
Cell Broadband Engine

Software Development Toolkit

Installation and User's Guide
Version 1.1

SC33-8323-00

���

Cell Broadband Engine

Software Development Toolkit

Installation and User's Guide
Version 1.1

SC33-8323-00

���

Note: Before using this information and the product it supports, read the general information in Appendix B, “Notices,” on page 41.

First Edition (September 2006)

This edition applies to the BladeCenter QS20 and to all subsequent preleases and modifications until otherwise

indicated in new editions.

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Introduction . 1

About this book . 1

New in this release . 1

Supported platforms . 2

How to use the SDK . 2

Prerequisites . 2

Licenses . 3

Getting support . 3

Related documentation . 3

Cell BE processor . 3

Cell BE programming using the SDK 4

IBM Full-System Simulator . 4

PowerPC base . 4

Chapter 2. Installing Linux Fedora Core 5 5

Downloading the Fedora Core 5 installation packages 5

Copying the installation files 5

Installing Fedora Core 5 on an x86 or PPC64 server 6

Installing Fedora Core 5 on a BladeCenter QS20 6

Fedora Core 5 installation overview 6

The network installation environment 7

Setting up a netboot environment 8

Setting up a network installation environment 8

Installing Fedora Core 5 . 8

Starting the installation . 8

Copying a network-enabled kernel version 11

Additional installation steps for installed InfiniBand cards 12

Rebooting the BladeCenter QS20 12

Checking and adapting /etc/yaboot.conf 12

Checking and setting up a swap area (if required) 13

Configuring yum (if required) 13

Managing a BladeCenter QS20 13

Checking the firmware version 13

Booting a BladeCenter QS20 13

Shutting down and restarting the BladeCenter QS20 14

Finishing the Fedora Core 5 installation 14

gcc . 14

make . 14

perl . 14

freeglut . 15

libX11 . 15

TK . 15

netpbm . 15

Chapter 3. Installing the SDK 17

SDK components . 17

Simple install of the SDK . 17

Upgrading SDK 1.1 to SDK 1.1.1 18

Other ways to install the SDK 19

Uninstalling the SDK . 19

Other script tasks and options 20

RPMs in SDK . 21

© Copyright IBM Corp. 2006 iii

Chapter 4. Contents of the SDK 23

GNU tool chain . 23

IBM XL C/C++ compiler . 23

IBM Full-System Simulator . 24

System root image for the simulator 25

Linux kernel . 26

Linux support libraries . 26

SPE runtime management library 26

numactl . 27

Libraries and samples . 27

Libraries and samples subdirectories 27

SPU timing tool . 29

Chapter 5. Using the SDK . 31

Running the Full-System Simulator 31

The callthru utility . 32

Read and write access to the simulator sysroot image 33

Enabling Symmetric Multiprocessing Support 33

SDK programming samples . 33

Changing the default compiler 34

Building and running a specific program 34

System root directory . 34

Support for huge TLB file systems 35

SDK development best practices 35

Developing applications with a user (non-root) account 35

Using a shared development environment 36

Restrictions and limitations . 36

Appendix A. Quaternion Julia Set Ray-tracing sample 37

Algorithm overview . 37

Converting Cg to cell code . 37

Load balancing framework . 38

Software cache . 39

SOA verses AOS data structures 40

Appendix B. Notices . 41

Edition notice . 42

Trademarks . 44

Glossary . 45

Index . 49

iv Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

Chapter 1. Introduction

The Software Development Toolkit (SDK) for the Cell Broadband Engine (Cell BE)

is a complete package of tools to allow developers firsthand programming

experience with the Cell BE Processor. The SDK is composed of development tool

chains, software libraries and sample source files, a system simulator, and a Linux

kernel that fully support the capabilities of the Cell BE.

The complete SDK is available as a .iso image, or as individual components.

Alternatively you can download individual SDK components. The packages are

available from the IBMEserver alphaWorks Web site http://
www.alphaworks.ibm.com/tech/cellsw and the Barcelona Supercomputing Center

(BSC) Web site http://www.bsc.es/projects/deepcomputing/linuxoncell/. All of the

files in the SDK are distributed as RPM packages except for the SDK install script

(cellsdk).

The alphaWorks Web site hosts the IBM software including the Cell BE Full System

Simulator, XL C/C++ compiler, libraries and samples, Synergistic Processor Unit

(SPU) timing tool, and the cellsdk script.

The BSC Web site hosts the open source-derived packages such as the

GCC-based tool chain for the Cell BE, the Linux kernel and support libraries, and

system support for the Cell BE Full System Simulator.

About this book

Each section covers a different topic:

 v Chapter 2, “Installing Linux Fedora Core 5,” on page 5 explains how to install the

Fedora Core 5 Linux operating system on the supported hardware platforms

v Chapter 3, “Installing the SDK,” on page 17 explains how to install the

BladeCenter QS20 SDK

v Chapter 4, “Contents of the SDK,” on page 23 describes each of the components

of the SDK in more detail and what is needed for each of the supported

platforms and configurations

v Chapter 5, “Using the SDK,” on page 31 describes some additional features and

best practices for developing application using the SDK

In addition, there is a programming tutorial provided on the SDK CD which gives an

introduction to writing applications for the Cell BE platform.

New in this release

SDK 1.1 contains a number of significant enhancements over the Cell BE SDK 1.0

and 1.0.1 and completely replaces these SDKs versions. These enhancements

include:

v Linux kernel (2.6.16) and library support for BladeCenter QS20s that contain two

Cell BE Processors giving a total of 16 Synergistic Processor Elements (SPEs)

v Support for PowerPC 64-bit hardware such as Apple Power Mac G5 and IBM

PowerPC as development platforms

v Added C++ support to the XL C compiler for PowerPC Processing Unit (PPU)

applications

v Added support for Gnu Debugger (GDB) server running in both PowerPC

Processing Elements (PPEs) and SPEs

© Copyright IBM Corp. 2006 1

http://www.alphaworks.ibm.com/tech/cellsw
http://www.alphaworks.ibm.com/tech/cellsw
http://www.bsc.es/projects/deepcomputing/linuxoncell/

v Upgraded GNU Compiler Collection (GCC) compiler for PPU and SPU programs

to version 4.0.2

v Upgraded binutils to version 2.16.1

v Additions and updates to the libraries and samples including a new sample that

ray traces the quaternion Julia Set

v Added support for Non-Uniform Memory Access (NUMA) to improve the

performance of memory accesses between SPEs

v Improved installation by using a new process and RPMs

SDK 1.1 has been refreshed to coincide with the general availability of the

BladeCenter QS20. This refresh contains BladeCenter QS20 documentation on the

ISO image and an updated IBM Full-System Simulator that runs faster on 64-bit

platforms and can simulate a SMP configuration with dual Cell BE processors as

are used in the BladeCenter QS20.

Supported platforms

Cell BE applications can be developed on the following platforms:

v x86

v x86-64

v 64-bit PowerPC (PPC64)

v BladeCenter QS20

How to use the SDK

The SDK includes both PPU and SPU compilers for all the supported platforms. A

Cell BE application can be run either natively on a BladeCenter QS20 or in the IBM

Full-System Simulator (simulator), which is supported on all of the host platforms.

The simulator on the BladeCenter QS20 is useful for debugging or verifying a

problem. For example, it is possible to build an application on an x86 system, test

under the simulator on that system, and then later run the same binary natively on

a BladeCenter QS20.

Prerequisites

The Cell BE SDK runs in Fedora Core 5, which must be installed before you install

the SDK, see Chapter 2, “Installing Linux Fedora Core 5,” on page 5 for details.

Note: This SDK may work on other Linux distributions, but it has only been tested

and certified to run on Fedora Core 5. A key requirement for any Linux

installation is glibc Version 2.4 or newer.
Table 1 shows the recommended minimum configuration on each platform.

 Table 1. Configurations

System Recommended minimum configuration

x86 2GHz Pentium 4 processor

PowerPC 64-bit PPC with a clock speed of 1.42 GHz.

32-bit PPC platforms are not supported.

BladeCenter QS20 Must be at revision 31 or greater and have a

minimum firmware level of FW6.14.7 or later

(see “Checking the firmware version” on

page 13)

2 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

All systems must have:

v Hard disk space: 5 GB (minimum) to install the source package and the

accompanying development tools

v 1 GB RAM (minimum) on the host system

Note: The simulator requires that the minimum amount of RAM must be twice the

amount of simulated memory. For example, to simulate a system with 512

MB of RAM, the host system must have at least 1 GB of RAM.

Licenses

The source code and binaries that are part of the total SDK package are distributed

with different licenses. The packages on the BSC Web site are generally open

source and use the General Public license (GPL) (http://www.gnu.org/copyleft/
gpl.html) or Lesser General Public (LGP) (http://www.gnu.org/licenses/
licenses.html#LGPL) license. If you are not already familiar with either, visit the Free

Software Foundation (FSF) for more information.

The Common Public License (CPL), is used for projects like Eclipse and is the

license for the SDK libraries and samples package. It is the successor to the IBM

Public License (IPL) and you can find a FAQ (http://www-128.ibm.com/
developerworks/library/os-cplfaq.html) about the CPL license on the IBM

developerWorks. The Cell Full System Simulator and SPU Timing tool are licensed

under the IBM International License Agreement for Early Release of Programs

(ILAR). The XL C/C++ compiler for Cell Processor is licensed under a modified

ILAR.

Getting support

The BladeCenter QS20 SDK is supported through the Cell BE architecture forum on

the developerWorks Web site at http://www.ibm.com/developerworks/power/cell/.

There is also support for the IBM Cell Full-System Simulator and XL C/C++

Compiler through their individual alphaWorks forums. If in doubt, start with the Cell

architecture forum.

As mentioned earlier this version of the Cell BE SDK 1.1 supersedes all previous

versions of the SDK.

Note: The Cell BE SDK is provided on an “as-is” basis. Wherever possible,

workarounds to problems will be provided in the respective forums.

Related documentation

There is a set of tutorial and reference documentation for the Cell BE stored in the

IBM online technical library http://www.ibm.com/chips/techlib/techlib.nsf/products/
Cell_Broadband_Engine. The following documentation is available:

Cell BE processor

v Cell Broadband Engine Architecture

v Cell Broadband Engine Programming Handbook

v Cell Broadband Engine Registers

v SPU C/C++ Language Extensions

v Synergistic Processor Unit (SPU) Instruction Set Architecture

Chapter 1. Introduction 3

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/licenses/licenses.html#LGPL
http://www.gnu.org/licenses/licenses.html#LGPL
http://www-128.ibm.com/developerworks/library/os-cplfaq.html
http://www-128.ibm.com/developerworks/library/os-cplfaq.html
http://www.ibm.com/developerworks/power/cell/
http://www-306.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine
http://www-306.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine

v SPU Application Binary Interface Specification

v Assembly Language Specification

v Cell Broadband Engine Linux Reference Implementation Application Binary

Interface Specification

Cell BE programming using the SDK

After you have installed the SDK, you can find the following PDFs in the

/opt/IBM/cell-sdk-1.1/docs directory:

v Cell Broadband Engine Programming Tutorial documentation

v SPE Runtime Management library documentation

v SDK Sample Library documentation

v IDL compiler documentation

IBM Full-System Simulator

The following PDFs can be found in the /opt/IBM/systemsim-cell/doc directory

after installing the SDK:

v IBM Full-System Simulator Users Guide

v IBM Full-System Simulator Command Reference

v Performance Analysis with the IBM Full-System Simulator

v IBM Full-System Simulator BogusNet HowTo

PowerPC base

The following documents can be found on the developerWorks Web site at

http://www.ibm.com/developerworks/eserver/library:

v PowerPC Architecture Book, Version 2.02

– Book I: PowerPC User Instruction Set Architecture

– Book II: PowerPC Virtual Environment Architecture

– Book III: PowerPC Operating Environment Architecture

v PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology

Programming Environments Manual Version 2.06c

4 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

http://www-128.ibm.com/developerworks/eserver/library

Chapter 2. Installing Linux Fedora Core 5

Before you install the Cell BE SDK, you must install Fedora Core 5.

This section describes how to:

v Download Fedora Core 5

v Install Fedora Core 5 on an x86, a PowerPC or a BladeCenter QS20

v Install prerequisite packages

Downloading the Fedora Core 5 installation packages

You download Red Hat Fedora Core 5 installation packages from the download site,

http://fedora.redhat.com. Downloads are available as .iso images which can be

used to create CDs or DVDs, or as an unpacked installation tree. The Fedora Core

site also has the installation instructions available for download.

