**FX** Series

# Split Mode for AIX Overview and User's Guide

**FXSPLTA/UM1** 

## First Edition (April 1998)

This edition of the *Split Mode Overview and User's Guide* applies toFX Series systems running AIX4.1.5r3 and to all subsequent releases of this product until otherwise indicated in new releases or technical newsletters.

THIS MANUAL IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The laws of some states and countries do not allow the disclaimer of express or implied warranties in certain transactions; therefore, this statement may not apply to you. As such, the above warranty disclaimer shall only apply to the extent permitted by law.

While reasonable efforts have been made to assure the accuracy of this document, Motorola, Inc. assumes no liability resulting from any omissions in this document, or from the use of the information obtained therein. It is not warranted that the contents of this publication or the accompanying source code examples, whether individually or as one or more groups, will meet your requirements or that the publication or the accompanying source code examples are error-free. This publication could include technical inaccuracies or typographical errors.

Motorola reserves the right to revise this document and to make changes from time to time in the content hereof without obligation of Motorola to notify any person of such revision or changes

It is possible that this publication may contain references to, or information about Motorola products (machines and programs), programming or services that are not announced or released in your country or region. Such references or information may not be construed for any purpose to mean that Motorola intends to announce or release such products, programming or services in your country or region. Any reference to a licensed program in this publication is not intended to state or imply that you can use only that licensed program. You can use any functionally equivalent program instead.

No part of this material may be reproduced or copied in any tangible medium, or stored in a retrieval system, or transmitted in any form, or by any means, radio, electronic, mechanical, photocopying, recording or facsimile, or otherwise, without the prior written permission of Motorola, Inc.

If the documentation contained herein is supplied, directly or indirectly, to the U.S. Government, the documentation is provided only as "restricted computer software" as defined in FAR 52.227-19 Commercial Computer Software--Restricted Rights.

© COPYRIGHT MOTOROLA, INC. 1998. ALL RIGHTS RESERVED. Printed in the United States of America.

# Contents

| Overview                                                     | 1-1    |
|--------------------------------------------------------------|--------|
| Who Should Use this Manual                                   | 1-1    |
| When to Use Split Mode                                       | 1-1    |
| Prerequisites                                                | 1-2    |
| Overview of Contents                                         |        |
| Terms Used in this Manual                                    | 1-4    |
| Related Information                                          |        |
| FX Series Documentation                                      | 1-6    |
| Motorola Hardcopy AIX Documentation                          |        |
| IBM AIX Documentation                                        | 1-8    |
| Getting Help for System Problems                             | 1-8    |
| Overview                                                     | 2-1    |
| The Purpose of Split Mode                                    | 2-1    |
| The Split Mode Process                                       |        |
| Making the System Simplex and Upgrading CPU Module Hardw     | are on |
| the Offlined System                                          |        |
| Splitting the System and Upgrading Software on SYSNEW        | 2-5    |
| Switching Service to SYSNEW                                  | 2-6    |
| Verifying Service on SYSNEW                                  |        |
| Unsplitting the System and Upgrading SYSOLD                  | 2-9    |
| Inter-System Communications (ISC)                            | 2-10   |
| System Monitoring and Notification                           | 2-12   |
| Overview                                                     | 3-1    |
| The Split Mode State Machine                                 | 3-2    |
| The Splitstate Utility                                       |        |
| Determining the System State                                 |        |
| Overview of the Split Mode Procedure                         |        |
| General Procedure                                            |        |
| Switchover                                                   |        |
| Logging The Split Mode Process                               |        |
| Overview                                                     |        |
| Preparing the System for Split Mode                          |        |
| List System Information                                      |        |
| Assign System Resources                                      |        |
| Managing Volume Groups                                       |        |
| Managing Data Volume Groups that are not Stolen During Split | Mode   |
| 4-4                                                          |        |
| Managing Nonftvgs that are Split across SYSOLD and SYSNEW.   | 4-6    |
| Configuring Ethernet                                         |        |
| Loading Firmware Updates from CD                             | 4-7    |
| Managing Swap Partitions                                     | 4-8    |
| 0 0 1                                                        |        |

| Making Sure the Inter-System Communications Service Provider (I | SC SP) is |
|-----------------------------------------------------------------|-----------|
| Inactive                                                        |           |
| Adding a Second Console                                         | 4-8       |
| System at FT_START prior to beginning the split mode process    | 34-8      |
| System Split, but not yet Switched                              | 4-10      |
| System Switched                                                 | 4-12      |
| System at FT_COMPLETE after the Process has Completed           | 4-14      |
| Add Directories to PATH Variable                                | 4-15      |
| Handling Asynchronous Ports                                     | 4-15      |
| Set Global Split Mode Variables in the split_cfg file           | 4-16      |
| The Global Split mode Variables                                 | 4-16      |
| Overriding the global variables                                 | 4-25      |
| Overview                                                        |           |
| Upgrading your System via Split Mode                            | 5-2       |
| Start the Inter-System Communications Service Provider (ISC SP) |           |
| Check for Readiness                                             |           |
| Split the System                                                |           |
| Splitting the System without Hardware or Firmware Upgrades      |           |
| Splitting the System with CPU Module Firmware (but not Har      | dware)    |
| Upgrades                                                        |           |
| Splitting the System with Hardware and Firmware Upgrades        | 5-5       |
| Falling Back to Original Firmware                               | 5-7       |
| Upgrading the System while Split                                | 5-8       |
| CPU Upgrades                                                    |           |
| Operating System Upgrades without CPU Module Upgrades           | 5-10      |
| CPU and Operating System Upgrades                               | 5-14      |
| Application Only Upgrades                                       | 5-16      |
| Manual Switchover Procedure                                     | 5-17      |
| Completing the Split Mode Process                               |           |
| Verifying Application Performance on SYSNEW                     | 5-19      |
| Completing the Split Mode Process                               | 5-19      |
| Managing Nonsteal Datavgs                                       | 5-20      |
| Overview                                                        | 6-1       |
| Fallback Strategies                                             | 6-2       |
| Overview                                                        | 6-2       |
| Fallback Datavgs                                                | 6-2       |
| The Fallback Process                                            |           |
| Overriding the Default Fallback Procedure                       | 6-3       |
| Recovering from a System Failure                                | 6-5       |
| Overview                                                        | 6-5       |
| The CATASTROPHIC_RECOVERY System State                          | 6-5       |

# Contents

| Symptoms and Recovery:                                             | 6-6  |
|--------------------------------------------------------------------|------|
| Advanced Recovery                                                  |      |
| Troubleshooting the Split Mode Process                             |      |
| Overview                                                           | 5-12 |
| General Recovery Strategies6                                       | 5-12 |
| Global Messages6                                                   | 5-14 |
| Transition from FT_START to CHECKED6                               | 5-15 |
| Transition from CHECKED to SIMPLEX6                                | 5-18 |
| Transition from SIMPLEX to SPLIT6                                  |      |
| Transition from SPLIT to QUIESCEDAPPS_SYSNEW6                      | 5-22 |
| Transitions from QUIESCEDAPPS_SYSNEW to EXPORTEDVGS_SYSNE          | W.   |
| 6-24                                                               |      |
| Transition from EXPORTEDVGS_SYSNEW to QUIESCEDAPPS_SYSOLI          | D 6- |
| 25                                                                 |      |
| Transition from QUIESCEDAPPS_SYSOLD to EXPORTEDVGS_SYSOLD          | ).6- |
| 27                                                                 |      |
| Transition from EXPORTEDVGS_SYSOLD to SWITCHED6                    | 5-28 |
| Transition from SWITCHED to RESUMEDAPPS_SYSNEW6                    | 5-29 |
| Transition from RESUMEDAPPS_SYSNEW to STOLEVGS6                    | 5-31 |
| Transition from STOLEVGS to RESUMEDVGAPPS_SYSNEW6                  | 5-32 |
| Transition from RESUMEDVGAPPS_SYSNEW to UNSPLIT6                   | 5-34 |
| Transition from UNSPLIT to FT_COMPLETED6                           | 5-35 |
| Overview                                                           | 7-1  |
| Managing Switchover                                                | 7-1  |
| Registering with the Service Provider                              | 7-2  |
| Receiving and Responding to the Switchover Notifications           | 7-4  |
| Using the ISC to Communicate between Applications on SYSOLD and or |      |
| SYSNEW                                                             | 7-6  |
| ISC API functions                                                  | 7-6  |
| ISC Utility functions                                              | 7-9  |
| Overview                                                           |      |

# **Figures**

| Initial Fault Tolerant Configuration        | 2-2                   |
|---------------------------------------------|-----------------------|
| Simplex configuration                       | 2-4                   |
| Split Configuration                         | 2-5                   |
| Switched Configuration                      | 2-6                   |
| Datavg stealing                             | 2-8                   |
| ISC Architecture                            | 2-11                  |
| General Split Mode Flowchart                | 3-8                   |
| Console0: SYSOLD as Primary                 | 4-9                   |
| Console0: SYSOLD Primary (System Split,     |                       |
| but not yet Switched)                       | 4-10                  |
| Console1: SYSNEW Secondary (System Split,   |                       |
| but not yet Switched)                       | 4-11                  |
| Console0: System Switched, SYSNEW Primary   | 4-12                  |
| Console0: System Switched, SYSOLD Secondary | 4-13                  |
| Console0: System FT_COMPLETED               | 4-14                  |
| Splitting the System                        | 5-3                   |
| Upgrading the System while Split            | 5-8                   |
| Completing the Split Mode Process           | 5-18                  |
| Registering with the ISC SP                 | 7-3                   |
| Resuming Applications After Switchover      | 7-5                   |
|                                             | Simplex configuration |

# **List of Tables**

| Table 4-1.  | System Information                                | 4-2  |
|-------------|---------------------------------------------------|------|
| Table 4-2.  | Resources on Mbus0                                | 4-3  |
| Table 4-3.  | Resources on Mbus1                                | 4-3  |
| Table 4-4.  | Datavgs                                           | 4-5  |
| Table 4-5.  | Global Variables                                  | 4-17 |
| Table 4-6.  | Upgrade Variables                                 | 4-24 |
| Table 5-1.  | Splitting the System According to Type of Upgrade | 5-4  |
| Table 5-2.  | Upgrading the System while Split                  | 5-9  |
| Table 5-3.  | Selecting an OS Upgrade Procedure                 | 5-10 |
| Table 5-4.  | Completing the Split Mode Process                 | 5-19 |
| Table 5-5.  | Managing Datavgs                                  | 5-21 |
| Table 6-1.  | Failure Symptoms and Responses                    | 6-6  |
| Table 6-2.  | Global Messages                                   | 6-14 |
| Table 6-3.  | FT_START to CHECKED                               | 6-15 |
| Table 6-4.  | CHECKED to SIMPLEX                                | 6-18 |
| Table 6-5.  | SIMPLEX to SPLIT                                  | 6-19 |
| Table 6-6.  | SPLIT to QUIESCEDAPPS_SYSNEW                      | 6-23 |
| Table 6-7.  | QUIESCEDAPPS_SYSNEW to EXPORTEDVGS_SYSNEW         | 6-24 |
| Table 6-8.  | EXPORTEDVGS_SYSNEW to QUIESCEDAPPS_SYSOLD         | 6-26 |
| Table 6-9.  | QUIESCEDAPPS_SYSOLD to EXPORTEDVGS_SYSOLD         |      |
| Table 6-10. | EXPORTEDVGS_SYSOLD to SWITCHED                    | 6-28 |
| Table 6-11. | SWITCHED to RESUMEDAPPS_SYSNEW                    | 6-30 |
| Table 6-12. | RESUMEDVGAPPS_SYSNEW to STOLEVGS                  | 6-31 |
| Table 6-13. | STOLEVGS to RESUMEDVGAPPS_SYSNEW                  | 6-33 |
| Table 6-14. | RESUMEDVGAPPS_SYSNEW to UNSPLIT                   | 6-34 |
| Table 6-15. | UNSPLIT to FT_COMPLETED                           | 6-35 |

# About this Manual 1

## Overview

The *Split Mode Overview and User's Guide* provides a general overview of the Split Mode process, procedures for running Split Mode, and information on adapting your applications to fully capitalize on Split Mode functionalities.

### Who Should Use this Manual

This book is intended for persons who are using splitmode to upgrade the software or CPU modules on an FX System or who are modifying applications to take advantage of Split Mode.

### When to Use Split Mode

Split Mode is intended to be used during CPU module and software upgrades. Because Split Mode requires the system to be made simplex, you should not use it to simply replace existing hardware or to upgrade modules for which other means of upgrade exist.

### Prerequisites

This manual presumes that you are familiar with AIX and with the general practices and procedures concerning the FX Series, including the information contained in:

- Motorola FX Series Fault Tolerant Systems Architecture Overview
- Administering Your Fault Tolerant System
- FX Series Release Notes
- FX Series Diagnosing and Troubleshooting
- FX Series Operating Installation Guide
- FX Series System Hardware Installation Guide.

### **Overview of Contents**

The following table details the topics covered in the different chapters within this manual.

| This Chapter                                                 | Discusses                                                                                                                                                        |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chapter 2, "Split Mode<br>Overview"                          | general information on the purpose and architecture of Split Mode                                                                                                |
| Chapter 3, "The Split Mode<br>State Machine"                 | the different system states and a general<br>procedure for upgrading your system<br>through Split Mode                                                           |
| Chapter 4, "Preparing Your<br>System for Split Mode"         | information and procedures for<br>preparing your system prior to running<br>Split Mode                                                                           |
| Chapter 5, "Running Split<br>Mode"                           | detailed procedures for upgrading FX systems using Split Mode                                                                                                    |
| Chapter 6, "Problem<br>Resolution and Fallback<br>Strategies | detailed procedures for recovering from<br>system failures, troubleshooting the Split<br>Mode process, and for returning to the<br>original system configuration |
| Chapter 7, "Writing Split<br>Mode-Aware Applications"        | guidelines for designing and modifying<br>applications in order to capitalize on<br>Split Mode functionalities                                                   |
| Appendix A, "Sample Split<br>Mode Aware Application"         | source code for sample Split Mode<br>aware application                                                                                                           |

### **Terms Used in this Manual**

The following terms are used throughout this manual.

| 1110-10                | noving terms are used anoughout this manual                                                                                                                                                                                                                                                                     |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Active System          | Half of a split system that is expected to be providing<br>service. Prior to switchover, SYSOLD is the active system;<br>after switchover, SYSNEW becomes the active system.                                                                                                                                    |  |
|                        | For practical purposes, the term is synonymous with primary system.                                                                                                                                                                                                                                             |  |
| Datavgs                | Those volume groups that contain data to be used by applications. They must be physically separate from root volume groups, or rootvgs.                                                                                                                                                                         |  |
| Denial of Service      | Period of time between when applications have been<br>quiesced on SYSOLD and when they have been notified to<br>resume service on SYSNEW.                                                                                                                                                                       |  |
| Fallback               | A mechanism for abandoning upgrades. In the event that<br>you decide to abandon the upgrades after an upgraded<br>SYSNEW has begun providing application service, fallback<br>allows you to return directly to FT_START and thus avoids<br>having to use Split Mode a second time to "downgrade" the<br>system. |  |
| Ftvgs                  | Fault tolerant volume groupsvolume groups that are<br>mirrored across both sides of an FX Series system. When the<br>system is split, one set of the redundant data is available to<br>SYSNEW and the other to SYSOLD.                                                                                          |  |
| ISC                    | Inter-System Communication system-a set of functions that<br>allows for limited communications between the two halves<br>of a split system.                                                                                                                                                                     |  |
| ISC SP                 | The ISC Service ProviderThe ISC SP handles<br>communications between the two sides of a split system<br>and manages application notification during switchover.                                                                                                                                                 |  |
| Nondatavg Applications |                                                                                                                                                                                                                                                                                                                 |  |
|                        | Applications that do not depend on steal datavgs and which<br>can therefore begin providing service on SYSNEW before<br>datavg stealing has completed.                                                                                                                                                          |  |
| Nonftvgs               | Non-fault tolerant volume groups.                                                                                                                                                                                                                                                                               |  |

| Passive System   | Half of a split system which is not expected to be providing service. Prior to switchover, SYSNEW is the passive system.                                                                                 |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | For practical purposes, the term is synonymous with secondary system.                                                                                                                                    |
| Primary System   | A physical state of SYSOLD or SYSNEW corresponding to<br>its being the active system. Prior to switchover, SYSOLD is<br>the primary system.                                                              |
| Quiesced         | An application state in which it ceases providing service and waits for a message to resume.                                                                                                             |
| Rootvg           | Root volume groupa physical volume group containing operating system and application software.                                                                                                           |
| Secondary System | A physical state of SYSOLD or SYSNEW corresponding to<br>its being the passive system. Prior to switchover, SYSNEW<br>is the secondary system.                                                           |
| Service Provider | Same as ISC SP.                                                                                                                                                                                          |
| SP               | Same as ISC SP.                                                                                                                                                                                          |
| Split            | State of an FX Series system in which a single fault tolerant system is running as two independent simplex systems.                                                                                      |
| Splitstate       | A utility on the FX Series that manages transitions between system states.                                                                                                                               |
| Switchover       | The process during which the primary system is switched from SYSOLD to SYSNEW.                                                                                                                           |
| SYSNEW           | The half of a split system that is upgraded while the other<br>half continues providing service with original hardware,<br>firmware, and software. Initially, SYSNEW is the<br>passive/secondary system. |
| SYSOLD           | The half of a split system that continues providing service<br>with original hardware, firmware, and software, while the<br>other half is upgraded. Initially, SYSOLD is the<br>active/primary system.   |

### **Related Information**

### **FX Series Documentation**

The following documentation contains additional information on various aspects of the FX Series. These documents are all available through Motorola and may be ordered by calling the Motorola Computer Group Literature Center at 888-432-1877 or at 602-804-7378.

Alternately, PDF versions of the documents are available on the web at:

http://www-public.phx.mcd.mot.com/ext/literature/PDFLibrary/

- Administering Your Fault Tolerant System
- Configuring and Maintaining the System
- Operating System Installation Guide
- Operating System Installation Troubleshooting
- FX Series Release Notes
- Managing System Storage
- FX Series Diagnostics and Troubleshooting
- FX Series LED and Alarm Quick Reference
- Making and Using Backups
- FX Series System Hardware Installation Manual
- Writing Fault Tolerant Device Drivers
- FXBug Firmware Package User's Manual, Volumes 1 and 2
- FXBug Diagnostics Manual
- Motorola FX Series Fault Tolerant Systems Architecture Overview
- Application Developer's Guide to CMS

### Motorola Hardcopy AIX Documentation

Custom hardcopy documentation for general AIX and for FX Series systems can be ordered by calling the Motorola Computer Group Literature Center at 888-432-1877 or at 602-804-7378.

### AIX Version 4.1 Documentation for all Systems

The following documents may be especially useful to novice AIX users:

- Guide to System Information
- Getting Started
- Quick Reference
- iFOR/LS System Management Guide
- *iFOR/LS Tips and Techniques*
- Problem Solving Guide
- Messages Guide and Reference
- Performance Tuning Guide

### Other MCG titles for generic AIX include:

- Installation Checklist
- Quick Installation Guide
- Network Installation Management Guide and Reference
- Network Installation Management Tips and Techniques
- VMEbus Device Driver Reference
- SVR4 Porting Guide
- Managing System Storage
- Configuring and Maintaining the System

### **IBM AIX Documentation**

Additional hardcopy titles pertaining to AIX 4.1 are directly available from IBM. A list of current IBM titles and ordering information is available at:

http://www.rs6000.ibm.com/resource/aix\_resource/Pubs/
on the Web.

### **Getting Help for System Problems**

If you encounter difficulties contact your Motorola Computer Group Sales office or Motorola Computer Group's customer support group at:

- U.S.A. 1-800-551-1017
- Canada 1-800-387-2416
- Maidenhead, U.K. 44-1628-39121
- Paris, France 33-1-467-43560
- Duesseldorf, Germany 49-211-65899-55

When you call, please be prepared to provide the following information:

- the type and configuration of your FX Series system
- the level of AIX that you are running
- your system serial number
- the name of your company, your name, and a telephone number
- a brief description of the problem, including the severity of its impact on your ongoing efforts

### **Split Mode Overview** 2

## **Overview**

This chapter provides an overview of Split Mode, including a highlevel look at the Split Mode architecture and process.

### The Purpose of Split Mode

Split Mode allows applications running on FX Series systems to achieve 99.999% availability by minimizing downtime that must be scheduled for CPU module and software upgrades.

FX Series systems are designed so hardware modules may be "hot swapped" while the system continues to provide service. For example, a Multi-Function I/O (MFIO) module containing active disks can be replaced with a new MFIO module without interrupting service. Similarly, CPU modules may be hot swapped.

Since the CPU modules run synchronously, their hardware must be identical. Therefore, CPU modules cannot be upgraded by being hot swapped. Similarly, the operating system cannot be upgraded while the system is fault tolerant.

Split Mode allows you to take a fully redundant fault tolerant FX Series system and divide it into two simplex systems. This temporarily removes the need for the CPU modules to run synchronously and allows you to upgrade one half of the system while the other continues providing service. Split Mode also offers an avenue for upgrading operating system and application software.

Because Split Mode requires the system to be made simplex, you should not use it to replace existing hardware or to upgrade modules for which other means of upgrade exist. Split Mode is intended to be used only during CPU module upgrades and software upgrades.

