is set). The instruction that triggers the instruction
address breakpoint exception is not executed before the exception handler is invoked. The
vector offset of the instruction address breakpoint exception is 0x01300.

4.5.15 System Management Interrupt (0x01400)
The 604 implements a system management interrupt exception, which is not defined by the
PowerPC architecture. The system management exception is very similar to the external
interrupt exception and is particularly useful in implementing the nap mode. It has priority
over an external interrupt and it uses a different interrupt vector in the exception table (at
offset 0x01400).

Chapter 4. Exceptions 4-21

Like the external interrupt, a system management interrupt is signaled to the 604 by the
assertion of an input signal. The system management interrupt signal (SMI) is expected to
remain asserted until the interrupt is taken. If the SMI signal is negated early, recognition
of the interrupt request is not guaranteed. After the 604 begins execution of the system
management interrupt handler, the system can safely negate the SMI signal. After the SMI
signal is detected, the 604 stops dispatching instructions and waits for all pending
instructions to complete. This allows any instructions in progress that need to take an
exception to do so before the system management interrupt is taken.

When the exception is taken, 604 vectors to the system management interrupt vector in the
interrupt table. The vector offset of the system management is 0x01400.

4.5.16 Power Management
Nap mode is a simple power-saving mode, in which all internal processing and bus
operation is suspended. Software initiates nap mode by setting MSR[POW]. After this bit
is set, the 604 suspends instruction dispatch and waits for all activity, including active and
pending bus transactions, to complete. It then shuts down the internal chip clocks and enters
nap mode state. The 604 indicates the internal idle state by asserting the HALTED output
regardless whether the clock is stopped.

Nap mode must be entered by using the following code sequence:

naploop:

sync
mtmsr <GPR> (modify the POW bit only; at this point the EE bit should

have already been enabled by the software)
isync
ba naploop

Since this code sequence creates an infinite loop, the programmer should ensure that the
exit routine (one of the exception handler routines listed below) properly updates SRR0 to
return to a point outside of this loop.

While the 604 is in nap mode, all internal activity except for decrementer, timebase, and
interrupt logic is stopped. During nap mode, the 604 does not snoop; if snooping is
required, the system may assert the RUN signal. The clocks run while the RUN signal is
asserted, but instruction execution does not resume. The HALTED output is deasserted to
indicate any bus activity, including a cache block pushout caused by a snoop request, and
is reasserted to indicate that the processor is idle and that the RUN signal can be safely
deasserted to stop the clocks. The maximum latency from the RUN signal assertion to the
starting of clock is three bus clock cycles.

To ensure proper handling of snoops in a multiprocessor system when a processor is the
first to enter nap mode, the system must assert the RUN signal no later than the assertion of
BG to another bus master. This constraint is necessary to ensure proper handling of snoops
when the first processor is entering nap mode.

4-22 PowerPC 604 RISC Microprocessor User’s Manual

Nap mode is exited (clocks resume and MSR[POW] cleared) when an external interrupt is
signaled by the assertion of INT, SRESET, MCP, or SMI, when a decrementer interrupt
occurs, or when a hard reset is sensed.

For more information about the RUN and HALTED signals, refer to Section 7.2.10.4, “Run
(RUN)—Input,” and Section 7.2.10.2, “Reservation (RSRV)—Output.”

Chapter 5. Memory Management 5-1

Chapter 5
Memory Management
50
50

This chapter describes the PowerPC 604 microprocessor’s implementation of the memory
management unit (MMU) specifications provided by the operating environment
architecture (OEA) for PowerPC processors. The primary function of the MMU in a
PowerPC processor is the translation of logical (effective) addresses to physical addresses
(referred to as real addresses in the architecture specification) for memory accesses, I/O
accesses (most I/O accesses are assumed to be memory-mapped), and direct-store interface
accesses. In addition, the MMU provides access protection on a segment, block or page
basis. This chapter describes the specific hardware used to implement the MMU model of
the OEA in the 604. Refer to Chapter 7, “Memory Management,” in The Programming
Environments Manual for a complete description of the conceptual model.

Two general types of accesses generated by PowerPC processors require address
translation—instruction accesses and data accesses to memory generated by load and store
instructions. Generally, the address translation mechanism is defined in terms of segment
descriptors and page tables used by PowerPC processors to locate the effective-to-physical
address mapping for instruction and data accesses. The segment information translates the
effective address to an interim virtual address, and the page table information translates the
interim virtual address to a physical address.

The segment descriptors, used to generate the interim virtual addresses, are stored as
on-chip segment registers on 32-bit implementations (such as the 604). In addition, two
translation lookaside buffers (TLBs) are implemented on the 604 to keep recently-used
page address translations on-chip. Although the PowerPC OEA describes one MMU
(conceptually), the 604 hardware maintains separate TLBs and table search resources for
instruction and data accesses that can be performed independently (and simultaneously).
Therefore, the 604 is described as having two MMUs, one for instruction accesses (IMMU)
and one for data accesses (DMMU).

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block address translations on-chip. BAT array entries are implemented as pairs
of BAT registers that are accessible as supervisor special-purpose registers (SPRs). There
are separate instruction and data BAT mechanisms, and in the 604, they reside in the
instruction and data MMUs respectively.

5-2 PowerPC 604 RISC Microprocessor User's Manual

The MMUs, together with the exception processing mechanism, provide the necessary
support for the operating system to implement a paged virtual memory environment and for
enforcing protection of designated memory areas. Exception processing is described in
Chapter 4, “Exceptions.” Section 4.3, “Exception Processing,” describes the MSR, which
controls some of the critical functionality of the MMUs.

5.1 MMU Overview
The 604 implements the memory management specification of the PowerPC OEA for
32-bit implementations. Thus, it provides 4 Gbytes of effective address space accessible to
supervisor and user programs with a 4-Kbyte page size and 256-Mbyte segment size. In
addition, the MMUs of 32-bit PowerPC processors use an interim virtual address (52 bits)
and hashed page tables in the generation of 32-bit physical addresses. PowerPC processors
also have a BAT mechanism for mapping large blocks of memory. Block sizes range from
128 Kbyte to 256 Mbyte and are software-programmable.

Basic features of the 604 MMU implementation defined by the OEA are as follows:

• Support for real addressing mode—Logical-to-physical address translation can be
disabled separately for data and instruction accesses.

• Block address translation—Each of the BAT array entries (four IBAT entries and
four DBAT entries) provides a mechanism for translating blocks as large as
256 Mbytes from the 32-bit effective address space into the physical memory space.
This can be used for translating large address ranges whose mappings do not change
frequently.

• Direct-store segments—If the T bit in the indexed segment register is set for any load
or store request, this request accesses a direct-store segment; bus activity is different
and the memory space used has different characteristics with respect to how it can
be accessed. The address used on the bus consists of bits from the EA and the
segment register.

• Segmented address translation—The 32-bit effective address is extended to a 52-bit
virtual address by substituting 24 bits of upper address bits from the segment
register, for the 4 upper bits of the EA, which are used as an index into the segment
register. This 52-bit virtual address space is divided into 4-Kbyte pages, each of
which can be mapped to a physical page.

The 604 also provides the following features that are not required by the PowerPC
architecture:

• Separate translation lookaside buffers (TLBs)—The 128-entry, two-way set
associative ITLBs and DTLBs keep recently-used page address translations on-chip.

• Table search operations performed in hardware—The 52-bit virtual address is
formed and the MMU attempts to fetch the PTE, which contains the physical
address, from the appropriate TLB on-chip. If the translation is not found in a TLB
(that is, a TLB miss occurs), the hardware performs a table search operation (using
a hashing function) to search for the PTE.

Chapter 5. Memory Management 5-3

• TLB invalidation—The 604 implements the optional TLB Invalidate Entry (tlbie)
and TLB Synchronize (tlbsync) instructions, which can be used to invalidate TLB
entries. For more information on the tlbie and tlbsync instructions, see
Section 5.4.3.2, “TLB Invalidation.”

Table 5-1 summarizes the 604 MMU features, including those defined by the PowerPC
architecture (OEA) for 32-bit processors and those specific to the 604.

Table 5-1. MMU Feature Summary

Feature Category
Architecturally

Defined/
604-Specific

Feature

Address ranges Architecturally defined 232 bytes of effective address

252 bytes of virtual address

232 bytes of physical address

Page size Architecturally defined 4 Kbytes

Segment size Architecturally defined 256 Mbytes

Block address
translation

Architecturally defined Range of 128 Kbyte–256 Mbyte sizes

Implemented with IBAT and DBAT registers in BAT array

Memory protection Architecturally defined Segments selectable as no-execute

Pages selectable as user/supervisor and read-only or guarded

Blocks selectable as user/supervisor and read-only or guarded

Page history Architecturally defined Referenced and changed bits defined and maintained

Page address
translation

Architecturally defined Translations stored as PTEs in hashed page tables in memory

Page table size determined by mask in SDR1 register

TLBs Architecturally defined Instructions for maintaining TLBs (tlbie and tlbsync
instructions in 604)

604-specific 128-entry, two-way set associative ITLB
128-entry, two-way set associative DTLB
LRU replacement algorithm

Segment descriptors Architecturally defined Stored as segment registers on-chip (two identical copies
maintained)

Page table search
support

604-specific The 604 performs the table search operation in hardware.

5-4 PowerPC 604 RISC Microprocessor User's Manual

5.1.1 Memory Addressing
A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, branch, or cache instruction, and when it fetches
the next instruction. The effective address is translated to a physical address according to
the procedures described in Chapter 7, “Memory Management,” in The Programming
Environments Manual, augmented with information in this chapter. The memory
subsystem uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3, “Effective
Address Calculation.”

5.1.2 MMU Organization
Figure 5-1 shows the conceptual organization of a PowerPC MMU in a 32-bit
implementation; note that it does not describe the specific hardware used to implement the
memory management function for a particular processor. Processors may optionally
implement on-chip TLBs and may optionally support the automatic search of the page
tables for PTEs. In addition, other hardware features (invisible to the system software) not
depicted in the figure may be implemented.

The 604 maintains two on-chip TLBs with the following characteristics:

• 128 entries, two-way set associative (64 x 2), LRU replacement
• Data TLB supports the DMMU; instruction TLB supports the IMMU
• Hardware TLB update
• Hardware update of memory access recording bits in the translation table

In the event of a TLB miss, the hardware attempts to load the TLB based on the results of
a translation table search operation.

Figure 5-2 and Figure 5-3 show the conceptual organization of the 604 instruction and data
MMUs, respectively. The instruction addresses shown in Figure 5-2 are generated by the
processor for sequential instruction fetches and addresses that correspond to a change of
program flow. Data addresses shown in Figure 5-3 are generated by load and store
instructions (both for the memory and the direct-store interfaces) and by cache instructions.

As shown in the figures, after an address is generated, the higher-order bits of the effective
address, EA0–EA19 (or a smaller set of address bits, EA0–EAn, in the cases of blocks), are
translated into physical address bits PA0–PA19. The lower-order address bits, A20–A31 are
untranslated and therefore identical for both effective and physical addresses. After
translating the address, the MMUs pass the resulting 32-bit physical address to the memory
subsystem.

Chapter 5. Memory Management 5-5

In addition to the higher-order address bits, the MMUs automatically keep an indicator of
whether each access was generated as an instruction or data access and a supervisor/user
indicator that reflects the state of the PR bit of the MSR when the effective address was
generated. In addition, for data accesses, there is an indicator of whether the access is for a
load or a store operation. This information is then used by the MMUs to appropriately direct
the address translation and to enforce the protection hierarchy programmed by the
operating system. Section 4.3, “Exception Processing,” describes the MSR, which controls
some of the critical functionality of the MMUs.

The figures show the way in which the A20–A26 address bits index into the on-chip
instruction and data caches to select a cache set. The remaining physical address bits are
then compared with the tag fields (comprised of bits PA0–PA19) of the two selected cache
blocks to determine if a cache hit has occurred. In the case of a cache miss, the instruction
or data access is then forwarded to the bus interface unit which then initiates an external
memory access.

5-6 PowerPC 604 RISC Microprocessor User's Manual

Figure 5-1. MMU Conceptual Block Diagram—32-Bit Implementations

MMU
(32 Bit)

A20–A31

X

E
A

0–
E

A
19

E
A

0–
E

A
19

EA0–EA3

0

15

Segment Registers
.
.
.

PA0–PA31

EA0–EA14

EA0–EA14

EA4–EA19

On-Chip
TLBs

Data
Accesses

Instruction
Accesses

A
20

–A
31

SPR25SDR1

+

X

DBAT0U
DBAT0L

•

•

DBAT3U
DBAT3L

PA15–PA19

X

←

X
EA15–EA19

Upper 24 Bits of
Virtual Address

EA15–EA19

PA0–PA14

PA0–PA19

BAT
 Hit

IBAT0U
IBAT0L

•

•

IBAT3U
IBAT3L

Optional to the PowerPC architecture. Implemented in the 604.

+

Page Table
Search Logic

Chapter 5. Memory Management 5-7

Figure 5-2. PowerPC 604 Microprocessor IMMU Block Diagram

Compare

IMMU

A20–A26

PA0–PA31

ITLB

0

15

S
el

ec
t

E
A

0–
E

A
19

IBAT0U
IBAT0L

IBAT3U
IBAT3L

IBAT Array

X

+

0

63

TAGS

Compare

I Cache
Hit/Miss

Select

EA0–EA14

A20–A31

PA0–PA19

SDR1 SPR25

I Cache

EA4–EA19

128 Sets

TAGS

TAGS

TAGS

0 19

0

3

Instruction
Unit

E
A

0–
E

A
19

Segment Registers
.
.
.

EA0–EA3

5-8 PowerPC 604 RISC Microprocessor User's Manual

Figure 5-3. PowerPC 604 Microprocessor DMMU Block Diagram

A20–A26

DMMU

PA0–PA31

Load/Store
Unit

DTLB

0

15

Segment Registers
.
.
.

EA0–EA3

S
el

ec
t

E
A

0–
E

A
19

DBAT0U
DBAT0L

DBAT3U
DBAT3L

DBAT Array

X

+

0

63

E
A

0–
E

A
19

Compare
Compare

D Cache
Hit/Miss

Select

PA0–PA19

D Cache

SPR25SDR1

EA0–EA14

EA4–EA19

A20–A31

TAGS

128 Sets

TAGS

TAGS

TAGS

0 19

0

3

Chapter 5. Memory Management 5-9

5.1.3 Address Translation Mechanisms
PowerPC processors support the following four types of address translation:

• Page address translation—translates the page frame address for a 4-Kbyte page size

• Block address translation—translates the block number for blocks that range in size
from 128 Kbyte to 256 Mbyte.

• Direct-store interface address translation—used to generate direct-store interface
accesses on the external bus; not optimized for performance—present for
compatibility only.

• Real addressing mode address translation—when address translation is disabled, the
physical address is identical to the effective address.

Figure 5-4 shows the four address translation mechanisms provided by the MMUs. The
segment descriptors shown in the figure control both the page and direct-store interface
address translation mechanisms. When an access uses the page or direct-store interface
address translation, the appropriate segment descriptor is required. In 32-bit
implementations, one of the 16 on-chip segment registers (which contain segment
descriptors) is selected by the four highest-order effective address bits.

A control bit in the corresponding segment descriptor then determines if the access is to
memory (memory-mapped) or to the direct-store interface space. Note that the direct-store
interface is present only for compatibility with existing I/O devices that used this interface.
When an access is determined to be to the direct-store interface space, the implementation
invokes an elaborate hardware protocol for communication with these devices. The
direct-store interface protocol is not optimized for performance, and therefore, its use is
discouraged. The most efficient method for accessing I/O devices is by memory-mapping
the I/O areas.

For memory accesses translated by a segment descriptor, the interim virtual address is
generated using the information in the segment descriptor. Page address translation
corresponds to the conversion of this virtual address into the 32-bit physical address used
by the memory subsystem. In most cases, the physical address for the page resides in an
on-chip TLB and is available for quick access. However, if the page address translation
misses in an on-chip TLB, the MMU causes a search of the page tables in memory (using
the virtual address information and a hashing function) to locate the required physical
address.

Block address translation occurs in parallel with page and direct-store segment address
translation and is similar to page address translation; however, fewer higher-order effective
address bits are translated into physical address bits (more lower-order address bits (at least
17) are untranslated to form the offset into a block). Also, instead of segment descriptors
and a TLB, block address translations use the on-chip BAT registers as a BAT array. If an
effective address matches the corresponding field of a BAT register, the information in the
BAT register is used to generate the physical address; in this case, the results of the page
translation and the direct-store translation (occurring in parallel) are ignored.

5-10 PowerPC 604 RISC Microprocessor User's Manual

Figure 5-4. Address Translation Types

Direct-store address translation is used when the direct-store translation control bit (T bit)
in the corresponding segment descriptor is set. In this case, the remaining information in
the segment descriptor is interpreted as identifier information that is used with the
remaining effective address bits to generate the packets used in a direct-store interface
access on the external interface; additionally, no TLB lookup or page table search is
performed.

Translation is disabled for real addressing mode. In this case the physical address generated
is identical to the effective address. Instruction and data address translation is enabled with
the MSR[IR] and MSR[DR] bits, respectively. Thus when the processor generates an
access, and the corresponding address translation enable bit in MSR (MSR[IR] for
instruction accesses and MSR[DR] for data accesses) is cleared, the resulting physical
address is identical to the effective address and all other translation mechanisms are
ignored.

(T = 1) (T = 0)

0 31
Effective Address

0 51
Virtual Address

Segment Descriptor
Located

Match with BAT Reg-
isters

0 31
Physical Address

0 31
Direct-Store Address

0 31
Physical Address

0 31
Physical Address

Look Up in
Page Table

Address Translation Disabled

Page
Address

Direct-Store Segment
Translation

(see Section 5.5)

(MSR[IR] = 0, or MSR[DR] = 0)

Real Addressing Mode
Effective Address = Physical Address

(see Section 5.2)

Block Address
Translation

(see Section 5.3)

Chapter 5. Memory Management 5-11

5.1.4 Memory Protection Facilities
In addition to the translation of effective addresses to physical addresses, the MMUs
provide access protection of supervisor areas from user access and can designate areas of
memory as read-only as well as no-execute or guarded. Table 5-2 shows the protection
options supported by the MMUs for pages.

The operating system determines whether instruction can be fetched from an area of
memory for which the no-execute option is provided in the segment descriptor. Each of the
remaining options is enforced based on a combination of information in the segment
descriptor and the page table entry. Thus, the supervisor-only option allows only read and
write operations generated while the processor is operating in supervisor mode
(corresponding to MSR[PR] = 0) to access the page. User accesses that map into a
supervisor-only page cause an exception to be taken.

Finally, there is a facility in the VEA and OEA that allows pages or blocks to be designated
as guarded preventing out-of order accesses that may cause undesired side effects. For
example, areas of the memory map that are used to control I/O devices can be marked as
guarded so that accesses (for example, instruction prefetches) do not occur unless they are
explicitly required by the program.

For more information on memory protection, see “Memory Protection Facilities,” in
Chapter 7, “Memory Management,” in the The Programming Environments Manual.

Table 5-2. Access Protection Options for Pages

Option
User Read

User
Write

Supervisor Read
Supervisor

Write
I-Fetch Data I-Fetch Data

Supervisor-only — — — √ √ √

Supervisor-only-no-execute — — — — √ √

Supervisor-write-only √ √ — √ √ √

Supervisor-write-only-no-execute — √ — — √ √

Both user/supervisor √ √ √ √ √ √

Both user-/supervisor-no-execute — √ √ — √ √

Both read-only √ √ — √ √ —

Both read-only-no-execute — √ — — √ —

Guarded

√ Access permitted
 — Protection violation

5-12 PowerPC 604 RISC Microprocessor User's Manual

5.1.5 Page History Information
The MMUs of PowerPC processors also define referenced (R) and changed (C) bits in the
page address translation mechanism that can be used as history information relevant to the
page. This information can then be used by the operating system to determine which areas
of memory to write back to disk when new pages must be allocated in main memory. While
these bits are initially programmed by the operating system into the page table, the
architecture specifies that the R and C bits may be maintained either by the processor
hardware (automatically) or by some software-assist mechanism that updates these bits
when required.

Implementation Note—In the process of loading the TLB, the 604 checks the state of the
changed and referenced bits for the matched PTE. If the referenced bit is not set and the
table search operation is initially caused by a load operation or by an instruction fetch, the
604 automatically sets the referenced bit in the translation table. Similarly, if the table
search operation is caused by a store operation and either the referenced bit or the changed
bit is not set, the hardware automatically sets both bits in the translation table. In addition,
during the address translation portion of a store operation that hits in the TLB, the 604
checks the state of the changed bit. If the bit is not already set, the hardware automatically
updates the TLB and the translation table in memory to set the changed bit. For more
information, see Section 5.4.1, “Page History Recording.”

5.1.6 General Flow of MMU Address Translation
The following sections describe the general flow used by PowerPC processors to translate
effective addresses to virtual and then physical addresses.

5.1.6.1 Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction or data
translation is disabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode is used
(physical address equals effective address) and the access continues to the memory
subsystem as described in Section 5.2, “Real Addressing Mode.”

Figure 5-5 shows the flow used by the MMUs in determining whether to select real
addressing mode, block address translation or to use the segment descriptor to select either
direct-store interface or page address translation.

Chapter 5. Memory Management 5-13

Figure 5-5. General Flow of Address Translation (Real Addressing Mode and Block)

Note that if the BAT array search results in a hit, the access is qualified with the appropriate
protection bits. If the access violates the protection mechanism, an exception (ISI or DSI
exception) is generated.

Implementation Note—The 604 BAT registers are not initialized by the hardware after the
power-up or reset sequence. Consequently, all valid bits in both instruction and data BAT
areas must be cleared before setting any BAT area for the first time. This is true regardless
of whether address translation is enabled. Also, software must avoid overlapping blocks
while updating a BAT area or areas. Even if translation is disabled, multiple BAT area hits
are treated as programming errors and can corrupt the BAT registers and produce
unpredictable results.

Perform Address Translation
with Segment Descriptor

Access Faulted

Compare Address with
Instruction or Data BAT
Array (as appropriate)

Translate Address

Perform Real
Addressing Mode

Translation

Effective Address
Generated

Continue Access
to Memory
Subsystem

Instruction
Translation Enabled

(MSR[IR] = 1)

Data
Translation Enabled

(MSR[DR] = 1)

(see The Programming
Environments Manual)

(see Figure 5-6)

Instruction
Translation Disabled

(MSR[IR] = 0)

Data
Translation Disabled

(MSR[DR] = 0)

BAT Array
Hit

BAT Array
Miss

D-accessI-access

Access
Protected

Access
Permitted

Perform Real
Addressing Mode

Translation

5-14 PowerPC 604 RISC Microprocessor User's Manual

5.1.6.2 Page and Direct-Store Interface Address Translation
Selection

If address translation is enabled and the effective address information does not match with
a BAT array entry, then the segment descriptor must be located. Once the segment
descriptor is located, the T bit in the segment descriptor selects whether the translation is to
a page or to a direct-store segment as shown in Figure 5-6. In addition, Figure 5-6 also
shows the way in which the no-execute protection is enforced; if the N bit in the segment
descriptor is set and the access is an instruction fetch, the access is faulted as described in
Chapter 7, “Memory Management,” in The Programming Environments Manual. Note that
the figure shows the flow for these cases as described by the PowerPC OEA, and so the TLB
references are shown as optional. As the 604 implements TLBs, these branches are valid,
and described in more detail throughout this chapter.

Chapter 5. Memory Management 5-15

Figure 5-6. General Flow of Page and Direct-Store Interface Address Translation

Access Faulted

Access Faulted

Perform Page Table
Search Operation

Continue Access
to Memory Subsystem

Translate Address

Perform Direct-Store
Segment Translation

*Not allowed for
instruction accesses

(causes ISI exception)

Load TLB Entry

TLB
Miss

Address Translation with
Segment Descriptor

(See The Programming
Environments Manual)

(See Figure 5-8)
(See

Figure 5-9)

TLB
Hit

otherwise

Check T bit in
Segment Descriptor

Use EA0–EA3 to
Select One of 16 On-Chip

Segment Registers

Page Address
Translation

(T = 0)

Direct-Store
Segment Address

(T = 1)*

I-Fetch with N bit Set in
Segment Descriptor

 (No-Execute)

Compare Virtual
Address with TLB

Entries

Generate 52-Bit Virtual
Address from Segment

Descriptor

PTE Not
Found

PTE Found

Access
Protected

Access
Permitted

Optional to the PowerPC architecture. Implemented in the 604.

5-16 PowerPC 604 RISC Microprocessor User's Manual

5.1.6.3 Selection of Page Address Translation
If the T bit in the corresponding segment descriptor is 0, page address translation is
selected. The information in the segment descriptor is then used to generate the 52-bit
virtual address. The virtual address is then used to identify the page address translation
information (stored as page table entries (PTEs) in a page table in memory). For increased
performance, the 604 has two on-chip TLBs to store recently-used PTEs on-chip.

If an access hits in the appropriate TLB, the page translation occurs and the physical
address bits are forwarded to the memory subsystem. If the required PTE is not resident,
the MMU requires a search of the page table. In this case, the 604 hardware performs the
page table search operation. If the PTE is successfully found, a new TLB entry is created
and the page translation is once again attempted. This time, the TLB is guaranteed to hit.
Once the PTE is located, the access is qualified with the appropriate protection bits. If the
access is a protection violation (not allowed), either an ISI or DSI exception is generated.

If the PTE is not found by the table search operation, a page fault condition exists, and an
ISI or DSI exception occurs so software can handle the page fault.

5.1.6.4 Selection of Direct-Store Interface Address Translation
When the segment descriptor has the T bit set, the access is considered a direct-store
interface access and the direct-store interface protocol of the external interface is used to
perform the access to direct-store space. The selection of address translation type differs for
instruction and data accesses only in that instruction accesses are not allowed from
direct-store segments; attempting to fetch an instruction from a direct-store segment causes
an ISI exception. See Section 5.5, “Direct-Store Interface Address Translation,” for more
detailed information about the translation of addresses in direct-store space.

5.1.7 MMU Exceptions Summary
In order to complete any memory access, the effective address must be translated to a
physical address. As specified by the architecture, an MMU exception condition occurs if
this translation fails for one of the following reasons:

• There is no valid entry in the page table for the page specified by the effective
address (and segment descriptor) and there is no valid BAT translation.

• An address translation is found but the access is not allowed by the memory
protection mechanism.

The translation exception conditions defined by the OEA for 32-bit implementations cause
either the ISI or the DSI exception to be taken as shown in Table 5-3.

The state saved by the processor for each of these exceptions contains information that
identifies the address of the failing instruction. Refer to Chapter 4, “Exceptions,” for a more
detailed description of exception processing.

Chapter 5. Memory Management 5-17

In addition to the translation exceptions, there are other MMU-related conditions (some of
them defined as implementation-specific and therefore, not required by the architecture)
that can cause an exception to occur. These exception conditions map to the processor
exception as shown in Table 5-4. The only MMU exception conditions that occur when
MSR[DR] = 0 are the conditions that cause the alignment exception for data accesses. For
more detailed information about the conditions that cause the alignment exception (in
particular for string/multiple instructions), see Section 4.5.6, “Alignment Exception
(0x00600).”

Note that some exception conditions depend upon whether the memory area is set up as
write-though (W = 1) or cache-inhibited (I = 1). These bits are described fully in
“Memory/Cache Access Attributes,” in Chapter 5, “Cache Model and Memory Coherency,”
of The Programming Environments Manual. Refer to Chapter 4, “Exceptions,” and to
Chapter 6, “Exceptions,” in The Programming Environments Manual for a complete
description of the SRR1 and DSISR bit settings for these exceptions.

Table 5-3. Translation Exception Conditions

Condition Description Exception

Page fault (no PTE found) No matching PTE found in page tables (and no
matching BAT array entry)

I access: ISI exception
SRR1[1] = 1

D access: DSI exception
DSISR[1] =1

Block protection violation Conditions described for block in “Block Memory
Protection” in Chapter 7, “Memory Management,”
in The Programming Environments Manual.“

I access: ISI exception
SRR1[4] = 1

D access: DSI exception
DSISR[4] =1

Page protection violation Conditions described for page in “Block Memory
Protection” in Chapter 7, “Memory Management,”
in The Programming Environments Manual.

I access: ISI exception
SRR1[4] = 1

D access: DSI exception
DSISR[4] =1

No-execute protection
violation

Attempt to fetch instruction when SR[N] = 1 ISI exception
SRR1[3] = 1

Instruction fetch from
direct-store segment

Attempt to fetch instruction when SR[T] = 1 ISI exception
SRR1[3] =1

Instruction fetch from
guarded memory

Attempt to fetch instruction when MSR[IR] = 1 and
either matching xBAT[G] = 1, or no matching BAT
entry and PTE[G] = 1

ISI exception
SRR1[3] =1

5-18 PowerPC 604 RISC Microprocessor User's Manual

5.1.8 MMU Instructions and Register Summary
The MMU instructions and registers provide the operating system with the ability to set up
the block address translation areas and the page tables in memory.

Note that because the implementation of TLBs is optional, the instructions that refer to
these structures are also optional. However, as these structures serve as caches of the page
table, the architecture specifies a software protocol for maintaining coherency between
these caches and the tables in memory whenever changes are made to the tables in memory.
When the tables in memory are changed, the operating system purges these caches of the
corresponding entries, allowing the translation caching mechanism to refetch from the
tables when the corresponding entries are required.

Note that the 604 implements all TLB-related instructions except tlbia, which is treated as
an illegal instruction.

Because the MMU specification for PowerPC processors is so flexible, it is recommended
that the software that uses these instructions and registers be “encapsulated” into
subroutines to minimize the impact of migrating across the family of implementations.

Table 5-4. Other MMU Exception Conditions for the PowerPC 604 Processor

Condition Description Exception

dcbz with W = 1 or I = 1 dcbz instruction to write-through or
cache-inhibited segment or block

Alignment exception (not
required by architecture for
this condition)

dcbz when the data cache is
locked

The dcbz instruction takes an alignment
exception if the data cache is locked (HID0
bits 18 and 19) when it is executed.

Alignment exception

lwarx or stwcx. with W = 1 Reservation instruction to write-through
segment or block

DSI exception DSISR[5] = 1

lwarx, stwcx., eciwx, or ecowx
instruction to direct-store segment

Reservation instruction or external control
instruction when SR[T] =1

DSI exception
DSISR[5] = 1

Floating-point load or store to
direct-store segment

FP memory access when SR[T] =1 Alignment exception (not
required by architecture)

Load or store that results in a
direct-store error

Direct-store interface protocol signalled with
an error condition

DSI exception
DSISR[0] = 1

eciwx or ecowx attempted when
external control facility disabled

eciwx or ecowx attempted with EAR[E] = 0 DSI exception
DSISR[11] = 1

lmw, stmw, lswi, lswx, stswi, or
stswx instruction attempted in
little-endian mode

lmw, stmw, lswi, lswx, stswi, or stswx
instruction attempted while MSR[LE] = 1

Alignment exception

Operand misalignment Translation enabled and operand is
misaligned as described in Chapter 4,
“Exceptions.”

Alignment exception (some
of these cases are
implementation-specific)

Chapter 5. Memory Management 5-19

Table 5-5 summarizes 604 instructions that specifically control the MMU.

Table 5-6 summarizes the registers that the operating system uses to program the 604
MMUs. These registers are accessible to supervisor-level software only. These registers are
described in Chapter 2, “PowerPC 604 Processor Programming Model.”

5.1.9 TLB Entry Invalidation
For PowerPC processors such as the 604 that implement TLB structures to maintain
on-chip copies of the PTEs that are resident in physical memory, the optional TLB
Invalidate Entry (tlbie) instruction provides a way to invalidate the TLB entries.

Table 5-5. PowerPC 604 Microprocessor Instruction Summary—Control MMUs

Instruction Description

mtsr SR,rS Move to Segment Register
SR[SR#]← rS

mtsrin rS,rB Move to Segment Register Indirect
SR[rB[0–3]]←rS

mfsr rD,SR Move from Segment Register
rD←SR[SR#]

mfsrin rD,rB Move from Segment Register Indirect
rD←SR[rB[0–3]]

tlbie rB * Execution of this instruction causes all entries in the congruence class corresponding to the EA to
be invalidated in the processor executing the instruction and in the other processors attached to
the same bus.
Software must ensure that instruction fetches or memory references to the virtual pages specified
by the tlbie instruction have been completed prior to executing the tlbie instruction.

tlbsync * The tlbsync operation appears on the bus as a distinct operation that causes synchronization of
snooped tlbie instructions.

* These instructions are defined by the PowerPC architecture, but are optional.

Table 5-6. PowerPC 604 Microprocessor MMU Registers

Register Description

Segment registers
(SR0–SR15)

The sixteen 32-bit segment registers are present only in 32-bit implementations of
the PowerPC architecture. The fields in the segment register are interpreted
differently depending on the value of bit 0. The segment registers are accessed by
the mtsr, mtsrin, mfsr, and mfsrin instructions.

BAT registers
(IBAT0U–IBAT3U,
IBAT0L–IBAT3L,
DBAT0U–DBAT3U, and
DBAT0L–DBAT3L)

There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBAT0U–IBAT3U paired with IBAT0L–IBAT3L) and four pairs of data BAT registers
(DBAT0U–DBAT3U paired with DBAT0L–DBAT3L). The BAT registers are defined
as 32-bit registers in 32-bit implementations. These are special-purpose registers
that are accessed by the mtspr and mfspr instructions.

SDR1 The SDR1 register specifies the variables used in accessing the page tables in
memory. SDR1 is defined as a 32-bit register for 32-bit implementations. This
special-purpose register is accessed by the mtspr and mfspr instructions.

5-20 PowerPC 604 RISC Microprocessor User's Manual

Execution of this instruction causes all entries in the congruence class corresponding to the
presented EA to be invalidated in the processor executing the instruction and in the other
processors attached to the same bus.

The tlbsync operation appears on the bus as a distinct operation, that causes
synchronization of snooped tlbie instructions. Section 5.4.3.2, “TLB Invalidation,”
describes the TLB invalidation mechanisms in the 604.

5.2 Real Addressing Mode
If address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access,
the effective address is treated as the physical address and is passed directly to the memory
subsystem as described in Chapter 7, “Memory Management,” in The Programming
Environments Manual.

For information on the synchronization requirements for changes to MSR[IR] and
MSR[DR], refer to Section 2.3.2.4, “Synchronization.”

5.3 Block Address Translation
The block address translation (BAT) mechanism in the OEA provides a way to map ranges
of effective addresses larger than a single page into contiguous areas of physical memory.
Such areas can be used for data that is not subject to normal virtual memory handling
(paging), such as a memory-mapped display buffer or an extremely large array of numerical
data.

Block address translation in the 604 is described in Chapter 7, “Memory Management,” in
The Programming Environments Manual for 32-bit implementations.

5.4 Memory Segment Model
The 604 adheres to the memory segment model as defined in Chapter 7, “Memory
Management,” in The Programming Environments Manual for 32-bit implementations.
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented
memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address translation), while providing the programming
flexibility afforded by a large virtual address space (52 bits).

The segment/page address translation mechanism may be superseded by the block address
translation (BAT) mechanism described in Section 5.3, “Block Address Translation.” If not,
the translation proceeds in the following two steps:

1. from effective address to the virtual address (which never exists as a specific entity
but can be considered to be the concatenation of the virtual page number and the byte
offset within a page), and

2. from virtual address to physical address.

Chapter 5. Memory Management 5-21

This section highlights those areas of the memory segment model defined by the OEA that
are specific to the 604.

5.4.1 Page History Recording
Referenced (R) and changed (C) bits reside in each PTE to keep history information about
the page. They are maintained by a combination of the 604 table search hardware and the
system software. The operating system uses this information to determine which areas of
memory to write back to disk when new pages must be allocated in main memory.
Referenced and changed recording is performed only for accesses made with page address
translation and not for translations made with the BAT mechanism or for accesses that
correspond to direct-store (T = 1) segments. Furthermore, R and C bits are maintained only
for accesses made while address translation is enabled (MSR[IR] = 1 or MSR[DR] = 1).

In the 604, the referenced and changed bits are updated as follows:

• For TLB hits, the C bit is updated according to Table 5-7.

• For TLB misses, when a table search operation is in progress to locate a PTE. The
R and C bits are updated (set, if required) to reflect the status of the page based on
this access.

The table shows that the status of the C bit in the TLB entry (in the case of a TLB hit) is
what causes the processor to update the C bit in the PTE (the R bit is assumed to be set in
the page tables if there is a TLB hit). Therefore, when software clears the R and C bits in
the page tables in memory, it must invalidate the TLB entries associated with the pages
whose referenced and changed bits were cleared.

The dcbt and dcbtst instructions can execute if there is a TLB/BAT hit or if the processor
is in real addressing mode. In case of a TLB/BAT miss, these instructions are treated as
no-ops; they do not initiate a table search operation and they do not set either the R or C bits.

As defined by the PowerPC architecture, the referenced and changed bits are updated as if
address translation were disabled (real addressing mode). Additionally, these updates are
performed with single-beat read and byte write transactions on the bus.

Table 5-7. Table Search Operations to Update History Bits—TLB Hit Case

R and C bits
in TLB Entry

Processor Action

00 Combination doesn’t occur

01 Combination doesn’t occur

10 Read: No special action
Write: The 604 initiates a table search operation to update C.

11 No special action for read or write

5-22 PowerPC 604 RISC Microprocessor User's Manual

5.4.1.1 Referenced Bit
The referenced (R) bit of a page is located in the PTE in the page table. Every time a page
is referenced (with a read or write access) and the R bit is zero, the 604 sets the R bit in the
page table. The OEA specifies that the referenced bit may be set immediately, or the setting
may be delayed until the memory access is determined to be successful. Because the
reference to a page is what causes a PTE to be loaded into the TLB, the referenced bit in all
604 TLB entries is effectively always set. The processor never automatically clears the
referenced bit.

The referenced bit is only a hint to the operating system about the activity of a page. At
times, the referenced bit may be set although the access was not logically required by the
program or even if the access was prevented by memory protection. Examples of this in
PowerPC systems include the following:

• Fetching of instructions not subsequently executed

• Accesses generated by an lswx or stswx instruction with a zero length

• Accesses generated by an stwcx. instruction when no store is performed because a
reservation does not exist

• Accesses that cause exceptions and are not completed

5.4.1.2 Changed Bit
The changed bit of a page is located both in the PTE in the page table and in the copy of the
PTE loaded into the TLB (if a TLB is implemented, as in the 604). Whenever a data store
instruction is executed successfully, if the TLB search (for page address translation) results
in a hit, the changed bit in the matching TLB entry is checked. If it is already set, the
processor does not change the C bit. If the TLB changed bit is 0, the 604 sets it and a table
search operation is performed to also set the C bit in the corresponding PTE in the page
table. The 604 initiates the table search operation for setting the C bit in this case.

The changed bit (in both the TLB and the PTE in the page tables) is set only when a store
operation is allowed by the page memory protection mechanism and the store is guaranteed
to be in the execution path (unless an exception, other than those caused by the sc, rfi, or
trap instructions, occurs). Furthermore, the following conditions may cause the C bit to be
set:

• The execution of an stwcx. instruction is allowed by the memory protection
mechanism but a store operation is not performed.

• The execution of an stswx instruction is allowed by the memory protection
mechanism but a store operation is not performed because the specified length is
zero.

• The store operation is not performed because an exception occurs before the store is
performed.

Again, note that although the execution of the dcbt and dcbtst instructions may cause the
R bit to be set, they never cause the C bit to be set.

Chapter 5. Memory Management 5-23

5.4.1.3 Scenarios for Referenced and Changed Bit Recording
This section provides a summary of the model (defined by the OEA) that is used by
PowerPC processors for maintaining the referenced and changed bits. In some scenarios,
the bits are guaranteed to be set by the processor, in some scenarios, the architecture allows
that the bits may be set (not absolutely required), and in some scenarios, the bits are
guaranteed to not be set. Note that when the 604 updates the R and C bits in memory, the
accesses are performed as if MSR[DR] = 0 and G = 0 (that is, as nonguarded cacheable
operations in which coherency is required).

Table 5-8 defines a prioritized list of the R and C bit settings for all scenarios. The entries
in the table are prioritized from top to bottom, such that a matching scenario occurring
closer to the top of the table takes precedence over a matching scenario closer to the bottom
of the table. For example, if an stwcx. instruction causes a protection violation and there is
no reservation, the C bit is not altered, as shown for the protection violation case. Note that
in the table, load operations include those generated by load instructions, by the eciwx
instruction, and by the cache management instructions that are treated as a load with respect
to address translation. Similarly, store operations include those operations generated by
store instructions, by the ecowx instruction, and by the cache management instructions that
are treated as a store with respect to address translation.

Table 5-8. Model for Guaranteed R and C Bit Settings

Priority Scenario

Causes Setting of
R Bit

Causes Setting
of C Bit

OEA 604 OEA 604

1 No-execute protection violation No No No No

2 Page protection violation Maybe Yes No No

3 Out-of-order instruction fetch or load operation Maybe No No No

4 Out-of-order store operation contingent on a branch, trap,
sc or rfi instruction, or a possible exception

Maybe No No No

5 Out-of-order store operation contingent on an exception,
other than a trap or sc instruction, not occurring

Maybe No No No

6 Zero-length load (lswx) Maybe No No No

7 Zero-length store (stswx) Maybe1 No Maybe1 No

8 Store conditional (stwcx.) that does not store Maybe1 Yes Maybe1 Yes

9 In-order instruction fetch Yes2 Yes No No

10 Load instruction or eciwx Yes Yes No No

11 Store instruction, ecowx, or dcbz instruction Yes Yes Yes Yes

5-24 PowerPC 604 RISC Microprocessor User's Manual

For more information, see “Page History Recording” in Chapter 7, “Memory
Management,” of The Programming Environments Manual.

5.4.2 Page Memory Protection
The 604 implements page memory protection as it is defined in Chapter 7, “Memory
Management,” in The Programming Environments Manual.

5.4.3 TLB Description
Because the 604 has two MMUs (IMMU and DMMU) that operate in parallel, some of the
MMU resources are shared, and some are actually duplicated (shadowed) in each MMU to
maximize performance. For example, although the architecture defines a single set of
segment registers for the MMU, the 604 maintains two identical sets of segment registers,
one for the IMMU and one for the DMMU; when a segment register instruction executes,
the 604 automatically updates both sets.

5.4.3.1 TLB Organization
The 604 implements separate 128-entry data and instruction TLBs to support the
implementation of separate instruction and data MMUs. This section describes the
hardware resources provided in the 604 to facilitate page address translation. Note that the
hardware implementation of the MMU is not specified by the architecture, and while this
description applies to the 604, it does not necessarily apply to other PowerPC processors.

Each TLB contains 128 entries organized as a two-way set associative array with 64 sets as
shown in Figure 5-7 for the DTLB (the ITLB organization is the same). When an address
is being translated, a set of two TLB entries is indexed in parallel with the access to a
segment register. If the address in one of the two TLB entries is valid and matches the
virtual address, that TLB entry contains the physical address. If no match is found, a TLB
miss occurs.

12 icbi, dcbt, dcbtst, dcbst, or dcbf instruction Maybe Yes no no

13 dcbi instruction Maybe1 Yes Maybe1 Yes

1 If C is set, R is also guaranteed to be set.
2 This includes the case in which the instruction was fetched out-of order and R was not set

(does not apply for 604).

Table 5-8. Model for Guaranteed R and C Bit Settings (Continued)

Priority Scenario

Causes Setting of
R Bit

Causes Setting
of C Bit

OEA 604 OEA 604

Chapter 5. Memory Management 5-25

Figure 5-7. Segment Register and DTLB Organization

Unless the access is the result of an out-of-order access, a hardware table search operation
begins if there is a TLB miss. If the access is out of order, the table search operation is
postponed until the access is required, at which point the access is no longer out of order.
When the matching PTE is found in memory, it is loaded into a particular TLB entry
selected by the least-recently-used (LRU) replacement algorithm, and the translation
process begins again, this time with a TLB hit.

TLB entries are on-chip copies of PTEs in the page tables in memory and are similar in
structure. TLB entries consist of two words; the upper-order word contains the VSID and
API fields of the upper-order word of the PTE and the lower-order word contains the RPN,
the C bit, the WIMG bits and the PP bits (as in the lower-order word of the PTE). To
uniquely identify a TLB entry as the required PTE, the PTE also contains four more bits of

T

0 7 8 31

0

15 T VSID

Segment Registers

V

DTLB

0

63

V

EA0–EA31

EA0–EA3

EA14–EA19

VSID

Select

Compare

Compare

EA4–EA13

Line 1

Line 0

MUX

RPN

Line1/Line 0 H
it

EA0–EA19

5-26 PowerPC 604 RISC Microprocessor User's Manual

the page index, EA10–EA13 (in addition to the API bits of the PTE). Formats for the PTE
are given in “PTE Format for 32-Bit Implementations,” in Chapter 7, “Memory
Management,” of The Programming Environments Manual.

Software does not have direct access to the TLB arrays, except to invalidate an entry with
the tlbie instruction.

Each set of TLB entries is associated with one LRU bit, which is accessed when those
entries in the same set are indexed. LRU bits are updated whenever a TLB entry is used or
after the entry is replaced. Invalid entries are always the first to be replaced.

Although both MMUs can be accessed simultaneously (both sets of segment registers and
TLBs can be accessed in the same clock), when there is an exception condition, only one
exception is reported at a time.

Although address translation is disabled on a reset condition, the valid bits of the BAT array
and TLB entries are not automatically cleared. Thus, TLB entries must be explicitly cleared
by the system software (with the tlbie instruction) before the valid entries are loaded and
address translation is enabled. Also, note that the segment registers do not have a valid bit,
and so they should also be initialized before translation is enabled.

5.4.3.2 TLB Invalidation
The 604 implements the optional tlbie and tlbsync instructions, which are used to
invalidate TLB entries. The execution of the tlbie instruction always invalidates four
entries—both the ITLB entries indexed by EA14–EA19 and both the indexed entries of the
DTLB.

Execution of the tlbie instruction causes all entries in the congruence class corresponding
to the specified EA to be invalidated in the processor executing the instruction and also in
the other processors attached to the same bus by causing a TLB invalidate broadcast
operation on the bus as described in Section 7.2.4, “Address Transfer Attribute Signals.”

A TLB invalidate broadcast operation is an address-only transaction issued by a processor
when it executes a tlbie instruction. The address transmitted as part of this transaction
contains bits 12–19 of the EA in their correct respective bit positions.

When a snooping 604 detects a TLB invalidate operation on the bus, it accepts the operation
only if no TLB invalidation is being performed by this processor and all processors on the
bus accept the operation (ARTRY is not asserted). Once accepted, the TLB invalidation is
performed unless the processor is executing a multiple/string instruction, in which case the
TLB invalidation is delayed until the instruction has completed. Note that a 604 processor
can only have one TLB invalidation operation pending internally. Thus if the 604 has a
pending TLB invalidate operation, it asserts the ARTRY snoop status in response to another
TLB invalidate operation on the bus. Detected TLB invalidate operations on the bus and the
execution of the tlbie instruction both cause a congruence-class invalidation on both
instruction and data TLBs.

Chapter 5. Memory Management 5-27

The OEA requires that a synchronization instruction be issued to guarantee completion of
a tlbie instruction across all processors of a system. The 604 implements the tlbsync
instruction which causes a TLBSYNC broadcast operation to appear on the bus as an
address-only transaction, distinct from a SYNC operation. It is this bus operation that
causes synchronization of snooped tlbie instructions. Multiple tlbie instructions can be
executed correctly with only one tlbsync instruction, following the last tlbie, to guarantee
all previous tlbie instructions have been performed globally.

When the TLBSYNC bus operation is detected by a snooping 604, the 604 asserts the
ARTRY snoop status if any operations based on an invalidated TLB are pending.

Software must ensure that instruction fetches or memory references to the virtual pages
specified by the tlbie have been completed prior to executing the tlbie instruction.

Other than the possible TLB miss on the next instruction prefetch, the tlbie does not affect
the instruction fetch operation—that is, the prefetch buffer is not purged and does not cause
these instructions to be refetched.

The tlbia instruction is optional for an implementation if its effects can be achieved through
some other mechanism. As described above, the tlbie instruction can be used to invalidate
a particular index of the TLB based on EA[14–19]. With that concept in mind, a sequence
of 64 tlbie instructions followed by a single tlbsync instruction would cause all the 604
TLB structures to be invalidated (for EA[14–19] = 0, 1, 2, ..., 63). Therefore the tlbia
instruction is not implemented on the 604. Execution of a tlbia instruction causes an illegal
instruction program exception.

The tlbie and tlbsync instructions are described in detail in Section 2.3.6.3.3, “Translation
Lookaside Buffer Management Instructions—(OEA).” For more information about how
other processors react to TLB operations broadcast on the system bus of a multiprocessing
system, see Section 3.9.6, “Cache Reaction to Specific Bus Operations.”

5.4.4 Page Address Translation Summary
Figure 5-8 provides the detailed flow for the page address translation mechanism.

The figure includes the checking of the N bit in the segment descriptor and then expands
on the “TLB Hit” branch of Figure 5-6. The detailed flow for the “TLB Miss” branch of
Figure 5-6 is described in Section 5.4.5, “Page Table Search Operation.” Note that as in the
case of block address translation, if the dcbz instruction is attempted to be executed either
in write-through mode or as cache-inhibited (W = 1 or I = 1), the alignment exception is
generated. The checking of memory protection violation conditions for page address
translation is described in Chapter 7, “Memory Management,” in The Programming
Environments Manual.

5-28 PowerPC 604 RISC Microprocessor User's Manual

Figure 5-8. Page Address Translation Flow—TLB Hit

(See Figure 5-9)

(see The Programming
Environments Manual)

TLB Hit
Case

Alignment Exception

Effective Address
Generated

Compare Virtual Address
with TLB Entries

Continue Access to Mem-
ory Subsystem with WIMG

bits from PTE

Page Table
Search Operation

PA0–PA31←RPN||A20–A31

Generate 52-Bit
 Virtual Address from
Segment Descriptor

Page Address
Translation

Check Page Memory
 Protection Violation Conditions

Instruction Fetch with
N bit Set in Segment

Descriptor

Page Memory
Protection Violation

Access ProhibitedAccess Permitted

otherwise
Store Access with

PTE [C] = 0

otherwisedcbz Instruction
with W or I = 1

otherwise

(see The
Programming
Environments

Manual)

Invalidate TLB entry

(See Figure 5-6)

Chapter 5. Memory Management 5-29

5.4.5 Page Table Search Operation
If the translation is not found in the TLBs (a TLB miss), the 604 initiates a table search
operation which is described in this section. Formats for the PTE are given in “PTE Format
for 32-Bit Implementations,” in Chapter 7, “Memory Management,” of The Programming
Environments Manual.

The following is a summary of the page table search process performed by the 604:

1. The 32-bit physical address of the primary PTEG is generated as described in “Page
Table Addresses” in Chapter 7, “Memory Management,” of The Programming
Environments Manual.

2. The first PTE (PTE0) in the primary PTEG is read from memory. PTE reads should
occur with an implied WIM memory/cache mode control bit setting of 0b001.
Therefore, they are considered cacheable and read (burst) from memory and placed
in the cache.

3. The PTE in the selected PTEG is tested for a match with the virtual page number
(VPN) of the access. The VPN is the VSID concatenated with the page index field
of the virtual address. For a match to occur, the following must be true:

— PTE[H] = 0
— PTE[V] = 1
— PTE[VSID] = VA[0–23]
— PTE[API] = VA[24–29]

4. If a match is not found, step 3 is repeated for each of the other seven PTEs in the
primary PTEG. If a match is found, the table search process continues as described
in step 8. If a match is not found within the 8 PTEs of the primary PTEG, the address
of the secondary PTEG is generated.

