International Technical Support Organization

An HACMP Cookbook

December 1995
Take Note!

Before using this information and the product it supports, be sure to read the general information under “Special Notices” on page xiii.
Abstract

This document deals with HACMP/6000 Version 3.1.1. Its goal is to serve as a reminder, checklist and operating guide for the steps required in order to install and customize HACMP/6000.

It describes a set of tools developed by the HACMP services team in IBM France, which make it easier to design, customize and document an HACMP cluster. Included in the book are the following:

• How to install the HACMP product
• Description of the tools developed by the HACMP services team in IBM France
• Steps to be carried out during an installation, including customization
• Testing suggestions

Following the instructions in the checklist will assist you towards a smooth and error-free installation. A basic understanding of the HACMP is assumed, and therefore is not included in the book.

(215 pages)
Contents

Abstract .. iii

Special Notices .. xiii

Preface .. xv
How This Document is Organized xv
Related Publications .. xvi
International Technical Support Organization Publications . xvii
ITSO Redbooks on the World Wide Web (WWW) xvii
Acknowledgments ... xviii

Chapter 1. Overview of the Tools 1
1.1 Installation Tips .. 2

Chapter 2. Inventory Tool .. 3
2.1 Inventory - Communication adapters 3
2.2 Inventory - Disks ... 3
2.3 Output from the Inventory Tool 3
2.4 Output Files ... 4
2.5 Sample Configuration .. 4
2.6 Example of Anomalies Report 6
2.7 When to Run the Inventory Tool 6

Chapter 3. Setting up a Cluster 7
3.1 Cluster Description ... 7
3.2 Planning Considerations 9
 3.2.1 Network Considerations 9
 3.2.2 Disk Adapter Considerations 10
 3.2.3 Shared Volume Group Considerations 11
 3.2.4 Planning Worksheets 12

Chapter 4. Pre-Installation Activities 13
4.1 Installing the Tools ... 13
4.2 TCP/IP Configuration ... 13
 4.2.1 Adapter and Hostname Configuration 13
 4.2.2 Configuration of /etc/hosts File 15
 4.2.3 Configuration of /.rhosts File 16
 4.2.4 Configuration of /etc/rc.net File 16
 4.2.5 Testing .. 16
4.3 Non-TCP/IP Network Configuration 17
 4.3.1 RS232 Link Configuration 17
 4.3.2 SCSI Target Mode Configuration 18
4.4 Connecting Shared Disks 19
4.5 Defining Shared Volume Groups 19
 4.5.1 Create Shared Volume Groups on First Node 20
 4.5.2 Import Shared Volume Groups to Second Node 24

Chapter 5. Installing the HACMP/6000 Software 27
5.1 On Cluster Nodes ... 27
5.2 On Cluster Clients ... 27
5.3 Installing HACMP Updates 28
Appendix D. Disk Setup in an HACMP Cluster

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1 SCSI Disks and Subsystems</td>
<td>107</td>
</tr>
<tr>
<td>D.1.1 SCSI Adapters</td>
<td>107</td>
</tr>
<tr>
<td>D.1.2 Individual Disks and Enclosures</td>
<td>110</td>
</tr>
<tr>
<td>D.1.3 Hooking It All Up</td>
<td>111</td>
</tr>
<tr>
<td>D.1.4 AIX's View of Shared SCSI Disks</td>
<td>116</td>
</tr>
<tr>
<td>D.2 RAID Subsystems</td>
<td>116</td>
</tr>
<tr>
<td>D.2.1 SCSI Adapters</td>
<td>117</td>
</tr>
<tr>
<td>D.2.2 RAID Enclosures</td>
<td>117</td>
</tr>
<tr>
<td>D.2.3 Connecting RAID Subsystems</td>
<td>117</td>
</tr>
<tr>
<td>D.2.4 AIX's View of Shared RAID Devices</td>
<td>121</td>
</tr>
<tr>
<td>D.3 Serial Disk Subsystems</td>
<td>122</td>
</tr>
<tr>
<td>D.3.1 High-Performance Disk Drive Subsystem Adapter</td>
<td>122</td>
</tr>
<tr>
<td>D.3.2 9333 Disk Subsystems</td>
<td>122</td>
</tr>
<tr>
<td>D.3.3 Connecting Serial Disk Subsystems in an HACMP Cluster</td>
<td>122</td>
</tr>
<tr>
<td>D.3.4 AIX's View of Shared Serial Disk Subsystems</td>
<td>123</td>
</tr>
<tr>
<td>D.4 Serial Storage Architecture (SSA) Subsystems</td>
<td>124</td>
</tr>
<tr>
<td>D.4.1 SSA Software Requirements</td>
<td>124</td>
</tr>
<tr>
<td>D.4.2 SSA Four Port Adapter</td>
<td>125</td>
</tr>
<tr>
<td>D.4.3 IBM 7133 SSA Disk Subsystem</td>
<td>126</td>
</tr>
<tr>
<td>D.4.4 SSA Cables</td>
<td>127</td>
</tr>
<tr>
<td>D.4.5 Connecting 7133 SSA Subsystems in an HACMP Cluster</td>
<td>128</td>
</tr>
<tr>
<td>D.4.6 AIX's View of Shared SSA Disk Subsystems</td>
<td>130</td>
</tr>
</tbody>
</table>

Appendix E. Example Cluster Planning Worksheets 131

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.1 Preface of the Report</td>
<td>137</td>
</tr>
<tr>
<td>E.2 SYSTEM CONFIGURATION</td>
<td>138</td>
</tr>
<tr>
<td>E.2.1 Cluster Diagram</td>
<td>138</td>
</tr>
<tr>
<td>E.2.2 Hostname</td>
<td>139</td>
</tr>
<tr>
<td>E.2.3 Defined Volume Groups</td>
<td>139</td>
</tr>
<tr>
<td>E.2.4 Active Volume Groups</td>
<td>139</td>
</tr>
<tr>
<td>E.2.5 Adapters and Disks</td>
<td>140</td>
</tr>
<tr>
<td>E.2.6 Physical Volumes</td>
<td>140</td>
</tr>
<tr>
<td>E.2.7 Logical Volumes by Volume Group</td>
<td>141</td>
</tr>
<tr>
<td>E.2.8 Logical Volume Definitions</td>
<td>141</td>
</tr>
<tr>
<td>E.2.9 Filesystems</td>
<td>145</td>
</tr>
<tr>
<td>E.2.10 Paging Spaces</td>
<td>145</td>
</tr>
<tr>
<td>E.2.11 TCP/IP Parameters</td>
<td>145</td>
</tr>
<tr>
<td>E.2.12 NFS: Exported Filesystems</td>
<td>146</td>
</tr>
<tr>
<td>E.2.13 NFS: Mounted Filesystems</td>
<td>146</td>
</tr>
<tr>
<td>E.2.14 NFS: Other Parameters</td>
<td>146</td>
</tr>
<tr>
<td>E.2.15 Daemons and Processes</td>
<td>147</td>
</tr>
<tr>
<td>E.2.16 Subsystems : Status</td>
<td>147</td>
</tr>
<tr>
<td>E.2.17 BOS and LPP Installation/Update History</td>
<td>148</td>
</tr>
<tr>
<td>E.2.18 TTY: Definitions</td>
<td>156</td>
</tr>
<tr>
<td>E.2.19 ODM: Customized Attributes</td>
<td>156</td>
</tr>
<tr>
<td>E.3 HACMP CONFIGURATION</td>
<td>160</td>
</tr>
<tr>
<td>E.3.1 Cluster (Command: cllsclstr)</td>
<td>160</td>
</tr>
<tr>
<td>E.3.2 Nodes (Command: cllsnode)</td>
<td>160</td>
</tr>
<tr>
<td>E.3.3 Networks (Command: cllsnw)</td>
<td>160</td>
</tr>
<tr>
<td>E.3.4 Adapters (Command: cllsif)</td>
<td>160</td>
</tr>
<tr>
<td>E.3.5 Topology (Command: cllsclf)</td>
<td>161</td>
</tr>
</tbody>
</table>
E.3.6 Resources (Command: clshowres -n All) 163
E.3.7 Daemons (Command: clshowsrv -a) 163
E.4 HACMP EVENTS and AIX ERROR NOTIFICATION 164
 E.4.2 Script: /usr/HACMP_ANSS/script/CMD_node_down_remote 167
 E.4.3 Script: /usr/HACMP_ANSS/script/CMD_node_up_remote 167
 E.4.4 Script: /usr/HACMP_ANSS/script/POS_node_down_remote 167
 E.4.5 Script: /usr/HACMP_ANSS/script/PRE_node_down_remote 167
 E.4.6 Script: /usr/HACMP_ANSS/script/PRE_node_up_remote 168
 E.4.7 Script: /usr/HACMP_ANSS/script/error_NOTIFICATION 168
 E.4.8 Script: /usr/HACMP_ANSS/script/error_SDA 169
 E.4.9 Script: /usr/HACMP_ANSS/script/event_NOTIFICATION 170
 E.4.10 Script: /usr/HACMP_ANSS/tools/tool_var 171
E.5 SYSTEM FILES ... 172
 E.5.1 File: /etc/rc .. 172
 E.5.2 File: /etc/rc.net 173
 E.5.3 File: /etc/hosts 176
 E.5.4 File: /etc/filesystems 178
 E.5.5 File: /etc/inetd.conf 180
 E.5.6 File: /etc/syslog.conf 181
 E.5.7 File: /etc/inittab 182
E.6 CONTENTS OF THE HACMP OBJECTS IN THE ODM 184
 E.6.1 odmget of /etc/objrepos/HACMPadapter 184
 E.6.2 odmget of /etc/objrepos/HACMPcluster 185
 E.6.3 odmget of /etc/objrepos/HACMPcommand 185
 E.6.4 odmget of /etc/objrepos/HACMPevent 195
 E.6.5 odmget of /etc/objrepos/HACMPfence 202
 E.6.6 odmget of /etc/objrepos/HACMPgroup 203
 E.6.7 odmget of /etc/objrepos/HACMPnetwork 203
 E.6.8 odmget of /etc/objrepos/HACMPnim 203
 E.6.9 odmget of /etc/objrepos/HACMPnim.120195 205
 E.6.10 odmget of /etc/objrepos/HACMPnim_pre_U438726 ... 205
 E.6.11 odmget of /etc/objrepos/HACMPnode 205
 E.6.12 odmget of /etc/objrepos/HACMPresource 206
 E.6.13 odmget of /etc/objrepos/HACMPserver 207
 E.6.14 odmget of /etc/objrepos/HACMPsp2 207
 E.6.15 odmget of /etc/objrepos/errnotify 207

List of Abbreviations ... 211

Index .. 213
Figures

1. Example of an inventory on a NODE ... 5
2. Example of a /tmp/HACMPmachine-anomalies file 6
3. Cluster disney ... 8
4. Defining Shared LVM Components for Non-Concurrent Access 20
5. Termination Resistor Blocks on the SCSI-2 Differential Controller 108
7. 7204-215 External Disk Drives Connected on an 8-Bit Shared SCSI Bus 111
8. 7204-315 External Disk Drives Connected on a 16-Bit Shared SCSI Bus 112
9. 9334-011 SCSI Expansion Units Connected on an 8-Bit Shared SCSI Bus ... 114
10. 9334-501 SCSI Expansion Units Connected on an 8-Bit Shared SCSI Bus .. 114
11. 7134-010 High Density SCSI Disk Subsystem Connected on Two 16-Bit Shared SCSI Buses ... 116
12. 7135-110 RAIDiant Arrays Connected on Two Shared 8-Bit SCSI Buses 118
13. 7135-110 RAIDiant Arrays Connected on Two Shared 16-Bit SCSI Buses 119
14. 7137 Disk Array Subsystems Connected on an 8-Bit SCSI Bus 120
15. 7137 Disk Array Subsystems Connected on a 16-Bit SCSI Bus 121
16. 9333-501 Connected to Eight Nodes in an HACMP Cluster (Rear View) 123
17. SSA Four Port Aapter .. 125
18. IBM 7133 SSA Disk Subsystem ... 126
19. High Availability SSA Cabling Scenario 1 .. 128
20. High Availability SSA Cabling Scenario 2 .. 130
21. Worksheet 1 - Cluster .. 131
22. Worksheet 2 - Network Adapters .. 132
23. Worksheet 3 - 9333 Serial Disk Subsystem Configuration 133
24. Worksheet 4 - Shared Volume Group test1vg 134
25. Worksheet 5 - Shared Volume Group test2vg 135
26. Worksheet 6 - Shared Volume Group conc1vg 136
Tables

1. Wiring scheme for the RS232 connection between nodes 98
2. Serial Storage Architecture (SSA) Cables 127
This publication is intended to help customers and IBM services personnel to more easily plan, install, set up, and document their HACMP clusters. The information in this publication is not intended as the specification of any programming interfaces that are provided by HACMP/6000 Version 3.1.1. See the PUBLICATIONS section of the IBM Programming Announcement for HACMP Version 3.1.1 for more information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that only IBM’s product, program, or service may be used. Any functionally equivalent program that does not infringe any of IBM’s intellectual property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment specified, and is limited in application to those specific hardware and software products and levels.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any formal IBM test and is distributed AS IS. The use of this information or the implementation of any of these techniques is a customer responsibility and depends on the customer’s ability to evaluate and integrate them into the customer’s operational environment. While each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own environments do so at their own risk.

Reference to PTF numbers that have not been released through the normal distribution process does not imply general availability. The purpose of including these reference numbers is to alert IBM customers to specific information relative to the implementation of the PTF when it becomes available to each customer according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines Corporation in the United States and/or other countries:

- AIX
- IBM
- POWERserver
- RISC System/6000
- SP
- HACMP/6000
- OS/2
- POWERstation
- RS/6000

The following terms are trademarks of other companies:

- C-bus is a trademark of Corollary, Inc.
PC Direct is a trademark of Ziff Communications Company and is used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company Limited.

Windows is a trademark of Microsoft Corporation.

NFS
PostScript

SUN Microsystems, Inc.
Adobe Systems, Inc.

Other trademarks are trademarks of their respective companies.
Preface

This publication is intended to help customers and IBM services personnel to more easily plan, install, set up, and document their HACMP clusters. It contains a description of a set of tools developed by the professional services team of IBM France for this purpose.

This document is intended for anyone who needs to implement an HACMP cluster.

How This Document is Organized

The document is organized as follows:

- Chapter 1, “Overview of the Tools”
 This chapter briefly describes each of the configuration and documentation tools included with the book.

- Chapter 2, “Inventory Tool”
 This chapter includes a description of and sample output from a tool that takes an initial inventory of a system that will be a cluster node, and reports any potential problems.

- Chapter 3, “Setting up a Cluster”
 This chapter begins the description of setting up our example cluster. It introduces and describes the example cluster we will set up and use throughout the book, and covers the major planning considerations to be made before starting a cluster setup.

- Chapter 4, “Pre-Installation Activities”
 The set of AIX configuration tasks that need to be done before the installation of HACMP is covered in this chapter. This includes TCP/IP network adapter definitions, tty and SCSI target mode definitions, connecting shared disks, and defining shared volume groups.

- Chapter 5, “Installing the HACMP/6000 Software”
 This chapter describes how to install the HACMP/6000 software and its updates. It also covers the necessary customizations to the clhosts and clinfo.rc files.

- Chapter 6, “Cluster Environment Definition”
 The definition of the cluster, its nodes, and the network adapters for HACMP are given in this chapter. The example cluster is used for the definitions.

- Chapter 7, “Node Environment Definition”
 This chapter describes how to define application servers, resource groups, and resources belonging to those resource groups.

- Chapter 8, “Starting and Stopping Cluster Services”
 The options involved in starting and stopping the HACMP software on a machine are described here.

- Chapter 9, “Error Notification Tool”
Once the basic cluster has been set up and tested, error notification can be used to take special action upon the occurrence of specified errors in the AIX error log. The set of tools included in this book includes a tool that makes the setup and testing of these error notification methods quite easy.

- Chapter 10, “Event Customization Tool”
 This chapter describes a tool provided with the book that makes the customization of cluster events easier. It provides an example of using the tool.

- Chapter 11, “Cluster Documentation”
 The documentation tool provided with this book generates extensive documentation of a cluster node and cluster definitions. This documentation report can be used to allow a new administrator to understand the original setup of the cluster. This chapter describes how to run the documentation tool and generate a report.

- Appendix A, “Qualified Hardware for HACMP”
 This appendix includes the HAMATRIX document, which lists the tested and supported hardware for HACMP, as of the date of publication. This document is continually updated as new devices are introduced.

- Appendix B, “RS232 Serial Connection Cable”
 This appendix describes the options for buying or building the RS232 connection cable that is used to connect nodes with a non-TCP/IP network.

- Appendix C, “List of AIX Errors”
 This appendix provides a list of AIX errors that can be put into the AIX error log. It can be used as a reference in using the error notification tool.

- Appendix D, “Disk Setup in an HACMP Cluster”
 This appendix gives detailed descriptions of the cable requirements and other activities involved in connecting any of the supported shared disks for HACMP.

- Appendix E, “Example Cluster Planning Worksheets”
 This appendix includes completed cluster planning worksheets for the example cluster whose setup we describe in the document.

- Part 1, “Cluster Documentation Tool Report”
 This appendix includes a cluster documentation report, generated by the documentation tool included with this redbook.

Related Publications

The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this document.

- HACMP/6000 Concepts and Facilities, SC23-2699
- HACMP/6000 Planning Guide, SC23-2700
- HACMP/6000 Installation Guide, SC23-2701
- HACMP/6000 Administration Guide, SC23-2702
- HACMP/6000 Troubleshooting Guide, SC23-2703
- HACMP/6000 Programming Locking Applications, SC23-2704
International Technical Support Organization Publications

- HACMP/6000 Customization Examples, SG24-4498
- High Availability on the RISC System/6000 Family, SG24-4551
- A Practical Guide to the IBM 7135 RAID Array, SG24-2565

A complete list of International Technical Support Organization publications, known as redbooks, with a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks, GG24-3070.

To get a catalog of ITSO redbooks, VNET users may type:

`TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG`

A listing of all redbooks, sorted by category, may also be found on MKTTOOLS as ITSOCAT TXT. This package is updated monthly.

How to Order ITSO Redbooks

IBM employees in the USA may order ITSO books and CD-ROMs using PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or by faxing 1-800-445-9269. Almost all major credit cards are accepted. Outside the USA, customers should contact their local IBM office. For guidance on ordering, send a PROFS note to BOOKSHOP at DKIBMVM1 or E-mail to bookshop@dk.ibm.com.

Customers may order hardcopy ITSO books individually or in customized sets, called BOFs, which relate to specific functions of interest. IBM employees and customers may also order ITSO books in online format on CD-ROM collections, which contain redbooks on a variety of products.

ITSO Redbooks on the World Wide Web (WWW)

Internet users may find information about redbooks on the ITSO World Wide Web home page. To access the ITSO Web pages, point your Web browser to the following URL:

`http://www.redbooks.ibm.com/redbooks`

IBM employees may access LIST3820s of redbooks as well. The internal Redbooks home page may be found at the following URL:

Acknowledgments

This project was designed and managed by:

David Thiessen
International Technical Support Organization, Austin Center

The authors of this document are:

Nadim Tabassum
IBM France

David Thiessen
International Technical Support Organization, Austin Center

The document is based on a version in the French language used in IBM France. The authors of the original document are:

C. Castagnier
IBM France

J. Redon
IBM France

Nadim Tabassum
IBM France

This publication is the result of a residency conducted at the International Technical Support Organization, Austin Center.

Thanks to the following people for the invaluable advice and guidance provided in the production of this document:

Marcus Brewer
International Technical Support Organization, Austin Center
Chapter 1. Overview of the Tools

This document should be used in conjunction with the tools provided on the included diskette. To install the tools onto a system, use the following command:

```
# tar xvf /dev/rfd0
```

The tools are installed in the /usr/HACMP_ANSS directory.

All the tools are written to use this directory. If you wish to change this, it will involve a considerable effort on your part, and your scripts may not be in the same place in all sites where you use the tool.

The main subdirectories are:

tools
This directory contains the tools provided to help you customize your environment. There is a subdirectory for each tool under this directory. Certain files which are common to all of the tools are also stored here.

- **DOC_TOOL** - there are two tools here. The first, inventory, is used to obtain the state of the system before installing HACMP. This will also give you a list of any problems you may encounter due to different machines having similar logical volume names, SCSI ids, or other characteristics. The second tool, doc_dossier, produces a detailed description of your cluster configuration and should be run after installing HACMP. You can print out the report either in an ascii, VM or PostScript format.

- **ERROR_TOOL** - this tool allows you to customize the handling of system errors.

- **EVENT_TOOL** - this tool allows you to customize the actions taken in response to cluster events.

script
This directory is not created at install time. It is created the first time one of the tools needs to write something into it. You should place all of your customized scripts here and this directory should never be deleted. Skeleton files are created here for certain events and errors; these should be tailored to suit your needs.

utils
This directory contains site specific scripts which are created by the tools.

dessin
This directory contains the files used to draw the cluster configuration.

backup
This directory is created the first time it is called. It contains the output files for the tools when they are run.

Log files for the messages, errors and warnings generated by the customized scripts are stored in the directory /var/HACMP_ANSS/log. This directory is automatically created the first time that the tools are used. It contains two files which are created when they are first invoked. The files are called:

- hacmp.errlog
- hacmp.eventlog
As you use the tool, you will notice a French flavor in the variable names and file names. This has been preserved to recognize the heritage of the tools.

1.1 Installation Tips

Do not copy `/usr/HACMP_ANSS` from one machine in order to install the tools onto another machine. The script, `utils` and backup subdirectories will contain customized files which are specific for that machine.

To recover the tool for installation upon another machine, use the `SAVE` script in the `/usr/HACMP_ANSS/tools` directory, which has been specifically designed for this task, or use the original diskette if you still have it. To run this script (do not forget to insert a diskette) issue the command:

```
# /usr/HACMP_ANSS/tools/SAVE
```
Chapter 2. Inventory Tool

This tool examines the system configuration and determines if there are any points where we might have to pay particular attention. The shell script is called `inventory` and is found in the directory `/usr/HACMP_ANSS/tools/DOC_TOOL`.

The output file contains information on the configured adapters and disks. If you take this file to another system and run `inventory`, the tool will compare the output of the two files and indicate any potential points of conflict between the two systems.

2.1 Inventory - Communication adapters

This part of the `inventory` tool detects the presence of ethernet, token ring or FDDI adapters and gives the following:

- Slot number it is installed in
- Device name of the adapter

2.2 Inventory - Disks

This part of the `inventory` tool does the following:

- Lists the disk adapters
- Checks the SCSI ID of each adapter so you will know whether you will have to change it (SCSI disks ONLY)
- Lists the disks connected to an adapter
- Lists the logical volumes (LVs) and indicates whether they are mirrored or not
- Checks that LV names and mount points are unique for each filesystem on the cluster nodes
- Checks that LV names are not trivial (like lv00 or lv01)

2.3 Output from the Inventory Tool

You will need a diskette and a printer, if you wish to have a hard copy of the output. The diskette is used to transfer the inventory produced on one node to another node. This allows the tool to identify any potential problems or conflicts between nodes.

If your machine does not have a floppy disk drive, then use `ftp` or `rcp` to transfer the files across to the other node.

If you do not have a printer connected to your machine, you can use the tool to save the output files on to a DOS or UNIX diskette. Then you can print the output from a PC or other UNIX or AIX machine.

All these options are presented by a menu after the inventory program has terminated.
2.4 Output Files

You can always examine the results which are presented on the screen. All output files are saved in the /tmp directory, with the name prefixed by HACMPmachine- and followed by hostname and a suffix indicating the type of output.

On a machine with the hostname jack, the files would be called:

```
HACMPmachine-jack-conf
HACMPmachine-jack-lv
HACMPmachine-jack-tty
```

2.5 Sample Configuration

Figure 1 on page 5 shows an inventory report generated by the inventory tool.
The following serial ports were found:

<table>
<thead>
<tr>
<th>ADAP</th>
<th>ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>sa1</td>
<td>00-00-S1</td>
</tr>
<tr>
<td>sa2</td>
<td>00-00-S2</td>
</tr>
</tbody>
</table>

The following ttys are configured:

<table>
<thead>
<tr>
<th>TTY</th>
<th>TERM</th>
<th>LOGIN</th>
<th>STOPS</th>
<th>BPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>tty0</td>
<td>ibm3151</td>
<td>enable</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>tty1</td>
<td>dumb</td>
<td>disable</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

The following network adapters were found:

<table>
<thead>
<tr>
<th>NAME</th>
<th>ADDRESS</th>
<th>GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ent0</td>
<td>00-00-0E</td>
<td></td>
</tr>
</tbody>
</table>

The scsi0 adapter has its SCSI ID set to id 7
and has the following disks connected to it:

<table>
<thead>
<tr>
<th>ADAP</th>
<th>DISK</th>
<th>ADDRESS</th>
<th>GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>scsi0</td>
<td>hdisk0</td>
<td>00-00-0S-00</td>
<td>rootvg</td>
</tr>
<tr>
<td>scsi0</td>
<td>hdisk1</td>
<td>00-00-0S-40</td>
<td>nadv</td>
</tr>
<tr>
<td>scsi0</td>
<td>hdisk2</td>
<td>00-00-0S-50</td>
<td>nadv</td>
</tr>
</tbody>
</table>

Volume group rootvg contains the following logical volumes

<table>
<thead>
<tr>
<th>VG NAME</th>
<th>LV NAME</th>
<th>TYPE</th>
<th>MOUNT POINT</th>
<th>MIRROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>rootvg</td>
<td>hd6</td>
<td>paging</td>
<td>N/A</td>
<td>no mirrored copies defined</td>
</tr>
<tr>
<td>rootvg</td>
<td>hd5</td>
<td>boot</td>
<td>/blv</td>
<td>no mirrored copies defined</td>
</tr>
<tr>
<td>rootvg</td>
<td>hd7</td>
<td>sysdump</td>
<td>/mnt</td>
<td>no mirrored copies defined</td>
</tr>
<tr>
<td>rootvg</td>
<td>hd8</td>
<td>jfslog</td>
<td>N/A</td>
<td>no mirrored copies defined</td>
</tr>
<tr>
<td>rootvg</td>
<td>hd4</td>
<td>jfs</td>
<td>/</td>
<td>no mirrored copies defined</td>
</tr>
<tr>
<td>rootvg</td>
<td>hd2</td>
<td>jfs</td>
<td>/usr</td>
<td>no mirrored copies defined</td>
</tr>
<tr>
<td>rootvg</td>
<td>hd1</td>
<td>jfs</td>
<td>/home</td>
<td>no mirrored copies defined</td>
</tr>
<tr>
<td>rootvg</td>
<td>hd3</td>
<td>jfs</td>
<td>/tmp</td>
<td>no mirrored copies defined</td>
</tr>
<tr>
<td>rootvg</td>
<td>hd9var</td>
<td>jfs</td>
<td>/var</td>
<td>no mirrored copies defined</td>
</tr>
<tr>
<td>rootvg</td>
<td>lvtmp</td>
<td>jfs</td>
<td>/netview</td>
<td>no mirrored copies defined</td>
</tr>
</tbody>
</table>

Volume group nadv contains the following logical volumes

<table>
<thead>
<tr>
<th>VG NAME</th>
<th>LV NAME</th>
<th>TYPE</th>
<th>MOUNT POINT</th>
<th>MIRROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>nadv</td>
<td>fslv00</td>
<td>jfs</td>
<td>/alpha</td>
<td>mirror 2 copies</td>
</tr>
<tr>
<td>nadv</td>
<td>beta</td>
<td>jfs</td>
<td>/beta</td>
<td>mirror 2 copies</td>
</tr>
<tr>
<td>nadv</td>
<td>gamma</td>
<td>jfs</td>
<td>/gamma</td>
<td>mirror 2 copies</td>
</tr>
<tr>
<td>nadv</td>
<td>delta</td>
<td>jfs</td>
<td>/delta</td>
<td>mirror 2 copies</td>
</tr>
<tr>
<td>nadv</td>
<td>nadlog</td>
<td>jfslog</td>
<td>N/A</td>
<td>mirror 2 copies</td>
</tr>
<tr>
<td>nadv</td>
<td>zeta</td>
<td>jfs</td>
<td>N/A</td>
<td>mirror 3 copies</td>
</tr>
<tr>
<td>nadv</td>
<td>theta</td>
<td>jfs</td>
<td>N/A</td>
<td>mirror 3 copies</td>
</tr>
<tr>
<td>nadv</td>
<td>lv_netview</td>
<td>jfs</td>
<td>/usr/OV</td>
<td>no mirrored copies defined</td>
</tr>
<tr>
<td>nadv</td>
<td>lv_sm6000</td>
<td>jfs</td>
<td>/usr/adm/sm6000</td>
<td>no mirrored copies defined</td>
</tr>
</tbody>
</table>

Figure 1. Example of an inventory on a NODE
2.6 Example of Anomalies Report

An example of /tmp/HACMPmachine-anomalies is shown below. This file is produced as a result of running inventory on the second machine. You must already have copied across the results of running inventory on the first machine.

```
66 6666 6666 6666 6 6 6666 6 6 66
6 6 6 6 6 6666 6 6 66 6 6 66 6
6666 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6
```

ANOMALIES: CONFIGURATION INFORMATION
COMPARING THE TWO NODES

IDENTIFYING rs232 PORTS ON THE TWO NODES
NODE: jack - tty0 dumb disable 1 8
NODE: nadim - tty1 dumb disable 1 8

CHECKING THE SCSI ID’s OF THE SHARED ADAPTERS
NODE: jack: The scsi0 adapter has its SCSI ID set to id 7
NODE: nadim: The scsi0 adapter has its SCSI ID set to id 7

CHECKING THE MOUNT POINTS
The /lll directory has the same mount point on the 2 nodes
The /mountp directory has the same mount point on the 2 nodes

CHECKING THE LOGICAL VOLUME NAMES
logical volume: zz has the same name on the 2 systems
logical volume lv00 has a non significant name on NODE: jack

Figure 2. Example of a /tmp/HACMPmachine-anomalies file

2.7 When to Run the Inventory Tool

The inventory can be run at any time. However, it is most useful to run it early in your setup process. Typically you would run the tool on each machine that will be a cluster node, before you have connected your shared disks and defined your shared volume groups.
Chapter 3. Setting up a Cluster

This chapter will begin to illustrate the setup of an HACMP cluster, using the set of tools provided with this document. This chapter, and those to follow, will cover:

- Planning Considerations
- Pre-Installation Activities
- Installing HACMP
- Cluster Environment Definition
- Node Environment Definition
- Starting and Stopping HACMP
- Error Notification Customization
- Event Customization
- Documenting your Cluster

Spread throughout our example will be descriptions of the correct times to run each of the various tools provided.

3.1 Cluster Description

We will now describe the cluster we are about to set up. This cluster will consist of two nodes, and will be set up in what is traditionally called a Mutual Takeover configuration. This is a configuration where each node serves a set of resources during normal operations, and each node provides backup for the other. There will also be a concurrent access volume group included. The cluster to be built is shown in Figure 3 on page 8.

Several observations should be made about this cluster:

- The cluster nodes are evenly matched 5XX model CPUs. This makes them good candidates for Mutual Takeover, since each node is able to handle an equal application load during normal operations.
- The main or public network is a Token-Ring network. Each node has two interfaces on this network, a service and a standby. Since we will be configuring each node to be able to take over the IP address of the other, each node will also have a boot address to be used on its service interface. This will allow the machine to boot and connect to the network without conflicts, when its service address has been taken over and is still active on the other node.
- There is a second network, an ethernet network called etnet1. This network will be defined to HACMP as a private network. As such, it will be used to carry Cluster Lock Manager traffic between nodes. A private network is highly recommended in any configuration using concurrent access. The private network has only service interfaces, and not standby interfaces. Standby interfaces can, of course, also be used in private networks, but since Cluster Lock Manager traffic automatically shifts to the public network if there is a private network failure, standby interfaces on a private network are not essential.
The cluster has IBM 9333 Serial disks as its shared disks. There are two 9333 subsystems connected. The first one includes four disk drives, which will be configured into two volume groups, each containing two disks. The second subsystem includes two disks, which will be contained in a single concurrent volume group. The node mickey has two 9333 disk adapters, each connected to one of the subsystems. The other node goofy has only one 9333 disk adapter, which is connected to both 9333 subsystems.

There is also a raw RS232 link between native serial ports on the two nodes, who each have a tty device defined. This link will be defined as an HACMP network called rsnet1, and will be used so that the cluster can continue to send keepalive packets between nodes, even if the TCP/IP subsystems fail on one or more nodes.
• Node goofy has two internal disks in its rootvg volume group, while node mickey has only one. This will cause the shared disks to have different device names on each of the nodes. For example, one of the shared disks will be named hdisk1 on node mickey, and hdisk2 on node goofy. This is a common situation in clusters, and is nothing to worry about.

• There is a client system, connected on the token-ring network, called pluto. We will be installing the client component of the HACMP software on this system.

3.2 Planning Considerations

Depending on the type of hardware configuration you have in your cluster, you will have more or less planning considerations to deal with. If you are using SCSI disks as your shared disks, you will have more planning items to consider. Since we do not have shared SCSI disks in our example cluster, these concerns will not be ours in this setup, but we will deal with the planning items in this section. All cluster implementers must deal with planning items associated with:

• Networks
• Shared Disks
• Shared Volume Groups
• Planning Worksheets

3.2.1 Network Considerations

Every cluster should have one or more TCP/IP networks, and at least one non-TCP/IP network. The non-TCP/IP network allows keepalive packets to keep flowing from a node where the TCP/IP subsystem, but not the node itself, has failed. Either a raw RS232 link between systems, or a SCSI Target Mode connection can be used as a non-TCP/IP network. The setup of this network will be described later in this chapter.

3.2.1.1 TCP/IP Network Addresses

The following points must be considered when planning network addresses:

• The same subnet mask must be in use for all adapters on a node.

• Standby adapters must be on a different logical subnet from their service adapters.

• If a system will be having its service IP address taken over by another system, it must have a boot address configured. This boot address will be on the same logical subnet as the service address. The TCP/IP interface definition for the service adapter should be set to the boot address in this situation. If IP address takeover will not be used for this node, no boot address is necessary.

Please see the Planning Worksheets for our cluster in Appendix E, “Example Cluster Planning Worksheets” on page 131 to see how we have defined our adapters.
3.2.1.2 Hardware Address Takeover

HACMP can be configured to take over the hardware or MAC address of a network adapter, at the same time as it is taking over the IP address. If this facility is to be used, you must define, for each service interface that will have its address taken over, a dummy hardware address. This dummy address will be assumed by the adapter when it enters the cluster, and will be the hardware address that client systems associate with the system. This hardware address will then be moved, along with the IP address, whenever a failure in the cluster necessitates it.

This capability is only available for Token-Ring and ethernet networks. It allows you to have an IP address takeover, without having to refresh the ARP cache in each of the client systems. The relationship between IP address and MAC address remains constant throughout the takeover.

When you are defining a dummy hardware address, it is necessary for you to make sure that it does not conflict with any existing hardware address on the network. A good way to ensure this is to make your dummy address very close to the real hardware address of the adapter. For Token-Ring adapters, a convention for such an alternate hardware address is to change the first two digits of the real hardware address to 42. For ethernet adapters, there is no such convention. Many users will just change the last two digits of their adapter’s address, and test with the ping command to make sure this address does not conflict.

3.2.2 Disk Adapter Considerations

The following considerations have to do with SCSI adapters only. If you are using 9333 Serial disks or 7133 SSA disks as your shared disks, you need not worry about any of these considerations. If you are using SCSI disks as your shared disks, you need to worry about several setup issues:

3.2.2.1 Termination

A SCSI bus must be terminated at each end. Normally, in a single system configuration, SCSI bus termination is done on the adapter at one end, by use of terminating resistor blocks. At the other end, the bus is terminated by a terminator plug, which is attached to the last device on the string.

In an HACMP cluster, you will have at least two and possibly more systems sharing the same set of SCSI disks. To be able to create a SCSI string, including both disk devices and SCSI adapters in systems, special Y-Cables are used. Also, the termination of the bus must be moved off the adapters themselves, and on to the Y-cables, to allow more than just two systems to share the bus.

Therefore, if you are using SCSI shared disks, you must use the correct Y-cables to connect them, and you must be sure to remove the terminating resistor blocks from each of your shared SCSI adapters. Depending on whether you are using 8-bit or 16-bit Fast/Wide adapters, the location of these terminating resistor blocks will be different.

There are pictures of the locations of these blocks on each of the adapters, as well as a full description of how to cable each of the types of shared disks with HACMP in Appendix D, “Disk Setup in an HACMP Cluster” on page 107.
3.2.2.2 SCSI IDs

It is mandatory, on a SCSI bus, that each device on the bus have a unique SCSI ID. Of course, everyone is used to making sure that each of the disk devices on a SCSI bus has a unique ID. In an HACMP cluster, you must also make sure that each of the adapters has a unique ID as well. Since SCSI adapters typically default to an ID of 7, this means you must change at least one.

It is highly recommended to change all SCSI adapter IDs to something other than 7. This is because certain recovery activities, including booting from diagnostic diskettes, return the SCSI adapters to ID 7, even though they might be configured for some other ID. If this is the case, an adapter under test could conflict with another adapter with that ID. Therefore, all shared SCSI adapter IDs should be changed from 7 to some other number. Since the highest ID always wins any arbitration for the SCSI bus, you should have all your adapters with the highest IDs on the bus.

There is a full description of how to change the SCSI ID on each of the supported types of SCSI adapters in Appendix D, "Disk Setup in an HACMP Cluster" on page 107.

3.2.2.3 Rebooting the Nodes

Whenever you have to reboot your cluster nodes, it is important that you do it one node at a time. If both nodes reach the point in their boot procedure where they are configuring the shared disks at the same time, you may have conflicts which will cause the disks not to be properly configured. This is why you should always first reboot one node, and wait until it has completed before rebooting the next node.

3.2.3 Shared Volume Group Considerations

There are several things to keep in mind when implementing shared volume groups. The special concerns have to do with naming and with major numbers.

3.2.3.1 Shared Volume Group Naming

Any shared volume group entity, including journaled filesystem logs (jfslogs), logical volumes, filesystems, and the volume groups themselves, must be explicitly named by you. If you allow the system to assign its default name for any of these items, you are most likely to have a naming conflict with an existing entity on one of the systems in the cluster.

Before you create any filesystems in your shared volume group, you should first create and explicitly name your jfslog. Once this is done, all filesystems you create in that volume group will use it.

Also, for any shared filesystems, you should not just create the filesystem, and allow the system to create the logical volume to contain it. This will allow the system to assign a logical volume name that is sure to conflict with something else in the cluster. Instead, first create the logical volume to contain the filesystem, giving it a unique name, and then create the filesystem on the logical volume. These procedures are shown later in our setup example.
3.2.3.2 Major Numbers
It is highly recommended to make sure that your shared volume groups have the same major number on each node. If you are exporting a shared filesystem through NFS to client systems, and a failure occurs, the client systems will only maintain their NFS mounts over the failure if the major number is the same. This is because NFS uses the major number as part of its file handle.

If you do not specify a major number when you create or import a shared volume group, the system will assign the next lowest unused number. Since different systems have different device configurations, it is almost certain that the next available number on each system will be different. You can check on the available major numbers on each system by running the `1vlstmajor` command. If you run this command on each node, and then choose a commonly available number to assign to your volume group, you will be OK.

A good recommendation is to use numbers much higher than any of the ones used in your system. For example, you might want to use numbers 60 and above to assign to your shared volume groups. We have found that, in upgrading to AIX Version 4.1, the system reserves many more major numbers than it did in AIX Version 3.2.5. If you use high numbers, you will not need to reassign your major numbers again if and when you upgrade to AIX Version 4.1.

3.2.4 Planning Worksheets
The HACMP/6000 Planning Guide includes a set of planning worksheets. These worksheets should be filled out when planning your cluster, before starting to set it up. These worksheets will force you to think through your planned configuration in detail, and make it much easier when it actually comes to doing the configuration. The completed worksheets for the cluster we will be setting up can be found in Appendix E, “Example Cluster Planning Worksheets” on page 131.
Chapter 4. Pre-Installation Activities

There are certain AIX configuration activities to be carried out before installing HACMP on your systems. These activities involve working on each of the systems that will become cluster nodes. They include preparing your network adapters, connecting your shared disks, and defining your shared volume groups.

4.1 Installing the Tools

Make sure that you have 2 MB free in the /usr filesystem. The tools will be installed into the directory /usr/HACMP_ANSS. The tools themselves take up less than 1 MB but they will create other directories and generate other programs.

Assuming you have the diskette included with this document, put it in your diskette drive, and issue the following commands:

```
# mkdir /usr/HACMP_ANSS
# tar -xvf /dev/fd0
```

If you do not have enough space in the /usr filesystem, and do not wish to make it bigger, you can make a separate filesystem for the tools by issuing the following commands:

```
# mklv -y 'toolhacman' rootvg 2
# crfs -v 'jfs' -d 'toolhacman' -m '/usr/HACMP_ANSS' -A 'yes' -p 'rw' -t 'no'
# mount /usr/HACMP_ANSS
# tar -xvf /dev/fd0
```

4.2 TCP/IP Configuration

The configuration of TCP/IP, before the installation of HACMP, involves:

- Configuration of adapters and hostnames
- Configuration of the /etc/hosts file
- Configuration of the /.rhosts file
- Testing

4.2.1 Adapter and Hostname Configuration

Now, each of the TCP/IP network adapters on your system must be defined to AIX. Use the worksheets you have prepared, or a diagram you have drawn of your cluster, like the one in Figure 3 on page 8, to refer to the network addresses you need.

Service and standby adapters should be configured. If you will be using a boot address, the service adapter should be configured to this address, rather than the service address.
It is recommended to configure the hostname of the system to be the same as the IP label for your service address, even if the IP address of the service adapter is initially set to the boot address.

You will issue the command `smit mktcpip` to take you to the panel where you will configure your service adapter:

```
Minimum Configuration & Startup

To Delete existing configuration data, please use Further Configuration menus

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]

* HOSTNAME               [mickey]
* Internet ADDRESS (dotted decimal) [9.3.1.45]
  Network MASK (dotted decimal) [255.255.255.0]
* Network INTERFACE tr0
  NAMESERVER
    Internet ADDRESS (dotted decimal) 
    DOMAIN Name 
    Default GATEWAY Address 
    (dotted decimal or symbolic name) 
  RING Speed 16 +
  START Now yes +

F1=Help  F2=Refresh  F3=Cancel  F4=List
F5=Reset  F6=Command  F7=Edit  F8=Image
F9=Shell  F10=Exit  Enter=Do
```

Note that we have assigned a hostname of `mickey`, even though we have configured the IP address to be the boot address. If you are using a nameserver, be sure also to include the information about the server, and the domain, in this panel.

From here, we will use the command `smit chinet` to take us to the panel to configure the other network adapters. Here is the example for node `mickey`'s standby adapter:
4.2.2 Configuration of /etc/hosts File

Whether you are using nameserving or not, you will always want to include definitions for each of the cluster nodes’ TCP/IP adapters in your /etc/hosts file. This will allow the cluster to continue working correctly even if your nameserver is lost.

You can either edit the /etc/hosts file directly, or use smit hostent to use SMIT for this purpose. Here is an example of the /etc/hosts definitions, configured for our example cluster:

```
# Cluster 1 - disney
9.3.1.45  mickey_boot
9.3.1.79  mickey
9.3.4.79  mickey_sb
9.3.5.79  mickey_en
9.3.1.46  goofy_boot
9.3.1.80  goofy
9.3.4.80  goofy_sb
9.3.5.80  goofy_en
```

Once you have created the /etc/hosts file on one system, you can use ftp to transfer it to each of your other cluster nodes.
4.2.3 Configuration of /.rhosts File

HACMP uses the /.rhosts file to allow it to carry out remote operations in other nodes. This is used for such things as synchronizing configurations between nodes, and running the cluster verification utility.

You should edit the /.rhosts file on the first node, and include each of the TCP/IP adapters on each of your cluster nodes. If you are using a nameserver, it is suggested to put each entry in its unqualified form, and also its fully qualified form, to allow the remote facilities to work correctly, whether the nameserver is available or not.

Here is an example of the /.rhosts file for our cluster:

```
mickey_boot
mickey
mickey_sb
mickey_en
goofy_boot
goofy
goofy_sb
goofy_en
mickey_boot.itsc.austin.ibm.com
mickey.itsc.austin.ibm.com
mickey_sb.itsc.austin.ibm.com
mickey_en.itsc.austin.ibm.com
goofy_boot.itsc.austin.ibm.com
goofy.itsc.austin.ibm.com
goofy_sb.itsc.austin.ibm.com
/goofy_en.itsc.austin.ibm.com
```

Be sure the permissions on the /.rhosts file are set to 600; that is, read/write for root, and no access for anyone else. Again, once you have created this file correctly on one node, you can use ftp to transfer it to each of the others. Remember that any new files delivered by ftp will be set up with default permissions. You may need to sign on to each of the other nodes and change the permissions on the /.rhosts file.

4.2.4 Configuration of /etc/rc.net File

Unless you will be using your cluster node as a gateway or router, you should add the following statements to the end of the /etc/rc.net file:

```
/etc/no -o ipforwarding=0
/etc/no -o ipsendredirect=0
```

Again, if you are using your cluster nodes as gateways or routers, please skip this step.

4.2.5 Testing

Once you have completed this configuration, test it by using the ping command to contact each of your defined adapters, including standby adapters. If there is any problem here, do not continue until you have corrected it.
4.3 Non-TCP/IP Network Configuration

You will always want at least one non-TCP/IP network in your cluster. In our example, we will be using a raw RS232 link. If you are using SCSI differential shared disks, you have the option of using SCSI Target Mode communications as a network also. This will be described in this section also.

4.3.1 RS232 Link Configuration

The first set here is to connect the cable between serial ports on your systems. The cable can be bought from IBM or put together yourself, as described in Appendix B, “RS232 Serial Connection Cable” on page 97. Once you have connected the cable, you are ready for the next step.

4.3.1.1 Defining the tty Device

In most cases, you will use native serial ports on your systems for the RS232 link. This is what we are doing in our example, where we will be using the first native serial port, S1, on each node for our link.

Entering the command `smit mktty` will take you to the following panel:

```
Add a TTY

TTY type          tty
TTY interface     rs232
Description       Terminal asynchrone
Parent adapter    sa0
PORT number       [s1]
BAUD rate         [9600]
PARITY            [none]
BITS per character [8]
Number of STOP BITS [1]
TERMINAL type     [dumb]
STATE to be configured at boot time [available]
...
Enable LOGIN      [disable]
```

Use all the default settings, including leaving the Enable LOGIN field set to disable, and the TERMINAL type set to dumb. Take note of the tty device number returned by the SMIT panel, since you will need it later. If this is the first tty device defined, it will be /dev/tty0, which we will use in our example.

Do this definition on each of your nodes.

4.3.1.2 Testing the RS232 Link

Run the following command on the first node:

```
# stty < /dev/tty0
```

After you have entered the command, nothing should happen until you run the same command on the second node:

```
# stty < /dev/tty0
```
If the connection has been properly set up, you should now see the output of the `stty` command on both nodes.

Make sure that this is working correctly before proceeding.

4.3.2 SCSI Target Mode Configuration

We are not using shared SCSI differential disks in our example, and therefore will not be using SCSI target mode in our cluster, but a description of how to set it up is included here.

SCSI target mode connections can only be used with SCSI-2 Differential or Differential Fast/Wide adapters, and then only when the shared devices are not RAID arrays.

The inter-node communication (keepalive packets) used by HACMP to monitor the state of the cluster can also be carried out between SCSI adapters and can be used in place of (or along with) the RS232 serial network.

