
IBML

ABCs of OS/390 System Programming
Volume 3

P. Rogers, G. Capobianco, D. Carey, N. Davies, L. Fadel, K. Hewitt,
J. Oliveira, F. Pita, A. Salla, V. Sokal, Y. F. Tay, H. Timm

International Technical Support Organization

www.redbooks.ibm.com

SG24-5653-00

International Technical Support Organization

ABCs of OS/390 System Programming
Volume 3

April 2000

SG24-5653-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix A, “Special Notices” on page 331.

First Edition (April 2000)

This edition applies to OS/390 Version 2 Release 8, Program Number 5647-A01, and to all subsequent releases
and modifications.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . ix

Tables . xv

Preface . xvii
The team that wrote this redbook . xvii
Comments welcome . xviii

Chapter 1. Introduction to DFSMS/MVS . 1
1.1 Introduction to data management . 2
1.2 Data sets . 4

1.2.1 Data set name rules . 5
1.2.2 Logical records . 6
1.2.3 Record formats . 6
1.2.4 Data set organization (DSORG) . 7
1.2.5 Locating a data set . 9
1.2.6 Cataloged and uncataloged data sets 11

1.3 Volume Table of Contents (VTOC) . 12
1.3.1 Data set control block (DSCB) types . 13
1.3.2 Index VTOC structure . 15
1.3.3 Creating the VTOC and index VTOC . 15

1.4 ICKDSF . 16
1.4.1 Initializing a DASD volume . 16
1.4.2 VTOC and index VTOC . 17
1.4.3 ICKDSF stand-alone version . 17
1.4.4 Problem determination . 19

1.5 Traditional DASD . 21
1.6 Redundant Array of Independent Disks (RAID) 22
1.7 RVA highlights . 24
1.8 Seascape architecture . 26

1.8.1 Powerful storage server . 26
1.8.2 Enterprise Storage Server . 29
1.8.3 Serial Storage Architecture (SSA) . 31
1.8.4 ESS universal access . 33
1.8.5 Operating systems supporting ESS . 34
1.8.6 ESS new performance functions . 35
1.8.7 WLM controlling PAVs . 37
1.8.8 ESS copy services . 38
1.8.9 StorWatch product highlights . 40

1.9 Introduction to tape processing . 41
1.9.1 Describing the labels . 43
1.9.2 Initializing tape cartridges . 45
1.9.3 Tape capacity . 47
1.9.4 3494 tape library . 49

1.10 Introduction to VTS . 51
1.11 Introduction to utilities . 53

1.11.1 System utilities programs . 53
1.11.2 Data set utility programs . 54
1.11.3 IEFBR14 . 55
1.11.4 IEBCOMPR (compare data set) program 56
1.11.5 Data sets that can be compared . 58

 Copyright IBM Corp. 2000 iii

1.11.6 Data sets that cannot be compared 59
1.12 IEBCOPY . 60

1.12.1 IEBCOPY copy operation . 62
1.12.2 IEBCOPY compress operation . 64

1.13 IEBGENER . 65
1.13.1 Adding members to a PDS using IEBGENER 66
1.13.2 Copying data to tape . 67

1.14 IEHLIST . 68
1.14.1 LISTVTOC output . 69

1.15 Access method services . 70
1.15.1 Invoking access method services . 71
1.15.2 Functional commands . 72

1.16 Data Collection Facility (DCOLLECT) . 74
1.16.1 AMS modal commands . 76

1.17 Generation data groups (GDG) . 77
1.17.1 Defining a generation data group . 79
1.17.2 Absolute generation and version numbers 81
1.17.3 Relative generation number . 83
1.17.4 Rolled in and rolled off . 84

1.18 Access method functions . 85
1.18.1 Major DFSMS/MVS access methods 87
1.18.2 BPAM to access PDS and PDSE . 88
1.18.3 PDS and PDSE data organizations . 89
1.18.4 PDSE structure . 91
1.18.5 Sequential access methods . 92

1.19 Virtual Storage Access Method (VSAM) 94
1.19.1 VSAM resource pool . 95
1.19.2 VSAM components . 97
1.19.3 Key sequenced data set (KSDS) . 99
1.19.4 Data/Index relationship . 100
1.19.5 Relative record data set (RRDS) . 102
1.19.6 Typical RRDS processing . 103
1.19.7 Linear data set (LDS) . 104
1.19.8 Data-in-virtual . 105
1.19.9 Data-in-virtual objects . 106
1.19.10 Mapping a linear data set . 107
1.19.11 Entry sequenced data set (ESDS) 108
1.19.12 Typical ESDS processing (ESDS) 109

1.20 DFSORT . 110
1.21 DFSMS/MVS Network File System . 112
1.22 DFSMS/MVS Optimizer . 114
1.23 DFSMSdss . 115

1.23.1 DFSMSdss: physical and logical processing 116
1.23.2 DFSMSdss: logical processing . 117
1.23.3 DFSMSdss: physical processing . 119
1.23.4 DFSMSdss stand-alone services . 121

1.24 DFSMShsm . 122
1.24.1 Availabil i ty management . 123
1.24.2 Space management . 125
1.24.3 Storage device hierarchy . 127
1.24.4 HSM volume types . 128
1.24.5 Automatic space management . 130
1.24.6 Recall . 131

1.25 Removable media manager (DFSMSrmm) 133
1.25.1 Libraries and locations . 134

iv ABCs of OS/390 System Programming

1.26 What DFSMSrmm can manage . 135
1.26.1 Removable media library . 135
1.26.2 Storage location . 136
1.26.3 Managing libraries and storage locations 137

Chapter 2. Storage management . 139
2.1 DFSMS/MVS environment . 140

2.1.1 The DFSMS/MVS functional components 141
2.2 Introduction to system-managed storage (SMS) 142
2.3 Benefits of system-managed storage . 143
2.4 Implementing your storage management policies 146
2.5 Implementing and monitoring storage management policies 148

2.5.1 Monitoring your policies . 149
2.6 Managing data with SMS . 150

2.6.1 How to be system-managed . 151
2.6.2 Using data classes . 153
2.6.3 Using storage classes . 155
2.6.4 Using management classes . 157
2.6.5 Management class functions . 159
2.6.6 Using storage groups . 160
2.6.7 Using aggregate backup and recovery support (ABARS) 162
2.6.8 Using automatic class selection routines 164

2.7 Defining the storage management subsystem configuration 166
2.8 Activating a minimal SMS configuration 168

2.8.1 Managing data with a minimal SMS configuration 170
2.8.2 Steps for a minimal SMS configuration 172
2.8.3 Allocating SMS control data sets . 173
2.8.4 Define GRS resource names for active SMS control data sets . . . 174
2.8.5 Defining a minimal SMS configuration 175
2.8.6 DFSMS setup for OS/390 . 178
2.8.7 Activating and starting SMS . 180
2.8.8 Display SMS configuration . 182
2.8.9 Controlling SMS processing with MVS operator commands 183
2.8.10 Enforcing standards with DC ACS routine 185

2.9 Establishing installation standards . 186
2.9.1 Data types that can be system managed 187
2.9.2 Data types that cannot be system managed 189
2.9.3 Developing naming conventions . 191
2.9.4 Lowest-level qualifiers (LLQ) standards 193
2.9.5 Simplifying JCL . 195
2.9.6 Allocating data . 196
2.9.7 Creating a VSAM cluster . 198
2.9.8 Using retention period and expiration date 200

2.10 Managing data allocation . 202
2.10.1 Using data class to standardize data allocation 202
2.10.2 Data class attributes . 204
2.10.3 Planning and defining data classes 205
2.10.4 Ensuring device independence . 206

2.11 SMS PDSE support . 207
2.11.1 PDSE conversion . 209
2.11.2 Program objects . 211
2.11.3 Selecting data sets to allocate as PDSEs 214
2.11.4 Allocating new PDSEs . 215
2.11.5 Identifying PDSEs . 216

2.12 Introduction to ISMF . 217

Contents v

2.12.1 ISMF products relationship . 218
2.12.2 What you can do with ISMF . 220
2.12.3 Accessing ISMF . 222
2.12.4 Navigating through ISMF . 223
2.12.5 Selecting an option from the ISMF Primary Option menu 225
2.12.6 ISMF Profile Option Menu . 226
2.12.7 Data Set Selection Entry Panel . 227
2.12.8 Data Set List panel . 228
2.12.9 Volume List Selection Menu . 229
2.12.10 ISMF Volume List panel . 230
2.12.11 Management Class Application Selection 231
2.12.12 ISMF management class list . 232
2.12.13 Data Class Application Selection 233
2.12.14 ISMF data class list . 234
2.12.15 Storage Class Application Selection 235
2.12.16 ISMF storage class List . 236
2.12.17 Saved ISMF Lists . 237

2.13 Removable Media Manager (DFSMSrmm) 238

Chapter 3. System Modification Program/Enhanced (SMP/E) 239
3.1 Introduction to SMP/E . 240
3.2 SYSMODs . 241

3.2.1 Introducing an element - the function SYSMOD 243
3.2.2 Preventing problems with an element (PTF) 245
3.2.3 Fixing problems with an element - the APAR SYSMOD 251
3.2.4 Customizing an element - the USERMOD SYSMOD 253

3.3 Data sets used by SMP/E . 255
3.3.1 Dynamic allocation of SMP/E data sets 258
3.3.2 Standard defaults . 260
3.3.3 How dynamic allocation works . 261

3.4 Consolidated Software Inventory (CSI) . 263
3.4.1 The organization of the CSI data set 263
3.4.2 How to organize CSI data sets . 265
3.4.3 How to allocate a CSI data set . 266
3.4.4 How to initialize a CSI data set . 266
3.4.5 Defining zones for your system . 268

3.5 SMP/E commands you need to know . 270
3.5.2 Displaying SMP/E data . 271

3.6 Receiving SYSMODs . 272
3.6.1 Packaging of the SYSMODs . 272
3.6.2 The RECEIVE Process . 274
3.6.3 Managing exception SYSMOD through HOLLDATA 275
3.6.4 SMP/E data sets used in the RECEIVE Process 277
3.6.5 Reports for RECEIVE processing . 281

3.7 Rejecting SYSMODs . 284
3.7.1 Processing modes of the REJECT command 284

3.8 The APPLY Process . 290
3.8.1 Selecting SYSMODS . 290
3.8.2 How SMP/E keeps track of APPLY processing 291
3.8.3 The APPLY CHECK Process . 295

3.9 The RESTORE process . 297
3.9.1 Removing SYSMODs . 297
3.9.2 Selecting elements . 298
3.9.3 Replacing the elements in the target libraries 298
3.9.4 How SMP/E keeps track of RESTORE processing 298

vi ABCs of OS/390 System Programming

3.9.5 The RESTORE command . 298
3.9.6 Restore examples . 299

3.10 The ACCEPT process . 302
3.10.1 Selecting SYSMODs . 302
3.10.2 Selecting elements . 303
3.10.3 Updating the distribution libraries 303
3.10.4 How SMP/E keeps track of ACCEPT processing 303
3.10.5 The ACCEPT command . 303
3.10.6 ACCEPT CHECK facility . 304
3.10.7 The reporting output . 304
3.10.8 ACCEPT examples . 305

3.11 Other useful SMP/E commands . 307
3.11.1 Using the LIST command . 309
3.11.2 Using the REPORT ERRSYSMOD command 311

3.12 SMP/E dialogs . 316
3.12.1 Query Selection Menu . 317
3.12.2 CSI Query Panel . 318
3.12.3 CSI Query - Select Entry Panel . 319
3.12.4 CSI Query - SYSMOD Entry Panel 320
3.12.5 Building SMP/E jobs by using dialog 321
3.12.6 Command Generation Selection Menu 322
3.12.7 Command Generation Selection Zone 323
3.12.8 Command Generation - LIST Command 324
3.12.9 List Global zone SYSMOD options 325
3.12.10 Command Generation - list FORFMID 326
3.12.11 Command Generation Selection Menu 327
3.12.12 Command Generation - SUBMIT . 328
3.12.13 The generated job . 329

Appendix A. Special Notices . 331

Appendix B. Related Publications . 335
B.1 IBM Redbooks . 335
B.2 IBM Redbooks collections . 336
B.3 Other resources . 336

How to get IBM Redbooks . 339
IBM Redbooks fax order form . 340

Glossary . 341

IBM Redbooks evaluation . 355

Contents vii

viii ABCs of OS/390 System Programming

Figures

 1. Introduction to data management . 2
 2. Data sets . 4
 3. Data set name rules . 5
 4. Logical record length . 6
 5. PO data set . 7
 6. Locating a data set . 9
 7. Cataloged and uncataloged data sets . 11
 8. Volume table of contents (VTOC) . 12
 9. Data set control block (DSCB) . 13
10. Index VTOC structure . 15
11. Initializing a volume . 16
12. Problem determination . 19
13. Traditional DASD . 21
14. Redundant array of independent disks (RAID) 22
15. RVA highlights . 24
16. Seascape architecture . 26
17. Enterprise Storage Server . 29
18. Serial Storage Architecture (SSA) . 31
19. ESS universal access . 33
20. Operating systems supporting ESS . 34
21. ESS new performance functions . 35
22. WLM controlling PAVs . 37
23. ESS copy services . 38
24. StorWatch product highlights . 40
25. Introduction to tape processing . 41
26. SL and NL . 43
27. Initializing tape cartridges . 45
28. IEHINITT example to write EBCDIC labels in different densities 46
29. Place serial number on eight tape volumes 46
30. Tape capacity . 47
31. 3494 tape library . 49
32. Introduction to VTS . 51
33. Utilities . 53
34. IEFBR14 . 55
35. IEBCOMPR . 56
36. Directories of PO that can be compared 58
37. Directories of PO that cannot be compared 59
38. IEBCOPY . 60
39. IEBCOPY copy operation . 62
40. IEBCOPY compress operation . 64
41. IEBGENER . 65
42. Adding members to a PDS using IEBGENER 66
43. Copying data to tape . 67
44. IEHLIST . 68
45. LISTVTOC output . 69
46. Access method services . 70
47. Functional commands . 72
48. Data Collection Facility (DCOLLECT) . 74
49. AMS modal commands . 76
50. Generation data groups . 77
51. Defining a GDG . 79

 Copyright IBM Corp. 2000 ix

52. Absolute generation and version numbers 81
53. Relative generation numbers . 83
54. Access method functions . 85
55. Major DFSMS/MVS access methods . 87
56. BPAM and PDSE . 88
57. PDS and PDSE data organization . 89
58. PDSE structure . 91
59. Sequential access methods . 92
60. Virtual Storage Access Method . 94
61. VSAM resource pool . 95
62. VSAM components . 97
63. Key sequenced data set (KSDS) . 99
64. Data/Index relationship . 100
65. Relative record data set (RRDS) . 102
66. Typical RRDS processing . 103
67. Linear data set (LDS) . 104
68. Data-in-virtual . 105
69. Data-in-virtual objects . 106
70. Mapping a linear data set . 107
71. Entry sequenced data set (ESDS) . 108
72. Typical ESDS processing (ESDS) . 109
73. DFSORT . 110
74. DFSMS/MVS Network File System . 112
75. DFSMS/MVS Optimizer . 114
76. DFSMSdss . 115
77. DFSMSdss: physical and logical processing 116
78. DFSMSdss: logical processing . 117
79. DFSMSdss: physical processing . 119
80. Stand-alone services . 121
81. Introduction to DFSMShsm . 122
82. Availabil i ty management . 123
83. Space management . 125
84. Storage device hierarchy . 127
85. HSM volume types . 128
86. Automatic space management . 130
87. Recall . 131
88. Introduction to DFSMSrmm . 133
89. Libraries and locations . 134
90. DFSMSrmm can manage . 135
91. Managing libraries and storage locations 137
92. DFSMS/MVS environment . 140
93. DFSMS/MVS functional components . 141
94. System-managed storage environment 142
95. Benefits of system-managed storage . 143
96. Implementing your storage management policies 146
97. Implementing monitoring storage policies 148
98. Monitoring your policies . 149
99. Managing data with SMS . 150
100. How to be system-managed . 151
101. Using data classes . 153
102. Using storage classes . 155
103. Using management class . 157
104. Management class functions . 159
105. Using storages groups . 160
106. Aggregate backup and recovery support 162

x ABCs of OS/390 System Programming

107. Using automatic class selection . 164
108. Defining the storage management subsystem. 166
109. Activating a minimal SMS configuration 168
110. Managing data with a minimal SMS configuration 170
111. Steps for a minimal SMS configuration 172
112. Allocating SMS control data sets . 173
113. Defining a minimal SMS configuration 175
114. DFSMS setup for OS/390 . 178
115. Activating and starting SMS . 180
116. Display SMS configuration . 182
117. Controlling SMS processing with commands 183
118. Enforcing standards with DC ACS routine 185
119. Establishing installation standards . 186
120. Data types that can be system managed 187
121. Data types that cannot be system managed 189
122. Highest-level qualifiers . 191
123. Lowest-level qualifiers (LLQ) standards 193
124. Simplifying JCL . 195
125. Allocating data . 196
126. Creating a VSAM cluster . 198
127. Space parameter in a KSDS VSAM cluster 199
128. Using retention period and expiration date 200
129. Managing data allocation . 202
130. Data class attributes . 204
131. Planning and defining data classes . 205
132. Ensuring device independence . 206
133. SMS PDSE support . 207
134. PDSE conversion . 209
135. Program objects . 211
136. Selecting data sets to allocate as PDSEs 214
137. Allocating a new PDSE . 215
138. Identifying a PDSE . 216
139. Introduction to ISMF . 217
140. ISMF products relationship . 218
141. What you can do with ISMF . 220
142. Accessing ISMF . 222
143. Navigating through ISMF . 223
144. ISMF Primary Option Menu . 225
145. ISMF Profile Option Menu . 226
146. Data Set Selection Entry Panel . 227
147. Data Set List Panel . 228
148. Volume List Selection Menu . 229
149. ISMF Volume List panel. 230
150. Management Class Application Selection 231
151. ISMF management class list . 232
152. Data Class Application Selection . 233
153. ISMF data class list . 234
154. Storage Class Application Selection . 235
155. ISMF Storage Class List . 236
156. Saved ISMF Lists . 237
157. Removable Media Manager (DFSMSrmm) 238
158. SMP/E overview . 240
159. SYSMODs . 241
160. Introducing an element . 243
161. Example SYSMOD with four elements . 244

Figures xi

162. Preventing problems with an element (PTF) 245
163. Example simple PTF SYSMOD . 246
164. PTF replacement . 247
165. PTF prerequisite . 248
166. Load module construction . 249
167. Fixing problems with an element (APAR) 251
168. Example simple APAR SYSMOD . 251
169. Customizing an element - the USERMOD SYSMOD 253
170. Example simple USERMOD SYSMOD . 253
171. SMP/E data sets . 255
172. Dynamic allocation . 258
173. Dynamic allocation check sequence . 261
174. Consolidated Software Inventory (CSI) 263
175. Basic structure of CSI . 265
176. Sample JCL for allocating a CSI data set 266
177. Sample job to initialize the CSI data set 267
178. Relationship of zones in CSI . 268
179. Basic SMP/E commands . 270
180. The RECEIVE process . 272
181. The RECEIVE process . 274
182. Example SMPTLIB data sets . 275
183. Sources of HOLDDATA . 276
184. RECEIVE examples . 278
185. Sample JCL to process only HOLDDATA 279
186. Sample JCL to process only the SYSMODs 279
187. Sample JCL to receive both the SYSMODs and HOLDDATA 280
188. Sample JCL to receive selected SYSMODs and HOLDDATA 280
189. Reports for RECEIVE processing . 281
190. Sample RECEIVE Summary Report . 282
191. Sample RECEIVE Exception Data Report 282
192. Sample RECEIVE File Allocation Report 283
193. Sample RECEIVE Product Summary Report 283
194. The REJECT process . 284
195. REJECT examples . 286
196. Sample JCL for rejecting SYSMODs in MASS mode 287
197. Rejecting PTFs that have been received but not applied 287
198. Rejecting a SYSMOD in SELECT mode 287
199. Rejecting HOLDDATA from the system 288
200. Rejecting in PURGE mode . 288
201. Rejecting in NOFMID mode . 288
202. The APPLY process . 290
203. APPLY examples . 293
204. Sample JCL to apply all SYSMODs from a given source 294
205. Applying with the GROUP operand . 294
206. Applying with the CHECK operand . 294
207. The APPLY CHECK process . 295
208. The RESTORE process . 297
209. RESTORE examples . 299
210. Removing a single PTF . 299
211. Cleaning up the SMP records after the reject 300
212. Restoring and reapplying PTFs . 300
213. Accepting some PTFs and then restoring another 300
214. Restoring PTFs using the Group operand 301
215. The ACCEPT process . 302
216. ACCEPT examples . 305

xii ABCs of OS/390 System Programming

217. Accepting all SYSMODs from a given source 305
218. Accepting SYSMODs with ACCEPT . 306
219. Using the GROUPEXTEND operand . 306
220. Other SMP/E commands . 307
221. The LIST command . 309
222. Listing entries in a particular zone . 310
223. Listing all DDDEF entries in the global zone and all defined zones . . 310
224. Listing all PTFs for a specific SYSMOD 310
225. The REPORT ERRSYSMODS command 311
226. Checking if HOLDDATA affects any already applied SYSMODs 312
227. Checking the effect of HOLDDATA on a specific SYSMOD 312
228. Reports for REPORT ERRSYSMODS . 313
229. Sample Exception SYSMOD Report . 314
230. Sample SMPPUNCH output . 315
231. SMP/E Primary Option Menu . 316
232. Query Selection Menu . 317
233. CSI Query Panel . 318
234. CSI Query - Select Entry Panel . 319
235. CSI Query - SYSMOD Entry Panel . 320
236. Building SMP/E jobs by using dialog . 321
237. Command Generation Selection Menu 322
238. Command Generation Selection Zone 323
239. Command Generation - LIST Command 324
240. List Global zone SYSMOD options . 325
241. Command Generation - list FORFMID . 326
242. Command Generation Selection Menu 327
243. Command Generation - SUBMIT . 328
244. The generated job . 329

Figures xiii

xiv ABCs of OS/390 System Programming

Tables

 1. DSCBs that can be found in the VTOC . 13
 2. DASD capacity . 21
 3. Types of labels . 43
 4. Tape capacity of various IBM products . 47
 5. System utility programs . 53
 6. Data set utility programs . 54
 7. Functional commands . 72

 Copyright IBM Corp. 2000 xv

xvi ABCs of OS/390 System Programming

Preface

This redbook is Volume 3 of a five-volume set that is designed to introduce the
structure of an OS/390 and S/390 operating environment. The set will help you
install, tailor, and configure an OS/390 operating system, and is intended for
system programmers who are new to an OS/390 environment.

In this Volume, Chapter 1 provides an introduction to the DFSMS/MVS.
DFSMS/MVS is the data management part of the operating system that
organizes, identifies, stores, catalogs, and retrieves all the data information used
by an installation.

Chapter 2 provides an overview of DFSMS/MVS and its functional components.

Chapter 3 describes OS/390 SMP/E which is a tool designed to manage the
installation of software products on your OS/390 system and to track the
modifications you make to those products.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Poughkeepsie
Center.

Paul Rogers is an OS/390 specialist at the International Technical Support
Organization, Poughkeepsie Center. He writes extensively and teaches IBM
classes worldwide on various aspects of OS/390. Before joining the ITSO 11
years ago, he worked in the IBM Installation Support Center (ISC) in Greenford,
England as OS/390 and JES support for IBM EMEA.

Guillermo Capobianco is an IT Specialist in IBM Global Services PSS Argentina.
He has five years of experience working with customers on MVS, MVS-related
program products, and OS/390. He is currently leading a technical group
providing on-site customer support for the OS/390 platform.

David Carey is a Senior IT Availability Specialist with the IBM Support Center in
Sydney, Australia, where he provides defect and nondefect support for CICS,
CICSPlex/SM, MQSeries, and OS/390. David has 19 years of experience within
the information technology industry, and was an MVS systems programmer for
12 years prior to joining IBM.

T. Nigel Davies is a Systems Specialist in IBM Global Services Product Support
Services (PSS) in the United Kingdom. He has 10 years of IT experience in
various roles, ranging from operations to PC and LAN support to mainframe
systems programming. He joined IBM in 1997 with eight years of experience as
a VM/VSE systems programmer, and since joining IBM has cross-trained in
OS/390 systems skills. His areas of expertise include VM and VSE systems
programming, installation, and technical support, and more recently, OS/390
installation and support. Luiz Fadel

Ken Hewitt is an IT Specialist in IBM Australia. He has over 10 years of
experience working with S/390 customers in a range of roles from CE to System
Engineer. His areas of expertise include I/O and OSA configuration.

 Copyright IBM Corp. 2000 xvii

Joao Natalino Oliveira

Joao Natalino de Oliveira is a certified I/T consulting specialist working for the
S/390 in Brazil providing support for Brazil and Latin America. He has 24 years
of experience in large systems including MVS-OS/390. His areas of expertise
include performance and capacity planning, server consolidation and system
programming. He has a bachelor degree in Math and Data Processing from
Fundação Santo André Brazil.

Fabio Chaves Pita

Alvaro Salla has 30 years of experience in OS operating systems (since MVT).
He has written several redbooks on S/390 subjects. Retired from IBM Brasil, he
is now a consultant for IBM customers.

Valeria Sokal is an MVS system programmer at Banco do Brasil. She has 11
years of experience in the mainframe arena. Her areas of expertise include
MVS, TSO/ISPF, SLR, and WLM.

Yoon Foh Tay is an IT Specialist with IBM Singapore PSS (S/390). He has six
years of experience on the S/390 platform, providing on-site support to
customers.

Hans-Juergen Timm is an Advisory Systems Engineer in IBM Global Services
PSS Germany. He has 20 years of experience working with customers in the
areas of MVS and OS/390, software and technical support, and planning and
management. He also worked six years as an MVS Instructor in the IBM
Education Centers in Mainz and Essen, Germany. His areas of expertise include
implementation support for OS/390, Parallel Sysplex, UNIX System Services, and
Batch Management.

Comments welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks evaluation” on page 355 to
the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com

xviii ABCs of OS/390 System Programming

Chapter 1. Introduction to DFSMS/MVS

DFSMS/MVS has hardware requirements that include at least one processor, printer, and console, in
addition to DASD and tape devices for storage.

The following licensed programs are prerequisites for installing and maintaining DFSMS/MVS:

• A base OS/390 system with the binder provided by DFSMS/MVS, or a linkage editor provided by
MVS/DFP Version 3 (5665-XA3)

• Assembler H (5668-962), with current maintenance, or High Level Assembler for MVS (5696-234),
with current maintenance

• System Modification Program Extended (SMP/E) (5668-946)

DFSMS/MVS also requires subsystem functions provided by a compatible level of either JES2 or JES3.
OS/390 Planning for Installation, GC28-1726, documents the supported releases of JES2 and JES3 and
also provides a list of the licensed programs required to install the OS/390 product.

The MVS operating system requires storage for DFSMS/MVS, for JES2 or JES3, for all licensed
programs installed on the system, and for the various distribution and target libraries supported by
each product. Storage requirements vary depending upon the products installed on your system and
the DASD you choose to store on. Information on storage requirements is provided by the program
directories or installation guides for these products.

Virtual storage and DASD space requirements for the installation of DFSMS/MVS are specified in the
DFSMS/MVS Program Directory.

 Copyright IBM Corp. 2000 1

Figure 1. Introduction to data management

1.1 Introduction to data management

Data management is the part of the operating system that organizes, identifies, stores, catalogs, and
retrieves all the data information (including programs) that your installation uses. Data management
does these main tasks:

• Sets aside (allocates) space on DASD volumes

• Automatically retrieves cataloged data sets by name

• Controls access to data

One of the elements of data management is the access methods component, to be described in the
next visuals.

This chapter describes MVS data management when processing different types of data sets. Also,
some comments about how you should name data sets are included.

DFSMS/MVS is a set of products associated with OS/390 that is responsible for data management.
DFSMS/MVS has four MVS data management functional components as a single, integrated software
package:

DFSMSdfp Provides storage, data, program, and device management. It is made of several
components such as access methods, OPEN/CLOSE/EOV routines, catalog
management, DADSM (DASD space control), utilities, IDCAMS, SMS, NFS, ISMF, and
other functions.

2 ABCs of OS/390 System Programming

DFSMSdss Provides data movement, copy, backup, and space management functions.

DFSMShsm Provides backup, recovery, migration, and space management functions. It invokes
DFSMSdss for certain of its functions.

DFSMSrmm Provides management functions for removable media such as tape cartridges, 3420
reels, and optical media

Before we discuss DFSMS/MVS components, let′s briefly talk about data sets, data organization,
volume organization, and data management.

Chapter 1. Introduction to DFSMS/MVS 3

Figure 2. Data sets

1.2 Data sets

An MVS data set is a collection of logically related data records stored on one volume or a set of
volumes. A data set can be, for example, a source program, a library of macros, or a file of data
records used by a processing program. You can print a data set or display it on a terminal. The
logical record is the basic unit of information used by a processing program.

As an exception, the OS/390 UNIX services component supports Hierarchical File Systems (HFS) data
sets, where the collection is of bytes and there is not the concept of logically related data records.

Data can be stored on a direct access storage device (DASD), magnetic tape volume, or optical media.
The term “DASD” applies to disks or simulated equivalents of disks. All types of data sets can be
stored on DASD, but only sequential data sets can be stored on magnetic tape. We discuss the types of
data sets later.

The next visuals discuss the logical attributes of a data set which are specified at data set allocation
time in:

• DCB/ACB control blocks in the application program

• DD card (explicitly or through Data Class(DC) option)

• In ACS Data Class (DC) routine (overridden by DD card)

After the allocation, such attributes are kept in catalogs and VTOCs.

4 ABCs of OS/390 System Programming

Figure 3. Data set name rules

1.2.1 Data set name rules
Whenever you allocate a new data set, you (or MVS) must give the data set an unique name. Usually,
the data set name is given as the DSNAME keyword in JCL.

A data set name can be one name segment, or a series of joined name segments. Each name
segment represents a level of qualification. For example, the data set name VERA.LUZ.DATA is
composed of three name segments. The first name on the left is called the highest-level qualifier, the
last is the lowest-level qualifier.

Each name segment (qualifier) is one to eight characters, the first of which must be alphabetic (A to Z)
or national (# @ $). The remaining seven characters are either alphabetic, numeric (0-9), national, or
a hyphen (-).

The period (.) separates name segments from each other. Including all name segments and periods,
the length of the data set name must not exceed 44 characters. Thus, a maximum of 22 name
segments can make up a data set name.

You should only use the low-level qualifier GxxxxVyy, structure name, where xxxx and yy are numbers,
in the names of generation data sets (to be seen later). You can define a data set with GxxxxVyy as
the low-level qualifier of non-generation data sets only if a generation data group with the same base
name does not exist. However, we recommend that you restrict GxxxxVyy qualifiers to generation data
sets, to avoid confusing generation data sets with other types of non-VSAM data sets.

Chapter 1. Introduction to DFSMS/MVS 5

Figure 4. Logical record length

1.2.2 Logical records

A Logical Record is a unit of information about a unit of processing (a customer, an account, a payroll
employee). It is the smallest amount of data to be processed and it is made of fields which contain
information recognized by the processing application. Logical records when located in DASD, tape, or
optical devices are grouped in physical records named blocks. Each block of data on a DASD volume
has a distinct location and a unique address, making it possible to find any block without extensive
searching. Logical records can be stored and retrieved either directly or sequentially. DASD volumes
are used for storing data and executable programs, including the operating system itself, and for
temporary working storage. One DASD volume can be used for many different data sets, and space on
it can be reallocated and reused.

The maximum length of a logical record (LRECL) is limited by the physical size of the used media.

1.2.3 Record formats

Use the RECFM parameter to specify the format and characteristics of the logical records in a new
data set. We may say that they are blocked (several logical records in one block), or no imbedded
short blocks, or the existence of an ANSI control character, and so on.

For further information on the REFCM parameter, refer to DFSMS/MVS Using Data Sets, SC26-4922, and
OS/390: MVS JCL Reference, GC28-1757.

6 ABCs of OS/390 System Programming

Figure 5. PO data set

1.2.4 Data set organization (DSORG)

There are several different types of data set organization used in OS/390. Each organization provides
specific benefits to its user:

1.2.4.1 Physical sequential (PS)

With this data set organization, the records can only be read or written in “physical sequential” order.
If we compare this with a PC file, this is a file in the main directory (C:\).

Sequential data sets can exist in DASD, tape, and optical devices.

1.2.4.2 Partitioned Organized (PO)

Partitioned data sets are similar in organization to a library and are often referred to this way. A
library contains normally a great number of “books,” and sorted directory entries are used to locate
them.

In PDS (partitioned organized data set) the “books” are called members and to locate them, they are
pointed to by entries in a directory, as shown in this visual.

The members are individual sequential data sets and can be read or written sequentially, once they
have been located via directory. It is almost the same idea as the directory and file organization in a
PC.

Chapter 1. Introduction to DFSMS/MVS 7

Partitioned data sets can only exist on DASD.

Each member has a unique name, one to eight characters long, stored in a directory that is part of the
data set. The records of a given member are written or retrieved sequentially. See DFSMS/MVS
Macro Instructions for Data Sets, SC26-4913, for the macros used with partitioned data sets.

The main advantage of using a partitioned data set is that, without searching the entire data set, you
can retrieve any individual member after the data set is opened. For example, in a program library
(always a partitioned data set) each member is a separate program or subroutine. The individual
members can be added or deleted as required. When a member is deleted, the member name is
removed from the directory, but the space used by the member cannot be reused until the data set is
reorganized; that is, compressed using the IEBCOPY utility (generally requested through an ISPF
panel). We discuss IEBCOPY and other DFSMS/MVS utilities later.

The directory, a series of 256-byte records at the beginning of the data set, contains an entry for each
member. Each directory entry contains the member name and the starting location of the member
within the data set, as shown. Also, you can specify as many as 62 bytes of information in the entry.
The directory entries are arranged by name in alphanumeric collating sequence. Each directory block
contains a two-byte count field that specifies the number of active bytes in a block (including the count
field). Each block is preceded by a hardware defined key field containing the name of the last member
entry in the block, that is, the member name with the highest binary value.

Partitioned data set member entries vary in length and are blocked into the member area.

If you do not specify a block size (BLKSIZE), the Open routine determines an optimum block size for
you. Therefore, you no longer need to perform calculations based on track length. When you allocate
space for your data set, you can specify the average record length in kilobytes or megabytes by using
the SPACE and AVGREC parameters, and have the system use the block size it calculated for your
data set.

Another type of PO data set is the PDSE, that must be SMS-managed and we will talk about its
advantages later.

Refer to 1.18, “Access method functions” on page 85 for more types and more information about data
set organization.

8 ABCs of OS/390 System Programming

Figure 6. Locating a data set

1.2.5 Locating a data set

Before we explain the procedure used to find a data set, let′s introduce some terms used and that will
be explained in more detail later.

VTOC Is a sequential data set located in a DASD volume that describes the contents
of this volume.

User Catalogs (UCAT) It is a catalog of data sets used to locate in which DASD volume the
requested data set is stored; user data sets are are cataloged in this type of
catalog.

Master Catalog (MCAT) It has the same structure as a user catalog, but points to system data sets,
usually with a high level qualifier (HLQ) name of SYS1. It also contains
information about the user catalog location and any alias pointer.

Alias It is an special entry in the Master Catalog pointing to an User Catalog which
coincides with the HLQ of a data set. It means that the data set with this HLQ
is maybe cataloged in that User Catalog. Then, the alias is used to find in
which User Catalog there is that data set location information.

Follows the standard location sequence caused by a request for an already existent data set:

• MCAT is searched, if found, verify if it is:

− A data set name, then pick up the volume specification and if the indicated device is online,
then check VTOC to locate the data set in the specified volume.

Chapter 1. Introduction to DFSMS/MVS 9

− An alias, that is, the HLQ of the data set name is equal to an alias entry pointing to an UCAT,
in this case go to the referred UCAT.

• UCAT is searched (if there is a match in the alias). If the data set name is found, proceed as in an
MCAT hit.

Finally, the requiring program can access the data set.

There is another way of using catalogs, where you do not follow the standard location sequence. It is
by the use of DD cards named STEPCAT and JOBCAT introducing private catalogs. Use the JOBCAT
DD statement to define a private VSAM or user catalog for the duration of a job (step for STEPCAT).
The system searches the private catalog for data sets before it searches the master catalog or a user
catalog associated with the first qualifier of a data set′s name.

It is not recommended that you use private catalogs. One of the reasons is that for SMS-managed
data sets SMS only accesses SMS-managed data sets that are cataloged in a system catalog.

10 ABCs of OS/390 System Programming

Figure 7. Cataloged and uncataloged data sets

1.2.6 Cataloged and uncataloged data sets

When the data set is cataloged, the system obtains unit and volume information from the catalog.
However, if the DD statement for a catalog data set contains VOLUME=SER=serial-number, the
system does not look in the catalog; in this case, you must code the UNIT parameter.

When your data set is not cataloged you must know in advance its volume location and specify it in
your JCL. This can be done through the UNIT and VOL=SER as shown in this visual.

See OS/390: MVS JCL Reference, GC28-1757, for information about the UNIT and VOL parameters.

We strongly recommend that you do not have uncataloged data sets in your installation because
uncataloged data sets can cause problems with duplicate data and possible incorrect data set
processing.

Chapter 1. Introduction to DFSMS/MVS 11

Figure 8. Volume table of contents (VTOC)

1.3 Volume Table of Contents (VTOC)

The VTOC is a data set that describes the contents of the DASD volume on which it resides. It is a
contiguous data set; that is, it resides in a single extent on the volume. It is pointed at by the record in
the first track of the volume. Data is organized in physical blocks preceded by the highest record key
in the block. That is, a count-key-data format.

The VTOC has six types of control blocks, they are called DSCB and describe data set characteristics,
free space, and other functions that we will see in the next visuals.

There are a set of macros called Common VTOC Access Facility (CVAF) which allow a program to
access VTOC information data.

12 ABCs of OS/390 System Programming

Figure 9. Data set control block (DSCB)

1.3.1 Data set control block (DSCB) types

DSCB is the name of the logical record within the VTOC. DSCBs describe data sets allocated in that
volume and also describe the VTOC itself. The system automatically constructs a DSCB when space is
requested for a data set on a direct access volume. Each data set on a DASD volume has one or more
DSCBs to describe its characteristics. The DSCB appears in the VTOC and, in addition to space
allocation and other control information, contains operating system data, device-dependent
information, and data set characteristics. There are seven kinds of DSCBs, each with different purpose
and a different format number.

The first record in every VTOC is the VTOC DSCB (format-4). The record describes the device, the
volume the data set resides on, the volume attributes, and the size and contents of the VTOC data set.
The next DSCB in the VTOC data set is a free-space DSCB (format-5) even if the free space is
described by format-7 DSCBs. The third and subsequent DSCBs in the VTOC can occur in any order.

Table 1 (Page 1 of 2). DSCBs that can be found in the VTOC

Type Name Function How many

0 Free VTOC
DSCB

Describes unused DSCBs in the
VTOC (contains 140 bytes of binary
zeros).

One for every unused 140-byte
record on the VTOC.

1 Identif ier Describes the first three extents of a
data set or VSAM data space.

One for every data set or data space
on the volume, except the VTOC.

Chapter 1. Introduction to DFSMS/MVS 13

Table 1 (Page 2 of 2). DSCBs that can be found in the VTOC

Type Name Function How many

2 Index Describes the indexes of an ISAM
data set.

One for each ISAM data set (for a
multivolume ISAM data set, format-2
DSCB exists only on the first
volume). ISAM is an access method
generally not used in modern MVS
installations.

3 Extension Describes extents after the third
extent of a non-VSAM data set or a
VSAM data space.

One for each data set or VSAM data
space on the volume that has more
than three extents.

4 VTOC Describes the extent and contents of
the VTOC and provides volume and
device characteristics. This DSCB
contains a flag indicating whether the
volume is SMS-managed.

One on each volume.

5 Free Space On a non-indexed VTOC, describes
the space on a volume that has not
been allocated to a data set or to a
VSAM data space (available space).
For an indexed VTOC, a single empty
format-5 DSCB resides in the VTOC;

One for every 26 non-contiguous
extents of available space on the
volume for a non-indexed VTOC; for
an indexed VTOC, there is only one.

7 Free space for
certain device

Only one field in the format-7 DSCB
is an intended interface. This field
indicates whether the DSCB is a
format-7 DSCB. You can reference
that field as DS1FMTID or DS5FMTID.
A character 7 indicates that the
DSCB is format-7 DSCB, and your
program should not modify it.

If you are diagnosing a problem, see
DFSMS/MVS DFSMSdfp Diagnosis
Guide, SY27-9605, for the layout of
the Format-7 DSCB.

14 ABCs of OS/390 System Programming

Figure 10. Index VTOC structure

1.3.2 Index VTOC structure

The Index VTOC may provide poor performance, mainly when many data sets are located in that
volume. The major reason is the lack of an index to speed up the search. Optionally an index VTOC
can be associated with the VTOC. The index VTOC enhances the performance of VTOC access. The
VTOC index is a physical-sequential data set on the same volume as the related VTOC. It consists of
an index of data set names in format-1 DSCBs contained in the VTOC and volume free-space
information.

Note: An SMS-managed volume requires an indexed VTOC; otherwise, the VTOC index is highly
recommended

In MVS/DFP 3.3 the index VTOC was improved to make more efficient use of space in an index.

1.3.3 Creating the VTOC and index VTOC

To initialize a volume (preparing for I/O activity), use the Device Support Facilities (ICKDSF) utility to
initially build the VTOC. You can create a index VTOC at that time, by using the ICKDSF INIT command
and specifying the INDEX keyword.

You may use ICKDSF to convert a non-indexed VTOC to an indexed VTOC by using the BUILDIX
command and specifying the IXVTOC keyword. The reverse operation can be performed by using the
BUILDIX command and specifying the OSVTOC keyword. See the ICKDSF R16 User′s Guide, GC35-0033,
for details and refer to DFSMS/MVS DFSMSdfp Advanced Services, SC26-4921.

Chapter 1. Introduction to DFSMS/MVS 15

Figure 11. Initializing a volume

1.4 ICKDSF

ICKDSF is a program you can use to perform functions needed for the initialization, installation, use,
and maintenance of IBM DASD. You can also use it to perform service functions, error detection, and
media maintenance.