5. The first PTE (PTE0) in the secondary PTEG is read from memory. Again, because
PTE reads typically have a WIM bit combination of 0b001, an entire cache line is
read into the on-chip cache.

6. The PTE in the selected secondary PTEG is tested for a match with the virtual page
number (VPN) of the access. For a match to occur, the following must be true:

— PTE[H] = 1
— PTE[V] = 1
— PTE[VSID] = VA[0–23]
— PTE[API] = VA[24–29]

7. If a match is not found, step 6 is repeated for each of the other seven PTEs in the
secondary PTEG. If it is never found, an exception is taken (step 9).

8. If a match is found, the PTE is written into the on-chip TLB and the R bit is updated
in the PTE in memory (if necessary). If there is no memory protection violation, the
C bit is also updated in memory (if the access is a write operation) and the table
search is complete.

5-30 PowerPC 604 RISC Microprocessor User's Manual

9. If a match is not found within the 8 PTEs of the secondary PTEG, the search fails,
and a page fault exception condition occurs (either an ISI exception or a DSI
exception).

Reads from memory for table search operations should be performed as global (but not
exclusive), cacheable operations, and can be loaded into the on-chip cache.

Figure 5-9 and Figure 5-10 show how the conceptual model for the primary and secondary
page table search operations, described in The Programming Environments Manual are
realized in the 604.

Figure 5-9 shows the case of a dcbz instruction that is executed with W = 1 or I = 1, and
that the R bit may be updated in memory (if required) before the operation is performed or
the alignment exception occurs. The R bit may also be updated if memory protection is
violated.

Chapter 5. Memory Management 5-31

Figure 5-9. Primary Page Table Search

(from Figure 5-10)

Fetch PTE from PTEG

otherwise

Perform Secondary
Page Table Search

Secondary Page
Table Search Hit

PTE[R] ← 1
R_Flag ← 1

Write PTE
into TLB

otherwise
dcbz Instruction
with W or I = 1

otherwise

Alignment Exception

Page Table
Search Complete

TLB[PTE[C]] ← 1

Page Table
Search Complete

R_Flag = 1

PTE[R] ←1
(Update PTE[R]

in Memory)

Generate PA using Primary Hash Function
PA ← Base PA of PTEG

Primary Page
Table Search

PA ← PA+ 8
(Fetch next PTE in PTEG)

Fetch PTE (64 bits)
from PA

PTE [VSID, API, H, V] =
Segment Descriptor [VSID], EA[API], 0, 1

Memory Protection
Violation

PTE[C] ←1
(Update PTE[C] in

Memory)
Also Update

PTE[R] in Mem-
ory if R_Flag = 1

PTE[R] ←1
(Update PTE[R]

in Memory)

otherwise

Access Permitted Access Prohibited

Check Memory Protection
Violation Conditions

otherwise

Last PTE in PTEG
PTE[R] = 1 PTE[R] = 0

otherwise

R_Flag = 1

Store operation with
PTE[C] = 0

otherwise

R_Flag = 1

PTE[R] ←1
(Update PTE[R]

in Memory)

5-32 PowerPC 604 RISC Microprocessor User's Manual

Figure 5-10. Secondary Page Table Search Flow

If the address in one of the two selected TLB entries is valid and matches the virtual
address, that TLB entry contains the physical address. If no match is found, a TLB miss
occurs and, if this is an in-order access, a hardware table search operation begins. Once the
matching PTE is found in memory, it is loaded into the appropriate TLB entry depending
on the LRU bit setting and translation continues.

The LSU initiates out-of-order accesses without knowledge of whether it is legal to do so.
Therefore, the MMU does not perform hardware table search due to TLB misses until the
request is nonspeculative. In these out-of-order cases, the MMU does detect protection
violations and whether a dcbz instruction specifies a page marked as write-through or
cache-inhibited. The MMU also detects alignment exceptions caused by the dcbz
instruction, which prevents the changed bit in the PTE from being updated erroneously.

Note that when a TLB miss occurs, the MMU does not begin the table search operation if
the access is out of order.

Generate PA Using Secondary Hash Function
PA ← Base PA of PTEG

Fetch PTE from PTEG

Fetch PTE (64 Bits)
from PA

PA ← PA+ 8
(Fetch Next PTE in PTEG)

PTE [VSID, API, H, V]=
Segment Descriptor [VSID], EA[API], 1, 1

Secondary Page
Table Search Hit

Page Fault

DSI ExceptionISI Exception

Set SRR1[1] = 1 Set DSISR[1] = 1

(See Figure 5-9)

Secondary Page
Table Search

otherwise

otherwise

Last PTE in PTEG

Data AccessInstruction Access

Chapter 5. Memory Management 5-33

If the MMU registers are being accessed by an instruction in the instruction stream, the
IMMU stalls for one translation cycle to perform those operation. The sequencer serializes
instructions to ensure the data correctness. For updating the IBATs and SRs, the sequencer
classifies those operations as fetch serialization. After such an instruction is dispatched, the
instruction buffer is flushed and the fetch stalls until the instruction completes. However,
for reading from the IBATs, the operation is classified as execution serialization. As long as
the LSU ensures that all previous instructions can be executed, subsequent instructions can
be fetched and dispatched.

5.4.6 Page Table Updates
This section describes the requirements on the software when updating page tables in
memory via some pseudocode examples. Multiprocessor systems must follow the rules
described in this section so that all processors operate with a consistent set of page tables.
Even single-processor systems must follow certain rules, because software changes must
be synchronized with the other instructions in execution and with automatic updates that
may be made by the hardware (referenced and changed bit updates). Updates to the tables
include the following operations:

• Adding a PTE
• Modifying a PTE, including modifying the R and C bits of a PTE
• Deleting a PTE

PTEs must be locked on multiprocessor systems. Access to PTEs must be appropriately
synchronized by software locking of (that is, guaranteeing exclusive access to) PTEs or
PTEGs if more than one processor can modify the table at that time. In the examples below,
‘lock()’ and ‘unlock()’ refer to software locks that must be performed to provide exclusive
access to the PTE being updated. See Appendix E, “Synchronization Programming
Examples,” in The Programming Environments Manual, for more information about the
use of the reservation instructions (such as the lwarx and stwcx. instructions) to perform
software locking.

On single-processor systems, PTEs need not be locked. To adapt the examples given below
for the single-processor case, simply delete the ‘lock()’ and ‘unlock()’ lines from the
examples. The sync instructions shown are required even for single-processor systems (to
ensure that all previous changes to the page tables and all preceding tlbie instructions have
completed).

When TLBs are implemented, they are defined as noncoherent caches of the page tables.
TLB entries must be invalidated explicitly with the TLB invalidate entry instruction (tlbie)
whenever the corresponding PTE is modified. In a multiprocessor system, the tlbie
instruction must be controlled by software locking, so that the tlbie is issued on only one
processor at a time. The sync instruction causes the processor to wait until the TLB
invalidate operation in progress by this processor is complete.

5-34 PowerPC 604 RISC Microprocessor User's Manual

The PowerPC OEA defines the tlbsync instruction that ensures that TLB invalidate
operations executed by this processor have caused all appropriate actions in other
processors. In a system that contains multiple processors, the tlbsync functionality must be
used in order to ensure proper synchronization with the other PowerPC processors. Note
that for compatibility with PowerPC 601 microprocessor systems a sync instruction must
also follow the tlbsync to ensure that the tlbsync has completed execution on this
processor.

Any processor, including the processor modifying the page table, may access the page table
at any time in an attempt to reload a TLB entry. An inconsistent page table entry must never
accidentally become visible; thus, there must be synchronization between modifications to
the valid bit and any other modifications (to avoid corrupted data). This requires as many
as two sync operations for each PTE update.

Because the V, R, and C bits each reside in a distinct byte of a PTE, programs may update
these bits with byte store operations (without requiring any higher-level synchronization).
However, extreme care must be taken to ensure that no store overwrites one of these bytes
accidentally. Processors write referenced and changed bits with unsynchronized, atomic
byte store operations.

Explicitly altering certain MSR bits (using the mtmsr instruction), or explicitly altering
PTEs, or certain system registers, may have the side effect of changing the effective or
physical addresses from which the current instruction stream is being fetched. This kind of
side effect is defined as an implicit branch. Implicit branches are not supported and an
attempt to perform one causes boundedly undefined results. Therefore, PTEs must not be
changed in a manner that causes an implicit branch. Chapter 2, “PowerPC Register Set,” in
The Programming Environments Manual, lists the possible implicit branch conditions that
can occur when system registers and MSR bits are changed.

5.4.7 Segment Register Updates
There are certain synchronization requirements for using the move to segment register
instructions. These are described in “Synchronization Requirements for Special Registers
and for Lookaside Buffers” in Chapter 2, “PowerPC Register Set,” in The Programming
Environments Manual.

Chapter 5. Memory Management 5-35

5.5 Direct-Store Interface Address Translation
As described for memory segments, all accesses generated by the processor map to a
segment descriptor in the segment table. If T = 1 for the selected segment descriptor and
there are no BAT hits, the access maps to the direct-store interface, invoking a specific bus
protocol for accessing some special-purpose I/O devices. Direct-store segments are
provided for POWER compatibility. As the direct-store interface is present only for
compatibility with existing I/O devices that used this interface and the direct-store interface
protocol is not optimized for performance, its use is discouraged. Applications that require
low latency load/store access to external address space should use memory-mapped I/O,
rather than the direct-store interface.

5.5.1 Direct-Store Interface Accesses
When the address translation process determines that the segment descriptor has T = 1,
direct-store interface address translation is selected and no reference is made to the page
tables and referenced and changed bits are not updated. These accesses are performed as if
the WIMG bits were 0b0101; that is, caching is inhibited, the accesses bypass the cache,
hardware-enforced coherency is not required, and the accesses are considered guarded.

The specific protocol invoked to perform these accesses involves the transfer of address and
data information in packets; however, the PowerPC OEA does not define the exact
hardware protocol used for direct-store interface accesses. Some instructions cause
multiple address/data transactions to occur on the bus. In this case, the address for each
transaction is handled individually with respect to the DMMU.

The following data is sent by the 604 to the memory controller in the protocol (two packets
consisting of address-only cycles) described in Section 8.6, “Direct-Store Operation.”

• Packet 0

— One of the Kx bits (Ks or Kp) is selected to be the key as follows:

– For supervisor accesses (MSR[PR] = 0), the Ks bit is used and Kp is ignored.

– For user accesses (MSR[PR] = 1), the Kp bit is used and Ks is ignored.

— The contents of bits 3–31 of the segment register, which is the BUID field
concatenated with the “controller-specific” field.

• Packet 1—SR[28–31] concatenated with the 28 lower-order bits of the effective
address, EA4–EA31.

5.5.2 Direct-Store Segment Protection
Page-level memory protection as described in Section 5.4.2, “Page Memory Protection,” is
not provided for direct-store segments. The appropriate key bit (Ks or Kp) from the segment
descriptor is sent to the memory controller, and the memory controller implements any
protection required. Frequently, no such mechanism is provided; the fact that a direct-store
segment is mapped into the address space of a process may be regarded as sufficient
authority to access the segment.

5-36 PowerPC 604 RISC Microprocessor User's Manual

5.5.3 Instructions Not Supported in Direct-Store Segments
The following instructions are not supported at all and cause a DSI exception (with
DSISR[5] set) when issued with an effective address that selects a segment descriptor that
has T = 1 (or when MSR[DR] = 0):

• lwarx
• stwcx.
• eciwx
• ecowx

5.5.4 Instructions with No Effect in Direct-Store Segments
The following instructions are executed as no-ops when issued with an effective address
that selects a segment where T = 1:

• dcbt
• dcbtst
• dcbf
• dcbi
• dcbst
• dcbz
• icbi

5.5.5 Direct-Store Segment Translation Summary Flow
Figure 5-11 shows the flow used by the MMU when direct-store segment address
translation is selected. This figure expands the direct-store segment translation stub found
in Figure 5-6 for both instruction and data accesses. In the case of a floating-point load or
store operation to a direct-store segment, other implementations may not take an alignment
exception, as is allowed by the PowerPC architecture. In the case of an eciwx, ecowx,
lwarx, or stwcx. instruction, the implementation either sets the DSISR register as shown
and causes the DSI exception, or causes boundedly undefined results.

Chapter 5. Memory Management 5-37

Figure 5-11. Direct-Store Segment Translation Flow

Perform Direct-Store
Interface Access

Data AccessInstruction Access

Direct-Store
Segment Translation

T = 1

otherwise

Floating-Point
Load or Store

Alignment Exception

otherwise

Cache Instruction (dcbt,
dcbtst, dcbf, dcbi, dcbst,

dcbz, or icbi)

No-Op

otherwise

DSI Exception or Boundedly
Undefined Results

ISI Exception

DSISR[5] ← 1

eciwx, ecowx, lwarx,
or stwcx. instruction

SRR1[3] ← 1

Optional to the PowerPC architecture. Implemented in the 604.

5-38 PowerPC 604 RISC Microprocessor User's Manual

Chapter 6. Instruction Timing 6-1

Chapter 6
Instruction Timing
60
60

This chapter describes instruction prefetch and execution through all of the execution units
of the PowerPC 604 microprocessor. It also provides examples of instruction sequences
showing concurrent execution and various register dependencies to illustrate timing
interactions.

6.1 Terminology and Conventions
This section describes terminology and conventions used in this chapter. This section
defines terms used in this chapter.

• Stage—An element in the pipeline at which certain actions are performed, such as
decoding the instruction, performing an arithmetic operation, and writing back the
results. A stage typically takes a cycle to perform its operation; however, some
stages are repeated (a double-precision floating-point multiply, for example). When
this occurs, an instruction immediately following it in the pipeline is forced to stall
in its cycle.

In some cases, an instruction may also occupy more than one stage
simultaneously—for example, instructions may complete and write back their
results in the same cycle.

After an instruction is fetched, it can always be defined as being in one or more
stages.

• Pipeline—In the context of instruction timing, the term pipeline refers to the
interconnection of the stages. The events necessary to process an instruction are
broken into several cycle-length tasks to allow work to be performed on several
instructions simultaneously—analogous to an assembly line. As an instruction is
processed, it passes from one stage to the next. When it does, the stage becomes
available for the next instruction.

Although an individual instruction may take many cycles to complete (the number
of cycles is called instruction latency), pipelining makes it possible to overlap the
processing so that the throughput (number of instructions completed per cycle) is
greater than if pipelining were not implemented.

6-2 PowerPC 604 RISC Microprocessor User's Manual

• Superscalar—A superscalar processor is one that can issue multiple instructions
concurrently from a conventional linear instruction stream. In a superscalar
implementation, multiple instructions can be in the same stage at the same time. In
the 604 these instructions can leave the execute stage out of order but must leave the
other stages in order.

• Branch prediction—The process of guessing whether a branch will be taken. Such
predictions can be correct or incorrect; the term predicted as it is used here does not
imply that the prediction is correct (successful). The PowerPC architecture defines
a means for static branch prediction, which is part of the instruction encoding. The
604 also implements dynamic branch prediction, where there are levels of
probability assigned to a particular instruction depending on the history of that
instruction, which is recorded in the branch history table (BHT).

• Branch resolution—The determination of whether a branch is taken or not taken. A
branch is said to be resolved when it can exactly be determined which path it will
take. If the branch is resolved as predicted, speculatively executed instructions can
be completed. If the branch is not resolved as predicted, instructions on the
mispredicted path are purged from the instruction pipeline and are replaced with the
instructions from the nonpredicted path.

• Program order—The original order in which program instructions are provided to
the instruction queue from the cache.

• Stall—An occurrence when an instruction cannot proceed to the next stage.

• Latency— The number of clock cycles necessary to execute an instruction and make
ready the results of that execution for a subsequent instruction.

• Throughput—A measure of the number of instructions that are processed per cycle.
For example, a series of double-precision floating-point multiply instructions has a
throughput of one instruction per clock cycle.

• Reservation station—A buffer between the dispatch and execute stages that allows
instructions to be dispatched even though the operands required for execution may
not yet be available. In the 604, each execution unit has a two-entry reservation
station. The 604 implements two types of reservation stations. The integer units
implement out-of-order execution units so integer instructions can be executed out
of order within individual integer units and among the three units. The reservation
stations for the other execution units are in-order reservation stations—that is, all
noninteger instructions must pass through its assigned unit in program order with
respect to other like instructions.

Chapter 6. Instruction Timing 6-3

• Rename buffer—Temporary buffers used by instructions that have not completed
and as write-back buffers for those that have.

• Finish—The term indicates the final cycle of execution. In this cycle, the completion
buffer is updated to indicate that the instruction has finished executing.

• Completion—Completion occurs when an instruction is removed from the
completion buffer. When an instruction completes we can be sure that this
instruction and all previous instructions will cause no exceptions. In some situations,
an instruction can finish and complete in the same cycle.

• Write-back—Write-back (in the context of instruction handling) occurs when a
result is written from the rename registers into the architectural registers (typically
the GPRs and FPRs). Results are written back at completion time or are moved into
the write-back buffer. Results in the write-back buffer cannot be flushed. If an
exception occurs, these buffers must write back before the exception is taken.

6.2 Instruction Timing Overview
The 604 has been designed to maximize instruction throughput and minimize average
instruction execution latency. For many of the instructions in the 604, this can be simplified
to include only the execute phase for a particular instruction. Note that the number of
additional cycles required by data access instructions depends on whether the access hits in
the cache in which case there is a single cycle required for the cache access. If the access
misses in the cache, the number of additional cycles required is affected by the processor-
to-bus clock ratios and other factors pertaining to memory access.

In keeping with this definition, most integer instructions have a latency of one clock cycle
(for example, results for these instructions are ready for use on the next clock cycle after
issue). Other instructions, such as the integer multiply, require more than one clock cycle
to finish execution.

Figure 6-1 provides a detailed block diagram—showing the additional data paths that
contribute to the improved efficiency in instruction execution and more clearly shows the
relationships between execution units and their associated register files.

6-4 PowerPC 604 RISC Microprocessor User's Manual

Figure 6-1. PowerPC 604 Microprocessor Block Diagram Showing Data Paths

As shown in Table 6-1, effective throughput of more than one instruction per clock cycle
can be realized by the many performance features in the 604 including multiple execution
units that operate independently and in parallel, pipelining, superscalar instruction issue,
dynamic branch prediction, the implementation of two reservation stations for each
execution unit to avoid additional latency due to stalls in individual pipelines, and result
buses that forward results to dependent instructions instead of requiring those instructions
to wait until results become available in the architected registers.

The reservation stations and result buses for the GPRs are shown in Figure 6-2

Fetch Unit

Branch

(Four-Instruction
Dispatch Unit

BPU

16-Kbyte Data Cache
4-Way, 8 Words/Block

Instruction

Instruction Dispatch Buses

Result Status Buses

Correction

FPR Operand Buses

LSUMCIUSCIUSCIU FPU

Result Buses
Operand Buses

Dispatch)

RS(2)

Completion Unit Dispatch Buses

GPR Operand Buses

GPR Result Buses

RS(2)RS(2)RS(2)RS(2) RS(2)

FPR Result Buses

F
P

R
R

en
am

e
B

uf
fe

rs
 (

8)

G
P

R
R

en
am

e
B

uf
fe

rs
 (

12
)

32
 G

P
R

s

32
 F

P
R

s

Chapter 6. Instruction Timing 6-5

Figure 6-2. GPR Reservation Stations and Result Buses

Although it is not shown in Figure 6-1, the LSU and FPU are pipelined.

The 604’s completion buffer can retire four instructions every clock cycle. In general,
instruction processing is accomplished in six stages—fetch stage, decode stage, dispatch
stage, execute stage, completion stage, and write-back stage. The instruction fetch stage
includes the clock cycles necessary to request instructions from the on-chip cache as well
as the time it takes the on-chip cache to respond to that request. The decode stage consists
of the time it takes to fully decode the instruction. In the complete stage, as many as four
instructions per cycle are completed in program order. In the write-back stage, results are
returned to the register file. Instructions are fetched and executed concurrently with the
execution and write-back of previous instructions producing an overlap period between
instructions. The details of these operations are explained in the following paragraphs.

6.2.1 Pipeline Structures
The master instruction pipeline of the 604 has six stages. Instructions executed by the
machine flow through these stages. Some instructions combine the completion and write-
back stages into a single cycle. Some instructions (load, store, and floating-point
instructions) flow through additional execution pipeline stages.

The six basic stages of the master instruction pipeline are as follows:

• Fetch (IF)
• Decode (ID)
• Dispatch (DS)
• Execute (E)
• Completion (C)
• Write-back (W)

GPR Result Buses

A op B op A op B op A op B op A op B op

SCIU 1 SCIU 2 LSUMCIU 3

6-6 PowerPC 604 RISC Microprocessor User's Manual

These stages are shown in Figure 6-3. Some instructions occupy multiple stages
simultaneously and some individual execution units, such as the FPU and MCIU, have
multiple execution stages.

Figure 6-3. Pipeline Diagram

Pipelines for typical instructions for each of the execution units are shown in Figure 6-4.
Note that this figure does not accurately reflect the latencies for all instructions that pass
through each of the pipelines. The division of instructions into branch, integer, load/store,
and floating-point instructions indicates the execution unit in which the instructions
execute. For example, mtspr instructions, which are not thought of as integer instructions
from a functional perspective, are considered with integer instructions here because they
execute in the MCIU.

Note that in many circumstances, complete and write-back can occur in the same cycle.
Also, integer multiply, integer divide, move to/from SPR, store, and load instructions that
miss in the cache can occupy both the final stage of execute (finish) and complete (and
write-back) simultaneously.

Dispatch (DS)

Complete (C)

Write-Back (W)

(Four-instruction dispatch per clock cycle in
any combination)

SCIU1 SCIU2 MCIU FPU LSUBPU

Execute Stage

Fetch (IF)

Decode (ID)

Chapter 6. Instruction Timing 6-7

Figure 6-4. PowerPC 604 Microprocessor Pipeline Stages

Table 6-1 lists the latencies and throughputs for general groups of instructions.

6.2.1.1 Description of Pipeline Stages
This section gives a brief description of each of the six stages of the master instruction
pipeline.

Table 6-1. Execution Latencies and Throughputs

Instruction Latency Throughput

Most integer instructions 1 1

Integer multiply (32x32) 4 2

Integer multiply (others) 3 1

Integer divide 20 19

Integer load 2 1

Floating-point load 3 1

Floating-point store 3 1

Double-precision floating-point multiply-add 3 1

Single-precision floating-point divide 18 18

Double-precision floating-point divide 31 31

Validate

Fetch Decode Dispatch Execute* Complete Write-Back

Fetch Decode Dispatch Complete Write-BackEA

Fetch Decode Dispatch Complete Write-Back

Integer Instructions

Load/Store Instructions

Floating-point Instructions

Branch Instructions
Fetch
Predict

Decode
Predict

Dispatch
Predict Complete

/Normalize)(Multiply) (Add) (Round

* Note that several integer instructions that execute in the MCIU have multiple execute stages.

Execute

Execute

Calc Cache Align

6-8 PowerPC 604 RISC Microprocessor User's Manual

6.2.1.1.1 Fetch Stage
The fetch stage primarily is responsible for fetching instructions from the instruction cache
and determining the address of the next instruction to be fetched. Instructions fetched from
the cache are latched into an instruction buffer for subsequent consideration by the decode
stage. The instruction fetching logic is shown in Figure 6-5.

Figure 6-5. Instruction Fetch Address Generation

Target 0

+2
BTAC

Decode Buffer

Dispatch Buffer

Target 1

+

PC

Number Completed
Exceptions

To Cache

{Pending Branch Queue

{Finished Branch

M

U

X

MUX

MUX

Complete Stage Correction

(BPU Reservation

Execute Stage Correction

F
A
R

+4

Seq 0

Target 1 Seq 1

Target 0Station)

Queue

MUX

M

U

X

Decode Prediction

Dispatch Prediction

Chapter 6. Instruction Timing 6-9

The fetch unit keeps the instruction buffer (four-entry decode and four-entry dispatch
buffer) supplied with instructions for the dispatcher to process. Normally, the fetch unit
fetches instructions sequentially, even when the instruction buffer is full because space may
become available by the time the instruction cache supplies them. Instructions are fetched
from the instruction cache in groups of four along double-word boundaries. Instructions
can be fetched from only one cache block at a time, so if only two instructions remain in
the cache block, only two instructions are fetched. If fetching is sequential, then it resumes
at four instructions per clock from the next cache block.

The next address to be fetched is affected by several different conditions. Each stage offers
its own candidate for the next instruction to be fetched, and the latest stage has the highest
priority. As a block is prefetched, the branch target address cache (BTAC) and the branch
history table (BHT) are searched with the fetch address. If the fetch address is found in the
BTAC, it is the fetch stage candidate for being the next instruction address (as shown in
Section 6.4.4.1.1, “Timing Example—Branch Timing for a BTAC Hit”); otherwise, the
next sequential address is the candidate provided by the fetch stage.

The decode logic may indicate, based on the BHT or an unconditional branch decode, that
an earlier BTAC prediction was incorrect. The BPU can indicate that a previous branch
prediction, either from the BTAC or the decoder was incorrect and it can supply a new fetch
address. In this case, the contents of the instruction buffers are flushed. Exception logic
within the completion logic may indicate the need to vector to an exception handler address.
From these choices the exception has first priority, the branch unit has second priority, the
decode correction of a BTAC prediction has third priority, and the BTAC prediction has the
final priority for instruction prefetching.

6.2.1.1.2 Decode Stage
The decode stage handles all time-critical instruction decoding for instructions in the
instruction buffer. The decode stage contains a four-instruction buffer that shifts one or two
pairs of instructions into the dispatch buffer as space becomes available.

6.2.1.1.3 Dispatch Stage
The dispatch pipeline stage is responsible for non–time-critical decoding of instructions
supplied by the decode stage and for determining which of the instructions can be
dispatched in the current cycle. Also, the source operands of the instructions are read from
the appropriate register file and dispatched with the instruction to the execute stage. At the
end of the dispatch stage, the dispatched instructions and their operands are latched into
reservation stations or execution unit input latches.

6-10 PowerPC 604 RISC Microprocessor User's Manual

6.2.1.1.4 Execute Stage
As shown in Figure 6-3, after an instruction passes through the common stages of fetch,
decode, and dispatch, they are passed to the appropriate execution unit where they are said
to be in execute stage. Note that the time that an instruction spends in the execute stage
varies depending on the execution unit. For example, the floating-point unit has a fully-
pipelined, three-stage execution unit, so most floating-point instructions have a three-cycle
execute latency, regardless whether they are single- or double-precision. Some instructions,
such as integer divides, must repeat some stages in order to calculate the correct result.

The execute stage executes the instruction selected in the dispatch stage, which may come
from the reservation stations or from instructions arriving from dispatch. At the end of
execute stage, the execution unit writes the results into the appropriate rename buffer entry,
and notifies the complete stage that the instruction has finished execution.

If it is determined that the direction of a branch instruction was mispredicted in an earlier
stage, the instructions from the mispredicted path are flushed and fetching resumes at the
correct address.

If an instruction causes an exception, the execution unit reports the exception to the
complete stage and continues executing instructions regardless of the exception. Under
certain conditions, results can write directly into the register file and bypass the rename
registers.

Most instructions that execute in the MCIU can finish execution and complete in the same
cycle. These include the following:

• Integer divide, multiply when OE = 0
• All mfspr
• All mtspr instructions except when LR/CTR is involved

Note that all instructions that execute in the MCIU can complete during the same cycle in
which they finish executing except for the following:

• Instructions that change OV or CA (OE = 1)
• Move to CTR/LR instructions because they are not execution-serialized

An example of one of these instructions, mulli, is shown in the instruction timing examples
in Figure 6-9 through Figure 6-12. An instruction can finish execution and complete only
if it is the first instruction to complete. Whether an instruction is able to complete in the
same cycle in which it finishes execution is also subject to the normal considerations that
affect execution and completion.

For more information about individual execution units, see Section 6.5, “Execution Unit
Timings.”

Chapter 6. Instruction Timing 6-11

6.2.1.1.5 Complete Stage
The complete stage maintains the correct architectural machine state. In doing this it
considers a number of instructions residing in the completion buffer and uses the
information about the status of instructions provided by the execute stage.

When instructions are dispatched, they are issued a position in the 16-entry completion
buffer which they hold until they meet the constraints of completion. When an instruction
finishes execution, its status is recorded in its completion buffer entry. The completion
buffer is managed as a first-in, first-out (FIFO) buffer; it examines the entries in the order
in which the instructions were dispatched. The fact that the completion buffer allows the
processor to retain the program order ensures that instructions are completed in order.

The status of four entries are examined during each cycle to determine whether the results
can be written back, and therefore, as many as four instructions can complete per clock. If
an instruction causes an exception, the status information in the completion buffer reflects
this, and this information in the completion buffer is used to generate the exception. In this
way the completion buffer is used to ensure a precise exception model. Typically,
exceptions are detected in the fetch, decode, or execute stage.

Apart from those restrictions necessary to support a precise exception model, the 604
imposes the following restrictions per each cycle:

• Completion stops before a store since store data is read directly from GPRs or FPRs
• Completion stops after a taken branch instruction to simplify the program counter

logic.

Note that the 604 decouples instruction completion from the actual update (write-back) of
the register file; therefore, instructions can complete regardless of how many registers they
must update, and a few instructions, such as load cache misses can complete before the
result is known. The write-back occurs during the complete stage if the ports and results are
available; otherwise, the write-back is treated as a separate stage, as shown in the timing
examples in Section 6.4.1, “General Instruction Flow.” This provision allows the processor
to complete instructions, without concern for the number or presence of results. Note that
if a read operation misses in the cache, the instruction can complete (as long as it is certain
that the instruction can cause no exceptions) even though the result is not available.

Rename buffer entries for the FPRs, GPRs, and CR act as temporary buffers for instructions
that have not completed and as write-back buffers for those that have.

Each of the rename buffers has two read ports for write-back, corresponding to the two
ports provided for write-back for the GPRs, FPRs, and CR. As many as two results are
copied from each write-back buffer to a register per clock cycle.

6-12 PowerPC 604 RISC Microprocessor User's Manual

If the completion logic detects an instruction containing exception status or an instruction
that can cause subsequent instructions to be flushed at completion (such as mtspr[xer],
instructions that set the summary overflow (SO) bit, and other instructions listed below), all
following instructions are cancelled, their execution results in the rename buffers are
discarded, and fetching resumes at the correct stream of instructions. Other architectural
registers, such as CTR, LR, and CR, are updated during this stage. A complete list of the
affected instructions is as follows:

• mtspr (xer)

• mcrxr

• isync

• Instructions that set the summary overflow, SO, bit

• lswx with 0 bytes to load

• Floating-point arithmetic, frsp, fctiw, and fctiwz instructions that cause an
exception with FPSCR[VE] = 1

• A floating-point instruction that causes a floating-point zero divide with
FPSCR(ZE = 1)

6.2.1.1.6 Write-Back Stage
The write-back stage is used to write back any information from the rename buffers that
was not written back by the complete stage.

As mentioned in Section 6.2.1.1.5, “Complete Stage,” each of the rename buffers has two
read ports for write-back, corresponding to the two ports provided for write-back for the
GPRs, FPRs, and CR. As many as two results are copied from the write-back buffers to a
register per clock cycle. To compensate for the extra write-back stage, the GPR rename
buffer has 12 entries, which reduces the chances for dispatch stalls for applications that
depend heavily on integer instructions.

6.3 Memory Performance Considerations
Due to the 604’s instruction throughput of four instructions per clock cycle, lack of data
bandwidth can become a performance bottleneck. In order for the 604 to approach its
potential performance levels, it must be able to read and write data quickly and efficiently.
If there are many processors in a system environment, one processor may experience long
memory latencies while another bus master (for example, a direct memory access
controller) is using the external bus.

Chapter 6. Instruction Timing 6-13

To reduce this possible contention, the PowerPC architecture provides three memory
update modes—write-back, write-through, and cache-inhibit. Each page of memory is
specified to be in one of these modes. If a page is in write-back mode, data being stored to
that page is written only to the on-chip cache. If a page is in write-through mode, writes to
that page update the on-chip cache on hits and always update main memory. If a page is
cache-inhibited, data in that page is never stored in the on-chip cache. All three of these
modes of operation have advantages and disadvantages. A decision as to which mode to use
depends on the system environment as well as the application. Although these modes are
described in detail in Chapter 3, “Cache and Bus Interface Unit Operation,” Section 6.3.4,
“Memory Operations,” briefly describes how these modes may affect instruction timing.

6.3.1 MMU Overview
The 604 implements separate 128-entry, two-way set-associative TLBs, one each for
instruction and data accesses. The TLBs are managed in hardware and adhere to the
specifications for segmented page virtual memory provided in the operating environment
architecture (OEA). The block address translation (BAT) registers make it possible to easily
manage large contiguous areas of memory (128 Kbyte to 256 Mbyte).

The MMUs also control memory protection as well as the cache functions, such as whether
a block or page is write-back or write-through, is cacheable/noncacheable, is kept coherent,
or is available for speculative execution.

For more information about the 604 MMU implementation, see Chapter 5, “Memory
Management.”

6.3.2 Cache Overview
The nonblocking data cache, shown in Figure 6-6, provides continuous load or store access
during a cache block reload.

6-14 PowerPC 604 RISC Microprocessor User's Manual

Figure 6-6. Data Caches and Memory Queues

For a load operation, the cache is accessed first by the LSU and data is forwarded to the
execution unit and to the rename buffer if the access hits in the cache. Otherwise, the load
operation is added to the load queue.

Store operations are added to the store queue after they are successfully translated. As each
store operation is completed with respect to the execution unit, it is only marked as
completed in the queue so instruction processing can continue without having to wait for
the actual store operation to take place either in the cache or in system memory. When the
cache is not busy, one completed store can be written to the cache per cycle. In the case of
a cache miss on a store operation, that store information is placed in the store miss queue
to allow subsequent store operations to continue while the missing cache block is brought
in from system memory. The store queue can hold six instructions.

As each load miss completes, the cache is accessed a second time. If it misses again, the
instruction is moved to the load miss register while the missing cache block is brought in.
This allows a second load miss to begin without having to wait for the first one to complete.
The load queue can hold as many as four instructions.

Load/Store Unit

Data Cache

Bus Interface

Store Queue Load Queue

Result Buses

Store Miss

Line-Fill Buffer

 Queue
Load Miss

 Queue

Chapter 6. Instruction Timing 6-15

Requests from a mispredicted branch path are selectively removed from the memory
queues when the misprediction is corrected, eliminating unnecessary memory accesses and
reducing traffic on the system bus. The 604 also implements the cache block touch
instructions (dcbt and dcbtst) which allows the processor to schedule bus activity more
efficiently and increase the likelihood of a cache hit.

The data cache is kept coherent using MESI protocol and maintains a separate port so
snooping does not interfere with other bus traffic. Note that coherency is not maintained in
the instruction cache. Instructions are provided by the PowerPC architecture to ensure
coherency in the instruction cache.

Both caches can be disabled, invalidated, or locked by using bits in the HID0 register. For
more information, see Section 2.1.2.3, “Hardware Implementation-Dependent Register 0.”

For more information about the 604 cache implementation, see Chapter 3, “Cache and Bus
Interface Unit Operation.”

6.3.3 Bus Interface Overview
The bus interface unit (BIU) on the 604 is compatible with that on the PowerPC 601 and
603 processors. The BIU supports both tenured and split-transaction modes and can handle
as many as three outstanding pipelined operations. The BIU can complete one or more write
transactions between the address and data tenures of a read transaction. The BIU provides
critical double word first, so the data in the double word requested by the instruction fetcher
or LSU is presented to the cache before the other data in the cache block. The critical double
word is forwarded to the fetcher or to the LSU without having to wait for the entire cache
block to be updated.

For more information about the BIU, see Chapter 3, “Cache and Bus Interface Unit
Operation.”

6.3.4 Memory Operations
The 604 provides features that provide flexible and efficient accesses to memory in both
single- and multiple-processor systems.

6.3.4.1 Write-Back Mode
When storing data while in write-back mode, store operations for cacheable data do not
necessarily cause an external bus cycle to update memory. Instead, memory updates only
occur on modified line replacements, cache flushes, or when another processor attempts to
access a specific address for which there is a corresponding modified cache entry. For this
reason, write-back mode may be preferred when external bus bandwidth is a potential
bottleneck—for example, in a multiprocessor environment. Write-back mode is also well
suited for data that is closely coupled to a processor, such as local variables.

6-16 PowerPC 604 RISC Microprocessor User's Manual

If more than one device uses data stored in a page that is in write-back mode, snooping must
be enabled to allow write-back operations and cache invalidations of modified data. The
604 implements snooping hardware to prevent other devices from accessing invalid data.
When bus snooping is enabled, the processor monitors the transactions of the other devices.
For example, if another device accesses a memory location and its memory-coherent (M)
bit is set, and the 604’s on-chip cache has a modified value for that address, the processor
preempts the bus transaction, and updates memory with the cache data. If the cache
contents associated with the snooped address are unmodified, the 604 invalidates the cache
block. The other device is then free to attempt an access to the updated memory address.
See Chapter 3, “Cache and Bus Interface Unit Operation,” for complete information about
bus snooping.

Write-back mode provides complete cache/memory coherency as well as maximizing
available external bus bandwidth.

6.3.4.2 Write-Through Mode
Store operations to memory in write-through mode always update memory as well as the
on-chip cache (on cache hits). Write-through mode is used when the data in the cache must
always agree with external memory (for example, video memory), or when there is shared
(global) data that may be used frequently, or when allocation of a cache block on a cache
miss is undesirable. Cached data is not automatically written back if that data is from a
memory page marked as write-through mode since valid cache data always agrees with
memory.

Stores to memory that are in write-through mode may cause a decrease in performance.
Each time a store is performed to memory in write-through mode, the bus remains busy for
the extra clock cycles required to update memory; therefore, load operations that miss the
cache must wait until the external store operation completes.

6.3.4.3 Cache-Inhibited Mode
If a memory page is specified to be cache-inhibited, data from this page is not cached.

Areas of the memory map can be cache-inhibited by the operating system software. If a
cache-inhibited access hits in the on-chip cache, the corresponding cache block is
invalidated. If the line is marked as modified, it is written back to memory before being
invalidated.

In summary, the write-back mode allows both load and store operations to use the on-chip
cache. The write-through mode allows load operations to use the on-chip cache, but store
operations cause a memory access and a cache update if the data is already in the cache.
Lastly, the cache-inhibited mode causes memory access for both loads and stores.

Chapter 6. Instruction Timing 6-17

6.4 Timing Considerations
A superscalar machine is one that can issue multiple instructions concurrently from a
conventional linear instruction stream. The 604 is a true superscalar implementation of the
PowerPC architecture since a maximum of four instructions can be issued to the execution
units during each clock cycle. Although a superscalar implementation complicates
instruction timing, these complications are transparent to the functionality of software.
While the 604 appears to the programmer to execute instructions in sequential order, the
604 provides increased performance by executing multiple instructions at a time, and by
using hardware to manage dependencies.

When an instruction is issued, the register file places the appropriate source data on the
appropriate source bus. The corresponding execution unit then reads the data from the bus.
The register files and source buses have sufficient bandwidth to allow the dispatching of
four instructions per clock. If an operand is unavailable, the instruction is kept in a
reservation station until the operand becomes available.

The 604 contains the following execution units that operate independently and in parallel:

• Branch processing unit (BPU)
• Two 32-bit single-cycle integer units (SCIU)
• One 32-bit multiple-cycle integer units (MCIU)
• 64-bit floating-point unit (FPU)
• Load/store unit (LSU)

As shown in Figure 1-1, the BPU directs the program flow with the aid of a dynamic branch
prediction mechanism. The instruction unit determines to which of the five other execution
units an instruction is dispatched.

6.4.1 General Instruction Flow
When the IU or FPU finishes executing an instruction, it places the resulting data, if any,
into one of the GPR, FPR, or condition register rename registers. The results are then stored
into the correct register file during the write-back stage. If a subsequent instruction is
waiting for this data, it is forwarded from the result buses, directly into the appropriate
execution unit for the immediate execution of the waiting instruction. This allows a data-
dependent instruction to be executed without waiting for the data to be written into the
register file and then read back out again. This feature, known as feed forwarding,
significantly shortens the time the machine may stall on data dependencies.

6-18 PowerPC 604 RISC Microprocessor User's Manual

As many as four instructions are fetched from the instruction cache per cycle and placed in
the decode buffer. After they are decoded, instructions advance to the dispatch buffers as
space becomes available. The 604 tries to keep the IQ full at all times. Although four
instructions can be brought in from the on-chip cache in a single clock cycle, if there is a
two-instruction vacancy in the IQ, two instructions can be fetched from the cache to fill it.
If while filling the IQ, the request for new instructions misses in the on-chip cache,
arbitration for a memory access begins. Whenever a pair of positions opens in the queue,
the next two instructions are shifted in.

6.4.2 Instruction Fetch Timing
The timing of the instruction fetch mechanism on the 604 depends heavily on the state of
the on-chip cache. The speed with which the required instructions are returned to the
fetcher depends on whether the instruction being asked for is in the on-chip cache (cache
hit) or whether a memory transaction is required to bring the data into the cache (cache
miss).

6.4.2.1 Cache Hit Timing Example
Assuming that the instruction fetcher is not blocked from the cache by a cache reload
operation and the instructions it needs are in the on-chip cache (a cache hit has occurred),
there will only be one clock cycle between the time that the instruction fetcher requests the
instructions and the time that the instructions enter the IQ. As previously stated, instructions
are fetched in pairs from a single cache block, so usually four instructions are
simultaneously fetched from the on-chip cache and loaded into the IQ. If the fetch address
points to the last two instructions in the instruction cache block, as is the case in Figure 6-7,
only two instructions can be fetched into the IQ.

Figure 6-7 shows the timing for the following simple code sequence for instructions that
use the SCIUs and the FPU:

and
or
fadd
fsub
addc
subfc
fmadd
fmsub
xor
neg
fadds
fsubs
add
subf

Chapter 6. Instruction Timing 6-19

Figure 6-7. Instruction Timing—Cache Hit

The instruction timing for this example is described cycle-by-cycle as follows:

0. Two integer instructions (and and or) and two floating-point instructions (fadd and
fsub) are fetched in cycle 0. These were fetched from the second double-word
boundary in the instruction cache, so only two instructions can be fetched in the next
clock cycle.

1. In cycle 1, the last two instructions in the cache block (addc and subfc) are fetched,
while instructions 0–3 pass into the decode stage.

2. In cycle 2, the two integer add instructions (0 and 1) are dispatched, one to each of
the SCIUs. The fadd instruction (2) is dispatched to the FPU. The fsub instruction
cannot be dispatched, so is held in the dispatch stage until the next cycle.
Instructions 4 and 5 are in the decode stage.

Instructions 6–9 are fetched from a new cache block. Note that this is the typical,
and the most efficient, alignment for instructions fetching, allowing all eight
instruction in the cache block to be fetched in two cycles (four instructions per
cycle).

1 2 3 4 5 6 7 80

Decode

Dispatch

Execute

0 and

3 fsub

•••

9

Fetch

4 addc

6 fmadd

5 subfc

7 fmsub

10

8 xor

9 neg

10 fadds

11 fsubs

12 add

13 subf

11

Complete

Write-Back

1 or

2 fadd

6-20 PowerPC 604 RISC Microprocessor User's Manual

3. The following occurs in cycle 3:
— The first two integer instructions (and and or) enter the execute stages of the two

SCIUs. The two integer instructions decoded in cycle 2 (addc and subfc) are
dispatched without delay to the two SCIUs. The next pair of integer instructions
(xor and neg) is in decode stage and the final pair of integer instructions (add
and subf) is fetched from the second quad word in the instruction cache block.

— The fadd instruction enters execute stage in the FPU, vacating the dispatch stage,
allowing the fsub instruction to dispatch. The fmadd and fmsub instructions are
in decode stage, and the final pair of floating-point instructions (fadds and fsubs)
is fetched.

4. The following occurs in cycle 4:
— In the SCIUs, the first two integer instructions complete execution and write back

their results, and the second pair of integer instructions (addc and subfc) enters
execute stage. The next pair of integer instructions (xor and neg) is held in the
dispatch stage because the fmsub instruction cannot dispatch.

— The fadd instruction is in the second of the three execute stages and fsub is in
the first. The fmadd instruction (6) is in the dispatch stage, which forces fmsub
to remain in the dispatch stage, similar to the situation in cycle 1 when two
floating-point instructions were ready for dispatch. Note that because of in-order
dispatch, the integer instructions (8 and 9) are also held in the dispatch stage
behind the fmsub instruction. The final pair of floating-point instructions enters
decode stage.

5. The following occurs in cycle 5:
— The first two integer instructions have completed, written back their results, and

vacated the pipeline. The second pair of integer instructions has executed and
vacated the execution stages, but must remain in the completion buffer until the
previous floating-point instructions can complete. The third pair of integer
instructions is allowed to dispatch, and the final pair of integer instructions is
held in the decode stage behind the previous floating-point instructions
(10 and 11).

— In the FPU, fadd is in the final execute stage, fsub is in the second stage, fmadd
is in the first, and fmsub is allowed to dispatch. Because instructions 7–9 occupy
the two available positions for instruction pairs in the dispatch unit, fadds and
fsubs are held in decode, again, forcing subsequent integer instructions to remain
in decode.

6. The following occurs in cycle 6:
— The second pair of integer instructions (4 and 5) remains in the completion buffer

waiting for the previous floating-point instructions to complete. The third pair of
integer instructions is in execute stage, and the final pair of integer instructions
is held in the dispatch stage behind the fsubs instruction.

Chapter 6. Instruction Timing 6-21

— In the FPU, fadd is in the complete and write-back stages, fsub is in the final
execute stage, fmadd is in the second stage, and fmsub is in the first. The fadds
instruction is in dispatch, causing the final floating-point instruction, fsubs, to
stall in dispatch.

7. The following occurs in cycle 7:
— Integer instructions 4 and 5 are allowed to complete and writeback because the

previous fsub instruction completes. However, the next pair of integer
instructions (8 and 9) must wait in the complete stage until fmadd and fmsub
can complete. The add and subf instructions are in the dispatch stage along with
the previous fsubs instruction.

— The fsub instruction completes, allowing integer instructions 4 and 5 to
complete. Floating-point instructions continue to move through the floating-
point pipeline with fmadd in the final execute stage, fmsub in the second stage,
and fadds in the first. The final floating-point instruction, fsubs, is allowed to
dispatch.

8. The following occurs in cycle 8:
— Integer instructions 8 and 9 continue to wait in the complete stage until fmsub

can complete. The add and subf instructions move into execute stage along with
the previous fsubs instruction, which is in the first stage of execute.

— The fmadd instruction completes and writes back and the subsequent floating-
point instructions each move to the next stage in the floating-point pipeline.

9. The following occurs in cycle 9:
— Integer instructions 8 and 9 are allowed to complete with the fmsub instruction.

However, the final pair of integer instructions (12 and 13) must wait in the
complete stage until fadds and fsubs can complete and write back.

— The fmsub instruction completes and writes back and the subsequent floating-
point instructions each move to the next stage in the floating-point pipeline.

10. The following occurs in cycle 10:
— The two remaining integer instructions remain in the complete stage until the

fsubs instruction completes.

— The fadds instruction completes and writes back and the remaining floating-
point instruction, fsubs, is in the last execute stage in the floating-point pipeline.

11. In cycle 11 all remaining instructions complete.

Note that the double-precision floating-point add instructions each has a latency of three
cycles (assuming no register dependencies) but can be fully pipelined and achieve a
throughput of one floating-point instruction per clock cycle.

6-22 PowerPC 604 RISC Microprocessor User's Manual

6.4.2.2 Cache Miss Timing Example
Figure 6-8 illustrates the timing for a cache miss using the following code sequence.

add
fadd
add
fadd
br
add
fsub
add
fsub
add
fadd

Note that this example assumes a best-case scenario.

Figure 6-8. Instruction Timing—Instruction Cache Miss (BTAC Hit)

1 2 3 4 5 6 7 80

0 add

2 add

1 fadd

3 fadd

•••

9

4 br

5 add

6 fsub

7 add

Address

10 11

9 add

12 13 14 15 16

Decode

Dispatch

ExecuteFetch

Complete

Write-Back 10 fsub

8 fsub

Chapter 6. Instruction Timing 6-23

The instruction timing for this example is described cycle-by-cycle as follows:

0. In cycle 0, the first pair of add and fadd instructions is fetched.

1. In cycle 1, the second pair of add and fadd instructions is fetched as the first pair is
decoded.

2. In cycle 2, the first pair of add and fadd instructions is dispatched, the second pair
is decoded and the br instruction is fetched.

3. In cycle 3, the first pair of add and fadd instructions is in execute, the second pair
is in dispatch stage, and the br instruction is in decode. By this time the target
instruction, add (5) was not found in the instruction cache and arbitration for the line
fill has begun.

4. In cycle 4, the first add instruction completes and writes back, the first fadd
instruction is in the second execute stage, and the second pair of add/fadd
instructions enter execute stage. The br instruction is in dispatch stage and
arbitration continues for the line fill. The target instruction, add (5), and fsub remain
in the fetch state.

5. In cycle 5, fadd (1) is in the final execute stage in the floating-point pipeline, which
prevents the subsequent add instruction from completing and writing back. The
second fadd instruction is in the second cycle of the floating-point execute stage and
the br instruction is in execute stage. During this cycle, the address for the target
instruction is on the address bus and access has been granted for the data bus.

6. In cycle 6, fadd (1) completes and writes back, allowing the add (2) instruction to
complete and write back. The fadd (3) instruction is in the final execute stage and
the br instruction is in complete stage. The first beat of the four-beat burst (which
contains the critical double word) is sent over the data bus.

7. In cycle 7, fadd (3) completes and writes back, allowing the br instruction to
complete. The second beat of the burst transfer begins on the data bus.

8. In cycle 8, the two instructions in the critical double word transferred in cycles 6 and
7 (add (5) and fsub (6)) are placed in the instruction queue. All previous instructions
have vacated the completion buffer.

9. In cycle 9, add (5) and fsub (6) are in decode stage and the pair of instructions
loaded in the second beat of the data burst (add (7) and fsub (8)) are fetched. Note
that although there is room in the instruction queue for as many as four instructions,
only instructions 7 and 8 are available.

10. In cycle 10, instructions 5 and 6 are in dispatch stage, instructions 7 and 8 are in
decode stage, and the third pair of instructions are fetched. The fourth pair of
instructions are sent in the fourth and final beat of the four-beat data burst.

11. In the remaining clock cycles, the instructions shown complete processing similarly
to instructions 0–3. Note again that although the integer instructions add (7) and add
(9) complete, they cannot write back until the previous floating-point instructions
fsub (6) and fsub (8) write back.

6-24 PowerPC 604 RISC Microprocessor User's Manual

6.4.3 Cache Arbitration
When a cache miss occurs, a line-fill operation is initiated to update the appropriate cache
block. When the double word containing the data at the specified address (the critical
double word) is available, it is forwarded to the cache and made available to other resources
on the 604. Likewise, subsequent double words are also forwarded as they reach the
memory unit.

Fetches to different lines can hit in the cache during the line-fill operation; however, if a
miss occurs before the cache block has been updated, the line-fill operation must complete
before the line-fill operation caused by the subsequent miss can begin.

For more information about the cache implementation in the 604, see Chapter 3, “Cache
and Bus Interface Unit Operation.”