Note: You should allow approximately three hours for installation and configuration.

Use your browser or FTP to download the .iso images. If you wish to download to

an existing Linux server or workstation, you can use wget to download the

unpacked installation tree. To do this, issue the following command:

wget -r http://download.fedora.redhat.com/pub/fedora/linux/core/5/ppc/os/

Note: Depending on your environment the simplest way is to download the *.iso

images and then unpack them on your HTTP/FTP server rather than

downloading the unpacked installation tree. You do not need the rescue

image.

Copying the installation files

If you are already running Linux, you can save the .iso images to a directory on

your server or another server on the network. You can then mount the image and

copy the files to a directory which then becomes the installation source directory.

Alternatively, you can make CDs or DVDs and mount them in your CD or DVD

drive.

1. Create the installation directory from iso images.

The installation files can be copied from the .iso images to any directory

accessible over the network. The following example shows how to mount the

.iso images and copy the files to a directory named /srv/repos/p/FC5.

a. Create directory for each CD:

mkdir /mnt/cd1

mkdir /mnt/cd2

b. Mount the CDs:

cd /srv/repos/p

mount -o loop FC5/FC5-ppc-disc1.iso /mnt/cd1

mount -o loop FC5/FC5-ppc-disc2.iso /mnt/cd2

c. Copy each CD:

cp -rv /mnt/cd1/* /srv/repos/p/FC5

cp -rv /mnt/cd2/* /srv/repos/p/FC5

d. Cleanup:

umount /mnt/cd1

umount /mnt/cd2

© Copyright IBM Corp. 2006 5

2. Download all .iso images and burn them on CDs or DVDs (this can be done on

a different system)

a. Make a directory where the CD or DVD images will be copied

b. Copy the images to that directory from the CD or DVD.

Installing Fedora Core 5 on an x86 or PPC64 server

If you are using an x86 or PPC64 host server, you can install Fedora Core 5 from

the CDs or DVD and go to “Finishing the Fedora Core 5 installation” on page 14.

Installing Fedora Core 5 on a BladeCenter QS20

This section describes how to install Fedora Core 5 for PPC64 on a BladeCenter

QS20.

Note the following:

v Fedora Core 5 asks you at the end of the installation process to reboot the

BladeCenter QS20. At this point DO NOT REBOOT the blade, DO NOT CLICK

the reboot button otherwise you will have a non-working Linux® on your

BladeCenter QS20 and you will have to restart the installation.

v The kernel shipped with Fedora Core 5 does not support the full Cell BE-based

blade functionality. The easiest way to get the updated kernel is to install the Cell

BE SDK as described in Chapter 3, “Installing the SDK,” on page 17.

v You must download an updated ppc64bcmfix.img from http://www.bsc.es/projects/
deepcomputing/linuxoncell/ to your install server. The original ppc64.img does not

support the network hardware of this hardware revision and is therefore not

usable for a network installation.

Fedora Core 5 installation overview

The outline for the installation is as follows:

1. Set up a netboot environment.

2. Set up a net install environment.

3. Perform a manual installation.

The Fedora Core 5 installation process starts by booting a kernel with the install

initrd from the network device (this is the only supported installation method on a

BladeCenter QS20). The init process /sbin/init starts /sbin/loader prompts you

for the installation language and installation method. For a network installation, the

loader also configures the network and queries the parameter for the install server,

before it downloads the secondary stage image Fedora/base/stage2.img from the

install server. After mounting the disk image, loader passes control to the Python

script anaconda.

The Anaconda installer is the main installation program for Fedora Core 5 and

performs the remaining steps of the installation, either manually through

configuration screens or automatically using the kickstart configuration file. This

includes downloading all RPMs, which are selected for installation from the install

server.

6 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

http://www.bsc.es/projects/deepcomputing/linuxoncell/
http://www.bsc.es/projects/deepcomputing/linuxoncell/

The network installation environment

Notes:

1. The IP addresses used in the examples below are for illustrative purposes only.

Use IP addresses allocated to your network.

2. During installation, you are prompted for the directory containing the Fedora

Core 5 installation files. The illustrations below show /fedoratree as the source

containing the installation files. Change this to the path containing your

installation files.

For the remainder of this document, it is assumed that you have the following

environment:

v A BladeCenter QS20 (10.32.5.11). This is the installation target.

v A DHCP/BOOTP server (10.32.0.1).

v An install server (10.32.0.1) running a TFTP server, with the installation source.

This server must also be able to run Fedora Core 5 if the installation material

requires modification.

v An HTTP or FTP server (10.64.0.31) with the installation source.

The HTTP/FTP server can reside on the same server as the DHCP/BOOTP/TFTP

server.

Figure 1 shows a typical network installation environment.

blade 10.32.5.11

dchp/bootp

10.32.0.1

http

10.64.0.31

Figure 1. The network installation environment

Chapter 2. Installing Linux Fedora Core 5 7

Setting up a netboot environment

You must download an updated ppc64bcmfix.img from http://www.bsc.es/projects/
deepcomputing/linuxoncell/ to your install server. The original ppc64.img does not

support the network hardware of this hardware revision and is therefore not usable

for a network installation.

Copy the new ppc64bmcfix.img file to the /tftpboot directory of the TFTP/BOOTP

server and make sure that it matches the respective entry in /etc/dhcpd.conf.

Note: Rebuilding the ppc64bmcfix.img is possible but outside the scope of this

document.

Setting up a network installation environment

Fedora Core 5 is installed over the network using TFTP. Generally, a TFTP server is

used as the install server.

Installing Fedora Core 5

This section describes how to install Fedora Core 5.

Starting the installation

To install Fedora Core 5, do the following:

 1. Either insert a new hard disk into the BladeCenter QS20, or overwrite an

existing hard disk with an existing Linux.

 2. Connect the BladeCenter QS20 to a serial console (115200,N,1,8, no

handshake) and boot it up to the firmware prompt.

 3. To start the installation, enter the following:

> netboot vnc console=hvc0

 4. Select the language you would like to use for the installation.

Welcome to Fedora Core

+---------+ Choose a Language +---------+

| |

| What language would you like to use |

| during the installation process? |

| |

| Catalan |

| Chinese(Simplified) |

| Chinese(Traditional) |

| Croatian |

| Czech |

| Danish |

| Dutch |

| > English |

| |

| +----+ |

| | OK | |

| +----+ |

| |

| |

+---------------------------------------+

8 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

http://www.bsc.es/projects/deepcomputing/linuxoncell/
http://www.bsc.es/projects/deepcomputing/linuxoncell/

5. Select the media type that contains the installation packages.

+------+ Installation Method +------+

| |

| What type of media contains the |

| packages to be installed? |

| |

| Local CDROM |

| Hard drive |

| NFS image |

| > FTP |

| HTTP |

| |

| +----+ +------+ |

| | OK | | Back | |

| +----+ +------+ |

| |

| |

+-----------------------------------+

 6. Select the network device.

+---------- Networking Device -----------+

| |

| You have multiple network devices on |

| this system. Which would you like to |

| install through? |

| |

| > eth0 - Unknown device 102f:01b3 |

| eth1 - Unknown device 102f:01b3 |

| |

| +----+ +------+ |

| | OK | | Back | |

| +----+ +------+ |

| |

| |

+--+

 7. Enter the IP configuration for your server. Select Use dynamic IP

configuration (BOOTP/DHCP). Fedora Core 5 determines the host name and

domain from the dhcp/bootp server.

+--------------------+ Configure TCP/IP +---------------------+

| |

| Please enter the IP configuration for this machine. Each |

| item should be entered as an IP address in dotted-decimal |

| notation (for example, 1.2.3.4). |

| |

| [*] Use dynamic IP configuration (BOOTP/DHCP) |

| |

| IP address: _______ |

| Netmask: _______ |

| Default gateway (IP): _______ |

| Primary nameserver: _______ |

| |

| +----+ +------+ |

| | OK | | Back | |

| +----+ +------+ |

| |

| |

+---+

Chapter 2. Installing Linux Fedora Core 5 9

8. Enter the name the FTP site name and the directory that contains the Fedora

Core:

+-----------------+ HTTP Setup +------------------+

| |

| Please enter the following information: |

| |

| o the name or IP number of your FTP server |

| o the directory on that server containing |

| Fedora Core for your architecture |

| |

| FTP site name: 10.32.0.1_______________ |

| |

| Fedora core directory: /fedoratree____________|

| |

| [*] Use non-anonymous ftp |

| |

| +----+ +------+ |

| | OK | | Back | |

| +----+ +------+ |

| |

| |

+---+

 9. Enter an FTP account name and password.

+---------------- Further FTP Setup --------------+

| |

| If you are using non anonymous ftp, enter the |

| account name and password you wish to use below. |

| |

| Account name: userid__________________ |

| Password: password_________________ |

| |

| +----+ +------+ |

| | OK | | Back | |

| +----+ +------+ |

| |

| |

+---+

10. The following is displayed:

+---+

| Running anaconda, the Fedora Core system installer - please wait... |

| Framebuffer ioctl failed. Exiting. |

| Probing for video card: Unable to probe |

| Probing for monitor type: Unknown monitor |

| Probing for mouse type: No – mouse |

| No video hardware found, assuming headless |

| Starting VNC... |

| |

| WARNING!!! VNC server running with NO PASSWORD! |

| You can use the vncpassword=<password> boot option |

| if you would like to secure the server. |

| |

| The VNC server is now running. |

| Please connect to 10.32.5.11:1 to begin the install... |

| |

| Press <enter> for a shell |

| Starting graphical installation... |

+---+

11. Start a VNC session on another computer in the network. At the command

prompt of that computer enter vncviewer <target IP>, where <target IP> is

the address of the BladeCenter QS20 being installed, for example,

10.32.5.11:1. Continue the install process from the computer running the

vncviewer session, not the BladeCenter QS20 where the install is actually

taking place.

10 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

Note: Do NOT close the serial console on the blade server. This session is

still needed at the end of the installation process.

12. Continue the installation, completing each section as required. Take note of the

following:

When you partition the hard disk, select Create Custom Layout. Figure 2 is

an example of what a custom layout should look like.

v Fedora Core 5 is not able to boot larger partitions crossing certain sector

boundaries, this means that you need a small boot partition of approximately

100MB

v The partition containing the yaboot.conf must be readable at boot time (and

therefore cannot be an LVM partition but must be ext3).

v If Fedora Core 5 asks you at the end of the installation to reboot the blade,

DO NOT REBOOT the BladeCenter QS20 and DO NOT CLICK the reboot

button otherwise you will have a non-functional Linux on your BladeCenter

QS20. Depending on your firmware, or hardware revisions, or both, you

need to perform additional steps.

Copying a network-enabled kernel version

The unpatched kernel from Fedora Core 5 does not support the network hardware

and therefore leaves a bootable blade with no network support.

Figure 2. Example of a custom layout

Chapter 2. Installing Linux Fedora Core 5 11

To correct this, you MUST either:

v Copy the network modules from the install image to the server hard disk

or

v Copy and install the new kernel to the blade BEFORE you reboot the

BladeCenter QS20.
cp *.ko /mnt/sysimage/lib/modules/2.6.15-1.2054_FC5/kernel/drivers/net/

or use the serial console to download the new kernel RPM to the hard disk:

1. Download the BladeCenter QS20 RPMs from the BSC Web site if you have not

already done so (for example, via your HTTP/FTP server) .

2. Copy the BladeCenter QS20 RPMs to the blade (for example: scp

server:/...kernel-2.6.15.4-bsc3.0.ppc64.rpm /...)

3. Perform the following command to install the RPMs: For example:

ftp 10.32.0.1

cd <directory>

get <kernel_name>

mv <kernel_name> /mnt/sysimage/root

where <directory> is the name of the directory containing the RPMs.

Additional installation steps for installed InfiniBand cards

If you have InfiniBand cards installed, you must issue the following command:

echo blacklist ib_mthca >> /mnt/sysimage/etc/modprobe.conf

After you have installed the Fedora Core 5 kernel or the SDK 1.1 you may need to

upgrade the kernel. A kernel update is available that fixes an issue with InfiniBand

and the second Gigabit Ethernet interface and is intended only if you wish to use

both. See http://www.bsc.es/projects/deepcomputing/linuxoncell/stable/
linuxkernel.html for more information.

Rebooting the BladeCenter QS20

Reboot the system from the installation screen.