To enable the target mode capability, you need to modify the characteristics of the SCSI adapter. This can be done from the command line:

```
# chdev -1 scsi2 -a tm='yes'
```

It can also be done through SMIT, by entering the command `smit chgscsi`. The following panel is presented:

```
Change/Show Characteristics of a SCSI Adapter

<table>
<thead>
<tr>
<th>Description</th>
<th>Status</th>
<th>Location</th>
<th>Adapter card SCSI ID</th>
<th>BATTERY backed adapter</th>
<th>Enable TARGET MODE interface</th>
<th>Target Mode interface enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>scsi2</td>
<td>Available</td>
<td>00-06</td>
<td>[6] +#</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
```

A reboot is not necessary but you must rerun the configuration manager.

```
# smit device
Configure Devices Added After IPL
```

Do the following command to find the name of the target mode SCSI link device:

```
# lsdev -Cc tmscsi
```

If this is the first link you have created, the device name will be `tmscsi0`. Note this name down, since it will be used in our testing and in HACMP configuration.
4.3.2.1 Testing a SCSI Target Mode Connection

Test the connection by carrying out the following steps. This example assumes that our target mode SCSI device created on each node is tmscsi0.

On the first node, enter the following command:

```
# cat < /dev/tmscsi0.tm
```

On the other node, enter the command:

```
# cat /etc/motd > /dev/tmscsi0.im
```

The contents of the /etc/motd file should be listed on the node where you entered the first command.

4.4 Connecting Shared Disks

Use the instructions included in Appendix D, “Disk Setup in an HACMP Cluster” on page 107 to connect your shared disks. There are instructions there for all kinds of shared disks supported by HACMP.

4.5 Defining Shared Volume Groups

Now you can create the shared volume groups and filesystems that will reside on the shared disk devices. Our configuration will have three volume groups. Volume group test1vg will be in a resource group owned by node mickey, volume group test2vg will be in another resource group owned by node goofy, and volume group conc1vg will be a concurrent volume group.

Each volume group contains two disks, and the logical volumes are mirrored from one to the other.

Creating the volume groups, logical volumes, and file systems shared by the nodes in an HACMP/6000 cluster requires that you perform steps on all nodes in the cluster. In general, you first define all the components on one node (in our example, this is node mickey) and then import the volume groups on the other nodes in the cluster (in our example, this is node goofy). This ensures that the ODM definitions of the shared components are the same on all nodes in the cluster.

Non-concurrent access environments typically use journaled file systems to manage data, while concurrent access environments use raw logical volumes.

Figure 4 on page 20 lists the steps you complete to define the shared LVM components for non-concurrent access environments.
For concurrent access, the steps are the same, if you omit those steps concerning the jfslog and filesystems.

4.5.1 Create Shared Volume Groups on First Node

Use the smit mkvg fastpath to create a shared volume group.

1. As root user on node mickey (the source node), enter smit mkvg:

Here, you provide the name of the new volume group, the disk devices to be included, and the major number to be assigned to it. It is also important to specify that you do not want the volume group activated (varied on) automatically at system restart, by changing the setting of that field to no.
The varyon of shared volume groups needs to be under the control of HACMP, so it is coordinated correctly.

Regardless of whether you intend to use NFS or not, it is good practice to specify a major number of the volume group. To do this, you must select a major number that is free on each node. Be sure to use the same major number on all nodes. Use the `lvstmtajor` command on each node to determine a free major number common to all nodes.

2. Because `test1vg` and `test2vg` contain mirrored disks, you can turn off quorum checking. On the command line, enter `smit chvg` and set quorum checking to `no`.

```
Change a Volume Group
Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]

* VOLUME GROUP name
  * test1vg

* Activate volume group AUTOMATICALLY
  * no

  at system restart?
  * no

* A QUORUM of disks required to keep the volume group on-line ?
  * no

F1=Help F2=Refresh F3=Cancel F4=List F5=Reset F6=Command F7=Edit F8=Image F9=Shell F10=Exit Enter=Do
```

Now repeat the two steps above for volume group `test2vg`, using major number 61.

For our concurrent volume group `conc1vg`, with major number 62, repeat the two steps almost exactly, except that quorum protection must be left on for a concurrent volume group.

3. Varyon the three volume groups on node mickey:

```
# varyonvg test1vg
# varyonvg test2vg
# varyonvg conc1vg
```

4. Before you create any filesystems on the shared disk resources, you need to explicitly create the `jfslog logical volume`. This is so that you can give it a unique name of your own choosing, which is used on all nodes in the cluster to refer to the same log. If you do not do this, it is possible and likely that naming conflicts will arise between nodes in the cluster, depending on what user filesystems have already been created.

Use SMIT to add the log logical volumes `loglvtest1` for the filesystems in volume group `test1vg`, and `loglvtest2` for the filesystems in volume group `test2vg`. Enter `smit mklv`, and select the volume group `test1vg` to which you are adding the first new `jfslog` logical volume.
Add a Logical Volume

Type or select values in entry fields. Press Enter AFTER making all desired changes.

```
[TOP]                     [Entry Fields]
Logical volume NAME       [loglvtest1]
  * VOLUME GROUP name     test1vg
  * Number of LOGICAL PARTITIONS
    PHYSICAL VOLUME names [hdisk1 hdisk2] +
  Logical volume TYPE     [jfslog]
  POSITION on physical volume midway +
  RANGE of physical volumes minimum +
  MAXIMUM NUMBER of PHYSICAL VOLUMES [] #
    to use for allocation
  Number of COPIES of each logical partition 2 +
  Mirror Write Consistency? yes +
  Allocate each logical partition copy yes +
    on a SEPARATE physical volume?
[MORE...9]
```

<table>
<thead>
<tr>
<th>F1=Help</th>
<th>F2=Refresh</th>
<th>F3=Cancel</th>
<th>F4=List</th>
<th>F5=Reset</th>
<th>F6=Command</th>
<th>F7=Edit</th>
<th>F8=Image</th>
<th>F9=Shell</th>
<th>F10=Exit</th>
<th>Enter=Do</th>
</tr>
</thead>
</table>

The fields that you need to change or add to are shown in **bold** type.

After you have created the jfslog logical volume, be sure to format the log logical volume with the following command:

```
# /usr/sbin/logform /dev/loglvtest1
logform: destroy /dev/loglvtest1 (y)?
```

Answer yes (y) to the prompt about whether to destroy the old version of the log.

Now create the log logical volume loglvtest2 for volume group test2vg and format the log, using the same procedure.

5. Now use SMIT to add the logical volumes lvtest1 in volume group test1vg and lvtest2 in volume group test2vg.

It would be possible to create the filesystems directly, which would save some time. However, it is recommended to define the logical volume first, and then to add the filesystem on it. This procedure allows you set up mirroring and logical volume placement policy for performance. It also means you can give the logical volume a unique name.

On node mickey, enter smit mk1v, and select the volume group **test1vg**, to which you will be adding the new logical volume.
Add a Logical Volume

Type or select values in entry fields. Press Enter AFTER making all desired changes.

<table>
<thead>
<tr>
<th>Logical volume NAME</th>
<th>lvtest1</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLUME GROUP name</td>
<td>test1vg</td>
</tr>
<tr>
<td>Number of LOGICAL PARTITIONS</td>
<td>[20] #</td>
</tr>
<tr>
<td>PHYSICAL VOLUME names</td>
<td>[hdisk1 hdisk2] +</td>
</tr>
<tr>
<td>Logical volume TYPE</td>
<td>[]</td>
</tr>
<tr>
<td>POSITION on physical volume</td>
<td>center +</td>
</tr>
<tr>
<td>RANGE of physical volumes</td>
<td>minimum +</td>
</tr>
<tr>
<td>MAXIMUM NUMBER of PHYSICAL VOLUMES</td>
<td>[] #</td>
</tr>
<tr>
<td>to use for allocation</td>
<td></td>
</tr>
<tr>
<td>Number of COPIES of each logical partition</td>
<td>2 +</td>
</tr>
<tr>
<td>Mirror Write Consistency?</td>
<td>yes +</td>
</tr>
<tr>
<td>Allocate each logical partition copy on a SEPARATE physical volume?</td>
<td>yes +</td>
</tr>
<tr>
<td>RELOCATE the logical volume during reorganization?</td>
<td>[]</td>
</tr>
<tr>
<td>Logical volume LABEL</td>
<td>[]</td>
</tr>
<tr>
<td>MAXIMUM NUMBER of LOGICAL PARTITIONS</td>
<td>[128]</td>
</tr>
<tr>
<td>Enable BAD BLOCK relocation?</td>
<td>yes +</td>
</tr>
<tr>
<td>SCHEDULING POLICY for writing logical partition copies</td>
<td>sequential +</td>
</tr>
<tr>
<td>Enable WRITE VERIFY?</td>
<td>no +</td>
</tr>
<tr>
<td>File containing ALLOCATION MAP</td>
<td>[]</td>
</tr>
</tbody>
</table>

The **bold** type illustrates those fields that need to have data entered or modified. Notice that SCHEDULING POLICY has been set to **sequential**. This is the best policy to use for high availability, since it forces one mirrored write to complete before the other may start. In your own setup, you may elect to leave this option set to the default value of parallel to maximize disk write performance.

Again, repeat this procedure to create a 25 partition logical volume lvtest2 on volume group test2vg.

6. Now, create the filesystems on the logical volumes you have just defined. At the command line, you can enter the following fastpath: `smit crjfslv`. Our first filesystem is configured on the following panel:

Add a Journaled File System on a Previously Defined Logical Volume

Type or select values in entry fields. Press Enter AFTER making all desired changes.

LOGICAL VOLUME name	lvtest1
MOUNT POINT	[/test1] +
Mount AUTOMATICALLY at system restart?	no +
PERMISSIONS	read/write +
Mount OPTIONS	[] +
Start Disk Accounting?	no +

Chapter 4. Pre-Installation Activities
Repeat the above step to create the filesystem `/test2` on logical volume `lvtest2`.

7. Mount the filesystems to check that creation has been successful.

```bash
# mount /test1
# mount /test2
```

8. If there are problems mounting the filesystems, there are two suggested actions to resolve them:

 a. Execute the `fsck` command on the filesystem.

 b. Edit the `/etc/filesystems` file, check the stanza for the filesystem, and make sure it is using the new jfslog you have created for that volume group. Also, make sure that the jfslog has been formatted correctly with the `logform` command.

Assuming that the filesystems mounted without problems, now unmount them.

```bash
# umount /test1
# umount /test2
```

9. Now, create the logical volumes for our concurrent volume group `conc1vg`.

 From checking on the worksheet, you will see that we will be creating the following logical volumes:

 • `conc1lv` - 10 partitions - 2 copies
 • `conc2lv` - 7 partitions - 2 copies

10. Vary off the three volume groups.

```bash
# varyoffvg test1vg
# varyoffvg test2vg
# varyoffvg conc1vg
```

4.5.2 Import Shared Volume Groups to Second Node

The next step is to import the volume groups you have just created to node `goofy`. Login to node `goofy` as root and do the following steps:

1. Enter the fastpath command: `smit importvg` and fill out the fields as shown:
2. Change the volume group to prevent automatic activation of test1vg at system restart and to turn off quorum checking. This must be done each time you import a volume group, since these options will reset to their defaults on each import. Enter smit chvg:

3. Repeat the two steps above for volume group test2vg, using major number 61, and for conc1vg, using major number 62. For volume group conc1vg, leave quorum protection turned on, since this is a requirement for concurrent volume groups.

4. Vary on the volume groups and mount the filesystems on goofy to ensure that there are no problems.
Chapter 5. Installing the HACMP/6000 Software

The product is known as cluster on the AIX product tape. You can directly select the product using the / (find) option.

We may not install everything on each machine. Some machines may only require the client part or may not need the clvm.

5.1 On Cluster Nodes

On each node in the cluster, install the appropriate components of HACMP. From the panels you are led to from entering smit install, you will want to select the following:

```
>3.1.0.0 cluster
  cluster.client 03.01.00.00
  cluster.server 03.01.00.00
  cluster.clvm 03.01.00.00
```

Select your picks using F7.

In our example, we are selecting the option to install all components, including cluster.clvm which gives us the ability to do concurrent access.

If we were not running concurrent access, we would select cluster.server, which will automatically install cluster.client as a prerequisite.

5.2 On Cluster Clients

Here a client is considered to be a machine which is connected to the nodes through a network and accesses a highly available application on one of the cluster nodes. We restrict ourselves here to clients which are RISC System/6000s.

```
3.1.0.0 cluster
 >  cluster.client 03.01.00.00
    cluster.server 03.01.00.00
    cluster.clvm 03.01.00.00
```

Select your picks using F7.

For non RS/6000 clients we can still carry out ARP cache refreshes using /usr/sbin/cluster/clinfo.rc,. Refer to Section 5.6, “Customizing the /usr/sbin/cluster/etc/clinfo.rc File” on page 29 to see how this is done.
5.3 Installing HACMP Updates

Now is the time to install the latest cumulative HACMP PTF fix from IBM. This should be done on both cluster nodes and client systems where you have installed the client portion of HACMP.

5.4 Loading the Concurrent Logical Volume Manager

Since we will be running with concurrent volume groups containing 9333 or SSA disks, we need to load the alternate Logical Volume Manager, called the Concurrent Logical Volume Manager (CLVM) which comes with HACMP. We will need to carry out this step on each node.

Loading the CLVM requires the following steps on each node:

1. Running the cllvm -c concurrent command
2. Running the command bosboot -d /dev/ipldevice -a
3. When the bosboot command completes, rebooting the system

Again, go through this procedure on each node.

Once the CLVM has been loaded as the active LVM, all continuing LVM administration can be done in the same way as with the standard LVM. The only exception is that the CLVM must be unloaded, and replaced with the standard IBM LVM before any AIX updates are applied to the system.

The procedure to reload the IBM standard LVM again is exactly the same as that shown above, except that the first step is to run the command cllvm -c standard. After the AIX updates have been loaded, the CLVM should be reloaded, using the above procedure, before returning the node to production in the cluster.

Again, these procedures are only required in an HACMP 3.1.1 cluster, if you have concurrent volume groups using 9333 or SSA disks. If you have concurrent volume groups using RAID arrays, you need not load the CLVM.

More information about loading the CLVM can be found in Chapter 6 of the HACMP/6000 Installation Guide.

5.5 Customizing the /usr/sbin/cluster/etc/clhosts File

On a client system, this file will be empty after the product installation. If you wish to use clinfo, then you must enter the boot and service addresses of each server node that this client should be able to contact.

On each server node, this file contains the loopback address which clinfo will use initially to acquire a cluster map. You should replace this with the boot and service addresses of all nodes in the cluster. On cluster nodes, this is not mandatory, but recommended.

Entries in this file can be one or the other of:

• symbolic names (IP labels)
• IP addresses

For example, you could add lines like:
5.6 Customizing the /usr/sbin/cluster/etc/clinfo.rc File

On each cluster node, if you have not implemented hardware address takeover, this file should contain a list of the IP addresses of its associated clients. This allows the node to ping the list of clients after a failure has occurred, so they can flush their ARP cache to reflect the new hardware address for a service adapter.

On each client system which uses the client portion of HACMP, this file should contain a list of the nodes with whom it communicates. Its default action is to flush the ARP cache, but you may want to extend this to execute your own programs. For example, you might want to display a window telling the user that the primary server is down and then display another message or window telling him that the backup server is now providing the services.

You will need to modify the following line in the file:

```
PING_CLIENT_LIST=""  
```

These entries can be of the form:

- IP label (symbolic name)
- IP address

For instance:

```
PING_CLIENT_LIST="mickey goofy"  
```

Clinfo is started automatically by the /etc/inittab file on cluster clients.
Chapter 6. Cluster Environment Definition

Defining the cluster environment involves making the following definitions:

- Cluster
- Cluster Nodes
- Network Adapters

These definitions can be entered from one node for the entire cluster. After this has been completed, the cluster environment definitions are synchronized from one node to all the others. Finally, the cluster environment should be verified, using the cluster verification utility, to ensure there are no errors before proceeding.

6.1 Defining the Cluster ID and Name

The first step is to create a cluster ID and name that uniquely identifies the cluster. This is necessary in case there is more than one cluster on a single physical network. Refer to your completed planning worksheets in Appendix E, “Example Cluster Planning Worksheets” on page 131 and complete the following steps to define the cluster ID and name.

1. Enter the `smit hacmp` command to display the system management menu for HACMP: The HACMP menu is the starting point for the definition and management of all HACMP characteristics and function.

2. Select Manage Cluster Environment and press Enter to display the following menu:
3. Select **Configure Cluster** and press Enter to display the following menu:

```
Configure Cluster
Move cursor to desired item and press Enter.

Add a Cluster Definition
Change / Show Cluster Definition
Remove Cluster Definition
```

4. Choose the **Add a Cluster Definition** option and press Enter to display the following panel.

```
Add a Cluster Definition
Type or select values in entry fields.
Press Enter AFTER making all desired changes.

**NOTE: Cluster Manager MUST BE RESTARTED in order for changes to be acknowledged.**

* Cluster ID
  <1>

* Cluster Name
  disney
```

5. Press Enter. The cluster ID and name are entered in HACMP's own configuration database managed by the ODM.

6. Press F3 to return to the Manage Cluster Environment screen. From here, we will move to the next stage, defining the cluster nodes.
6.2 Defining Nodes

Other parts of the cluster definition refer to the cluster nodes by their node names. In this section, we are simply defining the names that will identify each node in the cluster.

1. Select **Configure Nodes** on the Manage Cluster Environment screen to display the following menu:

 ![Configure Nodes Menu]

 - **Add Cluster Nodes**
 - **Change / Show Cluster Node Name**
 - **Remove a Cluster Node**

 F1=Help F2=Refresh F3=Cancel F8=Image
 F9=Shell F10=Exit Enter=Do

2. Choose the **Add Cluster Nodes** option and press Enter to display the following screen:

 ![Add Cluster Nodes Screen]

 - **Type or select values in entry fields.**
 - **Press Enter AFTER making all desired changes.**

 ![Entry Fields]

 * Node Names

 [mickey goofy]

 Remember to leave a space between names. If you use a duplicate name, an error message will be displayed. You need only to enter this information on one node, because you can later execute **Synchronize All Cluster Nodes** to propagate the information, using HACMP’s Global ODM (GODM), to all other nodes configured in the cluster.

3. Press Enter to update HACMP’s configuration database.

4. Press F3 to return to the Manage Cluster Environment screen. From here, we will move to the next stage, defining the network adapters to HACMP.
6.3 Defining Network Adapters

Having defined the node names, you can now proceed with defining the network adapters associated with each node. Again, you can define all the network adapters for all nodes on one node. You can later synchronize all the information to the other nodes’ ODMs.

We shall use the values for our sample cluster. You should refer to the planning worksheets for TCP/IP and serial networks for your own cluster definitions. If you refer to Figure 3 on page 8, you will notice that both mickey and goofy contain two token-ring network adapters. One adapter is configured as a service adapter and the other is configured as a standby adapter. If the service adapter in one node fails, its standby adapter will be reconfigured by the Cluster Manager to take over that service adapter’s IP address. If a node fails, the standby adapter in the surviving node will be reconfigured to take over the failed node’s service IP address and masquerade as the failed node.

Notice also the RS232 connection between mickey and goofy. The RS232 link provides an additional path for keepalive (or heartbeat) packets and allows the Cluster Managers to continue communicating if the network fails. It is important to understand also that the RS232 network is not a TCP/IP network. Instead it uses HACMP’s own protocol over the raw RS232 link.

Having this non-TCP/IP RS232 network is a very important requirement, since it provides us protection against two single points of failure:

1. The failure of the TCP/IP software subsystem
2. The failure of the single token-ring network

In either of these cases, if the RS232 network were not there, all keepalive traffic from node to node would stop, even though the nodes were still up and running. This is known as node isolation. If node isolation were to occur, mickey and goofy would both attempt to acquire their respective takeover resources. However, since the partner nodes would still be up and running, these attempts would fail, with the respective Cluster Managers endlessly attempting to reconfigure the cluster.

With the RS232 link in place, either of these failures would be interpreted as a network failure, instead of a node failure, allowing the administrator to take the appropriate action (restarting TCP/IP on a node, or fixing a network problem), without the cluster nodes trying to take over each other’s resources inappropriately.

6.3.1 Defining mickey’s Network Adapters

Complete the following steps to define mickey’s network adapters:

1. Select Configure Adapters on the Manage Cluster Environments panel to display the following menu:
Configure Adapters

Move cursor to desired item and press Enter.

Add an Adapter
Change / Show an Adapter
Remove an Adapter

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do

2. Choose the **Add an Adapter** option. Press Enter to display the following panel, where you will fill out the fields for the service adapter:

Add an Adapter

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]

* Adapter Label [mickey]
* Network Type [token] +
* Network Name [trnet1] +
* Network Attribute public +
* Adapter Function service +
* Adapter Identifier [9.3.1.79]
* Adapter Hardware Address [0x42005aa8b484]
* Node Name [mickey] +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

3. Press Enter to store the details in HACMP’s configuration database.

The following observations can be made about the fields to be filled in on this panel:

Adapter Label
This is the IP label of the adapter, which should be the same as the label you have defined in the /etc/hosts file and in your nameserver.

Network Type
If you list this field with F4, you will see the various Network Interface Modules (NIMs) available. There is a NIM for each type of network medium supported, as well as a Generic IP NIM. Since this adapter is on a token-ring network, we have selected the **token** NIM.

Network Name
This is an arbitrary name of your own choosing, to define to HACMP which of its adapters are on the same physical network. It is important that you use the same network name for all of the adapters on a physical network.
Network Attribute

This field can either be set to public, private, or serial. A public network is one that is used by cluster nodes and client systems for access, as is this token-ring network. A private network is used for communications between cluster nodes only. The Cluster Lock Manager uses any private networks that are defined for its first choice to communicate between nodes. The most common reason to define a network as private is to reserve it for the exclusive use of the Cluster Lock Manager. A serial network is a non-TCP/IP network. This is the value you will define for your RS232 connection, and your SCSI Target Mode network if you have one.

Adapter Function

This field can either be set to service, standby, or boot. A service adapter provides the IP address that is known to the users, and that is in use when the node is running HACMP and is part of the cluster. The standby adapter, as we have said before, is an adapter that is configured on a different subnet from the service adapter, and whose function is to be ready to take over the IP address of a failed service adapter in the same node, or the service adapter address of another failed node in the cluster. The boot adapter provides an alternate IP address to be used, instead of the service IP address, when the machine is booting up, and before HACMP Cluster Services are started. This address is used to avoid address conflicts in the network, because if the machine is booting after previously failing, its service IP address will already be in use, since it will have been taken over by the standby adapter on another node. A node rejoining the cluster will only be able to switch from its boot to its service address, after that service address has been released by the other node.

Adapter Identifier

For a TCP/IP network adapter, this will be the IP address of the adapter. If you have already done your definitions in the /etc/hosts file, as you should have at this point, you do not have to fill in this field, and the system will find its value, based on the Adapter IP Label you have provided. For a non-TCP/IP (serial) network adapter, this will be the device name of the adapter, for instance /dev/ttyO or /dev/tmscsi0.

Adapter Hardware Address

This is an optional field. If you want HACMP to also move the hardware address of a service adapter to a standby adapter at the same time that it moves its IP address, you will want to fill in a hardware address here. This hardware address is of your own choosing, so you must make sure that it does not conflict with that of...
any other adapter on your network. For token-ring adapters, the convention for an alternate hardware address is that the first two digits of the address are 42. In our example, we have found out the real hardware address of the adapter by issuing the command `lscfg -v -l tok0`. Our alternate hardware address is the same as the real address, except that we have changed the first two digits to 42. This ensures that there is not a conflict with any other adapter, since all real token-ring hardware address start with 10... If you fill in an alternate hardware address here, HACMP will change the hardware address of the adapter from its real address which it has at boot time, to the alternate address, at the same time as it is changing the IP address from the boot address to the service address. If this is done, client users, who only know about the service address, will always have a constant relationship between the service IP address and its hardware address, even through adapter and node failures, and will have no need to flush their ARP caches when these failures occur. Alternate hardware address are only used with service adapters, since these are the only adapters that ever have their IP addresses taken over.

Node Name

This is the name of the node to which this adapter is connected. You can list the nodes that you have defined earlier with the F4 key, and choose the appropriate node.

4. Select the **Add an Adapter** option again. Press Enter to display the following panel and fill out the fields for the boot adapter:

```
Add an Adapter
Type or select values in entry fields.
Press Enter AFTER making all desired changes.

* Adapter Label [mickey_boot]
* Network Type [token] +
* Network Name [trnet1] +
* Network Attribute public +
* Adapter Function boot +
  Adapter Identifier [9.3.1.45]
  Adapter Hardware Address []
  Node Name [mickey] +

F1=Help  F2=Refresh  F3=Cancel  F4=List
F5=Reset  F6=Command  F7=Edit  F8=Image
F9=Shell  F10=Exit  Enter=Do
```
Notice that we have defined this adapter having the same network name as the service adapter. Also, you should note that the IP address for the boot adapter is on the same subnet as the service adapter. These two HACMP adapters, boot and service, actually represent different IP addresses to be used on the same physical adapter. In this case, token-ring adapter tok0 will start out on the boot IP address when the machine is first booted, and HACMP will switch the adapter’s IP address to the service address (and the hardware address to the alternative address we have defined) when HACMP Cluster Services are started.

5. Press Enter to store the details in HACMP’s configuration database.

6. Select the **Add an Adapter** option again. Press Enter and fill out the fields for the IP details for the standby adapter:

 ![Add an Adapter](image)

Notice again that we have used the same network name, since this adapter is on the same physical network. We should also point out that this adapter has been configured on a different subnet from the boot and service adapter definitions. Our subnet mask was set earlier in the TCP/IP setup to 255.255.255.0.

7. Press Enter to store the details in HACMP’s configuration database.

8. Select the **Add an Adapter** option again. Press Enter and fill out the details for the RS232 connection:
Note here that we have chosen a different network type and network attribute, and assigned a different network name. Also, the adapter identifier is defined as the device name of the tty being used.

6.3.2 Defining goofy’s Network Adapters

Repeat steps 2 on page 35 through 8 on page 38 to configure the adapters on goofy. Remember that all the configuration work can be done on one node because you can later synchronize this information to the other node(s) using HACMP’s GODM facility.

Enter the service adapter details for goofy:

Here note that we have defined an alternate hardware address for this adapter also, which corresponds to the real hardware address of adapter tok0, with the first two digits changed to 42.
Enter the boot adapter details for goofy:

<table>
<thead>
<tr>
<th>Entry Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapter Label</td>
</tr>
<tr>
<td>Network Type</td>
</tr>
<tr>
<td>Network Name</td>
</tr>
<tr>
<td>Network Attribute</td>
</tr>
<tr>
<td>Adapter Function</td>
</tr>
<tr>
<td>Adapter Identifier</td>
</tr>
<tr>
<td>Adapter Hardware Address</td>
</tr>
<tr>
<td>Node Name</td>
</tr>
</tbody>
</table>

F1=Help F2=Refresh F3=Cancel F4=List F5=Reset F6=Command F7=Edit F8=Image F9=Shell F10=Exit Enter=Do

Enter the IP details for goofy’s standby adapter:

<table>
<thead>
<tr>
<th>Entry Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapter Label</td>
</tr>
<tr>
<td>Network Type</td>
</tr>
<tr>
<td>Network Name</td>
</tr>
<tr>
<td>Network Attribute</td>
</tr>
<tr>
<td>Adapter Function</td>
</tr>
<tr>
<td>Adapter Identifier</td>
</tr>
<tr>
<td>Adapter Hardware Address</td>
</tr>
<tr>
<td>Node Name</td>
</tr>
</tbody>
</table>

F1=Help F2=Refresh F3=Cancel F4=List F5=Reset F6=Command F7=Edit F8=Image F9=Shell F10=Exit Enter=Do

Enter the details for goofy’s RS232 connection:
6.4 Synchronizing the Cluster Definition on All Nodes

The HACMP configuration database must be the same on each node in the cluster. If the definitions are not synchronized across the nodes, a run-time error message is generated at cluster startup time.

You will use the **Synchronize All Cluster Nodes** option on the Manage Cluster Environment panel to copy the cluster definition from mickey to goofy.

1. Select the **Synchronize All Cluster Nodes** option on the Manage Cluster Environment menu and press Enter.

 SMIT responds: ARE YOU SURE?

2. Press Enter.
Note:

Before synchronizing the cluster definition, all nodes must be powered on, and the `/etc/hosts` and `./rhosts` files must include all HACMP IP labels.

The cluster definition, including all node, adapter, and network module information, is copied from mickey to goofy.

For more information, refer to Chapter 8, Defining the Cluster Environment, in the *HACMP/6000 Installation Guide.*
Chapter 7. Node Environment Definition

This step entails telling HACMP how you would like it to behave when cluster events happen. Here you define the applications that will be managed by HACMP, and also the other resources, such as volume groups, filesystems, and IP addresses. By assigning node priorities, you also tell HACMP which node should take over the resources at what time.

The node environment definition stage involves three major steps:

- Defining application servers
- Defining resource groups and resources
- Verifying the cluster

7.1 Defining Application Servers

An Application Server defines a highly available application to HACMP. The definition consists of the following:

- Name
- Application start script
- Application stop script

Using this information, the application can be defined as a resource protected by HACMP. HACMP will then be able to start and stop the application at the appropriate time, and on the correct node.

Application Server start and stop scripts should be contained on the internal disks of each node, and must be kept in the same path location on each node.

To define an Application Server, perform the following tasks:

1. At the command prompt, enter the SMIT fastpath `smit hacmp`. The following panel is presented:

 - Manage Cluster Environment
 - Manage Application Servers
 - Manage Node Environment
 - Show Environment
 - Verify Environment
 - Manage Cluster Services
 - Cluster Recovery Aids
 - Cluster RAS Support

 F1=Help F2=Refresh F3=Cancel F8=Image
 F9=Shell F10=Exit Enter=Do

2. Select Manage Application Servers to display the following screen:
3. Choose **Add an Application Server** to display the following screen:

Add an Application Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

* Server Name [mickeyapp1]
* Start Script [/usr/local/mickey_start>
* Stop Script [/usr/local/mickey_stop>

4. Enter an arbitrary **Server Name**, and then enter the full pathnames for the start and stop scripts. Remember that the start and stop scripts must reside on each participating cluster node. Our script names are:

- `/usr/local/mickey_start`
- `/usr/local/mickey_stop`

Once this is done, an Application Server named mickeyapp1 has been defined, and can be included in a resource group to be controlled by HACMP.

You can now repeat a similar procedure to define an application server for goofy’s application, called goofyapp1. Finally, you could create an application for the concurrent application, called concapp1.

7.2 Creating Resource Groups

In this section we shall go through the steps of defining two **cascading resource groups**, mickeyrg and goofyrg, and one **concurrent resource group**, concrg, to HACMP. Both nodes will participate in each resource group. Node mickey will have a higher priority for resource group mickeyrg and node goofy will have a higher priority for resource group goofyrg. In other words, mickey will own the resources in resource group mickeyrg, and will be backed up by goofy, while goofy will own the resources in resource group rg2, backed up by mickey. This is called **mutual takeover with cascading resources**.

Resource group mickeyrg will consist of the following resources:
• /test1 filesystem
• mickey’s service IP address
• NFS export of the /test1 filesystem
• Application Server mickeyapp1

Resource group goofyrg will consist of the following resources:
• /test2 filesystem
• goofy’s service IP address
• NFS export of the /test2 filesystem
• Application Server goofyapp1

As a final step, we will define our concurrent resource group concrg. Resource group concrg will consist of the following resources:
• logical volume conc1lv
• logical volume conc2lv
• Application Server concapp1

The steps required to set up this configuration of resource groups are as follows:
1. Configure the resource group mickeyrg on node mickey by using the SMIT fastpath command:

 # smit cl_mng_res

 Then select **Add / Change / Show / Remove a Resource Group** from the following menu:

 Manage Resource Groups

 Move cursor to desired item and press Enter.

 Add / Change / Show / Remove a Resource Group
 Configure Resources for a Resource Group
 Configure Run Time Parameters

 F1=Help F2=Refresh F3=Cancel F8=Image
 F9=Shell F10=Exit Enter=Do

2. Select **Add a Resource Group** from the next menu:
3. In the panel that follows, fill out the fields as shown:

![Add a Resource Group](image)

In the field Participating Node Names, be sure to name the highest priority node first. For resource group mickeyrg, this is mickey, since it is the owner. Other nodes participating then get named, in decreasing order of priority. In a two node cluster, there is only one other name, but in a larger cluster, you may have more than two nodes (but not necessarily all nodes) participating in any resource group.

4. Press Enter to store the information in HACMP’s configuration database.

5. Press F3 twice to go back to the Manage Resource Groups panel. Select **Configure Resources for a Resource Group**.

6. The list that appears should show only one resource group, mickeyrg. Select this item.
7. In the SMIT panel that follows, fill out the fields as shown. Make sure that the Inactive Takeover Activated and the 9333 Disk Fencing Activated fields are set to false.

<table>
<thead>
<tr>
<th>Resource Group Name</th>
<th>mickeyrg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Relationship</td>
<td>cascading</td>
</tr>
<tr>
<td>Participating Node Names</td>
<td>mickey goofy</td>
</tr>
<tr>
<td>Service IP label</td>
<td>[mickey] +</td>
</tr>
<tr>
<td>Filesystems</td>
<td>[/test1] +</td>
</tr>
<tr>
<td>Filesystems to Export</td>
<td>[/test1] +</td>
</tr>
<tr>
<td>Filesystems to NFS mount</td>
<td>[] +</td>
</tr>
<tr>
<td>Volume Groups</td>
<td>[] +</td>
</tr>
<tr>
<td>Concurrent Volume groups</td>
<td>[] +</td>
</tr>
<tr>
<td>Raw Disk PVIDs</td>
<td>[] +</td>
</tr>
<tr>
<td>Application Servers</td>
<td>[mickeyapp1] +</td>
</tr>
<tr>
<td>Miscellaneous Data</td>
<td>[]</td>
</tr>
<tr>
<td>Inactive Takeover Activated</td>
<td>false +</td>
</tr>
<tr>
<td>9333 Disk Fencing Activated</td>
<td>false +</td>
</tr>
</tbody>
</table>

The following comments should be made about some of these parameters:

Service IP label
By filling in the label of *mickey* here, we are activating IP address takeover. If node *mickey* fails, its service IP address (and hardware address since we have defined it) will be transferred to the other node in the cluster. If we had left this field blank, there would be no IP address takeover from node *mickey* to node *goofy*.

Filesystems
Any filesystems that are filled in here will be mounted when a node takes over this resource group. The volume group that contains the filesystem will first be automatically varied on as well.

Filesystems to Export
Filesystems listed here will be NFS exported, so they can be mounted by NFS client systems or other nodes in the cluster.
Filesystems to NFS mount Filling in this field sets up what we call an NFS cross mount. Any filesystem defined in this field will be NFS mounted by all the participating nodes, other than the node that currently is holding the resource group. If the node holding the resource group fails, the next node to take over breaks its NFS mount of this filesystem, and mounts the filesystem itself as part of its takeover processing.

Volume Groups This field does not need to be filled out in our case, because HACMP will automatically discover which volume group it needs to vary on in order to mount the filesystem(s) we have defined. This field is there, so that we could specify one or more volume groups to vary on, in the case where there were no filesystems, but only raw logical volumes being used by our application.

Raw Disk PVIDs This field is very rarely used, but would be used in the case where an application is not using the logical volume manager at all, but is accessing its data directly from the hdisk devices. One example of this might be an application storing its data in a RAID-3 LUN. RAID-3 is not supported at all by the LVM, so an application using RAID-3 would have to read and write directly to the hdisk device.

Application Servers For any Application Servers that are defined here, HACMP will run their start scripts when a node takes over the resource group, and will run the stop script when that node leaves the cluster.

8. In the same way, set up the second resource group goofyrg.

```
# smit cl_mng_res
```

The following panel is displayed:

```
Manage Resource Groups
Move cursor to desired item and press Enter.

Add / Change / Show / Remove a Resource Group
Configure Resources for a Resource Group
Configure Run Time Parameters

F1=Help  F2=Refresh  F3=Cancel  F8=Image
F9=Shell  F10=Exit  Enter=Do
```

Select Add / Change / Show / Remove a Resource Group.
Select **Add a Resource Group**. On the resulting panel, fill in the fields, as shown below, to define your second resource group.

Add a Resource Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

- **Resource Group Name**: goofyrg
- **Node Relationship**: cascading +
- **Participating Node Names**: goofy, mickey +

Use F3 to go back to the Manage Resource Groups panel.

Manage Resource Groups

Select **Configure Resources for a Resource Group**.

Choose a resource group:
- mickeyrg
- goofyrg

Select the group you want to configure.

Configure Resources for a Resource Group

Select a Resource Group

Move cursor to desired item and press Enter.

- **Resource Group Name**: goofyrg
- **Node Relationship**: cascading +
- **Participating Node Names**: goofy, mickey +
Choose the resource group **goofyrg**.

```
Configure Resources for a Resource Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]

<table>
<thead>
<tr>
<th>Resource Group Name</th>
<th>goofyrg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Relationship</td>
<td>cascading</td>
</tr>
<tr>
<td>Participating Node Names</td>
<td>goofy mickey</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service IP label</th>
<th>goofy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filesystems</td>
<td>/test2</td>
</tr>
<tr>
<td>Filesystems to Export</td>
<td>/test2</td>
</tr>
<tr>
<td>Filesystems to NFS mount</td>
<td>+</td>
</tr>
<tr>
<td>Volume Groups</td>
<td>+</td>
</tr>
<tr>
<td>Concurrent Volume groups</td>
<td>+</td>
</tr>
<tr>
<td>Raw Disk PVIDs</td>
<td>+</td>
</tr>
<tr>
<td>Application Servers</td>
<td>goofyappl</td>
</tr>
<tr>
<td>Miscellaneous Data</td>
<td></td>
</tr>
</tbody>
</table>

| Inactive Takeover Activated | false |
| 9333 Disk Fencing Activated | false |

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image

Fill in the appropriate fields, as shown above, and hit Enter to save the configuration.

9. Finally, we will set up our concurrent resource group **concrg**.

```
smit cl_mng_res
```

The following panel is displayed:

```
Manage Resource Groups

Move cursor to desired item and press Enter.

Add / Change / Show / Remove a Resource Group
Configure Resources for a Resource Group
Configure Run Time Parameters

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do

Select Add / Change / Show / Remove a Resource Group.
```
Select Add a Resource Group. On the resulting panel, fill in the fields, as shown below, to define the concurrent resource group.

Add a Resource Group

Type or select values in entry fields. Press Enter AFTER making all desired changes.

* Resource Group Name
  concreg

* Node Relationship
  concurrent +

* Participating Node Names
  mickey goofy +

Use F3 to go back to the Manage Resource Groups panel.

Select Configure Resources for a Resource Group.

Select a Resource Group

Move cursor to desired item and press Enter.

concreg
gooofyr
mickeyr

Select a Resource Group
Choose the resource group `concrgr`.

```
Configure Resources for a Resource Group

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

<table>
<thead>
<tr>
<th>Entry Fields</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Group Name</td>
<td>concrg</td>
</tr>
<tr>
<td>Node Relationship</td>
<td>concurrent</td>
</tr>
<tr>
<td>Participating Node Names</td>
<td>mickey goofy</td>
</tr>
<tr>
<td>Service IP label</td>
<td>+</td>
</tr>
<tr>
<td>Filesystems</td>
<td>+</td>
</tr>
<tr>
<td>Filesystems to Export</td>
<td>+</td>
</tr>
<tr>
<td>Filesystems to NFS mount</td>
<td>+</td>
</tr>
<tr>
<td>Volume Groups</td>
<td>+</td>
</tr>
<tr>
<td>Concurrent Volume groups</td>
<td>[conc1vg] +</td>
</tr>
<tr>
<td>Raw Disk PVIDs</td>
<td>+</td>
</tr>
<tr>
<td>Application Servers</td>
<td>[concapp1] +</td>
</tr>
<tr>
<td>Miscellaneous Data</td>
<td>+</td>
</tr>
<tr>
<td>Inactive Takeover Activated</td>
<td>false +</td>
</tr>
<tr>
<td>9333 Disk Fencing Activated</td>
<td>false +</td>
</tr>
</tbody>
</table>

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
```

Fill in the appropriate fields, as shown above, and hit Enter to save the configuration.

In a concurrent resource group, the only two resources to be defined are:
- Concurrent volume group - this gives access to the logical volumes
- Application server

10. The next job is to synchronize the node environment configuration to the other node. Hit F3 three times to return you to the Manage Node Environment panel, as shown below:

```
Manage Node Environment

Move cursor to desired item and press Enter.

Manage Resource Groups
Change/Show Cluster Events
Sync Node Environment

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
```

Select Sync Node Environment. You will see a series of messages, as the ODMs on the other node(s) are updated from the definitions on your node.

You can also synchronize the resource group configuration from the command line by executing the `/usr/sbin/cluster/diag/clconfig -s -r` command.
Note for HACMP Version 2.1 Users

For those users that have used HACMP Version 2.1, it is important for you to note that in HACMP/6000 Version 3.1 and HACMP 4.1 for AIX, the node environment must also be synchronized explicitly, along with the cluster environment. This is a change from HACMP Version 2.1, where the node environment was automatically synchronized by the Global ODM.

7.3 Verify Cluster Environment

Once you have completed the cluster and node environment definitions, you should verify that the node configurations are consistent and correct over the entire cluster. To verify the cluster enter the SMIT fastpath:

```
smit hacmp
```

Select **Verify Environment** from the following panel:

```
HACMP/6000

Move cursor to desired item and press Enter.

Manage Cluster Environment
Manage Application Servers
Manage Node Environment
Show Environment
Verify Environment
Manage Cluster Services
Cluster Recovery Aids
Cluster RAS Support

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do
```

The following panel is presented:
Take the default on this panel, which is to verify both the network configurations and the resource configurations. The Global ODM of HACMP will check the definitions on all nodes, to make sure they are correct and consistent. It will also check various AIX system parameters and system files, to make sure they are set correctly for HACMP, and will check any application server scripts you have defined, to make sure they are on all the nodes where they need to be, and that they are executable. You should see several verification messages, but the results should yield no errors. If you encounter errors, you must diagnose and rectify them before starting the cluster managers on each node. Failure to rectify verification errors will cause unpredictable results when the cluster starts.
Chapter 8. Starting and Stopping Cluster Services

Cluster nodes can be made to join and leave the cluster voluntarily by starting and stopping cluster services. There are various options available for both actions, controlling the immediate and future behavior of the node in the cluster.

8.1 Starting Cluster Services

Provided your verification has run without highlighting any errors, you are now ready to start cluster services on one node at a time. Each node should be able to finish its node_up processing, before another node is started.

To start cluster services on a node, issue the smit fastpath command smit clstart, to bring up the following panel:

```
Start Cluster Services
Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Start now, on system restart or both
 now +
 BROADCAST message at startup? false +
 Startup Cluster Lock Services? true +
 Startup Cluster Information Daemon? true +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
```

Here, you can select all the defaults, and hit Enter to start cluster services on the node. Since we are running a concurrent access environment in our example, we would want to change the last two fields to true.

Here are some comments on some of the fields:

**Start now, on system restart or both**

The recommended setting for this field is to now. If you set it to system restart or both, it will put a record into the /etc/inittab file, so that HACMP cluster services are started automatically on the machine each time it boots. This is not a very good idea, because it may result in a node trying to join the cluster before fixes have been fully tested, or at a time when the impact of resource group movement in the cluster is not desired.
It is much better to have explicit control over when cluster services are started on a node, and for that reason, the now setting is recommended.

**Startup Cluster Lock Services?**

Cluster Lock Services are, almost in all cases, only needed in a concurrent access configuration. The Cluster Lock Manager is normally used to control access to concurrently varied on volume groups. Therefore, we will want to change the setting to true, since we have a concurrent access configuration.

**Startup Cluster Information Daemon?**

The cluster information daemon, or clinfo, is the subsystem that manages the cluster information provided through the clinfo API to applications. This option would need to be set to true if you were going to be running applications directly on the cluster node that used the clinfo API. An example of such an application would be the cluster monitor clstat, which is provided as part of the product. If you are not running such an application, or are running such an application, but on a client machine, this option can be left with its default of false.

If you are running a clinfo application on a client machine, it gets its information from the clsmuxpd daemon on a cluster node, and does not need clinfo to be running on that cluster node.

When you start cluster services on a node, you will see a series of messages on the SMIT information panel, and then its status will switch to OK. This does not mean the cluster services startup is complete, however. To track the cluster processing, and to know when it is completed, you must watch the two main log files of HACMP:

- /var/adm/cluster.log
  
  This log file tracks the beginning and completion of each of the HACMP event scripts. Only when the node_up_complete event completes is the node finished its cluster processing.

- /tmp/hacmp.out
  
  This is a more detailed log file, as it logs each command of the HACMP event scripts as they are executing. In this case, you not only see the start and completion of each event, but also each command being executed in running those event scripts.
It is recommended to run the `tail -f` command against each of these log files when you start up nodes in the cluster, so that you can track the successful completion of events, and so that you can know when the processing is completed.

### 8.2 Stopping Cluster Services

To stop cluster services on a node, issue the `smit fastpath` command `smit clstop`, to bring up the following panel:

```
Stop Cluster Services
Type or select values in entry fields.
Press Enter AFTER making all desired changes.