6.4.4 Branch Prediction
The 604 implements several features to reduce the latencies caused by handling branch
instructions. In particular, it provides a means of dynamic branch prediction. This is
especially critical for the 604 to take fullest advantage of the possibilities of increased
throughput made available from its pipelined and highly parallel organization. Dynamic
branch prediction is implemented in the fetch, decode, and dispatch stages, as described in
the following:

In the fetch stage, the fetch address is used to access the branch target address cache
(BTAC), which contains the target address of previously executed branch instructions that
are predicted to be taken. The 64-entry BTAC is fully associative to provide a high hit
percentage. If a fetch address is in the BTAC, the target address is used in the next cycle to
fetch the instructions from the predicted path. If the address is not present, sequential
instruction flow is assumed and the appropriate sequential address is generated based on the
number of instructions added to the decode buffer. The fetch address, rather than the first
branch address, is sufficient to access the BTAC, since a BTAC entry contains the first
predicted taken branch beyond the current fetch address.

In the decode and dispatch stages, the first branch instruction is identified and its outcome
is predicted. For an unconditional branch instruction, the instruction prefetch is redirected
to the target address if this branch was predicted as not taken by a previous stage.
Conditional instructions whose direction depends on the value in the CTR are predicted
based on that value. If the prediction differs from the current branch prediction, the prefetch
is redirected.

For conditional branch instructions that depend only on a bit in the CR, the BHT is used for
the prediction. The BHT is a 512-entry, direct-mapped cache with 2 bits that can indicate
four prediction states—strongly taken, taken, not-taken, and strongly not-taken. The entry
is updated each time a conditional branch instruction that depends on a bit in the condition
register is executed. For example, a BHT entry that predicts “taken” is updated to “strongly
taken” after the branch is taken or is updated to “not-taken” if the next branch is not-taken.

Chapter 6. Instruction Timing 6-25

6.4.4.1 Branch Timing Examples
This section shows how the timing of a branch is affected depending upon whether the
branch hits in the BTAC, or whether correction is required in one of the stages. The
following examples use the following code sequence:

and
ld
add
bc
or
cmp
ld
mulli

6.4.4.1.1 Timing Example—Branch Timing for a BTAC Hit
Figure 6-9 shows the timing for a branch instruction that had a BTAC hit.

Figure 6-9. Instruction Timing—Branch with BTAC Hit

1 2 3 4 5 6 70

0 and

1 ld

3 bc

•••

4 or

5 cmp

6 ld

7 mulli

TAKEN

Decode

Dispatch

ExecuteFetch

Complete

Write-Back

2 add

6-26 PowerPC 604 RISC Microprocessor User's Manual

The timing for this example is described, cycle-by-cycle, as follows:

0. In clock cycle 0, instructions 0–3 are fetched. The target instruction of the bc
instruction is found in the BTAC.

1. In cycle 1, instructions 0–3 are decoded and instructions 4–7, using the address in
the BTAC, are fetched.

2. In cycle 2, instructions 0–3 are dispatched and instructions 4–7 are decoded.

3. In cycle 3, instructions 0–3 are in the execute stage and instructions 4–7 are in the
dispatch stage.

4. In cycle 4, instructions 0, 2, and 3 are in the complete stage, but only instruction 0
is allowed to complete and write back because the ld instruction (1) is still in the
execute stage of the LSU pipeline. Instructions 2and 3 wait in the complete stage.
Instructions 4–7 all enter the execute stage.

5. In cycle 5, the ld (1) instruction is able to complete and write back, allowing the add
instruction to write back and vacate the pipeline in the next cycle. The br instruction
also completes. Because the branch is taken, the or (4) instruction, which could
otherwise write back in this cycle, stays in the complete stage and completes and
writes back in the next cycle. The cmp (5) instruction also enters the complete stage;
ld (6) and mulli (7) enter the second stages of the LSU and MCIU pipelines,
respectively.

6. In cycle 6, instructions 4–6 complete and write back their results. The mulli
instruction, which is one of the instructions that can complete and write back during
its final cycle in the execute stage, occupies the execute and complete stages, but
cannot write back because both GPR write-back ports are occupied by the or and ld
instructions.

7. The mulli instruction writes back its results.

6.4.4.1.2 Timing Example—Branch with BTAC Miss/Decode Correction
In the example shown in Figure 6-10, the branch target address is not found in the BTAC
during the fetch cycle of the bc instruction, as was the case in Figure 6-9. This one-cycle
delay causes the second group of instructions to be executed one cycle later than if there is
a BTAC hit.

Chapter 6. Instruction Timing 6-27

Figure 6-10. Instruction Timing—Branch with BTAC Miss/Decode Correction

A cycle-by-cycle description of this example is as follows:

0. In cycle 2, instructions 0–3 are dispatched and instructions 4–7 are fetched.

1. In cycle 3, instructions 0–3 are in the execute stage and instructions 4–7 are in the
decode stage.

2. In cycle 4, instructions 0, 2, and 3 complete, but only instruction 0 is allowed to write
back, because the ld instruction (1) is still in the execute stage of the LSU pipeline.
Instructions 2 and 3 wait in the complete stage. Instructions 4–7 enter the dispatch
stage.

3. In cycle 5, the ld (1) instruction is able to write back, allowing the following add
instruction (which completed in the previous cycle) to write back and vacate the
pipeline in the next cycle. Instructions 4–7 are in the execute stage.

4. In cycle 6, the or and cmp (5) instructions complete and write back; ld (6) and mulli
(7) enter the second stages of the LSU and MCIU execute pipelines, respectively.

5. In cycle 7, the ld (6) instruction completes and writes back its results. The mulli
instruction finishes executing, completes, and writes back its results. Note that the
mulli instruction is able to complete in the same cycle as the ld instruction because,
unlike in the previous example, the two GPR write-back ports are available.

1 2 3 4 5 6 70

0 add

1 bc

•••

2 or

3 cmp

4 ld

5 mulli

Decode

Dispatch

ExecuteFetch

Complete

Write-Back

6-28 PowerPC 604 RISC Microprocessor User's Manual

6.4.4.1.3 Timing Example—Branch with BTAC Miss/Dispatch Correction
Figure 6-11 uses the same code sequence as the example shown in Figure 6-9, and shows
the timing when the BTAC miss is corrected in the dispatch stage. The timing in this
example is identical to that in Figure 6-10, except that the timings for instructions 4–7 are
shifted over by one cycle.

Figure 6-11. Instruction Timing—Branch with BTAC Miss/Dispatch Correction

6.4.4.1.4 Timing Example—Branch with BTAC Miss/Execute Correction
Figure 6-12 uses the same code sequence as the previous examples, and shows the timing
when the BTAC miss is corrected in the execute stage. The timing in this example is
identical to that in Figure 6-10, except that the timings for instructions 4–7 are shifted over
by two cycles (and over one cycle when compared to the timing when correction is provided
in the dispatch stage, as shown in Figure 6-11).

1 2 3 4 5 6 7 80

0 and

2 add

1 ld

3 bc

•••

4 or

5 cmp

6 ld

7 mulli

Decode

Dispatch

ExecuteFetch

Complete

Write-Back

Chapter 6. Instruction Timing 6-29

Figure 6-12. Instruction Timing—Branch with BTAC Miss/Execute Correction

6.4.5 Speculative Execution
To take fullest advantage of pipelining and parallelism, the 604 speculatively executes
instructions along a predicted path until the branch is resolved. The 604 can handle as many
as four dispatched, uncompleted branch instructions (with four more in the instruction
queue) and can execute instructions from the predicted path of two unresolved branch
instructions. The results of speculatively executed instructions (the predicted state) are kept
in temporary locations, such as rename buffers, the completion buffer, and various shadow
registers. Architecturally defined resources are updated only after a branch is resolved.

To record the predicted state, the 604 uses many of the same resources (primarily the
rename buffers and completion buffer) and logic as the mechanism used to maintain a
precise exception model, as is common among superscalar implementations. The 604
design avoids the performance degradation that may come from such a design due to
speculative execution of longer latency instructions, by implementing additional logic to
record the predicted state whenever a predicted branch instruction is dispatched. This
allows the state to be quickly recovered when the branch prediction is incorrect. The
recording of these predicted states makes it possible to identify and selectively remove
instructions from the mispredicted path.

A shadow register is used with the CTR and LR to accelerate instructions that access these
registers. Shadow registers are updated and the old value is saved whenever a branch
instruction is dispatched, even if it is from a predicted path for a branch that has not yet been

1 2 3 4 5 6 7 80

0 and

2 add

1 ld

3 bc

•••

4 or

5 cmp

6 ld

7 mulli

Decode

Dispatch

ExecuteFetch

Complete

Write-Back

9

6-30 PowerPC 604 RISC Microprocessor User's Manual

resolved. If the prediction is correct, there is no penalty. If the prediction is incorrect,
shadow registers are restored from the saved values so instructions fetched from the correct
path can be dispatched and executed. When the branch instruction completes, architected
registers are updated.

6.4.6 Instruction Dispatch and Completion Considerations
The 604’s ability to dispatch instructions at a peak rate of four per cycle is affected by
availability of such resources as execution units, destination rename registers, and
completion buffer entries. To avoid dispatch unit stalls due to instruction data
dependencies, each execution unit has two reservation stations. If a data dependency could
prevent an instruction from beginning execution, that instruction is dispatched to the
reservation station associated with its execution unit, clearing the dispatch unit. When the
data that the operation depends upon is returned via a cache access or as a result of a
previous operation, execution begins during the cycle after the rename register is updated.
If the second instruction in the dispatch unit requires the same execution unit, that
instruction is not dispatched until the first instruction completes execution.

Instructions are dispatched to reservation stations in order, but from the perspective of the
overall program flow, instructions can execute out of order. The following aspects of the
604’s support for out-of-order execution should be noted:

• The BPU, FPU, and LSU each have two-entry in-order reservation stations. These
stations allow instructions to clear the dispatch stage even though operands may not
yet be available for execution to occur. The BPU, FPU, and LSU instructions may
execute out of order with respect to one another and to other execution units, but the
BPU, FPU, and LSU instructions pass through their respective reservation stations
and pipelines in program order.

• Each integer unit has a two-entry out-of-order reservation station which allows
integer instructions to execute out-of-order within each execution as well as with
respect to instructions in other execution units.

The completion unit can track instructions from dispatch through execution and ensure that
they are completed in program order. In-order completion ensures the correct architectural
state when the 604 must recover from a mispredicted branch, or any other exception or
interrupt.

The rate of instruction completion is unaffected by the 604’s ability to write the instruction
results from the rename registers to the architecturally defined registers when the
instruction is retired. The 604 can perform two write-back operations from each of the
rename registers to the register files (CR, GPRs, and FPRs) each clock cycle.

Due to the 604’s out-of-order execution capability, the in-order completion of instructions
by the completion unit provides a precise exception mechanism. All program-related
exceptions are signaled when the instruction causing the exception has reached the last
position in the completion buffer. All prior instructions are allowed to complete and write
back before the exception is taken.

Chapter 6. Instruction Timing 6-31

6.4.6.1 Rename Register Operation
To avoid contention for a given register file location in the course of out-of-order execution,
the 604 provides rename registers for the storage of instruction results prior to their
commitment (in program order) to the architecturally defined register by the completion
unit. Register renaming minimizes architectural resource dependencies, namely the output
and antidependencies, that would otherwise limit opportunities for out-of-order execution.
Twelve rename registers are provided for the GPRs, eight for the FPRs, and eight for the
condition register.

A GPR rename buffer entry is allocated when an instruction that modifies a GPR is
dispatched. This entry is marked as allocated but not valid. When the instruction executes,
it writes its result to the entry and sets the valid bit. When the instruction completes, its
result is copied from the rename buffer entry to the GPR and the entry is freed for
reallocation. For load with update instructions that modify two GPRs, one for load data and
another for address, two rename buffer entries are allocated.

The rename register for the GPRs is shown in Figure 6-13.

6-32 PowerPC 604 RISC Microprocessor User's Manual

Figure 6-13. GPR Rename Register

When an integer instruction is dispatched, its source operands are searched simultaneously
from the GPR file and its rename buffer. If a value is found in the rename buffer, that value
is used; otherwise, the value is read from the GPR. However, the rename buffer entry may
not yet be valid if the instruction that updates the GPR has not yet executed. In this case,
the instruction is dispatched with the rename buffer entry identifier in place of the operand,
which will be supplied by the reservation station when the result is produced. The GPR file
and its rename buffer have eight read ports for source operands to support dispatching of
four integer instructions each cycle.

The FPR file has 32 registers of 64 bits wide and an eight-entry rename buffer. The FPR file
and its rename buffer have three read ports for three source operands, which allow one
floating-point instruction to be dispatched per cycle.

GPR Operand Bus (8)

2:1 MUX (8)

SCIU1

SCIU 2

MCIU 3

LSU

32 bit x 8

32

Rename Buffers

8 x 5

32

GPR

8 x 5

Eight Source Operand Register Numbers

Chapter 6. Instruction Timing 6-33

The 604 treats each of the 4-bit fields in the condition register as a register and applies
register renaming for each with an eight-entry rename buffer.

Along with the reorder buffer, the rename buffers provide the basis of the precise exception
mechanism, because the 604’s architectural state represents, at all times, the results of
instructions completed in program order. Precise exceptions greatly simplify the exception
model by allowing the appearance of serialized execution.

6.4.6.2 Execution Unit Considerations
As previously noted, the 604 is capable of dispatching and retiring four instructions per
clock cycle. One of the factors affecting the peak dispatch rate is the availability of
execution units on each clock cycle.

For an instruction to be issued, the required reservation station must be available. The
dispatcher monitors the availability of all execution units and suspends instruction dispatch
if the required reservation station is not available. An execution unit may not be available
if it can accept and execute only one instruction per cycle, or if an execution unit’s pipeline
becomes full. This situation may occur if instruction execution takes more clock cycles than
the number of pipeline stages in the unit, and additional instructions are issued to that unit
to fill the remaining pipeline stages.

6.4.7 Instruction Serialization
Some instructions, such as mfspr and most mtspr instructions, extended arithmetic
instructions that require the carry bit, and condition register instructions, require
serialization to execute correctly. For this reason, the 604 implements a simple serialization
mechanism that allows such instructions to be dispatched properly but delays execution
until they can be executed safely. When all previous instructions have completed and
updated their results to the architectural states, the serialized instruction is executed by
directly reading and updated in the architectural states. If the instruction target is a GPR,
FPR, or the CR, the register is renamed to allow later nondependent instructions to execute.

Store instructions are dispatched to the LSU where they are translated and checked for
exception conditions. If no exception conditions are present, the instruction is passed to the
store queue where it waits for all previous instructions to complete before it can be
completed. Direct-storage accesses are handled in the same way to ensure that exceptions
are precise.

The performance is not degraded since instructions following a serializing instruction are
dispatched and executed usually before the serializing instruction is executed. One
serialized instruction can complete per clock cycle.

The following sections describe the serialization modes.

6-34 PowerPC 604 RISC Microprocessor User's Manual

6.4.7.1 Dispatch Serialization Mode
Dispatch serialization occurs when an mtspr instruction that accesses either the counter or
link or a mtcrf instruction that accesses multiple bits is dispatched to the MCIU. In these
instances, an interlock is set so that no other such instructions or branch unit instructions
(branch and CR logical) can dispatch until the original instruction executes and clears the
interlock. The interlock is cleared when the instruction that sets the interlock finishes
executing. On the next cycle the instruction that is waiting can dispatch.

6.4.7.2 Execution Serialization Mode
The occurrence of an execution serialization instruction has no effect on the dispatching
and execution of any following instructions. The only difference between an execution
serialization instruction and a nonserialization instruction is that the execution serialization
instruction cannot be executed until it is the oldest uncompleted instruction in the processor.
In other words, the instruction is dispatched into a reservation station, but cannot be
executed until the completion block informs the execution unit to execute the instruction.
This means it is guaranteed to wait at least one cycle before it can execute.

Instructions causing execution serialization include the following:

• Condition register logical operations (crand, crandc, creqv, crnand, crnor, cror,
crorc, crxor, and mcrf)

• mfspr and mfmsr

• mtspr (except count and link registers) and mtmsr

• Instructions that use the carry bit (adde, addeo, subfe, subfeo, addme, addmeo,
subfme, subfmeo, addze, addzeo, subfze, and subfzeo)

6.4.7.3 Postdispatch Serialization Mode
Postdispatch serialization occurs when the serializing instruction is being completed. All
instructions following the postdispatch serialized instruction are flushed, refetched, and re-
executed. Instructions causing postdispatch serialization include the following:

• mtspr (xer)

• mcrxr

• isync

• Instructions that set the summary overflow, SO, bit

• lswx with 0 bytes to load

• Floating-point arithmetic, frsp, fctiw, and fctiwz instructions that cause an
exception with FPSCR[VE] = 1

• Floating-point instructions with the Rc (record bit) set

• FPSCR instructions—mtfsb0, mtfsb1, mtfsfi, mffs, mtfsf, and mcrfs

• A floating-point instruction that causes a floating-point zero divide with
FPSCR(ZE = 1)

Chapter 6. Instruction Timing 6-35

6.4.7.4 Serialization of String/Multiple Instructions
Serialization is required for all load/store multiple/string instructions. These instructions
are broken into a sequence of register-aligned operations. The first operation is dispatched
along with any preceding instructions in the dispatch buffer. Subsequent operations are
dispatched one-word-per-cycle until the operation is finished. String/multiple instructions
remain in the dispatch buffer for at least two cycles even if they only require a single-word–
aligned memory operation.

Instructions causing string/multiple serialization include lmw, stmw, lswi, lswx, stswi, and
stswx.

6.4.7.5 Serialization of Input/Output
In this serialization mode, all noncacheable loads are performed in order with respect to the
eieio instruction.

6.5 Execution Unit Timings
The following sections describe instruction timing considerations within each of the
respective execution units in the 604. Refer to Table 6-2 for branch instruction execution
timing.

6.5.1 Branch Unit Instruction Timings
The 604 can have two unresolved branches in the branch reservation station and two
resolved branches that have not yet completed. The branch unit serves to validate branch
predictions made in earlier stages. It also verifies that the predicted target matches the actual
target address. If a misprediction is detected, it redirects the fetch to the correct address and
starts the branch misprediction recovery.

The branch execution unit also executes condition register logical instructions, which the
PowerPC architecture provides for calculating complex branch conditions. Other
architectures that lack such instructions would need to use a series of branch instructions to
resolve complex branching conditions. All execution units can update the CR fields, but
only the branch and CR logical operations use CR fields as source operands.

6.5.2 Integer Unit Instruction Timings
The two SCIUs and the MCIU execute all integer and bit-field instructions, and are shown
in Figure 6-14 and Figure 6-15, respectively.

The SCIUs consist of three one-cycle subunits:

• A fast adder/comparator subunit
• A logic subunit
• A rotator/shifter/count-leading zero subunit

6-36 PowerPC 604 RISC Microprocessor User's Manual

These subunits handle all of the one-cycle arithmetic instructions. Only one subunit in each
SCIU can obtain and execute an instruction at a time.

Figure 6-14. SCIU Block Diagram

The MCIU, which handles all integer multiple-cycle integer instructions, consists of a 32-
bit integer multiplier/divider subunit. The multiplier supports early exit on 32 x 16-bit
operations. In addition the MCIU executes all mfspr and mtspr instructions.

Instruction Dispatch Buses

GPR Operand Buses

Result Buses

Rotate/Shift/
LogicCTLZ

C
ontrol Logic

Reservation Station

3:1 MUX

Adder /
Comparator

Chapter 6. Instruction Timing 6-37

Figure 6-15. MCIU Block Diagram

Most instructions that execute in the MCIU can finish execution and complete in the same
cycle. These include the following:

• Integer divide, multiply when OE = 0
• All mfspr instructions
• All mtspr instructions except when LR/CTR is involved

Note that all instructions that execute in the MCIU can complete during the same cycle in
which they finish executing except for the following:

• Instruction that changes OV or CA (OE = 1)
• The move to CTR/LR instructions cannot because they are not execution-serialized

6.5.3 Floating-Point Unit Instruction Timings
The floating-point unit on the 604 executes all floating-point instructions. Execution of
most floating-point instructions is pipelined within the FPU, allowing up to three
instructions to be executing in the FPU concurrently. While most floating-point instructions
execute with three-cycle latency and one-cycle throughput, three instructions (fdivs, fdiv,
and fres) execute with latencies of 18 to 33 cycles. The fdivs, fdiv, fres, mtfsb0, mtfsb1,
mtfsfi, mffs, and mtfsf instructions block the floating-point pipeline until they complete
execution and thereby inhibit the execution of additional floating-point instructions. With
the exception of the mcrfs instruction, all floating-point instructions immediately forward

Instruction Dispatch Buses

GPR Operand Buses

Result Buses

Multiplier /
Divider

Reservation Station

SPR

C
ontrol Logic

6-38 PowerPC 604 RISC Microprocessor User's Manual

their CR results to the BPU for fast branch resolution without waiting for the instruction to
be retired by the completion unit and the CR to be updated. Refer to Table 6-2 for floating-
point instruction execution timing.

As shown in Figure 6-16, The FPU on the 604 is a single-pass, double-precision unit. This
means that both single- and double-precision floating-point operations require one-
pass/one-cycle throughput with a latency of three cycles. This hardware implementation
supports the IEEE 754-1985 standard for floating-point arithmetic, including support for
the NaNs and denormalized data types.

Instructions are obtained from the instruction dispatcher and placed in the reservation
station queue. The operand sources are the FPR, the floating-point rename buffers, and the
result buses. The result of an FPU operation is written to the floating-point rename buffers
and to the reservation stations. Instructions are executed from the reservation station queue
in the order they were originally dispatched.

Figure 6-16. FPU Block Diagram

Floating-Point Multiply

Floating-Point Pipeline Add

Add Pre-Alignment

Normalize/Round/Write-Back

Instruction Dispatch Bus

FPR Operand Buses

FPU Result Bus

Result Status Bus

FPSCR Bus

Stage 1

Stage 2

Stage 3

LS Result Bus

Queue 1

Queue 0

V

C
on

tr
ol

 L
og

ic

V

Chapter 6. Instruction Timing 6-39

6.5.4 Load/Store Unit Instruction Timings
The execution of most load and store instructions is pipelined. The LSU has two pipeline
stages; the first stage is for effective address calculation, and MMU translation, and the
second stage is for accessing the data in the cache. Load instructions have a two-cycle
latency and one-cycle throughput, and store instructions have a two-cycle latency and
single-cycle throughput.

The primary function of the LSU is to transfer data between the data cache and the result
bus, which routes data to the other execution units. The LSU supports the address
generation and all the data alignment to and from the data cache. As shown in Table 6-2,
the LSU also executes special instructions such as string transfers and cache control.

To improve execution performance, the LSU allows a load operation to be executed ahead
of pending store operations. All data dependencies introduced by this out-of-order
execution are resolved by the LSU. These dependencies arise when, in the instruction
stream, a store is followed by a load from the same address. If the load instruction is
speculatively executed before the store has modified the cache, incorrect data is loaded into
the rename registers. If the low-order 12 bits of the effective addresses are equal, the two
effective addresses may be aliases for the same physical address, in which case the load
instruction waits until the store data is written back to the cache, guaranteeing that the load
operation retrieves the correct data.

The LSU provides hardware support for denormalization of floating-point numbers. Within
the 604, all floating-point numbers are represented as double-precision numbers.
Denormalization can occur during a store floating-point single instruction, when the
double-precision number is converted to a single-precision number.

A block diagram of the load/store unit is shown in Figure 6-17. The unit is composed of:
reservation stations, an address calculation block, data alignment blocks, load queues, and
store queues.

6-40 PowerPC 604 RISC Microprocessor User's Manual

Figure 6-17. LSU Block Diagram

The reservation stations are used as temporary storage of dispatched instructions that
cannot be executed until all of the instruction operands are valid. The address calculation
block includes a 32-bit adder that computes the effective address for all operations. The data
alignment blocks manage the necessary byte manipulations to support aligned or unaligned
data transfers to and from the data cache. The load and store queues are used for temporary
storage of instructions for which the effective addresses have been translated and are
waiting to be completed by the sequencer unit.

MMU/Cache Interface

Store Align

EA

Reservation
Station

Instruction Flow and Result Bus

Address

Data

 Calculation

Load
Queue

Floating-Point
Convert

Load
Align

Complete
Store

Queue

Finish
Store

Queue

FP Convert

Chapter 6. Instruction Timing 6-41

Figure 6-18 shows the structure of the store queue. There are four regions that identify the
state of the store instructions.

Figure 6-18. Store Queue Structure

When a store instruction finishes execution, it is placed in the finished state. When it is
completed, the finish pointer advances to place it in the completed state. When the store
data is committed to memory, the completion pointer advances to place it in the committed
state. If the store operation hits in the cache, the commit pointer advances to effectively
remove the instruction from the queue. Otherwise, the commit pointer does not advance
until the cache block is reloaded and the store operation can occur. During this time, the
next store instruction pointed to by the completion pointer can access the cache. If this
second store instruction hits in the cache, it is removed from the queue. If not, another cache
block reload begins.

6.5.5 isync, rfi, and sc Instruction Timings
The isync, rfi, and sc instructions do not execute in one of the execution units. These
instructions decode to branch unit instructions, as specified by the PowerPC architecture,
but they do not actually execute in the BPU in the same sense that other branch instructions
do. The completion unit treats the rfi and sc instructions as exceptions, and handles them
precisely. When an isync instruction reaches the top of the completion buffer, subsequent
instructions are flushed from the pipeline and are refetched during the next clock cycle.

Although the rfi and sc are dispatched to the branch reservation stations, these instructions
do not execute in the ordinary sense, and do not occupy a position in an execute stage in
one of the BPU. Instead, these instructions are given a position in the completion buffer at
dispatch. When the sc instruction reaches the top of the completion buffer, the system call
exception is taken. When the rfi instruction reaches the top of the completion buffer, the
necessary operations required for restoring the machine state upon returning from an
exception are performed.

The isync instruction causes instructions to be flushed when it is completed. This means
that the decode buffers, dispatch buffers, and execution pipeline are all flushed. Fetching
resumes from the instruction following the isync.

Completed

Committed

Empty

Finished

6-42 PowerPC 604 RISC Microprocessor User's Manual

6.6 Instruction Scheduling Guidelines
The performance of the 604 can be improved by avoiding resource conflicts and promoting
parallel utilization of execution units through efficient instruction scheduling. Instruction
scheduling on the 604 can be improved by observing the following guidelines:

• Schedule instructions such that they can maximize the dispatch rate.
• Schedule instructions to minimize execution-unit-busy stalls
• Avoid using serializing instructions
• Schedule instructions to avoid dispatch stalls due to renamed resource limitations

6.6.1 Instruction Dispatch Rules
The following list provides limitations on instruction dispatch that should be kept in mind
in order to ensure stalls:

• At most, four instructions can be dispatched per cycle.

• An instruction cannot be dispatched unless all preceding instructions in the dispatch
buffer are dispatched

• One instruction can be dispatched per functional unit.

— The branch unit executes all branch and condition register logical instructions

— The two SCIUs are identical and either can be used to execute any integer
arithmetic, logical, shift/rotate, trap, and mtcrf instructions that update only one
field.

— The MCIU executes all integer multiply, divide and move to/from instructions
except mtcrf instructions that update only one field, which are executed in either
of the SCIUs.

— The load/store unit executes load, store, and cache control instructions

— The FPU executes all floating-point instructions including move to/from FPSCR

Table 6-2 indicates which execution unit executes each instruction.

• Each instruction must have an entry in the 16-entry reorder buffer. The dispatch unit
stalls when the reorder buffer is full. Reorder buffer entries become available on the
cycle after the instruction has completed.

• An instruction that modifies a GPR is assigned one of the 12 positions in the GPR
rename buffer. Load with update instructions get two positions since they update two
registers. When the GPR rename buffer is full, the dispatch unit stalls when it
encounters the first instruction that needs an entry. A rename buffer entry becomes
available one cycle after the result is written to the GPR.

• Any floating-point instruction except mcrfs, mtfsfi, mtfsfi., mtfsf, mtfsf., mtfsb0,
mtfsb0., mtfsb1, and mtfsb1. gets one entry in the eight-entry FPR rename buffer.
When the FPR rename buffer is full, dispatch stalls on the next floating-point
instruction. A rename buffer entry can become available one cycle after the result is
written to the FPR.

Chapter 6. Instruction Timing 6-43

• The eight-entry CR rename buffer is similar to the GPR rename buffer in that an
instruction that modifies a CR field gets one entry. This includes, for example, all
condition register logical instructions and mtcrf instructions that update only one
CR field. When the CR rename buffer is full, dispatch stalls when the next
instruction to be dispatched needs a CR entry. A rename buffer entry becomes
available one cycle after the result is written to the CR.

• Each execution unit has a two-entry reservation station that holds instructions until
they are ready for execution. Instructions cannot be dispatched if the reservation
station is full.

• No following instruction can dispatch in the same cycle as a branch instruction.

• Since instructions are dispatched in program order, a later instruction cannot be
dispatched until all earlier ones have.

• There is an interlock mechanism between CTR and LR. After dispatching a move to
CTR/LR or mtcrf with multiple field update, the dispatch stalls on the first branch,
CR logical, move to CTR/LR, or mtcrf that update multiple fields until one cycle
after the dispatched move to CTR/LR or mtcrf instruction executes. Those mtcrf
instructions that update multiple fields are execution-serialized.

• The 604 can handle as many as four branch instructions in the execute and complete
stages. The dispatch stalls on the first instruction after the fourth branch until the first
branch completes.

• An instruction cannot be dispatched until all destination registers for the instruction
have been assigned to a rename register.

• An instruction may not be dispatched if a serialization mode is in effect for the
instruction.

6.6.2 Additional Programming Tips for the PowerPC 604 Processor
The following guidelines should be followed when writing assembly code for the 604.

• Interleave memory instructions with integer and floating-point operations.

The 604 has a dedicated LSU that does not require the use of the integer or floating-
point units to process memory operations. As a result, when scheduling code for the
604, interleaving memory operations with integer or floating-point instructions
typically result in better performance.

• Interleave integer operations.

Because the 604 has three IUs, it is also possible to interleave multiple, independent
integer operations. Two of these integer units support simple integer operations,
while the third supports complex integer operations such as bit-field manipulation.

• Avoid using instructions that write to multiple registers.

The 604’s dynamic register renaming permits instructions to execute out of order
with respect to their original program sequence, which increases overall throughput.
However, in other PowerPC processors, certain instructions including the load/store

6-44 PowerPC 604 RISC Microprocessor User's Manual

multiple/string operations, monopolize these internal hardware resources, which can
affect performance. For software portability, such instructions should be avoided,
even though they do not suffer the performance degradation in the 604 that they
might in other PowerPC processors. The most common use of such instructions is in
subroutine prologues or epilogues The following alternatives are typically more
efficient:
— Expanding the register save/restore code in-line

— Branching to special save/restore functions (sometimes called millicode) that use
in-line sequences of save and restore instructions.

• Use the load with update instruction judiciously.

Another frequently used set of instructions that are subject to this multiple register
usage effect are the load with update instructions. While use of such instructions is
usually desirable from a performance standpoint (they eliminate a dependent integer
operation), care must still be taken to not issue too many of these instructions
consecutively.

• Schedule code to take advantage of rename registers.

As discussed previously, the 604 provides register renaming as a means of
improving execution speed. Since there are a limited number of rename buffers
implemented in hardware, it is always desirable to minimize pressure on this
resource. One relatively simple means of doing this is to use immediate addressing
when the option exists. For example, an integer register copy can be performed in a
single cycle using a number of different instructions. However, using an ori
instruction (with an immediate operand of zero) uses only one source register
operand; whereas, the register indirect form of the or instruction uses two source
registers.

• Minimize use of instructions that serialize execution.

Some operations, such as memory synchronization primitives and trap instructions,
have well-known serialization properties that are intended when used by a
programmer. Other instructions, however, have more subtle serialization effects that
may affect performance. For example, if operations that manipulate condition
register fields are used frequently, they can significantly hinder performance,
particularly when multiple condition fields are being accessed by a single
instruction, described in the following:

• Avoid using the mtcrf instruction to update multiple fields.

Note that the performance of the mtcrf instruction depends greatly on whether only
one field is accessed or either no fields or multiple fields are accessed as follows:

— Those mtcrf instructions that update only one field are executed in either of the
SCIUs and the CR field is renamed as with any other SCIU instruction.

— Those mtcrf instructions that update either multiple fields or no fields are
dispatched to the MCIU and a count/link scoreboard bit is set. When that bit is
set, no more mtcrf instructions of the same type, mtspr instructions that update

Chapter 6. Instruction Timing 6-45

the count or link registers, branch instructions that depend on the condition
register and CR logical instructions can be dispatched to the MCIU. The bit is
cleared when the mtctr, mtcrf, or mtlr instruction that set the bit is executed.

Because mtcrf instructions that update a single field do not require such
synchronization that other mtcrf instructions do, and because two such single-field
instructions can execute in parallel, it is typically more efficient to use multiple
mtcrf instructions that update only one field apiece than to use one mtcrf instruction
that updates multiple fields. A rule of thumb follows:

— It is always more efficient to use two mtcrf instructions that update only one field
apiece than to use one mtcrf instruction that updates two fields.

— It is almost always more efficient to use three or four mtcrf instructions that
update only one field apiece than to use one mtcrf instruction that updates three
fields.

— It is often more efficient to use more than four mtcrf instructions that update only
one field than to use one mtcrf instruction that updates four fields.

• Minimize branching.

The 604 supports dynamic branch prediction and other mechanisms that reduce the
impact of branching; nevertheless, changing control flow in a program is relatively
expensive, in that fullest advantage cannot be taken of resources that can improve
throughput. such as superscalar instruction dispatch and execution. In some cases,
branches can be minimized by simply rewriting an algorithm. In other cases, special
PowerPC instructions, such as fsel, can be used to eliminate a conditional branch
altogether.

• Note that the fsel instruction is optional to the PowerPC architecture and may not be
implemented on all PowerPC implementations, so use of this instruction to improve
performance in the 604 should be weighed against portability considerations.

6.7 Instruction Latency Summary
Table 6-2 summarizes the execution cycle time of each instruction. Note that the latencies
themselves provide limited insight as to the actual behavior of an instruction. The following
list summarizes some aspects of instruction behavior:

• For a store operation, availability means data is visible to the following loads from
the same address. Misaligned load or store operations require one additional cycle,
assuming cache hits.

— Floating-point stores that require denormalization take an additional cycle for
each bit of shifting that is needed up to a maximum of 23.

— Store multiple instructions are taken in pairs and take one additional cycle if an
odd number of registers is stored.

6-46 PowerPC 604 RISC Microprocessor User's Manual

— Misaligned load string operations require two cycles per register plus two
additional cycles.

— Misaligned store string operations take six cycles per register being stored
(although the final store may only take three cycles if it does not cross a word
boundary).

• For instructions with both a CR result and either a GPR or an FPR result, the cycle
count shown is for the GPR or FPR result. CR results from logical or bit field
instructions that execute in the SCIU and CR results from instructions that execute
in the FPU take one additional cycle.

• Integer multiplies that detect an early exit condition finish a cycle earlier than others.
For signed multiplies, if the top 15 bits of the RB operand are all the same it is an
early out condition. For unsigned multiplies, if the top 15 bits are all zeros it is an
early out condition.

• All instructions are fully pipelined except for divides and some integer multiplies.
The integer multiplier is a three-stage pipeline. Integer multiplies other than those
that can exit early (described in the previous bullet) stall for one cycle in the first
stage of the pipeline. Integer divide instructions iterate in stage two of the multiplier.
Special-purpose register operations can execute in the MCIU in parallel with
multiplies and divides.

— The FPU unit is a three-stage pipeline. Floating-point divides iterate in the
floating-point pipeline. The floating-point unit also has some data-dependent
delays not shown inTable 6-2. If the rounder has a carry out, that is, 1.11...111
rounds to 2.00...000, the FPU takes an additional cycle. If the final normalization
of the result requires a shift of more than 63, the FPU takes an additional cycle.
Underflow and overflow take an additional cycle. Denormalization to zero takes
an additional cycle. Massive cancellation resulting in zero takes an additional
cycle.

Table 6-2. Instruction Execution Timing

Instruction Unit Cycle (cycle) Serialization

add SCIU 1 —

addc SCIU 1 —

adde SCIU 1 Execute

addi SCIU 1 —

addic SCIU 1 —

addic. SCIU 1 —

addis SCIU 1 —

addme SCIU 1 Execute

addze SCIU 1 Execute

and SCIU 1 —

Chapter 6. Instruction Timing 6-47

andc SCIU 1 —

andi. SCIU 1 —

andis. SCIU 1 —

b BPU 1 —

bc BPU 1 —

bcctr BPU 1 —

bclr BPU 1 —

cmp SCIU 1 —

cmpi SCIU 1 —

cmpl SCIU 1 —

cmpli SCIU 1 —

cntlzw SCIU 1 —

crand BPU 1 Execute

crandc BPU 1 Execute

creqv BPU 1 Execute

crnand BPU 1 Execute

crnor BPU 1 Execute

cror BPU 1 Execute

crorc BPU 1 Execute

crxor BPU 1 Execute

dcbf LSU — Execute

dcbi LSU 3 Execute

dcbst LSU — Execute

dcbt LSU — Execute

dcbtst LSU — Execute

dcbz LSU 3 Execute

divw MCIU 20 —

divwu MCIU 20 —

eciwx LSU 2 + bus Execute

ecowx LSU 3 + bus Execute

eieio LSU — I/O

eqv SCIU 1 —

Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization

6-48 PowerPC 604 RISC Microprocessor User's Manual

extsb SCIU 1 —

extsh SCIU 1 —

fabs FPU 3 —

fadd FPU 3 —

fadds FPU 3 —

fcmpo FPU 3 —

fcmpu FPU 3 —

fctiw FPU 3 —

fctiwz FPU 3 —

fdiv FPU 32 FP empty1

fdivs FPU 18 FP empty1

fmadd FPU 3 —

fmadds FPU 3 —

fmr FPU 3 —

fmsub FPU 3 —

fmsubs FPU 3 —

fmul FPU 3 —

fmuls FPU 3 —

fnabs FPU 3 —

fneg FPU 3 —

fnmadd FPU 3 —

fnmadds FPU 3 —

fnmsub FPU 3 —

fnmsubs FPU 3 —

fres FPU 18 FP empty1

frsp FPU 3 —

frsqrte FPU 3 —

fsel FPU 3 —

fsub FPU 3 —

fsubs FPU 3 —

icbi LSU — —

isync Completion 1 Postdispatch

Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization

Chapter 6. Instruction Timing 6-49

lbz LSU 2 —

lbzu LSU 2 —

lbzux LSU 2 —

lbzx LSU 2 —

lfd LSU 3 —

lfdu LSU 3 —

lfdux LSU 3 —

lfdx LSU 3 —

lfs LSU 3 —

lfsu LSU 3 —

lfsux LSU 3 —

lfsx LSU 3 —

lha LSU 2 —

lhau LSU 2 —

lhaux LSU 2 —

lhax LSU 2 —

lhbrx LSU 2 —

lhz LSU 2 —

lhzu LSU 2 —

lhzux LSU 2 —

lhzx LSU 2 —

lmw LSU #regs + 2 String/multiple

lswi LSU 2(#regs) + 2 String/multiple

lswx LSU 2(#regs) + 2 String/multiple

lwarx LSU 3+bus Execute

lwbrx LSU 2 —

lwz LSU 2 —

lwzu LSU 2 —

lwzux LSU 2 —

lwzx LSU 2 —

mcrf BPU 1 Execute

mcrfs FPU 3 —

Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization

6-50 PowerPC 604 RISC Microprocessor User's Manual

mcrxr MCIU 3 Execute

mfcr MCIU 3 Execute

mffs FPU 3 —

mfmsr MCIU 3 Execute

mftb MCIU 3 Execute

mfspr LR/CTR MCIU 3 Execute

mfspr (others) MCIU 3 Execute

mtcrf (0/multiple bit) MCIU 1 Dispatch/Execute

mtcrf (single bit) SCIU 1 —

mtfsb0 FPU 3 —

mtfsb1 FPU 3 —

mtfsf FPU 3 —

mtfsfi FPU 3 —

mtmsr MCIU 1 Execute

mtspr (LR/CTR) MCIU 1 Dispatch

mtspr (XER) MCIU 1 Complete 2

mtspr (others) MCIU 1 Execute

mulhw MCIU 4(3) —

mulhwu MCIU 4(3) —

mulli MCIU 3 —

mullw MCIU 4(3) —

nand SCIU 1 —

neg SCIU 1 —

nor SCIU 1 —

or SCIU 1 —

orc SCIU 1 —

ori SCIU 1 —

oris SCIU 1 —

rfi Completion — Postdispatch

rlwimi SCIU 1 —

rlwinm SCIU 1 —

rlwnm SCIU 1 —

Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization

Chapter 6. Instruction Timing 6-51

sc Completion — Postdispatch

slw SCIU 1 —

sraw SCIU 1 —

srawi SCIU 1 —

srw SCIU 1 —

stb LSU 3 Execute

stbu LSU 3 Execute

stbux LSU 3 Execute

stbx LSU 3 Execute

stfd LSU 3 Execute

stfdu LSU 3 Execute

stfdux LSU 3 Execute

stfdx LSU 3 Execute

stfiwx LSU 3 Execute

stfs LSU 3 Execute

stfsu LSU 3 Execute

stfsux LSU 3 Execute

stfsx LSU 3 Execute

sth LSU 3 Execute

sthbrx LSU 3 Execute

sthu LSU 3 Execute

sthux LSU 3 Execute

sthx LSU 3 Execute

stmw LSU #regs + 2 String/multiple

stswi LSU #regs + 2 String/multiple

stswx LSU #regs + 2 String/multiple

stw LSU 3 Execute

stwbrx LSU 3 Execute

stwcx. LSU 3 Execute

stwu LSU 3 Execute

stwux LSU 3 Execute

stwx LSU 3 Execute

Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization

6-52 PowerPC 604 RISC Microprocessor User's Manual

subf SCIU 1 —

subfc SCIU 1 —

subfe SCIU 1 Execute

subfic SCIU 1 —

subfme SCIU 1 Execute

subfze SCIU 1 Execute

sync LSU — —

tlbie LSU — Execute

tlbsync LSU — —

tw SCIU 1 —

twi SCIU 1 —

xor SCIU 1 —

xori SCIU 1 —

xoris SCIU 1 —

1 These instructions are not pipelined. They cannot be executed until the previous
instruction in the FPU completes; subsequent FPU instructions cannot begin
execution until these instructions complete.
2 The mtspr (XER) instruction causes instructions to be flushed when it executes.

Table 6-2. Instruction Execution Timing (Continued)

Instruction Unit Cycle (cycle) Serialization

Chapter 7. Signal Descriptions 7-1

Chapter 7
Signal Descriptions
70
70

This chapter describes the PowerPC 604 microprocessor’s external signals. It contains a
concise description of individual signals, showing behavior when the signal is asserted and
negated and when the signal is an input and an output.

NOTE
A bar over a signal name indicates that the signal is active
low—for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active low, such as AP0–AP3 (address bus parity
signals) and TT0–TT4 (transfer type signals) are referred to as
asserted when they are high and negated when they are low.

The 604 signals are grouped as follows:

• Address arbitration signals—The 604 uses these signals to arbitrate for address bus
mastership.

• Address transfer start signals—These signals indicate that a bus master has begun a
transaction on the address bus.

• Address transfer signals—These signals, which consist of the address bus, address
parity, and address parity error signals, are used to transfer the address and to ensure
the integrity of the transfer.

• Transfer attribute signals—These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted, write-
through, or cache-inhibited.

• Address transfer termination signals—These signals are used to acknowledge the
end of the address phase of the transaction. They also indicate whether a condition
exists that requires the address phase to be repeated.

• Data arbitration signals—The 604 uses these signals to arbitrate for data bus
mastership.

• Data transfer signals—These signals, which consist of the data bus, data parity, and
data parity error signals, are used to transfer the data and to ensure the integrity of
the transfer.

7-2 PowerPC 604 RISC Microprocessor User's Manual

• Data transfer termination signals—Data termination signals are required after each
data beat in a data transfer. In a single-beat transaction, the data termination signals
also indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the final
data beat. They also indicate whether a condition exists that requires the data phase
to be repeated.

• System status signals—These signals include the external interrupt signal,
checkstop signals, and both soft reset and hard reset signals. These signals are used
to interrupt and, under various conditions, to reset the processor.

• JTAG/COP interface signals—The JTAG (IEEE 1149.1) interface and common on-
chip processor (COP) unit provides a serial interface to the system for performing
monitoring and boundary tests.

• Processor configuration signals—These signals include the memory reservation
signal, machine quiesce control signals, time base enable signal, driver mode signal,
L2 intervention signal, the run and halted signals, and the analog VDD signal.

• Clock signals—These signals provide for system clock input and frequency control.

7.1 Signal Configuration
Figure 7-1 illustrates the pin configuration of the 604, showing how the signals are grouped.

NOTE
A pinout showing actual pin numbers is included in the 604
hardware specifications.

Chapter 7. Signal Descriptions 7-3

Figure 7-1. PowerPC 604 Microprocessor Signal Groups

7.2 Signal Descriptions
This section describes individual 604 signals, grouped according to Figure 7-1. Note that
the following sections are intended to provide a quick summary of signal functions.
Chapter 8, “System Interface Operation,” describes many of these signals in greater detail,
both with respect to how individual signals function and how groups of signals interact.

7.2.1 Address Bus Arbitration Signals
The address arbitration signals are a collection of input and output signals the 604 uses to
request the address bus, recognize when the request is granted, and indicate to other devices
when mastership is granted. For a detailed description of how these signals interact, see
Section 8.3.1, “Address Bus Arbitration.”

+3.3 V

1
1
1

1
1

32
4
1

5
1
3
1
1
1
2
3

1
1
1

1
1
1

64
8
1
1

1
1
1

2
1
2
2
2

1
2
1
1
1
1

1
1
4
1

5

604

ADDRESS
ARBITRATION

ADDRESS
START

ADDRESS
TRANSFER

TRANSFER
ATTRIBUTE

ADDRESS
TERMINATION

BR
BG

ABB

TS

XATS

A0–A31
AP0–AP3

APE

TT0–TT4
TBST

TSIZ0–TSIZ2
GBL
CI
WT

CSE0–CSE1
TC0–TC2

AACK
ARTRY

SHD

DBG
DBWO
DBB

DH0–DH31, DL0–DL31

DP0–DP7
DPE

DBDIS

TA
DRTRY

TEA

INT, SMI
MCP

CKSTP_IN
CKSTP_OUT

HRESET, SRESET

RSRV
DRVMOD

TBEN
L2_INT

RUN
HALTED

SYSCLK
CLK_OUT

PLL_CFG0–PLL_CFG3
AVDD

TRST, TCK, TMS, TDI, TD0

DATA
ARBITRATION

DATA
TRANSFER

DATA
TERMINATION

SYSTEM
STATUS

PROCESSOR
CONFIGURATION

CLOCKS

JTAG/COP
INTERFACE

7-4 PowerPC 604 RISC Microprocessor User's Manual

7.2.1.1 Bus Request (BR)—Output
The bus request (BR) signal is an output signal on the 604. Following are the state meaning
and timing comments for the BR signal.

State Meaning Asserted—Indicates that the 604 is requesting mastership of the
address bus. Note that BR may be asserted for one or more cycles,
and then deasserted due to an internal cancellation of the bus request
(for example, due to the loss of a memory reservation). See
Section 8.3.1, “Address Bus Arbitration.”

Negated—Indicates that the 604 is not requesting the address bus.
The 604 may have no bus operation pending, it may be parked, or the
ARTRY input was asserted on the previous bus clock cycle.

Timing Comments Assertion—Occurs when a bus transaction is needed and the 604
does not have a qualified bus grant. This may occur even if the three
possible pipeline accesses have occurred.

Negation—Occurs for at least one bus clock cycle after an accepted,
qualified bus grant (see BG and ABB), even if another transaction is
pending. It is also negated for at least one bus clock cycle when the
assertion of ARTRY is detected on the bus, with the exception of the
bus master that asserted ARTRY due to the need to perform a cache
line push.

7.2.1.2 Bus Grant (BG)—Input
The bus grant (BG) signal is an input signal on the 604. Following are the state meaning
and timing comments for the BG signal.

State Meaning Asserted—Indicates that the 604 may, with the proper qualification,
assume mastership of the address bus. A qualified bus grant occurs
when BG is asserted, ABB and ARTRY are not asserted, and
ARTRY has been negated on the previous cycle. The ABB and
ARTRY signals are driven by the 604 or other bus masters. If the 604
is parked, BR need not be asserted for the qualified bus grant. See
Section 8.3.1, “Address Bus Arbitration.”

Negated— Indicates that the 604 is not the next potential address bus
master.

Timing Comments Assertion—May occur at any time to indicate the 604 is free to use
the address bus. After the 604 assumes bus mastership, it does not
check for a qualified bus grant again until the cycle during which the
address bus tenure is completed (assuming it has another transaction
to run). The 604 does not accept a BG in the cycles between the
assertion of any TS or XATS through to the assertion of AACK.

Negation—May occur at any time to indicate the 604 cannot use the
bus. The 604 may still assume bus mastership on the bus clock cycle

Chapter 7. Signal Descriptions 7-5

of the negation of BG because during the previous cycle BG
indicated to the 604 that it was free to take mastership (if qualified).

7.2.1.3 Address Bus Busy (ABB)
The address bus busy (ABB) signal is both an input and an output signal.

7.2.1.3.1 Address Bus Busy (ABB)—Output
Following are the state meaning and timing comments for the ABB output signal.

State Meaning Asserted—Indicates that the 604 is the address bus master. See
Section 8.3.1, “Address Bus Arbitration.”

Negated—Indicates that the 604 is not using the address bus. If ABB
is negated during the bus clock cycle following a qualified bus grant,
the 604 did not accept mastership, even if BR was asserted. This can
occur if a potential transaction is aborted internally before the
transaction is started.

Timing Comments Assertion—Occurs on the bus clock cycle following a qualified BG
that is accepted by the processor (see Negated).

Negation—Occurs on the bus clock cycle following the assertion of
AACK. If ABB is negated during the bus clock cycle following a
qualified bus grant, the 604 did not accept mastership, even if BR
was asserted.

High Impedance—Occurs one-half bus cycle (two-thirds bus cycle
when using 3:1 clock mode, and one-third bus cycle when using 3:2
bus ratio) after ABB is negated.

7.2.1.3.2 Address Bus Busy (ABB)—Input
Following are the state meaning and timing comments for the ABB input signal.

State Meaning Asserted—Indicates that the address bus is in use. This condition
effectively blocks the 604 from assuming address bus ownership,
regardless of the BG input; see Section 8.3.1, “Address Bus
Arbitration.” Note that the 604 will not take the address bus for the
sequence of cycles beginning with TS and ending with AACK; thus
effectively making the use of ABB optional, provided that other bus
masters respond in the same way.

Negated—Indicates that the address bus is not owned by another bus
master and that it is available to the 604 when accompanied by a
qualified bus grant.

Timing Comments Assertion—May occur when the 604 must be prevented from using
the address bus (and the processor is not currently asserting ABB).

Negation—May occur whenever the 604 can use the address bus.

7-6 PowerPC 604 RISC Microprocessor User's Manual

7.2.2 Address Transfer Start Signals
Address transfer start signals are input and output signals that indicate that an address bus
transfer has begun. The transfer start (TS) signal identifies the operation as a memory
transaction; extended address transfer start (XATS) identifies the transaction as a direct-
store operation.

For detailed information about how TS and XATS interact with other signals, refer to
Section 8.3.2, “Address Transfer,” and Section 8.6, “Direct-Store Operation,” respectively.