Checking and adapting /etc/yaboot.conf

If the installation has completed successfully, yaboot.conf shows an entry for the

Fedora Core 5 kernel and an entry for the patched kernel. Check that the patched

entry is correct and edit the label variable to something meaningful.

The following is a sample yaboot.conf file:

yaboot.conf generated by anaconda

boot=/dev/hde1

init-message=Welcome to Fedora Core!\nHit <TAB> for boot options

partition=2

timeout=20

install=/usr/lib/yaboot/yaboot

delay=5

enablecdboot

enableofboot

enablenetboot

nonvram

fstype=raw

image=/vmlinuz-2.6.16-1.17.driver.be0613

 label=cell << change default name to user friendly name

 read-only

 initrd=/initrd-2.6.16-1.17.driver.be0613.img

 append="console=hvc0 rhgb quiet root=LABEL=/"

12 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

http://www.bsc.es/projects/deepcomputing/linuxoncell/stable/linuxkernel.html
http://www.bsc.es/projects/deepcomputing/linuxoncell/stable/linuxkernel.html

image=/vmlinuz-2.6.15-1.1826.2.10_FC5

 label=linux

 read-only

 initrd=/initrd-2.6.15-1.1826.2.10_FC5.img

 append="console=hvc0 rhgb quiet root=LABEL=/"

 ppc64bcmfix

Checking and setting up a swap area (if required)

If required, you can set up a swap area as follows:

free << check if swap space is available

swapon -a << enable devices and files for swapping

mkswap /dev/VolGroup00/LogVol01 << set up a Linux swap area

Configuring yum (if required)

If required, configure the /etc/yum.conf file so that it points to the HTTP server.

You must change the baseurl entry:

[main]

 cachedir=/var/cache/yum

 debuglevel=2

 logfile=/var/log/yum.log

 pkgpolicy=newest

 distroverpkg=redhat-release

 tolerant=1

 exactarch=1

 retries=20

 obsoletes=1

 gpgcheck=0

PUT YOUR REPOS HERE OR IN separate files named file.repo

in /etc/yum.repos.d

/etc/yum.repos.d/fedora-core.repo

[base]

name=Fedora Core $releasever - $basearch - Base

#baseurl=http://download.fedora.redhat.com/pub/fedora/linux/core/$releasever/$basearch/os/

baseurl=http://10.64.0.31/ <<<< modify baseurl here

mirrorlist=http://fedora.redhat.com/download/mirrors/fedora-core-$releasever

enabled=1

gpgcheck=0

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-fedora

Managing a BladeCenter QS20

This section describes how to check the firmware version, boot, shut down, and

restart a BladeCenter QS20.

Checking the firmware version

To check the firmware version, do the following:

1. Access the BladeCenter Management Module.

2. Select Monitors → Firmware VPD. The Blade Server Firmware VPD window

contains the build identifier, release, and revision.

Booting a BladeCenter QS20

To boot a BladeCenter QS20, do the following:

1. Open the BladeCenter Management Module.

2. Set the appropriate boot device (network, hard disk) for the BladeCenter QS20

by selecting Blade Tasks → Configuration → Boot Sequence.

3. Power on the BladeCenter QS20 by selecting Blade Tasks → Power/Restart →

checkmark the blade → Power On Blade.

Chapter 2. Installing Linux Fedora Core 5 13

Note:

v The boot process of the BladeCenter QS20 can only be monitored with a

serial console (115200,N,1,8, no handshake) connected to the

BladeCenter QS20's serial port on the front bezel

v You may need a null-modem cable

v To force the Blade into the OpenFirmware Prompt press s on the serial

console during the early stages of the boot process

Shutting down and restarting the BladeCenter QS20

Always shutdown and restart a blade that has been booted to the Linux prompt with

one of the following commands from a Linux shell on the BladeCenter QS20:

shutdown -g0 -i0 -y

halt

reboot

shutdown -r now

Do not use the Blade Center Management Module to power down or restart the

Blade (using Blade Tasks → Power/Restart → checkmark the blade → Power Off

Blade / Restart Blade) as you can corrupt the file system: the Blade Center will

power off the BladeCenter QS20 without first notifying the operating system.

Finishing the Fedora Core 5 installation

At this point you should have Fedora Core 5 installed and rebooted on your

machine, which is either an x86, a PowerPC or a BladeCenter QS20. It is

recommended that you do a yum update regularly to keep up to date with the latest

Fedora Core 5 changes. In addition, there are up to seven other dependencies that

need to be installed before you install the Cell BE SDK.

Note: A default Fedora Core 5 install does not have all the required packages.

gcc

The regular Fedora Core 5 gcc GNU compiler is used to build two samples that are

run on the host machine rather than on a Cell BE Processor. To verify if it is

installed, run rpm –q gcc. The result should be similar to:

gcc-4.1.1-1.fc5

To get the gcc package and its dependencies, you must do a yum install gcc.

make

Make is used to build the libraries and sample programs. To verify if it is installed,

run rpm -q make. The result should be similar to:

make-3.80-10.2

To get the make package, you must do a yum install make.

perl

Perl is required by several parts of the SDK. To verify if it is installed, run rpm –q

perl. The result should be similar to:

perl-5.8.8-5

To get the perl package, you must run yum install perl.

14 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

freeglut

Two of the sample programs depend on OpenGL and require glut.h to compile

successfully. To verify if it is installed, run rpm –q freeglut-devel. The result should

be similar to:

freeglut-devel-2.4.0-4

To get the freeglut-devel package, you must run yum install freeglut-devel.

libX11

To execute the applications that depend on OpenGL, various X11 libraries are

needed. To get the required packages, run:

yum install libX11

yum install libXau

yum install libXdmcp

TK

The simulator requires libtk8.4.so. To verify if it is installed, run rpm –q tk. The

result should be similar to:

tk-8.4.13-1.1

If the tk package is not installed you see the following message when you run the

full system simulator:

systemsim-cell/run/cell/../../bin/systemsim-cell: error while loading

shared libraries: libtk8.4.so: cannot open shared object file: No such file or directory.

To get the tk (and tcl) package, run yum install tk.

netpbm

The Julia set sample needs the netpbm and netpbm-devel packages on the Cell

BE-based blade server. To verify if installed do a rpm –qa | grep netpbm. The result

should be similar to:

netpbm-devel-10.33-1.fc5

netpbm-10.33-1.fc5

If these packages are not installed, you must do a yum install netpbm.

Chapter 2. Installing Linux Fedora Core 5 15

16 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

Chapter 3. Installing the SDK

This section assumes that you have installed Fedora Core 5 on your host system

and are now ready to install the Cell BE SDK. The following Web sites are relevant:

v http://www.alphaworks.ibm.com/tech/cellsw

The IBM alphaWorks site contains emerging technologies. In particular it contains

the IBM Source Libraries and Samples, the Full-System Simulator and the Cell

BE XL C/C++ compiler.

v http://www.bsc.es/projects/deepcomputing/linuxoncell/cbexdev.html

The Linux on Cell BE-based systems web site at the Barcelona Supercomputing

Center (BSC) provides information about how to enable Linux on Cell BE

platforms. It hosts all of the open source patches and binaries needed to install

SDK 1.1.

v http://www.ibm.com/developerworks/power/cell/

The IBM developerWorks site contains technical articles and support forums for

Cell BE.

SDK components

The Cell BE SDK consists of a set of RPM files and a script to install the

appropriate RPMs for the target platform. The components are explained in more

detail in Chapter 4, “Contents of the SDK,” on page 23. The table below shows

combinations of platforms and components:

 Table 2. Supported combinations of platforms and components

Component x86/x86-64 PPC64 BladeCenter QS20

GNU Tool chain Mandatory Mandatory Mandatory

XL C/C++ Compiler Optional Not applicable Not applicable

Linux Kernel Built-in to system root

image

Built-in to system root

image

Mandatory

Linux support

libraries

Built-in to system root

image

Built-in to system root

image

Mandatory

Full-System Simulator Mandatory Mandatory Optional

System Root Image

for Simulator

Mandatory Mandatory Optional

Libraries and

Samples

Mandatory Mandatory Mandatory

Some components consist of one or more RPM files and the detailed list of RPMs

for each component and platform is described in “RPMs in SDK” on page 21.

Simple install of the SDK

The simplest way to install the SDK is to download the Cell BE SDK ISO image

from the IBM alphaWorks Web site http://www.alphaworks.ibm.com/tech/cellsw. The

ISO image contains all of the IBM licensed software and also all of Cell BE and

SDK technical documentation in Adobe PDF format. You can also create a physical

CD from this ISO image and read it on non-Linux systems.

© Copyright IBM Corp. 2006 17

http://www.alphaworks.ibm.com/tech/cellsw
http://www.bsc.es/projects/deepcomputing/linuxoncell/cbexdev.html
http://www.ibm.com/developerworks/power/cell/
http://www.alphaworks.ibm.com/tech/cellsw

The cellsdk shell script handles the SDK installation. The SDK’s tools are primarily

installed in /opt/IBM, although some of the toolchain commands are installed in the

regular path. for example, the spu-gcc command is installed in /usr/bin on a PPC

machine and in /opt/sce on an x86 machine. The simulator is installed in

/opt/IBM/systemsim-cell, and the SDK in /opt/IBM/cell-sdk-1.1/.

The script begins by asking you whether you have read the associated license

agreements. You must type yes to continue; y is not accepted as confirmation. The

script checks to see what features might be needed and what features are

available. If some of the other installation files (from the BSC Web site) are needed,

they are automatically downloaded to the directory /tmp/cellsdk-1.1.

Do the following to install the SDK, and to upgrade the SDK, see “Upgrading SDK

1.1 to SDK 1.1.1”:

1. As root download the SDK ISO disk image, CellSDK11.iso from the Cell BE

SDK alphaWorks Web site http://www.alphaworks.ibm.com/tech/cellsw.

2. Create a mount directory and make sure nothing else is mounted on this

directory:

mkdir –p /mnt/cellsdk

3. Mount the disk image on the mount directory:

mount –o loop CellSDK11.iso /mnt/cellsdk

4. Change directory to /mnt/cellsdk/software:

cd /mnt/cellsdk/software

5. Install the SDK by using the following command and answer any prompts:

./cellsdk install

6. Change directory to any directory which is not the mount directory or below it:

cd /

7. Unmount the disk image:

umount /mnt/cellsdk

If you have previously installed SDK 1.1, download the latest SDK from alphaWorks

and use the following command to upgrade your system to the SDK 1.1.1.

./cellsdk upgrade

During the install process you might be asked questions about which components

to install or reinstall. Refer to Table 2 on page 17 to understand what the mandatory

and optional components are. As part of the install procedure the SDK libraries and

samples are compiled and linked by default using the GNU tools. See “Other ways

to install the SDK” on page 19 for other cellsdk tasks and options that allow you to

compile the libraries and samples with the XL C compiler or install the SDK without

prompts.

You can run the cellsdk script multiple times to install or reinstall components. The

install process also builds all of the libraries and samples without stopping if there is

an error. Use the following command can be used to keep a log of what was done

during the install process in case there is a problem:

./cellsdk install 2>&1 | tee /tmp/cellsdk-install.log

Upgrading SDK 1.1 to SDK 1.1.1

If you have previously installed SDK 1.1, download the latest SDK from alphaWorks

and use the following command to upgrade your system to the SDK 1.1.1.

./cellsdk upgrade

18 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

http://www.alphaworks.ibm.com/tech/cellsw

Other ways to install the SDK

The install approach described in “Simple install of the SDK” on page 17 may not

work in your environment. This section describes several other methods to get the

components of the SDK and install it.