• Entry Fields
 * Stop now, on system restart or both
 now
 BROADCAST cluster shutdown?
 true
 * Shutdown mode
 graceful (graceful, graceful with takeover, forced)

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
```

Here are some comments on the field choices:

**Stop now, on system restart or both**

If you select `now`, the default, HACMP will be stopped immediately, and no further action controlling future behavior will be taken. If you chose `system restart` or `both`, the system would also remove any automatic startup line for HACMP from the `/etc/inittab` file.

**BROADCAST cluster shutdown?**

Controls whether a broadcast message is sent to all users when HACMP is shut down on a node.

**Shutdown mode**

If you choose `graceful`, HACMP will be shut down on the machine, and any resources being held will be released. However, no other nodes in the cluster will take over the resources. This is a good option when you want to just shut down HACMP on all nodes, one at a time.

If you choose `graceful with takeover`, the HACMP software will be shut down and the resources released from the node. The next highest
priority node defined for the resource groups will then take over the appropriate resources.
If you choose forced, the HACMP software will be stopped on the node, but the resources that it is holding will be retained.

8.3 Testing the Cluster

It is highly recommended at this point, that you spend some time testing the operations of your cluster. You should try to test every conceivable failure, and make sure the cluster is reacting, and successfully dealing with them.
Chapter 9. Error Notification Tool

HACMP includes a menu-driven facility to customize the AIX error notification function. This allows you to run your own shell scripts in response to specified errors appearing in the AIX error log. To further ease the customization of the error notification object in the ODM (errnotify) which deals with both software and hardware errors, an error notification tool is provided on the diskette.

The shell script is called error_select and is found in the /usr/HACMP_ANSS/tools/ERROR_TOOL directory.

9.1 Description

Hardware and software errors, incidents and operator messages are logged in the AIX error log. To avoid the need for someone to periodically examine the error log in search of particular errors, we can configure Error Notification Methods to react automatically to the arrival of these errors. The errors that you will want to trap and treat will be dependent upon your installation.

The error notification tool will do the following:

- Create the templates for the scripts in the script subdirectory. These scripts can then be customized so that they react in the desired way to the arrival of errors. A possible example would be to promote a serial disk adapter failure to a node failure.
- Customize the relevant error notification objects in the ODM.
- Provide a test environment so that errors can be sent by you into the error log, without any real errors actually occurring. This will allow you to test your scripts. For example, we can generate SCSI_ERR3 without physically touching the SCSI adapter or the attached disks.

9.2 Error Notification Example

In our example cluster, we have two 9333 serial disk adapters on node mickey, but only one adapter on node goofy. Therefore, if the 9333 adapter on goofy fails, its users would be cut off from all the disks. However, since we have IP address takeover and disk takeover in our resource group definition, if we were to cause a node failure in this event, the users would be able to access the disks, still using the same IP address, through node mickey. Therefore, our error notification customization will send a warning message to the users, initiate a controlled HACMP shutdown with takeover, and then shutdown the machine itself.

Also, as well as sending mail to the root user on goofy, we want to send mail to our general system administrator, who is on another machine in the network.

The menu you will see when you run the error notification tool is shown below. The menu is preconfigured for those errors that have most often been customized in our experience. We have limited our choice to errors which are hardware and permanent, but you can add any AIX errors to this menu that you wish.
Choose one option at a time
You can choose different errors successively
Enter: end (when you have finished)

1) end
2) **************
3) X25 - X25 adapter error
4) DISK - SCSI disk error
5) LVM - LOGICAL VOLUME MANAGER error
6) SCSI - SCSI adapter error
7) TOK - TOKEN RING adapter error
8) EPOW - POWER SUPPLY problem
9) FDDI - FDDI adapter error
10) SDA - SERIAL disk ADAPTER error
11) SDC - SERIAL disk CONTROLLER error
12) TMSCSI - SCSI network problem

Amongst this list, which errors would you like to treat:

We will make the following selection for our error:

Amongst this list, which error would you like to treat: 10

We could also choose more errors at the same time, if we wished. Here is what we will see on the screen:

***********************************************
** UPDATING ODM
***********************************************
/usr/HACMP_ANSS/utils/error_SDA applied
***********************************************
** In order to delete your choice from the ODM  **
** use error_del  **
***********************************************

This procedure, as well as the procedures used to deselect the errors, (created automatically by the tool) are put into the utils subdirectory.

/usr/HACMP_ANSS/utils/error_SDA

The following routines, which will be executed as soon as the relevant error is logged in the error log, will be automatically created in the /usr/HACMP_ANSS/script subdirectory.

error_SDA
error_NOTIFICATION

It is up to you to modify these scripts so that they behave as you require. As they are created by the tool, they are just empty template scripts.
The error_NOTIFICATION script, which is automatically invoked by the error_SDA script, logs the incident in the /var/HACMP_ANSS/log/hacmp.errlog file and sends a mail message to the root user.

Here is a listing of the error_SDA script, as we have modified it to our requirements:

```bash
#!/bin/ksh
###
Written by: AUTOMATE
Last modification by *** who ***
script: error_SDA
parameters: 8 parameters (documented in error_NOTIFICATION)
ARGUMENTS received:
"sequence number in the error log = $1"
"error ID = $2"
"error class = $3"
"error type = $4"
"alert flag = $5"
"resource name = $6"
"resource type = $7"
"resource class = $8"
"error label = $9"
###
Variables:
. /usr/HACMP_ANSS/tools/tool_var
STATUS=0
(echo "sequence number in the error log = $1"
 echo "error ID = $2"
 echo "error class = $3"
 echo "error type = $4"
 echo "alert flag = $5"
 echo "resource name = $6"
 echo "resource type = $7"
 echo "resource class = $8"
 echo "error label = $9"
) |
 tee -a $ERREURS/hacmp.errlog > /dev/console
.
Variables:
. /usr/HACMP_ANSS/tools/tool_var
LOCALNODENAME=$(/usr/sbin/cluster/utilities/get_local_nodename)
mail -s "Error Alert" sysadm@theboss.company.com << END
An error has been detected on the HACMP cluster node $LOCALNODENAME
look at the $LOG file on the node.
DEVICE = $6
ADAPTER = $8
The system will be shut down and the users moved to a backup node.
END

wall "System will be shutting Down in 20 Seconds. Please log off now. You will be able to login to your application again within 5 minutes."
sleep 20

This command does a shutdown with takeover of HACMP
/usr/sbin/cluster/utilities/clstop -y -N -gr
sleep 5

We now want to shutdown the machine, until our administrator can
investigate the problem.
/etc/shutdown -Fr

END OF CUSTOMIZATION

return $STATUS

Chapter 9. Error Notification Tool 61
The error_NOTIFICATION script, automatically created along with error_SDA in the script subdirectory, looks like this:

```
#!/bin/ksh
########################################################################
# name : error_NOTIFICATION
# INPUT paremeters : $1 to $8 sent by errpt
# Description : called by each error, sends a message
# into hacmp.errlog
########################################################################
# Variables:
. /usr/HACMP_ANSS/tools/tool_var
STATUS=0
G=$(tput smso)
F=$(tput rmso)
LOG=″$ERREURS/hacmp.errlog″
################################################################
# main
################################################################
(print "************ Source and cause of error ***************
print "HOSTNAME=$(hostname) DATE=$(date)
print "sequence number in error log = $1"
print "error ID = $2"
print "error class = $3"
print "error type = $4"
print "alert flag = $5"
print "resource name = $6"
print "resource type = $7"
print "resource class = $8"
print "error label = $9") >> $LOG
################################################################
# DO NOT FORGET TO set TO_WHOM in error_MAIL
. /usr/HACMP_ANSS/tools/ERROR_TOOL/error_MAIL $1 $2 $3 $4 $5 $6 $7 $8 $9
################################################################
# DO NOT FORGET TO set QUEUE in error_PRINT
. /usr/HACMP_ANSS/tools/ERROR_TOOL/error_PRINT $1 $2 $3 $4 $5 $6 $7 $8 $9
################################################################
return $STATUS
```

The only customization required to this script might be to uncomment the line near the end that will cause a record of the error to be printed to the printer of your choice.

The /usr/HACMP_ANSS/tools/ERROR_TOOL/error_MAIL script, in its default form, will send mail to the root user on the system on which the error occurs. This could also be changed as required. The script is shown below:
#!/bin/ksh
this script is executed if it has been uncommented in
error_NOTIFICATION
#
variable: TO_WHOM should be set to the name of a user
and should be in the form
"user" or "user@hostname"

. /usr/HACMP_ANSS/tools/tool_var
TO_WHOM="root"
LOCALNODENAME=$(/usr/sbin/cluster/utilities/get_local_nodename)
mail $TO_WHOM << END
An error has been detected on the HACMP cluster node $LOCALNODENAME
look at the $LOG file
DEVICE = $6
ADAPTER = $8
END

Finally, if you wish to use the printing option, you will need to set the QUEUE
variable in the /usr/HACMP_ANSS/tools/ERROR_TOOL/error_PRINT script to the name
of a valid print queue for your system. The script is shown below:

#!/bin/ksh
this script is executed if it has been uncommented in
error_NOTIFICATION
#
variable: QUEUE should be set to a local or remote print queue
which has been defined in /etc/qconfig

QUEUE="NONE"
if [$QUEUE = 'NONE']
then
 FILE_CIBLEE=''
else
 FILE_CIBLEE="-P $QUEUE"
fi
(banner 'Machine: ' $(hostname)
print """""
print "$date"
print """""
print "refer to $LOG and look at errpt"
banner "error" "on" "device" "$6"
| qprt $FILE_CIBLEE
"

9.2.1 Checking the ODM

We will just do a check of the ODM to make sure that the error notification
method has been set up correctly. Issue the SMIT fastpath command smit hacmp,
and select the following options in the SMIT panels:

Cluster RAS Support
 Error Notification
 Change/Show a Notify Method

Our error notification tool actually set up two error notification methods, for the
errors sda_err1 and sda_err3. If we choose the first one, the following panel is
presented:
Once we have customized these scripts as we want them, and have checked that they are correctly in the ODM, we are able to test the error notification method, simulating the actual error with the error testing tool.

9.3 Testing the Error Scripts

We can test the error handling scripts that we have created by running the /usr/HACMP_ANSS/tools/error_test script. This will send the required error to the AIX error log.

The menu that you will see when you start up error_test is shown below. As well as testing your scripts, this menu can be used during the acceptance testing phase to generate errors, without having to try to simulate them by pulling adapters and cables.

If you wanted to run error_test to simulate SDA_ERR1, then you would do the following:
Which of the above errors would you like to generate: 2

You will have to enter the adapter for which you wish to simulate the error.

For which device are you simulating this error
For example enter: scsi2 hdisk4 ent0
The defective device is: serdasda0

Here is an example of what you will see on your screen:

The defective unit is: serdasda0

Error id : b135ae8b
B135AE8B 1214112795 P H serdasda0 STORAGE SUBSYSTEM FAILURE
FEC31570 1213144095 P H serdasda0 UNDETERMINED ERROR
B135AE8B 1213141195 P H serdasda0 STORAGE SUBSYSTEM FAILURE
B135AE8B 1213120895 P H serdasda0 STORAGE SUBSYSTEM FAILURE
FEC31570 1213115495 P H serdasda0 UNDETERMINED ERROR
B135AE8B 1213114095 P H serdasda0 STORAGE SUBSYSTEM FAILURE
FEC31570 1213104695 P H serdasda0 UNDETERMINED ERROR
B135AE8B 1213101995 P H serdasda0 STORAGE SUBSYSTEM FAILURE
FEC31570 1212180795 P H serdasda0 UNDETERMINED ERROR
B135AE8B 1212180595 P H serdasda0 STORAGE SUBSYSTEM FAILURE
B135AE8B 1212175595 P H serdasda0 STORAGE SUBSYSTEM FAILURE
BAECC981 1128181495 P H serdasda0 MICROCODE PROGRAM ERROR

Each time this error is generated, the following entry will be added to the
/var/HACMP_ANSS/log/hacmp.errlog file. This file should be checked periodically,
since it will grow over time. The entry added is formatted by the
error_NOTIFICATION program which can also send mail messages if desired.

*error_SDA============Wed Dec 13 11:40:55 CST 1995
ERROR DETECTED: error_SDA
******** Source and cause of error ********
sequence number in error log = 1790
error ID = 0xb135ae8b
error class = H
error type = PERM
alert flag = TRUE
resource name = serdasda0
resource type = serdasda
resource class = adapter
error label = SDA_ERR1

At the same time as the hacmp.errlog is being updated, the error_SDA shell script
will be executed, carrying out whatever instructions you have added there.

For more information about error notification refer to the AIX Problem Solving
Guide.
9.4 Deleting Error Notification Routines

You may decide that you no longer wish to take special action for a particular error. The procedures necessary to do this have been provided as part of the tool.

The script to use is called error_del. On running this script, the following menu will appear on the screen:

```
+ + REMOVING AN ERROR NOTIFICATION OBJECT CLASS +
+ Choose one option at a time +
+ You can remove different errors successively +
+ Enter: end (when you have finished) +
+
1) end
2) SDA
```

Amongst this list, which errors would you like to remove: 2

Suppose you choose number 2. The errnotify object class within ODM will automatically be modified, deleting the entry for the treatment of errors generated by the failure of the 9333 serial disk adapter.

The error_SDA script will be removed from the script subdirectory. The script is not actually deleted. Rather, it is moved to the backup subdirectory and its name is suffixed with YYYYMMDDhhmmss.
This tool helps in the customization of HACMP events. The main script is called event_select and is found in the /usr/HACMP_ANSS/tools/EVENT_TOOL directory.

10.1 Description

HACMP constantly surveys the states of the nodes in the cluster and at any given moment knows if:

- A node has failed
- A node has come up and has rejoined the cluster

Sometimes you need to customize HACMP’s reactions to an event because the event script, as provided with HACMP, does not fulfill your needs. For instance, you may have some of the following requirements:

- A node goes down. The cluster clients access this node through X.25. What must I do on the backup machine so that HACMP will correctly restart all the applications?
- A node goes down. The database has also crashed. What procedures do I have to run (rollback, redologs) before restarting the application on the backup machine?
- A node goes down. How do I recover the print jobs and cron jobs?

HACMP handles all changes to the cluster with cluster events. There are two types of events:

- Primary Events - 14 of them, called by the cluster manager
- Secondary or Sub Events - 16 of them, called by primary event scripts

A short description of each of the events is given below.

10.2 Primary Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Cause and action</th>
</tr>
</thead>
<tbody>
<tr>
<td>config_too_long</td>
<td>Sends a periodic console message when a node has been in reconfiguration for more than six minutes.</td>
</tr>
<tr>
<td>fail_standby</td>
<td>Sends a console message when a standby adapter fails or is no longer available because it has been used to take over the IP address of another adapter.</td>
</tr>
<tr>
<td>join_standby</td>
<td>Sends a console message when a standby adapter becomes available.</td>
</tr>
<tr>
<td>network_down</td>
<td>Occurs when the cluster determines that a network has failed. The event script provided takes no default action, since the appropriate action will be site/LAN specific.</td>
</tr>
<tr>
<td>network_down_complete</td>
<td>Occurs only after a network_down event has successfully completed. The event script provided takes no default action, since the appropriate action will be site/LAN specific.</td>
</tr>
</tbody>
</table>
network_up
Occurs when the cluster determines that a network has become available. The event script provided takes no default action, since the appropriate action will be site/LAN specific.

network_up_complete
Occurs only after a network_up event has successfully completed. The event script provided takes no default action, since the action will be site/LAN specific.

node_down
Occurs when a node is detaching from the cluster, either voluntarily or due to a failure. Depending on whether the node is local or remote, either the node_down_local or node_down_remote sub event is called.

node_down_complete
Occurs only after a node_down event has successfully completed. Depending on whether the node is local or remote, either the node_down_local_complete or node_down_remote_complete sub event is called.

node_up
Occurs when a node is joining the cluster. Depending on whether the node is local or remote, either the node_up_local or node_up_remote sub event is called.

node_up_complete
Occurs only after a node_up event has successfully completed. Depending on whether the node is local or remote, either the node_up_local_complete or node_up_remote_complete sub event is called.

swap_adapter
Exchanges or swaps the IP addresses of two network interfaces. NIS and name serving are temporarily turned off during this event.

swap_adapter_complete
Occurs only after a swap_adapter event has successfully completed. Ensures that the local ARP cache is updated by deleting entries and pinging cluster IP addresses.

event_error
Occurs when an HACMP event script fails for some reason.

10.3 Secondary or Sub Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Cause and action</th>
</tr>
</thead>
<tbody>
<tr>
<td>acquire_service_addr</td>
<td>Configures boot address to the corresponding service address and starts TCP/IP servers and network daemons by running the <code>telinit -a</code> command. HACMP modifies the <code>/etc/inittab</code> file by setting all the TCP/IP related startup records to a run level of a.</td>
</tr>
<tr>
<td>acquire_takeover_addr</td>
<td>Acquires takeover IP address by checking configured standby addresses and swapping them with failed service addresses.</td>
</tr>
<tr>
<td>get_disk_vg_fs</td>
<td>Acquire disk, volume group and file system resources as part of takeover.</td>
</tr>
</tbody>
</table>
node_down_local Releases resources taken from a remote node, stops application servers, releases a service address taken from a remote node, releases concurrent volume groups, unmounts file systems and reconfigures the node to its boot address.

node_down_local_complete Instructs the cluster manager to exit when the local node has completed detaching from the cluster. This event only occurs after a node_down_local event has successfully completed.

node_down_remote Unmounts any NFS file systems and places a concurrent volume group in non-concurrent mode when the local node is the only surviving node in the cluster. If the failed node did not go down gracefully, acquires a failed nodes resources: file systems, volume groups and disks and service address.

node_down_remote_complete Starts takeover application servers if the remote node did not go down gracefully. This event only occurs after a node_down_remote event has successfully completed.

node_up_local When the local node attaches to the cluster: acquires the service address, clears the application server file, acquires file systems, volume groups and disks resources, exports file systems and either activates concurrent volume groups or puts them into concurrent mode depending upon the status of the remote node(s).

node_up_local_complete Starts application servers and then checks to see if an inactive takeover is needed. This event only occurs after a node_up_local event has successfully completed.

node_up_remote Causes the local node to release all resources taken from the remote node and to place the concurrent volume groups into concurrent mode.

node_up_remote_complete Allows the local node to do an NFS mount only after the remote node is completely up. This event only occurs after a node_up_remote event has successfully completed.

release_service_addr Detaches the service address and reconfigures to its boot address.

release_takeover_addr Identifies a takeover address to be released because a standby adapter on the local node is masquerading as the service address of the remote node. Reconfigures the local standby into its original role.

release_vg_fs Releases volume groups and file systems that the local node took from the remote node.

start_server Starts application servers.

stop_server Stops application servers.
10.4 How the Event Customization Tool Works

Each of the HACMP events has a corresponding shell script in the /usr/sbin/cluster/events directory. Some of these shell scripts have no default action defined but are given as frameworks for you to fill in and customize as you wish.

When the cluster manager detects an event, it will run the associated script. This script is defined within the ODM by the HACMPevent object class found in /etc/objrepos/HACMPevent. The ODM entries for the first 3 events (before any modifications) are shown below:

```
HACMPevent:
   name = "swap_adapter"
   desc = "Swap adapter event happens. Swapping adapter."
   setno = 0
   msgno = 0
   catalog = ""
   cmd = "/usr/sbin/cluster/samples/swap_adapter"
   notify = ""
   pre = ""
   post = ""
   recv = ""
   count = 0

HACMPevent:
   name = "swap_adapter_complete"
   desc = "Swap adapter event completed."
   setno = 0
   msgno = 0
   catalog = ""
   cmd = "/usr/sbin/cluster/samples/swap_adapter_complete"
   notify = ""
   pre = ""
   post = ""
   recv = ""
   count = 0

HACMPevent:
   name = "network_up"
   desc = "Network up event happens."
   setno = 0
   msgno = 0
   catalog = ""
   cmd = "/usr/sbin/cluster/samples/network_up"
   notify = ""
   pre = ""
   post = ""
   recv = ""
   count = 0
```

The event you choose to modify with the Event Customization Tool is copied from its original location in /usr/sbin/cluster/events into the /usr/HACMP_ANSS/script directory. The copied event script has its name prefixed by CMD_

The tool will also ask you whether you want to configure a pre, post or recovery event for this event. You can choose one, some, all or none. Depending on your choice(s), the tool will copy one or more shell templates into the
10.5 Event Customization Tool Example

To start the tool, issue the following command:

```
# /usr/HACMP_ANSS/tools/EVENT_TOOL/event_select
```

After replying to the questions asked, you will see the following panel:

```
+ + + MENU: Modifying the events + +
+ + Choose one option at a time +
+ + You can choose different events successively +
+ + Enter: end (when you have finished) +
```

```
1) end 17) node_down_local
2) swap_adapter 18) node_down_local_complete
3) swap_adapter_complete 19) node_down_remote
4) network_up 20) node_down_remote_complete
5) network_down 21) node_up_local
6) network_up_complete 22) node_up_local_complete
7) network_down_complete 23) node_up_remote
8) node_up 24) node_up_remote_complete
9) node_down 25) release_service_addr
10) node_up_complete 26) release_takeover_addr
11) node_down_complete 27) release_vg_fs
12) join_standby 28) start_server
13) fail_standby 29) stop_server
14) acquire_service_addr 30) unstable_too_long
15) acquire_takeover_addr 31) config_too_long
16) get_disk_vg_fs 32) event_error
Which event would you like to modify: 19
```

The tool will create the necessary templates and also create the corresponding event notification script. Suppose, for example, you chose the following two events:

- node_down_remote
- node_up_remote

For each event you have chosen, the tool will ask you whether you would like to add a PRE, POS or REC event with the aid of the following menu:
You have selected: 19 node_down_remote
Do you want to configure the PRE, POS and REC events?
Choose one option at a time, run as many times as desired
Enter end or 4 to exit

You cannot use this procedure to delete events from the ODM
To do this you will have to use smit
1) PRE event
2) POST event
3) RECOVERY event
4) end
enter your choice?

We will choose PRE and POST events for node_down_remote and a PRE event for node_up_remote.

10.5.1 Looking at the ODM
You can see below how the HACMP\texttt{event} objects have been modified:
A list of the shell scripts the tool will have created in the script subdirectory is given below. The scripts are copies of the standard HACMP scripts, put into this alternate location, so future PTF updates to the HACMP scripts will not immediately overwrite any customizations. If you wish, you can modify or customize them so that the event behaves as you require for your specific cluster configuration.

The templates for the PRE (before), POS (after) and REC (recovery) are also created, where they are requested. For the above example, a PRE event was requested for the node_up_remote event, and PRE and POS events were requested for the node_down_remote event, so the following files are created:
Also, you can see that the event_NOTIFICATION script is automatically identified as an event notification customization, for any event chosen with the tool.

You can also look at the ODM entries for the HACMP events by entering smit hacmp, and selecting the following options:

`Manage Node Environment`
`Change/Show Cluster Events`

Selecting, for example, our local node and the `node_down_remote` event results in the following panel:

```
Change/Show Cluster Events

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]

Node Name                           mickey
Event Name                          node_down_remote
Description                        Script run when it is >
Event Command                      [/usr/HACMP_ANSS/script>
Notify Command                     [/usr/HACMP_ANSS/script>
Pre-event Command                  [/usr/HACMP_ANSS/script>
Post-event Command                 [/usr/HACMP_ANSS/script>
Recovery Command                   []
Recovery Counter                   [0] #

F1=Help    F2=Refresh    F3=Cancel    F4=List
F5=Reset   F6=Command    F7=Edit      F8=Image
F9=Shell   F10=Exit      Enter=Do
```

If you pressed the right arrow key in the appropriate fields, you could see the locations of the event customization scripts.

10.5.2 Customizing the Scripts

We will customize the `PRE_node_up_remote` script to send mail about the event to our main system administrator, and also to send out an immediate message to all users. The message warns those users from the node goofy that it is coming back online, and that they should logoff and wait a few minutes before logging back in.

The customized script is shown below:
#!/bin/ksh
Program : PRE_node_up_remote
Role : run before the event
Arguments : $1 = event name
and the parameters passed in
Written : Wed Dec 13 16:50:41 CST 1995
Modified :
. /usr/HACMP_ANSS/tools/tool_var
STATUS=0
(print "\n=PRE-EVENT===============$(date)
print "on : $(hostname)"
print "BEFORE : $1"
shift
print "Input Parameters: $*"
) >> $LOG
###
Enter your customizing code here
mail -s "Event Alert" sysadm@theboss.company.com << END
Node goofy is about to re-enter the cluster. Users will be
migrated back from node mickey.
END

wall "Machine goofy has been recovered and is coming on-line.
There will be a short interruption for users of machine goofy.
Please logoff your application now.
You will be able to login to your application again within 5 minutes."
sleep 10

END OF CUSTOMIZATION
return $STATUS

In a similar way, you can customize the other PRE and POST event scripts.

10.6 Synchronizing the Node Environment

When you have finished doing your customizations, be sure to synchronize the
node environment from the node where you have been working to all the others,
before you restart the cluster.

To do this, enter the SMIT fastpath command smit hacmp and select the following
options:

Manage Node Environment
Sync Node Environment

10.6.1 Logging the Events

To check that your customized event scripts are functioning correctly, you can
output debug comments into the /var/HACMP_ANSS/log/hacmp.eventlog file. This
file should be checked periodically. The messages sent into it are put there by
the event_NOTIFICATION script, which also allows the possibility of sending mail
messages if required.

An example of the output sent by event_NOTIFICATION into
 VAR/HACMP_ANSS/log/hacmp.eventlog is shown below:
10.7 Testing the Event Customizations

Make sure that you have access to all of the cluster nodes, and that there are no clients connected or using the application(s). Here are some suggested tests:

1. Start HACMP on the nodes and try to provoke a few failures. If you have no subtle solutions, powering off is generally a good way of provoking a failover. Disconnecting the network adapter cable will generate network events. Powering off external disks will create LVM errors.

2. You should NEVER disconnect the SCSI cables because you would risk seriously damaging the disks.

3. Test your application restart on the backup machine.
Chapter 11. Cluster Documentation

This step is carried out after you have configured all of the cluster nodes and your tests have been carried out. The output is a snapshot of your cluster containing:

- Cluster configuration
- Details of any HACMP customization you have carried out
- Scripts you have written
- System files used/modified by HACMP

You have three options for printing the output:

1. ASCII file which can be printed out under AIX
2. Bookmaster file for printing out on a VM host
3. PostScript file produced by the troff command

The report for each machine is called /tmp/HACMPdossier-<hostname>-vm or /tmp/HACMPdossier-<hostname>-ascii or /tmp/HACMPdossier-<hostname>-ps depending upon whether you replied vm or ascii or postscript when you ran the documentation tool.

Nothing prevents you from doing all of them. Obviously, you would need to run the tool multiple times.

An example report, from the doc_dossier tool, is provided in Part 1, "Cluster Documentation Tool Report" on page 137.

11.1 Generating your Cluster Documentation

On one of your cluster nodes, issue the following command:

```
# /usr/HACMP_ANSS/tools/DOC_TOOL/doc_dossier
```

Once the command has executed, a menu will appear on the screen. You should select option 4) Save the output on a UNIX diskette. If you don't have a formatted diskette, choose option 3 first.

Take the diskette produced by the first step to the second cluster node, and restore it by issuing the following command:

```
# tar -xvf/dev/fd0
```

Once you have run doc_dossier on this machine, and returned to the menu, choose option 4.

The diskette now contains the configurations of the two machines.
11.2 Printing the Report on a UNIX System

If you have access to a printer from your system, then you can print the ASCII or PostScript file directly as an option at the completion of a running of the doc_dossier script, or by using the qprt or lp command on the resulting report files left in the /tmp directory.

1. Restore the diskette you have just created using the tar command, if the files are not already on your machine.
2. Print the files named HACMPdossier-<hostname>-ascii or HACMPdossier-<hostname>-ps as appropriate.

11.3 Printing the Report on a VM System

To print the report on a VM system, you will first need a RISC System/6000 connected to that system.

1. Restore the UNIX diskette you created earlier, if necessary.
2. Transfer the files named HACMPdossier-<hostname>-vm to the VM host. You can transfer them using your favorite file transfer program, such as e789 or ftp. Give the VM files a filetype of SCRIPT on the VM host system. If you are using e789 to transfer the files, you will need to set the attributes variable format and record length = 132.
3. To create the LIST3820 file, use the appropriate VM printing command for your system, using at least the twopass option. You could also use the dcf command script.
Appendix A. Qualified Hardware for HACMP

The following is the most current copy, as of the writing of this book, of a document called HAMATRIX. This document lists the disk adapters, disks, cables, network adapters, and CPU models that are qualified for use with HACMP. By qualified, this means that the device has been tested by IBM, with HACMP, so the user can have a high degree of confidence that there will not be mysterious errors with the device that cannot be fixed.

The HAMATRIX document is maintained on an IBM tools disk called MKTTOOLS. If you are planning on implementing HACMP, or are considering adding new hardware to an existing cluster, contact your IBM representative to receive the latest version of this document.

A.1 The HAMATRIX Document

DISK STORAGE MEDIA, PROCESSORS AND ADAPTERS
QUALIFIED FOR USE WITH HACMP FOR AIX

Document Version 4.1A
8/17/95

This document designates which hardware has been qualified for use with HACMP for AIX (hereafter referred to as HACMP). The designated hardware should only be used on an appropriate RISC System/6000 Platform or 9076 Scalable POWERParallel Platform (SP/2). Please refer to the processor documentation to be sure that appropriate hardware is obtained.

This document contains the following information:
• The main body of the document and Appendix A contain the disk adapters, disk enclosures and associated cabling;
• Appendix B contains other hardware, e.g. processors and network adapters.

The document is intended to convey information pertinent to HACMP support so cabling methods and hardware features unrelated to HACMP are not shown. If a piece of hardware is not listed it should be assumed that the hardware is not supported by HACMP.

The following are the major changes since the last version of this matrix:
• Serial Storage Architecture (SSA) supported on HACMP Version 3.1.1
• Enhanced SCSI-2 Fast/Wide Adapter/A (FC 2412) supported on HACMP Version 3.1.1
• Target Mode on SCSI-2 Fast/Wide Adapters (FC 2412 and FC 2416) supported on HACMP Version 3.1.1
• IBM RISC System/6000 7013 Model 591, 7015 Model R21 and 7015 Model R3U
The disk storage portions of the document contain brief descriptions of many of the disk drive adapters, disk enclosures and associated cabling in tabular form. These tables are grouped as follows and unless specifically noted otherwise, the hardware in one group can not be used with hardware in another group:

- SCSI-2 Differential Device Support
- Serial Device Support

One of the columns in the disk tables is titled "HACMP Rlse" and contains two subheadings:

- Non-concurrent disk access, denoted by an NC in the column heading (Modes 1 and 2)
- Concurrent disk access, denoted by a CC in the column heading (Mode 3)

Under each subheading in the disk tables is noted the release of HACMP in which the hardware was first supported for that configuration. The following conventions were used for this data:

- If the specified release is prior to the current release, then the hardware is still supported unless noted otherwise.
- If the column has a TBD in it then no commitment has been made to support the hardware; the hardware might or might not be supported in the future.
- If the column has an N/A in it then there are no plans to support the hardware.

Attachment A contains the SCSI-1 SE and SCSI-2 SE device support. Existing HACMP configurations using SCSI SE devices continue to be supported. New HACMP installations must use SCSI-2 differential or serial devices due to the unavailability of the PTT cables.

If you have further questions about disk cabling you can also consult the following information:

- RISC System/6000, System Overview and Planning, Chapter 7: Cables and Cabling (GC23-2406)
- A copy of the SCSI cabling portion of publication GC23-2406 can be found on MKTTOOLS(RS6CABLE)
- A pictorial view of some of SCSI cabling for HACMP is available in MKTTOOLS(HASCSI6)

(The proper hardware documents take precedence over the hardware information contained in these tables and should be used to resolve any conflicts.)
SCSI-2 DIFFERENTIAL DEVICE SUPPORT

The following conventions are used in this section:

- All 16 bit adapters and enclosures have an * next to their feature codes. All 16 bit cables or 8 bit to 16 bit cables have an * next to their feature codes. The 16 bit implementation is generally known as SCSI Fast/Wide.
- Enclosures which can be cabled with either 16 bit or a combination of 8 bit and 16 bit cables have @ next to their feature codes.
- All 8 bit adapters, enclosures and cables have no indication next to their feature codes.

ADAPTERS

<table>
<thead>
<tr>
<th>Feature</th>
<th>Maximum Cable</th>
<th>HACMP Rlse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MBPS</td>
<td>Length</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>2412*</td>
<td>20</td>
<td>25 m</td>
</tr>
<tr>
<td>2416*</td>
<td>20</td>
<td>25 m</td>
</tr>
<tr>
<td>(6567315)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2420</td>
<td>10</td>
<td>19 m</td>
</tr>
<tr>
<td>(43G0176)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1 - Eight external SCSI IDs and eight LUNs are available on these buses. In an HACMP environment two or more of the addresses are used for hosts so the bus can have up to a maximum of six other devices (subject to cabling length and device constraints).
2 - Only SCSI-2 differential devices can be attached to a SCSI-2 differential adapter.
3 - Cable length is measured from end to end and includes the cabling which is within any attached subsystems. Exception: For the 7135, no internal SCSI-2 SE cabling is included.
4 - In HACMP configurations the differential terminating resistors U8 and U26 must be removed from the 2420 adapter; these resistors are located next to the external SCSI bus connector on the adapter card.
5 - 2412 and 2416 adapter can execute in either 8 bit or 16 bit mode; a SMIT option exists to set the adapter to the desired width. All the devices on the bus must of the same type.
6 - HACMP does not support target mode SCSI on the 2412 or the 2416 adapter prior to HACMP Version 3.1.1; on HACMP Version 3.1.1 APAR IX52772 is required.
7 - In HACMP configurations the three built-in differential terminating resistors (labelled RN1, RN2 and RN3) must be removed from the 2412 and 2416 adapters.
8 - In HACMP Version 4.1 sixteen external SCSI IDs and 32 LUNs are available on these buses. In an HACMP environment two or more of the addresses are used for hosts so the bus can have up to a maximum of fourteen other devices (subject to cabling length and device constraints). Prior to HACMP Version 4.1 eight external SCSI IDs and eight LUNs are available on these buses. In an HACMP environment two or more of the addresses are used for hosts so the bus can have up to a maximum of six other devices (subject to cabling length and device constraints).
9 - The 2412 and 2416 can not be assigned SCSI IDs 0, 1 or 8 through 15.
ENCLOSURES

<table>
<thead>
<tr>
<th># Per</th>
<th>Dsk</th>
<th>Size</th>
<th>Disk</th>
<th>Rate</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7204-215</td>
<td>4</td>
<td>2.0</td>
<td>-</td>
<td>5.22</td>
<td>N/A</td>
</tr>
<tr>
<td>7204-315</td>
<td>6</td>
<td>2.0</td>
<td>-</td>
<td>5.22</td>
<td>N/A</td>
</tr>
<tr>
<td>7204-317</td>
<td>14</td>
<td>2.2</td>
<td>-</td>
<td>9-12</td>
<td>N/A</td>
</tr>
<tr>
<td>7204-325</td>
<td>14</td>
<td>4.5</td>
<td>-</td>
<td>9-12</td>
<td>N/A</td>
</tr>
<tr>
<td>9334-011</td>
<td>2</td>
<td>1.0</td>
<td>2565</td>
<td>3.0</td>
<td>N/A</td>
</tr>
<tr>
<td>9334-501</td>
<td>2</td>
<td>1.0</td>
<td>2565</td>
<td>3.0</td>
<td>N/A</td>
</tr>
<tr>
<td>7135-010</td>
<td>1</td>
<td>2.0</td>
<td>2821</td>
<td>5.22</td>
<td>N/A</td>
</tr>
<tr>
<td>7135-110</td>
<td>2</td>
<td>30</td>
<td>1.3</td>
<td>2715</td>
<td>5.22</td>
</tr>
<tr>
<td>7135-210</td>
<td>2</td>
<td>30</td>
<td>1.3</td>
<td>2715</td>
<td>5.22</td>
</tr>
<tr>
<td>7135-410</td>
<td>2</td>
<td>30</td>
<td>1.3</td>
<td>2715</td>
<td>5.22</td>
</tr>
<tr>
<td>7135-510</td>
<td>2</td>
<td>30</td>
<td>1.3</td>
<td>2715</td>
<td>5.22</td>
</tr>
<tr>
<td>3514-212</td>
<td>2</td>
<td>8</td>
<td>1.0</td>
<td>1011</td>
<td>5-6</td>
</tr>
<tr>
<td>3514-213</td>
<td>2</td>
<td>8</td>
<td>1.0</td>
<td>1008</td>
<td>5.22</td>
</tr>
<tr>
<td>7137-412</td>
<td>2</td>
<td>8</td>
<td>1.0</td>
<td>1020</td>
<td>5.22</td>
</tr>
<tr>
<td>7137-413</td>
<td>2</td>
<td>8</td>
<td>1.0</td>
<td>1030</td>
<td>5.22</td>
</tr>
<tr>
<td>7137-512</td>
<td>2</td>
<td>8</td>
<td>1.0</td>
<td>1020</td>
<td>5.22</td>
</tr>
<tr>
<td>7137-513</td>
<td>2</td>
<td>8</td>
<td>1.0</td>
<td>1030</td>
<td>5.22</td>
</tr>
</tbody>
</table>

Notes:

1. All SCSI-2 Differential devices use one bus address per disk except the 7135, 3514 and the 7137 which use one address per controller. All devices on the same bus must be of the same type unless stated otherwise.
2. For maximum availability the 7135 array should be configured with two controllers. HACMP supports RAID1s 1, 3 and 5. The external interface for the 7135 is SCSI-2 differential; however, internally the disk drives are SCSI-2 SE.
3. The specified disk feature provides a full bank of five disks. Disks in the 7135 array are normally configured in banks of 5 disks each, for a total capacity of 30 disks.
4. 9334-011 and 9334-501 enclosures can be daisy chained with up to two enclosures and six disk drives on a SCSI bus. No tape drives are permitted.
5. With two hosts the 7134-010 without an internal expansion unit can support up to eight drives on one bus. With an internal expansion unit the maximum number of drives with two hosts and one bus is fourteen. With an internal expansion unit the maximum number of drives with two hosts and two buses is sixteen.
6. Even though the 3514 and 7137 are RAID devices, they have single
points of failure in the SCSI bus and in the controller. If this is unacceptable, one or more additional enclosures with LVM mirroring are required; a total of three enclosures with quorum provides the "highest" availability. Concurrent access mode (HACMP Mode 3) will not support mirroring on SCSI devices so the single points of failure noted above would exist in this configuration.

7 - HACMP Version 4.1 does not support the 7135-110. The 7135-110 is supported in HACMP Version 2.1 and later releases, up to but not including HACMP Version 4.1.

8 - 7204 Models 315, 317 and 325 can be used on the same SCSI-2 differential bus.
CABLES

<table>
<thead>
<tr>
<th>Feature (Part #)</th>
<th>Attachd From</th>
<th>Attachd To</th>
<th>Len (m)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIGURED ON SERVERS WITH 8 BIT WIDE ADAPTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2422 Adapter (52G7348)</td>
<td>9334 cable, .765</td>
<td>Y-cable: o base to adapter; o 8 bit long leg to 9334 cable; terminator; - 7204-215 cable; - 7137 cable or 2423 o 8 bit short leg is terminated or connected to a 2423 cable to add additional processors (>2 processors) to a shared differential 8-bit bus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A Y-cable (52G7350)</td>
<td>self</td>
<td>0</td>
<td>Terminator, 8 bit, included when the Y-cable is ordered.</td>
<td></td>
</tr>
<tr>
<td>2423 Y-cable (52G7349)</td>
<td>Y-cable</td>
<td>2.5</td>
<td>Cable can be used to attach a third and fourth system to a shared differential 8 bit bus</td>
<td></td>
</tr>
<tr>
<td>CONFIGURED ON SERVERS WITH 16 BIT WIDE ADAPTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2427* Adapter (52G4349)</td>
<td>9334 cable, .765</td>
<td>Y-cable: o 16 bit base to adapter; o 8 bit long leg to 9334 cable or 7204-215 cable; o 8 bit short leg is terminated or connected to a 2423 cable to add additional processors (>2 processors)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2426* Adapter (52G4234)</td>
<td>7204-3XX .94</td>
<td>Y-cable: o 16 bit base to adapter; o 16-bit long leg to 7204-3XX cable, o 16-bit short leg is terminated or is connected to a 2424 or 2425 cable to add additional processors (>2 processors)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2426* Adapter (52G4234)</td>
<td>7135-210 .94</td>
<td>Y-cable: o base to adapter; o 16-bit long leg to 7135-210 cable; o 16-bit short leg is terminated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An HACMP Cookbook
or is connected to a 2424 or 2425 cable to add additional processors (>2 processors)

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2426*</td>
<td>Adapter 7135-110 Y-cable:</td>
</tr>
<tr>
<td>(52G4234)</td>
<td>base to adapter;</td>
</tr>
<tr>
<td></td>
<td>o 16-bit long leg to 7135-110 cable;</td>
</tr>
<tr>
<td></td>
<td>o 16-bit short leg is terminated or is connected to a 2424 or 2425 cable to add additional processors (>2 processors)</td>
</tr>
<tr>
<td>N/A*</td>
<td>Y-cable self 7135-110 Terminator, 16-bit, included when the Y-cable is ordered.</td>
</tr>
<tr>
<td>(61G8324)</td>
<td>(2426*)</td>
</tr>
<tr>
<td>N/A</td>
<td>Y-cable self 7135-110 Terminator, 8 bit, included when the Y-cable is ordered.</td>
</tr>
<tr>
<td>(52G7350)</td>
<td>(2427*)</td>
</tr>
</tbody>
</table>

2424*/2425*/Y-cable Y-cable Cable can be used to attach a third and fourth system to a shared differential 16 bit bus.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2854/2921</td>
<td>Y-cable 7204-215 Needed on 7204-215 at each end of the shared unit.</td>
</tr>
<tr>
<td>(2422, 2427*)</td>
<td>(2426*)</td>
</tr>
<tr>
<td>2848</td>
<td>Y-cable 7204-215 Used between 7204-215's on the shared string.</td>
</tr>
<tr>
<td>(74G8511)</td>
<td>(2426*)</td>
</tr>
</tbody>
</table>

CONFIGURED ON 7204-215

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2845*/2846*</td>
<td>Y-cable 7204-315*, 2845 (52G4291) Needed on 7204-3XX at each end of the shared unit.</td>
</tr>
<tr>
<td>(2426*)</td>
<td>(2426*)</td>
</tr>
<tr>
<td>2845</td>
<td>Y-cable 7204-315* Used between 7204-3XX's on the shared string.</td>
</tr>
<tr>
<td>(2426*)</td>
<td>(2426*)</td>
</tr>
</tbody>
</table>

CONFIGURED ON 9334-011

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2921/2923</td>
<td>Y-cable 9334-011 Needed on 9334-011 at each end of the shared unit.</td>
</tr>
<tr>
<td>(2422, 2427*)</td>
<td>(2426*)</td>
</tr>
<tr>
<td>2925</td>
<td>9334-011 Used between 9334-011's on the shared string.</td>
</tr>
<tr>
<td>(95X2492)</td>
<td>(2426*)</td>
</tr>
</tbody>
</table>
CONFIGURED ON 9334-501

2931/2937 Y-cable 9334-501 (2422, 2427*)
2939 9334-501 9334-501 (95X2498)

Needed on 9334-501 at each end of the shared unit.
To conform to the cable length limit, the 8.0 meter cable must be paired with a shorter cable.
Allows daisy chaining of two 9334-501 enclosures

CONFIGURED ON 7134-010

2902-2918* Y-cable 7134-010* (2426*)

Needed on 7134-010 at each end of the shared unit.

CONFIGURED ON 7135-110 AND 7135-210

2919 Y-cable 7135 (61G8323) (2422) cable*
2901*-14* 2919, 7135@ (2426*)

Cable interposer; connects 8 bit Y-cable to 16 bit 29XX cable for 7135
Connects 7135 array controller to an interposer (2919) or to a 16 bit Y-cable

To conform to the cable length limit, the 12m, 14m and 18m cables must be paired with shorter cables.

CONFIGURED ON 3514

2002* Y-cable 3514@ (2422*)
2014* Y-cable 3514@ (2426*)
3001* 3514* 3514@ (2426*)

Needed on 3514 at each end of the shared unit (8-bit to 16-bit cable)
Needed on 3514 at each end of the shared unit
Allows daisy chaining of two 3514 units

CONFIGURED ON 7137

2002* Y-cable 7137@ (2422*)
2014* Y-cable 7137@ (2426*)

Needed on 7137 at each end of the shared unit (8-bit to 16-bit cable)
Needed on 7137 at each end of
Notes:

1 - After configuring a SCSI-2 differential bus for the HACMP environment, use the following checklist to validate the configuration:
 - At least two and no more than four processors are attached to the bus.
 - Only SCSI-2 differential cables, adapters and devices were used.
 - A Y-cable is attached to each processor on the bus.
 - The bus must have a terminator on the short leg of each Y-cable which is at the end of the bus (total of 2 terminators per bus).
 - 8 bit wide and 16 bit wide enclosures can not be used on the same bus.
 - You must not exceed maximum SCSI-2 differential bus lengths, including the cabling within enclosure cabinets. Cable lengths within enclosure cabinets are:
 - 7204-215 nil
 - 7204-315 nil
 - 7204-317 nil
 - 7204-325 nil
 - 9334-011 3.1 meters
 - 9334-501 2.66 meters
 - 7134-010 3.0 meters/bus
 - 7135-110 0.66 meters/controller
 - 7135-210 0.66 meters/controller
 - 3514-2XX 1.0 meters
 - 7137-XXX 0.2 meters
 The publication "Common Diagnostics and Service Guide" (SA23-2687) contains additional information about cabling.
2 - For a given cable, any item listed in the "Attached From" column can be connected to any item in the "Attached To" column. Y-cables do not follow this rule; they have three legs and the above tables show what connects to each of the legs.
3 - The configurations in this table assume that processors are at the two ends of the bus (just prior to each terminator) and all the storage devices are connected to the bus between the processors.
4 - The recommended 7135 configuration for HACMP is:
 - Two controllers on the 7135, each controller on a separate SCSI-2 differential bus.
 - Each controller is attached to every processor in the cluster. This yields two different SCSI-2 differential buses, each bus is connected to one controller and to every processor in the cluster. The Disk Array Manager software in the processors manages access to the different controllers and will switch controllers if one of the controller fails; this occurs independently of HACMP.
5 - SCSI buses can not include non-disk devices (i.e. tape, CD ROM).
SERIAL DEVICE SUPPORT

ADAPTERS

<table>
<thead>
<tr>
<th>Feature (FRU #)</th>
<th>HACMP Rlse</th>
<th>MBPS</th>
<th>NC</th>
<th>CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6210 (52G1071)</td>
<td>1.1</td>
<td>8</td>
<td>1.2</td>
<td>(1,2,3)</td>
<td></td>
</tr>
<tr>
<td>6211 (00G3357)</td>
<td>1.1</td>
<td>8</td>
<td>1.2</td>
<td>(1,2,3)</td>
<td></td>
</tr>
<tr>
<td>6212 (67G1755)</td>
<td>1.2</td>
<td>8</td>
<td>1.2</td>
<td>(1,2,3)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Only serial devices can be attached to a serial adapter.
2. For serial adapters the maximum cable length is measured from the adapter to the subsystem controller. The cabling which might be within a subsystem is not included.
3. Serial adapters contain four serial link connectors to allow the attachment of up to four serial subsystems (e.g. four 9333's). Data transfer rates on the microchannel side of the adapter are:
 - 6210 - 40 MBPS, used for 9333 Model 010 or Model 500
 - 6211 - 80 MBPS, used for 9333 Model 010 or Model 500
 - 6212 - 40 or 80 MBPS, used for 9333 Model 011, Model 501, Model 010 or Model 500

ENCLOSURES

<table>
<thead>
<tr>
<th>Model</th>
<th>Drive</th>
<th>Media</th>
<th>HACMP Rlse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dsk</td>
<td>Size</td>
<td>Disk Rate</td>
</tr>
<tr>
<td></td>
<td>Drv</td>
<td>-GB-</td>
<td>Feat</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>9333-010</td>
<td>4 0.857</td>
<td>3100</td>
<td>3.0</td>
</tr>
<tr>
<td>9333-010</td>
<td>4 1.07</td>
<td>3110</td>
<td>3.0</td>
</tr>
<tr>
<td>9333-011</td>
<td>4 0.857</td>
<td>3100</td>
<td>3.0</td>
</tr>
<tr>
<td>9333-011</td>
<td>4 1.07</td>
<td>3110</td>
<td>3.0</td>
</tr>
<tr>
<td>9333-011</td>
<td>4 2.0</td>
<td>3120</td>
<td>5.22</td>
</tr>
<tr>
<td>9333-500</td>
<td>4 0.857</td>
<td>3100</td>
<td>3.0</td>
</tr>
<tr>
<td>9333-500</td>
<td>4 1.07</td>
<td>3110</td>
<td>3.0</td>
</tr>
<tr>
<td>9333-501</td>
<td>4 0.857</td>
<td>3100</td>
<td>3.0</td>
</tr>
<tr>
<td>9333-501</td>
<td>4 1.07</td>
<td>3110</td>
<td>3.0</td>
</tr>
<tr>
<td>9333-501</td>
<td>4 2.0</td>
<td>3120</td>
<td>5.22</td>
</tr>
</tbody>
</table>

Notes:

1. The following table shows the HACMP support for the 9333:
 - AIX Release 3.2.3E 3.2.4 3.2.5
 - HACMP Release 1.2 1.2 2.1 1.2 2.1
 - Configuration NC CC NC CC NC CC NC CC NC CC
 - 9333 010/500 2 2 2 N 2 N 2 N 2 N
 - PTF # - - - - - - -
9333 011/501 N N 2 2 2 2 2 2 4 4
PTF # - - - a - - - b - c

N = Not supported
2 = 2-way is supported, if PTF# is not specified then the support is in the base system. Under AIX 3.2.4 Feature codes 4001 and 4002 of the 9333-011 and -501 subsystem are not permitted.
4 = 2-, 3- and 4-way are supported, if PTF# is not specified then the support is in the base system. If either 3- or 4-way is desired then Feature 4001 must be installed on the 9333-011 or -501.
a = U421401 or supersede
b = U425614 or supersede
c = U426577 or supersede

2 - 9333 Models 010 and 500 come standard with two ports connected to one controller card; the controller card controls up to 4 disks inside the enclosure. The ports can be connected to two different hosts using one serial link connector on each host adapter. An upgrade is available to go from a 9333 Model 010 to a 9333 Model 011, or from a 9333 Model 500 to a 9333 Model 501.

3 - 9333 Models 011 and 501 come standard with two ports connected to one controller card; the controller card controls up to 4 disks inside the enclosure. The ports can be connected to two different hosts using one serial link connector on each host adapter. With the 9333 Models 011 or 501, the number of attachable hosts can be expanded by ordering the appropriate expansion features, either to 4 systems (feature 4001) or to 8 systems (features 4001 and 4002).

4 - The data transfer rate for a serial bus is 8 MB/sec.
Notes:

1 - There are no special cabling requirements for HACMP for AIX. The publication “Common Diagnostics and Service Guide” (SA23-2687) contains information about cabling serial buses.