### The Split Mode Process

Split Mode is designed to begin with a fully configured fault tolerant FX Series system like the one represented in the following figure.

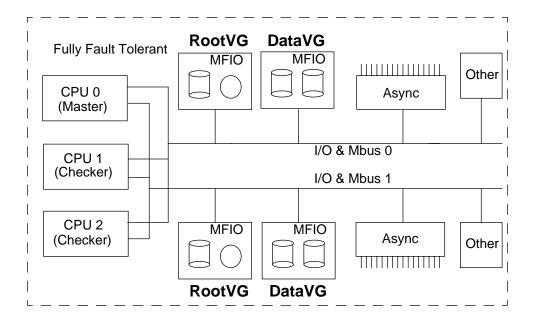



Figure 2-1. Initial Fault Tolerant Configuration

This figure shows a system in which CPU modules operate in synchronization and access redundant I/O buses. All I/O functionality is available in either I/O domain, and all volume groups are mirrored to allow for continuous service in the event of hardware failures.

The general strategy in Split Mode is to divide the original fault tolerant system into two simplex systems. One continues to provide service while the other is upgraded. Then, the roles of the two systems are switched. After the second system is upgrade, the two systems are reintegrated, forming a completely upgraded fault tolerant system. Until the point when the second system has been upgraded, it is possible to return to the original configuration using fall back scripts with minimal operator adjustments.

# Making the System Simplex and Upgrading CPU Module Hardware on the Offlined System

The first step in the Split Mode process is to make the system simplex. Thus, the checker CPU modules are taken off line and one of the I/O buses is unconfigured. This process offlines the I/O modules in that I/O domain. The remaining CPU continues to provide service using the online I/O modules in the active I/O domain. This system will be SYSOLD. One of the offlined CPU modules is paired with the offlined I/O modules in the other I/O domain to form what will become SYSNEW.

When the system is split, SYSOLD becomes the active system and provides service, controls system LEDs and the telco alarms, and monitors power supplies and system temperature. In Service and Out of Service LEDs on individual modules, such as MFIOs and individual CPU modules continue to reflect the status of the individual modules. For a more detailed discussion of LEDs and alarms, see "System Monitoring and Notification" on page 2-12.

Figure 2-2 shows the simplex situation, in which SYSOLD is providing service and SYSNEW is offlined, but not yet split. This is the point at which to upgrade the CPU module hardware on SYSNEW.



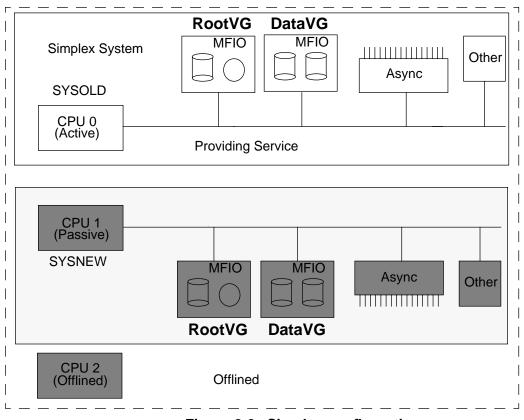



Figure 2-2. Simplex configuration

### Splitting the System and Upgrading Software on SYSNEW

Once any CPU upgrades have been done on SYSNEW, SYSNEW becomes available for software upgrades. SYSOLD continues to provide service to applications.

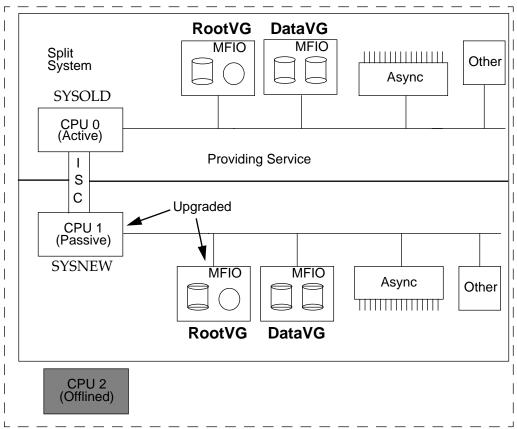
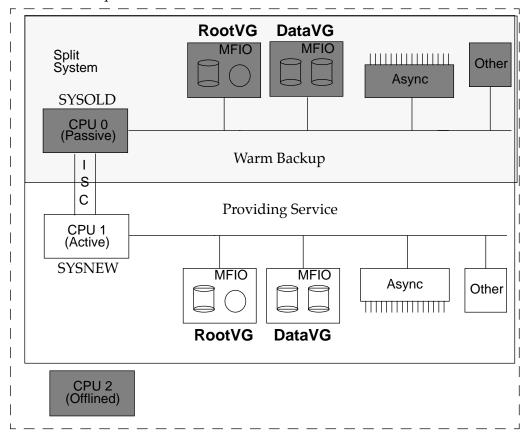




Figure 2-3. Split Configuration

Figure 2-3 shows the configuration when the system is split. Though the single FX System is currently running as two unique simplex systems, they are able to communicate through an Inter-System Communication (ISC) subsystem that is described on page 2-10.

### Switching Service to SYSNEW

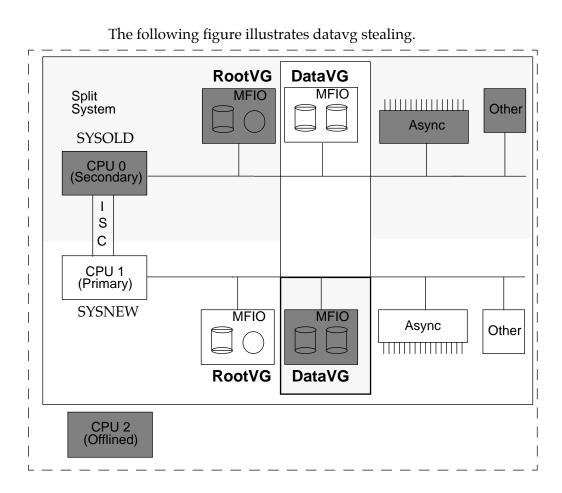
Once SYSNEW has been completely upgraded and tested, a switchover procedure allows for SYSNEW and SYSOLD to trade roles. SYSNEW becomes the active system and begins providing application service, controlling system LEDs and telco alarms, and monitoring system power and temperature. SYSOLD becomes passive, i.e. discontinues service to applications, and becomes a warm backup as shown in Figure 2-4. Because SYSOLD remains online, it is possible to quickly fallback and to provide file transfer capabilities.





Overview

As with other parts of the Split Mode procedure, the switchover process can be adapted depending on your specific situation and needs. Major areas to be considered at this point include managing data, managing applications, and managing Ethernet connections with the outside world.


### **Managing Data**

Because the FX Series uses disk mirroring, SYSNEW and SYSOLD typically have identical disks when the Split Mode procedure begins. However, at the beginning of the Split Mode process, the mirrors are broken. As SYSOLD continues providing service and SYSNEW is being upgraded and tested, data on SYSOLD is continuously updated while that on SYSNEW becomes stale. For some applications, reverting to stale data on switchover may completely undo the benefits of Split Mode. To counter this problem, Split Mode enables SYSNEW to steal volume groups from SYSOLD. This means that the new instances of the application, running on SYSNEW, are able to work from the most current data which has been maintained by SYSOLD.

Thus, as part of the switchover process, SYSNEW accesses the current data volume groups (datavgs) from SYSOLD, without corrupting the newly upgraded root volume group (rootvg).

If you intend to "steal" data from SYSOLD to SYSNEW, the volume groups on the original fault tolerant system must be divided between a root volume group (rootvg) and data volume group (datavg) or groups on different I/O modules. For similar reasons, all swap partitions must be on the rootvg rather than on the datavgs.

An alternative to using datavg stealing is to pass small amounts of data through the ISC subsystem which is described on page 2-10. Using the non-datavg method can reduce the denial of service during switchover.



### Figure 2-5. Datavg stealing

### **Managing Applications During Switchover**

Applications on both SYSOLD and SYSNEW need to be quiesced before service is switched from SYSOLD to SYSNEW and then have to resume service on SYSNEW after the switchover. While it is possible to stop and start applications manually, the denial of service time can be decreased by automating the process.

2

It is recommended that you make at least one of your applications "Split Mode aware." Such applications register with the Split Mode ISC Service Provider (ISC SP) via sockets. The ISC SP then is responsible for telling the application when to quiesce and when to restart on SYSNEW. The application, in turn, should manage any applications which are not Split Mode aware. For more information on how to add Split Mode awareness to your application, see Chapter 7.

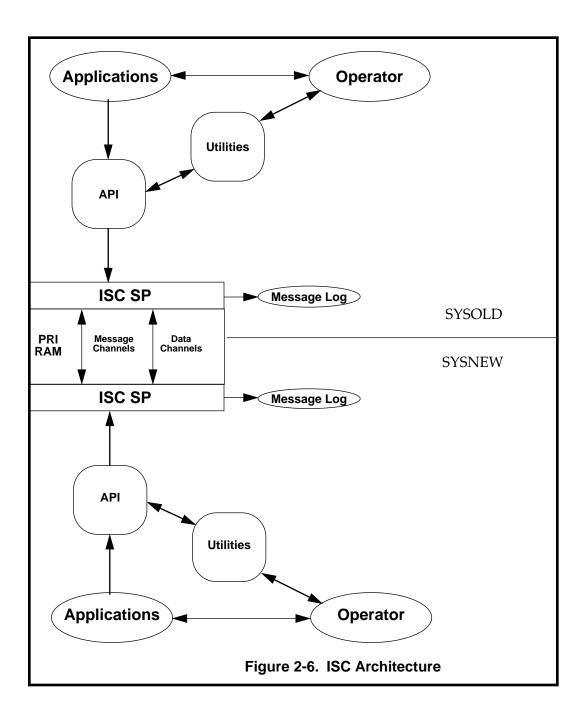
### **Managing Ethernet Connections**

The Split Mode architecture allows for the active and the passive systems to have unique IP and MAC addresses. The active system retains the system name, while the passive system must be referenced by its IP address. During switchover, SYSNEW becomes the active system and accordingly takes on the active IP address, the associated MAC address, and the system name. Thus, all external ethernet traffic is directed to the system that is currently providing service, and both systems can exist on the network without confusing applications on remote systems.

### Verifying Service on SYSNEW

After switchover, but before upgrading SYSOLD, you should take the opportunity to verify that SYSNEW is providing adequate service. Once you upgrade SYSOLD, it will be much more difficult to fall back to the original configuration. Once you are satisfied with the service being provided by SYSNEW, you should unsplit the two systems, making them into a single fault tolerant system and upgrade SYSOLD.

### Unsplitting the System and Upgrading SYSOLD


Unsplitting the system results in a simplex system in which SYSNEW's CPU module has access to both I/O domains. Disk mirrors are reestablished and all I/O redundancy is restored. At this point, you should upgrade the remaining CPU module hardware and reintegrate them. It is not necessary to upgrade software on SYSOLD, because this will be accomplished by reestablishing disk mirrors.

### Inter-System Communications (ISC)

The Split Mode Inter-System Communications (ISC) subsystem allows for communications between SYSOLD and SYSNEW. Utilities and applications on one system are able to interact with data or applications on the other system. For example, an application that is running on SYSOLD is able to relay data to an application that is running on SYSNEW. It also allows operators to execute programs and utilities on the remote system, and provides logging for all commands and application responses.

The ISC architecture allows for separate channels for messages and for data, so that commands can be executed quickly, rather than having to sit in a data queue.

The following figure illustrates the ISC architecture.



The most important ISC utilities include SMFT, SMMT, and SMPE. All three utilities can be executed from the command line or via an Application Programmer's Interface (API).

SMFT is a file transfer utility that provides a ready-made tool for transferring files between the two systems. You can transfer files in either direction--either from SYSOLD to SYSNEW or from SYSNEW to SYSOLD.

SMMT is a message transfer utility that allows you to send direct messages to registered applications, or to broadcast messages to all registered applications. Messages can also be directed to the ISC's message log.

SMPE is a program execution utility that allows you to execute commands on SYSOLD or SYSNEW, or on both simultaneously

In addition to these utilities, applications are able to establish data transfer connections between themselves via the ISC SP. The initiating application provides the SP with its own name and the name of the second application. The SP then establishes a data socket from one application to the other.

Chapter 7, "Writing Split Mode-Aware Applications," provides information on how to tailor your application to take advantage of the ISC subsystem.

### **System Monitoring and Notification**

In normal FT mode, the master CPU module, in coordination with the checker CPU module(s), uses the system maintenance bus (mbus) to monitor module and system status. In Split Mode, however, mbus restrictions which are put in effect in order to split the system prevent the primary / active CPU module from accessing the modules in the secondary / passive domain. Thus, the systemlevel LEDs and alarms reflect the status of the primary system only. Indicators on individual modules, in each domain, continue to reflect the current module status. The primary system is still able to power down the system through an unrestricted power maintenance bus. If a failure occurs that requires system shutdown, the primary will power down every module in the system, including the secondary's devices and CPU.

The behavior of the system LEDs during the Split Mode process is described below. It is assumed that the process starts in FT mode with only the System-In-Service (SIS) light on:

- As the system transitions to the SIMPLEX state, the system LEDs and telco alarms are set accordingly when modules go out of service.
- As the system transitions from the SIMPLEX state to the SPLIT state, mbus access to SYSNEW's (secondary) modules from SYSOLD (primary) is disabled. After that event, the state of SYSNEW's modules is no longer taken into account by the lights daemon, since only the primary's lights daemon actively controls the system lights. Thus, the system LEDs reflect the status of the modules managed by the primary (SYSOLD). Only the SIS LED is on, unless there is a fault on SYSOLD.
- As modules are takend offline on one side of the system and control transferred to the other side, module LEDs switch from the module In-Service LED being lit, to the module Out-of-Service LED being lit, to the module In-Service LED being lit again.
- After switchover, the system LEDs reflect the status of the modules managed by SYSNEW (the new primary). The SIS LED will be on. The Component-Out-Of-Service (COOS) LED will be on, if datavg stealing is to be used, because the disks belonging to the datavgs will have been taken offline to prepare to steal the volume groups.
- Before returning to FT mode, mbus access is re-enabled to all modules, and the system LEDs again reflect the state of all modules. The SIS, COOS and telco LEDs will be illuminated until everything is reintegrated.

**Note** During state transitions, and especially during the switchover, the system LEDs will always reflect the state of one of the systems. There should not be any spurious telco alarms.

## **Overview**

This chapter provides an overview of the Split Mode state machine and presents a general procedure for upgrading your system via Split Mode. The chapter also includes a brief description of the steps involved in the switchover process and details of how to log Split Mode commands.

## The Split Mode State Machine

The Split Mode process is designed around a state machine that corresponds to different steps in the Split Mode procedure and to differences in system and resource availability. The state machine is comprised of the following system states:

• FT\_START

The FT\_START state is the initial system state, before you have started the Split Mode process.

CHECKED

Between FT\_START and CHECKED, the system is checked to ensure that it is ready for Split Mode. The process includes: verifying that disks are properly mirrored; checking for the presence of at least dual redundant CPU modules; checking for outstanding faults; and ensuring that the system contains sufficient Fan, Power, and ICM modules.

• SIMPLEX

Between the CHECKED and the SIMPLEX states, SYSNEW is powered off while SYSOLD continues providing service as a simplex system. This is the state during which to upgrade SYSNEW CPU hardware (if necessary).

• SPLIT

During the SPLIT state, SYSOLD is primary and continues to provide service. SYSNEW is available as a separate system for OS, application, and firmware upgrades and testing. During the SPLIT state, it is possible to service applications from both SYSOLD and SYSNEW, though such an arrangement would require a detailed strategy for managing data.

• QUIESCEDAPPS\_SYSNEW

Between the SPLIT and the QUIESCEDAPPS\_SYSNEW states, applications running on SYSNEW receive notification from the ISC Service Provider to quiesce themselves in anticipation of switchover. During the transition to EXPORTEDVGS\_SYSNEW datavgs on SYSNEW that correspond to datavgs to be stolen from SYSOLD are exported.

### QUIESCEDAPPS\_SYSOLD

The QUIESCEDAPPS\_SYSOLD state corresponds to applications running on SYSOLD having received a message from the Service Provider and having quiesced themselves in anticipation of switchover. This state marks the beginning of denial of service.

### • EXPORTEDVGS\_SYSOLD

During the transition to EXPORTEDVGS\_SYSOLD datavgs that are to be stolen from SYSOLD are exported.

• SWITCHED

The SWITCHED state corresponds to a low level switchover in which SYSNEW is made primary and SYSOLD is made secondary. Note: at this point the systems exchange consoles: SYSNEW becomes active on console0 and SYSOLD becomes active on console1.

• RESUMEDAPPS\_SYSNEW

The RESUMEDAPPS\_SYSNEW state marks the point at which nondatavg applications have been notified to resume providing service on SYSNEW, the primary system.

• STOLEVGS

The STOLEVGS state corresponds to when datavgs from SYSOLD have been stolen and are available to applications running on SYSNEW.

• RESUMEDVGAPPS\_SYSNEW

The RESUMEDVGAPPS\_SYSNEW state marks the point at which datavg applications have been notified to resume providing service on SYSNEW, the primary system.

This is the appropriate state to do final verification of system performance.

Transitioning forward from the RESUMEDVGAPPS\_SYSNEW state will commit the upgrades. Transitioning backwards from the UNSPLIT state will abandon any upgrades and return the system to FT\_START.

• UNSPLIT

Between RESUMEDAPPS\_SYSNEW and the UNSPLIT state, the system is unsplit, SYSNEW gains control of SYSOLD's I/O domains, and the SYSOLD CPU modules are off-lined. This state is similar to having an otherwise fault tolerant system running with only a single CPU.

This is the appropriate state in which to upgrade SYSOLD's CPU modules.

• FT\_COMPLETED

FT\_COMPLETED is identical to FT\_START. A different name is used to distinguish the direction of transitions during the Split Mode process (a transition to FT\_START reverts to the original system while a transition to FT\_COMPLETED completes the upgrade). The system state reverts to FT\_START as soon as you complete the Split Mode process.

# The Splitstate Utility

The splitstate utility guides the system between the various states. Transitions between the states can be made by using the splitstate command with a -s option and the target state. For example, if the system is in the FT\_START state, you can make it go to the CHECKED state by using:

splitstate -s CHECKED

From any state prior to UNSPLIT, you can return to any previous state via the same algorithm. For example, you can go from the SIMPLEX state back to FT\_START by running

splitstate -s FT\_START

**Note** It may be necessary to undo hardware and firmware upgrades before returning to FT\_START. For directions on regressing your firmware to the original version, see "Falling Back to Original Firmware" on page 5-7.

Once you have reached the UNSPLIT state, any backward transition will revert the system back to FT\_START--will make the system "fallback" to the original state. For more information on fallback, see "Fallback Strategies" on page 6-2.

## **Determining the System State**

You can check to see which state the system is in by running

splitstate -l

The -l option will provide a list of valid states and mark the current state with an arrow (-->).

```
-->FT_START
CHECKED
SIMPLEX
SPLIT
```

QUIESCEDAPPS\_SYSNEW

EXPORTEDVGS\_SYSNEW

QUIESCEDAPPS\_SYSOLD

EXPORTEDVGS\_SYSOLD

SWITCHED

RESUMEDAPPS\_SYSNEW

STOLEVGS

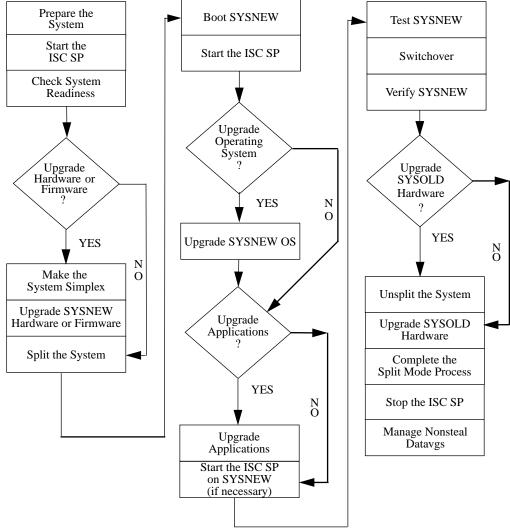
RESUMEDVGAPPS\_SYSNEW

UNSPLIT

FT\_COMPLETED

Alternately, splitstate -L returns only the current system state.

FT\_START


# **Overview of the Split Mode Procedure**

The following section contains an overview of a standard upgrade procedure for split mode.

## **General Procedure**

The split mode procedure consists of the following general steps, which are described in more detail as part of the specific procedures which begin on page 5-2:

- Check that the system is ready to split
- Start the Inter-System Communications Service Provider (ISC SP)
- Make the system simplex
- Perform any hardware or firmware upgrades on the offlined side of the system
- Split the system into SYSOLD and SYNEW
- Upgrade the operating system on SYSNEW (if applicable)
- Upgrade applications on SYSNEW (if applicable)
- Test SYSNEW
- Switch the roles of SYSOLD and SYSNEW (SYSNEW becomes primary and begins providing service)
- Execute further tests on SYSNEW
- Upgrade hardware on SYSOLD (if applicable)
- Reintegrate the system



The following flowchart illustrates the general steps in the Split Mode process.