On the modern DASD devices there is not a reason to run error detection and media maintenance.
These functions are supported internally by the controller. On the other hand the concept of an MVS
volume is not mapped into a unique physical DASD Redundant Access of Independent Disks (RAID)
volume. Due to RAID the MVS volume may be spread in several little size disks as in the case of RVA
virtualization. Then, in the following examples do not take in consideration Analyze and Inspect if you
have a DASD more modern than a real 3390.

1.4.1 Initializing a DASD volume

After you have completed the installation of a device, you must initialize and format the volume so that
it can be used by MVS. If the volume is SMS-managed, the the STORAGEGROUP option must be
declared.

16 ABCs of OS/390 System Programming

1.4.2 VTOC and index VTOC

The INIT and BUILDIX commands will build the VTOC index. The INIT command creates space for the
index during volume initialization in both operating system and stand-alone versions. The BUILDIX
command, which requires that the host operating system contain indexed VTOC programming support,
builds VTOC indexes on volumes current in use on the system. Both commands prepare the VTOC on
the target volume to indexed VTOC (IXVTOC) format.

1.4.2.1 INIT examples

Following are some examples of initializing volumes.

Initializing a volume for the first time in offline mode

In this example, a volume is initialized at the minimal level because neither the CHECK nor VALIDATE
parameter is specified. Because the volume is being initialized for the first time, it must be mounted
offline, and the volume serial number must be specified. Because the VTOC parameter is not
specified, the default volume table of contents size is the number of tracks in a cylinder minus one.
For a 3390, the default is cylinder 0, track 1 for 14 tracks.

//EXAMPLE JOB
// EXEC PGM=ICKDSF
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
INIT UNITADDRESS(0353) NOVERIFY VOLID(VOL123) -

OWNERID(PAYROLL)
/*

Initializing a volume to be managed in a DFSMS environment

In the following example, a volume that is to be system-managed is initialized. The volume is
initialized in offline mode at the minimal level. The VTOC is placed at cylinder 2, track 1 and occupies
ten tracks. The VTOC is followed by the VTOC index. The STORAGEGROUP parameter indicates the
volume is to be managed in a DFSMS environment.

INIT UNIT(0353) NOVERIFY STORAGEGROUP -
OWNERID(PAYROLL) VTOC(2,1,10) INDEX(2,11,5)

This example performs an online minimal initialization, and as a result of the command, an index to
the VTOC is created:

// JOB
// EXEC PGM=ICKDSF
//XYZ987 DD UNIT=3390,DISP=OLD,VOL=SER=PAY456
//SYSPRINT DD SYSOUT=A

 //SYSIN DD *
INIT DDNAME(XYZ987) NOVERIFY INDEX(X′ A′ , X′ B′ , X′ 2 ′)
/*

1.4.3 ICKDSF stand-alone version

You can run the stand-alone version of ICKDSF under any IBM S/390 machine.

To run the stand-alone version of ICKDSF under an IBM S/390, you IPL ICKDSF with a stand-alone IPL
tape that you create under MVS.

Chapter 1. Introduction to DFSMS/MVS 17

1.4.3.1 Creating an ICKDSF stand-alone IPL tape using MVS

For MVS, the stand-alone code is in SYS1.SAMPLIB as ICKSADSF. You can load the ICKDSF program
from a file on tape. The following example can be used to copy the stand-alone program to an
unlabeled tape:

//JOBNAME JOB JOB CARD PARAMETERS
//STEPNAME EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A

 //SYSIN DD DUMMY,DCB=BLKSIZE=80
 //SYSUT1 DD DSNAME=SYS1.SAMPLIB(ICKSADSF),UNIT=SYSDA,
 // DISP=SHR,VOLUME=SER=XXXXXX
 //SYSUT2 DD DSNAME=ICKDSF,UNIT=3480,LABEL=(,NL),
 // DISP=(,KEEP),VOLUME=SER=YYYYYY,
 // DCB=(RECFM=F,LRECL=80,BLKSIZE=80)

For details on how to IPL the stand-alone version and examples of the commands, refer to Device
Support Facilities User′s Guide and Reference Release 16 Refresh, GC35-0033.

18 ABCs of OS/390 System Programming

Figure 12. Problem determination

1.4.4 Problem determination

You can use ICKDSF to help determine if the origin of a problem is hardware or recording media.

1.4.4.1 Data check

A data check is an error detected in the bit pattern read from the disk. When it is a media problem it
is most likely caused by an imperfection on the disk surface.

1.4.4.2 Analyze

The ANALYZE command helps to detect and differentiate recording surface and drive-related problems
on a volume. It can also scan data to help detect possible media problems.

You can use the ANALYZE command to examine a device and the data on a volume to help determine
the existence and the nature of errors.

You use two parameters with the ANALYZE command:

• DRIVETEST tests the hardware device

• SCAN reads data on a volume

You can use the DRIVETEST parameter to ensure that device hardware can perform basic operations,
such as seeks, reads, and writes. DRIVETEST can impact your system performance, but does not alter
data.

Chapter 1. Introduction to DFSMS/MVS 19

You can use ANALYZE SCAN to read data that currently exists on a volume. If ANALYZE SCAN reads the data
successfully the first time, no further rereading of the track takes place.

1.4.4.3 INSPECT command

The INSPECT command inspects a subset of a volume and can:

• Check the surface of a track to determine if there is a defect

• Assign a skip to avoid a defect

• Assign an alternate track

• Reclaim a track that has been flagged defective

• Print a map of defective tracks on a volume

Before using the INSPECT command, you should first make sure there are no hardware problems. It is
recommended that you issue ANALYZE DRIVETEST NOSCAN before any INSPECT operation.

For more information about ICKDSF, refer to Device Support Facilities User′s Guide and Reference
Release 16 Refresh, GC35-0033.

20 ABCs of OS/390 System Programming

Figure 13. Traditional DASD

1.5 Traditional DASD

Traditional DASD means 3380 and 3390 type of devices. The more modern IBM DASD products such
as RAMACs, RVA, and Enterprise Storage Server (Shark) including OEM DASD emulates IBM 3380 and
3390 volumes in the geometry, capacity of track, and number of tracks per cylinder.

Table 2 shows further information about DASD capacity.

Table 2. DASD capacity

Physical
characteristics

3380-J 3380-E 3380-K 3390-1 3390-2 3390-3 3390-9

Data Cyl/Device 885 1770 2655 1113 2226 3339 10017

Track/cyl 15 15 15 15 15 15 15

Bytes/trk 47476 47476 47476 56664 56664 56664 56664

Bytes/Cylinder 712140 712140 712140 849960 849960 849960 849960

MB/Device 630 1260 1890 946 1892 2838 8514

-

Chapter 1. Introduction to DFSMS/MVS 21

Figure 14. Redundant array of independent disks (RAID)

1.6 Redundant Array of Independent Disks (RAID)

Redundant array of independent disks (RAID) is a direct access storage architecture where data is
recorded across multiple physical disks with parity separately recorded so that no loss of access to
data results from the loss of any one disk in the array.

The RAID concept involves many little small computer system interface (SCSI) disks replacing a big
one. The major RAID advantages are:

• Performance (due to parallelism)
• Cost (SCSI commodities)
• S/390 compatibility
• Environment (space and energy)

However, RAID increased the chances of malfunction due to media and disk failures and the fact that
the logical device is now residing on many physical disks. The solution was redundancy, which wastes
space and cause performance problems as “write penalty” and “free space reclamation.”

To address this performance issue, large caches are implemented.

Various implementations certified by RAID Architecture Board are:

RAID-1 Has just disk mirroring like dual copy.

22 ABCs of OS/390 System Programming

RAID-3 Has an array with one parity device and just one I/O request at time with intra-record
striping. The access arms move together. It has a high data rate and a low I/O rate.

RAID-5 Has an array with one distributed parity and has four HDAs in an RAMAC-3 array. It does
I/O requests in parallel with extra-record striping. The access arms move independently. It
has strong caching to avoid “write penalties”; that is four I/Os per write. RAID-5 has a high
I/O rate and a medium data rate. RAID-5 does the following:

• Reads data from an undamaged HDA is just one single I/O operation.
• Reads data from a damaged HDA which implies (n-1) I/Os, where n is the number of

HDAs in the array operation.
• For every write to an undamaged HDA, RAID-5 does four I/O operations in order to store

a correct parity block (write penalty). This penalty can be relieved with strong caching
and a slice triggered algorithm (coalescing updates into a single parallel I/O).

• For every write to a damaged HDA, RAID-5 does n-1 reads and one parity write.

RAID-6 RAID-6 has an array with two distributed parity and I/O requests in parallel with
extra-record striping. Its access arms move independently (Reed/Salomon P-Q parity). The
write penalty is greater than RAID-5 with six I/Os per write.

RAID-6+ RAID-6+ is without write penalty (due to log-structured file, LFS), and has background
free-space reclamation. The access arms all move together for writes.

RAID-10 RAID-10 has a new RAID architecture designed to give performance for striping and has
redundancy for mirroring.

Note: Data striping is called RAID-0, but it is not a real RAID because of no redundancy.

Chapter 1. Introduction to DFSMS/MVS 23

Figure 15. RVA highlights

1.7 RVA highlights

Following is a list of the main properties and functions of the RAMAC Virtual Array (RVA) 9393:

• Controller does data compression and compaction, when data enters the facility. It saves space in
cache and DASD media, saving also CPU cycles (if the compression is done in CPU). Usually
because the compression factor is greater than 5.0 you get more space than the advertised
amount.

• From 160-Gb to 726-Gb of effective capacity per subsystem. Each subsystem has one frame with
two to eight trays. Each tray contains seven (or eight) HDAs with two spares per subsystem.

• HDA capacity of 4.5 Gb. IBM Ultrastar 2XP 3.5″ disks, 4.5-Gb SCSI/FBA. Mean Time Between
Failures (MTBF) of 1-M hours.

• Models: 002 (ESCON/Parallel), T82 (ESCON).

• RAID6+ allows better availabil ity. You only loose your data if you have more than two failures in
the disks (HDA) of one string.

• Virtual architecture, a copy of the S/390 virtual storage. Virtual volumes, also called functional
devices are mapped in the HDAs.

• Almost automatic space management (due to large number of “virtual volumes”):

− Reduction or elimination of Defrags.

− Reduced need to segregate disk pools by file size.

24 ABCs of OS/390 System Programming

− Reduced reruns due to out-of-space abends (X37).

− Reduced VSAM/database reorganizations.

− Elimination of HSM disk-to-disk migration (ML1).

• Automatic HDA load balance, with no data set movement for performance.

• Reduction in IOSQ time.

• Almost instantaneous duplication of volumes and data sets (Snapshot) without an additional space.

• Open systems file transfer (with CNT FileSpeed).

• Support for SCSI and ESCON via XPE (without the 20 meters collocation problem).

• Simulates all 3390s (9′s is a SOD) and 3380s up to 256.

• Two clusters, eight storage paths with compression engines, cache and device interfaces. Capable
of eight concurrent data transfers plus four paths for CCW processing.

• PPRC remote copy implementation.

Chapter 1. Introduction to DFSMS/MVS 25

Figure 16. Seascape architecture

1.8 Seascape architecture

Enterprise Storage Server (ESS), shown in Figure 17 on page 29, is the latest IBM storage product
using Seascape architecture.

The ESS is also the first of the Seascape architecture storage products to provide attachment to IBM
S/390 and open-system platforms. The Seascape architecture products come with integrated storage
controllers. These integrated storage controllers allow the attachment of physical storage devices that
emulate 3390 Models 2, 3, and 9 or provide 3380 track-compatibility mode.

Seascape is a storage enterprise architecture that is ideally suited to provide storage server solutions
for the networked world. Seascape has three basic concepts as follows:

• Powerful storage server
• Snap-in building blocks
• Universal data access

1.8.1 Powerful storage server

It has a storage system which is intelligent and independent, and which can be reached by channels or
via the network.

26 ABCs of OS/390 System Programming

1.8.1.1 Snap-in building blocks

This is a concept where each Seascape product is made of some building blocks such as:

• Scalable n-way RISC server, PCI based; this provides the logic of the storage server.
• Memory cache from RISC processor memory.
• Channel attachments as FC-AL, SCSI, ESCON, and SSA.
• Network attachments such as Ethernet, FDDI, TR, and ATM.

These attachments may also implement functions. As you can see, a mix of network interfaces (to
be used as a remote and independent storage server) and channel interfaces (to be used as
storage controller interface).

• Software building blocks such as AIX subset, ADSM, JAVA applications, and Tivoli. High level
language (HLL) is better than microcode in flexibility, easier to write, and maintain.

• Storage adapters for mixed storage devices technologies.
• Storage device building blocks such as serial disk (7133), 3590 tape (Magstar), optical (3995).
• Silos and robots (3494).

1.8.1.2 Universal data access

Universal data access allows a wide array of connectivity such as: WIN, OS/2, UNIX, AS/400, and
S/390. There are three types of universal access:

• Storage sharing

Physical storage (DASD or tape) is statically divided into fixed partitions available to a given
processor. It is not a software function. The subsystem controller knows which processors own
what storage partitions. In a sense, just capacity is shared, not data. One server cannot access
the data of the other server. It is required that the manual reassigning of storage capacity between
partitions be simple and nondisruptive.

Advantages:

− Purchase higher quantities with greater discounts

− Just one type of storage to manage

− Static shifting of capacity as needed

• The drawbacks are:

− Higher price for SCSI data

− Collocation at 20 meters of the SCSI servers (not true with XPE)

− No priority concept between S/390 and UNIX/NT I/O requests

• Data copy sharing

Data copy sharing is an interim data replication solution (waiting for a true data sharing) done via
data replication through software and hardware.

There are three ways to implement data copy sharing:

− Network: Via network data transfer as SNA or TCP/IP.

Problems: CPU and network overhead, still slow and expensive for massive data transfer.

− Direct channel: Direct data transfer between the processors involved using channel or bus
capabilities, referred as bulk data transfer.

One example can be the IBM Infospeed where a /390 FTP (PDM - Press Data Mover) at
28-MB/sec extract utility program writes data at 28-MB/sec to a pipe (Infospeed box) that is
concurrently being read by UNIX and NT.

Chapter 1. Introduction to DFSMS/MVS 27

− Shared storage transfer: Writing an intermediate flat file by software into the storage
subsystem cache, that is read (and translated) by the receiving processor, so the storage is
shared.

• True data sharing

Via multiple platform read/write in a single copy. Address complex issues of mixed data types, file
structures, databases, and SCPs.

28 ABCs of OS/390 System Programming

Figure 17. Enterprise Storage Server

1.8.2 Enterprise Storage Server

The IBM Enterprise Storage Server (ESS) is a high performance, high-availability capacity storage
subsystem. It contains two four-way RISC processors with 6 GB cache and 384 MB of non-volatile
storage to protect from data loss. The ESS maximum capacity is over 11 TB with the second frame
attached.

The ESS is an IBM high-end storage subsystem. It is the newest storage subsystem succeeding the
3880 family, the 3990 family, and the 9340 family. Designed for mid-range and high-end environments,
the ESS, shown in the visual, provides you with large capacity, high performance, continuous
availability, and storage expandability.

The ESS has eight Serial Storage Architecture (SSA) loops, each one with a rate of 160 MB/sec for
accessing the disks.

ESS implements RAID-5 for availability and has seven data disks plus one parity disk in the majority of
the arrays.

Connectivity to S/390 is through up to 32 ESCON channels, and to UNIX, AS/400, or NT connectivity is
through up to 32 SCSI interfaces, or a combination of the two.

The SCSI adapter is a card in the host. It connects to a SCSI bus via an SCSI port. There are two
different types of SCSI supported by ESS as follows:

• SCSI Fast Wide with 20 MB/sec

Chapter 1. Introduction to DFSMS/MVS 29

• Ultra SCSI Wide with 40 MB/sec

Comparing the terminology of ESCON and SCSI, we may say that:

• An ESCON channel translates into an SCSI adapter (both cards in the host)

• An ESCON port translates into an SCSI port (both connectors)

• An ESCON link translates into an SCSI bus (both cables)

In the future, ESS will support both S/390 Fiber Channel (FICON) and Fibre Channel Protocol (FCP),
including Fiber Channel Arbitrated Loop (FCAL) and FC-switched for systems. Currently you can attach
to a FICON channel using the 9032 ESCON Director and to a Fibre Channel network using the IBM SAN
Data Gateway. Some of the RVA functions are not implemented, such as:

• Log Structured File (LSF) or virtualization

• Snapshot

• Storage compression

However, there is a statement of direction about its implementation in ESS.

30 ABCs of OS/390 System Programming

Figure 18. Serial Storage Architecture (SSA)

1.8.3 Serial Storage Architecture (SSA)

SSA is a high performance, serial connection technology for disk drives. SSA is a full-duplex
loop-based architecture, with two physical read paths and two physical write paths to every disk
attached to the loop. Data is sent from the adapter card to the first disk on the loop and then passed
around the loop by the disks until it arrives at the target disk. Unlike bus-based designs, which
reserve the whole bus for data transfer, SSA only uses the part of the loop between adjacent disks for
data transfer. This means that many simultaneous data transfers can take place on an SSA loop, and
it is one of the main reasons that SSA performs so much better than SCSI. This simultaneous transfer
capability is known as spatial release.

Each read or write path on the loop operates at 40 MB/s, providing a total loop bandwidth of 160 MB/s.

Loop availability

The loop is a self-configuring, self repairing design which allows genuine hot-plugging. If the loop
breaks for any reason, then the adapter card will automatically reconfigure the loop into two single
loops. In the ESS, the most likely scenario for a broken loop is if the actual disk drive interface
electronics should fail. If this should happen, the adapter card will dynamically reconfigure the loop
into two single loops, effectively isolating the failed disk. If the disk were part of a RAID array, the
adapter card would automatically regenerate the missing disk using the remaining data and parity
disks to the spare disk. Once the failed disk has been replaced, the loop will automatically be
reconfigured into full duplex operation, and the replaced disk will become a new spare.

Chapter 1. Introduction to DFSMS/MVS 31

Spatial reuse

Spatial reuse allows domains to be set up on the loop. A domain means that one or more groups of
disks belong to one of the two adapter cards, as is the case during normal operation. The benefit of
this is that each adapter card can talk to its domains (or disk groups) using only part of the loop. The
use of domains allows each adapter card to operate at maximum capability because it is not limited by
I/O operations from the other adapter. Theoretically, each adapter card could drive its domains at 160
MB/s, giving 320 MB/s throughput on a single loop! The benefit of domains may reduce slightly over
time, due to disk failures causing the groups to become intermixed, but the main benefits of spatial
reuse will still apply.

If a cluster should fail, the remaining cluster device adapter will own all the domains on the loop, thus
allowing full data access to continue.

32 ABCs of OS/390 System Programming

Figure 19. ESS universal access

1.8.4 ESS universal access

ESS is a product designed to implement storage consolidation that puts under the same cover all your
enterprise data. This consolidation is the first step in achieving server consolidation, that is to put
under the same MVS cluster all your enterprise applications.

Thinking in Seascape terms about universal access, the ESS box implements storage sharing with
dynamic reallocation and data copy sharing using Infospeed.

Many of the ESS features are now available to non-S/390 platforms such as PPRC for NT and UNIX,
where the control is through a Web interface

In the software side, there is StorWatch, a range of products in UNIX/NT that does what DFSMS and
automation do for S/390.

In the next visual you will see all the operating systems able to access data in the ESS box in storage
sharing mode (physical partition), that is, one device accessed by just one heterogeneous operating
system image.

Chapter 1. Introduction to DFSMS/MVS 33

Figure 20. Operating systems supporting ESS

1.8.5 Operating systems supporting ESS

ESS is supported by the open operating systems shown in the visual. The list contains those systems
able to access data in the ESS box at general availability time.

34 ABCs of OS/390 System Programming

Figure 21. ESS new performance functions

1.8.6 ESS new performance functions

The new functions that ESS supports for S/390 (mainly OS/390) are:

• ESS EX performance package which consists of three performance features:

− I/O priority queueing

− Parallel Access Volumes (PAV), which is a chargeable feature

− Multiple allegiance

• Performance enhanced channel command words (CCWs)

• Improved caching algorithms - good for cache friendly workloads, as the ones from OS/390

• Improved internal rates and parallelism - good for cache unfriendly workloads, as the ones from
lower platforms. One example of parallelism is that RAID functions (16) are executed at disk loop
level, not by the RISC server.

• Performance enhanced channel command words (CCWs)

• Custom volumes

Chapter 1. Introduction to DFSMS/MVS 35

1.8.6.1 I/O priority queueing

Previously to ESS, IOS kept the UCB I/O pending requests in a queue named IOSQ. The order in this
queue - when the MVS image is in goal mode - is controlled by WLM. There was not this concept of
priority queueing within the internal queues of the control units. With ESS, it is possible to have this
queue concept internally. I/O Priority Queueing has the following properties:

• I/O can be queued with the ESS in priority order

• WLM sets the I/O priority when running in goal mode

• I/O priority for systems in a sysplex

• Fair share for each system

1.8.6.2 Parallel Access Volumes (PAV) and multiple allegiance

Traditional S/390 architecture does not allow more than one I/O operation to the same S/390 device,
because such device only can handle one I/O operation at time.

However, in modern DASD subsystems as RAMAC and ESS, the S/390 device physically speaking is
only a logical view. The contents of this logical device are spread in HDA RAID arrays and in caches.
So, it is technically possible to have more than one I/O operation towards the same logical device.

Changes are made in MVS (in IOS code), in channel subsystem (SAP), and in ESS in order to allow
more than one I/O operation on the same logical device. It is called parallel I/O which has two flavors:

• Parallel Access Volume (PAV), when the concurrent I/Os originate from the same MVS image

• Multiple Allegiance,

However, this concurrency can be achieved as long as no data accessed by one channel program can
be altered through the actions of another channel program.

To implement PAV, the IOS introduces the concept of alias addresses. Instead of one UCB per logical
volume, an MVS host can now use several UCBs for the same logical volume. Apart from the
conventional Base UCB, alias UCBs can be defined and used by OS/390 to issue I/Os in parallel to the
same logical volume device.

1.8.6.3 Performance enhanced channel command words (CCWs)

In ESS there is less overhead associated with CCW chains by combining tasks into fewer CCWs,
introducing Read Track Data and Write Track Data CCWs. They allow reading and writing more data
with fewer CCWs. It will be used by OS/390 to reduce ESCON protocol for multiple record transfer
chains. Measurements on 4 KB records using an EXCP channel program showed a 15 percent
reduction in channel overhead for the Read Track Data CCW.

1.8.6.4 Custom volumes

Custom volumes provides the possibility of defining small size 3390 or 3380 volumes. This causes less
contention on a volume. Custom volumes is designed for high activity data sets. Careful size planning
is required.

36 ABCs of OS/390 System Programming

Figure 22. WLM control l ing PAVs

1.8.7 WLM controlling PAVs

Through WLM, there are two mechanisms to tune the alias assignment:

• The first mechanism is goal based. This logic attempts to give additional aliases to a PAV-device
that is experiencing IOS queue delays and is impacting a service class period that is missing its
goal. To give additional aliases to the receiver device, a donor device must be found with a less
important service class period. A bitmap is maintained with each PAV-device that indicates the
service classes using the device.

• The second is to move aliases to high contention PAV-devices from low contention PAV-devices.
High contention devices will be identified by having a significant amount of IOS queue time (IOSQ).
This tuning is based on efficiency rather than directly helping a workload to meet its goal.

Chapter 1. Introduction to DFSMS/MVS 37

Figure 23. ESS copy services

1.8.8 ESS copy services

The following copy services are provided by the ESS:

• Enhanced PPRC service
• XRC suspend/resume service for unplanned outages
• Concurrent Copy
• FlashCopy service

1.8.8.1 Peer-to-peer remote copy (PPRC)

The peer-to-peer remote copy (PPRC) service is a hardware-based remote copy service that provides a
synchronous volume copy across 3990 Model 6 storage subsystems. It is used for disaster recovery,
device migration, and workload migration. For example, PPRC enables you to switch to a recovery
system in the event of a disaster in an application system.

You can issue the CQUERY command to query the status of one volume of a PPRC volume pair or to
collect information about a volume in the simplex state. The CQUERY command is modified and enabled
to report on the status of S/390 attached CKD devices.

See DFSMS/MVS Remote Copy Administrator′s Guide and Reference, SC35-0169, for further information
on the PPRC service and the CQUERY command.

38 ABCs of OS/390 System Programming

1.8.8.2 Extended remote copy (XRC)

The extended remote copy (XRC) service is a DFSMSdfp function that automatically sends copies of
updated data to a remote recovery system with almost no impact to application system operations.
DFSMS system data mover, a DFSMSdfp component, provides support for XRC.

You can implement XRC with one or two systems. Let′s suppose that you have two systems: an
application system at one location and a recovery system at another. With these two systems in place,
XRC can automatically update your data on the remote disk storage subsystem as you make changes
to it on your application system.

You can use the XRC suspend/resume service for planned outages. You can still use this standard
XRC service on systems attached to the ESS if these systems are installed with the toleration or
transparency support.

The introduction of the ESS enhances this XRC capability. Now you can use the XRC suspend/resume
service to accommodate unplanned outages. With the enhanced XRC suspend/resume service, you do
not have to terminate your current XRC sessions during an unplanned outage. Instead, you just
“suspend” your existing XRC sessions and “restart” them. You can use the ESS copy service on
systems with the exploitation support.

1.8.8.3 Concurrent Copy

Concurrent Copy allows for an instant T0 copy (S/390 only). It works on a volume or data set basis and
uses cache side files in the ESS.

1.8.8.4 FlashCopy service

The FlashCopy service provides the appearance of instantaneous replication of a range of track
images. This service requires both the source and target volumes to reside in a single logical
subsystem. You can use the FlashCopy service to create copies for:

• Disaster recovery
• Business intelligence applications
• Data in a test environment
• Instantaneous checkpoints

The ESS FlashCopy service is compatible with the existing RAMAC Virtual Array (RVA) SnapShot
capability provided by DFSMSdss. Therefore, you can invoke the FlashCopy service on the ESS with
DFSMSdss.

Chapter 1. Introduction to DFSMS/MVS 39

Figure 24. StorWatch product highlights

1.8.9 StorWatch product highlights

StorWatch, IBM′s Enterprise Storage Resource Management (ESRM) solution, is a growing software
family whose goal is to enable storage administrators to efficiently manage storage resources from
any location within an enterprise; enabling widely dispersed, disparate storage resources to be viewed
and managed through a single, cohesive control point.

The product members of the StorWatch family are:

• StorWatch Reporter

• StorWatch Enterprise Storage Server Expert

• StorWatch Serial Storage Expert (StorX)

• StorWatch DFSMShsm Monitor Version 1 Release 1

• StorWatch Enterprise Storage Server Specialist

StorWatch products use a normal Web browser as the user interface. The only requirement is that the
browser must support Java 1.1.

StorWatch ESS Specialist

The StorWatch ESS Specialist comes with the ESS product. The ESS Specialist must be used to
configure an ESS. Apart from the configuration function for ESS the ESS Specialist can be used to
administer Copy Services functions to set up FlashCopy T0 copies or Peer-to-Peer Remote Copy. Also
there are functions for capacity planning and performance measurement.

40 ABCs of OS/390 System Programming

Figure 25. Introduction to tape processing

1.9 Introduction to tape processing

Tape are volumes that can be physically moved. You can store just sequential data sets on tape.
Tape volumes can be sent to a safe or to other data processing centers.

Internal labels are used to identify magnetic tape volumes and the data sets on those volumes. You
can process tape volumes with:

• IBM standard labels

• Labels that follow standards published by:

− International Organization for Standardization (ISO)

− American National Standards Institute (ANSI)

− Federal Information Processing Standard (FIPS)

• Nonstandard labels

• No labels.

Your installation can install a bypass for any type of label processing; however, the use of labels is
recommended as a basis for efficient control of your data.

IBM standard tape labels consist of volume labels and groups of data set labels. The volume label,
identifying the volume and its owner, is the first record on the tape. The data set label, identifying the
data set and describing its contents, precedes and follows each data set on the volume:

Chapter 1. Introduction to DFSMS/MVS 41

• The data set labels that precede the data set are called header labels.

• The data set labels that follow the data set are called trailer labels. They are almost identical to
the header labels.

• The data set label groups can include standard user labels at your option.

Usually, the formats of ISO and ANSI labels, which are defined by the respective organizations, are
similar to the formats of IBM standard labels.

Nonstandard tape labels can have any format and are processed by routines you provide. Unlabeled
tapes contain only data sets and tapemarks.

42 ABCs of OS/390 System Programming

Figure 26. SL and NL

1.9.1 Describing the labels

In the job control statements, you must provide a data definition (DD) statement for each data set to be
processed. The LABEL parameter of the DD statement is used to describe the data set′s labels. You
specify the type of labels by coding one of the following subparameters of the LABEL parameter as
shown in table Table 3:

Table 3 (Page 1 of 2). Types of labels

Code Meaning

SL IBM Standard Label

AL ISO/ANSI/FIPS labels

SUL Both IBM Standard and user header or trailer labels

AUL Both ISO/ANSI/FIPS and user header or trailer labels

NSL Nonstandard labels

NL No labels, but the existence of a previous label is verified

BLP Bypass label processing. The data set is treated in the same manner as if NL had been
specified, except that the system does not check for an existing volume label. The user is
responsible for the positioning. If your installation does not allow BLP, the data set is treated
exactly as if NL had been specified. Your job can use BLP only if Job Entry Subsystem (JES)
through Job class, RACF through Tapevol class, or DFSMSrmm(*) allow it.

Chapter 1. Introduction to DFSMS/MVS 43

Table 3 (Page 2 of 2). Types of labels

Code Meaning

LTM Bypass a leading tapemark, if encountered, on unlabeled tapes from VSE.

If you do not specify the label type, the operating system assumes that the data set has IBM standard
labels.

44 ABCs of OS/390 System Programming

Figure 27. Initializing tape cartridges

1.9.2 Initializing tape cartridges

You may initialize tape volumes with two utilities:

• IEHINITT utility

IEHINITT is a system utility used to place IBM volume label sets (no data set labels) written in
EBCDIC (BCD for seven-track), or ISO/ANSI/FIPS volume label sets written in ASCII (American
Standard Code for Information Interchange) onto any number of magnetic tapes mounted on one or
more tape units.

Because IEHINITT can overwrite previously labeled tapes regardless of expiration date and security
protection, IEHINITT should be moved into an authorized password-protected private library and
deleted from SYS1.LINKLIB. To further protect against overwriting the wrong tape, IEHINITT asks
the operator to verify each tape mount.

In the example, shown in Figure 28 on page 46, serial number TAPE1 is placed on a tape volume,
and serial numbers 001234 and 001235 are placed on two tape volumes. The labels are written in
EBCDIC at 800 and 1600 bits per inch respectively.

Chapter 1. Introduction to DFSMS/MVS 45

 //LABEL JOB ...
 //STEP1 EXEC PGM=IEHINITT
 //SYSPRINT DD SYSOUT=A
 //LABEL1 DD DCB=DEN=2,UNIT=(tape,1,DEFER)
 //LABEL2 DD DCB=DEN=3,UNIT=(tape,1,DEFER)
 //SYSIN DD *
 LABEL1 INITT SER=TAPE1
 LABEL2 INITT SER=001234,NUMBTAPE=2
 /*

Figure 28. IEHINITT example to write EBCDIC labels in different densities

In the example, shown in Figure 29, serial numbers 001234, 001244, 001254, 001264, 001274, and so
forth, are placed on eight tape volumes. The labels are written in EBCDIC at 800 bits per inch.
Each volume labeled is mounted, when it is required, on one of four nine-track tape units.

//LABEL4 JOB ...
 //STEP1 EXEC PGM=IEHINITT
 //SYSPRINT DD SYSOUT=A
 //LABEL DD DCB=DEN=2,UNIT=(tape,4,DEFER)
 //SYSIN DD *

LABEL INITT SER=001234
LABEL INITT SER=001244
LABEL INITT SER=001254
LABEL INITT SER=001264
LABEL INITT SER=001274
LABEL INITT SER=001284
LABEL INITT SER=001294
LABEL INITT SER=001304
/*

Figure 29. Place serial number on eight tape volumes

• EDGINERS utility

The EDGINERS utility program verifies that the volume is mounted before writing a volume label on
a labeled, unlabeled, or blank tape. EDGINERS does not check password or RACF security
protection, but it verifies whether the volume is defined to DFSMSrmm. DFSMSrmm must know
that the volume needs to be labelled. If the labelled volume is undefined, then DFSMSrmm defines
it to DFSMSrmm and can create RACF volume security protection.

Detailed procedures for using the program are described in DFSMS/MVS DFSMSrmm
Implementation and Customization Guide, SC26-4932.

46 ABCs of OS/390 System Programming

Figure 30. Tape capacity

1.9.3 Tape capacity

The capacity of a tape depends on the device type that is recording it. 3480 and 3490 tapes are
physically the same cartridges. The IBM 3590 high performance cartridge tape is not compatible with
the 3480, 3490, or 3490E drives. 3490 units can read 3480 cartridges, but cannot record as a 3480, and
3480 units cannot read or write as a 3490. Table 4 lists all IBM tape capacities supported since 1952.

Table 4. Tape capacity of various IBM products

Year Product Capacity (Mb) Transfer Rate (KB/S)

1952 IBM 726 1.4 7.5

1953 IBM 727 5.8 15

1957 IBM 729 23 90

1965 IBM 2401 46 180

1968 IBM 2420 46 320

1973 IBM 3420 180 1250

1984 IBM 3480 200 3000

1989 IBM 3490 200 4500

1991 IBM 3490E 400 9000

1992 IBM3490E 800 9000

1995 IBM 3590 Magstar 10000 (uncompacted) 20000 (uncompacted)

Chapter 1. Introduction to DFSMS/MVS 47

-

For further information about tape processing, see DFSMS/MVS Using Magnetic Tapes, SC26-4923.

48 ABCs of OS/390 System Programming

Figure 31. 3494 tape l ibrary

1.9.4 3494 tape library

Tape storage media can provide low-cost data storage for sequential files, inactive data, and vital
records. Because of the continued growth in tape use, tape automation has been seen as a way of
addressing an increasing number of challenges. Various solutions that provide tape automation are
available, including:

• The Automatic Cartridge Loader on IBM 3480 and 3490E tape subsystems, which provides quick
scratch (a volume with no valued data, used for output) mount.

• The Automated Cartridge Facility on the Magstar 3590 tape subsystem, which, working with
application software, can provide a 10-cartridge mini-tape library.

• The IBM 3494 (an automated tape library dataserver) which can provide up to 62 tape drives and
store up to 187 TB of compacted data. An automated tape library dataserver is a device consisting
of robotics components, cartridge storage areas (or shelves), tape subsystems, and controlling
hardware and software, together with the set of tape volumes that reside in the library and can be
mounted on the library tape drives.

• The Magstar Virtual Tape Server (VTS), which provides “volume stacking” capability and exploits
the capacity and bandwidth of Magstar 3590 technology.

IBM 3494 offers a wide range of models and features:

• Up to 62 tape drives.

Chapter 1. Introduction to DFSMS/MVS 49

• Support through the Library Control Unit for attachment of up to 15 additional frames including the
Magstar VTS, for a total of 16 frames, not including the High Availability unit.

• Cartridge storage capacity of 210 to 6240 tape cartridges.

• Data storage capacity of up to 62.4 TB of uncompacted data and 187 TB of compacted data.

• Support of the High Availability unit that provides a high level of availability for tape automation.

• Support of the Magstar VTS.

• Support for the IBM 3490E Model F1A tape drive, IBM 3490E Model CxA tape drives, IBM Magstar
3590 Model B1A tape drive, and IBM Magstar 3590 Model A00 or A50 tape controller.

• Attachment to and sharing by multiple host systems, such as S/390, RS/6000, AS/400, HP, and Sun
processors.

• Data paths through SCSI-2, ESCON, and parallel channels depending on the tape subsystem
installed.

• Library management commands through RS-232, a local area network (LAN), and parallel and
ESCON channels.

50 ABCs of OS/390 System Programming

Figure 32. Introduction to VTS

1.10 Introduction to VTS

The IBM Magstar Virtual Tape Server (VTS), integrated with the IBM Tape Library Dataservers (3494),
delivers an increased level of storage capable to the traditional storage products hierarchy. The host
software sees VTS as a 3490 Enhanced Capability (3490E) Tape Subsystem with associated standard
(CST) or Enhanced Capacity Cartridge System Tapes (ECCST). This virtualization of both the tape
devices and the storage media to the host allows for transparent utilization of the capabilities of the
IBM 3590 tape technology.

Along with introducing the IBM Magstar VTS, IBM introduced new views of volumes and devices
because of the different knowledge about volumes and devices in the host system and the hardware.
Using a VTS subsystem, the host application writes tape data to virtual devices. The volumes created
by the hosts are called Virtual Volumes and are physically stored in a tape volume cache which is built
from RAID DASD.

Through tape volume cache management policies, the VTS management software moves host-created
volumes from the tape volume cache to a Magstar cartridge managed by the VTS subsystem. When a
virtual volume is moved from the tape volume cache to tape, it becomes a logical volume.

VTS looks like an automatic tape library with 32 3490E drives, 50000 volumes in 37 square feet. Its
major components are:

• Magstar 3590 (three or six tape drives) with two ESCON channels

• Magstar 3494 Tape Library

Chapter 1. Introduction to DFSMS/MVS 51

• Fault tolerant RAID-1 disks (36-Gb or 72-Gb)

• RISC Processor

VTS provides the following functions:

• 32 3490E virtual devices.

• Tape volume cache (implemented in a RAID-1 disk), it contains virtual volumes. At close time the
virtual volume is copied to logical volumes in the 3590 tape volumes:

− Analogous to DASD cache

− Data access through the Cache

− Dynamic space management

− Cache hits eliminate tape mounts

• Up to six 3590 tape drives, the real 3590 volume contains logical volumes. Installation sees up to
50,000 volumes.

• Stacked 3590 tape volumes managed by the 3494.

VTS is expected to provide a ratio of 59:1 in volume reduction with dramatic savings in all tape
hardware (drives, controllers, and robots).

52 ABCs of OS/390 System Programming

Figure 33. Utilities

1.11 Introduction to utilities

DFSMS/MVS provides utility programs to assist you in organizing and maintaining data. Utilities are
programs which perform commonly needed functions. See “Guide to Utility Program Functions” in
topic 1.1 of DFSMS/MVS Utilities, SC26-4926, to help you find the program that performs the function
you need.

1.11.1 System utilities programs

System utility programs are used to list or change information related to data sets and volumes, such
as data set names, catalog entries, and volume labels. Most functions that system utility programs can
perform are performed more efficiently with other programs, such as IDCAMS, ISMF, or DFSMSrmm.
See Table 5 for a description of system utilities. The ones logically replaced are marked with an
asterisk (*):

Table 5 (Page 1 of 2). System uti l i ty programs

System utility Alternate program Purpose

*IEHINITT DFSMSrmm EDGINERS Write standard labels on tape
volumes.

IEHLIST ISMF, PDF 3.4 List system control data.

*IEHMOVE DFSMSdss, IEBCOPY Move or copy collections of data.

Chapter 1. Introduction to DFSMS/MVS 53

Table 5 (Page 2 of 2). System uti l i ty programs

System utility Alternate program Purpose

IEHPROGM PDF 3.2, Access Method Services Build and maintain system control
data.

*IFHSTATR DFSMSrmm, EREP Select, format, and write
information about tape errors
from the IFASMFDP tape.

1.11.2 Data set utility programs

You can use data set utility programs to reorganize, change, or compare data at the data set or record
level. These programs are controlled by JCL statements and utility control statements.

These utilities allow you to manipulate partitioned, sequential or indexed sequential data sets, or
partitioned data sets extended (PDSEs), which are provided as input to the programs. You can
manipulate data ranging from fields within a logical record to entire data sets.

The data set utilities included in this topic cannot be used with VSAM data sets. Information about
VSAM data sets can be found in DFSMS/MVS Using Data Sets, SC26-4922, and in a later topic 1.15,
“Access method services” on page 70.

Table 6 is a list of data set utility programs and their use.

Table 6. Data set uti l i ty programs

Data set utility Use

*IEBCOMPR, SuperC, (PDF 3.12) Compare records in sequential or partitioned data
sets, or PDSEs.

IEBCOPY Copy, compress, or merge partitioned data sets or
PDSEs; add RLD count information to load modules;
select or exclude specified members in a copy
operation; rename or replace selected members of
partitioned data sets or PDSEs.

IEBDG Create a test data set consisting of patterned data.

IEBEDIT Selectively copy job steps and their associated JOB
statements.

IEBGENER or ICEGENER Copy records from a sequential data set or convert
a data set from sequential organization to
partit ioned organization.

*IEBIMAGE or AMS REPRO Modify, print, or link modules for use with the IBM
3800 Printing Subsystem, the IBM 3262 Model 5, or
the 4248 printer.

*IEBISAM Unload, load, copy, or print an ISAM data set.

IEBPTPCH or PDF 3.1 or 3.6 Print or punch records in a sequential or partitioned
data set.

IEBUPDTE Incorporate changes to sequential or partitioned
data sets, or PDSEs.

System and data set utility programs are controlled by job control and utility control statements. The
job control and utility control statements necessary to use utility programs are provided in the major
discussion of each utility program; for more information about control statements refer to DFSMS/MVS
Utilities, SC26-4926. The next visuals show a few examples of using utility programs.

54 ABCs of OS/390 System Programming

Figure 34. IEFBR14

1.11.3 IEFBR14

IEFBR14 is not a utility program, it is a two-line program that clears register 15, thus passing a return
code of 0, and then branches to the address in register 14, which returns control to the system. So, in
other words this program is dummy program. It can be used in a step to force MVS (specifically, the
initiator) to process the JCL code and execute some functions as:

• Checks all the job control statements in the step for syntax

• Allocates direct access space for data sets

• Performs data set dispositions.

Considerations when using IEFBR14

Although the system allocates space for data sets, it does not initialize the new data sets. Therefore,
any attempt to read from one of these new data sets in a subsequent step may produce unpredictable
results. Also, IBM does not recommend allocation of multi-volume data sets while executing IEFBR14.

Chapter 1. Introduction to DFSMS/MVS 55

Figure 35. IEBCOMPR

1.11.4 IEBCOMPR (compare data set) program

IEBCOMPR is a data set utility used to compare two sequential data sets, two partitioned data sets, or
two PDSEs at the logical record level to verify a backup copy. Fixed, variable, or undefined records
from blocked or unblocked data sets or members can also be compared. However, you should not use
IEBCOMPR to compare load modules.