7.2.2.1 Transfer Start (TS)
The TS signal is both an input and an output signal on the 604.

7.2.2.1.1 Transfer Start (TS)—Output
Following are the state meaning and timing comments for the TS output signal.

State Meaning Asserted—Indicates that the 604 has begun a memory bus
transaction and that the address-bus and transfer-attribute signals are
valid. When asserted with the appropriate TT0–TT4 signals it is also
an implied data bus request for a memory transaction (unless it is an
address-only operation).

Negated—Is negated during a direct-store operation.

Timing Comments Assertion—Coincides with the assertion of ABB.
Negation—Occurs one bus clock cycle after TS is asserted.
High Impedance—Occurs one bus clock cycle after TS is negated.

7.2.2.1.2 Transfer Start (TS)—Input
Following are the state meaning and timing comments for the TS input signal.

State Meaning Asserted—Indicates that another master has begun a bus transaction
and that the address bus and transfer attribute signals are valid for
snooping (see GBL).

Negated—Indicates that no bus transaction is occurring.

Timing Comments Assertion—May occur during the assertion of ABB.
Negation—Must occur one bus clock cycle after TS is asserted.

7.2.2.2 Extended Address Transfer Start (XATS)
The XATS signal is both an input and an output signal on the 604.

7.2.2.2.1 Extended Address Transfer Start (XATS)—Output
Following are the state meaning and timing comments for the XATS output signal.

State Meaning Asserted—Indicates that the 604 has begun a direct-store operation
and that the first address cycle is valid. When asserted with the
appropriate XATC signals it is also an implied data bus request for
certain direct-store operation (unless it is an address-only operation).

Negated—Is negated during an entire memory transaction.

Chapter 7. Signal Descriptions 7-7

Timing Comments Assertion—Coincides with the assertion of ABB.
Negation—Occurs one bus clock cycle after the assertion of XATS.

High Impedance—Occurs one bus clock cycle after the negation of
XATS.

7.2.2.2.2 Extended Address Transfer Start (XATS)—Input
Following are the state meaning and timing comments for the XATS input signal.

State Meaning Asserted—Indicates that the 604 must check for a direct-store
operation reply.

Negated—Indicates that there is no need to check for a direct-store
operation reply.

Timing Comments Assertion—May occur while ABB is asserted.
Negation—Must occur one bus clock cycle after XATS is asserted.

7.2.3 Address Transfer Signals
The address transfer signals are used to transmit the address and to generate and monitor
parity for the address transfer. For a detailed description of how these signals interact, refer
to Section 8.3.2, “Address Transfer.”

7.2.3.1 Address Bus (A0–A31)
The address bus (A0–A31) consists of 32 signals that are both input and output signals.

7.2.3.1.1 Address Bus (A0–A31)—Output (Memory Operations)
Following are the state meaning and timing comments for the A0–A31 output signals.

State Meaning Asserted/Negated—Represents the physical address (real address in
the architecture specification) of the data to be transferred. On burst
transfers, the address bus presents the double-word–aligned address
containing the critical code/data that missed the cache on a read
operation, or the first double word of the cache line on a write
operation. Note that the address output during burst operations is not
incremented. See Section 8.3.2, “Address Transfer.”

Timing Comments Assertion/Negation—Occurs on the bus clock cycle after a qualified
bus grant (coincides with assertion of ABB and TS).

High Impedance—Occurs one bus clock cycle after AACK is
asserted.

7.2.3.1.2 Address Bus (A0–A31)—Input (Memory Operations)
Following are the state meaning and timing comments for the A0–A31 input signals.

State Meaning Asserted/Negated—Represents the physical address of a snoop
operation.

Timing Comments Assertion/Negation—Must occur on the same bus clock cycle as the
assertion of TS; is sampled by 604 only on this cycle.

7-8 PowerPC 604 RISC Microprocessor User's Manual

7.2.3.1.3 Address Bus (A0–A31)—Output (Direct-Store Operations)
Following are the state meaning and timing comments for the address bus signals (A0 to
A31) for output direct-store operations on the 604.

State Meaning Asserted/Negated—For direct-store operations where the 604 is the
master, the address tenure consists of two packets (each requiring a
bus cycle). For packet 0, these signals convey control and tag
information. For packet 1, these signals represent the physical
address of the data to be transferred. For reply operations, the
address bus contains control, status, and tag information.

Timing Comments Assertion/Negation—Address tenure consists of two beats. The first
beat occurs on the bus clock cycle after a qualified bus grant,
coinciding with XATS. The address bus transitions to the second beat
on the next bus clock cycle.

High Impedance—Occurs on the bus clock cycle after AACK is
asserted.

7.2.3.1.4 Address Bus (A0–A31)—Input (Direct-Store Operations)
Following are the state meaning and timing comments for input direct-store operations on
the 604.

State Meaning Asserted/Negated—When the 604 is not the master, it snoops (and
checks address parity) on the first address beat only of all direct-store
operations for an I/O reply operation with a receiver tag that matches
its PID tag. See Section 8.6, “Direct-Store Operation.”

Timing Comments Assertion/Negation—The first beat of the I/O transfer address tenure
coincides with XATS, with the second address bus beat on the
following cycle.

7.2.3.2 Address Bus Parity (AP0–AP3)
The address bus parity (AP0–AP3) signals are both input and output signals reflecting one
bit of odd-byte parity for each of the four bytes of address when a valid address is on the
bus.

7.2.3.2.1 Address Bus Parity (AP0–AP3)—Output
Following are the state meaning and timing comments for the AP0–AP3 output signal on
the 604.

State Meaning Asserted/Negated—Represents odd parity for each of four bytes of
the physical address for a transaction. Odd parity means that an odd
number of bits, including the parity bit, are driven high. The signal
assignments correspond to the following:

AP0 A0–A7
AP1 A8–A15
AP2 A16–A23
AP3 A24–A31

Chapter 7. Signal Descriptions 7-9

For more information, see Section 8.3.2.1, “Address Bus Parity.”

Timing Comments Assertion/Negation—The same as A0–A31.
High Impedance—The same as A0–A31.

7.2.3.2.2 Address Bus Parity (AP0–AP3)—Input
Following are the state meaning and timing comments for the AP0–AP3 input signal on the
604.

State Meaning Asserted/Negated—Represents odd parity for each of four bytes of
the physical address for snooping and direct-store operations.
Detected even parity causes the processor to enter the checkstop
state, or take a machine check exception depending on whether
address parity checking is enabled in the HID0 register and the
condition of the MSR[ME] bit; see Section 2.1.2.3, “Hardware
Implementation-Dependent Register 0.” (See also the APE signal
description.)

Timing Comments Assertion/Negation—The same as A0–A31.

7.2.3.3 Address Parity Error (APE)—Output
The address parity error (APE) signal is an output signal on the 604. Note that the (APE)
signal is an open-drain type output, and requires an external pull-up resistor (for example,
10 kΩ to Vdd) to assure proper deassertion of the APE signal). Following are the state
meaning and timing comments for the APE signal on the 604. For more information, see
Section 8.3.2.1, “Address Bus Parity.”

State Meaning Asserted—Indicates that incorrect address bus parity has been
detected by the 604 on a snoop that the 604 recognizes. This includes
the first address beat of a direct-store operation.

Negated—Indicates that the 604 has not detected a parity error (even
parity) on the address bus.

Timing Comments Assertion—Occurs on the second bus clock cycle after TS or XATS
is asserted.

High Impedance—Occurs on the third bus clock cycle after TS or
XATS is asserted.

7.2.4 Address Transfer Attribute Signals
The transfer attribute signals are a set of signals that further characterize the transfer—such
as the size of the transfer, whether it is a read or write operation, and whether it is a burst
or single-beat transfer. For a detailed description of how these signals interact, see
Section 8.3.2, “Address Transfer.”

Note that some signal functions vary depending on whether the transaction is a memory
access or an I/O access. For a description of how these signals function for direct-store
operations, see Section 8.6, “Direct-Store Operation.”

7-10 PowerPC 604 RISC Microprocessor User's Manual

7.2.4.1 Transfer Type (TT0–TT4)
The transfer type (TT0–TT4) signals consist of five input/output signals on the 604. For a
complete description of TT0–TT4 signals and for transfer type encodings, see Table 7-1.

7.2.4.1.1 Transfer Type (TT0–TT4)—Output
Following are the state meaning and timing comments for the TT0–TT4 output signals on
the 604.

State Meaning Asserted/Negated—Indicates the type of transfer in progress.

For direct-store operations these signals are part of the extended
address transfer code (XATC) along with TSIZ and TBST:

 XATC(0–7)=TT(0–3)||TBST||TSIZ(0–2).

Timing Comments Assertion/Negation/High Impedance—The same as A0–A31.

7.2.4.1.2 Transfer Type (TT0–TT4)—Input
Following are the state meaning and timing comments for the TT0–TT4 input signals on
the 604.

State Meaning Asserted/Negated—Indicates the type of transfer in progress (see
Table 7-1). For direct-store operations, the TT0–TT3 signals form
part of the XATC and are snooped by the 604 if XATS is asserted.

Timing Comments Assertion/Negation—The same as A0–A31.

Table 7-1 describes the transfer encodings for a 604 bus master and the 60x bus
specification.

Table 7-1. Transfer Encoding for PowerPC 604 Processor Bus Master

TT0 TT1 TT2 TT3 TT4
604 Bus Master

Transaction
Transaction Transaction Source

0 0 0 0 0 Clean block Address only Cache operation

0 0 1 0 0 Flush block Address only Cache operation

0 1 0 0 0 SYNC Address only Cache operation

0 1 1 0 0 Kill block Address only Store hit/shared or
cache operation

1 0 0 0 0 Ordered I/O
operation

Address only eieio

1 0 1 0 0 External control
word write

Single-beat
write

ecowx

1 1 0 0 0 TLB invalidate Address only tlbie

1 1 1 0 0 External control
word read

Single-beat
read

eciwx

0 0 0 0 1 lwarx
Reservation set

Address only lwarx with cache hit

0 0 1 0 1 Reserved Address only N/A

Chapter 7. Signal Descriptions 7-11

7.2.4.2 Transfer Size (TSIZ0–TSIZ2)
The transfer size (TSIZ0–TSIZ2) signals consist of three input/output signals on the 604.

0 1 0 0 1 TLBSYNC Address only tlbsync or tlbie

0 1 1 0 1 ICBI Address only N/A

1 X X 0 1 Reserved — N/A

0 0 0 1 0 Write-with-flush Single-beat
write or burst

Caching-inhibited or
write-through store

0 0 1 1 0 Write-with-kill Single-beat
write or burst

Cast-out, or snoop
copyback

0 1 0 1 0 Read Single-beat
read or burst

Caching-inhibited
load

0 1 1 1 0 Read-with-intent-
to-modify

Burst Load miss, or store
miss

1 0 0 1 0 Write-with-flush-
atomic

Single-beat
write

stwcx.

1 0 1 1 0 Reserved N/A N/A

1 1 0 1 0 Read-atomic Single-beat
read or burst

lwarx
(caching-inhibited
load)

1 1 1 1 0 Read-with-intent-
to-modify-atomic

Burst lwarx
(load miss)

0 0 0 1 1 Reserved — N/A

0 0 1 1 1 Reserved — N/A

0 1 0 1 1 Read-with-no-
intent-to-cache

Single-beat
read or burst

N/A

0 1 1 1 1 Reserved — N/A

1 X X 1 1 Reserved — N/A

Table 7-1. Transfer Encoding for PowerPC 604 Processor Bus Master (Continued)

TT0 TT1 TT2 TT3 TT4
604 Bus Master

Transaction
Transaction Transaction Source

7-12 PowerPC 604 RISC Microprocessor User's Manual

7.2.4.2.1 Transfer Size (TSIZ0–TSIZ2)—Output
Following are the state meaning and timing comments for the TSIZ0–TSIZ2 output signals
on the 604.

State Meaning Asserted/Negated—For memory accesses, these signals along with
TBST, indicate the data transfer size for the current bus operation, as
shown in Table 7-2. Table 8-4 shows how the TSIZ signals are used
with the address signals for aligned transfers. Table 8-5 shows how
the TSIZ signals are used with the address signals for misaligned
transfers. For I/O transfer protocol, these signals form part of the I/O
transfer code; see the description in Section 7.2.4.1, “Transfer Type
(TT0–TT4).”

For external control instructions (eciwx and ecowx), TSIZ0–TSIZ2
are used to output bits 29–31 of the external access register (EAR),
which are used to form the resource ID (TBST||TSIZ0–TSIZ2).

Timing Comments Assertion/Negation—The same as A0–A31.
High Impedance—The same as A0–A31.

7.2.4.2.2 Transfer Size (TSIZ0–TSIZ2)—Input
Following are the state meaning and timing comments for the TSIZ0–TSIZ2 input signals
on the 604.

State Meaning Asserted/Negated— For the direct-store protocol, these signals form
part of the I/O transfer code; see Section 7.2.4.1, “Transfer Type
(TT0–TT4).”

Timing Comments Assertion/Negation—The same as A0–A31.

Table 7-2. Data Transfer Size

TBST TSIZ0–TSIZ2 Transfer Size

Asserted 010 Burst (32 bytes)

Negated 000 8 bytes

Negated 001 1 byte

Negated 010 2 bytes

Negated 011 3 bytes

Negated 100 4 bytes

Negated 101 5 bytes

Negated 110 6 bytes

Negated 111 7 bytes

Chapter 7. Signal Descriptions 7-13

7.2.4.3 Transfer Burst (TBST)
The transfer burst (TBST) signal is an input/output signal on the 604.

7.2.4.3.1 Transfer Burst (TBST)—Output
Following are the state meaning and timing comments for the TBST output signal.

State Meaning Asserted—Indicates that a burst transfer is in progress.

Negated—Indicates that a burst transfer is not in progress. Also, part
of I/O transfer code; see Section 7.2.4.1, “Transfer Type (TT0–
TT4).”

For external control instructions (eciwx and ecowx), TBST is used to
output bit 28 of the EAR, which is used to form the resource ID
(TBST||TSIZ0–TSIZ2).

Timing Comments Assertion/Negation—The same as A0–A31.
High Impedance—The same as A0–A31.

7.2.4.3.2 Transfer Burst (TBST)—Input
Following are the state meaning and timing comments for the TBST input signal.

State Meaning Asserted/Negated— For the I/O transfer protocol, this signal forms
part of the I/O transfer code; see Section 7.2.4.1, “Transfer Type
(TT0–TT4).”

Timing Comments Assertion/Negation—The same as A0–A31.

7.2.4.4 Transfer Code (TC0–TC2)—Output
The transfer code (TC0–TC2) consists of three output signals on the 604 that, when
combined with the WT signal, provide additional information about the transaction in
progress. Following are the state meaning and timing comments for the TC0–TC2 signals.

State Meaning Asserted/Negated—Represents a special encoding for the transfer in
progress (see Table 7-3).

Timing Comments Assertion/Negation—The same as A0–A31.
High Impedance—The same as A0–A31.

Table 7-3. Encodings for TC0–TC2 Signals

Transfer Type WT TC0 TC1 TC2 Transaction

Write-with-kill 1 1 0 0 Cache copyback

Write-with-kill 0 1 0 0 Block invalidate
(dcbf)

Write-with-kill 0 0 0 0 Block clean
(dcbst)

Write-with-kill 0 0 1 0 Snoop push
(read operation)

7-14 PowerPC 604 RISC Microprocessor User's Manual

Note: 1. Includes both ordinary and atomic read and read-with-intent-to-modify operations.

2. ICBI operation is distinguished from kill block by assertion of TT4 bit.

3. W = write-through bit from translation.

The value shown in the WT column reflects the actual logic value seen on the WT input signal.

7.2.4.5 Cache Inhibit (CI)—Output
The cache inhibit (CI) signal is an output signal on the 604. Following are the state meaning
and timing comments for the CI signal.

State Meaning Asserted—Indicates that a single-beat transfer will not be cached,
reflecting the setting of the I bit for the block or page that contains
the address of the current transaction.

Negated—Indicates that a burst transfer will allocate a line in the 604
data cache.

Timing Comments Assertion/Negation—The same as A0–A31.
High Impedance—The same as A0–A31.

Write-with-kill 0 1 0 0 Snoop push
(read-with-intent-to-modify)

Write-with-kill 0 0 0 0 Snoop push
(clean operation)

Write-with-kill 0 1 0 0 Snoop push
(flush operation)

Kill block x 1 0 0 Kill block de-allocate
(dcbi)

Kill block 1 0 0 0 Kill block & allocate
with no cast-out (dcbz)

Kill block 1 0 0 1 Kill block & allocate
with cast-out (dcbz)

Kill block 1 0 0 0 Kill block
Write to shared block

Read1 W3 0 x 0 Data read
with no cast-out

Read W 0 x 1 Data read
with cast-out

Read W 1 x 0 Instruction read

ICBI x 1 0 0 Kill block and de-allocate
(icbi)2

Table 7-3. Encodings for TC0–TC2 Signals (Continued)

Transfer Type WT TC0 TC1 TC2 Transaction

Chapter 7. Signal Descriptions 7-15

7.2.4.6 Write-Through (WT)—Output
The write-through (WT) signal is an output signal on the 604. Following are the state
meaning and timing comments for the WT signal.

State Meaning Asserted—Indicates that a single-beat transaction is write-through,
reflecting the value of the W bit for the block or page that contains
the address of the current transaction.

Negated—Indicates that a transaction is not write-through.

Timing Comments Assertion/Negation—The same as A0–A31.
High Impedance—The same as A0–A31.

7.2.4.7 Global (GBL)
The global (GBL) signal is an input/output signal on the 604.

7.2.4.7.1 Global (GBL)—Output
Following are the state meaning and timing comments for the GBL output signal.

State Meaning Asserted—Indicates that a transaction is global, reflecting the setting
of the M bit for the block or page that contains the address of the
current transaction (except in the case of copy-back operations,
which are nonglobal.)

Negated—Indicates that a transaction is not global.

Timing Comments Assertion/Negation—The same as A0–A31.
High Impedance—The same as A0–A31.

7.2.4.7.2 Global (GBL)—Input
Following are the state meaning and timing comments for the GBL input signal.

State Meaning Asserted—Indicates that a transaction may be snooped by the 604.
The 604 will not snoop, regardless of GBL signal assertion, reserved
transaction types, bus operations associated with the eieio, eciwx,
ecowx instructions, or the address-only bus transaction associated
with a lwarx reservation set.

Negated—Indicates that a transaction is not snooped by the 604.

Timing Comments Assertion/Negation—The same as A0–A31.

7.2.4.8 Cache Set Element (CSE0–CSE1)—Output
Following are the state meaning and timing comments for the CSE0–CSE1 signals.

State Meaning Asserted/Negated—Represents the cache replacement set element
for the current transaction reloading into or writing out of the cache.
Can be used with the address bus and the transfer attribute signals to
externally track the state of each cache line in the 604’s cache.

Timing Comments Assertion/Negation—The same as A0–A31.
High Impedance—The same as A0–A31.

7-16 PowerPC 604 RISC Microprocessor User's Manual

7.2.5 Address Transfer Termination Signals
The address transfer termination signals are used to indicate either that the address phase
of the transaction has completed successfully or must be repeated, and when it should be
terminated. For detailed information about how these signals interact, see Section 8.3.3,
“Address Transfer Termination.”

7.2.5.1 Address Acknowledge (AACK)—Input
The address acknowledge (AACK) signal is an input signal (input-only) on the 604.
Following are the state meaning and timing comments for the AACK signal.

State Meaning Asserted—Indicates that the address phase of a transaction is
complete. The address bus will go to a high impedance state on the
next bus clock cycle. The 604 samples ARTRY on the bus clock
cycle following the assertion of AACK.

Negated—Indicates that the address bus and the transfer attributes
must remain driven, if negated during ABB.

Timing Comments Assertion—May occur as early as the bus clock cycle after TS or
XATS is asserted; assertion can be delayed to allow adequate address
access time for slow devices. For example, if an implementation
supports slow snooping devices, an external arbiter can postpone the
assertion of AACK.

Negation—Must occur one bus clock cycle after the assertion of
AACK.

7.2.5.2 Address Retry (ARTRY)
The address retry (ARTRY) signal is both an input and output signal on the 604.

7.2.5.2.1 Address Retry (ARTRY)—Output
Following are the state meaning and timing comments for the ARTRY output signal.

State Meaning Asserted—Indicates that the 604 detects a condition in which a
snooped address tenure must be retried. If the 604 needs to update
memory as a result of the snoop that caused the retry, the 604 asserts
BR the cycle after the ARTRY is asserted.

High Impedance—Indicates that the 604 does not need the snooped
address tenure to be retried.

Timing Comments Assertion—Asserted the third bus cycle following the assertion of
TS if a retry is required.

Negation—Occurs the second bus cycle after the assertion of AACK.
Since this signal may be simultaneously driven by multiple devices,
it is driven negated in the following ways:

• 1:1 and 2:1 bus ratio—high-impedance for 1/2 bus clock cycle,
deasserted for 1 bus clock cycle, then high-impedance.

Chapter 7. Signal Descriptions 7-17

• 3:1 bus ratio—high-impedance for 1/3 bus clock cycle, deasserted
for 2/3 bus clock cycle, then high-impedance.

• 3:2 bus ratio—high-impedance for 1/3 system clock cycle,
deasserted for 1 bus clock cycle, then high-impedance.

This special method of negation may be disabled by setting the
disable snoop response high state restore bit (bit 7) in HID0.

7.2.5.2.2 Address Retry (ARTRY)—Input
Following are the state meaning and timing comments for the ARTRY input signal.

State Meaning Asserted—If the 604 is the address bus master, ARTRY indicates
that the 604 must retry the preceding address tenure and immediately
negate BR (if asserted). If the associated data tenure has already
started, the 604 will also abort the data tenure immediately, even if
the burst data has been received. If the 604 is not the address bus
master, this input indicates that the 604 should immediately negate
BR for one bus clock cycle following the assertion of ARTRY by the
snooping bus master to allow an opportunity for a copy-back
operation to main memory. Note that the subsequent address
presented on the address bus may not be the same one associated
with the assertion of the ARTRY signal.

Negated/High Impedance—Indicates that the 604 does not need to
retry the last address tenure.

Timing Comments Assertion—May occur as early as the second cycle following the
assertion of TS or XATS, and must occur by the bus clock cycle
immediately following the assertion of AACK if an address retry is
required.

Negation—Must occur during the second cycle after the assertion of
AACK.

7.2.5.3 Shared (SHD)
The shared (SHD) signal is both an input and output signal on the 604.

7.2.5.3.1 Shared (SHD)—Output
Following are the state meaning and timing comments for the SHD output signal.

State Meaning Asserted—Indicates that the 604 had a cache hit on a shared block,
or, if asserted with ARTRY, a snoop push of modified data is
required.

Negated/High Impedance—Indicates that the 604 did not have a
cache hit on the snooped address.

Timing Comments Assertion/Negation—Same as ARTRY.

High Impedance—Same as ARTRY.

7-18 PowerPC 604 RISC Microprocessor User's Manual

7.2.5.3.2 Shared (SHD)—Input
Following are the state meaning and timing comments for the SHD input signal.

State Meaning Asserted—If ARTRY is not asserted, indicates that for a self-
generated transaction the 604 must allocate the incoming cache
block as shared-unmodified.

Negated—If ARTRY is not asserted, indicates that the address for
the current transaction is not in any other cache.

Timing Comments Assertion/Negation—The same as ARTRY.

7.2.6 Data Bus Arbitration Signals
Like the address bus arbitration signals, data bus arbitration signals maintain an orderly
process for determining data bus mastership. Note that there is no data bus arbitration signal
equivalent to the address bus arbitration signal BR (bus request), because, except for
address-only transactions, TS and XATS imply data bus requests. For a detailed description
on how these signals interact, see Section 8.4.1, “Data Bus Arbitration.”

One special signal, DBWO, allows the 604 to be configured dynamically to write data out
of order with respect to read data. For detailed information about using DBWO, see
Section 8.11, “Using Data Bus Write Only.”

7.2.6.1 Data Bus Grant (DBG)—Input
The data bus grant (DBG) signal is an input signal (input-only) on the 604. Following are
the state meaning and timing comments for the DBG signal.

State Meaning Asserted—Indicates that the 604 may, with the proper qualification,
assume mastership of the data bus. The 604 derives a qualified data
bus grant when DBG is asserted and DBB, DRTRY, and ARTRY are
negated; that is, the data bus is not busy (DBB is negated), there is no
outstanding attempt to retry the current data tenure (DRTRY is
negated), and there is no outstanding attempt to perform an ARTRY
of the associated address tenure.

Negated—Indicates that the 604 must hold off its data tenures.

Timing Comments Assertion—May occur any time to indicate the 604 is free to take
data bus mastership. It is not sampled until TS or XATS is asserted.

Negation—May occur at any time to indicate the 604 cannot assume
data bus mastership.

7.2.6.2 Data Bus Write Only (DBWO)—Input
The data bus write only (DBWO) signal is an input signal (input-only) on the 604.
Following are the state meaning and timing comments for the DBWO signal.

Chapter 7. Signal Descriptions 7-19

State Meaning Asserted—Indicates that the 604 may run the data bus tenure for an
outstanding write address even if a read address is pipelined before
the write address. Refer to Section 8.11, “Using Data Bus Write
Only,” for detailed instructions for using DBWO.

Negated—Indicates that the 604 must run the data bus tenures in the
same order as the address tenures.

Timing Comments Assertion—Must occur no later than a qualified DBG for an
outstanding write tenure. DBWO is only recognized by the 604 on
the clock of a qualified DBG. If no write requests are pending, the
604 will ignore DBWO and assume data bus ownership for the next
pending read request.

Negation—May occur any time after a qualified DBG and before the
next assertion of DBG.

7.2.6.3 Data Bus Busy (DBB)
The data bus busy (DBB) signal is both an input and output signal on the 604.

7.2.6.3.1 Data Bus Busy (DBB)—Output
Following are the state meaning and timing comments for the DBB output signal.

State Meaning Asserted—Indicates that the 604 is the data bus master. The 604
always assumes data bus mastership if it needs the data bus and is
given a qualified data bus grant (see DBG).

Negated—Indicates that the 604 is not using the data bus.

Timing Comments Assertion—Occurs during the bus clock cycle following a qualified
DBG.

Negation—Occurs a fractional bus clock cycle following the
assertion of the final TA.

High Impedance—Occurs one-half bus cycle (two-thirds bus cycle
when using 3:1 clock mode, and one-third bus cycle when using 3:2
bus ratio) after DBB is negated.

7.2.6.3.2 Data Bus Busy (DBB)—Input
Following are the state meaning and timing comments for the DBB input signal. Note that
the DBB input signal cannot be used in systems that use read data streaming.

State Meaning Asserted—Indicates that another device is bus master.
Negated—Indicates that the data bus is free (with proper
qualification, see DBG) for use by the 604.

Timing Comments Assertion—Must occur when the 604 must be prevented from using
the data bus.

Negation—May occur whenever the data bus is available.

7-20 PowerPC 604 RISC Microprocessor User's Manual

7.2.7 Data Transfer Signals
Like the address transfer signals, the data transfer signals are used to transmit data and to
generate and monitor parity for the data transfer. For a detailed description of how the data
transfer signals interact, see Section 8.4.3, “Data Transfer.”

7.2.7.1 Data Bus (DH0–DH31, DL0–DL31)
The data bus (DH0–DH31 and DL0–DL31) consists of 64 signals that are both input and
output on the 604. Following are the state meaning and timing comments for the DH and
DL signals.

State Meaning The data bus has two halves—data bus high (DH) and data bus low
(DL). See Table 7-4 for the data bus lane assignments. Direct-store
operations use DH exclusively (that is, there are no 64-bit, I/O
transfers).

Timing Comments The data bus is driven once for noncached transactions and four
times for cache transactions (bursts).

7.2.7.1.1 Data Bus (DH0–DH31, DL0–DL31)—Output
Following are the state meaning and timing comments for the DH and DL output signals.

State Meaning Asserted/Negated—Represents the state of data during a data write.
Byte lanes not selected for data transfer will not supply valid data.

Timing Comments Assertion/Negation—Initial beat coincides with DBB and, for
bursts, transitions on the bus clock cycle following each assertion of
TA.

High Impedance—Occurs on the bus clock cycle after the final
assertion of TA.

Table 7-4. Data Bus Lane Assignments

Data Bus Signals Byte Lane

DH0–DH7 0

DH8–DH15 1

DH16–DH23 2

DH24–DH31 3

DL0–DL7 4

DL8–DL15 5

DL16–DL23 6

DL24–DL31 7

Chapter 7. Signal Descriptions 7-21

7.2.7.1.2 Data Bus (DH0–DH31, DL0–DL31)—Input
Following are the state meaning and timing comments for the DH and DL input signals.

State Meaning Asserted/Negated—Represents the state of data during a data read
transaction.

Timing Comments Assertion/Negation—Data must be valid on the same bus clock cycle
that TA is asserted.

7.2.7.2 Data Bus Parity (DP0–DP7)
The eight data bus parity (DP0–DP7) signals on the 604 are both output and input signals.

7.2.7.2.1 Data Bus Parity (DP0–DP7)—Output
Following are the state meaning and timing comments for the DP output signals.

State Meaning Asserted/Negated—Represents odd parity for each of eight bytes of
data write transactions. Odd parity means that an odd number of bits,
including the parity bit, are driven high. The signal assignments are
listed in Table 7-5.

Timing Comments Assertion/Negation—The same as DL0–DL31.
High Impedance—The same as DL0–DL31.

7.2.7.2.2 Data Bus Parity (DP0–DP7)—Input
Following are the state meaning and timing comments for the DP input signals.

State Meaning Asserted/Negated—Represents odd parity for each byte of read data.
Parity is checked on all data byte lanes during data read operations,
regardless of the size of the transfer. During direct-store read
operations, only the DP0-DP3 signals (corresponding to byte lanes
DH0–DH31) are checked for odd parity. Detected even parity causes
a checkstop or a machine check exception (and assertion of DPE) if
data parity errors are enabled in the HID register. (The DP0–DP7
signals function in the same way as the AP0-AP3 signals.)

Table 7-5. DP0–DP7 Signal Assignments

Signal Name Signal Assignments

DP0 DH0–DH7

DP1 DH8–DH15

DP2 DH16–DH23

DP3 DH24–DH31

DP4 DL0–DL7

DP5 DL8–DL15

DP6 DL16–DL23

DP7 DL24–DL31

7-22 PowerPC 604 RISC Microprocessor User's Manual

Timing Comments Assertion/Negation—The same as DL0–DL31.

7.2.7.3 Data Parity Error (DPE)—Output
The data parity error (DPE) signal is an output signal (output-only) on the 604. Note that
the (DPE) signal is an open-drain type output, and requires an external pull-up resistor (for
example, 10 kΩ to Vdd) to assure proper deassertion of the (DPE) signal. Following are the
state meaning and timing comments for the DPE signal.

State Meaning Asserted—Indicates incorrect data bus parity.
Negated—Indicates correct data bus parity.

Timing Comments Assertion—Occurs on the second bus clock cycle after TA is asserted
to the 604.

High Impedance—Occurs on the third bus clock cycle after TA is
asserted to the 604.

7.2.7.4 Data Bus Disable (DBDIS)—Input
The Data Bus Disable (DBDIS) signal is an input signal (input-only) on the 604. Following
are the state meanings and timing comments for the DBDIS signal.

State Meaning Asserted—Indicates (for a write transaction) that the 604 must
release data bus and the data bus parity to high impedance during the
following cycle. The data tenure will remain active, DBB will remain
driven, and the transfer termination signals will still be monitored by
the 604.

Negated—Indicates the data bus should remain normally driven.
DBDIS is ignored during read transactions.

Timing Comments Assertion/Negation—May be asserted on any clock cycle when the
604 is driving, or will be driving the data bus; may remain asserted
multiple cycles.

7.2.8 Data Transfer Termination Signals
Data termination signals are required after each data beat in a data transfer. Note that in a
single-beat transaction, the data termination signals also indicate the end of the tenure,
while in burst accesses, the data termination signals apply to individual beats and indicate
the end of the tenure only after the final data beat.

For a detailed description of how these signals interact, see Section 8.4.4, “Data Transfer
Termination.”

Chapter 7. Signal Descriptions 7-23

7.2.8.1 Transfer Acknowledge (TA)—Input
The transfer acknowledge (TA) signal is an input signal (input-only) on the 604. Following
are the state meaning and timing comments for the TA signal.

State Meaning Asserted— Indicates that a single-beat data transfer completed
successfully or that a data beat in a burst transfer completed
successfully (unless DRTRY is asserted on the next bus clock cycle).
Note that TA must be asserted for each data beat in a burst
transaction. For more information, see Section 8.4.4, “Data Transfer
Termination.”

Negated—(During DBB) indicates that, until TA is asserted, the 604
must continue to drive the data for the current write or must wait to
sample the data for reads.

Timing Comments Assertion—When the bus is configured for normal operation, must
not occur earlier than one bus clock cycle before the beginning of the
valid ARTRY window, or when the bus is configured for fast-L2
mode, must not be asserted earlier than the first cycle of a valid
ARTRY window; otherwise, assertion may occur at any time during
the assertion of DBB. The system can withhold assertion of TA to
indicate that the 604 should insert wait states to extend the duration
of the data beat.

Negation—Must occur after the bus clock cycle of the final (or only)
data beat of the transfer. For a burst transfer, the system can assert TA
for one bus clock cycle and then negate it to advance the burst
transfer to the next beat and insert wait states during the next beat.

7.2.8.2 Data Retry (DRTRY)—Input
The data retry (DRTRY) signal is input only on the 604. Following are the state meaning
and timing comments for the DRTRY signal.

State Meaning Asserted—Indicates that the 604 must invalidate the data from the
previous read operation.

Negated—Indicates that data presented with TA on the previous read
operation is valid. This is essentially a late TA to allow speculative
forwarding of data (with TA) during reads. Note that DRTRY is
ignored for write transactions.

7-24 PowerPC 604 RISC Microprocessor User's Manual

Timing Comments Assertion—Must occur during the bus clock cycle immediately after
TA is asserted if a retry is required. The DRTRY signal may be held
asserted for multiple bus clock cycles. When DRTRY is negated,
data must have been valid on the previous clock with TA asserted.

Negation—Must occur during the bus clock cycle after a valid data
beat. This may occur several cycles after DBB is negated, effectively
extending the data bus tenure.

Startup—DRTRY is sampled at the negation of HRESET; if DRTRY
is asserted, fast-L2 mode is selected. If DRTRY is negated at startup,
DRTRY is enabled. DRTRY must be negated during normal
operation (following HRESET) if fast-L2/data streaming mode is
selected.

7.2.8.3 Transfer Error Acknowledge (TEA)—Input
The transfer error acknowledge (TEA) signal is input only on the 604. Following are the
state meaning and timing comments for the TEA signal.

State Meaning Asserted—Indicates that a bus error occurred. Causes a machine
check exception (and possibly causes the processor to enter
checkstop state if machine check enable bit is cleared
(MSR[ME] = 0)). For more information, see Section 4.5.2.2,
“Checkstop State (MSR[ME] = 0).” Assertion terminates the current
transaction; that is, assertion of TA and DRTRY are ignored. The
assertion of TEA causes the negation/high impedance of DBB in the
next clock cycle. However, data entering the GPR or the cache are
not invalidated. Note that the architecture specification refers to all
exceptions as interrupts.

Negated—Indicates that no bus error was detected.

Timing Comments Assertion—May be asserted while DBB is asserted, or during valid
DRTRY window. In fast-L2/data streaming mode, the 604 will not
recognize TEA the cycle after TA during a read operation due to the
absence of a DRTRY assertion opportunity. The TEA signal should
be asserted for one cycle only.

Negation— The TEA signal must be negated no later than the
negation of DBB or the last DRTRY. The 604 deasserts DBB within
one bus clock cycle following the assertion of TEA.

7.2.9 System Interrupt, Checkstop, and Reset Signals
Most of the system interrupt, checkstop, and reset signals are input signals that indicate
when exceptions are received, when checkstop conditions have occurred, and when the 604
must be reset. The 604 generates the output signal, CKSTP_OUT, when it detects a
checkstop condition. For a detailed description of these signals, see Section 8.8, “Interrupt,
Checkstop, and Reset Signals.”

Chapter 7. Signal Descriptions 7-25

7.2.9.1 Interrupt (INT)—Input
The interrupt (INT) signal is input only. Following are the state meaning and timing
comments for the INT signal.

State Meaning Asserted—The 604 initiates an interrupt if MSR[EE] is set;
otherwise, the 604 ignores the interrupt. To guarantee that the 604
will take the external interrupt, the INT signal must be held active
until the 604 takes the interrupt; otherwise, the 604 will take an
external interrupt depending on whether the MSR[EE] bit was set
while the INT signal was held active.

Negated—Indicates that normal operation should proceed. See
Section 8.8.1, “External Interrupts.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. The INT input is level-sensitive.

Negation—Should not occur until interrupt is taken.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), the INT signal should be asserted and negated synchronously with
the SYSCLK signal.

7.2.9.2 System Management Interrupt (SMI)—Input
The system management interrupt (SMI) signal is input only. Following are the state
meaning and timing comments for the SMI signal.

State Meaning Asserted—The 604 initiates a system management interrupt
operation if the MSR[EE] is set; otherwise, the 604 ignores the
interrupt condition. The system must hold the SMI signal active until
the interrupt is taken.

Negated—Indicates that normal operation should proceed. See
Section 8.8.1, “External Interrupts.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. The SMI input is level-sensitive.

Negation—Should not occur until interrupt is taken.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), the SMI signal should be asserted and negated synchronously with
the SYSCLK signal.

7.2.9.3 Machine Check Interrupt (MCP)—Input
The machine check interrupt (MCP) signal is input only on the 604. Following are the state
meaning and timing comments for the MCP signal.

7-26 PowerPC 604 RISC Microprocessor User's Manual

State Meaning Asserted—The 604 initiates a machine check interrupt operation if
MSR[EE] and HID0[EMCP] are set; if MSR[EE] is cleared and
HID0[EMCP] is set, the 604 must terminate operation by internally
gating off all clocks, and releasing all outputs (except CKSTP_OUT)
to the high impedance state. If HID0[EMCP] is cleared, the 604
ignores the interrupt condition. The MCP signal must be held
asserted for two bus clock cycles.

Negated—Indicates that normal operation should proceed. See
Section 8.8.1, “External Interrupts.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. The MCP input is negative edge-
sensitive.

Negation—May be negated two bus cycles after assertion.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), the MCP signal should be asserted and negated synchronously with
the SYSCLK signal.

7.2.9.4 Checkstop Input(CKSTP_IN)—Input
The checkstop input (CKSTP_IN) signal is input only on the 604. Following are the state
meaning and timing comments for the CKSTP_IN signal.

State Meaning Asserted—Indicates that the 604 must terminate operation by
internally gating off all clocks, and release all outputs (except
CKSTP_OUT) to the high impedance state. Once CKSTP_IN has
been asserted it must remain asserted until the system has been reset.

Negated—Indicates that normal operation should proceed. See
Section 8.8.2, “Checkstops.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks.

Negation—May occur any time after the CKSTP_OUT output signal
has been asserted.

7.2.9.5 Checkstop Output (CKSTP_OUT)—Output
The checkstop (CKSTP_OUT) signal is output only on the 604. Note that the
(CKSTP_OUT) signal is an open-drain type output, and requires an external pull-up
resistor (for example, 10 kΩ to Vdd) to assure proper deassertion of the (CKSTP_OUT)
signal. Following are the state meaning and timing comments for the CKSTP_OUT signal.

State Meaning Asserted—Indicates that the 604 has detected a checkstop condition
and has ceased operation.

Negated—Indicates that the 604 is operating normally.
See Section 8.8.2, “Checkstops.”

Chapter 7. Signal Descriptions 7-27

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the 604 input clocks.

Negation—Is negated upon assertion of HRESET.

7.2.9.6 Reset Signals
There are two reset signals on the 604—hard reset (HRESET) and soft reset (SRESET).
Descriptions of the reset signals are as follows:

7.2.9.6.1 Hard Reset (HRESET)—Input
The hard reset (HRESET) signal is input only and must be used at power-on to properly
reset the processor. Following are the state meaning and timing comments for the HRESET
signal.

State Meaning Asserted—Initiates a complete hard reset operation when this input
transitions from asserted to negated. Causes a reset exception as
described in Section 4.5.1, “System Reset Exception (0x00100).”
Output drivers are released to high impedance within five clocks
after the assertion of HRESET.

Negated—Indicates that normal operation should proceed. See
Section 8.8.3, “Reset Inputs.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the 604 input clock; must be held asserted for a
minimum of 255 clock cycles.

Negation—May occur any time after the minimum reset pulse width
has been met.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), the HRESET signal should be asserted and negated synchronously
with the SYSCLK signal. The HRESET signal has additional functionality in certain test
modes.

7.2.9.6.2 Soft Reset (SRESET)—Input
The soft reset (SRESET) signal is input only. Following are the state meaning and timing
comments for the SRESET signal.

State Meaning Asserted— Initiates processing for a reset exception as described in
Section 4.5.1, “System Reset Exception (0x00100).”

Negated—Indicates that normal operation should proceed. See
Section 8.8.3, “Reset Inputs.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the 604 input clock. The SRESET input is
negative edge-sensitive.

Negation—May be negated two bus cycles after assertion.

7-28 PowerPC 604 RISC Microprocessor User's Manual

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), the SRESET signal should be asserted and negated synchronously
with the SYSCLK signal. The SRESET signal has additional functionality in certain test
modes.

7.2.10 Processor Configuration Signals
The signals described in this section provide inputs for controlling the 604’s timebase,
signal drive capabilities, L2 cache access, bus snooping while in nap mode, and PLL
configuration, along with output signals to indicate that a storage reservation has been set,
and that the 604’s internal clocking has stopped.

7.2.10.1 Timebase Enable (TBEN)—Input
The timebase enable (TBEN) signal is input only on the 604. Following are the state
meanings and timing comments for the TBEN signal.

State Meaning Asserted—Indicates that the timebase should continue clocking.
This input is essentially a “count enable” control for the timebase
counter.

Negated—Indicates the timebase should stop clocking.

Timing Comments Assertion/Negation—May occur on any cycle.

7.2.10.2 Reservation (RSRV)—Output
The reservation (RSRV) signal is output only on the 604. Following are the state meaning
and timing comments for the RSRV signal.

State Meaning Asserted/Negated—Represents the state of the reservation
coherency bit in the reservation address register that is used by the
lwarx and stwcx. instructions. See Section 8.9.1, “Support for the
lwarx/stwcx. Instruction Pair.”

Timing Comments Assertion/Negation—Occurs synchronously one bus clock cycle
after the execution of an lwarx instruction that sets the internal
reservation condition.

7.2.10.3 L2 Intervention (L2_INT)—Input
The L2 intervention (L2_INT) signal is input only on the 604. Following are the state
meanings and timing comments for the L2_INT signal.

State Meaning Asserted— Indicates that the current data transaction requires
intervention from other bus masters.

Negated—Indicates that the current data transaction requires no
intervention from other bus masters.

Timing Comments Assertion/Negation—The L2_INT signal is sampled by the 604
concurrently with the first assertion of TA for a given data tenure.

Chapter 7. Signal Descriptions 7-29

7.2.10.4 Run (RUN)—Input
The run (RUN) signal is input only on the 604. Following are the state meanings and timing
comments for the RUN signal.

State Meaning Asserted— Forces the internal clocks to continue running during nap
mode, allowing bus snooping to occur.

Negated—Internal clocks are inhibited from running when 604 is in
nap mode.

For additional information regarding the nap mode, refer to Section 4.5.16, “Power
Management.”

Timing Comments Assertion/Negation—Assertion may occur asynchronously to the
604 input clock; and must be held asserted for a minimum of 3 bus
clock cycles before snoop activity.

7.2.10.5 Halted (HALTED) —Output
The halted (HALTED) signal is output only on the 604. Following are the state meaning
and timing comments for the HALTED signal.

State Meaning Asserted—Indicates that the internal clocks have stopped due to the
604 entering nap mode, or a JTAG/COP request.

Negated—Indicates that internal clocks are running.

Timing Comments Assertion/Negation—Occurs synchronously with internal processor
clock.

For additional information regarding the nap mode, refer to Section 4.5.16, “Power
Management.”

7.2.11 COP/Scan Interface
The 604 has extensive on-chip test capability including the following:

• Built-in instruction and data cache self test (BIST)
• Debug control/observation (COP)
• Boundary scan (IEEE 1149.1 compliant interface)

The BIST hardware is not exercised as part of the POR sequence. The COP and boundary
scan logic are not used under typical operating conditions.

Detailed discussion of the 604 test functions is beyond the scope of this document;
however, sufficient information has been provided to allow the system designer to disable
the test functions that would impede normal operation.

The COP/scan interface is shown in Figure 7-2. For more information, see Section 8.10.1,
“IEEE 1149.1 Interface Description.”

7-30 PowerPC 604 RISC Microprocessor User's Manual

Figure 7-2. IEEE 1149.1-Compliant Boundary Scan Interface

7.2.12 Clock Signals
The clock signal inputs of the 604 determine the system clock frequency and provide a
flexible clocking scheme that allows the processor to operate at an integer multiple of the
system clock frequency. An analog voltage input signal is provided to supply stable power
for the internal PLL clock generator.

Refer to the 604 hardware specifications for exact timing relationships of the clock signals.

7.2.12.1 System Clock (SYSCLK)—Input
The 604 requires a single system clock (SYSCLK) input. This input sets the frequency of
operation for the bus interface. Internally, the 604 uses a phase-lock loop (PLL) circuit to
generate a master clock for all of the CPU circuitry (including the bus interface circuitry)
which is phase-locked to the SYSCLK input. The master clock may be set to a multiple (x1,
x1.5, x2, or x3) of the SYSCLK frequency allowing the CPU core to operate at an equal or
greater frequency than the bus interface.

State Meaning Asserted/Negated—The SYSCLK input is the primary clock input
for the 604, and represents the bus clock frequency for 604 bus
operation. Internally, the 604 may be operating at a multiple of the
bus clock frequency.

Timing Comments Duty cycle—Refer to the 604 hardware specifications for timing
comments.
Note: SYSCLK is used as the frequency reference for the internal
PLL clock generator, and must not be suspended or varied during
normal operation to ensure proper PLL operation.

TDI (Test Data Input)

TMS (Test Mode Select)

TCK (Test Clock input)

TDO (Test Data Output)

TRST (Test Reset)

Chapter 7. Signal Descriptions 7-31

7.2.12.2 Test Clock (CLK_OUT)—Output
The Test Clock (CLK_OUT) signal is an output signal (output-only) on the 604. Following
are the state meaning and timing comments for the CLK_OUT signal.

State Meaning Asserted/Negated—Provides PLL clock output for PLL testing and
monitoring. CLK_OUT clocks at the processor clock frequency. The
CLK_OUT signal is provided for testing purposes only.

Timing Comments Assertion/Negation—Refer to the 604 hardware specifications for
timing comments.

7.2.12.3 Analog VDD (AVDD)—Input
The analog VDD signal is an input for supplying a stable voltage to the on-chip phase-
locked loop clock generator. For more information about the electrical requirements of the
AVDD input signal, refer to the 604 electrical specification.

7.2.12.4 PLL Configuration (PLL_CFG0–PLL_CFG3)—Input
The PLL (phase-lock loop) is configured by the PLL_CFG0–PLL_CFG3 pins. For a given
SYSCLK (bus) frequency, the PLL configuration pins set the internal CPU frequency of
operation.

Following are the state meaning and timing comments for the PLL_CFG0–PLL_CFG3
signals.

State Meaning Asserted/Negated— Configures the operation of the PLL and the
internal processor clock frequency. Settings are based on the desired
bus and internal frequency of operation.

Timing Comments Assertion/Negation—Must remain stable during operation.

Table 7-6. PLL Configuration

Bus, CPU and PLL Frequencies

PLL_CFG
0–3

CPU/
SYSCLK

 Ratio

Bus
16.6 MHz

Bus
20 MHz

Bus
25 MHz

Bus
33.3 MHz

Bus
40 MHz

Bus
50 MHz

Bus
66.6 MHz

00 00 1:1 — — — — — 50
(100)

66.6
(133)

0001 1:1 — — 25
(100)

33.3
(133)

40
(160)

50
(200)

—

0010 1:1 16.6
 (133)

20
(160)

25
(200)

— — — —

0100 2:1 — — 50
(100)

66.6
(133)

80
(160)

100
(200)

—

0101 2:1 33.3
 (133)

40
(160)

50
(200)

— — — —

7-32 PowerPC 604 RISC Microprocessor User's Manual

Notes: 1. Some PLL configurations may select bus, CPU, or PLL frequencies which are not useful, not
supported, or not tested for by the 604. For complete information, see the 604 hardware
specifications for timing comments. PLL frequencies (shown in parenthesis in the table above)
should not fall below 100 MHz, and should not exceed 200 MHz.

2. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly, and the bus
is set for 1:1 mode operation. The PLL-bypass mode is for test only, and is not intended for
functional use. In clock-off mode, no clocking occurs inside the 604 regardless of the SYSCLK
input.

3. PLL_CFG(0:1) selects the CPU-to-bus ratio (1:1,1.5:1, 2:1, 3:1), PLL_CFG(2:3) selects the
CPU-to-PLL multiplier (x2, x4, x8).

1000 3:1 — — 75
(150)

100
(200)

— — —

1100 1.5:1 — — — 50
(100)

60
(120)

75
(150)

100
(200)

0011 PLL Bypass

Table 7-6. PLL Configuration (Continued)

Bus, CPU and PLL Frequencies

PLL_CFG
0–3

CPU/
SYSCLK

 Ratio

Bus
16.6 MHz

Bus
20 MHz

Bus
25 MHz

Bus
33.3 MHz

Bus
40 MHz

Bus
50 MHz

Bus
66.6 MHz

Chapter 8. System Interface Operation 8-1

Chapter 8
System Interface Operation
80
80

This chapter describes the PowerPC 604 microprocessor bus interface and its operation. It
shows how the 604 signals, defined in Chapter 7, “Signal Descriptions,” interact to perform
address and data transfers.

8.1 PowerPC 604 Microprocessor System Interface
Overview

The system interface prioritizes requests for bus operations from the instruction and data
caches, and performs bus operations per the 604 bus protocol. It includes address register
queues, prioritization logic, and the bus control unit. The system interface latches snoop
addresses for snooping in the data cache and in the address register queues, and snoops for
direct-store reply operations and for reservations controlled by the Load Word and Reserve
Indexed (lwarx) and Store Word Conditional Indexed (stwcx.) instructions. The interface
allows two level of pipelining; that is, with certain restrictions discussed later, there can be
three outstanding transactions at any given time. Accesses are prioritized with load
operations preceding store operations.

Instructions are automatically fetched from the memory system into the instruction unit
where they are dispatched to the execution units at a peak rate of four instructions per clock.
Conversely, load and store instructions explicitly specify the movement of operands to and
from the integer and floating-point register files and the memory system.

When the 604 encounters an instruction or data access, it calculates the logical address
(effective address in the architecture specification) and uses the low-order address bits to
check for a hit in the on-chip, 16-Kbyte instruction and data caches. During cache lookup,
the instruction and data memory management units (MMUs) use the higher-order address
bits to calculate the virtual address, from which they calculate the physical address (real
address in the architecture specification). The physical address bits are then compared with
the corresponding cache tag bits to determine if a cache hit occurred. If the access misses
in the corresponding cache, the physical address is used to access system memory.

In addition to the loads, stores, and instruction fetches, the 604 performs hardware table
search operations following TLB misses, cache cast-out operations when least-recently
used cache lines are written to memory after a cache miss, and cache-line snoop push-out
operations when a modified cache line experiences a snoop hit from another bus master.

8-2 PowerPC 604 RISC Microprocessor User's Manual

Figure 8-1 shows the address path from the execution units and instruction fetcher, through
the translation logic to the caches and system interface logic.