Figure 3-1. General Split Mode Flowchart

### Switchover

Up through the SPLIT state, SYSOLD continues providing service exactly as if the system were in the original fault tolerant configuration. Once you reach the SPLIT state, it is also possible to have applications running on SYSNEW.

In order to make SYSNEW the primary system, and in order to upgrade SYSOLD, however, applications on both systems must be halted for a brief time. This time, during which applications are being stopped on SYSOLD and started on SYSNEW, is known as denial of service.

If you have adapted your applications to take advantage of the FX Series' split mode capabilities, then the system will automate the tasks associated with switching. If you initiate a transition from the SPLIT state to RESUMEDVGAPPS\_SYSNEW or a later state, the system will:

- send a message to all registered applications on SYSNEW telling them to quiesce,
- export SYSNEW's datavgs (as specified in /var/ft/split\_cfg),
- send a message to all registered applications on SYSOLD telling them to quiesce,
- export SYSOLD's datavgs (as specified in /var/ft/split\_cfg),
- make SYSNEW the primary system,
- send a message to registered nondatavg applications to resume on SYSNEW,
- steal the current datavgs from SYSOLD and give them to SYSNEW,
- send a message to registered data-dependent applications on SYSNEW telling them to resume service.

# Logging The Split Mode Process

The split mode process is performed using the splitstate utility, which sends output to the console. Since the Service Provider is running during the split mode process, the Service Provider operation utility, spope, can be used in conduction with the splitstate utility to log the split mode process to the Service Provider log file, /var/ft/isc\_sp.log.

To log the splitstate output, run all splitstate operations under spope:

spope "/bin/ksh /usr/sbin/splitstate -s <state>"

If a state transition occurs on the secondary when the secondary is about to go away, i.e. when the system is unsplit, the splitstate utility will automatically run the transition on the primary, and log the output to the primary Service Provider log file. Additionally, just before the secondary is unsplit, the primary retrieves the secondary Service Provider log file and copies it to /var/ft/isc\_sp.log.SECONDARY.

For simplicity, most of the commands in this chapter will be shown without the spope utility syntax.

# Preparing Your System for **4** Split Mode

# **Overview**

This chapter provides instructions for preparing your FX Series system prior to running Split Mode.

# **Preparing the System for Split Mode**

The following discussions provides details on how to customize the split mode process to your system.

# List System Information

Fill in the table below with the appropriate system information. This information will be valuable in the event that the upgrades need to be abandoned or reversed.

Table 4-1. System Information

| System Name         |  |
|---------------------|--|
| Current BOS Version |  |
| Date                |  |
| Time                |  |
| Bug Version         |  |

**Note** You must be running AIX 4.1.5r3 or a later AIX FX Series release and must be running version 1.3 or later of the FX Series Debugger in order to run Split Mode. See the FX Series Installation Guide and the AIX 4.1.5r3 Release Notes for information on installing these products.

# **Assign System Resources**

In order to do the upgrades while the system is split, you need to ensure that necessary devices are available to SYSNEW. For example, if you intend to use a DAT drive to upgrade the OS, and if your system only contains one DAT drive, then you need to assign it to SYSNEW.

Table 4-2 and Table 4-3 are intended to help you decide which half of the system (defined by the mbus) to use for SYSNEW and which to use for SYSOLD (see "g\_SYSOLD and g\_SYSNEW" on page 4-18).

| Slotid | Module/Resource   |  |  |
|--------|-------------------|--|--|
|        | Main Chassis      |  |  |
| c1-1   |                   |  |  |
| c1-2   |                   |  |  |
| c1-3   |                   |  |  |
| c1-4   |                   |  |  |
| c1-5   |                   |  |  |
|        | Expansion Chassis |  |  |
| c2-1   |                   |  |  |
| c2-2   |                   |  |  |
| c2-3   |                   |  |  |
| c2-4   |                   |  |  |
| c2-5   |                   |  |  |
| c2-6   |                   |  |  |
| c2-7   |                   |  |  |
| c2-8   |                   |  |  |

Table 4-2. Resources on Mbus0

#### Table 4-3. Resources on Mbus1

| Slotid            | Module/Resource |  |  |
|-------------------|-----------------|--|--|
|                   | Main Chassis    |  |  |
| c1-12             |                 |  |  |
| c1-13             |                 |  |  |
| c1-14             |                 |  |  |
| c1-15             |                 |  |  |
| c1-16             |                 |  |  |
| Expansion Chassis |                 |  |  |
| c2-9              |                 |  |  |

| Slotid | Module/Resource |  |
|--------|-----------------|--|
| c2-10  |                 |  |
| c2-11  |                 |  |
| c2-12  |                 |  |
| c2-13  |                 |  |
| c2-14  |                 |  |
| c2-15  |                 |  |
| c2-16  |                 |  |
|        |                 |  |

Table 4-3. Resources on Mbus1 (continued)

## **Managing Volume Groups**

In addition to deciding which volume groups will be stolen, it is necessary to create a plan for dealing with any data volume groups (datavgs) which you do not want to be automatically stolen. Handling noncritical datavgs manually will decrease the total denial of service time.

Datavgs that are going to be stolen may not be on the same MFIO modules as the root volume group. Similarly, all swap partitions must be on the rootvg. Datavgs which you intend to retrieve manually may not be attached to MFIOs containing steal datavgs or rootvgs.

#### Managing Data Volume Groups that are not Stolen During Split Mode

Datavgs which are tabbed to be stolen (see "g\_STEALVG" on page 4-23) will automatically be made available when you boot SYSNEW. In other words, the disks on SYSNEW which are mirrored to the steal datavgs will be available.

If you do a complete BOS install (a BOS-NEW or MKSYSB install), however, you will need to mount nonsteal datavgs manually. In order to facilitate that process, collect the relevant information prior to running Split Mode:

• Identify all of the data volume groups on the system:

```
lsvg | grep -v "rootvg"
```

• List all datavgs that are not specified in the g\_STEALVG parameter in /var/ft/split\_cfg in the following table.

| datavg | mount point | ftvg | physical<br>volume group<br>SYSNEW | physical<br>volume group<br>SYSOLD | Reacti-<br>vation<br>method |
|--------|-------------|------|------------------------------------|------------------------------------|-----------------------------|
|        |             | Y/N  |                                    |                                    |                             |

Table 4-4. Datavgs

- For each remaining data volume group,
  - Identify and record all of the mount points for each data volume group by examining /etc/filesystems.
  - Identify whether or not the data volume group is a fault tolerant volume group (ftvg) and circle Y or N in Table 4-4: lsvg <vg>
  - Identify all physical volume groups associated with the datavg:

```
lsvg -p <vg>
```

• For each physical volume in the data volume group, identify and record whether the hdisk is in the SYSOLD or SYSNEW domain (where the domains are defined by g\_SYSOLD and g\_SYSNEW in /var/ft/split\_cfg) using the following commands:

lsdomain -d0 | grep hdisk lsdomain -d1 | grep hdisk List the information in Table 4-4.

• Identify and record when and how the data volume group is to be reactivated. There are five possible reactivation methods:

- 1. Retrieve an ftvg from the SYSNEW disk during the SPLIT state (see "The Split Mode State Machine" on page 3-2 for an explanation of system states).
- 2. Retrieve a nonftvg from SYSNEW during the SPLIT state.
- 3. Retrieve an ftvg from the SYSNEW disk after reaching FT\_COMPLETED.
- 4. Retrieve a nonftvg after reaching FT\_COMPLETED.
- 5. Retrieve an ftvg from the SYSOLD disk after reaching FT\_COMPLTED.

#### Managing Nonftvgs that are Split across SYSOLD and SYSNEW

Nonftvgs that are split across SYSOLD and SYSNEW must be exported before starting Split Mode and then imported once you have completed the Split Mode process. Such volume groups will not be accessible during Split Mode.

Export the nonftvgs using the following commands:

• umount fs

where *fs* is the name of the file system that contains the volume group.

• varyoff vg

where *vg* is the name of the volume group.

• export vg

# **Configuring Ethernet**

In order to run Ethernet during split mode, you must assign split mode IP addresses to the active and passive (optional) systems. This configuration allows SYSOLD, which is primary at the beginning of the Split Mode process, and SYSNEW to exchange IP addresses during switchover and thus ensures that the outside world is always in contact with the active system. With respect to ethernet, the active system correlates to a hardware state known as primary, while the passive system correlates to a secondary state.

1. Enter the smit fastpath for TCP/IP:

smit tcpip

- 2. Select "Split Mode Ethernet Configuration" from the TCP/IP menu.
- 3. Select ent0 from the Logical Ethernet Device menu.
- 4. On the Split mode Ethernet Configuration menu, enter the IP addresses for the primary (active) and secondary (passive) systems.
- 5. Repeat this procedure for each logical ethernet device on the system.

# Loading Firmware Updates from CD

If you will be updating firmware as part of an OS upgrade, insert the new OS installation media and use SMIT to install/update the devices.xrft.flash package. This package contains the most recent version of the firmware.

This is an essential step, as having the wrong firmware on the SYSOLD CPU will result in the wrong firmware being automatically applied to the SYSOLD CPUs.

**Note** Because of the significance of the firmware revision, and the problems that can be caused by having the wrong firmware installed on a CPU, it is recommended that all CPU hardware upgrades include a firmware upgrade. All the procedures in this book are written under the assumption that CPU module upgrades are accompanied by firmware upgrades.

## **Managing Swap Partitions**

Ensure that there are no swap partitions on any of the data volume groups. All swap partitions must be on root volume groups.

## Making Sure the Inter-System Communications Service Provider (ISC SP) is Inactive

If the ISC SP from a previous Split Mode session is running when you start a new session and a new SP, it can result in both service providers running on the same system. To prevent this, you should run spstop prior to beginning the new Split Mode process.

## Adding a Second Console

Prior to starting split mode, you need to attach a second console to the system. The console attached to port0 will be used to manage the primary system, while the console attached to port1 will be used to manage the secondary system.

**Note** This means that during switchover, SYSNEW will switch from console1 to console0 and SYSOLD will switch from console0 to console1.

The following sections describe and illustrate the activity on the different consoles at various points in the split mode process. For clarity, console0 and console1 are used as shell prompts on the respective systems.

#### System at FT\_START prior to beginning the split mode process

While the system is in the FT\_START state, all standard input and output is associated with console0. The additional console, console1, is inactive.

console0: splitstate -L FT\_START console0: lsvg rootva datavg console0: lsvg -l datavg datavg: TYPE LV NAME LPs PPs PVs LV STATE MOUNT POINT jfs 10 20 2 testlv1 open/syncd /datavg-jfs1 2 loglv00 jfslog 1 2 open/syncd N/A console0: ps -deaf TTY TIME CMD PID PPID С UID STIME 0 08:09:34 - 1:45 /etc/init
- 0:00 /usr/sbin/srcmstr 1 0 root 3740 root 1 0 08:12:26 - 0:03 /usr/sbin/syncd 60 root 3894 1 0 08:12:11 - 0:00 /usr/lib/errdemon -B 32768 root 4168 1 0 08:12:15 root 4376 1 0 08:13:01 - 0:00 /usr/sbin/cron root 4800 3740 0 08:12:46 - 0:00 /usr/sbin/portmap 5038 3740 0 08:12:40 - 0:00 /usr/sbin/syslogd root 5300 3740 0 08:12:43 - 0:00 /usr/lib/sendmail -bd -q30m root 5574 3740 0 08:12:50 - 0:00 /usr/sbin/inetd root 0 09:01:39 0 0:00 /usr/sbin/isc\_sp root 5962 1 . . . root 5962 1 0 08:00:00 0 9:32 /usr/sbin/data\_application -s db.1 . . . . . . console0: cd /datavg-jfs1 console0: ls db.1 db.2 config

#### Figure 4-1. Console0: SYSOLD as Primary

Figure 4-1 shows representative output from the still fault tolerant system, including a list of current applications and the contents of the /datavgs-jfs1 directory. At this point, console1 would remain blank and inactive.

#### System Split, but not yet Switched

Once the system is split, console0 is associated with whichever system is primary. Prior to the SWITCHED state, that means that console0 is associate with SYSOLD while console1 is associated with SYSNEW.

console0: splitstate -L SPLIT console0: lsvg rootva datavq console0: lsvg -l datavg datavg: LV STATE MOUNT POINT open/syncd /datavg-jfs open/syncd N/A LPs LV NAME TYPE PPs PVs LV STATE 10 10 testlv1 jfs 1 1 /datavg-jfs1 loglv00 jfslog 1 1 console0: ps -deaf TTY TIME CMD PID PPID C STIME 
 UID
 PID
 PPID
 C
 STIME
 TTY
 TIME CMD

 root
 1
 0
 0 08:09:34
 1:45 /etc/init

 root
 3740
 1
 0 08:12:26
 0:00 /usr/sbin/srcmstr

 root
 3894
 1
 0 08:12:11
 0:03 /usr/sbin/syncd 60

 root
 4168
 1
 0 08:12:15
 0:00 /usr/sbin/cron

 root
 4376
 1
 0 08:12:46
 0:00 /usr/sbin/portmap

 root
 5308
 3740
 0 08:12:40
 0:00 /usr/sbin/syslogd

 root
 5300
 3740
 0 08:12:43
 0:00 /usr/sbin/isc\_mdmail -bd -q30m

 root
 5574
 3740
 0 08:12:50
 0:00 /usr/sbin/inetd

 root
 5962
 1
 0 09:01:39
 0 0:00 /usr/sbin/isc\_sp
 UID . . . . . . console0: cd /datavg-jfs1 console0: touch DATA\_SYSOLD console0: ls DATA\_SYSOLD db.1 db.2 config

#### Figure 4-2. Console0: SYSOLD Primary (System Split, but not yet Switched)

Figure 4-2 shows representative standard input and output on console0/SYSOLD. Note, that the operator has created a file, DATA\_SYSOLD, in one of SYSOLD's data directories. This file will appear on SYSNEW after datavg stealing.

Figure 4-3 shows representative standard input and output on console1 while SYSNEW is the split secondary. As in the previous example, the operator has created a file in a datavg directory, this

time naming it DATA\_SYSNEW. This file will become unavailable when SYSNEW's datavgs are exported prior to stealing SYSOLD's datavgs.

FX-Bug-> pboot 5 0 <boot> console1: lsvg rootvg datavg console1: lsvg -l datavg datavq: PPs PVs LV STATE LV NAME TYPE LPs MOUNT POINT 10 10 1 open/syncd /da 1 1 1 open/syncd N/A /datavg-jfs1 testlv1 jfs loglv00 jfslog console1: /usr/sbin/data\_application -s db.1 & console1: ps -deaf UID PID PPID C STIME TTY TIME CMD root 1 0 09:29:44 - 1:45 /etc/init root 4351 1 09:30:01 - 0:00 /usr/sbin/srcmstr . . . . . . console1: cd /datavg-jfs1 console1: touch DATA\_SYSNEW console1: ls DATA\_SYSNEW db.1 db.2 config

Figure 4-3. Console1: SYSNEW Secondary (System Split, but not yet Switched)

After the system is switched, the consoles will switch as well. As SYSNEW becomes primary, it will become associated with console0 and console1 will become associated with SYSOLD, the new

secondary. console0: splitstate -L RESUMEDVGAPPS SYSNEW console0: lsvg rootvq datavg console0: lsvg -l datavg datavq: LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT testlv1 1 10 jfs 10 open/syncd /datavg-jfs1 1 loglv00 jfslog 1 1 open/syncd N/A console0: ps -deaf UID PID PPID С STIME TTY TIME CMD 1 0 0 08:09:34 740 1 0 08:12:26 - 1:45 /etc/init root root 3740 - 0:00 /usr/sbin/srcmstr root37401008:12:26root38941008:12:11root41681008:12:15root43761008:12:16root50383740008:12:46root50383740008:12:40root53003740008:12:43root55743740008:12:50root59621009:01:39 - 0:03 /usr/sbin/syncd 60 - 0:00 /usr/lib/errdemon -B 32768 - 0:00 /usr/sbin/cron - 0:00 /usr/sbin/portmap 0:00 /usr/sbin/syslogd
0:00 /usr/lib/sendmail -bd -q30m
0:00 /usr/sbin/inetd 0 0:00 /usr/sbin/isc\_sp . . . root 5962 1 0 08:00:00 0 0:02 /usr/sbin/data\_application -s db.1 . . . . . . console0: cd /datavg-jfs1 console0: ls DATA\_SYSOLD db.1 db.2 config

#### Figure 4-4. Console0: System Switched, SYSNEW Primary

Figure 4-4 shows SYSNEW running as primary and directing standard input and output to console0. Because the datavgs have been stolen, SYSNEW now has access to the data which was originally on SYSOLD, as shown by the directory contents at the bottom of the screen.

Figure 4-5 shows representative standard input and output on SYSOLD once it has been switched to a secondary role. Note that the datavg-jfs directory which once contained the DATA\_SYSOLD file, is now empty.

```
FX-Bug-> pboot 5 0
console1: lsvg
rootvg
datavg
console1: lsvg -l datavg
datavg:
LV NAME
                TYPE
                          LPs PPs PVs LV STATE
                                                     MOUNT
                jfs
                          10
                                     1 open/syncd
testlv1
                                10
                                                      /data
loglv00
                jfslog
                          1 1
                                    1 open/syncd
                                                     N/A
console1: ps -deaf
UID
     PID PPID C
                    STIME
                           TTY TIME CMD
root 1 0 0 09:29:44 - 1:45 /etc/init
root 4351 1 0 09:30:01
                             - 0:00 /usr/sbin/srcmstr
. . .
. . .
. . .
console1: cd /datavg-jfs1
console1: ls
console1:
```

Figure 4-5. Console0: System Switched, SYSOLD Secondary

#### System at FT\_COMPLETE after the Process has Completed

Once you have completed the split mode process, and the system has returned to normal fault tolerant operations, then all standard input and output activity will return to console0. The additional console, console1, will become frozen.

| console0: sp<br>FT_START<br>console0: ls<br>rootvg<br>datavg<br>console0: ls<br>datavg:<br>LV NAME<br>testlv1<br>loglv00<br>console0: ps | vg<br>vg -l datavg<br>TYPE<br>jfs<br>jfslog                                                                                                                                             | LPS PPS<br>10 20<br>1 2                                                                | PVs LV STATE<br>2 open/sync<br>2 open/sync                                                                                                                         |                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| root 1<br>root 3740<br>root 3894<br>root 4168<br>root 4376<br>root 4800<br>root 5038<br>root 5300                                        | PID C STIME<br>0 0 08:09:34<br>1 0 08:12:26<br>1 0 08:12:11<br>1 0 08:12:15<br>1 0 08:13:01<br>3740 0 08:12:46<br>3740 0 08:12:43<br>3740 0 08:12:43<br>3740 0 08:12:50<br>1 0 09:01:39 | - 0:00<br>- 0:03<br>- 0:00<br>- 0:00<br>- 0:00<br>- 0:00<br>- 0:00<br>- 0:00<br>- 0:00 | CMD<br>/etc/init<br>/usr/sbin/srom<br>/usr/sbin/srom<br>/usr/sbin/crom<br>/usr/sbin/port<br>/usr/sbin/sysJ<br>/usr/sbin/jsendm<br>/usr/sbin/inet<br>/usr/sbin/isc_ | ed 60<br>emon -B 32768<br>1<br>cmap<br>Logd<br>nail -bd -q30m<br>cd |
| <br>root 5962<br>                                                                                                                        | 1 0 08:00:00                                                                                                                                                                            | 0 0:03                                                                                 | /usr/sbin/data_                                                                                                                                                    | application -s db.1                                                 |
| console0: cd<br>console0: ls<br>DATA_SYSOLD<br>db.1<br>db.2<br>config                                                                    | /datavg-jfs1                                                                                                                                                                            |                                                                                        |                                                                                                                                                                    |                                                                     |

Figure 4-6. Console0: System FT\_COMPLETED

Figure 4-6 shows console0 after the Split Mode process has been completed. Note that the /datavg-jfs1 directory contains the DATA\_SYSOLD file which was created on SYSNEW during the split and then stolen by SYSNEW during the switchover process. Note, too, that the splitstate utility returns FT\_START for the

system state. This is because FT\_START and FT\_COMPLETED are identical states and the split state utility makes the translation to FT\_START as soon as you reach FT\_COMPLETED.

# Add Directories to PATH Variable

In order to run Split Mode commands, you must have the following directories included in your PATH variable:

/usr/bin /etc /usr/sbin /usr/ucb /usr/bin/X11 /sbin

Confirm that these directories are included in your PATH:

echo \$PATH

If one or more of the directories is not part of the path variable, add them using the following syntax:

PATH=\$PATH:/directory1:/directory2; export PATH

where directory1 and directory2 are the absolute path for the directories you wish to add.

# Handling Asynchronous Ports

Prior to entering Split Mode, the asynchronous ports on an FX System will be divided between controllers on the two I/O domains. When the system is made simplex, ports which were originally configured on the domain associated with SYSNEW are transferred to SYSOLD, because SYSNEW is offlined at this point.

When the system reaches the SPLIT state, and SYSNEW is booted, it will have no asynchronous ports. In order to use asynchronous ports on SYSNEW while in the SPLIT state, you will need to

manually configure the ports using standard FX procedures. If you want to assign ports that are active on SYSOLD to SYSNEW, you must unconfigure them from SYSOLD first.

After switchover, all originally configured ports will be active on SYSNEW, as will any new ports that you configured on SYSNEW. During fallback, the ports will again be configured on SYSOLD.