2 - Each 9333 enclosure comes standard with one attachment cable. Additional cables need to be ordered to attach it to more than one system.
SERIAL STORAGE ARCHITECTURE (SSA)

ADAPTERS

<table>
<thead>
<tr>
<th>HACMP Rlse</th>
<th>Feature (FRU #)</th>
<th>MBPS</th>
<th>NC</th>
<th>CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6214</td>
<td>80</td>
<td>(1)</td>
<td>(1)</td>
<td>(1,2)</td>
</tr>
</tbody>
</table>

Notes:

1 - The 6214 adapter is supported on HACMP Version 3.1.1 only; APAR IX52776 is required.
2 - Only two 6214 adapters can be put into a single SSA loop; one in each processor in the cluster.

ENCLOSURES

<table>
<thead>
<tr>
<th>Media</th>
<th>HACMP Rlse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk Size</td>
<td>Disk Rate</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Model</td>
<td>Drv -GB-</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>7133-010</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>2.2</td>
</tr>
<tr>
<td>16</td>
<td>4.5</td>
</tr>
<tr>
<td>7133-500</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>2.2</td>
</tr>
<tr>
<td>16</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Notes:

1 - The 7133-010 and 7133-500 are supported on HACMP Version 3.1.1 only; APAR IX52776 is required.
2 - The disk features are YYXX where YY is as shown in the table above and XX is 01, 08 or 16 for one, eight or sixteen disks can be supported in a single SSA loop.
3 - Up to 96 disks can be supported in a single SSA loop.

CABLES

Notes:

1 - There are no special cabling requirements for HACMP. The publication "Common Diagnostics and Service Guide" (SA23-2687) contains information about cabling.
Attachment A contains the SCSI-1 SE and SCSI-2 SE device support. Existing HACMP configurations using SCSI SE devices continue to be supported. New HACMP installations must use SCSI-2 differential or serial devices due to the unavailability of the PTT cables.

The SCSI SE PTT cables (FC 2914 and FC 2915) are available via an RPQ but only with prior Austin lab approval of the specific configurations. Two of these cables are required for a minimum HACMP configuration.

None of the equipment in this attachment can be configured in a new HACMP installation.

SCSI-1 SE AND SCSI-2 SE DEVICE SUPPORT

ADAPTERS

| Feature FRU # (MBPS Y MBPS) | Maximum Cable Length NC CC Notes |
|-----------------------------|-------------------------------|----------|
| 2835 (31G9729) 4 1 6 m 1.1 N/A (1,2,3,4) |
| 2410 (52G5484 52G7509) 10 2 4.75 m 1.2 N/A (1,2,3,5) |
| 2415 20 2 note 7 N/A N/A (1,2,3,6,7) |

Notes:

1 - Eight external device addresses are available on these buses. In an HACMP environment two of the addresses are used for hosts so the bus can have up to six other devices (subject to cabling length constraints).

2 - Only SCSI SE devices can be attached to a SCSI SE adapter.

3 - Cable length is measured from one end of the bus to the other and includes the cabling which is within any attached disk subsystem enclosures.

4 - In an HACMP environment the 2835 adapter can only be used with SCSI-1 SE disk enclosures. Minimum assembly numbers which can be used for an HACMP configuration is part #31G9722 and Field Replaceable Unit (FRU) #31G9729. For HACMP configurations the 50 position card edge terminator must be removed, and the jumper J1 must be removed. The removed jumper can be moved over and attached to only one row of pins for storage, the row furthest from the the external SCSI connector.

5 - In an HACMP environment the 2410 adapter can only be used with the 7203 and/or 7204 enclosures utilizing the 1 GB SCSI-2 SE disk, (7203-001 with feature 2320 or 7204-001). For HACMP configurations the 50 position card edge terminator must be removed, and the jumper P3 must be removed. The removed jumper can be moved over and attached to only one row of pins for storage, the row furthest from the external SCSI connector.
6 - This adapters can execute in either 8 bit or 16 bit mode; a SMIT option exists to set the adapter to the desired width. All the devices on the bus must of the same type.

7 - Maximum cable length varies with the configuration:
- 6m when attached to 9334-500
- 3m what attached to anything else.

ENCLOSURES

<table>
<thead>
<tr>
<th>Model</th>
<th>P Bus Drv</th>
<th>Dsk Size Disk MBPS</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7203-001 1 4 1 .355 2300 1.87 4</td>
<td>1.1 N/A (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7204-320 1 5 1 .320 - 2.0 4</td>
<td>1.1 N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7204-001 2 2 1 1.0 - 3.0 5</td>
<td>1.2 N/A (3,5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7204-010 2 - 1 1.0 - 3.0 5</td>
<td>N/A N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9334-010 1 - 4 .670 2510 1.87 4</td>
<td>N/A N/A (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7203-001 1 4 1 .670 2310 1.87 4</td>
<td>1.1 N/A (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9334-500 1 1 4 .670 2510 1.87 4</td>
<td>1.1 N/A (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9334-010 1 - 4 .857 2530 3.0 4</td>
<td>N/A N/A (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - 4 1.37 2570 4.5 5</td>
<td>N/A N/A (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - 4 2.0 2580 5.22 10</td>
<td>N/A N/A (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - 3+1 2.4 2590 3.0 10</td>
<td>N/A N/A (1,4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - 3+1 2.4 2590 3.0 10</td>
<td>N/A N/A (1,4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9334-500 1 1 4 .670 2510 1.87 4</td>
<td>1.1 N/A (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - 4 1.37 2570 4.5 5</td>
<td>1.2 N/A (2,6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - 3+1 2.4 2590 3.0 10</td>
<td>N/A N/A (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - 3+1 2.4 2590 3.0 10</td>
<td>N/A N/A (4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1 - The internal cabling of the 9334-010 makes it unsuitable for sharing between systems. Therefore it is not supported by HACMP. Only the 9334-500 is supported, with the features as noted in the table above.

2 - Disk fencing must not be enabled in an HACMP environment unless the fix documented in the HACMP Version 1.2 Release Notes is applied.

3 - For use with HACMP in a twin-tailed environment, 1 GB disks for the 7203 and 7204 enclosures (7203-001 with feature 2320, 7204-001) are only tested and supported using the SCSI-2 SE adapter (feature 2410).

4 - The 2590 which uses two bus addresses is two 1.2 GB disks within a single package. The 2555 drive is available only as the fourth drive within a 9334 which contains 3 2590’s.

5 - The limitation in the table under "# Per Bus" is not a cabling limitation but a testing limitation and only the specified number of devices is supported on the bus. (Cable limitations allow one more device to be connected than is shown.)

6 - 9334-500 in an HACMP environment is supported only on the 2835 adapter.
<table>
<thead>
<tr>
<th>Part #</th>
<th>Feature (Type)</th>
<th>Attachd From</th>
<th>Attachd To</th>
<th>Len (m)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3130</td>
<td>SCSI-1/2 SE</td>
<td>7203, 7204</td>
<td>7203</td>
<td>0.66</td>
<td>Device-to-Device cable. Used between devices in a shared string.</td>
</tr>
<tr>
<td>2915</td>
<td>SCSI-1 SE Adapter</td>
<td>7203, (2835)</td>
<td>7204</td>
<td>1.57</td>
<td>Passthru terminator (PTT) cable, withdrawn from marketing. See note #4.</td>
</tr>
<tr>
<td>2915</td>
<td>SCSI-1 SE Adapter</td>
<td>9334-500</td>
<td>(2835)</td>
<td>1.48</td>
<td>Passthru terminator (PTT) cable, withdrawn from marketing. See note #4.</td>
</tr>
<tr>
<td>2914</td>
<td>SCSI-2 SE Adapter</td>
<td>7203, (2410)</td>
<td>7204</td>
<td>1.57</td>
<td>Passthru terminator (PTT) cable, withdrawn from marketing. See note #4.</td>
</tr>
</tbody>
</table>

Notes:

1. After configuring a SCSI SE bus for the HACMP environment, use the following checklist to validate the configuration:
 - Two processors must be attached to the bus.
 - Only SCSI SE cables, adapters and enclosures can be used.
 - A shared SCSI SE bus requires two PTT cables, one attached to each adapter.
 - You must not exceed maximum SCSI SE bus lengths, including the cabling within enclosure cabinets. The SCSI SE maximum bus cable lengths are:
 - SCSI-1 SE 6 meters
 - SCSI-2 SE 4.75 meters
 - Cable lengths within enclosure cabinets:
 - 7203 nil
 - 7204 nil
 - 9334-010 not supported by HACMP
 - 9334-500 2.66 meters
 - The publication “Common Diagnostics and Service Guide” (SA23-2687) contains additional information about cabling.

2. For a given cable, any item listed in the “Attachd From” column can be connected to any item in the “Attachd To” column.

3. SCSI bus can not include non-disk devices (i.e. tape, CD ROM)

4. The PTT cables are available via an RPQ but only after the Austin lab approves the specific SCSI SE bus configuration(s) involved. FC 2915 is available via RPQ #8A0759; FC 2914 is available via RPQ #8A0758.
ATTACHMENT B
OTHER HARDWARE QUALIFIED WITH HACMP

PROCESSORS
- **7009-C10** 7012-320 7013-52H 7013-58F 7015-97E
- **7009-C20** 7012-34H 7013-520 7013-58H 7015-97F
- **7011-22W** 7012-340 7013-53E 7013-580 7015-970
- **7011-220** 7012-350 7013-53H 7013-590 7015-97E
- **7011-23S** 7012-355 7013-530 7013-591 7015-98F
- **7011-23W** 7012-360 7013-55E 7015-R10 7015-980
- **7011-230** 7012-365 7013-55L 7015-R20 7015-99E
- **7011-25S** 7012-370 7013-55S 7015-R21 7015-99F
- **7011-25W** 7012-375 7013-56F 7015-930 7015-990
- **7011-250** 7012-380 7013-560 7015-R30 7015-99K
- **7012-32E** 7012-39H 7013-57F 7015-950
- **7012-32H** 7012-390 7013-570 7015-97B

Symmetric Multi-Processors
- **7012-G30**, 7013-J30, 7015-R30 and 7015-R3U

9076 Scalable POWERParallel Platforms (SP/2) - supported on HACMP
Version 3.1.1 but not HACMP Version 4.1

Asynchronous Communication Adapters
- **FC 2930** - 8 Port Async Adapter - EIA-232
- **FC 2950** - 8 Port Async Adapter - MIL-STD 188
- **FC 2955** - 16 Port Async Adapter - EIA-232
- **FC 6400** - 64 Port Async Controller
- **FC 8128** - 128 Port Async Controller

Local Area Network (LAN) Communication Adapters
- **FC 2402** - Network Terminal Accelerator
- High performance ethernet adapter permitting up to 256 login sessions when used in conjunction with a 7318 Model S20 Serial Communications Network Server. HACMP supports only the MAC Layer Interface for the adapter, not the HTY functionality.
- **FC 2403** - Network Terminal Accelerator
- High performance ethernet adapter permitting up to 2048 login sessions when used in conjunction with a 7318 Model S20 Serial Communications Network Server. HACMP supports only the MAC Layer Interface for the adapter, not the HTY functionality.
- **FC 2720** - Fiber Distributed Data Interface Adapter
- **FC 2722** - Fiber Distributed Data Interface Dual Ring Upgrade KIT
- **FC 1906** - Fiber Channel Adapter/266
- **FC 2723** - FDDI / Fiber Dual-Ring Upgrade
- **FC 2724** - FDDI - Fiber Single-Ring Adapter
- **FC 2725** - FDDI - STP Single-Ring Adapter
- **FC 2726** - FDDI - STP Dual-Ring Upgrade
- **FC 2970** - Token-Ring High-Performance Network Adapter
- **FC 2972** - Auto Token-Ring Lanstreamer 32 MC Adapter
FC 2972 - Auto Token-Ring Lanstreamer 32 MC Adapter
FC 2980 - Ethernet High-Performance LAN Adapter
FC 4224 - Ethernet 10BASET Transceiver (Twisted Pair)

RS-232 Serial Network
=======================
FC 3107 - C10 Serial Port Converter
FC 3124 - 3.7 Meter Serial to Serial Port Cable
FC 3125 - 8 Meter Serial to Serial Port Cable

Other Adapters / Subsystems
===========================
7318-P10 Serial Communications Network Server
 - allows attachment of async devices and parallel printers
to an Ethernet LAN attached RISC System/6000
 (Most commonly concerned with HACMP configurations when
 used with FC 2402/3 Network Terminal Accelerator)
7318-S20 Serial Communications Network Server
 - allows attachment of async devices and parallel printers
to an Ethernet LAN attached RISC System/6000
 (Most commonly concerned with HACMP configurations when
 used with FC 2402/3 Network Terminal Accelerator)
FC 2860 - Serial Optical Channel Converter
FC 4018 - High Performance Switch (HPS) Adapter-2
 - supports node fallover on an SP/2

end of document
Appendix B. RS232 Serial Connection Cable

In implementing the non-TCP/IP RS232 link between cluster nodes, implementers of HACMP now have at least three choices for the cable:

1. A standard cable for this purpose, marketed by IBM
2. Putting together the correct connection, using a combination of IBM and non-IBM cables and connectors
3. Building a custom cable

B.1 IBM Standard Cable

IBM now markets a special asynchronous communications cable to serve as the HACMP RS232 connection cable. This cable has the correct pinouts configured to allow the cable to connect a 25-pin RS232 port on one machine to a 25-pin RS232 port on another machine. The newer models of RS/6000 have 25-pin native RS232 ports, where this cable can be used.

If you have an older model, with its 10-pin native RS232 ports, you will have to add a 10-pin to 25-pin converter cable to each end. The part number of this cable is 58F3740.

The standard IBM cable comes in two lengths. The feature numbers are orderable against any RS/6000 CPU model:

- Feature 3124 (Part number 88G4853) - 3.7 meter cable
- Feature 3125 (Part number 88G4854) - 8.0 meter cable

Each of these cables has the null modem pinout connections required to make a direct connection between serial ports.

B.2 Putting together Available Cables and Connectors

If you are going to make up the serial network between the cluster nodes using standard IBM cables you will need the following:
B.3 Making your Own Cable

You can make up your own cable for the serial connection. The wiring scheme is given below:

<table>
<thead>
<tr>
<th>Female Connector N 1</th>
<th>Signal</th>
<th>Female Connector N 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shield Ground</td>
<td>shell</td>
</tr>
<tr>
<td>2</td>
<td>TxD</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>RxD</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>RTS</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>CTS</td>
<td>4</td>
</tr>
<tr>
<td>6,8</td>
<td>DSR,CD</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Signal Ground</td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td>DTR</td>
<td>6,8</td>
</tr>
</tbody>
</table>

Table 1. Wiring scheme for the RS232 connection between nodes
Appendix C. List of AIX Errors

The following is a list of the current AIX errors, capable of being written into the AIX error log. These errors apply to AIX 3.2.5 maintenance level 3251. They are obtained by running the command `errpt -t`.

<table>
<thead>
<tr>
<th>Id</th>
<th>Label</th>
<th>Type CL</th>
<th>Error_Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00530EA6</td>
<td>DMA_ERR</td>
<td>UNKN H</td>
<td>UNDETERMINED ERROR</td>
</tr>
<tr>
<td>01FE0769</td>
<td>X25_ALERT25</td>
<td>PERM H</td>
<td>X-25 RESTART REQUEST BY X.25 ADAPTER</td>
</tr>
<tr>
<td>0299F00B</td>
<td>FDID_NOMEUF5</td>
<td>TEMP S</td>
<td>RESOURCE UNAVAILABLE</td>
</tr>
<tr>
<td>0334BB46</td>
<td>CM2A_MEM_BD</td>
<td>PERM S</td>
<td>Can’t Allocate bd_t Structures</td>
</tr>
<tr>
<td>0375DFC2</td>
<td>X25_ALERT9</td>
<td>TEMP H</td>
<td>X-9 FRAME TYPE W RECEIVED</td>
</tr>
<tr>
<td>038F2580</td>
<td>SCSI_ERR7</td>
<td>UNKN H</td>
<td>UNDETERMINED ERROR</td>
</tr>
<tr>
<td>038F3117</td>
<td>MEGP_DSRRP</td>
<td>TEMP H</td>
<td>COMMUNICATION PROTOCOL ERROR</td>
</tr>
<tr>
<td>03ACD152</td>
<td>NE20</td>
<td>PERM S</td>
<td>SOFTWARE PROGRAM ERROR</td>
</tr>
<tr>
<td>04B1C8C0</td>
<td>VCA_INIT2</td>
<td>TEMP S</td>
<td>Host independent initialization failed</td>
</tr>
<tr>
<td>0502666</td>
<td>SCSI_ERR1</td>
<td>PERM H</td>
<td>ADAPTER ERROR</td>
</tr>
<tr>
<td>065DB93B</td>
<td>MEM2</td>
<td>PERM H</td>
<td>Memory failure</td>
</tr>
<tr>
<td>06ABB2EB</td>
<td>COM_CFG_BUST</td>
<td>PERM S</td>
<td>Configuration failed: bad bus type</td>
</tr>
<tr>
<td>06CC7029</td>
<td>CM2A_CFG_FEPSOS</td>
<td>PERM S</td>
<td>Adapter FPOS Execution Failed</td>
</tr>
<tr>
<td>0733FA0</td>
<td>SDA_ERR</td>
<td>TEMP H</td>
<td>STORAGE SUBSYSTEM FAILURE</td>
</tr>
<tr>
<td>0734A1D</td>
<td>DISKETTE_CTRL</td>
<td>PERM H</td>
<td>DISKETTE MEDIA ERROR</td>
</tr>
<tr>
<td>08502E29</td>
<td>FDDI_TRACE</td>
<td>PERM H</td>
<td>ADAPTER ERROR</td>
</tr>
<tr>
<td>0873CF9F</td>
<td>TTY_TTYHOG</td>
<td>TEMP S</td>
<td>ttyhog over-run</td>
</tr>
<tr>
<td>08746BD0</td>
<td>PSLA1002</td>
<td>TEMP S</td>
<td>SOFTWARE PROGRAM ERROR</td>
</tr>
<tr>
<td>0878A420</td>
<td>TOK_PMV_ADAPTER</td>
<td>TEMP S</td>
<td>REMOVE ADAPTER COMMAND RECEIVED</td>
</tr>
<tr>
<td>0A667C32</td>
<td>WHP0001</td>
<td>TEMP S</td>
<td>SOFTWARE PROGRAM ERROR</td>
</tr>
<tr>
<td>0A940597</td>
<td>NE20</td>
<td>TEMP S</td>
<td>SOFTWARE PROGRAM ERROR</td>
</tr>
<tr>
<td>0C1E9C9A</td>
<td>LVM_SA_WRERR</td>
<td>UNKN H</td>
<td>Failed to write Volume Group Status Area</td>
</tr>
<tr>
<td>0C4C82C6</td>
<td>RS_PROG_IOCC</td>
<td>UNKN S</td>
<td>Software error: iocc not configured</td>
</tr>
<tr>
<td>0CFADB92</td>
<td>RS_PROG_SLIH</td>
<td>UNKN S</td>
<td>Software error: cannot find slih</td>
</tr>
<tr>
<td>0D5C1698</td>
<td>X25_ALERT33</td>
<td>PERM H</td>
<td>X-33 (DCE) RESET INDICATION X.25 ADAPTER</td>
</tr>
<tr>
<td>0E017ED1</td>
<td>MEMORY</td>
<td>PERM H</td>
<td>Memory failure</td>
</tr>
<tr>
<td>0E37E558</td>
<td>LVM_BBBPOOL</td>
<td>UNKN H</td>
<td>Bad block relocation failure - PV no lon</td>
</tr>
<tr>
<td>0EB7E7E5</td>
<td>EPOW_RES</td>
<td>UNKN H</td>
<td>Electrical power resumed</td>
</tr>
<tr>
<td>0F27A935</td>
<td>CORE_DUMP</td>
<td>PERM S</td>
<td>SOFTWARE PROGRAM ABNORMALLY TERMINATED</td>
</tr>
<tr>
<td>0F568474</td>
<td>IENT_ERR2</td>
<td>TEMP S</td>
<td>CONFIGURATION OR CUSTOMIZATION ERROR</td>
</tr>
<tr>
<td>103F1912</td>
<td>X25_ALERT34</td>
<td>TEMP H</td>
<td>X-34 (DCE) RESTART INDICATION X.25 ADAPT</td>
</tr>
<tr>
<td>10GCC6D6</td>
<td>MEGP_RCVERR</td>
<td>TEMP H</td>
<td>COMMUNICATION PROTOCOL ERROR</td>
</tr>
<tr>
<td>1104AA28</td>
<td>SYS_RESET</td>
<td>TEMP S</td>
<td>System reset interrupt received</td>
</tr>
<tr>
<td>1251B5B7</td>
<td>LION_HIRDWE</td>
<td>PERM S</td>
<td>Cannot access memory: 64 port controller</td>
</tr>
<tr>
<td>13881A23</td>
<td>SCSI_ERR4</td>
<td>TEMP H</td>
<td>MICROCODE PROGRAM ERROR</td>
</tr>
<tr>
<td>13CB0A0A</td>
<td>NE22</td>
<td>PERM S</td>
<td>SOFTWARE PROGRAM ERROR</td>
</tr>
<tr>
<td>150ACBA4</td>
<td>X25_ALERT39</td>
<td>TEMP H</td>
<td>X-39 (DCE) TIMEOUT ON CLEAR IND, T13</td>
</tr>
<tr>
<td>1581762B</td>
<td>DISK_ERR4</td>
<td>TEMP H</td>
<td>DISK OPERATION ERROR</td>
</tr>
<tr>
<td>1580DD9</td>
<td>CDROM_ERR3</td>
<td>PERM H</td>
<td>OPTICAL DISK DRIVE ERROR</td>
</tr>
<tr>
<td>160544E1</td>
<td>SLA_DRIVER_ERR</td>
<td>PERM H</td>
<td>SLA LINK CHECK failure in laser driver</td>
</tr>
<tr>
<td>164285A7</td>
<td>X25_ALERT26</td>
<td>TEMP H</td>
<td>X-26 TIMEOUT ON RESTART REQUEST, T20</td>
</tr>
<tr>
<td>173D5818</td>
<td>CDROM_ERR7</td>
<td>TEMP H</td>
<td>OPTICAL DISK DRIVE ERROR</td>
</tr>
<tr>
<td>17A1F1E4</td>
<td>AC2A_INIT</td>
<td>TEMP S</td>
<td>Host independent initialization failed</td>
</tr>
<tr>
<td>18A546CD</td>
<td>LVM_BBDIRERR</td>
<td>UNKN H</td>
<td>Bad block relocation failure - PV no lon</td>
</tr>
<tr>
<td>18B25E18</td>
<td>AC2A_INTR2</td>
<td>TEMP S</td>
<td>Unexpected interrupt</td>
</tr>
<tr>
<td>192AC071</td>
<td>ERRLOG_OFF</td>
<td>TEMP O</td>
<td>Error logging turned off</td>
</tr>
<tr>
<td>1A1D42E9</td>
<td>AC2A_LOAD</td>
<td>TEMP S</td>
<td>Failed loading microcode</td>
</tr>
<tr>
<td>1A2E7186</td>
<td>LVM_MISSVADDDED</td>
<td>UNKN S</td>
<td>Physical volume defined as missing</td>
</tr>
<tr>
<td>1A660730</td>
<td>C327_START</td>
<td>PERM S</td>
<td>C327 Start error</td>
</tr>
<tr>
<td>1A94653A</td>
<td>LVM_MGWNCFAIL</td>
<td>UNKN H</td>
<td>Mirror Write Cache write failed</td>
</tr>
</tbody>
</table>
1AC82784 LVM_SA_FRESHPP UNKN S Physical partition marked active
1B1647DF MPQP_XMTUND PERF H COMMUNICATIONS UNDERRUN
1CCD189F NB21 PERM S SOFTWARE PROGRAM ERROR
1D5588BE WHP0013 TEMP S SOFTWARE PROGRAM ERROR
1E629BB1 RS_8_16_ARB TEMP H INVALID 8/16 PORT ARBITRATION REGISTER
1F05D2DE FDDI_DWNLD TEMP H MICROCODE PROGRAM ABnormally TERMINATED
1F6C71A X25_ALERT32 TEMP H X-32 (DCE) CLEAR INDICATION X.25 ADAPTER
20188DE1 TKW_WIRE_FAULT TEMP S SOFTWARE PROGRAM ERROR
20FAED7F DSI_PROC TEMP S SOFTWARE PROGRAM ERROR
21D58396 NB28 TEMP S SOFTWARE PROGRAM ERROR
21F54B38 DISK_ERR1 TEMP S SOFTWARE PROGRAM ERROR
225E3B63 KERNEL_PANIC TEMP S SOFTWARE PROGRAM ERROR
22F7B47B RS_MEM_IOCC TEMP S SOFTWARE PROGRAM ERROR
233E36D2 NB26 TEMP S SOFTWARE PROGRAM ERROR
24247FB2 WHP0006 TEMP S SOFTWARE PROGRAM ERROR
24DCDBA8 NB24 TEMP S SOFTWARE PROGRAM ERROR
25D74748 EU_DIAG_ACC TEMP S SOFTWARE PROGRAM ERROR
260CB959 VCA_INTR2 TEMP S SOFTWARE PROGRAM ERROR
270FEBAC NB14 TEMP S SOFTWARE PROGRAM ERROR
27C1E67F DSI_I0CC TEMP S SOFTWARE PROGRAM ERROR
28935927 NLS_MAP TEMP S SOFTWARE PROGRAM ERROR
289590AE NB13 TEMP S SOFTWARE PROGRAM ERROR
29202CA2 COM_MEM_SLIH TEMP S SOFTWARE PROGRAM ERROR
2929FD6D FDDI_ADAP_ERR TEMP S SOFTWARE PROGRAM ERROR
2A90002F I0_SEGMENT_ATTACH FAILED TEMP S SOFTWARE PROGRAM ERROR
2B000112 HTTP0013 TEMP S SOFTWARE PROGRAM ERROR
2B76062F DSI_PROC TEMP S SOFTWARE PROGRAM ERROR
2BFA76F6 REDO001 TEMP S SOFTWARE PROGRAM ERROR
2C7E3654 EU_BAD_ADPT TEMP S SOFTWARE PROGRAM ERROR
2C909780 TCPMGR_MEMORY TEMP S SOFTWARE PROGRAM ERROR
2D3B002D BADISK_ERRR TEMP S SOFTWARE PROGRAM ERROR
2DACE65 FDDI_ADAP_CHECK TEMP S SOFTWARE PROGRAM ERROR
2F03B7B7 X25_ALERT7 TEMP H ADAPTER ERROR
2F5D7838 X25_ALERT5 TEMP H ADAPTER ERROR
30911E21 X25_ALERT5 TEMP H ADAPTER ERROR
30F182A4 CDROM_ERR1 TEMP H ADAPTER ERROR
342CB115 FDDI_TX_ERR TEMP H ADAPTER ERROR
345707F5 TTY_INTR_HOG TEMP H ADAPTER ERROR
34FC3203 CDROM_ERR2 TEMP H ADAPTER ERROR
3503B0A2 X25_ALERT3 TEMP H ADAPTER ERROR
3589DE9F I0_SEGMENT_ATTACH_FAILED TEMP H ADAPTER ERROR
358D0013 TCPMGR_MEMORY TEMP H ADAPTER ERROR
358E4BCC INIT_ERRR TEMP H ADAPTER ERROR
35BAC999 DISK_ERRR3 TEMP H ADAPTER ERROR
36C332B8 ATE_ERRR1 TEMP H ADAPTER ERROR
3668B2C7 FDDI_BYPASS TEMP H ADAPTER ERROR
384E0485 BADISK_ERRR TEMP H ADAPTER ERROR
390CD110 SLA_PROG_ERR TEMP H ADAPTER ERROR
3A03359F INIT_RAPID TEMP S SOFTWARE PROGRAM ERROR
3A900A02 RS_PIN_IOCC TEMP S SOFTWARE PROGRAM ERROR
3A967AF0 ATE_ERRR6 TEMP S SOFTWARE PROGRAM ERROR
3A9C8352 DISKETTE_ERRR2 TEMP S SOFTWARE PROGRAM ERROR
3B145117 INIT_ERRR TEMP S SOFTWARE PROGRAM ERROR
3C19FB58 NB2 TEMP S SOFTWARE PROGRAM ERROR
3CF4028 DISK_ERR5 TEMP S SOFTWARE PROGRAM ERROR
3D8581A1B MEML TEMP S SOFTWARE PROGRAM ERROR
Appendix C. List of AIX Errors

3EC3C657 COM_CFG_NADP PERM S Configuration failed: adapter missing
3F86401A LION_BOX_DIED PERM H Lost communication: 64 port concentrator
419D40C2 NE23 PERM S SOFTWARE PROGRAM ERROR
4224B9AB WHP0008 TEMP S SOFTWARE PROGRAM ERROR
4287A084 COM_CFG_BUSID PERM S Configuration failed: bad bus id range
430A2DCE TTY_PAPERR TEMP S Parity/Framing error on input
44CBE9E2 MFQ_DSRTO TEMP H UNABLE TO COMMUNICATE WITH DEVICE
4523A9A9 CMDLVM PERM H DISK OPERATION ERROR
476B351D TAPE_ERR2 PERM H TAPE DRIVE FAILURE
47E84916 IENT_ERR5 TEMP S SOFTWARE PROGRAM ERROR
484F5514 NB6 PERM H TAPE OPERATION ERROR
4865F50B TAPE_ERR1 TEMP H Machine Check
4A29D32A MACHINECHECK TEMP S SOFTWARE PROGRAM ERROR
4A65E5573 CAT_ERR2 TEMP S SOFTWARE PROGRAM ERROR
4B0E39B8 CBMA_MEM_CH TEMP S Can't Allocate ch_t Structures
4C2BDA1E NB3 TEMP S SOFTWARE PROGRAM ERROR
4CEBE931 COM_CFG_UIO TEMP S SOFTWARE PROGRAM ERROR
504B04D3 NB18 TEMP S SOFTWARE PROGRAM ERROR
506E3521 ACFA_IOCTL2 TEMP S Invalid ioctl request
50C5A315 LION_BUFFERO TEMP S Buffer overrun: 64 port concentrator
5114C792 COM_CFG_IFLG TEMP S Configuration failed: bad interrupt flag
51F9313A NB17 TEMP S SOFTWARE PROGRAM ERROR
52DB7218 SCEL_ERR6 TEMP S SOFTWARE PROGRAM ERROR
532DF6C9 INIT_UNKNOWN TEMP S SOFTWARE PROGRAM ERROR
54B73180 LVM_BBDIRFUL UNKN H Bad block relocation failure
54E423ED SCEL_ERR9 TEMP S SOFTWARE PROGRAM ERROR
55294585 X25_ALERT21 TEMP H X-21 CLEAR INDICATION RECEIVED
5537AC5F TAPE_ERR4 TEMP H TAPE DRIVE FAILURE
56816728 MFQP_CITSTO TEMP H COMMUNICATION PROTOCOL ERROR
57797644 X25_ADAPT TEMP H ADAPTER ERROR
592D5E9D TOK_WRAP_TST TEMP H OPEN FAILURE
59792349 X25_ALERT12 TEMP H X-12 FRAME TYPE Z RECEIVED
59853DA4 CBMA_CFG_TALLOC TEMP S malloc failed
59B54E79 X25_ALERT16 TEMP H X-16 FRAME TYPE Z SENT
5A48B5EF FDDI_RECVYTERM TEMP H ADAPTER ERROR
5AE97EAA MSLA_PROTOCOL TEMP S SOFTWARE PROGRAM ERROR
5C5C96A0 SCEL_ERR3 TEMP S SOFTWARE PROGRAM ERROR
5C623880 INIT_OPEN TEMP H ADAPTER ERROR
5CFF4A3A WHP0004 TEMP S SOFTWARE PROGRAM ERROR
5D1F16FA CAT_ERR8 TEMP H ADAPTER ERROR
5DF68BCC DUMP_STATS TEMP S SOFTWARE PROGRAM ERROR
5DFEADCB LVM_HAUREL TEMP S SOFTWARE PROGRAM ERROR
595973A0 CBMA_ERR_ASSRT TEMP H COMMUNICATION PROTOCOL ERROR
5F504A40 SLA_SIG_ERR TEMP H COMMUNICATION PROTOCOL ERROR
60D5499F COM_PIN_SLIH TEMP S SOFTWARE PROGRAM ERROR
618DD824A X25_ALERT24 TEMP H X-24 CLEAR REQUEST BY X.25 ADAPTER
627A4F55 BADISK_ERR3 TEMP H DISK OPERATION ERROR
6297CA97 DUMP TEMP H Dump device error
66C3412B RS_MEM_EDGE TEMP S SOFTWARE PROGRAM ERROR
684B06DC LVM_BBDIR90 TEMP S SOFTWARE PROGRAM ERROR
68F9701C CBMA_ADPT_FAIL TEMP H Async Adapter Failed

Appendix C. List of AIX Errors 101
Temp S Out of Resources

Perm H Could not acquire configuration lock

Temp H Microcode Program Error

Temp H X-11 Frame Type Y Received

Temp H X-15 Frame Type Y Sent

Perm S Software Program Error

Perm S Instruction Storage Interrupt

Temp H Problem Resolved

Perm S Software Program Error

Perm H Loss of Electrical Power

Perm H Adapter Error

Temp H Data Storage Interrupt, IOCC

Perm H Data Storage Interrupt, SLA

Perm H Disk Operation Error

Perm S Software Program Error

Perm H Memory Failure

Perm H X-31 Reset Indication Packet Received

Temp H X-37 (DCE) Timeout on Reset Ind, T12

Perm S Configuration failed: bad adapter type

Perm S Software Program Error

Perm H X-18 Unexpected Disc Received

Perm H Adapter Error

Perm H Miscellaneous interrupt

Perm H Internal serial link adapter exception

Temp H Adapter Error

Temp H SLA Link Check possible lost frame

Temp S Open Failure

Perm S Configuration mgr nonfatal database err

Perm S Configuration failed: unpincode failed

Perm S Software Program Error

Perm S Software Program Error

Perm S Software Program Error

Perm S Configuration failed: resid not correct

Perm S Software Program Error

Perm S Resource Unavailable

Perm H X-10 Frame Type X Received

Perm H X-14 Frame Type X Sent

Perm S Interrupt handler registration failed

Perm H X.25 Configuration Error

Perm H Software disk block relocation achieved

Perm H Bad block relocation failure - PV no lon

Temp H MPQP unable to access queue

Perm S Configuration failed: adapter missing

Temp H Attached SCSI Initiator Error

Perm H X-27 Timeout on Reset Request, T22

Perm S Software Program Error

Perm S Adapter Error

Perm H Adapter Error

Perm H Optical Disk Drive Error

Temp H Checkstop

Perm H PIO exception

Perm S Interrupt handler registration failed

Perm S Resource Unavailable

Perm H Management Server Reporting Link Error

Perm H Optical Disk Drive Error

Perm H Adapter Error
<table>
<thead>
<tr>
<th>Code</th>
<th>Event Description</th>
<th>Severity</th>
<th>Message Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>91F9700D</td>
<td>LVM_SA_QUORCLOSE</td>
<td>UNKN</td>
<td>Quorum lost, volume group closing</td>
</tr>
<tr>
<td>91FDA5E4</td>
<td>CFGMR_OPTION</td>
<td>UNKN</td>
<td>Invalid option: configuration manager</td>
</tr>
<tr>
<td>925A9C9B</td>
<td>SLA_CRC_ERR</td>
<td>TEMP</td>
<td>SLA LINK CHECK crc error</td>
</tr>
<tr>
<td>92A72C14</td>
<td>CCM_CFG_ILVL</td>
<td>PERM</td>
<td>Configuration failed: interrupt level</td>
</tr>
<tr>
<td>9359F226</td>
<td>LVM_MISSPVRET</td>
<td>UNKN</td>
<td>Physical volume is now active</td>
</tr>
<tr>
<td>974C5C01</td>
<td>X25_ALERT19</td>
<td>PERM</td>
<td>X-15 DM RDX DURING LINK ACTIVATION</td>
</tr>
<tr>
<td>984402C2</td>
<td>NE27</td>
<td>TEMP</td>
<td>SOFTWARE PROGRAM ERROR</td>
</tr>
<tr>
<td>98A70F55</td>
<td>ENT_ERR5</td>
<td>UNKN</td>
<td>RESOURCE UNAVAILABLE</td>
</tr>
<tr>
<td>98F39A90</td>
<td>TMSCSI_RECVRD_ERR</td>
<td>TEMP</td>
<td>Attached SCSI target device error</td>
</tr>
<tr>
<td>99227331</td>
<td>ENT_ERR3</td>
<td>PERM</td>
<td>ADAPTER ERROR</td>
</tr>
<tr>
<td>9A335282</td>
<td>EXCHECK_RSC</td>
<td>PERM</td>
<td>External Check, DMA</td>
</tr>
<tr>
<td>9A66C9F</td>
<td>VCA_INTR4</td>
<td>TEMP</td>
<td>Interrupt timed out</td>
</tr>
<tr>
<td>9B55A53</td>
<td>FDDI_RMV_ADAP</td>
<td>PERM</td>
<td>REMOVE ADAPTER COMMAND RECEIVED</td>
</tr>
<tr>
<td>9C7FEE0B</td>
<td>LION_MEM_ADAP</td>
<td>PERM</td>
<td>Cannot allocate memory: adapt structure</td>
</tr>
<tr>
<td>9D03878E</td>
<td>TTY_OVERRUN</td>
<td>TEMP</td>
<td>Receiver over-run on input</td>
</tr>
<tr>
<td>9D8C5DEF</td>
<td>ERRLOG_ON</td>
<td>TEMP</td>
<td>SOFTWARE PROGRAM ERROR</td>
</tr>
<tr>
<td>9E45396D</td>
<td>NB5</td>
<td>UNKN</td>
<td>ADAPTER ERROR</td>
</tr>
<tr>
<td>A194D797</td>
<td>TOK_ERR15</td>
<td>PERM</td>
<td>ADAPTER ERROR</td>
</tr>
<tr>
<td>A28B68BD</td>
<td>MSLA_ADAPTER</td>
<td>PERM</td>
<td>ADAPTER ERROR</td>
</tr>
<tr>
<td>A38E635</td>
<td>ENT_ERR1</td>
<td>TEMP</td>
<td>OPTICAL DISK DRIVE ERROR</td>
</tr>
<tr>
<td>A5417864</td>
<td>WHP0011</td>
<td>TEMP</td>
<td>SOFTWARE PROGRAM ERROR</td>
</tr>
<tr>
<td>A668F553</td>
<td>DISK_ERR2</td>
<td>PERM</td>
<td>DISK OPERATION ERROR</td>
</tr>
<tr>
<td>A68A0D66</td>
<td>CORRECTED_SCRUB</td>
<td>TEMP</td>
<td>Memory scrubbing corrected ECC error</td>
</tr>
<tr>
<td>A741AD52</td>
<td>MPQ_PDSRFOF70</td>
<td>TEMP</td>
<td>SOFTWARE PROGRAM ERROR</td>
</tr>
<tr>
<td>A80659F3</td>
<td>WHP0014</td>
<td>TEMP</td>
<td>Failed pinning memory</td>
</tr>
<tr>
<td>A846C81B</td>
<td>VCA_MEM</td>
<td>PERM</td>
<td>Cannot allocate memory: wrap buffer</td>
</tr>
<tr>
<td>A8S3F5C9</td>
<td>EJ_DIAG_MEM</td>
<td>PERM</td>
<td>DISKETTE OPERATION ERROR</td>
</tr>
<tr>
<td>A92A6715</td>
<td>DISKETTE_ERR1</td>
<td>PERM</td>
<td>External Check, DMA</td>
</tr>
<tr>
<td>A984FEE</td>
<td>EXCHECK_DMA</td>
<td>PERM</td>
<td>LINK ERROR</td>
</tr>
<tr>
<td>A9E55B66</td>
<td>SDC_ERR1</td>
<td>TEMP</td>
<td>OPERATOR NOTIFICATION</td>
</tr>
<tr>
<td>AAD5C121</td>
<td>OPMSG</td>
<td>PERM</td>
<td>AUTO REMOVAL</td>
</tr>
<tr>
<td>ABB81DC5</td>
<td>ENT_ERR2</td>
<td>TEMP</td>
<td>COMMUNICATION PROTOCOL ERROR</td>
</tr>
<tr>
<td>ABC9F35</td>
<td>TOK_PV_AMDAP</td>
<td>PERM</td>
<td>OPEN FAILURE</td>
</tr>
<tr>
<td>AC47E8A</td>
<td>X25_ALERT38</td>
<td>TEMP</td>
<td>X-38 (DCE) TIMEOUT ON CALL IND, T11</td>
</tr>
<tr>
<td>A222AEC</td>
<td>TOK_ADAPTER_CHK</td>
<td>PERM</td>
<td>UNABLE TO COMMUNICATE WITH DEVICE</td>
</tr>
<tr>
<td>A682624</td>
<td>CDRM_ERR8</td>
<td>UNKN</td>
<td>UNDETERMINED ERROR</td>
</tr>
<tr>
<td>AD917EB</td>
<td>MPQ_ASWCHK</td>
<td>PERM</td>
<td>MICROCODE PROGRAM ERROR</td>
</tr>
<tr>
<td>AEB781B0</td>
<td>TOK_BEACON2</td>
<td>PERM</td>
<td>TOKEN-RING INOPERATIVE</td>
</tr>
<tr>
<td>AFF4D94</td>
<td>NE30</td>
<td>PERM</td>
<td>SOFTWARE PROGRAM ERROR</td>
</tr>
<tr>
<td>B135AEBB</td>
<td>SDA_ERR1</td>
<td>PERM</td>
<td>STORAGE SUBSYSTEM FAILURE</td>
</tr>
<tr>
<td>B1462F15</td>
<td>SDC_ERR3</td>
<td>TEMP</td>
<td>STORAGE SUBSYSTEM FAILURE</td>
</tr>
<tr>
<td>B18287F3</td>
<td>SDA_ERR4</td>
<td>TEMP</td>
<td>UNDETERMINED ERROR</td>
</tr>
<tr>
<td>B188999A</td>
<td>LVM_SA_STALEPP</td>
<td>UNKN</td>
<td>Physical partition marked stale</td>
</tr>
<tr>
<td>B216B3E</td>
<td>COM_CFG_PORT</td>
<td>PERM</td>
<td>Configuration failed: port configured</td>
</tr>
<tr>
<td>B29547EF</td>
<td>CMXA_CFG_RST</td>
<td>PERM</td>
<td>Adapter Reset Failed</td>
</tr>
<tr>
<td>B3683B72</td>
<td>FDDI_XCARD</td>
<td>PERM</td>
<td>ADAPTER ERROR</td>
</tr>
<tr>
<td>B5982183</td>
<td>EU_CFG_BUSY</td>
<td>PERM</td>
<td>Configuration failed: in use</td>
</tr>
<tr>
<td>B598E3C8</td>
<td>PSLA001</td>
<td>TEMP</td>
<td>DEVICE ERROR</td>
</tr>
<tr>
<td>B617E928</td>
<td>TAPE_ERR6</td>
<td>TEMP</td>
<td>TAPE OPERATION ERROR</td>
</tr>
<tr>
<td>B63E5C3E</td>
<td>RS_RAD_INTER</td>
<td>PERM</td>
<td>Interrupt from non-existant port</td>
</tr>
<tr>
<td>B6A9F2E7</td>
<td>CMXA_CFG_MPORT</td>
<td>PERM</td>
<td>Bad or Missing Port on Adapter</td>
</tr>
<tr>
<td>B7164F4A</td>
<td>WHP0007</td>
<td>TEMP</td>
<td>SOFTWARE PROGRAM ERROR</td>
</tr>
<tr>
<td>B73A1D33</td>
<td>X25_ALERT13</td>
<td>TEMP</td>
<td>X-13 FRAME TYPE W RECEIVED</td>
</tr>
<tr>
<td>B73BC3D</td>
<td>DISKETTE_ERR4</td>
<td>UNKN</td>
<td>DISKETTE OPERATION ERROR</td>
</tr>
<tr>
<td>B76A0A99</td>
<td>LION_CHUNKNUMC</td>
<td>TEMP</td>
<td>Bad chunk count: 64 port controller</td>
</tr>
<tr>
<td>B78F9C5</td>
<td>CMXA_CFG_MEM</td>
<td>PERM</td>
<td>Bad Adapter Memory Address</td>
</tr>
<tr>
<td>B7F0EC53</td>
<td>NE10</td>
<td>TEMP</td>
<td>SOFTWARE PROGRAM ERROR</td>
</tr>
</tbody>
</table>
B8892A14 DSI_SCU PERM H Data Storage Interrupt, SCU
BAB1383B NB8 TEMP S SOFTWARE PROGRAM ERROR
BAECC981 SCD_ERR1 PERM H MICROCODE PROGRAM ERROR
BB5C513F ACPA_MEM TEMP S Failed pinning memory
BBA1D78B ACPA_UCODE TEMP S Failed loading microcode onto M-ACPA/A
B6A444C8 SLA_FANITY_ERR TEMP H SLA buffer parity error
BE24630E REPLACED_FRU PERM H Repair action
BE75E920 LION_PIN_ADAP PERM S Cannot pin memory: adapt structure
BE7F05CD COM_CFG_DMA TEMP S Configuration failed: dma level conflict
BE910C7F CAT_ERR7 TEMP S RESOURCE UNAVAILABLE
BF06FA0D FDDI_LLC_DISABLE TEMP H LAN ERROR
BF3F8438 PSLA003 TEMP H LINK ERROR
BF6D9219 LION_UNKCHUNK TEMP S Unknown error code: 64 port concentrator
BF936000 TCK_RCVR_ERR TEMP S Memory Segment Attach Failed
BC8F0BBB COM_CFG_DMA TEMP S Configuration failed: dma level conflict
BDA444C8 SLA_PARITY_ERR TEMP H SLA buffer parity error
BE42630E REPLACED_FRU PERM H Repair action
C0073BB4 TTY.BADINPUT TEMP S Bad ttyinput return
C1423E5B WHP0010 TEMP S SOFTWARE PROGRAM ERROR
C14C511C SCSI_ERR2 TEMP H ADAPTER ERROR
C2B80BFB X25_ALERT36 TEMP H X-36 (DCE) TIMEOUT ON RESTART IND, T10
C5B02ED6 WP0009 TEMP S SOFTWARE PROGRAM ERROR
C5C09FFA PSAP_KILL TEMP S SOFTWARE PROGRAM ABNORMALLY TERMINATED
C6ACA566 SYSLG TEMP S Message redirected from syslog
C6F02E8E FDDI_DOWN TEMP H ADAPTER ERROR
C70E1E46 X25_ALERT17 TEMP S Physical disk block relocation failed
C88D3DD8 MPQP_X21CPS PERM S X.21 ERROR
C92F456F LVM_HWFAIL TEMP S Synchronous Line Errors
C93E5BD3 COMA_LINE_ERR TEMP S Configuration failed: adapter missing
C9F4EE17 EU_CFG_NADP TEMP S Configuration failed: adapter missing
CBE1D1A5 LION_SA_PVMISS TEMP S Physical disk block relocation failed
CBF25456 MSLA_INTR TEMP S COMMUNICATION PROTOCOL ERROR
CDECA79D FDDI_TIO TEMP H FIO exception
CF48ED3F BADISK_ERR4 TEMP S DISK OPERATION ERROR
CFC1A4DD MPQP_ADPER TEMP S ADAPTER ERROR
CFD65BF6 FDDI_DOWN TEMP H ADAPTER ERROR
CFF77BD TCK_ADAPTER_ERR TEMP H Potential data loss condition
D080E08D CAT_ERR5 TEMP H ADAPTER ERROR
D2360951 TCK_CONGEST TEMP S COMMUNICATIONS OVERRUN
D2895A9 BADISK_ERR5 TEMP H DISK OPERATION ERROR
D38OBC3F X25_ALERT8 TEMP H X-8 X.21 NOT CONNECTED
D3F62EC3 NB1 TEMP S SOFTWARE PROGRAM ERROR
D41B92E8 RS_PIN_EDGEV TEMP S Cannot pin memory: edge vector
D62AAD8F LVM_BBDIRBAD TEMP S BAD BLOCK RELLOCATION FAILURE - PV NO LONGER EXISTS
D78DE2AD INTR_ERR TEMP S UNDETERMINED ERROR
D7D0CD46 CAT_ERR1 TEMP H MICROCODE PROGRAM ABNORMALLY TERMINATED
D824DB48 VCA_INTR TEMP S Invalid interrupt
D84E1CB5 LION_MEM_LIST TEMP S Cannot allocate memory: ttvp_t list
D88AE14B FDDI_USY TEMP S UNDETERMINED ERROR
D96E1AC1 EU_CFG_GONE TEMP S Configuration failed: unconfigured
DA24DCA COM_CFG_PIN TEMP S Configuration failed: pincode failed
DA8082D4 NB12 TEMP S SOFTWARE PROGRAM ERROR
DB3EDF6D ENT_ERR6 TEMP H CSMA/CD LAN COMMUNICATIONS LOST
DB451F82 MPQP_RCVR TEMP H COMMUNICATIONS OVERRUN
DBF56911 EU_CFG_HERE TEMP S Configuration failed: already configured