One problem is that the download from the BSC Web site may not work if you

access the internet through a proxy. One solution to this problem is to use the

http_proxy environment variable to tell wget about the proxy. For example, if you

use a proxy with the IP address 192.168.10.11 on port 8080, set the environment

variable as follows:

export http_proxy="http://username:password@192.168.10.11:8080"

If this does not work for you because of firewalls or other network issue, download

the RPM files manually. Table 3 on page 21 gives a complete list of all the RPMs

needed for a given hosting environment. You can also use the cellsdk script itself

to determine if all of the dependent RPMs have been acquired. Issue the following

command to see the list of missing files:

./cellsdk depend

Here is some example output from this command:

Do you plan to install the Cell Full System Simulator? (y/n):y

WARNING! The following required file(s) for SDK install were not found

--

 Missing file(s):

 ppu-gcc-c++-3.2-4.ppc.rpm

 ppu-gcc-3.2-4.ppc.rpm

 ppu-binutils-3.2-4.ppc.rpm

 spu-newlib-3.2-6.ppc.rpm

 spu-gcc-c++-3.2-6.ppc.rpm

 spu-gcc-3.2-6.ppc.rpm

 spu-binutils-3.2-6.ppc.rpm

 spu-gdb-3.2-6.ppc.rpm

 Paths searched:

 /home/user23

 /tmp/cellsdk-1.1

 These files may be downloaded from:

 http://www.bsc.es/projects/deepcomputing/linuxoncell/cellsimulator/sdk1.1/

Would you like to attempt automatically downloading these files

to /tmp/cellsdk-1.1? (y/n):n

ERROR: Missing SDK dependencies

Uninstalling the SDK

If you need to uninstall the SDK for whatever reason this can be done as root by

executing the script as follows:

./cellsdk uninstall

Note: To ensure that the system is left in a usable state, the script does not

uninstall the kernel on BladeCenter QS20s. You must change the yaboot

configuration file (/etc/yaboot.conf) to load a different kernel at the next

reboot and use the following command to uninstall the kernel:

Chapter 3. Installing the SDK 19

rpm –e kernel-2.6.16-bsc4.2.

Other script tasks and options

The SDK script cellsdk implements a number of tasks and options for those tasks.

If you run the script without any parameters, it displays the usage statement as

follows:

Usage: cellsdk <install|uninstall|depend|build|synch|upgrade|verify|version> [OPTION...]

Task ’install’ and ’depend’ options:

 -f, --force assume ’yes’ to all questions.

 -x, --xlc use XLC to compile the libraries and samples (x86 only)

 -g, --gcc use GCC to compile the libraries and samples (default)

 --nosim do not install the IBM Cell BE Full System Simulator

 --nokernel do not install the Cell BE kernel (CBE hardware only)

Task ’uninstall’ options:

 -f, --force assume ’yes’ to all questions.

Task ’build’ options:

 -x, --xlc use XLC to compile the libraries and samples (x86 only)

 -g, --gcc use GCC to compile the libraries and samples (default)

The script understands the following tasks:

 Task Description

install Install the SDK as explained in “Simple install of the SDK” on

page 17

uninstall Uninstall the SDK as explained “Uninstalling the SDK” on page 19

depend Determine if all of the required RPMs are available for an install

as explained “Other ways to install the SDK” on page 19

build Build or rebuild the libraries and samples.

Note: A make clean is also done before the build.

synch Synchronizes between the /opt/IBM/cell-sdk-1.1/sysroot

directory and the system root image for the Full System Simulator.

See “System root image for the simulator” on page 25 for more

information.

upgrade Only available for the SDK 1.1 Refresh to upgrade SDK 1.1 to the

SDK 1.1 Refresh.

verify Determines if the correct component versions have been installed.

version Prints the SDK version string:

IBM Cell Broadband Engine SDK 1.1 (build 20060705)

OR for the SDK 1.1 refresh:

IBM Cell Broadband Engine SDK 1.1.1 (build 20060918)

The script also supports the following five flags which are ignored if not specified for

the task:

 Flag Description

-f or --force Forces an install or uninstall with minimal prompting.

-g or --gcc Selects the GNU/GCC tool chain on an x86 machine for compiling

the libraries and samples.

20 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

Flag Description

--nokernel Do not install the kernel on the BladeCenter QS20. By default

installing the kernel puts it first in the yaboot configuration file and

it is used on the next reboot of the server. In most cases you

should use this kernel as it has full support for the BladeCenter

QS20.

--nosim Do not install the simulator. This option only applies to a

BladeCenter QS20 where a simulator is not required. Otherwise it

is recommended that the simulator is installed so that it can be

used for debugging or problem recreation.

-x or --xlc Selects the XL C/C++ compiler on an x86 machine for compiling

the libraries and samples. The GNU/GCC linker is used to build

the complete executable.

RPMs in SDK

The table below shows a complete list of RPMs that can be installed for each

supported platform. The rows in bold are RPMs that you can download from IBM

alphaWorks Web site http://www.alphaworks.ibm.com/tech/cellsw. You can download

the rows that are not in bold from the BSC Web site http://www.bsc.es/projects/
deepcomputing/linuxoncell/cbexdev.html.

 Table 3. RPMs that can be installed for each supported platform

Component area x86/x86_64 PPC64 BladeCenter QS20

GNU Tool Chain for PPU ppu-binutils-3.2-4.i686.rpm

ppu-gcc-3.2-4.i686.rpm

ppu-gcc-c++-3.2-4.i686.rpm

ppu-sysroot-3.2-4.noarch.rpm

ppu-sysroot64-3.2-4.noarch.rpm

ppu-binutils-3.2-4.ppc.rpm

ppu-gcc-3.2-4.ppc.rpm

ppu-gcc-c++-3.2-4.ppc.rpm

GNU Tool Chain for SPU spu-binutils-3.2-6.i686.rpm

spu-gcc-3.2-6.i686.rpm

spu-gcc-c++-3.2-65.i686.rpm

spu-newlib-3.2-6.i686.rpm

spu-gdb-3.2-6.i686.rpm

spu-binutils-3.2-6.ppc.rpm

spu-gcc-3.2-6.ppc.rpm

spu-gcc-c++-3.2-6.ppc.rpm

spu-newlib-3.2-6.ppc.rpm

spu-gdb-3.2-6.ppc.rpm

IBM XL C/C++ Compiler xlc-cell-lib-1.1-9.i386.rpm

xlc-cell-cmp-1.1-9.i386.rpm

xlcpp-cell-lib-1.1-9.i386.rpm

xlcpp-cell-cmp-1.1-9.i386.rpm

Not Supported for PPC64

Linux Kernel reintegrated within system root image for simulator kernel-2.6.16-bsc4.2.ppc64.rpm

kernel-cbesim-2.6.16-bsc4.2.noarch.rpm

Library SPE libspe-1.1.0-1.ppc.rpm

libspe-devel-1.1.0-1.ppc.rpm

elfspe-1.1.0-1.ppc.rpm

libspe-1.1.0-1.ppc64.rpm

libspe-devel-1.1.0-1.ppc64.rpm

NUMA Control Pre-integrated within system root image for simulator numactl-0.9.8-1.cbe.ppc.rpm

OProfile Pre-integrated within system root image for simulator oprofile-0.9.1-8.cbe.ppc.rpm

oprofile-devel-0.9.1-8.cbe.ppc.rpm

IBM Full System Simulator

(SDK 1.1)

systemsim-cell-1.1-6.i386.rpm systemsim-cell-1.1-6.ppc.rpm

IBM Full System Simulator

(SDK 1.1 Refresh)

systemsim-cell-1.1-10.i386.rpm

systemsim-cell-1.1-10.x86_64.rpm

systemsim-cell-1.1-10.ppc64.rpm

System root image for

simulator

sysroot_image-1.1-011.noarch.rpm

IBM Samples and Libraries cell-sdk-lib-samples-1.1-10.noarch.rpm

IBM SPU Timing cell-spu-timing-1.1-2.i686.rpm cell-spu-timing-1.1-2.ppc.rpm

Chapter 3. Installing the SDK 21

http://www.alphaworks.ibm.com/tech/cellsw
http://www.bsc.es/projects/deepcomputing/linuxoncell/cbexdev.html
http://www.bsc.es/projects/deepcomputing/linuxoncell/cbexdev.html

22 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

Chapter 4. Contents of the SDK

This section describes the contents of the SDK, where it is installed on the system,

and how the various components work together.

GNU tool chain

The GNU tool chain contains the GCC compiler for the PPU and SPU implemented

by Sony Computer Entertainment. For the PPU it is a cross-compiler on x86 and a

replacement for the native GCC compiler on PPC platforms. The GCC compiler for

the PPU is preferred and the make files are configured to use it when building the

libraries and samples.

The GCC compiler also contains a separate SPE cross-compiler that supports the

standards defined in the SPU C/C++ Language Extensions V2.1, SPU Application

Binary Interface Specification V1.4, and Synergistic Processor Unit (SPU)

Instruction Set Architecture V1.0 documents.

The associated assembler and linker additionally support the SPU Assembly

Language Specification V1.3. The assembler and linker are common to both the

GCC and XL C/C++ compilers. GDB support is provided for both PPU and SPU

debugging, and the debugger client can be in the same process or a remote

process.

On a non-PPC machine, the GNU Tool Chain is installed into the

/opt/sce/toolchain-3.2/ppu and /opt/sce/toolchain-3.2/spu directories,

containing the separate tool chains for the PPU and SPU, respectively. On a

PPC64 or BladeCenter QS20, both tool chains are installed into /usr.

The patches to the standard 4.0.2 GNU/GCC compiler are available on the BSC

Web site and are distributed under the GPL license.

IBM XL C/C++ compiler

The IBM XL C/C++ compiler for Cell BE Processor is a cross-compiler for x86

platforms only. This C/C++ cross-compiler generates code for the PowerPC

Processor Unit (C and C++) or Synergistic Processor Unit (C only) and is tuned for

the Cell BE Architecture The compiler requires the GCC Tool chain for Cell BE,

which provides tools for cross-assembling and cross-linking applications for both the

PPE and SPE.

The compiler supports the latest ISO C 1999 (International Standard ISO/IEC

9899:1999) standard, also known as C99. It also supports the C89 Standard and

K&R style. To help port the code that was originally written for GCC, a subset of

features related to GNU C is supported by XL C/C++. Other GNU compiler features

are recognized (accepted and ignored). This helps minimize the number of changes

that you must make to your GCC source code to ensure that it compiles

successfully with XL C.

The XL C/C++ compiler provides three invocation commands:

v ppuxlc

v ppuxlc++

v spuxlc

© Copyright IBM Corp. 2006 23

The commands ppuxlc and ppuxlc++ are used to generate code for the PPU, and

spuxlc is used to generate code for the SPU.

The compiler invocation commands for the PPU perform all necessary steps for

compiling C/C++ source files by ppuxlc or (C++ source using ppuxlc++) into .o files

and linking the object files and libraries by ppu-ld into an executable program.

Similarly, the compiler invocation command for the SPU performs all necessary

steps for compiling C source files by spuxlc into .s files, assembling .s files into .o

files by spu-as, and linking the object files and libraries into an executable program

by spu-ld. The ppu-embedspu tool that is part of the GNU tool chain is used to link a

PPU executable and a SPU executable into a single Cell BE executable.

The XL C/C++ compiler includes five base optimization levels:

v -O0: almost no optimization

v -O2: strong, low-level optimization that benefits most programs

v -O3: intense, low-level optimization analysis with basic loop optimization

v -O4: all of -O3 and detailed loop analysis and good whole-program analysis at

link time

v -O5: all of -O4 and detailed whole-program analysis at link time.

Auto-SIMDization is enabled at O3 -qhot or O4 and O5 by default for the PPE, and

at O3 -qhot or O4 and O5 for the SPE. SIMD is an abbreviation for Single

Instruction Multiple Data; this is one of the key performance boosters in the Cell BE

architecture.

The XL C/C++ compiler is installed into the /opt/ibmcmp/xlc/1.0 directory and is

distributed under the IBM ILAR license.

Note: The source code is not available.

IBM Full-System Simulator

The IBM Full System Simulator (simulator) is a software application that emulates

the behavior of a full system that contains a Cell BE Processor. You can boot a

Linux operating system on the simulator and run applications on the simulated

operating system. The simulator also supports the loading and running of

statically-linked executables and standalone tests without an underlying operating

system.

The simulator infrastructure is designed for modeling processor- and system-level

architecture at levels of abstraction, which vary from functional to performance

simulation models with a number of hybrid fidelity points in between:

v Functional-only simulation: Models the program-visible effects of instructions

without modeling the time it takes to execute these instructions. Functional-only

simulation assumes that each instruction can be run in a constant number of

cycles. Memory accesses are synchronous and are also performed in a constant

number of cycles. This simulation model is useful for software development and

debugging when a precise measure of execution time is not significant.

Functional simulation proceeds much more rapidly than performance simulation,

and so is also useful for fast-forwarding to a specific point of interest.

v Performance simulation: For system and application performance analysis, the

simulator provides performance simulation (also referred to as timing simulation.)

A performance simulation model represents internal policies and mechanisms for

system components, such as arbiters, queues, and pipelines. Operation latencies

24 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

are modeled dynamically to account for both processing time and resource

constraints. Performance simulation models have been correlated against

hardware or other references to acceptable levels of tolerance. The Full System

Simulator for Cell BE Processor provides a cycle-accurate SPU core model that

can be used for performance analysis of computationally-intense applications.