**Note** Applications must close any asynchronous ports before quiescing prior to switchover. If they fail to do so, the splitstate utility will be unable to unconfigure the ports on SYSOLD and will, therefore, be unable to reconfigure them on SYSNEW. In such a case, you would need to manually unconfigure and configure the ports in order to make them available on SYSNEW.

## Set Global Split Mode Variables in the split\_cfg file

Create the configuration file, /var/ft/split\_cfg from the template:

# cp /usr/sbin/split\_cfg.tpl /var/ft/split\_cfg

# chmod 600 /var/ft/split\_cfg

This configuration file contains all of the necessary parameters for completing the split mode process.

**Note** Once the split mode process starts, this file cannot be modified. Some parameters can be changed by creating an override file, /var/ft/split\_cfg.ovr, at the time that the changes are necessary. See "Overriding the global variables" on page 4-25 for information on parameters which can be overridden.

#### The Global Split mode Variables

The following table lists the variables which may be configured in the /var/ft/split\_cfg file. The variables and possible values are discussed below.

Using the table below, circle or fill in the values you choose for each variable (default values are given in bold). Once you are done, edit the /var/ft/split\_cfg and add the appropriate values. For additional information on these variables, refer to the splitstate manpage.

| Variable                               | Value               |
|----------------------------------------|---------------------|
| g_PRIMARY                              | CPU-0, CPU-1, CPU-2 |
| g_SECONDARY                            | CPU-0, CPU-1, CPU-2 |
| g_SYSOLD                               | 0, 1                |
| g_SYSNEW                               | 0, 1                |
| g_FORCESPLIT                           | TRUE, FALSE         |
| g_FORCESWITCH                          | TRUE, FALSE         |
| g_FORCEREINTEGRATE                     | TRUE, FALSE         |
| g_FALLBACK_ONE                         | TRUE, FALSE         |
| g_FALLBACK_DATAVGS                     | SYSOLD, SYSNEW      |
| g_PRESWITCH_SYSOLD_APPS                |                     |
| g_PRESWITCH_SYSOLD_APPS_REQ_QUIESCE    |                     |
| g_PRESWITCH_SYSOLD_APPS_RSP_QUIESCE    |                     |
| g_PRESWITCH_SYSOLD_APPS_REQ_RESUME     |                     |
| g_PRESWITCH_SYSOLD_APPS_RSP_RESUME     |                     |
| g_PRESWITCH_SYSNEW_APPS                |                     |
| g_PRESWITCH_SYSNEW_APPS_REQ_QUIESCE    |                     |
| g_PRESWITCH_SYSNEW_APPS_RSP_QUIESCE    |                     |
| g_PRESWITCH_SYSNEW_APPS_REQ_RESUME     |                     |
| g_PRESWITCH_SYSNEW_APPS_RSP_RESUME     |                     |
| g_POSTSWITCH_SYSNEW_APPS               |                     |
| g_POSTSWITCH_SYSNEW_APPS_REQ_QUIESCE   |                     |
| g_POSTSWITCH_SYSNEW_APPS_RSP_QUIESCE   |                     |
| g_POSTSWITCH_SYSNEW_APPS_REQ_RESUME    |                     |
| g_POSTSWITCH_SYSNEW_APPS_RSP_RESUME    |                     |
| g_POSTSWITCH_SYSNEW_VGAPPS             |                     |
| g_POSTSWITCH_SYSNEW_VGAPPS_REQ_QUIESCE |                     |

Table 4-5. Global Variables

|                                        | navaj                                                         |
|----------------------------------------|---------------------------------------------------------------|
| Variable                               | Value                                                         |
| g_POSTSWITCH_SYSNEW_VGAPPS_RSP_QUIESCE |                                                               |
| g_POSTSWITCH_SYSNEW_VGAPPS_REQ_RESUME  |                                                               |
| g_POSTSWITCH_SYSNEW_VGAPPS_RSP_RESUME  |                                                               |
| g_APPTIME                              |                                                               |
| g_STEALVG                              |                                                               |
| g_UPGRADE                              | CPU, <b>BOS-NEW</b> , BOS-<br>PRESERVE, MKSYSB,<br>BOS_ONLINE |
| g_VERBOSE                              | INFO, WARN, CRIT,<br>DEBUG, DEBUG2                            |

### Table 4-5. Global Variables (continued)

#### g\_PRIMARY and g\_SECONDARY

These variables identify which CPU modules will act as the primary and secondary CPUs at the beginning of the split mode procedure. You can display the current list of CPUs on the system using the ftctl -status command.

If you do not specify the g\_PRIMARY and g\_SECONDARY parameters, the splitstate utility will choose defaults by pairing the CPU module physically closest to each mbus with that mbus. That is, if no value is supplied, the CPU module closest to SYSNEW will become g\_SECONDARY and the CPU module closest to SYSOLD will become g\_PRIMARY.

If a 3rd CPU is present, it is not used during the split mode procedure.

Acceptable values are CPU-0, CPU-1, and CPU-2.

#### g\_SYSOLD and g\_SYSNEW

These variables identify which I/O domain will act as the SYSOLD domain and which will act as the SYSNEW domain.

If you do not specify the g\_SYSOLD and g\_SYSNEW parameters, default values will be selected for you by the splitstate utility.

Acceptable values are 0 and 1.

The g\_FORCESPLIT variable allows you to force the system to split even if an error is encountered during the transition. If g\_FORCESPLIT is set to TRUE, then the transition will continue despite most errors.

Acceptable values are TRUE and FALSE.

### g\_FORCESWITCH

The g\_FORCESWITCH variable allows you to force the system to switch even if one of the registered applications fails to quiesce or resume.

Acceptable values are TRUE and FALSE.

### g\_FORCEREINTEGRATE

The g\_FORCEREINTEGRATE variable allows you to force the system to reintegrate SYSOLD and SYSNEW even if an error is encountered in the reintegration process. If g\_FORCEREINTEGRATE is set to TRUE, then the datavgs will begin to remirror despite any errors.

Acceptable values are TRUE and FALSE.

### g\_FALLBACK\_ONE

In general, the splitstate utility transitions back one state in response to errors. For example, if the system encounters an error in the transition from SIMPLEX to SPLIT, then it will return to SIMPLEX.

When transitioning back to a state that would result in a denial of service, such as transitioning back to STOLEVGS, then the default behavior is to transition back all the way to before denial of service began. If you set the g\_FALLBACK\_ONE variable to TRUE, then the system will always transition back only a single state in response to an error.

Acceptable values are TRUE and FALSE.

#### g\_FALLBACK\_DATAVGS

The g\_FALLBACK\_DATAVGS parameter identifies which system's data will be used in a fallback or failure scenario.

In the event of a failure or fallback scenario, if you have data volume groups that will be or have been stolen, you will need to specify which side, SYSOLD or SYSNEW, will act as the "base" for remirroring the data volume groups when the fallback procedure has completed (i.e. when FT\_START has been reached).

Acceptable values include SYSOLD and SYSNEW.

#### g\_PRESWITCH\_SYSOLD\_APPS

The g\_PRESWITCH\_SYSOLD\_APPS parameter is a commaseparated list of the applications which are running on SYSOLD prior to the switch. All of the listed applications, which should be registered with the ISC Service Provider on SYSOLD, will receive quiesce and resume notifications at the appropriate times.

Acceptable values are application names separated by commas.

# g\_PRESWITCH\_SYSOLD\_REQ\_QUIESCE and g\_PRESWITCH\_SYSOLD\_RSP\_QUIESCE

These two parameters identify the message to be sent to applications on SYSOLD prior to switchover and the message with which they are to respond when quiescing.

Acceptable values are any text strings. The default values are REQ\_QUIESCE and RSP\_QUIESCE.

# g\_PRESWITCH\_SYSOLD\_REQ\_RESUME and g\_PRESWITCH\_SYSOLD\_RSP\_RESUME

These two parameters identify the message to be sent to applications on SYSOLD to resume as part of a fallback process and the message the applications are to use when responding.

Acceptable values are any text strings. The default values are REQ\_RESUME and RSP\_RESUME.

### g\_PRESWITCH\_SYSNEW\_APPS

The g\_PRESWITCH\_SYSNEW\_APPS parameter is a commaseparated list of the applications which are running on SYSNEW prior to the switch. All of the listed applications, which should be registered with the ISC Service Provider on SYSOLD, will receive quiesce and resume notifications at the appropriate times.

Acceptable values are application names separated by commas.

# g\_PRESWITCH\_SYSNEW\_REQ\_QUIESCE and g\_PRESWITCH\_SYSNEW\_RSP\_QUIESCE

These two parameters identify the message to be sent to applications on SYSNEW prior to switchover and the message with which they are to respond when quiescing.

Acceptable values are any text strings. The default values are REQ\_QUIESCE and RSP\_QUIESCE.

# g\_PRESWITCH\_SYSNEW\_REQ\_RESUME and g\_PRESWITCH\_SYSNEW\_RSP\_RESUME

These two parameters identify the message to be sent to applications on SYSNEW to resume as part of a fallback process and the message the applications are to use when responding.

Acceptable values are any text strings. The default values are REQ\_RESUME and RSP\_RESUME.

#### g\_POSTSWITCH\_SYSNEW\_APPS

The g\_POSTSWITCH\_SYSNEW\_APPS parameter is a commaseparated list of the applications which you want to run on SYSNEW immediately after the switch--but before the datavg stealing has completed. All of the listed applications, which should be registered with the ISC Service Provider on SYSOLD, will receive quiesce and resume notifications at the appropriate times.

Acceptable values are application names separated by commas.

# g\_POSTSWITCH\_SYSNEW\_APPS\_REQ\_RESUME and g\_POSTSWITCH\_SYSNEW\_APPS\_RSP\_RESUME

These two parameters identify the message to be sent to applications which are not dependent on the datavgs after switchover and the message which they are to use when responding.

Acceptable values are any text strings. The default values are REQ\_RESUME and RSP\_RESUME.

# g\_POSTSWITCH\_SYSNEW\_APPS\_REQ\_QUIESCE and g\_POSTSWITCH\_SYSNEW\_APPS\_RSP\_QUIESCE

These two parameters identify the message to be sent to applications which are not dependent on the datavgs prior to a fallback procedure and the message which they should use to respond when quiescing.

Acceptable values are any text strings. The default values are REQ\_QUIESCE and RSP\_QUIESCE.

### g\_POSTSWITCH\_SYSNEW\_VGAPPS

The g\_POSTSWITCH\_SYSNEW\_VGAPPS parameter is a commaseparated list of the applications which you want to run on SYSNEW after the switchover and after the datavg stealing has completed. All of the listed applications, which should be registered with the ISC Service Provider on SYSOLD, will receive quiesce and resume notifications at the appropriate times.

Acceptable values are application names separated by commas.

# g\_POSTSWITCH\_SYSNEW\_VGAPPS\_REQ\_RESUME and g\_POSTSWITCH\_SYSNEW\_VGAPPS\_RSP\_RESUME

These two parameters identify the message to be sent to datavgdependent applications after switchover and the message which they are to use when responding.

Acceptable values are any text strings. The default values are REQ\_RESUME and RSP\_RESUME.

# g\_POSTSWITCH\_SYSNEW\_VGAPPS\_REQ\_QUIESCE and g\_POSTSWITCH\_SYSNEW\_VGAPPS\_RSP\_QUIESCE

These two parameters identify the message to be sent to datavgdependent applications prior to a fallback procedure and the message which they should use to respond when quiescing.

Acceptable values are any text strings. The default values are REQ\_QUIESCE and RSP\_QUIESCE.

#### g\_APPTIME

The g\_APPTIME parameter specifies how many seconds the system will wait to receive responses from applications after sending a quiesce or resume request.

Acceptable values are positive integers. The default time is five seconds.

#### g\_STEALVG

The g\_STEALVG parameter identifies which volume groups are going to be stolen during the switchover process. Use the command:

lsvg

to list out the current volume groups.

**Note** The rootvg volume group, or any volume group with hdisks physically located on rootvg MFIOs, cannot be stolen during switchover. Only fault-tolerant volume groups can be stolen.

Acceptable values include a space-separated list of volume group names.

#### g\_UPGRADE

The g\_UPGRADE parameter allows you to specify the type of system upgrade you are performing.

Acceptable values are: CPU, BOS-NEW, BOS-PRESERVE, BOS-MIGRATION, BOS-ONLINE, and MKSYSB. A CPU upgrade may be either a hardware upgrade, a firmware upgrade, or both. If you are doing both a CPU and an OS upgrade, then you should use the parameter that corresponds to the OS upgrade.

The following table indicates which upgrade variable to use for the various upgrades.

| If you are upgrading the         | Use                               |
|----------------------------------|-----------------------------------|
| application only                 | CPU                               |
| CPU module hardware or           | CPU                               |
| firmware only                    |                                   |
| OS using a MKSYSB tape           | MKSYSB                            |
| OS using complete overwrite      | BOS-NEW                           |
| OS using a preservations install | BOS-PRESERVE                      |
| OS using an on-line process      | BOS-ONLINE                        |
| CPU module hardware or           | СРИ                               |
| firmware and applications        |                                   |
| OS and applications              | the relevant OS variable (MKSYSB, |
|                                  | BOS-NEW, or BOS-PRESERVE)         |
| OS and CPU module hardware or    | the relevant OS variable (MKSYSB, |
| firmware                         | BOS-NEW, or BOS-PRESERVE)         |
| OS, CPU module hardware or       | the relevant OS variable (MKSYSB, |
| firmware, and applications       | BOS-NEW, or BOS-PRESERVE)         |

#### Table 4-6. Upgrade Variables

### g\_VERBOSE

The g\_VERBOSE parameter specifies the level of messages to be output by the splitstate utility.

Acceptable values include a space-separated combination of INFO, WARN, CRIT, DEBUG, and DEBUG2. Using INFO as a value causes splitstate to return general informational messages during state transitions. The WARN flag displays warning messages; the CRIT flag displays failure messages; the DEBUG flag displays general debugging messages; and the DEBUG2 flag displays the commands being executed during datavg stealing and recovery. The recommended minimum setting is "INFO WARN CRIT."

### Overriding the global variables

You cannot change the values in the <code>/var/ft/split\_cfg</code> file once you have made the transition from FT\_START to CHECKED. It is possible, however, to override the following parameters by creating a <code>/var/ft/split\_cfg.ovr</code> file:

- g\_FORCESPLIT
- g\_FORCESWITCH
- g\_APPTIME
- g\_VERBOSE
- g\_FORCEREINTEGRATE
- g\_FALLBACK\_DATAVGS

The syntax should be identical to that used in the original /var/ft/split\_cfg file. For example, to force the system to split despite errors, you would add the following line to the override file:

g\_FORCESPLIT="TRUE"

If you need to change one of the other parameters in the /var/ft/split\_cfg file, you must return the system to FT\_START, make the changes, and begin the split mode process from the beginning. You must also stop and restart the ISC Service provider using the **spstop** and **spstart** commands.

# Running Split Mode 5

# Overview

This chapter discusses the different procedures which can be used to invoke and manage the split mode process while upgrading CPU module hardware and firmware as well as the operating system or application software on an FX Series system.

# **Upgrading your System via Split Mode**

This section contains detailed instructions for using split mode to upgrade your system. These procedures assume that you have completed the preparation steps which are detailed in Chapter 4, "Preparing Your System for Split Mode" and that you are familiar with the material at the beginning of this chapter.

# Start the Inter-System Communications Service Provider (ISC SP)

Start the ISC SP by using the following command:

spstart

**Note** This command must be run from the root directory (/). This requirement is necessary because the system aborts the datavg steal if it discovers a running process in one of the datavgs that is being stolen. For similar reasons, all applications that are not being quiesced during switchover, should be initiated from the root directory.

## **Check for Readiness**

To make sure that the system is ready to be split, run

spope "/bin/ksh /usr/sbin/splitstate -s CHECKED"

The splitstate -s CHECKED command allows you to verify that the system is ready to begin split mode. The process includes: verifying that disks are properly mirrored; checking for the presence of at least dual redundant CPU modules; checking for outstanding faults; and ensuring that the system contains sufficient Fan, Power, and ICM modules.

If the system fails the check, it will return an error message and the list of failures will be written to the service provider log file. At this point, you can remedy the failures and begin again, or you can force the system to switch despite the failure by changing the g\_FORCESPLIT parameter in the /var/ft/split\_cfg file to TRUE.

If the system passes the readiness check, but you do not want to immediately split the system, then you should transfer the system from the CHECKED state back to the FT\_START state by using the splitstate -s FT\_START command.

### Split the System

The procedure for splitting the system into SYSOLD and SYSNEW depends on whether or not you intend to upgrade CPU module hardware or firmware.

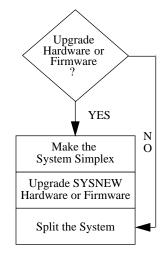



Figure 5-1. Splitting the System

If you are not upgrading CPU module hardware or firmware, then you can transition directly to the SPLIT state. If you are making hardware or firmware upgrades, you must stop in simplex, make the necessary upgrades, and then reinitiate the split process, as illustrated in Figure 5-1 and described in the following procedures. Find your upgrade type in the following table and proceed to the appropriate section.

 Table 5-1. Splitting the System According to Type of

 Upgrade

 If you are

 Co to

| If you are                    | Go to                           |
|-------------------------------|---------------------------------|
| not upgrading CPU module      | "Splitting the System without   |
| hardware or firmware          | Hardware or Firmware Upgrades"  |
|                               | on page 5-4                     |
| upgrading CPU module firmware | "Splitting the System with CPU  |
| but not the hardware          | Module Firmware (but not        |
|                               | Hardware) Upgrades" on page 5-4 |
| upgrading the CPU module      | "Splitting the System with      |
| hardware and firmware         | Hardware and Firmware           |
|                               | Upgrades" on page 5-5           |

#### Splitting the System without Hardware or Firmware Upgrades

• Initiate the splitting process by using the following command:

console0: splitstate -s SPLIT

Because the split mode procedure is designed around a number of states, using the -s SPLIT option from the CHECKED state takes the system through the SIMPLEX state and continues to the SPLIT state without stopping for hardware and firmware upgrades.

Proceed to "Upgrading the System while Split" on page 5-8.

# Splitting the System with CPU Module Firmware (but not Hardware) Upgrades

• Initiate the splitting process by using the following command:

```
console0: splitstate -s SIMPLEX
```

As the -s SIMPLEX option suggests, this command causes the system to become simplex. All mirrored volume groups are broken; CPU modules other than that belonging to SYSOLD are unconfigured; and all of the devices which belong to SYSNEW are unconfigured. Thus, the system is still running on SYSOLD and SYSNEW is offline.

• Determine the current version of the firmware to facilitate falling back to SYSOLD:

```
ftbugver -1 CPU-Y
```

where Y corresponds to the number of SYSOLD's CPU module. The current firmware version will be directed to standard output.

• Update the firmware on SYSNEW

```
pflash -l CPU-X
```

where X corresponds to the number of SYSNEW's CPU module.

• Reinitiate the split process by running:

```
console0: splitstate -s SPLIT
```

This will cause the system to power up SYSNEW as a separate system. SYSOLD will remain primary; an FX-Bug prompt will appear on the SYSNEW console (console1). In a triple redundant system, the third CPU module will remain in an offlined state.

For directions on falling back to the original firmware, see "Falling Back to Original Firmware" on page 5-7.

Otherwise, proceed to "Upgrading the System while Split" on page 5-8.

# Splitting the System with Hardware and Firmware Upgrades

• Initiate the splitting process by using the following command:

```
console0: splitstate -s SIMPLEX
```

5

As the -s SIMPLEX option suggests, this command causes the system to become simplex. All mirrored volume groups are broken; CPU modules other than that belonging to SYSOLD are unconfigured; and all of the devices which belong to SYSNEW are unconfigured. Thus, the system is still running on SYSOLD and SYSNEW is offline.

- Upgrade the CPU module hardware on SYSNEW by swapping the module.
- Determine the current version of the firmware to facilitate falling back to SYSOLD:

```
ftbugver -1 CPU-X
```

where X is the number of the newly upgraded CPU module on SYSNEW. The current firmware version will be directed to standard output.

• Power off SYSNEW's CPU module

ftctl -pwroff CPU-X

• Update the firmware on SYSNEW

pflash -l CPU-X

• Reinitiate the split process by running:

console0: splitstate -s SPLIT

This will cause the system to power up SYSNEW as a separate system. SYSOLD will remain primary; an FXBug prompt will appear on the SYSNEW console (console1). In a triple redundant system, the third CPU module will remain in an offlined state.

For directions on falling back to the original firmware, see "Falling Back to Original Firmware" on page 5-7.

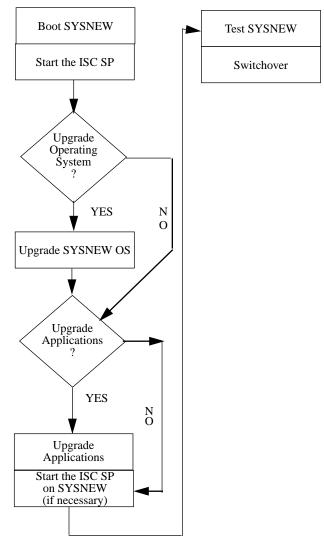
Otherwise, proceed to "Upgrading the System while Split" on page 5-8.

