
AIX Systems Center
Dallas, Texas

 Copyright IBM Corp. 1993

Linking and Binding
Gary R. Hook

hook@vnet.ibm.com

2 Copyright IBM Corp. 1993
Linking and Binding

3  Copyright IBM Corp. 1993
Linking and Binding

Overview

� Introduce and discuss the concepts and implications of
dynamic linking and shared libraries

� Discuss differences between the AIX Version 3 linker
and traditional UNIX linker implementations

� Investigate performance aspects of the linker

� Introduce the concepts of runtime loading and binding

4 Copyright IBM Corp. 1993
Linking and Binding

Notes

AIX V3 supports shared objects, runtime symbol resolution, and dynamic
binding to an executing process. It is this capability that, for example, allows
the kernel to be dynamically extended while the system is running.

The AIX V3 linker utilizes different technology than previous UNIX
implementations; this technology allows for dynamic modification of executing
processes.

When designing a development methodology, the behavior of the linker should
be considered.

It is possible for an executing program to easily load additional object modules
and execute them. This is known as runtime binding.

5  Copyright IBM Corp. 1993
Linking and Binding

Terms

� Linker

� the application program that combines multiple
object modules into an executable program

� Loader

� a kernel function that accepts an executable file and
maps it into the virtual memory of the system

� XCOFF Module

� a file containing machine code and one or more of:
machine instructions, symbolic information,
debugging information, initialized data, etc.

� Resolution

� the act of associating a reference to a symbol with
the definition of that symbol

� Relocation

� the technique used to support the concept of
address–independent programs

6 Copyright IBM Corp. 1993
Linking and Binding

Notes

The command ld is the system linker. The linker processes command line
arguments and hands instructions to the binder program bind . For the
purposes of this document, the terms linker and binder are interchangeable.

The function of the loader is to prepare an object for execution by the system.
This includes symbol resolution and virtual memory mapping.

When object modules refer to a symbol, that symbol must be resolved for
proper execution to take place. The linker performs a portion of this function
at link time; the loader handles runtime resolution when accessing shared
objects.

AIX V3 supports address–independent, reentrant code. Text segments never
contain address constants, allowing multiple processes to share a single copy
of a text segment for an executing program.

7  Copyright IBM Corp. 1993
Linking and Binding

Linking Phases

� Executable program construction using ld

� Dynamic binding performed by the system loader

� Runtime binding using system functions

8 Copyright IBM Corp. 1993
Linking and Binding

Notes

The ld command is traditionally used to construct an executable program.
Much of the required symbol resolution is handled at this time.

When a program is loaded and prepared for execution, the system loader
handles the resolution of symbols that refer to shared objects. This provides
for the reuse of standard library routines in a transparent manner. Shared
system library routines are stored in the Shared Text segment.

System calls are available which allow a running process to load and bind to
an arbitrary object. The object is prepared by the linker for this purpose, but is
accessed by some arbitrary executing process. This functionality causes
loaded objects to be stored in the Process Private Data space instead of the
Shared Text segment. Thus, application design should address this aspect
when organizing executable code.

9  Copyright IBM Corp. 1993
Linking and Binding

XCOFF Module

file header

optional header

section headers

.text, .bss, .data sections

symbol table, line numbers,
and string table

(.text, .data, .bss, .pad, .loader,
.debug, .typchk, .except)

.loader section

.debug section
.typchk section
.except section

Raw Data

relocation data,

10 Copyright IBM Corp. 1993
Linking and Binding

Notes

The object modules produced by a compiler must conform to a certain format
so the system loader will be able to load and execute the program. Many UNIX
systems use COFF (Common Object File Format) as the basis for their object
module format. COFF consists of text (machine code), bss (uninitialized data),
and data (initialized data) sections. In addition, COFF files contain a symbol
table, relocation information, and a string table to store symbol names greater
than eight characters in length. The COFF standard allows for additional
sections to be added to provide for implementation–dependent extensions.

IBM uses the COFF standard format as the basis for their object module format,
but they provide extensions to the standard to allow for shared libraries,
dynamic linking, etc. IBM goes one step further by defining XCOFF as its object
module format. XCOFF contains the same sections and information as COFF,
but adds a loader section, a type check section, and an exception section. If
debugging is specified by the compile command, a debug section is added
along with line number information to keep track of valid breakpoints. This
debug information is used by the various symbolic debuggers available. The
loader section contains the information required by the dynamic loader. The
type check section contains the parameter type–checking hash strings that are
used to check for parameter type consistency at link or load time. The
exception section is used to handle system exceptions.

11  Copyright IBM Corp. 1993
Linking and Binding

Combining Object Modules

file1.o

ld

.text (file1.o + file2.o + ...)

.text (file1.o)

.data (file1.o)
symbol table

file2.o
.text (file2.o)

.data (file2.o)
symbol table

.data (file1.o + file2.o + ...)

combined symbol table

a.out

12 Copyright IBM Corp. 1993
Linking and Binding

Notes

The linker combines object modules (produced by compilers or the assembler)
and resolves symbol references; the result is an executable object. The text
sections from the object modules are combined to form one text section. The
data sections from the object modules are also combined to form one data
section. Symbol references are resolved when their definitions are
encountered (resolution is discussed later), and the relocation information is
updated to reflect the new addresses in the combined text and data sections
(see Relocation).

13  Copyright IBM Corp. 1993
Linking and Binding

Linking Two Object Modules

ÄÄÄÄÄÄÄÄÄÄÄÄÄ

ÄÄÄÄÄÄÄÄÄÄÄÄÄ

ÄÄÄÄÄÄÄÄÄÄÄÄÄ

ÄÄÄÄÄÄÄÄÄÄÄÄÄ

main()
{

...
other() ;
...

}

.text section

Name: other
Class: external
Value: 0

file1

symbol table

ÄÄÄÄÄÄÄÄÄÄÄÄÄ

ÄÄÄÄÄÄÄÄÄÄÄÄÄ

ÄÄÄÄÄÄÄÄÄÄÄÄÄ

ÄÄÄÄÄÄÄÄÄÄÄÄÄ

.text section
file2

symbol table

other ()
{

...