The 604 uses separate address and data buses and a variety of control and status signals for
performing reads and writes. The address bus is 32 bits wide and the data bus is 64 bits
wide. The interface is synchronous—all 604 inputs are sampled at and all outputs are driven
from the rising edge of the bus clock. The bus can run at the full processor-clock frequency,
or at 1/2, 1/3 or 2/3 the frequency of the processor clock. While the 604 operates at
3.3 Volts, all the I/O signals are 5.0-Volt TTL-compatible.

8.1.1 Operation of the Instruction and Data Caches
The 604 provides independent instruction and data caches. Each cache is a physically-
addressed, 16-Kbyte cache with four-way set associativity. Both caches consist of 128 sets
of four cache lines, with eight words in each cache line.

Because the data cache on the 604 is an on-chip, write-back primary cache, the predominant
type of transaction for most applications is burst-read memory operations, followed by
burst-write memory operations, direct-store operations, and single-beat (noncacheable or
write-through) memory read and write operations. Additionally, there can be address-only
operations, variants of the burst and single-beat operations (global memory operations that
are snooped, and atomic memory operations, for example), and address retry activity (for
example, when a snooped read access hits a modified line in the cache).

The 604 data cache tags are dual-ported to facilitate efficient coherency checking. This
allows data cache accesses to occur concurrently with snooping operations. Data cache
accesses are only interrupted when the snoop control logic detects a situation where snoop
push of modified data is required to maintain memory coherency.

The 604 supports a four-state coherency protocol that supports the modified, exclusive,
shared and invalid (MESI) cache states. The MESI protocol ensures that the 604 operates
coherently in systems that contain multiple four-state caches, provided that all bus
participants employ similar snooping and coherency control mechanisms.

Cache lines in the 604 are loaded in four beats of 64 bits each. The burst load is performed
as critical-double-word-first. The cache that is being loaded allows internal accesses until
the load completes (that is, the 604 supports cache hits under misses). The critical double
word is simultaneously written to the cache and forwarded to the requesting unit, thus
minimizing stalls due to load delays. If consecutive double words are required from the
same cache line following a cache line miss, the LSU stalls until the entire cache line has
been loaded into the cache,

Chapter 8. System Interface Operation 8-3

Figure 8-1. PowerPC 604 Microprocessor Block Diagram

B
ra

n
ch

 P
ro

ce
ss

in
g

 U
n

it

64
-B

IT
 D

A
T

A
 B

U
S

32
-B

IT
 A

D
D

R
E

S
S

 B
U

S

In
st

ru
ct

io
n

Q
ue

ue
 (

8
w

or
d)

IN
S

T
R

U
C

T
IO

N
 U

N
IT

F
lo

at
in

g
-

P
o

in
t

U
n

it

+
*

/ F
P

S
C

R B
U

S
 IN

T
E

R
F

A
C

E
U

N
IT

64
 B

it

32
 B

it

12
8

B
it

C
O

M
P

LE
T

IO
N

U

N
IT

 1
6-

E
nt

ry

R
eo

rd
er

 B
uf

fe
rT

im
e-

B
as

e
 C

ou
nt

er
/D

ec
re

m
en

te
r

C
lo

ck
M

ul
tip

lie
r

JT
A

G
/C

O
P

In
te

rf
ac

e

12
8

B
it

64
 B

it

64
 B

it

12
8

B
it

D
is

pa
tc

h
U

ni
t

+
/

M
u

lt
ip

le
-

 C
yc

le
 In

te
g

er
U

n
it

I M
M

U

S
R

s

IT
LB

IB
A

T
A

rr
ay

C
R

R

en
am

e-
B

uf
fe

rs
(8

)

C
T

R

C
R

LR

B
T

A
C

B
H

T

*
/

S
in

g
le

-
C

yc
le

 In
te

g
er

U

n
it

s
+

32
 B

it

32
 B

it
32

 B
it

32
 B

it

16
-K

by
te

I C
ac

he
T

ag
s

16
-K

by
te

D
 C

ac
he

T
ag

s

G
P

R
 F

ile
 R

en
am

e
B

uf
fe

rs
 (

12
)

F
P

R
 F

ile
R

en
am

e
B

uf
fe

rs
 (

8)
64

 B
it

64
 B

it

D
 M

M
U

S
R

s

D
T

LB

D
B

A
T

ar
ra

y

R
es

er
va

tio
n

S
ta

tio
n

(2
 E

nt
ry

)

R
es

er
va

tio
n

S
ta

tio
n

(2
 E

nt
ry

)
R

es
er

va
tio

n
S

ta
tio

n
(2

 E
nt

ry
)

R
es

er
va

tio
n

S
ta

tio
n

(2
 E

nt
ry

)

F
in

is
h

Lo
ad

Q
ue

ue
S

to
re

 Q
ue

ue

S
no

op

F
et

ch
er

L
o

ad
/S

to
re

U

n
it

E
A

C
al

cu
la

ti
o

n

+

8-4 PowerPC 604 RISC Microprocessor User's Manual

Cache lines are selected for replacement based on an LRU (least recently used) algorithm.
Each time a cache line is accessed, it is tagged as the most recently used line of the set.
When a miss occurs, if all lines in the set are marked as valid, the least recently used line is
replaced with the new data. When data to be replaced is in the modified state, the modified
data is written into a write-back buffer while the missed data is being read from memory.
When the load completes, the 604 then pushes the replaced line from the write-back buffer
to main memory in a burst write operation if the memory queue is idle, or at a later time if
other transactions are pending.

8.1.2 Operation of the System Interface
Memory accesses can occur in single-beat (1–8 bytes) and four-beat (32 bytes) burst data
transfers. The address and data buses are independent for memory accesses to support
pipelining and split transactions. The 604 can pipeline as many as three transactions and
has limited support for out-of-order split-bus transactions.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the 604 to be integrated into systems that implement various fairness and bus-
parking procedures to avoid arbitration overhead.

Typically, memory accesses are weakly ordered—sequences of operations, including
load/store string and multiple instructions, do not necessarily complete in the order they
begin—maximizing the efficiency of the bus without sacrificing coherency of the data. The
604 allows read operations to precede store operations (except when a dependency exists).
In addition, the 604 performs snoop push operations ahead of all other bus operations.
Because the processor can dynamically optimize run-time ordering of load/store traffic,
overall performance is improved.

Note that the Synchronize (sync) or Enforce In-Order Execution of I/O (eieio) instructions
can be used to enforce strong ordering.

The following sections describe how the 604 interface operates, providing detailed timing
diagrams that illustrate how the signals interact. A collection of more general timing
diagrams are included as examples of typical bus operations.

Figure 8-2 is a legend of the conventions used in the timing diagrams.

This is a synchronous interface—all 604 input signals are sampled and output signals are
driven on the rising edge of the bus clock cycle (see the 604 hardware specifications for
exact timing information).

Chapter 8. System Interface Operation 8-5

Figure 8-2. Timing Diagram Legend

8.1.3 Direct-Store Accesses
Memory and direct-store accesses use the 604 signals differently.

The 604 defines separate memory and I/O address spaces, or segments, distinguished by the
segment register T bit in the address translation logic of the 604. If the T bit is cleared, the
memory reference is a normal memory access and uses the paged virtual memory
management mechanism of the 604. If the T bit is set, the memory reference is a direct-store
access.

The function and timing of some address transfer and attribute signals (such as TT0–TT3,
TBST, and TSIZ0–TSIZ2) are changed for direct-store accesses. Additional controls are
required to facilitate transfers between the 604 and the specific I/O devices that use this
interface. Direct-store and memory transfers are distinguished from one another by their

604 input (while 604 is a bus master)

604 output (while 604 is a bus master)

604 output (grouped: here, address plus attributes)

604 internal signal (inaccessible to the user, but used in
diagrams to clarify operations)

Compelling dependency—event will occur on the
next clock cycle

Prerequisite dependency—event will occur on an
undetermined subsequent clock cycle

604 three-state output or input

604 nonsampled input

Signal with sample point

A sampled condition (dot on high or low state)
with multiple dependencies

Timing for a signal had it been asserted (it is not
actually asserted)

Bar over signal name indicates active low

ap0

BR

ADDR+

qual BG

8-6 PowerPC 604 RISC Microprocessor User's Manual

address transfer start signals—TS indicates that a memory transfer is starting and XATS
indicates that a direct-store transaction is starting.

Direct-store accesses are strongly ordered—each access occurs in strict program order and
completes before another access can begin. For this reason, direct-store accesses are less
efficient than memory accesses. The direct-store extensions also allow for additional bus
pacing and multiple transaction operations for variably-sized data transfers (1 to 128 bytes),
and they support a tagged, split request/response protocol. The direct-store access protocol
also requires the slave device to function as a bus master.

8.2 Memory Access Protocol
Memory accesses are divided into address and data tenures. Each tenure has three phases—
bus arbitration, transfer, and termination. The 604 also supports address-only transactions.
Note that address and data tenures can overlap, as shown in Figure 8-3.

Figure 8-3 shows that the address and data tenures are distinct from one another and that
both consist of three phases—arbitration, transfer, and termination. Address and data
tenures are independent (indicated in Figure 8-3 by the fact that the data tenure begins
before the address tenure ends), which allows split-bus transactions to be implemented at
the system level in multiprocessor systems. Figure 8-3 shows a data transfer that consists
of a single-beat transfer of as many as 64 bits. Four-beat burst transfers of 32-byte cache
lines require data transfer termination signals for each beat of data.

Figure 8-3. Overlapping Tenures on the PowerPC 604 Microprocessor Bus for a
Single-Beat Transfer

The basic functions of the address and data tenures are as follows:

• Address tenure

— Arbitration: During arbitration, address bus arbitration signals are used to gain
mastership of the address bus.

— Transfer: After the 604 is the address bus master, it transfers the address on the

ARBITRATION TRANSFER TERMINATION

ADDRESS TENURE

ARBITRATION SINGLE-BEAT TRANSFER TERMINATION

DATA TENURE

INDEPENDENT ADDRESS AND DATA

Chapter 8. System Interface Operation 8-7

address bus. The address signals and the transfer attribute signals control the
address transfer. The address parity and address parity error signals ensure the
integrity of the address transfer.

— Termination: After the address transfer, the system signals that the address tenure
is complete or that it must be repeated.

• Data tenure

— Arbitration: To begin the data tenure, the 604 arbitrates for mastership of the data
bus.

— Transfer: After the 604 is the data bus master, it samples the data bus for read
operations or drives the data bus for write operations. The data parity and data
parity error signals ensure the integrity of the data transfer.

— Termination: Data termination signals are required after each data beat in a data
transfer. Note that in a single-beat transaction, the data termination signals also
indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the
final data beat.

The 604 generates an address-only bus transfer during the execution of dcbz, sync, eieio,
tlbie, tlbsync, and lwarx instructions, which use only the address bus with no data transfer
involved. Additionally, the 604’s retry capability provides an efficient snooping protocol for
systems with multiple memory systems (including caches) that must remain coherent.

8.2.1 Arbitration Signals
Arbitration for both address and data bus mastership is performed by a central, external
arbiter and, minimally, by the arbitration signals shown in Section 8.3.1, “Address Bus
Arbitration.” Most arbiter implementations require additional signals to coordinate bus
master/slave/snooping activities. Note that address bus busy (ABB) and data bus busy
(DBB) are bidirectional signals. These signals are inputs unless the 604 has mastership of
one or both of the respective buses; they must be connected high through pull-up resistors
so that they remain negated when no devices have control of the buses.

The following list describes the address arbitration signals:

• BR (bus request)—Assertion indicates that the 604 is requesting mastership of the
address bus.

• BG (bus grant)—Assertion indicates that the 604 may, with the proper
qualification, assume mastership of the address bus. A qualified bus grant occurs
when BG is asserted, ABB is negated, and ARTRY is negated during the current and
previous bus cycle.

If the 604 is parked, BR need not be asserted for the qualified bus grant.

• ABB (address bus busy)— Assertion by the 604 indicates that the 604 is the
address bus master.

8-8 PowerPC 604 RISC Microprocessor User's Manual

The following list describes the data arbitration signals:

• DBG (data bus grant)—Indicates that the 604 may, with the proper qualification,
assume mastership of the data bus. A qualified data bus grant occurs when DBG is
asserted while DBB, DRTRY, and ARTRY are negated (although ARTRY may
actually be asserted at the time DBG is asserted due to the snoop of a later address
tenure).

The DBB signal is driven by the current bus master, DRTRY is only driven from the
bus, and ARTRY is from the bus, but only for the address bus tenure associated with
the current data bus tenure (that is, not from another address tenure).

• DBWO (data bus write only)—Assertion indicates that the 604 may perform the
data bus tenure for an outstanding write address even if a read address is pipelined
before the write address. If DBWO is asserted, the 604 will assume data bus
mastership for a pending data bus write operation; the 604 will take the data bus for
a pending read operation if this input is asserted along with DBG and no write is
pending. Care must be taken with DBWO to ensure the desired write is queued (for
example, a cache-line snoop push-out operation).

• DBB (data bus busy)—Assertion by the 604 indicates that the 604 is the data bus
master. The 604 always assumes data bus mastership if it needs the data bus and is
given a qualified data bus grant (see DBG).

For more detailed information on the arbitration signals, refer to Section 8.3.1,
“Address Bus Arbitration,” and Section 8.4.1, “Data Bus Arbitration.”

Note that while operating in fast-L2/data streaming mode, DBB becomes a 604 output-only
signal and is driven in the same manner as before. If systems using the 604 in fast-L2/data
streaming mode also implement data streaming across multiple masters, the DBB signal
must not be common among processors to avoid contention problems when one processor
is negating DBB while another is asserting DBB. Table 8-1 describes the bus arbitration
signals provided by the 604.

Table 8-1. PowerPC 604 Microprocessor Bus Arbitration Signals

Signal Name Mnemonic Signal Type Signal Connection Requirements

Bus request BR Output One per processor

Bus grant BG Input One per processor

Address bus busy ABB Input/output Common among processors

Data bus grant DBG Input One per processor

Data bus busy DBB Input/output Common among processors
(One per processor if in fast-L2/data
streaming mode, and data streaming across
multiple processors is implemented.)

Chapter 8. System Interface Operation 8-9

8.2.2 Address Pipelining and Split-Bus Transactions
The 604 protocol provides independent address and data bus capability to support pipelined
and split-bus transaction system organizations. Address pipelining allows the address
tenure of a new bus transaction to begin before the data tenure of the current transaction has
finished. Split-bus transaction capability allows other bus activity to occur (either from the
same master or from different masters) between the address and data tenures of a
transaction.

While this capability does not inherently reduce memory latency, support for address
pipelining and split-bus transactions can greatly improve effective bus/memory throughput.
For this reason, these techniques are most effective in shared-memory multiprocessor
implementations where bus bandwidth is an important measurement of system
performance.

External arbitration is required in systems in which multiple devices must compete for the
system bus. The design of the external arbiter affects pipelining by regulating the BG, DBG,
and AACK signals. For example, a one-level pipeline is enabled by asserting AACK to the
current address bus master and granting mastership of the address bus to the next requesting
master before the current data bus tenure has completed. Three address tenures can occur
before the current data bus tenure completes.

The 604 can pipeline its own transactions to a depth of two levels (intraprocessor
pipelining); however, the 604 bus protocol does not constrain the maximum number of
levels of pipelining that can occur on the bus between multiple masters (interprocessor
pipelining). The external arbiter must control the pipeline depth and synchronization
between masters and slaves.

In a pipelined implementation, data bus tenures are kept in strict order with respect to
address tenures. However, external hardware can further decouple the address and data
buses, allowing the data tenures to occur out of order with respect to the address tenures.
This requires some form of system tag to associate the out-of-order data transaction with
the proper originating address transaction (not defined for the 604 interface). Individual bus
requests and data bus grants from each processor can be used by the system to implement
tags to support interprocessor, out-of-order transactions.

The 604 supports a limited intraprocessor out-of-order, split-transaction capability via the
DBWO signal. For more information about using DBWO, see Section 8.11, “Using Data
Bus Write Only.”

8-10 PowerPC 604 RISC Microprocessor User's Manual

8.3 Address Bus Tenure
This section describes the three phases of the address tenure—address bus arbitration,
address transfer, and address termination.

8.3.1 Address Bus Arbitration
When the 604 needs access to the external bus and does not have a qualified bus grant, it
asserts bus request (BR) until it is granted mastership of the bus and the bus is available (see
Figure 8-4). The external arbiter must grant master-elect status to the potential master by
asserting the bus grant (BG) signal. The 604 requesting the bus determines that the bus is
available when the ABB input is negated. When the address bus is not busy (ABB input is
negated), BG is asserted and the address retry (ARTRY) input is negated, and was negated
the previous cycle, the 604 has what is referred to as a qualified bus grant. The 604 assumes
address bus mastership by asserting ABB when it receives a qualified bus grant.

Figure 8-4. Address Bus Arbitration

External arbiters must allow only one device at a time to be the address bus master.
Implementations in which no other device can be a master, BG can be grounded (always
asserted) to continually grant mastership of the address bus to the 604.

If the 604 asserts BR before the external arbiter asserts BG, the 604 is considered to be
unparked, as shown in Figure 8-4. Figure 8-5 shows the parked case, where a qualified bus
grant exists on the clock edge following a need_bus condition. Notice that the two bus clock
cycles required for arbitration are eliminated if the 604 is parked, reducing overall memory

-1 0 1

need_bus

BR

bg

abb

artry

qual BG

ABB

Logical Bus Clock

Chapter 8. System Interface Operation 8-11

latency for a transaction. The 604 always negates ABB for at least one bus clock cycle after
AACK is asserted, even if it is parked and has another transaction pending.

Typically, bus parking is provided to the device that was the most recent bus master;
however, system designers may choose other schemes such as providing unrequested bus
grants in situations where it is easy to correctly predict the next device requesting bus
mastership.

Figure 8-5. Address Bus Arbitration Showing Bus Parking

When the 604 receives a qualified bus grant, it assumes address bus mastership by asserting
ABB and negating the BR output signal. Meanwhile, the 604 drives the address for the
requested access onto the address bus and asserts TS to indicate the start of a new
transaction.

When designing external bus arbitration logic, note that the 604 may assert BR without
using the bus after it receives the qualified bus grant. For example, in a system using bus
snooping, if the 604 asserts BR to perform a queued read-with-intent-to-modify-atomic
(RWITMA), and the 604 snoops an access which cancels the reservation associated with
the RWITMA. Once the 604 is granted the bus, it no longer needs to perform the RWITMA;
therefore, the 604 does not assert ABB and does not use the bus for the read operation. Note
that the 604 asserts BR for at least one clock cycle in these instances.

-1 0 1

need_bus

BR

bg

abb

artry

qual BG

ABB

8-12 PowerPC 604 RISC Microprocessor User's Manual

8.3.2 Address Transfer
During the address transfer, the physical address and all attributes of the transaction are
transferred from the bus master to the slave device(s). Snooping logic may monitor the
transfer to enforce cache coherency; see discussion about snooping in Section 8.3.3,
“Address Transfer Termination.”

The signals used in the address transfer include the following signal groups:

• Address transfer start signal: Transfer start (TS)

Note that extended address transfer start (XATS) signal is used for direct-store
operations and has no function for memory-mapped accesses; see Section 8.6,
“Direct-Store Operation.”

• Address transfer signals: Address bus (A0–A31), address parity (AP0–AP3), and
address parity error (APE)

• Address transfer attribute signals: Transfer type (TT0–TT4), transfer code (TC0–
TC2), transfer size (TSIZ0–TSIZ2), transfer burst (TBST), cache inhibit (CI), write-
through (WT), global (GBL), and cache set element (CSE0–CSE1)

Figure 8-6 shows that the timing for all of these signals, except TS and APE is identical. All
of the address transfer and address transfer attribute signals are combined into the ADDR+
grouping in Figure 8-6. The TS signal indicates that the 604 has begun an address transfer
and that the address and transfer attributes are valid (within the context of a synchronous
bus). The 604 always asserts TS (or XATS for direct-store operations) coincident with
ABB. As an input, TS need not coincide with the assertion of ABB on the bus (that is, either
TS or XATS can be asserted with, or on a subsequent clock cycle after ABB is asserted; the
604 tracks this transaction correctly).

Figure 8-6. Address Bus Transfer

0 1 2 3 4

qual BG

TS

ABB

ADDR+

aack

artry_in

Chapter 8. System Interface Operation 8-13

In Figure 8-6, the address transfer occurs during bus clock cycles 1 and 2 (arbitration occurs
in bus clock cycle 0 and the address transfer is terminated in bus clock 3). In this diagram,
the address bus termination input, AACK, is asserted to the 604 on the bus clock following
assertion of TS (as shown by the dependency line). This is the minimum duration of the
address transfer for the 604; the duration can be extended by delaying the assertion of
AACK for one or more bus clocks.

8.3.2.1 Address Bus Parity
The 604 always generates one bit of correct odd-byte parity for each of the four bytes of
address when a valid address is on the bus. The calculated values are placed on the AP0–
AP3 outputs when the 604 is the address bus master. If the 604 is not the master, TS and
GBL are asserted together, and the transaction type is one that the 604 snoops (qualified
condition for snooping memory operations), the calculated values are compared with the
AP0–AP3 inputs. If there is an error, the APE output is asserted. If HID0[2] is set to 1, a
parity error will cause a machine check if the MSR[ME] bit is set, or will cause a checkstop
if the MSR[ME] bit is cleared. If HID0[2] is cleared to 0, then no action is taken. In either
case, the APE signal will be asserted if even parity is detected. For more information about
checkstop conditions, see Chapter 4, “Exceptions.”

8.3.2.2 Address Transfer Attribute Signals
The transfer attribute signals include several encoded signals such as the transfer type
(TT0–TT4) signals, transfer burst (TBST) signal, transfer size (TSIZ0–TSIZ2) signals, and
transfer code (TC0–TC2) signals. Section 7.2.4, “Address Transfer Attribute Signals,”
describes the encodings for the address transfer attribute signals. Note that TT0–TT4,
TBST, and TSIZ0–TSIZ2 have alternate functions for direct-store operations; see
Section 8.6, “Direct-Store Operation.”

8.3.2.2.1 Transfer Type (TT0–TT4) Signals
Snooping logic should fully decode the transfer type signals if the GBL signal is asserted.
Slave devices can sometimes use the individual transfer type signals without fully decoding
the group. For a complete description of the encoding for TT0–TT4 signals, refer to
Table 7-1.

8.3.2.2.2 Transfer Size (TSIZ0–TSIZ2) Signals
The transfer size signals (TSIZ0–TSIZ2) indicate the size of the requested data transfer as
shown in Table 8-2. The TSIZ0–TSIZ2 signals may be used along with TBST and A29–
A31 to determine which portion of the data bus contains valid data for a write transaction
or which portion of the bus should contain valid data for a read transaction. Note that for a
burst transaction (as indicated by the assertion of TBST) TSIZ0–TSIZ2 are always set to
0b010. Therefore, if the TBST signal is asserted (except in cases of direct-store operations,
or operations involving the use of eciwx or ecowx instructions), the memory system should
transfer a total of eight words (32 bytes), regardless of the TSIZ0–TSIZ2 encoding.

8-14 PowerPC 604 RISC Microprocessor User's Manual

The basic coherency size of the bus is defined to be 32 bytes (corresponding to one cache
line). Data transfers that cross an aligned, 32-byte boundary either must present a new
address onto the bus at that boundary (for coherency consideration) or must operate as
noncoherent data with respect to the 604.

8.3.2.3 Burst Ordering During Data Transfers
During burst data transfer operations, 32 bytes of data (one cache line) are transferred to or
from the cache in order. Burst write transfers are always performed zero-double-word-first,
but since burst reads are performed critical-double-word-first, a burst read transfer may not
start with the first double word of the cache line, and the cache line fill may wrap around
the end of the cache line. Table 8-3 describes the various burst orderings for the 604.

8.3.2.4 Effect of Alignment in Data Transfers
Table 8-4 lists the aligned transfers that can occur on the 604 bus. These are transfers in
which the data is aligned to an address that is an integer multiple of the size of the data. For

Table 8-2. Transfer Size Signal Encodings

TBST TSIZ0 TSIZ1 TSIZ2 Transfer Size

Asserted 0 1 0 Eight-word burst

Negated 0 0 0 Eight bytes

Negated 0 0 1 One byte

Negated 0 1 0 Two bytes

Negated 0 1 1 Three bytes

Negated 1 0 0 Four bytes

Negated 1 0 1 Five bytes

Negated 1 1 0 Six bytes

Negated 1 1 1 Seven bytes

Table 8-3. PowerPC 604 Microprocessor Burst Ordering

Data Transfer
For Starting Address:

A27–A28 = 00 A27–A28 = 01 A27–A28 = 10 A27–A28 = 11

First data beat DW0 DW1 DW2 DW3

Second data beat DW1 DW2 DW3 DW0

Third data beat DW2 DW3 DW0 DW1

Fourth data beat DW3 DW0 DW1 DW2

Note: A29–A31 are always 0b000 for burst transfers by the 604.

Chapter 8. System Interface Operation 8-15

example, Table 8-4 shows that one-byte data is always aligned; however, for a four-byte
word to be aligned, it must be oriented on an address that is a multiple of four.

The 604 supports misaligned memory operations, although their use may substantially
degrade performance. Misaligned memory transfers address memory that is not aligned to
the size of the data being transferred (such as, a word read of an odd byte address). Although
most of these operations hit in the primary cache (or generate burst memory operations if
they miss), the 604 interface supports misaligned transfers within a word (32-bit aligned)
boundary, as shown in Table 8-5. Note that the four-byte transfer in Table 8-5 is only one
example of misalignment. As long as the attempted transfer does not cross a word
boundary, the 604 can transfer the data on the misaligned address (for example, a half-word
read from an odd byte-aligned address). An attempt to address data that crosses a word
boundary requires two bus transfers to access the data.

Due to the performance degradations associated with misaligned memory operations, they
are best avoided. In addition to the double-word straddle boundary condition, the address
translation logic can generate substantial exception overhead when the load/store multiple
and load/store string instructions access misaligned data. It is strongly recommended that
software attempt to align code and data where possible.

Table 8-4. Aligned Data Transfers

Transfer Size TSIZ0 TSIZ1 TSIZ2 A29–A31
Data Bus Byte Lane(s)

0 1 2 3 4 5 6 7

Byte 0 0 1 000 √ — — — — — — —

0 0 1 001 — √ — — — — — —

0 0 1 010 — — √ — — — — —

0 0 1 011 — — — √ — — — —

0 0 1 100 — — — — √ — — —

0 0 1 101 — — — — — √ — —

0 0 1 110 — — — — — — √ —

0 0 1 111 — — — — — — — √

Half word 0 1 0 000 √ √ — — — — — —

0 1 0 010 — — √ √ — — — —

0 1 0 100 — — — — √ √ — —

0 1 0 110 — — — — — — √ √

Word 1 0 0 000 √ √ √ √ — — — —

1 0 0 100 — — — — √ √ √ √

Double word 0 0 0 000 √ √ √ √ √ √ √ √

8-16 PowerPC 604 RISC Microprocessor User's Manual

8.3.2.4.1 Alignment of External Control Instructions
The size of the data transfer associated with the eciwx and ecowx instructions is always four
bytes. However, if the eciwx or ecowx instruction is misaligned and crosses any word
boundary, the 604 will generate two bus operations, each with a size of fewer than four
bytes. For the first bus operation, bits A29–A31 equals bits 29–31 of the data, which will
be 0b101, 0b110, or 0b111. The size associated with the first bus operation will be 3, 2, or
1 bytes, respectively. For the second bus operation, bits A29–A31 equal 0b000, and the size
associated with the operation will be 1, 2, or 3 bytes, respectively. For both operations,
TBST and TSIZ0–TSIZ2 are redefined to specify the resource ID (RID). The resource ID
is copied from bits 28–31 of the external access register (EAR). For eciwx/ecowx
operations, the state of bit 28 of the EAR is presented by the TBST signal without inversion
(if EAR[28] = 1, TBST = 1). The size of the second bus operation cannot be deduced from
the operation itself; the system must determine how many bytes were transferred on the first
bus operation to determine the size of the second operation.

Furthermore, the two bus operations associated with such a misaligned external control
instruction are not atomic. That is, the 604 may initiate other types of memory operations

Table 8-5. Misaligned Data Transfers (Four-Byte Examples)

Transfer Size
(Four Bytes)

TSIZ(0–2) A29–A31
Data Bus Byte Lanes

0 1 2 3 4 5 6 7

Aligned 1 0 0 0 0 0 A A A A — — — —

Misaligned—first access

second access

0 1 1 0 0 1 A A A — — — —

0 0 1 1 0 0 — — — — A — — —

Misaligned—first access

second access

0 1 0 0 1 0 — — A A — — — —

0 1 0 1 0 0 A A — — — — — —

Misaligned—first access

second access

0 0 1 0 1 1 — — — A — — — —

0 1 1 1 0 0 — — — — A A A —

Aligned 1 0 0 1 0 0 A A A A — — — —

Misaligned—first access

second access

0 1 1 1 0 1 — — — — — A A A

0 0 1 0 0 0 A — — — — — — —

Misaligned—first access

second access

0 1 0 1 1 0 — — — — — — A A

0 1 0 0 0 0 A A — — — — — —

Misaligned—first access

second access

0 0 1 1 1 1 — — — — — — — A

0 1 1 0 0 0 A A A — — — — —

A: Byte lane used
—: Byte lane not used

Chapter 8. System Interface Operation 8-17

between the two transfers. Also, the two bus operations associated with a misaligned ecowx
may be interrupted by an eciwx bus operation, and vice versa. The 604 does guarantee that
the two operations associated with a misaligned ecowx will not be interrupted by another
ecowx operation; and likewise for eciwx.

Because a misaligned external control address is considered a programming error, the
system may choose some means to cause an exception, typically by asserting TEA to cause
a machine check exception or INT to cause an external interrupt, when a misaligned
external control bus operation occurs.

8.3.2.5 Transfer Code (TC0–TC2) Signals
The TC0–TC2 signals provide supplemental information about the corresponding address.
Note that the TCx signals can be used with the WT, TT0–TT4 and TBST signals to further
define the current transaction. When asserted, the transfer codes have the following
meanings:

• TC0

— Read cycle: indicates code fetch
— Write cycle: de-allocation from L1 cache

• TC1

— Write cycle: indicates new cache state is shared

• TC2

— Read and write cycle: indicates allocation cycle utilized a copy-back buffer

Table 8-6 shows the supplemental information provided by the TC0–TC2 and WT signals.

Table 8-6. Transfer Code Encoding

TT Type Code WT TC0 TC1 TC2 Operation

Write with kill 1 1 0 0 Cache copyback

Write with kill 0 1 0 0 Block invalidate
(dcbf)

Write with kill 0 0 0 0 Block clean
(dcbst)

Write with kill 0 0 1 0 Snoop push
(read operation)

Write with kill 0 1 0 0 Snoop push
(read-with-intent-to-modify)

Write with kill 0 0 0 0 Snoop push
(clean operation)

Write with kill 0 1 0 0 Snoop push
(flush operation)

Kill block x 1 0 0 Kill block de-allocate
(dcbi)

8-18 PowerPC 604 RISC Microprocessor User's Manual

Note: 1. Read encompasses all of the read or read-with-intent-to-modify operations, both normal and atomic.

2. The icbi instruction is distinguished from kill block by assertion of the TT4 bit.

3. Value determined by write-through bit from translation.

8.3.3 Address Transfer Termination
The address tenure of a bus operation is terminated when completed with the assertion of
AACK, or retried with the assertion of ARTRY. The SHD signal may also be asserted either
coincident with the ARTRY signal, or alone to indicate that a copy of the requested data
exists in one of the devices on the bus, and that the requesting device should mark the data
as shared in its cache. The 604 does not terminate the address transfer until the AACK
(address acknowledge) input is asserted; therefore, the system can extend the address
transfer phase by delaying the assertion of AACK to the 604. AACK can be asserted as
early as the bus clock cycle following TS (see Figure 8-7), which allows a minimum
address tenure of two bus cycles. As shown in Figure 8-7, these signals are asserted for one
bus clock cycle, three-stated for half of the next bus clock cycle, driven high till the
following bus cycle, and finally three-stated. Note that AACK must be asserted for only one
bus clock cycle.

The address transfer can be terminated with the requirement to retry if ARTRY is asserted
anytime during the address tenure and through the cycle following AACK. The assertion
causes the entire transaction (address and data tenure) to be rerun. As a snooping device,
the 604 asserts ARTRY for a snooped transaction that hits modified data in the data cache
that must be written back to memory, or if the snooped transaction could not be serviced.
As a bus master, the 604 responds to an assertion of ARTRY by aborting the bus transaction
and re-requesting the bus. Note that after recognizing an assertion of ARTRY and aborting
the transaction in progress, the 604 is not guaranteed to run the same transaction the next
time it is granted the bus.

Kill block 1 0 0 0 Kill block and allocate, no cast
out required (dcbz)

Kill block 1 0 0 1 Kill block and allocate, cast
out required (dcbz)

Kill block 1 0 0 0 Kill block, write to shared
block

Read1 W3 0 x 0 Data read, cast out required

Read W3 0 x 1 Data read, cast out required

Read W3 1 x 0 Instruction read

Instruction cache
block invalidate

x 1 0 0 Kill block de-allocate
(icbi)2

Table 8-6. Transfer Code Encoding (Continued)

TT Type Code WT TC0 TC1 TC2 Operation

Chapter 8. System Interface Operation 8-19

If an address retry is required, the ARTRY response will be asserted by a bus snooping
device as early as the second cycle after the assertion of TS. Once asserted, ARTRY must
remain asserted through the cycle after the assertion of AACK. The assertion of ARTRY
during the cycle after the assertion of AACK is referred to as a qualified ARTRY. An earlier
assertion of ARTRY during the address tenure is referred to as an early ARTRY.

As a bus master, the 604 recognizes either an early or qualified ARTRY and prevents the
data tenure associated with the retried address tenure. If the data tenure has already begun,
the 604 aborts and terminates the data tenure immediately even if the burst data has been
received. If the assertion of ARTRY is received up to or on the bus cycle following the first
(or only) assertion of TA for the data tenure, the 604 ignores the first data beat, and if it is
a load operation, does not forward data internally to the cache and execution units.

If the 604 is in fast-L2/data streaming mode, TA should not be asserted prior to the qualified
ARTRY cycle. If ARTRY is asserted after the first (or only) assertion of TA, improper
operation of the bus interface may result.

During the clock of a qualified ARTRY, the 604 also determines if it should negate BR and
ignore BG on the following cycle. On the following cycle, only the snooping master that
asserted ARTRY and needs to perform a snoop copy-back operation is allowed to assert BR.
This guarantees the snooping master an opportunity to request and be granted the bus
before the just-retried master can restart its transaction.

Figure 8-7. Snooped Address Cycle with ARTRY

1 2 3 4 5 6 7 8

ts

abb

addr

aack

ARTRY

qualBG

ABB

8-20 PowerPC 604 RISC Microprocessor User's Manual

8.4 Data Bus Tenure
This section describes the data bus arbitration, transfer, and termination phases defined by
the 604 memory access protocol. The phases of the data tenure are identical to those of the
address tenure, underscoring the symmetry in the control of the two buses.

8.4.1 Data Bus Arbitration
Data bus arbitration uses the data arbitration signal group—DBG, DBWO, and DBB.
Additionally, the combination of TS or XATS and TT0–TT4 provides information about the
data bus request to external logic.

The TS signal is an implied data bus request from the 604; the arbiter must qualify TS with
the transfer type (TT) encodings to determine if the current address transfer is an address-
only operation, which does not require a data bus transfer (see Figure 8-7). If the data bus
is needed, the arbiter grants data bus mastership by asserting the DBG input to the 604. As
with the address-bus arbitration phase, the 604 must qualify the DBG input with a number
of input signals before assuming bus mastership, as shown in Figure 8-8.

Figure 8-8. Data Bus Arbitration

A qualified data bus grant can be expressed as the following:

QDBG = DBG asserted while DBB, DRTRY, and ARTRY (associated with the data
bus operation) are negated.

When a data tenure overlaps with its associated address tenure, a qualified ARTRY
assertion coincident with a data bus grant signal does not result in data bus mastership
(DBB is not asserted). Otherwise, the 604 always asserts DBB on the bus clock cycle after
recognition of a qualified data bus grant. Since the 604 can pipeline transactions, there may

0 1 2 3

TS

dbg

dbb

drtry

qual DBG

DBB

Chapter 8. System Interface Operation 8-21

be an outstanding data bus transaction when a new address transaction is retried. In this
case, the 604 becomes the data bus master to complete the previous transaction.

8.4.1.1 Effect of ARTRY Assertion on Data Transfer and Arbitration
The system designer must define the qualified snoop response window, and ensure that data
is not transferred prior to one cycle before the end of that window in non–fast-L2/data
streaming mode, or prior to the same cycle as the end of that window in fast-L2/data
streaming mode. The 604 supports a snoop response window as early as two cycles after
assertion of TS. Operation of the 604 in fast-L2/data streaming mode requires that data be
transferred no earlier than the first cycle of the ARTRY window, not the cycle earlier. The
system may assert TA for a data transaction prior to the termination of an address tenure;
in this case note that the snoop response window is closed either on the clock that TA is
asserted (if in fast-L2/data streaming mode), or the clock after the assertion of TA (if in
non–fast-L2/data streaming mode).

An asserted ARTRY can invalidate a previous or current data transfer and terminate the
data cycle, invalidate a qualified data bus grant, or cancel a future data transfer. The possible
scenarios are described below:

• If data is transferred (via assertion of TA) two or more cycles before the beginning
of the snoop window in non–fast-L2/data streaming mode, or one or more cycles
before the beginning of the snoop window in fast-L2/data streaming, then data is
transferred too early to be cancelled by ARTRY. Therefore, systems in which
ARTRY can be asserted must not attempt data transfers (assert TA) prior to this
cycle.

• If data is transferred in the cycle before the beginning of the snoop response window,
assertion of ARTRY invalidates the data transfer, in a similar fashion to assertion of
DRTRY, except that the data tenure is aborted, not extended. If the fast-L2/data
streaming mode is active, data may not be transferred in this cycle.

• If data is transferred in the first cycle of the snoop response window, assertion of
ARTRY invalidates the data transfer. This is similar to deasserting TA except that
the data tenure is aborted, instead of continued.

• If DBG has been asserted, the system must not attempt to transfer data in cycles
following the assertion of ARTRY. The 604 negates DBB the cycle following
ARTRY, and expects no more data to be transferred. However, note that the data
related to a previous address tenure must not be affected, and that the system must
distinguish this case.

• If a DBG has not been asserted, an ARTRY assertion effectively negates the implied
data bus request that was associated with the address transfer, and the 604 will not
expect a transfer. The system must not assert DBG for this transfer if any other 604
data transfers are pending.

• If ARTRY assertion occurs while a data transfer is in progress, the 604 will
terminate data transfers following the first cycle of ARTRY assertion. This means
that a burst transfer may be cut short.

8-22 PowerPC 604 RISC Microprocessor User's Manual

• If an ARTRY assertion occurs the same cycle as its corresponding DBG, the
ARTRY will disqualify the data bus grant in that cycle and the 604 will not initiate
any data transaction on the following cycle regardless of whether any other data
transactions are queued. However, on the following cycle (the cycle after the
ARTRY assertion) the 604 processor will respond to a qualified data bus grant if it
has previously queued data transactions. Figure 8-9 shows an example where a write
address tenure receives an ARTRY snoop response in the same cycle the system
asserts DBWO and DBG (cycle 6) to grant the write data tenure before a previously
requested read data tenure. Following the ARTRY assertion, the qualified DBG
assertion to the 604 in cycle 7 will be accepted for the read data tenure.

Figure 8-9. Qualified DBG Generation Following ARTRY

8.4.1.2 Using the DBB Signal
The DBB signal should be connected between masters if data tenure scheduling is left to
the masters. Optionally, the memory system can control data tenure scheduling directly
with DBG. However, it is possible to ignore the DBB signal in the system if the DBB input
is not used as the final data bus allocation control between data bus masters, and if the

1 2

System Clock

TS

AACK

ARTRY

Master 1 DBG

Internal Data
Bus Request

DBWO

Qualified DBG

DBB

3 4 5 6 7 8 9 10

Master 1
READ

Master 1
WRITE

for READ

for READ

ARTRY, kills
QDBG for WRITE

Chapter 8. System Interface Operation 8-23

memory system can track the start and end of the data tenure. In non–fast-L2/data
streaming mode, if DBB is not used to signal the end of a data tenure, DBG is only asserted
to the next bus master the cycle before the cycle that the next bus master may actually begin
its data tenure, rather than asserting it earlier (usually during another master’s data tenure)
and allowing the negation of DBB to be the final gating signal for a qualified data bus grant.
If the 604 is in fast-L2/data streaming mode, the DBB signal is an output only, and is not
sampled by the 604. Even if DBB is ignored in the system, the 604 always recognizes its
own assertion of DBB (except when in fast-L2/data streaming mode), and requires one
cycle after data tenure completion to negate its own DBB before recognizing a qualified
data bus grant for another data tenure. If the DBB signal is not used by the system, DBB
must still be connected to a pull-up resistor on the 604 to ensure proper operation. If the
604 is in fast-L2/data streaming mode, and data streaming is to be performed across
multiple processors, the DBB signal for each processor should be connected directly to the
memory arbiter.

8.4.2 Data Bus Write Only
As a result of address pipelining, the 604 may have up to three data tenures queued to
perform when it receives a qualified DBG. Generally, the data tenures should be performed
in strict order (the same order) as their address tenures were performed. The 604, however,
also supports a limited out-of-order capability with the data bus write only (DBWO) input.
The DBWO capability exists to alleviate deadlock conditions that are possible in certain
system topologies. When recognized on the clock of a qualified DBG, DBWO may direct
the 604 to perform the next pending data write tenure even if a pending read tenure would
have normally been performed first. For more information on the operation of DBWO, refer
to Section 8.11, “Using Data Bus Write Only.”

If the 604 has any data tenures to perform, it always accepts data bus mastership to perform
a data tenure when it recognizes a qualified DBG. If DBWO is asserted with a qualified
DBG and no write tenure is queued to run, the 604 still takes mastership of the data bus to
perform the next pending read data tenure. If the 604 has multiple queued writes, the
assertion of DBWO causes the reordering of the write operation whose address was sent
first.

Generally, DBWO should only be used to allow a copy-back operation (burst write) to
occur before a pending read operation. If DBWO is used for single-beat write operations,
it may negate the effect of the eieio instruction by allowing a write operation to precede a
program-scheduled read operation. If DBWO is asserted when the 604 does not have write
data available, bus operations occur as if DBWO had not been asserted.

8.4.3 Data Transfer
The data transfer signals include DH0–DH31, DL0–DL31, DP0–DP7 and DPE. For
memory accesses, the DH and DL signals form a 64-bit data path for read and write
operations.

8-24 PowerPC 604 RISC Microprocessor User's Manual

The 604 transfers data in either single- or four-beat burst transfers. Single-beat operations
can transfer from one to eight bytes at a time and can be misaligned; see Section 8.3.2.4,
“Effect of Alignment in Data Transfers.” Burst operations always transfer eight words and
are aligned on eight-word address boundaries. Burst transfers can achieve significantly
higher bus throughput than single-beat operations.

The type of transaction initiated by the 604 depends on whether the code or data is
cacheable and, for store operations whether the cache is considered in write-back or write-
through mode, which software controls on either a page or block basis. Burst transfers
support cacheable operations only; that is, memory structures must be marked as cacheable
(and write-back for data store operations) in the respective page or block descriptor to take
advantage of burst transfers.

The 604 output TBST indicates to the system whether the current transaction is a single- or
four-beat transfer (except during eciwx/ecowx transactions, when it signals the state of
EAR[28]). A burst transfer has an assumed address order. For load or store operations that
missed in the cache (and are marked as cacheable and, for stores, write-back in the MMU),
the 604 uses the double-word–aligned address associated with the critical code or data that
initiated the transaction. This minimizes latency by allowing the critical code or data to be
forwarded to the processor before the rest of the cache line is filled. For all other burst
operations, however, the cache line write operations are transferred beginning with the oct-
word–aligned data, and burst reads begin on double-word boundaries.

The 604 does not directly support dynamic interfacing to subsystems with less than a 64-
bit data path (except for direct-store operations discussed in Section 8.6, “Direct-Store
Operation”).

8.4.4 Data Transfer Termination
Four signals are used to terminate data bus transactions—TA, DRTRY (data retry), TEA
(transfer error acknowledge), and ARTRY. The TA signal indicates normal termination of
data transactions. It must always be asserted on the bus cycle coincident with the data that
it is qualifying. It may be withheld by the slave for any number of clocks until valid data is
ready to be supplied or accepted. DRTRY indicates invalid read data in the previous bus
clock cycle. DRTRY extends the current data beat and does not terminate it. If it is asserted
after the last (or only) data beat, the 604 negates DBB but still considers the data beat active
and waits for another assertion of TA. DRTRY is ignored on write operations. TEA
indicates a nonrecoverable bus error event. Upon receiving a final (or only) termination
condition, the 604 always negates DBB for one cycle, except when data streaming in fast-
L2/data streaming mode.

If DRTRY is asserted by the memory system to extend the last (or only) data beat past the
negation of DBB, the memory system should three-state the data bus on the clock after the
final assertion of TA, even though it will negate DRTRY on that clock. This is to prevent a
potential momentary data bus conflict if a write access begins on the following cycle.

Chapter 8. System Interface Operation 8-25

The TEA signal is used to signal a nonrecoverable error during the data transaction. The
TEA signal will be recognized anytime during the assertion of DBB or when a valid
DRTRY could be sampled. The assertion of TEA terminates the data tenure immediately
even if in the middle of a burst; however, it does not prevent incorrect data that has just been
acknowledged with TA from being written into the 604’s cache or GPRs. The assertion of
TEA initiates either a machine check exception or a checkstop condition based on the
setting of the MSR.

An assertion of ARTRY causes the data tenure to be terminated immediately if the ARTRY
is for the address tenure associated with the data tenure in operation (the data tenure may
not be terminated due to address pipelining). If ARTRY is connected for the 604, the
earliest allowable assertion of TA to the 604 is directly dependent on the earliest possible
assertion of ARTRY to the 604; see Section 8.3.3, “Address Transfer Termination.”

8.4.4.1 Normal Single-Beat Termination
Normal termination of a single-beat data read operation occurs when TA is asserted by a
responding slave. The TEA and DRTRY signals must remain negated during the transfer
(see Figure 8-10).

Figure 8-10. Normal Single-Beat Read Termination

0 1 2 3 4

TS

qual DBG

DBB

data

ta

drtry

AACK

8-26 PowerPC 604 RISC Microprocessor User's Manual

The DRTRY signal is not sampled during data writes, as shown in Figure 8-11.

Figure 8-11. Normal Single-Beat Write Termination

Normal termination of a burst transfer occurs when TA is asserted for four bus clock cycles,
as shown in Figure 8-12. The bus clock cycles in which TA is asserted need not be
consecutive, thus allowing pacing of the data transfer beats. For read bursts to terminate
successfully, TEA and DRTRY must remain negated during the transfer. For write bursts,
TEA must remain negated for a successful transfer. DRTRY is ignored during data writes.

Figure 8-12. Normal Burst Transaction

0 1 2 3

TS

qual DBG

DBB

data

ta

drtry

AACK

1 2 3 4 5 6 7

TS

qual DBG

DBB

data

ta

drtry

Chapter 8. System Interface Operation 8-27

For read bursts, DRTRY may be asserted one bus clock cycle after TA is asserted to signal
that the data presented with TA is invalid and that the processor must wait for the negation
of DRTRY before forwarding data to the processor (see Figure 8-13). Thus, a data beat can
be speculatively terminated with TA and then one bus clock cycle later confirmed with the
negation of DRTRY. The DRTRY signal is valid only for read transactions. TA must be
asserted on the bus clock cycle before the first bus clock cycle of the assertion of DRTRY;
otherwise the results are undefined.

The DRTRY signal extends data bus mastership such that other processors cannot use the
data bus until DRTRY is negated. Therefore, in the example in Figure 8-13, DBB cannot
be asserted until bus clock cycle 5. This is true for both read and write operations even
though DRTRY does not extend bus mastership for write operations.

Figure 8-13. Termination with DRTRY

Figure 8-14 shows the effect of using DRTRY during a burst read. It also shows the effect
of using TA to pace the data transfer rate. Notice that in bus clock cycle 3 of Figure 8-14,
TA is negated for the second data beat. The 604 data pipeline does not proceed until bus
clock cycle 4 when the TA is reasserted.

Note that DRTRY is useful for systems that implement speculative forwarding of data such
as those with direct-mapped, second-level caches where hit/miss is determined on the
following bus clock cycle, or for parity- or ECC-checked memory systems.

Note that DRTRY may not be implemented on other PowerPC processors.

1 2 3 4 5

TS

qual DBG

DBB

data

ta

drtry

8-28 PowerPC 604 RISC Microprocessor User's Manual

8.4.4.2 Data Transfer Termination Due to a Bus Error
The TEA signal indicates that a bus error occurred. It may be asserted while DBB is
asserted or when a valid DRTRY could be recognized by the 604. Asserting TEA to the 604
terminates the transaction; that is, further assertions of TA and DRTRY are ignored and
DBB is negated. If the system asserts TEA for a data transaction on the same cycle or before
ARTRY is asserted for the corresponding address transaction, the 604 will ignore the
effects of ARTRY on the address transaction and will consider it successfully completed.

Note that from a bus standpoint, the assertion of TEA causes nothing worse than the early
termination of the data tenure in progress. All the system logic involved in processing the
data transfer prior to the TEA must return to the normal nonbusy state following the TEA
so that the bus operations associated with a machine check exception can proceed. Due to
bus pipelining in the 604, all outstanding bus operations, including all queued requests, are
completed in the normal fashion following the TEA. The machine check exception can be
taken while these transactions are in progress.

If the TEA signal is asserted during a direct-store access, the action of the TEA is delayed
until all data transfers from the direct store access have been completed. The device causing
assertion of the TEA signal is responsible for maintaining assertion of the TEA signal until
the last direct-store data tenure is complete. The direct store reply, in cases of TEA
assertion, is not required, and will be ignored by the 604. The 604 will recognize the
assertion of the TEA signal at the completion of the last direct-store data tenure, and not
before.

Figure 8-14. Read Burst with TA Wait States and DRTRY

TS

qual DBG

DBB

data

ta

drtry

1 2 3 4 5 6 7 8 9

Chapter 8. System Interface Operation 8-29

Assertion of the TEA signal causes a machine check exception (and possibly a checkstop
condition within the 604). For more information, see Section 4.5.2, “Machine Check
Exception (0x00200).” Note also that the 604 does not implement a synchronous error
capability for memory accesses. This means that the exception instruction pointer does not
point to the memory operation that caused the assertion of TEA, but to the instruction about
to be executed (perhaps several instructions later). However, assertion of TEA does not
invalidate data entering the GPR or the cache. Additionally, the corresponding address of
the access that caused TEA to be asserted is not latched by the 604. To recover, the
exception handler must determine and remedy the cause of the TEA, or the 604 must be
reset; therefore, this function should only be used to flag fatal system conditions to the
processor (such as parity or uncorrectable ECC errors).

After the 604 has committed to run a transaction, that transaction must eventually complete.
Address retry causes the transaction to be restarted; TA wait states and DRTRY assertion
for reads delay termination of individual data beats. Eventually, however, the system must
either terminate the transaction or assert the TEA signal (and vector the 604 into a machine
check exception.) For this reason, care must be taken to check for the end of physical
memory and the location of certain system facilities to avoid memory accesses that result
in the generation of machine check exceptions.