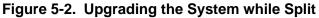
### Falling Back to Original Firmware

If for some reason it becomes necessary to return to FT\_START, you should return SYSNEW to the original firmware version before transitioning backwards from the SPLIT state.

• Make sure that SYSNEW's CPU module is offline. If it is online, take it off line:

ftctl -pwroff CPU-*X* where *X* is the number of SYSNEW's CPU module.


• Fall back to the original firmware by running:


pflash -l CPU-X -V version

where X is the number of SYSNEW's CPU module and *version* is the original firmware version (which was obtained earlier using the ftbugver command).

# Upgrading the System while Split

The following figure shows the general process for upgrading the system while it is in the SPLIT state.





The details of the procedures vary slightly according to the type of upgrade you are doing. Find your upgrade type in the following table and proceed to the appropriate section.

| If you are                                                             | Go to                                                                      |
|------------------------------------------------------------------------|----------------------------------------------------------------------------|
| not upgrading the OS                                                   | "CPU Upgrades" on page 5-9                                                 |
| doing OS upgrades without<br>upgrading CPU modules                     | "Operating System Upgrades<br>without CPU Module Upgrades"<br>on page 5-10 |
| upgrading both the CPU modules and the OS                              | "CPU and Operating System<br>Upgrades" on page 5-14                        |
| upgrading application software<br>without CPU module or OS<br>upgrades | "Application Only Upgrades" on page 5-16                                   |

Table 5-2. Upgrading the System while Split

## **CPU Upgrades**

Once you have split the system, boot SYSNEW:

• Identify boot parameters, *x* and *y*, using the ioi bug utility:

```
console1: ioi
```

where *x* is the CLUN for the device you want to boot from and *y* is the device's DLUN.

• Boot SYSNEW:

FX-Bug: pboot x y

- Log on as root.
- Start the ISC Service Provider, using a -s option:

```
FX-Bug: spstart -S
```

- If you are upgrading applications, do so now.
- Start any other Service-Provider registered applications on SYSNEW.
- Thoroughly test SYSNEW

5

- If your applications are split mode aware:
  - Transition to the RESUMEDVGAPPS\_SYSNEW state:
     splitstate -s RESUMEDVGAPPS\_SYSNEW
  - proceed to "Completing the Split Mode Process" on page 5-18.
- If your applications are not split mode aware, proceed to "Manual Switchover Procedure" on page 5-17.

## Operating System Upgrades without CPU Module Upgrades

The procedure for an on-line upgrade varies slightly from MKSYSB, BOS-NEW and BOS-PRESERVE upgrades. Find the upgrade you are doing in the following table, and proceed to the appropriate procedure.

#### Table 5-3. Selecting an OS Upgrade Procedure

| If you are                       | Go to                              |
|----------------------------------|------------------------------------|
| doing an on-line OS upgrade      | "BOS-ONLINE Upgrades" on page 5-10 |
| doing another type of OS upgrade | "MKSYSB, BOS-NEW, and              |
|                                  | BOS-PRESERVE Upgrades" on          |
|                                  | page 5-11                          |

#### **BOS-ONLINE Upgrades**

Once you have split the system, boot SYSNEW:

- Identify boot parameters, *x* and *y*, using the ioi bug utility: FX-Bug: ioi
- Boot SYSNEW:

```
FX-Bug: pboot x y
```

where *x* is the CLUN for the device you want to boot from and *y* is the device's DLUN.

- Log on as root.
- Start the ISC Service Provider, using a -s option:

5

```
FX-Bug: spstart -S
```

- Perform the on-line upgrade on console1 using standard AIX techniques.
- If necessary, perform a reboot on SYSNEW at this point:
  - Boot SYSNEW:

FX-Bug: pboot x y

- Log on as root.
- Start the ISC Service Provider: console1: spstart
- If applicable, upgrade your application using console1.
- Start any other Service-Provider registered applications on SYSNEW.
- Thoroughly test the new OS and any new applications on SYSNEW
- If your applications are split mode aware:
  - Transition to the RESUMEDVGAPPS\_SYSNEW state:
     splitstate -s RESUMEDVGAPPS\_SYSNEW
  - Proceed to "Completing the Split Mode Process" on page 5-18.
- If your applications are not split mode aware, proceed to "Manual Switchover Procedure" on page 5-17.

#### MKSYSB, BOS-NEW, and BOS-PRESERVE Upgrades

• Identify boot parameters, *x* and *y*, using the ioi bug utility: FX-Bug: ioi

where *x* is the CLUN for the device you want to boot from and *y* is the device's DLUN.

• Boot SYSNEW:

FX-Bug: pboot x y

• Log on as root.

• Start the ISC Service Provider, using a -s option:

console1: spstart -S

The system will reboot in order to save SYSNEW's ODM information.

- Upgrade your OS using the appropriate media.
- Boot SYSNEW:

FX-Bug: pboot x y

- Log on as root.
- Start the ISC Service Provider, using a -R option:

```
console1: spstart -R
```

This will restore the ODM entries and reboot the system.

• Boot SYSNEW:

FX-Bug: pboot x y

- Log on as root.
- If there are datavgs on SYSNEW which you have not listed to be stolen, but which you would like to make available to applications manually at this point, complete the following subprocedure. If not, skip to "Start the Service Provider:".

Note: In order to import nonftvgs at this point, they must reside entirely on SYSNEW. If you have nonftvgs that are split between SYSOLD and SYSNEW, you must reach FT\_COMPLETED before importing them.

The following subprocedure corresponds to retrieval methods 1 and 2 from "Managing Volume Groups" on page 4-4. For nonftvgs, skip step c:

a. Activate the disks within the datavgs which you want to retrieve on SYSNEW:

modchange -r -l hdiskx

where *x* is the number of the disk you want to activate.

b. Import the data volume group using any one of the hdisks on SYSNEW:

console1: importvg -y vg hdiskx

where vg is the volume group name and x is the number for the hard disk.

c. If the datavg you are retrieving was originally part of a mirrored ftvg:

Varyoff the data volume group:

console1: varyoffvg *vg* 

Change the quorum value for the datavg to no:

console1: chvg -Qn vg

d. Varyon on the data volume group:

console1: varyonvg vg

e. Mount the file systems by running mount for each file system in the data volume group:

console1: mount fs

where *fs* is the name of each file system.

• Start the Service Provider:

console1: spstart

- If applicable, upgrade your application using console1.
- Thoroughly test the new OS and any new applications on SYSNEW
- Start other Service-Provider registered applications on SYSNEW.
- If your applications are split mode aware:
  - Transition to the RESUMEDVGAPPS\_SYSNEW state:
     splitstate -s RESUMEDVGAPPS\_SYSNEW
  - Proceed to "Completing the Split Mode Process" on page 5-18.

• If your applications are not split mode aware, proceed to "Manual Switchover Procedure" on page 5-17.

#### **CPU and Operating System Upgrades**

• Identify boot parameters, *x* and *y*, using the ioi bug utility: FX-Bug: ioi

where *x* is the CLUN for the device you want to boot from and *y* is the device's DLUN.

• Boot SYSNEW:

FX-Bug: pboot x y

- Log on as root.
- Start the ISC Service Provider, using a -s option:

console1: spstart -S

The system will reboot in order to save SYSNEW's ODM information.

- Upgrade your OS using the appropriate media.
- Boot SYSNEW:

FX-Bug: pboot x y

- Log on as root.
- Start the ISC Service Provider, using a -R option:

spstart -R

This will restore the ODM entries and reboot the system.

• Boot SYSNEW:

FX-Bug: pboot x y

- Log on as root.
- If you have done a BOS-NEW, a MKSYSB, or a BOS-PRESERVE upgrade, and there are datavgs on SYSNEW which you have not listed to be stolen, but which you would like to make available to applications manually at this point,

5

complete the following subprocedure. If not, skip to "Start the Service Provider."

Note: In order to import nonftvgs at this point, they must reside entirely on SYSNEW. If you have nonftvgs that are split between SYSOLD and SYSNEW, you must reach FT\_COMPLETED before importing them.

The following subprocedure corresponds to retrieval methods 1 and 2 from "Managing Volume Groups" on page 4-4. For nonftvgs, skip step c:

a. Activate the disks within the datavgs which you want to retrieve on SYSNEW:

modchange -r -l hdiskx

where *x* is the number of the disk you want to activate.

b. Import the data volume group using any one of the hdisks on SYSNEW:

consolel: importvg -y vg hdiskx

where vg is the volume group name and x is the number for the hard disk.

c. If the datavg you are retrieving was originally part of a mirrored ftvg:

Varyoff the data volume group:

console1: varyoffvg vg

Change the quorum value for the datavg to no:

console1: chvg -Qn vg

- d. Varyon on the data volume group: console1: varyonvg vg
- e. Mount the file systems by running mount for each file system in the data volume group:

console1: mount fs

where *fs* is the name of each file system.

• Start the Service Provider:

spstart

- If applicable, upgrade your application using console1.
- Thoroughly test the new OS and any new applications on SYSNEW
- Start other Service-Provider registered applications on SYSNEW.
- If your applications are split mode aware:
  - Transition to the RESUMEDVGAPPS\_SYSNEW state:
     splitstate -s RESUMEDVGAPPS\_SYSNEW
  - Proceed to "Completing the Split Mode Process" on page 5-18.
- If your applications are not split mode aware, proceed to "Manual Switchover Procedure" on page 5-17.

#### **Application Only Upgrades**

• Identify boot parameters, *x* and *y*, using the ioi bug utility:

console1: ioi

where *x* is the CLUN for the device you want to boot from and *y* is the device's DLUN.

• Boot SYSNEW:

FX-Bug: pboot x y

- Log on as root.
- Start the ISC Service Provider, using a -s option:

FX-Bug: spstart -S

- Upgrade your application using console1.
- Thoroughly test the application on SYSNEW
- Start other Service-Provider registered applications on SYSNEW.

- If your applications are split mode aware:
  - Transition to the RESUMEDVGAPPS\_SYSNEW state:
     splitstate -s RESUMEDVGAPPS\_SYSNEW
  - Proceed to "Completing the Split Mode Process" on page 5-18.
- If your applications are not split mode aware, proceed to "Manual Switchover Procedure" on page 5-17.

# **Manual Switchover Procedure**

If your applications are not split mode aware, you need to manage the switchover process to allow you to manually kill and restart the applications at the appropriate times.

The following steps detail the manual switchover procedure.

• Transition the system from the SPLIT state to the QUIESCEDAPPS\_SYSNEW state:

console0: splitstate -s QUIESCEDAPPS\_SYSNEW

- Manually halt applications running on SYSNEW.
- Transition the system to the QUIESCEDAPPS\_SYSOLD state: console0: splitstate -s QUIESCEDAPPS\_SYSOLD
- Manually halt applications running on SYSOLD.
- Transition the system to the RESUMEDAPPS\_SYSNEW state: console0: splitstate -s RESUMEDAPPS\_SYSNEW
- Manually restart nondatavg applications on SYSNEW
- Transition the system to the RESUMEDVGAPPS\_SYSNEW state:

console0: splitstate -s RESUMEDVGAPPS\_SYSNEW

• Manually restart data applications on SYSNEW.

At this point, SYSNEW will be the primary system and it will be providing service. SYSOLD will be in its original configuration in a standby state.

Proceed to "Completing the Split Mode Process" on page 5-18.

# **Completing the Split Mode Process**

The following figure shows the general process for completing the Split Mode process once you have reached the RESUMEDVGAPPS\_SYSNEW state.

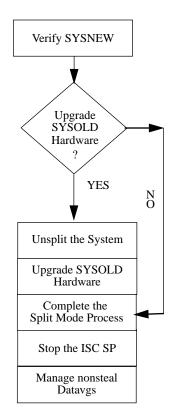



Figure 5-3. Completing the Split Mode Process

5

### Verifying Application Performance on SYSNEW

At this point, you have completed the upgrade of SYSNEW and it is providing full service to all of the applications. This is the last point at which you will be able to fallback to the original system. You should therefore take the time at this point to verify that your newly upgraded system is providing adequate service to all of the applications.

If you are unsatisfied with the performance of SYSNEW, refer to "Fallback Strategies" on page 6-2.

If you are satisfied with the system performance, continue with the following procedure.

**Note** Any backward transition will automatically take you all the way back to FT\_START. Do not transition to any previous system state unless you intend to fallback to the original system configuration.

## **Completing the Split Mode Process**

The procedure for completing the Split Mode process depends on whether you are upgrading CPU module hardware, as shown in Figure 5-3.

| If you are                    | Go to                      |
|-------------------------------|----------------------------|
| Upgrading CPU module hardware | "Completing the Split Mode |
|                               | Process with Hardware      |
|                               | Upgrades" on page 5-19     |
| Not upgrading CPU module      | "Completing the Split Mode |
| hardware                      | Process without Hardware   |
|                               | Upgrades." on page 5-20    |

 Table 5-4. Completing the Split Mode Process

#### Completing the Split Mode Process with Hardware Upgrades

- Transition to the UNSPLIT state
- splitstate -s UNSPLIT

- Upgrade SYSOLD's CPU module by swapping CPU modules. If there is a third CPU module which has been offlined, upgrade it at this point as well.
- Transition the system to FT\_COMPLETED
- splitstate -s FT\_COMPLETED
- Stop the ISC Service Provider

spstop

If your system includes datavgs which were not stolen, then proceed to "Managing Nonsteal Datavgs" on page 5-20. If your system does not contain nonsteal datavgs, then you have now completed the CPU upgrade on your system.

#### Completing the Split Mode Process without Hardware Upgrades.

- Transition to FT\_COMPLETED:
   splitstate -s FT\_COMPLETED
- Stop the ISC Service Provider spstop

If your system includes datavgs which were not stolen, then proceed to "Managing Nonsteal Datavgs" on page 5-20. If your system does not contain nonsteal datavgs, then you have now completed the OS and/or firmware upgrade of your system.

#### Managing Nonsteal Datavgs

You have now completed the Split Mode process and are in the FT\_COMPLETED state. However, you may need to clean up datavgs which were not identified to be stolen.

If the only nonsteal datavgs on your system were nonftvgs on SYSNEW which you retrieved during the SPLIT state, then those datavgs will be available on the upgraded system and you can skip the rest of this procedure. Otherwise, find the applicable situation in Table 5-5 and follow the appropriate procedure or procedures.

| If                                                                                                                                     | Proceed to                                                                             |  |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| your system includes ftvgs which<br>were retrieved during the SPLIT<br>state                                                           | "Configuring FTVGs that were<br>retrieved during the SPLIT State"<br>on page 5-21      |  |
| your system includes nonftvgs<br>which were not retrieved during<br>the SPLIT state                                                    | "Retrieving nonFTVG data volume<br>groups after reaching<br>FT_COMPLETED" on page 5-21 |  |
| your system includes ftvgs which<br>were not retrieved during the<br>SPLIT state, and you want to use<br>the data from SYSOLD's hdisks | "Retrieving FTVG data volume<br>groups using SYSOLD as the<br>base:" on page 5-22      |  |
| your system includes ftvgs which<br>were not retrieved during the<br>SPLIT state, and you want to use<br>the data from SYSNEW's hdisks | "Retrieving FTVG data volume<br>groups using SYSNEW as the<br>base:" on page 5-23      |  |

Table 5-5. Managing Datavgs

# Configuring FTVGs that were retrieved during the SPLIT State

• For each hdisk in the data volume group on SYSOLD:

```
modchange -r -l hdiskx
```

```
extendvg -f vg hdiskx
```

where *x* is the number of the hdisk and *vg* is the volume group name.

• Convert the volume group back to FT:

```
chftvg -Ty vg &
```

# Retrieving nonFTVG data volume groups after reaching FT\_COMPLETED

• For each hdisk in the data volume group:

5

modchange -r -1 hdiskx where x is the number of the hdisk.

- Import the data volume group using one of the hdisks:
   importvg -y vg hdiskx
   where vg is the name of the volume group.
- Varyon on the data volume group:

varyonvg *vg* 

• Mount the file systems: For each file system in the data volume group:

mount *fs* where fs is the file system name.

#### Retrieving FTVG data volume groups using SYSOLD as the base:

• Offline each hdisk in the data volume group on SYSNEW:

modchange -o -l hdiskx

where *x* is the number of the hdisk.

- Activate each hdisk in the data volume group on SYSOLD: modchange -r -l hdiskx
- Import the data volume group using any one of the hdisks from SYSOLD:

importvg -y vg hdiskx
where vg is the name of the volume group.

• Varyoff the data volume group:

varyoffvg *vg* 

• Change quorum to no on the data volume group:

chvg -Qn vg

• Varyon the data volume group:

varyonvg *vg* 

• Mount the file systems: For each file system in the data volume group:

```
mount fs
```

where *fs* is the name of the file system.

• For each hdisk in the data volume group on SYSNEW:

```
modchange -r -l hdiskx
extendvg -f vg hdiskx
```

• Convert the data volume group to FTVG:

chftvg -Ty vg &

# Retrieving FTVG data volume groups using SYSNEW as the base:

• Offline each hdisk in the data volume group on SYSOLD: modchange -o -l hdiskx

where *x* is the number of the hdisk.

- Activate each hdisk in the data volume group on SYSNEW: modchange -r -l hdiskx
- Import the data volume group using any one of the hdisks from SYSNEW:

importvg -y vg hdiskx
where vg is the name of the volume group.

• Varyoff the data volume group:

varyoffvg *vg* 

- Change quorum to no on the data volume group:
- Varyon the data volume group:

varyonvg vg

• Mount the file systems: For each file system in the data volume group:

mount *fs* 

where *fs* is the name of the file system.

- For each hdisk in the data volume group on SYSOLD:
   modchange -r -l hdiskx
   extendvg -f vg hdiskx
- Convert the data volume group to FTVG:

chftvg -Ty vg &

# Problem Resolution and 6 Fallback Strategies

# **Overview**

This chapter contains information on falling back to the original system configuration, recovering from a system failure, and interpretations and suggestions for handling possible error messages.

# **Fallback Strategies**

## Overview

Until the RESUMEDVGAPPS\_SYSNEW state is reached, you can transition the system backward to any previous state. For example, if your system is in the SPLIT state, you can transition backward to SIMPLEX, to CHECKED, or to FT\_START. In a functional sense, transitioning backwards through states essentially reverses what was done going forward.

However, once you reach the RESUMEDVGAPPS\_SYSNEW state, any backward transition automatically returns the system to FT\_START state. This one-way, backward transition is referred to as fallback, and is intended to provide a direct way to abandon the upgrades after an upgraded SYSNEW has begun providing application service. If, for example, you decide that the service being provided by the newly upgraded SYSNEW is inadequate, fallback allows you to return to FT\_START in an automated fashion and thus avoids having to manage the backward path or having to use Split Mode a second time in order to "downgrade" the system.

**Note** Once the system has transitioned to the UNSPLIT state, no backward transitions are permitted. An UNSPLIT system must eventually go forward to the FT\_COMPLETED state.

# **Fallback Datavgs**

It is possible to use either SYSOLD's datavgs or SYSNEW's datavgs during the fallback procedure, depending on the value of the g\_FALLBACK\_DATAVGS variable in the /var/ft/splt\_cfg file. The default behavior is to use SYSOLD's datavgs, because data on SYSNEW is presumed to have become stale during the upgrades. However, in the case that the data on SYSOLD may be corrupt, you may want to fall back using SYSNEW's datavgs. You can change the g\_FALLBACK\_DATAVGS variable by creating a /var/ft/splt\_cfg.ovr file with a different value. **Note** If you have stolen SYSOLD's datavgs, then prior to fallback your system will be running on SYSNEW but using the SYSOLD datavgs. SYSNEW's datavgs will have been exported.

# **The Fallback Process**

The steps carried out by the splitstate utility during fallback are:

- 1. Send a message to datavg applications on SYSNEW to quiesce. (SYSOLD applications are never resumed, so there is no need to quiesce them.)
- 2. "Unsteal" SYSOLD's datavgs from SYSNEW, if applicable.
- 3. Send a message to nondatavg applications on SYSNEW to quiesce.
- 4. Switch primary role back to SYSOLD.
- 5. Switch primary ethernet and IP addresses back to SYSOLD.
- 6. If SYSNEW's datavg is to be used in the fallback, steal it onto SYSOLD.
- 7. Send a resume message to applications on SYSOLD.
- 8. Unsplit the system.
- 9. Insofar as possible, reintegrate all system components.

Any components that have not been reintegrated should be integrated manually, using standard FX Series troubleshooting procedures as described in *Diagnosing and Troubleshooting your Fault Tolerant System*.

# **Overriding the Default Fallback Procedure**

If for some reason you would like to manage the transition from RESUMEDVGAPPS\_SYSNEW to FT\_START manually, or if you would like to transition backward from RESUMEDVGAPPS\_SYSNEW to some system state other than FT\_START, then you should remove the /var/ft/fallback file from both SYSOLD and SYSNEW before initiating the backward transition.

# **Recovering from a System Failure**

# Overview

During the Split Mode process, FX Series systems operate in a simplex mode, rather than in their usual fault tolerant mode. Thus, they are vulnerable to single hardware faults and there is a chance that either SYSNEW or SYSOLD will fail. Because of the interdependencies built into the FX Series, it is possible that a failure on one side may effect the other and that the system may become unavailable. For example, while the system is split, any attempt to reboot the primary system will result in the system becoming unavailable.

The primary goal for recovering a system in which either SYSNEW or SYSOLD (or both) is unresponsive is to return to Fault Tolerant (FT) mode as quickly as possible. Doing so will allow you to use standard FX Series diagnostic techniques while providing application and user service.