However, this model can not be used for measuring or tracking memory access

latencies. Refer to the IBM developerWorks SPU Pipeline Examination article

http://www.ibm.com/developerworks/power/library/pa-cellspu/ for additional

information.

v The simulator can also be configured to fast-forward the simulation, using a

functional model, to a specific point of interest in the application and to then

switch to a timing-accurate mode to conduct performance studies. Then various

types of operational details can be gathered to gain insight into the behavior of

real-world hardware and software systems. This option affords a high level of

configurability: users can dynamically trade detail and accuracy of timing for

faster simulation speed.

The version of the simulator shipped with the Cell BE SDK is compiled to run on

Fedora Core 5. See the /opt/IBM/systemsim/docs subdirectory for complete

documentation including a simulator user’s guide. The pre-release name of the

simulator is “Mambo” and this name may appear in some of the documentation.

The simulator for the Cell BE Processor is also available as an independent

technology at http://www.alphaworks.ibm.com/tech/cellsystemsim.

The simulator is installed into the /opt/IBM/systemsim-cell directory and is

distributed under the IBM ILAR license.

Note: The source code for the simulator is not available.

System root image for the simulator

The system root image for the system simulator is a file that contains a disk image

of Fedora Core 5 files, libraries and binaries that can be used within the system

simulator. This disk image file is preloaded with a full range of Fedora Core 5

utilities and also includes all of the Cell BE Linux support libraries described in

“Linux support libraries” on page 26. This RPM file is by far the largest of the RPM

files and when installed takes up 1.6 GB on the host server’s hard disk.

The system root image for the simulator must exist in the same directory as the

Linux kernel which is either the current directory when starting the simulator or the

default /opt/IBM/systemsim-cell/images/cell directory. The cellsdk script takes

care of automatically putting the system root image in the default directory.

This system root image can be mounted to see what it contains. Assuming a mount

point of /mnt/cell-sdk-1.1-sysroot, which is the mount point used by the cellsdk

script, the command to mount the system root image is:

mount -o loop /opt/IBM/systemsim-cell/images/cell/sysroot_disk /mnt/cell-sdk-1.1-sysroot/

The command to unmount the image is:

umount /mnt/cell-sdk-1.1-sysroot/

Do not attempt to mount the image on the host system while the simulator is

running. The system root image should always be unmounted before you start the

Chapter 4. Contents of the SDK 25

simulator. You should not mount the system root image to the same point as the

root on the host server as the system can become corrupted and fail to boot.

There are three ways to change files on the system root image disk:

v Mount it as described above. Then change directory (cd) to the mount point

directory or below and modify the file using host system tools such as vi or cp.

v Use the ./cellsdk synch command to synchronize the system root image with

the /opt/IBM/cell-sdk-1.1/sysroot directory for libraries and samples (see

“System root directory” on page 34) that have been cross-compiled and linked on

a host system and need to be copied to the target system.

v Use the callthru mechanism (see “The callthru utility” on page 32) to source or

sink the host system file during execution of the simulator. This is only method

that can be used while the simulator is running.

The source for the system root image is available on the BSC Web site and is

distributed under the GPL license.

Linux kernel

A number of patches have been made to the Linux 2.6.16 kernel to provide services

needed to support the hardware facilities of the Cell BE Processor.

For the BladeCenter QS20 the kernel is installed into the /boot directory,

yaboot.conf is modified and a reboot is required to activate this kernel. The

cellsdk install task (see “Simple install of the SDK” on page 17) provides an option

(--nokernel) not to install this kernel.

Note: The cellsdk uninstall command does not automatically uninstall the kernel

to avoid leaving the system in an unusable state.

The patches for the 2.6.16 kernel are available on the BSC Web site directory and

are distributed under the GPL license.

Linux support libraries

The following support libraries are provided by the Cell BE SDK to aid development

and performance test of Cell BE applications.

SPE runtime management library

The SPE runtime management library (LIBSPE) contains an SPE thread

programming model for Cell BE applications. The ELFSPE enables direct SPE

executable execution from a Linux shell without the need of a PPE application

creating an SPE thread.

For BladeCenter QS20s the LIBSPE headers, libraries and binaries are installed by

the SDK into the /usr directory and the standalone SPE executive, ELFSPE, is

registered during system root by commands added to /etc/rc.d/init.d.

For the simulator the LIBSPE and ELFSPE binaries and libraries are preinstalled in the

same directories in the system root image and no further action is required at install

time.

The source for the SPE runtime management library is available on the BSC Web

site and is distributed under the GPL license.

26 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

numactl

numactl is used to control NUMA policy for processes or shared memory. An

application can take advantage of this facility by binding a region of virtual storage

to a specific bank of memory as well as binding a process to a specific NUMA

node.

Note: The standard Fedora Core 5 version of numactl does not work correctly with

the Cell BE processor. Instead the latest version of the numactl-0.9.8 for

Fedora Core 6 is installed by the SDK on BladeCenter QS20s. The Fedora

Core 6 version of numactl is available on the BSC Web site and distributed

under the GPL license.

Libraries and samples

The libraries and samples RPM package provides a rich set of optimized standard

SPE C library routines that greatly reduce the development cost and enhance the

performance of SPU programs. A variety of application-oriented libraries, including

Fast Fourier Transform (FFT), image, audio resample, math, game math, intrinsics,

matrix operation, multi-precision math, noise generation, oscillator, surface,

synchronization, and vector are also included in order to demonstrate the versatility

of Cell BE architecture. Additional samples and workloads demonstrate how a

programmer can exploit the on-chip computational capacity. Included is a large FFT

workload that showcases performance that is more than an order of magnitude

higher than a traditional processor.

The libraries and sample sources are installed in the /opt/IBM/cell-sdk-1.1

directory under the IBM CPL license.

Libraries and samples subdirectories

The libraries and samples RPM has been partitioned into the following

subdirectories.

 Table 4. Subdirectories for the libraries and samples RPM

Subdirectory Description

bin Executables directory containing the SPU Timing tool and the ILAR license for this tool.

docs Contains documentation about libraries and tools such as IDL compiler.

host Host system executables, headers and libraries for the IDL tool.

license Contains the text for the CPL license.

src/include System header files. These files are exported to the $SDKINC_<target> (where target is either

ppu or spu) directory for general use throughout the SDK.

scr/lib Series of libraries and reusable header files. These are exported to $SDKLIB_<target> or

$SDKINC_<target> directories (respectively). Complete documentation for all library functions and

available in /opt/IBM/cell-sdk-1.1/docs/lib/libraries.pdf.

Chapter 4. Contents of the SDK 27

Table 4. Subdirectories for the libraries and samples RPM (continued)

Subdirectory Description

src/samples The samples directory contains examples of Cell BE programming techniques. Each program

shows a particular technique, or set of related techniques, in detail. You may review these

programs when you want to perform a specific task, such as double-buffered DMA transfers to

and from a program, performing local operations on an SPU, or provide access to main memory

objects to SPU programs.

Some subdirectories contain multiple programs. The sync subdirectory has examples of various

synchronization techniques, including mutex operations and atomic operations.

The Julia subdirectory, which is new for SDK 1.1, contains sample code that ray traces the

quaternion Julia Set into a bitmap image – see Appendix A, “Quaternion Julia Set Ray-tracing

sample,” on page 37 for more details.

The spulet subdirectory of samples includes customized startup code to let simple programs be

run on the SPU directly from a Linux command prompt. For instance, the hello example prints a

traditional greeting. The spulet model is intended to encourage testing and refinement of

programs that need to be ported to the SPUs; it also provides an easy way to build filters that

take advantage of the huge computational capacity of the SPUs, while reading and writing

standard input and output.

src/tests The tests directory defines some regression tests for the system. These programs exercise key

system components. For instance, the asm/verify coverage test contains a non-executable

sample program for the SPU which exists only to be assembled; it is not actually meant to

execute, but it validates the functionality of an SPU assembler. The events subdirectory provides

a sample program showing the handling of user-defined events; this program helps verify the

function of the simulator.

src/tools The tools directory contains tools that are useful for software development such as the Interface

Definition Language (IDL) compiler and the callthru program. The IDL compiler reads high-level

interface specifications and generates PPU and SPU stub functions to allow PPU code to ″call″ a

function that is implemented and runs on the SPU. This is most useful for cases where you have

a computationally intensive task that is well suited to simply being handed off to an SPU for

processing. The code this generates is informative about PPU/SPU communications, but is

primarily intended as a prototyping tool rather than a learning tool.

The IDL tool has its own samples which show how to offload some processing to the SPU. The

IDL’s PPU stub code supports dynamic allocation of multiple SPUs to handle simultaneous

offloaded functions, and multiple functions can be loaded on a single SPU, if they are small

enough. Some features are still under development such as double buffering support.

src/workloads The workloads directory provides a handful of examples that can be used to better understand

the performance characteristics of the Cell BE Processor. There are four sample programs,

which contain insights into how real-world code should run.

Note: Running these examples using the simulator takes much longer than on the native Cell

BE-based hardware. The performance characteristics in wall-clock time using the simulator are

extremely inaccurate, especially when running on multiple SPUs. Instead the emulator CPU cycle

counts need to be examined.

For example, the matrix_mul program lets you perform matrix multiplications on one or more

SPUs. Matrix multiplication is a good example of a function which the SPUs can accelerate

dramatically.

Unlike some of the other sample programs, these examples have been hand-tuned to get the

best performance. This makes them harder to read and understand, but it gives an idea for the

kind of performance code that can be written for the Cell BE processor.

sysroot Contains some of the headers and libraries used during cross-compiling and contains the

compiled results of the libraries and samples. This can be synched up with the system root

image by using the command: /opt/IBM/cell-sdk-1.1/cellsdk synch

28 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

SPU timing tool

The SPU static timing tool, spu_timing, annotates an SPU assembly file with

scheduling, timing, and instruction issue estimates assuming straight, linear

execution of the program. The tool generates a textual output of the execution

pipeline of the SPE instruction stream from this input assembly file. Execute

spu_timing –help to see its usage syntax.

The SPU timing tool is distributed as an RPM under the IBM ILAR license and is

located in the /opt/IBM/cell-sdk-1.1/bin directory.

Note: The source code is not available.

Chapter 4. Contents of the SDK 29

30 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

Chapter 5. Using the SDK

This section is a short introduction into using the SDK. Refer to the programming

tutorial, the Full-System Simulator user’s guide, and other documentation for more

details.

Running the Full-System Simulator

To verify that the Full-System Simulator (simulator) is operating correctly and then

run it, issue the following commands:

mkdir sandbox

cd sandbox

cp /opt/IBM/systemsim-cell/run/cell/linux/.systemsim.tcl .

export PATH=/opt/IBM/systemsim-cell/bin:$PATH

systemsim -g

The .systemsim.tcl file is a startup script for the simulator that configures the

system and prepares it to boot and run the Linux operating system.

The systemsim script found in the simulator’s bin directory launches the simulator

and the –g parameter starts the graphical user interface.

Figure 3. Running the simulator

© Copyright IBM Corp. 2006 31

Notes:

1. You must be on a graphical console, or at least have the DISPLAY environment

variable pointed to a friendly X server to run the simulator's graphical user

interface.

2. If an error message about libtk8.4.so is displayed, you must load the TK

package as described in “TK” on page 15

When the GUI is displayed, click Go to start the simulator.

Note: To make the simulator run in fast mode, you can click Fast Mode and then

Go. This forces the simulator to bypass its standard analysis and statistics

collection features. Fast mode is useful if you want to advance the simulator

through setup or initialization functions that are not the focus of analysis,

such as, the Linux boot processing. You should disable fast mode when you

reach the point at which you wish to do detailed analysis or debug the

application.

You can use the simulator's GUI to get a better understanding of the Cell BE

architecture. For example, the simulator shows two sets of PPE registers. This is

because the PPE processor core is dual-threaded and each thread has its own

registers and context. You can also look at the 128-bit register arrays provided on

the SPEs.

The syntax of the systemsim command is:

systemsim [-f file] [-g] [-n]

where:

 Parameter Description

-f <filename> specifies an initial run script (TCL file)

-g specifies GUI mode, otherwise the simulator starts in command-line

mode

-n specifies that the simulator should not open a separate console

window

You can find documentation about the simulator including a user’s guide in the

/opt/IBM/systemsim-cell/doc directory.