Note that TEA generates a machine check exception depending on the ME bit in the MSR.
Clearing the machine check exception enable control bit leads to a true checkstop condition
(instruction execution halted and processor clock stopped); a machine check exception
occurs if the ME bit is set.

8.4.5 Memory Coherency—MESI Protocol
The 604 provides dedicated hardware to provide memory coherency by snooping bus
transactions. The address retry capability enforces the four-state, MESI cache-coherency
protocol (see Figure 8-15). In addition to the hardware required to monitor bus traffic for
coherency, the 604 has a cache port dedicated to snooping so that comparing cache entries
to address traffic on the bus does not tie up the 604's on-chip data cache.

The global (GBL) signal output, indicates whether the current transaction must be snooped
by other snooping devices on the bus. Address bus masters assert GBL to indicate that the
current transaction is a global access (that is, an access to memory shared by more than one
processor/cache). If GBL is not asserted for the transaction, that transaction is not snooped.
When other devices detect the GBL input asserted, they must respond by snooping the
broadcast address.

Normally, GBL reflects the M-bit value specified for the memory reference in the
corresponding translation descriptor(s). Note that care must be taken to minimize the
number of pages marked as global, because the retry protocol discussed in the previous
section is used to enforce coherency and can require significant bus bandwidth.

8-30 PowerPC 604 RISC Microprocessor User's Manual

When the 604 is not the address bus master, GBL is an input. The 604 snoops a transaction
if TS and GBL are asserted together in the same bus clock cycle (this is a qualified snooping
condition). No snoop update to the 604 cache occurs if the snooped transaction is not
marked global. This includes invalidation cycles.

When the 604 detects a qualified snoop condition, the address associated with the TS is
compared against the data cache tags through a dedicated cache tag port. Snooping
completes if no hit is detected. If, however, the address hits in the cache, the 604 reacts
according to the MESI protocol shown in Figure 8-15, assuming the WIM bits are set to
write-back mode, caching allowed, and coherency enforced (WIM = 001).

Note that write hits to clean lines of nonglobal pages do not generate invalidate broadcasts.
There are several types of bus transactions that involve the movement of data that can no
longer access the TLB M-bit (for example, replacement cache block copy-back, or a snoop
push). In these cases, the hardware cannot determine whether the cache block was
originally marked global; therefore, the 604 marks these transactions as nonglobal to avoid
retry deadlocks.

The 604's on-chip data cache is implemented as a four-way set-associative cache. To
facilitate external monitoring of the internal cache tags, the cache set element (CSE0–
CSE1) signals indicate which sector of the cache set is being replaced on read operations
(including RWITM). Note that these signals are valid only for 604 burst operations; for all
other bus operations, the CSE0–CSE1 signals should be ignored.

Chapter 8. System Interface Operation 8-31

Figure 8-15. MESI Cache Coherency Protocol—State Diagram (WIM = 001)

Table 8-7 shows the CSE0–CSE1 encodings.

Table 8-7. CSE0–CSE1 Signals

CSE0–CSE1 Cache Set Element

00 Set 0

01 Set 1

10 Set 2

11 Set 3

SHARED

SHR

RH

RH

EXCLUSIVE

SHW

RMS

S
H

R

SHWSHR

RME WH

WH

WH

RH

MODIFIED

S
H

W

S
H

W
(b

ur
st

)

INVALID
(On a miss, the old

line is first invalidated
and copied back

if M)

W
M

BUS TRANSACTIONS

RH = Read Hit = Snoop Push
RMS = Read Miss, Shared
RME = Read Miss, Exclusive = Invalidate Transaction
WH = Write Hit
WM = Write Miss = Read-with-Intent-to-Modify

SHR = Snoop Hit on a Read
SHW = Snoop Hit on a Write or = Cache Block Fill

Read-with-Intent-to-Modify

8-32 PowerPC 604 RISC Microprocessor User's Manual

8.5 Timing Examples
This section shows timing diagrams for various scenarios. Figure 8-16 illustrates the fastest
single-beat reads possible for the 604. This figure shows both minimal latency and
maximum single-beat throughput. By delaying the data bus tenure, the latency increases,
but, because of split-transaction pipelining, the overall throughput is not affected unless the
data bus latency causes the fourth address tenure to be delayed.

Note that all bidirectional signals are three-stated between bus tenures.

Figure 8-16. Fastest Single-Beat Reads

BR

BG

ABB

TS

A0–A31

TT0–TT4

TBST

GBL

AACK

ARTRY

DBG

DBB

D0–D63

TA

DRTRY

TEA

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

CPU A CPU A CPU A

Read Read Read

In In In

Chapter 8. System Interface Operation 8-33

Figure 8-17 illustrates the fastest single-beat writes supported by the 604. Note that all
bidirectional signals are three-stated between bus tenures. The TT1–TT4 signals are binary
encoded 0bx0010, and TT0 can be either 0 or 1.

Figure 8-17. Fastest Single-Beat Writes

BR

BG

ABB

TS

A0–A31

TT0–TT4

TBST

GBL

AACK

ARTRY

DBG

DBB

D0–D63

TA

DRTRY

TEA

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

CPU A CPU A CPU A

SBW SBW SBW

Out Out Out

8-34 PowerPC 604 RISC Microprocessor User's Manual

Figure 8-18 shows three ways to delay single-beat reads showing data-delay controls:

• The TA signal can remain negated to insert wait states in clock cycles 3 and 4.
• For the second access, DBG could have been asserted in clock cycle 6.
• In the third access, DRTRY is asserted in clock cycle 11 to flush the previous data.

Note that all bidirectional signals are three-stated between bus tenures.

Figure 8-18. Single-Beat Reads Showing Data-Delay Controls

BR

BG

ABB

TS

A0–A31

TT0–TT4

TBST

GBL

AACK

ARTRY

DBG

DBB

D0–D63

TA

DRTRY

TEA

CPU A CPU A CPU A

Read Read Read

In In Bad

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

In

Chapter 8. System Interface Operation 8-35

Figure 8-19 shows data-delay controls in a single-beat write operation. Note that all
bidirectional signals are three-stated between bus tenures. Data transfers are delayed in the
following ways:

• The TA signal is held negated to insert wait states in clocks 3 and 4.
• In clock 6, DBG is held negated, delaying the start of the data tenure.

The last access is not delayed (DRTRY is valid only for read operations).

Figure 8-19. Single-Beat Writes Showing Data Delay Controls

BR

BG

ABB

TS

A0–A31

TT0–TT4

TBST

GBL

AACK

ARTRY

DBG

DBB

D0–D63

TA

DRTRY

TEA

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

CPU A CPU A CPU A

SBW SBW SBW

Out Out Out

8-36 PowerPC 604 RISC Microprocessor User's Manual

Figure 8-20 shows the use of data-delay controls with burst transfers. Note that all
bidirectional signals are three-stated between bus tenures. Note the following:

• The first data beat of bursted read data (clock 3) is the critical quad word.
• The write burst shows the use of TA signal negation to delay the third data beat.
• The final read burst shows the use of DRTRY on the third data beat.
• The address for the third transfer is delayed until the first transfer completes.

Figure 8-20. Burst Transfers with Data Delay Controls

BR

BG

ABB

TS

A0–A31

TT0–TT4

TBST

GBL

AACK

ARTRY

DBG

DBB

D0–D63

TA

DRTRY

TEA

CPU A

In 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CPU A CPU A

Read Write Read

In 1 In 2 In 3 Out 0 Out 1 Out 2 Out 3 In 0 In 1 In 2 In 3In 2

Chapter 8. System Interface Operation 8-37

Figure 8-21 shows the use of the TEA signal. Note that all bidirectional signals are three-
stated between bus tenures. Note the following:

• The first data beat of the read burst (in clock 0) is the critical quad word.

• The TEA signal truncates the burst write transfer on the third data beat.

• The 604 eventually causes an exception to be taken on the TEA event.

Figure 8-21. Use of Transfer Error Acknowledge (TEA)

BR

BG

ABB

TS

A0–A31

TT0–TT4

TBST

GBL

AACK

ARTRY

DBG

DBB

D0–D63

TA

DRTRY

TEA

CPU A

In 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CPU A CPU A

Read Write Read

In 1 In 2 In 3 Out 0 Out 1 Out 2 In 0 In 1 In 3In 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

8-38 PowerPC 604 RISC Microprocessor User's Manual

8.6 Direct-Store Operation
The 604 defines separate memory-mapped and I/O address spaces, or segments,
distinguished by the corresponding segment register T bit in the address translation logic of
the 604. If the T bit is cleared, the memory reference is a normal memory-mapped access
and can use the virtual memory management hardware of the 604. If the T bit is set, the
memory reference is a direct-store access.

The following points should be considered for direct-store accesses:

• The use of direct-store segment (referred to as direct-store segments in the
architecture specification) accesses may have a significant impact on the
performance of the 604. The provision of direct-store segment access capability by
the 604 is to provide compatibility with earlier hardware I/O controllers and may not
be provided in future derivatives of the 604 family.

• Direct-store accesses must be strongly ordered; for example, these accesses must run
on the bus strictly in order with respect to the instruction stream.

• Direct-store accesses must provide synchronous error reporting. Chapter 3, “Cache
and Bus Interface Unit Operation,” describes architectural aspects of direct-store
segments, as well as an overview of the segmented address space management of
PowerPC processors.

The 604 has a single bus interface to support both memory accesses and direct-store
segment accesses.

The direct-store protocol for the 604 allows for the transfer of 1 to 128 bytes of data
between the 604 and the bus unit controller (BUC) for each single load or store request
issued by the program. The block of data is transferred by the 604 as multiple single-beat
bus transactions (individual address and data tenure for each transaction) until completion.
The program waits for the sequence of bus transactions to be completed so that a final
completion status (error or no error) can be reported precisely with respect to the program
flow. The completion status is snooped by the 604 from a bus transaction run by the BUC.

The system recognizes the assertion of the TS signal as the start of a memory-mapped
access. The assertion of XATS indicates a direct-store access. This allows memory-mapped
devices to ignore direct-store transactions. If XATS is asserted, the access is to a direct-
store space and the following extensions to the memory access protocol apply:

• A new set of bus operations are defined. The transfer type, transfer burst, and transfer
size signals are redefined for direct-store operations; they convey the opcode for the
I/O transaction (see Table 8-8).

• There are two beats of address for each direct-store transfer. The first beat (packet 0)
provides basic address information such as the segment register and the sender tag
and several control bits; the second beat (packet 1) provides additional addressing
bits from the segment register and the logical address.

Chapter 8. System Interface Operation 8-39

• The TT0–TT3, TBST, and TSIZ0–TSIZ2 signals are remapped to form an 8-bit
extended transfer code (XATC) which specifies a command and transfer size for the
transaction. The XATC field is driven and snooped by the 604 during direct-store
transactions.

• Only the data signals such as DH0–DH31 and DP0–DP3 are used. The lower half of
the data bus and parity is ignored.

• The sender that initiated the transaction must wait for a reply from the receiver bus
unit controller (BUC) before starting a new operation.

• The 604 does not burst direct-store transactions. All direct-store transactions
generated by the 604 are single-beat transactions of four bytes or less (single data
beat tenure per address tenure).

Direct-store transactions use separate arbitration for the split address and data buses and
define address-only and single-beat transactions. The address-retry vehicle is identical,
although there is no hardware coherency support for direct-store transactions. The ARTRY
signal is useful, however, for pacing 604 transactions, effectively indicating to the 604 that
the BUC is in a queue-full condition and cannot accept new data.

In addition to the extensions noted above, there are fundamental differences between
memory-mapped and direct-store operations. For example, only half of the 64-bit data path
is available for 604 direct-store transactions. This lowers the pin count for I/O interfaces but
generally results in substantially less bandwidth than memory-mapped accesses.
Additionally, load/store instructions that address direct-store segments cannot complete
successfully without an error-free reply from the addressed BUC. Because normal direct-
store accesses involve multiple I/O transactions (streaming), they are likely to be very long
latency instructions; therefore, direct-store operations usually stall 604 instruction issue.

Figure 8-22 shows a direct-store tenure. Note that the I/O device response is an address-
only bus transaction.

It should be noted that in the best case, the use of the 604 direct-store protocol degrades
performance and requires the addressed controllers to implement 604 bus master capability
to generate the reply transactions.

8-40 PowerPC 604 RISC Microprocessor User's Manual

Figure 8-22. Direct-Store Tenures

8.6.1 Direct-Store Transactions
The 604 defines seven direct-store transaction operations, as shown in Table 8-8. These
operations permit communication between the 604 and BUCs. A single 604 store or load
instruction (that translates to a direct-store access) generates one or more direct-store
operations (two or more direct-store operations for loads) from the 604 and one reply
operation from the addressed BUC.

For the first beat of the address bus, the extended address transfer code (XATC), contains
the I/O opcode as shown in Table 8-8; the opcode is formed by concatenating the transfer
type, transfer burst, and transfer size signals defined as follows:

XATC = TT[0:3]||TBST||TSIZ[0:2]

Table 8-8. Direct-Store Bus Operations

Operation Address Only Direction XATC Encoding

Load start (request) Yes 604 ⇒ IO 0100 0000

Load immediate No 604 ⇒ IO 0101 0000

Load last No 604 ⇒ IO 0111 0000

Store immediate No 604 ⇒ IO 0001 0000

Store last No 604 ⇒ IO 0011 0000

Load reply Yes IO ⇒ 604 1100 0000

Store reply Yes IO ⇒ 604 1000 0000

ARBITRATION TRANSFER TERMINATION

ADDRESS TENURE

DATA TENURE

INDEPENDENT ADDRESS AND DATA

ARBITRATION TRANSFER TERMINATION

I/O RESPONSE

ARBITRATION TRANSFER TERMINATION
NO DATA TENURE FOR I/O RESPONSE

(I/O responses are address-only)

Chapter 8. System Interface Operation 8-41

8.6.1.1 Store Operations
There are three operations defined for direct-store store operations from the 604 to the
BUC, defined as follows:

1. Store immediate operations transfer up to 32 bits of data each from the 604 to the
BUC.

2. Store last operations transfer up to 32 bits of data each from the 604 to the BUC.

3. Store reply from the BUC reveals the success/failure of that direct-store access to the
604.

A direct-store store access consists of one or more data transfer operations followed by the
I/O store reply operation from the BUC. If the data can be transferred in one 32-bit data
transaction, it is marked as a store last operation followed by the store reply operation; no
store immediate operation is involved in the transfer, as shown in the following sequence:

STORE LAST (from 604)
•
•

STORE REPLY (from BUC)
However, if more data is involved in the direct-store access, there will be one or more store
immediate operations. The BUC can detect when the last data is being transferred by
looking for the store last opcode, as shown in the following sequence:

STORE IMMEDIATE(s)
•
•

STORE LAST
•
•

STORE REPLY

8.6.1.2 Load Operations
Direct-store load accesses are similar to store operations, except that the 604 latches data
from the addressed BUC rather than supplying the data to the BUC. As with memory
accesses, the 604 is the master on both load and store operations; the external system must
provide the data bus grant to the 604 when the BUC is ready to supply the data to the 604.

8-42 PowerPC 604 RISC Microprocessor User's Manual

The load request direct-store operation has no analogous store operation; it informs the
addressed BUC of the total number of bytes of data that the BUC must provide to the 604
on the subsequent load immediate/load last operations. For direct-store load accesses, the
simplest, 32-bit (or fewer) data transfer sequence is as follows:

LOAD REQUEST
•
•

LOAD LAST
•
•

LOAD REPLY(from BUC)
However, if more data is involved in the direct-store access, there will be one or more load
immediate operations. The BUC can detect when the last data is being transferred by
looking for the load last opcode, as seen in the following sequence:

LOAD REQUEST
•
•

LOAD IMM(s)
•
•

LOAD LAST
•
•

LOAD REPLY
Note that three of the seven defined operations are address-only transactions and do not use
the data bus. However, unlike the memory transfer protocol, these transactions are not
broadcast from one master to all snooping devices. The direct-store address-only
transaction protocol strictly controls communication between the 604 and the BUC.

8.6.2 Direct-Store Transaction Protocol Details
As mentioned previously, there are two address-bus beats corresponding to two packets of
information about the address. The two packets contain the sender and receiver tags, the
address and extended address bits, and extra control and status bits. The two beats of the
address bus (plus attributes) are shown at the top of Figure 8-23 as two packets. The first
packet, packet 0, is then expanded to depict the XATC and address bus information in
detail.

Chapter 8. System Interface Operation 8-43

8.6.2.1 Packet 0
Figure 8-23 shows the organization of the first packet in a direct-store transaction.

The XATC contains the I/O opcode, as discussed earlier and as shown in Table 8-8. The
address bus contains the following:

Key bit || segment register || sender tag

Figure 8-23. Direct-Store Operation—Packet 0

This information is organized as follows:

• Bits 0 and 1 of the address bus are reserved—the 604 always drives these bits to zero.

• Key bit—Bit 2 is the key bit from the segment register (either SR[Kp] or SR[Ks]).
Kp indicates user-level access and Ks indicate supervisor-level access. The 604
multiplexes the correct key bit into this position according to the current operating
context (user or supervisor). (Note that user- and supervisor-level refer to problem
and privileged state, respectively, in the architecture specification.)

• Segment register—Address bits 3–27 correspond to bits 3–27 of the selected
segment register. Note that address bits 3–11 form the 9-bit receiver tag. Software
must initialize these bits in the segment register to the ID of the BUC to be
addressed; they are referred to as the BUID (bus unit ID) bits.

• PID (sender tag)—Address bits 28–31 form the 4-bit sender tag. The 604 PID
(processor ID) comes from bits 28-31 of the 604’s processor ID register. The 4-bit
PID tag allows a maximum of 16 processor IDs to be defined for a given system. If
more bits are needed for a very large multiprocessor system, for example, it is
envisioned that the second-level cache (or equivalent logic) can append a larger
processor tag as needed. The BUC addressed by the receiver tag should latch the
sender address required by the subsequent I/O reply operation.

I/O Opcode

0 1 2 3 1112 27 28 310 7

A (0–31) + Attributes

Address Bus (A0–A31)

PKT 0 PKT 1

+XATC

Reserved

Key Bit

From Segment Register

BUID PID

8-44 PowerPC 604 RISC Microprocessor User's Manual

8.6.2.2 Packet 1
The second address beat, packet 1, transfers byte counts and the physical address for the
transaction, as shown in Figure 8-24.

Figure 8-24. Direct-Store Operation—Packet 1

For packet 1, the XATC is defined as follows:

• Load request operations—XATC contains the total number of bytes to be transferred
(128 bytes maximum for 604).

• Immediate/last (load or store) operations—XATC contains the current transfer byte
count (1 to 4 bytes).

Address bits 0–31 contain the physical address of the transaction. The physical address is
generated by concatenating segment register bits 28–31 with bits 4–31 of the effective
address, as follows:

Segment register (bits 28–31) || effective address (bits 4–31)

While the 604 provides the address of the transaction to the BUC, the BUC must maintain
a valid address pointer for the reply.

8.6.3 I/O Reply Operations
BUCs must respond to 604 direct-store transactions with an I/O reply operation, as shown
in Figure 8-25. The purpose of this reply operation is to inform the 604 of the success or
failure of the attempted direct-store access. This requires the system direct-store to have
604 bus mastership capability—a substantially more complex design task than bus slave
implementations that use memory-mapped I/O access.

Reply operations from the BUC to the 604 are address-only transactions. As with packet 0
of the address bus on 604 direct-store operations, the XATC contains the opcode for the
operation (see Table 8-8). Additionally, the I/O reply operation transfers the sender/receiver
tags in the first beat.

Byte Count

0 7

ADDR +

Address Bus (A0–A31)

PKT 0 PKT 1

+XATC Bus Address
0 3 4 31
SR(28–31)

Chapter 8. System Interface Operation 8-45

Figure 8-25. I/O Reply Operation

The address bits are described in Table 8-9.

The second beat of the address bus is reserved; the XATC and address buses should be
driven to zero to preserve compatibility with future protocol enhancements.

The following sequence occurs when the 604 detects an error bit set on an I/O reply
operation:

1. The 604 completes the instruction that initiated the access.

2. If the instruction is a load, the data is forwarded onto the register file(s)/sequencer.

3. A direct-store error exception is generated, which transfers 604 control to the direct-
store error exception handler to recover from the error.

If the error bit is not set, the 604 instruction that initiated the access completes and
instruction execution resumes.

Table 8-9. Address Bits for I/O Reply Operations

Address Bits Description

0–1 Reserved. These bits should be cleared for compatibility with future PowerPC microprocessors.

2 Error bit. It is set if the BUC records an error in the access.

3–11 BUID. Sender tag of a reply operation. Corresponds with bits 3–11 of one of the 604 segment
registers.

12–27 Address bits 12–27 are BUC-specific and are ignored by the 604.

28–31 PID (receiver tag). The 604 effectively snoops operations on the bus and, on reply operations,
compares this field to bits 28–31 of the PID register to determine if it should recognize this I/O reply.

I/O Opcode

0 7

Address Bus (A0–A31)

+XATC

Reserved

Error
Bit

Segment Register

BUID PIDBUC Specific

0 1 2 3 1112 27 28 31

8-46 PowerPC 604 RISC Microprocessor User's Manual

System designers should note the following:

• “Misplaced” reply operations (that match the processor tag and arrive unexpectedly)
are ignored by the 604.

• External logic must assert AACK for the 604, even though it is the receiver of the
reply operation. AACK is an input-only signal to the 604.

• The 604 monitors address parity when enabled by software and XATS and reply
operations (load or store).

8.6.4 Direct-Store Operation Timing
The following timing diagrams show the sequence of events in a typical 604 direct-store
load access (Figure 8-26) and a typical 604 direct-store store access (Figure 8-27). All
arbitration signals except for ABB and DBB have been omitted for clarity, although they
are still required as described earlier in this chapter. Note that, for either case, the number
of immediate operations depends on the amount and the alignment of data to be transferred.
If no more than 4 bytes are being transferred, and the data is double-word–aligned (that is,
does not straddle an 8-byte address boundary), there will be no immediate operation as
shown in the figures.

The 604 can transfer as many as 128 bytes of data in one load or store instruction (requiring
more than 33 immediate operations in the case of misaligned operands).

In Figure 8-26, XATS is asserted with the same timing relationship as TS in a memory
access. Notice, however, that the address bus (and XATC) transition on the next bus clock
cycle. The first of the two beats on the address bus is valid for one bus clock cycle window
only, and that window is defined by the assertion of XATS. The second address bus beat,
however, can be extended by delaying the assertion of AACK until the system has latched
the address.

The load request and load reply operations, shown in Figure 8-26, are address-only
transactions as denoted by the negated TT3 signal during their respective address tenures.
Note that other types of bus operations can occur between the individual direct-store
operations on the bus. The 604 involved in this transaction, however, does not initiate any
other direct-store load or store operations once the first direct-store operation has begun
address tenure; however, if the I/O operation is retried, other higher-priority operations can
occur.

Notice that, in this example (zero wait states), 13 bus clock cycles are required to transfer
no more than 8 bytes of data.

Chapter 8. System Interface Operation 8-47

Figure 8-26. Direct-Store Interface Load Access Example

Figure 8-27 shows a direct-store store access, comprised of three direct-store operations.
As with the example in Figure 8-26, notice that data is transferred only on the 32 bits of the
DH bus. As opposed to Figure 8-26, there is no request operation since the 604 has the data
ready for the BUC.

The assertion of the TEA signal during a direct-store operation indicates that an
unrecoverable error has occurred. If the TEA signal is asserted during a direct-store
operation, the TEA action will be delayed and following direct-store transactions will
continue until all data transfers from direct store segment had been completed. The bus
agent that asserts TEA is responsible to assert TEA for every direct-store transaction tenure
including the last one. The direct-store reply, under this case, is not required and will be
ignored by the processor. The processor will take a machine check exception after the last
direct-store data tenure has been terminated by the assertion of TEA, and not before.

ABB

XATS

ADDR+XATC

DBB

DH0–DH31

TA

1 2 3 4 5 6 7 8 9 10 11 12 13

PKT 0 PKT 1 PKT 0 PKT 1 PKT 0 PKT 1 Reply Rsrvd

REQUEST OP IMM. OP LAST OP REPLY OP

8-48 PowerPC 604 RISC Microprocessor User's Manual

Figure 8-27. Direct-Store Interface Store Access Example

8.7 Optional Bus Configuration
The 604 supports an optional bus configuration that is selected by the assertion or negation
of the DRTRY signal during the negation of the HRESET signal. The operation and
selection of the optional bus configuration is described in the following section.

8.7.1 Fast-L2/Data Streaming Mode
The 604 supports an optional mode (described as the fast-L2/data streaming mode), that
disables the use of the data retry function provided through the DRTRY signal. Although
this bus interface mode implies its suitability for use in interfacing to a second-level cache,
the fast-L2/data streaming mode allows the forwarding of data during load operations to the
internal CPU one bus cycle sooner than in the normal bus protocol. The PowerPC bus
protocol specifies that, during load operations, the memory system normally has the
capability to cancel data that was read by the master on the bus cycle after TA was asserted.
In the 604 implementation, this late cancellation protocol requires the 604 to hold any
loaded data at the bus interface for one additional bus clock to verify that the data is valid
before forwarding it to the internal CPU. The use of the optional fast-L2/data streaming
mode eliminates the one-cycle stall during all load operations, and allows for the
forwarding of data to the internal CPU immediately when TA is recognized, thereby
increasing maximum read bandwidth.

When the 604 is following normal bus protocol, data may be cancelled the bus cycle after
TA by either of two means—late cancellation by DRTRY, or late cancellation by ARTRY.
When the fast-L2/data streaming mode is selected, both cancellation cases must be
disallowed in the system design for the bus protocol.

ABB

XATS

ADDR+XATC

DBB

DH0–DH31

TA

1 2 3 4 5 6 7 8 9 10

PKT 0 PKT 1 PKT 0 PKT 1 Reply Rsrvd

IMM. OP LAST OP REPLY OP

Chapter 8. System Interface Operation 8-49

When the fast-L2/data streaming mode is selected for the 604, the system must ensure that
DRTRY will not be asserted to the 604. If it is asserted, it may cause improper operation of
the bus interface. The system must also ensure that an assertion of ARTRY by a snooping
device must occur before or coincident with the first assertion of TA to the 604, but not on
the cycle after the first assertion of TA.

The 604 selects the desired DRTRY mode at startup by sampling the state of the DRTRY
signal at the negation of the HRESET signal. If the DRTRY signal is negated at the
negation of HRESET, normal operation is selected. If the DRTRY signal is asserted at the
negation of HRESET, fast-L2/data streaming mode is selected. To select the fast-L2/data
streaming mode, the system designer may connect the DRTRY signal to the HRESET
signal. This asserts DRTRY during startup for fast-L2/data streaming mode selection, and
holds the DRTRY signal negated during operation.

When the 604 is in fast-L2/data streaming mode, the bus protocol is modified to disable the
ability to cancel data that was read by the master on the bus cycle after TA was asserted.
Also, DBB is an output-only signal, and is not a term in generating a qualified data bus
grant. When in fast-L2/data streaming mode, the system is not allowed to assert DBG
earlier than one cycle before the data tenure is to commence, to park DBG, or to assert DBG
for multiple consecutive cycles. In all other respects, the bus protocol for the 604 is
identical to that for the basic and extended transfer bus protocols described in this chapter.

8.7.1.1 Fast-L2/Data Streaming Mode Design Considerations
It is recommended that use of fast-L2/data streaming mode be accompanied by two other
system design practices.

The first recommendation is not to use the ABB signal. If the system is designed so that an
address tenure is defined by TS and AACK assertion, (which the 604 is designed to
support), the ABB signal is unnecessary, and should be pulled high at the 604. Because the
ABB signal has an inherently short “restore high” time, it is desirable that the ABB signal
not be used in systems that try to achieve a short cycle time.

The second recommendation is not to use the DBB signal. This signal is restored high in
the same way as ABB, and therefore has the same problems in a system with short cycle
time. To avoid the use of the DBB signal, the system arbiter must assert t DBG for a single
cycle, one cycle before the 604 is supposed to begin its data tenure. The DBB signal should
be pulled high. The additional system cost of operating in this manner is that it must count
the number of data transfers, and assert DBG only on the last cycle in a data tenure.

8.7.1.2 Data Streaming in the Fast-L2/Data Streaming Mode
Data streaming is the ability to commence a data tenure after a previous data tenure with
no dead cycles between. The 604 only supports data streaming for consecutive burst read
data transfers. This does include support for data streaming consecutive burst read data
transfers between two separate masters. For instance, in a multi-604 system, data streaming
is allowed on consecutive burst read data transfers from different 604s.

8-50 PowerPC 604 RISC Microprocessor User's Manual

To cause data streaming to take place, the system asserts DBG during the last data transfer
of the first data tenure as shown in Figure 8-28. To fully realize the performance gain of data
streaming, the system should be prepared to, but is not required to, supply an uninterrupted
sequence of TA assertions.

Figure 8-28 shows the operation of the DBG signal when data streaming operations are
taking place on the data bus

Figure 8-28. Data Transfer in Fast-L2/Data Streaming Mode

8.7.1.3 Data Valid Window in the Fast-L2/Data Streaming Mode
Standard bus mode operations allow data to be transferred no earlier than the cycle before
the ARTRY window that the system defines. In some cases, an asserted ARTRY signal
invalidates the data that was transferred the previous cycle, in the same way DRTRY
cancels data from the previous cycle.

In fast-L2/data streaming mode, the data buffering that allows late cancellation of a data
transfer does not exist, so late cancellation with ARTRY is also impossible. Therefore, the
earliest that data can be transferred in fast-L2/data streaming mode is the first cycle of the
ARTRY window, not the cycle before that.

8.8 Interrupt, Checkstop, and Reset Signals
This section describes external interrupts, checkstop operations, and hard and soft reset
inputs.

8.8.1 External Interrupts
The external interrupt input signals (INT, SMI and MCP) to the 604 eventually force the
processor to take the external interrupt vector, the system management interrupt vector, or
the machine check interrupt if enabled by the MSR[EE] bit (and the HID0[EMCP] bit in
the case of a machine check interrupt).

DATA

TA

Bus Clock

0 1 2 3 4 5 6 7 8

DBG

TR-A1 TR-A2 TR-A3 TR-A4 TR-B1 TR-B2 TR-B3 TR-B4

9

Chapter 8. System Interface Operation 8-51

8.8.2 Checkstops
The 604 has two checkstop input signals—CKSTP_IN and MCP (when MSR[ME] is
cleared, and HID0[EMCP] is set), and a checkstop output (CKSTP_OUT). If CKSTP_IN
or MCP is asserted, the 604 halts operations by gating off all internal clocks. The 604
asserts CKSTP_OUT if CKSTP_IN is asserted.

If CKSTP_OUT is asserted by the 604, it has entered the checkstop state, and processing
has halted internally. The CKSTP_OUT signal can be asserted for various reasons
including receiving a TEA signal and detection of external parity errors. For more
information about checkstop state, see Section 4.5.2.2, “Checkstop State (MSR[ME] = 0).”

8.8.3 Reset Inputs
The 604 has two reset inputs, described as follows:

• HRESET (hard reset)—The HRESET signal is used for power-on reset sequences,
or for situations in which the 604 must go through the entire cold-start sequence of
internal hardware initializations.

• SRESET (soft reset)—The soft reset input provides warm reset capability. This
input can be used to avoid forcing the 604 to complete the cold start sequence.

When either reset input is negated, the processor attempts to fetch code from the system
reset exception vector. The vector is located at offset 0x00100 from the exception prefix (all
zeros or ones, depending on the setting of the exception prefix bit in the machine state
register (MSR[IP]). The IP bit is set for HRESET.

8.8.4 PowerPC 604 Microprocessor Configuration during HRESET
The 604’s bus interface can be configured into one of two modes during a hard reset, as
described in Table 8-10.

Table 8-10. PowerPC 604 Microprocessor Mode Configuration during HRESET

604 Mode Input Signal Used Timing Requirements Notes

Normal bus mode DRTRY Must be negated throughout the
duration of the HRESET assertion.
After HRESET negation, DRTRY
can be used normally.

Fast-L2/data streaming
mode

DRTRY Must be asserted and negated
coincidentally with HRESET and
remain negated during normal
operation.

Can be implemented by
tying DRTRY to
HRESET.

8-52 PowerPC 604 RISC Microprocessor User's Manual

8.9 Processor State Signals
This section describes the 604's support for atomic update and memory through the use of
the lwarx/stwcx. opcode pair.

8.9.1 Support for the lwarx/stwcx. Instruction Pair
The Load Word and Reserve Indexed (lwarx) and the Store Word Conditional Indexed
(stwcx.) instructions provide a means for atomic memory updating. Memory can be
updated atomically by setting a reservation on the load and checking that the reservation is
still valid before the store is performed. In the 604, the reservations are made on behalf of
aligned, 32-byte sections of the memory address space.

The reservation (RSRV) output signal is driven synchronously with the bus clock and
reflects the status of the reservation coherency bit in the reservation address register (see
Chapter 3, “Cache and Bus Interface Unit Operation,” for more information). See
Section 7.2.10.2, “Reservation (RSRV)—Output,” for information about timing.

8.10 IEEE 1149.1-Compliant Interface
The 604 boundary-scan interface is a fully-compliant implementation of the IEEE 1149.1
standard. This section describes the 604 IEEE 1149.1(JTAG) interface.

8.10.1 IEEE 1149.1 Interface Description
The 604 has five dedicated JTAG signals which are described in Table 8-11. The TDI and
TDO scan ports are used to scan instructions as well as data into the various scan registers
for JTAG operations. The scan operation is controlled by the test access port (TAP)
controller which in turn is controlled by the TMS input sequence. The scan data is latched
in at the rising edge of TCK.

TRST is a JTAG optional signal which is used to reset the TAP controller asynchronously.
The TRST signal assures that the JTAG logic does not interfere with the normal operation
of the chip, and should be held asserted during normal operation. The remaining JTAG
signals are provided with internal pullup resistors, and may be left unconnected.

Table 8-11. IEEE Interface Pin Descriptions

Signal Name Input/Output
Weak Pullup

Provided
IEEE 1149.1 Function

TDI Input Yes Serial scan input pin

TDO Output No Serial scan output pin

TMS Input Yes TAP controller mode pin

TCK Input Yes Scan clock

TRST Input Yes TAP controller reset

Chapter 8. System Interface Operation 8-53

Boundary scan description language (BSDL) files for the 604 and other PowerPC
microprocessors are available in the RISC support area of the Motorola Freeware Data
Services bulletin board system. The bulletin board system, located in Austin, Texas, can be
reached at (512) 891-3733; the connecting terminal or terminal emulator should be
configured with 8-bit data, no parity, and one start and one stop bit. Asynchronous
transmission rates to 14.4K bits per second are supported.

8.11 Using Data Bus Write Only
The 604 supports split-transaction pipelined transactions. It supports a limited out-of-order
capability for its own pipelined transactions through the data bus write only (DBWO)
signal. When recognized on the clock of a qualified DBG, the assertion of DBWO directs
the 604 to perform the next pending data write tenure (if any), even if a pending read tenure
would have normally been performed because of address pipelining. The DBWO does not
change the order of write tenures with respect to other write tenures from the same 604. It
only allows that a write tenure be performed ahead of a pending read tenure from the same
604.

In general, an address tenure on the bus is followed strictly in order by its associated data
tenure. Transactions pipelined by the 604 complete strictly in order. However, the 604 can
run bus transactions out of order only when the external system allows the 604 to perform
a cache line snoop push out operation (or other write transaction, if pending in the 604 write
queues) between the address and data tenures of a read operation through the use of
DBWO. This effectively envelopes the write operation within the read operation.
Figure 8-29 shows how the DBWO signal is used to perform an enveloped write
transaction.

Figure 8-29. Data Bus Write Only Transaction

AACK

DBG

ABB

BG

(2) (1)

DBB

Enveloped Write

DBWO

Transaction

(1) (2)

Read Address Write Address

Write Data Read Data

8-54 PowerPC 604 RISC Microprocessor User's Manual

Note that although the 604 can pipeline any write transaction behind the read transaction,
special care should be used when using the enveloped write feature. It is envisioned that
most system implementations will not need this capability; for these applications DBWO
should remain negated. In systems where this capability is needed, DBWO should be
asserted under the following scenario:

1. The 604 initiates a read transaction (either single-beat or burst) by completing the
read address tenure with no address retry.

2. Then, the 604 initiates a write transaction by completing the write address tenure,
with no address retry.

3. At this point, if DBWO is asserted with a qualified data bus grant to the 604, the 604
asserts DBB and drives the write data onto the data bus, out of order with respect to
the address pipeline. The write transaction concludes with the 604 negating DBB.

4. The next qualified data bus grant signals the 604 to complete the outstanding read
transaction by latching the data on the bus. This assertion of DBG should not be
accompanied by an asserted DBWO.

Any number of bus transactions by other bus masters can be attempted between any of these
steps.

Note the following regarding DBWO:

• The DBWO signal can be asserted if no data bus read is pending, but it has no effect
on write ordering.

• The ordering and presence of data bus writes is determined by the writes in the write
queues at the time BG is asserted for the write address (not DBG). A cache-line
snoop push-out operation has the highest priority, and takes precedence over other
queued write operations.

• Because more than one write may be in the write queue when DBG is asserted for
the write address, more than one data bus write may be enveloped by a pending data
bus read.

The arbiter must monitor bus operations and coordinate the various masters and slaves with
respect to the use of the data bus when DBWO is used. Individual DBG signals associated
with each bus device should allow the arbiter to synchronize both pipelined and split-
transaction bus organizations. Individual DBG and DBWO signals provide a primitive form
of source-level tagging for the granting of the data bus.

Note that use of the DBWO signal allows some operation-level tagging with respect to the
604 and the use of the data bus.

Chapter 9. Performance Monitor 9-1

Chapter 9
Performance Monitor
90
90

The PowerPC 604 microprocessor provides a performance monitor facility to monitor and
count predefined events such as processor clocks, misses in either the instruction cache or
the data cache, instructions dispatched to a particular execution unit, mispredicted
branches, and other occurrences. The count of such events (which may be an
approximation) can be used to trigger the performance monitor exception. The performance
monitor facility is not defined by the PowerPC architecture.

The performance monitor can be used for the following:

• To increase system performance with efficient software, especially in a
multiprocessing system. Memory hierarchy behavior must be monitored and studied
in order to develop algorithms that schedule tasks (and perhaps partition them) and
that structure and distribute data optimally.

• To improve processor architecture, the detailed behavior of the 604’s structure must
be known and understood in many software environments. Some environments may
not easily be characterized by a benchmark or trace.

• To help system developers bring up and debug their systems.

The performance monitor uses the following 604-specific special-purpose registers (SPRs):

• Performance monitor counters 1 and 2 (PMC1 and PMC2)—two 32-bit counters
used to store the number of times a certain event has been detected.

• The monitor mode control register (MMCR0), which establishes the function of the
counters.

• Sampled instruction address and sampled data address registers (SIA and SDA).
Depending on how the performance monitor is configured, these registers point to
the data or instruction that caused a threshold-related performance monitor interrupt.

The 604 supports a performance monitor interrupt that is caused by a counter negative
condition or by a time-base flipped bit counter defined in the MMCR0 register.

As with other PowerPC interrupts, the performance monitor interrupt follows the normal
PowerPC exception model with a defined exception vector offset (0x00F00). The priority
of the performance monitor interrupt is below the external interrupt and above the
decrementer interrupt. The contents of the SIA and SDA are described in Section 9.1.1.2.1,

9-2 PowerPC 604 RISC Microprocessor User's Manual

“Sampled Instruction Address Register (SIA),” and Section 9.1.1.2.2, “Sampled Data
Address Register (SDA),” respectively. The performance monitor counter registers are
described in Section 9.1.1.1, “Performance Monitor Counter Registers (PMC1 and
PMC2).”

9.1 Performance Monitor Interrupt
The 604 performance monitor is a software-accessible mechanism that provides detailed
information concerning the dispatch, execution, completion, and memory access of
PowerPC instructions. A performance monitor interrupt (PMI) can be triggered by a
negative counter (most significant bit set to one) condition. If the interrupt signal condition
occurs while MSR[EE] is cleared, the interrupt is delayed until the MSR[EE] bit is set. A
PMI may also occur when certain bits in the time base register change from 0 to 1; this
provides a way to generate interrupts based on a time reference.

Depending on the type of event that causes the PMI condition to be signaled, the
performance monitor responds in one of two ways:

• When a threshold event causes a PMI to be signaled, the exact addresses of the
instruction and data that caused the counter to become negative are saved in the
sampled instruction address (SIA) register and the sampled data address (SDA)
register, respectively. For more information, see Section 9.1.2.2, “Threshold
Events.”

• For all other programmable events that cause a PMI, the address of the last
completed instruction during that cycle is saved in the SIA, which allows the user to
determine the part of the code being executed when a PMI was signaled. Likewise,
the effective address of an operand being used is saved in the SDA. Typically, the
operands in the SDA and SIA are unrelated. For more information, see
Section 9.1.2.3, “Nonthreshold Events.”

When the performance monitor interrupt is signaled, the hardware clears MMCR0[ENINT]
and prevents the changing of the values in the SIA and SDA until ENINT is set by software.
The MMCR0 is described in the Section 9.1.1.3, “Monitor Mode Control Register 0
(MMCR0).”

The following section describes the SPRs used with the performance monitor.

9.1.1 Special-Purpose Registers Used by Performance Monitor
The performance monitor incorporates the SPRs listed in Table 9-1. The SIA register is
located in the sequencer unit and the SDA register is located in the LSU. All of these
supervisor-level registers are accessed through mtspr and mfspr instructions. The
following table shows more information about all performance monitor SPRs.

Chapter 9. Performance Monitor 9-3

9.1.1.1 Performance Monitor Counter Registers (PMC1 and PMC2)
PMC1 and PMC2 are 32-bit counters that can be programmed to generate interrupt signals
when they are negative. Counters are considered to be negative when the high-order bit (the
sign bit) becomes set; they reach the value 0x8000_0000, that is, all zeros with the most
significant bit, or sign bit, set. However, an interrupt is not signaled unless both
MMCR0[INTCONTROL] and MMCR0[ENINT] are also set.

Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal condition
may occur with MSR[EE] cleared, but the interrupt is not taken until the EE bit is set.
Setting MMCR0[DISCOUNT] forces the counters to stop counting when a counter
interrupt occurs.

PMC1 and PMC2 are SPRs 953 and 954, respectively, and can be read and written to by
using the mfspr and mtspr instructions. Software is expected to use the mtspr instruction
to explicitly set the PMC register to nonnegative values. If software sets a negative value,
an erroneous interrupt may occur. For example, if both MMCR0[INTCONTROL] and
MMCR0[ENINT] are set and the mtspr instruction is used to set a negative value, an
interrupt signal condition may be generated prior to the completion of the mtspr and the
values of the SIA and SDA may not have any relationship to the type of instruction being
counted.

The event that is to be monitored can be chosen by setting the appropriate bits in the
MMCR0[19–31]. The number of occurrences of these selected events is counted from the
time the MMCR0 was set either until a new value is introduced into the MMCR0 register
or until a performance monitor interrupt is generated. Table 9-2 and Table 9-3 list the
selectable events for the PMC1 and PMC2 registers, respectively, with their appropriate
MMCR0 encodings.

9.1.1.1.1 PMC1 Selectable Events
The events counted by PMC1 can be divided into two groups.

• Events that can occur only once per cycle. These are the most common.

• Events can have as many as four occurrences per cycle, such as instructions
dispatched per clock.

Table 9-1. Performance Monitor SPRs

SPR Number spr[5–9] || spr[0–4] Register Name Access Level

952 0b11101 11000 MMCR0 Supervisor

953 0b11101 11001 PMC1 Supervisor

954 0b11101 11010 PMC2 Supervisor

955 0b11101 11011 SIA Supervisor

959 0b11101 11111 SDA Supervisor

9-4 PowerPC 604 RISC Microprocessor User's Manual

Events selectable for counting by PMC1 are listed, along with their MMCR0[19–25]
encodings, in Table 9-2.

Table 9-2. PMC1 Events—MMCR0 [19–25] Select Encodings

Encoding Description

000 0000 Nothing. Register counter holds current value.

000 0001 Processor cycles are counted

000 0010 Count the number of instructions completed per cycle. Legal values are 000, 001, 010, 011, 100.

000 0011 RTCSELECT bit transition. (0 = 47, 1 = 51, 2 = 55, 3 = 63)
Bits from the time-base lower register (TBL).

000 0100 Number of instructions dispatched. From zero to four instructions per cycle

000 0101 Instruction cache misses (speculative (Instruction cache line-fill))

000 0110 dtlb misses (not speculative)

000 0111 Branch incorrectly predicted

000 1000 Number of reservations requested

000 1001 Number of load data cache misses that exceeded the threshold value with lateral L2 cache
intervention. For more information on L2 cache intervention, see Section 7.2.10.3, “L2 Intervention
(L2_INT)—Input.”

000 1010 Number of store data cache misses that exceeded the threshold value with lateral L2 cache
intervention

000 1011 Number of mtspr instructions dispatched

000 1100 Number of sync instructions completed

000 1101 Number of eieio instructions completed

000 1110 Number of integer instructions completed every cycle (no loads or stores)

000 1111 Number of floating-point instructions completed every cycle (no loads or stores)

001 0000 LSU produced result without an exception condition

001 0001 SCIU1 unit produced result. (add, subtract, compare, rotate, shift, or logical instructions)

001 0010 FPU produced result

001 0011 Number of instructions dispatched to the LSU

001 0100 Number of instructions dispatched to the SCIU1 unit

001 0101 Number of instructions dispatched to the floating-point unit

001 0110 Snoop requests received. Valid snoops from outside the 604. Does not know if it is a hit or miss.

001 0111 Number of marked load data cache misses that exceeded the threshold value without lateral L2
intervention.

001 1000 Number of marked store data cache misses that exceeded the threshold value without lateral L2
intervention

Chapter 9. Performance Monitor 9-5

9.1.1.1.2 PMC2 Selectable Events
The events counted by PMC2 follow the same groupings explained in the previous section.
The differences between PMC1 and PMC2 event selection are as follows:

• Different bits of the MMCR0 register are decoded in order to select events.
• PMC2 has fewer events.

Events selectable for counting by PMC2 are listed, along with their MMCR0[26–31] encodings,
are listed in Table 9-3.

Table 9-3. PMC2 Events—MMCR0 [26–31] Select Encoding

Encoding Description

00 0000 Nothing. Register counter holds current value

00 0001 Processor cycles

00 0010 Number of instructions completed. Legal values are 000, 001, 010, 011, and 100.

00 0011 RTCSELECT bit transition. 0 = 47, 1 = 51, 2 = 55, 3 = 63 bits from the time base lower register.

00 0100 Number of instructions dispatched

00 0101 Number of cycles a load miss takes

00 0110 Data cache misses (data cache line fill)

00 0111 Number of itlb misses

00 1000 Number of branches completed. Indicates the number of branch instructions completed every cycle.
00 None
01 Illegal value
10 One
11 Two

00 1001 Number of reservations successfully obtained

00 1010 Number of mfspr instructions dispatched (speculative)

00 1011 Number of icbi instructions. The icbi instruction may not hit in the cache.

00 1100 Number of pipeline-flushing operations (sc, isync, mtspr[xer], floating-point operations with divide
by 0 or invalid operand when the 604 is in precise mode, branch when MSR[BE] is set, lswx with
XER = 0 and SO set).

00 1101 Branch unit produced result (branch or CR-logical instruction finished)

00 1110 SCIU0 unit produced result (add, subtract, compare, rotate, shift, or logical instruction)

00 1111 MCIU unit produced result (multiply/divide or SPR instruction)

01 0000 Number of instructions dispatched to the branch unit

01 0001 Number of instructions dispatched to the SCIU0 unit

01 0010 Number of loads completed. From 0 to 4 instructions per cycle. Indicates the number of load
instructions being completed every cycle. These include all cache operations, tlbie, tlbsync, sync,
eieio, and icbi.

01 0011 Number of instructions dispatched to the MCIU

01 0100 Number of snoop hits occurred

9-6 PowerPC 604 RISC Microprocessor User's Manual

9.1.1.2 SIA and SDA Registers
The two address registers contain the addresses of the data or the instruction that caused a
threshold-related performance monitor interrupt. For more information on
threshold-related interrupts, see Section 9.1.2.2, “Threshold Events.”

9.1.1.2.1 Sampled Instruction Address Register (SIA)
The SIA contains the effective address of an instruction executing at or around the time that
the processor signals the performance monitor interrupt condition. If the performance
monitor interrupt was triggered by a threshold event, the SIA contains the exact instruction
that caused the counter to become negative. The instruction whose effective address is put
in the SIA is called the sampled instruction.

If the performance monitor interrupt was caused by something besides a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA
contains an effective address that is not guaranteed to match the instruction in the SIA. The
SIA and SDA are supervisor-level SPRs.

The SIA can be read by using the mfspr instruction and written to by using the mtspr
instruction (SPR 955).

9.1.1.2.2 Sampled Data Address Register (SDA)
The SDA contains the effective address of an operand of an instruction executing at or
around the time that the processor signals the performance monitor interrupt condition. In
this case the SDA is not meant to have any connection with the value in the SIA. If the
performance monitor interrupt was triggered by a threshold event, the SDA contains the
effective address of the operand of the SIA.

If the performance monitor interrupt was caused by something other than a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA
contains an effective address that is not guaranteed to match the instruction in the SIA. The
SIA and SDA are supervisor-level SPRs.

The SDA can be read by using the mfspr instruction and written to by using the mtspr
instruction (SPR 959).

9.1.1.2.3 Updating SIA and SDA
The values of the SIA and SDA registers depend on the type of event being monitored.
These registers have predicted values after a PMI is signaled. A PMI may be signaled, but
not serviced because the exception is masked by the MSR(EE) bit. Programmers must
make sure that this bit is set active in order to take the PMI.

9.1.1.3 Monitor Mode Control Register 0 (MMCR0)
The monitor mode control register 0 (MMCR0) is a 32-bit SPR (SPR 952) whose bits are
partitioned into bit fields that determine the events to be counted and recorded. The
selection of allowable combinations of events causes the counters to operate concurrently.
Control fields in the MMCR0 select the events to be counted, can enable a counter overflow

Chapter 9. Performance Monitor 9-7

to initiate a performance monitor interrupt, and specify the conditions under which
counting is enabled.

The MMCR0 can be written to or read only in supervisor mode. The MMCR0 includes
controls, such as counter enable control, counter overflow interrupt control, counter event
selection, and counter freeze control.

This register is cleared at power up. Reading this register does not change its contents. The
fields of the register are defined in Table 9-4.

Table 9-4. MMCR0 Bit Settings

Bit Name Description

0 DIS Disable counting unconditionally
0 The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.

1 DP Disable counting while in supervisor mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters are

not changed by hardware.

2 DU Disable counting while in user mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in user mode (MSR[PR] is set), the PMC counters are not

changed by hardware).

3 DMS Disable counting while MSR[PM] is set
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.

4 DMR Disable counting while MSR[PM] is zero.
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware.

5 ENINT Enable performance monitor interrupt signaling.
0 Interrupt signaling is disabled.
1 Interrupt signaling is enabled.
This bit is cleared by hardware when a performance monitor interrupt is signaled.
To reenable these interrupt signals, software must set this bit after servicing the
performance monitor interrupt. This bit is cleared before passing control to the
operating system.