...
}

Name: other
Class: external
Value: relocatable

addressDefining Object Module

Referencing Object Module

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

14 Copyright IBM Corp. 1993
Linking and Binding

Notes

As the text and data sections of the various object modules are being
combined, resolution takes place to resolve external symbolic references. The
address of an external data or subroutine reference is unknown; therefore, the
machine code in an object module requires patching by the linker. External
symbolic references result in the creation of relocation information (discussed
in the following section), but the actual address of the symbolic reference, its
definition, resides in a different object module. The object module containing
the definition must be linked with the object module containing the symbolic
reference. In other words, the linker matches external symbolic references with
their appropriate definitions.

15  Copyright IBM Corp. 1993
Linking and Binding

Linking Two Object Modules...

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

.text section

a.out

symbol table
Name: other
Class: external
Value: relocatable

address

Linked executable file

other ()
{

...

...
}

file1

file2

ld main()
{

...
other() ;
...

}

16 Copyright IBM Corp. 1993
Linking and Binding

Notes

The text sections from the object modules are combined (along with any other
text) and stored. During the resolution phase of the link, the linker creates one
entry in the symbol table for the definition of other . The references to that
symbol are then tied to the symbol table entry; the table contains the relocatable
address for the function. Thus, a symbol reference can be viewed as an offset
into the data segment to locate an address in the text segment; the address
value is the only piece of information that must be updated at load time with a
virtual location.

17  Copyright IBM Corp. 1993
Linking and Binding

Linking to a Shared Object

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

main()
{

...
other() ;
...

}

.text section

Name: other
Class: external
Value: 0

file1.o

symbol table .text section

file2.o

symbol table

other ()
{

...

...
}

Name: other
Class: external
Value: relocatable

address
Defining Shared Object Module

Referencing Object Module

.loader section
EXP: other()

18 Copyright IBM Corp. 1993
Linking and Binding

Notes

In AIX V3, unlike traditional UNIXs, resolution of library calls takes place at load
time by default. IBM’s XCOFF allows symbol resolution to be deferred until
load time. That is, external symbolic references may be marked as IMPORTED
in the loader section of the XCOFF module. When invoked, the loader brings
in the object modules containing the definitions of these imported symbols and
supplies the runtime addresses of these symbols to the referencing
executable. If the object modules containing the symbol definitions in turn have
imported symbols, then the object modules defining these symbols are loaded
and these imported symbols are resolved. This continues until there are no
unresolved imported symbols.

The object shown here containing the definition of the symbol of interest is
organized in much the same fashion as in the previous example; the entry into
the symbol table and the relocatable address exist here as well. The additional
piece of information is the exported symbol in the loader section. This is
required since the shared object will not ultimately be combined with the code
that contains the symbol reference.

The linker recognizes the existence of the symbols in the loader section of the
shared object, and utilizes this information to construct a new reference to the
symbol. This new reference contains information necessary to locate the
object module (containing the symbol definition) at load time. Thus, a portion
of the symbol resolution process and code organization is deferred from link
time to load time.

19  Copyright IBM Corp. 1993
Linking and Binding

Linking to a Shared Object...

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

.text section
a.out

symbol table
Name: other
Class: external
Value: 0 (until runtime)

Dynamically Linked Executable File

IMP other()

file1.o

file2.o

ld

.loader section

main()
{

...
other() ;
...

}

20 Copyright IBM Corp. 1993
Linking and Binding

Notes

Note that a symbol table entry is created in the linked application. This entry
is similar to that in the statically linked version shown earlier. The key piece of
information for the loader is the items marked for import in the loader section.
The linker locates the definitions for these symbols in the appropriate object
modules (this object module location information resides within the linked
application) and modifies the symbol table entries to reflect their location.
Since the symbol table must be written to, all address constants are stored in
the data segment. The text segment is read–only, whereas the data segment
is read–write.

21  Copyright IBM Corp. 1993
Linking and Binding

Relocating an Object Module

� The text section, or program code, is mapped to the text
segment

� The runtime virtual address of the text and data segment
origins are retained

� The applicable origin address is added to each of the
relocation entries

22 Copyright IBM Corp. 1993
Linking and Binding

Notes

Object modules and executable files are built to be address independent. That
is, they are not bound to a particular runtime address. For this reason, object
modules are often referred to as relocatable object modules. The linker uses
the relocation information contained in the object modules to create an
executable file. The relocation information specifies regions in the machine
code that are memory references to either data or subroutines. The addresses
of these references in the object module usually do not represent the runtime
address of the data or subroutines. The loader uses the relocation information
to patch the relevant locations in the machine code of the object module with
the runtime addresses.

23  Copyright IBM Corp. 1993
Linking and Binding

Code Organization for Shared
Objects

main()
{

printf(”Hello world\n”);
}

main()
{

printf(”Bye world!\n”);
}

app1.c app2.c

cc cc

libc.a

app1.o: main*

*references printf

app1 app2
app2.o: main*

*references printf

shr.o: printf

shr.o

libc.a

24 Copyright IBM Corp. 1993
Linking and Binding

Notes

Historically, linking multiple object modules was done statically. That is, the
code contained in the text section of the various object modules was actually
included in the final executable. Therefore, the executable was totally
self–contained and required no further symbol resolution. This approach
becomes inefficient when multiple executables reuse identical code, especially
as this potentially reusable code grows in size. Disk space is wasted since
copies of the same code appear in multiple programs. Changes to common
code require relinking of every executable that uses this code.

AIX V3 allows for static linking (discussed later), but has enhanced facilities for
dynamic linking. When dynamic linking is used, the text from the common
modules is NOT included in the final executable. Instead, special entries are
included in the XCOFF module to direct the system loader to the dynamically
linked modules. At load time, the necessary object modules are loaded and
any references to the text or data of the modules are resolved by the system
loader.