The callthru utility

The callthru utility allows you to copy files to or from the simulated system while it

is running. The utility is located in the simulator system root image in the /usr/bin

directory.

If you call the utility as:

v callthru sink <filename>, it writes its standard input into <filename> on the

host system

v callthru source <filename>, it writes the contents of <filename> on the host

system to standard output.

Redirecting appropriately lets you copy files to and from the host. For example,

when running on the host, you could copy a Cell BE application into /tmp:

cp matrix_mul /tmp

Then, in the console window of the simulated system, you could access it like this:

32 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

callthru source /tmp/matrix_mul > matrix_mul

chmod +x matrix_mul

./matrix_mul

Note: The use of the > redirect. If you omit > (callthru source) and < (callthru sink)

this can cause problems when you are debugging.

The /tmp directory is shown as an example only.

The source files for the callthru utility are in /opt/IBM/systemsim-cell/sample/
callthru and the Makefile to build the utility is in /opt/IBM/cell-sdk-1.1/src/
tools/callthru.

Read and write access to the simulator sysroot image

By default the simulator does not write changes back to the simulator system root

(sysroot) image, this means that the simulator always begins in the same initial

state of the sysroot image. As you become more experienced, you can overwrite

this default behavior so that any file changes made by the simulated system to the

sysroot image apply to subsequent simulator sessions.

To specify that you want to use changes you have made to the sysroot image,

change the newcow parameter on the mysim bogus disk init command in

.systemsim.tcl to rw (specifying read/write access) and remove the last two

parameters. Here is the changed line from .systemsim.tcl:

mysim bogus disk init 0 $sysrootfile rw

Enabling Symmetric Multiprocessing Support

By default the simulator provides an environment that simulates one Cell BE

processor. To simulate a blade environment where two Cell BE processors exist,

you must enable Symmetric Multiprocessing (SMP) support. To do this, edit the

startup script that your simulator is using, which by default is .systemsim.tcl. Add

these three lines to the start of the file:

proc config_hook { conf } {

 config_dual_be $conf

}

When the simulator is started, it has access to 16 SPEs across two Cell BE

processors.

SDK programming samples

Each of the samples has an associated README.txt file. There is also a top-level

readme in the /src directory, which introduces the structure of the sample code

source tree. There are a number of PDF documents in the /opt/IBM/cell-sdk-1.1/
docs directory including a programming tutorial.

Almost all of the samples run both within the simulator and on the BladeCenter

QS20. Some samples include SPU-only programs that can be run on the system

simulator in standalone mode.

Code, which is specific to a given Cell BE processor unit type, is in the

corresponding subdirectory within a given sample’s directory:

v ppu for code compiled to run on the PPE

v spu for code compiled to run on an SPE

Chapter 5. Using the SDK 33

v spu_sim for code compiled to run on an SPE under the system simulator in

standalone environment natively on a BladeCenter QS20

Changing the default compiler

In /opt/IBM/cell-sdk-1.1 there are some top level makefiles that control the build

environment for all of the samples. Most of the directories in the libraries and

samples contain a makefile for that directory and everything below it. All of the

samples have their own makefile but the common definitions are in the top level

makefiles.

The build environment makefile are documented in /opt/IBM/cell-sdk-1.1/
README_build_env.txt.

Environment variables in the /opt/IBM/cell-sdk-1.1/make.env makefile are used to

determine which compiler is used to build the samples.

The cellsdk script contains a task which automatically switches the compiler, does a

make clean and then a make which rebuilds all of the samples and libraries. The

syntax of this command is:

./cellsdk build [-x | -g]

where the –x flag selects the XL C/C++ compiler (x86 only) and the –g flag selects

the GCC compiler.

After you have selected a particular compiler, that same compiler is used for all

future builds. By default the GCC compiler is selected for compiling the samples.

For x86 hosts, you can overwrite this default at install time by using the –x option

with the cellsdk install command.

Building and running a specific program

You do not need to build all the sample code at once; you can build each program

separately. To start from scratch, issue a make clean using the makefile in

the /opt/IBM/cell-sdk-1.1/src directory or anywhere in the path to a specific

library or sample.

If you have performed a make clean at the top level, you need to rebuild the include

files and libraries first before you compile anything else. To do this run a make in the

src/include and src/lib directories.

For example, build the hello spulet. The spulet examples require a special version

of crt0, built from src/samples/spulet/crt0. After the include files and libraries are

built, change directory to src/samples/spulet/hello, and run make.

System root directory

When you build the libraries and samples output files are copied into a special

directory named /opt/IBM/cell-sdk-1.1/sysroot. This directory has a very similar

structure to a normal system root directory (that is, /) and contains the usual

subdirectories such as /bin, /usr and /etc.

On a BladeCenter QS20 the samples can be run directly from the subdirectories

under the /opt/IBM/cell-sdk-1.1/sysroot directory.

34 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

After you have logged in as root, you can synchronize this sysroot directory with

the simulator sysroot image file. To do this, use the cellsdk script with the synch

task. The command is:

./cellsdk synch

This command is very useful whenever a library or sample has been recompiled.

This script reduces user error because it provides a standard mechanism to mount

the system root image, rsync the contents of the two corresponding directories, and

unmount the system root image.

Support for huge TLB file systems

The SDK supports the huge translation lookaside buffer (TLB) file system, which

allows you to reserve large pages of pinned, contiguous memory. This feature is

particularly useful for some Cell BE applications that operate on large data sets

such as the FFT16M workload sample and Cell BE Terrain Rendering Engine.

To configure the Cell BE-based blade server for 20 pages (320 MB), run the

following commands:

mkdir -p /huge

echo 20 > /proc/sys/vm/nr_hugepages

mount -t hugetlbfs nodev /huge

If you have difficulties configuring adequate huge pages, it could be that the

memory is fragmented and you need to reboot. You can add the command

sequence shown above to a startup initialization script, such as

/etc/rc.d/rc.sysinit, so that the large TLB file system is configured during the

system boot.

To verify the large memory allocation, run the command cat /proc/meminfo. The

output is similar to:

MemTotal: 1010168 kB

MemFree: 155276 kB

. . .

HugePages_Total: 20

HugePages_Free: 20

Hugepagesize: 16384 kB

SDK development best practices

This section documents some best practices in terms of developing applications

using the Cell BE SDK. See also developerWorks articles about programming tips

and best practices for writing Cell BE applications at http://www.ibm.com/
developerworks/power/cell/.

Developing applications with a user (non-root) account

The libraries and sample programs are installed in /opt/IBM/cell-sdk-1.1/src. To

develop applications using your regular user account rather than root, change the

ownership of the /opt/IBM/cell-sdk-1.1 and /opt/IBM/systemsim-cell directories

to your regular user account. To do this, issue the following command:

chown -R $USER /opt/IBM/cell-sdk-1.1 /opt/IBM/systemsim-cell

You can do this as soon as the cellsdk script has finished building the environment.

Then log on with your user account.

Chapter 5. Using the SDK 35

http://www.ibm.com/developerworks/power/cell/
http://www.ibm.com/developerworks/power/cell/

Note: You still need root access to synch with the simulator sysroot image,

because it must be mounted and unmounted. You should not leave this file

permanently mounted as it can interfere with the running of the simulator and

changes are not stored in the file until the simulator’s sysroot image is

unmounted.

Using a shared development environment

If multiple people are using the same machine, it is advisable to set up different

sandboxes for each user. The simplest way to do this is to copy the

/opt/IBM/cell-sdk-1.1 directory to each user’s home directory. Even if you are the

only user, it is advisable to set up one or more sandboxes so you can experiment

with the SDK samples and libraries.

Multiple users should not update the common simulator sysroot image file by

mounting it read-write in the simulator. In this case, the callthru utility (see “The

callthru utility” on page 32) can be used to get files in and out of the simulator.

Alternatively, users can copy the sysroot image file to their own sandbox area and

then mount this version read/write to make persistent updates to the image.

If multiple users need to run Cell applications on a BladeCenter QS20, you need a

machine reservation mechanism to reduce collisions between two people who are

using SPEs at the same time. This is because SPE threads are not fully

pre-emptable in this version of the SDK.

Restrictions and limitations

This section documents some minor restrictions and limitations in the SDK.

v XDR memory should be initialized by the application before it is used

v The function spe_get_context has been implemented

v The function spe_set_context has not been implemented

v There is limited checking on exceeding the 256K memory limitation for a SPU so

a message from the spu-gcc compiler such as:

relocation truncated to fit: SPU_ADDR16 against `.bss’

means that you have probably need to reduce the memory usage in the SPU.

36 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

Appendix A. Quaternion Julia Set Ray-tracing sample

The description and pictures in this chapter replaces the text provided with the Julia

sample, which can be found in /opt/IBM/cell-sdk-1.1/src/samples/julia

directory.

This sample was inspired by Keenan Crane’s work to implement Julia Set

ray-tracers on GPUs using NVIDIA’s Cg language. Procedurally generated surfaces

are a hot topic relative to the Cell BE Processor due to their dynamic resolution

independent nature, high computational intensity, and low memory foot print. This

sample attempts to preserve Keenan’s Cg coding style and shows the flexibility of

Cell BE programming models.

The Julia sample demonstrates several Cell BE software technologies including a

SPE centric load balancing framework first written for our Terrain Rendering Engine

(TRE) and a software cache optimized for Single Instruction Multiple Data (SIMD)

texture performance. The sample also provides a demonstration platform for the

advantage of structure of array (SOA) over array of structures (AOS) data

organization when running on SIMD architectures.

Algorithm overview

You can find the original ray-tracing algorithm for the Julia set in the paper Ray

Tracing Deterministic 3-D Fractals, J. Hart, D. Sandin and L. Kauffman,

SIGGRAPH, 1989, pp. 289-296. Keenan Crane’s Cg code base was used as the

starting point for this sample.

Converting Cg to cell code

The code port consists of the following steps:

1. Convert from Cg style infix code to SPE intrinsic style prefix code. This step

could easily be performed using a simple code translation tool.

2. Implement a framework that could execute these Cg shader kernels. SPE Quad

interpolators were written to break down the screen regions into initial rays on

the front end and a frame buffer data structure was created to store the

resulting fragments on the back end. Work is communicated to the SPE in the

© Copyright IBM Corp. 2006 37

form of screen regions which are vertical screen strips. Each SPE is assigned a

different screen region.

3. Each screen region is broken down into rays and processed by the shader

kernels.

4. Completed image fragments are gathered in temporary local store vertical

column buffers and then written out to the system memory frame buffer as they

are completed via DMAs.

Load balancing framework

Screen regions are computed and dispatched to the SPEs using an SPE centric

load balancing framework. In this framework compute tasks are prepared by the

PPE and processed by multiple SPEs in a data parallel fashion. The PPE only

manages the preparation and synchronization of the work at a very high level. All

data loading, processing, and storing is handled by the heaving lifting SPEs. Using

this model one PPE is able to manage many SPEs without becoming the

bottleneck. As more SPEs are added performance continues to scale linearly.

The framework provides a simple command/data interface to the SPEs using PPE

to SPE mailboxes. Supported commands include the loading of a rendering context

which contains attributes that are constant across all frames of an animation,

loading of a work block communicated in the form of a screen region and surface

basis, SPE flush which forces all finished fragments to be written to system

memory, and SPE exit or release.

The PPE performs work load balanced across multiple SPE by adjusting the size of

each screen region based on the finish order of the prior screen regions. A small

percentage of the slowest SPE’s work is transferred to the fastest SPE after each

frame is completed. By implementing this dynamic scheme complex performance

issues like local and remote memory, object screen space distribution, and variable

super sampling just balance themselves out. SPE can also be added and remove

dynamically by simply adding or removing them from the available pool and

resetting the work weights. This framework has been reused in several Cell

Figure 4. Cg to cell code conversion

38 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

applications. It can easily be adapted to many rendering and imaging workloads

providing a good starting point for SPE centric coding.

Software cache

The Julia sample leverages a software cache abstraction layer for the SPE giving

us the ability to both hide the complexity of DMAs and benefit from transparent data

reuse. Given the lessons learned from this paper on “The Design and Analysis of a

Cache Architecture for Texture Mapping”, we tiled our textures, optimized our

access patterns, and implemented several cache replacement policies. We then

rewrote the shader to add five cubemap texture lookup passes - 3 refraction

lookups, a reflection lookup, plus a background lookup. These five texture lookups

were then blended together with a fresnel calculation and modulated with the base

lighting computation to form the final sample color.