Two sequential data sets are considered equal, that is, are considered to be identical, if:

• The data sets contain the same number of records, and

• Corresponding records and keys are identical

Two partitioned data sets or two PDSEs are considered equal if:

• Corresponding members contain the same number of records

• Note lists are in the same position within corresponding members

• Corresponding records and keys are identical

• Corresponding directory user data fields are identical

If all these conditions are not met for a specific type of data set, those data sets are considered
unequal. If records are unequal, the record and block numbers, the names of the DD statements that
define the data sets, and the unequal records are listed in a message data set. Ten successive
unequal comparisons stop the job step, unless you provide a routine for handling error conditions.

56 ABCs of OS/390 System Programming

Load module partitioned data sets that reside on different types of devices should not be compared.
Under most circumstances, the data sets will not compare as equal.

Partitioned data sets or PDSEs can be compared only if all the names in one or both of the directories
have counterpart entries in the other directory. The comparison is made on members identified by
these entries and corresponding user data.

Chapter 1. Introduction to DFSMS/MVS 57

Figure 36. Directories of PO that can be compared

1.11.5 Data sets that can be compared

This visual shows the directories of two partitioned data sets. Directory 2 contains corresponding
entries for all the names in Directory 1; therefore, the data sets can be compared.

58 ABCs of OS/390 System Programming

Figure 37. Directories of PO that cannot be compared

1.11.6 Data sets that cannot be compared

This visual shows the directories of two partitioned data sets. Each directory contains a name that has
no corresponding entry in the other directory; therefore, the data sets cannot be compared, and the job
step will be ended.

User exits are provided for optional user routines to process user labels handle error conditions, and
modify source records. See Appendix C, “Specifying User Exits with Utility Programs” topic C.0 of
DFSMS/MVS Utilities, SC26-4926, for a discussion of the linkage conventions to be followed when user
routines are used.

Chapter 1. Introduction to DFSMS/MVS 59

Figure 38. IEBCOPY

1.12 IEBCOPY

IEBCOPY is a data set utility used to copy or merge members between one or more partitioned data
sets, or partitioned data sets extended (PDSE), in full or in part. You can also use IEBCOPY to create a
backup of a partitioned data set into a sequential data set (called an unload data set or PDSU), and to
copy members from the backup into a partitioned data set.

IEBCOPY is used to:

• Make a copy of a partitioned data set or PDSE

• Merge partitioned data sets (except when unloading)

• Create a sequential form of a partitioned data set or PDSE for a back up or transport

• Reload one or more members from a PDSU into a partitioned data set or PDSE

• Select specific members of a partitioned data set or PDSE to be copied, loaded, or unloaded

• Replace members of a partitioned data set or PDSE

• Rename selected members of a partitioned data set or PDSE

• Exclude members from a data set to be copied, unloaded, or loaded (except on COPYGRP)

• Compress a partitioned data set in place

• Upgrade an OS format load module for faster loading by MVS program fetch

• Copy and reblock load modules

60 ABCs of OS/390 System Programming

• Convert load modules in a partitioned data set to program objects in a PDSE when copying a
partitioned data set to a PDSE

• Convert a partitioned data set to a PDSE or a PDSE to a partitioned data set

• Copy to or from a PDSE data set, a member and its aliases together as a group (COPYGRP)

In addition, IEBCOPY automatically lists the number of unused directory blocks and the number of
unused tracks available for member records in the output partitioned data set.

Chapter 1. Introduction to DFSMS/MVS 61

Figure 39. IEBCOPY copy operation

1.12.1 IEBCOPY copy operation

In this example, two input partitioned data sets (data set5 and data set6) are copied to an existing
output partitioned data set (data set1). In addition, all members on data set6 are copied; members on
the output data set that have the same names as the copied members are replaced. After data set6 is
processed, the output data set (data set1) is compressed in place. The visual shows the input and
output data sets before and after copy processing. The compress process will be shown in Figure 40
on page 64.

Following is the JOB that is used to copy and compress partitioned data sets:

//COPY JOB ...
//JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//INOUT1 DD DSNAME=data set1,UNIT=disk,VOL=SER=111112,
// DISP=(OLD,KEEP)
//IN5 DD DSNAME=data set5,UNIT=disk,VOL=SER=111114,
// DISP=OLD
//IN6 DD DSNAME=data set6,UNIT=disk,VOL=SER=111115,
// DISP=(OLD,KEEP)
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1))

 //SYSIN DD *
 COPYOPER COPY OUTDD=INOUT1,INDD=(IN5,(IN6,R),INOUT1)
 /*

62 ABCs of OS/390 System Programming

The control statment is discussed below:

• INOUT1 DD defines a partitioned data set (data set1), which contains three members (A, B, and F).

• IN5 DD defines a partitioned data set (data set5), which contains two members (A and C).

• IN6 DD defines a partitioned data set (data set6), which contains three members (B, C, and D).

• SYSUT3 and SYSUT4 DD define temporary spill data sets. One track is allocated for each on a disk
volume.

• SYSIN DD defines the control data set, which follows in the input stream. The data set contains a
COPY statement.

• COPY indicates the start of the copy operation. The OUTDD operand specifies data set1 as the
output data set.

Processing occurs as follows:

 1. Member A is not copied from data set5 into data set1 because it already exists on data set1 and
the replace option was not specified for data set5.

 2. Member C is copied from data set5 to data set1, occupying the first available space.

 3. All members are copied from data set6 to data set1, immediately following the last member.
Members B and C are copied even though the output data set already contains members with the
same names because the replace option is specified on the data set level.

Chapter 1. Introduction to DFSMS/MVS 63

Figure 40. IEBCOPY compress operation

1.12.2 IEBCOPY compress operation

The pointers in data set1′s directory are changed to point to the new members B and C. Thus, the
space occupied by the old members B and C is unused. The members currently on data set1 are
compressed in place, thereby eliminating embedded unused space.

64 ABCs of OS/390 System Programming

Figure 41. IEBGENER

1.13 IEBGENER

You can use IEBGENER to:

• Create a backup copy of a sequential data set or a member of a partitioned data set or PDSE.

• Produce a partitioned data set or PDSE, or a member of a partitioned data set or PDSE, from a
sequential data set.

• Expand an existing partitioned data set or PDSE by creating partitioned members and merging
them into the existing data set.

• Produce an edited sequential or partitioned data set or PDSE.

• Manipulate data sets containing double-byte character set data.

• Print sequential data sets or members of partitioned data sets or PDSEs.

• Reblock or change the logical record length of a data set.

Note: If you have the DFSORT product installed, you should be using ICEGENER as an alternative to
IEBGENER when making an unedited copy of a data set or member. It may already be installed in your
system under the name IEBGENER. It generally gives better performance.

Chapter 1. Introduction to DFSMS/MVS 65

Figure 42. Adding members to a PDS using IEBGENER

1.13.1 Adding members to a PDS using IEBGENER

You can use IEBGENER to add members to a partitioned data set or PDSE. IEBGENER creates the
members from sequential input and adds them to the data set. The merge operation—the ordering of
the partitioned directory—is automatically performed by the program.

Figure 42 shows how sequential input is converted into members that are merged into an existing
partitioned data set or PDSE. The left side of the figure shows the sequential input that is to be
merged with the partitioned data set or PDSE shown in the middle of the figure. Utility control
statements are used to divide the sequential data set into record groups and to provide a member
name for each record group. The right side of the figure shows the expanded partitioned data set or
PDSE. Note that members B, D, and F from the sequential data set were placed in available space and
that they are sequentially ordered in the partitioned directory

66 ABCs of OS/390 System Programming

Figure 43. Copying data to tape

1.13.2 Copying data to tape

You can use IEBGENER to copy data to tape. The following example copies the data set MY.DATA to
an SL cartridge.

//DISKTOTP JOB ...
 //STEP1 EXEC PGM=IEBGENER
 //SYSPRINT DD SYSOUT=A
 //SYSUT1 DD DSNAME=MY.DATA,DISP=SHR
 //SYSUT2 DD DSNAME=MY.DATA.OUTPUT,UNIT=3490,DISP=(,KEEP),
 // VOLUME=SER=IBM001,LABEL=(1,SL)
 //SYSIN DD *

For further information about IEBGENER, refer to DFSMS/MVS Utilities, SC26-4926.

Chapter 1. Introduction to DFSMS/MVS 67

Figure 44. IEHLIST

1.14 IEHLIST

IEHLIST is a system utility used to list entries in a CVOL, entries in the directory of one or more
partitioned data sets or PDSEs, or entries in an indexed or non-indexed volume table of contents. Any
number of listings can be requested in a single execution of the program.

IEHLIST lists all CVOL (SYSCTLG data set) entries that are part of the structure of a fully qualified data
set name.

IEHLIST will not list integrated catalog facility or VSAM catalogs. To list integrated catalog facility or
VSAM catalogs, use access method services. For more information, see DFSMS/MVS Access Method
Services for the Integrated Catalog Facility, SC26-4906.

IEHLIST can list up to 10 partitioned data set or PDSE directories at a time.

The directory of a partitioned data set is composed of variable-length records blocked into 256-byte
blocks. Each directory block can contain one or more entries that reflect member or alias names and
other attributes of the partitioned members. IEHLIST can list these blocks in edited and unedited
format.

The directory of a PDSE, when listed, will have the same format as the directory of a partitioned data
set.

68 ABCs of OS/390 System Programming

Figure 45. LISTVTOC output

1.14.1 LISTVTOC output

Running the job shown in Figure 44 on page 68, you will have a SYSOUT very similar with the one that
is shown in Figure 45.

If you include the keyword FORMAT in the LISTVTOC parameter, you will have more detailed
information about the DASD and about the data sets, you can also specify the DSNAME that you want
to request information about. This information is at DASD volume level, and does not have any
interaction with the catalog.

For more detailed information about the utilities explained in this book and other utilities, refer to
DFSMS/MVS Utilities, SC26-4926.

Chapter 1. Introduction to DFSMS/MVS 69

Figure 46. Access method services

1.15 Access method services

Access method services is a utility you can use to establish and maintain catalogs and data sets
(VSAM and non-VSAM).

There are two types of access method services commands:

• Functional commands, used to request the actual work (for example, defining a data set or listing a
catalog).

• Modal commands that allow the conditional execution of functional commands (it looks like a
language). Time sharing option (TSO) users can use functional commands only. For more
information about modal commands, refer to DFSMS/MVS Access Method Services for the
Integrated Catalog Facility, SC26-4906.

The Storage Management Subsystem (SMS) automates many access method services commands and
their parameters. The automatic class selection (ACS) routines (established by your storage
administrator) and the associated SMS classes eliminate the need to use many access method
services command parameters. We will discuss more about the SMS environment later in this chapter.

70 ABCs of OS/390 System Programming

1.15.1 Invoking access method services

When you want to use an access method services function, enter a command and specify its
parameters. Your request is decoded one command at a time; the appropriate functional routines
perform all services required by that command.

You can call the access method services program:

• As a job or jobstep

• From a TSO session

• From within your own program

You can run the IDCAMS program (the execution part of access method services) and include the
command and its parameters as input to the program. You can also call the IDCAMS program from
within another program and pass the command and its parameters to the IDCAMS program.

Time Sharing Option (TSO) users can run access method services functional commands from a TSO
session as though they were TSO commands.

For more information, refer to “Invoking Access Method Services from Your Program” in topic D.0, in
DFSMS/MVS Access Method Services for the Integrated Catalog Facility, SC26-4906.

1.15.1.1 As a job or jobstep

You can use (JCL) statements to call access method services. PGM=IDCAMS identif ies the access
method services program.

//YOURJOB JOB YOUR INSTALLATION′ S JOB=ACCOUNTING DATA
 //STEP1 EXEC PGM=IDCAMS
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *

access method services commands and their parameters

/*

1.15.1.2 From a Time Sharing Option (TSO) session

You can use TSO with VSAM and access method services to:

• Run access method services commands

• Run a program to call access method services

Each time you enter an access method services command as a TSO command, TSO builds the
appropriate interface information and calls access method services.

You can enter one command at a time. Access method services processes the command completely
before TSO lets you continue processing. Except for ALLOCATE, all the access method services
functional commands are supported in a TSO environment.

For more information, refer to DFSMS/MVS Access Method Service for the Integrated Catalog Facility,
SC26-4906.

1.15.1.3 From within your own program

You can also call the IDCAMS program from within another program and pass the command and its
parameters to the IDCAMS program

Chapter 1. Introduction to DFSMS/MVS 71

Figure 47. Functional commands

1.15.2 Functional commands

Table 7 describes the utilization of the functional commands.

Table 7 (Page 1 of 2). Functional commands

Command Function

ALLOCATE Creates VSAM and non-VSAM data sets.

ALTER Alters attributes of data sets, catalogs, tape library entries, and tape volume
entries that have already been defined.

BLDINDEX Builds alternate indexes (AI) for existing data sets.

CNVTCAT Converts VSAM catalog and CVOL entries to integrated catalog facility catalog
entries.

CREATE Creates tape library entries and tape volume entries.

DCOLLECT Collects data set, volume usage, and migration util ity information.

DEFINE ALIAS Defines an alternate name for a non-VSAM data set or a user catalog. In AMS
jargon defines means create and when applied to VSAM data sets implies
catalog (after the creation) as well.

DEFINE
ALTERNATEINDEX

Defines an alternate index in the catalog.

DEFINE CLUSTER Defines (creates and catalogs) a cluster for an entry-sequenced, key-sequenced,
linear, or relative record data set.

72 ABCs of OS/390 System Programming

Table 7 (Page 2 of 2). Functional commands

Command Function

DEFINE
GENERATIONDATAGROUP

Defines a catalog entry for a generation data group.

DEFINE NONVSAM Defines a catalog entry for a non-VSAM data set

DEFINE PAGESPACE Defines an entry for a page space data set.

DEFINE PATH Defines a path directly over a base cluster or over an alternate index and its
related base cluster.

USERCATALOG /
MASTERCATALOG

Defines a catalog.

DELETE Deletes catalogs, VSAM data sets, and non-VSAM data sets.

DIAGNOSE Scans an integrated catalog facility basic catalog structure (BCS) or a VSAM
volume data set (VVDS) to validate the data structures and detect structure
errors.

EXAMINE Analyzes and reports the structural consistency of either an index or data
component of a key-sequence data set cluster.

EXPORT Exports VSAM data sets (including alternate index) and integrated catalog facility
backups. Export means the creation of a non-executable copy of the VSAM entity.
This copy is suitable to be recorded in tape to be exported to another data center
or a safe. To process data that was exported, an import is a must.

EXPORT DISCONNECT Export disconnects a user catalog.

IMPORT Imports VSAM data sets and integrated catalog facility catalogs.

IMPORT CONNECT Connects a user catalog or a volume catalog.

LISTCAT Lists catalog entries

PRINT Used to print VSAM data sets, non-VSAM data sets, and catalogs.

REPRO Performs the following functions:

• Copies VSAM and non-VSAM data sets, user catalogs, master catalogs, and
volume catalogs.

• Splits integrated catalog facility catalog entries between two catalogs.

• Merges integrated catalog facility catalog entries into another integrated
catalog facility user or master catalog.

• Merges tape library catalog entries from one volume catalog into another
volume catalog.

SHCDS Lists SMSVSAM recovery related to online applications and spheres accessed in
RLS mode.

VERIFY Causes a catalog to correctly reflect the end of a data set after an error occurred
while closing a VSAM data set. The error might have caused the catalog to be
incorrect.

For a complete description of all AMS commands, refer to DFSMS/MVS Access Method Service for the
Integrated Catalog Facility, SC26-4906.

Chapter 1. Introduction to DFSMS/MVS 73

Figure 48. Data Collection Facility (DCOLLECT)

1.16 Data Collection Facility (DCOLLECT)

DCOLLECT is an IDCAMS command. ISMF provides the option to build the JCL necessary to execute
DCOLLECT.

An installation may collect information related to:

• Active data set storage

• VSAM association name

• Volume usage

• DFSMShsm backup and migration storage

• DFSMShsm DASD and tape capacity planning

Data is gathered from the VTOC, VVDS, and DFSMShsm control data set for both managed and
non-managed storage.

The output of DCOLLECT is a sequential data set. To generate reports from the collected data relating to
space management, capacity planning, and cost accounting, consider:

• SLR (Service Level Reporter) V3.2 with APAR PL54270 provides support for DCOLLECT data by
including a starter set of log, summary, and parameter tables and views. It also includes a report
dialog with a variety of predefined reports.

74 ABCs of OS/390 System Programming

• DB2 can also be used to hold DCOLLECT data. Data resides in a relational database structure, and
can be presented to users in a table format.

• User written applications can manipulate DCOLLECT′ s sequential output data set to generate reports.

For more information, see the following publications:

• DFSMS/MVS Access Method Service for the Integrated Catalog Facility, SC26-4906

• Service Level Reporter User′s Guide: Reporting, SH19-6530

Chapter 1. Introduction to DFSMS/MVS 75

Figure 49. AMS modal commands

1.16.1 AMS modal commands

There are two types of access method services commands: functional commands, used to request the
actual work (for example, defining a data set or listing a catalog), and modal commands that allow the
conditional execution of functional commands. Time Sharing Option (TSO) users can use functional
commands only.

This visual shows a brief description of the AMS modal commands. These commands cannot be used
when access method services is run in TSO. See DFSMS/MVS Access Method Services for the
Integrated Catalog Facility, SC26-4906, for a complete description of the AMS modal commands.

76 ABCs of OS/390 System Programming

Figure 50. Generation data groups

1.17 Generation data groups (GDG)

You can catalog successive updates or generations of related data sets. They are called generation
data groups (GDG). Each data set within a GDG is called a generation data set or generation. Within
a GDG, the generations can have like or unlike DCB attributes and data set organizations. If the
attributes and organizations of all generations in a group are identical, the generations can be
retrieved together as a single data set.

Generation data sets can be sequential, direct, or indexed sequential (an old and less used data set
organization, replaced by VSAM KSDS). They cannot be partitioned, HFS, or VSAM. The same GDG
may contain SMS and non-SMS data sets.

There are advantages to grouping related data sets. For example, the catalog management routines
can refer to the information in a special index called a generation index in the catalog. Thus:

• All of the data sets in the group can be referred to by a common name.

• The operating system is able to keep the generations in chronological order.

• Outdated or obsolete generations can be automatically deleted by the operating system.

Another advantage is the ability to reference to a new generation using the same JCL.

Generation data sets have sequentially ordered absolute and relative names that represent their age.
The catalog management routines use the absolute generation name. Older data sets have smaller
absolute numbers. The relative name is a signed integer used to refer to the latest (0), the next to the

Chapter 1. Introduction to DFSMS/MVS 77

latest (-1), and so forth, generation. For example, a data set name LAB.PAYROLL(0) refers to the most
recent data set of the group; LAB.PAYROLL(-1) refers to the second most recent data set; and so forth.
The relative number can also be used to catalog a new generation (+1).

If you create a generation data set with a relative generation number of (+1), the system recognizes
any subsequent reference to (+1) throughout the job as having the same absolute generation number.

A GDG base is allocated in an integrated catalog facility or VSAM catalog before the generation data
sets are cataloged. Each GDG is represented by a GDG base entry. Use the AMS DEFINE command to
allocate the GDG base.

The model DSCB must exist on the GDG catalog volume.

78 ABCs of OS/390 System Programming

Figure 51. Defining a GDG

1.17.1 Defining a generation data group

The DEFINE GENERATIONDATAGROUP command creates a catalog entry for a generation data group (GDG).

Following is an example of a DEFINE GDG.

//DEFGDG1 JOB ...
 //STEP1 EXEC PGM=IDCAMS
 //GDGMOD DD DSNAME=GDG01,DISP=(,KEEP),
 // SPACE=(TRK,(0)),UNIT=DISK,VOL=SER=VSER03,
 // DCB=(RECFM=FB,BLKSIZE=2000,LRECL=100)
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *

DEFINE GENERATIONDATAGROUP -
(NAME(GDG01) -
NOEMPTY -
NOSCRATCH -
LIMIT(255))

/*

The DEFINE GENERATIONDATAGROUP command defines a GDG base catalog entry GDG01. Its parameters
are:

• NAME specifies the name of the GDG, GDG01. Each GDS in the group will have the name
GDG01.GxxxxVyy, where xxxx is the generation number and yy is the version number.

Chapter 1. Introduction to DFSMS/MVS 79

• NOEMPTY specifies that only the oldest generation data set is to be uncataloged when the
maximum is reached (recommended).

• EMPTY specifies that all data sets in the group are to be uncataloged by VSAM when the group
reaches the maximum number of data sets (as specified by the LIMIT parameter) and one more
GDS is added to the group.

• NOSCRATCH specifies that when a data set is uncataloged, its DSCB is not to be removed from its
volume ′s VTOC. Therefore, even if a data set is uncataloged, its records can be accessed when it
is allocated to a job step with the appropriate JCL DD statement.

• LIMIT specifies that the maximum number of GDG data sets in the group is 255. The LIMIT
parameter is required.

Next, a generation data set is defined within the GDG by using JCL statements.

//DEFGDG2 JOB ...
 //STEP1 EXEC PGM=IEFBR14
 //GDGDD1 DD DSNAME=GDG01(+1),DISP=(NEW,CATLG),
 // SPACE=(TRK,(10,5)),VOL=SER=VSER03,
 // UNIT=DISK
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *
 /*

The job DEFGDG2, allocates space and catalogs a GDG data set in the newly-defined GDG. The job
control statement GDGDD1 DD specifies the GDG data set in the GDG.

80 ABCs of OS/390 System Programming

Figure 52. Absolute generation and version numbers

1.17.2 Absolute generation and version numbers

An absolute generation and version number is used to identify a specific generation of a generation
data group. A same generation data set may have different versions, which are maintained by your
installation. The version number allows you to perform normal data set operations without disrupting
the management of the generation data group. For example, if you want to update the second
generation in a three-generation group, replace generation 2, version 0, with generation 2, version 1.
Only one version is kept for each generation.

The generation and version number are in the form GxxxxVyy, where xxxx is an unsigned four-digit
decimal generation number (0001 through 9999) and yy is an unsigned two-digit decimal version
number (00 through 99). For example:

• A.B.C.G0001V00 is generation data set 1, version 0, in generation data group A.B.C.
• A.B.C.G0009V01 is generation data set 9, version 1, in generation data group A.B.C.

The number of generations and versions is limited by the number of digits in the absolute generation
name; that is, there can be 9,999 generations. Each generation can have 100 versions.

The system automatically maintains the generation number. The number of generations kept depends
on the size of the generation index. For example, if the size of the generation index allows ten entries
(parameter LIMIT in AMS DEFINE), the ten latest generations can be maintained in the generation data
group (parameter NOEMPTY in AMS DEFINE).

Chapter 1. Introduction to DFSMS/MVS 81

You can catalog a generation using either absolute or relative numbers. When a generation is
cataloged, a generation and version number is placed as a low-level entry in the generation data
group. To catalog a version number other than V00, you must use an absolute generation and version
number.

82 ABCs of OS/390 System Programming

Figure 53. Relative generation numbers

1.17.3 Relative generation number

As an alternative to using absolute generation and version numbers when cataloging or referring to a
generation, you can use a relative generation number. To specify a relative number, use the
generation data group name followed by a negative integer, a positive integer, or a zero (0), enclosed
in parentheses. For example, A.B.C(-1). A.B.C(+1), or A.B.C(0).

The value of the specified integer tells the operating system what generation number to assign to a
new generation data set, or it tells the system the location of an entry representing a previously
cataloged old generation data set.

When you use a relative generation number to catalog a generation, the operating system assigns an
absolute generation number and a version number of V00 to represent that generation. The absolute
generation number assigned depends on the number last assigned and the value of the relative
generation number that you are now specifying. For example if, in a previous job generation,
A.B.C.G0006V00 was the last generation cataloged, and you specify A.B.C(+1), the generation now
cataloged is assigned the number G0007V00.

Though any positive relative generation number can be used, a number greater than 1 can cause
absolute generation numbers to be skipped for a new generation data set. For example, if you have a
single step job, and the generation being cataloged is a +2, one generation number is skipped.
However, in a multiple step job, one step might have a +1 and a second step a +2, in which case no
numbers are skipped.

Chapter 1. Introduction to DFSMS/MVS 83

The mapping between relative and absolute numbers are kept until the end of the job

1.17.4 Rolled in and rolled off

When a generation data group contains its maximum number of active generation data sets, defined in
the LIMIT parameter, and a new generation data set is rolled in at end-of-job step, the oldest
generation data set is rolled off and is no longer active. If a generation data group is defined using
DEFINE GENERATIONDATAGROUP EMPTY, and is at its limit, then, when a new generation data set is rolled in,
all the currently active generation data sets are rolled off.

The parameters you specify on the DEFINE GENERATIONDATAGROUP command determines what happens to
rolled off generation data sets. For example, if you specify the SCRATCH parameter, the generation
data set is scratched when it is rolled off. If you specify the NOSCRATCH parameter, the rolled off
generation data set is re-cataloged as rolled off and is disassociated with its generation data group.

Generation data sets can be in a deferred roll-in state if the job never reached end-of-step or if they
were allocated as DISP=(NEW,KEEP) and the data set is not system-managed. Generation data sets
in a deferred roll-in state can be referred to by their absolute generation numbers. You can use the
access method service command ALTER ROLLIN to roll in these generation data sets.

For further information about Generation Data Groups, refer to DFSMS/MVS Using Data Sets,
SC26-4922.

84 ABCs of OS/390 System Programming

Figure 54. Access method functions

1.18 Access method functions

An access method is a friendly interface between programs and their data. It is in charge of
interfacing with Input Output Supervisor (IOS), and the MVS code which starts the I/O operation. An
access method:

• Makes transparent to you the physical organization of data, by:

− Managing data buffers

− Synchronizing your task and the I/O operation (Wait/Post mechanism)

− Writing the channel program

− Optimizing the performance characteristics of the control unit (such as caching and data
striping)

− Compressing and decompressing I/O data

• Executes software error recovery

An access method defines the technique by which the data is stored and retrieved. DFSMS/MVS
access methods have their own data set structures for organizing data, macros to define and process
data sets, and utility programs to process data sets.

Access methods are identified primarily by the data set organization to which they apply. For example,
you can use the basic sequential access method (BSAM) with sequential data sets. However, there
are times when an access method identified with one organization can be used to process a data set

Chapter 1. Introduction to DFSMS/MVS 85

organized in a different manner. For example, a sequential data set (not extended format data set)
created using BSAM can be processed by the basic direct access method (BDAM), and vice versa.

86 ABCs of OS/390 System Programming

Figure 55. Major DFSMS/MVS access methods

1.18.1 Major DFSMS/MVS access methods

Basic Direct Access Method (BDAM) arranges records in any sequence your program indicates, and
retrieves records by actual or relative address. If you do not know the exact location of a record, you
can specify a point in the data set where a search for the record is to begin. Data sets organized this
way are called direct data sets.

IBM does not recommended using BDAM because it tends to require using device-dependent code. In
addition, using keys is much less efficient than in virtual sequential access method (VSAM). BDAM is
supported by DFSMS/MVS only to enable compatibility with other IBM operating systems. Appendix C,
“Processing Direct Data Sets” in DFSMS/MVS Using Data Sets, SC26-4922.

Object Access Method (OAM) processes very large named byte streams (objects) that have no record
boundary or other internal orientation. These objects can be recorded in a DB2 data base or on an
optical storage volume. For information on OAM, see DFSMS/MVS Object Access Method Application
Programmer ′s Reference, SC26-4917, and DFSMS/MVS Object Access Method Planning, Installation,
and Storage Administration Guide for Object Support, SC26-4918.

Chapter 1. Introduction to DFSMS/MVS 87

Figure 56. BPAM and PDSE

1.18.2 BPAM to access PDS and PDSE

Basic Partitioned Access Method (BPAM) arranges records as members of a partitioned data set (PDS)
or a partitioned data set extended (PDSE) on DASD. You can view each member like a sequential data
set. A partitioned data set or PDSE includes a directory that relates member names to locations within
the data set. The directory is used to retrieve individual members, and for program libraries (load
modules and program objects) contains program attributes required to load and re-bind the member.

88 ABCs of OS/390 System Programming

Figure 57. PDS and PDSE data organization

1.18.3 PDS and PDSE data organizations

Partitioned data set (PDS) is an old MVS data organization, which has good features such as:

• Easier management: Grouping of related data sets under a single name makes MVS data
management easier. Files stored as members of a PDS can be processed either individually or all
the members can be processed as a unit.

• Space savings: Small members fit in just one DASD track.

• Good usability: Members of a PDS can be used as sequential data sets, and they can be
concatenated to sequential data sets. They are also easy to create with JCL, or ISPF; they are
easy to manipulate with ISPF utilities or TSO commands.

However, there are a few requirements for improvement regarding the PDS organization:

• There is no mechanism to reuse the area which contained a deleted or re-written member. This
unused space must be reclaimed by the use of the IEBCOPY utility function called compression.

• Directory size is not expandable, causing an overflow exposure. The area for members may grow
using secondary allocations. This is not true for the directory.

• A PDS has no mechanism to stop the directory from being overwritten if a program mistakenly
opens it for sequential output. If it happens, the directory is destroyed, and all the members are
lost. Also, PDS DCB attributes can be easily changed by mistake. If you add a member whose
DCB characteristics differ from those of the other members, you will change the DCB attributes of
the entire PDS, and all the old members will become unusable.

Chapter 1. Introduction to DFSMS/MVS 89

• Better directory search time. Entries in the directory are physically ordered by the collating
sequence of the names in the members they are pointing to. Any inclusion may cause the full
rearrange of the entries. There is also no index to the directory entries. The search is sequential
using a CKD format. If the directory is big, the I/O operation takes more time.

• Improved sharing facilities. To update a member of a PDS, you need exclusive access to the entire
data set.

All these improvements require almost total compatibility at program and user level with the old PDS.

90 ABCs of OS/390 System Programming

Figure 58. PDSE structure

1.18.4 PDSE structure

The advantages of PDSE when compared with PDS are:

• Space is reclaimed without a compress. PDSE automatically reuses space, without needing an
IEBCOPY compress. A list of available space is kept in the directory. When a PDSE member is
updated or replaced, it is written in the first available space. This is either at the end of the data
set or in a space in the middle of the data set marked for reuse. This space need not be
contiguous. The objective of the space reuse algorithm is not to extend the data set unnecessarily.

• The directory can grow dynamically as the data set expands. Logically, a PDSE directory looks the
same as a PDS directory. It consists of a series of directory records in a block. Physically, it is a
set of pages at the front of the data set, plus additional pages interleaved with member pages.
Five directory pages are initially created at the same time as the data set. New directory pages
are added, interleaved with the member pages, as new directory entries are required. A PDSE
always occupies at least five pages of storage. The directory is like a KSDS index structure,
making a search much faster. It cannot be overwritten by being opened for sequential output.

• If you try to add a member with DCB characteristics that differ from the rest of the members, you
will get an error.

• You can open a PDSE member for output or update, without locking the entire data set. The
sharing control is at member level, not the data set level.

There is a restriction about PDSEs, that is, you cannot use a PDSE for certain system data sets which
are opened at the IPL/NIP time frame.

Chapter 1. Introduction to DFSMS/MVS 91

Figure 59. Sequential access methods

1.18.5 Sequential access methods

There are two sequential access methods, Basic Sequential Access Method (BSAM) and Queued
Sequential Access Method (QSAM). Both access data organized in a physical sequenced manner. In
this manner the physical records (containing logical records) are stored sequentially in the order in
which they are entered.

One special sort of this organization is called Extended Format Data Set. Extended format data sets
have a different internal storage format from a sequential data set that is not extended (fixed block with
a 32-bytes suffix). This storage format gives extended format data sets additional usability and
availability characteristics:

• Can be allocated in the compressed format (can be referred to as a compressed format data set).
A compressed format data set is a type of extended format data set that has an internal storage
format that allows for data compression.

• Allows data stripping, that is a multivolume sequential file where data may be accessed in parallel.

• Is able to recover from an padding error situation.

Extended format data sets must be SMS-managed and must reside on DASD. You cannot use an
extended format data set for certain system data sets.

Another type of this organization is called Hierarchical File System. HFS files are POSIX-conforming
files which reside in an HFS data set. They are byte-oriented rather than record-oriented, as are MVS
files. They are identified and accessed by specifying the path leading to them. Programs can access

92 ABCs of OS/390 System Programming

the information in HFS files through OS/390 UNIX system calls, such as open(pathname), read(file
descriptor), and write(file descriptor). Programs can also access the information in HFS files through
the MVS BSAM, QSAM, and VSAM access methods. When using BSAM or QSAM, an HFS file is
simulated as a multi-volume sequential data set. When using VSAM, an HFS file is simulated as an
ESDS. HFS data sets are:

• Supported by standard DADSM create, rename, and scratch

• Supported by DFSMShsm for dump/restore and migrate/recall if DFSMSdss is used as the data
mover

• Not supported by IEBCOPY or the DFSMSdss COPY function

The difference between QSAM and BSAM are:

• QSAM deblocks logical records and does look ahead reads (anticipates reads). In BSAM these
tasks are done by the calling program.

• QSAM synchronizes the task with I/O operation (places the task in wait along the I/O operation). In
BSAM this tasks is done by the calling program (macro CHECK).

Chapter 1. Introduction to DFSMS/MVS 93

Figure 60. Virtual Storage Access Method

1.19 Virtual Storage Access Method (VSAM)

VSAM is an access method service used to organize data and maintain information about the data in a
catalog.

There are two major parts of VSAM:

• Catalog Management: The Catalog contain information about the data sets

• Record management: VSAM can be used to organize records into four types of data sets:

− Key-sequenced (KSDS)

− Entry-sequenced (ESDS)

− Linear (LDS)

− Relative record with fixed or variable length (RRDS)

The primary difference among these types of data sets is the way in which their records are stored
and accessed.

VSAM arranges records by an index key, by relative byte address, or by relative record number. Data
organized by VSAM is cataloged for easy retrieval and is stored in one of four types of data sets.

94 ABCs of OS/390 System Programming

Figure 61. VSAM resource pool

1.19.1 VSAM resource pool

VSAM resource pool is a set of VSAM I/O control blocks plus a buffer pool. A buffer pool is a
collection of same-sized I/O buffers plus control information describing the occupancy of such buffers.
The objective of a buffer pool is to avoid I/O operations and consequently to improve performance.

For more efficient use of virtual storage, buffer pools can be shared among data sets (except linear
data sets), using globally or locally shared buffer pools. There are three types of resource pools
(depending on the type of the associated buffer pool):

• Not shared resource (NSR)

− Implicitly constructed by OPEN.

− Not shared among VSAM data sets.

− Used by HLL.

− Located in the private area.

− Buffers are managed via a sequential algorithm. If you have a batch job accessing a VSAM file
randomly, it is a good idea to implement BLSR (a component of the SmartBatch product). It
transparently converts from NSR to LSR allowing a huge performance gain.

• Local shared resource (LSR)

− Shared among VSAM data sets accessed by tasks in the same address space.

Chapter 1. Introduction to DFSMS/MVS 95

− Located in the private area and ESO hiperspace. With hiperspace, VSAM buffers are located in
expanded storage to improve the processing of VSAM data sets.

− Explicitly constructed via macro BLDVRP.

− Buffers are managed via LRU algorithm.

• Global shared resource (GSR)

− Shared among VSAM data sets accessed by tasks is multiple address spaces.

− Located in CSA.

− Explicitly constructed via macro BLDVRP.

− Buffers are managed via LRU algorithm.

These options are declared in the ACB macro of the VSAM data set (MACRF keyword).

96 ABCs of OS/390 System Programming

Figure 62. VSAM components

1.19.2 VSAM components
• A control interval (CI) is a unit of information that VSAM transfers between virtual storage and disk

storage. The size of the CIs can vary from one data set to another, but all the CIs within the data
portion for a particular data set must be of the same length. One CI can be made of one or several
physical blocks.

A CI consists of the following:

− Logical records stored from beginning to end

− Unused space - used to absorb inclusions

− Control Information at the end formed by one record definition field (RDF) per logical record
and one control interval definition field (CIDF) per CI

In certain VSAM organizations there are free CIs, used also to absorb inclusions through the CI
split mechanism.

• A control area (CA) is a group of CIs grouped together into fixed-length areas of DASD. Generally,
a CA has the size of one physical DASD cylinder. Its major objective is to absorb inclusions (not
serviced by the CI split) through the CA split mechanism.

• A VSAM data set is composed of one or more CAs. Then, its size is a multiple of the control area
size.

• A cluster is the combination of the data component (data set) and the index component (data set)
for a KSDS. The cluster provides a way to treat index and data components as a single component
with its own name. You can also give each component (data set) a name. Fixed-length RRDSs,

Chapter 1. Introduction to DFSMS/MVS 97

entry-sequence data sets, and LDS are considered to be clusters without index components. To be
consistent, they are given cluster names that are normally used when processing the data set.

• Sphere is a VSAM cluster and its associated data sets. These data sets are alternate index (AIX)
of the cluster. An AIX is a key-sequenced data set containing index entries organized by the
alternate keys of its associated base data records. It provides another way of locating records in
the data component of a cluster.

An AIX can be defined over a key-sequenced or entry-sequenced cluster only.

98 ABCs of OS/390 System Programming

Figure 63. Key sequenced data set (KSDS)

1.19.3 Key sequenced data set (KSDS)

In this visual we start to view each one of the VSAM organizations.

In a KSDS, logical records are placed in the data set in ascending collating sequence by key. The key
contains a unique value, which determines the record ′s collating position in the data set. The key
must be in the same position in each record.

The key data must be contiguous and each key must be unique. After it is specified, the value of the
key cannot be altered, but the entire record may be deleted.

When a new record is added to the data set, it is inserted in its collating sequence by key.

A KSDS has a data and an index component. The index component keeps track of the used keys and
is used by VSAM to retrieve quickly a record from the data component when a request is made for a
record with a certain key.

A KSDS can have fixed or variable length records.

A KSDS can be accessed in either sequential, direct, or skip sequential (you process sequentially, but
skipping some portions of the data set) mode.

Chapter 1. Introduction to DFSMS/MVS 99

Figure 64. Data/Index relationship

1.19.4 Data/Index relationship

A KSDS has an index that relates key values to the relative locations in the data set. This index is
called the prime index. It has two uses:

• Locate the collating position when inserting records

• Locate records for retrieval

When initially loading a data set, records must be presented to VSAM in a key sequence. The index is
built automatically by VSAM as the data set is loaded with records. When a data CI is loaded with
records, VSAM makes an entry in the index. The entry consists of the highest possible key in the data
CI and a pointer to the beginning of that CI.

A VSAM index can consist of more than one index level. Each level contains a set of records with
entries giving the location of the records in the next lowest level.

• Sequence set contains the index CIs at the lowest level. There is one CI in the sequence set for
each data CA. It contains pointers and high key information for each CI within the data CA. It
contains also horizontal pointers from one sequence set CI to the next (higher keyed) sequence set
CI.

• Index set contains the remainder of the index component. If there is more than one sequence-set
level record, VSAM automatically builds another index level. Each CI in the index set contains
pointers and high key information for CIs in the next lower level of the index.

The highest level of the index always contains a single index CI.

100 ABCs of OS/390 System Programming

In this visual SS1 is a sequence set CI located in the index. It has four records, the:

• First has the highest key and location of the data CI 1

• Second has the highest key and location of the data CI 2

• Third has the highest key and location of the data CI 3

• Fourth has the highest key and location of the data CI 4

Where:

IS Index Set

SS

Sequence Set

CA Control Area

All four CIs are located in the data CA1.

SS2 has the same type of information for the data CA2.

SSn sequence set records are also clustered in CAs. There is one IS2n (index set level two) for each
one of the CAs. Each record of the IS2n points to the highest key and location of one SSn located in
the SSn CA pointed to by this IS2n.

The same logic applies to the higher levels of indexes. For each new CA below, a new CI is created
above, until just having only one IS1 (index set level one).

1.19.4.1 Requests for data

Request 1: A control interval from CA2 is requested by string 1.

• The highest level index set, IS1, is read into an index buffer. IS1 remains in this buffer for all
requests.

• IS1 points to IS2, which is read into a second index buffer.

• IS2 points to the sequence set, SS2, which is read into an index buffer for string 1.

• SS2 points to a control interval in CA2. This control interval is read into a data buffer for string 1.

Request 2: A control interval from CA3 is requested by string 2.

• IS1 and IS2 remain in their respective buffers.

• SS3 is read into an index buffer for string 2.

• SS3 points to a control interval in CA3. This control interval is read into a data buffer for string 2.

Chapter 1. Introduction to DFSMS/MVS 101

Figure 65. Relative record data set (RRDS)

1.19.5 Relative record data set (RRDS)

A relative record data set (RRDS) consists of a number of preformatted fixed-length slots. Each slot
has a unique relative record number, and the slots are sequenced by ascending relative record
number. Each (fixed length) record occupies a slot, and is stored and retrieved by the relative record
number of that slot. The position of a data record is fixed, its relative record number cannot change.

An RRDS has a data component only.

Random load of an RRDS requires a user program.

102 ABCs of OS/390 System Programming

Figure 66. Typical RRDS processing

1.19.6 Typical RRDS processing

The application program inputs the relative record number of the target record and VSAM is able to
find very fast its location using a formula that takes into consideration the geometry of the DASD
device. The relative number is always used as a search argument. For an RRDS, three types of
processing are supported:

• Sequential processing.

• Skip-sequential processing.

• Direct processing. In this case the randomization routine is supported by the application program.

Chapter 1. Introduction to DFSMS/MVS 103

Figure 67. Linear data set (LDS)

1.19.7 Linear data set (LDS)

A linear data set is a VSAM data set with a CI size of 4096 bytes. An LDS has no imbedded control
information in its CI, that is, no RDFs and CIDFs. So, all LDS bytes are data bytes. Logical records
must be blocked and deblocked by the application program, but logical records do not exist from the
point of view of VSAM.

IDCAMS is used to define a linear data set. An LDS has only a data component. An LDS data set is
just a physical sequential VSAM data set made of 4 KB blocks, but with a revolutionary buffer
technique called data-in-virtual (DIV).

104 ABCs of OS/390 System Programming

Figure 68. Data-in-virtual

1.19.8 Data-in-virtual

Application programs can use data-in-virtual (DIV) to map a data set or a portion of a data set into an
address space, a data space, or a hiperspace.

Data is read into central storage via the paging algorithms only when that block is actually referenced.
During RSM page-steal processing, only changed pages are written to auxiliary storage. Unchanged
pages are discarded since they can be retrieved again from the permanent data set.

DIV is designed to improve the performance of applications that process large files nonsequentially
and process them with significant locality of reference. It reduces the number of I/O operations that
are traditionally associated with data retrieval. Likely candidates are large arrays or table files.