104 An HACMP Cookbook
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Type</th>
<th>Severity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBF832FF</td>
<td>LVM_BBFAIL</td>
<td>UNKN H</td>
<td>Bad block relocation failure - PV no lon</td>
</tr>
<tr>
<td>DDDE4902</td>
<td>TOK_RCVRY_EXIT</td>
<td>TEMP H</td>
<td>PROBLEM RESOLVED</td>
</tr>
<tr>
<td>DD118AFF</td>
<td>PROGRAM_INT</td>
<td>PERM S</td>
<td>Program Interrupt</td>
</tr>
<tr>
<td>DD2201A9</td>
<td>X25_ALERT28</td>
<td>PERM H</td>
<td>X-28 TIMEOUT ON CALL REQUEST, T21</td>
</tr>
<tr>
<td>DD8CA0EE</td>
<td>VCA_IOCTL</td>
<td>TEMPE</td>
<td>UNKN H</td>
</tr>
<tr>
<td>E09EA1BF</td>
<td>TOK_BECOM1</td>
<td>TEMP S</td>
<td>OPEN FAILURE</td>
</tr>
<tr>
<td>E180FDEE</td>
<td>CMCA_CONC_DOWN</td>
<td>PERM S</td>
<td>Concentrator Removed From System</td>
</tr>
<tr>
<td>E1B8984F</td>
<td>SRC</td>
<td>PERM S</td>
<td>SOFTWARE PROGRAM ERROR</td>
</tr>
<tr>
<td>E2109F77</td>
<td>CM_PERMPIO</td>
<td>PERM H</td>
<td>PIO exception</td>
</tr>
<tr>
<td>E225351D</td>
<td>CMMA_ERR_EVT</td>
<td>PERM S</td>
<td>Event handler Failure</td>
</tr>
<tr>
<td>E252E92E</td>
<td>MCFP_X21DTCLR</td>
<td>PERM S</td>
<td>X.21 ERROR</td>
</tr>
<tr>
<td>E2A4EC2E</td>
<td>RS_MEM_EDGE</td>
<td>PERM S</td>
<td>Cannot allocate memory: edge vector</td>
</tr>
<tr>
<td>E2B9E02B</td>
<td>TTY_PROG_PTR</td>
<td>UNKN S</td>
<td>Software error: t_hptr field invalid</td>
</tr>
<tr>
<td>E47E212E</td>
<td>INIT_UMTP</td>
<td>TEMP S</td>
<td>SOFTWARE PROGRAM ERROR</td>
</tr>
<tr>
<td>E4E6A900</td>
<td>WIP0002</td>
<td>TEMP S</td>
<td>SOFTWARE PROGRAM ERROR</td>
</tr>
<tr>
<td>E4F589E6</td>
<td>MCFP_IOCTL</td>
<td>PERM S</td>
<td>ADAPTER ERROR</td>
</tr>
<tr>
<td>E61501A6</td>
<td>MCFP_X21T0</td>
<td>TEMP H</td>
<td>X.21 ERROR</td>
</tr>
<tr>
<td>E64B259F</td>
<td>TAPE_ERR3</td>
<td>PERM H</td>
<td>TAPE DRIVE FAILURE</td>
</tr>
<tr>
<td>E6599C95</td>
<td>X25_ALERT23</td>
<td>PERM H</td>
<td>X-23 RESET REQUEST BY X.25 ADAPTER</td>
</tr>
<tr>
<td>E6784BC4</td>
<td>X25_ALERT29</td>
<td>PERM H</td>
<td>X-29 TIMEOUT ON CLEAR REQUEST, T23</td>
</tr>
<tr>
<td>E6CD3CFE</td>
<td>CFMGR_PROGRAM_NF</td>
<td>UNKN S</td>
<td>Program or method not found</td>
</tr>
<tr>
<td>E70473ED</td>
<td>VCA_IOCTL2</td>
<td>PERM S</td>
<td>Invalid ioctl request</td>
</tr>
<tr>
<td>E79A3C09</td>
<td>ACDA_INTR2</td>
<td>TEMP S</td>
<td>Invalid interrupt</td>
</tr>
<tr>
<td>E7D0F3E3</td>
<td>RS_PIN_EDGE</td>
<td>PERM S</td>
<td>Cannot pin memory: edge structure</td>
</tr>
<tr>
<td>E7E2E3E9</td>
<td>NLS_BADMAP</td>
<td>PERM S</td>
<td>Software error: NLS map corrupted</td>
</tr>
<tr>
<td>E85C54C4</td>
<td>HFTERR</td>
<td>UNKN H</td>
<td>ADAPTER ERROR</td>
</tr>
<tr>
<td>E9645C5C</td>
<td>FDDI_RCV</td>
<td>UNKN H</td>
<td>ADAPTER ERROR</td>
</tr>
<tr>
<td>E97374FF</td>
<td>RS_MEM_PVT</td>
<td>PERM S</td>
<td>Cannot allocate memory: priv. structure</td>
</tr>
<tr>
<td>EA38BE60</td>
<td>X25_ALERT22</td>
<td>PERM H</td>
<td>X-22 RESTART INDICATION RECEIVED</td>
</tr>
<tr>
<td>EBF95989</td>
<td>RCMMfs</td>
<td>PERM S</td>
<td>SOFTWARE PROGRAM ERROR</td>
</tr>
<tr>
<td>EE18D0F1</td>
<td>TMSCLI3_CMD_ERR</td>
<td>TEMP H</td>
<td>Attached SCSI target device error</td>
</tr>
<tr>
<td>EEBCC5D9</td>
<td>CMMA_CFG_BIOS</td>
<td>PERM S</td>
<td>Adapter BIOS Initialization Failed</td>
</tr>
<tr>
<td>EEF3C14D</td>
<td>DISKETTE_ERR</td>
<td>TEMP H</td>
<td>PIO exception</td>
</tr>
<tr>
<td>F15F3C50</td>
<td>FDDI_RCVRY_ENTER</td>
<td>PEND H</td>
<td>Recovery logic initiated by device</td>
</tr>
<tr>
<td>F2F3A0AF</td>
<td>FDDI_PORT</td>
<td>TEMP H</td>
<td>ADAPTER ERROR</td>
</tr>
<tr>
<td>F3D17657</td>
<td>CMMA_CFG_MTST</td>
<td>PERM S</td>
<td>Adapter Memory Test Failed</td>
</tr>
<tr>
<td>F43B9E92</td>
<td>SDERR2</td>
<td>PERM S</td>
<td>STORAGE SUBSYSTEM FAILURE</td>
</tr>
<tr>
<td>F4CB727F</td>
<td>FDDI_SELFT_ERR</td>
<td>PERM H</td>
<td>ADAPTER ERROR</td>
</tr>
<tr>
<td>F5345A4B</td>
<td>NE25</td>
<td>PERM S</td>
<td>SOFTWARE PROGRAM ERROR</td>
</tr>
<tr>
<td>F5458763</td>
<td>CM_CFG_ADP</td>
<td>PERM S</td>
<td>Configuration failed: already configured</td>
</tr>
<tr>
<td>F683C547</td>
<td>ATE_ERR7</td>
<td>TEMP S</td>
<td>COMMUNICATION PROTOCOL ERROR</td>
</tr>
<tr>
<td>F734B194</td>
<td>NE25</td>
<td>PERM S</td>
<td>SOFTWARE PROGRAM ERROR</td>
</tr>
<tr>
<td>F7EF70B8</td>
<td>EXCHECK_SCRUB</td>
<td>PERM S</td>
<td>Configuration mgr child process failed</td>
</tr>
<tr>
<td>F8194D80</td>
<td>CFMGR_CHILD</td>
<td>UNKN S</td>
<td>Configuration mgr child process failed</td>
</tr>
<tr>
<td>F91718BC</td>
<td>CFMGR_FATAL_DB</td>
<td>UNKN S</td>
<td>Configuration mgr fatal database problem</td>
</tr>
<tr>
<td>F924B9E5</td>
<td>TOK_PIO_ERR</td>
<td>PERM H</td>
<td>ADAPTER ERROR</td>
</tr>
<tr>
<td>FB683A72</td>
<td>ACCT_OFF</td>
<td>TEMP S</td>
<td>EC26</td>
</tr>
<tr>
<td>FC0282B5</td>
<td>MSLA_IOCTL</td>
<td>PERM S</td>
<td>ADAPTER ERROR</td>
</tr>
<tr>
<td>FFB0F8C1</td>
<td>TMSCLI3_UNRECVRD_ERR</td>
<td>PERM H</td>
<td>Attached SCSI target device error</td>
</tr>
<tr>
<td>FCA696CE</td>
<td>TOK_ESERR</td>
<td>TEMP S</td>
<td>EXCESSIVE TOKEN-RING ERRORS</td>
</tr>
<tr>
<td>FDB6A5A1</td>
<td>COM_CFG_BUSI</td>
<td>PERM S</td>
<td>Configuration failed: bad bus ID</td>
</tr>
<tr>
<td>FE1D2A0A</td>
<td>TOK_ERR5</td>
<td>PERM H</td>
<td>OPEN FAILURE</td>
</tr>
<tr>
<td>FEF6A260</td>
<td>COM_CFG_INTR</td>
<td>PERM S</td>
<td>Configuration failed: interrupt priority</td>
</tr>
<tr>
<td>FEDC31570</td>
<td>SDA_ERR3</td>
<td>PERM H</td>
<td>UNDETERMINED ERROR</td>
</tr>
<tr>
<td>FED1497C</td>
<td>MSLA_CLOSE</td>
<td>TEMP S</td>
<td>SOFTWARE PROGRAM ABNORMALLY TERMINATED</td>
</tr>
<tr>
<td>FFC9E3A0</td>
<td>TOK_TX_ERR</td>
<td>PERM H</td>
<td>ADAPTER ERROR</td>
</tr>
<tr>
<td>FFE2703A</td>
<td>TAPE_ERR5</td>
<td>UNKN H</td>
<td>UNDETERMINED ERROR</td>
</tr>
</tbody>
</table>
Appendix D. Disk Setup in an HACMP Cluster

This appendix gives detailed descriptions of the setup of different kinds of shared disk devices for HACMP. You will see how cluster nodes are connected to shared disks and how the storage space on these devices becomes visible to the operating system.

The appendix is divided into three sections, each of which deals with a particular type of disk or subsystem. These sections are:

- SCSI disks and subsystems
- RAID subsystems
- 9333 Serial disk subsystems
- Serial Storage Architecture (SSA) disk subsystems

D.1 SCSI Disks and Subsystems

The SCSI adapters that can be used on a shared SCSI bus in an HACMP cluster are:

- SCSI-2 Differential Controller (FC: 2420, PN: 43G0176)
- SCSI-2 Differential Fast/Wide Adapter/A (FC: 2416, PN: 65G7315)
- Enhanced SCSI-2 Differential Fast/Wide Adapter/A (FC: 2412, PN: 52G3380)

(This adapter was only supported under AIX 4.1 and HACMP 4.1 for AIX at the time of publishing, but testing was underway to certify the adapter under HACMP/6000 Version 3.1)

The non-RAID SCSI disks and subsystems that you can connect as shared disks in an HACMP cluster are:

- 7204 Models 215, 315, 317, and 325 External Disk Drives
- 9334 Models 011 and 501 SCSI Expansion Units
- 7134-010 High Density SCSI Disk Subsystem

D.1.1 SCSI Adapters

The SCSI-2 Differential Controller is used to connect to 8-bit disk devices on a shared bus. The SCSI-2 Differential Fast/Wide Adapter/A or Enhanced SCSI-2 Differential Fast/Wide Adapter/A is usually used to connect to 16-bit devices but can also be used with 8-bit devices.

In a dual head-of-chain configuration of shared disks, there should be no termination anywhere on the bus except at the extremities. Therefore, you should remove the termination resistor blocks from the SCSI-2 Differential Controller and the SCSI-2 Differential Fast/Wide Adapter/A or Enhanced SCSI-2 Differential Fast/Wide Adapter/A. The positions of these blocks (U8 and U26 on the SCSI-2 Differential Controller, and RN1, RN2 and RN3 on the SCSI-2 Differential Fast/Wide Adapter/A and Enhanced SCSI-2 Differential Fast/Wide Adapter/A) are shown in Figure 5 on page 108 and Figure 6 on page 108 respectively.
The ID of a SCSI adapter, by default, is 7. Since each device on a SCSI bus must have a unique ID, the ID of at least one of the adapters on a shared SCSI bus has to be changed.

The procedure to change the ID of a SCSI-2 Differential Controller is:

1. At the command prompt, enter `smit chgscsi`.
2. Select the adapter whose ID you want to change from the list presented to you.
3. Enter the new ID (any integer from 0 to 7) for this adapter in the Adapter card SCSI ID field. Since the device with the highest SCSI ID on a bus gets control of the bus, set the adapter's ID to the highest available ID. Set the Apply change to DATABASE only field to yes.

4. Reboot the machine to bring the change into effect.

The same task can be executed from the command line by entering:

```
# chdev -1 scsi1 -a id=6 -P
```

Also with this method, a reboot is required to bring the change into effect.

The procedure to change the ID of a SCSI-2 Differential Fast/Wide Adapter/A or Enhanced SCSI-2 Differential Fast/Wide Adapter/A is almost the same as the one described above. Here, the adapter that you choose from the list you get after executing the smit chgsys command should be an ascii device. Also, as, shown below, you need to change the external SCSI ID only.
Change/Show Characteristics of a SCSI Adapter

| SCSI adapter | ascsi1 |
| Description | Wide SCSI I/O Control> |
| Status | Available |
| Location | 00-06 |
| Internal SCSI ID | 7 +# |
| External SCSI ID | [6] +# |
| WIDE bus enabled | yes + |
| ... | |
| Apply change to DATABASE only | yes |

The command line version of this is:

```
# chdev -l ascsi1 -a id=6 -P
```

As in the case of the SCSI-2 Differential Controller, a system reboot is required to bring the change into effect.

The maximum length of the bus, including any internal cabling in disk subsystems, is limited to 19 meters for buses connected to the SCSI-2 Differential Controller, and to 25 meters for those connected to the SCSI-2 Differential Fast/Wide Adapter/A or Enhanced SCSI-2 Differential Fast/Wide Adapter/A.

D.1.2 Individual Disks and Enclosures

The 7204-215 External Disk Drive is an 8-bit disk that can be connected to the SCSI-2 Differential Controller, the SCSI-2 Differential Fast/Wide Adapter/A, or the Enhanced SCSI-2 Differential Fast/Wide Adapter/A. While there is a theoretical limit of six such disks in an I/O bus connected to two nodes, HACMP supports up to four in a single bus. This support limit is based only on what has been specifically tested by development.

As there are typically choices to be made in lengths of cable connecting disks and adapters in the bus, it is important to keep in mind the bus length limits stated in the last section, while configuring your hardware.

The 7204 Model 315, 317, and 325 External Disk Drives are 16-bit disks that can only be connected to the SCSI-2 Differential Fast/Wide Adapter/A or Enhanced SCSI-2 Differential Fast/Wide Adapter/A. For HACMP, the tested limit of these disks in a single shared 16-bit bus is six for the 7204-315, and fourteen for the 7204-317 and 7204-325.

The 9334 Model 011 and 501 SCSI Expansion Units can each contain up to four 8-bit disks. Because of the bus length limitation, you can daisy-chain a maximum of two such units on a shared bus. The number of disks in the enclosures is determined by the number of free SCSI IDs in the bus. The enclosure itself does not have any SCSI ID.

The 7134-010 High Density SCSI Disk Subsystem can contain up to six 16-bit disks in the base unit and six more in the expansion unit. You can either configure your 7134 with just the base unit connected to one shared SCSI bus, or you can configure it with the base and the expansion unit attached to two different shared SCSI buses. The maximum number of disks in each unit is
determined by the number of available SCSI IDs on the shared bus to which it is attached.

D.1.3 Hooking It All Up

In this section we will list the different components required to connect SCSI disks and enclosures on a shared bus. We will also show you how to connect these components together.

D.1.3.1 7204-215 External Disk Drive

To connect a set of 7204-215s to SCSI-2 Differential Controllers on a shared SCSI bus, you need the following:

- SCSI-2 Differential Y-Cable
 FC: 2422 (0.765m), PN: 52G7348
- SCSI-2 Differential System-to-System Cable
 FC: 2423 (2.5m), PN: 52G7349
 This cable is used only if there are more than two nodes attached to the same shared bus.
- SCSI-2 DE Controller Cable
 FC: 2854 or 9138 (0.6m), PN: 87G1358 - OR -
 FC: 2921 or 9221 (4.75m), PN: 67G0593
- SCSI-2 DE Device-to-Device Cable
 FC: 2848 or 9134 (0.66m), PN: 74G8511
- Terminator
 Included in FC 2422 (Y-Cable), PN: 52G7350

Figure 7 shows four RS/6000s, each represented by one SCSI-2 Differential Controller, connected on an 8-bit bus to a chain of 7204-215s.

Figure 7. 7204-215 External Disk Drives Connected on an 8-Bit Shared SCSI Bus
D.1.3.2 7204 Model 315, 317, and 325 External Disk Drives

To attach a chain of 7204 Model 315s, 317s, or 325s, or a combination of them to SCSI-2 Differential Fast/Wide Adapter/As or Enhanced SCSI-2 Differential Fast/Wide Adapter/As on a shared 16-bit SCSI bus, you need the following 16-bit cables and terminators:

- 16-Bit SCSI-2 Differential Y-Cable
 FC: 2426 (0.94m), PN: 52G4234

- 16-Bit SCSI-2 Differential System-to-System Cable
 FC: 2424 (0.6m), PN: 52G4291 - OR -
 FC: 2425 (2.5m), PN: 52G4233
 This cable is used only if there are more than two nodes attached to the same shared bus.

- 16-Bit SCSI-2 DE Device-to-Device Cable
 FC: 2845 or 9131 (0.6m), PN: 52G4291 - OR -
 FC: 2846 or 9132 (2.5m), PN: 52G4233

- 16-Bit Terminator
 Included in FC 2426 (Y-Cable), PN: 61G8324

Figure 8 shows four RS/6000s, each represented by one SCSI-2 Differential Fast/Wide Adapter/A, connected on a 16-bit bus to a chain of 7204-315s. The connections would be the same for the 7204-317, and Model 325 drives. You could also substitute the Enhanced SCSI-2 Differential Fast/Wide Adapter/A (feature code 2412) for the SCSI-2 Differential Fast/Wide Adapter/As shown in the figure, if you are running HACMP 4.1 for AIX.

Figure 8. 7204-315 External Disk Drives Connected on a 16-Bit Shared SCSI Bus
D.1.3.3 9334-011 and 9334-501 SCSI Expansion Units
For connecting 9334 Models 011 or 501 to SCSI-2 Differential Controllers on a shared 8-bit SCSI bus, you require the following, in all cases:

- **SCSI-2 Differential Y-Cable**
 FC: 2422 (0.765m), PN: 52G7348

- **SCSI-2 Differential System-to-System Cable**
 FC: 2423 (2.5m), PN: 52G7349
 This cable is used only if there are more than two nodes attached to the same shared bus.

- **Terminator**
 Included in FC 2422 (Y-Cable), PN: 52G7350

In addition to the common set of cables, the 9334-011 requires:

- **SCSI-2 DE Controller Cable**
 FC: 2921 or 9221 (4.75m), PN: 67G0593 - OR -
 FC: 2923 or 9223 (8.0m), PN: 95X2494

- **SCSI-2 DE Device-to-Device Cable**
 FC: 2925 or 9225 (2.0m), PN: 95X2492

In addition to the common set of cables, the 9334-501 requires:

- **SCSI-2 DE Controller Cable**
 FC: 2931 (1.48m), PN: 70F9188 - OR -
 FC: 2933 (2.38m), PN: 45G2858 - OR -
 FC: 2935 (4.75m), PN: 67G0566 - OR -
 FC: 2937 (8.0m), PN: 67G0562

- **SCSI-2 DE Device-to-Device Cable**:
 FC: 2939 or 9239 (2.0m), PN: 95X2498

Figure 9 on page 114 shows four RS/6000s, each represented by one SCSI-2 Differential Controller, connected on an 8-bit bus to a chain of 9334-011s.
Figure 10 on page 114 shows four RS/6000s, each represented by one SCSI-2 Differential Controller, connected on an 8-bit bus to a chain of 9334-501s.
Figure 9. 9334-011 SCSI Expansion Units Connected on an 8-Bit Shared SCSI Bus

Figure 10. 9334-501 SCSI Expansion Units Connected on an 8-Bit Shared SCSI Bus
D.1.3.4 7134-010 High Density SCSI Disk Subsystem

To attach a 7134-010 to a SCSI-2 Differential Fast/Wide Adapter/A or Enhanced SCSI-2 Differential Fast/Wide Adapter/A on a shared 16-bit SCSI bus, you need the following:

- 16-Bit SCSI-2 Differential Y-Cable
 FC: 2426 (0.94m), PN: 52G4234

- 16-Bit SCSI-2 Differential System-to-System Cable
 FC: 2424 (0.6m), PN: 52G4291 - OR -
 FC: 2425 (2.5m), PN: 52G4233
 This cable is used only if there are more than two nodes attached to the same shared bus.

- 16-Bit Differential SCSI Cable
 FC: 2902 (2.4m), PN: 88G5750 - OR -
 FC: 2905 (4.5m), PN: 88G5749 - OR -
 FC: 2912 (12.0m), PN: 88G5747 - OR -
 FC: 2914 (14.0m), PN: 88G5748 - OR -
 FC: 2918 (18.0m), PN: 88G5746

- 16-Bit Terminator (T)
 Included in FC 2426 (Y-Cable), PN: 61G8324

Figure 11 on page 116 shows four RS/6000s, each represented by two SCSI-2 Differential Fast/Wide Adapter/As, connected on a 16-bit bus to a 7134-010 with a base and an expansion unit. You could also substitute the Enhanced SCSI-2 Differential Fast/Wide Adapter/A (feature code 2412) for the SCSI-2 Differential Fast/Wide Adapter/As shown in the figure, if you are running HACMP 4.1 for AIX.
D.1.4 AIX’s View of Shared SCSI Disks

If your shared SCSI bus has been set up without violating any of the restrictions for termination, SCSI IDs, or cable length, the nodes connected to the shared bus should be able to configure each disk, including the ones inside a 9334 or a 7134, as a separate hdisk device at the next system restart.

D.2 RAID Subsystems

The SCSI adapters that can be used to connect RAID subsystems on a shared SCSI bus in an HACMP cluster are:

- SCSI-2 Differential Controller (FC: 2420, PN: 43G0176)
- SCSI-2 Differential Fast/Wide Adapter/A (FC: 2416, PN: 65G7315)
- Enhanced SCSI-2 Differential Fast/Wide Adapter/A (FC: 2412)

(This adapter was only supported under AIX 4.1 and HACMP 4.1 for AIX at the time of publishing, but testing was underway to certify the adapter under HACMP/6000 Version 3.1)

The RAID subsystems that you can connect on a shared bus in an HACMP cluster are:

- 7135-110 (HACMP/6000 Version 3.1 only, at the time of publishing) and 7135-210 (HACMP 4.1 for AIX only) RAIDiant Array
- 7137 Model 412, 413, 414, 512, 513, and 514 Disk Array Subsystems
Note: Existing IBM 3514 RAID Array models continue to be supported as shared disk subsystems under HACMP, but since this subsystem has been withdrawn from marketing, it is not described here. As far as cabling and connection characteristics are concerned, the 3514 follows the same rules as the 7137 Disk Array subsystems.

D.2.1 SCSI Adapters

A description of the SCSI adapters that can be used on a shared SCSI bus is given in Section D.1.1, "SCSI Adapters" on page 107.

D.2.2 RAID Enclosures

The 7135 RAIDiant Array can hold a maximum of 30 single-ended disks in two units (one base and one expansion). It has one controller by default, and another controller can be added for improved performance and availability. Each controller takes up one SCSI ID. The disks sit on internal single-ended buses and hence do not take up IDs on the external bus. In an HACMP cluster, each 7135 should have two controllers, each of which is connected to a separate shared SCSI bus. This configuration protects you against any failure (SCSI adapter, cables, or RAID controller) on either SCSI bus.

Because of cable length restrictions, a maximum of two 7135s on a shared SCSI bus is supported by HACMP.

The 7137 Model 412, 413, 414, 512, 513, and 514 Disk Array Subsystems can hold a maximum of eight disks. Each model has one RAID controller, that takes up one SCSI ID on the shared bus. You can have a maximum of two 7137s connected to a maximum of four nodes on an 8-bit or 16-bit shared SCSI bus.

D.2.3 Connecting RAID Subsystems

In this section, we will list the different components required to connect RAID subsystems on a shared bus. We will also show you how to connect these components together.

D.2.3.1 7135-110 or 7135-210 RAIDiant Array

The 7135-110 RAIDiant Array can be connected to multiple systems on either an 8-bit or a 16-bit SCSI-2 differential bus. The Model 210 can only be connected to a 16-bit SCSI-2 Fast/Wide differential bus, using the Enhanced SCSI-2 Differential Fast/Wide Adapter/A.

To connect a set of 7135-110s to SCSI-2 Differential Controllers on a shared 8-bit SCSI bus, you need the following:

- **SCSI-2 Differential Y-Cable**
 FC: 2422 (0.765m), PN: 52G7348

- **SCSI-2 Differential System-to-System Cable**
 FC: 2423 (2.5m), PN: 52G7349
 This cable is used only if there are more than two nodes attached to the same shared bus.

- **Differential SCSI Cable (RAID Cable)**
 FC: 2901 or 9201 (0.6m), PN: 67G1259 - OR -
 FC: 2902 or 9202 (2.4m), PN: 67G1260 - OR -
FC: 2905 or 9205 (4.5m), PN: 67G1261 - OR -
FC: 2912 or 9212 (12m), PN: 67G1262 - OR -
FC: 2914 or 9214 (14m), PN: 67G1263 - OR -
FC: 2918 or 9218 (18m), PN: 67G1264

- Terminator (T)
 Included in FC 2422 (Y-Cable), PN: 52G7350

- Cable Interposer (I)
 FC: 2919, PN: 61G8323

One of these is required for each connection between a SCSI-2 Differential Y-Cable and a Differential SCSI Cable going to the 7135 unit, as shown in Figure 12.

Figure 12 shows four RS/6000s, each represented by two SCSI-2 Differential Controllers, connected on two 8-bit buses to two 7135-110s each with two controllers.

Note

The diagrams in this book give a logical view of the 7135 subsystem. Please refer to the 7135 Installation and Service Guide for the exact positions of the controllers and their corresponding connections.

Figure 12. 7135-110 RAIDiant Arrays Connected on Two Shared 8-Bit SCSI Buses

To connect a set of 7135s to SCSI-2 Differential Fast/Wide Adapter/As or Enhanced SCSI-2 Differential Fast/Wide Adapter/As on a shared 16-bit SCSI bus, you need the following:

- 16-Bit SCSI-2 Differential Y-Cable
 FC: 2426 (0.94m), PN: 52G4234

- 16-Bit SCSI-2 Differential System-to-System Cable
 FC: 2424 (0.6m), PN: 52G4291 - OR -
This cable is used only if there are more than two nodes attached to the same shared bus.

- **16-Bit Differential SCSI Cable (RAID Cable)**

 FC: 2901 or 9201 (0.6m), PN: 67G1259 - OR -
 FC: 2902 or 9202 (2.4m), PN: 67G1260 - OR -
 FC: 2905 or 9205 (4.5m), PN: 67G1261 - OR -
 FC: 2912 or 9212 (12m), PN: 67G1262 - OR -
 FC: 2914 or 9214 (14m), PN: 67G1263 - OR -
 FC: 2918 or 9218 (18m), PN: 67G1264

- **16-Bit Terminator (T)**

 Included in FC 2426 (Y-Cable), PN: 61G8324

Figure 13 shows four RS/6000s, each represented by two SCSI-2 Differential Fast/Wide Adapter/As, connected on two 16-bit buses to two 7135-110s, each with two controllers.

The 7135-210 requires the Enhanced SCSI-2 Differential Fast/Wide Adapter/A adapter for connection. Other than that, the cabling is exactly the same as shown in Figure 13, if you just substitute the Enhanced SCSI-2 Differential Fast/Wide Adapter/A (FC: 2412) for the SCSI-2 Differential Fast/Wide Adapter/A (FC: 2416) in the picture.

Figure 13. 7135-110 RAIDiant Arrays Connected on Two Shared 16-Bit SCSI Buses

D.2.3.2 7137 Model 412, 413, 414, 512, 513, and 514 Disk Array Subsystems

To connect two 7137s to SCSI-2 Differential Controllers on a shared 8-bit SCSI bus, you need the following:

- **SCSI-2 Differential Y-Cable**

 FC: 2422 (0.765m), PN: 52G7348
• **SCSI-2 Differential System-to-System Cable**

 FC: 2423 (2.5m), PN: 52G7349

 This cable is used only if there are more than two nodes attached to the same shared bus.

• **Attachment Kit to SCSI-2 Differential High-Performance External I/O Controller**

 FC: 2002, PN: 46G4157

 This includes a 4.0-meter cable, an installation diskette, and the *IBM 7137 (or 3514) RISC System/6000 System Attachment Guide*.

• **Multiple Attachment Cable**

 FC: 3001, PN: 21F9046

 This includes a 2.0-meter cable, an installation diskette, and connection instructions.

• **Terminator (T)**

 Included in FC 2422 (Y-Cable), PN: 52G7350

Figure 14 shows four RS/6000s, each represented by one SCSI-2 Differential Controller, connected on an 8-bit bus to two 7137s.

![Figure 14. 7137 Disk Array Subsystems Connected on an 8-Bit SCSI Bus](image)

To connect two 7137s to SCSI-2 Differential Fast/Wide Adapter/As or Enhanced SCSI-2 Differential Fast/Wide Adapter/As on a shared 16-bit SCSI bus, you need the following:

• **16-Bit SCSI-2 Differential Y-Cable**

 FC: 2426 (0.94m), PN: 52G4234

• **16-Bit SCSI-2 Differential System-to-System Cable**

 FC: 2424 (0.6m), PN: 52G4291 - OR -

 FC: 2425 (2.5m), PN: 52G4233

 This cable is used only if there are more than two nodes attached to the same shared bus.
• Attachment Kit to SCSI-2 Differential Fast/Wide Adapter/A or Enhanced SCSI-2 Differential Fast/Wide Adapter/A

 FC: 2014, PN: 75G5028

 This includes a 4.0-meter cable, an installation diskette, and the IBM 7137 (or 3514) RISC System/6000 System Attachment Guide.

• Multiple Attachment Cable

 FC: 3001, PN: 21F9046

 This includes a 2.0-meter cable, an installation diskette, and connection instructions.

• 16-Bit Terminator (T)

 Included in FC 2426 (Y-Cable), PN: 61G8324

Figure 15 shows four RS/6000s, each represented by one SCSI-2 Differential Fast/Wide Adapter/As, connected on a 16-bit bus to two 7137s. The Enhanced SCSI-2 Differential Fast/Wide Adapter/A uses exactly the same cabling, and could be substituted for the SCSI-2 Differential Fast/Wide Adapter/A in an AIX 4.1 and HACMP 4.1 for AIX configuration.

![Diagram of 7137 Disk Array Subsystems Connected on a 16-Bit SCSI Bus](image)

Figure 15. 7137 Disk Array Subsystems Connected on a 16-Bit SCSI Bus

D.2.4 AIX’s View of Shared RAID Devices

The 7135 and 7137 subsystems come preconfigured with Logical Units (LUNs) from the factory. Each LUN gets recognized by nodes on the shared bus as an hdisk device. You can reconfigure the LUNs in a 7135 to suit your requirements by using the 7135 Disk Array Manager software. A 7137 can be reconfigured by using the operator panel on the subsystem itself.

The procedure for configuring LUNs is beyond the scope of this book. Please refer to 7135 RAIDiant Array for AIX - Installation and Reference for instructions on using the 7135 Disk Array Manager software to create and manage LUNs in a 7135. Please refer to the product documentation that comes with the 7137 subsystem for instructions to set up LUNs on that subsystem.
D.3 Serial Disk Subsystems

To connect serial disk subsystems as shared devices in an HACMP cluster, the adapter that you will use is:

- High-Performance Disk Drive Subsystem Adapter 40/80 MB/sec. (FC: 6212, PN: 67G1755)

The serial disk subsystems that you can connect as shared devices in an HACMP cluster are:

- 9333 Model 011 and 501 High-Performance Disk Drive Subsystems

D.3.1 High-Performance Disk Drive Subsystem Adapter

The High-Performance Disk Drive Subsystem Adapter has four ports, with each port supporting the attachment of a single 9333-011 or 501 controller. Since each controller can drive up to a maximum of four disks, of 2 GB capacity each, you can access up to 32 GB of data with one High-Performance Disk Drive Subsystem Adapter. There is no limit on the number of serial disk adapters that you can have in one node. You do not need to worry about device addresses or terminators with serial disks, since the subsystem is self-addressing. This feature makes it much easier to install and configure than the SCSI options discussed previously.

D.3.2 9333 Disk Subsystems

The 9333 Model 011 and 501 High-Performance Disk Drive Subsystems can each contain a maximum of four disks. The 9333-011 is in a drawer configuration, and is used on rack-mounted models. The 9333-501 is in a mini-tower configuration, and is used on all other models of the RS/6000. Each 9333 subsystem requires a dedicated port on a High-Performance Disk Drive Subsystem Adapter. A maximum of four 9333s can attach to one High-Performance Disk Drive Subsystem Adapter, one for each port. Each 9333 subsystem can be shared with a maximum of eight nodes in a cluster. To connect 9333s to an RS/6000, you need to have AIX Version 3.2.4 or later, and AIX feature 5060 (IBM High-Performance Disk Subsystem Support) installed.

D.3.3 Connecting Serial Disk Subsystems in an HACMP Cluster

To connect a 9333-011 or 501 to two systems, each containing High-Performance Disk Drive Subsystem Adapters, you need the following:

- Serial-Link Cable (Quantity 2)
 FC: 9210 or 3010 (10m)
 FC: 9203 or 3003 (3m)

To connect a 9333-011 or 501 to three or more systems, each containing High-Performance Disk Drive Subsystem Adapters, you need the following:

- Serial-Link Cable (One for each system connection)
 FC: 9210 or 3010 (10m)
 FC: 9203 or 3003 (3m)

- Multiple System Attachment Feature(s)
 FC: 4001 (Connect up to four systems)
FC: 4002 (Connect up to eight systems)
Feature 4001 is a prerequisite for feature 4002.

Figure 16 shows eight RS/6000s, each having a High-Performance Disk Drive Subsystem Adapter, connected to one 9333-501 with the Multiple System Attachment Features 4001 and 4002 installed.

![Figure 16. 9333-501 Connected to Eight Nodes in an HACMP Cluster (Rear View)](image)

D.3.4 AIX’s View of Shared Serial Disk Subsystems
Each individual serial disk inside a 9333 subsystem appears as a separate hdisk device on all nodes connected to the subsystem.
D.4 Serial Storage Architecture (SSA) Subsystems

Serial Storage Architecture is a second generation of the high performance serial disk subsystems, started with the IBM 9333 subsystems. SSA subsystems provide new levels of performance, reliability, and flexibility, and are IBM’s strategic high performance disk subsystems for the future.

SSA Support in HACMP

At the time of publishing, the IBM 7133 SSA subsystem was supported for sharing between two nodes only, in a cluster running AIX 3.2.5 and HACMP/6000 Version 3.1. Support for sharing a subsystem between larger numbers of nodes, and support for the use of the 7133 in an AIX 4.1 and HACMP 4.1 for AIX cluster are expected to be added at a later date. Please check with your IBM representative for the latest support information.

To connect SSA subsystems as shared devices in your HACMP cluster, the adapter that you will use is:

- SSA Four Port Adapter (FC: 6124)

This adapter is shown in Figure 17 on page 125.

The SSA disk subsystems that you can connect as shared devices in an HACMP cluster are:

- IBM 7133-010 SSA Disk Subsystem
 This model is in a drawer configuration, for use in rack mounted systems.

- IBM 7133-500 SSA Disk Subsystem
 This model is in a standalone tower configuration, for use in all models.

D.4.1 SSA Software Requirements

The IBM 7133 SSA Disk Subsystem is supported by AIX Version 3.2.5 with additional program temporary fixes (PTFs), and the AIX 3.2.5 device driver shipped with the SSA Four Port Adapter (FC 6214 on the attaching system). For ease of installation, these PTFs are packaged with the device driver on the CD-ROM shipped with the adapter.

Customers without access to CD-ROM drives on their machines or network can obtain the device driver and required PTFs through the FIXDIST system. The device driver is available as APAR IX52018. The required PTFs, on FIXDIST, are identified as PMP3251.

For alternative delivery, contact your Software Service representative for the appropriate PTFs. The additional Version 3.2.5 PTFs (without the AIX 3.2.5 device driver for the adapter) are included on all AIX Version 3.2.5 orders shipped after May 19, 1995, labelled AIX 3.2.5 Enhancement 5 (3250-05-00).

At the time of publishing, SSA support for AIX 4.1 was expected to be announced by the end of 1995. Please check with your IBM representative for its most current status.
D.4.2 SSA Four Port Adapter

The IBM SSA Four Port Adapter supports the connection of a large capacity of SSA storage. The basic concept of SSA storage connection is that of a loop. An SSA loop starts at one port on the SSA Four Port Adapter continues through a number of SSA disk drives, and concludes at another port on an SSA Four Port Adapter. Each loop can include up to 48 disk devices. Since you can support two loops on each SSA Four Port Adapter, you can support up to 96 disk devices on each adapter. If all those disk devices were of the 4.5 GB capacity, this would provide a potential capacity of 432 GB on an adapter. The adapter itself is shown in Figure 17.

![SSA Four Port Adapter Diagram](image)

Figure 17. SSA Four Port Adapter

The labeled components of the adapter in the figure are as follows:

1. Connector B2
2. Green light for adapter port pair B
3. Connector B1
4. Connector A2
5. Green light for adapter port pair A
6. Connector A1
7. Type-number label

The green lights for each adapter port pair indicate the status of the attached loop as follows:

Off Both ports are inactive. If disk drives are connected to these ports, then either the modules have failed or their SSA links have not been enabled.

Permanently on Both ports are active.

Slow flash Only one port is active.

The SSA loop that you create need not begin and end on the same &ssaadt.. Loops can be made to go from one adapter to another adapter in the same system or in a different system. There can at most be two adapters on the same loop.

D.4.3 IBM 7133 SSA Disk Subsystem

The IBM 7133 SSA Disk Subsystem is available in two models, the rack drawer model 010 and the standalone tower model 500. While these models hold their disk drives in different physical orientations, they are functionally the same. Each model is capable of holding up to 16 SSA disk drives, each of which can be 1.1 GB, 2.2 GB, or 4.5 GB drives. The subsystem comes standard with four 2.2 GB drives, which can be traded for higher or lower capacity drives at order time.

![Diagram of IBM 7133 SSA Disk Subsystem](image-url)

Figure 18. IBM 7133 SSA Disk Subsystem
As you can see in Figure 18, each group of four disk drives in the subsystem is internally cabled as a loop. Disk Group 1 includes disk drive positions 1-4 and is cabled between connectors J9 and J10. Disk Group 2 includes disk drive positions 5-8 and is cabled between connectors J5 and J6. You can also see Disk Groups 3 and 4 in the picture. These internal loops can either be cabled together into larger loops, or individually connected to SSA Four Port Adapters. For instance, if you were to connect a short cable between connectors J6 and J10, you would have a loop of eight drives that could be connected to the SSA Four Port Adapter from connectors J5 and J9.

D.4.4 SSA Cables

SSA cables are available in a variety of different lengths. The connectors at each end are identical, which makes them very easy to use. These cables can be used to connect four disk internal loops together into larger loops within the 7133 subsystem itself, to connect multiple 7133 subsystems together in a larger loop, or to connect a 7133 subsystem to an SSA Four Port Adapter. The same cable can be used for any of these connections, as long as it is long enough. In Table 2 is a list of cable feature codes, along with their lengths, and part numbers:

<table>
<thead>
<tr>
<th>Cable Description</th>
<th>Feature Code</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSA Copper Cable (0.18 meters)</td>
<td>5002</td>
<td>07H9163</td>
</tr>
<tr>
<td>SSA Copper Cable (0.6 meters)</td>
<td>5006</td>
<td>31H7960</td>
</tr>
<tr>
<td>SSA Copper Cable (1.0 meter)</td>
<td>5010</td>
<td>07H8985</td>
</tr>
<tr>
<td>SSA Copper Cable (2.5 meters)</td>
<td>5025</td>
<td>32H1465</td>
</tr>
<tr>
<td>SSA Copper Cable (5.0 meters)</td>
<td>5050</td>
<td>88G6406</td>
</tr>
<tr>
<td>SSA Copper Cable (10 meters)</td>
<td>5100</td>
<td>32H1466</td>
</tr>
<tr>
<td>SSA Copper Cable (25 meters)</td>
<td>5250</td>
<td>88G6406</td>
</tr>
</tbody>
</table>

The feature code numbers start with the number 5, and the next three digits give a rounded length in meters, which makes the feature numbers easy to understand and remember. As was mentioned before, the only difference between these cables is their length. They can be used interchangeably to connect any SSA components together.

If you obtain an announcement letter for the 7133 SSA Subsystem, you will also see a number of other cable feature codes listed, with the same lengths (and same prices) as those in Table 2. You needn’t worry or be confused about these, since they are the same cables as those in the tables. As long as you have the correct length of cable for the components you need to connect, you have the right cable.

The maximum distance between components in an SSA loop using IBM cabling is 25 meters. With SSA, there is no special maximum cabling distance for the entire loop. In fact, the maximum cabling distance for the loop would be the maximum distance between components (disks or adapters), multiplied by the maximum number of components (48) in a loop.
D.4.5 Connecting 7133 SSA Subsystems in an HACMP Cluster

The flexibility of the SSA subsystem creates many different options for attaching SSA subsystems in a cluster, with varying levels of redundancy and availability. Since SSA subsystems are currently only supported for sharing between two nodes, these are the examples that we will use. However, it is expected that you will be able to expand these examples by adding more nodes into the loop(s) in the future. We will illustrate two simple scenarios of SSA connection in this section.

The first scenario, shown in Figure 19, shows a single 7133 subsystem, containing eight disk drives (half full), connected between two nodes in a cluster. We have not labeled the cables, since their lengths will be dependent on the characteristics of your location. Remember, the longest cable currently marketed by IBM is 25 meters, and there are many shorter lengths, as shown in Table 2 on page 127. As we said before, all cables have the same connectors at each end, and therefore are interchangeable, provided they have sufficient length for the task.

In the first scenario, each cluster node has one SSA Four Port Adapter. The disk drives in the 7133 are cabled to the two machines in two loops, the first group of four disks in one loop, and the remaining four in the other. Each of the loops is connected into a different port pair on the SSA Four Port Adapters.
In this configuration, LVM mirroring should be implemented across the two loops; that is, a disk on one loop should be mirrored to a disk on the other loop. Mirroring in this way will protect you against the failure of any single disk drive.

The SSA subsystem is able to deal with any break in the cable in a loop by following the path to a disk in the other direction of the loop, even if it does go through the adapter on the other machine. This recovery is transparent to AIX and HACMP.

The only exposure in this scenario is the failure of one of the SSA Four Port Adapters. In this case, the users on the machine with the failed adapter would lose their access to the disks in the 7133 subsystem. The best solution to this problem is to add a second SSA Four Port Adapter to each node, as shown in Figure 20 on page 130. However, this adds an amount of cost to the solution that might not be justifiable, especially if there is a relatively small amount of disk capacity involved.

An alternative solution would be to use HACMP’s Error Notification feature to protect against the failure. You could define an error notification method, which is triggered on the AIX error log record on the failure of the adapter, and which would run a script to shut down the cluster manager in a graceful with takeover mode. This would migrate the users to the other node, from which they would still have access to the disks.

Our second scenario, in Figure 20 on page 130, shows a second SSA Four Port Adapter added to each node. This allows each system to preserve its access to the SSA disks, even if one of the adapters were to fail. This solution does leave an adapter port pair unused on each adapter. These could be used in the future to attach additional loops, if the remaining disk locations in the 7133 were filled, and if additional 7133 subsystems were added into the loops.
Any of the loops can be extended at any time, by reconnecting the cabling to include the new disks in the loop. If these additions are planned correctly, and cables are unplugged and plugged one at a time, this addition of disks can be done in a “hot-pluggable” way, such that the system does not have to be brought down, access to existing disks is not lost, and the new disks can be configured while the system continues running.