6 DISCOUNT Disable counting of PMC1 and PMC2 when a performance monitor interrupt is
signaled (that is, ((PMCnINTCONTROL = 1) & (PMCn[0] = 1) & (ENINT = 1)) or
the occurrence of an enabled time base transition with ((INTONBITTRANS =1) &
(ENINT = 1)).
0 Signaling a performance monitor interrupt has no effect on the counting

status of PMC1 and PMC2.
1 Signaling a performance monitor interrupt prevents the PMC1 counter from

changing. The PMC2 counter does not change if PMC2COUNTCTL = 0.
Because, a time-base signal could have occurred along with an enabled counter
negative condition, software should always reset INTONBITTRANS to zero, if the
value in INTONBITTRANS was a one.

9-8 PowerPC 604 RISC Microprocessor User's Manual

9.1.2 Event Counting
Counting can be enabled if conditions in the processor state match a software-specified
condition. Because a software task scheduler may switch a processor’s execution among
multiple processes and because statistics on only a particular process may be of interest, a
facility is provided to mark a process. The performance monitor (PM) bit, MSR[29] is used
for this purpose. System software may set this bit when a marked process is running. This
enables statistics to be gathered only during the execution of the marked process. The states
of MSR[PR] and MSR[PM] together define a state that the processor (supervisor or
program) and the process (marked or unmarked) may be in at any time. If this state matches
a state specified by the MMCR, the state for which monitoring is enabled, counting is
enabled.

7–8 RTCSELECT 64-bit time base, bit selection enable.
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11 Pick bit 47 to count

9 INTONBITTRANS Cause interrupt signaling on bit transition (identified in RTCSELECT) from off to
on.
0 Do not allow interrupt signal if chosen bit transitions.
1 Signal interrupt if chosen bit transitions.
Software is responsible for setting and clearing INTONBITTRANS.

10–15 THRESHOLD Threshold value. All 6 bits are supported by the 604 processor; allowing threshold
values from 0 to 63. The intent of the THRESHOLD support is to be able to
characterize L1 data cache misses.

16 PMC1INTCONTROL Enable interrupt signaling due to PMC1 counter negative.
0 Disable PMC1 interrupt signaling due to PMC1 counter negative.
1 Enable PMC1 Interrupt signaling due to PMC1 counter negative.

17 PMC2INTCONTROL Enable interrupt signaling due to PMC2 counter negative. This signal overrides
the setting of DISCOUNT.
0 Disable PMC2 interrupt signaling due to PMC2 counter negative.
1 Enable PMC2 Interrupt signaling due to PMC2 counter negative.

18 PMC2COUNTCTL May be used to trigger counting of PMC2 after PMC1 has become negative or
after a performance monitor interrupt is signaled.
0 Enable PMC2 counting
1 Disable PMC2 counting until PMC1 bit 0 is set or until a performance monitor

interrupt is signaled.
This signal can be used to trigger counting of PMC2 after PMC1 has become
negative. This provides a triggering mechanism for counting after a certain
condition occurs or after a preset time has elapsed. It can be used to support
getting the count associated with a specific event.

19-25 PMC1SELECT PMC1 input selector, 128 events selectable; 25 defined. See Table 9-2.

26–31 PMC2SELECT PMC2 input selector, 64 events selectable; 21 defined. See Table 9-3.

Table 9-4. MMCR0 Bit Settings (Continued)

Bit Name Description

Chapter 9. Performance Monitor 9-9

The following are states that can be monitored:

• (Supervisor) only
• (User) only
• (Marked and user) only
• (Not marked and user) only
• (Marked and supervisor) only
• (Not marked and supervisor) only
• (Marked) only
• (Not marked) only

In addition, one of two unconditional counting modes may be specified:

• Counting is unconditionally enabled regardless of the states of MSR[PM] and
MSR[PR]. This can be accomplished by clearing MMCR0[0–4].

• Counting is unconditionally disabled regardless of the states of MSR[PM] and
MSR[PR]. This is done by setting MMCR0[0].

The performance monitor counters track how often a selected event occurs and are used to
generate performance monitor exceptions when an overflow (most significant bit is a 1)
situation occurs. The 604 performance monitor contains two counters. This register is
cleared at startup and can be updated through an mtspr instruction.

The 32-bit registers can count up to 0x7FFFFFFF (2,147,483,648 in decimal) before
becoming negative. The most significant bit (bit 0) of both registers is used to determine if
an interrupt condition exists.

9.1.2.1 Event Selection
Event selection is handled through PMC1 and PMC2, described in Table 9-2 and Table 9-3,
respectively. Event selection is described as follows:

• The event select fields are located in MMCR0. There are 7 bits associated with
PMC1 and 6 bits associated with PMC2. Only the low order 5 bits are used for
selection. The higher order bits are reserved for future applications.

• In the tables, a correlation is established between each counter, the events to be
traced, and the pattern required for the desired selection.

• The first five events are common to both counters. These are considered to be
reference events.

• Some events can have multiple occurrences per cycle, and therefore need two or
three bits to represent them. These events are number 2, 4, 14, 15 for PMC1 and
2, 4, 8, 18 for PMC2.

9-10 PowerPC 604 RISC Microprocessor User's Manual

9.1.2.2 Threshold Events
These PMC1 events are numbers 9, 10, 23, and 24. These events monitor load and store
misses (with and without lateral L2 intervention). Only “marked” loads and stores (loads
and stores at queue position 0) are monitored. See Section 9.1.2.2.1, “Threshold
Conditions,” for more information.

When a marked operation is detected, the SDA is updated with the effective address. When
the marked instruction finishes executing, the SIA will be updated with the address of that
instruction. Thus, when a PMI is signaled (as a result of a threshold event) the SIA and SDA
contains the exact SIA and SDA belonging to the instruction that caused PMC1 to become
negative; see Section 9.1.2.2.3, “Warnings,” for further information.

9.1.2.2.1 Threshold Conditions
The ability to generate a PMI based on a threshold condition makes it possible to
characterize L1 data cache misses. Specifically, the programmer should be able to identify
(through repeated runs and sampling) the time distribution required to satisfy L1 cache
misses. For example, if PMC1 is counting load misses and the threshold is set to two
(cycles), only load misses taking more than two cycles are counted. Repeated runs with
different threshold values would allow construction of a load-miss distribution chart.

When a load (or store) miss arrives in the load/store queue, the threshold control logic
begins decrementing. For each cycle that passes, the threshold value in a shadow register
(obtained from MMCR0[10–15]) is decremented. The threshold is exceeded when this
value reaches 0, at which point the PMC1 count is updated.

While servicing the load/store misses, the SIA and SDA registers are updated to the exact
instruction and data addresses at the time an interrupt condition occurs. Thus, at the end of
each threshold load or store operation, the SIA contains the address of the instruction that
was last monitored, and the SDA contains the address of the data of the same instruction.

9.1.2.2.2 Lateral L2 Cache Intervention
A load or store operation that misses in the L1 cache can receive its data from one of several
memory devices. In a uniprocessor system, the data would likely come an L2 cache, or from
main memory if no L2 cache is present. In a multiprocessor system, the data can originate
from the L2 cache connected to another 604 (that is, a lateral L2 cache), in which case, the
L2 controller asserts an intervention signal (L2_INT) used by the performance monitor.
This signal is useful when tracking memory latencies in a SMP system. For information
about the L2_intervention signal, see Section 7.2.10.3, “L2 Intervention
(L2_INT)—Input.”

Chapter 9. Performance Monitor 9-11

9.1.2.2.3 Warnings
The following warnings should be noted:

• Not all load and store operations are monitored. Only those in queue position 0 of
their respective load/store queues are monitored.

• The 604 cannot accurately track threshold events with respect to the following types
of loads and stores:

— Unaligned load and store operations that cross a word boundary

— Load and store multiple operations

— Load and store string operations

• The lateral L2 cache intervention signal is controlled by the L2 cache controller
being used. If the L2 cache controller does not provide this functionality, the events
that use this signal (PMC1 events 9 and 10) become obsolete.

9.1.2.3 Nonthreshold Events
Nonthreshold events are all events except for PMC1 events 9, 10, 23, or 24. Any PMI
signaled from nonthreshold events operate the same way. There is no distinction (in the SIA
and SDA registers) between an interrupt generated by a time-base register bit transition or
from PMC2 or PMC1 becoming negative. In these cases the SIA contains the address of the
last instruction completed during the cycle the PMI was signaled. The SDA contains an
effective address of some instruction currently being processed.

Under these events the SIA and SDA does not contain information belonging to the same
instruction.

9-12 PowerPC 604 RISC Microprocessor User's Manual

Appendix A. PowerPC Instruction Set Listings A-1

Appendix A
PowerPC Instruction Set Listings
A0
A0

This appendix lists the PowerPC 604 microprocessor instruction set as well as PowerPC
instructions not implemented in the 604. Instructions are sorted by mnemonic, opcode,
function, and form. Also included in this appendix is a quick reference table that contains
general information, such as the architecture level, privilege level, and form, and indicates
if the instruction is 64-bit and optional.

Note that split fields, that represent the concatenation of sequences from left to right, are
shown in lowercase. For more information refer to Chapter 8, “Instruction Set,” in The
Programming Environments Manual.

A.1 Instructions Sorted by Mnemonic
Table A-1 lists the instructions implemented in the 604 in alphabetical order by mnemonic.

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

Reserved bits

Key:

Instruction not implemented in the 604

A-2 PowerPC 604 RISC Microprocessor User’s Manual

andi. 28 S A UIMM

andis. 29 S A UIMM

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctrx 19 BO BI 0 0 0 0 0 528 LK

bclrx 19 BO BI 0 0 0 0 0 16 LK

cmp 31 crfD 0 L A B 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

cntlzdx 4 31 S A 0 0 0 0 0 58 Rc

cntlzwx 31 S A 0 0 0 0 0 26 Rc

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 1 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

divdx 4 31 D A B OE 489 Rc

divdux 4 31 D A B OE 457 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. PowerPC Instruction Set Listings A-3

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

extswx 4 31 S A 0 0 0 0 0 986 Rc

fabsx 63 D 0 0 0 0 0 B 264 Rc

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fcfidx 4 63 D 0 0 0 0 0 B 846 Rc

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctidx 4 63 D 0 0 0 0 0 B 814 Rc

fctidzx 4 63 D 0 0 0 0 0 B 815 Rc

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc

fresx 5 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

frsqrtex 5 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fselx 5 63 D A B C 23 Rc

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-4 PowerPC 604 RISC Microprocessor User’s Manual

fsqrtx 5 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 5 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

icbi 31 0 0 0 0 0 A B 982 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ld 4 58 D A ds 0

ldarx 4 31 D A B 84 0

ldu 4 58 D A ds 1

ldux 4 31 D A B 53 0

ldx 4 31 D A B 21 0

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lmw 3 46 D A d

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. PowerPC Instruction Set Listings A-5

lswi 3 31 D A NB 597 0

lswx 3 31 D A B 533 0

lwa 4 58 D A ds 2

lwarx 31 D A B 20 0

lwaux 4 31 D A B 373 0

lwax 4 31 D A B 341 0

lwbrx 31 D A B 534 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 1 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr 2 31 D spr 339 0

mfsr 1 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1 31 D 0 0 0 0 0 B 659 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfx 63 0 FM 0 B 711 Rc

mtfsfix 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr 1 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr 2 31 S spr 467 0

mtsr 1 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 1 31 S 0 0 0 0 0 B 242 0

mulhdx 4 31 D A B 0 73 Rc

mulhdux4 31 D A B 0 9 Rc

mulhwx 31 D A B 0 75 Rc

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-6 PowerPC 604 RISC Microprocessor User’s Manual

mulhwux 31 D A B 0 11 Rc

mulldx 4 31 D A B OE 233 Rc

mulli 7 D A SIMM

mullwx 31 D A B OE 235 Rc

nandx 31 S A B 476 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

rfi 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

rldclx 4 30 S A B mb 8 Rc

rldcrx 4 30 S A B me 9 Rc

rldicx 4 30 S A sh mb 2 sh Rc

rldiclx 4 30 S A sh mb 0 sh Rc

rldicrx 4 30 S A sh me 1 sh Rc

rldimix 4 30 S A sh mb 3 sh Rc

rlwimix 20 S A SH MB ME Rc

rlwinmx 21 S A SH MB ME Rc

rlwnmx 23 S A B MB ME Rc

sc 17 0 1 0

slbia 1,4,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,4,5 31 0 0 0 0 0 0 0 0 0 0 B 434 0

sldx 4 31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradx 4 31 S A B 794 Rc

sradix 4 31 S A sh 413 sh Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srdx 4 31 S A B 539 Rc

srwx 31 S A B 536 Rc

stb 38 S A d

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. PowerPC Instruction Set Listings A-7

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

std 4 62 S A ds 0

stdcx. 4 31 S A B 214 1

stdu 4 62 S A ds 1

stdux 4 31 S A B 181 0

stdx 4 31 S A B 149 0

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 5 31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sth 44 S A d

sthbrx 31 S A B 918 0

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stmw 3 47 S A d

stswi 3 31 S A NB 725 0

stswx 3 31 S A B 661 0

stw 36 S A d

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-8 PowerPC 604 RISC Microprocessor User’s Manual

subfex 31 D A B OE 136 Rc

subfic 08 D A SIMM

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

td 4 31 TO A B 68 0

tdi 4 02 TO A SIMM

tlbia 1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,5 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

twi 03 TO A SIMM

xorx 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional instruction

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. PowerPC Instruction Set Listings A-9

A.2 Instructions Sorted by Opcode
Table A-2 lists the 603 instruction set sorted in numeric order by opcode, including those
PowerPC instructions not implemented by the 604.

Table A-2. Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tdi 4 0 0 0 0 1 0 TO A SIMM

twi 0 0 0 0 1 1 TO A SIMM

mulli 0 0 0 1 1 1 D A SIMM

subfic 0 0 1 0 0 0 D A SIMM

cmpli 0 0 1 0 1 0 crfD 0 L A UIMM

cmpi 0 0 1 0 1 1 crfD 0 L A SIMM

addic 0 0 1 1 0 0 D A SIMM

addic. 0 0 1 1 0 1 D A SIMM

addi 0 0 1 1 1 0 D A SIMM

addis 0 0 1 1 1 1 D A SIMM

bcx 0 1 0 0 0 0 BO BI BD AA LK

sc 0 1 0 0 0 1 0 1 0

bx 0 1 0 0 1 0 LI AA LK

mcrf 0 1 0 0 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bclrx 0 1 0 0 1 1 BO BI 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 LK

crnor 0 1 0 0 1 1 crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 0

rfi 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

crandc 0 1 0 0 1 1 crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 0

isync 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

crxor 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 0

crnand 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 0

crand 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 0

creqv 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 0

crorc 0 1 0 0 1 1 crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 0

cror 0 1 0 0 1 1 crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 0

Reserved bits

Key:

Instruction not implemented in the 604

A-10 PowerPC 604 RISC Microprocessor User’s Manual

bcctrx 0 1 0 0 1 1 BO BI 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 LK

rlwimix 0 1 0 1 0 0 S A SH MB ME Rc

rlwinmx 0 1 0 1 0 1 S A SH MB ME Rc

rlwnmx 0 1 0 1 1 1 S A B MB ME Rc

ori 0 1 1 0 0 0 S A UIMM

oris 0 1 1 0 0 1 S A UIMM

xori 0 1 1 0 1 0 S A UIMM

xoris 0 1 1 0 1 1 S A UIMM

andi. 0 1 1 1 0 0 S A UIMM

andis. 0 1 1 1 0 1 S A UIMM

rldiclx 4 0 1 1 1 1 0 S A sh mb 0 0 0 sh Rc

rldicrx 4 0 1 1 1 1 0 S A sh me 0 0 1 sh Rc

rldicx 4 0 1 1 1 1 0 S A sh mb 0 1 0 sh Rc

rldimix 4 0 1 1 1 1 0 S A sh mb 0 1 1 sh Rc

rldclx 4 0 1 1 1 1 0 S A B mb 0 1 0 0 0 Rc

rldcrx 4 0 1 1 1 1 0 S A B me 0 1 0 0 1 Rc

cmp 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

tw 0 1 1 1 1 1 TO A B 0 0 0 0 0 0 0 1 0 0 0

subfcx 0 1 1 1 1 1 D A B OE 0 0 0 0 0 0 1 0 0 0 Rc

mulhdux 4 0 1 1 1 1 1 D A B 0 0 0 0 0 0 0 1 0 0 1 Rc

addcx 0 1 1 1 1 1 D A B OE 0 0 0 0 0 0 1 0 1 0 Rc

mulhwux 0 1 1 1 1 1 D A B 0 0 0 0 0 0 0 1 0 1 1 Rc

mfcr 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0

lwarx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 0

ldx 4 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 0

lwzx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 1 1 0

slwx 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 0 0 Rc

cntlzwx 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 Rc

sldx 4 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 1 1 Rc

andx 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 1 0 0 Rc

cmpl 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 1 0 0 0 0 0 0

subfx 0 1 1 1 1 1 D A B OE 0 0 0 0 1 0 1 0 0 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. PowerPC Instruction Set Listings A-11

ldux 4 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 0 1 0

dcbst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 0 1 1 0 1 1 0 0

lwzux 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 1 1 0

cntlzdx 4 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 Rc

andcx 0 1 1 1 1 1 S A B 0 0 0 0 1 1 1 1 0 0 Rc

td 4 0 1 1 1 1 1 TO A B 0 0 0 1 0 0 0 1 0 0 0

mulhdx 4 0 1 1 1 1 1 D A B 0 0 0 0 1 0 0 1 0 0 1 Rc

mulhwx 0 1 1 1 1 1 D A B 0 0 0 0 1 0 0 1 0 1 1 Rc

mfmsr 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0

ldarx 4 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 0 0 0

dcbf 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 1 0 1 0 1 1 0 0

lbzx 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 1 1 0

negx 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 0 1 1 0 1 0 0 0 Rc

lbzux 0 1 1 1 1 1 D A B 0 0 0 1 1 1 0 1 1 1 0

norx 0 1 1 1 1 1 S A B 0 0 0 1 1 1 1 1 0 0 Rc

subfex 0 1 1 1 1 1 D A B OE 0 0 1 0 0 0 1 0 0 0 Rc

addex 0 1 1 1 1 1 D A B OE 0 0 1 0 0 0 1 0 1 0 Rc

mtcrf 0 1 1 1 1 1 S 0 CRM 0 0 0 1 0 0 1 0 0 0 0 0

mtmsr 0 1 1 1 1 1 S 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

stdx 4 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 0 1 0

stwcx. 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 0 1

stwx 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 1 0

stdux 4 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 0 1 0

stwux 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 1 1 0

subfzex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 0 1 0 0 0 Rc

addzex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 0 1 0 1 0 Rc

mtsr 0 1 1 1 1 1 S 0 SR 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0

stdcx. 4 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 0 1

stbx 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 1 0

subfmex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 1 0 1 0 0 0 Rc

mulld 4 0 1 1 1 1 1 D A B OE 0 0 1 1 1 0 1 0 0 1 Rc

addmex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 1 0 1 0 1 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-12 PowerPC 604 RISC Microprocessor User’s Manual

mullwx 0 1 1 1 1 1 D A B OE 0 0 1 1 1 0 1 0 1 1 Rc

mtsrin 0 1 1 1 1 1 S 0 0 0 0 0 B 0 0 1 1 1 1 0 0 1 0 0

dcbtst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 1 1 1 1 0 1 1 0 0

stbux 0 1 1 1 1 1 S A B 0 0 1 1 1 1 0 1 1 1 0

addx 0 1 1 1 1 1 D A B OE 0 1 0 0 0 0 1 0 1 0 Rc

dcbt 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 0 0 0 1 0 1 1 0 0

lhzx 0 1 1 1 1 1 D A B 0 1 0 0 0 1 0 1 1 1 0

eqvx 0 1 1 1 1 1 S A B 0 1 0 0 0 1 1 1 0 0 Rc

tlbie 1,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 0 0 1 1 0 0 1 0 0

eciwx 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 0 0

lhzux 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 1 0

xorx 0 1 1 1 1 1 S A B 0 1 0 0 1 1 1 1 0 0 Rc

mfspr 2 0 1 1 1 1 1 D spr 0 1 0 1 0 1 0 0 1 1 0

lwax 4 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 0 1 0

lhax 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 1 1 0

tlbia 1,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0

mftb 0 1 1 1 1 1 D tbr 0 1 0 1 1 1 0 0 1 1 0

lwaux 4 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 0 1 0

lhaux 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 1 1 0

sthx 0 1 1 1 1 1 S A B 0 1 1 0 0 1 0 1 1 1 0

orcx 0 1 1 1 1 1 S A B 0 1 1 0 0 1 1 1 0 0 Rc

sradix 4 0 1 1 1 1 1 S A sh 1 1 0 0 1 1 1 0 1 1 sh Rc

slbie 1,4,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 1 0 1 1 0 0 1 0 0

ecowx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 0 0

sthux 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 1 0

orx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 1 1 0 0 Rc

divdux 4 0 1 1 1 1 1 D A B OE 0 1 1 1 0 0 1 0 0 1 Rc

divwux 0 1 1 1 1 1 D A B OE 0 1 1 1 0 0 1 0 1 1 Rc

mtspr 2 0 1 1 1 1 1 S spr 0 1 1 1 0 1 0 0 1 1 0

dcbi 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 1 1 0 1 0 1 1 0 0

nandx 0 1 1 1 1 1 S A B 0 1 1 1 0 1 1 1 0 0 Rc

divdx 4 0 1 1 1 1 1 D A B OE 0 1 1 1 1 0 1 0 0 1 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. PowerPC Instruction Set Listings A-13

divwx 0 1 1 1 1 1 D A B OE 0 1 1 1 1 0 1 0 1 1 Rc

slbia 1,4,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0

 mcrxr 0 1 1 1 1 1 crfD 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

lswx 3 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 0 1 0

lwbrx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 0 0

lfsx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 1 0

srwx 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 0 0 Rc

srdx 4 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 1 1 Rc

tlbsync 1,5 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0

lfsux 0 1 1 1 1 1 D A B 1 0 0 0 1 1 0 1 1 1 0

mfsr 0 1 1 1 1 1 D 0 SR 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0

lswi 3 0 1 1 1 1 1 D A NB 1 0 0 1 0 1 0 1 0 1 0

sync 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0

lfdx 0 1 1 1 1 1 D A B 1 0 0 1 0 1 0 1 1 1 0

lfdux 0 1 1 1 1 1 D A B 1 0 0 1 1 1 0 1 1 1 0

mfsrin 1 0 1 1 1 1 1 D 0 0 0 0 0 B 1 0 1 0 0 1 0 0 1 1 0

stswx 3 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 0 1 0

stwbrx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 0 0

stfsx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 1 0

stfsux 0 1 1 1 1 1 S A B 1 0 1 0 1 1 0 1 1 1 0

stswi 3 0 1 1 1 1 1 S A NB 1 0 1 1 0 1 0 1 0 1 0

stfdx 0 1 1 1 1 1 S A B 1 0 1 1 0 1 0 1 1 1 0

stfdux 0 1 1 1 1 1 S A B 1 0 1 1 1 1 0 1 1 1 0

lhbrx 0 1 1 1 1 1 D A B 1 1 0 0 0 1 0 1 1 0 0

srawx 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 0 0 Rc

sradx 4 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 1 0 Rc

srawix 0 1 1 1 1 1 S A SH 1 1 0 0 1 1 1 0 0 0 Rc

eieio 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0

sthbrx 0 1 1 1 1 1 S A B 1 1 1 0 0 1 0 1 1 0 0

extshx 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 Rc

extsbx 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 Rc

icbi 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 0 1 0 1 1 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-14 PowerPC 604 RISC Microprocessor User’s Manual

stfiwx 5 0 1 1 1 1 1 S A B 1 1 1 1 0 1 0 1 1 1 0

extsw 4 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 Rc

dcbz 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 1 1 0 1 1 0 0

lwz 1 0 0 0 0 0 D A d

lwzu 1 0 0 0 0 1 D A d

lbz 1 0 0 0 1 0 D A d

lbzu 1 0 0 0 1 1 D A d

stw 1 0 0 1 0 0 S A d

stwu 1 0 0 1 0 1 S A d

stb 1 0 0 1 1 0 S A d

stbu 1 0 0 1 1 1 S A d

lhz 1 0 1 0 0 0 D A d

lhzu 1 0 1 0 0 1 D A d

lha 1 0 1 0 1 0 D A d

lhau 1 0 1 0 1 1 D A d

sth 1 0 1 1 0 0 S A d

sthu 1 0 1 1 0 1 S A d

lmw 3 1 0 1 1 1 0 D A d

stmw 3 1 0 1 1 1 1 S A d

lfs 1 1 0 0 0 0 D A d

lfsu 1 1 0 0 0 1 D A d

lfd 1 1 0 0 1 0 D A d

lfdu 1 1 0 0 1 1 D A d

 stfs 1 1 0 1 0 0 S A d

stfsu 1 1 0 1 0 1 S A d

stfd 1 1 0 1 1 0 S A d

stfdu 1 1 0 1 1 1 S A d

ld 4 1 1 1 0 1 0 D A ds 0 0

ldu 4 1 1 1 0 1 0 D A ds 0 1

lwa 4 1 1 1 0 1 0 D A ds 1 0

fdivsx 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsubsx 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. PowerPC Instruction Set Listings A-15

faddsx 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsqrtsx 5 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fresx 5 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 0 0 Rc

fmulsx 1 1 1 0 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

fmsubsx 1 1 1 0 1 1 D A B C 1 1 1 0 0 Rc

fmaddsx 1 1 1 0 1 1 D A B C 1 1 1 0 1 Rc

fnmsubsx 1 1 1 0 1 1 D A B C 1 1 1 1 0 Rc

fnmaddsx 1 1 1 0 1 1 D A B C 1 1 1 1 1 Rc

std 4 1 1 1 1 1 0 S A ds 0 0

stdu 4 1 1 1 1 1 0 S A ds 0 1

fcmpu 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 0 0 0 0 0 0 0

frspx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 0 0 Rc

fctiwx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 0

fctiwzx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 1 Rc

fdivx 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsubx 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

faddx 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsqrtx 5 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fselx 5 1 1 1 1 1 1 D A B C 1 0 1 1 1 Rc

fmulx 1 1 1 1 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

frsqrtex 5 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 1 0 Rc

fmsubx 1 1 1 1 1 1 D A B C 1 1 1 0 0 Rc

fmaddx 1 1 1 1 1 1 D A B C 1 1 1 0 1 Rc

fnmsubx 1 1 1 1 1 1 D A B C 1 1 1 1 0 Rc

fnmaddx 1 1 1 1 1 1 D A B C 1 1 1 1 1 Rc

fcmpo 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 1 0 0 0 0 0 0

mtfsb1x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 Rc

fnegx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 1 0 1 0 0 0 Rc

mcrfs 1 1 1 1 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

mtfsb0x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 Rc

fmrx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 1 0 0 1 0 0 0 Rc

mtfsfix 1 1 1 1 1 1 crfD 0 0 0 0 0 0 0 IMM 0 0 0 1 0 0 0 0 1 1 0 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-16 PowerPC 604 RISC Microprocessor User’s Manual

fnabsx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 1 0 0 0 1 0 0 0 Rc

fabsx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 1 0 0 0 0 1 0 0 0 Rc

mffsx 1 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 Rc

mtfsfx 1 1 1 1 1 1 0 FM 0 B 1 0 1 1 0 0 0 1 1 1 Rc

fctidx 4 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 0 1 0 1 1 1 0 Rc

fctidzx 4 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 0 1 0 1 1 1 1 Rc

fcfidx 4 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 1 0 0 1 1 1 0 Rc

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. PowerPC Instruction Set Listings A-17

A.3 Instructions Grouped by Functional Categories
Table A-3 through Table A-30 list the 604 instructions grouped by function, as well as the
PowerPC instructions not implemented in the 604.

Table A-3. Integer Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divdx 4 31 D A B OE 489 Rc

divdux 4 31 D A B OE 457 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

mulhdx 4 31 D A B 0 73 Rc

mulhdux4 31 D A B 0 9 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mulld 4 31 D A B OE 233 Rc

mulli 07 D A SIMM

mullwx 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subficx 08 D A SIMM

Reserved bits

Key:

Instruction not implemented in the 604

A-18 PowerPC 604 RISC Microprocessor User’s Manual

Table A-4. Integer Compare Instructions

Table A-5. Integer Logical Instructions

subfex 31 D A B OE 136 Rc

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

cmp 31 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

cntlzdx 4 31 S A 0 0 0 0 0 58 Rc

cntlzwx 31 S A 0 0 0 0 0 26 Rc

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

extswx 4 31 S A 0 0 0 0 0 986 Rc

nandx 31 S A B 476 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

xorx 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. PowerPC Instruction Set Listings A-19

Table A-6. Integer Rotate Instructions

Table A-7. Integer Shift Instructions

Table A-8. Floating-Point Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldclx 4 30 S A B mb 8 Rc

rldcrx 4 30 S A B me 9 Rc

rldicx 4 30 S A sh mb 2 sh Rc

rldiclx 4 30 S A sh mb 0 sh Rc

rldicrx 4 30 S A sh me 1 sh Rc

rldimix 4 30 S A sh mb 3 sh Rc

rlwimix 22 S A SH MB ME Rc

rlwinmx 20 S A SH MB ME Rc

rlwnmx 21 S A SH MB ME Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sldx 4 31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradx 4 31 S A B 794 Rc

sradix 4 31 S A sh 413 sh Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srdx 4 31 S A B 539 Rc

srwx 31 S A B 536 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fresx 5 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrtex 5 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

A-20 PowerPC 604 RISC Microprocessor User’s Manual

Table A-9. Floating-Point Multiply-Add Instructions

Table A-10. Floating-Point Rounding and Conversion Instructions

Table A-11. Floating-Point Compare Instructions

fsubsx 59 D A B 0 0 0 0 0 20 Rc

fselx 5 63 D A B C 23 Rc

fsqrtx 5 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 5 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcfidx 4 63 D 0 0 0 0 0 B 846 Rc

fctidx 4 63 D 0 0 0 0 0 B 814 Rc

fctidzx 4 63 D 0 0 0 0 0 B 815 Rc

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. PowerPC Instruction Set Listings A-21

Table A-12. Floating-Point Status and Control Register Instructions

Table A-13. Integer Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfx 31 0 FM 0 B 711 Rc

mtfsfix 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ld 4 58 D A ds 0

ldu 4 58 D A ds 1

ldux 4 31 D A B 53 0

ldx 4 31 D A B 21 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lwa 4 58 D A ds 2

lwaux 4 31 D A B 373 0

lwax 4 31 D A B 341 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

A-22 PowerPC 604 RISC Microprocessor User’s Manual

Table A-14. Integer Store Instructions

Table A-15. Integer Load and Store with Byte Reverse Instructions

Table A-16. Integer Load and Store Multiple Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

std 4 62 S A ds 0

stdu 4 62 S A ds 1

stdux 4 31 S A B 181 0

stdx 4 31 S A B 149 0

sth 44 S A d

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stw 36 S A d

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lhbrx 31 D A B 790 0

lwbrx 31 D A B 534 0

sthbrx 31 S A B 918 0

stwbrx 31 S A B 662 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lmw 3 46 D A d

stmw 3 47 S A d

Appendix A. PowerPC Instruction Set Listings A-23

Table A-17. Integer Load and Store String Instructions

Table A-18. Memory Synchronization nstructions

Table A-19. Floating-Point Load Instructions

Table A-20. Floating-Point Store Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lswi 3 31 D A NB 597 0

lswx 3 31 D A B 533 0

stswi 3 31 S A NB 725 0

stswx 3 31 S A B 661 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

ldarx 4 31 D A B 84 0

lwarx 31 D A B 20 0

stdcx.4 31 S A B 214 1

stwcx. 31 S A B 150 1

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

A-24 PowerPC 604 RISC Microprocessor User’s Manual

Table A-21. Floating-Point Move Instructions

Table A-22. Branch Instructions

Table A-23. Condition Register Logical Instructions

stfiwx 5 31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fabsx 63 D 0 0 0 0 0 B 264 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctrx 19 BO BI 0 0 0 0 0 528 LK

bclrx 19 BO BI 0 0 0 0 0 16 LK

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. PowerPC Instruction Set Listings A-25

Table A-24. System Linkage Instructions

Table A-25. Trap Instructions

Table A-26. Processor Control Instructions

Table A-27. Cache Management Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rfi 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

sc 17 0 1 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

td 4 31 TO A B 68 0

tdi 4 03 TO A SIMM

tw 31 TO A B 4 0

twi 03 TO A SIMM

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 mcrxr 31 crfS 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mfmsr 1 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr 2 31 D spr 339 0

mftb 31 D tpr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtmsr 1 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr 2 31 D spr 467 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 1 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

icbi 31 0 0 0 0 0 A B 982 0

A-26 PowerPC 604 RISC Microprocessor User’s Manual

Table A-28. Segment Register Manipulation Instructions

Table A-29. Lookaside Buffer Management Instructions

Table A-30. External Control Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfsr 1 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1 31 D 0 0 0 0 0 B 659 0

mtsr 1 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 1 31 S 0 0 0 0 0 B 242 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

slbia 1,4,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,4,5 31 0 0 0 0 0 0 0 0 0 0 B 434 0

tlbia 1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,5 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional instruction

Appendix A. PowerPC Instruction Set Listings A-27

A.4 Instructions Sorted by Form
Table A-31 through Table A-45 list the 604 instructions grouped by form, including those
PowerPC instructions not implemented in the 604.

Table A-31. I-Form

Table A-32. B-Form

Table A-33. SC-Form

Table A-34. D-Form

OPCD LI AA LK

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

OPCD BO BI BD AA LK

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcx 16 BO BI BD AA LK

OPCD 0 1 0

Specific Instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sc 17 0 1 0

OPCD D A d

OPCD D A SIMM

OPCD S A d

OPCD S A UIMM

OPCD crfD 0 L A SIMM

OPCD crfD 0 L A UIMM

OPCD TO A SIMM

Reserved bits

Key:

Instruction not implemented in the 604

A-28 PowerPC 604 RISC Microprocessor User’s Manual

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

andi. 28 S A UIMM

andis. 29 S A UIMM

cmpi 11 crfD 0 L A SIMM

cmpli 10 crfD 0 L A UIMM

lbz 34 D A d

lbzu 35 D A d

lfd 50 D A d

lfdu 51 D A d

lfs 48 D A d

lfsu 49 D A d

lha 42 D A d

lhau 43 D A d

lhz 40 D A d

lhzu 41 D A d

lmw 3 46 D A d

lwz 32 D A d

lwzu 33 D A d

mulli 7 D A SIMM

ori 24 S A UIMM

oris 25 S A UIMM

stb 38 S A d

stbu 39 S A d

stfd 54 S A d

stfdu 55 S A d

 stfs 52 S A d

stfsu 53 S A d

sth 44 S A d

sthu 45 S A d

stmw 3 47 S A d

Appendix A. PowerPC Instruction Set Listings A-29

Table A-35. DS-Form

Table A-36. X-Form

stw 36 S A d

stwu 37 S A d

subfic 08 D A SIMM

tdi 4 02 TO A SIMM

twi 03 TO A SIMM

xori 26 S A UIMM

xoris 27 S A UIMM

OPCD D A ds XO

OPCD S A ds XO

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ld 4 58 D A ds 0

ldu 4 58 D A ds 1

lwa 4 58 D A ds 2

std 4 62 S A ds 0

stdu 4 62 S A ds 1

OPCD D A B XO 0

OPCD D A NB XO 0

OPCD D 0 0 0 0 0 B XO 0

OPCD D 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD D 0 SR 0 0 0 0 0 XO 0

OPCD S A B XO Rc

OPCD S A B XO 1

OPCD S A B XO 0

OPCD S A NB XO 0

OPCD S A 0 0 0 0 0 XO Rc

OPCD S 0 0 0 0 0 B XO 0

OPCD S 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions (Continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-30 PowerPC 604 RISC Microprocessor User’s Manual

OPCD S 0 SR 0 0 0 0 0 XO 0

OPCD S A SH XO Rc

OPCD crfD 0 L A B XO 0

OPCD crfD 0 0 A B XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 IMM 0 XO Rc

OPCD TO A B XO 0

OPCD D 0 0 0 0 0 B XO Rc

OPCD D 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD crbD 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD 0 0 0 0 0 A B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

cmp 31 crfD 0 L A B 0 0

cmpl 31 crfD 0 L A B 32 0

cntlzdx 4 31 S A 0 0 0 0 0 58 Rc

cntlzwx 31 S A 0 0 0 0 0 26 Rc

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 1 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

eciwx 31 D A B 310 0

ecowx 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

Appendix A. PowerPC Instruction Set Listings A-31

extswx 4 31 S A 0 0 0 0 0 986 Rc

fabsx 63 D 0 0 0 0 0 B 264 Rc

fcfidx 4 63 D 0 0 0 0 0 B 846 Rc

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctidx 4 63 D 0 0 0 0 0 B 814 Rc

fctidzx 4 63 D 0 0 0 0 0 B 815 Rc

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

icbi 31 0 0 0 0 0 A B 982 0

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ldarx 4 31 D A B 84 0

ldux 4 31 D A B 53 0

ldx 4 31 D A B 21 0

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lswi 3 31 D A NB 597 0

lswx 3 31 D A B 533 0

lwarx 31 D A B 20 0

lwaux 4 31 D A B 373 0

lwax 4 31 D A B 341 0

Specific Instructions (Continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-32 PowerPC 604 RISC Microprocessor User’s Manual

lwbrx 31 D A B 534 0

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 1 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfsr 1 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1 31 D 0 0 0 0 0 B 659 0

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crfD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfix 63 crbD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr 1 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtsr 1 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 1 31 S 0 0 0 0 0 B 242 0

nandx 31 S A B 476 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

slbia 1,4,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1,4,5 31 0 0 0 0 0 0 0 0 0 0 B 434 0

sldx 4 31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradx 4 31 S A B 794 Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srdx 4 31 S A B 539 Rc

srwx 31 S A B 536 Rc

stbux 31 S A B 247 0

stbx 31 S A B 215 0

stdcx. 4 31 S A B 214 1

stdux 4 31 S A B 181 0

Specific Instructions (Continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. PowerPC Instruction Set Listings A-33

Table A-37. XL-Form

stdx 4 31 S A B 149 0

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx5 31 S A B 983 0

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sthbrx 31 S A B 918 0

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stswi 3 31 S A NB 725 0

stswx 3 31 S A B 661 0

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwux 31 S A B 183 0

stwx 31 S A B 151 0

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

td 4 31 TO A B 68 0

tlbia 1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,5 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync1,5 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

xorx 31 S A B 316 Rc

OPCD BO BI 0 0 0 0 0 XO LK

OPCD crbD crbA crbB XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcctrx 19 BO BI 0 0 0 0 0 528 LK

bclrx 19 BO BI 0 0 0 0 0 16 LK

Specific Instructions (Continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A-34 PowerPC 604 RISC Microprocessor User’s Manual

Table A-38. XFX-Form

Table A-39. XFL-Form

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

rfi 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

OPCD D spr XO 0

OPCD D 0 CRM 0 XO 0

OPCD S spr XO 0

OPCD D tbr XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfspr 2 31 D spr 339 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtspr 2 31 D spr 467 0

OPCD 0 FM 0 B XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mtfsfx 63 0 FM 0 B 711 Rc

Specific Instructions (Continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Appendix A. PowerPC Instruction Set Listings A-35

Table A-40. XS-Form

Table A-41. XO-Form

OPCD S A sh XO sh Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sradix 4 31 S A sh 413 sh Rc

OPCD D A B OE XO Rc

OPCD D A B 0 XO Rc

OPCD D A 0 0 0 0 0 OE XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divdx 4 31 D A B OE 489 Rc

divdux 4 31 D A B OE 457 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

mulhdx 4 31 D A B 0 73 Rc

mulhdux 4 31 D A B 0 9 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mulldx 4 31 D A B OE 233 Rc

mullwx 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subfex 31 D A B OE 136 Rc

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

A-36 PowerPC 604 RISC Microprocessor User’s Manual

Table A-42. A-Form

OPCD D A B 0 0 0 0 0 XO Rc

OPCD D A B C XO Rc

OPCD D A 0 0 0 0 0 C XO Rc

OPCD D 0 0 0 0 0 B 0 0 0 0 0 XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc

fresx 5 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrtex 5 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fselx 5 63 D A B C 23 Rc

fsqrtx 5 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 5 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

Appendix A. PowerPC Instruction Set Listings A-37

Table A-43. M-Form

Table A-44. MD-Form

Table A-45. MDS-Form

OPCD S A SH MB ME Rc

OPCD S A B MB ME Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rlwimix 20 S A SH MB ME Rc

rlwinmx 21 S A SH MB ME Rc

rlwnmx 23 S A B MB ME Rc

OPCD S A sh mb XO sh Rc

OPCD S A sh me XO sh Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldicx 4 30 S A sh mb 2 sh Rc

rldiclx 4 30 S A sh mb 0 sh Rc

rldicrx 4 30 S A sh me 1 sh Rc

rldimix 4 30 S A sh mb 3 sh Rc

OPCD S A B mb XO Rc

OPCD S A B me XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldclx 4 30 S A B mb 8 Rc

rldcrx 4 30 S A B me 9 Rc

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 64-bit instruction
5 Optional instruction

A-38 PowerPC 604 RISC Microprocessor User’s Manual

A.5 Instruction Set Legend
Table A-46 provides general information on the 604 instruction set (such as the
architectural level, privilege level, and form), including instructions not implemented in the
604.

Table A-46. PowerPC Instruction Set Legend

UISA VEA OEA Supervisor Level 64-Bit Optional Form

addx √ XO

addcx √ XO

addex √ XO

addi √ D

addic √ D

addic. √ D

addis √ D

addmex √ XO

addzex √ XO

andx √ X

andcx √ X

andi. √ D

andis. √ D

bx √ I

bcx √ B

bcctrx √ XL

bclrx √ XL

cmp √ X

cmpi √ D

cmpl √ X

cmpli √ D

cntlzdx √ √ X

cntlzwx √ X

crand √ XL

crandc √ XL

Key:

Instruction not implemented in the 604

Appendix A. PowerPC Instruction Set Listings A-39

creqv √ XL

crnand √ XL

crnor √ XL

cror √ XL

crorc √ XL

crxor √ XL

dcbf √ X

dcbi √ √ X

dcbst √ X

dcbt √ X

dcbtst √ X

dcbz √ X

divdx √ √ XO

divdux √ √ XO

divwx √ XO

divwux √ XO

eciwx √ √ X

ecowx √ √ X

eieio √ X

eqvx √ X

extsbx √ X

extshx √ X

extswx √ √ X

fabsx √ X

faddx √ A

faddsx √ A

fcfidx √ √ X

fcmpo √ X

fcmpu √ X

fctidx √ √ X

fctidzx √ √ X

fctiwx √ X

fctiwzx √ X

UISA VEA OEA Supervisor Level 64-Bit Optional Form

A-40 PowerPC 604 RISC Microprocessor User’s Manual

fdivx √ A

fdivsx √ A

fmaddx √ A

fmaddsx √ A

fmrx √ X

fmsubx √ A

fmsubsx √ A

fmulx √ A

fmulsx √ A

fnabsx √ X

fnegx √ X

fnmaddx √ A

fnmaddsx √ A

fnmsubx √ A

fnmsubsx √ A

fresx √ √ A

frspx √ X

frsqrtex √ √ A

fselx √ √ A

fsqrtx √ √ A

fsqrtsx √ √ A

fsubx √ A

fsubsx √ A

icbi √ X

isync √ XL

lbz √ D

lbzu √ D

lbzux √ X

lbzx √ X

ld √ √ DS

ldarx √ √ X

ldu √ √ DS

ldux √ √ X

UISA VEA OEA Supervisor Level 64-Bit Optional Form

Appendix A. PowerPC Instruction Set Listings A-41

ldx √ √ X

lfd √ D

lfdu √ D

lfdux √ X

lfdx √ X

lfs √ D

lfsu √ D

lfsux √ X

lfsx √ X

lha √ D

lhau √ D

lhaux √ X

lhax √ X

lhbrx √ X

lhz √ D

lhzu √ D

lhzux √ X

lhzx √ X

lmw 2 √ D

lswi 2 √ X

lswx 2 √ X

lwa √ √ DS

lwarx √ X

lwaux √ √ X

lwax √ √ X

lwbrx √ X

lwz √ D

lwzu √ D

lwzux √ X

lwzx √ X

mcrf √ XL

mcrfs √ X

 mcrxr √ X

UISA VEA OEA Supervisor Level 64-Bit Optional Form

A-42 PowerPC 604 RISC Microprocessor User’s Manual

mfcr √ X

mffsx √ X

mfmsr √ √ X

mfspr 1 √ √ √ XFX

mfsr √ √ X

mfsrin √ √ X

mftb √ XFX

mtcrf √ XFX

mtfsb0x √ X

mtfsb1x √ X

mtfsfx √ XFL

mtfsfix √ X

mtmsr √ √ X

mtspr 1 √ √ √ XFX

mtsr √ √ X

mtsrin √ √ X

mulhdx √ √ XO

mulhdux √ √ XO

mulhwx √ XO

mulhwux √ XO

mulldx √ √ XO

mulli √ D

mullwx √ XO

nandx √ X

negx √ XO

norx √ X

orx √ X

orcx √ X

ori √ D

oris √ D

rfi √ √ XL

rldclx √ √ MDS

rldcrx √ √ MDS

UISA VEA OEA Supervisor Level 64-Bit Optional Form

Appendix A. PowerPC Instruction Set Listings A-43

rldicx √ √ MD

rldiclx √ √ MD

rldicrx √ √ MD

rldimix √ √ MD

rlwimix √ M

rlwinmx √ M

rlwnmx √ M

sc √ √ SC

slbia √ √ √ √ X

slbie √ √ √ √ X

sldx √ √ X

slwx √ X

sradx √ √ X

sradix √ √ XS

srawx √ X

srawix √ X

srdx √ √ X

srwx √ X

stb √ D

stbu √ D

stbux √ X

stbx √ X

std √ √ DS

stdcx. √ √ X

stdu √ √ DS

stdux √ √ X

stdx √ √ X

stfd √ D

stfdu √ D

stfdux √ X

stfdx √ X

stfiwx √ √ X

 stfs √ D

UISA VEA OEA Supervisor Level 64-Bit Optional Form

A-44 PowerPC 604 RISC Microprocessor User’s Manual

stfsu √ D

stfsux √ X

stfsx √ X

sth √ D

sthbrx √ X

sthu √ D

sthux √ X

sthx √ X

stmw 2 √ D

stswi 2 √ X

stswx 2 √ X

stw √ D

stwbrx √ X

stwcx. √ X

stwu √ D

stwux √ X

stwx √ X

subfx √ XO

subfcx √ XO

subfex √ XO

subfic √ D

subfmex √ XO

subfzex √ XO

sync √ X

td √ √ X

tdi √ √ D

tlbia √ √ √ X

tlbie √ √ √ X

tlbsync √ √ √ X

tw √ X

twi √ D

UISA VEA OEA Supervisor Level 64-Bit Optional Form

Appendix A. PowerPC Instruction Set Listings A-45

xorx √ X

xori √ D

xoris √ D

1 Supervisor- and user-level instruction
2 Load and store string or multiple instruction

UISA VEA OEA Supervisor Level 64-Bit Optional Form

A-46 PowerPC 604 RISC Microprocessor User’s Manual

Appendix B. Invalid Instruction Forms B-1

Appendix B
Invalid Instruction Forms
B0
B0

This appendix describes how invalid instructions are treated by the PowerPC 604
microprocessor.

B.1 Invalid Forms Excluding Reserved Fields
The following table illustrates the invalid instruction forms of the PowerPC architecture
that are not a result of a nonzero reserved field in the instruction encoding.

Table B-1. Invalid Forms (Excluding Reserved Fields)

Mnemonic BO2 = 0
rA = 0

or
rA = rD

rA = 0 rA = r T = 0
rA in

Range
rA or rB
in Range

L = 1
SPR Not

Implemented

bcctr X

bcctrl X

lbzu X

lbzux X

lhzu X

lhzux X

lhau X

lhaux X

lwzu X

lwzux X

stbu X

stbux X

sthu X

sthux X

stwu X

stwux X

lmw X X

B-2 PowerPC 604 RISC Microprocessor User's Manual

B.2 Invalid Forms with Reserved Fields (Bit 31
Exclusive)

Table B-2 lists the invalid instruction forms of the PowerPC architecture that result from a
nonzero reserved field in the instruction encoding. This table takes into consideration all
reserved fields in an instruction that must be zero, excluding only those instructions that
would become invalid if only bit 31 were set. Note that any combination of a one being
detected in the instructions field(s) marked X results in an invalid form.

The tlbsync instruction has the same opcode and format as the sync instruction. Setting
bit 31 in the instruction indicates a tlbsync.

lswi X X

lswx X X

cmpi X

cmp X

cmpli X

cmpl X

mtspr X

mfspr X

LFSU X

lfsux X

lfdu X

lfdux X

stfsu X

stfsux X

stfdu X

stfdux X

Table B-2. Invalid Forms with Reserved Fields (Bit 31 Exclusive)

Mnemonic 6
6
to
10

6
to
15

6
to
20

6
to
29

9
9
to
10

9
to
15

11
11
 to
15

11
 to
20

14
to
20

15
16
to
20

20 21
21
to
25

31

bclr X

bclrl X

Table B-1. Invalid Forms (Excluding Reserved Fields) (Continued)

Mnemonic BO2 = 0
rA = 0

or
rA = rD

rA = 0 rA = r T = 0
rA in

Range
rA or rB
in Range

L = 1
SPR Not

Implemented

Appendix B. Invalid Instruction Forms B-3

bcctr X

bcctrl X

sc X X

mcrf X X X

sync X *

addme[o][.] X

subfme[o][.] X

addze[o][.] X

subfze[o][.] X

neg[o][.] X

mulhw[u][.] X

cmpi X X

cmp X

cmpli X X

cmpl X

extsb[.] X

extsh[.] X

cntlzw[.] X

mtcrf X X X

mcrxr X X X

mtpmr X X

mfpmr X X

fmr[.] X

fneg[.] X

fabs[.] X

fnabs[.] X

fadd[.] X

fadds[.] X

fsub[.] X

fsubs[.] X

fmul[.] X

Table B-2. Invalid Forms with Reserved Fields (Bit 31 Exclusive) (Continued)

Mnemonic 6
6
to
10

6
to
15

6
to
20

6
to
29

9
9
to
10

9
to
15

11
11
 to
15

11
 to
20

14
to
20

15
16
to
20

20 21
21
to
25

31

B-4 PowerPC 604 RISC Microprocessor User's Manual

fmuls[.] X

fdiv[.] X

fdivs[.] X

frsp[.] X

fctiw[.] X

fctiwz[.] X

fcmpu X X

fcmpuo X X

mffs[.] X

mcrfs X X X

mtfsfi[.] X X

mtfsf[.] X X

mtfsb0[.] X

mtfsb1[.] X

icbi X X

isync X X

dcbt X X

dcbtst X X

dcbz X X

dcbst X X

dcbf X X

eieio X X

mftb X X

mftbu X X

rfi X X

mtmsr X X

mfmsr X X

dcbi X X

mtsr X X X

mfsr X X X

mtsrin X X

Table B-2. Invalid Forms with Reserved Fields (Bit 31 Exclusive) (Continued)

Mnemonic 6
6
to
10

6
to
15

6
to
20

6
to
29

9
9
to
10

9
to
15

11
11
 to
15

11
 to
20

14
to
20

15
16
to
20

20 21
21
to
25

31

Appendix B. Invalid Instruction Forms B-5

B.3 Invalid Form with Only Bit 31 Set
The following instructions generate invalid instruction forms if only bit 31 is set in the
instruction:

• cror
• crxor
• crnand
• crnor
• crandc
• creqv
• crorc
• lbzx
• lbzux
• lhzx
• lhzux
• lhax
• lhaux
• lwzx
• lwzux
• stbx
• stbux
• sthx
• sthux
• stwx
• stwux
• lhbrx
• lwbrx
• sthbrx

mfsrin X X

tlbie X X

mttb X X

mttbu X X

tlbsync X *

Table B-2. Invalid Forms with Reserved Fields (Bit 31 Exclusive) (Continued)

Mnemonic 6
6
to
10

6
to
15

6
to
20

6
to
29

9
9
to
10

9
to
15

11
11
 to
15

11
 to
20

14
to
20

15
16
to
20

20 21
21
to
25

31

B-6 PowerPC 604 RISC Microprocessor User's Manual

• stwbrx
• lswi
• lswx
• stswi
• stswx
• lwarx
• tw
• mtspr
• mfspr
• lfsx
• lfsux
• lfdx
• lfdux
• stfsx
• stfsux
• stfdx
• stfdux

B.4 Invalid Forms from Invalid BO Field Encodings
The following list illustrates the invalid BO fields for the conditional branch instructions
(bc, bca, bcl, bcla, bclr, bclrl, bcctr, and bcctrl). Specifying a conditional branch
instruction with one of these fields results in a invalid instruction form. Note that entries
with the y bit represent two possible instruction encodings.