25  Copyright IBM Corp. 1993
Linking and Binding

Advantages of Dynamic Linking

� Disk space is saved since routines may be shared
among various applications

� An external, shared subroutine can be modified without
relinking every application that uses that routine

� At execution time, only one copy of the shared routine
exists in memory and is used by all applications
referencing that routine

� Applications use memory more conservatively since
they only need space for private data

26 Copyright IBM Corp. 1993
Linking and Binding

Notes

A shared routine only resides in one location on the disk, not in the multitude
of applications that utilize that routine.

If the internals of a shared routine are modified (for example, to fix a bug), the
new routine can be made available immediately to every application; relinking
an application is unnecessary.

Only enough paging space for one copy of the routine is required. This is more
efficient utilization of system resources.

Each application using the routine must acquire space for the data
requirements of that routine, but not the code.

27  Copyright IBM Corp. 1993
Linking and Binding

Traditional Linker Technology

� Object modules and libraries must be organized
according to references

� Library routines may only reference symbols in the same
or subsequent libraries, or in explicitly specified object
modules

� Errors resulting from multiply–defined symbols must be
manually corrected by the programmer

� Archives must be processed by the ranlib command to
avoid archive member ordering

28 Copyright IBM Corp. 1993
Linking and Binding

Notes

Historically, linkers have depended on command line object module and
archive ordering to resolve references to symbols contained in other object
modules and in libraries. The linker builds a list of all external symbolic
references and symbolic definitions for all input object files. This symbol table
list represents the symbols that need resolution and those that provide
definition. Symbol references are matched by name to symbol definitions, and,
once resolved, the symbol table entry is discarded. The traditional linker
processes library archive files differently than object files. Object files may
have cross references, but library files cannot. This means that library files
must be carefully placed on the linker command line. Library archive files are
scanned only once, so any reference to a library–defined symbol must already
be in the symbol table when the library is processed. The linker doesn’t keep
the external symbols defined in an archive library, so a referencing object
module must precede the library on the linker command line.

29  Copyright IBM Corp. 1993
Linking and Binding

AIX Linker Technology

� All symbols in all object modules and libraries are
included by the linker

� Symbols may be defined before they are referenced

� When multiple definitions of a symbol occur, the first
definition is retained and subsequent definitions are
discarded

� The linker automatically utilizes shared objects

30 Copyright IBM Corp. 1993
Linking and Binding

Notes

IBM’s linker implementation has removed the need for command line ordering
of object modules and archive libraries. The basic algorithm described before
is followed, with the exception that library archive symbols are not discarded.
The linker initially includes all symbols, discarding only symbol definitions that
duplicate already defined symbols. The first definition of each symbol in the link
always takes precedence and is used even if the first reference follows the
definition. Traditional UNIX linker only retain symbols that are referenced as
each object module is processed. Thus, a definition that is unused by the time
an object module is fully processed is discarded.

When shared objects are referenced on the command line, the linker
constructs the application to take advantage of those objects. The linker option
–bnso can be used to statically link shared objects (physically) into the
application. Static linking is an all–or–nothing prospect. For example, –bnso
will also cause the system library routines that are used by the application to
be linked into the application.

31  Copyright IBM Corp. 1993
Linking and Binding

An Example of Shared Objects

� Discuss program organization applicable to the use of
shared object modules

� Demonstrate the use of the “Exports” file

� Introduce the steps required to build the shared objects,
and to compile and link the application

32 Copyright IBM Corp. 1993
Linking and Binding

Notes

This example is designed to introduce the student to the concept of shared
objects. The use of shared objects requires some consideration of program
design, as well as additional detail in the link process. This detail takes the form
of a symbol export file which indicates to the linker what symbols are to be made
publicly available to eternally referencing modules.

To accomplish this introduction, this exercise will step through the procedures
necessary to design and build a small application that uses a shared object.

33  Copyright IBM Corp. 1993
Linking and Binding

An Example: Program Source
Code

#include <stdio.h>

extern void func1(),
func2(),
func3();

main()
{

func1();
func2();
func3();

}

main.c

shared1.c

shared2.c

#include <stdio.h>

void func1()
{

printf(”func1 called\n”);
}

void func2()
{

printf(”func2 called\n”);
}

#include <stdio.h>

void func3()
{

printf(”func3 called\n”);
}

34 Copyright IBM Corp. 1993
Linking and Binding

Notes

This example will consist of:

� two source files to be compiled and linked to create a shared library

� the source file which references the shared modules

� the exports file necessary to explicitly export the symbols in the shared
library that are referenced by other object modules

� the command lines to be used for compiling and linking the shared library
and the module

35  Copyright IBM Corp. 1993
Linking and Binding

An Example: the Main Application
vs. the Library Routines

� The main function represents that part of the code that
is application–specific and non–sharable

� The routines func1 , func2 , and func3 represent
modules that are usable by other applications

� The shared objects may contain local data; while the
code is shared by multiple copies of the application,
each copy maintains its own private (or local) data

36 Copyright IBM Corp. 1993
Linking and Binding

Notes

Consideration must be given to the organization of the application. The goal
is to organize a programming project into (potentially) reusable code and
application–specific code. The reusable code is targeted for a shared module,
and specific functions from that code are then made available to the ”outside
world” for use by any application.

37  Copyright IBM Corp. 1993
Linking and Binding

An Example: the Exports File

� Lists the names of any routines and/or data structures
that may be referenced by external modules

� The first line in the file names the linked shared object

� Each of the subsequent lines contain a single symbol

shrsub.exp
#! shrsub.o
func1
func2
func3

38 Copyright IBM Corp. 1993
Linking and Binding

Notes

When building a shared library, it is necessary to provide a list of symbols that
will be made available to referencing modules. This is done using an exports
file. An exports file contains the symbols that are to be explicitly exported by
a shared object module. The exports file also contains the name of the object
module that defines these exported symbols. Modules that reference these
exported symbols must import them at link time. This is accomplished by using
the –bI:exportsfilename flag, or by specifying the name of the shared object
module on the command line. Resolution of these imported symbols is
deferred until load time.