D.4.6 AIX’s View of Shared SSA Disk Subsystems

The AIX operating system configures each disk drive in a shared SSA subsystem as a separate hdisk device on each node.
Cluster Worksheet

<table>
<thead>
<tr>
<th>Network Name</th>
<th>Network Type</th>
<th>Attribute</th>
<th>Netmask</th>
<th>Node Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>tmeth1</td>
<td>Token-Ring</td>
<td>public</td>
<td>255.255.255.0</td>
<td>mickey, goofy</td>
</tr>
<tr>
<td>etnet1</td>
<td>Ethernet</td>
<td>private</td>
<td>255.255.255.0</td>
<td>mickey, goofy</td>
</tr>
<tr>
<td>rsnet1</td>
<td>RS232</td>
<td>serial</td>
<td>N/A</td>
<td>mickey, goofy</td>
</tr>
</tbody>
</table>

Figure 21. Worksheet 1 - Cluster
Network Adapter Worksheet

| Node Name | mickey | | | | | | |
|-------------|-----------------|----------------------|----------|----------|----------|----------|
| Interface | Adapter | Adapter Function | Adapter IP Address | Network Name | Network Attribute | Adapter HW Address |
| Name | IP Label | | | | | |
| tr0 | mickey | service | 9.3.1.79 | tmnet1 | public | 42005aa8b484 |
| tr0 | mickey_boot | boot | 9.3.1.45 | tmnet1 | public | |
| tr1 | mickey_sb | standby | 9.3.4.79 | tmnet1 | public | |
| en0 | mickey_en | service | 9.3.5.79 | etnet1 | private | |
| tty0 | mickey_tty0 | service | /dev/tty0 | rsnet1 | serial | |

<table>
<thead>
<tr>
<th>Node Name</th>
<th>goofy</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Adapter</td>
<td>Adapter Function</td>
<td>Adapter IP Address</td>
<td>Network Name</td>
<td>Network Attribute</td>
<td>Adapter HW Address</td>
</tr>
<tr>
<td>Name</td>
<td>IP Label</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tr0</td>
<td>goofy</td>
<td>service</td>
<td>9.3.1.80</td>
<td>tmnet1</td>
<td>public</td>
<td>42005aa8d1f3</td>
</tr>
<tr>
<td>tr0</td>
<td>goofy_boot</td>
<td>boot</td>
<td>9.3.1.46</td>
<td>tmnet1</td>
<td>public</td>
<td></td>
</tr>
<tr>
<td>tr1</td>
<td>goofy_sb</td>
<td>standby</td>
<td>9.3.4.80</td>
<td>tmnet1</td>
<td>public</td>
<td></td>
</tr>
<tr>
<td>en0</td>
<td>goofy_en</td>
<td>service</td>
<td>9.3.5.80</td>
<td>etnet1</td>
<td>private</td>
<td></td>
</tr>
<tr>
<td>tty0</td>
<td>goofy_tty0</td>
<td>service</td>
<td>/dev/tty0</td>
<td>rsnet1</td>
<td>serial</td>
<td></td>
</tr>
</tbody>
</table>

Figure 22. Worksheet 2 - Network Adapters
9333 Serial Disk Subsystem Configuration Worksheet

Cables Needed: Adapter to Drawer/Tower (Two per drawer/tower unit)

<table>
<thead>
<tr>
<th>Node Name</th>
<th>Node A</th>
<th>Node B</th>
<th>Node C</th>
<th>Node D</th>
</tr>
</thead>
<tbody>
<tr>
<td>9333 Adapter Label</td>
<td>Mickey</td>
<td>Goofy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot Number</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical Name</td>
<td>serda6da0</td>
<td>serda6da0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9333 Adapter Label</td>
<td>Adapter2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slot Number</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logical Name</td>
<td>serdas6da1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9333 Subsyst. Label</th>
<th>Tower1</th>
</tr>
</thead>
</table>

| Adapter I/O Connector | 0 (Adapter1) |
| Controller | serdas6dc0 |

Shared Drives:

<table>
<thead>
<tr>
<th>Drive</th>
<th>Size</th>
<th>Logical Device Name</th>
<th>Logical Device Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>857 MB</td>
<td>hdisk1</td>
<td>hdisk2</td>
</tr>
<tr>
<td>2</td>
<td>1.07 GB</td>
<td>hdisk2</td>
<td>hdisk3</td>
</tr>
<tr>
<td>3</td>
<td>857 MB</td>
<td>hdisk3</td>
<td>hdisk4</td>
</tr>
<tr>
<td>4</td>
<td>857 MB</td>
<td>hdisk4</td>
<td>hdisk5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9333 Subsyst. Label</th>
<th>Tower2</th>
</tr>
</thead>
</table>

| Adapter I/O Connector | 0 (Adapter2) |
| Controller | serdas6dc1 |

Shared Drives:

<table>
<thead>
<tr>
<th>Drive</th>
<th>Size</th>
<th>Logical Device Name</th>
<th>Logical Device Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0 GB</td>
<td>hdisk5</td>
<td>hdisk6</td>
</tr>
<tr>
<td>2</td>
<td>2.0 GB</td>
<td>hdisk6</td>
<td>hdisk7</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 23. Worksheet 3 - 9333 Serial Disk Subsystem Configuration
Shared Volume Group/Filesytem Worksheet

<table>
<thead>
<tr>
<th>Node Names</th>
<th>Node A</th>
<th>Node B</th>
<th>Node C</th>
<th>Node D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mickey</td>
<td>goofy</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>Shared volume group name</td>
<td>test1 vg</td>
<td>______</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>Major Number</td>
<td>60</td>
<td>60</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>Log logical volume name</td>
<td>loglvtest1</td>
<td>______</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>Physical Volume(s)</td>
<td>hdisk1</td>
<td>hdisk2</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td></td>
<td>______</td>
<td>______</td>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logical Volume Name</th>
<th>lvtest1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of copies per LP</td>
<td>2</td>
</tr>
<tr>
<td>On separate PVs?</td>
<td>yes</td>
</tr>
<tr>
<td>Filesystem mount point</td>
<td>/test1</td>
</tr>
<tr>
<td>Size (MB)</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logical Volume Name</th>
<th>______</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of copies per LP</td>
<td>______</td>
</tr>
<tr>
<td>On separate PVs?</td>
<td>______</td>
</tr>
<tr>
<td>Filesystem mount point</td>
<td>______</td>
</tr>
<tr>
<td>Size (MB)</td>
<td>______</td>
</tr>
</tbody>
</table>

Figure 24. Worksheet 4 - Shared Volume Group test1vg
Shared Volume Group/Filesystem Worksheet

<table>
<thead>
<tr>
<th></th>
<th>Node A</th>
<th>Node B</th>
<th>Node C</th>
<th>Node D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Names</td>
<td>mickey</td>
<td>goofy</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>Shared volume group name</td>
<td>test2vg</td>
<td>______</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>Major Number</td>
<td>61</td>
<td>61</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>Log logical volume name</td>
<td>loglvtest2</td>
<td>______</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>Physical Volumes</td>
<td>hdisk3</td>
<td>hdisk4</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td></td>
<td>hdisk4</td>
<td></td>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>

| **Logical Volume Name** | lvtest2 |
| **Number of copies per LP** | 2 |
| **On separate PVs?** | yes |
| **Filesystem mount point** | /test2 |
| **Size (MB)** | 100 |

| **Logical Volume Name** | ______ |
| **Number of copies per LP** | ______ |
| **On separate PVs?** | ______ |
| **Filesystem mount point** | ______ |
| **Size (MB)** | ______ |

Figure 25. Worksheet 5 - Shared Volume Group test2vg
Shared Volume Group/Filesystem Worksheet

<table>
<thead>
<tr>
<th></th>
<th>Node A</th>
<th>Node B</th>
<th>Node C</th>
<th>Node D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Names</td>
<td>mickey</td>
<td>goofy</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>Shared volume group name</td>
<td>conc1vg</td>
<td>______</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>Major Number</td>
<td>62</td>
<td>62</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>Log logical volume name</td>
<td>______</td>
<td>______</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td>Physical Volumes</td>
<td>hdisk5</td>
<td>hdisk6</td>
<td>______</td>
<td>______</td>
</tr>
<tr>
<td></td>
<td>hdisk6</td>
<td>hdisk7</td>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>

Logical Volume Name: conc1lv

- Number of copies per LP: 2
- On separate PVs?: yes
- Filesystem mount point: N/A
- Size (MB): 40

Logical Volume Name: conc2lv

- Number of copies per LP: 2
- On separate PVs?: yes
- Filesystem mount point: N/A
- Size (MB): 28

Figure 26. Worksheet 6 - Shared Volume Group conc1vg

The following is example output from the documentation tool doc_dossier included with this document. A report is produced, in either VM, PostScript, or ascii form, giving detailed configuration information for each node.

You will find that the following is formatted slightly differently from what you will produce on your own system, but it does give you an idea of the information produced.

E.1 Preface of the Report

This document includes:

• All customized files on the system
• System configuration

Its goal is to give a complete picture of a working cluster configuration, including any customizations, at the time it is put into production.

In case of future malfunctions, this will allow the service personnel to understand any changes that have been made to the original cluster configuration.
E.2 SYSTEM CONFIGURATION

E.2.1 Cluster Diagram

CLUSTER: disney

service: mickey
standby: mickey_sb
boot: mickey_boot

service: mickey
standby: mickey_sb
boot: mickey_boot

service: goofy
standby: goofy_sb
boot: goofy_boot

NODE NAME: trnet1
rs232

NODE NAME: etnet1
erth

NODE NAME: rootvg
/dev/hdisk0
/dev/hdisk1

NODE NAME: serdasda0
/dev/hdisk1
test1vg
/dev/hdisk2

NODE NAME: serdasda1
/dev/hdisk5
test1vg
/dev/hdisk2

NODE NAME: serdasda0
/dev/hdisk1
test2vg
/dev/hdisk2

NODE NAME: serdasda1
/dev/hdisk5
test2vg
/dev/hdisk2

NODE NAME: serdasda0
/dev/hdisk1
test2vg
/dev/hdisk2

NODE NAME: serdasda1
/dev/hdisk5
test2vg
/dev/hdisk2
E.2.2 Hostname

`=> mickey`

E.2.3 Defined Volume Groups

<table>
<thead>
<tr>
<th>Volume Group</th>
<th>VG Identifier</th>
<th>VG State</th>
<th>PP Size</th>
<th>MAX LVs</th>
<th>LVs</th>
<th>OPEN LVs</th>
<th>Total PPs</th>
<th>Free PPs</th>
<th>Used PPs</th>
<th>Open LVs</th>
<th>Quorum</th>
<th>Total PVs</th>
<th>VG Descriptors</th>
<th>Stale PVs</th>
<th>Active PVs</th>
<th>Auto On</th>
</tr>
</thead>
<tbody>
<tr>
<td>rootvg</td>
<td>000147325ccaf23c</td>
<td>active</td>
<td>4 megabyte(s)</td>
<td>256</td>
<td>9</td>
<td>8</td>
<td>204 (816 megabytes)</td>
<td>34 (136 megabytes)</td>
<td>170 (680 megabytes)</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>test1vg</td>
<td>00014732b5a91022</td>
<td>active</td>
<td>4 megabyte(s)</td>
<td>256</td>
<td>2</td>
<td>0</td>
<td>458 (1832 megabytes)</td>
<td>416 (1664 megabytes)</td>
<td>42 (168 megabytes)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>no</td>
</tr>
<tr>
<td>test2vg</td>
<td>00014732ca66234e</td>
<td>active</td>
<td>4 megabyte(s)</td>
<td>256</td>
<td>2</td>
<td>0</td>
<td>406 (1624 megabytes)</td>
<td>354 (1416 megabytes)</td>
<td>52 (208 megabytes)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>no</td>
</tr>
<tr>
<td>conc1vg</td>
<td>00014732b5ac04be</td>
<td>active</td>
<td>4 megabyte(s)</td>
<td>256</td>
<td>2</td>
<td>0</td>
<td>958 (3832 megabytes)</td>
<td>924 (3696 megabytes)</td>
<td>34 (136 megabytes)</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>no</td>
</tr>
</tbody>
</table>

E.2.4 Active Volume Groups

- rootvg
E.2.5 Adapters and Disks

scsi0 is a SCSI adapter

The scsi0 adapter has its SCSI ID set to id 7 and has the following disks connected to it:

<table>
<thead>
<tr>
<th>ADAPT</th>
<th>DISK</th>
<th>ADDRESS</th>
<th>VOLUME GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>scsi0</td>
<td>hdisk0</td>
<td>00-08-00-00</td>
<td>rootvg</td>
</tr>
</tbody>
</table>

The SERIAL adapter serdasda0 has the following disks connected to it:

<table>
<thead>
<tr>
<th>ADAPT</th>
<th>DISK</th>
<th>ADDRESS</th>
<th>VOLUME GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>serdasda0</td>
<td>hdisk1</td>
<td>00-03-00-00</td>
<td>test1vg</td>
</tr>
<tr>
<td>serdasda0</td>
<td>hdisk2</td>
<td>00-03-00-01</td>
<td>test1vg</td>
</tr>
<tr>
<td>serdasda0</td>
<td>hdisk3</td>
<td>00-03-00-02</td>
<td>test2vg</td>
</tr>
<tr>
<td>serdasda0</td>
<td>hdisk4</td>
<td>00-03-00-03</td>
<td>test2vg</td>
</tr>
</tbody>
</table>

The SERIAL adapter serdasdal has the following disks connected to it:

<table>
<thead>
<tr>
<th>ADAPT</th>
<th>DISK</th>
<th>ADDRESS</th>
<th>VOLUME GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>serdasdal</td>
<td>hdisk5</td>
<td>00-05-00-02</td>
<td>conc1vg</td>
</tr>
<tr>
<td>serdasdal</td>
<td>hdisk6</td>
<td>00-05-00-03</td>
<td>conc1vg</td>
</tr>
</tbody>
</table>

DISK TYPES

<table>
<thead>
<tr>
<th>DISK</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>hdisk0</td>
<td>857 MB SCSI Disk Drive</td>
</tr>
<tr>
<td>hdisk1</td>
<td>857 MB Serial-Link Disk Drive</td>
</tr>
<tr>
<td>hdisk2</td>
<td>1.07GB Serial-Link Disk Drive</td>
</tr>
<tr>
<td>hdisk3</td>
<td>857 MB Serial-Link Disk Drive</td>
</tr>
<tr>
<td>hdisk4</td>
<td>857 MB Serial-Link Disk Drive</td>
</tr>
<tr>
<td>hdisk5</td>
<td>2.0GB Serial-Link Disk Drive</td>
</tr>
<tr>
<td>hdisk6</td>
<td>2.0GB Serial-Link Disk Drive</td>
</tr>
</tbody>
</table>

E.2.6 Physical Volumes

rootvg:

<table>
<thead>
<tr>
<th>DISK</th>
<th>Status</th>
<th>ADDRESS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>hdisk0</td>
<td>Available</td>
<td>00-08-00-00</td>
<td>857 MB SCSI Disk Drive</td>
</tr>
</tbody>
</table>

test1vg:

<table>
<thead>
<tr>
<th>DISK</th>
<th>Status</th>
<th>ADDRESS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>hdisk1</td>
<td>Available</td>
<td>00-03-00-00</td>
<td>857 MB Serial-Link Disk Drive</td>
</tr>
<tr>
<td>hdisk2</td>
<td>Available</td>
<td>00-03-00-01</td>
<td>1.07GB Serial-Link Disk Drive</td>
</tr>
</tbody>
</table>

test2vg:

<table>
<thead>
<tr>
<th>DISK</th>
<th>Status</th>
<th>ADDRESS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>hdisk3</td>
<td>Available</td>
<td>00-03-00-02</td>
<td>857 MB Serial-Link Disk Drive</td>
</tr>
<tr>
<td>hdisk4</td>
<td>Available</td>
<td>00-03-00-03</td>
<td>857 MB Serial-Link Disk Drive</td>
</tr>
</tbody>
</table>

conc1vg:

<table>
<thead>
<tr>
<th>DISK</th>
<th>Status</th>
<th>ADDRESS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>hdisk5</td>
<td>Available</td>
<td>00-05-00-02</td>
<td>2.0GB Serial-Link Disk Drive</td>
</tr>
<tr>
<td>hdisk6</td>
<td>Available</td>
<td>00-05-00-03</td>
<td>2.0GB Serial-Link Disk Drive</td>
</tr>
</tbody>
</table>
E.2.7 Logical Volumes by Volume Group

rootvg

<table>
<thead>
<tr>
<th>LV NAME</th>
<th>TYPE</th>
<th>LPs</th>
<th>PPs</th>
<th>P Vs</th>
<th>LV STATE</th>
<th>MOUNT POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>hd8</td>
<td>jfslog</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>open/syncd</td>
<td>N/A</td>
</tr>
<tr>
<td>hd6</td>
<td>paging</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>open/syncd</td>
<td>N/A</td>
</tr>
<tr>
<td>hd4</td>
<td>jfs</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>open/syncd</td>
<td>/</td>
</tr>
<tr>
<td>hd1</td>
<td>jfs</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>open/syncd</td>
<td>/home</td>
</tr>
<tr>
<td>hd3</td>
<td>jfs</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>open/syncd</td>
<td>/tmp</td>
</tr>
<tr>
<td>hd2</td>
<td>jfs</td>
<td>135</td>
<td>135</td>
<td>1</td>
<td>open/syncd</td>
<td>/usr</td>
</tr>
<tr>
<td>hd9var</td>
<td>jfs</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>open/syncd</td>
<td>/var</td>
</tr>
<tr>
<td>hd5</td>
<td>boot</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>closed/syncd</td>
<td>/blv</td>
</tr>
<tr>
<td>hd7</td>
<td>sysdump</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>open/syncd</td>
<td>/mnt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LV NAME</th>
<th>TYPE</th>
<th>LPs</th>
<th>PPs</th>
<th>P Vs</th>
<th>LV STATE</th>
<th>MOUNT POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>loglvtest1</td>
<td>jfslog</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>closed/syncd</td>
<td>N/A</td>
</tr>
<tr>
<td>lvtest1</td>
<td>jfs</td>
<td>20</td>
<td>40</td>
<td>2</td>
<td>closed/syncd</td>
<td>/test1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LV NAME</th>
<th>TYPE</th>
<th>LPs</th>
<th>PPs</th>
<th>P Vs</th>
<th>LV STATE</th>
<th>MOUNT POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>loglvtest2</td>
<td>jfslog</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>closed/syncd</td>
<td>N/A</td>
</tr>
<tr>
<td>lvtest2</td>
<td>jfs</td>
<td>25</td>
<td>50</td>
<td>2</td>
<td>closed/syncd</td>
<td>/test2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LV NAME</th>
<th>TYPE</th>
<th>LPs</th>
<th>PPs</th>
<th>P Vs</th>
<th>LV STATE</th>
<th>MOUNT POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>conc1lv</td>
<td>jfs</td>
<td>10</td>
<td>20</td>
<td>2</td>
<td>closed/syncd</td>
<td>N/A</td>
</tr>
<tr>
<td>conc2lv</td>
<td>jfs</td>
<td>7</td>
<td>14</td>
<td>2</td>
<td>closed/syncd</td>
<td>N/A</td>
</tr>
</tbody>
</table>

E.2.8 Logical Volume Definitions

<table>
<thead>
<tr>
<th>LOGICAL VOLUME:</th>
<th>hd8</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV IDENTIFIER:</td>
<td>000147325ccaf23c.1</td>
</tr>
<tr>
<td>VG STATE:</td>
<td>inactive</td>
</tr>
<tr>
<td>TYPE:</td>
<td>jfslog</td>
</tr>
<tr>
<td>MAX LPs:</td>
<td>128</td>
</tr>
<tr>
<td>COPIES:</td>
<td>1</td>
</tr>
<tr>
<td>LPs:</td>
<td>1</td>
</tr>
<tr>
<td>STALE PPs:</td>
<td>0</td>
</tr>
<tr>
<td>INTER-POLICY:</td>
<td>minimum</td>
</tr>
<tr>
<td>INTRA-POLICY:</td>
<td>center</td>
</tr>
<tr>
<td>MOUNT POINT:</td>
<td>N/A</td>
</tr>
<tr>
<td>MIRROR WRITE CONSISTENCY:</td>
<td>on</td>
</tr>
<tr>
<td>EACH LP COPY ON A SEPARATE PV?:</td>
<td>yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOGICAL VOLUME:</th>
<th>hd6</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV IDENTIFIER:</td>
<td>000147325ccaf23c.2</td>
</tr>
<tr>
<td>VG STATE:</td>
<td>inactive</td>
</tr>
<tr>
<td>TYPE:</td>
<td>paging</td>
</tr>
<tr>
<td>MAX LPs:</td>
<td>128</td>
</tr>
<tr>
<td>COPIES:</td>
<td>1</td>
</tr>
<tr>
<td>LPs:</td>
<td>20</td>
</tr>
<tr>
<td>STALE PPs:</td>
<td>0</td>
</tr>
<tr>
<td>BB POLICY:</td>
<td>non-relocatable</td>
</tr>
</tbody>
</table>
INTER-POLICY: minimum
INTRA-POLICY: middle
MOUNT POINT: N/A

MIRROR WRITE CONSISTENCY: off
EACH LP COPY ON A SEPARATE PV?: yes

LOGICAL VOLUME: hd4
LV IDENTIFIER: 0001473250ccaf423c.3
VG STATE: inactive
TYPE: jfs
MAX LPs: 128
COPIES: 1
LPs: 3
STALE PPs: 0
INTER-POLICY: minimum
INTRA-POLICY: center
MOUNT POINT: /

MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV?: yes

LOGICAL VOLUME: hd1
LV IDENTIFIER: 0001473250ccaf423c.4
VG STATE: inactive
TYPE: jfs
MAX LPs: 128
COPIES: 1
LPs: 1
STALE PPs: 0
INTER-POLICY: minimum
INTRA-POLICY: center
MOUNT POINT: /home

MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV?: yes

LOGICAL VOLUME: hd3
LV IDENTIFIER: 0001473250ccaf423c.5
VG STATE: inactive
TYPE: jfs
MAX LPs: 128
COPIES: 1
LPs: 5
STALE PPs: 0
INTER-POLICY: minimum
INTRA-POLICY: center
MOUNT POINT: /tmp

MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV?: yes

LOGICAL VOLUME: hd2
LV IDENTIFIER: 0001473250ccaf423c.6
VG STATE: inactive
TYPE: jfs
MAX LPs: 512
COPIES: 1
LPs: 135

An HACMP Cookbook
<table>
<thead>
<tr>
<th>Logical Volume</th>
<th>Volume Group</th>
<th>LV Identifier</th>
<th>Permission</th>
<th>VG State</th>
<th>LV State</th>
<th>Type</th>
<th>Write Verify</th>
<th>MAX LPs</th>
<th>PP Size</th>
<th>Copies</th>
<th>SCHED Policy</th>
<th>LPs</th>
<th>PPs</th>
<th>Stale PPs</th>
<th>Inter-Policy</th>
<th>Intrac-Policy</th>
<th>Upper Bound</th>
<th>Mount Point</th>
<th>Mirror Write Consistency</th>
<th>Each LP Copy On A Separate PV?</th>
</tr>
</thead>
<tbody>
<tr>
<td>hd9var</td>
<td>root.vg</td>
<td>000147325ccaf23c.7</td>
<td>read/write</td>
<td>inactive</td>
<td>opened/syncd</td>
<td>jfs</td>
<td>off</td>
<td>128</td>
<td>4 megabyte(s)</td>
<td>1</td>
<td>parallel</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>minimum</td>
<td>center</td>
<td>32</td>
<td>/var</td>
<td>on</td>
<td>yes</td>
</tr>
<tr>
<td>hd5</td>
<td>root.vg</td>
<td>000147325ccaf23c.8</td>
<td>read/write</td>
<td>inactive</td>
<td>closed/syncd</td>
<td>boot</td>
<td>off</td>
<td>128</td>
<td>4 megabyte(s)</td>
<td>1</td>
<td>parallel</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>minimum</td>
<td>edge</td>
<td>32</td>
<td>/blv</td>
<td>on</td>
<td>yes</td>
</tr>
<tr>
<td>hd7</td>
<td>root.vg</td>
<td>000147325ccaf23c.9</td>
<td>read/write</td>
<td>inactive</td>
<td>opened/syncd</td>
<td>sysdump</td>
<td>off</td>
<td>128</td>
<td>4 megabyte(s)</td>
<td>1</td>
<td>parallel</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>minimum</td>
<td>edge</td>
<td>32</td>
<td>/mnt</td>
<td>on</td>
<td>yes</td>
</tr>
<tr>
<td>loglvtest1</td>
<td>test1vg</td>
<td>00014732b5a91022.1</td>
<td>read/write</td>
<td>inactive</td>
<td>closed/syncd</td>
<td>jfslog</td>
<td>off</td>
<td>128</td>
<td>4 megabyte(s)</td>
<td>2</td>
<td>parallel</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>minimum</td>
<td>edge</td>
<td>32</td>
<td>/mnt</td>
<td>on</td>
<td>yes</td>
</tr>
</tbody>
</table>
LPs: 1 PP: 2
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: center UPPER BOUND: 32
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV?: yes

LOGICAL VOLUME: lvtest1 VOLUME GROUP: test1vg
LV IDENTIFIER: 00014732b5a91022.2 PERMISSION: read/write
VG STATE: inactive LV STATE: closed/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 128 PP SIZE: 4 megabyte(s)
COPIES: 2 SCHED POLICY: parallel
LPs: 20 PPs: 40
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPERBOUND: 32
MOUNT POINT: /test1 LABEL: /test1
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV?: yes

LOGICAL VOLUME: loglvtest2 VOLUME GROUP: test2vg
LV IDENTIFIER: 00014732ca66234e.1 PERMISSION: read/write
VG STATE: inactive LV STATE: closed/syncd
TYPE: jfslog WRITE VERIFY: off
MAX LPs: 128 PP SIZE: 4 megabyte(s)
COPIES: 2 SCHED POLICY: parallel
LPs: 1 PPs: 2
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPERBOUND: 32
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV?: yes

LOGICAL VOLUME: lvtest2 VOLUME GROUP: test2vg
LV IDENTIFIER: 00014732ca66234e.2 PERMISSION: read/write
VG STATE: inactive LV STATE: closed/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 128 PP SIZE: 4 megabyte(s)
COPIES: 2 SCHED POLICY: parallel
LPs: 25 PPs: 50
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPERBOUND: 32
MOUNT POINT: /test2 LABEL: /test2
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV?: yes

LOGICAL VOLUME: conc1lv VOLUME GROUP: conc1vg
LV IDENTIFIER: 00014732b5ac04be.1 PERMISSION: read/write
VG STATE: inactive LV STATE: closed/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 128 PP SIZE: 4 megabyte(s)
E.2.9 Filesystems

<table>
<thead>
<tr>
<th>Name</th>
<th>Nodename</th>
<th>Mount Pt</th>
<th>VFS</th>
<th>Size</th>
<th>Options</th>
<th>Auto</th>
<th>Accounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/hd4</td>
<td>--</td>
<td>/</td>
<td>jfs</td>
<td>24576</td>
<td>--</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>/dev/hd1</td>
<td>--</td>
<td>/home</td>
<td>jfs</td>
<td>8192</td>
<td>--</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>/dev/hd2</td>
<td>--</td>
<td>/usr</td>
<td>jfs</td>
<td>1105920</td>
<td>--</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>/dev/hd9var</td>
<td>--</td>
<td>/var</td>
<td>jfs</td>
<td>8192</td>
<td>--</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>/dev/hd3</td>
<td>--</td>
<td>/tmp</td>
<td>jfs</td>
<td>40960</td>
<td>--</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>/dev/hd7</td>
<td>--</td>
<td>/mnt</td>
<td>jfs</td>
<td>--</td>
<td>--</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>/dev/hd5</td>
<td>--</td>
<td>/blv</td>
<td>jfs</td>
<td>--</td>
<td>--</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>/usr/bin/blv.fs</td>
<td>--</td>
<td>/usr/bin/blv.fs</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>/dev/extlv1</td>
<td>--</td>
<td>/inst</td>
<td>jfs</td>
<td>--</td>
<td>--</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>/dev/lvtest1</td>
<td>--</td>
<td>/test1</td>
<td>jfs</td>
<td>--</td>
<td>rw</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>/dev/lvtest2</td>
<td>--</td>
<td>/test2</td>
<td>jfs</td>
<td>--</td>
<td>rw</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

E.2.10 Paging Spaces

<table>
<thead>
<tr>
<th>Page Space</th>
<th>Physical Volume</th>
<th>Volume Group</th>
<th>Size</th>
<th>%Used</th>
<th>Active</th>
<th>Auto</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>hd6</td>
<td>hdisk0</td>
<td>rootvg</td>
<td>80MB</td>
<td>25</td>
<td>yes</td>
<td>yes</td>
<td>lv</td>
</tr>
</tbody>
</table>

E.2.11 TCP/IP Parameters

```
lo0: flags=840<UP,BROADCAST,LOOPBACK> metric 1
     inet 127.0.0.1 netmask 0xff000000 broadcast 127.255.255.255
     metrics 1
en0: flags=8200<UP,BROADCAST,NOTRAILERS,RUNNING,NOERROR>
     inet 192.168.1.100 netmask 255.255.255.0 broadcast 192.168.1.255
     metrics 1

et1: flags=8200<UP,BROADCAST,NOTRAILERS,RUNNING,NOERROR>
     inet 192.168.1.100 netmask 255.255.255.0 broadcast 192.168.1.255
     metrics 1
```
inet 9.3.4.79 netmask 0xffffff00 broadcast 9.3.4.255

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Flags</th>
<th>Refcnt</th>
<th>Use</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Netmasks:
(root node)
(0) 0 ff00 0
(0) 0 ffff ff00 0
(root node)

Route Tree for Protocol Family 2:
(root node)
default itsorusi.itsc.aust UG 2 15781 tr0
9.3.1 mickey_boot.itsc.a U 3 22533 tr0
9.3.4 mickey_sb.itsc.aus U 1 578797 tr1
9.3.5 mickey_en.itsc.aus U 4 671431 en0
127 localhost U 0 278190 lo0
(root node)

Route Tree for Protocol Family 6:
(root node)

Name Mtu Network Address Ipkt Ierrs Opkt Oerrs Coll
lo0 1536 <Link> 279124 0 279124 0 0
lo0 1536 127 localhost 279124 0 279124 0 0
en0 1500 <Link> 672530 0 672438 0 0
en0 1500 9.3.5 mickey_en.itsc. 672530 0 672438 0 0
en1* 1500 <Link> 235 0 0 0 0
et0* 1492 <Link> 0 0 0 0 0
et1* 1492 <Link> 0 0 0 0 0
tr0 1492 <Link> 71366 0 38425 0 0
tr0 1492 9.3.1 mickey_boot.its 71366 0 38425 0 0
nameserver 9.3.1.74
domain itsc.austin.ibm.com

E.2.12 NFS: Exported Filesystems

E.2.13 NFS: Mounted Filesystems

<table>
<thead>
<tr>
<th>Name</th>
<th>Nodename</th>
<th>Mount Pt</th>
<th>VFS</th>
<th>Size</th>
<th>Options</th>
<th>Auto Accounting</th>
</tr>
</thead>
</table>

E.2.14 NFS: Other Parameters

Slave servers for the domain

Domains that are being served

These NIS daemons will be started.
E.2.15 Daemons and Processes

/etc/cron
/etc/inetd
/etc/init
/etc/methods/sdd serdasda0 00000002
/etc/methods/sdd serdasda1 00000002
/etc/qdaemon
/etc/srcmstr
/etc/syncd 60
/etc/syslogd
/etc/uprintfd
/etc/writesrv
/usr/etc/biod 6
/usr/etc/nfsd 8
/usr/etc/portmap
/usr/etc/rpc.lockd
/usr/etc/rpc.mountd
/usr/etc/rpc.statd
/usr/lib/errdemon
/usr/lib/sendmail -bd -q30m
/usr/lpp/info/bin/infod
/usr/sbin/snmpd
clvmd
kproc
swapper
telnetd

E.2.16 Subsystems : Status

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Group</th>
<th>PID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>syslogd</td>
<td>ras</td>
<td>4448</td>
<td>active</td>
</tr>
<tr>
<td>portmap</td>
<td>portmap</td>
<td>5987</td>
<td>active</td>
</tr>
<tr>
<td>inetd</td>
<td>tcpip</td>
<td>6245</td>
<td>active</td>
</tr>
<tr>
<td>infod</td>
<td>infod</td>
<td>7032</td>
<td>active</td>
</tr>
<tr>
<td>snmpd</td>
<td>tcpip</td>
<td>9004</td>
<td>active</td>
</tr>
<tr>
<td>sendmail</td>
<td>mail</td>
<td>10419</td>
<td>active</td>
</tr>
<tr>
<td>biod</td>
<td>nfs</td>
<td>12503</td>
<td>active</td>
</tr>
<tr>
<td>rpc.statd</td>
<td>nfs</td>
<td>12254</td>
<td>active</td>
</tr>
<tr>
<td>rpc.lockd</td>
<td>nfs</td>
<td>14305</td>
<td>active</td>
</tr>
<tr>
<td>qdaemon</td>
<td>spooler</td>
<td>10980</td>
<td>active</td>
</tr>
<tr>
<td>writesrv</td>
<td>spooler</td>
<td>7398</td>
<td>active</td>
</tr>
<tr>
<td>nfsd</td>
<td>nfs</td>
<td>14721</td>
<td>active</td>
</tr>
<tr>
<td>rpc.mountd</td>
<td>nfs</td>
<td>18128</td>
<td>active</td>
</tr>
<tr>
<td>lpd</td>
<td>spooler</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>iptrace</td>
<td>tcpip</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>gated</td>
<td>tcpip</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>named</td>
<td>tcpip</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>routed</td>
<td>tcpip</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>nwhod</td>
<td>tcpip</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>timed</td>
<td>tcpip</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>llbd</td>
<td>ncs</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>rrqldbd</td>
<td>ncs</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>keyserv</td>
<td>keyserv</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>ypserv</td>
<td>yp</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>ypbind</td>
<td>yp</td>
<td></td>
<td>inoperative</td>
</tr>
</tbody>
</table>
E.2.17 BOS and LPP Installation/Update History

<table>
<thead>
<tr>
<th>Description</th>
<th>State</th>
<th>Fix Id</th>
</tr>
</thead>
<tbody>
<tr>
<td>X11fnt.coreX.fnt 1.2.3.0</td>
<td>C</td>
<td>U491105</td>
</tr>
<tr>
<td>X11fnt.ibm850.pc.fnt 1.2.3.0</td>
<td>C</td>
<td>U435220</td>
</tr>
<tr>
<td>X11fnt.iso88591.aix.fnt 1.2.3.0</td>
<td>C</td>
<td>U491105</td>
</tr>
<tr>
<td>X11fnt.iso88592.fnt 1.2.3.0</td>
<td>C</td>
<td>U491105</td>
</tr>
<tr>
<td>X11fnt.iso88593.fnt 1.2.3.0</td>
<td>C</td>
<td>U491105</td>
</tr>
<tr>
<td>X11fnt.iso88594.fnt 1.2.3.0</td>
<td>C</td>
<td>U491105</td>
</tr>
<tr>
<td>X11fnt.iso88595.fnt 1.2.3.0</td>
<td>C</td>
<td>U491105</td>
</tr>
<tr>
<td>X11fnt.iso88597.aix.fnt 1.2.3.0</td>
<td>C</td>
<td>U491105</td>
</tr>
<tr>
<td>X11fnt.iso88599.aix.fnt 1.2.3.0</td>
<td>C</td>
<td>U491105</td>
</tr>
<tr>
<td>X11fnt.kanji.aix.fnt 1.2.3.0</td>
<td>C</td>
<td>U491105</td>
</tr>
<tr>
<td>X11fnt.oldX.fnt 1.2.3.0</td>
<td>C</td>
<td>U491105</td>
</tr>
<tr>
<td>3250 X11fnt X11-R5 Maintenance Level</td>
<td>C</td>
<td>U491105</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>X11rte.ext.obj 1.2.3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3250 X11rte X11-R5 Maintenance Level</td>
<td>C</td>
<td>U491119</td>
</tr>
<tr>
<td>AIXwindows Run Time Environment Extensions</td>
<td>C</td>
<td>U411705</td>
</tr>
<tr>
<td>AIXwindows Run Time Environment Extensions</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>AIXwindows Run Time Environment Extensions</td>
<td>C</td>
<td>U409194</td>
</tr>
<tr>
<td>X11-R5 Additional Postscript Fonts</td>
<td>C</td>
<td>U428192</td>
</tr>
<tr>
<td>X11-R5 Extensions</td>
<td>C</td>
<td>U428193</td>
</tr>
<tr>
<td>X11-R5 Info</td>
<td>C</td>
<td>U435058</td>
</tr>
<tr>
<td>X11-R5 X Customize Utilities</td>
<td>C</td>
<td>U435060</td>
</tr>
<tr>
<td>X11-R5 Motif SMIT</td>
<td>C</td>
<td>U435062</td>
</tr>
<tr>
<td>X11-R5 X-Desktop</td>
<td>C</td>
<td>U435064</td>
</tr>
<tr>
<td>X11-R5 Font Utility</td>
<td>C</td>
<td>U435070</td>
</tr>
<tr>
<td>X11-R5 Additional Postscript Utilities</td>
<td>C</td>
<td>U435222</td>
</tr>
</tbody>
</table>

| X11rte.motif1.2.obj 1.2.3.0 | | |
| 3250 X11rte X11-R5 Maintenance Level| C | U491119 |
| Motif 1.2 Translated mwmrc Files | C | U428196 |
| Motif 1.2 Window Manager Program | C | U435138 |

| X11rte.obj 1.2.3.0 | | |
| 3250 X11rte X11-R5 Maintenance Level| C | U491119 |
| AIXwindows Run Time Environment | C | U411705 |
| AIXwindows Run Time Environment | C | |
| AIXwindows Run Time Environment | C | U409194 |
| X11-R5 Runtime Environment Fonts | C | U428198 |
| X11-R5 Runtime Environment Locales | C | U428199 |
| X11-R5 Runtime Environment | C | U435140 |
| X11-R5 Runtime Environment Examples| C | U435223 |
| X11-R5 Runtime Environment | C | U436634 |

| bos.data 3.2.0.0 | | |
| 3250 bos.data Maintenance Level | C | U491124 |
| Info Explorer Databases | C | U435065 |
| Terminal Capabilities Database | C | U435118 |

<p>| bos.obj 3.2.0.0 | | |
| 3250 bos Maintenance Level | C | U491123 |
| 3251 AIX Maintenance Level | C | U493251 |
| Vital User Information | C | U424153 |
| Device Diagnostics | C | U427865 |
| POSIX Asynchronous I/O Services | C | U428206 |
| User Messaging Utilities | C | U428212 |
| ILS Locale Management Utilities | C | U428215 |
| C Language Preprocessor | C | U428218 |
| Trace Reporting and Error Logging | C | U428223 |
| Input Method Library & Keymaps | C | U428226 |
| Math Library | C | U428231 |
| Math Library(SYS-V/SAA Error Semantics) | C | U428232 |
| X10 Library | C | U428233 |
| Trace Reporting Library | C | U428236 |
| Network File System | C | U428243 |
| System Resource Controller | C | U428249 |
| Base Operating System | C | U432415 |</p>
<table>
<thead>
<tr>
<th>Category</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Operating System</td>
<td>U432416</td>
</tr>
<tr>
<td>Base Operating System</td>
<td>U432447</td>
</tr>
<tr>
<td>The Base Operating System</td>
<td>U433283</td>
</tr>
<tr>
<td>C library - Common Mode</td>
<td>U433342</td>
</tr>
<tr>
<td>Network File System</td>
<td>U434427</td>
</tr>
<tr>
<td>Trace Reporting and Error Logging</td>
<td>U434922</td>
</tr>
<tr>
<td>Bourne Shell</td>
<td>U434992</td>
</tr>
<tr>
<td>Korn Shell</td>
<td>U434993</td>
</tr>
<tr>
<td>SYS-V IPC Utilities</td>
<td>U434996</td>
</tr>
<tr>
<td>C Library</td>
<td>U434997</td>
</tr>
<tr>
<td>Security Services Library</td>
<td>U434998</td>
</tr>
<tr>
<td>Kernel</td>
<td>U435001</td>
</tr>
<tr>
<td>Info Explorer Utilities</td>
<td>U435066</td>
</tr>
<tr>
<td>tty Utilities and Device Drivers</td>
<td>U435110</td>
</tr>
<tr>
<td>Printer Management Utilities</td>
<td>U435111</td>
</tr>
<tr>
<td>Spooler Services Library</td>
<td>U435112</td>
</tr>
<tr>
<td>Security Related Utilities and Files</td>
<td>U435113</td>
</tr>
<tr>
<td>System IPL Utilities</td>
<td>U435115</td>
</tr>
<tr>
<td>Base Device Drivers</td>
<td>U435116</td>
</tr>
<tr>
<td>Device Drivers Reject Utilities</td>
<td>U435117</td>
</tr>
<tr>
<td>Devices Message Catalog</td>
<td>U435119</td>
</tr>
<tr>
<td>Logical Volume Manager</td>
<td>U435120</td>
</tr>
<tr>
<td>Diskless Workstation Manager</td>
<td>U435123</td>
</tr>
<tr>
<td>System Installation Utilities</td>
<td>U435125</td>
</tr>
<tr>
<td>File Archival Utilities</td>
<td>U435126</td>
</tr>
<tr>
<td>Device Configuration Utilities</td>
<td>U435127</td>
</tr>
<tr>
<td>GXT100/GX150 Device Drivers</td>
<td>U435155</td>
</tr>
<tr>
<td>HFT Utilities and Device Drivers</td>
<td>U435156</td>
</tr>
<tr>
<td>GXT1000 Device Drivers & Microcode</td>
<td>U435157</td>
</tr>
<tr>
<td>GT3/4 Family Device Drivers & Microcode</td>
<td>U435158</td>
</tr>
<tr>
<td>X11-R4 Library</td>
<td>U435159</td>
</tr>
<tr>
<td>Motif 1.1.4 Library</td>
<td>U435160</td>
</tr>
<tr>
<td>X11-R4 Toolkit Library</td>
<td>U435161</td>
</tr>
<tr>
<td>File Scanning/Searching Utilities</td>
<td>U435165</td>
</tr>
<tr>
<td>x25 Device Drivers</td>
<td>U435171</td>
</tr>
<tr>
<td>Streams Devices, Interfaces & Utilities</td>
<td>U435178</td>
</tr>
<tr>
<td>Base Network Utilities</td>
<td>U435180</td>
</tr>
<tr>
<td>Ian Device Drivers</td>
<td>U435181</td>
</tr>
<tr>
<td>Host Communications Device Drivers</td>
<td>U435182</td>
</tr>
<tr>
<td>Communications Device Drivers</td>
<td>U435184</td>
</tr>
<tr>
<td>awk Language Interpreter</td>
<td>U435228</td>
</tr>
<tr>
<td>XCOFF File Management Utilities</td>
<td>U435229</td>
</tr>
<tr>
<td>File Comparison Utilities</td>
<td>U435230</td>
</tr>
<tr>
<td>System, Process, Boot Utilities</td>
<td>U435231</td>
</tr>
<tr>
<td>File Attribute Utilities</td>
<td>U435232</td>
</tr>
<tr>
<td>File System Management Utilities</td>
<td>U435233</td>
</tr>
<tr>
<td>System Accounting</td>
<td>U435234</td>
</tr>
<tr>
<td>Data Compression Utilities</td>
<td>U435235</td>
</tr>
<tr>
<td>cron Daemon Utilities</td>
<td>U435236</td>
</tr>
<tr>
<td>Date & Time Related Utilities</td>
<td>U435237</td>
</tr>
<tr>
<td>DIRECTORIES</td>
<td>U435238</td>
</tr>
<tr>
<td>Character Stream Editing Utilities</td>
<td>U435239</td>
</tr>
<tr>
<td>Maintenance Level Update Utilities</td>
<td>U435240</td>
</tr>
<tr>
<td>Character Set Tables & Libraries</td>
<td>U435241</td>
</tr>
<tr>
<td>Device Configuration Library</td>
<td>U435243</td>
</tr>
</tbody>
</table>
Curses Standard and Extended Libraries C U435244
Remote Procedure Call Services Library C U435245
Error Logging Utilities C U435246
Mail Facilities C U435247
Man Page Facility C U435248
MultiMedia Device Drivers C U435249
Base NFS Network Utilities C U435250
Object Data Manager C U435251
BSD Disk Quota Utilities C U435252
Service Information Tool C U435253
System Management Interface Tool C U435254
System Activity Reporting C U435255
Terminal Capability Utilities C U435256
Video Capture Adapter C U435257
vi Text Editor C U435258
Base Operating System C U435625
HFT Utilities and Device Drivers C U436256
POSIX Asynchronous I/O Services C U436267
tty Utilities and Device Drivers C U436337
Devices Message Catalog C U436439
System IPL Utilities C U436739
Device Drivers Reject Utilities C U436748
GT3/4 Family Device Drivers & Microcode C U436779
Streams Devices, Interfaces & Utilities C U436782
Base Device Drivers C U436811
Application Installation Utilities C U437028
Object Data Manager C U437035
cron Daemon Utilities C U437079
GXT1000 Device Drivers & Microcode C U437101
The Base Operating System C U437134
The Base Operating System C U437135
The Base Operating System C U437136
The Base Operating System C U437137
Communications Device Drivers C U437272
Device Diagnostics C U437315
Kernel C U437317
Mail Facilities C U437398
3250 Packaging Requisite C U491150

bosadt.bosadt.data 3.2.0.0
No Maintenance Level Applied.

bosadt.bosadt.obj 3.2.0.0
3250 bosadt Maintenance Level C U491125
The bs Program C U428255
Locale Management Utilities C U428260
lex Program C U428263
yacc Program C U428265
DOS Device Merge Utility C U435121
Assembler Utilities C U435259
C Language Source Utilities C U435260
FORTRAN Language Utilities C U435261
lint Program C U435262
make Program C U435263
Program Debug Utilities C U435264
Source Code Control (sccs) Utilities C U435265

bosadt.lib.obj 3.2.0.0
3250 bosadt Maintenance Level C U491125
BSD System Administration Help C U428266
HFT Programming Examples C U428267
New hardware fast library C U428268
Base Development Libraries & Include files C U432448
Base Development Libraries & Include files C U432449
Base Development Libraries & Include files C U432450
Programming Examples C U435266
lint Program Rules Databases C U435267
Include Files C U435306
Include Files C U436252

bosadt.prof.obj 3.2.0.0
3250 bosadt Maintenance Level C U491125
Performance Profiling Utilities C U434994
Base Profiling Support C U435923

bosadt.xde.obj 3.2.0.0
3250 bosadt Maintenance Level C U491125
xde Program Debugger C U428269

bosext1.csh.obj 3.2.0.0
3250 bosext1 Maintenance Level C U491126
C Shell C U434995

bosext1.ecs.obj 3.2.0.0
3250 bosext1 Maintenance Level C U491126

bosext1.extcmds.data 3.2.0.0
3250 bosext1.data Maintenance Level C U491127
man Database C U428271

bosext1.extcmds.obj 3.2.0.0
3250 bosext1 Maintenance Level C U491126
Math Calculator Utilities C U428272
Performance Monitoring Utilities C U435122

bosext1.mh.obj 3.2.0.0
3250 bosext1 Maintenance Level C U491126
mh Mail Program C U435268

bosext1.uucp.obj 3.2.0.0
3250 bosext1 Maintenance Level C U491126
uucp Program and Utilities C U435269

bosext1.vdidd.obj 3.2.0.0
3250 bosext1 Maintenance Level C U491126
Video Capture Adapter Utilities C U435270

bosext2.acct.obj 3.2.0.0
3250 bosext2 Maintenance Level C U491128
System Accounting Utilities C U435271
<table>
<thead>
<tr>
<th>File</th>
<th>Version</th>
<th>Sections</th>
<th>Level</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>bosext2.ate.obj</td>
<td>3.2.0.0</td>
<td>3250 bosext2 Maintenance Level</td>
<td>C</td>
<td>U491128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simple Terminal Emulator</td>
<td></td>
<td>U435272</td>
</tr>
<tr>
<td>bosext2.dlc8023.obj</td>
<td>3.2.0.0</td>
<td>3250 bosext2 Maintenance Level</td>
<td>C</td>
<td>U491128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8023 Data Link Control</td>
<td></td>
<td>U435172</td>
</tr>
<tr>
<td>bosext2.dloether.obj</td>
<td>3.2.0.0</td>
<td>3250 bosext2 Maintenance Level</td>
<td>C</td>
<td>U491128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethernet Data Link Control</td>
<td></td>
<td>U435174</td>
</tr>
<tr>
<td>bosext2.dlcfddi.obj</td>
<td>3.2.0.0</td>
<td>3250 bosext2 Maintenance Level</td>
<td>C</td>
<td>U491128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDDI Data Link Control</td>
<td></td>
<td>U435173</td>
</tr>
<tr>
<td>bosext2.dlocqllc.obj</td>
<td>3.2.0.0</td>
<td>3250 bosext2 Maintenance Level</td>
<td>C</td>
<td>U491128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QLLC Data Link Control</td>
<td></td>
<td>U435176</td>
</tr>
<tr>
<td>bosext2.dlcsdlc.obj</td>
<td>3.2.0.0</td>
<td>3250 bosext2 Maintenance Level</td>
<td>C</td>
<td>U491128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDLC Data Link Control</td>
<td></td>
<td>U435177</td>
</tr>
<tr>
<td>bosext2.dlctoken.obj</td>
<td>3.2.0.0</td>
<td>3250 bosext2 Maintenance Level</td>
<td>C</td>
<td>U491128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Token Ring Data Link Control</td>
<td></td>
<td>U435175</td>
</tr>
<tr>
<td>bosext2.dosutil.obj</td>
<td>3.2.0.0</td>
<td>3250 bosext2 Maintenance Level</td>
<td>C</td>
<td>U491128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOS File & Disk Utilities</td>
<td></td>
<td>U435124</td>
</tr>
<tr>
<td>bosext2.games.obj</td>
<td>3.2.0.0</td>
<td>3250 bosext2 Maintenance Level</td>
<td>C</td>
<td>U491128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Miscellaneous Amusements</td>
<td></td>
<td>U428284</td>
</tr>
<tr>
<td>bosext2.lrn.data</td>
<td>3.2.0.0</td>
<td>3250 bosext2.data Maintenance Level</td>
<td>C</td>
<td>U491129</td>
</tr>
<tr>
<td>bosext2.x25app.obj</td>
<td>3.2.0.0</td>
<td>3250 bosext2 Maintenance Level</td>
<td>C</td>
<td>U491128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X25 Applications</td>
<td></td>
<td>U435179</td>
</tr>
<tr>
<td>bosnet.ncs.obj</td>
<td>3.2.0.0</td>
<td>3250 bosnet Maintenance Level</td>
<td>C</td>
<td>U491130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Network Computing Services</td>
<td></td>
<td>U428286</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Network Computing Services</td>
<td></td>
<td>U434753</td>
</tr>
<tr>
<td>bosnet.nfs.obj</td>
<td>3.2.0.0</td>
<td>3250 bosnet Maintenance Level</td>
<td>C</td>
<td>U491130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFS Client Utilities</td>
<td></td>
<td>U428287</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFS Server Utilities</td>
<td></td>
<td>U435128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFS SMIT Utilities</td>
<td></td>
<td>U435273</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFS Client Utilities</td>
<td></td>
<td>U436325</td>
</tr>
</tbody>
</table>
bosnet.snmpd.obj 3.2.0.0
 3250 bosnet Maintenance Level C U491130
 Simple Network Management Protocol Daemon (Agent) C U432417
 SNMP Daemon C U435274

bosnet.tcpip.obj 3.2.0.0
 3250 bosnet Maintenance Level C U491130
 TCP/IP Client Utilities C U435114
 TCP/IP Server Utilities C U435275
 TCP/IP SMIT Utilities C U435276

bsl.en_US.aix.loc 3.2.0.0
 3250 bsl Maintenance Level A U491131

bsl.en_US.pc.loc 3.2.0.0
 3250 bsl Maintenance Level A U491131

bsmEn_US.msg 3.2.0.0
 3250 bsmEn_US Maintenance Level C U491133
 Base System Messages - U.S. English C U428303
 SMIT Install Messages - U.S. English C U428304
 Base System Messages - U.S. English C U437316

bspiEn_US.info 3.2.5.0
 No Maintenance Level Applied.