Chapter 1. Introduction to DFSMS/MVS 105

Figure 69. Data-in-virtual objects

1.19.9 Data-in-virtual objects

A linear data set is a VSAM data set with a control interval size of 4096 bytes to 32,768 bytes in
increments of 4096 bytes. A linear data set does not have imbedded control information. All linear
data set bytes are data bytes. Only integrated catalog facility catalogs can support a linear data set.

A linear data set is processed as an entry-sequenced data set, with certain restrictions. Because a
linear data set does not contain control information (CIDFs and RDFs), it cannot be accessed as if it
contained individual records. You can access a linear data set with the DIV macro. If using DIV to
access the data set, the control interval size must be 4096 otherwise the data set will not be
processed.

For information on how to use data-in-virtual (DIV), see OS/390 MVS Programming: Assembler Services
Guide, GC28-1762.

When a linear data set is accessed with the DIV macro, it is referred to as the data-in-virtual object or
the data object.

106 ABCs of OS/390 System Programming

Figure 70. Mapping a l inear data set

1.19.10 Mapping a linear data set

To establish a map from a linear data set to a window (a program-provided area in multiples of 4 KB
on a 4 KB boundary), the program issues:

• DIV IDENTIFY to introduce (allocate) a linear data set to data-in-virtual services.

• DIV ACCESS to cause a VSAM open for the data set and indicate access mode (read/update).

• DIV MAP to enable the viewing of the data object by establishing an association between a
program-provided area and the data object. The area may be in an address space, data space, or
hiperspace.

No actual I/O is done until the program references the data in the window. The reference will result in
a page fault which causes data-in-virtual services to read the data from the linear data set into the
window.

DIV SAVE can be used to write out changes to the data object. DIV RESET can be used to discard
changes made in the window since the last SAVE operation.

Chapter 1. Introduction to DFSMS/MVS 107

Figure 71. Entry sequenced data set (ESDS)

1.19.11 Entry sequenced data set (ESDS)

An ESDS is comparable with a sequential data set. It contains fixed or variable-length records.
Records are sequenced by the order of their entry in the data set, rather than by a key field in the
logical record. All new records are placed at the end of the data set. An ESDS has only a data
component.

Records can be accessed sequentially or by relative byte address (RBA). When a record is loaded or
added, VSAM indicates its relative byte address (RBA). The RBA is the offset of this logical record from
the beginning of the data set. The first record in a data set has an RBA of 0; the second record has an
RBA equal to the length of the first record, and so on. The RBA of a logical record depends only on
the record′s position in the sequence of records. The RBA is always expressed as a fullword binary
integer.

Although an entry-sequenced data set does not contain an index component, alternate indexes are
allowed. You can build an alternate index to keep track of these RBAs.

108 ABCs of OS/390 System Programming

Figure 72. Typical ESDS processing (ESDS)

1.19.12 Typical ESDS processing (ESDS)

For an ESDS, two types of processing are supported:

• Sequential access is most common

• Direct (or random) access requires the program to give the RBA of the record

Skip sequential is not allowed.

Existing records can never be deleted. If the application wants to delete a record, it must flag that
record as inactive. As far as VSAM is concerned, the record is not deleted. They can be updated, but
without length change.

Chapter 1. Introduction to DFSMS/MVS 109

Figure 73. DFSORT

1.20 DFSORT

In this visual we start to present the products included in DFSMS/MVS umbrella.

The DFSORT licensed program is a high-performance data arranger for OS/390 users.

With DFSORT, you can sort, merge, and copy data sets using EBCDIC, S/390 decimal or binary keys.

DFSORT merges data sets by combining two or more files of sorted records to form a single data set
of sorted records.

You can use DFSORT to do simple tasks such as alphabetizing a list of names, or you can use it to aid
complex tasks such as taking inventory or running a billing system. You can also use DFSORT′s
record-level editing capability to perform data-management tasks.

For most of the processing done by DFSORT, the whole data set is affected. However, some forms of
DFSORT processing involve only certain individual records in that data set.

While sorting, merging, or copying data sets, you can also:

• Select a subset of records from an input data set. You can include or omit records that meet
specified criteria. For example, when sorting an input data set containing records of course books
from many different school departments, you can sort the books for only one department.

110 ABCs of OS/390 System Programming

• Reformat records, add or delete fields, and insert blanks, constants, or binary zeros. For example,
you can create an output data set that contains only certain fields from the input data set arranged
differently.

• Sum the values in selected records while sorting or merging (but not while copying). In the
example of a data set containing records of course books, you can use DFSORT to add up the
dollar amounts of books for one school department.

• Create multiple output data sets and reports from a single pass over an input data set. For
example, you can create a different output data set for the records of each department.

• Sort, merge, include, or omit records according to the collating rules defined in a selected local.

• Alter the collating sequence when sorting or merging records (but not while copying). For example,
you can have the lowercase letters collate after the uppercase letters.

• Sort, merge, or copy Japanese data if the IBM Double Byte Character Set Ordering Support (DBCS
Ordering) (5665-360 Licensed Program, Release 2.0 or an equivalent product) is used with DFSORT
to process the records.

DFSORT has utilities such as ICETOOL which is a multipurpose DFSORT utility that uses the
capabilities of DFSORT to perform multiple operations on one or more data sets in a single step.

For articles, online books, news, tips, techniques, examples, and more, visit the DFSORT/MVS home
page at URL:

http://www.ibm.com/storage/dfsort/

For further information about DFSORT, refer to DFSORT Getting Started with DFSORT R14, SC26-4109,
and other DFSORT books.

Chapter 1. Introduction to DFSMS/MVS 111

Figure 74. DFSMS/MVS Network File System

1.21 DFSMS/MVS Network File System

A client is a computer or process that requests services on the network. A server is a computer or
process that responds to a request for service from a client. A user accesses a service, which allows
the use of data or other resources.

This visual illustrates the client-server relationship. The upper center portion of the figure shows the
DFSMS/MVS NFS address space server. The lower right portion of the figure shows the DFSMS/MVS
NFS address space client. The left portion of the figure shows various NFS clients and servers which
can interact with the DFSMS/MVS NFS server and client. The center of the figure shows the
Transmission Control Protocol/Internet Protocol (TCP/IP) network used to communicate between clients
and servers.

With the DFSMS/MVS NFS server, you can remotely access MVS/ESA conventional data sets or UNIX
server MVS files from workstations, personal computers, and other systems that run client software for
the Sun NFS Version 2 protocols on a TCP/IP network. The DFSMS/MVS NFS server acts as an
intermediary to read, write, create, or delete UNIX server MVS files and MVS data sets that are
maintained on an MVS host system. The remote MVS data sets or UNIX server MVS files are mounted
from the host processor to appear as local directories and files on the client system. This server
makes the strengths of an MVS host processor—storage management, high-performance disk storage,
security, and centralized data—available to the client platforms.

With the DFSMS/MVS NFS client you can allow basic sequential access method (BSAM), queued
sequential access method (QSAM), virtual storage access method (VSAM), and UNIX server MVS users

112 ABCs of OS/390 System Programming

and applications transparent access to data on systems which support the Sun NFS Version 2
protocols. The remote NFS server can be an MVS, UNIX**, AIX, OS2, or other system. The
DFSMS/MVS NFS client is implemented on UNIX server MVS and implements the client portion of the
Sun NFS Version 2 protocols.

The Network File System, then, can be used for:

• File sharing between platforms

• File serving (as a data repository)

For further information about NFS, refer to DFSMS/MVS Network File System Customization and
Operation, SC26-7029, and DFSMS/MVS Network File System User′s Guide, SC26-7028.

Chapter 1. Introduction to DFSMS/MVS 113

Figure 75. DFSMS/MVS Optimizer

1.22 DFSMS/MVS Optimizer
The DFSMS Optimizer provides analysis and simulation information for both SMS and non-SMS users.
The DFSMS Optimizer can help you maximize storage use and minimize storage costs. It provides
methods and facilities for you to:

• Monitor and tune DFSMShsm functions as migration and backup

• Create and maintain a historical database of system and data activity

• Fine tune an SMS configuration, by performing in-depth analysis of:

− Management class policies, including simulations and cost-benefit-analysis using your storage
component costs

− Storage class policies for SMS data, with recommendations for both SMS and non-SMS data

− High I/O activity data sets, including recommendations for placement and simulation for cache
and expanded storage

− Storage hardware performance of subsystems and volumes including I/O rate, response time,
and caching statistics

• Simulate potential policy changes and understand the costs of those changes

• Produce presentation-quality charts

For more information on the DFSMS Optimizer, see the DFSMS Optimizer User′s Guide and Reference,
SC26-7047.

114 ABCs of OS/390 System Programming

Figure 76. DFSMSdss

1.23 DFSMSdss

DFSMSdss is a direct access storage device (DASD) data and space management tool. DFSMSdss
works on DASD volumes only in the MVS environment. You can use DFSMSdss to:

• Copy and move data sets between volumes of like and unlike device types

Note: Like devices have the same track capacity and number of tracks per cylinder (for example,
3380 Model D, Model E, and Model K). Unlike DASD devices have different track capacities (for
example, 3380 and 3390), a different number of tracks per cylinder, or both.

• Dump and restore data sets, entire volumes, or specific tracks

• Convert data sets and volumes to and from SMS management

• Compress partitioned data sets

• Release unused space in data sets

• Reduce or eliminate DASD free-space fragmentation by consolidating free space on a volume

• Implement concurrent copy in 9390/3990 control units. If the control unit is a 9393 RVA, a snapshot
is transparently generated without any change in the JCL.

Chapter 1. Introduction to DFSMS/MVS 115

Figure 77. DFSMSdss: physical and logical processing

1.23.1 DFSMSdss: physical and logical processing

Before you begin using DFSMSdss, you should understand the difference between logical and physical
processing. DFSMSdss can perform two kinds of processing when executing COPY, DUMP, and RESTORE
commands:

• Logical processing operates against data sets independently of physical device format.

• Physical processing moves data at the track-image level and operates against volumes, tracks, and
data sets.

Each type of processing offers different capabilities and advantages.

During a restore operation, the data is processed the same way it is dumped because physical and
logical dump tapes have different formats. If a data set is dumped logically, it is restored logically; if it
is dumped physically, it is restored physically. A data set restore operation from a full volume dump is
a physical data set restore operation.

116 ABCs of OS/390 System Programming

Figure 78. DFSMSdss: logical processing

1.23.2 DFSMSdss: logical processing

A logical copy, dump, or restore operation treats each data set and its associated information as a
logical entity, and processes an entire data set before beginning the next one.

Each data set is moved by tracks from the source device and is potentially written to the target device
as a set of data records, allowing data movement between devices with different track and cylinder
configurations. Checking of data record consistency is not performed during dump operation.

DFSMSdss performs logical processing if:

• You specify the data set keyword with the COPY command. A data set copy is always a logical
operation, regardless of how or whether you specify input volumes.

• You specify the data set keyword with the DUMP command, and either no input volume is specified,
or LOGINDDNAME or LOGINDYNAM is used to specify input volumes.

• The RESTORE command is performed, and the input volume was created by a logical dump.

Catalogs and VTOCs are used to select data sets for logical processing. If you do not specify input
volumes, the catalogs are used to select data sets for copy and dump operations.

Chapter 1. Introduction to DFSMS/MVS 117

1.23.2.1 When to use logical processing

Use logical processing for the following situations:

• Data is copied to an unlike device type.

• Logical processing is the only way to move data between unlike device types.

• Data that may need to be restored to an unlike device is dumped.

• Data must be restored the same way it is dumped. This is particularly important to bear in mind
when making backups that you plan to retain for a long period of time (such as vital records
backups). If a backup is retained for a long period of time, it is possible that the device type it
originally resided on will no longer be in use at your site when you want to restore it. This means
you will have to restore it to an unlike device, which can be done only if the backup has been
made logically.

• Aliases of VSAM user catalogs are to be preserved during copy and restore functions. Aliases are
not preserved for physical processing.

• Unmovable data sets or data sets with absolute track allocation are moved to different locations.

• Multivolume data sets are processed.

• VSAM and multivolume data sets are to be cataloged as part of DFSMSdss processing.

• Data sets are to be deleted from the source volume after a successful dump or copy operation.

• Both non-VSAM and VSAM data sets are to be renamed after a successful copy or restore
operation.

• You want to control the percentage of space allocated on each of the output volumes for copy and
restore operations.

• You want to copy and convert a PDS to a PDSE or vice versa.

• You want to copy or restore a data set with an undefined DSORG to an unlike device.

• You want to keep together all parts of a VSAM sphere.

118 ABCs of OS/390 System Programming

Figure 79. DFSMSdss: physical processing

1.23.3 DFSMSdss: physical processing

Physical processing moves data based on physical track images. Because data movement is carried
out at the track level, only target devices with track sizes equal to those of the source device are
supported. Physical processing operates on volumes, ranges of tracks, or data sets. For data sets, it
relies only on volume information (in the VTOC and VVDS) for data set selection, and processes only
that part of a data set residing on the specified input volumes.

DFSMSdss performs physical processing if:

• You specify the FULL or TRACKS keyword with the COPY or DUMP command. This results in a
physical volume or physical tracks operation.

Attention : Be aware that, when invoking the TRACKS keyword with the COPY and RESTORE
commands, the TRACKS keyword should be used only for a data recovery operation. For example,
you can use it to repair a bad track in the VTOC or a data set, or to retrieve data from a damaged
data set. You cannot use it in place of a full-volume or a logical data set operation. Doing so
could destroy a volume or impair data integrity.

• You specify the data set keyword on the DUMP command and input volumes with the INDDNAME or
INDYNAM parameter. This produces a physical data set dump.

• The RESTORE command is executed and the input volume is created by a physical dump operation.

Chapter 1. Introduction to DFSMS/MVS 119

1.23.3.1 When to use physical processing

Use physical processing when:

• Backing up system volumes that you might want to restore with a stand-alone DFSMSdss restore
operation.

Stand-alone DFSMSdss restore supports only physical dump tapes.

• Performance is an issue.

Generally, the fastest way—measured by elapsed time—to copy or to dump an entire volume is with
a physical full-volume command. This is primarily because minimal catalog searching is necessary
for physical processing.

• Substituting one physical volume for another or recovering an entire volume.

With a COPY or RESTORE (full volume or track) command, the volume serial number of the input DASD
volume can be copied to the output DASD volume.

• Dealing with I/O errors. Physical processing provides the capability to copy, dump, and restore a
specific track or range of tracks.

• Dumping or copying between volumes of the same device type but different capacity.

120 ABCs of OS/390 System Programming

Figure 80. Stand-alone services

1.23.4 DFSMSdss stand-alone services

DFSMS/MVS Version 1 Release 4 provided a new stand-alone services function, that is intended for the
storage administrator, the system programmer, and anyone who runs the stand-alone services
program. This, along with related information in OS/390 MVS System Messages, Volume 1 (ABA-ASA),
GC28-1784, supports a new stand-alone services program.

stand-alone services can perform either a full-volume or a tracks restore from dump tapes produced by
DFSMSdss or DFDSS, and offers the following benefits when compared to the previous DFSMSdss
stand-alone functions:

• Provides user-friendly commands to replace the previous control statements

• Supports IBM 3494 and 3495 Tape Libraries, and 3590 Tape Subsystems

• Supports IPLing from a DASD volume, in addition to tape and card readers

• Allows you to predefine the operator console to be used during stand-alone services processing

For detailed information about the stand-alone service, and other DFSMSdss information, refer to
DFSMS/MVS DFSMSdss Storage Administration Reference, SC26-4929, and DFSMS/MVS DFSMSdss
Storage Administration Guide, SC26-4930.

Chapter 1. Introduction to DFSMS/MVS 121

Figure 81. Introduction to DFSMShsm

1.24 DFSMShsm

DFSMShsm is a licensed program that automatically performs space management and availability
management in a storage device hierarchy. Availability management is used to make data available
by automatically copying new and changed data set to backup volumes. Space management is used
to manage DASD space by enabling inactive data sets to be moved off fast-access storage devices
thus creating free space or new allocations. DFSMShsm also provides for other supporting functions
that are essential to your installation′s environment.

If you need further information about DFSMShsm, refer to DFSMShsm Storage Administration Guide,
SH21-1076, and DFSMShsm Storage Administration Reference, SH21-1075.

122 ABCs of OS/390 System Programming

Figure 82. Availability management

1.24.1 Availability management

Availability management ensures that a recent copy of your DASD data set exists. The purpose of
availability management is to ensure that lost or damaged data sets can be retrieved at the most
current possible level. To do this, availability management automatically and periodically performs
functions that:

 1. Copy all the data sets on DASD volumes to tape volumes

 2. Copy the changed data sets on DASD volumes (incremental backup) either to other DASD volumes
or to tape volumes

DFSMShsm minimizes the space occupied by the data sets on the backup volume.

Availability management functions are:

• Automatic physical full-volume dump

• Automatic incremental backup

• Automatic control data set backup

• Command dump and backup

• Command recovery

• Expiration of backup versions

• Disaster backup

Chapter 1. Introduction to DFSMS/MVS 123

• Aggregate backup and recovery (ABARS)

124 ABCs of OS/390 System Programming

Figure 83. Space management

1.24.2 Space management

Space management is the function of DFSMShsm that allows you to keep DASD space available for
users in order to meet the service-level objectives for your system. The purpose of space
management is to manage your DASD storage efficiently. To do this, space management automatically
and periodically performs functions that:

 1. Move low-activity data sets from user-accessible volumes to DFSMShsm volumes.

 2. Reduce the space occupied by data on both the user-accessible volumes and the DFSMShsm
volumes.

The DFSMShsm space management functions are:

• Automatic primary space management of DFSMShsm-managed volumes, which includes:

− Deletion of temporary data sets

− Deletion of expired data sets

− Release of unused, over-allocated space

− Migration to DFSMShsm-owned migration level-1 (ML1) volumes (compressed)

• Automatic secondary space management of DFSMShsm-owned volumes, which includes:

− ML1 cleanup, including deletion of expired migrated data sets and some migration control data
set (MCDS) records

− Moving migration copies from migration level 1 (ML1) to migration level 2 (ML2) volumes

Chapter 1. Introduction to DFSMS/MVS 125

• Automatic interval migration, initiated when a DFSMShsm-managed volume exceeds a specified
threshold

• Automatic recall of user data sets back to DASD volumes, when referenced by the application

• Space management by command

• Space-saving functions, which include:

− Data compaction/compression. Compaction provides space savings that are due to less gaps
and less control data. Compression provides a more short way for storing your data.

− Partitioned data set (PDS) free space compression.

− Small data set packing (SDSP) data set facility, allows small data sets be packaged in just one
physical track.

− Data set reblocking.

It is possible to have more than one OS/390 image sharing the same DFSMShsm policy. In this case
one of the DFSMShsm images is the primary host and the others are secondary. The primary HSM
host is identified by ′HOST= in the HSM startup and is responsible for:

• Hourly space checks

• During autobackup: CDS BUP, BUP of ML1 data sets to tape

• During autodump: expiration of dump copies and deletion of excess dump VTOC copy data sets

• During SSM: cleanup of MCDS, migration volumes, and L1 to L2 migration

If you are running your OS/390 HSM images in sysplex (parallel or basic), you can use secondary host
promotion to allow a secondary image to assume the primary image′s tasks if the primary host fails.
Secondary host promotion uses XCF status monitoring to execute the promotion. To indicate a system
as a candidate, issue:

• SETSYS PRIMARYHOST(YES) and

• SSM(YES)

126 ABCs of OS/390 System Programming

Figure 84. Storage device hierarchy

1.24.3 Storage device hierarchy

A storage device hierarchy consists of a group of storage devices that have different costs for storing
data, different amounts of data stored, and different speeds of accessing the data.

DFSMShsm uses the following three-level storage device hierarchy for space management:

• Level 0: Are DFSMShsm-managed storage devices at the highest level of the hierarchy; these
devices contain data directly accessible to your application

• Level 1 and Level 2: Storage devices at the lower levels of the hierarchy, level 1 and level 2,
contain data that DFSMShsm has compressed and optionally compacted into a format that you
cannot use. Devices at this level provide lower-cost-per-byte storage and usually slower response
time. Usually L1 is in a cheaper DASD (or a same cost, but with the gain of compression) and L2
is on tape.

If you have RVA DASD you may skip level one (ML1) migration because the data in L0 is already
compacted/compressed.

Chapter 1. Introduction to DFSMS/MVS 127

Figure 85. HSM volume types

1.24.4 HSM volume types

Backing up an individual cataloged data set is performed in the same way as for SMS-managed data
sets. However, to back up individual uncataloged data sets, issue the following command:

BACKDS dsname UNIT(unittype) VOLUME(volser)

HBACKDS dsname UNIT(unittype) VOLUME(volser)

The HBACKDS form of the command can be used by either non-DFSMShsm-authorized or
DFSMShsm-authorized users. The BACKDS form of the command can be used only by
DFSMShsm-authorized users. The UNIT and VOLUME parameters are required because DFSMShsm
cannot locate an uncataloged data set without being told where it is.

DFSMShsm supports the following volume types:

• Level 0 (L0) volumes contain data sets that are directly accessible to you and the jobs you run.
DFSMShsm-managed volumes are those L0 volumes that are managed by the DFSMShsm
automatic functions. These volumes must be mounted and online when you refer to them with
DFSMShsm commands.

• Migration level 1 (ML1) volumes are DFSMShsm-supported DASD on which DFSMShsm maintains
your data in DFSMShsm format. These volumes are normally permanently mounted and online.
They can be:

− Volumes containing data sets that DFSMShsm migrated from L0 volumes.

128 ABCs of OS/390 System Programming

− Volumes containing backup versions created from a DFSMShsm BACKDS or HBACKDS command.
Backup processing requires ML1 volumes to store incremental back up and dump VTOC copy
data sets and as intermediate storage for data sets that are backed up by data set command
backup.

• Migration level 2 (ML2) are DFSMShsm-supported tape, or DASD, on which DFSMShsm maintains
your data in DFSMShsm format. These volumes are normally not mounted or online. They contain
data sets migrated from ML1 volumes or L0 volumes.

• Daily backup volumes are DFSMShsm-supported tape, or DASD, on which DFSMShsm maintains
your data in DFSMShsm format. These volumes are normally not mounted or online. They contain
the most current backup versions of data sets copied from L0 volumes. These volumes may also
contain earlier backup versions of these data sets.

• Spill backup volumes are DFSMShsm-supported tape, or DASD, on which DFSMShsm maintains
your data sets in DFSMShsm format. These volumes are normally not mounted or online. They
contain earlier backup versions of data sets, which were moved from DASD backup volumes.

• Dump volumes are DFSMShsm-supported tape. They contain image copies of volumes, which are
produced by the full volume dump function of DFSMSdss (write a copy of the entire allocated space
of that volume), which is invoked by DFSMShsm.

• Aggregate backup volumes are DFSMShsm-supported tape. These volumes are normally not
mounted or online. They contain copies of the data sets of a user-defined group of data sets, along
with control information for those data sets. These data sets and their control information are
stored as a group so that they can be recovered (if necessary) as an entity by an aggregate
recovery process (ABARS).

Chapter 1. Introduction to DFSMS/MVS 129

Figure 86. Automatic space management

1.24.5 Automatic space management

Automatic space management prepares the computing system for the addition of new data by freeing
space on the DFSMShsm-managed volumes (L0) and DFSMShsm-owned volumes (ML1).

The functions associated with automatic space management can be divided into two groups:

• Automatic volume space management

− Primary

It is invoked timely in a daily basis. It cleans L0 volumes by deleting expired and temporary
data sets and releasing allocated and not used space. If after that, the free space is still below
a threshold, then it moves data sets (under control of the management class) from L0 to ML1
or ML2 volumes.

− Interval migration

It is executed each hour throughout the day, as needed for all storage groups. In interval
migration, DFSMShsm performs space check on each DFSMShsm volume being managed. A
volume is considered eligible for interval migration based on the AUTOMIGRATE and
THRESHOLD settings.

• Automatic secondary space management

It deletes expired data sets from ML1/ML2, then moves data sets (under control of the
management class) from ML1 to ML2 volumes. It should complete before automatic primary space
management so that the ML1 volumes will not run out of space.

130 ABCs of OS/390 System Programming

Figure 87. Recall

1.24.6 Recall

Recall returns a migrated data set to a user L0 volume. The recall is transparent and the application
does not need to know that it happened and where the migrated data set resides. To provide
applications with quick access to their migrated data sets, DFSMShsm allows up to 15 concurrent
recall tasks. RMF monitor III shows delays caused by the recall operation.

The MVS allocation routine discovers that the data set is migrated when accessing the catalog, it finds
instead of the volser, the word MIGRAT.

Automatic recall returns your migrated data set to a DFSMShsm-managed volume when you refer to it.
The catalog is updated accordingly.

Command recall returns your migrated data set to a user volume when you enter the HRECALL
command through an ISMF panel or by directly keying in the command.

For both automatic and command recall, DFSMShsm working with SMS invokes the automatic class
selection (ACS) routines. Data sets that were not SMS-managed at the time they were migrated may
be recalled as SMS-managed data sets. The ACS routines determine whether the data sets should be
recalled as SMS-managed, and if so, the routines select the classes and storage groups in which the
data sets will reside. The system chooses the appropriate volume for the data sets.

DFSMShsm working without SMS returns a migrated data set to a DFSMShsm-managed non-SMS level
0 volume with the most free space.

Chapter 1. Introduction to DFSMS/MVS 131

The recall operation can also be done explicitly by a DFSMShsm command.

132 ABCs of OS/390 System Programming

Figure 88. Introduction to DFSMSrmm

1.25 Removable media manager (DFSMSrmm)

In your enterprise, you store and manage your removable media in several types of media libraries.
For example, in addition to your traditional tape library, a room with tapes, shelves, and drives, you
might have several automated and manual tape libraries. You probably also have both on-site libraries
and off-site storage locations, also known as vaults or stores.

With the DFSMSrmm functional component of DFSMS/MVS, you can manage your removable media as
one enterprise-wide library (single image) across systems. Due to the need of global control
information these systems must have accessibility to some shared DASD volumes. DFSMSrmm
manages your installation ′s tape volumes and the data sets on those volumes. DFSMSrmm also
manages the shelves where volumes reside in all locations except in automated tape library
dataservers.

DFSMSrmm manages all tape media, such as cartridge system tapes and 3420 reels, as well as other
removable media you define to it. For example, DFSMSrmm can record the shelf location for optical
disks and track their vital record status; however it does not manage the objects on optical disks.

Chapter 1. Introduction to DFSMS/MVS 133

Figure 89. Libraries and locations

1.25.1 Libraries and locations

You decide where to store your removable media based on how often the media is accessed and for
what purpose it is retained. For example, you might keep volumes that are frequently accessed in an
automated tape library dataserver, and you probably use at least one storage location to retain
volumes for disaster recovery and audit purposes. You might also have locations where volumes are
sent for further processing such as other data centers within your company or your customers and
vendors.

134 ABCs of OS/390 System Programming

Figure 90. DFSMSrmm can manage

1.26 What DFSMSrmm can manage

DFSMSrmm can manage the following libraries and storage locations:

1.26.1 Removable media library

A removable media library contains all the tape and optical volumes that are available for immediate
use, including the shelves where they reside. A removable media library usually includes other
libraries: system-managed libraries such as automated or manual tape library dataservers; and
non-system-managed libraries, containing the volumes, shelves, and drives not in an automated or a
manual tape library dataserver.

In the removable media library, you store your volumes in shelves, where each volume occupies a
single shelf location. This shelf location is referred to as a rack number in the DFSMSrmm TSO
subcommands and ISPF dialog. A rack number matches the volume′s external label. DFSMSrmm uses
the external volume serial number to assign a rack number when adding a volume, unless you specify
otherwise. The format of the volume serial you define to DFSMSrmm must be one to six alphanumeric
characters. The rack number must be six alphanumeric or national characters.

Chapter 1. Introduction to DFSMS/MVS 135

1.26.1.1 System-managed tape library

A system-managed tape library is a collection of tape volumes and tape devices defined in the tape
configuration database. The tape configuration database is an integrated catalog facility user catalog
marked as a volume catalog (VOLCAT) containing tape volumes and tape library records. A
system-managed tape library can be either automated or manual:

• An automated tape library dataserver is a device consisting of robotic components, cartridge
storage areas (or shelves), tape subsystems, and controlling hardware and software, together with
the set of tape volumes that reside in the library and can be mounted on the library tape drives.
The IBM automated tape libraries are the automated IBM 3494 and IBM 3495 Library Dataservers.

• A manual tape library dataserver is a set of tape drives and the set of system-managed volumes
the operator can mount on those drives. The IBM manual tape library is the manual IBM 3495
Tape Library Dataserver, which supports 3490 and 3490E Magnetic Tape Subsystems.

1.26.1.2 Non-system-managed tape library

A non-system-managed tape library is all the volumes, shelves, and drives not in an automated tape
library dataserver or manual tape library dataserver. You might know this library as the traditional
tape library. DFSMSrmm provides complete tape management functions for the volumes and shelves
in this traditional tape library. Volumes in a non-system-managed library are defined by DFSMSrmm
as being shelf resident.

All tape media and drives supported by OS/390 are supported in this environment. Using DFSMSrmm,
you can fully manage all types of tapes in a non-system-managed tape library, including 3420 reels,
3480, and 3590 cartridge system tapes.

1.26.2 Storage location

Storage locations are not part of the removable media library because the volumes in storage
locations are not generally available for immediate use. A storage location is comprised of shelf
locations that you define to DFSMSrmm. A shelf location in a storage location is identified by a bin
number. Storage locations are typically used to store removable media that are kept for disaster
recovery or vital records.

136 ABCs of OS/390 System Programming

Figure 91. Managing libraries and storage locations

1.26.3 Managing libraries and storage locations

DFSMSrmm records the complete inventory of the removable media library and storage locations in
the DFSMSrmm control data set—a VSAM key-sequenced data set. In the control data set, DFSMSrmm
records all changes made to the inventory, such as adding or deleting volumes, and also keeps track
of all movement between libraries and storage locations.

DFSMSrmm manages the movement of volumes among all library types and storage locations. This
lets you control where a volume, and hence a data set, resides and how long it is retained.

DFSMSrmm helps you manage the movement of your volumes and retention of your data over their full
life, from initial use to the time they are retired from service. Among the functions DFSMSrmm
performs for you are:

• Automatically initializing and erasing volumes

• Recording information about volumes and data sets as they are used

• Expiration processing

• Identifying volumes with high error levels that require replacement

To make full use of all of the DFSMSrmm functions, you specify installation setup options and define
retention and movement policies.

For more information about DFSMSrmm, refer to DFSMS/MVS DFSMSrmm Guide and Reference,
SC26-4931, and DFSMS/MVS DFSMSrmm Implementation and Customization Guide, SC26-4932.

Chapter 1. Introduction to DFSMS/MVS 137

138 ABCs of OS/390 System Programming

Chapter 2. Storage management

This chapter is intended to help you learn about and evaluate DFSMS/MVS and is an overview of
DFSMS/MVS and its functional components.

DFSMS/MVS is built upon the functions formerly provided by MVS/DFP, Data Facility Data Set Services
(DFDSS), and the Data Facility Hierarchical Storage Manager (DFHSM). DFSMS/MVS eliminates the
need to order and install each product individually, making the installation task much easier.

As your business expands, so do your needs for storage to hold your applications and data, and the
costs of managing that storage. Storage costs include more than the price of the hardware, with the
highest cost being the people needed to perform storage management tasks. If your business requires
transaction systems, the batch window can also be a high cost. Additionally, you must pay for people
to install, monitor, and operate your storage hardware devices, for electrical power to keep each piece
of storage hardware cool and running, and for floor space to house them. Removable media, such as
optical and tape storage, cost less per gigabyte (GB) than online storage, but require additional time
and resources to locate, retrieve, and mount.

To allow your business to grow efficiently and profitably, you want to find ways to control the growth of
your information systems and use your current storage more effectively.

The DFSMS/MVS software product, together with IBM hardware products, and your installation-specific
requirements for data and resource management comprise the key to system-managed storage in an
MVS environment. The components of DFSMS/MVS automate and centralize storage management,
based on policies your installation defines for availability, performance, space, and security. The
Interactive Storage Management Facility (ISMF) provides the user interface for defining and
maintaining these policies, which the Storage Management Subsystem (SMS) governs for the system.

 Copyright IBM Corp. 2000 139

Figure 92. DFSMS/MVS environment

2.1 DFSMS/MVS environment

As your business expands, so do your needs for storage to hold your applications and data, and the
costs of managing that storage. Storage costs include more than the price of the hardware, with the
highest cost being the people needed to perform storage management tasks. If your business requires
transaction systems, the batch window can also be a high cost. Additionally, you must pay for people
to install, monitor, and operate your storage hardware devices, for electrical power to keep each piece
of storage hardware cool and running, and for floor space to house them. Removable media, such as
optical and tape storage, cost less per gigabyte (GB) than online storage, but require additional time
and resources to locate, retrieve, and mount.

To allow your business to grow efficiently and profitably, you want to find ways to control the growth of
your information systems and use your current storage more effectively.

The DFSMS/MVS software product, together with IBM hardware products, and your installation-specific
requirements for data and resource management comprise the key to system-managed storage in an
MVS environment. The components of DFSMS/MVS automate and centralize storage management,
based on policies your installation defines for availability, performance, space, and security. The
Interactive Storage Management Facility (ISMF) provides the user interface for defining and
maintaining these policies, which the Storage Management Subsystem (SMS) governs for the system.

This unit gives a brief overview of DFSMS/MVS, its components, available configurations, and
functions.

140 ABCs of OS/390 System Programming

Figure 93. DFSMS/MVS functional components

2.1.1 The DFSMS/MVS functional components

This visual lists the components of DFSMS/MVS.

Do not confuse DFSMS/MVS with DFSMS (also called SMS) environment. DFSMS/MVS is a set of
products (where one of these, DSFMSdfp, is mandatory to run OS/390). DFSMS environment is a set of
constructs, user interfaces, and routines (using the DFSMS/MVS products), which allows your
installation to better manage your storage system. All the core logic of DFSMS is located in
DFSMSdfp, such as the ACS routines, ISMF code, and constructs. DFSMShsm and DFSMSdss are
involved in the management class construct.

DFSMS/MVS and MVS comprise the base OS/390 operating system where DFSMS/MVS performs the
essential data, storage, program, and device management functions of the system.

DFSMS/MVS is the central component of both system-managed and non-system-managed storage
environments. MVS supports both 24-bit and 31-bit addressing used by components of DFSMS/MVS.
Many DFSMS/MVS components have modules or data in extended virtual storage above 16 MB,
leaving more space below the 16 MB line for user applications.

Chapter 2. Storage management 141

Figure 94. System-managed storage environment

2.2 Introduction to system-managed storage (SMS)

The DFSMS environment consists of a set of IBM hardware and software products that together
provide a system-managed storage solution for MVS installations. DFSMS/MVS is an integral part of
this environment.

The components of DFSMS/MVS automate and centralize storage management based on
installation-defined policies for availability, performance, space, and security. The Interactive Storage
Management Facility (ISMF) provides the user interface for defining and maintaining these policies and
the Storage Management Subsystem (SMS) governs these policies for the system.

In this environment, the Resource Access Control Facility (RACF) and Data Facility Sort (DFSORT)
products complement the functions of the base operating system. RACF provides resource security
functions, and DFSORT adds the capability for faster and more efficient sorting, merging, copying,
reporting, and analyzing of business information.

This visual also shows some of the recent enhancements of the DFSMS/MVS set of products.

142 ABCs of OS/390 System Programming

Figure 95. Benefits of system-managed storage

2.3 Benefits of system-managed storage

With the Storage Management Subsystem (SMS), you can define performance goals and data
availability requirements, create model data definitions for typical data sets, and automate data
backup. SMS can automatically assign, based on installation policy, those services and data definition
attributes to data sets when they are created. IBM storage management-related products determine
data placement, manage data backup, control space usage, and provide data security.

The goals of system-managed storage are to:

• Improve the use of the storage media; for example, by reducing out-of-space abends and providing
a way to set a free-space requirement.

• Reduce the labor involved in storage management by centralizing control, automating tasks, and
providing interactive controls for storage administrators.

• Reduce the user′s need to be concerned with the physical details, performance, space, and device
management. Users can focus on using data instead of managing data.

The benefits, which may be integrated with the goals, of system-managed storage are:

Simplified data allocation : System-managed storage enables users to simplify their data allocations.
For example, without using the Storage Management Subsystem, an OS/390 user would have to specify
the unit and volume on which the system should allocate the data set. The user would also have to
calculate the amount of space required for the data set in terms of tracks or cylinders. This means the

Chapter 2. Storage management 143

user has to know the track size of the device which will contain the data set. With system-managed
storage, users can let the system select the specific unit and volume for the allocation. They can also
specify size requirements in terms of megabytes or kilobytes. This means the user does not need to
know anything about the physical characteristics of the devices in the installation.

Improved allocation control : System-managed storage enables you to set a requirement for free space
across a set of direct access storage device (DASD) volumes. You can then provide adequate free
space to avoid out-of-space abends. The system automatically places data on a volume containing
adequate free space. In DFSMS/MVS 1.4 there are enhancements to avoid out-of-space by the relief of
the SPACE requirements. You can also set a threshold for scratch tape volumes in tape libraries, to
ensure enough cartridges are available in the tape library for scratch mounts.

Improved Input/Output (I/O) performance management : System-managed storage enables you to
improve DASD I/O performance across the installation and at the same time reduce the need for
manual tuning by defining performance goals for each class of data. You can use cache statistics
recorded in System Management Facility (SMF) records to help evaluate performance. You can also
improve sequential performance by using extended sequential data sets. The DFSMS environment
makes the most effective use of the caching abilities of the IBM 3990 Model 3 and Model 6 Storage
Controls, as well as other new models.

Automated DASD space management : System-managed storage enables you to automatically reclaim
space which is allocated to old and unused data sets or objects. You can define policies that
determine how long an unused data set or object will be allowed to reside on primary storage (storage
devices used for your active data). You can have the system remove obsolete data by migrating the
data to other DASD, tape, or optical volumes, or you can have the system delete the data. You can
also release allocated but unused space which is assigned to new and active data sets.

Automated tape space management : System-managed storage enables you to fully use the capacity of
your tape cartridges and to automate tape mounts. Using tape mount management techniques,
DFSMShsm can fill tapes to their capacity. With 3490E tape devices, Enhanced Capacity Cartridge
System Tape, 36-track recording mode, and the improved data recording capability, you can increase
the amount of data that can be written on a single tape cartridge.

You can also use the IBM 3495 or 3494 Tape Library Dataserver to automatically mount tape volumes
and manage the inventory in an automated tape library. If you do not have an automated tape library
dataserver, you can still take advantage of system-managed tape by using manual tape libraries and
the 3495 Model M10 Tape Library Dataserver.

Automated optical space management : System-managed storage enables you to fully use the capacity
of your optical cartridges and to automate optical mounts. Using a 3995 Optical Library Dataserver,
you can automatically mount optical volumes and manage the inventory in an automated optical
library.

Improved data availability management : System-managed storage enables you to provide different
backup requirements to data residing on the same DASD volume. Thus, you do not have to treat all
data on a single volume the same way.

You can use DFSMShsm to automatically back up CICS/ESA and DATABASE 2 (DB2) databases,
partitioned data sets extended (PDSEs), and physical sequential, partitioned, virtual storage access
method (VSAM), hierarchical file system (HFS), and direct access data sets. You can also back up
other types of data and use concurrent copy to maintain access to critical data sets while they are
being backed up. Concurrent Copy, along with Backup-While-Open, has an added advantage that it
avoids the invalidation of a backup of a CICS VSAM KSDS due to a control area or control interval
split.

144 ABCs of OS/390 System Programming

You can also create a logical grouping of data sets, so that the group is backed up at the same time to
allow for recovery of the application defined by the group. This is done with the aggregate backup and
recovery support (ABARS) provided by DFSMShsm.

Simplified conversion of data to different device types : System-managed storage enables you to move
data to new volumes without requiring users to update their job control language (JCL). Because
users in a DFSMS environment do not need to specify the unit and volume which contains their data, it
does not matter to them if their data resides on a specific volume or device type. This allows you to
easily replace old devices with new ones.

You can also use system-determined block sizes to automatically reblock physical sequential and
partitioned data sets that can be reblocked.

Chapter 2. Storage management 145

Figure 96. Implementing your storage management policies

2.4 Implementing your storage management policies

The purpose of a backup plan is to ensure the prompt and complete recovery of data. A
well-documented plan identifies data that requires backup, the levels required, responsibilities for
backing up the data, and methods to be used.

The policies defined by your installation represent decisions about your resources, such as:

• What performance objectives are required by the transactions accessing the data; based on these
objectives you can try to better exploit cache data striping. By tracking data set I/O activities, you
can make better decisions about data set caching policies and improve overall system
performance. For object data, you can track transaction activities to monitor and improve OAM′s
performance.

• When and how to back up data.emdash.do it incremental or total. Determine the backup
frequency, the number of backup versions, and the retention period by consulting user group
representatives. Be sure to consider whether certain data backups need to be synchronized. For
example, if the output data from application A is used as input for application B, you must
coordinate the backups of both applications to prevent logical errors in the data when they are
recovered.

• Whether data sets should be kept available for use during backup or copy. You can store backup
data sets on DASD or tape (this does not apply to objects). Your choice depends on how fast the
data needs to be recovered, media cost, operator cost, floor space, power requirements, air
conditioning, the size of the data sets, and whether you want the data sets to be portable.

146 ABCs of OS/390 System Programming

• How to manage backup copies kept for disaster recovery, locally or in a vault. Related data sets
should be backed up in aggregated tapes. Each application should have its own self-contained
aggregate of data sets. If certain data sets are shared by two or more applications, you might
want to ensure application independence for disaster recovery by backing up each application that
shares the data. This is especially important for shared data in a distributed environment.

• What to do with data that is obsolete or seldom used. Data is obsolete when it has exceeded its
expiration dates and is no longer needed. Some examples are old masters, listings, and
permanent work files. To select obsolete data for deletion using DFSMSdss, issue the DUMP
command and the DELETE parameter, and force OUTDDNAME to DUMMY.

Chapter 2. Storage management 147

Figure 97. Implementing monitor ing storage policies

2.5 Implementing and monitoring storage management policies

To implement a policy for managing storage, your storage administrator defines classes of space
management, performance, and availability requirements for data sets at your installation. For
example, the administrator can define one storage class for data entities requiring high performance
and another for those requiring standard performance. Then, the administrator writes Automatic Class
Selection (ACS) routines that use naming conventions, or other criteria of your choice, to automatically
assign the classes that have been defined to data as that data is created. These ACS routines can
then be validated and tested. When the ACS routines are started and the classes (also referred to as
constructs) are assigned to the data, SMS uses the policies defined in the classes to apply to the data
for the life of the data. Additionally, devices with various characteristics can be pooled together into
storage groups, so that new data can be automatically placed on devices that best meet the needs for
the data.