39  Copyright IBM Corp. 1993
Linking and Binding

An Example: Creating the Shared
Object

� Each source file is compiled to create separate standard
object modules

shared1.c
...

void func3()
{

...
}

cc –c shared1.c

...

void func1()
{

...
}

void func2()
{

...
}

cc –c shared2.c

shared2.c

shared1.o shared2.o

40 Copyright IBM Corp. 1993
Linking and Binding

Notes

Standard techniques are used to compile the individual source modules.

41  Copyright IBM Corp. 1993
Linking and Binding

An Example: Creating the Shared
Object...

� The compiled object modules are combined to create a
shared object

� Certain command line options are required for this step:
–T512, –H512. These options remain consistent for this
operation

shared1.o shared2.o

ld –o shrsub.o shared1.o shared2.o
–bE:shrsub.exp –bM:SRE –T512 –H512 –lc

shrsub.o

42 Copyright IBM Corp. 1993
Linking and Binding

Notes

The –H512 and –T512 options specify alignment information. This is a magic
incantation for the linker and specifies alignment information for the text and
data segments. Looking at the contents of both the /etc/xlc.cfg and
/etc/xlf.cfg configuration files, you can see that the stanzas within both specify
these options for the linker.

43  Copyright IBM Corp. 1993
Linking and Binding

An Example: Linking the
Application to the Object

� The non–shared portions of the application are compiled
in the normal manner

� The shared object is specified on the command line, but
the linked application only references the shared code
that resides within the object

� The directory named using the –L option is stored within
main

main.c shrsub.o

cc –o main main.c shrsub.o –L/thisdir/thatdir

main

44 Copyright IBM Corp. 1993
Linking and Binding

Notes

The program main is now executable. The symbols func1 , func2 , and func3
have been marked for deferred resolution. At runtime, the system loader will
place the shared object in the shared text memory segment (unless it is already
loaded) and dynamically resolve the references. To find the object modules,
the library search paths are used. The default search paths are the /lib and
/usr/lib directories; these paths are built into the linker but can be modified or
replaced (details later). For this example, the working directory is
/thisdir/thatdir , and this path is added to the search paths with the –L option.

Exactly how does a symbol get marked for deferred resolution? This is
discussed on the next foil.

If several shared object modules are to be used by an application, it is possible
to group the modules into an archive library. Compile and link each of the
shared object modules (using the steps shown), and use the following
command to create the archive library:

ar rv libshr.a shrsub.o anothershr.o yetanothershr.o

The command line to compile and link an (arbitrary) application using this
archive library would be:

cc –o mainapp mainsrc.c –L/u/sharedlib –lshr

Of course, the name of the archive library and the names of the shared library
object files vary according to the application.

45  Copyright IBM Corp. 1993
Linking and Binding

An Example: Resolving Symbols
at Runtime

� The main application references the symbols func1 ,
func2 , and func3 . The code for those symbols
continues to exist only in shrsub.o

� When the application is loaded into memory, the code in
shrsub.o is also loaded. Recall that main contains the
information necessary to find shrsub.o

.text section

main

IMP func1()
IMP func2()
IMP func3()

.loader section

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

main()
{

func1();
func2() ;
func3()

}

.text section

shrsub.o

.loader section

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

ÇÇÇÇÇÇÇÇÇÇÇÇ

EXP func1()
EXP func2()
EXP func3()

func1()
{}
func2()
{}
func3()
{}

46 Copyright IBM Corp. 1993
Linking and Binding

Notes

The actual code for func1 , func2 , and func3 is not physically copied to the
main application file.

During the final link (illustrated on the previous foil), the linker finds the
references to the symbols func1 , func2 , and func3 . While processing the
shared object, the same symbols are found as exported from that object. The
linker then marks those symbols as imported to the main application from the
shared object. The name of the shared object is stored in the main application,
along with the current library search paths. The application object module is
restructured and global linkage code is added at every reference to an external
function; this code manages the details of jumping to an external object,
executing code, and returning to the original module to resume execution. It
is this global link that provides the performance penalty in using shared
objects. During execution,12 machine cycles are required to complete each
and every jump to an external routine and begin execution in that routine.

Note that only the filename of the module is stored in the referencing module;
the path to the module must be explicitly specified. This is accomplished with
the command line option –L<path> , discussed in detail later.

Before the application begins execution, the system loader searches for any
symbols marked for deferred resolution. For each of these symbols, the object
module containing that symbol is loaded, if necessary. Housekeeping
concerning addressing from the main application to the shared object is
completed, and execution begins.

47  Copyright IBM Corp. 1993
Linking and Binding

Linker Flags: –l<libname>

� Specifies a particular (archive) library to be searched

� The name supplied is used to construct the name of a
library file on disk. This name is prefixed with “lib”, and
a “.a” suffix is added. For example, the math library is
specified on the command line as –lm ; the actual name
of the math library file is libm.a

� The option is a lowercase “L”

� The compiler configuration files specify a set of required
libraries for the associated compiler

48 Copyright IBM Corp. 1993
Linking and Binding

Notes

This is a (de–facto) standard command line argument used to name libraries
or archives.

49  Copyright IBM Corp. 1993
Linking and Binding

Linker Flags: –L<path>

� Lists additional directories to be searched by the linker

� Adds directories (to the built–in library paths) that are to
be searched by the system loader

� When specifying multiple paths, the –L option is used for
each separate path

� If path(s) are listed using this option, the LIBPATH
environment variable is ignored

� To permanently add a particular path for your
applications, set (or modify) the LIBPATH variable

50 Copyright IBM Corp. 1993
Linking and Binding

Notes

These built–in paths are in the linker source code. Recall that the library search
paths are stored in the executable program, and are used by the loader when
locating shared objects.