Secondary goals for such a recovery include minimizing the amount of system downtime needed to return to FT mode, and recovering as much current data as possible.

# The CATASTROPHIC\_RECOVERY System State

A special CATASTROPHIC\_RECOVERY "state" exists in addition to the standard Split Mode machine states. Running

splitstate -s CATASTROPHIC\_RECOVERY

after the system has been rebooted following a failure causes the splitstate utility to try to clear all Split Mode settings, to integrate the two sides of the system, and to return the system to FT\_START. It is possible that the system will return to FT\_START but not be fully configured.

#### Symptoms and Recovery:

The following table lists symptoms which correspond to failures on SYSNEW and/or SYSOLD. The symptoms are ranked according to severity, and you should use the recovery procedure for the first one on the list that applies to your system. For example, if there is no response on either the primary or secondary consoles, use the "No response on primary console" procedure.

| Symptom                                                    | Possible Causes                                                                                             | Recovery Procedure                                                                              |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| No response on primary console                             | <ul> <li>Primary CPU module<br/>failure</li> </ul>                                                          | Go to "Establishing a Master<br>CPU Module and Rebooting                                        |
|                                                            | <ul> <li>Other Primary System<br/>failure</li> </ul>                                                        | to FT Simplex Mode" on page 6-7.                                                                |
|                                                            | • Secondary system failure                                                                                  |                                                                                                 |
| Primary console<br>unexpectedly displays FX-<br>Bug prompt | <ul> <li>You tried to reboot the primary system</li> <li>Watchdog timer reset the primary system</li> </ul> | Go to "Establishing a Master<br>CPU Module and Rebooting<br>to FT Simplex Mode" on<br>page 6-7. |

#### Table 6-1. Failure Symptoms and Responses

| Symptom                                                                                    | Possible Causes                                                                                  | Recovery Procedure                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary console is<br>responsive but system is<br>not working correctly                    | Primary rootvg is offline.                                                                       | Go to "Establishing a Master<br>CPU Module and Rebooting<br>to FT Simplex Mode" on<br>page 6-7.                                                                                                                                                                                  |
| No response on secondary console                                                           | <ul> <li>Secondary CPU module<br/>failed.</li> <li>Other Secondary system<br/>failure</li> </ul> | Go to "Attempting to Reach<br>FT Mode without<br>Rebooting" on page 6-9.                                                                                                                                                                                                         |
| Secondary console<br>unexpectedly displays FX-<br>Bug prompt                               | Watchdog timer reset<br>the Secondary system                                                     | <ul> <li>Reboot the Secondary system:</li> <li>pboot x y</li> <li>where x is the boot disk's CLUN and y is the boot disk's DLUN as given by the ioi bug utility.</li> <li>If the situation recurs, go to "Attempting to Reach FT Mode without Rebooting" on page 6-9.</li> </ul> |
| Secondary console is<br>responsive but the<br>Secondary system is not<br>working correctly | Secondary rootvg is offline                                                                      | Go to "Attempting to Reach<br>FT Mode without<br>Rebooting" on page 6-9.                                                                                                                                                                                                         |

# Table 6-1. Failure Symptoms and Responses (continued)

# Establishing a Master CPU Module and Rebooting to FT Simplex Mode

- 1. Get to the FX-Bug prompt on the primary system:
- If console0 shows an FX-Bug prompt, then go to step 2.
- If console0 does not show an FX-Bug prompt, then do either one of the following procedures:
  - Interrupt power to the system, or
  - Pull the latches on all CPU modules and then reseat them one at a time.

- 2. Booting and Recovering the System
- **Note** If during the following procedure, a CPU module attempts to autoboot, **do not allow the autoboot**. Instead, issue a BREAK to interrupt the autoboot sequence.
  - Determine which CPU module is the current master:

FX-Bug> master

note the response for use later in the process.

• Remove any mbus restrictions remaining from split mode:

FX-Bug> unsplit ;c

• Choose a disk to boot as the root volume group. Depending on where you were in the Split Mode process when your system failed, you may want to boot from the rootvg in SYSOLD's domain, or the one in SYSNEW's domain.

FX-Bug> pboot x y

where *x* and *y* are the CLUN and DLUN for the disk you wish to boot from, as shown by the ioi bug utility.

- If the pboot command is unsuccessful, first make sure that you have chosen the correct disk. If so, try the pboot command one more time.
- If it is still unsuccessful, choose another bootable disk.
- If the command is still unsuccessful, power down the system, remove the CPU module that was master (determined by master command done above), and start over at step 2.
- If no master CPU module will boot the system and if SYSNEW's CPU module was replaced as part of the Split Mode procedure, place the old SYSNEW CPU module back into the system and remove all other CPU modules. Then start over at step 2.
- 3. Once the system reaches a login prompt, logon as root.

- Examine the g\_FALLBACK\_DATAVGS variable in the /var/ft/split\_cfg and /var/ft/split\_cfg.ovr files. Edit or create the g\_FALLBACK\_DATAVGS variable in the split\_cfg.ovr file to reflect the datavg you want mounted during recovery.
- 5. Stop the ISC Service Provider:

```
console0: spstop
```

Although the ISC SP is not expected to be running, this command will clean up after a previously-running ISC SP.

6. Restart the ISC SP:

spstart

7. Attempt to return the system to the FT\_START state, using the CATASTROPHIC\_RECOVERY procedures:

splitstate -s CATASTROPHIC\_RECOVER.

- 8. The system should now be in FT mode in the FT\_START state. Verify that proper user-application service is being provided. You should then begin regular troubleshooting of the system according to the procedures in *Diagnosing and Troubleshooting Your Fault Tolerant System*.
- 9. If the system did not reach FT\_START, attempt to determine the cause from screen output. If the process seems to have had problems mounting the datavg, you may want to edit the /var/ft/split\_cfg.ovr file again and then retry the transition:

```
splitstate -s CATASTROPHIC_RECOVER
```

## Attempting to Reach FT Mode without Rebooting

If you know which CPU module is primary, use the following procedure A below. Otherwise use procedure B.

## **Procedure A**

1. Check the split status on the primary

ftctl -splitstatus

If the primary system is unresponsive, abandon this procedure and switch to the procedure under "No response on primary console" on page 6-6.

2. If the primary CPU module is part of SYSOLD, attempt to return to the FT\_START state:

splitstate -s FT\_START.

3. If the primary CPU module is part of SYSNEW, attempt to go forward to FT\_COMPLETED state:

```
splitstate -s FT_COMPLETED
```

If any modules will not reintegrate, override the failure by setting g\_FORCEREINTEGRATE=TRUE in the /var/ft/split\_cfg.ovr file.

### **Procedure B**

1. Identify the system state:

console0: splitstate -1

If the primary system is unresponsive, abandon this procedure and switch to the procedure under "No response on primary console" on page 6-6.

2. If system is in a state between FT\_START and EXPORTEDVGS\_SYSOLDs, attempt to return to FT\_START state:

splitstate -s FT\_START

3. If system is in a state between SWITCHED and UNSPLIT, attempt to transition to FT\_COMPLETED state:

splitstate -s FT\_COMPLETED

4. If any modules will not reintegrate, override the failure by setting g\_forcereintegrate=true in the /var/ft/split\_cfg.ovr file.

#### **Advanced Recovery**

If the following procedures for system recovery failed to restore at least partial service, then your system requires advanced recovery techniques. Possible causes for such a situation include:

- Multiple hardware failures--such as the simultaneous failure of multiple CPU modules
- Software failures involving damage to critical system files
- A rootvg failure on SYSOLD before critical configuration data has been transferred back to SYSNEW after an OS upgrade.

The general strategy for recovery at this point is to

- 1. Establish a bootable master
- 2. Clear the master's restart record by using the unsplit ;c command at the FX-Bug prompt
- 3. Boot the system
- 4. Transition to the CATASTROPHIC\_RECOVER state

If these strategies are unsuccessful, you may need to boot the system from a backup tape.

For additional help, refer to "Getting Help for System Problems" on page 1-8.

# **Troubleshooting the Split Mode Process**

## Overview

This section provides information for interpreting and responding to a variety of error messages which are output by the splitstate utility. If you cannot find an error message similar to the one on your system, it is recommended that you return your system to FT\_START and use standard FX techniques to diagnose and rectify the problem

Additional information on standard FX administrative and diagnostic procedures is available in *Administering Your Fault Tolerant System* and in *Diagnosing and Troubleshooting Your Fault Tolerant System*.

# **General Recovery Strategies**

If an FX system encounters a critical error during a splitmode transition, it will revert to the previous state. For example, if the splitstate command is unable to successfully offline an MFIO module on SYSOLD while exporting data volume groups (datavgs), the transition to EXPORTEDVGS\_SYSOLD will be aborted and the system will be rolled back to an earlier state. Depending on the value you have assigned to the g\_FALLBACK\_ONE parameter in the /var/ft/split\_cfg file, the system will fall back to either the QUIESCEDAPPS\_SYSOLD state or to the EXPORTEDVGS\_SYSNEW state.

When the error is discovered, the splitstate utility outputs an error message which will be directed to stdout, if the g\_VERBOSE parameter in the /var/ft/split\_cfg file includes the CRIT option.

This section contains typical error messages with recommended recovery strategies. Depending on the nature of the error, you may want to fix it and immediately continue the splitmode upgrade, or you may want to return the system to FT\_START prior to fixing the problem. **Note** The specific text of your error message may vary from the samples in this chapter.

If you are unable to rectify the problem yourself, refer to "Getting Help for System Problems" on page 1-8 for information on how to contact Motorola Technical Support representatives.

6

# **Global Messages**

The following table lists sample error messages, possible causes, and recovery actions for a class of messages which may occur during any splitstate transition.

| Sample Message                                                                        | Interpretation                                                                                       | Recovery Action                                                                        |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| ERROR: invalid<br>argument list                                                       | You have supplied the<br>wrong argument to the<br>splitstate command                                 | Retype the command<br>using the proper options<br>(-l, -L, -s, -h).                    |
| ERROR:<br><i>Requested_State</i> is<br>not a valid state                              | You specified an incorrect<br>state as a splitstate<br>argument                                      | Use splitstate -1 to<br>display current system<br>state as well as possible<br>states. |
| ERROR: cannot<br>transition from<br><i>Current_State</i> to<br><i>Requested_State</i> | An error occurred during<br>the transition from<br><i>Current_State</i> to<br><i>Requested_State</i> | Look at the messages for<br>the appropriate transition<br>below.                       |
| ERROR: system not in<br>correct split-mode<br>state for state<br>transition to occur  | The current system state<br>does not reflect the<br>splitstate state.                                | Refer to "Recovering from<br>a System Failure" on page<br>6-5.                         |
| ERROR: error<br>(retval=3) during<br>transition, falling<br>back to <i>State</i>      | An error occurred during<br>the transition from<br><i>Current_State</i> to<br><i>Requested_State</i> | Look at the messages for<br>the appropriate transition<br>below                        |

## Table 6-2. Global Messages

# Transition from FT\_START to CHECKED

The following table lists sample error messages that may occur during the transition from FT\_START to CHECKED, along with their causes, and recommended recovery actions. If the system encounters one of these errors, it will prevent the transition and the system will remain in the FT\_START state. You should fix the cause of the error and attempt the transition again. Alternately, you can force the transition to occur despite an error by setting the g\_FORCESPLIT variable to TRUE in the /var/ft/split\_cfg.ovr file.

| Sample Message                                                                        | Interpretation                                                           | Recovery Action                                                                                                   |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| ERROR: system cannot<br>support splitmode                                             | The system is running a pre-splitmode version of AIX                     | Update the operating<br>system to AIX 4.1.5r3 using<br>standard installation<br>methods                           |
| ERROR: not enough<br>space in /var/ft for<br>temporary files,<br>need 500 free blocks | The /var file system is not<br>large enough                              | Use SMIT to enlarge the<br>/var file system                                                                       |
| ERROR: required<br>console port: <i>s1</i>                                            | The console is not attached<br>to port0 on the CPU<br>personality module | Attach the console to<br>port0 or use SMIT to<br>reassign the console                                             |
| ERROR: I/O-2 cl-fl2<br>Defined *<br>should_be_on I/O<br>Module                        | A module, device, (or<br>volume group) is not<br>online (or mirrored)    | Use SMIT (cms) to<br>reintegrate the<br>module/devices.                                                           |
| ERROR: unable to<br>determine FT daemon<br>status                                     | One of the fault tolerant<br>software daemons is<br>inactive             | Use 'lssrc -g ft' to<br>determine the inactive<br>daemon, and use 'startsrc -<br>s <daemon>' to start it</daemon> |
| ERROR: unable to<br>verify availability<br>of ICM-0                                   | A module is not available                                                | Use SMIT (cms) to reintegrate the module                                                                          |

# Table 6-3. FT\_START to CHECKED

6

| Sample Message                                                                | Interpretation                                                                                                                       | Recovery Action                                                                                                                        |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| ERROR: need at least<br>2 CPU modules to<br>enter split-mode                  | Only 1 CPU module is present on the system                                                                                           | Add another CPU module                                                                                                                 |
| ERROR: invalid<br>setting(s) for<br>g_SYSOLD (2) and/or<br>g_SYSNEW (0)       | /var/ft/split_cfg file<br>contains invalid entries for<br>g_SYSOLD and/or g_SYSNEW                                                   | Edit the<br>/var/ft/split_cfg file<br>and make necessary<br>changes                                                                    |
| ERROR: fault-<br>tolerant volume<br>group testvgl not<br>ft_full              | A fault tolerant volume<br>group is not mirrored                                                                                     | Use fixvg to remirror the volume group                                                                                                 |
| ERROR: cannot<br>specify 'rootvg' as<br>volume group to<br>steal              | The root volume group cannot be stolen                                                                                               | Edit the<br>/var/ft/split_cfg file<br>and make necessary<br>changes.                                                                   |
| ERROR: testvgl is<br>physically attached<br>to rootvg and cannot<br>be stolen | Volume groups with<br>hdisks physically attached<br>to rootvg hdisks (i.e. on the<br>same MFIO) cannot be<br>stolen                  | Remove the volume group<br>from the g_STEALVG<br>parameter in<br>/var/ft/ split_cfg, or<br>make the volume group<br>non-fault tolerant |
| ERROR: testvg3 not<br>found or volume<br>group not fault-<br>tolerant         | <ol> <li>The volume group does<br/>not exist on the system</li> <li>(but is specified in the<br/>g_STEALVG parameter), or</li> </ol> | 1) Remove the volume<br>group name from the<br>g_STEALVG parameter in<br>/var/ft/split_cfg, or                                         |
|                                                                               | 2) the volume group is not mirrored                                                                                                  | 2) use SMIT to convert the volume group to FT                                                                                          |
| ERROR: ent0 missing<br>member1 (domain 1)                                     | The logical device does not<br>have a member1 physical<br>device assigned to it                                                      | Use SMIT to assign a<br>member1 to the logical<br>device                                                                               |

# Table 6-3. FT\_START to CHECKED (continued)

| Table 6-3. | FT_ | START to | CHECKED | (continued) |
|------------|-----|----------|---------|-------------|
|            | _   |          |         |             |

| Sample Message                                                                                           | Interpretation                                                                                                   | Recovery Action                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ERROR: secondary CPU<br>module 'CPU-2' not<br>present                                                    | The g_SECONDARY<br>parameter in<br>/var/ft/split_cfg does<br>not contain a CPU that is<br>present on the system. | <ol> <li>Edit         <pre>/var/ft/split_cfg and         reassign g_SECONDARY or         </pre>         Use SMIT (cms) to add         the missing CPU module.</li> </ol> |
| ERROR: primary CPU<br>module 'CPU-0' not<br>present                                                      | The g_PRIMARY parameter<br>in /var/ft/split_cfg<br>contains a CPU that is not<br>present on the system.          | <ol> <li>Edit /var/ft/split_cfg<br/>and reassign g_PRIMARY or</li> <li>Use SMIT (cms) and<br/>add the missing CPU<br/>module.</li> </ol>                                 |
| ERROR: both<br>g_PRIMARY and<br>g_SECONDARY must be<br>specified, or both<br>must be left<br>unspecified | The parameters g_PRIMARY<br>and g_SECONDARY in<br>/var/ft/ split_cfg must<br>be either set or left blank.        | Edit /var/ft/split_cfg<br>and either set or clear the<br>g_PRIMARY and<br>g_SECONDARY parameters.                                                                        |
| ERROR: primary and<br>secondary CPU<br>modules must be<br>different                                      | The parameters g_PRIMARY<br>and g_SECONDARY are set to<br>the same value                                         | Edit /var/ft/split_cfg<br>and either correctly set or<br>clear the g_PRIMARY and<br>g_SECONDARY parameters.                                                              |
| ERROR: secondary CPU<br>(CPU-0) is not<br>online                                                         | The CPU module is not online.                                                                                    | Use SMIT (cms) to put the CPU module online.                                                                                                                             |
| ERROR: NVRAM<br>autosplit_secondary<br>parameter set to<br>'1', should be '0'                            | The autosplit_secondary<br>parameter for the primary<br>CPU module is set to '1'.                                | Use restart(1) to clear the<br>autosplit_ secondary<br>parameter.                                                                                                        |

### Transition from CHECKED to SIMPLEX

The following table lists sample error messages that may occur during the transition from CHECKED to SIMPLEX, along with their causes, and recommended recovery actions. If the system encounters one of these errors, it will prevent the transition and the system will return to the CHECKED state. You should fix the cause of the error and attempt the transition again.

| Sample Message                                                                                                                           | Interpretation                                                                                  | Recovery Action                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| ERROR: failed to set<br>I/O-2<br>(condition=offline)                                                                                     | A module failed to change<br>to the correct state                                               | Use standard FX<br>procedures to determine<br>why module/device failed<br>to change states correctly. |
| ERROR: testvg volume<br>group(s) failed to<br>offline                                                                                    | A volume group mirror<br>did not break correctly                                                | Use fixvg to repair the volume group, then retry the splitstate command.                              |
| ERROR: modchange -r<br>-l CPU-0 failed<br>or<br>ERROR: modchange -o<br>-l CPU-0 failed<br>or<br>ERROR: modchange -o<br>I/O-2 returned: 3 | The modchange command<br>failed while trying to<br>reintegrate (-r) or offline<br>(-o) a module | Use standard FX<br>troubleshooting<br>procedures.                                                     |
| ERROR: unable to<br>online CPU-0<br>or<br>ERROR: CPU-0 failed<br>to go offline                                                           | A CPU module failed to<br>come online<br>A CPU module failed to<br>go offline                   | Use standard FX<br>troubleshooting<br>procedures to online or<br>offline the module.                  |

### Table 6-4. CHECKED to SIMPLEX

## **Transition from SIMPLEX to SPLIT**

The following table lists sample error messages that may occur during the transition from SIMPLEX to SPLIT, along with their causes, and recommended recovery actions. If the system encounters one of these errors, it will prevent the transition and the system will return to the SIMPLEX state. You should fix the cause of the error and attempt the transition again.

| Sample Message                                                                          | Interpretation                                                          | Recovery Action                                                                                                            |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| ERROR: failed to<br>disable autoboot<br>parameter <ab=n> for<br/>CPU-0, autoboot</ab=n> | The autoboot command failed to clear the autoboot parameters for CPU-0. | If the CPU has been<br>upgraded, make sure that<br>it is correctly seated in the<br>system chassis.                        |
| retval: 1                                                                               |                                                                         | If the CPU belongs to<br>SYSNEW, run standard On<br>Demand Diagnostics on<br>the CPU module.                               |
|                                                                                         |                                                                         | If the CPU belongs to<br>SYSOLD, return the<br>system to FT_START and<br>use standard FX<br>troubleshooting<br>techniques. |

### Table 6-5. SIMPLEX to SPLIT

|                                                                                 |                                                                       | ]                                                                                                                          |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Sample Message                                                                  | Interpretation                                                        | Recovery Action                                                                                                            |
| ERROR: failed to<br>copy NVRAM contents<br>from primary to<br>secondary, fvnvcp | The fxnvcp command<br>failed to copy the NVRAM<br>contents.           | If the CPU has been<br>upgraded, make sure that<br>it is correctly seated in the<br>system chassis.                        |
| retval=19                                                                       |                                                                       | If the CPU belongs to<br>SYSNEW, run standard On<br>Demand Diagnostics on<br>the CPU module.                               |
|                                                                                 |                                                                       | If the CPU belongs to<br>SYSOLD, return the<br>system to FT_START and<br>use standard FX<br>troubleshooting<br>techniques. |
| ERROR: failed to set<br>date on CPU-2,<br>retval=19                             | The system was unable to<br>set the time and date on a<br>CPU module. | If the CPU has been<br>upgraded, make sure that<br>it is correctly seated in the<br>system chassis.                        |
|                                                                                 |                                                                       | Run standard On Demand<br>Diagnostics on the<br>SYSNEW CPU module.                                                         |

### Table 6-5. SIMPLEX to SPLIT (continued)

| Sample Message                                                             | Interpretation                                                            | Recovery Action                                                                                                                        |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| ERROR: failed to set<br>restart record on<br>primary, restart<br>retval: 1 | The restart command failed to set the restart record variables correctly. | If the CPU has been<br>upgraded, make sure that<br>it is correctly seated in the<br>system chassis.                                    |
|                                                                            |                                                                           | If the CPU belongs to<br>SYSNEW, run standard On<br>Demand Diagnostics on<br>the CPU module.                                           |
|                                                                            |                                                                           | If the CPU belongs to<br>SYSOLD, return the<br>system to FT_START and<br>use standard FX<br>troubleshooting<br>techniques.             |
| ERROR: ftctl -split<br>CPU-2 failed with: 1                                | The ftctl command failed to split the system.                             | Try the transition again.<br>If it fails a second time,<br>return to FT_START and<br>use standard FX<br>troubleshooting<br>procedures. |

### Table 6-5. SIMPLEX to SPLIT (continued)

### Transition from SPLIT to QUIESCEDAPPS\_SYSNEW

The following table lists sample error messages that may occur during the transition from SPLIT to QUIESCEDAPPS\_SYSNEW, along with their causes, and recommended recovery actions. If the system encounters one of these errors, it will prevent the transition and the system will return to the SPLIT state. You should fix the cause of the error and attempt the transition again. Alternately, you can force the transition to continue despite the errors by setting the  $g_{forceswitch}$  parameter to true in the /var/ft/split\_cfg.ovr file.

| Sample Message                                                                          | Interpretation                                                                                                                                                                               | Recovery Action                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ERROR: app1,app2<br>QUIESCE request of<br>smmt on<br>SYSNEW_SECONDARY<br>failed with: 1 | The applications specified<br>in the<br>g_PRESWITCH_SYSNEW_APPS<br>parameter in the<br>/var/ft/split_cfg file<br>did not all respond within<br>the allowed time<br>(g_APPTIME) on the system | <ol> <li>Confirm that the<br/>g_PRESWITCH_SYSNEW_APPS<br/>parameter is set correctly<br/>in /var/ft/split_cfg</li> <li>Confirm that the<br/>applications specified in<br/>the<br/>g_PRESWITCH_SYSNEW_APPS<br/>parameter are running on<br/>CYCOUTENT of the</li> </ol> |
|                                                                                         |                                                                                                                                                                                              | <ul><li>SYSNEW as the<br/>SECONDARY.</li><li>3) Confirm that the<br/>applications are registered<br/>with the Service Provider.</li></ul>                                                                                                                              |
|                                                                                         |                                                                                                                                                                                              | 4) Set the g_APPTIME<br>parameter in<br>/var/ft/split_cfg to a<br>longer delay and retry the<br>transition.                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                              | 5) If the transition fails a second time, and you want to force the transition, set the g_FORCESWITCH parameter in /var/ft/split_cfg.ovr to TRUE and retry the transition.                                                                                             |

### Table 6-6. SPLIT to QUIESCEDAPPS\_SYSNEW

# Transitions from QUIESCEDAPPS\_SYSNEW to EXPORTEDVGS\_SYSNEW

The following table lists sample error messages that may occur during the transition from QUIESCEDAPPS\_SYSNEW to EXPORTEDVGS\_SYSNEW, along with their causes, and recommended recovery actions. If the system encounters one of these errors, it will prevent the transition and the system will return to QUIESCEDAPPS\_SYSNEW. You should fix the cause of the error and attempt the transition again.