DFSMS/MVS facilitates all of these tasks by providing menu-driven, fill-in-the-blank panels with the
Interactive Storage Management Facility (ISMF). ISMF panels make it easy to define classes, test and
validate ACS routines, and perform other tasks to analyze and manage your storage. Note that many
of these functions are available in batch through the NaviQuest tool.

148 ABCs of OS/390 System Programming

Figure 98. Monitoring your policies

2.5.1 Monitoring your policies

After you have established your installation ′s service levels and implemented policies based on those
levels, you can use DFSMS/MVS facilities to see if your objectives have been met. Information on past
use can help you develop more effective storage administration policies and manage growth
effectively. Use the DFSMS/MVS Optimizer feature to help you monitor, analyze, and tune your
policies. This visual shows the actions available to you.

Chapter 2. Storage management 149

Figure 99. Managing data with SMS

2.6 Managing data with SMS

In the DFSMS environment, you use SMS classes and groups to set service requirements, performance
goals, and data definition models for your installation. You use the Interactive Storage Management
Facility (ISMF) to create the appropriate classes and groups, and Automatic Class Selection (ACS)
routines to assign them (classes and groups) to data according to your installation ′s policies.

150 ABCs of OS/390 System Programming

Figure 100. How to be system-managed

2.6.1 How to be system-managed

On systems that do not use DFSMS, storage management consists mostly of manual operations
performed on individual data sets, and manual and automated operations performed on volumes. With
SMS, you can automate storage management for individual data sets and objects, and for DASD,
optical, and tape volumes. You use SMS classes and groups to define the goals and requirements that
the system should meet for a data set or object. You use:

• Data class to define model allocation characteristics for data sets

• Storage class to define performance and availability goals

• Management class to define backup and retention requirements

• Storage group to create logical groupings of volumes to be managed as a unit

This visual shows how a data set, object, DASD volume, tape volume, or optical volume becomes
system-managed. The numbers shown in parentheses are associated with the following notes:

 1. A DASD data set is system-managed if you assign it a storage class. If you do not assign a
storage class, the data set is directed to a non-system-managed DASD or tape volume—one that is
not assigned to a storage group.

 2. You can assign a storage class to a tape data set to direct it to a system-managed tape volume.
However, only the tape volume is considered system-managed, not the data set.

 3. Objects are also known as byte-stream data, this data is used in specialized applications such as
image processing, scanned correspondence, and seismic measurements. Object data typically has

Chapter 2. Storage management 151

no internal record or field structure and, once written, the data is not changed or updated.
However, the data can be referenced many times during its lifetime. Objects are processed by
OAM. Each object has a storage class; therefore, objects are system-managed. The optical or tape
volume on which the object resides is also system-managed.

 4. Tape volumes are added to tape storage groups in tape libraries when the tape data set is created.

152 ABCs of OS/390 System Programming

Figure 101. Using data classes

2.6.2 Using data classes

A data class is a collection of allocation and space attributes that you define. It is used when data sets
are created. You can simplify data set allocation for your users by defining data classes that contain
standard data set allocation attributes. You can use data classes with both system-managed and
non-system-managed data sets, but some data class characteristics are only available with
system-managed requests.

Data class attributes define space and data characteristics of data sets that are normally specified on
JCL DD statements, TSO/E ALLOCATE commands, access method services (IDCAMS) DEFINE commands,
dynamic allocation requests, and ISPF/PDF panels. For tape data sets, data class attributes can also
specify the type of cartridge and recording method, and if the data is to be compacted. Users then
need only specify the appropriate data classes to create standardized data sets.

You can use a data class to specify that a sequential data set should be striped. In this case, you must
allocate extended format sequential data sets across DASD volumes to sustain the data rate you
specify.

You can also use the data class automatic class selection (ACS) routine to automatically assign data
classes to new data sets. For example, data sets with the low-level qualifiers LIST, LISTING, OUTLIST,
or LINKLIST are usually utility output data sets with similar allocation requirements, and can all be
assigned the same data class. Another way to attribute a data class to a data set is using the DC=
parameter in the DD card of the referred data set.

Chapter 2. Storage management 153

This visual shows how data sets can be assigned a data class during data set creation.

Even though data class is optional, we usually recommend that you assign data classes to
system-managed and non-system-managed data. Although the data class is not used after the initial
allocation of a data set, the data class name is kept in the catalog entry for system-managed data sets
for future reference. The data class name is not saved for non-system-managed data sets, although
the allocation attributes in the data class are used to allocate the data set.

For objects on tape, we recommend that you do not assign a data class via the ACS routines. To
assign a data class, specify the name of that data class on the SETOAM command.

If you change a data class definition, the changes only affect new allocations. Existing data sets
allocated with the data class are not changed.

154 ABCs of OS/390 System Programming

Figure 102. Using storage classes

2.6.3 Using storage classes

A storage class is a collection of performance goals and availability requirements that you define. It is
used to select a device to meet those goals and requirements. Only system-managed data sets and
objects can be assigned a storage class. Storage classes free users from having to know about the
physical characteristics of storage devices and manually placing their data on appropriate devices.

Some of the availability requirements you can specify with storage classes can only be met by DASD
volumes attached through a 3990-6, or 9390 and 9393 RVA storage control units. You can specify
attributes that require the use of the dual copy, concurrent copy, remote copy, and snapshot features.
This visual shows some storage control unit configurations and their storage class attribute values.

With storage class, you can assign a data set to dual copy volumes to ensure continuous availability
for the data set. With dual copy, two current copies of the data set are kept on separate DASD
volumes (by the control unit). If the volume containing the primary copy of the data set is damaged,
the companion volume is automatically brought online and the data set continues to be available and
current. Remote copy is the same, with the two volumes in distinct control units (generally remote).

You can use the ACCESSIBILITY attribute of the storage class to request that concurrent copy be used
when data sets or volumes are backed up.

The 3990-6 and 9390 concurrent copy function enables you to take point-in-time copies of data by using
a cache sidefile that is loaded with the time-zero version of the data. Time-zero refers to the state of
the data when the concurrent copy session is started and before it gets updated. Before a record is

Chapter 2. Storage management 155

updated, it is copied to the cache sidefile thus creating a before update version or time-zero version of
the record.

You can specify an I/O response time objective with storage class by using the millisecond response
time (MSR) parameter. During data set allocation, the system attempts to select the closest available
volume to the specified performance objective. Also along the data set life, through the use MSR,
DFSMS dynamically uses the cache algorithms as DASD Fast Write (DFW) and Inhibit Cache Load (ICL)
in order to reach the MSR target I/O response time. This DFSMS function is called dynamic cache
management.

You can also use the storage class automatic class selection (ACS) routine to automatically assign
data classes to new data sets. Another way to attribute a data class to a data set is by using the SC=
parameter in the DD card that refers to the data set.

For objects, the system uses the performance goals you set in the storage class to place the object on
DASD, optical, or tape volumes. The storage class is assigned to an object when it is stored or when
the object is moved. The ACS routines can override this assignment.

If you change a storage class definition, the changes affect the performance service levels of existing
data sets that are assigned to that class when the data sets are subsequently opened. However, the
definition changes do not affect the location or allocation characteristics of existing data sets.

156 ABCs of OS/390 System Programming

Figure 103. Using management class

2.6.4 Using management classes

A management class is a collection of management attributes that you define. It is used to control the
retention, migration, backup, and release of allocated but unused space for data sets, or to control the
retention, backup, and class transition of objects. Management classes let you define management
requirements for individual data sets, rather than defining the requirements for entire volumes. All the
data set functions described in the management class are executed by DFSMShsm and DFSMSdss
programs.

You can also use the management class automatic class selection (ACS) routine to automatically
assign data classes to new data sets. Another way to attribute a data class to a data set is using the
MC= parameter in the DD card that refers to the data set.

If you do not explicitly assign a management class to a system-managed data set or object, the system
uses the default management class. You can define your own default management class when you
define your SMS base configuration.

For objects, you can:

• Assign a management class when it is stored, or

• Assign a new management class when the object is moved, or

• Change the management class by using the OAM Application Programming Interface (OSREQ
CHANGE function)

Chapter 2. Storage management 157

The ACS routines can override this assignment for objects.

158 ABCs of OS/390 System Programming

Figure 104. Management class functions

2.6.5 Management class functions

This visual shows the sort of functions an installation may define in a management class.

By classifying your data according to management requirements, you can define unique management
classes to fully automate your data set and object management. For example, you can use
management classes to control the migration of CICS user databases, DB2 user databases and archive
logs, test systems and their associated data sets, and IMS archive logs. You can specify that DB2
image copies, and IMS image copies and change accumulation logs, be written to primary volumes
and then migrated directly to migration level 2 tape volumes.

For objects, you use the class transition attributes to define when an object is eligible for a change in
its performance objectives or management characteristics. For example, after a certain number of
days you might want to move an object from a high-performance DASD volume to a slower optical
volume. You can also use the management class to specify that the object should have a backup copy
made when the OAM Storage Management Component (OSMC) is executing.

If you change a management class definition, the changes affect the management requirements of
existing data sets and objects that are assigned to that class.

Chapter 2. Storage management 159

Figure 105. Using storages groups

2.6.6 Using storage groups

A storage group is a collection of storage volumes and attributes that you define. The collection can
be a group of:

• System paging volumes

• DASD volumes

• Tape volumes

• Optical volumes

• Combination of DASD and optical volumes that look alike

• DASD, tape, and optical volumes treated as a single object storage hierarchy

Storage groups, along with storage classes, help reduce the requirement for users to understand the
physical characteristics of the storage devices which contain their data.

You can direct new data sets to as many as 15 storage groups, although only one storage group is
selected for the allocation. The system uses the storage class attributes, volume and storage group
SMS status, MVS volume status, and available free space to determine the volume selected for the
allocation. In a tape environment, you can also use tape storage groups to direct a new tape data set
to an automated or manual tape library.

DFSMShsm uses some of the storage group attributes to determine if the volumes in the storage group
are eligible for automatic space or availability management. This visual is an example of using

160 ABCs of OS/390 System Programming

storage groups to group storage volumes for specific purposes. In this example, DASD volumes are
grouped so that primary data sets, large data sets, DB2 data, IMS data, and CICS data are all
separated. The VIO storage group uses system paging volumes for small temporary data sets. The
tape storage groups are used to group tape volumes that are held in tape libraries. The object storage
group can span optical, DASD, and tape volumes; the object backup storage group can contain either
optical or tape volumes within one OAM invocation. Some volumes are not system-managed, and
other volumes are owned by DFSMShsm for use in data backup and migration. DFSMShsm migration
level 2 tape cartridges can be system-managed if you assign them to a tape storage group.

Unlike data, storage, and management classes, users cannot specify a storage group when they
allocate a data set, although they can specify a unit and volume. Whether or not you honor their unit
and volume request is an installation decision, but we recommend you discourage users from directly
requesting specific devices. It is more effective for your users to specify the logical storage
requirements of their data by storage and management class, which you can then verify in the
automatic class selection routines.

However, if at allocation time there are more than one candidate device to receive the data set, SRM
is still asked about the best candidate, performance-wise.

For objects, there are two types of storage groups, OBJECT and OBJECT BACKUP. An OBJECT
storage group is assigned by OAM when the object is stored; the storage group ACS routine can
override this assignment. There is only one OBJECT BACKUP storage group and all backup copies of
all objects are assigned to this storage group.

Chapter 2. Storage management 161

Figure 106. Aggregate backup and recovery support

2.6.7 Using aggregate backup and recovery support (ABARS)

Aggregate backup-and-recovery support, also called application backup application recovery support,
is a command-driven process to back up and recover any user-defined group of data sets that are vital
to your business. Then, an aggregate group is a collection of related data sets and control information
that have been pooled to meet a defined backup or recovery strategy. If a disaster occurs, you can
use these backups at a remote or local site to recover critical applications.

The user-defined group of data sets can be those belonging to an application or any combination of
data sets that you want treated as a separate entity. Aggregate processing enables you to:

• Back up and recover data sets by application, to enable business to resume at a remote site if
necessary

• Move applications in a non-emergency situation in conjunction with personnel moves or workload
balancing

• Duplicate a problem at another site

You can use aggregate groups as a supplement to using management class for applications that are
critical to your business. You can associate an aggregate group with a management class. The
management class specifies backup attributes for the aggregate group, such as the copy technique for
backing up DASD data sets on primary volumes, the number of aggregate versions to retain, and how
long to retain versions. Aggregate groups simplify the control of backup and recovery of critical data
sets and applications.

162 ABCs of OS/390 System Programming

Although SMS must be used on the system where the backups are performed, you can recover
aggregate groups to systems that are not using SMS, provided that the groups do not contain data
which requires that SMS be active, such as PDSEs. You can use aggregate groups to transfer
applications to other data processing installations or migrate applications to newly-installed DASD
volumes. You can transfer the application′s migrated data, along with its active data, without recalling
the migrated data.

Chapter 2. Storage management 163

Figure 107. Using automatic class selection

2.6.8 Using automatic class selection routines

You use automatic class selection (ACS) routines to assign classes (data, storage, and management)
and storage group definitions to data sets, database data, and objects. You write ACS routines using
the ACS language, which is a high-level programming language. Once written, you use the ACS
translator to translate the routines to object form so they can be stored in the SMS configuration.

The ACS language contains a number of read-only variables, which you can use to analyze new data
allocations. For example, you can use the read-only variable &DSN to make class and group
assignments based on data set or object collection name, or &LLQ to make assignments based on the
low-level qualifier of the data set or object collection name. You cannot alter the value of read-only
variables.

You use the four read-write variables to assign the class or storage group you determine for the data
set or object, based on the routine you are writing. For example, you use the &STORCLAS variable to
assign a storage class to a data set or object.

For a detailed description of the ACS language and its variables, see DFSMS/MVS DFSMSdfp Storage
Administration Reference, SC26-4920.

For each SMS configuration, you can write as many as four routines: one each for data class, storage
class, management class, and storage group. Use ISMF to create, translate, validate, and test the
routines.

164 ABCs of OS/390 System Programming

The visual shows the order in which ACS routines are processed. Data can become system-managed
if the storage class routine assigns a storage class to the data, or if it allows a user-specified storage
class to be assigned to the data. If this routine does not assign a storage class to the data, the data
cannot reside on a system-managed volume.

Because data allocations, whether dynamic or through JCL, are processed through ACS routines, you
can enforce installation standards for data allocation on system-managed and non-system-managed
volumes. ACS routines also enable you to override user specifications for data, storage, and
management class, and requests for specific storage volumes.

You can use the ACS routines to determine the SMS classes for data sets created by the Distributed
FileManager/MVS. If a remote user does not specify a storage class, and if the ACS routines decide
that the data set should not be system-managed, the Distributed FileManager/MVS terminates the
creation process immediately and returns an error reply message to the source. Therefore, when you
construct your ACS routines, consider the potential data set creation requests of remote users.

Chapter 2. Storage management 165

Figure 108. Defining the storage management subsystem.

2.7 Defining the storage management subsystem configuration

An SMS configuration is composed of a set of data class, management class, storage class, storage
group, optical library and drive definitions, tape library definitions, and ACS routines to assign the
classes and groups. It also includes the aggregate group definitions and the SMS base configuration.
The SMS base configuration contains default information such as default management class and
default device geometry. It also identifies the systems in the installation for which the subsystem
manages storage.

This information is stored in SMS control data sets, which are VSAM linear data sets. You can define
these control data sets using the access method services DEFINE CLUSTER command.

You must define the control data sets before activating SMS. Although you need only allocate the data
sets from one system, the active control data set (ACDS) and communications data set (COMMDS)
must reside on a device that can be accessed by every system to be managed with the SMS
configuration.

Here we will introduce the concept of SMSplex. It means a set of OS/390 images sharing the same set
of SMS control data sets (ACDS and COMMDS). It is recommended that your SMSplex matches your
sysplex (parallel or basic)

SMS uses the following types of control data sets:

• Source Control Data Set (SCDS)
• Active Control Data Set (ACDS) ehp2.

166 ABCs of OS/390 System Programming

• Communications Data Set (COMMDS)

2.7.1.1 Source Control Data Set (SCDS)

The SCDS contains a set of SMS classes and groups and translated ACS routines that implement a
specific set of storage management policies.

This is the source control data set, the SMS configuration that you develop and test. You can have
several SCDSs. One should correspond to your current policies. Retain at least one prior
configuration should you need to regress to it because of error. The SCDS is never used to manage
allocations.

2.7.1.2 Active Control Data Set (ACDS)

The ACDS is the system′s active copy of the current SCDS. When you activate a configuration, SMS
copies the existing configuration from the specified SCDS into the ACDS. By using copies of the SMS
classes, groups, volumes, optical libraries, optical drives, tape libraries, and ACS routines rather than
the originals, you can change the current storage management policy without disrupting it. For
example, while SMS uses the ACDS, you can:

• Create a copy of the ACDS

• Create a backup copy of an SCDS

• Modify an SCDS

• Define a new SCDS

The ACDS must reside on a shared device to ensure that all systems in the installation use the same
active configuration.

We recommend that you have extra ACDSs in case a hardware failure causes the loss of your primary
ACDS. It must reside on a shared device, accessible to all systems, to ensure that they share a
common view of the active configuration. Do not have the ACDS reside on the same device as the
COMMDS or SCDS. Both the ACDS and COMMDS are needed for SMS operation across the complex.
Separation protects against hardware failure. You should also create a backup ACDS in case of
hardware failure or accidental data loss or corruption.

2.7.1.3 Communications Data Set (COMMDS)

The COMMDS data set contains the name of the ACDS and storage group volume statistics. It enables
communication between SMS systems in a multisystem environment. The COMMDS also contains
space statistics, SMS status, and MVS status for each system-managed volume. Although only one
COMMDS is used at a time for an SMS installation, we recommend that you have more COMMDSs on
different volumes for recovery purposes.

The COMMDS must reside on a shared device accessible to all systems. However, do not allocate it
on the same device as the ACDS. Create a spare COMMDS in case of a hardware failure or accidental
data loss or corruption. SMS activation fails if the COMMDS is unavailable.

Chapter 2. Storage management 167

Figure 109. Activating a minimal SMS configuration

2.8 Activating a minimal SMS configuration

This section presents the steps necessary to define and activate a minimal SMS configuration. This
establishes an operating environment for the storage management subsystem, without data sets
becoming system-managed.

Activation of a minimal configuration lets you gain experience in managing an SMS configuration
without affecting your JCL or data set allocations. During this phase, you can:

• Gain experience with ISMF applications for the storage administrator.
− You use ISMF applications to define and activate a minimal SMS configuration.

• Gain experience with the new operator commands that control operation of resources controlled by
SMS.
− New MVS commands are used to activate an SMS configuration and to display and control

storage group and volume status.
• Learn how the SMS base configuration can affect allocations for non-system-managed data sets.

The base configuration for your minimal SMS contains installation defaults for data sets:
− For non-system-managed data sets, you can specify default device geometry to ease the

conversion from device-dependent space calculations to the device-independent method
implemented by SMS.

− For system-managed data sets, you can specify a default management class to be used for
data sets that are not assigned a management class by your management class ACS routine.

• Use simplified JCL.
− With the minimal configuration active, you can use simplified JCL.

168 ABCs of OS/390 System Programming

• Implement allocation standards.
− With the minimal configuration active, you can develop a data class ACS routine to enforce

your standards.

Chapter 2. Storage management 169

′.

Figure 110. Managing data with a minimal SMS configuration

2.8.1 Managing data with a minimal SMS configuration

The visual shows the elements in the minimal SMS configuration:

• Base configuration

• Storage class definition

• Storage group containing at least one volume

• Storage class ACS routine

• Storage group ACS routine

All of these elements are required for a valid SMS configuration, except for the storage class ACS
routine. However, we recommend that a storage class ACS routine be part of your minimal
configuration. This prevents users from externally specifying a storage class on their DD statements
(STORCLASS keyword), causing the data set to be system-managed before you are ready.

The storage class ACS routine ensures that the storage class read/write variable is always set to null.
The storage group ACS routine is never run because no data sets are system-managed. So, no data
sets are allocated as system-managed by the minimal configuration.

The base configuration consists of the names for each system or system group in the SMS complex,
the default management class, and the default device geometry and unit information.

170 ABCs of OS/390 System Programming

Users become familiar with the device-independent space allocation implemented by SMS facilities
supported by the minimal configuration. Specifically, the base configuration contains a default unit that
corresponds to a DASD esoteric (such as SYSDA). Default geometry for this unit is specified in
bytes/track and tracks/cylinder for the predominant device type in the esoteric. If users specify the
esoteric, or do not supply the UNIT parameter for new allocations, the default geometry converts space
allocation requests into device-independent units, such as KBs and MBs. This quantity is then
converted back into device-dependent tracks based on the default geometry.

Chapter 2. Storage management 171

Figure 111. Steps for a minimal SMS configuration

2.8.2 Steps for a minimal SMS configuration

This visual shows the steps to activate the minimal configuration. These steps are covered in the next
visuals.

To use SMS effectively, use the information in this chapter and that in the DFSMS/MVS DFSMSdfp
Storage Administration Reference, SC26-4920, MVS/ESA Storage Management Library Managing Data,
SC26-3124, and MVS/ESA Storage Management Library Managing Storage Groups, SC26-3125.

172 ABCs of OS/390 System Programming

Figure 112. Allocating SMS control data sets

2.8.3 Allocating SMS control data sets

SMS stores its class and group definitions, translated ACS routines, and system information in the
control data sets ACDS, COMMDS, and SCDS.

Calculating the SCDS and ACDS sizes

The size of the ACDS/SCDS may allow constructs for up to 32 systems. Be sure to allocate sufficient
space for the ACDS and SCDS, since insufficient ACDS size can cause errors such as failing SMS
activation. See DFSMS/MVS DFSMSdfp Storage Administration Reference, SC26-4920, for the formula
used to calculate the appropriate SMS control data set size.

Calculating the COMMDS size

The size of the communications data set (COMMDS) increased in DFSMS/MVS 1.3, because the
amount of space required to store system-related information for each volume increased. To perform
a precise calculation of the COMMDS size, use the formula in DFSMS/MVS DFSMSdfp Storage
Administration Reference, SC26-4920.

Defining the control data sets

After you have calculated their respective sizes, define the control data sets to MVS using access
method services. The JCL in this visual is an example of how to define these data sets. Because

Chapter 2. Storage management 173

these data sets are allocated before SMS is activated, space is allocated in tracks. Allocations in KBs
or MBs are only supported when SMS is active.

Specify SHAREOPTIONS(2,3) only for the SCDS. This lets one update-mode user operate
simultaneously with other read-mode users between regions.

Specify SHAREOPTIONS(3,3) for the ACDS and COMMDS. These data sets must be shared between
systems that are managing a shared DASD configuration in a DFSMS environment.

2.8.4 Define GRS resource names for active SMS control data sets

You should place resource name IGDCDSXS in the RESERVE conversion RNL as a generic entry. This
will minimize delays due to contention for resource and prevent deadlocks associated with the VARY
SMS command. For more information, see DFSMS/MVS Planning for Installation, SC26-3123.

Prior to DFSMS 1.5, if you should not have more than one SMSplex controlled by one GRSPlex. The
name of the ENQ resource was not associated with the ACDS name, this caused performance
problems due to false contention (different resource and same name). In DFSMS 1.5, the RNAME is
appended by the BCDS name.

If there are multiple SMS complexes within a global resource serialization complex, be sure to use
unique COMMDS and ACDS data set names to prevent false contention. For information on allocating
COMMDS and ACDS data set names, see DFSMS/MVS Implementing System-Managed Storage,
SC26-3123.

174 ABCs of OS/390 System Programming

Figure 113. Defining a minimal SMS configuration

2.8.5 Defining a minimal SMS configuration

This visual shows the components of a minimal SMS configuration.

Note: The volume does not have to exist as long as you do not direct allocations to either the storage
group or the volume.

The following sections describe the steps you should follow to define a minimal configuration.

2.8.5.1 Defining the SMS base configuration

Use ISMF to create your SCDS base. The starter set configuration can be used as a model for your
own SCDS. For a detailed description of base configuration attributes and how to use ISMF to define
its contents, see DFSMS/MVS DFSMSdfp Storage Administration Reference, SC26-4920.

2.8.5.2 Defining SMS classes and storage group
To define a minimal configuration, define a storage class and storage group, and create their
respective ACS routines. Defining a data class and a management class and creating their respective
ACS routines are not required for a valid SCDS. However, because of the importance of the default
management class, we recommend that you include it in your minimal configuration. For a detailed
description of SMS classes and groups, see MVS/ESA Storage Management Library Managing Data,
SC26-3124. For detailed information on defining SMS classes and groups using ISMF, see DFSMS/MVS
DFSMSdfp Storage Administration Reference, SC26-4920.

Chapter 2. Storage management 175

2.8.5.3 Defining the storage class

You must define at least one storage class name to SMS. Because a minimal configuration does not
include any system-managed volumes, no performance or availability information need be contained in
the minimal configuration ′s storage class. Specify an artificial storage class, NONSMS. This class is
later used by the storage administrator to create non-system-managed data sets on an exception
basis. In the storage class ACS routine, &STORCLAS is set to a null value to prevent users from
coding a storage class in JCL before you want to have system-managed data sets.

You can define the class, NONSMS, in your configuration in one of two ways:

• Define the class using the DEFINE option of the ISMF storage class application

• Use the ISMF COPY line operator to copy the definition of NONSMS from the starter set′s SCDS to
your own SCDS

Defining the storage group

You must define at least one pool storage group name to SMS, and at least one volume serial number
to this storage group (a storage group with no volumes defined is not valid). This volume serial
number should be for a nonexistent volume to prevent the occurrence of JCL errors from jobs
accessing data sets using a specific volume serial number.

Defining a non-existent volume lets you activate SMS without having any system-managed volumes.
No data sets are system-managed at this time. This condition provides an opportunity to experiment
with SMS without any risk to your data.

Define the NOVOLS storage group in your SCDS.

Defining the default management class

Define a default management class and name it STANDEF to correspond with the entry in the base
configuration. We recommend that you specifically assign all system-managed data to a management
class. If you do not supply a default, DFSMShsm uses two days on primary storage, and 60 days on
migration level 1 storage, as the default.

No management classes are assigned when the minimal configuration is active. Definition of this
default is done here to prepare for use in the managing permanent data milestone.

The management class, STANDEF, is defined in the starter set′s SCDS. You can copy its definition to
your own SCDS in the same way as the storage class, NONSMS, was copied.

Creating and writing ACS routines

After you define the SMS classes and group, develop your ACS routines. In the minimal configuration,
you assign a null storage class in the storage class ACS routine. The storage group ACS routine is not
run if a null storage class is assigned. However, you must code a trivial one to satisfy the SMS
requirements for a valid SCDS. After you have written the ACS routines, use ISMF to translate them
into executable form.

 1. If you do not have the starter set, allocate a fixed-block PDS or PDSE with LRECL=80 to contain
your ACS routines. Otherwise, go to the next step.

 2. Enter a 7 (AUTOMATIC CLASS SELECTION) on the ISMF Primary Option Menu to display the ACS
Application Selection panel.

Translating the ACS routines

176 ABCs of OS/390 System Programming

The translation process checks the routines for syntax errors and converts the code into an ACS
object. If the code translates without any syntax errors, then the ACS object is stored in the SCDS.

 1. Select option 2 (TRANSLATE) from the ACS Application Selection panel and press Enter to display
the Translate ACS Routines panel.

2.8.5.4 Validating the SCDS
When you validate your SCDS, you verify that all classes and groups assigned by your ACS routines
are defined in the SCDS. To validate the SCDS:

 1. Enter an 8 (CDS) on the ISMF Primary Option Menu to display the CDS Application Selection panel.

 2. Enter 4 to Validate the SCDS.

For more information, see DFSMS/MVS Using the Interactive Storage Management Facility, SC26-4911.

Chapter 2. Storage management 177

Figure 114. DFSMS setup for OS/390

2.8.6 DFSMS setup for OS/390

In preparation for starting SMS, update the IEASYSxx, IEFSSNyy, and IGDSMSzz members of MVS
parmlib to define SMS to MVS.

IEASYSxx . IEASYSxx is used only to specify the suffix of the other two members.

IEFSSNyy . You can activate SMS only after you define it to MVS as a valid subsystem.

To define SMS to MVS, you must place a record for SMS in an IEFSSNxx member. IEFSSNxx defines
how MVS activates the SMS address space. You can code an IEFSSNxx member with keyword or
positional parameters, but not both. We recommend using keyword parameters. We recommend that
you place the SMS record before the JES2 record in IEFSSNxx to start SMS before starting the JES2
subsystem.

IGDSMSzz. For each system in the SMS complex, you must create an IGDSMSxx member
SYS1.PARMLIB. The IGDSMSzz member contains SMS initialization control information. It has a
default value of 00.

Every SMS system must have an IGDSMSzz member in SYS1.PARMLIB that specifies a required ACDS
and COMMDS pair. This ACDS and COMMDS pair is used if the COMMDS of the pair does not point to
another COMMDS.

If the COMMDS points to another COMMDS, the referenced COMMDS is used. This referenced
COMMDS might contain the name of an ACDS that is different from the one specified in the IGDSMSzz.

178 ABCs of OS/390 System Programming

If so, the name of the ACDS is obtained from the COMMDS rather than from the IGDSMSzz to ensure
that the system is always running under the most recent ACDS and COMMDS.

If the COMMDS of the ACDS and COMMDS pair refers to another COMMDS during IPL, it means a
more recent COMMDS has been used. SMS uses the most recent COMMDS to ensure that you cannot
IPL with a down-level configuration. The data sets that you specify for the ACDS and COMMDS pair
must be the same for every system in an SMS complex. Whenever you change the ACDS or COMMDS,
update the IGDSMSzz for every system in the SMS complex so that it specifies the same data sets.

There are much more commands in IGDSMSzz. For a complete description of SMS parameters, see
OS/390 Initialization and Tuning Reference, SC28-1752, and DFSMS/MVS DFSMSdfp Storage
Administration Reference, SC26-4920.

Chapter 2. Storage management 179

Figure 115. Activating and starting SMS

2.8.7 Activating and starting SMS

To start SMS, which starts the SMS address space, use either of the following two methods:

• IPL the system with SMS defined as a valid subsystem, and start SMS automatically.

• IPL the system with SMS defined as a valid subsystem, and start SMS later using the SET SMS=yy
MVS operator command.

For detailed information, refer to the DFSMS/MVS DFSMSdfp Storage Administration Reference,
SC26-4920.

2.8.7.1 Activating a new SMS configuration

Activating a new SMS configuration means to copy the configuration from SCDS to ACDS and to SMS
address space. You can manually activate a new SMS configuration in two ways. But SMS must be
active before you use one of these methods:

• Activating an SMS configuration from ISMF

Select the ACTIVATE option, or enter the ACTIVATE command on the command line of the ISMF CDS
Application Selection panel. The information from the SCDS is copied into the ACDS. The SCDS
itself is never considered active. Attempting to activate an ACDS that is not valid results in an
error message

• Activating an SMS configuration from the operator console

From the operator console, enter the following command:

180 ABCs of OS/390 System Programming

SETSMS {ACDS(YOUR.OWN.ACDS)} {SCDS(YOUR.OWN.SCDS)}

Do not confuse the SET SMS (T SMS) command with the SETSMS command.

YOUR.OWN.ACDS specifies a data set that has been defined as an ACDS. To activate the
configuration, information is brought into the SMS address space from the ACDS. To update the
current ACDS with the contents of an SCDS, specify the name of the SCDS only. Otherwise, If you
want to both specify a new ACDS and update it with the contents of an SCDS, enter the SETSMS
command with both the ACDS and SCDS specified.

Note: The ACTIVATE command, run from the ISMF CDS application, is equivalent to the SETSMS operator
command with the SCDS keyword specified. If you use RACF, you can enable storage administrators
to activate SMS configurations from ISMF by defining the facility,
STGADMIN.IGD.ACTIVATE.CONFIGURATION, and issuing permit commands for each storage
administrator.

Chapter 2. Storage management 181

Figure 116. Display SMS configuration

2.8.8 Display SMS configuration

Display SMS configuration is one of many tasks used to control SMS processing as described in 2.8.2,
“Steps for a minimal SMS configuration” on page 172.

Display configuration status information by entering ACTIVE in the CDS NAME field on the ISMF CDS
Application Selection panel.

MVS operator commands complement your ability to monitor and control SMS operation.

DISPLAY SMS: shows volumes, storage groups, libraries, drives, SMS configuration information, SMS
trace parameters, SMS operational options, OAM information, OSMC information, and cache
information. Enter this command to:

• Confirm that the system-managed volume status is correct

• Confirm that SMS starts with the proper parameters

182 ABCs of OS/390 System Programming

Figure 117. Controlling SMS processing with commands

2.8.9 Controlling SMS processing with MVS operator commands

The DFSMS environment provides a set of MVS commands the operator can use to control SMS
processing. The VARY, DISPLAY, DEVSERV, and SET commands are MVS operator commands that support
SMS operation.

SETSMS This command changes SMS options from the operator console. You can use this
command to activate a new configuration from an SCDS. SETSMS supports SMS and
is modeled after the SETSMF command, which controls SMF processing. The MVS
operator must SETSMS to recover from ACDS and COMMDS failures. For an
explanation of how to recover from ACDS and COMMDS failures, see DFSMS/MVS
DFSMSdfp Storage Administration Reference, SC26-4920.

SET SMS=zz This command starts SMS, if it has not already been started and is defined as a valid
MVS subsystem. The command also:

• Changes options set from MVS PARMLIB for SMS
• Restarts SMS if it has terminated
• Updates the SMS configuration

VARY SMS This command changes storage group, volume, library, or drive status. You can use
this command to:

• Limit new allocations to a volume or storage group
• Enable a newly-installed volume for allocations

Chapter 2. Storage management 183

DEVSERV This command displays information for a device. Use it to display the status of
extended functions in operation for a given volume that is attached to a cache-capable
3990 storage control.

For more information about operator commands, see OS/390 MVS System Commands, GC28-1781.

184 ABCs of OS/390 System Programming

Figure 118. Enforcing standards with DC ACS routine

2.8.10 Enforcing standards with DC ACS routine

You can use data class ACS routine facilities to automate or simplify storage allocation standards if
you:

• Use manual techniques to enforce standards

• Plan to enforce standards before implementing DFSMS

• Use DFSMSdfp or MVS installation exits to enforce storage allocation standards

The data class ACS routine provides an automatic method for enforcing standards, because it is called
for system-managed and non-system-managed data set allocations. Standards are enforced
automatically at allocation time, rather than through manual techniques after allocation.

Enforcing standards optimizes data processing resources, improves service to users, and positions you
for implementing system-managed storage. You can fail requests or issue warning messages to users
who do not conform to standards. Consider enforcing the following standards in your DFSMS
environment:

• Prevent extended retention or expiration periods

• Prevent specific volume allocations, unless authorized; for example, you can control allocations to
spare, system, database, or other volumes

• Require valid naming conventions for permanent data sets

Chapter 2. Storage management 185

Figure 119. Establishing installation standards

2.9 Establishing installation standards

Establishing standards, such as naming conventions and allocation policies, helps you manage storage
more efficiently and improves service to your users. With them, your installation is better prepared to
make a smooth transition to system-managed storage. This topic helps you establish installation
standards. It describes the following tasks:

• Identifying data types

• Developing naming conventions

• Improving catalog performance

• Simplifying JCL

Negotiate with your user group representatives to agree on the specific policies for the installation,
how soon you can implement them, and how strongly you enforce them. Document negotiated policies
in a service-level agreement.

You can simplify storage management by limiting the number of data sets and volumes that cannot be
system-managed.

186 ABCs of OS/390 System Programming

Figure 120. Data types that can be system managed

2.9.1 Data types that can be system managed

These are some common types of data that can be system managed. For details on how these data
types can be system managed using SMS storage groups, see MVS/ESA Storage Management Library
Managing Storage Groups, SC26-3125.

Temporary data Data sets used only for the duration of a job, job step, or terminal session, and then
deleted. These data sets can be cataloged or uncataloged, and can range in size
from small to very large.

Permanent data Data sets consisting of:

• Interactive data
• TSO user data sets
• ISPF/PDF libraries you use during a terminal session

Data sets classified in this category are typically small, and are frequently
accessed and updated.

Batch data Data that is classified as either online-initiated, production, or test.

• Data accessed as online-initiated are background jobs that an online facility, such
as TSO, generates

• Production batch refers to data created by specialized applications (such as
payroll), that could be critical to the continued operation of your business or
enterprise

• Test batch refers to data created for testing purposes

Chapter 2. Storage management 187

VSAM data Data organized with VSAM, including VSAM data sets that are part of an existing
database.

Large data For most installations, large data sets occupy more than 10 percent of a single DASD
volume. Note, however, that what constitutes a large data set is installation
dependent.

Multivolume data Data sets that span more than one volume.

Database data Data types usually having varied requirements for performance, availability, space,
and security. To accommodate special needs, database products have specialized
utilities to manage backup, recovery, and space usage. Examples include DB2, IMS,
and CICS data.

System data Data used by MVS to keep the operating system running smoothly. In a typical
installation, 30-to-50 percent of these data sets are high performance and are used
for cataloging, error recording, and other system functions. Because these critical
data sets contain information required to find and access other data, they are read
and updated frequently, often by more than one system in an installation.

Performance and availability requirements are unique for system data. The
performance of the system depends heavily upon the speed at which system data
sets can be accessed. If a system data set such as a master catalog is unavailable,
the availability of data across the entire system and across other systems can be
affected.

Some system data sets can be system-managed if they are uniquely named. These
data sets include user catalogs. Place other system data sets on non-system
managed volumes. The system data sets which are allocated at MVS system
initialization are not system managed, because the SMS address space is not active
at initialization time.

Object data Also known as byte-stream data, this data is used in specialized applications such as
image processing, scanned correspondence, and seismic measurements. Object
data typically has no internal record or field structure and, once written, the data is
not changed or updated. However, the data can be referenced many times during its
lifetime.

188 ABCs of OS/390 System Programming

Figure 121. Data types that cannot be system managed

2.9.2 Data types that cannot be system managed

This section describes the data that cannot be system managed.

Uncataloged data All permanent DASD data under the control of SMS must be cataloged in
integrated catalog facility catalogs using the standard search order. The
catalogs contain the information required for locating and managing
system-managed data.

If data sets are cataloged, users do not need to know which volumes the data
sets reside on when they reference them; they do not need to specify unit type
or volume serial number. This is essential in an environment with storage
groups, where users do not have private volumes.

Objects, stored in groups called collections, must have their collections
cataloged in integrated catalog facility catalogs because they, and the objects
they contain, are system-managed data. The object access method (OAM)
identifies an object by its collection name and the object′s own name. An
object is described only by an entry in a DB2 object directory. An object
collection is described by a collection name catalog entry and a corresponding
OAM collection identifier table entry. Therefore, an object is accessed by
using the object′s collection name and the catalog entry.

When objects are written to tape, they are treated as tape data sets and OAM
assigns two tape data set names to the objects. Objects in an object storage
group being written to tape are stored as a tape data set named

Chapter 2. Storage management 189

OAM.PRIMARY.DATA. Objects in an object backup storage group being
written to tape are stored as a tape data set named OAM.BACKUP.DATA.
Each tape containing objects has only one tape data set, and that data set has
one of the two previous names. Because the same data set name can be
used on multiple object-containing tape volumes, the object tape data sets are
not cataloged.

If you don′ t already have a policy for cataloging all permanent data, it is a
good idea to establish one now. For example, you can enforce standards by
deleting uncataloged data sets.

Uncataloged data sets The system locates these with JOBCAT or STEPCAT statements. Data set
LOCATEs using JOBCATs or STEPCATs are not permitted for system-managed
data sets. You must identify the owning catalogs before you migrate these data
sets to system management. The ISPF/PDF SUPERC utility is valuable for
scanning your JCL and identifying any dependencies on JOBCATs or
STEPCATs.

Unmovable data sets Unmovable data sets cannot be system-managed. These data sets include:

• Data sets identified by the following data set organization (DSORGs):

− Partitioned unmovable (POU)

− Sequential unmovable (PSU)

− Direct access unmovable (DAU)

− Indexed-sequential unmovable (ISU)

• Data sets with user-written access methods

• Data sets containing processing control information on the device or
volume on which they reside, including:

− Absolute track data that is allocated in absolute DASD tracks or on
split cylinders

− Location dependent direct data sets

All unmovable data sets must be identified and converted for use in a
system-managed environment. For information on identifying and converting
unmovable data sets, see MVS/ESA Storage Management Library Managing
Storage Groups, SC26-3125.

190 ABCs of OS/390 System Programming

Figure 122. Highest-level qualifiers

2.9.3 Developing naming conventions

Whenever you allocate a new data set, you (or the operating system) must give the data set a unique
name. Usually, the data set name is given as the dsname in JCL. A data set name can be one name
segment, or a series of joined name segments. Each name segment represents a level of qualification.
For example, the data set name DEPT58.SMITH.DATA3 is composed of three name segments. The first
name on the left is called the high-level qualifier, the last is the low-level qualifier.

You must implement a naming convention for your data sets. Although naming convention is not a
prerequisite for DFSMS conversion, it makes more efficient use of DFSMS. You can also reduce the
cost of storage management significantly by grouping data that shares common management
requirements. Naming conventions are an effective way of grouping data. They also:

• Simplify service-level assignments to data

• Facilitate writing and maintaining ACS routines

• Allow data to be mixed in a system-managed environment while retaining separate management
criteria

• Provide a filtering technique useful with many storage management products

• Simplify the data definition step of aggregate backup and recovery support

Naming conventions are particularly important to data in a distributed environment. For more
information, see ADSTAR Distributed Storage Manager for MVS Administrator ′s Guide, GC35-0277.

Chapter 2. Storage management 191

This section explains the highest-level and lowest-level qualifiers (HLQ and LLQ, respectively), and
other levels. Most naming conventions are based on the HLQ and LLQ of the data name.

Other levels of qualifiers can be used to identify generation data sets and database data. They can
also be used to help users to identify their own data.

2.9.3.1 Highest-level qualifiers (HLQ)

The HLQ identifies the owner or owning group of the data, and it can indicate data type. Do not embed
information that is subject to frequent change in the HLQ, such as department number, application
location, output device type, job name, or access method. Set a standard within the HLQ. This visual
shows a suggestion.