When libraries are specified using the –l option, additional directories to be
searched during the link can be specified with the –L option. All paths specified
in this manner are searched before the built–in search paths. Note that the first
occurrence of a library is the one that is used.

An environment variable, LIBPATH , may contain a list of library search paths.
This variable is mutually exclusive with the use of –L and the built–in paths.

The hierarchy of command line options and environment variable is:

� If –L is specified at least once, the listed paths (along with the built–in
paths) become the library search paths. This LIBPATH environment
variable is ignored.

� If the LIBPATH variable exists, and –L is not used, only the contents of the
environment variable are used to specify the library search path. The
built–in paths are not used.

� If –L is not used and the LIBPATH variable is not set, only the built–in paths
are used.

To modify the LIBPATH variable, add a line similar to the following to the
$HOME/.profile file:

LIBPATH=/u/me/mylibdir:/lib:/usr/lib
export LIBPATH

51  Copyright IBM Corp. 1993
Linking and Binding

LIBPATH at Runtime

� Used to change the search locations for libraries

� Contents are used before those specified when the
object or application was linked

� Due to the mechanism for examining the list of search
paths, the current working directory is also searched

52 Copyright IBM Corp. 1993
Linking and Binding

Notes

The environment variable LIBPATH be used to list a set of directories that
should be scanned to locate shared objects. The syntax for the contents of
LIBPATH are exactly the same as illustrated earlier:

export LIBPATH=$HOME/lib:$HOME/test/mylib

This will cause the loader to search for objects of the appropriate name in the
lib and test/mylib directories under the user’s home account. The object
names must, of course, match the names for which the loader is searching. As
an illustration, consider the example of building a shared object given earlier
in this module. Once the shared object shrsub.o is archived in libshr.a , it
would be moved to a “standard” location, $HOME/lib . The user could then link
an application to libshr.o using the command:

cc –o mainapp mainsrc.c –L$HOME/lib –lshr

Consider the necessity of modifying one of the routines within the shared
object, and using the existing application mainapp to test it. The new object
is built in the directory $HOME/test/mylib and is archived into
$HOME/test/mylib/libshr.a . To use the existing copy of mainapp to test it, the
user only needs to set the envinronment variable

export LIBPATH=$HOME/test/mylib

and run the application. The new shared object in the test/mylib subdirectory
will be loaded and executed. The search of this subdirectory will occur first, and
the new version of libshr.a will be found first.

53  Copyright IBM Corp. 1993
Linking and Binding

Linker Flags: –bE:<exports file>

� The exports file contains a list of symbols

� It is used to name routines that are to be visible to
referencing modules. The named symbols are marked
as exported in the .loader section of the defining module

� The same file can be used as an imports file in lieu of
naming a library during linking. Note, however, as an
imports file, it must contain a reference to the defining
object module (using the #! notation on the first line of the
file). Including this line does not affect its use as an
exports file

54 Copyright IBM Corp. 1993
Linking and Binding

Notes

55  Copyright IBM Corp. 1993
Linking and Binding

Linker Flags: –bM:<module type>

� The default module type is 1L. This specifies a
single–use object with private data

� S indicates that the module is shared, and should be
loaded into the shared library segment

� RE specifies a module as reusable. It requires a private
copy of data for every process that uses the module.
This is generally used (along with the S module type) to
create a shared library

56 Copyright IBM Corp. 1993
Linking and Binding

Notes

An additional option, –SRO, is designed to specify shared, read–only code. At
this time this is equivalent to –SRE.

57  Copyright IBM Corp. 1993
Linking and Binding

Linker Flags: –bnso

� Used to statically link object modules that have been
defined as shared

� When this flag is used, a private copy of code from the
shared objects is included in the final executable

� When this option is used with system libraries, the option
–bI:/lib/syscalls.exp must be used when linking

58 Copyright IBM Corp. 1993
Linking and Binding

Notes

The file /lib/syscalls.exp must explicitly be named as an import file when
statically binding to system libraries; e.g. libc.a .

Since the shared object is physically bound to the application, the resulting file
will be larger than if the shared libraries were used. Sometimes this can be a
significant difference in size.

59  Copyright IBM Corp. 1993
Linking and Binding

Linker Flags:
–bloadmap:<filename>

� Indicates that the linker should produce a file containing
detailed information about the link process

� Link errors and messages are stored in this file, along
with the internal binder commands used during the link

� The information contained in this file can be beneficial for
debugging purposes

60 Copyright IBM Corp. 1993
Linking and Binding

Notes

The loadmap will contain, for example, a list of multiple declarations of symbols,
where those multiple declarations were found, a list of object modules and
archives that were processed to build the executable, and the phases that the
binder goes through in during the build process.

61  Copyright IBM Corp. 1993
Linking and Binding

Control Sections, or “csects”

� The XL family of compilers generate object modules that
contain one or more csects

� A csect contains executable code or data

� The contents of a csect maintain a constant relationship;
the csect is viewed as a self–contained unit by the linker

� csects containing code are collected by the linker to form
the .text section of an executable; those containing data
are collected to form the .data section

62 Copyright IBM Corp. 1993
Linking and Binding

Notes

IBM compilers generate object modules that are composed of one or more
control sections (csects). A csect is a unit of executable code and/or data
generated by a compiler or assembler for which all elements retain a constant
relationship to one another. A csect is the smallest separately relocatable unit
of a program. The linker collects csects from multiple object modules into either
a read only area (text) or a read write area (data) to create an executable.

63  Copyright IBM Corp. 1993
Linking and Binding

Duplicate Symbol Definitions

� During a link, the first occurrence of a symbol takes
precedence, even if the first reference follows the first
definition

� If a duplicate symbol is encountered, it is discarded,
along with the csect containing that duplicate symbol.
Since the discarded csect may contain other symbols as
well, these other symbols are also discarded. As a
result, unresolved symbol errors may occur at the end of
the linking process

� The command line option –bnodelcsect can be used to
inform the linker that only the duplicate symbol itself
should be discarded, not the entire csect

� The linker has the liberty to reorder csects to place
symbol references near symbol definitions. The goal is
to reduce paging activity in the executing application

� The compilers can generate a csect containing a single
address constant. These csects are grouped together
to form the TOC

64 Copyright IBM Corp. 1993
Linking and Binding

Notes

As mentioned, the first definition of a symbol in a link takes precedence and is
used even if the first reference follows the definition. When a duplicate symbol
is encountered, the default action is to discard this symbol along with the csect
that contains it. All symbols contained in that csect are therefore discarded.