This transition exports the data volume groups to steal on SYSNEW running as SECONDARY. If an error occurs, the operator should add the "DEBUG2" flag to the g\_VERBOSE parameter in the /var/ft/split\_cfg.ovr file, to turn debugging on and learn where the error occurred.

| Sample Message                                                                                   | Interpretations                                                                                                                                                                                                                                                             | Recovery Action                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ERROR: error<br>(retval=2) during<br>transition, falling<br>back to state<br>QUIESCEDAPPS_SYSNEW | <ol> <li>The file system(s) on the<br/>data volume groups on<br/>SYSNEW failed to<br/>unmount</li> <li>varyoffvg failed to vary<br/>off a datavg</li> <li>exportvg failed to<br/>export a datavg</li> <li>modchange failed to<br/>offline an hdisk on<br/>SYSNEW</li> </ol> | <ol> <li>Run fuser <directory><br/>to determine which<br/>processes are using the<br/>directory and stop the<br/>processes.</directory></li> <li>Use standard AIX and<br/>FX troubleshooting<br/>procedures.</li> </ol> |

# Table 6-7. QUIESCEDAPPS\_SYSNEW to EXPORTEDVGS\_SYSNEW

# Transition from EXPORTEDVGS\_SYSNEW to QUIESCEDAPPS\_SYSOLD

The following table lists sample error messages that may occur during the transition from EXPORTEDVGS\_SYSNEW to QUIESCEDAPPS\_SYSOLD, along with their causes, and recommended recovery actions. If the system encounters one of these errors, it will prevent the transition and the system will return to the EXPORTEDVGS\_SYSNEW state. You should fix the cause of the error and attempt the transition again. Alternately, you can force the transition despite errors by setting the g\_forceswitch variable to TRUE in the /var/ft/split\_cfg.ovr file.

| Sample Message                                                                        | Interpretation                                                                                                                                                                                                                | Recovery Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ERROR: app1,app2<br>QUIESCE request of<br>smmt on<br>SYSOLD_PRIMARY<br>failed with: 1 | The applications specified<br>in the<br>g_PRESWITCH_SYSOLD_APPS<br>parameter in the<br>/var/ft/split_cfg file<br>did not all respond within<br>the allowed time<br>(g_APPTIME) on the system<br>running as SYSOLD<br>PRIMARY. | <ol> <li>Confirm that the<br/>g_PRESWITCH_SYSOLD_APPS<br/>parameter is set correctly<br/>in /var/ft/split_cfg</li> <li>Confirm that the<br/>applications specified in<br/>the<br/>g_PRESWITCH_SYSOLD_APPS<br/>parameter are running on<br/>SYSOLD as the PRIMARY.</li> <li>Confirm that the<br/>applications are registered<br/>with the Service Provider.</li> <li>Set the g_APPTIME<br/>parameter in<br/>/var/ft/split_cfg to a<br/>longer delay and try the<br/>transition again.</li> <li>If the transition fails a<br/>second time, and you want<br/>to force the transition, set<br/>the g_FORCESWITCH<br/>parameter in<br/>/var/ft/split_cfg.ovr to<br/>TRUE and retry the<br/>transition.</li> </ol> |
|                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# Table 6-8. EXPORTEDVGS\_SYSNEW to QUIESCEDAPPS\_SYSOLD

# Transition from QUIESCEDAPPS\_SYSOLD to EXPORTEDVGS\_SYSOLD

The following table lists sample error messages that may occur during the transition from QUIESCEDAPPS\_SYSOLD to EXPORTEDVGS\_SYSOLD, along with their causes, and recommended recovery actions. If the system encounters one of these errors, it will prevent the transition and the system will return to the EXPORTEDVGS\_SYSNEW state or to the QUIESCEDAPPS\_SYSOLD state (depending on the value of the g\_FALLBACK\_ONE variable). You should fix the cause of the error and attempt the transition again. Alternately, you can force the transition despite errors by setting the g\_FORCESWITCH variable to TRUE in the /var/ft/split\_cfg.ovr file.

This transition exports the data volume groups to steal on SYSOLD running as PRIMARY. If an error occurs, the operator should add the "DEBUG2" flag to the g\_VERBOSE parameter in the /var/ft/split\_cfg.ovr file, to turn debugging on and learn where the error occurred.

| Sample Message                                                                                   | Interpretation                                                                                                                                                                                               | Recovery Action                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ERROR: error<br>(retval=2) during<br>transition, falling<br>back to state<br>QUIESCEDAPPS_SYSOLD | <ol> <li>The file systems(s) on<br/>the data volume groups<br/>on SYSOLD failed to<br/>unmount</li> <li>varyoffvg failed to vary<br/>off a datavg</li> <li>exportvg failed to export<br/>a datavg</li> </ol> | <ol> <li>Run fuser <directory><br/>to determine which<br/>processes are using the<br/>directory and stop the<br/>processes.</directory></li> <li>or 3) Use standard AIX<br/>troubleshooting<br/>procedures</li> </ol> |

# Table 6-9. QUIESCEDAPPS\_SYSOLD to EXPORTEDVGS\_SYSOLD

### Transition from EXPORTEDVGS\_SYSOLD to SWITCHED

The following table lists sample error messages that may occur during the transition from EXPORTEDVGS\_SYSOLD to SWITCHED, along with their causes, and recommended recovery actions. If the system encounters one of these errors, it will prevent the transition and the system will return to the EXPORTEDVGS\_SYSNEW state or to the EXPORTEDVGS\_SYSOLD state (depending on the value of the g\_FALLBACK\_ONE variable). You should fix the cause of the error and attempt the transition again.

| Sample Message                                                                                                                     | Interpretation                                                                                                                                                    | Recovery Action                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>ERROR: remote<br/>switch failed with:</li> <li>or</li> <li>ERROR: ftctl -<br/>splitswitch failed<br/>with: 251</li> </ol> | <ol> <li>The ftctl -splitswitch<br/>issued on the remote<br/>system failed.</li> <li>The ftctl -splitswitch<br/>issued on the local system<br/>failed.</li> </ol> | Try the transition again.<br>If the transition fails a<br>second time, return to<br>FT_START and use<br>standard FX<br>troubleshooting<br>procedures. |
| ERROR: failed to set<br>restart record on<br>CPU-2, restart<br>retval: 3                                                           | The restart command failed to set the restart record variables correctly.                                                                                         | Use the restart(1)<br>command to examine the<br>contents of the restart<br>record                                                                     |

#### Table 6-10. EXPORTEDVGS\_SYSOLD to SWITCHED

### Transition from SWITCHED to RESUMEDAPPS\_SYSNEW

The following table lists sample error messages that may occur during the transition from STOLEVGS to RESUMEDAPPS\_SYSNEW, along with their causes, and recommended recovery actions. If the system encounters one of these errors, it will prevent the transition and the system will return to the STOLEVGS state or to the EXPORTEDVGS\_SYSNEW state (depending on the value of the <code>g\_FALLBACK\_ONE</code> parameter). You should fix the cause of the error and attempt the transition again.

| Sample Message                                                                                         | Interpretation                                                                                                                                          | Recovery Action                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Message<br>ERROR: app1,app2<br>RESUME request of<br>smmt on<br>SYSNEW_PRIMARY<br>failed with: 1 | Interpretation<br>The applications specified<br>in the<br>g_POSTSWITCH_SYSNEW_APPS<br>parameter in the<br>/var/ft/split_cfg file did<br>not all respond | <ol> <li>Confirm that the<br/>g_POSTSWITCH_SYSNEW_APPS<br/>parameter is set correctly in<br/>/var/ft/split_cfg</li> <li>Confirm that the<br/>applications specified in<br/>the<br/>g_POSTSWITCH_SYSOLD_APPS<br/>parameter are running on<br/>SYSNEW as the PRIMARY.</li> <li>Confirm that the<br/>applications are registered<br/>with the Service Provider.</li> <li>Set the g_APPTIME<br/>parameter in<br/>/var/ft/split_cfg to a</li> </ol> |
|                                                                                                        |                                                                                                                                                         | longer delay and try the transition a second time.                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                        |                                                                                                                                                         | 5) If the transition fails a second time, you may want to set the g_FORCESWITCH parameter in /var/ft/split_cfg.ovr to TRUE and retry the transition.                                                                                                                                                                                                                                                                                           |

Table 6-11. SWITCHED to RESUMEDAPPS\_SYSNEW

## Transition from RESUMEDAPPS\_SYSNEW to STOLEVGS

The following table lists sample error messages that may occur during the transition from RESUMEDAPPS\_SYSNEW to STOLEVGS, along with their causes, and recommended recovery actions. If the system encounters one of these errors, it will prevent the transition and the system will return to the RESUMEDAPPS\_SYSNEW state or to the EXPORTEDVGS\_SYSNEW state (depending on the value of the g\_FALLBACK\_ONE parameter). You should fix the cause of the error and attempt the transition again.

This transition imports the data volume groups to steal from SYSOLD running as secondary to SYSNEW running as primary. If an error occurs, the operator should add the "DEBUG2" flag to the g\_VERBOSE parameter in the /var/ft/split\_cfg.ovr file, to turn debugging on and learn where the error occurred.

| Sample Message                                                                                  | Interpretation                                                                                                                                         | Recovery Action                                                                 |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| ERROR: error<br>(retval=2) during<br>transition, falling<br>back to state<br>RESUMEDAPPS_SYSNEW | <ol> <li>One of the MFIO<br/>modules containing datavg<br/>hdisks failed to reintegrate</li> <li>the data volume group<br/>failed to import</li> </ol> | Use standard FX Series<br>troubleshooting<br>procedures to manage the<br>datavg |

#### Table 6-12. RESUMEDVGAPPS\_SYSNEW to STOLEVGS

6

### Transition from STOLEVGS to RESUMEDVGAPPS\_SYSNEW

The following table lists sample error messages that may occur during the transition from STOLEVGS to RESUMEDVGAPPS\_SYSNEW, along with their causes, and recommended recovery actions. If the system encounters one of these errors, it will prevent the transition and the system will return to the STOLEVGS state or to the EXPORTEDVGS\_SYSNEW state (depending on the value of the g\_fallback\_one parameter). You should fix the cause of the error and attempt the transition again.

| pplications specified<br>SWITCH_SYSNEW_VGAP<br>ameter in the<br>t/split_cfg file did<br>respond | <ol> <li>Confirm that the<br/>g_POSTSWITCH_SYSNEW_APPS<br/>parameter is set correctly in<br/>/var/ft/split_cfg</li> <li>Confirm that the<br/>applications specified in<br/>the<br/>g_POSTSWITCH_SYSOLD_VGAP</li> </ol>                                                                                                                               |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                 | <ul> <li>Psparameter are running<br/>on SYSNEW as the<br/>PRIMARY.</li> <li>3) Confirm that the<br/>applications are registered<br/>with the Service Provider.</li> <li>4) Set the g_APPTIME<br/>parameter in<br/>/var/ft/split_cfg to a<br/>longer delay and try the<br/>transition a second time.</li> <li>5) If the transition fails a</li> </ul> |
|                                                                                                 | 5) If the transition fails a second time, you may want to set the g_FORCESWITCH parameter in /var/ft/split_cfg.ovr to TRUE and retry the transition.                                                                                                                                                                                                 |
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                      |

Table 6-13. STOLEVGS to RESUMEDVGAPPS\_SYSNEW

### Transition from RESUMEDVGAPPS\_SYSNEW to UNSPLIT

The following table lists sample error messages that may occur during the transition from RESUMEDVGAPPS\_SYSNEW to UNSPLIT, along with their causes, and recommended recovery actions. If the system encounters one of these errors, it will prevent the transition and the system will return to the RESUMEDAPPS\_SYSNEW state. You should fix the cause of the error and attempt the transition again.

#### Table 6-14. RESUMEDVGAPPS\_SYSNEW to UNSPLIT

| Sample Message                                                               | Interpretation                                                                   | Recovery Action                                                                   |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| ERROR: failed to<br>clear restart record<br>on primary, restart<br>retval: 3 | The restart command<br>failed to clear the restart<br>record variables correctly | Use the restart(1)<br>command to examine the<br>contents of the restart<br>record |

# Transition from UNSPLIT to FT\_COMPLETED

The following table lists sample error messages that may occur during the transition from UNSPLIT to FT\_COMPLETED, along with their causes, and recommended recovery actions. If the system encounters one of these errors, it will prevent the transition and the system will return to the UNSPLIT state. You should fix the cause of the error and attempt the transition again.

| Sample Message                                            | Interpretation                                                       | Recovery Action                                                        |
|-----------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|
| ERROR: unable to reintegrate I/0-0                        | A module failed to<br>reintegrate or to go offline                   | Use standard FX Series<br>troubleshooting<br>procedures to reintegrate |
| or                                                        |                                                                      | or to offline the module as                                            |
| ERROR: I/O-O failed to go online                          |                                                                      | appropriate.                                                           |
| or                                                        |                                                                      |                                                                        |
| ERROR: modchange -r<br>-l I/O-0 failed                    |                                                                      |                                                                        |
| or                                                        |                                                                      |                                                                        |
| ERROR: I/O-0 failed to go offline                         |                                                                      |                                                                        |
| or                                                        |                                                                      |                                                                        |
| ERROR: modchange -o<br>-l I/O-0 failed                    |                                                                      |                                                                        |
| ERROR: error while<br>remirroring rootvg<br>volume groups | The rootvg data volume<br>group failed to reestablish<br>the mirrors | Use fixvg to remirror the volume group.                                |
| or                                                        |                                                                      |                                                                        |
| ERROR: failed to                                          |                                                                      |                                                                        |
| remirror rootvg<br>volume group                           |                                                                      |                                                                        |

### Table 6-15. UNSPLIT to FT\_COMPLETED

| Sample Message                                                                            | Interpretation                                                 | Recovery Action                                                    |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|
| ERROR: failed to<br>restore autoboot<br>parameter ab=Y for<br>CPU-0, autoboot<br>retval=2 | The autoboot parameter for the CPU was not reset.              | Use the autoboot<br>command to examine the<br>autoboot parameters. |
| ERROR: error while<br>remirroring data<br>volume groups                                   | The data volume groups<br>failed to reestablish the<br>mirrors | Use fixvg to remirror the volume group.                            |

### Table 6-15. UNSPLIT to FT\_COMPLETED (continued)

# Writing Split Mode-Aware 7 Applications

# Overview

As the procedures in Chapter 4 demonstrate, it is possible to run split mode without adapting your application. Making your application split mode aware, however, will allow you to automate more of the procedures associated with split mode and will minimize the service interruption that occurs at switchover.

This chapter discusses the basic steps to making your application split mode aware in order to manage the switchover process. It also gives a brief overview of the capabilities of the Inter-System Communication (ISC) subsystem, which provides the tools for maximizing your applications' effective use of the split mode functionality. More complete descriptions of the ISC utilities is available in the appropriate manpages.

Source code for a sample split mode aware application is provided in Appendix A.

### **Managing Switchover**

The most critical aspect of split mode from the application perspective is switchover. Prior to switchover, it is likely that you will have applications running in parallel on both sides of the system. Applications on SYSOLD will be providing service while those on SYSNEW are being run in order to test the upgraded system. At switchover, applications on SYSOLD need to be quiesced and those which are running on SYSNEW need to begin providing actual service to applications and users.

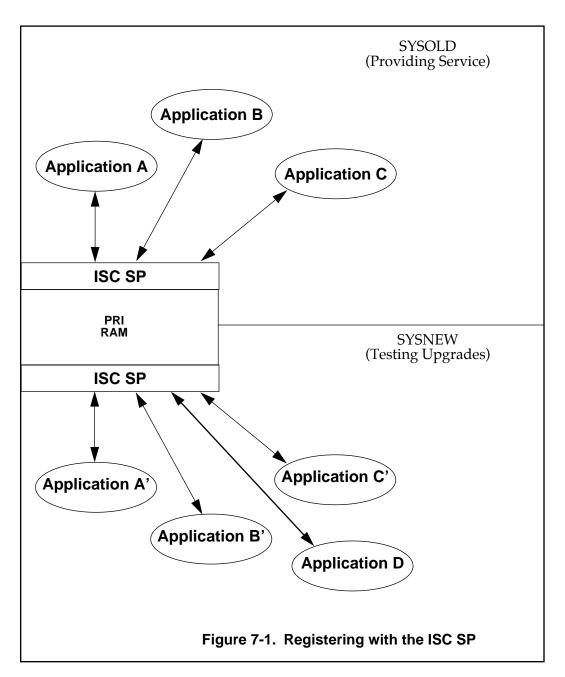
This process is designed around the ISC Service Provider (ISC SP or SP). In order to take full advantage of split mode, the applications on both systems should be modified to receive and respond to

messages from the service provider via sockets. Alternately, a single application can be rewritten to manage non-Split Mode-aware applications through the split mode process.

The following discussion briefly describes the minimum steps needed to make your applications split mode aware.

#### **Registering with the Service Provider**

When the SP is started, it looks for the /etc/ft/sm\_apps file. This file is a place in which you can list applications that you want to communicate with the SP and the signals you want the sm\_notify script to use to alert each application that the SP has been started. For example,


app1 TERM app2 HUP

tells the SP to send a SIGTERM signal to "app1" and a SIGHUP signal to "app2." Additional options for signaling applications are available in the sm\_apps manpage. In order to prevent the signal from killing the application, you should trap the signal early in the application startup process.

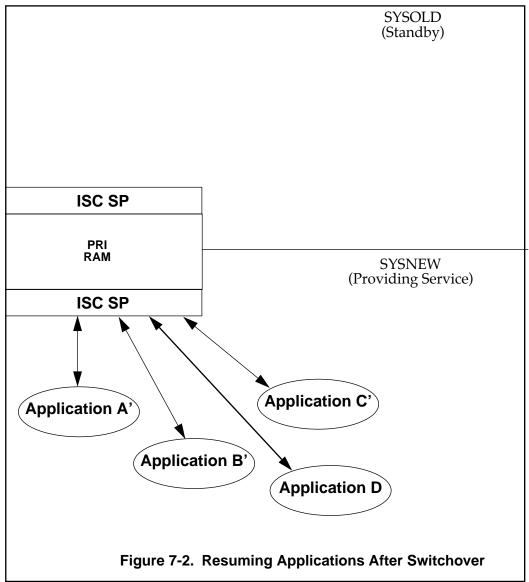
Once the Service Provider is active, applications can register with it by accessing a well-known socket address or registration socket, ISC\_RegSocket. Once the application accesses the registration socket, the SP will establish a unique socket between itself and the application. A separate service provider exists as a daemon process on both SYSOLD and SYSNEW, and applications on each system should register with their respective SP.