We found that even with small 4-way set associative software cache sizes (8 KB),

miss rates for this renderer were a low 7% and hit access times were only 12 SPE

cycles.

 In the Julia sample you will find the code for a 4-way set associative SPE cache

along with a set of 16x16 tiled textures. These textures are loaded and repacked

into a 565 16 bit per texel format in system memory. The cache abstraction

Figure 5. Software cache miss rate (4 surface iterations)

Figure 6. Software cache miss rate (8 surface iterations)

Appendix A. Quaternion Julia Set Ray-tracing sample 39

provides lookups in both a single effective address (EA) form and a four EA SIMD

form. In the SIMD cache lookup, we employ a novel technique to avoid cast outs

due to collisions. When any element in the SIMD lookup misses, a bitmask of

available slots is generated.

 Slots that are found to contain hits (green) are first removed from the available

mask. Next slots are allocated for misses (red) using the available mask and a

revolving starting slot. The first available slot in the available mask is selected and

the corresponding slot of the cache set is allocated to this EA. This slot is then

removed from the available mask and the next miss is processed. All misses are

issued under the same tag group allowing for one tag wait per group of four thereby

reducing the load latency to the length of just one DMA regardless of the number of

misses.

SOA verses AOS data structures

The way CG structures its SIMD computation is inefficient as it causes large

percentages of the code to execute in scalar mode. This is due to the way they

structure their vector data, AOS vs. SOA. By converting the shader from AOS to

SOA form, SIMD utilization greatly increases allowing for much higher performance.

Analysis of IBM XLC compiled SPE code shows the cycles per instruction (CPI)

drops from 1.68 to 1.20 using this transformation and the number of SPE cycles

required to compute an image are cut in half. Both forms of the shader are made

available in the sample with the exception of the texture shader which is only

available in the SOA form.

Figure 7. 4-way set associative cache

40 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

The manufacturer may not offer the products, services, or features discussed in this

document in other countries. Consult the manufacturer’s representative for

information on the products and services currently available in your area. Any

reference to the manufacturer’s product, program, or service is not intended to state

or imply that only that product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any intellectual

property right of the manufacturer may be used instead. However, it is the user’s

responsibility to evaluate and verify the operation of any product, program, or

service.

The manufacturer may have patents or pending patent applications covering subject

matter described in this document. The furnishing of this document does not give

you any license to these patents. You can send license inquiries, in writing, to the

manufacturer.

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: THIS

INFORMATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR

FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of

express or implied warranties in certain transactions, therefore, this statement may

not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. The manufacturer may make

improvements and/or changes in the product(s) and/or the program(s) described in

this publication at any time without notice.

Any references in this information to Web sites not owned by the manufacturer are

provided for convenience only and do not in any manner serve as an endorsement

of those Web sites. The materials at those Web sites are not part of the materials

for this product and use of those Web sites is at your own risk.

The manufacturer may use or distribute any of the information you supply in any

way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact the manufacturer.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, IBM License Agreement for Machine

Code, or any equivalent agreement between us.

© Copyright IBM Corp. 2006 41

Information concerning products not produced by this manufacturer was obtained

from the suppliers of those products, their published announcements or other

publicly available sources. This manufacturer has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims

related to products not produced by this manufacturer. Questions on the capabilities

of products not produced by this manufacturer should be addressed to the suppliers

of those products.

All statements regarding the manufacturer’s future direction or intent are subject to

change or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to the

manufacturer, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. The manufacturer, therefore,

cannot guarantee or imply reliability, serviceability, or function of these programs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CAN NOT BE

EXCLUDED, THE MANUFACTURER, ITS PROGRAM DEVELOPERS AND

SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,

AND NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL

SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS THE MANUFACTURER, ITS PROGRAM

DEVELOPERS OR SUPPLIERS LIABLE FOR ANY OF THE FOLLOWING, EVEN

IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED

SAVINGS. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR

LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE

ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

If you are viewing this information in softcopy, the photographs and color

illustrations may not appear.

Edition notice

© Copyright International Business Machines Corporation 2005. All rights

reserved.

42 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

U.S. Government Users Restricted Rights — Use, duplication, or disclosure

restricted by GSA ADP Schedule Contract with IBM Corp.

Appendix B. Notices 43

Trademarks

The following terms are trademarks of International Business Machines Corporation

in the United States, other countries, or both:

 BladeCenter® Power Architecture™

e-business logo PowerPC®

Eserver Predictive Failure Analysis®

IBM pSeries®

IBM (logo) ServerProven®

IntelliStation® xSeries®

POWER™

Intel®, MMX, and Pentium® are trademarks of Intel Corporation in the United States,

other countries, or both.

Microsoft®, Windows®, and Windows NT® are trademarks of Microsoft Corporation

in the United States, other countries, or both.

UNIX® is a registered trademark of The Open Group in the United States and other

countries.

Java™ and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Adaptec and HostRAID are trademarks of Adaptec, Inc., in the United States, other

countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Red Hat, the Red Hat “Shadow Man” logo, and all Red Hat-based trademarks and

logos are trademarks or registered trademarks of Red Hat, Inc., in the United States

and other countries.

InfiniBand is a trademark of the InfiniBand Trade Association.

XDR is a trademark of Rambus Inc. in the United States and other countries.

PCI Express is a trademark of PCI-SIG.

Cell Broadband Engine is a trademark of Sony Computer Entertainment Inc.

Other company, product, or service names may be trademarks or service marks of

others.

44 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

Glossary

This glossary contains terms and abbreviations

used in Cell BE systems.

anaconda. The main installation program for Linux

Fedora Core.

AOS. Array of structures. A method of organizing

related data values. Also called vector-across form. See

SOA.

atomic operation. A set of operations, such as

read-write, that are performed as an uninterrupted unit.

Barcelona Supercomputing Center. Spanish National

Supercomputing Center, supporting Bladecenter and

Linux on cell.

BSC. See Barcelona Supercomputing Center.

BE. Broadband Engine.

BOOTP. Bootstrap Protocol. A UDP network protocol

used by a network client to obtain its IP address

automatically. Replaced in many networks by DHCP.

Broadband Engine. See CBEA.

built-ins. A type of C and C++ programming language

intrinsic that is similar to generic intrinsics, except that

built-ins map to more than one SPU instruction. These

intrinsics are prefaced by spu_.

C++. Deriving from C, C++ is an object-orientated

programming language.

cache. High-speed memory close to a processor. A

cache usually contains recently-accessed data or

instructions, but certain cache-control instructions can

lock, evict, or otherwise modify the caching of data or

instructions.

CBEA. Cell Broadband Processor Architecture. A new

architecture that extends the 64-bit PowerPC

Architecture. The CBEA and the Cell Broadband Engine

are the result of a collaboration between Sony, Toshiba,

and IBM, known as STI, formally started in early 2001.

Cell BE. Cell Broadband Engine. See CBEA.

Cell Broadband Engine Linux application. An

application running on the PPE and SPE. Each such

application has one or more Linux threads and some

number of SPE threads. All the Linux threads within the

application share the application’s resources, including

access to the SPE threads.

Cell Broadband Engine program. A PPE program

with one or more embedded SPE programs.

compiler. A programme that translates a high-level

programming language, such as C++, into executable

code.

CPI. Cycles per instruction. Average number of clock

cycles taken to perform one CPU instruction.

CPL. Common Public License.

Cycle-accurate simulation. See Performance

simulation.

cycle. Unless otherwise specified, one tick of the PPE

clock.

DHCP. Dynamic Host Configuration Protocol. Similar to

BOOTP, DHCP is a protocol for assigning IP addresses

to client devices on a network.

DMA. Direct Memory Access. A technique for using a

special-purpose controller to generate the source and

destination addresses for a memory or I/O transfer.

EA. See Effective address.

effective address. An address generated or used by a

program to reference memory. A memory-management

unit translates an effective address (EA) to a virtual

address (VA), which it then translates to a real address

(RA) that accesses real (physical) memory. The

maximum size of the effective address space is 264

bytes.

ELF. Executable and Linking Format. The standard

object format for many UNIX operating systems,

including Linux. Originally defined by AT&T and placed

in public domain. Compilers generate ELF files. Linkers

link to files with ELF files in libraries. Systems run ELF

files.

ext3. Extended file system 3. One of the file system

options available for Linux partitions.

Fedora Core. An operating system built entirely from

open-source software and therefore freely available.

Often, but mistakenly, known as Fedora linux.

FFT. Fast Fourier Transform.

FIFO. First In First Out. Queue type in which elements

are processed in order of entry. See also LIFO.

firmware. A set of instructions contained in ROM

usually used to enable peripheral devices at boot.

FSF. Free Software Foundation. Organization

promoting the use of open-source software such as

Linux.

© Copyright IBM Corp. 2006 45

FSS. Full System Simulator. IBM's tool which

simulates the cell processor environment on other host

computers.

FTP. File Transfer Protocol. An application layer

protocol that uses the TCP/IP suite of services to

transfer bulk-data files between machines or hosts.

GCC. GNU C compiler.

gdb. GNU application debugger. A modified version of

gdb, ppu-gdb, can be used to debug a Cell Broadband

Engine program. The PPE component runs first and

uses system calls, hidden by the SPU programming

library, to move the SPU component of the Cell

Broadband Engine program into the local store of the

SPU and start it running. A modified version of gdb,

spu-gdb, can be used to debug code executing on

SPEs.

GPL. GNU General Public License. Guarantees

freedom to share, change and distribute free software.

GNU. GNU is Not Unix. A project to develop free

Unix-like operating systems such as Linux.

HTTP. Hypertext Transfer Protocol. A method used to

transfer or convey information on the World Wide Web.

I/O device. Input/output device. From the viewpoint of

software I/O devices exist as memory-mapped registers

that are accessed in main-storage space by load/store

instructions. .

IDL. Interface definition language. Not the same as

CORBA IDL

ILAR. IBM International License Agreement for early

release of programs.

initrd. A command file read at boot.

intrinsic. A C-language command, in the form of a

function call, that is a convenient substitute for one or

more inline assembly-language instructions. Intrinsics

make the underlying ISA accessible from the C and C++

programming languages.

ISO image . Commonly a disk image which can be

burnt to CD. Technically it is a disk image of and ISO

9660 file system.

Julia set. Fractal shapes defined on a complex

number plane

kernel. The core of an operating which provides

services for other parts of the operating system and

provides multitasking. In Linux or UNIX operating

system, the kernel can easily be rebuilt to incorporate

enhancements which then become operating-system

wide.

K&R programming. A reference to a well-known book

on programming written by Dennis Kernighan and Brian

Ritchie.

L1. Level-1 cache memory. The closest cache to a

processor, measured in access time.

L2. Level-2 cache memory. The second-closest cache

to a processor, measured in access time. A L2 cache is

typically larger than a L1 cache.

latency. The time between when a function (or

instruction) is called and when it returns. Programmers

often optimize code so that functions return as quickly

as possible; this is referred to as the low-latency

approach to optimization. Low-latency designs often

leave the processor data-starved, and performance can

suffer.

libspe. A SPU-thread runtime management library.

LIFO. Last In First Out. Queue type in which elements

are processed in reverse order of entry. See also FIFO.

Linux. An open-source Unix-like computer operating

system.

LGPL. Lesser General Public License. Similar to the

GPL, but does less to protect the user’s freedom.

local store. The 256-KB local store associated with

each SPE. It holds both instructions and data.

LS. See local store.

LVM. Logical volume manager. An abstraction of a

physical hard disk which allows the changing the size of

a volume without having to reboot the system.

LVM partition. A portion of a physical drive managed

by the LVM.

main memory. See main storage.

main storage. The effective-address (EA) space. It

consists physically of real memory (whatever is external

to the memory-interface controller, including both volatile

and nonvolatile memory), SPU LSs, memory-mapped

registers and arrays, memory-mapped I/O devices (all

I/O is memory-mapped), and pages of virtual memory

that reside on disk. It does not include caches or

execution-unit register files. See also local store.

makefile. A descriptive file used by the makecommand

in which the user specifies: (a) target program or library,

(b) rules about how the target is to be built, (c)

dependencies which, if updated, require that the target

be rebuilt.

MFC. Memory Flow Controller. Part of an SPE which

provides two main functions: it moves data via DMA

between the SPE’s local store (LS) and main storage,

and it synchronizes the SPU with the rest of the

processing units in the system.

Glossary

46 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

netboot. Command to boot a device from another on

the same network. Requires a TFTP server.