This approach may result in undefined symbol errors if these symbols are
referenced. This default behavior can be changed using the –b flag with the
suboption nodelcsect . This flag causes only the duplicate symbols to be
discarded, not the entire csect, thus eliminating any undefined symbol errors
caused by csect deletion.

APAR IX16036 is available to make nodelcsect the default option under AIX
version 3.1. This option is the default under AIX version 3.2.

An additional feature of the IBM linker is csect reordering. Code csects are
sorted based on the use of symbols by other csects; this is done to reduce
paging by placing definitions close to uses. An addtional option for the binder,
noobjreorder , bypasses the csect reordering phase. This option is included
in the new version mentioned above.

65  Copyright IBM Corp. 1993
Linking and Binding

Table of Contents (TOC)

� The linker collects all csects of storage class TC and
builds a contiguous area called the Table Of Contents

� The TOC is stored at the end of the .data section

� Function descriptors are stored immediately before
address constants

� Address constants within the TOC are indirect
references to the actual data storage locations

� Most load time relocation activity is concentrated in the
TOC

66 Copyright IBM Corp. 1993
Linking and Binding

Notes

A compiler or assembler can generate csects each containing a single address
constant. The link process will collect all the csects with a storage mapping
class of TC into a common area called the Table of Contents, or TOC. The TOC
is a collection of all the address constants of the program into a contiguous part
of the program data area. All Table Of Contents entries are placed at the end
of the data section, preceded by any function descriptors. The address
constants contained in the Table Of Contents are indirect references to the
actual data. This concentrates most load time relocation activity into a small
part of the data section.

The maximum number of symbols in the TOC is 16,000.

67  Copyright IBM Corp. 1993
Linking and Binding

Dynamic Linking

� Combined with the .loader section, the TOC is used to
resolve symbols at load time

� Information about the location of the symbol definition is
included in the .loader section of the executable file

� A TOC entry is created for each imported symbol. It is
initialized to 0 (zero)

� At load time, the object module defining the referenced
symbols is loaded. TOC entries for imported symbols
are filled in with the actual runtime address

� The search path is used to locate the named object
modules and libraries

68 Copyright IBM Corp. 1993
Linking and Binding

Notes

Dynamic linking in AIX V3 is accomplished using the XCOFF loader section
and the Table Of Contents. The loader section contains information used by
the system loader to dynamically resolve symbol references to external
symbols. These symbols are marked as imported during the link, and
information concerning the location of the actual symbol definition is included
so the loader knows where to go to resolve references. Each imported symbol
in the loader symbol table carries with it the name of the object module that
defines the symbol, and special information concerning the symbol type and
its storage class. Also included in the loader section is the search path used
to locate the defining object modules.

69  Copyright IBM Corp. 1993
Linking and Binding

Function Descriptors

� When a symbol referring to a function is exported from
an object module (using the –bE:<file> option), a
function descriptor is created in that module’s TOC

� The TOC entry for a symbol referring to an external
function points to a data structure called a function
descriptor

� Global linkage code (glink.o) is added to the .text
section for every imported symbol that references an
external function. This code uses the information within
a function descriptor to manage the flow of execution of
a program

70 Copyright IBM Corp. 1993
Linking and Binding

Notes

If the imported symbol is a function symbol, the TOC entry points to a function
descriptor located in the TOC of the module that defines the function. At
link–time, global linkage code is added for each imported function symbol.
This global linkage code accesses the function’s descriptor indirectly through
the TOC entry in the original module. The descriptor contains the entry point
address for the function code, and the address of the TOC for the defining
module. These values are used by the global linkage code to properly transfer
control to the function code.

71  Copyright IBM Corp. 1993
Linking and Binding

Function Descriptors...

� After relocation is completed, each function descriptor
contains the entry point address of the target function

� The address of the defining module’s TOC is also
contained in each descriptor

� Global linkage code manages the task of saving the
current TOC address, loads the TOC address of the
defining module (from the function descriptor), and
branches to the entry point of the function

72 Copyright IBM Corp. 1993
Linking and Binding

Notes

Function descriptors are created in the TOC of the defining module if the
function symbol is explicitly exported using the –bE:<exportsfilename> flag on
the link command line. The function descriptor is 12 bytes long. The first word
(4 bytes) is the address of the entry point for the function code. The second
word is the address of the TOC in the defining module. The third word is an
environment pointer for languages like Pascal and PL/I. For C and FORTRAN,
this third word is filled with zeros and is not used.

73  Copyright IBM Corp. 1993
Linking and Binding

Relinking an Application

� An executable file retains all the information necessary
to relink that file

� To replace an individual routine, it is only required to
relink the modified object module with the executable file

� Relinkability can reduce the time required to apply
changes to an application

� Due to the precedence rules for symbols, the new object
module(s) must be specified before the executable on
the command line

74 Copyright IBM Corp. 1993
Linking and Binding

Notes

An important feature of AIX V3 that is often overlooked is the relinkability of
executable modules. In other implementations, if a bug is found in one of the
modules that was included in a.out , it is necessary to change that module,
compile it, and then relink all of the component object modules that make up
a.out. In AIX V3, a.out can be used as input to a link. This means that if a bug
is found in one of the component object modules, that module must be changed
and recompiled, but it is not necessary to relink all of the component object
modules. AIX V3 allows the changed module to be linked directly with a.out

75  Copyright IBM Corp. 1993
Linking and Binding

Relinking an Application...