bssiEn_US.info 3.2.5.0
 No Maintenance Level Applied.

cluster.client 3.1.0.0
 No Maintenance Level Applied.
 HACMP/6000 C U438726

cluster.clvm 3.1.0.0
 No Maintenance Level Applied.

cluster.server 3.1.0.0
 No Maintenance Level Applied.
 HACMP/6000 C U438726

sd6k_clnt.obj 2.3.0.11
 No Maintenance Level Applied.

serdasd.mc 3.2.0.16
 No Maintenance Level Applied.

sysback.obj 3.2.0.30
 No Maintenance Level Applied.

txtfmt.bib.data 3.2.0.0
 3250 txtfmt.data Maintenance Level C U491156

txtfmt.bib.obj 3.2.0.0
 3250 txtfmt Maintenance Level C U491155
Text Formatting Bibliography Utilities C U428350
txtfmt.graf.obj 3.2.0.0
 3250 txtfmt Maintenance Level C U491155
 Tektronics Terminal Drivers C U428351
txtfmt.hplj.fnt 3.2.0.0
 3250 txtfmt Maintenance Level C U491155
txtfmt.ibm3812.fnt 3.2.0.0
 3250 txtfmt Maintenance Level C U491155
 IBM-3812 Fonts C U428390
txtfmt.ibm3816.fnt 3.2.0.0
 3250 txtfmt Maintenance Level C U491155
txtfmt.spell.data 3.2.0.0
 3250 txtfmt.data Maintenance Level C U491156
txtfmt.spell.obj 3.2.0.0
 3250 txtfmt Maintenance Level C U491155
 Spell Checker Utilities C U428352
txtfmt.tfs.data 3.2.0.0
 3250 txtfmt.data Maintenance Level C U491156
txtfmt.tfs.obj 3.2.0.0
 3250 txtfmt Maintenance Level C U491155
 Text Formatting Utilities C U428353
 Text Formatting Utilities C U439408
txtfmt.ts.obj 3.2.0.0
 3250 txtfmt Maintenance Level C U491155
 Postscript Formatter C U428354
txtfmt.xpv.obj 3.2.0.0
 3250 txtfmt Maintenance Level C U491155
 X Preview Utility C U428354
xlccmp.obj 1.3.0.0
 3250 xlccmp 1.3 Maintenance Level C U491204

State Codes:
A -- Applied.
B -- Broken.
C -- Committed.
N -- Not Installed, but was previously installed/seen on some media.
- -- Superseded, not Applied.
? -- Inconsistent State...Run lppchk -v.
E.2.18 TTY: Definitions

<table>
<thead>
<tr>
<th>TTY Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed</td>
<td>9600</td>
</tr>
<tr>
<td>parity</td>
<td>none</td>
</tr>
<tr>
<td>bpc</td>
<td>8</td>
</tr>
<tr>
<td>stops</td>
<td>1</td>
</tr>
<tr>
<td>xon</td>
<td>yes</td>
</tr>
<tr>
<td>term</td>
<td>dumb</td>
</tr>
<tr>
<td>login</td>
<td>disable</td>
</tr>
<tr>
<td>runmodes</td>
<td>hupcl, cread, brkint, icrnl, oport, tab3, onlcr, isig, icanon, echo, echoe, echok, echoctl, echoke, imaxbel, iexten</td>
</tr>
<tr>
<td>logmodes</td>
<td>hupcl, cread, echoe, cs8, ixon, ixoff</td>
</tr>
<tr>
<td>autoconfig</td>
<td>available</td>
</tr>
<tr>
<td>imap</td>
<td>none</td>
</tr>
<tr>
<td>omap</td>
<td>none</td>
</tr>
</tbody>
</table>

E.2.19 ODM: Customized Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tbus0</td>
<td>tbus_iocc_mem 0x0fffffff</td>
</tr>
<tr>
<td>tconc1lv0</td>
<td>toplest 0x2t</td>
</tr>
<tr>
<td>tconc1lv1</td>
<td>tintra tct</td>
</tr>
<tr>
<td>tconc1lv2</td>
<td>lvserial_id t00014732b5ac04be.1</td>
</tr>
<tr>
<td>tconc1lv3</td>
<td>tsizet t10t</td>
</tr>
<tr>
<td>tconc1lv4</td>
<td>tauto_on tnt</td>
</tr>
<tr>
<td>tconc1lv5</td>
<td>ttpv t00009854777a0910000000000000000000000000000000</td>
</tr>
<tr>
<td>tconc1lv6</td>
<td>ttpv t00009854777a5c60000000000000000000000000000000</td>
</tr>
<tr>
<td>tconc1lv7</td>
<td>tstatet t0t</td>
</tr>
<tr>
<td>tconc1lv8</td>
<td>tvserial_id t00014732b5ac04be</td>
</tr>
<tr>
<td>tconc2lv0</td>
<td>toplest 0x2t</td>
</tr>
<tr>
<td>tconc2lv1</td>
<td>tintra tct</td>
</tr>
<tr>
<td>tconc2lv2</td>
<td>lvserial_id t00014732b5ac04be.2</td>
</tr>
<tr>
<td>tconc2lv3</td>
<td>tsizet t7t</td>
</tr>
<tr>
<td>ten0</td>
<td>tbroadcast 0x9.3.5.255</td>
</tr>
<tr>
<td>ten0</td>
<td>tnetaddr 0x9.3.5.79</td>
</tr>
<tr>
<td>ten0</td>
<td>tnetmask 0x255.255.255.0</td>
</tr>
<tr>
<td>ten0</td>
<td>tstatet tupt</td>
</tr>
<tr>
<td>tent0</td>
<td>tbus_io_addr 0x7290</td>
</tr>
<tr>
<td>tent0</td>
<td>tdma_bus_mem 0x902000</td>
</tr>
<tr>
<td>tent0</td>
<td>tdma_lvl 0x7t</td>
</tr>
<tr>
<td>tent1</td>
<td>tbus_intr_lvl 0x9t</td>
</tr>
<tr>
<td>tent1</td>
<td>tdma_mem_addr 0x3a2000</td>
</tr>
<tr>
<td>tent1</td>
<td>tdma_lvl 0x6t</td>
</tr>
<tr>
<td>tent1</td>
<td>tdma_bus_mem 0x4000</td>
</tr>
<tr>
<td>tent1</td>
<td>tdma2_start 0x0a</td>
</tr>
<tr>
<td>tent1</td>
<td>tdma3_start 0x1400000</td>
</tr>
<tr>
<td>tent1</td>
<td>tdma4_start 0x1600000</td>
</tr>
<tr>
<td>tent1</td>
<td>tdma5_start 0x0a</td>
</tr>
<tr>
<td>tgd0</td>
<td>tdma_channel 0x0a</td>
</tr>
<tr>
<td>tgd0</td>
<td>tint_level 0x0a</td>
</tr>
<tr>
<td>thd1</td>
<td>tintra tct</td>
</tr>
<tr>
<td>thd1</td>
<td>tlabel t/home</td>
</tr>
<tr>
<td>thd1</td>
<td>lvserial_id t000147325ccaf23c.4</td>
</tr>
<tr>
<td>thd2</td>
<td>tintra tct</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>mem0</td>
<td>mem type 25</td>
</tr>
<tr>
<td>mem1</td>
<td>mem type 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>rootvg</td>
<td>pv size 32</td>
</tr>
<tr>
<td>rootvg</td>
<td>mem type 0</td>
</tr>
<tr>
<td>Variable</td>
<td>Value</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>tr1</td>
<td></td>
</tr>
<tr>
<td>broadcast</td>
<td>9.3.4.255</td>
</tr>
<tr>
<td>tr1</td>
<td></td>
</tr>
<tr>
<td>netaddr</td>
<td>9.3.4.79</td>
</tr>
<tr>
<td>tr1</td>
<td></td>
</tr>
<tr>
<td>netmask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>tr1</td>
<td></td>
</tr>
<tr>
<td>state</td>
<td>up</td>
</tr>
<tr>
<td>tty0</td>
<td></td>
</tr>
<tr>
<td>sttyval</td>
<td>3 1c 8 15 4 0 0 11 13 1a 19 12 f 17 16 0 10702 c05 d04bd 2a003b</td>
</tr>
</tbody>
</table>
E.3 HACMP CONFIGURATION

E.3.1 Cluster (Command: cllsclstr)

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>disney</td>
</tr>
</tbody>
</table>

E.3.2 Nodes (Command: cllsnode)

NODE goofy:
- Interfaces to network etnet1
 - Service Interface: Name goofy_en, Attribute private, IP address 9.3.5.80
- Interfaces to network rsnet1
 - Service Interface: Name goofy_tty0, Attribute serial, IP address /dev/tty0
- Interfaces to network trnet1
 - Boot Interface: Name goofy_boot, Attribute public, IP address 9.3.1.46
 - Service Interface: Name goofy, Attribute public, IP address 9.3.1.80
 - Standby Interface: Name goofy_sb, Attribute public, IP address 9.3.4.80

NODE mickey:
- Interfaces to network etnet1
 - Service Interface: Name mickey_en, Attribute private, IP address 9.3.5.79
- Interfaces to network rsnet1
 - Service Interface: Name mickey_tty0, Attribute serial, IP address /dev/tty0
- Interfaces to network trnet1
 - Boot Interface: Name mickey_boot, Attribute public, IP address 9.3.1.45
 - Service Interface: Name mickey, Attribute public, IP address 9.3.1.79
 - Standby Interface: Name mickey_sb, Attribute public, IP address 9.3.4.79

E.3.3 Networks (Command: cllsnw)

<table>
<thead>
<tr>
<th>Network</th>
<th>Attribute</th>
<th>Node</th>
<th>Adapter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>etnet1</td>
<td>private</td>
<td>goofy</td>
<td>goofy_en</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mickey</td>
<td>mickey_en</td>
</tr>
<tr>
<td>rsnet1</td>
<td>serial</td>
<td>goofy</td>
<td>goofy_tty0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mickey</td>
<td>mickey_tty0</td>
</tr>
<tr>
<td>trnet1</td>
<td>public</td>
<td>goofy</td>
<td>(goofy_boot) goofy goofy_sb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mickey</td>
<td>(mickey_boot) mickey mickey_sb</td>
</tr>
</tbody>
</table>

E.3.4 Adapters (Command: cllsif)

<table>
<thead>
<tr>
<th>Adapter</th>
<th>Type</th>
<th>Network</th>
<th>Net Type</th>
<th>Attribute</th>
<th>Node</th>
<th>IP Address</th>
<th>Hardware Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>goofy_en</td>
<td>service</td>
<td>etnet1</td>
<td>ether</td>
<td>private</td>
<td>goofy</td>
<td>9.3.5.80</td>
<td></td>
</tr>
<tr>
<td>goofy_tty0</td>
<td>service</td>
<td>rsnet1</td>
<td>rs232</td>
<td>serial</td>
<td>goofy</td>
<td>/dev/tty0</td>
<td></td>
</tr>
<tr>
<td>goofy_boot</td>
<td>boot</td>
<td>trnet1</td>
<td>token</td>
<td>public</td>
<td>goofy</td>
<td>9.3.1.46</td>
<td></td>
</tr>
<tr>
<td>goofy</td>
<td>service</td>
<td>trnet1</td>
<td>token</td>
<td>public</td>
<td>goofy</td>
<td>9.3.1.80</td>
<td>0x42005aa8d1f3</td>
</tr>
<tr>
<td>goofy_sb</td>
<td>standby</td>
<td>trnet1</td>
<td>token</td>
<td>public</td>
<td>goofy</td>
<td>9.3.4.80</td>
<td></td>
</tr>
<tr>
<td>mickey_en</td>
<td>service</td>
<td>etnet1</td>
<td>ether</td>
<td>private</td>
<td>mickey</td>
<td>9.3.5.79</td>
<td></td>
</tr>
<tr>
<td>mickey_tty0</td>
<td>service</td>
<td>rsnet1</td>
<td>rs232</td>
<td>serial</td>
<td>mickey</td>
<td>/dev/tty0</td>
<td></td>
</tr>
</tbody>
</table>
E.3.5 Topology (Command: clscf)

Cluster Description of Cluster disney
Cluster ID: 1
There were 3 networks defined: etnet1, rsnet1, trnet1
There are 2 nodes in this cluster.

NODE goofy:
This node has 3 service interface(s):

Service Interface goofy_en:
IP address: 9.3.5.80
Hardware Address:
Network: etnet1
Attribute: private

Service Interface goofy_en has no standby interfaces.

Service Interface goofy_tty0:
IP address: /dev/tty0
Hardware Address:
Network: rsnet1
Attribute: serial

Service Interface goofy_tty0 has no standby interfaces.

Service Interface goofy:
IP address: 9.3.1.80
Hardware Address: 0x42005aa8d1f3
Network: trnet1
Attribute: public

Service Interface goofy has a possible boot configuration:
Boot (Alternate Service) Interface: goofy_boot
IP address: 9.3.1.46
Network: trnet1
Attribute: public

Service Interface goofy has 1 standby interfaces.
Standby Interface 1: goofy_sb
IP address: 9.3.4.80
Network: trnet1
Attribute: public

NODE mickey:
This node has 3 service interface(s):
Service Interface mickey_en:
 IP address: 9.3.5.79
 Hardware Address:
 Network: etnet1
 Attribute: private

Service Interface mickey_en has no standby interfaces.

Service Interface mickey_tty0:
 IP address: /dev/tty0
 Hardware Address:
 Network: rsnet1
 Attribute: serial

Service Interface mickey_tty0 has no standby interfaces.

Service Interface mickey:
 IP address: 9.3.1.79
 Hardware Address: 0x42005aa8b484
 Network: trnet1
 Attribute: public

Service Interface mickey has a possible boot configuration:
 Boot (Alternate Service) Interface: mickey_boot
 IP address: 9.3.1.45
 Network: trnet1
 Attribute: public

Service Interface mickey has 1 standby interfaces.
 Standby Interface 1: mickey_sb
 IP address: 9.3.4.79
 Network: trnet1
 Attribute: public

Breakdown of network connections:

Connections to network etnet1
 Node goofy is connected to network etnet1 by these interfaces:
 goofy_en

 Node mickey is connected to network etnet1 by these interfaces:
 mickey_en

Connections to network rsnet1
 Node goofy is connected to network rsnet1 by these interfaces:
 goofy_tty0

 Node mickey is connected to network rsnet1 by these interfaces:
Connections to network trnet1
Node goofy is connected to network trnet1 by these interfaces:
 goofy_boot
 goofy
 goofy_sb

Node mickey is connected to network trnet1 by these interfaces:
 mickey_boot
 mickey
 mickey_sb

E.3.6 Resources (Command: clshowres -n All)
Run Time Parameters:

<table>
<thead>
<tr>
<th>Node Name</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug Level</td>
<td></td>
</tr>
<tr>
<td>Host uses NIS or Name Server</td>
<td></td>
</tr>
</tbody>
</table>

E.3.7 Daemons (Command: clshowsrv -a)

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Group</th>
<th>PID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>clstrmgr</td>
<td>cluster</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>clinfo</td>
<td>cluster</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>clsmuxpd</td>
<td>cluster</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>clockd</td>
<td>lock</td>
<td></td>
<td>inoperative</td>
</tr>
</tbody>
</table>
E.4 HACMP EVENTS and AIX ERROR NOTIFICATION

• In the following pages you will find shell scripts which have been prefixed by CMD, PRE, POS and REC. Read the explanations given below in order to understand what they are all about.

• When you have understood that, then you will easily understand what they contain.

E.4.1.1 Event Processing Overview

• The HACMP daemons which run on the various cluster nodes all communicate amongst themselves.

• They react to the 32 predefined cluster events such as:
 - Node 2 has just rejoined the cluster
 - A network has just failed

• Default shell scripts for all of the events are in the directory /usr/sbin/cluster/events.

• Some of the scripts are just empty shells which you can customize according to your needs.

• It is advisable NOT to modify the original scripts. Select the event you wish to customize. This is copied into the /usr/HACMP_ANSS/script directory and prefixed by CMD_ (for example, network_down --> CMD_network_down).

• The events are configured in the ODM. The event object class is called /etc/objrepos/HACMPevent. As the location of the event script to be executed is stored within the object, it is necessary to modify the path name, either with SMIT or use the tool and let it do it for you automatically.

E.4.1.2 The PRE and POST shell scripts

• Sometimes it is necessary to carry out a certain action before (PRE) or after (POS) an event script is executed. An example may be sending a message PRE_stop_server before stopping the server application through CMD_stop_server. Then once it has taken place, sending another message via POS_stop_server.

• The PRE and POST events are also modified by SMIT or by the tool.

• They are placed in the /usr/HACMP_ANSS/script directory as well.

E.4.1.3 The RECOVERY shell script

• Each event should send a return code of 0 if it has successfully completed execution. If not, then HACMP will not terminate the event properly and you will see a number of messages on the console.

• We can customize a reaction to a script terminating with a non 0 exit status by executing a RECOVERY script. This script will be executed one or more times depending on how you have set the Retry Counter field in the SMIT Event Customization panel.

• Once again the RECOVERY script is configured either through SMIT or with the tool.

• A template is created for you (if you use the tool) in /usr/HACMP_ANSS/script with the event name prefixed by REC_ (for example, REC_network_down). The shell script is empty, and you are free to customize it as you wish.

E.4.1.4 Primary Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Cause and action</th>
</tr>
</thead>
<tbody>
<tr>
<td>config_too_long</td>
<td>Sends a periodic console message when a node has been in reconfiguration for more than six minutes.</td>
</tr>
</tbody>
</table>
fail_standby Sends a console message when a standby adapter fails or is no longer available because it has been used to take over the IP address of another adapter.

join_standby Sends a console message when a standby adapter becomes available.

network_down Occurs when the cluster determines that a network has failed. The event script provided takes no default action, since the appropriate action will be site/LAN specific.

network_down_complete Occurs only after a network_down event has successfully completed. The event script provided takes no default action, since the appropriate action will be site/LAN specific.

network_up Occurs when the cluster determines that a network has become available. The event script provided takes no default action, since the appropriate action will be site/LAN specific.

network_up_complete Occurs only after a network_up event has successfully completed. The event script provided takes no default action, since the action will be site/LAN specific.

node_down Occurs when a node is detaching from the cluster, either voluntarily or due to a failure. Depending on whether the node is local or remote, either the node_down_local or node_down_remote sub event is called.

node_down_complete Occurs only after a node_down event has successfully completed. Depending on whether the node is local or remote, either the node_down_local_complete or node_down_remote_complete sub event is called.

node_up Occurs when a node is joining the cluster. Depending on whether the the node is local or remote, either the node_up_local or node_up_remote sub event is called.

node_up_complete Occurs only after a node_up event has successfully completed. Depending on whether the node is local or remote, either the node_up_local_complete or node_up_remote_complete sub event is called.

swap_adapter Exchanges or swaps the IP addresses of two network interfaces. NIS and name serving are temporarily turned off during this event.

swap_adapter_complete Occurs only after a swap_adapter event has successfully completed. Ensures that the local ARP cache is updated by deleting entries and pinging cluster IP addresses.

event_error Occurs when an HACMP event script fails for some reason.

E.4.1.5 Secondary Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Cause and action</th>
</tr>
</thead>
<tbody>
<tr>
<td>acquire_service_addr</td>
<td>Configures boot addresses to the corresponding service address and starts TCP/IP servers and network daemons by running the telinit -a command. HACMP modifies the /etc/inittab file by setting all the TCP/IP related startup records to a run level of a.</td>
</tr>
<tr>
<td>acquire_takeover_addr</td>
<td>Acquires takeover IP address by checking configured standby addresses and swapping them with failed service addresses.</td>
</tr>
<tr>
<td>get_diskvg_fs</td>
<td>Acquire disk, volume group and file system resources as part of takeover.</td>
</tr>
</tbody>
</table>
node_down_local Releases resources taken from a remote node, stops application servers, releases a service address taken from a remote node, releases concurrent volume groups, unmounts file systems and reconfigures the node to its boot address.

node_down_local_complete Instructs the cluster manager to exit when the local node has completed detaching from the cluster. This event only occurs after a node_down_local event has successfully completed.

node_down_remote Unmounts any NFS file systems and places a concurrent volume group in non-concurrent mode when the local node is the only surviving node in the cluster. If the failed node did not go down gracefully, acquires a failed node’s resources: file systems, volume groups and disks and service address.

node_down_remote_complete Starts takeover application servers if the remote node did not go down gracefully. This event only occurs after a node_down_remote event has successfully completed.

node_up_local When the local node attaches to the cluster: acquires the service address, clears the application server file, acquires file systems, volume groups and disks resources, exports file systems and either activates concurrent volume groups or puts them into concurrent mode depending upon the status of the remote node(s).

node_up_local_complete Starts application servers and then checks to see if an inactive takeover is needed. This event only occurs after a node_up_local event has successfully completed.

node_up_remote Causes the local node to release all resources taken from the remote node and to place the concurrent volume groups into concurrent mode.

node_up_remote_complete Allows the local node to do an NFS mount only after the remote node is completely up. This event only occurs after a node_up_remote event has successfully completed.

release_service_addr Detaches the service address and reconfigures to its boot address.

release_takeover_addr Identifies a takeover address to be released because a standby adapter on the local node is masquerading as the service address of the remote node. Reconfigures the local standby into its original role.

release_vg_fs Releases volume groups and file systems that the local node took from the remote node.

start_server Starts application servers.

stop_server Stops application servers.

E.4.1.6 HARDWARE and SOFTWARE Errors

- AIX has a daemon `errdemon` which is alerted by the kernel whenever a HARDWARE or SOFTWARE incident takes place. Errors are logged into the AIX error log, and can be examined with the `errpt` command.

- There exists an object class `/etc/objrepos/errnotify` in ODM which can be customized for the special handling of errors. The customization can be carried out with SMIT, and consists of configuring the types of errors to be dealt with, and the action to be taken when such an error occurs. This is done through the definition of a script to be executed when this error is put into the AIX error log.

- The program `err_select` can also be used for the customization of error handling. It creates templates in `/usr/HACMP_ANSS/script` for you to customize. All of these templates are prefixed...
by error_. The name of the file depends on the type of error selected (for example, error_SCSI).

E.4.2 Script: /usr/HACMP_ANSS/script/CMD_node_down_remote
this file has not been modified

E.4.3 Script: /usr/HACMP_ANSS/script/CMD_node_up_remote
this file has not been modified

E.4.4 Script: /usr/HACMP_ANSS/script/POS_node_down_remote
#!/bin/ksh
program : POS_node_down_remote
role : run after the event
arguments : $1 = event name
$2 = return code
modified :
. /usr/HACMP_ANSS/tools/tool_var
STATUS=0
(print \n=POST-EVENT=\---------$(date)\t
print \ton : $(hostname) \t
print \tAFTER : $1\t
print \treturn code : $2) >> $LOG
##
Enter your customizing code here

END OF CUSTOMIZATION
return $STATUS

E.4.5 Script: /usr/HACMP_ANSS/script/PRE_node_down_remote
#!/bin/ksh
Program : PRE_node_down_remote
Role : run before the event
Arguments : $1 = event name
and the parameters passed in
Modified :
. /usr/HACMP_ANSS/tools/tool_var
STATUS=0
(print \n=PRE-EVENT=\---------$(date)\t
print \ton : $(hostname) \t
print \tBEFORE : $1\t
shift
print \tInput Parameters: $*\t) >> $LOG
END OF CUSTOMIZATION
return $STATUS
E.4.6 Script: /usr/HACMP_ANSS/script/PRE_node_up_remote

#!/bin/ksh
Program : PRE_node_up_remote
Role : run before the event
Arguments: $1 = event name
and the parameters passed in
Written : Wed Dec 13 16:50:41 CST 1995
Modified :
/usr/HACMP_ANSS/tools/tool_var
STATUS=0
(print \n=PRE-EVENT===============$(date) \nprint \ton : $(hostname) \nprint \tBEFORE : $1 \nshift
print \tInput Parameters: $*) >> $LOG
##
Enter your customizing code here

mail -s \tEvent Alert \thiess@thiessen.austin.ibm.com << END
Node goofy is about to re-enter the cluster. Users will be
migrated back from node mickey.
END

wall \tMachine goofy has been recovered and is coming on-line.
There will be a short interruption for users of machine goofy.
Please logoff your application now.
You will be able to login to your application again within 5 minutes.

sleep 10

END OF CUSTOMIZATION #
return $STATUS

E.4.7 Script: /usr/HACMP_ANSS/script/error_NOTIFICATION

#!/bin/ksh
##
name : error_NOTIFICATION
INPUT paremeters : $1 to $8 sent by errpt
Description : called by each error, sends a message
into hacmp.errlog
##
Variables:
/usr/HACMP_ANSS/tools/tool_var
STATUS=0
G=$(tput smso)
F=$(tput rmso)
LOG=\$SERREURS/hacmp.errlog

 ##
main
#
**************************** Source and cause of error **************
(print \n************ Source and cause of error ****************
print \nHOSTNAME=$(hostname) DATE=$(date)
print \nt"sequence number in error log = ":$1
print \nt"error ID = ":$2

END OF CUSTOMIZATION #
return $STATUS
print terror class = $3
print terror type = $4
print talert flag = $5
print tresource name = $6
print tresource type = $7
print tresource class = $8
print terror label = $9) >> $LOG

DO NOT FORGET TO set TO_WHOM in error_MAIL
. /usr/HACMP_ANSS/tools/ERROR_TOOL/error_MAIL $1 $2 $3 $4 $5 $6 $7 $8 $9

DO NOT FORGET TO set QUEUE in error_PRINT
. /usr/HACMP_ANSS/tools/ERROR_TOOL/error_PRINT $1 $2 $3 $4 $5 $6 $7 $8 $9

return $STATUS

E.4.8 Script: /usr/HACMP_ANSS/script/error_SDA

#!/bin/ksh

Written by: AUTOMATE
Last modification by *** who ***
#
script: error_SDA
parameters: 8 parameters (documented in error_NOTIFICATION)
#
ARGUMENTS received :
1 sequence number in the error log = $1
2 terror ID = $2
3 terror class = $3
4 terror type = $4
5 talert flag = $5
6 tresource name = $6
7 tresource type = $7
8 tresource class = $8
9 terror label = $9

Variables:
. /usr/HACMP_ANSS/tools/tool_var

STATUS=0
(echo \#n=error_SDA===============`date`\t
echo \tERROR DETECTED: error_SDA\t) | tee -a $ERREURS/hacmp.errlog> /dev/console
. $SCRIPTS/error_NOTIFICATION

########################### START OF CUSTOMIZATION ###########################

LOCALNODENAME=$(/usr/sbin/cluster/utilities/get_local_nodename)
mail -s Error Alert thiess@thiessen.austin.ibm.com << END
An error has been detected on the HACMP cluster node $LOCALNODENAME
look at the $LOG file on the node.
DEVICE = $6
ADAPTER = $8

The system will be shut down and the users moved to a backup node.
END
wall tSystem will be shutting Down in 20 Seconds. Please log off now.
You will be able to login to your application again within 5 minutes.

tsleep 20

This command does a shutdown with takeover of HACMP

/usr/sbin/cluster/utilities/clstop -y -N -g

tsleep 5

We now want to shutdown the machine, until our administrator can
investigate the problem.

t/etc/shutdown -Fr

END OF CUSTOMIZATION

treturn $STATUS

E.4.9 Script: /usr/HACMP_ANSS/script/event_NOTIFICATION

#!/bin/ksh

###
name : event_NOTIFICATION
INPUT paremeters : $1 = name of the event
$2 = start or complete
$3 = return code if $2 == complete
all the arguments sent to the event
#
Description : called by each event
###

########## variables
. /usr/HACMP_ANSS/tools/tool_var

STATUS=0

(print tNOTIFICATION $date $t
print ton: $(hostname) $t) >> $LOG

if [$2 = $start$]
then

quand=tSTART: $1

shift 2

arguments=targuments: $*

else

quand=tOUTPUT: $1

arguments=treturn code : $3

fi

(print $quand$; print $arguments$) >> $LOG

###
DO NOT FORGET TO set TO_WHOM in event_MAIL
. /usr/HACMP_ANSS/tools/EVENT_TOOL/event_MAIL $1 $2 $3

###
DO NOT FORGET TO set QUEUE in event_PRINT
. /usr/HACMP_ANSS/tools/EVENT_TOOL/event_PRINT $1 $2 $3 $4 $5 $6 $7 $8

return $STATUS

170 An HACMP Cookbook
E.4.10 Script : /usr/HACMP_ANSS/tools/tool_var

```
HACMP=/usr/HACMP_ANSS
D=$HACMP/dessin
S=$HACMP/script
T=$HACMP/tools
U=$HACMP/utils
L=$HACMP/locks
G=$(tput smso)
N=$(tput rmso)
if [ ! -d $U ]
then mkdir $U
fi
#conf_var
#############################################################################
# Variables: PRODUIT = directory containing HACMP commands
# SCRIPTS = directory containing customized event scripts
# ERREURS = directory where error messages are written
# TOOLS = directory containing the tools themselves
# BACKUP = directory where the original default scripts are saved
# UTILS = directory containing utilities used by the tools
PRODUIT=/usr/sbin/cluster
HACMP=/usr/HACMP_ANSS
SCRIPTS=$HACMP/script
TOOLS=$HACMP/tools
ERROR_TOOL=$TOOLS/ERROR_TOOL
EVENT_TOOL=$TOOLS/EVENT_TOOL
DOC_TOOL=$TOOLS/DOC_TOOL
CONF_TOOL=$TOOLS/CONF_TOOL
UTILS=$HACMP/utils
BACKUP=$HACMP/backup
DESSIN=$HACMP/dessin
LOCKS=$HACMP/locks
ERREURS=$/var/HACMP_ANSS/log
if [ ! -d /usr/HACMP_ANSS/script ]
then
    mkdir /usr/HACMP_ANSS/script
fi
if [ ! -d /usr/HACMP_ANSS/backup ]
then
    mkdir /usr/HACMP_ANSS/backup
fi
if [ ! -d /usr/HACMP_ANSS/utils ]
then
    mkdir /usr/HACMP_ANSS/utils
fi
if [ ! -d /usr/HACMP_ANSS/locks ]
then
    mkdir /usr/HACMP_ANSS/locks
fi
export PATH=PATH:$TOOLS:$SCRIPTS:$PRODUIT:$UTILS
LOG=$ERREURS/hacmp.event.log
```

E.5 SYSTEM FILES

E.5.1 File: /etc/rc

#!/bin/ksh
@(#)06 1.13 com/cfg/etc/rc.sh, bos, bos320 4/30/91 14:25:11
#
COMPONENT_NAME: (CFGETC) Multi-user mode system setup
#
FUNCTIONS: rc
#
ORIGINS: 27
#
(C) COPYRIGHT International Business Machines Corp. 1989, 1990
All Rights Reserved
Licensed Materials - Property of IBM
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
##

/usr/bin/dspmsg rc.cat 1 Starting Multi-user Initialization
PATH=/bin:/usr/bin:/usr/ucb:/etc::
ODMDIR=/etc/objrepos
export PATH ODMDIR

Varyon all Volume Groups marked as auto-varyon.
(rootvg already varied on)
dspmsg rc.cat 2 Performing auto-varyon of Volume Groups
/etc/cfgvg

Activate all paging spaces in automatic list
(those listed in /etc/swapspaces)
dspmsg rc.cat 3 Activating all paging spaces
/etc/swapon -a

Perform file system checks
The -f flag skips the check if the log has been replayed successfully
fsck -fp

Perform all auto mounts
dspmsg rc.cat 4 Performing all automatic mounts
mount all

Remove /etc/nologin if left behind by shutdown
rm -f /etc/nologin

Running expreserve to recover vi editor sessions
/usr/lib/expreserve - 2>/dev/null

Write a dummy record to file /usr/adm/sa/sa<date> to specify
that system start up has occurred.
dspmsg rc.cat 6 Write system start up record to /usr/adm/sa/sa`date`
#/bin/su - root -c /usr/lib/sa/sadc /usr/adm/sa/sa`date +%d`

Manufacturing post install process.
This must be at the end of this file, /etc/rc.
if [-x /etc/mfg/rc.preload]
then
 /etc/mfg/rc.preload
fi

dspmsg rc.cat 5 Multi-user initialization completedn
exit 0

E.5.2 File: /etc/rc.net
#!/bin/ksh
@(#)90 1.18 com/cmd/net/netstart/rc.net, cmdnet, bos320, 9150320k 12/11/91 14:40
:04
#
COMPONENT_NAME: CMDNET (/etc/rc.net)
#
ORIGINS: 27
#
(C) COPYRIGHT International Business Machines Corp. 1985, 1989
All Rights Reserved
Licensed Materials - Property of IBM
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
HACMP6000
HACMP6000 These lines added by HACMP6000 software
[\$1 = ^-boot^] && shift || exit 0 # HACMP6000
HACMP6000

##
rc.net - called by cfgmgr during 2nd boot phase.
#
Configures and starts TCP/IP interfaces.
Sets hostname, default gateway and static routes.
Note: all the stdout should be redirected to a file (e.g. /dev/null),
because stdout is used to pass logical name(s) back to the cfgmgr
to be configured. The LOGFILE variable specifies the output file.
The first section of rc.net configures the network via the new
configuration methods. These configuration methods require that
the interface and protocol information be entered in the ODM
database (with either SMIT or the high level configuration commands
(mkdev, chdev).
The second section (commented out) is an example of the equivalent
traditional commands used to perform the same function. You may
use the traditional commands instead of the configuration methods
if you prefer. These commands do NOT use the ODM database.
The third section performs miscellaneous commands which are
compatible with either of the previous two sections.
##
Close file descriptor 1 and 2 because the parent may be waiting for the file desc. 1 and 2 to be closed. The reason is that this shell script may spawn a child which inherit all the file descriptor from the parent and the child process may still be running after this process is terminated. The file desc. 1 and 2 are not closed and leave the parent hanging waiting for those desc. to be finished.

LOGFILE=/dev/null # LOGFILE is where all stdout goes.
LOGFILE=/tmp/rc.net.out # LOGFILE is where all stdout goes.
>$LOGFILE # truncate LOGFILE.
exec 1<&- # close descriptor 1
exec 2<&- # close descriptor 2
exec 1< /dev/null # open descriptor 1
exec 2< /dev/null # open descriptor 2

no -d lowclust # set cluster low water mark

Part I - Configuration using the data in the ODM database:
Enable network interface(s):
This should be done before routes are defined.
For each network adapter that has already been configured, the following commands will define, load and configure a corresponding interface.
/usr/lib/methods/defif >>$LOGFILE 2>&1
/usr/lib/methods/cfgif $* >>$LOGFILE 2>&1

Special X25 and SLIP handling
In addition to configure the network interface, X25 and SLIP interfaces require special commands to complete the configuration.
The x25xlate command bring the x25 translation table into the kernel while the slattach changes the tty handling for the tty port used by the SLIP interface. A separate slattach command is execute for every tty port used by configured SLIP interfaces.

X25HOST=`lsdev -C -c if -s XT -t xt -S available` if [! -z $X25HOST] then
 x25xlate >>$LOGFILE 2>&1
fi

SLIPHOST=`lsdev -C -c if -s SL -t sl -S available | awk '{ print $1 }'|`
for i in $SLIPHOST
do
echo $i >>$LOGFILE 2>&1
 TTYPORT=`lsattr -E -1 $i -F `ttyport` -a ttyport`
 TTYBAUD=`lsattr -E -1 $i -F `value` -a baudrate`
 TTYDIALSTRING=`lsattr -E -1 $i -F `value` -a dialstring`
 rm -f /etc/locks/LCK..$TTYPORT
 if [-z $TTYBAUD] then
 echo $i >>$LOGFILE 2>&1
 TTYDIALSTRING=`lsattr -E -1 $i -F `value` -a dialstring`
 rm -f /etc/locks/LCK..$TTYPORT
 if [-z $TTYDIALSTRING] then
...
FromHOST=`lsattr -E -l $i -F value -a netaddr`
DestHOST=`lsattr -E -l $i -F value -a dest`
SLIPMASK=`lsattr -E -l $i -F value -a netmask`
if [-z "$SLIPMASK"]
then
 ifconfig $SLIPHOST inet $FromHOST $DestHOST up
else
 ifconfig $SLIPHOST inet $FromHOST $DestHOST netmask $SLIPMASK up
fi
(slattach $TTYPORT)" >>$LOGFILE 2>&1
else
eval DST=$(TTYDIALSTRING)
(sl eval slattach $TTYPORT $TTYBAUD <$DST>)" >>$LOGFILE 2>>$LOGFILE
fi
done

Configure the Internet protocol kernel extension (netinet):
The following commands will also set hostname, default gateway,
and static routes as found in the ODM database for the network.
/usr/lib/methods/definet >>$LOGFILE 2>&1
/usr/lib/methods/cfginet >>$LOGFILE 2>&1

Part II - Traditional Configuration.
An alternative method for bringing up all the default interfaces
is to specify explicitly which interfaces to configure using the
ifconfig command. Ifconfig requires the configuration information
be specified on the command line. Ifconfig will not update the
information kept in the ODM configuration database.
#
Valid network interfaces are:
lo=local loopback, en=standard ethernet, et=802.3 ethernet
sl=serial line IP, tr=802.5 token ring, xt=X.25
#
e.g., en0 denotes standard ethernet network interface, unit zero.
#
Below are examples of how you could bring up each interface using
ifconfig. Since you can specify either a hostname or a dotted
decimal address to set the interface address, it is convenient to
set the hostname at this point and use it for the address of
an interface, as shown below:
#
#/bin/hostname robo.austin.ibm.com >>$LOGFILE 2>&1
#
(Remember that if you have more than one interface,
you'll want to have a different IP address for each one.
Below, xx.xx.xx.xx.xx stands for the internet address for the
given interface).
#
#/usr/sbin/ifconfig lo0 inet loopback up >>$LOGFILE 2>&1
#/usr/sbin/ifconfig en0 inet `hostname` up >>$LOGFILE 2>&1
Set any static routes.
#
#/usr/sbin/route add 0 gateway
#/usr/sbin/route add 192.9.201.0 gateway

Now we set any static routes.
#
#/usr/sbin/route add 0 gateway >>$LOGFILE 2>&1
#/usr/sbin/route add 192.9.201.0 gateway >>$LOGFILE 2>&1

Part III - Miscellaneous Commands.
Set the hostid and uname to `hostname`, where hostname has been
set via DDM in Part I, or directly in Part II.
(Note it is not required that hostname, hostid and uname all be
the same).
/usr/sbin/hostid `hostname` >>$LOGFILE 2>&1
/bin/uname -S `hostname` | sed 's/..*$//' >>$LOGFILE 2>&1

The socket default buffer size (initial advertised TCP window) is being
set to a default value of 16k (16384). This improves the performance
for ethernet and token ring networks. Networks with lower bandwidth
such as SLIP (Serial Line Internet Protocol) and X.25 or higher bandwidth
such as Serial Optical Link and FDDI would have a different optimum
buffer size.
(OPTIMUM WINDOW = Bandwidth * Round Trip Time)
if [-f /usr/sbin/no]; then
 /usr/sbin/no -o tcp_sendspace=16384
 /usr/sbin/no -o tcp_recvspace=16384
fi

/etc/no -o ipforwarding=0
/etc/no -o ipsendredirects=0

E.5.3 File: /etc/hosts
@(#)47 1.1 com/cmd/net/netstart/hosts, bos, bos320 7/24/91 10:00:46
COMPONENT_NAME: TCPIP hosts
#
FUNCTIONS: loopback
#
ORIGINS: 26 27
#
(C) COPYRIGHT International Business Machines Corp. 1985, 1989
All Rights Reserved
Licensed Materials - Property of IBM
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
/etc/hosts
#
This file contains the hostnames and their address for hosts in the
network. This file is used to resolve a hostname into an Internet
address.
#
At minimum, this file must contain the name and address for each
device defined for TCP in your /etc/net file. It may also contain
entries for well-known (reserved) names such as timeserver
and printserver as well as any other host name and address.
#
The format of this file is:
Internet Address Hostname # Comments
Items are separated by any number of blanks and/or tabs. A
indicates the beginning of a comment; characters up to the end of the
line are not interpreted by routines which search this file. Blank
lines are allowed.
#
<table>
<thead>
<tr>
<th>Internet Address</th>
<th>Hostname</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.9.200.1</td>
<td>net0sample</td>
<td>ethernet name/address</td>
</tr>
<tr>
<td>128.100.0.1</td>
<td>token0sample</td>
<td>token ring name/address</td>
</tr>
<tr>
<td>10.2.0.2</td>
<td>x25sample</td>
<td>x.25 name/address</td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>localhost</td>
<td>loopback (lo0) name/address</td>
</tr>
</tbody>
</table>

Cluster 1 - disney

9.3.1.79 mickey.itsc.austin.ibm.com mickey
9.3.4.79 mickey_sb.itsc.austin.ibm.com mickey_sb
9.3.5.79 mickey_en.itsc.austin.ibm.com mickey_en

9.3.1.46 goofy_boot.itsc.austin.ibm.com goofy_boot
9.3.1.80 goofy.itsc.austin.ibm.com goofy
9.3.4.80 goofy_sb.itsc.austin.ibm.com goofy_sb
9.3.5.80 goofy_en.itsc.austin.ibm.com goofy_en

Cluster 2 - dave

9.3.1.3 hadavel_boot.itsc.austin.ibm.com hadavel_boot
9.3.1.16 hadavel.itsc.austin.ibm.com hadavel
9.3.4.16 hadavel_sb.itsc.austin.ibm.com hadavel_sb

9.3.1.6 hadave2_boot.itsc.austin.ibm.com hadave2_boot
9.3.1.17 hadave2.itsc.austin.ibm.com hadave2
9.3.4.17 hadave2_sb.itsc.austin.ibm.com hadave2_sb

Client & Others

9.3.1.43 pluto
9.3.1.74 gandalf
9.209.46.194 surveyor
9.209.41.111 aix11
9.209.32.4 jd560
9.3.4.16 hadavel_sb.itsc.austin.ibm.com hadavel_sb
E.5.4 File: /etc/filesystems

* @(#)filesystems @(#)29 1.18 com/cfg/etc/filesystems, bos, bos320 8/21/91 08:32:3
1
*
* COMPONENT_NAME: CFGETC
*
* FUNCTIONS:
*
* ORIGINS: 27
*
* (C) COPYRIGHT International Business Machines Corp. 1985, 1991
* All Rights Reserved
* Licensed Materials - Property of IBM
*
* US Government Users Restricted Rights - Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
* This version of /etc/filesystems assumes that only the root file system
* is created and ready. As new file systems are added, change the check,
* mount, free, log, vol and vfs entries for the appropriate stanza.
*
/:
 dev = /dev/hd4
 vfs = jfs
 log = /dev/hd8
 mount = automatic
 check = false
 type = bootfs
 vol = root
 free = true

/home:
 dev = /dev/hd1
 vol = /home
 mount = true
 check = true
 free = false
 vfs = jfs
 log = /dev/hd8

/usr:
 dev = /dev/hd2
 vfs = jfs
 log = /dev/hd8
 mount = automatic
 check = false
 type = bootfs
 vol = /usr
free = false

/var:
 dev = /dev/hd9var
 vol = /var
 mount = automatic
 check = false
 free = false
 vfs = jfs
 log = /dev/hd8
 type = bootfs

tmp:
 dev = /dev/hd3
 vfs = jfs
 log = /dev/hd8
 mount = automatic
 check = false
 vol = /tmp
 free = false

/mnt:
 dev = /dev/hd7
 vol = spare
 mount = false
 check = false
 free = false
 vfs = jfs
 log = /dev/hd8

/blv:
 dev = /dev/hd5
 vol = spare
 mount = false
 check = false
 free = false
 vfs = jfs
 log = /dev/hd8

/usr/bin/blv.fs:
 dev = /usr/bin/blv.fs
 vol = /ui

/inst:
 dev = /dev/extlv1
 vfs = jfs
 log = /dev/extloglv
 mount = false
 check = false
 options = rw
 account = false

/test1:
 dev = /dev/lvtest1
 vfs = jfs
E.5.5 File: /etc/inetd.conf

COMPONENT_NAME: TCPIP inetd.conf # # FUNCTIONS: # # ORIGINS: 26 27 # # (C) COPYRIGHT International Business Machines Corp. 1985, 1989 # All Rights Reserved # Licensed Materials - Property of IBM # # US Government Users Restricted Rights - Use, duplication or # disclosure restricted by GSA ADP Schedule Contract with IBM Corp. # # /etc/inetd.conf # # Internet server configuration database # # Services can be added and deleted by deleting or inserting a # comment character (ie. #) at the beginning of a line If inetd # is running under SRC control then the inetimp command must # be executed to import the information from this file to the # InetServ ODM object class, then the refresh -s inetd command # needs to be executed for inetd to re-read the InetServ database. # # NOTE: The TCP/IP servers do not require SRC and may be started # by invoking the service directly (i.e. /etc/inetd). If inetd # has been invoked directly, after modifying this file, send a # hangup signal, SIGHUP to inetd (i.e. kill -1 pid_of_inetd). # # require that the portmap daemon be running. # # service socket protocol wait/ user server server program # name type nowait program arguments # # The following line is the new style tftp daemon - allows write create. # The following line needs to be uncommented and run inetimp to enable tftpd # The following line is for installing over the network.
E.5.6 File: /etc/syslog.conf

```
# @(#)34 1.9 com/cmd/net/syslogd/syslog.conf, cmdnet, bos325, 9331325b 6/13/93 14:52:39
#
# COMPONENT_NAME: (CMDNET) Network commands.
#
# FUNCTIONS:
#
# ORIGINS: 27
#
# (C) COPYRIGHT International Business Machines Corp. 1988, 1989
# All Rights Reserved
# Licensed Materials – Property of IBM
#
# US Government Users Restricted Rights – Use, duplication or
# disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
# /etc/syslog.conf – control output of syslogd
#
```
Each line must consist of two parts:-
1) A selector to determine the message priorities to which the
line applies
2) An action.
#
The two fields must be separated by one or more tabs or spaces.
#
format:
#
<msg_src_list> <destination>
#
where <msg_src_list> is a semicolon separated list of <facility>.<priority>
where:
#
where:
#
<facility> is:
* - all (except mark)
mark - time marks
kern,user,mail,daemon, auth,... (see syslogd(AIX Commands Reference))
#
<priority> is one of (from high to low):
emerg/panic,alert,crit,err(or),warn(ing),notice,info,debug
(meaning all messages of this priority or higher)
#
<destination> is:
/filename - log to this file
username[,username2...] - write to user(s)
@hostname - send to syslogd on this machine
* - send to all logged in users
#
example:
mail messages, at debug or higher, go to Log file. File must exist.
all facilities, at debug and higher, go to console
all facilities, at crit or higher, go to all users
mail.debug /usr/spool/mqueue/syslog
*.debug /dev/console
*.crit *
HACMP/6000 Critical Messages from HACMP/6000
local0.crit /dev/console
HACMP/6000 Informational Messages from HACMP/6000
local0.info /usr/adm/cluster.log
HACMP/6000 Messages from Cluster Scripts
user.notice /usr/adm/cluster.log