192 ABCs of OS/390 System Programming

Figure 123. Lowest-level qualifiers (LLQ) standards

2.9.4 Lowest-level qualifiers (LLQ) standards

The LLQ determines the contents and storage management processing of the data. You can use LLQs
to identify data requirements for:

• Migration (data sets only)
• Backup (data sets and objects)
• Archiving (data sets)
• Retention or expiration (data sets and objects)
• Class transitions (objects only)
• Release of unused space (data sets only)

The retention and expiration of objects on tape volumes are determined on two levels. Tape volumes
containing objects have a tape data set expiration date and an expiration date of when the last object
on the tape is going to expire. For information on deleting expired objects on tape, see “Deleting
Data” in topic 4.2 in MVS/ESA Storage Management Library Managing Data, SC26-3124.

Mapping storage management requirements to data names is especially useful in a system-managed
environment. In an environment without storage groups, data with differing requirements is often
segregated onto separate volumes that are monitored and managed manually. LLQ data naming
conventions allow data to be mixed together in a system-managed environment and still retain the
separate management criteria.

This visual shows some examples of how you can use LLQ naming standards to indicate the storage
management processing criteria. The first column lists the LLQ of a data name. An asterisk indicates

Chapter 2. Storage management 193

where a partial qualifier can be used. For example, LIST* indicates that only the first four characters of
the LLQ must be LIST; valid qualifiers include LIST1, LISTING, and LISTOUT. The remaining columns
show the storage management processing information for the data listed.

194 ABCs of OS/390 System Programming

Figure 124. Simplifying JCL

2.9.5 Simplifying JCL

Several JCL keywords can help you simplify the task of creating data sets and also to make the
allocation process under TSO more consistent. It is also possible to allocate VSAM data sets through
JCL without IDCAMS assistance.

For example, with the use of data classes, you have less use for the JCL keywords: VOL, UNIT, DCB,
and AMP. Continue to use the DSN, DISP, and SPACE keywords to create system-managed data.

2.9.5.1 JCL keywords used in the DFSMS environment

You can use these JCL keywords to create VSAM and non-VSAM data sets. For a detailed description
of the keywords and their use, see OS/390 MVS JCL User′s Guide, SC28-1758.

2.9.5.2 Sample jobs using the JCL keywords

This section gives examples of how to use JCL keywords when:

• Creating a data set

• Creating a VSAM cluster

• Specifying retention period

• Specifying expiration date

Chapter 2. Storage management 195

Figure 125. Allocating data

2.9.6 Allocating data

Many times the words create and allocate, when applied to data sets, are used in MVS as synonyms.
However, they are not.

• To create (in DASD) means to assign a space in VTOC to be used for a data set (sometimes create
implies cataloging the data set). A data set is created in response to the DD card DISP=NEW in
JCL.

• To allocate means to establish a logical relationship between the request for the use of the data
set within the program (through the use of an DCB or ACB) and the data set itself in the device
where it is located. Being more specific, allocation implies finding where the data set is (for an
already existent data set) or where it will be (for a new one). Thinking in control blocks terms, the
DCB/ACB is connected to the DD card through the DDNAME field. The DD card contents forms a
TIOT entry and at allocation time this entry points to the UCB where the data set exists.

This visual shows an example of JCL used to create a data set in a system-managed environment.

These are some characteristics of the JCL in a system-managed environment:

• The device-dependent volume serial number and unit information is no longer required, because
the volume is assigned within a storage group selected by the ACS routines. This eliminates the
need for device awareness.

196 ABCs of OS/390 System Programming

• The LRECL and RECFM parameters are independent keywords. This makes it easier to override
individual attributes that are assigned default values by the data class, selected by the ACS
routines, that might not be appropriate for the data set being allocated.

• In this example, the SPACE parameter is coded with the average number of bytes per record (50),
and the number of records required for the primary data set allocation (5 M) and secondary data
set allocation (5 M). These are the values that the system uses to calculate the least number of
tracks required for the space allocation. This also eliminates the need for device awareness,
replacing the TRK or CYL unit specification. For variable-block data sets, the average number of
bytes per record is not necessarily the same as the LRECL value. In the example, the average
record length is 50, whereas the LRECL is 80.

The AVGREC attribute indicates the scale factor for the primary and secondary allocation values.
In the example, an AVGREC value of M indicates that the primary and secondary values of 5 are
each to be multiplied by 1 048 576.

The SPACE parameter would result in a primary allocation of 5 MB and a secondary allocation of 5
MB.

The JCL to allocate a data set under SMS is simpler and has no device-dependent keywords. For
information on managing data allocation, refer to DFSMS/MVS Using Data Sets, SC26-4922.

Note that, if you code the SPACE parameter on a DD statement that defines an existing data set,
the SPACE value you specify temporarily overrides the SPACE value used to create the data set.

Chapter 2. Storage management 197

Figure 126. Creating a VSAM cluster

2.9.7 Creating a VSAM cluster

In the DFSMS environment, you can allocate VSAM data sets using JCL or data class. For a
non-DFSMS VSAM cluster, this is only done through IDCAMS. In JCL, DISP=(OLD,DELETE) is not
ignored for VSAM data sets, and causes the VSAM data set to be deleted at unallocation. A data set
with a disposition of MOD is treated as a NEW allocation if it does not already exist; otherwise, it is
treated as an OLD allocation.

198 ABCs of OS/390 System Programming

Figure 127. Space parameter in a KSDS VSAM cluster

2.9.7.1 Space parameter in VSAM KSDS cluster

In this example DSN=NEW.VSAM refers to a KSDS VSAM cluster.

The space allocation for a VSAM entity depends on the level of the entity being allocated:

• If allocation is specified at the cluster or alternate index level only, the amount needed for the
index is subtracted from the specified amount. The remainder of the specified amount is assigned
to data.

• If allocation is specified at the data-level only, the specified amount is assigned to data. The
amount needed for the index is in addition to the specified amount.

• If allocation is specified at both the data and index levels, the specified data amount is assigned to
data and the specified index amount is assigned to the index.

• If secondary allocation is specified at the data level, secondary allocation must be specified at the
index level or the cluster level.

You cannot use certain parameters in JCL when allocating VSAM data sets, although you can use
them in the IDCAMS DEFINE command.

Chapter 2. Storage management 199

Figure 128. Using retention period and expiration date

2.9.8 Using retention period and expiration date

Parameters for specifying retention period and expiration date control the time during which a data set
is protected from being deleted by the system. The first DD statement in the visual protects the data
set from deletion for 365 days. The second DD statement in the picture protects the data set from
deletion until December 30, 1999.

The RETPD and EXPDT keywords apply alike to system-managed and non-system-managed data sets.

The VTOC entry for both non-VSAM and VSAM data sets contains the expiration date as declared in
the JCL, the TSO ALLOCATE command, or the IDCAMS DEFINE command. The expiration date can also
come from the data class definition.

The expiration date is placed in the VTOC either directly from the date specification, or after it is
calculated from the retention period specification. The expiration date in the catalog entry exists for
information purposes only.

If you specify the current date or an earlier date, the data set is immediately eligible for replacement.

You can use management class to limit or ignore RETPD and EXPDT parameters given by a user. If a
user specifies values that exceed the maximum allowed by the management class definition, the
retention period is reset to the allowed maximum. For more information on using management class
to control retention period and expiration date, refer to DFSMShsm Storage Administration Guide,
SH21-1076.

200 ABCs of OS/390 System Programming

For an expiration date beyond year 1999 use the following format: YYYY/DDD.

Note: EXPDT=99365, or 99366, or 1999/365 or 1999/3666 are special dates and mean never expires.

Chapter 2. Storage management 201

Figure 129. Managing data allocation

2.10 Managing data allocation

Inefficient space usage and poor data allocation cause problems with space and performance
management. In a DFSMS environment, you can enforce good allocation practices to help reduce
some of these problems. This section describes how to do this by:

• Establishing allocation standards

• Ensuring device independence

• Allocating data sets as PDSEs

• Processing GDGs

• Allocating compressed data

2.10.1 Using data class to standardize data allocation

This section describes how to use data class to establish standards for data allocation. For sample
data classes, descriptions, and ACS routines, see MVS/ESA Implementing System-Managed Storage,
SC26-3123.

You can define data classes containing standard data set allocation attributes. Users then only need
to use the appropriate data class names to create standardized data sets. To override values in the
data class definition, they can still provide specific allocation parameters.

202 ABCs of OS/390 System Programming

Data classes can be determined from the user-specified value on the DATACLAS parameter (DD card,
TSO Alloc, Dynalloc macro), from a RACF default, or by ACS routines. ACS routines can also override
user-specified or RACF default data classes. The asterisk in the visual is highlighting this fact.

However, you can override a data class attribute (not the data class itself) using JCL or dynamic
allocation parameters. However, overriding a subparameter of a parameter, overrides all of the
subparameters for that parameter. For example, SPACE=(TRK,(1)) in JCL will cause primary,
secondary, and directory quantities, as well as AVGREC and AVGUNIT, in the data class to be
overridden. DFSMS usually does not change values that are explicitly specified because doing so
would alter the original meaning and intent of the allocation. There is an exception—if it is clear that a
PDS is being allocated (DSORG=PO or DSNTYPE=PDS is specified), and no directory space is
indicated in the JCL, then the directory space from the data class is used even though
SPACE=(TRK,(1)) was specified.

Users cannot override the data class attributes of dynamically-allocated data sets if you use the
IEFDB401 user exit.

Data classes can also be determined for objects by a specification using the SETOAM command in the
CBROAMxx member of SYS1.PARMLIB.

Chapter 2. Storage management 203

Figure 130. Data class attributes

2.10.2 Data class attributes

The data class attributes you can use are shown in this visual. You can specify the data-class space
attributes to control DASD space waste. For example, the primary space value should specify the total
amount of space initially required for output processing. The secondary allocation allows automatic
extension of additional space as the data set grows and does not waste space by over-allocating the
primary quantity. You can also use the data-class space attributes to relieve users of the burden of
calculating how much primary and secondary space to allocate.

The COMPACTION attribute specifies whether data is to be compressed on DASD if the data set is
allocated in the extended format. The COMPACTION attribute alone also allows you to use the
improved data recording capability (IDRC) of your tape device when allocating tape data sets.

The MEDIA TYPE and RECORDING TECHNOLOGY attributes are used for tape data sets only. MEDIA
TYPE allows you to select the mountable tape media cartridge type. RECORDING TECHNOLOGY
allows you to select the format to use when writing to that device.

The read-compatible special attribute indicator in the tape device selection information (TDSI) allows
an 18 track tape to be mounted on a 36 track device for read access. The attribute increases the
number of devices that are eligible for allocation when you are certain that no more data will be
written to the tape.

For detailed information on specifying data class attributes, see DFSMS/MVS DFSMSdfp Storage
Administration Reference, SC26-4920.

204 ABCs of OS/390 System Programming

Figure 131. Planning and defining data classes

2.10.3 Planning and defining data classes

Use your service-level agreement (SLA) for reference when you plan your data classes. For
information about SLAs, see MVS/ESA Storage Management Library Leading a Storage Administration
Group, SC26-3126. SLAs identify users′ current allocation practices and their requirements. For
example, based on user requirements, you might create a data class to allocate standard control
libraries in CDS data sets.

If you want the data class to supply the default value of a parameter, do not specify a value for that
parameter in the JCL or dynamic allocation.

Data class names should indicate the type of data they are assigned to. This makes it easier for users
to identify the template they need to use for allocation.

You define data classes using the ISMF data class application. Users can access the Data Class List
panel to determine which data classes are available and the allocation values that each data class
contains.

For more information on planning and defining data classes, see DFSMS/MVS DFSMSdfp Storage
Administration Reference, SC26-4920.

Chapter 2. Storage management 205

Figure 132. Ensuring device independence

2.10.4 Ensuring device independence

To take full advantage of system-managed storage and improve space usage, you need to eliminate
device dependencies. This allows the system to place data on the most appropriate device in the most
efficient way. This visual shows how to ensure device independence by removing volume serial
number dependencies.

In the DFSMS environment, you control volume selection through the storage class and storage group
definitions you create, and by ACS routines. This means that users do not have to specify volume
serial numbers with the VOL=SER parameter, or code a specific device type with the UNIT=
parameter on their JCL. When converting data sets for use in DFSMS, they do not have to remove
these parameters from existing JCL because volume and unit information can be ignored with ACS
routines. However, work with users to evaluate UNIT and VOL=SER dependencies before conversion.

Note: If you keep the VOL=SER parameter for a non-SMS volume, but you are trying to access a
system-managed data set, then SMS might not find the data set. All SMS data sets (the ones with a
storage class) must reside in a system-managed volume.

206 ABCs of OS/390 System Programming

Figure 133. SMS PDSE support

2.11 SMS PDSE support

Partitioned data set extended (PDSE) is a type of data set organization which improves the partition
data set (PDS) organization. It has an improved indexed directory structure and a different member
format. All PDSE data sets must be system-managed. You can use them for source (programs and
text) libraries, macros, and program object libraries. PDSE advantages, when compared with PDS are:

• The size of a PDSE directory is flexible and can expand to accommodate the number of members
stored in it (the size of a PDS directory is fixed at allocation time).

• PDSE members are indexed in the directory by member name. This eliminates the need for
time-consuming sequential directory searches.

• The logical requirements of the data stored in a PDSE are separated from the physical (storage)
requirements of that data, which simplifies data set allocation.

• PDSEs provide more efficient use of DASD space. For example, by moving or deleting a PDSE
member, you free space that is immediately available for the allocation of a new member, without
first having to compress the data set to consolidate the fragmented space for reuse. This makes
PDSEs less susceptible to space-related abends than PDSs.

• The number of PDSE members stored in the library can be large or small without concern for
performance or space considerations.

• The ability to update a member in place is possible with PDSs and PDSEs. But with PDSEs, you
can extend the size of members and the integrity of the library is maintained while simultaneous
changes are made to separate members within the library.

Chapter 2. Storage management 207

• The maximum number of extents of a PDSE is 123; the PDS is limited to 16.

• PDSEs are device-independent because they do not contain information that depends on location
or device geometry.

• All members of a PDSE are reblockable.

• PDSEs can contain program objects built by the program management binder that cannot be stored
in PDSs.

You can also share PDSEs within and across systems. With systems that support PDSEs (MVS/DFP
3.2.0 or higher level), multiple users are allowed to read PDSE members while the data set is open.

If you have DFSMS/MVS installed, you can extend the sharing to enable multiple users on multiple
systems to concurrently create new PDSE members and read existing members.

Using the PDSESHARING keyword in the SYS1.PARMLIB member, IGDSMSxx, you can specify:

• NORMAL. Allows multiple users to read any member of a PDSE

• EXTENDED. Allows multiple users to read any member or create new members of a PDSE.

All systems sharing PDSEs need to be upgraded to DFSMS/MVS to use the extended PDSE sharing
capability.

After updating the IGDSMSxx member of SYS1.PARMLIB, you need to issue the SET SMS ID=xx
command for every system in the complex to activate the sharing capability.

For additional information on PDSEs, see DFSMS/MVS Using Data Sets, SC26-4922.

Although SMS supports PDSs, you should consider converting these to the PDSE format. The following
sections describe this process.

208 ABCs of OS/390 System Programming

Figure 134. PDSE conversion

2.11.1 PDSE conversion

You can use IEBCOPY or DFSMSdss COPY to convert partitioned data sets to PDSEs, as shown in this
visual. We recommend using DFSMSdss.

You can convert the entire data set or individual members, and also back up and restore PDSEs. By
using the DFSMSdss COPY function with the CONVERT and PDS keywords, you can convert a PDSE
back to a PDS. This is especially useful if you need to prepare a PDSE for migration to a site that does
not support PDSEs. When copying members from a partitioned data set load-module library into a
PDSE program library, or vice versa, the system invokes the program management binder.

Many types of libraries are candidates for conversion to PDSE:

• PDSs that are updated often, and that require frequent and regular reorganization
• Large PDSs that require specific device types because of the size of allocation

Converting PDSs to PDSEs is beneficial, but be aware that certain data sets are unsuitable for
conversion to, or allocation as, PDSEs because the system does not retain the original block
boundaries. Also, data sets requiring device dependency are inappropriate to convert or allocate
because PDSEs are device-independent.

To reclaim unused space in those data sets that cannot be converted, use the DFSMSdss COMPRESS
command to compress PDSs in place. This consolidates space that is no longer used within a PDS
and makes it available at the end of the data set. For large or critical PDSs, you might want to copy or
back up the data sets before you compress them. This maintains data set availability should the

Chapter 2. Storage management 209

compress fail. For more information on DFSMSdss, see DFSMS/MVS DFSMSdss Storage
Administration Reference, SC26-4929, and DFSMS/MVS DFSMSdss Storage Administration Guide,
SC26-4930.

210 ABCs of OS/390 System Programming

Figure 135. Program objects

2.11.2 Program objects

There are two types of PDSEs, data and program object. In this section we cover the program object
type of PDSE.

The load modules stored in a PDS present some constraints, such as:

• Maximum size for TXT is 16 MB

• Maximum number of CESDs is 32 K

• All the PDS restrictions, such as:

− It needs compression (IEBCOPY)

− Unexpandable directory size

− High directory search connect time (LLA and DASD cache relief)

− Directory must be rewritten, when a member is added (sorted by collating sequence)

− Authorization and serialization at data-set level only

− Concurrent members creation by different tasks is an integrity exposure

• Software programs such as service aids and utilities must know the internal structures of modules
and directories entries

The binder converts the output of language translators and compilers into an executable program unit
that can either be read directly into virtual storage for execution or stored in a program library.

Chapter 2. Storage management 211

Most of the loading functions are transparent to the user. The loader will know whether the program
being loaded is a load module or a program object by the source data set type. If the program is
being loaded from a PDS, it calls IEWFETCH (now integrated as part of the loader) to do what it has
always done. If the program is being loaded from a PDSE, a new routine is called to bring in the
program using DIV. The loading is done using special loading techniques that can be influenced by
externalized options.

A second directory service in support of PDSE directories, DESERV, was externalized in DFSMS/MVS
1.3. You may issue DESERV for either PDS or PDSE directory access, but you must pass the DCB
address. It does not default to a pre-defined search order, as does BLDL. (Both BLDL and DESERV
support ″bypass-LLA.″) DESERV returns an SMDE which, for PDSE directories, contains more
information than is mapped by IHAPDS.

You create a transportable copy of the program object using IEWTPORT, then send the transportable
copy to the system without program management services. A program on the target system can
access the transportable copy using QSAM. If you want to load, bind, or execute a transportable
program, you must first re-create the program object by executing IEWTPORT on a system with
program management services installed. No programming interfaces exist to perform any of these
operations on transportable programs. IEWTPORT does not support load modules, nor does it support
program objects in overlay format.

To address these issues, DFSMS/MVS introduced program objects.

Program objects are a new format of load modules. In this format, load modules are called program
objects. This format is only allowed when stored in a PDSE program object library.

A program object consists of text (executable code and data areas) and information about load
(relocating address constants) and binding (solve externals references) in text.

The format and content of the object program and directory entry are not externalized (encapsulation).

The constraints removed from program objects are:

• Module size up to 2-Gb (TXT up to 1-Gb)

• Virtually unlimited number of aliases and external names

DFSMS/MVS has:

• Functions to create, update, execute, and access load modules (program objects) in PDSEs

• New load module format named program object library

• New linkage editor, called the binder

• New program fetch, called the loader and five new load modes. For fetching load modules,
IEWFETCH is invoked by the loader

• DESERV internal interface function, to access, add, or replace directories entries in a program
library (PDS or PDSE), used by:

− Binder

− Loader

− LLA

− AMASPZAP

• Set of utilities:

− IEWTPORT, builds transportable programs from program objects and vice-versa

• Coexistence between PDS and PDSEs load module libraries in same system

212 ABCs of OS/390 System Programming

Binder (DFSMS/MVS) replaces the linkage editor and loader. It executes all functions of load module
linkage and editing done by linkage editor/loader. Supports new PDSE load module format program
object and also supports old PDS load module format.

Program management loader is the MVS support to load program objects from PDSEs:

• Relocates all the address constants in the program to point to the appropriated areas in VS

• Supports 24-bit or 31-bit addressing

• Program objects may have different load modes based in the module characteristics and
parameters specified to the binder when the object program was created (FETCHOPT). Among
these load modes we have:

− To relocate and pre-load in virtual storage before execution

− To relocate and load in virtual storage along execution (by a kind of page fault)

Chapter 2. Storage management 213

Figure 136. Selecting data sets to allocate as PDSEs

2.11.3 Selecting data sets to allocate as PDSEs

As a storage administrator, you can code appropriate ACS routines to select data sets to allocate as
PDSEs and prevent inappropriate PDSs from being allocated or converted to PDSEs.

By using the &DSNTYPE read-only variable in the ACS routine for data-class selection, you can control
which PDSs are to be allocated as PDSEs. The following values are valid for DSNTYPE in the data
class ACS routines:

&DSNTYPE = ′ LIBRARY′ for PDSEs.
&DSNTYPE = ′ PDS′ for PDSs.
&DSNTYPE is not specified. This indicates that the allocation request
is provided by the user through JCL, the TSO/E ALLOCATE command, or
dynamic allocation.

If you specify a DSNTYPE value in the JCL, and a different DSNTYPE value is also specified in the data
class selected by ACS routines for the allocation, the value specified in the data class is ignored.

214 ABCs of OS/390 System Programming

Figure 137. Allocating a new PDSE

2.11.4 Allocating new PDSEs

You can allocate PDSEs only on a system-managed volume.

Users can allocate a PDSE using the JCL keyword DSNTYPE, a data class, the ALLOCATE command, or
by using IDCAMS ALLOCATE with the DSNTYPE keyword. The keyword specified is either
DSNTYPE(LIBRARY) to allocate a PDSE, or DSNTYPE(PDS) to allocate a PDS. This visual shows
IDCAMS ALLOCATE used with the DSNTYPE(LIBRARY) keyword to allocate a PDSE.

There are certain incompatibilities among allocation keywords. For example, you cannot use the JCL
keywords DSNTYPE and RECORG (only for VSAM data sets) together.

A PDS and a PDSE can be concatenated in JCL DD statements, or by using dynamic allocation, such
as the TSO ALLOCATE command.

A PDSE is allocated only if all the following criteria are met:

• Directory space or DSORG=PO is specified on the JCL statement in a dynamic allocation request,
in the TSO/E ALLOCATE command, or in the data class assigned to the data set.

• The keyword DSNTYPE(LIBRARY) is specified in the command, or provided either in the data class
or in the SMS installation default.

• The data set to be allocated is assigned to system-managed storage through the ACS routines.

Chapter 2. Storage management 215

Figure 138. Identifying a PDSE

2.11.5 Identifying PDSEs

You can use ISMF to display information associated with data set name type (DSNTYPE). This visual
shows a sample data set list obtained through a catalog.

This visual lists the data set name type, where LIBRARY indicates the data set is a PDSE, and OTHERS
indicates that the data set is a PDS.

The valid values for data set name type in the ISMF data set application are EXTENDED (extended
sequential data sets), HFS (hierarchical file system data sets), LIBRARY (PDSEs), and OTHERS (data
sets that are not allocated in the extended, HFS, or PDSE format). If you obtain the list through a
catalog and column 28 contains nulls “-------” the data set name type is neither LIBRARY (PDSE) nor a
PDS.

A saved data set list from a release prior to DFSMS/MVS can still be used and the values of data set
name type matches those under DFSMS/MVS. For example, PDSs are indicated as OTHERS in column
28.

216 ABCs of OS/390 System Programming

Figure 139. Introduction to ISMF

2.12 Introduction to ISMF

The Interactive Storage Management Facility (ISMF) helps you analyze and manage data and storage
interactively. ISMF is an Interactive System Productivity Facility (ISPF) application. This visual shows
the first ISMF panel, Primary Option Menu.

ISMF provides interactive access to the space management, backup, and recovery services of the
DFSMShsm and DFSMSdss functional components of DFSMS/MVS, to the tape management services of
the DFSMSrmm functional component, as well as to other products. DFSMS/MVS introduces the ability
to use ISMF to define attributes of tape storage groups and libraries.

A storage administrator uses ISMF to define the installation′s policy for managing storage by defining
and managing SMS classes, groups, and ACS routines. ISMF then places the configuration in an SCDS.
You can activate an SCDS through ISMF or an operator command.

ISMF operates as an Interactive System Productivity Facility (ISPF) application. It is menu-driven with
fast paths for many of its functions. ISMF uses the ISPF 4.2 data-tag language (DTL) to give its
functional panels on workstations the look of common user access (CUA) panels and a graphical user
interface (GUI).

Chapter 2. Storage management 217

Figure 140. ISMF products relationship

2.12.1 ISMF products relationship

ISMF works with the following products that you should be familiar with:

• Interactive System Productivity Facility/Program Development Facility (ISPF/PDF), which provides
the edit, browse, Data Set and Library utility functions.

• TSO/Extensions (TSO/E), TSO CLISTs and commands.

• DFSMS/MVS, which consists of four functional components, DFSMSdfp, DFSMShsf, DFSMSdss, and
DFSMSrmm. ISMF is designed to use the space management and availability management
(backup/recovery) functions provided by those products.

• Data Facility SORT (DFSORT), which provides the record-level functions.

• Resource Authorization Control Facility (RACF), which provides the access control function for data
and services.

• Device Support Facilities (ICKDSF) to provide the storage device support and analysis functions.

• IBM NaviQuest for MVS (NaviQuest), 5655-ACS.

ISMF also works with NaviQuest, which is a new product from IBM Storage System Division Software
Products. NaviQuest is a testing and reporting tool that speeds and simplifies the tasks associated
with DFSMS initial implementation and ongoing ACS routine and configuration maintenance.
NaviQuest assists storage administrators by allowing more automation of storage management tasks.
More information on NaviQuest can be found in the NaviQuest User′s Guide.

218 ABCs of OS/390 System Programming

NaviQuest provides:

• Familiar ISPF panel interface to functions

• Fast, easy, bulk test-case creation

• ACS routine and DFSMS configuration-testing automation

• Storage reporting assistance

• Additional tools to aid with storage administration tasks

• Batch creation of data set and volume listings

• Printing of ISMF LISTs

• Batch ACS routine translation

• Batch ACS routine validation

Chapter 2. Storage management 219

Figure 141. What you can do with ISMF

2.12.2 What you can do with ISMF

ISMF is a panel-driven interface. Use the panels in an ISMF application to:

• Display lists of information about specific data sets, DASD volumes, mountable optical volumes,
and mountable tape volumes

• Generate lists of data, storage, and management classes to find out how data sets are being
managed

• Display and manage lists saved from various ISMF applications

To determine which data sets appear in a data set list or which volumes appear in a volume list, you
complete selection entry panels. ISMF generates a list based on your selection criteria. Once the list
is built, you can use ISMF entry panels to perform space management or backup and recovery tasks
against the entries in the list.

As a user performing data management tasks against individual data sets or against lists of data sets
or volumes, you can use ISMF to:

• Edit, browse, and sort data set records

• Delete data sets and backup copies

• Protect data sets by limiting their access

• Recover unused space from data sets and consolidate free space on DASD volumes

• Copy data sets or DASD volumes to the same device or another device

220 ABCs of OS/390 System Programming

• Migrate data sets to another migration level

• Recall data sets that have been migrated so that they can be used

• Back up data sets and copy entire volumes for availability purposes

• Recover data sets and restore DASD volumes, mountable optical volumes, or mountable tape
volumes

Each site can control who can use certain functions described in this book. Your organization might
require you to have authorization to use certain functions. Your security administrator can explain any
restrictions your site has established.

Note: You cannot allocate data sets from ISMF. Data sets are allocated from ISPF, from TSO, or with
job control language (JCL) commands. ISMF provides the DSUTIL command, which enables users to
get to ISPF and toggle back to ISMF.

Chapter 2. Storage management 221

Figure 142. Accessing ISMF

2.12.3 Accessing ISMF

How you access ISMF depends on your site. You can create an option on the ISPF Primary Option
Menu to access ISMF by entering the Option you specify when creating the entry. Then access ISMF
by typing the characters after the arrow on the Option command line.

This starts an ISMF session from the ISPF/PDF Primary Option Menu. This visual shows the default
ISMF Primary Option Menu for the storage administrator,

To access ISMF directly from TSO, use the command

ISPSTART PGM(DGTFMD01) NEWAPPL(DGT).

The ISMF Primary Option Menu shown allows you to begin the ISMF session. Figure 144 on page 225
shows the ISMF Primary Option Menu for end users.

There are two Primary Option Menus: one for end users and one for storage administrators. The menu
for storage administrators includes additional applications not available to end users. Option 0, ISMF
PROFILE, controls the user mode or the type of Primary Option Menu that is displayed. Refer to
“Specifying a User Mode” in topic 7.2 for information on how to change the user mode.

Note: The ISMF Primary Option Menu example assumes installation of DFSMS/MVS at the current
release level. For information about adding the DFSORT option to your Primary Option Menu, refer to
DFSORT Installation and Customization, SC26-7041.

222 ABCs of OS/390 System Programming

Figure 143. Navigating through ISMF

2.12.4 Navigating through ISMF

ISMF provides an action bar-driven interface that exploits many of the usability features of Common
User Access (CUA) interfaces. The panels will look different than in previous releases: all screens will
be mixed case and most will have action bars at the top.

2.12.4.1 Navigating through ISMF without using the action bar

You can still navigate through ISMF using the standard method of typing in a selection number and
pressing Enter.

2.12.4.2 Navigating through ISMF using the action bar

Most ISMF panels have action bars at the top. The choices display in white (by default).

2.12.4.3 Using the action bar

The action bar gives you another way to move through ISMF. If the cursor is located somewhere on
the panel, there are several ways to move the cursor to the action bar:

• Using the keyboard′s tab key

• Using the mouse button

• Using the cursor manually

Chapter 2. Storage management 223

After you have chosen an action, press Enter to open the menu.

The last visual shows the List pull-down menu for the Data Set List panel. Notice the input field in the
upper left corner. In the input field, type the number of the action you want, then press Enter.

224 ABCs of OS/390 System Programming

Figure 144. ISMF Primary Option Menu

2.12.5 Selecting an option from the ISMF Primary Option menu
This visual shows the ISMF end user menu. The option 0 (ISMF Profile) controls the user mode or the
type of Primary Option Menu that is displayed.

The next visual shows each option available for end users, if you need more information about the
ISMF panel, refer to DFSMS/MVS Using the Interactive Storage Management Facility, SC26-4911.

Chapter 2. Storage management 225

Figure 145. ISMF Profi le Option Menu

2.12.6 ISMF Profile Option Menu

This visual shows Option 0 (ISMF Profile) of the ISMF Primary Menu.

This option displays the ISMF Profile Option Menu. Use this menu to control the way ISMF runs during
the session. You can:

• Change the user mode from end user to storage administrator or from storage administrator to end
user.

• Control ISMF′s error logging and recovery from abends.

• Define statements for ISMF to use in processing your jobs, such as:

− JOB statements,

− DFSMSdss

− Device Support Facilities (ICKDSF)

− Access Method Services (IDCAMS)

− PRINT execute statements in your profile.

You can select ISMF or Interactive System Productivity Facility (ISPF) JCL statements for
processing batch jobs.

226 ABCs of OS/390 System Programming

Figure 146. Data Set Selection Entry Panel

2.12.7 Data Set Selection Entry Panel

This visual shows Option 1 (Data Set) in the ISMF Primary Menu.

The Data Set Application constructs a list of data sets, using the filters you provide. The next visual
shows the Data Set List generated by this panel.

Chapter 2. Storage management 227

Figure 147. Data Set List Panel

2.12.8 Data Set List panel

Use line operators to do tasks with individual data sets. Use list commands to do tasks with a group of
data sets. These tasks include editing, browsing, recovering unused space, copying, migrating,
deleting, backing up, and restoring of data sets. TSO commands and CLISTs can also be used as line
operators or list commands. You can save a copy of a data set list and reuse it later.

If ISMF is unable to get certain information required to check if a data set meets the selection criteria
specified, that data set is also be included in the list. This is indicated by dashes on the corresponding
column. For example, if ISMF is unable to check if a data set meets the specified volume serial
number criteria, that data set still appears in the list with dashes in the corresponding Volume Serial
Number field.

228 ABCs of OS/390 System Programming

Figure 148. Volume List Selection Menu

2.12.9 Volume List Selection Menu

The Option 2 (Volume) in the ISMF Primary Menu take us to the menu shown in this visual. If we pick
up DASD, we will see the Volume Selection Entry Panel, where using filters you can select a Volume
List Panel, shown in the next visual.

Chapter 2. Storage management 229

Figure 149. ISMF Volume List panel.

2.12.10 ISMF Volume List panel

The volume application constructs a list of DASD volumes, mountable optical volumes, or mountable
tape volumes. Use line operators to do tasks with an individual volume. These tasks include
consolidating or recovering unused space, copying, backing up, and restoring volumes. TSO
commands and CLISTs can also be line operators or list commands. You can save a copy of a volume
list and reuse it later. With the list of mountable optical volumes or mountable tape volumes, you can
only browse the list. This option displays the Volume List Selection Menu. For information about when
to select the Volume option and tasks you can do using the Volume Application, see Chapter 3,
″Generating Lists″ in topic 3.0, Chapter 4, ″Using the Data Set or Volume List″ in topic 4.0, and Chapter
6, ″Performing Data and Storage Management Tasks″ in topic 6.0. in DFSMS/MVS Using the Interactive
Storage Management Facility, SC26-4911.

230 ABCs of OS/390 System Programming

Figure 150. Management Class Application Selection

2.12.11 Management Class Application Selection

This visual shows Option 3 (Management Class) in the ISMF Primary Menu

This panel allows you to display, modify, and define options for the management classes of the storage
management subsystem (SMS). It also constructs a list of the available management classes.

Next visual shows the management class list generated by the filters located in this panel with the
option Display.

Chapter 2. Storage management 231

Figure 151. ISMF management class list

2.12.12 ISMF management class list

This visual shows the partial contents of the ISMF management class list panel.

232 ABCs of OS/390 System Programming

Figure 152. Data Class Application Selection

2.12.13 Data Class Application Selection

This visual shows Option 4 (Data Class) of the ISMF primary menu. In this panel you can define the
way data sets are allocated.

Data class attributes are assigned to a data set when it is created. Data class attributes apply to both
DFSMS-managed and non-DFSMS-managed data sets. Attributes specified in JCL or equivalent
allocation statements override those specified in a data class. Individual attributes in a data class can
be overridden by JCL, TSO, IDCAMS, and dynamic allocation statements.

The next visual shows the Data Class List generated by the filters located in this panel with the option
Display.

Chapter 2. Storage management 233

Figure 153. ISMF data class list

2.12.14 ISMF data class list

This visual shows the output of the data class list panel.

234 ABCs of OS/390 System Programming

Figure 154. Storage Class Application Selection

2.12.15 Storage Class Application Selection

This visual shows Option 5 (Storage Class) of the ISMF primary menu.

The Storage Class Application Selection panel lets the storage administrator specify performance
objectives and availability attributes that characterize a collection of data sets. For objects, the
storage administrator can define the performance attribute Initial Access Response Seconds. A data
set or object must be assigned to a storage class in order to be managed by DFSMS.

The next visual shows the Storage Class List generated by the filters located in this panel with the
option Display.

Chapter 2. Storage management 235

Figure 155. ISMF Storage Class List

2.12.16 ISMF storage class List

The visual shows the Storage Class List panel.

You can specify the DISPLAY line operator next to any class name on a class list to generate a panel
that displays values associated with that particular class. This information can help you decide
whether you need to assign a new DFSMS class to your data set or object.

If you determine that a data set you own should be associated with a different management class or
storage class, and if you have authorization, you can use the ALTER line operator against a data set
list entry to specify another storage class or management class.

236 ABCs of OS/390 System Programming

Figure 156. Saved ISMF Lists

2.12.17 Saved ISMF Lists

This visual shows Option L (Lists) of the ISMF primary menu.

The List Application displays a list of all lists saved from ISMF applications. Each entry in the list
represents a list that was saved. When you select the List option, the Saved ISMF Lists Panel is
displayed if there are any saved ISMF lists. If there are no saved lists to be found, the Primary Option
Menu is re-displayed with the message that the list is empty.

You can reuse and delete saved lists. From the List Application, you can reuse lists as if they were
created from the corresponding application. You can then use line operators and commands to tailor
and manage the information in the saved lists.

Chapter 2. Storage management 237

Figure 157. Removable Media Manager (DFSMSrmm)

2.13 Removable Media Manager (DFSMSrmm)

This visual shows Option R (Lists) of the ISMF primary menu. This option displays the Primary Option
Menu of the Removable Media Manager application.

Under normal circumstances, the DFSMSrmm subsystem starts automatically through IPL procedures,
either standard or as modified by your installation. In exceptional cases, such as after recovery of the
DFSMSrmm control data set, you might need to restart the subsystem.

Data Facility Removable Media Manager for MVS/DFP Version 3 (DFRMM) Program Offering provides
support for non-system-managed tape libraries. When you use DFRMM and DFSMSrmm together, or
multiple DFSMSrmm systems, they can share the same control data set. When both DFRMM and
DFSMSrmm share the control data set, you can use the DFRMM ISPF dialog and RMM TSO
subcommands to display all information that has been recorded in the control data set. There are
some restrictions on using the RMM TSO subcommands from DFRMM, and from DFSMSrmm on a
non-system-managed tape system, to add and change information in the control data set.

238 ABCs of OS/390 System Programming

Chapter 3. System Modification Program/Enhanced (SMP/E)

OS/390 SMP/E is a tool designed to manage the installation of software products on your OS/390
system and to track the modifications you make to those products. Usually, it is the system
programmer ′s responsibility to ensure that all software products and their modifications are properly
installed on the system. The system programmer also has to ensure that all products are installed at
the proper level so all elements of the system can work together. At first, that might not sound too
difficult, but as the complexity of the software configuration increases, so does the task of monitoring
all the elements of the system. To better understand this, let′s take a closer look at the OS/390 system
and see how SMP/E can help you maintain it.

Over time, you may need to change some of the elements of your system. These changes may be
necessary to improve the usability or reliability of a product. You may want to add some new functions
to your system, upgrade some of the elements of your system, or modify some elements for a variety
of reasons. In all cases, you are making system modifications. In SMP/E, we refer to these system
modifications as SYSMODs.

A SYSMOD is the actual package containing information SMP/E needs to install and track system
modifications. SYSMODs are composed of two parts:

• Modification control statements (MCS), designated by ++ as the first two characters, that tell
SMP/E:

− What elements are being updated or replaced

− How the SYSMOD relates to product software and other SYSMODs

− Other specific installation information

• Modification text, which is the object modules, macros, and other elements supplied by the
SYSMOD

 Copyright IBM Corp. 2000 239

Figure 158. SMP/E overview

3.1 Introduction to SMP/E

SMP/E is the basic tool for installing and maintaining software in OS/390 systems and subsystems. It
controls these changes at the element level by:

• Selecting the proper levels of elements to be installed from a large number of potential changes

• Calling system utility programs to install the changes

• Keeping records of the installed changes

SMP/E is an integral part of the installation, service, and maintenance processes for CBPDOs,
ProductPacs, ServicePacs, and selective follow-on service for CustomPacs. In addition, SMP/E can be
used to install and service any software that is packaged in SMP/E system modification (SYSMOD)
format.

SMP/E can be run either using batch jobs or using dialogs under Interactive System Productivity
Facility/Program Development Facility (ISPF/PDF). SMP/E dialogs help you interactively query the
SMP/E database as well as create and submit jobs to process SMP/E commands.

These are some of the types of software that can be installed by SMP/E:

• Products and service provided in CBPDOs and CustomPac offerings

• Products and service from IBM Software Distribution Centers not provided in CBPDOs or
CustomPac offerings

• Other products and service

240 ABCs of OS/390 System Programming

Figure 159. SYSMODs

3.2 SYSMODs
Over time, you may need to change some of the elements of your system. These changes may be
necessary to improve the usability or reliability of a product. You may want to add some new functions
to your system, upgrade some of the elements of your system, or modify some elements for a variety
of reasons. In all cases, you are making system modifications. In SMP/E, we refer to these system
modifications as SYSMODs.

SYSMOD is the actual package containing information SMP/E needs to install and track system
modifications. SYSMODs are composed of two parts:

• Modification control statements (MCS), designated by ++ as the first two characters, that tell
SMP/E:

 1. What elements are being updated or replaced

 2. How the SYSMOD relates to product software and other SYSMODs

 3. Other specific installation information

• Modification text, which is the object modules, macros, and other elements supplied by the
SYSMOD

There are four different categories of SYSMODs, each supporting a task you might want to perform:

Function Introduce the elements for a product.

Chapter 3. System Modification Program/Enhanced (SMP/E) 241

PTF PTF (program temporary fix) prevents or fixes problems with an element, or introduces
new elements.

APAR APAR (authorized program analysis reports) fixes problems with an element.

USERMOD USERMOD (user modifications) customizes an element.

242 ABCs of OS/390 System Programming

Figure 160. Introducing an element

3.2.1 Introducing an element - the function SYSMOD

One way you can modify your system is to introduce new elements into that system. To accomplish
this with SMP/E, you can install a function SYSMOD. The function SYSMOD introduces a new product,
a new version or release of a product, or updated functions for an existing product into the system. All
other types of SYSMODs are dependent upon the function SYSMOD, because they are all modifications
of the elements originally introduced by the function SYSMOD.

When we refer to installing a function SYSMOD, we are referring to the placing of all the product ′s
elements in the system data sets, or libraries. Examples of these libraries are SYS1.LINKLIB,
SYS1.LPALIB, and SYS1.SVCLIB. This visual shows the process of creating executable code in the
production system libraries.

In the figure, the installation of a function SYSMOD link-edits object modules Mod1, Mod2, Mod3, and
Mod4 to create load module LMOD2. The executable code created in load module LMOD2 is installed
in the system libraries through the installation of the function SYSMOD.

There are two types of function SYSMODs:

• A base function SYSMOD adds or replaces an entire system function. Examples of base functions
are SMP/E and JES3.

• A dependent function SYSMOD provides an addition to an existing system function. It is called
dependent because its installation depends upon a base function already being installed. Examples
of dependent functions are the language features for SMP/E.

Chapter 3. System Modification Program/Enhanced (SMP/E) 243

Both base function SYSMODs and dependent function SYSMODs are used to introduce new elements
into the system.