� Assume that the executable file is named a.out , and
contains routines from file1.c , file2.c , file3.c , file4.c and
file5.c

� Suppose a bug is discovered in file2.c , and the code is
modified. After compiling file2.c to create file2.o ...

� The link command necessary to rebuild the application
with the new module is:

cc file2.o a.out

� A new a.out file is created which contains the modified
file2.c code, as well as the original code from files
file1.c , file3.c , file4.c and file5.c

76 Copyright IBM Corp. 1993
Linking and Binding

Notes

For example, assume a.out consists of file1.c , file2.c and file3.c , file4.c , and
file5.c . If a bug is found in file2.c , then file2.c must be corrected and
recompiled. To produce an updated executable, only file2.o needs to be linked
with a.out using the command

cc file2.o a.out

Relinkability, used correctly, can reduce the time required to link an application.
Applications should be split into several modules to take full advantage of
relinkable executables.

77  Copyright IBM Corp. 1993
Linking and Binding

Linker Performance

� The use of third–party archive libraries usually produces
performance degradation. This can be due to a large
number of symbols, all of which are loaded, and some of
which require resolution

� AIX system libraries are shipped in binder–output
format. Thus, references between symbols within a
library are already resolved. This results in less work for
the linker

78 Copyright IBM Corp. 1993
Linking and Binding

Notes

The AIX V3 binder (linker) has been criticized as being slower than the linkers
of competitive systems. A substantial part of binder execution time is due to
the retention of symbols required to build a relinkable executable. If relinkability
is not exploited, then large applications will indeed take longer to link. Linking
to large archive libraries causes a definite performance degradation. The
system subroutine libraries such as libc.a are shipped in binder–output format,
as opposed to an archive of .o files. References within the library are already
resolved during the system build process, so only references from a user
application to the library need to be resolved.

79  Copyright IBM Corp. 1993
Linking and Binding

Prelinking a Library or Archive

� System libraries contain a large amount of shared code.
This implies that much of the symbol resolution is
deferred until load time

� Third party libraries can be easily prelinked to reduce
symbol resolution overhead. Given an archive with the
name libparty.a , the following command creates a
module in binder–output format:

ld –r libparty.a –o libpartya.o

� The –r option disables garbage collection

80 Copyright IBM Corp. 1993
Linking and Binding

Notes

However, many third–party subroutine libraries are shipped in archive form as
raw .o files. This introduces substantial overhead into the link process since
the binder has to do symbol resolution for the entire library each time the
application is bound. The performance difference between bound and
unbound libraries shows dramatic improvement. To pre–bind a third party
library, use the ld command with the –r option as in the following example.

ld –r libparty.a –o libpartya.o

This prebinds libparty.a to resolve any internal references and produces the
prebound library libpartya.o . The object module libpartya.o is then used on
a command line to resolve references from a user application to the library.

Note that this object module will be statically bound to the application.

Garbage collection is the process of deleting any unused or unreferenced
symbols.

81  Copyright IBM Corp. 1993
Linking and Binding

Creating a Shared Object From a
Library or Archive

� First create an exports list for the shared object

/usr/ucb/nm archive.a | grep ’ [BAD] ’ \
| cut –f3 –d’ ’ > archive.exp

� Then create the shared object

ld –o shr_arch.o archive.a –bM:SRE \
–bE:archive.exp –H512 –T512 \
<libs > –lc

� When linking to the shared object, indicate the location
of the shared object for load time resolution

xlc < objects > shr_arch.o \
–L/archive/path < other options >

82 Copyright IBM Corp. 1993
Linking and Binding

Notes

To turn an archive file into a shared object, first generate an exports list for the
symbols using the Berkeley version of nm . This version of nm more clearly
indicates which symbols are actually defined within the archive. Note that the
command above is a single command. The grep search pattern should have
a space both before and after the capital D. The cut field delimiter is a space
(the –d option). The export list file should be named appropriately.

The command to create the object is shown. An output filename is specified
as well as the export list generated in the previous step. The –bM option
indicates that the code should be marked shared–reentrant. The –H512 and
–T512 are alignment options (see the /etc/xlc.cfg file contents for the default
options for compiling and linking). Any libraries required to resolve symbol
references should be included as <libs>, as well as the standard C library.

Note also the addition of the –lc argument. Any libraries containing functions
that are used by anything within archive.a must be specified on the command
line to complete the symbol resolution process. This implies that much symbol
resolution is done when this object is created, not when the final application is
built.

83  Copyright IBM Corp. 1993
Linking and Binding

This Page Intentionally Left Blank

84 Copyright IBM Corp. 1993
Linking and Binding

Notes

The new shared object should be moved to /lib or /usr/lib . These are the
standard search directories. The file may also be renamed to resemble an
archive name; libshr_arch.a for example. (The linker understands the
contents of the file via the magic number; the name is merely a formality.) This
would allow the option –lshr_arch to be used on the command line:

xlc < objects > –lshr_arch etc...

If a standard library search path is not used, however, the –L option can be used
to add an additional path to the search list; an appropriate site–specific location
might be /usr/local/lib .

If the object is to remain in the development working directory, the command
line option might be –L$PWD (assuming the Korn or Bourne shell).

85  Copyright IBM Corp. 1993
Linking and Binding

Runtime Loading and Binding

� The load() system call can be used to install an object
module into an executing program. The system loader
is used to bring the module into memory

� Symbol resolution can take place when the object is
loaded, or at a particular point in the program. This later
resolution is accomplished with loadbind()

� The unload() routine can be used to remove object
modules from an executing program. These modules
must be loaded with the load() routine

86 Copyright IBM Corp. 1993
Linking and Binding

Notes

In addition to link time and load time binding, AIX V3 offers system calls to
facilitate runtime loading and resolution.

The functionality of the loader is directed towards a single executable. The
load () system subroutine encapsulates that functionality, allowing a running
program to invoke the loader, access object modules, and expand its own
capabilities.