E.5.7 File: /etc/inittab

: @(#)49 1.28 com/cfg/etc/inittab, bos, bos320 10/3/91 10:46:51
: COMPONENT_NAME: CFGETC
:
: ORIGINS: 3, 27
:
: (C) COPYRIGHT International Business Machines Corp. 1989, 1990
: All Rights Reserved
: Licensed Materials - Property of IBM
init:2:initdefault:
initdefault:
initdefault:
brc::sysinit:/sbin/rc.boot 3 >/dev/console 2>&1 # Phase 3 of system boot
powerfail::powerfail:/etc/rc.powerfail >/dev/console 2>&1 # d51225
rc:2:wait:/etc/rc >/dev/console 2>&1 # Multi-User checks
fbcheck:2:wait:/usr/lib/dwm/fbcheck >/dev/console 2>&1 # run /etc/firstboot
srcmstr:2:respawn:/etc/srcmstr # System Resource Controller
harc:2:wait:/usr/sbin/cluster/etc/harc.net # HACMP6000 network startup
rctcpip:a:wait:/etc/rc.tcpip >/dev/console 2>&1 # Start TCP/IP daemons
rcnfs:a:wait:/etc/rc.nfs >/dev/console 2>&1 # Start NFS Daemons
cons:0123456789:respawn:/etc/getty /dev/console
piobe:2:wait:/bin/rm -f /usr/lpd/pio/flags/* # Clean up printer flags files
cron:2:respawn:/etc/cron
cron:2:respawn:/etc/cron
cron:2:respawn:/etc/cron
qdaemon:a:wait:/bin/startsrc -sqdaemon
writesrv:a:wait:/bin/startsrc -swritesrv
uprintfd:2:respawn:/etc/uprintfd
rcnfs:a:wait:/etc/rc.nfs
infod:2:once:startsrc -s infod
tty0:2:off:/etc/getty /dev/tty0
clvm6000:2:wait:/usr/sbin/cluster/cllvm -c status # Check CLVM stat
clinit:a:wait:touch /usr/sbin/cluster/.telinit # HACMP6000 This must be last entry in inittab!
E.6 CONTENTS OF THE HACMP OBJECTS IN THE ODM

E.6.1 odmget of /etc/objrepos/HACMPadapter

HACMPadapter:
 type = tether
 network = etnet1
 nodename = goofy
 ip_label = goofy_en
 function = tservice
 identifier = t9.3.5.80
 haddr = tt

HACMPadapter:
 type = rs232
 network = rsnet1
 nodename = goofy
 ip_label = goofy_tty0
 function = tservice
 identifier = t/dev/tty0
 haddr = tt

HACMPadapter:
 type = token
 network = trnet1
 nodename = goofy
 ip_label = goofy
 function = tservice
 identifier = t9.3.1.80
 haddr = t0x42005aa8d1f3

HACMPadapter:
 type = token
 network = trnet1
 nodename = goofy
 ip_label = goofy_boot
 function = tboot
 identifier = t9.3.1.46
 haddr = tt

HACMPadapter:
 type = token
 network = trnet1
 nodename = goofy
 ip_label = goofy_sb
 function = tstandby
 identifier = t9.3.4.80
 haddr = tt

HACMPadapter:
 type = tether
 network = tetnet1
 nodename = tmickey
 ip_label = tmickey_ent
function = tservice
identifier = t9.3.5.79
haddr = tt

HACMPadapter:
 type = ts232
 network = tsnet1
 nodename = tmickey
 ip_label = tmickey_tty0
 function = tservice
 identifier = t/dev/tty0
 haddr = tt

HACMPadapter:
 type = ttoken
 network = trnet1
 nodename = tmickey
 ip_label = tmickey
 function = tservice
 identifier = t9.3.1.79
 haddr = t0x42005aa8b484

HACMPadapter:
 type = ttoken
 network = trnet1
 nodename = tmickey
 ip_label = tmickey_boot
 function = tboot
 identifier = t9.3.1.45
 haddr = tt

HACMPadapter:
 type = ttoken
 network = trnet1
 nodename = tmickey
 ip_label = tmickey_sb
 function = tstandby
 identifier = t9.3.4.79
 haddr = tt

E.6.2 odmget of /etc/objrepos/HACMPcluster

HACMPcluster:
 id = 1
 name = tdisney
 nodename = tmickey

E.6.3 odmget of /etc/objrepos/HACMPcommand

HACMPcommand:
 command = tclverify
 options = tsoftware
 optflag = 1
 path = tt
numargs = 0
args = ""
help = "Tools for verifying that a cluster is properly installed and configured"
catalog = "command.cat"
setno = 0
msgno = 2

HACMP command:
command = "clverify"
options = "cluster"
optflag = 1
path = ""
numargs = 0
args = ""
help = "Tools for verifying that a cluster is properly installed and configured"
catalog = "command.cat"
setno = 0
msgno = 3

HACMP command:
command = "clverify.software"
options = "bos"
optflag = 1
path = ""
numargs = 0
args = ""
help = "Verifies that your software environment is compatible with HACMP"
catalog = "command.cat"
setno = 0
msgno = 6

HACMP command:
command = "clverify.software"
options = "prereq"
optflag = 1
path = ""
numargs = 0
args = ""
help = "Verifies that your software environment is compatible with HACMP"
catalog = "command.cat"
setno = 0
msgno = 7

HACMP command:
command = "clverify.software"
options = "badptfs"
optflag = 1
path = ""
numargs = 0
args = ""
help = "Verifies that your software environment is compatible with HACMP"
catalog = "command.cat"
setno = 0
msgno = 8
HACMPcommand:
command = tclverify.software
options = tlppt
optflag = 1
path =
numargs = 0
args =
help = Verifies that your software environment is compatible with HACMP
catalog = tcommand.cat
setno = 0
msgno = 8

HACMPcommand:
command = tclverify.cluster
options = topology
optflag = 1
path =
numargs = 0
args =
help = Verifies that your cluster is configured properly
catalog = tcommand.cat
setno = 0
msgno = 9

HACMPcommand:
command = tclverify.cluster
options = tconfig
optflag = 1
path =
numargs = 0
args =
help = Verifies that your cluster is configured properly
catalog = tcommand.cat
setno = 0
msgno = 10

HACMPcommand:
command = tclverify.software.prereq
options =
optflag = 0
path = /usr/sbin/cluster/diag/clvreq
numargs = 0
args =
help = Verifies that all fixes to AIX required by HACMP have been installed
catalog = tcommand.cat
setno = 0
msgno = 13

HACMPcommand:
command = tclverify.software.lpp
options =
optflag = 0
path = /usr/sbin/cluster/diag/clvhacmp
numargs = 0
args =

help = †Verifies that HACMP is properly installed†
catalog = †command.cat†
setno = 0
msgno = 14

HACMPcommand:
command = †clverify.software.bos†
options = ††
optflag = 0
path = †/usr/sbin/cluster/diag/clvbos†
numargs = 0
args = ††
help = †Verifies that the AIX level is correct for HACMP†
catalog = †command.cat†
setno = 0
msgno = 15

HACMPcommand:
command = †clverify.software.badptfs†
options = ††
optflag = 0
path = †/usr/sbin/cluster/diag/clvinval†
numargs = 0
args = ††
help = †Verifies that no known PTFs that break HACMP are installed†
catalog = †command.cat†
setno = 0
msgno = 16

HACMPcommand:
command = †clverify.cluster.topology†
options = †check†
optflag = 1
path = ††
numargs = 0
args = ††
help = †Verifies that all cluster nodes agree on cluster topology†
catalog = †command.cat†
setno = 0
msgno = 17

HACMPcommand:
command = †clverify.cluster.topology†
options = †sync†
optflag = 1
path = ††
numargs = 0
args = ††
help = †Forces all cluster nodes to agree on cluster topology†
catalog = †command.cat†
setno = 0
msgno = 18

HACMPcommand:
command = †clverify.cluster.topology.check†
options = \+
optflag = 0
path = /usr/sbin/cluster/diag/clconfig
numargs = 1
args = \+\-t\+
help = Verifies that all cluster nodes agree on cluster topology
catalog = \+\+command.cat\+
setno = 0
msgno = 19

HACMPcommand:
command = clverify.cluster.topology.sync
options = \+
optflag = 0
path = /usr/sbin/cluster/diag/clconfig
numargs = 2
args = \+\-s \-t\+
help = Forces all cluster nodes to agree on cluster topology
catalog = \+\+command.cat\+
setno = 0
msgno = 20

HACMPcommand:
command = clverify.cluster.config
options = \+\+networks\+
optflag = 1
path = \+
numargs = 0
args = \+\+command.cat\+
help = Verifies that cluster resources are properly installed
catalog = \+\+\+\+command.cat\+
setno = 0
msgno = 23

HACMPcommand:
command = clverify.cluster.config
options = \+\+resources\+
optflag = 1
path = \+
numargs = 0
args = \+\+\+
help = Verifies that cluster resources are properly installed
catalog = \+\+\+\+command.cat\+
setno = 0
msgno = 22

HACMPcommand:
command = clverify.cluster.config
options = \+\+both\+
optflag = 1
path = \+
numargs = 0
args = \+\+\+
help = Verifies that cluster resources are properly installed
catalog = \+\+\+\+\+command.cat\+
setno = 0
msgno = 21
setno = 0
msgno = 21

HACMPcommand:
command = clverify.cluster.config.networks
options =
optflag = 0
path = /usr/sbin/cluster/diag/clconfig
numargs = 2
args = -v -t
help = Checks for proper configuration of network adapters and tty lines
catalog = command.cat
setno = 0
msgno = 25

HACMPcommand:
command = clverify.cluster.config.resources
options =
optflag = 0
path = /usr/sbin/cluster/diag/clconfig
numargs = 2
args = -v -r
help = Checks for agreement on resource ownership and takeover distribution
catalog = command.cat
setno = 0
msgno = 26

HACMPcommand:
command = clverify.cluster.config.both
options =
optflag = 0
path = /usr/sbin/cluster/diag/clconfig
numargs = 1
args = -v -t
help = Runs both the networks and resources programs
catalog = command.cat
setno = 0
msgno = 24

HACMPcommand:
command = cldiag
options = logs
optflag = 1
path =
numargs = 0
args =
help = Allows for selected viewing of HACMP log files, enables debugging of the Cluster Manager, or enables dumping of all Lock Manager resources.
catalog = command.cat
setno = 0
msgno = 27

HACMPcommand:
command = cldiag.logs
options = scripts
optflag = 1
path = t
numargs = 0
args = t
help = †Allows for selected viewing of script output or syslog output.†
catalog = †command.cat†
setno = 0
msgno = 28

HACMP command:
 command = †clddiag.logs.script†
options = †t†
 optflag = 0
 path = †/usr/sbin/cluster/diag/cld_logfiles†
 numargs = 2
 args = †-t scripts†
 help = †scripts [‐h host] [‐s] [‐f] [‐d days] [‐R file] [event ...]
where:
 ‐h host is the name of a remote host from which to gather log data
 ‐s filters Start/Complete events
 ‐f filters failure events
 ‐d days defines the number of previous days from which to retrieve log
 ‐R file is file to which output is saved
 event is a list of cluster events

Allows for parsing the /tmp/hacmp.out file
†
catalog = †command.cat†
setno = 0
msgno = 29

HACMP command:
 command = †clddiag.log†
options = †syslog†
optflag = 1
path = ††
numargs = 0
args = ††
help = †Allows for selected viewing of script output or syslog output.†
catalog = †command.cat†
setno = 0
msgno = 30

HACMP command:
 command = †clddiag.logs.syslog†
options = ††
optflag = 0
path = †/usr/sbin/cluster/diag/cld_logfiles†
numargs = 2
args = †‐t syslog†
help = †syslog [‐h host] [‐e] [‐w] [‐d days] [‐R file] [process ...]
where:
 ‐h host is the name of a remote host from which to gather log data
 ‐e filters error events
 ‐w filters warning events
The `-d` days option defines the number of previous days from which to retrieve log entries. The `-R` file option specifies the file to which output is saved.

Process is a list of cluster daemon processes.

This feature allows for parsing the `/usr/adm/cluster.log` file.

- **catalog = command.cat**
- **setno = 0**
- **msgno = 31**

HACMP command:

```
command = tcldiag
dflag = 1
options = tdebug
path = t
numargs = 0
args = t
help = t
```

This command allows for selected viewing of HACMP log files, enables debugging of the Cluster Manager, or enables dumping of all Lock Manager resources.

- **catalog = command.cat**
- **setno = 0**
- **msgno = 32**

HACMP command:

```
command = tcldiag.debug
dflag = 1
options = clstrmgr
path = t/t/usr/sbin/cluster/diag/cld_debug
numargs = 2
args = t-t clstrmgr
dflag = 0
help = tclstrmgr [-l level] [-R file]
```

The `help` argument enables debugging of the Cluster Manager or the dumping of the lock resource table.

- **catalog = command.cat**
- **setno = 0**
- **msgno = 33**

HACMP command:

```
command = tcldiag.debug.clstrmgr
dflag = 1
options = t
path = t/t/usr/sbin/cluster/diag/cld_debug
numargs = 2
args = t-t clstrmgr
dflag = 0
help = tclstrmgr [-l level] [-R file]
```

The `t` argument allows for real-time clstrmgr debugging.

- **catalog = command.cat**
- **setno = 0**
- **msgno = 34**

An HACMP Cookbook

192
HACMPcommand:
 command = tcldiag.debug
t options = tclclockd
t optflag = 1
t path = t/t/usr/sbin/cluster/diag/cld_debug
t numargs = 2
t args = t-t clclockd
t help = tclclock [-R file]
where:
 -R file is the file to which output is saved

Allows dumping of the Lock Resource Table.
 catalog = tcommand.cat
 setno = 0
 msgno = 35

HACMPcommand:
 command = tcldiag.debug.clclockd
t options = t/t
t optflag = 0
t path = t/t/usr/sbin/cluster/diag/cld_debug
t numargs = 2
t args = t-t clclockd
t help = tclclock [-R file]

where:

HACMPcommand:
 command = tcldiag
t options = tvgst
t optflag = 1
t path = t/t/usr/sbin/cluster/diag/cld_vgst
t numargs = 0
t args = t/t
t help = tvgs hostnames [-v volume_groups]
where:

- h hostnames is a list of 2 to 8 hostnames separated by commas
- v volume_groups is a list of volume group names separated by commas

Note: Spaces are not allowed between hostname entries or volume group entries.
Checks for consistencies of volume groups among hosts, ODMs, and disks.

```
catalog = command.cat
setno = 0
msgno = 38
```

HACMPcommand:

```
command = tcdiag
options = ttrace
optflag = 1
path = 
numargs = 0
args = 
help = Obtains a sequential flow of time stamped system events.
```

```
catalog = command.cat
setno = 0
msgno = 39
```

HACMPcommand:

```
command = tcdiag.trace
options = ttrace
optflag = 0
path = /usr/sbin/cluster/diag/cld_trace
numargs = 0
args = 
help = trace [-t time] [-R file] [-l] daemon ...
```

Where:
- `-t time` is the number of seconds to perform the trace
- `-R file` is file to which output is saved
- `-l` chooses a more detailed trace option
- `daemon` is a list of cluster daemons to trace

Allows for tracing HACMP daemons (clstrmgr, cllockd, cismuxpd, clinfo).

```
catalog = command.cat
setno = 0
msgno = 40
```

HACMPcommand:

```
command = tcdiag
options = tterror
optflag = 1
path = 
numargs = 0
args = 
help = Displays errors from the error log (hardware, software, system) that occur in the cluster.
```

```
catalog = command.cat
setno = 0
msgno = 41
```

HACMPcommand:

```
command = tcdiag.error
options = tterror
optflag = 0
```
path = /usr/sbin/cluster/diag/cld_error
numargs = 0
args =
help = error type [-h host] [-R file]
where:
 type is one of:
 short - short error report
 long - long error report
 cluster - HACMP/6000 specific short error report
 -h host is the name of a remote host from which to gather log data
 -R file is file to which output is saved

Allows for parsing the system error log.

E.6.4 odmget of /etc/objrepos/HACMPevent

HACMPevent:
 name = swap_adapter
 desc = Script run to swap IP Addresses between two network adapters.
 setno = 0
 msgno = 0
 catalog = command.cat
 cmd = /usr/sbin/cluster/events/swap_adapter
 notify =
 pre =
 post =
 recv =
 count = 0

HACMPevent:
 name = swap_adapter_complete
 desc = Script run after the swap_adapter script has successfully completed.
 setno = 0
 msgno = 0
 catalog =
 cmd = /usr/sbin/cluster/events/swap_adapter_complete
 notify =
 pre =
 post =
 recv =
 count = 0

HACMPevent:
 name = network_up
 desc = Script run after a network has become active.
 setno = 0
 msgno = 0
 catalog =
 cmd = /usr/sbin/cluster/events/network_up
 notify =

pre = ++
post = ++
recv = ++
count = 0

HACMPevent:
 name = tnetwork_down
 desc = tScript run when a network has failed.
 setno = 0
 msgno = 0
 catalog = ++
 cmd = t/usr/sbin/cluster/events/network_down
 notify = ++
 pre = ++
 post = ++
 recv = ++
count = 0

HACMPevent:
 name = tnetwork_up_complete
 desc = tScript run after the network_up script has successfully completed.
 setno = 0
 msgno = 0
 catalog = ++
 cmd = t/usr/sbin/cluster/events/network_up_complete
 notify = ++
 pre = ++
 post = ++
 recv = ++
count = 0

HACMPevent:
 name = tnetwork_down_complete
 desc = tScript run after the network_down script has successfully completed.
 setno = 0
 msgno = 0
 catalog = ++
 cmd = t/usr/sbin/cluster/events/network_down_complete
 notify = ++
 pre = ++
 post = ++
 recv = ++
count = 0

HACMPevent:
 name = tnode_up
 desc = tScript run when a node is attempting to join the cluster.
 setno = 0
 msgno = 0
 catalog = ++
 cmd = t/usr/sbin/cluster/events/node_up
 notify = ++
 pre = ++
 post = ++
 recv = ++
count = 0

HACMPevent:

name = node_down

desc = Script run when a node is attempting to leave the cluster.

setno = 0
msgno = 0
catalog =

cmd = /usr/sbin/cluster/events/node_down

notify =

pre =

post =
recv =
count = 0

HACMPevent:

name = node_up_complete

desc = Script run after the node_up script has successfully completed.

setno = 0
msgno = 0
catalog =

cmd = /usr/sbin/cluster/events/node_up_complete

notify =

pre =

post =
recv =
count = 0

HACMPevent:

name = node_down_complete

desc = Script run after the node_down script has successfully completed.

setno = 0
msgno = 0
catalog =

cmd = /usr/sbin/cluster/events/node_down_complete

notify =

pre =

post =
recv =
count = 0

HACMPevent:

name = join_standby

desc = Script run after a standby adapter has become active.

setno = 0
msgno = 0
catalog =

cmd = /usr/sbin/cluster/events/join_standby

notify =

pre =

post =
recv =
count = 0
name = "fail_standby"
desc = "Script run after a standby adapter has failed."
setno = 0
msgno = 0
catalog = ""
cmd = "/usr/sbin/cluster/events/fail_standby"
notify = ""
pre = ""
post = ""
recv = ""
count = 0

HACMPevent:
 name = "acquire_service_addr"
desc = "Script run to configure a service adapter with a service address."
setno = 0
msgno = 0
catalog = ""
cmd = "/usr/sbin/cluster/events/acquire_service_addr"
notify = ""
pre = ""
post = ""
recv = ""
count = 0

HACMPevent:
 name = "acquire_takeover_addr"
desc = "Script run to configure a standby adapter with a service address."
setno = 0
msgno = 0
catalog = ""
cmd = "/usr/sbin/cluster/events/acquire_takeover_addr"
notify = ""
pre = ""
post = ""
recv = ""
count = 0

HACMPevent:
 name = "get_disk_vg_fs"
desc = "Script run to acquire disks, varyon volume groups, and mount filesystems."
setno = 0
msgno = 0
catalog = ""
cmd = "/usr/sbin/cluster/events/get_disk_vg_fs"
notify = ""
pre = ""
post = ""
recv = ""
count = 0

HACMPevent:
 name = "node_down_local"
desc = "Script run when it is the local node which is leaving the cluster."
setno = 0
msgno = 0
catalog = ""
cmd = "/usr/sbin/cluster/events/node_down_local"
notify = ""
pre = ""
post = ""
recv = ""
count = 0

198 An HACMP Cookbook

setno = 0
msgno = 0
catalog = ↑↑
cmd = ↑/usr/sbin/cluster/events/node_down_local↑
notify = ↑↑
pre = ↑↑
p =↑
recv = ↑↑
count = 0

HACMPevent:
 name = ↑node_down_local_complete↑
desc = ↑Script run after the node_down_local script has successfully completed.↑
setno = 0
msgno = 0
catalog = ↑↑
cmd = ↑/usr/sbin/cluster/events/node_down_local_complete↑
notify = ↑↑
pre = ↑↑
p =↑
recv = ↑↑
count = 0

HACMPevent:
 name = ↑node_down_remote↑
desc = ↑Script run when it is a remote node which is leaving the cluster.↑
setno = 0
msgno = 0
catalog = ↑↑
cmd = ↑/usr/HACMP_ANSS/script/CMD_node_down_remote↑
notify = ↑/usr/HACMP_ANSS/script/event_NOTIFICATION↑
pre = ↑/usr/HACMP_ANSS/script/PRE_node_down_remote↑
p =↑
recv = ↑/usr/HACMP_ANSS/script/POS_node_down_remote↑
count = 0

HACMPevent:
 name = ↑node_down_remote_complete↑
desc = ↑Script run after the node_down_remote script has successfully completed.↑
setno = 0
msgno = 0
catalog = ↑↑
cmd = ↑/usr/sbin/cluster/events/node_down_remote_complete↑
notify = ↑↑
pre = ↑↑
p =↑
recv = ↑↑
count = 0

HACMPevent:
 name = ↑node_up_local↑
desc = ↑Script run when it is the local node which is joining the cluster.↑
setno = 0
msgno = 0
catalog = ↑↑
cmd = /usr/sbin/cluster/events/node_up_local
notify =
pre =
post =
recv =
count = 0

HACMPevent:
name = node_up_local_complete
desc = Script run after the node_up_local script has successfully completed.
setno = 0
msgno = 0
catalog =
cmd = /usr/sbin/cluster/events/node_up_local_complete
notify =
pre =
post =
recv =
count = 0

HACMPevent:
name = node_up_remote
desc = Script run when it is a remote node which is joining the cluster.
setno = 0
msgno = 0
catalog =
cmd = /usr/HACMP_ANSS/script/CMD_node_up_remote
notify = /usr/HACMP_ANSS/script/event_NOTIFICATION
pre = /usr/HACMP_ANSS/script/PRE_node_up_remote
post =
recv =
count = 0

HACMPevent:
name = node_up_remote_complete
desc = Script run after the node_up_remote script has successfully completed.
setno = 0
msgno = 0
catalog =
cmd = /usr/sbin/cluster/events/node_up_remote_complete
notify =
pre =
post =
recv =
count = 0

HACMPevent:
name = release_service_addr
desc = Script run to configure the boot address on the service adapter.
setno = 0
msgno = 0
catalog =
cmd = /usr/sbin/cluster/events/release_service_addr
notify =
pre =
post =
recv =
count = 0
post = ++
recv = ++
count = 0

HACMPevent:
 name = +release_takeover_addr+
 desc = +Script run to configure a standby address on a standby adapter.+
 setno = 0
 msgno = 0
 catalog = ++
 cmd = +/usr/sbin/cluster/events/release_takeover_addr+
 notify = ++
 pre = ++
 post = ++
 recv = ++
 count = 0

HACMPevent:
 name = +release_vg_fs+
 desc = +Script run to unmount filesystems and varyoff volume groups.+
 setno = 0
 msgno = 0
 catalog = ++
 cmd = +/usr/sbin/cluster/events/release_vg_fs+
 notify = ++
 pre = ++
 post = ++
 recv = ++
 count = 0

HACMPevent:
 name = +start_server+
 desc = +Script run to start application servers.+
 setno = 0
 msgno = 0
 catalog = ++
 cmd = +/usr/sbin/cluster/events/start_server+
 notify = ++
 pre = ++
 post = ++
 recv = ++
 count = 0

HACMPevent:
 name = +stop_server+
 desc = +Script run to stop application servers.+
 setno = 0
 msgno = 0
 catalog = ++
 cmd = +/usr/sbin/cluster/events/stop_server+
 notify = ++
 pre = ++
 post = ++
 recv = ++
 count = 0
HACMPevent:
 name = unstable_too_long
 desc = Script run when the Cluster Manager has been unstable for too long.
 setno = 0
 msgno = 0
 catalog =
 cmd = /usr/sbin/cluster/events/unstable_too_long
 notify =
 pre =
 post =
 recv =
 count = 0

HACMPevent:
 name = config_too_long
 desc = Script run when the Cluster Manager has been in configuration for too long.
 setno = 0
 msgno = 0
 catalog =
 cmd = /usr/sbin/cluster/events/config_too_long
 notify =
 pre =
 post =
 recv =
 count = 0

HACMPevent:
 name = event_error
 desc = Script run when a previously executed script has failed to complete successfully.
 setno = 0
 msgno = 0
 catalog =
 cmd = /usr/sbin/cluster/events/event_error
 notify =
 pre =
 post =
 recv =
 count = 0

E.6.5 odmget of /etc/objrepos/HACMPfence

HACMPfence:
 pvid = 000009854777a091
 mask = 0x00000fff
 nodemap = goofy:13, mickey:12

HACMPfence:
 pvid = 000009854777a5c6
 mask = 0x00000fff
 nodemap = goofy:13, mickey:12
E.6.6 odmget of /etc/objrepos/HACMPgroup

HACMPgroup:
 group = tmickeyrg
 type = tcascading
type
 nodes = tmickey goofy

HACMPgroup:
 group = tgoofyr
 type = tcascading
type
 nodes = tgoofy mickey

HACMPgroup:
 group = tconcr
 type = tconcurrent
type
 nodes = tmickey goofy

E.6.7 odmget of /etc/objrepos/HACMPnetwork

HACMPnetwork:
 name = tetnet1
 attr = tprivate

HACMPnetwork:
 name = trsnet1
 attr = tserial

HACMPnetwork:
 name = trntet1
 attr = tpublic

E.6.8 odmget of /etc/objrepos/HACMPnim

HACMPnim:
 name = tether
 desc = tEthernet Protocol
tdesc
 addrtype = 0
 path = t/usr/sbin/cluster/nims/nim_ether
tpath
 para = t
 grace = 30
 hbrate = 500000
tcycle = 12

HACMPnim:
 name = ttoker
 desc = tToken Ring Protocol
tdesc
 addrtype = 0
 path = t/usr/sbin/cluster/nims/nim_tok
tpath
 para = t
 grace = 90
 hbrate = 500000
tcycle = 24

HACMPnim:
name = \texttt{trs232}
\(\text{desc} = \texttt{RS232 Serial Protocol}\)
\(\text{addrtype} = 1\)
\(\text{path} = \texttt{/usr/sbin/cluster/nims/nim_sl}\)
\(\text{para} = \dagger\dagger\)
\(\text{grace} = 30\)
\(\text{hbrate} = 1500000\)
\(\text{cycle} = 6\)

\textbf{HACMPnim:}
\begin{verbatim}
name = \texttt{tsocct}
\(\text{desc} = \texttt{Serial Optical Protocol}\)
\(\text{addrtype} = 0\)
\(\text{path} = \texttt{/usr/sbin/cluster/nims/nim_socc}\)
\(\text{para} = \dagger\dagger\)
\(\text{grace} = 30\)
\(\text{hbrate} = 500000\)
\(\text{cycle} = 12\)
\end{verbatim}

\textbf{HACMPnim:}
\begin{verbatim}
name = \texttt{fddi}
\(\text{desc} = \texttt{Fiber Data Optical Protocol}\)
\(\text{addrtype} = 0\)
\(\text{path} = \texttt{/usr/sbin/cluster/nims/nim_fddi}\)
\(\text{para} = \dagger\dagger\)
\(\text{grace} = 30\)
\(\text{hbrate} = 500000\)
\(\text{cycle} = 12\)
\end{verbatim}

\textbf{HACMPnim:}
\begin{verbatim}
name = \texttt{IP}
\(\text{desc} = \texttt{Generic IP}\)
\(\text{addrtype} = 0\)
\(\text{path} = \texttt{/usr/sbin/cluster/nims/nim_genip}\)
\(\text{para} = \dagger\dagger\)
\(\text{grace} = 30\)
\(\text{hbrate} = 500000\)
\(\text{cycle} = 12\)
\end{verbatim}

\textbf{HACMPnim:}
\begin{verbatim}
name = \texttt{slip}
\(\text{desc} = \texttt{Serial IP protocol}\)
\(\text{addrtype} = 0\)
\(\text{path} = \texttt{/usr/sbin/cluster/nims/nim_slip}\)
\(\text{para} = \dagger\dagger\)
\(\text{grace} = 30\)
\(\text{hbrate} = 1000000\)
\(\text{cycle} = 12\)
\end{verbatim}

\textbf{HACMPnim:}
\begin{verbatim}
name = \texttt{tmscsit}
\(\text{desc} = \texttt{TMSCSI Serial protocol}\)
\(\text{addrtype} = 1\)
\(\text{path} = \texttt{/usr/sbin/cluster/nims/nim_tms}\)
\(\text{para} = \dagger\dagger\)
\end{verbatim}
grace = 30
hbrate = 1500000
cycle = 6

HACMPnim:
 name = fcst
 desc = Fiber Channel Switch
 addrtype = 0
 path = /usr/sbin/cluster/nims/nim_fc
 para =
 grace = 30
 hbrate = 500000
 cycle = 6

HACMPnim:
 name = hps
 desc = High Performance Switch
 addrtype = 0
 path = /usr/sbin/cluster/nims/nim_hps
 para =
 grace = 60
 hbrate = 500000
 cycle = 12

E.6.9 odmget of /etc/objrepos/HACMPnim.120195

E.6.10 odmget of /etc/objrepos/HACMPnim_pre_U438726

E.6.11 odmget of /etc/objrepos/HACMPnode

HACMPnode:
 name = mickey
 object = VERBOSE_LOGGING
 value = high

HACMPnode:
 name = mickey
 object = NAME_SERVER
 value = true

HACMPnode:
 name = goofy
 object = VERBOSE_LOGGING
 value = high

HACMPnode:
 name = goofy
 object = NAME_SERVER
 value = true
E.6.12 odmget of /etc/objrepos/HACMPresource

HACMPresource:
 group = tmickeyrg
 name = tSERVICE_LABEL
 value = tmickey

HACMPresource:
 group = tmickeyrg
 name = tFILESYSTEM
 value = t/test1

HACMPresource:
 group = tmickeyrg
 name = tEXPORT_FILESYSTEM
 value = t/test1

HACMPresource:
 group = tmickeyrg
 name = tINACTIVE_TAKEOVER
 value = tfalse

HACMPresource:
 group = tmickeyrg
 name = tDISK_FENCING
 value = tfalse

HACMPresource:
 group = tmickeyrg
 name = tSSA_DISK_FENCING
 value = tfalse

HACMPresource:
 group = tgoofyrg
 name = tSERVICE_LABEL
 value = tgoofy

HACMPresource:
 group = tgoofyrg
 name = tFILESYSTEM
 value = t/test2

HACMPresource:
 group = tgoofyrg
 name = tEXPORT_FILESYSTEM
 value = t/test2

HACMPresource:
 group = tgoofyrg
 name = tINACTIVE_TAKEOVER
 value = tfalse

HACMPresource:
 group = tgoofyrg
name = DISK_FENCING
value = false

HACMPresource:
 group = goofyrg
 name = SSA_DISK_FENCING
value = false

HACMPresource:
 group = concrg
 name = CONCURRENT_VOLUME_GROUP
value = conc1vg

HACMPresource:
 group = concrg
 name = INACTIVE_TAKEOVER
value = false

HACMPresource:
 group = concrg
 name = DISK_FENCING
value = false

HACMPresource:
 group = concrg
 name = SSA_DISK_FENCING
value = false

E.6.13 odmget of /etc/objrepos/HACMPserver

E.6.14 odmget of /etc/objrepos/HACMPsp2

E.6.15 odmget of /etc/objrepos/errnotify

ernotify:
 en_pid = 0
 en_name = CDROM_ERR2
 en_persistenceflag = 1
 en_label = CHECKSTOP
 en_class = 0
 en_type = 0
 en_alertflag = 0
 en_resource = 0
 en_rtype = 0
 en_rclass = 0
 en_method = /usr/lib/ras/notifymeth -l $1 -t $9

errnotify:
 en_pid = 0
 en_name = CDROM_ERR2
 en_persistenceflag = 1
 en_label = CHECKSTOP
 en_class = 0
 en_type = 0
 en_alertflag = 0
 en_resource = 0
 en_rtype = 0
 en_rclass = 0
en_class = tt
en_type = tt
en_alertflg = tt
en_resource = tt
en_rtype = tt
en_rclass = tt
en_method = t/usr/lib/ras/notifymeth -l $1 -r $6 -t $9

errnotify:
 en_pid = 0
 en_name = tt
 en_persistenceflg = 1
 en_label = tCDROM_ERR4
 en_crcid = 0
 en_class = tt
 en_type = tt
 en_alertflg = tt
 en_resource = tt
 en_rtype = tt
 en_rclass = tt
 en_method = t/usr/lib/ras/notifymeth -l $1 -r $6 -t $9

errnotify:
 en_pid = 0
 en_name = tt
 en_persistenceflg = 1
 en_label = tCDROM_ERR6
 en_crcid = 0
 en_class = tt
 en_type = tt
 en_alertflg = tt
 en_resource = tt
 en_rtype = tt
 en_rclass = tt
 en_method = t/usr/lib/ras/notifymeth -l $1 -r $6 -t $9

errnotify:
 en_pid = 0
 en_name = tt
 en_persistenceflg = 1
 en_label = tTAPE_ERR3
 en_crcid = 0
 en_class = tt
 en_type = tt
 en_alertflg = tt
 en_resource = tt
 en_rtype = tt
 en_rclass = tt
 en_method = t/usr/lib/ras/notifymeth -l $1 -r $6 -t $9

errnotify:
 en_pid = 0
 en_name = tt
 en_persistenceflg = 1
 en_label = tMEMORY

en_crcid = 0
en_class = ✱
en_type = ✱
en_alertflg = ✱
en_resource = ✱
en_rtype = ✱
en_rclass = ✱
en_method = ✱/usr/lib/ras/notifymeth -l $1 -t $9

errnotify:
 en_pid = 0
 en_name = ✱
en_persistenceflg = 1
 en_label = ✱MEM1✱
en_crcid = 0
 en_class = ✱
en_type = ✱
en_alertflg = ✱
en_resource = ✱
en_rtype = ✱
en_rclass = ✱
en_method = ✱/usr/lib/ras/notifymeth -l $1 -r $6 -t $9

errnotify:
 en_pid = 0
 en_name = ✱
en_persistenceflg = 1
 en_label = ✱MEM2✱
en_crcid = 0
 en_class = ✱
en_type = ✱
en_alertflg = ✱
en_resource = ✱
en_rtype = ✱
en_rclass = ✱
en_method = ✱/usr/lib/ras/notifymeth -l $1 -r $6 -t $9

errnotify:
 en_pid = 0
 en_name = ✱
en_persistenceflg = 1
 en_label = ✱MEM3✱
en_crcid = 0
 en_class = ✱
en_type = ✱
en_alertflg = ✱
en_resource = ✱
en_rtype = ✱
en_rclass = ✱
en_method = ✱/usr/lib/ras/notifymeth -l $1 -r $6 -t $9

errnotify:
 en_pid = 0
 en_name = ✱TAPE_ERR6✱
en_persistenceflg = 1
en_label = TAPE_ERR6
en_crcid = 0
en_class =

en_type =

en_alertflg =

en_resource =

en_rtype =

en_rclass =

en_method = /usr/lib/ras/notifymeth -l $1 -r $6 -t $9

errmotify:
 en_pid = 0
 en_name = sda_err1
 en_persistenceflg = 1
 en_label = SDA_ERR1
 en_crcid = 0
 en_class =

 en_type =

 en_alertflg =

 en_resource =

 en_rtype =

 en_rclass =

 en_method = /usr/HACMP_ANSS/script/error_SDA $1 $2 $3 $4 $5 $6 $7 $8 $9

errmotify:
 en_pid = 0
 en_name = sda_err3
 en_persistenceflg = 1
 en_label = SDA_ERR3
 en_crcid = 0
 en_class =

 en_type =

 en_alertflg =

 en_resource =

 en_rtype =

 en_rclass =

 en_method = /usr/HACMP_ANSS/script/error_SDA $1 $2 $3 $4 $5 $6 $7 $8 $9
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADSM/6000</td>
<td>Adstar Distributed Storage Manager/6000</td>
</tr>
<tr>
<td>AIX</td>
<td>Advanced Interactive Executive</td>
</tr>
<tr>
<td>APAR</td>
<td>Authorized Program Analysis Report</td>
</tr>
<tr>
<td>ARP</td>
<td>Address Resolution Protocol</td>
</tr>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>AS/400</td>
<td>Application System/400</td>
</tr>
<tr>
<td>CDF</td>
<td>Cumulative Distribution Function</td>
</tr>
<tr>
<td>CD-ROM</td>
<td>Compact Disk - Read Only Memory</td>
</tr>
<tr>
<td>CLM</td>
<td>Cluster Lock Manager</td>
</tr>
<tr>
<td>CLVM</td>
<td>Concurrent Logical Volume Manager</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CRM</td>
<td>Concurrent Resource Manager</td>
</tr>
<tr>
<td>DE</td>
<td>Differential Ended</td>
</tr>
<tr>
<td>DLC</td>
<td>Data Link Control</td>
</tr>
<tr>
<td>DMS</td>
<td>Deadman Switch</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name Service</td>
</tr>
<tr>
<td>DSMIT</td>
<td>Distributed System Management Interface Tool</td>
</tr>
<tr>
<td>FDDI</td>
<td>Fiber Distributed Data Interface</td>
</tr>
<tr>
<td>F/W</td>
<td>Fast and Wide (SCSI)</td>
</tr>
<tr>
<td>GB</td>
<td>Gigabyte</td>
</tr>
<tr>
<td>GDM</td>
<td>Global Object Data Manager</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>HACMP</td>
<td>High Availability Cluster Multi-Processing</td>
</tr>
<tr>
<td>HANFS</td>
<td>High Availability Network File System</td>
</tr>
<tr>
<td>HCON</td>
<td>Host Connection Program</td>
</tr>
<tr>
<td>IBM</td>
<td>International Business Machines Corporation</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>IP</td>
<td>Interface Protocol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPL</td>
<td>Initial Program Load (System Boot)</td>
</tr>
<tr>
<td>ITSO</td>
<td>International Technical Support Organization</td>
</tr>
<tr>
<td>JFS</td>
<td>Journaled Filesystem</td>
</tr>
<tr>
<td>KA</td>
<td>Keepalive Packet</td>
</tr>
<tr>
<td>KB</td>
<td>Kilobyte</td>
</tr>
<tr>
<td>kb</td>
<td>kilobit</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LU</td>
<td>Logical Unit (SNA definition)</td>
</tr>
<tr>
<td>LUN</td>
<td>Logical Unit (RAID definition)</td>
</tr>
<tr>
<td>LVM</td>
<td>Logical Volume Manager</td>
</tr>
<tr>
<td>MAC</td>
<td>Medium Access Control</td>
</tr>
<tr>
<td>MB</td>
<td>Megabyte</td>
</tr>
<tr>
<td>MIB</td>
<td>Management Information Base</td>
</tr>
<tr>
<td>MTBF</td>
<td>Mean Time Between Failure</td>
</tr>
<tr>
<td>NETBIOS</td>
<td>Network Basic Input/Output System</td>
</tr>
<tr>
<td>NFS</td>
<td>Network File System</td>
</tr>
<tr>
<td>NIM</td>
<td>Network Interface Module</td>
</tr>
<tr>
<td>NIS</td>
<td>Network Information Service</td>
</tr>
<tr>
<td>NVRAM</td>
<td>Non-Volatile Random Access Memory</td>
</tr>
<tr>
<td>ODM</td>
<td>Object Data Manager</td>
</tr>
<tr>
<td>PAD</td>
<td>Packet Assembler/Disassembler</td>
</tr>
<tr>
<td>POST</td>
<td>Power On Self Test</td>
</tr>
<tr>
<td>PTF</td>
<td>Program Temporary Fix</td>
</tr>
<tr>
<td>RAID</td>
<td>Redundant Array of Independent (or Inexpensive) Disks</td>
</tr>
<tr>
<td>RISC</td>
<td>Reduced Instruction Set Computer</td>
</tr>
<tr>
<td>SCSI</td>
<td>Small Computer Systems Interface</td>
</tr>
<tr>
<td>SLIP</td>
<td>Serial Line Interface Protocol</td>
</tr>
</tbody>
</table>

© Copyright IBM Corp. 1995
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMIT</td>
<td>System Management Interface Tool</td>
</tr>
<tr>
<td>SMP</td>
<td>Symmetric Multi-Processor</td>
</tr>
<tr>
<td>SMUX</td>
<td>SNMP (see below) Multiplexor</td>
</tr>
<tr>
<td>SNA</td>
<td>Systems Network Architecture</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>SOCC</td>
<td>Serial Optical Channel Converter</td>
</tr>
<tr>
<td>SPOF</td>
<td>Single Point of Failure</td>
</tr>
<tr>
<td>SPX/IPX</td>
<td>Sequenced Package Exchange/Internetwork Packet Exchange</td>
</tr>
<tr>
<td>SRC</td>
<td>System Resource Controller</td>
</tr>
<tr>
<td>SSA</td>
<td>Serial Storage Architecture</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Interface Protocol</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>UPS</td>
<td>Uninterruptible Power Supply</td>
</tr>
<tr>
<td>VGDA</td>
<td>Volume Group Descriptor Area</td>
</tr>
<tr>
<td>VGSA</td>
<td>Volume Group Status Area</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide Area Network</td>
</tr>
</tbody>
</table>
Index

Special Characters
./rhosts file 16
/etc/hosts file 15
/etc/inittab file 29
/etc/rc.net file 16
/tmp/hacmp.out file 56
/var/adm/cluster.log file 56
/var/HACMP_ANSS/log/hacmp.errlog file 61
/var/HACMP_ANSS/log/hacmp.eventlog file 75

A
abbreviations 211
acronyms 211
adapter configuration 13
adapter identifier 36
anomalies report 6
application server definition 43
ARP cache 10, 29, 37
 hardware address swapping 36

B
backup subdirectory 1
boot adapter 36

C
cabling
 7133 SSA Subsystem 124
 7134-010 High Density SCSI Disk Subsystem 115
 7135-110 or 7135-210 RAIDiant Array 117
 7137 Model 412, 413, 414, 512, 513, and 514 Disk
 Array Subsystems 119
 7204 Model 315, 317, and 325 External Disk
 Drives 112
 7204-215 External Disk Drive 111
 9333 Serial-Link Subsystems 122
 9334-011 and 9334-501 SCSI Expansion Units 113
cascading resource groups 44
chinet command 14
chvg command 25
chosts file 28
cinfo startup 56
cinfo.rc file 29
cilvm command 28
cismuxpd daemon 56
clstart command 55
clstop command 57
cluster definition 31
cluster documentation report 137
cluster documentation tool 77
cluster environment definition 31
cluster verification 53
cluster.log file 56
clverify utility 53
concurrent resource groups 44
concurrent volume group 24
cross mount 48

d

dessin subdirectory 1
disk adapter planning considerations 10
disk cabling 107
doc_dossier command 77
doc_dossier output report 137
doc_dossier tool 1
documentation report, cluster 137
documentation tool 77
documentation tools 1

E
error listing, AIX 99
error log 59
error notification testing 64
error notification tool 1, 59
error notification, deleting 66
error simulation 64
error_del script 66
error_MAIL script 62
error_NOTIFICATION script 61
error_PRINT script 63
error_test script 64
errpt 59
event customization example 71
event customization testing 76
event customization tool 1, 67
event logging 75
event_NOTIFICATION script 75
event_select script 67, 71
events, primary 67
events, secondary 68
test cluster description 7

F
forced shutdown 58
fsck Command 24

g
global ODM 33
graceful shutdown 57
graceful with takeover shutdown 57

© Copyright IBM Corp. 1995
I
importvg command 24
installation of HACMP 27
installation of tools 13
inventory tool 1, 3
inventory tool report 4
IP address takeover 10, 47

J
jfslog 11, 21

L
lock manager startup 56
logform command 22
logging, events 75
lscfg command 37
lvlstmajor command 12, 21

M
MAC address 10, 36
major number 21
major numbers 12
mirroring scheduling policy 23
mktcpip command 14
mkvg command 20

N
nameserver 14
network adapter definition 34
network planning considerations 9
NFS cross mount 48
NFS exports 47
node definition 33
node environment definition 43
application server definition 43
resource group definition 44
node environment synchronization 52, 75
node isolation 34
non-TCP/IP network configuration 17

P
permissions 16
planning worksheets 9, 12, 131
pre-installation activities 13
primary events 67
private network 7, 36
public network 7, 36

Q
qualified hardware for HACMP 79
quorum checking 21, 25

R
rebooting nodes 11
resource group definition 44
RS232 cable preparation 97
RS232 link configuration 17
RS232 link definition 38

S
SAVE script 2
script subdirectory 1
SCSI adapter ID changing 108
SCSI bus termination 10
SCSI disk cabling 107
SCSI IDs 11
SCSI target mode configuration 18
secondary events 68
decimal network 36
service adapter 36
service address 7
shared disk cabling 7133 SSA Subsystem 124
7134-010 High Density SCSI Disk Subsystem 115
7135-110 or 7135-210 RAIDiant Array 117
7137 Model 412, 413, 414, 512, 513, and 514 Disk
Array Subsystems 119
7204 Model 315, 317, and 325 External Disk
Drives 112
7204-215 External Disk Drive 111
9333 Serial-Link Subsystems 122
9334-011 and 9334-501 SCSI Expansion Units 113
shared volume group definition 19
shared volume group planning considerations 11
shutdown options, HACMP 57
standby adapter 36
starting cluster services 55
stopping cluster services 57
stty command 17
subnet 36
subnet mask 9, 38
synchronizing cluster nodes 41
synchronizing node environment 52, 75

T
tail -f command 57
Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this questionnaire and return it using one of the following methods:

- Mail it to the address on the back (postage paid in U.S. only)
- Give it to an IBM marketing representative for mailing
- Fax it to: Your International Access Code + 1 914 432 8246
- Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below. (1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

<table>
<thead>
<tr>
<th>Overall Satisfaction</th>
<th>Organization of the book</th>
<th>Grammar/punctuation/spelling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy of the information</td>
<td>Ease of reading and understanding</td>
</tr>
<tr>
<td></td>
<td>Relevance of the information</td>
<td>Ease of finding information</td>
</tr>
<tr>
<td></td>
<td>Completeness of the information</td>
<td>Level of technical detail</td>
</tr>
<tr>
<td></td>
<td>Value of illustrations</td>
<td>Print quality</td>
</tr>
</tbody>
</table>

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

 Do you provide billable services for 20% or more of your time? Yes___ No___
 Are you in a Services Organization? Yes___ No___

b) Are you working in the USA? Yes___ No___

c) Was the Bulletin published in time for your needs? Yes___ No___

d) Did this Bulletin meet your needs? Yes___ No___

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name

Address

Company or Organization

Phone No.