**Note** In case the application is initiated after the SP has already signaled applications to register, applications should check for the socket automatically upon startup.

The Figure 7-1 illustrates the situation in which three applications on SYSOLD and their counterparts on SYSNEW have all registered with the service providers on their respective systems. Application D is a new application which has been installed on SYSNEW.



7


#### **Receiving and Responding to the Switchover Notifications**

Prior to switchover, the Service Providers on SYSOLD and SYSNEW will send a message (the message may be set in the /var/ft/split\_cfg file with the default message being REQ QUIESCE) to registered applications notifying them of the impending switchover and telling them to quiesce themselves. At that point, each application has X seconds in which to respond (the default application response message is RSP\_QUIESCE), where X is the value you specified in the /var/ft/split\_cfg file. During this response window, your applications should finish any current actions and clean themselves up in order to quiesce themselves. If one or more of the registered applications fail to respond, the operating system will abort the switchover; quiesced applications will receive signals to begin providing service and SYSOLD will remain primary. If you want the system to switch regardless of application responses, you should make the g\_FORCESWITCH option true in the /var/ft/split\_cfg file (see "Set Global Split Mode Variables in the split\_cfg file" on page 4-16).

As far as applications are concerned, there are two phases to the switchover process. The first phase is marked by the SWITCHED state, at which SYSNEW becomes primary. At this point, applications which do not rely on the datavgs may begin to provide service again. The SP sends a configurable signal to the applications listed in the g\_POSTSWITCH\_SYSNEW\_APPS variable in the /var/ft/split\_cfg file.

The second phase is marked by the STOLEVGS state and is the point at which the remaining (datavg-dependent) applications can begin providing service. The SP sends a configurable signal to the applications listed in the g\_POSTSWITCH\_SYSNEW\_VGAPPS variable in the /var/ft/split\_cfg file.

When the system reaches the RESUMEDVGAPPS\_SYSNEW state, all applications have begun providing service, as shown in Figure 7-2.



Applications should be written to handle the same process in

7

reverse, in order to quiesce and resume properly in response to a fallback situation. If for some reason, the system needs to fallback from RESUMEDAPPSVG\_SYSNEW than the applications need to be able to handle a g\_PRESWITCH\_SYSOLD\_REQ\_RESUME signal.

# Using the ISC to Communicate between Applications on SYSOLD and on SYSNEW

The ISC Application Programmer's Interface (API) and the ISC Utility functions provide a number of tools that allow applications on one system to talk to those on the other. For example, applications running on SYSNEW after the switchover are able to interact with their peers on SYSOLD.

The following is an overview of the capabilities of the ISC subsystem. For complete descriptions, see the appropriate manpages.

#### **ISC API functions**

The following ISC API functions are declared in the ISC API header file /usr/include/sys/iscapi.h with the code contained in the ISC API library file /usr/ccs/lib/libiscapi.a. For complete descriptions of the various functions, see the appropriate manpages.

| ISC_Abort(3)    | application connection abort request         |
|-----------------|----------------------------------------------|
| ISC_Conn(3)     | application connect request                  |
| ISC_Dereg(3)    | ISC SP de-register request                   |
| ISC_Disc(3)     | application disconnect request               |
| ISC_Exec(3)     | application execution request                |
| ISC_ExecTerm(3) | application execution<br>termination request |
| ISC_LogMsg(3)   | ISC SP log message request                   |
| ISC_Read(3)     | application read data                        |
| ISC_Recv(3)     | application receive message request          |

| ISC_Reg(3)     | ISC SP registration request                                   |
|----------------|---------------------------------------------------------------|
| ISC_RegRecv(3) | application message callback<br>function registration request |
| ISC_Send(3)    | application send message request                              |
| ISC_Status(3)  | ISC SP status information request                             |
| ISC_Write(3)   | application write data                                        |

### Registering and Deregistering with the ISC SP

Applications must first register with the ISC SP before attempting any communication with a peer via the ISC. This is accomplished by using the ISC\_Reg(3) ISC API function.

When all communication with a peer application or the ISC SP is no longer needed, the application must de-register with the ISC SP via the ISC\_DeReg(3) ISC API function.

### Sending/Receiving messages to/from a peer application

Once registered with the ISC SP, an application can send and receive messages to/from a peer via the ISC\_Send(3) and ISC\_Recv(3) ISC API functions, respectively.

An application can also register a callback function to receive asynchronous messages from a peer via the ISC\_RegRecv(3) ISC API function.

### Executing a program or script

Once registered with the ISC SP, an application can execute a program or script remotely, locally, or on both systems via the ISC\_Exec(3) ISC API function. For example, an application on SYSNEW can run a shell script on SYSOLD, or the same application can use the API to run a shell script on SYSNEW in order to use the ISC logs.

Once a program/script has been stared via the ISC\_Exec(3) ISC API function, an application can terminate it via the ISC\_ExecTerm(3) ISC API function.

### Logging a message to the ISC SP's log file

Once registered with the ISC SP, an application can log a text message to either the local or remote ISC SP's log file via the ISC\_LogMsg(3) ISC API function.

### **Retrieving status information from the ISC SP**

Once registered with the ISC SP, an application can retrieve a list of applications that have registered with both the local and remote ISC SP via the ISC\_Status(3) ISC API function.

### Connecting or Disconnecting with a peer application

Once registered with the ISC SP, an application can connect with a peer application to transfer data to or from it via the ISC\_Conn(3) ISC API function.

When transferring data with a peer application is no longer needed, the application must disconnect with the peer via the ISC\_Disc(3) ISC API function.

### Writing/Reading data to/from a peer application

Once registered with the ISC SP and connected to a peer application, an application can write and read data to/from the peer via the ISC\_Write(3) and ISC\_Read(3) ISC API functions, respectively.

### **ISC Utility functions**

The following ISC Utility functions are declared in the ISC Utility header file /usr/include/sys/iscutil.h with the code contained in the ISC Utility library file /usr/ccs/lib/libiscutil.a. The utility functions call the API functions and provide higher level access to the ISC functionality. For complete descriptions of the utilities, see the appropriate manpages.

| ISCU_broadcast_message(3) | broadcast message to other applications             |
|---------------------------|-----------------------------------------------------|
| ISCU_log_message(3)       | log a message to ISC SP's<br>log file               |
| ISCU_send_message(3)      | send directed message to an application             |
| ISCU_transfer_file(3)     | read/write file from/to<br>remote system            |
| ISCU_execute(3)           | execute a program/script remotely, locally, or both |

### **Broadcasting messages**

An application can broadcast a message locally, remotely, or both and wait for a response from all via the ISCU\_broadcast\_message(3) ISC Utility function.

### Logging messages

An application can log a message to the local, remote, or both ISC SP's log file via the ISCU\_log\_message(3) ISC Utility function.

#### Send a message

An application can send a directed message to either a local or remote peer application via the ISCU\_send\_message(3) ISC Utility function.

### Transfer a file

An application can send or receive a file to / from the remote system via the ISCU\_transfer\_file(3) ISC Utility function.

### **Execute a program/script**

An application can execute a program/script locally, remotely, or both via the ISCU\_execute(3) ISC Utility function.

# Sample Split Mode Aware A Application

# **Overview**

This appendix contains source code for the sample split mode aware application which is discussed in Chapter 7.

The sample shows one way of providing graceful communications with between the application and the ISC Service Provider (SP) in order to register with the SP and to handle quiesce and resume requests and responses.

| /*MH***********************************                                              | ******* MODULE HEADER **********************   | 1  |
|--------------------------------------------------------------------------------------|------------------------------------------------|----|
| ** MODULE NAME:responder.c                                                           |                                                |    |
| **                                                                                   | E.responder.e                                  | 3  |
| ** PROJECT:                                                                          | SeriesFX Split Mode Inter-System Communication | 5  |
| **                                                                                   | Message Transmission Utility (SMMT)            | 6  |
| **                                                                                   | <i>3</i>                                       | 7  |
| ** DESCRIPTION:                                                                      | This file contains code for the SMMT Utility   | 8  |
| **                                                                                   | responding test utility                        | 9  |
| **                                                                                   |                                                | 10 |
| ** CONTENTS:                                                                         | It contains the following functions:           | 11 |
| **                                                                                   | -                                              | 12 |
| **                                                                                   |                                                | 13 |
| ** COPYRIGHT:                                                                        | (C) COPYRIGHT MOTOROLA, INC. 1998              | 14 |
| **                                                                                   | ALL RIGHTS RESERVED                            | 15 |
| **                                                                                   |                                                | 16 |
| **                                                                                   | **                                             | 17 |
| ***************************************                                              | ***************************************        | 18 |
|                                                                                      |                                                | 19 |
| /*                                                                                   |                                                | 20 |
| * Include Files                                                                      |                                                | 21 |
| */                                                                                   |                                                | 22 |
|                                                                                      |                                                | 23 |
| <pre>#include <stdio.h></stdio.h></pre>                                              |                                                | 24 |
| #include <unistd.h< td=""><td></td><td>25</td></unistd.h<>                           |                                                | 25 |
| #include <errno.h></errno.h>                                                         |                                                | 26 |
| #include <locale.h></locale.h>                                                       |                                                | 27 |
| #include <signal.h< td=""><td></td><td>28</td></signal.h<>                           |                                                | 28 |
| <pre>#include <sys pre="" type<=""></sys></pre>                                      | es.h>                                          | 29 |
|                                                                                      |                                                | 30 |
| #include <sys isca<="" td=""><td>pi.h&gt;/* ISCS API Header */</td><td>31</td></sys> | pi.h>/* ISCS API Header */                     | 31 |
|                                                                                      |                                                | 32 |
| #define USAGE                                                                        | "Usage: %s -n connID [-D debug socket]\n"      | 33 |
| #define FOREVER                                                                      | ((int *)-1)                                    | 34 |
| 1 4                                                                                  | -                                              | 35 |
| char *name = NUL                                                                     |                                                | 36 |
| char *ME = NULL;                                                                     |                                                | 37 |
|                                                                                      |                                                | 38 |
|                                                                                      |                                                | 39 |
|                                                                                      |                                                | 40 |

| /*FH*********************************** | ******** FUN   | CTION HEA      | DER ************************************ | 41       |
|-----------------------------------------|----------------|----------------|------------------------------------------|----------|
|                                         | IAME           | ()             |                                          | 42       |
| ** FUNCTION N                           | NAME:parse_    | args()         |                                          | 43<br>44 |
| ** DESCRIPTION                          | <b>NI</b> •    |                |                                          | 44       |
| **                                      |                | tion narses t  | ne command line arguments and            | 46       |
| **                                      |                | -              | eters. It also validates that the        | 47       |
| **                                      |                | ry arguments   |                                          | 48       |
| **                                      | mandato        | ry argumenta   | , die present.                           | 49       |
| ** PARAMETER                            | S              |                |                                          | 50       |
| **                                      |                |                |                                          | 51       |
| **                                      | Input:         |                |                                          | 52       |
| **                                      |                | argc           | - command line argument count            | 53       |
| **                                      |                | argv           | - ptr to array of command line           | 54       |
| **                                      |                | ungv           | arguments                                | 55       |
| **                                      |                |                | angamente                                | 56       |
| **                                      | Output:        |                | The following flags may be set.          | 57       |
| **                                      | <sub>F</sub>   |                |                                          | 58       |
| **                                      | Returns:       |                | none                                     | 59       |
| **                                      |                |                |                                          | 60       |
| ** NOTES:                               |                |                |                                          | 61       |
| **                                      |                |                |                                          | 62       |
| ******                                  | ******         | ******         | ********* /                              | 63       |
| void                                    |                |                |                                          | 64       |
| parse_args(int a                        | rgc, char **ar | gv)            |                                          | 65       |
| {                                       |                |                |                                          | 66       |
| int c;                                  |                |                |                                          | 67       |
|                                         |                |                |                                          | 68       |
| while                                   | ((c = getopt(a | rgc, argv, "n: | D:")) != EOF) {                          | 69       |
|                                         | switch(c)      |                |                                          | 70       |
|                                         | case 'n':      |                |                                          | 71       |
|                                         |                | /* name to     | call myself */                           | 72       |
|                                         |                | name = opt     | arg;                                     | 73       |
|                                         |                | break;         |                                          | 74       |
|                                         |                |                |                                          | 75       |
|                                         | case 'D':      |                |                                          | 76       |
|                                         |                | /* This is a   | DEBUG argument */                        | 77       |
|                                         |                | ISC_RegSo      | cket = optarg;                           | 78       |
|                                         |                | break;         |                                          | 79       |
|                                         |                |                |                                          | 80       |
|                                         | case '?':      |                |                                          | 81       |
|                                         |                | /* getopt sp   | bits out decent error message */         | 82       |
|                                         |                | exit(-1);      |                                          | 83       |
|                                         |                |                |                                          | 84       |
|                                         | default:       |                |                                          | 85       |
|                                         |                | fprintf(stde   | rr, USAGE, ME);                          | 86       |

|          | exit(-1);                                                     | 87  |
|----------|---------------------------------------------------------------|-----|
|          | }                                                             | 88  |
|          | }                                                             | 89  |
|          |                                                               | 90  |
|          | /* must supply at least his own name */                       | 91  |
|          | if (name == NULL) {                                           | 92  |
|          | <pre>fprintf(stderr, USAGE, ME);</pre>                        | 93  |
|          | exit(-1);                                                     | 94  |
|          | }                                                             | 95  |
|          |                                                               | 96  |
|          | /* check size of name */                                      | 97  |
|          | if (strlen(name) >= ISC_MAX_CONN_ID) {                        | 98  |
|          | <pre>fprintf(stderr, USAGE, ME);</pre>                        | 99  |
|          | exit(-1);                                                     | 100 |
|          | }                                                             | 101 |
| }        |                                                               | 102 |
|          |                                                               | 103 |
|          |                                                               | 104 |
| volatile | int SP_is_up = 0;                                             | 105 |
|          |                                                               | 106 |
| void     |                                                               | 107 |
| handler  | (int signo)                                                   | 108 |
| {        |                                                               | 109 |
|          | printf("%s: handler called\n", ME);                           | 110 |
|          | $SP_is_up = 1;$                                               | 111 |
| }        |                                                               | 112 |
|          |                                                               | 113 |
| int      |                                                               | 114 |
|          | t argc, char **argv)                                          | 115 |
| {        |                                                               | 116 |
|          | char respbuf[ISC_MAX_MSG_DATA];                               | 117 |
|          | char sendbuf[ISC_MAX_MSG_DATA];                               | 118 |
|          | char srcID[ISC_MAX_CONN_ID];                                  | 119 |
|          | int recv_flags;                                               | 120 |
|          | int send_flags;                                               | 121 |
|          | int count;                                                    | 122 |
|          | int send_length;                                              | 123 |
|          | struct sigaction s;                                           | 124 |
|          | // · · · · · /                                                | 125 |
|          | /* who am I */                                                | 126 |
|          | ME = argv[0];                                                 | 127 |
|          | /+ 11 +/                                                      | 128 |
|          | /* parse command line arguments */                            | 129 |
|          | parse_args(argc, argv);                                       | 130 |
|          | /* esture element have there for ICC CD as the set of the * / | 131 |
|          | /* setup signal handler for ISC SP notification */            | 132 |

| s.sa_hand   | ler = hand<br>on(SIGHUI<br>perror("sig | ?, &s, NULL)) {                                         | 133<br>134<br>135<br>136 |
|-------------|----------------------------------------|---------------------------------------------------------|--------------------------|
| }           | exit(-1);                              |                                                         | 137<br>138<br>139        |
| while (1) { |                                        |                                                         | 140                      |
|             |                                        | et to SP without the signal */                          | 141                      |
|             |                                        | g(name, 0)) {                                           | 142                      |
|             |                                        | printf("%s: waiting for SIGHUP signal from SP\n", ME);  | 143                      |
|             |                                        | while(!SP_is_up)                                        | 144                      |
|             |                                        | sleep(600);                                             | 145                      |
|             |                                        |                                                         | 146                      |
|             |                                        | /* register with local SP */                            | 147                      |
|             |                                        | printf("%s: got signal from SPregistering\n", ME);      | 148                      |
|             |                                        | if (ISC_Reg(name, FOREVER)) {                           | 149                      |
|             |                                        | printf("%s: unable to register with SP\n", ME);         | 150                      |
|             |                                        | $SP_{is}up = 0;$                                        | 151                      |
|             |                                        | continue;                                               | 152                      |
|             |                                        | }                                                       | 153                      |
|             | } else {                               |                                                         | 154                      |
|             |                                        | SP_is_up = 1;                                           | 155                      |
|             | }                                      |                                                         | 156                      |
|             | printf("%s                             | : registeredstarting work\n", ME);                      | 157                      |
|             |                                        |                                                         | 158                      |
|             | while (SP                              | _is_up) {                                               | 159                      |
|             |                                        |                                                         | 160                      |
|             |                                        | /* wait for responses and deal with them accordingly */ | 161                      |
|             |                                        | if ((count = ISC_Recv(name, respbuf, sizeof(respbuf),   | 162                      |
|             |                                        | <pre>srcID, &amp;recv_flags, FOREVER)) &lt; 0) {</pre>  | 163                      |
|             |                                        | if (errno == ENOTCONN) {                                | 164                      |
|             |                                        | /* SP shutdowntry later */                              | 165                      |
|             |                                        | $SP_{is}up = 0;$                                        | 166                      |
|             |                                        | printf("%s: attempting to deregister\n",                | 167                      |
|             |                                        | ME);                                                    | 168                      |
|             |                                        | ISC_Dereg(name, FOREVER);                               | 169                      |
|             |                                        | continue;                                               | 170                      |
|             |                                        | }                                                       | 171                      |
|             |                                        | <pre>/* something worse happened??? */</pre>            | 172                      |
|             |                                        | perror("ISC_Recv");                                     | 173                      |
|             |                                        | exit(-1);                                               | 174                      |
|             |                                        | }                                                       | 175                      |
|             |                                        | respbuf[count] = '\0';                                  | 176                      |
|             |                                        |                                                         | 177                      |
|             |                                        | /*                                                      | 178                      |

| * Expected messages:                          | 179  |
|-----------------------------------------------|------|
| *                                             | 180  |
| * REQ_QUIESCE:we respond with "RSP_QUIESCE"   | 181  |
| * REQ_RESUME:we exit with "RSP_RESUME"        | 182  |
| * anything else:we ignore                     | 183  |
| */                                            | 184  |
| if (!strcmp(respbuf, "REQ_QUIESCE")) {        | 185  |
| /*                                            | 186  |
| * Got "REQ_QUIESCE", respond with             | 187  |
| * "RSP_QUIESCE"                               | 188  |
| */                                            | 189  |
| sleep(getpid() % 3);                          | 190  |
| sprintf(sendbuf, "RSP_QUIESCE");              | 191  |
| printf("%s: got '%s'responding with '%s'\n",  | 192  |
| ME,                                           | 193  |
| respbuf, sendbuf);                            | 194  |
| } else if (!strcmp(respbuf, "REQ_RESUME")) {  | 195  |
| /*                                            | 196  |
| * Got "REQ_RESUME", respond with              | 197  |
| * "RSP_RESUME"                                | 198  |
| */                                            | 199  |
| sleep(getpid() % 3);                          | 200  |
| sprintf(sendbuf, "RSP_RESUME");               | 201  |
| printf("%s: got '%s'responding with '%s'\n",  | 202  |
| ME,                                           | 203  |
| respbuf, sendbuf);                            | 204  |
| } else {                                      | 205  |
| /*                                            | 206  |
| * Anything else? Respond with nothing.        | 207  |
| */                                            | 208  |
| $sendbuf[0] = ' \ 0';$                        | 209  |
| printf("%s: got '%s'ignoring\n", ME, respbuf) | ;210 |
| }                                             | 211  |
|                                               | 212  |
| /* see if there's anything to send */         | 213  |
| send_length = strlen(sendbuf);                | 214  |
|                                               | 215  |
| /* only send if we have something to send */  | 216  |
| if (send_length) {                            | 217  |
| <pre>send_flags = recv_flags &amp;</pre>      | 218  |
| (ISC_MSG_LOCAL   ISC_MSG_REMOTE);             | 219  |
| if ((count = ISC_Send(name, sendbuf,          | 220  |
| send_length,                                  | 221  |
| srcID,                                        | 222  |
| send_flags, FOREVER)) < 0) {                  | 223  |
| if (errno == $ENOTCONN$ ) {                   | 224  |

|   | /* SP shutdowntry later */                  | 225 |
|---|---------------------------------------------|-----|
|   | $SP_is_up = 0;$                             | 226 |
|   | printf("%s: attempting to deregister $n$ ", | 227 |
|   | ME);                                        | 228 |
|   | ISC_Dereg(name, FOREVER);                   | 229 |
|   | continue;                                   | 230 |
|   | }                                           | 231 |
|   | /* something worse happened??? */           | 232 |
|   | perror("ISC_Send");                         | 233 |
|   | exit(-1);                                   | 234 |
|   | }                                           | 235 |
| } |                                             | 236 |
| } |                                             | 237 |
|   |                                             | 238 |
|   |                                             | 239 |
|   |                                             | 240 |

}

}