A large application can be split up into two or more object files in one of two
ways that allows execution within the same process. The first way is to create
each of the application’s object files separately and use load () to explicitly load
an object when it is needed. The other way is to specify the relationship
between the object files when they are created by defining imported and
exported symbols.

Object files can import symbols from other object files. Whenever symbols are
imported from one or more other object files, these object files are automatically
loaded to resolve the symbol references if the required object files are not
already loaded, and if the imported symbols are not specified as “deferred
resolution” (the L_NOAUTODEFER flag with the load () system call).

The load () subroutine loads the object file for the program into the calling
process. Unlike the exec () subroutine, load () does not replace the current
program with the new one. Instead, it loads the new program into the process
private segment at the current break value; the break value is updated to point
past the new program. Upon successful completion, the load () subroutine
returns the pointer to the function that is the main entry point of the module.

87  Copyright IBM Corp. 1993
Linking and Binding

This Page Intentionally Left Blank

88 Copyright IBM Corp. 1993
Linking and Binding

The unload () subroutine is used to unload an object module that was added
using load (). When the calling process uses the unload () subroutine to unload
the object file, the space is unusable by the process except through another call
to the load () subroutine. If the kernel finds an unused space created by a
previous unload, rather than load the program at the break value, it loads the
program into this unused space. Space for loaded programs is managed by
the kernel, not by user–callable storage management routines.

Using the load (), unload (), and nlist () subroutines, it is possible to dynamically
link unrelated object modules. The nlist () subroutine allows a program to
examine the name list in the named executable file. It selectively extracts a list
of values and places them in the array of nlist structures passed as a parameter.
The symbol values returned are actually relocatable addresses that are used
by the loader at runtime for dynamic relocation. Therefore, it is necessary to
manipulate certain addresses in order to obtain function addresses in unrelated
object modules.

89  Copyright IBM Corp. 1993
Linking and Binding

System Limitations

� Program text is limited to a single segment of 256MB

� The shared text segment is limited to 256MB

� The process private data segment is limited to 256MB

� 10 shared data segments are available simultaneously
from a single process

� A shared data segment is limited to 256MB

� Adequate paging space must be available

90 Copyright IBM Corp. 1993
Linking and Binding

Notes

Using a combination of regular and shared text, a potential text size of 512 MB
may be reached. Using dynamic linking techniques, another (approximately)
240 MB of text space is available (recall that the load() function places a loaded
object into the data segment).

The maximum amount of private data per process is 256MB. This limit is
lowered via the data value in the file /etc/security/limits . Individual users may
have lower limits in their individual stanzas. The value in this file is in blocks;
therefore, 256MB is equivalent to 524288 blocks. If a change is made, the user
must logout and login for the new limitation to take effect.

If an application requires a large amount of text or data space, the paging space
on the system must be large enough to contain the application. Use the size
command to determine the application’s requirements. If either the data limit
or paging space is too small, the user will receive an “exec error” when
attempting to execute the program.

91  Copyright IBM Corp. 1993
Linking and Binding

Linking Very Large Programs

� If the error “0706–547 RLD in <filename> is not in a valid
section” occurs, the program space during the bind has
exceeded 232 bytes.

� To spread out linking overhead, use incremental
links to create partial object modules

� If the error

Could not load program
Error was:

occurs, then the text or data section has exceeded
256MB

� Utilize shared objects to move a portion of the code
to the shared text segment

� Utilize shared memory to store a portion of the data

92 Copyright IBM Corp. 1993
Linking and Binding

Notes

If a program is very large, its requirements may exceed the system limitations
on the maximum text or data segment size. Alternative programming
techniques may be required to sidestep these limitations.

To effectively use incremental linking, organize the code into logical groups.
Link each logical group into an intermediate object module using the –r option.
This allows the linker to resolve symbol references internal to that module. The
final link of the application will see a performance improvement as a result.

93  Copyright IBM Corp. 1993
Linking and Binding

Configuration Tips

� Linker performance bottlenecks include

� Inadequate paging space

� Inadequate physical memory

� User limits set too low

� Potential error messages:

� “Out of Resources”

� “Killed by signal 9”

� “Page space low”

94 Copyright IBM Corp. 1993
Linking and Binding

Notes

The linker requires a generous amount of virtual memory; at least twice the size
of physical memory, if not three times the size, is recommended. If there is not
a reasonable amount of physical memory available, excessive paging will
occur. Determining an acceptable system configuration is dependant upon the
type of development that will take place.

The user limits should be set to realistic values. In the /etc/security/limits file,
the following values are recommended:

stack = 65535
data = 262144 (or 524288)

If the compiler emits an “Out of Resources” error message, ensure that the /tmp
filesystem is of adequate size. Also, inadequate paging space may generate
a “Killed” or “Page space low” message.

To enforce a single compile and link at a time on the system, utilize the queueing
system and the enq command.

95  Copyright IBM Corp. 1993
Linking and Binding

Useful Commands

� nm

� /usr/ucb/nm is the BSD version of this command

� dump

� ar

� ranlib

� strip

� size

� slibclean

96 Copyright IBM Corp. 1993
Linking and Binding

Notes

The commands nm (/usr/usg/nm by default) and /usr/ucb/nm produce similar
information, but in different output formats. They both write the symbol table
of the named object module(s) to stdout.

The dump command writes selected parts of an object module to stdout.
Parameters cover every section of an XCOFF module.

The archive program ar combines one or more files into a file in archive format.
This command is most often used to create object module libraries.

ranlib is used to convert archive libraries into random libraries. A symbol table
containing every symbol in the library is built and inserted into the library.

strip reduces the size of an XCOFF module by removing the linking and
debugging information. Note that executables that are stripped are no longer
relinkable.

To determine the resource allocation of an application, the size command
reports on the requirements of the individual sections of an object module or
executable image.

Once a shared object becomes unused, it will remain in memory for an arbitrary
period of time. The slibclean command flushes unused objects from the
shared text segment. This is useful when repeatedly building and testing a new
shared object.