NUMA. Non-uniform memory access. In a

multiprocessing system such as the Cell BE, memory is

configured so that it can be shared locally, thus giving

performance benefits.

parallel array form. See SOA.

PDF. Portable document format.

Performance simulation. Simulation by the IBM Full

System Simulator for the Cell Broadband Engine in

which both the functional behavior of operations and the

time required to perform the operations is simulated.

Also called cycle-accurate simulation.

PERL. Practical extraction and reporting language. A

scripting programming language.

PowerPC. Of or relating to the PowerPC Architecture

or the microprocessors that implement this architecture.

PPC-64. 64 bit implementation of the PowerPC

Architecture.

PowerPC Architecture. A computer architecture that

is based on the third generation of RISC processors.

The PowerPC architecture was developed jointly by

Apple, Motorola, and IBM.

PPC. See Power PC.

PPE. PowerPC Processor Element. The

general-purpose processor in the Cell.

PPSS. PowerPC Processor Storage Subsystem. Part

of the PPE. It operates at half the frequency of the PPU

and includes a L2 cache and a Bus Interface Unit (BIU).

PPU. PowerPC Processor Unit. The part of the PPE

that includes the execution units, memory-management

unit, and L1 cache.

proxy. Allows many network devices to connect to the

internet using a single IP address. Usually a single

server, often acting as a firewall, connects to the

internet behind which other network devices connect

using the IP address of that server.

python. An open-source interpretative scripting

language.

RA. See real address.

real address. An address for physical storage, which

includes physical memory, the PPE’s L1 and L2 caches,

and the SPE’s local stores (LSs) if the operating system

has mapped the LSs to the real address space. The

maximum size of the real address space is 242 bytes.

RPM. Originally an acronym for Red Hat Package

Manager, and RPM file is a packaging format for one or

more files used by many Linux systems when installing

software programs.

Sandbox. Safe place for running programs or script

without affecting other users or programs.

scalar. An instruction operand consisting of a single

value.

SDK. Software development toolkit. A complete

package of tools for application development. The Cell

BE SDK includes sample software for the Cell

Broadband Engine.

SIMD. Single Instruction Multiple Data. Processing in

which a single instruction operates on multiple data

elements that make up a vector data-type. Also known

as vector processing. This style of programming

implements data-level parallelism.

SIMDize. To transform scaler code to vector code.

SOA. Structure of arrays. A method of organizing

related data values. Also called parallel-array form. See

also AOS.

SPE. Synergistic Processor Element. Extends the

PowerPC 64 architecture by acting as cooperative

offload processors (synergistic processors), with the

direct memory access (DMA) and synchronization

mechanisms to communicate with them (memory flow

control), and with enhancements for real-time

management. There are 8 SPEs on each cell processor.

SPE thread. A thread scheduled and run on a SPE. A

program has one or more SPE threads. Each such

thread has its own SPU local store (LS), 128 x 128-bit

register file, program counter, and MFC Command

Queues, and it can communicate with other execution

units (or with effective-address memory through the

MFC channel interface).

SPU. Synergistic Processor Unit. The part of an SPE

that executes instructions from its local store (LS).

spulet. 1) A standalone SPU program that is managed

by a PPE executive. 2) A programming model that

allows legacy C programs to be compiled and run on an

SPE directly from the Linux command prompt.

tag group. A group of DMA commands. Each DMA

command is tagged with a 5-bit tag group identifier.

Software can use this identifier to check or wait on the

completion of all queued commands in one or more tag

groups. All DMA commands except getllar, putllc,

and putlluc are associated with a tag group.

Tcl. Tool Command Language. An interpreted script

language used to develop GUIs, application prototypes,

Glossary

Glossary 47

Common Gateway Interface (CGI) scripts, and other

scripts. Used as the command language for the Full

System Simulator.

TFTP. Trivial File Transfer Protocol. Similar to, but

simpler than the Transfer Protocol (FTP) but less

capable. Uses UDP as its transport mechanism.

thread. A sequence of instructions executed within the

global context (shared memory space and other global

resources) of a process that has created (spawned) the

thread. Multiple threads (including multiple instances of

the same sequence of instructions) can run

simultaneously if each thread has its own architectural

state (registers, program counter, flags, and other

program-visible state). Each SPE can support only a

single thread at any one time. Multiple SPEs can

simultaneously support multiple threads. The PPE

supports two threads at any one time, without the need

for software to create the threads. It does this by

duplicating the architectural state.

TLB. Translation Lookaside Buffer. An on-chip cache

that translates virtual addresses (VAs) to real addresses

(RAs). A TLB caches page-table entries for the most

recently accessed pages, thereby eliminating the

necessity to access the page table from memory during

load/store operations.

TRE. Terrain Rendering Engine. An important early

demo of cell technology.

UDP. User Datagram Protocol. Transports data as a

connectionless protocol, i.e. without acknowledgement

or receipt. Fast but fragile.

vector. An instruction operand containing a set of data

elements packed into a one-dimensional array. The

elements can be fixed-point or floating-point values.

Most Vector/SIMD Multimedia Extension and SPU SIMD

instructions operate on vector operands. Vectors are

also called SIMD operands or packed operands.

Vector/SIMD Multimedia Extension. The SIMD

instruction set of the PowerPC Architecture, supported

on the PPE.

virtual memory. The address space created using the

memory management facilities of a processor.

virtual storage. See virtual memory.

VNC. Virtual Network Computing. A desktop sharing

system which uses the RFB (Remote FrameBuffer)

protocol to control another computer remotely.

VPD. Vital product data. Part of the firmware, a ROM

chip containing information about the system board

and/or other components. May be updatable via

firmware updates.

workload. A set of code samples in the SDK that

characterizes the performance of the architecture,

algorithms, libraries, tools, and compilers.

XDR. Rambus

® Extreme Data Rate DRAM memory

technology.

xlc. The IBM optimizing C/C++ compiler.

x86. Generic name for Intel-based processors.

yaboot. Linux utility which is a boot loader for

PowerPC-based hardware.

yum. Yellow dog Updater, Modified. A package

manager for RPM-compatible Linux systems.

Glossary

48 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

Index

A
Anaconda 6

B
best practices 35

booting 13

after installation 12

C
callthru utility 32

Cell BE processor
documentation 3

Cell BE programming
documentation 4

cellsdk 19

build task 20

depend task 20

displaying usage statement 20

install task 20

parameters 20

synch task 20

uninstall task 20

upgrade task 20

verify task 20

version task 20

compiler
changing 34

gcc 14

configuring
sample yum configuration 13

swap area 13

yaboot.conf 12

D
directory structure

libraries and samples 27

programming sample 33

system root 34

documentation
Cell BE processor 3

Cell BE programming 4

PowerPC base 4

simulator 4

download
Fedora Core 5 tree 5

file 5

E
environment

for network installation 7

F
fast mode

Full-System Simulator 32

Fedora Core 5
downloading 5

finishing the installation 14

installation files 5

installing 5

installing on BladeCenter QS20 6

installing on PPC64 6

installing on x86 6

with InfiniBand 12

file
download 5

files
Fedora Core 5 installation 5

firmware
checking which version 13

freeglut 15

Full-System Simulator
.systemsim.tcl 31

See also PowerPC base

callthru utility 32

description 24

documentation 4

fast mode 32

RPM 21

running 31

system root image 25, 33

systemsim 31

G
gcc 14

GNU tool chain 23

H
hard disk

custom layout 11

partitioning 11

hardware
ppc64bcmfix.img 6, 8

I
InfiniBand

operating system 12

init process 6

installing
different ways to install SDK 19

Fedora Core 5 5

freeglut-devel 15

libX11 15

make package 14

netpbm 15

netpbm-devel 15

© Copyright IBM Corp. 2006 49

installing (continued)
operating system 5

overview 6

perl package 14

replacing kernel 11

starting 8

tcl package 15

tk package 15

iso image 5

K
kernel 26

replacing 11

RPM 21

uninstalling 19

kickstart 6

L
libraries and samples 27

subdirectories 27

libX11 15

licenses 3

limitations 36

M
make 14

makefile
for samples 34

N
netboot

setting up installation environment 8

netpbm 15

netpbm-devel 15

network
installation environment 7

setting up installation environment 8

numactl 27

O
operating system

installing 5

P
perl 14

PowerPC base
documentation 4

ppuxlc 23

ppuxlc++ 23

prerequisites
hard disk space 3

RAM for the simulator 3

RAM on host 3

SDK 2

programming sample
building and running 34

compiler 34

directory structure 33

spulet 34

R
restarting

BladeCenter QS20 14

restrictions 36

RPM 21

Full-System Simulator 21

GNU tool chain for PPU 21

GNU tool chain for SPU 21

kernel 21

library SPE 21

NUMA 21

OProfile 21

Samples and Libraries 21

SPU timing 21

system root image 21

XL C/C++ compiler 21

S
sandbox

setting up 36

script 20

.systemsim.tcl 31

cellsdk 19

systemsim 31

SDK
components 17

how to use 2

installing 17

prerequisites 2

supported platforms 17

upgrading to SDK 1.1.1 18

shared development environment 36

shutting down
BladeCenter QS20 14

simulator
See fss

SPE runtime management library 26

spe_get_context 36

spe_set_context 36

SPU timing tool 29

spulet 34

spuxlc 23

support libraries 26

supported platforms 2

swap area 13

symmetric multiprocessing support 33

sysroot
Full-System Simulator 33

system root
directory 34

system root image 25

50 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

T
tk 15

TLB file system
configuring 35

trademarks 44

U
uninstalling

kernel 19

SDK 19

upgrading
SDK version 18

user account 35

utility
callthru 32

X
XL C/C++ compiler 23

commands 23

optimization levels 24

Y
yaboot.conf 12

yum configuration 13

Index 51

52 Cell Broadband Engine: Software Development Toolkit Installation and User's Guide Version 1.1

����

Part Number: 42C4915

Printed in USA

SC33-8323-00

(1
P)

P/

N:

42

C4
91

5

	Contents
	Chapter 1. Introduction
	About this book
	New in this release
	Supported platforms
	How to use the SDK
	Prerequisites
	Licenses
	Getting support
	Related documentation
	Cell BE processor
	Cell BE programming using the SDK
	IBM Full-System Simulator
	PowerPC base

	Chapter 2. Installing Linux Fedora Core 5
	Downloading the Fedora Core 5 installation packages
	Copying the installation files

	Installing Fedora Core 5 on an x86 or PPC64 server
	Installing Fedora Core 5 on a BladeCenter QS20
	Fedora Core 5 installation overview
	The network installation environment
	Setting up a netboot environment
	Setting up a network installation environment
	Installing Fedora Core 5
	Starting the installation
	Copying a network-enabled kernel version
	Additional installation steps for installed InfiniBand cards
	Rebooting the BladeCenter QS20
	Checking and adapting /etc/yaboot.conf
	Checking and setting up a swap area (if required)
	Configuring yum (if required)

	Managing a BladeCenter QS20
	Checking the firmware version
	Booting a BladeCenter QS20
	Shutting down and restarting the BladeCenter QS20

	Finishing the Fedora Core 5 installation
	gcc
	make
	perl
	freeglut
	libX11
	TK
	netpbm

	Chapter 3. Installing the SDK
	SDK components
	Simple install of the SDK
	Upgrading SDK 1.1 to SDK 1.1.1
	Other ways to install the SDK
	Uninstalling the SDK
	Other script tasks and options
	RPMs in SDK

	Chapter 4. Contents of the SDK
	GNU tool chain
	IBM XL C/C++ compiler
	IBM Full-System Simulator
	System root image for the simulator
	Linux kernel
	Linux support libraries
	SPE runtime management library
	numactl

	Libraries and samples
	Libraries and samples subdirectories

	SPU timing tool

	Chapter 5. Using the SDK
	Running the Full-System Simulator
	The callthru utility
	Read and write access to the simulator sysroot image
	Enabling Symmetric Multiprocessing Support

	SDK programming samples
	Changing the default compiler
	Building and running a specific program
	System root directory

	Support for huge TLB file systems
	SDK development best practices
	Developing applications with a user (non-root) account
	Using a shared development environment

	Restrictions and limitations

	Appendix A. Quaternion Julia Set Ray-tracing sample
	Algorithm overview
	Converting Cg to cell code
	Load balancing framework
	Software cache
	SOA verses AOS data structures

	Appendix B. Notices
	Edition notice
	Trademarks

	Glossary
	Index