Figure 161 shows an example of a simple function SYSMOD that introduces four elements:

� �
++FUNCTION(FUN0001) /* SYSMOD type and identifier. */.
++VER(Z038) /* For an OS/390 system */.
++MOD(MOD1) RELFILE(1) /* Introduce this module */

DISTLIB(AOSFB) /* in this distribution library. */.
++MOD(MOD2) RELFILE(1) /* Introduce this module */

DISTLIB(AOSFB) /* in this distribution library. */.
++MOD(MOD3) RELFILE(1) /* Introduce this module */

DISTLIB(AOSFB) /* in this distribution library. */.
++MOD(MOD4) RELFILE(1) /* Introduce this module */

DISTLIB(AOSFB) /* in this distribution library. */.� �
Figure 161. Example SYSMOD with four elements

244 ABCs of OS/390 System Programming

Figure 162. Preventing problems with an element (PTF)

3.2.2 Preventing problems with an element (PTF)

When a problem with a software element is discovered, IBM supplies its customers with a tested fix for
that problem. This fix comes in the form of a program temporary fix (PTF). Although you may not have
experienced the problem the PTF is intended to prevent, it is wise to install the PTF on your system.
The PTF SYSMOD is used to install the PTF, thereby preventing the occurrence of that problem on your
system.

Usually, PTFs are designed to replace or update one or more complete elements of a system function.

In the visual, we see a previously installed load module, LMOD2. If we want to replace the element
Mod1, we should install a PTF SYSMOD that contains the module Mod1. That PTF SYSMOD replaces
the element in error with the corrected element. As part of the installation of the PTF SYSMOD, SMP/E
relinks LMOD2 to include the new and corrected version of Mod1.

Figure 163 on page 246 shows an example of a simple PTF SYSMOD:

Chapter 3. System Modification Program/Enhanced (SMP/E) 245

� �
++PTF(PTF0001) /* SYSMOD type and identifier. */.
++VER(Z038) FMID(FUN0001) /* Apply to this product. */.
++MOD(MOD1) /* Replace this module */

DISTLIB(AOSFB) /* in this distribution library. */.
...
... object code for module
...� �

Figure 163. Example simple PTF SYSMOD

PTF SYSMODs are always dependent upon the installation of a function SYSMOD. In some cases,
some PTF SYSMODs may also be dependent upon the installation of other PTF SYSMODs. These
dependencies are called prerequisites.

246 ABCs of OS/390 System Programming

Figure 164. PTF replacement

3.2.2.1 PTF replacement

The importance of keeping track of system elements and their modification becomes readily apparent
when we examine the OS/390 maintenance process. Often, a PTF contains multiple element
replacements. In the visual PTF1 contains replacements for two modules, Mod1 and Mod2. Although
load module LMOD2 contains four modules, only two of those modules are being replaced.

But what happens if a second PTF replaces some of the code in a module that was replaced by PTF1?

Chapter 3. System Modification Program/Enhanced (SMP/E) 247

Figure 165. PTF prerequisite

3.2.2.2 PTF prerequisite

In this example, PTF2 contains replacements for Mod2 and Mod3. For Mod1, Mod2, and Mod3 to
interface successfully, PTF1 must be installed before PTF2. That′s because Mod3 supplied in PTF2 may
depend on the PTF1 version of Mod1 to be present. It is this dependency that constitutes a
prerequisite. SYSMOD prerequisites are identified in the modification control statements (MCS) part of
the SYSMOD package

In addition to tracking prerequisites, there is another important reason to track system elements. The
same module is often part of many different load modules.

248 ABCs of OS/390 System Programming

Figure 166. Load module construction

3.2.2.3 Load module construction

In the visual, the same Mod2 module is present in LMOD1, LMOD2, and LMOD3. When a PTF is
introduced that replaces the element Mod2, that module must be replaced in all the load modules in
which it exists. Therefore, it is imperative that we keep track of all load modules and the modules they
contain.

You can now appreciate how complicated the tracking of system elements and their modification levels
can become. Let′s take a brief look at how we implement the tracking capabilities of SMP/E.

3.2.2.4 Tracking and controlling requisites

To track and control elements successfully, all elements and their modifications and updates must be
clearly identified to SMP/E. SMP/E relies on modification identifiers to accomplish this. There are three
modification identifiers associated with each element:

• Function modification identifiers (FMIDs) that identify the function SYSMOD that introduced the
element into the system.

• Replacement modification identifiers (RMIDs) that identify the last SYSMOD (usually a PTF
SYSMOD) to replace the element.

• Update modification identifiers (UMIDs) that identify the SYSMODs that have updated an element
since it was last replaced.

Chapter 3. System Modification Program/Enhanced (SMP/E) 249

SMP/E uses these modification identifiers to track all SYSMODs installed on your system. This ensures
that they are installed in the proper sequence. Now that we realize the need for element tracking and
know the types of things SMP/E tracks, we will now look at how APARs are used.

250 ABCs of OS/390 System Programming

Figure 167. Fixing problems with an element (APAR)

3.2.3 Fixing problems with an element - the APAR SYSMOD

You may sometimes find it is necessary to correct a serious problem that occurs on your system
before a PTF is ready for distribution. In this situation, IBM supplies you with an authorized program
analysis report (APAR). An APAR is a fix designed to quickly correct a specific area of an element or
replace an element in error. You install an APAR SYSMOD to implement a fix, thereby updating the
incorrect element.

In the visual, the shaded section shows an area of Mod2 containing an error. The processing of the
APAR SYSMOD provides a modification for object module Mod2. During the installation of the APAR
SYSMOD, Mod2 is updated (and corrected) in load module LMOD2.

Figure 168 shows an example of a simple APAR SYSMOD:

� �
++APAR(APAR001) /* SYSMOD type and identifier. */.
++VER(Z038) FMID(FUN0001) /* Apply to this product */

PRE(UZ00004) /* at this service level. */.
++ZAP(MOD2) /* Update this module */

DISTLIB(AOSFB) /* in this distribution library. */.
...
... zap control statements
...� �

Figure 168. Example simple APAR SYSMOD

Chapter 3. System Modification Program/Enhanced (SMP/E) 251

The APAR SYSMOD always has the installation of a function SYSMOD as a prerequisite, and can also
be dependent upon the installation of other PTF or APAR SYSMODs.

252 ABCs of OS/390 System Programming

Figure 169. Customizing an element - the USERMOD SYSMOD

3.2.4 Customizing an element - the USERMOD SYSMOD

If you had a requirement for a product to perform differently from the way it was designed, you might
want to customize that element of your system. IBM provides you with certain modules that allow you
to tailor IBM code to meet your specific needs. After making the desired changes, you add these
modules to your system by installing a USERMOD SYSMOD. This SYSMOD can be used to replace or
update an element, or to introduce a totally new user-written element into the system. In either case,
the USERMOD SYSMOD is built by you either to change IBM code or to add your own code to the
system.

In the visual, Mod3 has been updated through the installation of an USERMOD SYSMOD.

Figure 170 shows an example of a simple USERMOD SYSMOD:

� �
++USERMOD(USRMOD1) /* SYSMOD type and identifier. */.
++VER(Z038) FMID(FUN0001) /* Apply to this product */

PRE(UZ00004) /* at this service level. */.
++SRCUPD(JESMOD3) /* Update this source module */

DISTLIB(AOSFB) /* in this distribution library. */.
...
... update control statements
...� �

Figure 170. Example simple USERMOD SYSMOD

Chapter 3. System Modification Program/Enhanced (SMP/E) 253

Prerequisites for USERMOD SYSMODs are the installation of a function SYSMOD, and possibly the
installation of other PTF, APAR, or USERMOD SYSMODs.

3.2.4.1 SYSMOD prerequisites

As you have learned, PTF, APAR, and USERMOD SYSMODs all have the function SYSMOD as a
prerequisite. In addition to their dependencies on the function SYSMOD:

• PTF SYSMODs may be dependent upon other PTF SYSMODs.

• APAR SYSMODs may be dependent upon PTF SYSMODs and other APAR SYSMODs.

• USERMOD SYSMODs may be dependent upon PTF SYSMODs, APAR SYSMODs, and other
USERMOD SYSMODs.

Consider the complexity of these dependencies. When you multiply that complexity by hundreds of load
modules in dozens of libraries, the need for a tool like SMP/E becomes apparent.

254 ABCs of OS/390 System Programming

Figure 171. SMP/E data sets

3.3 Data sets used by SMP/E

When SMP/E processes SYSMODs, it installs the elements in the appropriate libraries and updates its
own records of the processing it has done. SMP/E installs program elements into two types of libraries:

• Target libraries contain the executable code needed to run your system (for example, the libraries
from which you run your production system or your test system).

• Distribution libraries (DLIBs) contain the master copy of each element for a system. They are used
as input to the SMP/E GENERATE command or the system generation process to build target libraries
for a new system. They are also used by SMP/E for backup when elements in the target libraries
have to be replaced or updated.

In order for SMP/E to install elements in these libraries, it uses a database made up of several types of
data sets:

SMPCSI (CSI) These data sets are Virtual Sequential Access Method (VSAM) data sets used to
control the installation process and record the results of processing.

SMPPTS A data set for temporary storage of SYSMODs waiting to be installed. The PTS is
used strictly as a storage data set for SYSMODs. The RECEIVE command stores
SYSMODs directly on the PTS without any modifications of SMP/E information. The
PTS is related to the global zone that contain information about the received
SYSMODs. Only one PTS can be used for a given global zone. Therefore, you can
look at the global zone and PTS as a pair of data sets to be processed.

Chapter 3. System Modification Program/Enhanced (SMP/E) 255

SMPSCDS Contains backup copies of target zone entries modified during APPLY processing.
Therefore, each SCDS is directly related to specific target zone, and each target zone
must have its own SCDS.

SMPMTS A library in which SMP/E stores copies of macros during installation when another
target macro library is identified. Therefore, the MTS is related to a specific target
zone, and each target zone must have its own MTS data set.

SMPSTS A library in which SMP/E stores copies of source during installation, when another
target source library is identified. Therefore, the STS is related to a specific target
zone, and each target zone must have its own STS data sets.

SMPLTS A library that maintains the base version of a load module. The load module in this
library specifies a SYSLIB allocation in order to implicitly include modules. Therefore,
the LTS is related to a specific target zone, and each target zone must have its own
LTS data set.

Other data sets used by SMP/E are known as the utility and work data sets. Some of the important
utility and work data sets are:

SMPCNTL Contains the SMP/E commands to be processed.

SMPHOLD Contains ++HOLD and ++RELEASE statements to be processed by the RECEIVE
command. This may refer to an actual data set, or it may refer to a file on a tape
(such as file 4 on an ESO or CUM tape).

SMPLOG Contains time-stamped records of SMP/E processing. The records in this data set can
be written automatically by SMP/E or added by the user through the LOG command.
The data set also contains messages issued by SMP/E, as well as detailed information
about the data set allocation. Each zone should have its own SMPLOG data set.

SMPLOGA The backup LOG data set. If SMPLOGA is defined, it is used automatically when the
SMPLOG data set is full. Each zone should have its own SMPLOGA data set.

SMPPTFIN Contains SYSMODs and ++ASSIGN statements to be processed by the RECEIVE
command. It can refer to an actual data set or to a file on a tape (such as file 1 on a
ESO or CUM tape).

SMPRPT Contains the reports produced during SMP/E processing. If SMPRPT is not defined, all
report output goes to the SMPOUT data set.

SMPOUT Contains messages issued during SMP/E processing, as well as dumps of the VSAM
RPL, if any dumps were taken. It may also contain LIST output and reports if the
SMPLIST and SMPRPT data sets are not defined.

SMPSNAP Used for snap dump output. When a server error occurs, such as an abend or severe
VSAM return code, SMP/E requests a snap dump of its storage before doing any error
recovery.

SYSLIB The SYSLIB is a concatenation of macro libraries that are to be used by the assembler
utility.

For the APPLY and RESTORE processing, the data sets should be concatenated in this
order:

 1. SMPMTS

 2. MACLIB

 3. MODGEN

 4. Target system macro libraries (such as libraries specified for SYSLIB on the
+ + M A C statement)

256 ABCs of OS/390 System Programming

 5. Distribution macro libraries (such as libraries specified for DISTLIB on the
+ + M A C statement).

For more information on the rest of the data sets that SMP/E uses, see OS/390 SMP/E Reference,
SC28-1806.

Chapter 3. System Modification Program/Enhanced (SMP/E) 257

Figure 172. Dynamic allocation

3.3.1 Dynamic allocation of SMP/E data sets

The processing of SMP/E commands requires a variety of data sets. You can either provide the DD
statements for these data sets (such as in a cataloged procedure) or have SMP/E allocate the data
sets dynamically.

The advantage of using dynamic allocation is that data sets are allocated only as they are needed,
compared to DD statements which require all data sets to be successfully allocated, regardless of
whether they are needed for the command being processed. DDDEF entries also provide more
flexibility than DD statements; they enable different zones to use different data sets for the same
ddname.

In addition, if you are running several SMP/E commands, you must be careful to use the correct DD
statements for each command. If you are processing zones that are in different CSI data sets, you
must make sure to provide DD statements that point to each of those zones and their associated CSIs.
With the use of dynamic allocation, you eliminate all these problems.

SMP/E uses the following sources of information to allocate data sets dynamically:

• DDDEF entries

• Module GIMMPDFT

• Standard defaults

258 ABCs of OS/390 System Programming

3.3.1.1 DD definition (DDDEF) entries

You can use DDDEF entries to provide SMP/E with information it needs to allocate any of the following:

• Permanent data sets, such as target libraries, distribution libraries, and SMP/E data sets

• Temporary data sets

• SYSOUT data sets

• Work data sets

• Pathnames for elements and load modules residing in a hierarchical file system (HFS)

In the DDDEF entries, you can include the following information describing the data sets for dynamic
allocation:

• Data set name

• Unit type

• Volume serial number

• Initial data set status: NEW, OLD, MOD, or SHR

• Final data set status: KEEP, DELETE, or CATALOG

• How the data set is to be allocated: blocks, cylinders, or tracks

• Primary and secondary values for space allocation

• Whether the data set should be RACF-protected

• Whether the data set is SMS-managed

• Directory information used to allocate the pathname for an element or hierarchical file system
(HFS)

Note: The name of the DDDEF entry must match the ddname of the data set it describes, and the entry
must exist in the zone that uses the data set.

3.3.1.2 Module GIMMPDFT

Another way to provide SMP/E with information about data sets is through module GIMMPDFT, which
is part of SMP/E. Unlike DDDEF entries, however, this information applies to all zones, not just to the
zone in the SET command. CSECT GIMMPDFT in this module contains two tables:

• Table 1

This table defines ddnames that may be allocated to the SYSOUT data set (for background
processing) or to the terminal (for foreground processing).

• Table 2

This table defines ddnames that can be allocated for the SMPWRKx and SYSUTx data sets.

Note: Although you can use GIMMPDFT to define temporary data sets, it is easier to tailor the
definition to your system if you use DDDEF entries.

Following Table 2 are six bytes that define the default space allocation for SMPTLIB data sets. When
you get SMP/E, these two tables and the SMPTLIB information are set to zeros and blanks so that they
have no effect on SMP/E dynamic allocation.

SMP/E provides a sample USERMOD (SMP0001) containing superzap statements for entries for both
tables. You can find this USERMOD in the member GIMZPDFT in SYS1.SAMPLIB, which you can tailor
to suit your environment or install as it is.

Chapter 3. System Modification Program/Enhanced (SMP/E) 259

3.3.2 Standard defaults

The SMPOUT and SYSPRINT data sets are critical to proper SMP/E processing. Therefore, in case
they are not defined, SMP/E has built-in defaults for them:

• SMPOUT is allocated either as SYSOUT (for background processing) or to the terminal (for
foreground processing).

• SYSPRINT is allocated as SYSOUT.

For more information, see OS/390 SMP/E Reference, SC28-1806.

260 ABCs of OS/390 System Programming

Figure 173. Dynamic allocation check sequence

3.3.3 How dynamic allocation works

Once SMP/E has determined which data sets are needed for the command it is processing, SMP/E
checks whether DD statements have been provided for any of those data sets. SMP/E uses information
from those DD statements in allocating the data sets to which they apply.

If any data sets lack DD statements, SMP/E must allocate them dynamically. To get the information it
needs to do this, SMP/E checks the following sources in the order shown:

 1. DDDEF entries

If the zone specified on the SET command contains a DDDEF entry for the required data set, SMP/E
uses that entry to allocate the data set. Otherwise, it checks the next source.

 2. Table 1 in GIMMPDFT

If Table 1 defines the data set, SMP/E uses that information to allocate the data set. Otherwise, it
checks the next source.

 3. Table 2 in GIMMPDFT

If Table 2 defines the data set, SMP/E uses that information to allocate the data set. Otherwise, it
checks the next source.

 4. Standard defaults

If the data set is for SMPOUT or SYSPRINT, SMP/E uses the standard default to allocate the data
set. Otherwise, the data set allocation fails.

Chapter 3. System Modification Program/Enhanced (SMP/E) 261

For each data set SMP/E tries to allocate, either dynamically or through DD statements, it writes
information regarding the allocation to the File Allocation report. SMP/E also writes the following
information to the SMPLOG data set:

• Data set name or pathname

• Status

• Space allocation information

• Unit (only if specified in the DDDEF entry)

• Volume

Generally, data sets that have been dynamically allocated remain allocated until the next SET
command is processed. However, data sets allocated through Table 2 in GIMMPDFT remain allocated
only until the next SMP/E command is processed when they are freed and deleted.

If in some way, SMP/E fails to allocate a data set dynamically or SMP/E is requested to allocate a data
set that is already allocated, it keeps a record of the error and does not try to allocate the data set.
When SMP/E processes the next SET command, it frees and deletes all dynamically allocated data sets
and erases the records of allocation attempts that failed.

Notes:

 1. When a data set is part of a concatenation, such as the SYSLIB concatenation, SMP/E does not go
through the standard checking sequence as described before. All data sets in a concatenation
must be defined the same way. For example, if a DDDEF entry specifies a concatenation, all the
specified entries must also be defined by DDDEF entries.

 2. For the cross-zone phase of APPLY and RESTORE processing, a DD statement cannot be used to
allocate the SYSLIB for a cross-zone load module. This library can be allocated only through a
DDDEF entry in the cross-zone containing the LMOD entry for the cross-zone load module.

 3. If, in running a job containing several SET commands, you use DDDEF entries specifying SYSOUT
for SMP/E output data sets, such as SMPOUT or SMPRPT, SMP/E produces multiple SYSOUT data
sets for each SET command. This can cause undesirable results; for example, the output may
appear to be out of sequence from one SET command to the next. Therefore, when you run such a
job, you may prefer to use DD statements instead of DDDEF entries for SMP/E output data sets.

262 ABCs of OS/390 System Programming

Figure 174. Consolidated Software Inventory (CSI)

3.4 Consolidated Software Inventory (CSI)

The CSI data sets contain all the information SMP/E needs to track the target and distribution libraries.
The CSI contains an entry for each element in its system, which describes the element name, type,
history, how the element was introduced into the system, and a pointer to the element in the target
and distribution libraries. The CSI does not contain the element itself, but rather a description of the
element it represents.

3.4.1 The organization of the CSI data set

In the CSI, entries for the elements in the distribution and target libraries are grouped according to
their installation status. This groupings are known as SMP/E zones.

There are three types of zones in a CSI:

Global zone Contains entries needed to identify and describe each target and distribution zone
to SMP/E and stores information about SMP/E processing options.

Contains status information for all SYSMODs SMP/E has begun to process and holds
exception data for SYSMODs requiring special handling or that are in error.

Target zone Contains information that describes the content, structure, and status of the target
libraries. It also contains a pointer to the related distribution zone, which can be
used in APPLY, RESTORE, and LINK when SMP/E is processing a SYSMOD and
needs to check the level of the elements in the distribution libraries.

Chapter 3. System Modification Program/Enhanced (SMP/E) 263

Distribution zone Contains information that describe the content, structure, and status of the
distribution libraries. Each distribution zone also points to the related target zone,
which is used when SMP/E is accepting a SYSMOD and needs to check if the
SYSMOD has already been applied.

264 ABCs of OS/390 System Programming

Figure 175. Basic structure of CSI

3.4.2 How to organize CSI data sets

Before you allocate any CSI data sets, you must decide how to organize those data sets. There are two
basic structures for CSI data sets:

• Single CSI

In single CSI structure, you can define one CSI to keep track of all the system activity. The single
CSI data has one global zone and one or more target and distribution zones. There are some
advantages of using this structure:

− The single CSI data set optimizes the use of direct access storage.

− The single CSI data set puts your whole establishment in one VSAM data set. This provides
you with a single control point and one source of information for your whole system.

Note: One SMP/E job can process at a time with this structure because MVS enqueues on the
data set name.

• Multiple CSI

Each zone resides in a separate VSAM data set. The target and distribution zone are connected
by ZONEINDEX entries to a single global zone. The global zone must be in one of the CSI data
sets.

Chapter 3. System Modification Program/Enhanced (SMP/E) 265

3.4.3 How to allocate a CSI data set

After you have decided which CSI structure to adopt for your installation, you can now allocate a CSI
data set using the VSAM access method services. Figure 176 on page 266 shows sample JCL for
allocating a CSI data set with enough space to have multiple target and distribution zones:

� �
//DEFINE JOB (),′ MVSSP′ , NOTIFY=&SYSUID,CLASS=A,MSGLEVEL=(1,1),
// MSGCLASS=X
//STEP01 EXEC PGM=IDCAMS
//CSIVOL DD UNIT=3380,VOL=SER=volid1,DISP=SHR
//SYSPRINT DD SYSOUT=A

 //SYSIN DD *
DEFINE CLUSTER(-

NAME(SMPE.SMPCSI.CSI)�1� -
FREESPACE(10 5) -
KEYS(24 0)�2� -
RECORDSIZE(24 143) -
SHAREOPTIONS(2 3)�3� -
UNIQUE�4� -

VOLUMES(volid1) -
) -

DATA(-
NAME(SMPE.SMPCSI.CSI.DATA) -
CONTROLINTERVALSIZE(4096) -
CONTROLINTERVALSIZE(4096) -
CYLINDERS(250 20) -
) -

INDEX(-
NAME(SMPE.SMPCSI.CSI.INDEX) -
CYLINDERS(5 3) -
) -

CATALOG(user.catalog)
 /*� �

Figure 176. Sample JCL for allocating a CSI data set

�1�The high level qualifier should not be SYS1 if the CSI data set is to be cataloged in a user catalog.
The low level qualifier must be CSI.

�2�The CSI is a key-VSAM (KSDS) data set.

�3�SMP/E does not support cross-system sharing of the CSI; you cannot specify 4 as the cross-system
value for SHAREOPTIONS.

�4�The UNIQUE parameter ensures that the CSI cluster is assigned the name specified in the NAME
parameter, rather than a VSAM-assigned name.

3.4.4 How to initialize a CSI data set

Before you can use a CSI, you must initialize it with the GIMPOOL record, which is in SYS1.MACLIB.
Use the access method service shown in Figure 177 on page 267 to initialize the newly allocated CSI
data set:

266 ABCs of OS/390 System Programming

� �
//ALLOC JOB (),′ MVSSP′ , NOTIFY=&SYSUID,CLASS=A,MSGLEVEL=(1,1),
// MSGCLASS=X
//AMS EXEC PGM=IDCAMS
//SMPCSI DD DSN=SMPE.SMPCSI.CSI,DISP=OLD

 //ZPOOL DD DSN=SYS1.MACLIB(GIMZPOOL),DISP=SHR
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *

REPRO OUTFILE(SMPCSI) -
INFILE(ZPOOL)

/*� �
Figure 177. Sample job to initialize the CSI data set

 Notes

 1. If you use the access method services REPRO command to copy an entire CSI data set to a newly
created CSI data set, you do not have to initialize your newly allocated CSI with a GIMZPOOL
record. A GIMZPOOL record is copied in when the existing CSI is copied into your new CSI.

 2. Make sure you use the correct SMP/E release GIMZPOOL record to initialize your CSI created
with that SMP/E release. For example, use the OS/390 V2R7 SMP/E GIMZPOOL record to
initialize CSI created for OS/390 V2R7 SMP/E.

Chapter 3. System Modification Program/Enhanced (SMP/E) 267

Figure 178. Relationship of zones in CSI

3.4.5 Defining zones for your system

Once you have allocated and initialized the CSI data sets, you need to create within them the entries
SMP/E uses to maintain your system. The first entries you need to define are the zone definition
entries:

GLOBALZONE entry A global zone is created by defining a GLOBALZONE entry. The GLOBALZONE
entry contains processing related information for SMP/E. It is also used by
SMP/E as an index to target and distribution zones, either in the same CSI or in
different CSI data sets. The GLOBALZONE entry must be defined before you can
do other processing for that global zone.

TARGETZONE entry A target zone is created by defining a TARGETZONE entry. The TARGETZONE
entry contains information SMP/E uses to process a specific target zone and the
associated target libraries. It must be defined before you can do any other
processing for that target zone.

DLIBZONE entry A distribution zone is created by defining a DLIBZONE entry. The DLIBZONE
entry contains the information SMP/E uses to process a specific distribution zone
and the associated distribution libraries. It must be defined before you can do
any other processing for that distribution zone.

After you have defined the zones for your system, you can create other entries. SMP/E zones contain
two basic types of entries:

• Entries controlling SMP/E processing

268 ABCs of OS/390 System Programming

You generally define processing control entries through the SMP/E administration dialogs or with
the UCLIN command.

• Entries describing the structure and status of the target and distribution libraries.

Status and structure entries are generally created by SMP/E when you install SYSMODs, run the
JCLIN command, or copy entries from one zone to another.

For more information about these entries, see the OS/390 SMP/E User′s Guide, SC28-1740.

Note: SMP/E provides a member GIMSAMPU in the SYS1.SAMPLIB containing sample UCLIN
statements to define entries for a basic OS/390 system. The sample definitions are syntactically
correct and can be used as the basis for your CSI entries. However, this sample is not complete for all
systems, but it is an example of the types of information various entries need.

For examples of using UCLIN to define entries, see OS/390 SMP/E Commands, SC28-1805.

Chapter 3. System Modification Program/Enhanced (SMP/E) 269

Figure 179. Basic SMP/E commands

3.5 SMP/E commands you need to know
Now that you are familiar with SMP/E and what it can do, you are probably wondering what you need
to know to get started using SMP/E. Let′s take a look at the basic processing commands you need to
know to use SMP/E.

3.5.1.1 Setting the zone you want to work on

Before processing SMP/E commands, you must first set the zone on which you want SMP/E to work
(global, target, or distribution). You do this by issuing the SET command. The SET command identifies
the zone and, therefore, the libraries, upon which subsequent SMP/E commands are to act.

The SET command can also be used to request a particular set of predefined processing options. For
more information about the SET command, see OS/390 SMP/E Commands, SC28-1805.

3.5.1.2 Receiving the SYSMOD into SMP/E ′s data set

For SMP/E to install a SYSMOD, the SYSMOD must be received into data sets that can be used by
SMP/E. The SMP/E RECEIVE command performs the task of copying the SYSMOD from the distribution
medium from which it was sent into the data sets used by SMP/E.

270 ABCs of OS/390 System Programming

3.5.1.3 Applying the SYSMOD to the target libraries

After a SYSMOD has been received, you want to apply the SYSMOD to the appropriate target libraries.
The SMP/E APPLY command invokes various system utilities to install the SYSMOD ′s elements into the
target libraries.

3.5.1.4 Restoring the target libraries to the previous level

Should you experience problems after applying a SYSMOD, you may want to restore its elements in
error to a previous and stable level. The SMP/E RESTORE command replaces a failing element with a
copy from the distribution libraries.

3.5.1.5 Accepting the SYSMOD and updating the distribution libraries

After you have performed a SYSMOD RECEIVE and APPLY, you want to accept the elements into the
distribution libraries for backup. However, this should be done only after you are satisfied with the
performance and stability of the elements of the SYSMOD. Once you ACCEPT a SYSMOD, you cannot
RESTORE its element to a previous level. The SMP/E ACCEPT command updates the distribution
libraries so they are available for backup of an future SYSMODs.

3.5.2 Displaying SMP/E data

The SMP/E CSI and other primary data sets contain a great deal of information you may find useful
when installing new elements or functions preparing user modifications, or debugging problems. There
are several ways SMP/E allows you to display that information, as well as information about modules,
macros, and other elements:

• LIST commands

• REPORT commands

• Query dialogs

Chapter 3. System Modification Program/Enhanced (SMP/E) 271

Figure 180. The RECEIVE process

3.6 Receiving SYSMODs

RECEIVE is the first SMP/E command to process any SYSMOD. You use the RECEIVE command to load
the SYSMOD information from the distribution medium into the SMPPTS and SMPTLIB data sets for
later installation of the SYSMODs.

As mentioned in the previous section, each SYSMOD processed by SMP/E contains two types of
information:

• Instructions telling SMP/E what elements are in the SYSMOD and how to install them.

• The actual element replacements or updates contained in the SYSMOD.

3.6.1 Packaging of the SYSMODs

The element replacements or updates in the SYSMODs can be packaged in the following ways:

RELFILE This method packages the elements in relative files that are separate from the
modification control statements (MCSs). This is the most frequently used method
for function SYSMODs.

INLINE This method packages the elements immediately following the associated MCSs.

INDIRECT LIBRARY This method packages elements in DASD data sets that are separate from the
MCSs.

272 ABCs of OS/390 System Programming

For more details about packaging, see Standard Packaging Rules for MVS-Based Products, SC23-3695.

Chapter 3. System Modification Program/Enhanced (SMP/E) 273

Figure 181. The RECEIVE process

3.6.2 The RECEIVE Process

During RECEIVE processing, SMP/E reads data from tape files or DASD data sets into the global zone,
the SMPPTS, and temporary data (SMPTLIBs) for later processing. The RECEIVE command processes
data from two sources:

• The SMPPTFIN data set, which contains the modification control statements (MCSs) defining the
SYSMODs, as well as any related ++ASSIGN, and ++PRODUCT statements.

• The SMPHOLD data sets, which contains exception SYSMOD data (++HOLD and ++RELEASE
statements).

An example of SMPTLIB data sets is shown in Figure 182 on page 275.

274 ABCs of OS/390 System Programming

� �
Menu Options View Utilities Compilers Help
--
DSLIST - Data Sets Matching SYS1.MVS Row 1 of 4
Command ===> Scroll ===> PAGE

Command - Enter ″/″ to select action Message Volume
--

SYS1.MVS.JTCP356.F1 MPCAT1
SYS1.MVS.JTCP356.F2 MPCAT1
SYS1.MVS.JTCP356.F3 MPCAT1
SYS1.MVS.JTCP356.F4 MPCAT1

**************************** End of Data Set list ********************� �
Figure 182. Example SMPTLIB data sets

When receiving a SYSMOD, SMP/E crates two entries:

 1. An MCS entry is created on the SMPPTS. This entry is an exact copy of the SYSMOD as it
appeared in the SMPPTFIN data set.

 2. A SYSMOD entry is created in the global zone. This entry contains information that describes the
installation requirements and element content of the SYSMOD.

When receiving the HOLDDATA, SMP/E also creates (or modifies) two entries:

 1. A HOLDDATA entry is created (or modified) in the global zone. This entry is an exact copy of the
++HOLD statements as they appeared in the SMPHOLD data set. The name of the entry is the ID
of the SYSMOD affected by this ++HOLD statement. The HOLDDATA entry for a single SYSMOD
can contain mult iple ++HOLD statements.

Note: When a ++RELEASE statement is processed, SMP/E removes the corresponding
++HOLD statement from the HOLDDATA entry. When al l ++HOLD are removed, the
HOLDDATA entry is automatically deleted.

 2. A SYSMOD entry is created (or modified) in the global zone. This entry contains information that
describes the exception SYSMOD conditions.

For each ++HOLD statement processed, SMP/E updates the global zone SYSMOD entry to add a
HOLD reason ID subentry. There are three types of HOLD reason ID subentries, HOLDERROR,
HOLDSYSTEM, and HOLDUSER, corresponding to the three categories of exception SYSMODs.

Note: When a ++RELEASE statement is processed, SMP/E removes the corresponding reason ID
from the global zone SYSMOD entry.

3.6.3 Managing exception SYSMOD through HOLLDATA

In SMP/E, when we speak of exception data, we are usually referring to HOLDDATA. HOLDDATA is
often supplied for a product to indicate a specific SYSMOD should be held from installation. Reasons
for holding a SYSMOD can be:

• A PTF is in error, normally known as PE, and should not be installed until the error is corrected
(ERROR HOLD).

• Certain system actions may be required before SYSMOD installation (SYSTEM HOLD).

• The user may want to perform some actions before installing the SYSMOD (USER HOLD).

Chapter 3. System Modification Program/Enhanced (SMP/E) 275

Figure 183. Sources of HOLDDATA

3.6.3.1 Sources of HOLDDATA

The main sources of HOLDDATA provided by IBM are:

• Custom Build Product Delivery Option (CBPDO) tapes

This contains HOLDDATA that has been customized to your product set. That is, it contains only
data applicable to PTFs for those products within a given feature that you have ordered.

• Expanded Service Option (ESO) tapes

IBM regularly creates the service levels shipped on these tapes, then custom-builds ESOs for users
and makes the tapes available through either subscription orders or special request orders.

• Cumulative Service (CUM) tapes

This tape is sent together with an order for a new function that contains all the current PTFs and
also the HOLDDATA applicable to those PTFs.

• Preventive service planning (PSP) information from the CSSF files

Once a service level has been created, there is no further opportunity to change the HOLDDATA on
that tape, even though new errors are reported. PSP files have been set up to hold this additional
HOLDDATA.

276 ABCs of OS/390 System Programming

3.6.4 SMP/E data sets used in the RECEIVE Process

The following data sets may be needed to run the RECEIVE command. You can defined them using DD
statements in your job or, normally, by DDDEF entries:

SMPCNTL SMPLOGA SMPRPT SYSUT1 zone

SMPCSI SMPOUT SMPSNAP SYSUT2

SMPHOLD SMPPTFIN SMPTLIB SYSUT3

SMPLOG SMPPTS SMPPRINT

Notes:

 1. For RECEIVE processing, the SMPCSI DD statement refers to the data set containing the global
zone, which is where SMP/E stores information regarding those SYSMODs received.

 2. You only required the SMPHOLD DD statement if exception SYSMOD data is to be received from
the SMPHOLD data set.

 3. You are required to have SMPPTFIN DD statement if SYSMODs or + + A S S I G N statements are to
be received from the SMPPTFIN data set.

 4. The zone represents the DD statement required for each target or distribution zone used by the
command. If no DD statement is specified, SMP/E dynamically allocates data sets using the
ZONEINDEX information in the GLOBALZONE entry. Also note that, while DD statements can be
used to override the ZONEINDEX information, they are not a substitute for a ZONEINDEX. A
ZONEINDEX is always required for a zone.

For a detailed description of these data sets, see OS/390 SMP/E Reference, SC28-1806.

Chapter 3. System Modification Program/Enhanced (SMP/E) 277

Figure 184. RECEIVE examples

3.6.4.1 RECEIVE examples

The following examples are provided to help you use the RECEIVE command.

3.6.4.2 How to receive only HOLDDATA

There may be times when you do not want to receive the SYSMODs from a service tape, but you do
want to receive the HOLDDATA. Because the HOLDDATA provides information about SYSMODs
requiring special handling or that are in error, it is important for you to receive the HOLDDATA into
SMP/E′s storage repository as soon as possible. Figure 185 on page 279 shows sample JCL to
process only the HOLDDATA:

278 ABCs of OS/390 System Programming

� �
//RECHOLD JOB (),′ MVSSP′ , NOTIFY=&SYSUID,CLASS=A,MSGLEVEL=(1,1),
// MSGCLASS=X
//SMPE EXEC PGM=GIMSMP�1�
//SMPCSI DD DSN=SMPE.GLOBAL.CSI,DISP=SHR
//SMPHOLD DD DISP=SHR,DSN=SYS1.OS251140.HOLDATA,�2�
// VOL=SER=S1140C,
// LABEL=(1,SL),UNIT=3480
//SMPRPT DD SYSOUT=*
//SMPOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SMPCNTL DD *
SET BDY (GLOBAL) .�3�
RECEIVE HOLDDATA .�4�� �

Figure 185. Sample JCL to process only HOLDDATA

�1�This is the SMP/E program.

�2�In the SMPHOLD DD statement, you specify the data set that contains the HOLDDATA. In this case,
the HOLDDATA comes with the CBPDO tape.

�3�For the RECEIVE command, the SET BOUNDARY command must specify the global zone.

�4�The HOLDDATA parameter indicates that the applicable data form SMPHOLD DD should be
received. In this case, HOLDDATA is received for all FMIDs defined in the GLOBAL zone.

3.6.4.3 How to receive only SYSMODs

This example assumes that you have previously received the HOLDDATA from a service tape and are
now ready to install the SYSMODs. Before you can install these SYSMODs (using the APPLY and ACCEPT
commands), you must first receive them. Figure 186 shows sample JCL to process only the
SYSMODs:

� �
//RECSYSM JOB (),′ MVSSP′ , NOTIFY=&SYSUID,CLASS=A,MSGLEVEL=(1,1),
// MSGCLASS=X
//SMPE EXEC PGM=GIMSMP
//SMPPTFIN DD DISP=SHR,DSN=SYS1.OS251140.PTF,�1�
// VOL=SER=S1140C,
// LABEL=(2,SL),UNIT=3480
//SMPCNTL DD *
SET BDY (GLOBAL) .
RECEIVE SYSMODS SOURCEID(MVSPUT1) .�2�� �

Figure 186. Sample JCL to process only the SYSMODs

�1�SMPPTFIN DD statement indicates the data sets which contains MCSs defining the SYSMODs to be
received.

�2�SYSMODS parameter indicates that only the data from SMPPTFIN should be received. SOURCEID
specifies a one-to-eight character source identifier to be assigned to the SYSMODs being received.
SMP/E assigns this source ID to all the SYSMODs processed by this RECEIVE command.

Chapter 3. System Modification Program/Enhanced (SMP/E) 279

3.6.4.4 How to receive both SYSMOD and HOLDDATA

In the course of maintaining your system, you need to install both the SYSMODs and process the
related HOLDDATA. You can accomplish this by using the sample JCL shown in Figure 187 on
page 280:

� �
//RECPTF1 JOB (),′ MVSSP′ , NOTIFY=&SYSUID,CLASS=A,MSGLEVEL=(1,1),
// MSGCLASS=X
//SMPE EXEC PGM=GIMSMP
//SMPPTFIN DD DISP=SHR,DSN=SYS1.OS251140.PTF,
// VOL=SER=S1140C,
// LABEL=(2,SL),UNIT=3480
//SMPHOLD DD DISP=SHR,DSN=SYS1.OS251140.HOLDATA,
// VOL=SER=MPWRK1
//SMPCNTL DD *
SET BDY (GLOBAL) .
RECEIVE .�1�� �

Figure 187. Sample JCL to receive both the SYSMODs and HOLDDATA

�1�This will receive all the SYSMODs and the related HOLDDATA for all the FMIDs that were defined in
the global zone.

3.6.4.5 How to receive selected SYSMODs and HOLDDATA

The RECEIVE command also allows you to select individual SYSMODs or exception HOLDDATA
applicable to the selected SYSMODs. In the example shown in Figure 188, the commands caused
SMP/E to receive two SYSMODs specified plus any HOLDDATA entries that are applicable to the
SYSMODs:

� �
//RECPTF2 JOB (),′ MVSSP′ , NOTIFY=&SYSUID,CLASS=A,MSGLEVEL=(1,1),
// MSGCLASS=X
//SMPE EXEC PGM=GIMSMP
//SMPPTFIN DD DISP=SHR,DSN=SYS1.OS251140.PTF,
// VOL=SER=S1140C,
// LABEL=(2,SL),UNIT=3480
//SMPHOLD DD DISP=SHR,DSN=SYS1.OS251140.HOLDATA,
// VOL=SER=MPWRK1
//SMPCNTL DD *
SET BDY (GLOBAL) .
RECEIVE S(UW41970,UW41979)�1�

SYSMODS
HOLDDATA
SOURCEID(MVSPUT1) .

/*� �
Figure 188. Sample JCL to receive selected SYSMODs and HOLDDATA

�1�Only two SYSMODs and applicable HOLDDATA were received using this command.

280 ABCs of OS/390 System Programming

Figure 189. Reports for RECEIVE processing

3.6.5 Reports for RECEIVE processing

When RECEIVE processing is complete, the following reports will help you to analyze the results:

• Summary Report provides you with a listing with all the SYSMODs that were processed during the
RECEIVE command run. It shows you which SYSMODs were received, which were not received,
and why they were not received.

An example of RECEIVE Summary Report is shown in Figure 190 on page 282.

Chapter 3. System Modification Program/Enhanced (SMP/E) 281

� �
PAGE 0001 - NOW SET TO GLOBAL ZONE DATE 04/16/99 TIME 13:37:0 GIMSMP

 RECEIVE SYSMODS.
PAGE 0002 - NOW SET TO GLOBAL ZONE DATE 04/16/99 TIME 14:08:0 GIMSMP

RECEIVE SUMMARY REPORT

SYSMOD STATUS TYPE SOURCEID STATUS FIELD COMMENTS

UQ01266 NOT RECEIVED PTF�1� NO APPLICABLE ++VER
NOT ASSIGNED PUT9710 SYSMOD NOT IN RECEIVE STATUS

UQ09543 NOT RECEIVED PTF�2� ALREADY RECEIVED
ASSIGNED PUT9710

UQ09340 RECEIVED PTF�3�
ASSIGNED PUT9710

� �
Figure 190. Sample RECEIVE Summary Report

�1�UQ01266 was not received because there is no applicable subsystem or system release (srel)
defined in the GLOBALZONE that matches the ++VER statement.

�2�UQ09543 was not received because it has already been received before.

�3�UQ09340 was successfully received.

• Exception SYSMOD Data Report provides you with a quick summary of the HOLDDATA information
processed during the RECEIVE command run. It lists the SYSMODs requiring special handling or
that are in error, and those SYSMODs no longer requiring special handling or that have had an
error fixed.

An example of Exception SYSMOD Data Report is shown in Figure 191.

� �
PAGE 0106 - NOW SET TO GLOBAL ZONE DATE 04/16/99 TIME 14:08:02 GIMSMP

RECEIVE ++HOLD/++RELEASE SUMMARY

NOTE: SMD NF - SYSMOD NOT RELEASED - NOT FOUND IN THE GLOBAL ZONE
RSN NF - SYSMOD NOT RELEASED - NOT HELD FOR THIS REASONID
INT HLD - SYSMOD NOT RELEASED - CANNOT RELEASE INTERNAL SYS HOLD

SYSMOD TYPE STATUS REASON FMID ++HOLD MCS STATEMENTS

UQ09660 SYS HELD ACTION HDB4410 ++ HOLD(UQ09660) SYS FMID(HDB4410)
�1� ++ HOLD(UQ09660) SYS FMID(HDB4410)

COMMENT
(***Action for PN04918)

� �
Figure 191. Sample RECEIVE Exception Data Report

�1�UQ09660 is an exception SYSMOD. Normally, for exception SYSMOD with the reason ID as
ACTION, you have to perform certain actions before you can install the SYSMOD. For example,
you may have to IPL the system for the fix to take effect.