Invalid BO field encodings are as follows:

• 0011y
• 0111y
• 1100y
• 1101y
• 10101
• 10110
• 10111
• 11100
• 11101
• 11110
• 11111

The 604 treats the bits listed above as causing an invalid form as “don’t cares.”

Glossary of Terms and Abbreviations Glossary-1

Glossary of Terms and Abbreviations
The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this
book. Some of the terms and definitions included in the glossary are reprinted from IEEE
Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, copyright ©1985 by
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

Atomic. A bus access that attempts to be part of a read-write operation to the
same address uninterrupted by any other access to that address (the
term refers to the fact that the transactions are indivisible). The
PowerPC architecture implements atomic accesses through the
lwarx/stwcx. instruction pair.

Biased exponent. The sum of the exponent and a constant (bias) chosen to
make the biased exponent's range non-negative.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most significant byte. In an addressed
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0
being the most significant byte.

Boundedly undefined. The results of attempting to execute a given
instruction are said to be boundedly undefined if they could have
been achieved by executing an arbitrary sequence of defined
instructions, in valid form, starting in the state the machine was in
before attempting to execute the given instruction. Boundedly
undefined results for a given instruction may vary between
implementations, and between execution attempts in the same
implementation.

Cache. High-speed memory containing recently accessed data and/or
instructions (subset of main memory).

Cache block. The cacheable unit for a PowerPC processor. The size of a
cache block may vary among processors.

A

B

C

Glossary-2 PowerPC 604 RISC Microprocessor User’s Manual

Cache coherency. Caches are coherent if a processor performing a read from
its cache is supplied with data corresponding to the most recent value
written to memory or to another processor’s cache.

Cast-outs. Cache blocks that must be written to memory when a snoop miss
causes the least recently used section with modified data to be
replaced.

Context synchronization. Context synchronization as the result of specific
instructions (such as isync or rfi) or when certain events occur (such
as an exception). During context synchronization, all instructions in
execution complete past the point where they can produce an
exception; all instructions in execution complete in the context in
which they began execution; all subsequent instructions are fetched
and executed in the new context.

Denormalized number. A nonzero floating-point number whose exponent
has a reserved value, usually the format's minimum, and whose
explicit or implicit leading significand bit is zero.

Exception. A condition encountered by the processor that requires special
processing.

Exception handler. A software routine that executes when an exception
occurs. Normally, the exception handler corrects the condition that
caused the exception, or performs some other meaningful task (such
as aborting the program that caused the exception). The addresses of
the exception handlers are defined by a two-word exception vector
that is branched to automatically when an exception occurs.

Execution synchronization. All instructions in execution are architecturally
complete before beginning execution (appearing to begin execution)
of the next instruction. Similar to context synchronization but doesn't
force the contents of the instruction buffers to be deleted and
refetched.

Exponent. The component of a binary floating-point number that normally
signifies the integer power to which two is raised in determining the
value of the represented number. Occasionally the exponent is called
the signed or unbiased exponent.

D

E

Glossary of Terms and Abbreviations Glossary-3

Floating-point register (FPR). Any of the 32 registers in the floating-point
register file. These registers provide the source operands and
destination results for floating-point instructions. Load instructions
move data from memory to FPRs, and store instructions move data
from FPRs to memory.

Fraction. The field of the significand that lies to the right of its implied binary
point.

General-purpose register (GPR). Any of the 32 registers in the register file.
These registers provide the source operands and destination results
for all data manipulation instructions. Load instructions move data
from memory to registers, and store instructions move data from
registers to memory.

IEEE 754. A standard written by the Institute of Electrical and Electronics
Engineers that defines operations of binary floating-point arithmetic
and representations of binary floating-point numbers.

Interrupt. An asynchronous exception.

Kill. An operation that causes a cache block to be invalidated.

Latency. The number of clock cycles necessary to execute an instruction and
make ready the results of that instruction.

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most significant byte.

Mantissa. The decimal part of logarithm.

Memory-mapped accesses. Accesses whose addresses use the segmented or
block address translation mechanisms provided by the MMU and
that occur externally with the bus protocol defined for memory.

Memory coherency. Refers to memory agreement between caches in a
multiple processor and system memory (for example, MESI cache
coherency).

F

G

HI

K

L

M

Glossary-4 PowerPC 604 RISC Microprocessor User’s Manual

Memory consistency. Refers to agreement of levels of memory with respect
to a single processor and system memory (e.g. on-chip cache,
secondary cache, and system memory).

Memory management unit. The functional unit that translates the effective
address bits to physical address bits.

NaN. An abbreviation for Not a number; a symbolic entity encoded in
floating-point format. There are two types of NaNs—signaling NaNs
and quiet NaNs.

No-op. No-operation. A single-cycle operation that does not affect registers
or generate bus activity.

Overflow. An error condition that occurs during arithmetic operations when
the result cannot be stored accurately in the destination register(s).
For example, if two 32-bit numbers are added, the sum may require
33 bits due to carry.

Page. A 4-Kbyte area of memory, aligned on a 4-Kbyte boundary.

Pipelining. A technique that breaks instruction execution into distinct steps
so that multiple steps can be performed at the same time.

Precise exceptions. The pipeline can be stopped so the instructions that
preceded the faulting instruction can complete, and subsequent
instructions can be executed from scratch. The system is precise
unless one of the imprecise modes for invoking the floating-point
enabled exception is in effect.

Quiet NaNs. Propagate through almost every arithmetic operation without
signaling exceptions. These are used to represent the results of
certain invalid operations, such as invalid arithmetic operations on
infinities or on NaNs, when invalid.

Signaling NaNs. Signal the invalid operation exception when they are
specified as arithmetic operands

Significand. The component of a binary floating-point number that consists
of an explicit or implicit leading bit to the left of its implied binary
point and a fraction field to the right.

N

O

P

Q

S

Glossary of Terms and Abbreviations Glossary-5

Static branch prediction. Mechanism by which software (for example,
compilers) can give a hint to the machine hardware about the
direction the branch is likely to take.

Sticky bit. A bit that when set must be cleared explicitly.

Superscalar machine. A machine that can issue multiple instructions
concurrently from a conventional linear instruction stream.

Supervisor mode. The privileged operation state of the a processor. In
supervisor mode, software can access all control registers and can
access the supervisor memory space, among other privileged
operations.

Underflow. An error condition that occurs during arithmetic operations when
the result cannot be represented accurately in the destination register.
For example, underflow can happen if two floating-point fractions
are multiplied and the result is a single-precision number. The result
may require a larger exponent and/or mantissa than the single-
precision format makes available. In other words, the result is too
small to be represented accurately.

Unified cache. Combined data and instruction cache.

User mode. The unprivileged operating state of a processor. In user mode,
software can only access certain control registers and can only access
user memory space. No privileged operations can be performed.

Write-through. A memory update policy in which all processor write cycles
are written to both the cache and memory.

U

VW

Glossary-6 PowerPC 604 RISC Microprocessor User’s Manual

Index Index-1

INDEX

A
A0–A31 signals, 7-7
AACK signal, 7-16
ABB signal, 7-5, 8-7
Address bus

address tenure, 8-6, 8-39
address transfer

A0–A31, 7-7
AP0–AP3, 7-8
APE, 7-9
signals, 8-12

address transfer attribute
CI, 7-14
CSE0–CSE1, 7-15
GBL, 7-15
TBST, 7-13, 8-13
TC0–TC2, 7-13, 8-17
TSIZ0–TSIZ2, 7-11, 8-13
TT0–TT4, 7-10, 8-13
WT, 7-15

address transfer start
TS, 7-6
XATS, 7-6

address transfer termination
AACK, 7-16
ARTRY, 7-16
SHD, 7-17
terminating address transfer, 8-18

arbitration signals, 8-7
bus arbitration

ABB, 7-5
BG, 7-4
BR, 7-4
bus parking, 8-11

Address translation, see Memory management unit
Aligned data transfer, 8-14
Alignment

exception, 4-17, 5-17
misaligned accesses, 2-17
rules, 2-17

AP0–AP3 signals, 7-8
APE signal, 7-9
Arbitration, system bus, 8-10, 8-20
ARTRY signal, 7-16
Atomic memory references

using lwarx/stwcx., 3-19

B
BAT registers

BAT, description, 2-6
BG signal, 7-4, 8-7
Bits used to configure cache, 3-15
Block address translation

BAT register initialization, 5-13
block address translation flow, 5-12
selection of block address translation, 5-9

Boundedly undefined, definition, 2-21
BR signal, 7-4, 8-7
Branch instructions

address calculation, 2-44
branch instructions, 2-44, A-25
condition register logical, 2-45, A-25
system linkage, 2-46, 2-52, A-26
trap, 2-45, A-26

Branch prediction, 6-2, 6-24
Branch processing unit

instruction timings, 6-25, 6-35
overview, 1-9

Branch resolution, 6-2
Burst data transfers

64-bit data bus, 8-14
transfers with data delays, timing, 8-36

Bus configurations, 8-48, 8-49, 8-50
Bus interface unit (BIU)

description, 1-14, 3-5, 6-15
Byte ordering

default, 2-23

C
Cache

bits used to configure cache, 3-15
cache configuration, 3-15
cache integration, 3-3
characteristics, 3-1
data caches and memory queues, 6-14
MESI state definitions, 3-11
organization, instruction and data, 3-2, 3-3, 3-4
set associativity, 3-4

Cache arbitration, 6-24
Cache block push operation, 3-18, 3-22
Cache cast-out operation, 3-18

Index-2 PowerPC 604 RISC Microprocessor User’s Manual

INDEX

Cache coherency
cache coherency protocol, 3-11
cache snoop, 3-19
coherency paradoxes, 3-14, 3-15
L2 cache, 3-13
MESI protocol, 3-14
reaction to bus operations, 3-19

Cache control instructions
bus operations, 3-23
dcbf, 3-18
dcbi, 2-54, 3-18
dcbst, 3-17
dcbt, 2-51, 3-17
dcbtst, 3-17
dcbz, 3-17
icbi, 3-16
isync, 3-17

Cache hit
instruction timing example, 6-19

Cache implementation, 604, 1-12
Cache management instructions, A-26
Cache miss, 6-22
Cache operations

overview, 3-1
response to bus transactions, 3-19
types of operations, 3-18

Cache reload operation, 3-18
Cache unit

operation of the cache, 8-2
Cache-inhibited accesses (I-bit)

memory/cache access attributes, 3-10
performance considerations, 6-16

Changed (C) bit maintenance
recording, 5-12, 5-21–5-22
updates, 5-33

Checkstop signal, 7-26, 8-51
Checkstop state, 4-15
CI signal, 7-14
Classes of instructions, 2-21
Clean block operation, 3-20
Clock signals

CLK_OUT, 7-31
PLL_CFG0–PLL_CFG3, 7-31
SYSCLK, 7-30

Completion
completion considerations, 6-30
completion pipeline stage, 6-11
completion unit, 1-9
definition, 6-3

Context synchronization, 2-24
COP/scan interface, 7-29

CR (condition register)
CR logical instructions, 2-45
CR, description, 2-4

CSE0–CSE1 signals, 7-15, 8-30
CTR register, 2-5

D
DABR (data address breakpoint register), 2-7
DAR (data address register), 2-6
Data bus

arbitration signals
DBB, 7-19, 8-8
DBG, 7-18, 8-8
DBWO, 7-18, 8-8

bus arbitration
ARTRY assertion, effect of, 8-21
signals, 8-20

data tenure, 8-7, 8-39
data transfer

alignment, 8-14
ARTRY assertion, effect of, 8-21
burst ordering, 8-14
DBDIS, 7-22
DH0–DH31/DL0–DL31, 7-20, 8-23
DP0–DP7, 7-21, 8-23
DPE, 7-22, 8-23
eciwx/ecowx instructions, alignment, 8-16

data transfer termination
DRTRY, 7-23, 8-24
error termination, 8-28
TA, 7-23, 8-24
TEA, 7-24, 8-24
terminating data transfer, 8-24

Data cache
data caches and memory queues, 6-14
disabling and enabling, 3-3
organization, 3-3

Data organization in memory, 2-17
DBB signal, 7-19, 8-8, 8-22
DBDIS signal, 7-22
DBG signal, 7-18, 8-8
DBWO signal, 7-18, 8-8, 8-23, 8-53
dcbt, 2-51
DEC (decrementer register), 2-7
Decode stage, 6-9
Decode/dispatch unit, 1-9
Decrementer exception, 4-19
Defined instruction class, 2-21
DH0–DH31/DL0–DL31 signals, 7-20

Index Index-3

INDEX

Direct-store interface
access to direct-store segments, 3-44
architectural ramifications of accesses, 8-38
bus protocol

address and data tenures, 8-39
detailed description, 8-42
load access, timing, 8-47
load operations, 8-41
store access, timing, 8-48
store operations, 8-41
transactions, 8-40
XATS signal, 8-38

direct-store interface accesses, 5-35
instructions with no effect, 5-36
no-op instructions, 5-36
operations, 7-8
protection, 5-35
segment protection, 5-35
selection of direct-store segments, 5-16, 5-35
unsupported functions, 5-36

Dispatch considerations, 6-30
Dispatch serialization mode, 6-34
Dispatch stage, 6-9
DMMU, 5-8
DP0–DP7 signals, 7-21
DPE signal, 7-22
DRTRY signal, 7-23, 8-24, 8-27
DSI exception, 4-16
DSISR register, 2-7
DTLB organization, 5-24

E
EAR (external access register), 2-7
Effective address calculation

address translation, 5-4
branches, 2-24
loads and stores, 2-24, 2-35, 2-40

eieio, 2-49, 3-21
Error termination, 8-28
Event counting, 9-8
Exceptions

alignment exception, 4-4, 4-17
decrementer exception, 4-4, 4-19
DSI exception, 4-4, 4-16
enabling and disabling, 4-9
exception classes, 4-2
exception prefix bit (IP), 4-12
exception priorities, 4-5
exception processing, 4-6, 4-10
external interrupt, 4-4, 4-16
FP assist exception, 4-19
FP unavailable exception, 4-4, 4-18
instruction address breakpoint exception, 4-5,

4-20

instruction-related exceptions, 2-25
ISI exception, 4-4
machine check, 4-3
machine check exception, 4-13
performance monitoring interrupt, 4-20
performance monitoring mechanism, 4-5
program exception, 4-4, 4-17
register settings

MSR, 4-7, 4-12
SRR0, SRR1, 4-6

reset, 4-13
returning from an exception handler, 4-11
summary table, 4-3
system call exception, 4-5, 4-19
system management interrupt, 4-5, 4-20
system reset, 4-3
terminology, 4-2
trace exception, 4-5, 4-19
vector offset table, 4-3

Execute stage, 6-10
Execution serialization mode, 6-34
Execution synchronization, 2-25
Execution units, 1-10, 6-33
External control instructions, 2-52, 8-16, A-27

F
Features, 604, 1-2, 1-20
Feed forwarding, 6-17
Fetch stage, 6-8
Fetch unit, 1-8
Finish cycle, definition, 6-3
Floating-point model

FE0/FE1 bits, 4-9
FP arithmetic instructions, 2-30, A-20
FP assist exceptions, 4-19
FP compare instructions, 2-32, A-21
FP load instructions, A-24
FP move instructions, A-25
FP multiply-add instructions, 2-31, A-21
FP rounding and conversion instructions, 2-31,

A-21
FP store instructions, 2-42, 2-43, A-24
FP unavailable exception, 4-18
FPSCR instructions, 2-32, A-22
IEEE-754 compatibility, 2-16
NI bit in FPSCR, 2-18

Floating-point unit
execution timing, 6-37
overview, 1-11

Flush block operation, 3-20
FPR0–FPR31 (floating-point registers), 2-4

Index-4 PowerPC 604 RISC Microprocessor User’s Manual

INDEX

FPSCR (floating-point status and control register)
FPSCR instructions, 2-32
FPSCR register description, 2-4
NI bit, 2-18

G
GBL signal, 7-15
GPR0–GPR31 (general-purpose registers), 2-4
Guarded attribute (G bit), 3-10

H
HALTED signal, 7-29
HID0 register

bit settings, 2-10
bits used for cache configuration, 3-15
hardware implementation register, 2-8

HRESET signal, 7-27

I
I/O tenures, 8-40
IABR (instruction address breakpoint register), 2-8,

2-9
IEEE 1149.1-compliant interface, 8-52
Illegal instruction class, 2-22
IMMU, 5-7
Instruction address breakpoint exception, 4-20
Instruction cache

disabling and enabling, 3-4
organization, 3-4

Instruction dispatch rules, 6-42
Instruction fetch

instruction fetch address generation, 6-8
timing, 6-18

Instruction timing
examples

branch with BTAC hit, 6-25
branch with BTAC miss/decode correction,

6-26
branch with BTAC miss/dispatch correction,

6-28
branch with BTAC miss/execute correction,

6-28
cache hit, 6-19
cache miss, 6-22

instruction flow, 6-17
overview, 1-33, 6-3
terminology, 6-1
timing considerations, 6-17

Instructions
604-specific, 1-27
64-bit instructions, A-39
branch address calculation, 2-44
branch instructions, A-25
cache management, A-26
classes, 2-21
condition register logical, 2-45, A-25
defined instructions, 2-21
eieio, 2-49
external control instructions, 2-52, A-27
floating-point

arithmetic, 2-30, A-20
compare, 2-32, A-21
FP load instructions, A-24
FP move instructions, A-25
FP rounding and conversion, 2-31
FP status and control register, 2-32
FP store instructions, A-24
FPSCR instructions, A-22
multiply-add, 2-31, A-21
rounding and conversion, A-21

illegal instructions, 2-22
input/output, serialization, 6-35
Instructions, list, A-1, A-10, A-18, A-28, A-39
integer

arithmetic, 2-26, A-18
compare, 2-26, 2-28, A-19
load, A-22
logical, 2-26, 2-28, A-19
rotate, A-20
rotate and shift, 2-29
shift, A-20
store, A-23

isync, 2-49, 4-11
latency summary, 6-45
load and store

address generation, floating-point, 2-40
address generation, integer, 2-35
byte reverse instructions, 2-37, A-23
floating-point move, 2-33
floating-point store, 2-41
handling misalignment, 2-33
integer load, 2-35
integer multiple, 2-38
integer store, 2-36
multiple instructions, A-23
string instructions, 2-39, A-24

memory control instructions, 2-50, 2-54
memory synchronization instructions, 2-47
mtcrf, 2-46, 6-44
optional instructions, A-39
processor control instructions, 2-46, 2-48, 2-52,

A-26

Index Index-5

INDEX

reserved instructions, 2-23
rfi, 4-11
segment register manipulation, A-27
string/multiple, serialization, 6-35
stwcx., 4-11
supervisor-level, A-39
support for lwarx/stwcx., 8-52
sync, 4-11
system linkage, 2-46, A-26
TLB management instructions, A-27
tlbie, 2-56
tlbsync, 2-56
trap instructions, 2-45, A-26

INT signal, 7-25, 8-50
Integer arithmetic instructions, 2-26, A-18
Integer compare instructions, 2-28, A-19
Integer load instructions, 2-35, A-22
Integer logical instructions, 2-28, A-19
Integer rotate and shift instructions, 2-29, A-20
Integer store instructions, 2-36, A-23
Integer unit

instruction timings, 6-35
overview, 1-10

Interrupt, external, 4-16
isync, 2-49, 4-11
ITLB organization, 5-24

K
Kill block operation, 3-20

L
L2_INT signal, 7-28
Latency

definition, 6-2
execution latency, 6-7
minimizing latency, 8-24

Link register (LR), 2-5
Load operations

I/O load accesses, 8-41
Load/store

address generation, 2-35
byte reverse instructions, 2-37, A-23
floating-point load instructions, A-24
floating-point move instructions, 2-33, A-25
floating-point store instructions, 2-41, A-24
handling misalignment, 2-33
integer load instructions, 2-35, A-22
integer store instructions, 2-36, A-23
load/store multiple instructions, 2-38, A-23
memory synchronization instructions, A-24
string instructions, 2-39, A-24

Load/store unit
execution timing, 6-39
overview, 1-11

Logical addresses
translation into physical addresses, 5-1

lwarx/stwcx.
general information, 3-19
support, 8-52

M
Machine check exception, 4-13
MCP signal, 7-25
Memory accesses, 8-4, 8-6
Memory coherency

memory coherency actions, 3-8
memory/cache access attributes, 3-10
sequential consistency, 3-9

Memory coherency (M attribute), 3-10
Memory control instructions, 2-50, 2-54
Memory management unit

604-specific features, 5-2
address translation flow, 5-12
address translation mechanisms, 5-9, 5-12
block address translation, 5-9, 5-12, 5-20
block diagram, 5-6, 5-7, 5-8
exceptions, 5-16
features summary, 5-3
instructions and registers, 5-18
memory protection, 5-11
overview, 1-12
page address translation, 5-9, 5-12, 5-27
page history status, 5-12, 5-21–5-24
real addressing mode, 5-10, 5-12, 5-20
segment model, 5-20

Memory operations, features, 6-15
Memory synchronization

instructions, 2-47, A-24
Memory unit

queuing structure, 3-19
Memory/cache access modes, see also WIMG bits

performance impact of write-back mode, 6-15
MESI protocol

enforcing memory coherency, 8-29
MESI state definitions, 3-11
Misaligned data transfer, 8-16
MMCR0 register, 2-8, 2-11, 9-1, 9-6
MSR (machine state register)

FE0/FE1 bits, 4-9
IP bit, 4-12
PM bit, 2-6
POW bit, 4-21
RI bit, 4-10
settings due to exception, 4-12

mtcrf, performance, 2-46, 6-44

Index-6 PowerPC 604 RISC Microprocessor User’s Manual

INDEX

Multiple-precision shifts, 2-30

N
Nap mode, 4-21
No-DRTRY mode, 8-48, 8-49, 8-50

O
OEA

cache operation, 3-1
definition, 1-19
exception mechanism, 4-1
memory management specifications, 5-1
registers, 2-5

Operand conventions, 2-16
Operand placement and performance, 2-19
Operating environment architecture, see OEA
Optional instructions, A-39

P
Page address translation

page address translation flow, 5-27
page size, 5-20
selection of page address translation, 5-9, 5-16
TLB organization, 5-25

Page history status
cases of dcbt and dcbtst misses, 5-21
Making R and C bit updates to page tables, 5-33
R and C bit recording, 5-12, 5-21–5-24
R and C bit updates, 5-12, 5-33

Page tables
page table updates, 5-33

Performance considerations, memory, 6-12
Performance monitor

event counting, 9-8
performance monitor facility, 1-35
performance monitor SPRs, 9-3
performance monitoring interrupt, 9-2
performance monitoring mechanism, 4-20
purposes, 9-1

Physical address generation
memory management unit, 5-1

Pipeline
completion stage, 6-11
decode stage, 6-9
dispatch stage, 6-9
execute stage, 6-10
fetch stage, 6-8
instruction timing, definition, 6-1
pipeline diagram, 6-6
pipeline stages, 6-7
pipeline structures, 6-5
write-back stage, 6-12

PIR (processor identification register), 2-8, 2-9
PLL configuration, 7-31
PMC1 and PMC2 registers, 2-8, 2-13, 9-1, 9-3
Postdispatch serialization mode, 6-34
Power management

nap mode, 4-21
overview, 1-35
POW bit, 4-21

PowerPC architecture
features used in 604, 1-20
instruction list, A-1, A-10, A-18, A-28, A-39
levels of implementation, 1-19
operating environment architecture, xxii
user instruction set architecture, xxi
virtual environment architecture, xxi

Priorities
exception priorities, 4-5

Process switching, 4-11
Processor configuration

HALTED, 7-29
L2_INT, 7-28
RSRV, 7-28
RUN, 7-29
TBEN, 7-28

Processor control instructions, 2-46, 2-48, 2-52
Program exception, 4-17
Program order, 6-2
Programming tips, 6-43
Protection of memory areas

direct-store interface protection, 5-35
no-execute protection, 5-14
options available, 5-11
protection violations, 5-16

PTEs (page table entries)
page table updates, 5-33

PVR (processor version register), 2-6

Q
Qualified data bus grant, 8-7, 8-20
Qualified snoop request, 3-19

R
Read operation, 3-20
Read-atomic operation, 3-20
Read-with-intent-to-modify operation, 3-20
Read-with-no-intent-to-cache operation, 3-21
Real address (RA), see physical address generation
Real addressing mode (translation disabled)

data accesses, 5-10, 5-12, 5-20
instruction accesses, 5-10, 5-12, 5-20
support for real addressing mode, 5-2

Index Index-7

INDEX

Referenced (R) bit maintenance
recording, 5-12, 5-21, 5-22, 5-30
updates, 5-33

Registers
604-specific registers, 2-3, 2-8, 2-53
hardware implementation registers, 2-8
rename register, 6-32
supervisor-level

BAT registers, 2-6
DABR, 2-7
DAR, 2-6
DEC, 2-7
DSISR, 2-7
EAR, 2-7
HID0, 2-8
IABR, 2-8
MMCR0, 2-8, 9-6
MSR, 2-5
PIR, 2-8
PMC1 and PMC2, 2-8
PVR, 2-6
SDR1 register, 2-6
SIA and SDA, 2-8, 2-15, 9-6
SPRG0–SPRG3, 2-7
SPRs for performance monitor, 9-1
SRR0/SRR1, 2-7
SRs, 2-6
time base (TB), 2-7

user-level
CR, 2-4
CTR, 2-5
FPR0–FPR31, 2-4
FPSCR, 2-4
GPR0–GPR31, 2-4
LR, 2-5
time base (TB), 2-5
XER, 2-5

Rename buffer, 1-10, 6-3
Rename register operation, 6-31
Reservation station, 6-2
Reserved instruction class, 2-23
Reset

HRESET signal, 7-27, 8-51
reset exception, 4-13
SRESET signal, 7-27, 8-51

rfi, 4-11
Rotate and shift instructions, A-20
RSRV signal, 7-28, 8-52
RUN signal, 7-29

S
sc, 4-19
SDR1 register, 2-6
Segment registers

SR description, 2-6
SR manipulation instructions, 2-55, A-27
T bit, 8-38

Segmented memory model, see Memory management
unit

SHD signal, 7-17
SIA and SDA registers, 2-8, 2-15, 9-1, 9-6
Signals

604 signals, overview, 1-16
A0–A31, 7-7
AACK, 7-16
ABB, 7-5, 8-7
address arbitration, 7-3, 8-7
address transfer, 7-7, 8-12
address transfer attribute, 7-9, 8-13
address transfer start, 7-6
AP0–AP3, 7-8
APE, 7-9
ARTRY, 7-16, 8-24
BG, 7-4, 8-7
BR, 7-4, 8-7
checkstop, 8-51
CI, 7-14
CKSTP_IN, 7-26
CKSTP_OUT, 7-26
CLK_OUT, 7-31
configuration, 7-2
COP/scan interface, 7-29
CSE0–CSE1, 7-15, 8-30
data arbitration, 8-8, 8-20
data bus arbitration, 7-18
data transfer, 7-20
data transfer termination, 7-22, 8-24
DBB, 7-19, 8-8, 8-22
DBDIS, 7-22
DBG, 7-18, 8-8
DBWO, 7-18, 8-8, 8-23, 8-53
DH0–DH31/DL0–DL31, 7-20
DP0–DP7, 7-21
DPE, 7-22
DRTRY, 7-23, 8-24, 8-27
GBL, 7-15
HALTED, 7-29
HRESET, 7-27
INT, 7-25, 8-50
L2_INT, 7-28
MCP, 7-25
PLL_CFG0–PLL_CFG3, 7-31
processor configuration, 7-28
reset, 8-51
RSRV, 7-28, 8-52
RUN, 7-29
SHD, 7-17
signal configuration, 1-17
SMI, 4-21, 7-25

Index-8 PowerPC 604 RISC Microprocessor User’s Manual

INDEX

snoop status signals, 3-19
SRESET, 7-27, 8-51
system status, 7-24
TA, 7-23
TBEN, 7-28
TBST, 7-13, 8-24
TC0–TC2, 7-13, 8-17
TEA, 7-24, 8-24, 8-28
TS, 7-6
TSIZ0–TSIZ2, 7-11, 8-13
TT0–TT4, 7-10, 8-13
WT, 7-15
XATS, 7-6, 8-38

Single-beat reads with data delays, timing, 8-35
Single-beat transfer

reads with data delays, timing, 8-34
reads, timing, 8-32
termination, 8-25
writes, timing, 8-33

SMI signal, 4-21, 7-25
Snoop operation, 3-19, 6-16
Split-bus transaction, 8-9
SPRG registers, 2-7
SRESET signal, 7-27
SRR0/SRR1 (status save/restore registers), 2-7

exception processing, 4-6
Stage

definition, instruction timing, 6-1
Stall, 6-2
Store operations

I/O operations to BUC, 8-41
single-beat writes, 8-33

String/multiple instructions, serialization, 6-35
stwcx., 4-11
Supervisor-level instructions, A-39
sync, 4-11
Synchronization

context/execution synchronization, 2-24
execution of rfi, 4-11
memory synchronization instructions, 2-47, 2-49,

A-24
SYSCLK signal, 7-30
System call exception, 4-19
System linkage instructions, 2-46, 2-52
System management interrupt, 4-20
System status

CKSTP_IN, 7-26
CKSTP_OUT, 7-26
HRESET, 7-27
INT, 7-25
MCP, 7-25
SMI, 7-25
SRESET, 7-27

T
TA signal, 7-23
Table search operations

table search flow (primary and secondary), 5-30
TBEN signal, 7-28
TBST signal, 7-13, 8-13, 8-24
TC0–TC2 signals, 7-13, 8-17
TEA signal, 7-24, 8-28
Termination, 8-18, 8-24
Throughput, 6-2, 6-7
Time base

TBL/TBU registers, 2-5, 2-7
Timing diagrams, interface

address transfer signals, 8-12
burst transfers with data delays, 8-36
direct-store interface load access, 8-47
direct-store interface store access, 8-48
single-beat reads, 8-32
single-beat reads with data delays, 8-34
single-beat writes, 8-33
single-beat writes with data delays, 8-35
use of TEA, 8-37
using DBWO, 8-53

Timing, instruction
branch prediction, 6-24
branch unit execution timing, 6-25, 6-35

BTAC miss/decode correction, 6-26
branch unit execution timing example

BTAC hit, 6-25
BTAC miss/dispatch correction, 6-28
BTAC miss/execute correction, 6-28

branch with BTAC miss/decode correction, 6-27
branch with BTAC miss/dispatch correction, 6-28
branch with BTAC miss/execute correction, 6-29
cache arbitration, 6-24
cache hit, 6-19
cache miss, 6-22
FPU execution timing, 6-37
instruction dispatch, 6-30
instruction fetch timing, 6-18
instruction flow, 6-17
instruction scheduling guidelines, 6-42
instruction serialization, 6-33
integer unit execution timing, 6-35
isync, rfi, sc instruction timing, 6-41
latency summary, 6-45
load/store unit execution timing, 6-39
overview, 6-3
speculative execution, 6-29

Index Index-9

INDEX

TLB
description, 5-24
LRU replacement, 5-26
organization for ITLB and DTLB, 5-24
TLB miss and table search operation, 5-25, 5-29,

5-32
TLB invalidation

description, 5-19, 5-26
page table updates, 5-33
TLB invalidate and TLBSYNC operations, 3-21,

5-26, 5-27, 7-10
TLB invalidate broadcast operations, 5-26
TLB management instructions, A-27

tlbia (not implemented), 2-56, 5-27
tlbie, 2-55, 2-56, 5-26, 5-33
tlbsync, 2-55, 2-56, 5-27, 5-34

tlbie, 2-56, 5-26, 5-33
tlbsync, 2-56, 5-27, 5-34
Trace exception, 4-19
Transfer, 8-12, 8-23
Trap instructions, 2-45
TS signal, 7-6, 8-12
TSIZ0–TSIZ2 signals, 7-11, 8-13
TT0–TT4 signals, 7-10, 8-13

U
UISA

definition, 1-19
registers, 2-2

Use of TEA, timing, 8-37
User instruction set architecture, see UISA
Using DBWO, timing, 8-53

V
VEA

cache operation, 3-1
definition, 1-19

Vector offset table, exception, 4-3
Virtual environment architecture, see VEA

W
WIMG bits

cache actions, 3-23
memory coherency, 8-29
WIM combination, 8-30

Write-back, 6-3, 6-12, 6-15
Write-through mode (W bit)

memory/cache access attriibute, 3-10
performance considerations, 6-16

Write-with-atomic operation, 3-20
Write-with-flush operation, 3-20
Write-with-kill operation, 3-20
WT signal, 7-15

X
XATS signal, 7-6, 8-38
XER register, 2-5
XFERDATA read/write operation, 3-22

Index-10 PowerPC 604 RISC Microprocessor User’s Manual

INDEX

	Audience
	Organization
	Suggested Reading
	Conventions
	Acronyms and Abbreviations
	Terminology Conventions
	Chapter�1 Chapter�1 Overview
	1.1 Overview
	1.1.1 PowerPC 604 Microprocessor Features

	1.2 PowerPC 604 Microprocessor Hardware 1.2 Implem...
	1.2.1 Instruction Flow
	1.2.1.1 Fetch Unit
	1.2.1.2 Decode/Dispatch Unit
	1.2.1.3 Branch Processing Unit (BPU)
	1.2.1.4 Completion Unit
	1.2.1.5 Rename Buffers

	1.2.2 Execution Units
	1.2.2.1 Integer Units (IUs)
	1.2.2.2 Floating-Point Unit (FPU)
	1.2.2.3 Load/Store Unit (LSU)

	1.2.3 Memory Management Units (MMUs)
	1.2.4 Cache Implementation
	1.2.4.1 Instruction Cache
	1.2.4.2 Data Cache

	1.2.5 System Interface/Bus Interface Unit (BIU)
	1.2.5.1 Memory Accesses
	1.2.5.2 Signals
	1.2.5.3 Signal Configuration

	1.2.6 Clocking

	1.3 PowerPC 604 Microprocessor Execution Model
	1.3.1 Levels of the PowerPC Architecture
	1.3.2 Registers and Programming Model
	1.3.2.1 General-Purpose Registers (GPRs)
	1.3.2.2 Floating-Point Registers (FPRs)
	1.3.2.3 Condition Register (CR)
	1.3.2.4 Floating-Point Status and Control Register...
	1.3.2.5 Machine State Register (MSR)
	1.3.2.6 Segment Registers (SRs)
	1.3.2.7 Special-Purpose Registers (SPRs)

	1.3.3 Instruction Set and Addressing Modes
	1.3.3.1 PowerPC Instruction Set and Addressing Mod...

	1.3.4 Exception Model
	1.3.5 Instruction Timing

	1.4 Power Management—Nap Mode
	1.5 Performance Monitor

	Chapter�2 Chapter�2 PowerPC 604 Processor Programm...
	2.1 The PowerPC 604 Processor Register Set
	2.1.1 Register Set
	2.1.2 604-Specific Registers
	2.1.2.1 Instruction Address Breakpoint Register (I...
	2.1.2.2 Processor Identification Register (PIR)
	2.1.2.3 Hardware Implementation-Dependent Register...
	2.1.2.4 Performance Monitor Registers

	2.2 Operand Conventions
	2.2.1 Floating-Point Execution Models—UISA
	2.2.2 Data Organization in Memory and Data Transfe...
	2.2.3 Alignment and Misaligned Accesses
	2.2.4 Floating-Point Operand
	2.2.5 Effect of Operand Placement on Performance

	2.3 Instruction Set Summary
	2.3.1 Classes of Instructions
	2.3.1.1 Definition of Boundedly Undefined
	2.3.1.2 Defined Instruction Class
	2.3.1.3 Illegal Instruction Class
	2.3.1.4 Reserved Instruction Class

	2.3.2 Addressing Modes
	2.3.2.1 Memory Addressing
	2.3.2.2 Memory Operands
	2.3.2.3 Effective Address Calculation
	2.3.2.4 Synchronization

	2.3.3 Instruction Set Overview
	2.3.4 PowerPC UISA Instructions
	2.3.4.1 Integer Instructions
	2.3.4.2 Floating-Point Instructions
	2.3.4.3 Load and Store Instructions
	2.3.4.4 Branch and Flow Control Instructions
	2.3.4.5 System Linkage Instruction—UISA
	2.3.4.6 Processor Control Instructions—UISA
	2.3.4.7 Memory Synchronization Instructions—UISA

	2.3.5 PowerPC VEA Instructions
	2.3.5.1 Processor Control Instructions—VEA
	2.3.5.2 Memory Synchronization Instructions—VEA
	2.3.5.3 Memory Control Instructions—VEA
	2.3.5.4 Optional External Control Instructions

	2.3.6 PowerPC OEA Instructions
	2.3.6.1 System Linkage Instructions—OEA
	2.3.6.2 Processor Control Instructions—OEA
	2.3.6.3 Memory Control Instructions—OEA

	2.3.7 Recommended Simplified Mnemonics

	Chapter�3 Chapter�3 Cache and Bus Interface Unit O...
	3.1 Data Cache Organization
	3.2 Instruction Cache Organization
	3.3 MMUs/Bus Interface Unit
	3.4 Memory Coherency Actions
	3.4.1 604-Initiated Load and Store Operations

	3.5 Sequential Consistency
	3.5.1 Sequential Consistency Within a Single Proce...
	3.5.2 Weak Consistency between Multiple Processors...
	3.5.3 Sequential Consistency Within Multiprocessor...

	3.6 Memory and Cache Coherency
	3.6.1 Data Cache Coherency Protocol
	3.6.2 Coherency and Secondary Caches
	3.6.3 Page Table Control Bits
	3.6.4 MESI State Diagram
	3.6.5 Coherency Paradoxes in Single-Processor Syst...
	3.6.6 Coherency Paradoxes in Multiple-Processor Sy...

	3.7 Cache Configuration
	3.8 Cache Control Instructions
	3.8.1 Instruction Cache Block Invalidate (icbi)
	3.8.2 Instruction Synchronize (isync)
	3.8.3 Data Cache Block Touch (dcbt) and 3.8.3 Data...
	3.8.4 Data Cache Block Set to Zero (dcbz)
	3.8.5 Data Cache Block Store (dcbst)
	3.8.6 Data Cache Block Flush (dcbf)
	3.8.7 Data Cache Block Invalidate (dcbi)

	3.9 Basic Cache Operations
	3.9.1 Cache Reloads
	3.9.2 Cache Cast-Out Operation
	3.9.3 Cache Block Push Operation
	3.9.4 Atomic Memory References
	3.9.5 Snoop Response to Bus Operations
	3.9.6 Cache Reaction to Specific Bus Operations
	3.9.7 Enveloped High-Priority Cache Block Push Ope...
	3.9.8 Bus Operations Caused by Cache Control Instr...
	3.9.9 Cache Control Instructions

	3.10 Cache Actions
	3.11 Access to Direct-Store Segments

	Chapter�4 Chapter�4 Exceptions
	4.1 PowerPC 604 Microprocessor Exceptions
	4.2 Exception Recognition and Priorities
	4.3 Exception Processing
	4.3.1 Enabling and Disabling Exceptions
	4.3.2 Steps for Exception Processing
	4.3.3 Setting MSR[RI]
	4.3.4 Returning from an Exception Handler

	4.4 Process Switching
	4.5 Exception Definitions
	4.5.1 System Reset Exception (0x00100)
	4.5.2 Machine Check Exception (0x00200)
	4.5.2.1 Machine Check Exception Enabled (MSR[ME] =...
	4.5.2.2 Checkstop State (MSR[ME] = 0)

	4.5.3 DSI Exception (0x00300)
	4.5.4 ISI Exception (0x00400)
	4.5.5 External Interrupt Exception (0x00500)
	4.5.6 Alignment Exception (0x00600)
	4.5.7 Program Exception (0x00700)
	4.5.8 Floating-Point Unavailable Exception (0x0080...
	4.5.9 Decrementer Exception (0x00900)
	4.5.10 System Call Exception (0x00C00)
	4.5.11 Trace Exception (0x00D00)
	4.5.12 Floating-Point Assist Exception (0x00E00)
	4.5.13 Performance Monitoring Interrupt (0x00F00)
	4.5.14 Instruction Address Breakpoint Exception (0...
	4.5.15 System Management Interrupt (0x01400)
	4.5.16 Power Management

	Chapter�5 Chapter�5 Memory Management
	5.1 MMU Overview
	5.1.1 Memory Addressing
	5.1.2 MMU Organization
	5.1.3 Address Translation Mechanisms
	5.1.4 Memory Protection Facilities
	5.1.5 Page History Information
	5.1.6 General Flow of MMU Address Translation
	5.1.6.1 Real Addressing Mode and Block Address Tra...
	5.1.6.2 Page and Direct-Store Interface Address Tr...
	5.1.6.3 Selection of Page Address Translation
	5.1.6.4 Selection of Direct-Store Interface Addres...

	5.1.7 MMU Exceptions Summary
	5.1.8 MMU Instructions and Register Summary
	5.1.9 TLB Entry Invalidation

	5.2 Real Addressing Mode
	5.3 Block Address Translation
	5.4 Memory Segment Model
	5.4.1 Page History Recording
	5.4.1.1 Referenced Bit
	5.4.1.2 Changed Bit
	5.4.1.3 Scenarios for Referenced and Changed Bit R...

	5.4.2 Page Memory Protection
	5.4.3 TLB Description
	5.4.3.1 TLB Organization
	5.4.3.2 TLB Invalidation

	5.4.4 Page Address Translation Summary
	5.4.5 Page Table Search Operation
	5.4.6 Page Table Updates
	5.4.7 Segment Register Updates

	5.5 Direct-Store Interface Address Translation
	5.5.1 Direct-Store Interface Accesses
	5.5.2 Direct-Store Segment Protection
	5.5.3 Instructions Not Supported in Direct-Store S...
	5.5.4 Instructions with No Effect in Direct-Store ...
	5.5.5 Direct-Store Segment Translation Summary Flo...

	Chapter�6 Chapter�6 Instruction Timing
	6.1 Terminology and Conventions
	6.2 Instruction Timing Overview
	6.2.1 Pipeline Structures
	6.2.1.1 Description of Pipeline Stages

	6.3 Memory Performance Considerations
	6.3.1 MMU Overview
	6.3.2 Cache Overview
	6.3.3 Bus Interface Overview
	6.3.4 Memory Operations
	6.3.4.1 Write-Back Mode
	6.3.4.2 Write-Through Mode
	6.3.4.3 Cache-Inhibited Mode

	6.4 Timing Considerations
	6.4.1 General Instruction Flow
	6.4.2 Instruction Fetch Timing
	6.4.2.1 Cache Hit Timing Example
	6.4.2.2 Cache Miss Timing Example

	6.4.3 Cache Arbitration
	6.4.4 Branch Prediction
	6.4.4.1 Branch Timing Examples

	6.4.5 Speculative Execution
	6.4.6 Instruction Dispatch and Completion Consider...
	6.4.6.1 Rename Register Operation
	6.4.6.2 Execution Unit Considerations

	6.4.7 Instruction Serialization
	6.4.7.1 Dispatch Serialization Mode
	6.4.7.2 Execution Serialization Mode
	6.4.7.3 Postdispatch Serialization Mode
	6.4.7.4 Serialization of String/Multiple Instructi...
	6.4.7.5 Serialization of Input/Output

	6.5 Execution Unit Timings
	6.5.1 Branch Unit Instruction Timings
	6.5.2 Integer Unit Instruction Timings
	6.5.3 Floating-Point Unit Instruction Timings
	6.5.4 Load/Store Unit Instruction Timings
	6.5.5 isync, rfi, and sc Instruction Timings

	6.6 Instruction Scheduling Guidelines
	6.6.1 Instruction Dispatch Rules
	6.6.2 Additional Programming Tips for the PowerPC ...

	6.7 Instruction Latency Summary

	Chapter�7 Chapter�7 Signal Descriptions
	7.1 Signal Configuration
	7.2 Signal Descriptions
	7.2.1 Address Bus Arbitration Signals
	7.2.1.1 Bus Request (BR)—Output
	7.2.1.2 Bus Grant (BG)—Input
	7.2.1.3 Address Bus Busy (ABB)

	7.2.2 Address Transfer Start Signals
	7.2.2.1 Transfer Start (TS)
	7.2.2.2 Extended Address Transfer Start (XATS)

	7.2.3 Address Transfer Signals
	7.2.3.1 Address Bus (A0–A31)
	7.2.3.2 Address Bus Parity (AP0–AP3)
	7.2.3.3 Address Parity Error (APE)—Output

	7.2.4 Address Transfer Attribute Signals
	7.2.4.1 Transfer Type (TT0–TT4)
	7.2.4.2 Transfer Size (TSIZ0–TSIZ2)
	7.2.4.3 Transfer Burst (TBST)
	7.2.4.4 Transfer Code (TC0–TC2)—Output
	7.2.4.5 Cache Inhibit (CI)—Output
	7.2.4.6 Write-Through (WT)—Output
	7.2.4.7 Global (GBL)
	7.2.4.8 Cache Set Element (CSE0–CSE1)—Output

	7.2.5 Address Transfer Termination Signals
	7.2.5.1 Address �Acknowledge (AACK)—Input
	7.2.5.2 Address Retry (ARTRY)
	7.2.5.3 Shared (SHD)

	7.2.6 Data Bus Arbitration Signals
	7.2.6.1 Data Bus Grant (DBG)—Input
	7.2.6.2 Data Bus Write Only (DBWO)—Input
	7.2.6.3 Data Bus Busy (DBB)

	7.2.7 Data Transfer Signals
	7.2.7.1 Data Bus (DH0–DH31, DL0–DL31)
	7.2.7.2 Data Bus Parity (DP0–DP7)
	7.2.7.3 Data Parity Error (DPE)—Output
	7.2.7.4 Data Bus Disable (DBDIS)—Input

	7.2.8 Data Transfer Termination Signals
	7.2.8.1 Transfer �Acknowledge (TA)—Input
	7.2.8.2 Data Retry (DRTRY)—Input
	7.2.8.3 Transfer Error Acknowledge (TEA)—Input

	7.2.9 System Interrupt, Checkstop, and Reset Signa...
	7.2.9.1 Interrupt (INT)—Input
	7.2.9.2 System Management Interrupt (SMI)—Input
	7.2.9.3 Machine Check Interrupt (MCP)—Input
	7.2.9.4 Checkstop Input(CKSTP_IN)—Input
	7.2.9.5 Checkstop Output (CKSTP_OUT)—Output
	7.2.9.6 Reset Signals

	7.2.10 Processor Configuration Signals
	7.2.10.1 Timebase Enable (TBEN)—Input
	7.2.10.2 Reservation (RSRV)—Output
	7.2.10.3 L2 Intervention (L2_INT)—Input
	7.2.10.4 Run (RUN)—Input
	7.2.10.5 Halted (HALTED) —Output

	7.2.11 COP/Scan Interface
	7.2.12 Clock Signals
	7.2.12.1 System Clock (SYSCLK)—Input
	7.2.12.2 Test Clock (CLK_OUT)—Output
	7.2.12.3 Analog VDD (AVDD)—Input
	7.2.12.4 PLL Configuration (PLL_CFG0–PLL_CFG3)—Inp...

	Chapter�8 Chapter�8 System Interface Operation
	8.1 PowerPC 604 Microprocessor System Interface 8....
	8.1.1 Operation of the Instruction and Data Caches...
	8.1.2 Operation of the System Interface
	8.1.3 Direct-Store Accesses

	8.2 Memory Access Protocol
	8.2.1 Arbitration Signals
	8.2.2 Address Pipelining and Split-Bus Transaction...

	8.3 Address Bus Tenure
	8.3.1 Address Bus Arbitration
	8.3.2 Address Transfer
	8.3.2.1 Address Bus Parity
	8.3.2.2 Address Transfer Attribute Signals
	8.3.2.3 Burst Ordering During Data Transfers
	8.3.2.4 Effect of Alignment in Data Transfers
	8.3.2.5 Transfer Code (TC0–TC2) Signals

	8.3.3 Address Transfer Termination

	8.4 Data Bus Tenure
	8.4.1 Data Bus Arbitration
	8.4.1.1 Effect of ARTRY Assertion on Data Transfer...
	8.4.1.2 Using the DBB Signal

	8.4.2 Data Bus Write Only
	8.4.3 Data Transfer
	8.4.4 Data Transfer Termination
	8.4.4.1 Normal Single-Beat Termination
	8.4.4.2 Data Transfer Termination Due to a Bus Err...

	8.4.5 Memory Coherency—MESI Protocol

	8.5 Timing Examples
	8.6 Direct-Store Operation
	8.6.1 Direct-Store Transactions
	8.6.1.1 Store Operations
	8.6.1.2 Load Operations

	8.6.2 Direct-Store Transaction Protocol Details
	8.6.2.1 Packet 0
	8.6.2.2 Packet 1

	8.6.3 I/O Reply Operations
	8.6.4 Direct-Store Operation Timing

	8.7 Optional Bus Configuration
	8.7.1 Fast-L2/Data Streaming Mode
	8.7.1.1 Fast-L2/Data Streaming Mode Design Conside...
	8.7.1.2 Data Streaming in the Fast-L2/Data Streami...
	8.7.1.3 Data Valid Window in the Fast-L2/Data Stre...

	8.8 Interrupt, Checkstop, and Reset Signals
	8.8.1 External Interrupts
	8.8.2 Checkstops
	8.8.3 Reset Inputs
	8.8.4 PowerPC 604 Microprocessor Configuration dur...

	8.9 Processor State Signals
	8.9.1 Support for the lwarx/stwcx. Instruction Pai...

	8.10 IEEE 1149.1-Compliant Interface
	8.10.1 IEEE 1149.1 Interface Description

	8.11 Using Data Bus Write Only

	Chapter�9 Chapter�9 Performance Monitor
	9.1 Performance Monitor Interrupt
	9.1.1 Special-Purpose Registers Used by Performanc...
	9.1.1.1 Performance Monitor Counter Registers (PMC...
	9.1.1.2 SIA and SDA Registers
	9.1.1.3 Monitor Mode Control Register 0 (MMCR0)

	9.1.2 Event Counting
	9.1.2.1 Event Selection
	9.1.2.2 Threshold Events
	9.1.2.3 Nonthreshold Events

	A.1 Instructions Sorted by Mnemonic
	A.2 Instructions Sorted by Opcode
	A.3 Instructions Grouped by Functional Categories
	A.4 Instructions Sorted by Form
	A.5 Instruction Set Legend
	B.1 Invalid Forms Excluding Reserved Fields
	B.2 Invalid Forms with Reserved Fields (Bit 31 B.2...
	B.3 Invalid Form with Only Bit 31 Set
	B.4 Invalid Forms from Invalid BO Field Encodings