• File Allocation Report provides you with a list of data sets used for RECEIVE processing and
supplies information about these data sets.

282 ABCs of OS/390 System Programming

An example of the File Allocation Report is shown in Figure 192 on page 283.

� �
PAGE 0106 - NOW SET TO GLOBAL ZONE DATE 04/16/99 TIME 14:08:02 GIMSMP

SMP RECEIVE FILE ALLOCATION REPORT

ZONE DDNAME DDDEFNAM SMPDDNAM TYPE -----------DATA SET OR PATH---------

SMPCNTL PERM IBMSSAA.SMPE.MOF2.OS390.JCL
SMPCSI PERM DBAP.DB2V410.SMPG.CSI
SMPLOG SYSIO IBMSSAA.IBMSSAA1.JOB29770.D0000129
SMPLOGA SYSIO IBMSSAA.IBMSSAA1.JOB29770.D0000130
SMPOUT SYSIO IBMSSAA.IBMSSAA1.JOB29770.D0000127
SMPPTFIN PERM SMPPTFIN
SMPPTS SMPPTS�1�PERM DBAP.DB2V410.SMPPTS
SMPRPT SYSIO IBMSSAA.IBMSSAA1.JOB29770.D0000128
SYSUT1 SYSUT1 PERM SYS99106.T133706.RA000.IBMSSAA1
SYSUT2 SYSUT2 PERM SYS99106.T133706.RA000.IBMSSAA1
SYSUT3 SYSUT3 PERM SYS99106.T133706.RA000.IBMSSAA1

� �
Figure 192. Sample RECEIVE File Allocation Report

�1�This shows that SMP/E dynamically allocates the SMPPTS data set through DDDEF.

• Receive Product Summary Report is produced at the completion of RECEIVE processing to
summarize the processing that occurred for ++FEATURE and ++PRODUCT MCS.

Note: If no ++FEATURE and ++PRODUCT MCS are processed, this report is not generated.

An example of the RECEIVE Product Summary Report is shown in Figure 193.

� �
++PRODUCT(5647-A01,2.5.0) DESCRIPTION(OS/390)
SREL(Z038).

++FEATURE(OS3250BA) DESCRIPTION(OS/390 Base)
PRODUCT(5647-A01,2.5.0)
FMID(HBB6605,HMP1B00).

++FEATURE(OS3250DD) DESCRIPTION(OpenEdition DCE User Privacy DES)
PRODUCT(5647-A01,2.5.0)
FMID(JMB3125).

++FEATURE(OS3250LD) DESCRIPTION(Language Environment Decryption)
PRODUCT(5647-A01,2.5.0)
FMID(JMWL755).� �

Figure 193. Sample RECEIVE Product Summary Report

Chapter 3. System Modification Program/Enhanced (SMP/E) 283

Figure 194. The REJECT process

3.7 Rejecting SYSMODs

There are times when you need to reverse the process of receiving SYSMODs into your system. After
receiving a SYSMOD, you can use the REJECT command to remove that SYSMOD from the PTS and the
global zone.

The REJECT processing deletes a SYSMOD′s global zone entry, HOLDDATA entry (if any), PTF MCS
entry, and also scratches any TLIB data sets allocated for the SYSMOD.

3.7.1 Processing modes of the REJECT command

To use the REJECT command, you must first determine which processing mode of the command you
want to use. The mode you choose depends on the data you want to delete.

Note: The processing modes are mutually exclusive. No two modes can be used together.

There are four modes of REJECT processing:

• MASS mode

SMP/E rejects all SYSMODs that have been received but not installed.

• SELECT mode

SMP/E rejects specific SYSMODs that have been received but not applied.

• PURGE mode

284 ABCs of OS/390 System Programming

SMP/E rejects all SYSMODs that have been accepted into the specified distribution zones. This is
used when SYSMODs were not automatically deleted once they have been accepted into the
distribution libraries. This is true when NOPURGE was coded in the OPTIONS entry used to
process the distribution zone.

• NOFMID mode

SMP/E rejects all SYSMODs applicable to functions that are not part of the system. This can be
used to delete service for all functions that have been deleted from the global zone. It can also be
used to delete FEATURE and PRODUCT entries for all functions that have been deleted from the
global zone.

3.7.1.1 Entries deleted by the REJECT command

Regardless of whichever REJECT processing mode you select, SMP/E will delete the following:

• The SMPPTS MCS entry

• The global zone SYSMOD entry

• The associated FMID subentry in the GLOBALZONE entry, as appropriate

• The eligible HOLDDATA entries

• The associated SMPTLIB data sets, if the SYSMOD was packaged in RELFILE format

Chapter 3. System Modification Program/Enhanced (SMP/E) 285

Figure 195. REJECT examples

3.7.1.2 REJECT examples

The following examples are provided to help you to use the REJECT command.

3.7.1.3 How to reject in MASS mode

In the MASS mode, you can reject all SYSMODs that have been received but not installed yet. You can
use the sample JCL shown in Figure 196 on page 287 to perform this task:

286 ABCs of OS/390 System Programming

� �
//REJSYSM JOB (),′ MVSSP′ , NOTIFY=&SYSUID,CLASS=A,MSGLEVEL=(1,1),
// MSGCLASS=X
//SMPE EXEC PGM=GIMSMP
//SMPCSI DD DSN=SMPE.GLOBAL.CSI,DISP=SHR
//SMPRPT DD SYSOUT=*
//SMPOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SMPCNTL DD *

SET BDY(GLOBAL) /* Set to global zone. */.
REJECT APARS /* Reject all received-only */

FUNCTIONS /* SYSMODs. */
PTFS
USERMODS.

/*� �
Figure 196. Sample JCL for rejecting SYSMODs in MASS mode

Note: This method may reject SYSMODs you wanted to keep, and if that happens you would have to
receive them again.

Using the MASS mode, you can also reject only PTFs that have been received but not applied. The
commands shown in Figure 197 shows how it can be done.

� �
SET BDY(GLOBAL) . /* Set to global zone. */
REJECT . /* Reject all received-only

PTFs. */� �
Figure 197. Rejecting PTFs that have been received but not applied

Note: If no SYSMOD types are specified on a REJECT command for MASS mode, SMP/E rejects only
PTFs.

3.7.1.4 How to reject in SELECT mode

Sometimes, you want to reject certain SYSMODs from your system. You can use the REJECT command
in the SELECT mode if you have applied and accepted a USERMOD into your system. You want to
reject the current version, update the SYSMOD, and then reapply and reaccept it. You can use the
command shown in Figure 198 to perform this task.

� �
SET BDY(GLOBAL) . /* Set to global zone. */
REJECT S(MYMOD01)�1� /* Reject this SYSMOD */

BYPASS(/* even though it was */
ACCEPTCHECK /* accepted and */
APPLYCHECK) . /* applied. */� �

Figure 198. Rejecting a SYSMOD in SELECT mode

�1�MYMOD01 is a USERMOD.

Note: By default, the REJECT command will only reject SYSMODs that are received but not installed.
However, you can specify the BYPASS operand in the REJECT command to prevent SMP/E from
checking where the SYSMODs have been installed.

Chapter 3. System Modification Program/Enhanced (SMP/E) 287

You can also use the REJECT command to reject HOLDDATA from your system. Assuming that you
want to delete a HOLDDATA entry with no associated SYSMOD entry, you can use the command
shown in Figure 199 on page 288 to accomplish this task.

� �
SET BDY(GLOBAL) . /* Set to global zone. */
REJECT S(UW04356) /* For this SYSMOD, */

HOLDDATA . /* reject the HOLDDATA. */� �
Figure 199. Rejecting HOLDDATA from the system

Note: The commands will delete both the SYSMOD and its associated HOLDDATA entry if it exists in
the system.

3.7.1.5 How to reject in PURGE mode

When you have specified NOPURGE in the OPTIONS entry, SMP/E will not delete the GLOBAL
SYSMOD and the SMPPTS MCS entry after you have accepted the SYSMODs. You can use the
commands shown in Figure 200 to reject SYSMODs that have been accepted into your system.

� �
SET BDY(GLOBAL) . /* Set to global zone. */
REJECT PURGE(DLIB1) . /* Reject SYSMODs installed

in this DLIB zone */� �
Figure 200. Rejecting in PURGE mode

3.7.1.6 How to reject in NOFMID mode

There are situations where you have received, applied, and accepted function HMX1101, which is
deleted from the global zone and SMPPTS once it was accepted. You have also received service for
the function. Now, you want to install an updated version of the function, therefore you want to delete
the FMID of the current function from the GLOBALZONE entry, together with the service and its
associated HOLDDATA. You can use the command shown in Figure 201 to perform the delete.

� �
SET BDY(GLOBAL) . /* Process global zone. */
REJECT DFMID(HMX1101) /* Delete FMID and reject */

NOFMID . /* for FMIDs not in GZONE. */� �
Figure 201. Rejecting in NOFMID mode

Note: This command deletes the SYSMODs and HOLDDATA for FMID HMX1101 plus all functions that
are not defined in the GLOBALZONE entry.

3.7.1.7 Reports for REJECT processing

At the end of REJECT processing, output from the REJECT command includes reports, as well as
statistics written to SMPOUT and SMPLOG.

Two reports are produced during REJECT processing:

• File Allocation report

This provides a list of data sets allocated during the REJECT process and also information
regarding these data sets.

288 ABCs of OS/390 System Programming

• REJECT Summary report

This report is produced at the completion of REJECT processing to summarize the processing that
occurred for SYSMODs and other data.

For more information regarding these reports, see OS/390 SMP/E Commands, SC28-1805.

Chapter 3. System Modification Program/Enhanced (SMP/E) 289

Figure 202. The APPLY process

3.8 The APPLY Process

After the SYSMODs have been received, you can use the APPL command to install them into the
appropriate target system libraries. The APPLY command calls system utilities, which are responsible
for the actual updating of those libraries.

3.8.1 Selecting SYSMODS

You can specify operands on the APPLY command that tell SMP/E which of the received SYSMODs are
to be selected for installation in the target libraries. SMP/E checks to make sure all other required
SYSMODs (prerequisites) have been installed or are being installed concurrently and in the proper
sequence.

3.8.1.1 Selecting elements

During APPLY processing, SMP/E uses the information provided in the selected SYSMODs to
determine which elements should be installed in the target libraries. The selection of elements is
monitored by SMP/E to make sure that the correct functional level of each element is selected.

290 ABCs of OS/390 System Programming

3.8.1.2 Updating the target library

After the proper SYSMODs have been selected and the proper functional and service level of each
element has been determined, the APPLY command directs SMP/E to call the system utilities. It is the
system utilities that actually place the elements into the target libraries described in the target zone.
The source of the elements is the SMPTLIB data sets, the SMPPTS data set, or the indirect libraries,
depending on how the SYSMOD was packaged.

Notes:

 1. Because the APPLY command updates the system libraries, you should never use it on a live
production system. When you process the APPLY command, you should always use a copy of the
target libraries and target zone. By using a copy, you minimize the risk of new code causing an
outage of your system. This process of copying is called cloning and is explained in detail in the
OS/390 Software Management Cookbook, SG24-4775.

 2. We recommend you always use the CHECK subparameter before you update the libraries with the
new version of the modules, even when applying in a test system. It can avoid unnecessary
workload.

3.8.2 How SMP/E keeps track of APPLY processing

SMP/E updates the information about the SYSMODs that have been applied. Remember, the target
zone reflects the contents of the target libraries. Therefore, after the utility work is complete, and the
target libraries have been updated, the target zone is updated to accurately reflect the status of those
libraries.

• A SYSMOD entry is created in the target zone for each SYSMOD that has been applied. Element
entries (such as MOD and LMOD) are also created in the target zone for those elements that have
been installed in the target libraries.

• SYSMOD entries in the global zone are updated to reflect that the SYSMOD has been applied to
the target zone.

• BACKUP entries are created in the SMPSCDS data set so the SYSMOD can later be restored, if
necessary.

3.8.2.1 The APPLY command

The APPLY command is used to cause SMP/E to install the elements supplied by a SYSMOD into the
operating (or target) system libraries. The APPLY process:

• Selects SYSMODs present in the global zone and applicable to the specified target system.

• Makes sure all other required SYSMODs have either been applied or are being applied
concurrently.

• Selects the elements from those SYSMODs on the basis of the functional and service level of those
elements in the target system and the relationship between the SYSMODs being installed, making
sure that the installation of another SYSMOD does not cause any current service to regress.

• Calls system utilities to install the elements into the target system libraries.

• Records the functional and service levels of the new elements in the target zone.

• Records the application of the SYSMOD in the target zone.

• Performs cross-zone processing.

• Updates the SYSMOD entries in the global zone.

The APPLY process is controlled by:

Chapter 3. System Modification Program/Enhanced (SMP/E) 291

• The information in the target zone reflecting the status and structure of the target system libraries

• Information on the SYSMODs indicating their applicability

• Information in the OPTIONS and UTILITY entries

• Operands on the user′s APPLY command

292 ABCs of OS/390 System Programming

Figure 203. APPLY examples

3.8.2.2 APPLY examples

The following examples will help you to use the APPLY command.

3.8.2.3 Applying all SYSMODs from a given source

If the SOURCEID operand was used during RECEIVE processing to group all those SYSMODs
processed, you can choose to install only that set of SYSMODS. This can be done with the SOURCEID
operand of the APPLY command. Suppose you received an ESO containing service levels PUT9901 and
PUT9902. The ESO contained ++ASSIGN statements that assigned each PTF a SOURCEID value
corresponding to the service level that it is part of. Now you want to install all the applicable PTFs
from those tapes into the target libraries described by zone MVSTST1. You can use the sample JCL
shown in Figure 204 on page 294 to perform this task.

Chapter 3. System Modification Program/Enhanced (SMP/E) 293

� �
 //APPLY JOB ′ accounting info′ , MSGLEVEL=(1,1)
 //APPLY EXEC SMPPROC

//SMPTLIB DD UNIT=3380,VOL=SER=TLIB01
//SMPCNTL DD *

 SET BDY(MVSTST1) /* Process MVSTST1 tgt zone. */.
APPLY SOURCEID(PUT9901, /* Process these service */

PUT9902) /* levels */
GROUP /* and any requisites. */.

/*� �
Figure 204. Sample JCL to apply al l SYSMODs from a given source

3.8.2.4 Applying with the GROUP operand

At times, you may know that a particular SYSMOD is required on your system, but you may not know
all its requisite SYSMODs. By using the GROUP operand of APPLY, you can have SMP/E determine all
the requisites and automatically install them. This method is often used during the installation of new
functions. Suppose you want to install a new function HYY2102, plus all its service, plus any requisite
SYSMODs. You can do this with the commands shown in Figure 205.

� �
SET BDY(MVSTST1) /* Process MVSTST1 tgt zone. */.

 APPLY FORFMID(HYY2102) /* For one function. */
FUNCTIONS PTFS /* Function and PTFs */
GROUP /* plus requisites. */.� �

Figure 205. Applying with the GROUP operand

3.8.2.5 Applying with the CHECK operand

In the next example, SMP/E was directed to automatically include SYSMODs needed for the selected
function and service. At times, you may want to review which SYSMODs are included before you
actually install them. This can be done by using the CHECK operand of APPLY, as shown in Figure 206.

� �
SET BDY(MVSTST1) /* Process MVSTST1 tgt zone. */.

 APPLY FORFMID(HYY2102) /* For one FMID. */
FUNCTIONS PTFS /* Functions and PTFs */
GROUP /* plus requisites */
CHECK /* in check mode. */.� �

Figure 206. Applying with the CHECK operand

After running this command, check the SYSMOD Status report to see which SYSMODs would have
been installed if you had not specified CHECK. If the results of this trial run are acceptable, run the
commands again, without the CHECK operand, to actually install the SYSMODs.

294 ABCs of OS/390 System Programming

Figure 207. The APPLY CHECK process

3.8.3 The APPLY CHECK Process
The purpose of this step is to determine:

• Whether any errors will occur while the new function is being applied (except for errors that occur
as a direct result of an update, such as a target library running out of space). This includes missing
DDDEF entries.

• Whether any requisite SYSMODs are missing.

• List of target libraries that will be updated during the actual apply. This will allow you to back up
those libraries before you apply the new elements.

• The SYSMODs, if any, that will be regressed.

3.8.3.1 Researching the APPLY CHECK reports

As a result of running the APPLY CHECK job, SMP/E produces various messages and reports that you
should now use to do further research. Here are some of the errors that may have been detected:

• Some DD statements may be missing. Check the program directory or OS/390 SMP/E Reference,
SC28-1806, to determine why they are required and how they should be specified.

• Some APAR fixes or USERMODs may be regressed. If so, you must determine why. For APAR
fixes, you have to get the version of the APAR fix applicable to the new product. For USERMODs,
you have to rework the modification to make it applicable to the new function, or eliminate the
modification if the product being installed provides the same function. When doing the actual

Chapter 3. System Modification Program/Enhanced (SMP/E) 295

APPLY operation, you may need to specify the BYPASS operand to inform SMP/E that you have
resolved these problems.

• Some prerequisite or requisite PTFs may be missing. If so, you should determine whether they can
be obtained. Some may already be on an ESO tape you have in-house but have not received;
others may not have been shipped, in which case you have to get an early copy of them by
contacting the IBM Support Center. Although you can also avoid these conditions by using the
BYPASS operand, you are advised not to do this because the regressions have not been resolved.

• Some elements may not have been selected for installation. For each such element, if the current
functional owner (that is, FMID) is an IBM product, there may not be a problem; this condition is
common and occurs because there are multiple functions with common elements. Check the
program directory or installation guide for the product you are installing to determine whether this
condition is normal or if it indicates a problem.

If the FMID is not one for an IBM product, further research is necessary. Contact the current owner
of the element to determine how that product is related to the one you are installing.

• Some of the PTFs may not have been selected for installation because of exception SYSMOD
conditions identified by the ++HOLD MCSs. When installing a new function, you may want to
research these PTFs further. You can use the reason ID and the comments specified in the
++HOLD MCS to determine which of the following actions is most appropriate:

− Bypass the condition using the BYPASS(HOLDERR) operand.

− Do not install the PTF.

− Obtain a fix for the APAR.

3.8.3.2 Getting additional SYSMODs

After doing the research step, you may decide that additional SYSMODs are needed. If so:

 1. Obtain the additional SYSMODs by using CBPDO, ESO, CSSF Information/Access, SoftwareXcel
Extended, or the IBM Support Center.

 2. Receive the additional SYSMODs, using the same source ID value as used when processing the
CUM tape.

 3. Rerun the APPLY CHECK job.

Repeat this process until no errors are reported.

296 ABCs of OS/390 System Programming

Figure 208. The RESTORE process

3.9 The RESTORE process
If you discover that a particular SYSMOD is causing a problem in your target libraries, you can remove
it and replace the elements affected by it with the previous level of those elements, which is obtained
from the backup (or distribution) libraries.

The RESTORE command processing replaces the elements on the target libraries with the last accepted
version of the element that exists on the related distribution library (DLIB).

You can use the RESTORE command to remove SYSMODs from the target libraries and restore them to a
previous level. The RESTORE command reverses APPLY processing, but has no effect on ACCEPT
processing.

3.9.1 Removing SYSMODs

SMP/E ensures the eligibility of the selected SYSMODs and checks whether other SYSMODs are
affected before continuing with RESTORE processing. Because of the various relationships and
dependencies among the many SYSMODs, this checking is very important to the integrity of your
system. In fact, to ensure that the requisites for a SYSMOD being restored are processed
appropriately, SMP/E may require the whole chain of prerequisites to be restored.

Chapter 3. System Modification Program/Enhanced (SMP/E) 297

3.9.2 Selecting elements

During RESTORE processing, SMP/E uses the information provided in the selected SYSMODs to
determine which elements in the target zone should be replaced by elements in the related distribution
libraries. The selection of elements is monitored by SMP/E to make sure that the correct functional
level of each element is selected.

3.9.3 Replacing the elements in the target libraries

When SMP/E is satisfied that the proper SYSMODs have been selected, it uses information from the
target zone to determine which distribution zone describes the elements necessary to replace the
SYSMOD′s elements in the target libraries. The RESTORE command directs SMP/E to call system
utilities that replace the elements in the target libraries with the previous level of the elements from
the related distribution libraries.

3.9.4 How SMP/E keeps track of RESTORE processing

SMP/E updates the information about the SYSMODs that have been restored. Remember, the target
zone reflects the contents of the target libraries. Therefore, after the utility work is complete, and the
target libraries have been updated, the target zone is updated to accurately reflect the status of those
libraries.

• All information in the target zone pertaining to the restored SYSMOD is removed. The element
entries in the target zone are restored to reflect the distribution zone level of the elements.

• The global zone SYSMOD entries and MCS statements, which are stored in the SMPPTS data set,
are deleted for those SYSMODs that have been restored. Any SMPTLIB data sets created during
RECEIVE processing are also deleted for the restored SYSMOD. SMP/E automatically performs this
global zone clean-up, unless you specify otherwise.

3.9.5 The RESTORE command

The RESTORE command replaces the affected elements in the target libraries with the unchanged
versions from the distribution libraries. (As a result, once you have accepted a SYSMOD into the
distribution libraries, you cannot use RESTORE to remove it from the target libraries.)

Certain conditions can cause SYSMODs to be considered ineligible for RESTORE processing. These
conditions cause SMP/E to terminate processing of the ineligible SYSMODs and issue messages to
inform you of the error conditions.

Some of these conditions are described next. For more detail, see the topic “Usage Notes” in OS/390
SMP/E Commands, SC28-1805.

• The service level of an element being restored is the same in the target library as it is in the
distribution library. This condition can occur if a SYSMOD is both applied and accepted.

• The service level of an element in the distribution library is not the correct one. This can occur if
several modifications to the same element are applied at different points in time, without being
accepted, and the later modifications are the ones that are selected for RESTORE processing.

298 ABCs of OS/390 System Programming

Figure 209. RESTORE examples

3.9.6 Restore examples

The following examples can help you to use the RESTORE command.

3.9.6.1 Restoring a single SYSMOD

Assume you have applied only PTF UZ00001, that an error was detected during testing, and that you
want to remove the PTF from your system. You can use the RESTORE command shown in Figure 210 to
do this task.

� �
SET BDY(TGT1) /* Set to target zone. */.
RESTORE S(UZ00001) /* Restore 1 PTF. */.� �

Figure 210. Removing a single PTF

If you want to clean up all of SMP/E′s records for this PTF (the global zone and the SMPPTS data set),
you can use the REJECT command after RESTORE processing completes as shown in Figure 211 on
page 300.

Chapter 3. System Modification Program/Enhanced (SMP/E) 299

� �
SET BDY(GLOBAL) /* Set to global zone. */.
REJECT S(UZ00001) /* Reject 1 PTF. */.� �

Figure 211. Cleaning up the SMP records after the reject

3.9.6.2 Restoring multiple PTFs to remove one PTF

Assume you have applied the PTFs named UZ00001, UZ00002, and UZ00003 to your system, and that
during testing an error is found in module XYMOD01. Because the current service level of that module
is UZ00003 (we can say that the RMID of the module is UZ00003), you want to restore that PTF from the
system.

You have two choices:

 1. Restore PTF UZ00001, UZ00002, UZ00003, and then reapply UZ00001 and UZ00002 as shown in
Figure 212.

� �
SET BDY(TGT1) /* Set to target zone. */.
RESTORE S(UZ00001, /* Restore all 3 PTFs. */

UZ00002, /* */
UZ00003) /* */.

APPLY S(UZ00001 /* Then re-apply the two */
UZ00002) /* that may be ok. */.� �

Figure 212. Restoring and reapplying PTFs

 2. Accept PTFs UZ00001 and UZ00002, if you are sure that they have no errors, then restore UZ00003
as shown in Figure 213.

� �
SET BDY(DLIB1) /* Set to DLIB zone. */.
ACCEPT S(UZ00001, /* Accept two good PTFs. */

UZ00002) /* */.
SET BDY(TGT1) /* Set to target zone. */.
RESTORE S(UZ00003) /* Restore the 1 bad PTF.*/.� �

Figure 213. Accepting some PTFs and then restoring another

The end result in both cases is that module XYMOD01 from PTF UZ00002 is in the target libraries.

3.9.6.3 Restoring PTFs using the GROUP operand

In 3.9.6.2, “Restoring multiple PTFs to remove one PTF,” when you wanted to restore the three PTFs,
you specified all three in the select list. In a simple case like this, that was very easy; in practice,
however, many PTFs are related to one another, and it may not be easy to determine which PTFs must
be restored in order to remove the bad one. The GROUP operand can be used to assist in determining
this. The commands shown in Figure 214 on page 301 can be run to determine which PTFs must be
restored to restore UZ00003.

300 ABCs of OS/390 System Programming

� �
SET BDY(TGT1) /* Set to target zone. */.
RESTORE S(UZ00003) /* Restore this one PTF */

GROUP /* plus any related PTFs, */
CHECK /* in check mode this time. */.� �

Figure 214. Restoring PTFs using the Group operand

After running these commands, the various SMP/E reports can be used to determine that PTFs
UZ00001, UZ00002, and UZ00003 should be restored. You can then determine the correct action: restore
all, or accept some and then restore.

3.9.6.4 The reporting output

When RESTORE processing is complete, these reports will help you analyze the results:

• The SYSMOD Status report provides you with a summary of the processing that took place for each
eligible SYSMOD, based on the operands you specified on the RESTORE command. It shows you
which SYSMODs were restored, which were not restored, and why they were not restored.

• The Element Summary report provides you with a summary of the processing that took place for
each eligible SYSMOD, based on the operands you specified on the RESTORE command. It shows
you which SYSMODs were restored, which were not restored, and why they were not restored.

• The Causer SYSMOD Summary report report provides you with a list of SYSMODs that caused
other SYSMODs to fail, and describes the errors that must be fixed to successfully process the
SYSMODs. This report can reduce the amount of work involved in figuring out which errors caused
SYSMODs to fail.

• The File Allocation report provides you with a list of the data sets used for RESTORE processing
and supplies information about these data sets.

Additional reports may be produced depending on the work being done and the content of the
SYSMODs. For more information about all the reports produced by the RESTORE command (and samples
of actual reports), see OS/390 SMP/E Commands, SC28-1805.

Chapter 3. System Modification Program/Enhanced (SMP/E) 301

Figure 215. The ACCEPT process

3.10 The ACCEPT process

You can use the ACCEPT process to install a SYSMOD in a backup (or distribution library). The
ACCEPT process is very similar to the APPLY process with one important exception—it is irreversible.

After you are satisfied that an applied SYSMOD has performed reliably in your target system, you can
install it in your backup system (distribution) libraries.

When you accept a PTF, you must know that if in the future you need to restore a PTF that changes the
same module of the accepted PTF, this module will be copied from the DLIB to your target library and
it will retrograde to the level of the last PTF accepted. If you have never accepted a PTF, the module
will retrograde to the base level, or at least, to the level that was installed.

3.10.1 Selecting SYSMODs

You can specify operands on the ACCEPT command that tell SMP/E which of the received SYSMODs are
to be selected for installation in the distribution libraries. SMP/E ensures that all other required
SYSMODs have been installed or are being installed concurrently and in the proper sequence.

302 ABCs of OS/390 System Programming

3.10.2 Selecting elements

During ACCEPT processing, SMP/E uses the information provided in the selected SYSMODs to
determine which elements should be installed in the distribution libraries. The selection of elements is
monitored by SMP/E to make sure that the correct functional level of each element is selected.

3.10.3 Updating the distribution libraries

After the proper SYSMODs have been selected and the proper functional and service level of each
element has been checked, SMP/E calls the system utilities (in the same manner as APPLY and RESTORE)
to place the elements into the distribution libraries described in the distribution zone. The source of
the elements is the SMPTLIB data sets, the SMPPTS data set, or the indirect libraries, depending on
how the SYSMOD was packaged.

3.10.4 How SMP/E keeps track of ACCEPT processing

SMP/E updates the information about the SYSMODs that have been accepted. Remember, the
distribution zone reflects the contents of the distribution libraries. Therefore, after the utility work is
complete, and the distribution libraries have been updated, the distribution zone is updated to
accurately reflect the status of those libraries.

• A SYSMOD entry is created in the distribution zone for each SYSMOD that has been accepted.
Element entries (such as MOD and LMOD) are also created in the distribution zone for the
elements that have been installed in the distribution libraries.

• Global zone SYSMOD entries and MCS statements in the SMPPTS data set are deleted for those
SYSMODs that have been accepted into the distribution zone. Any SMPTLIB data sets created
during RECEIVE processing are also deleted. If you do not want SMP/E to do this global zone
clean-up, you have the option to indicate this to SMP/E, and the information is saved.

3.10.5 The ACCEPT command

The ACCEPT command is used to cause SMP/E to install the elements supplied by a SYSMOD into the
distribution libraries (or DLIBs). The ACCEPT process:

• Selects SYSMODs present in the global zone that are applicable to the specified distribution
libraries

• Makes sure all other required SYSMODs have been accepted or are being accepted concurrently

• Selects the elements from the accepted SYSMODs based on the functional and service level of
those elements in the distribution libraries and the relationship between the SYSMODs being
installed, ensuring that no current service is regressed by the installation of another SYSMOD

• Calls system utilities to install the elements into the distribution libraries

• Records the functional and service levels of the new elements in the distribution zone

• Records the installation of the SYSMOD in the distribution zone

• Deletes the global zone SYSMOD and PTS MCS entries for those SYSMODs successfully processed

The ACCEPT process is controlled by:

• The information in the distribution zone reflecting the status and structure of the distribution
libraries

• Information on the SYSMODs indicating their applicability

• Information in the OPTIONS and UTILITY entries

• Operands on the ACCEPT command

Chapter 3. System Modification Program/Enhanced (SMP/E) 303

3.10.6 ACCEPT CHECK facility

The intent of the CHECK option is to perform a test run informing you of possible error conditions and
providing reports of SYSMOD status, libraries that will be updated, regression conditions, and
SYSMODs that will be deleted. During CHECK processing, the list of distribution zone entries is
maintained in storage; data is written to the distribution zone as a temporary storage medium. CHECK
processing deletes any data written to the distribution zone. Consequently, no permanent updates are
made to the distribution zone.

We recommend that you always use the ACCEPT CHECK prior to accepting the SYSMODs.

3.10.7 The reporting output

When ACCEPT processing is complete, these reports will help you analyze the results:

• The SYSMOD Status report provides you with a summary of the processing that took place for each
eligible SYSMOD, based on the operands you specified on the ACCEPT command. It shows you
which SYSMODs were accepted, which were not accepted, and why they were not accepted.

• The Element Summary report provides you with a detailed look at each element affected by
ACCEPT processing. It tells you in which libraries the elements were installed.

• The Causer SYSMOD Summary report provides you with a list of SYSMODs that caused other
SYSMODs to fail, and describes the errors that must be fixed to successfully process the
SYSMODs. This report can reduce the amount of work involved in figuring out which errors caused
SYSMODs to fail.

• The File Allocation report provides you with a list of the data sets used for ACCEPT processing and
supplies information about these data sets.

Additional reports may be produced depending on the work being done and the content of the
SYSMODs. For more information about all the reports produced by the ACCEPT command (and samples
of actual reports), see OS/390 SMP/E Commands, SC28-1805.

304 ABCs of OS/390 System Programming

Figure 216. ACCEPT examples

3.10.8 ACCEPT examples

The following examples will help you with the ACCEPT command.

3.10.8.1 Accepting all SYSMODs from a given source

If you used the SOURCEID operand during RECEIVE processing to group all the SYSMODs processed,
you may choose to install only that set of SYSMODs. You can do this with the SOURCEID operand of
the ACCEPT command. Suppose you received an ESO containing service levels PUT9901 and PUT9902.
The ESO contained ++ASSIGN statements that assigned each PTF a SOURCEID value corresponding
to the service level it is part of. Now you want to install all the applicable PTFs from those tapes into
the distribution libraries described by zone MVSDLB1. You can do this with the commands shown in
Figure 217.

� �
SET BDY(MVSDLB1) /* Process MVSDLB1 DLIB zone. */.
ACCEPT SOURCEID(PUT9901, /* Process these service */

PUT9902) /* levels */
GROUP /* and any requisites. */.� �

Figure 217. Accepting al l SYSMODs from a given source

Chapter 3. System Modification Program/Enhanced (SMP/E) 305

3.10.8.2 Accepting with the GROUP operand

At times, you may know that a particular SYSMOD is required on your system, but you may not know
all its requisite SYSMODs. You can use the GROUP operand of ACCEPT to have SMP/E determine all the
requisites and install them automatically. This method is often used when a new function is being
installed. Suppose you want to install a new function, HPT1234, with all its service and any requisite
SYSMODs. You can do this with the commands shown in Figure 218 on page 306.

� �
SET BDY(MVSDLB1) /* Process MVSDLB1 DLIB zone. */.
ACCEPT FORFMID(HYY1234) /* For one function. */

FUNCTIONS PTFS /* Functions and PTFs */
GROUP /* plus requisites. */.� �

Figure 218. Accepting SYSMODs with ACCEPT

The FORFMID operand indicates that only SYSMODs applicable to this function should be installed. The
FUNCTIONS operand indicates that HYY1234 can be installed. The PTFS operand indicates that only
PTFs for HYY1234 should be installed (no APARs or USERMODs are included). The GROUP operand
indicates that all requisite SYSMODs should also be accepted. These requisites can be applicable to
other functions, but may not be APARs or USERMODs.

3.10.8.3 Accepting with the GROUPEXTEND operand

Assume you want SMP/E to automatically include the requisites for some SYSMODs you plan to install.
However, you are not sure whether all of the requisites are available. (They may not have been
received, or they might be held because they are in error.) In these cases, you would like SMP/E to
check whether a superseding SYSMOD is available for the unsatisfied requisites. To have SMP/E do
this additional checking, you can use the GROUPEXTEND operand as shown in Figure 219.

� �
SET BDY(MVSDLB1) /* Process MVSDLB1 DLIB zone. */.
ACCEPT FORFMID(HYY1234) /* For one function. */

FUNCTIONS PTFS /* Functions and PTFs plus */
GROUPEXTEND /* requisites or supersedes. */.� �

Figure 219. Using the GROUPEXTEND operand

SMP/E accepts HYY1234 and any functions or PTFs applicable to HYY1234. Because of the
GROUPEXTEND operand, SMP/E also accepts all requisites for those SYSMODs, even if the requisites
are not applicable to HYY1234. If SMP/E cannot find a requisite, it looks for a SYSMOD that supersedes
the requisite and uses it to satisfy the requirement. Likewise, if a requisite is being held for an error
reason ID, SMP/E looks for a SYSMOD that supersedes the requisite, or that either satisfies or
supersedes its error reason ID, and uses it to satisfy the requirement.

Note: You must be careful in using the ACCEPT command. When you accept a SYSMOD, you cannot
restore it by using SMP/E.

306 ABCs of OS/390 System Programming

Figure 220. Other SMP/E commands

3.11 Other useful SMP/E commands

In the course of managing your system, 90 percent of the time you will only use the RECEIVE, APPLY, and
ACCEPT commands. However, there are times when you need to use other SMP/E commands to
perform a specific task, such retrieving information from SMP/E data sets, or cloning a new target zone
from the existing target zone.

Some of the more useful SMP/E commands are:

• LIST command

You can use the LIST command to retrieve information stored in SMP/E data sets.

• REPORT ERRSYSMOD command

This command helps you to identify exception SYSMODs and also any resolving SYSMODs for the
held SYSMODs.

• UCLIN command

With the UCLIN command, you can add, delete, or replace entries in the following SMP/E data sets:

− SMPCSI

− SMPMTS

− SMPSCDS

− SMPSTS

Chapter 3. System Modification Program/Enhanced (SMP/E) 307

The UCLIN command only updates entries in SMP/E data sets, hence it does nothing to any
elements or load modules in any product libraries.

Note: Be sure you understand the relationships between the various entries before you make any
UCLIN changes, as this helps to ensure that any UCLIN changes made are complete and consistent
with one another. Remember, SMP/E does not check how the UCLIN changes might affect the other
entires.

• UNLOAD command

Sometimes you want to make changes to a set of DDDEF entries in the target zone. Instead of
using the SMP/E dialog and making changes to each DDDEF entry one by one, you can use the
UNLOAD command which causes SMP/E to unload all the DDDEF entries from the target zone. The
output produced is in the form of UCLIN statements, to which you can make the necessary updates
for the DDDEF entries.

• ZONECOPY command

The ZONECOPY command can be used to copy an entire target or distribution zone from an existing
CSI data set to another CSI data set. SMP/E copies the data from the input zone to the other CSI
and renames the receiving zone. This is useful when you need to set up a new target or
distribution zone based on the existing zones.

• ZONEDELETE command

There are times when you want to delete the information about an old level of the product after
installing a new level of product in its own target and distribution zone.

• ZONERENAME command

Sometimes the current name of a zone does not conform to the naming standard established in
your environment and thus you want to assign a new name to the zones. You can do that by using
the ZONERENAME command which allows you to change the name of an existing target or distribution
zone.

In this section, we will only introduce the usage of the LIST and REPORT ERRSYSMODS commands. For
more information on the rest of the commands, see OS/390 SMP/E Commands, SC28-1805.

308 ABCs of OS/390 System Programming

Figure 221. The LIST command

3.11.1 Using the LIST command

The SMP/E data sets (the global zone, target zones, distribution zones, SMPPTS, SMPLOG, and
SMPSCDS) contain a great deal of information that you may find useful when installing a new function,
preparing a user modification, or debugging a problem. You can use the LIST command to display that
information.

To list entries in a CSI data set, you must specify the name of the zone containing the entries to be
listed on the SET BOUNDARY command.

To list entries in a data set other than the CSI (such as the SMPLOG or SMPSCDS), you must specify
the zone associated with that data set on the SET BOUNDARY command:

• SMPLOG

Specify the zone containing the DDDEF entry for the particular SMPLOG data set to be listed.

• SMPSCDS

Specify the target zone containing the DDDEF entry for the particular SMPSCDS data sets to be
listed.

Note: Make sure that the data you request to be listed is valid for the specified zone type.

Chapter 3. System Modification Program/Enhanced (SMP/E) 309

3.11.1.1 Listing entries in a particular zone

There are times when you need to check all the DDDEF entries defined in the target zone. You can
use the sample JCL shown in Figure 222 on page 310 to perform this task.

� �
//LIST1 JOB (),′ MVSSP′ , NOTIFY=&SYSUID,CLASS=A,MSGLEVEL=(1,1),
// MSGCLASS=X
//SMPE EXEC PGM=GIMSMP
//SMPCSI DD DSN=SMPE.GLOBAL.CSI,DISP=SHR
//SMPRPT DD SYSOUT=*
//SMPOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SMPCNTL DD *
SET BDY (MVST100). /* Set to target zone */
LIST DDDEF . /* List all DDDEF entries */� �

Figure 222. Listing entries in a particular zone

Note: If you want to check all the DDDEF entries defined in the global zone and all the zones defined
to that global zone, you can use the LIST command shown in Figure 223 (the global and any zone
defined to it can be used in the SET BOUNDARY command).

� �
SET BDY(MVST100) .
LIST DDDEF ALLZONES .� �

Figure 223. Listing al l DDDEF entries in the global zone and al l defined zones

Suppose you want find out all the PTFs that have been applied to the target zone for the function
SYSMOD HTCP340. You can use the command shown in Figure 224 to accomplish the task:

� �
SET BDY(MVST100) .
LIST SYSMOD PTFS .� �

Figure 224. Listing al l PTFs for a specific SYSMOD

Note: If you just use the SYSMOD operand, SMP/E lists all SYSMOD entries in that zone specified in
the SET BOUNDARY command. You can limit which SYSMOD entries are listed by coding one or more
SYSMOD qualifiers, such as APARS, PTFS, FUNCTION, and so forth.

3.11.1.2 Reports

At the end of the LIST processing, two reports are generated:

• The File Allocation report

• The LIST Summary report

For more information about these reports, see OS/390 SMP/E Commands, SC28-1805.

310 ABCs of OS/390 System Programming

Figure 225. The REPORT ERRSYSMODS command

3.11.2 Using the REPORT ERRSYSMOD command

This command helps you to determine whether any SYSMODs you have already installed are now
exception SYSMODs. It also helps you to determine whether any resolving SYSMODs are available for
held SYSMODs.

Using REPORT ERRSYSMODS for target and distribution zones, the command lists installed SYSMODs for
which ++HOLD statements were subsequently received and whose error reason IDs have not yet
been resolved.

Using REPORT ERRSYSMODS for a global zone, the command lists received SYSMODs for which ++HOLD
statements with error reason IDs have been received.

Note: When using the REPORT ERRSYSMODS command, the SET BOUNDARY command must specify GLOBAL.

3.11.2.1 Examples of the REPORT ERRSYSMODS command

The following are some examples showing how you can use the REPORT ERRSYSMODS command to get the
information that you want:

• Assume you have received the latest HOLDDATA, and you want to know whether it affects any of
the SYSMODs that have already been applied to both the target and distribution zone. You can
use the command shown in Figure 226 on page 312 to accomplish the task:

Chapter 3. System Modification Program/Enhanced (SMP/E) 311

� �
 SET BDY(GLOBAL)�1� .
 REPORT ERRSYSMODS

ZONES(MVST100,MVSD100)�2�
BEGINDATE(06 01 98)�3�
ENDDATE(04 01 99) .� �

Figure 226. Checking if HOLDDATA affects any already applied SYSMODs

�1�Remember you have to specify GLOBAL in the SET BDY command when you use the REPORT
ERRSYSMODS command.

�2�Specify the name of target and distribution zone to report on.

�3�The BEGINDATE and ENDDATE indicates the begin and end date of the ++HOLD statement
received by SMP/E for the REPORT ERRSYSMODS processing. The format of the date is mm dd
yy.

• There are situations where you are only interested in the effect of the HOLDDATA on a certain
function SYSMOD, for example HBB6607. You can use the FORFMID operand to achieve the
objective as is shown in Figure 227.

� �
 SET BDY(GLOBAL)
 REPORT ERRSYSMODS

ZONES(MVST100)
FORFMID(HBB607)�1�
BEGINDATE(06 01 98)
ENDDATE(04 01 99) .� �

Figure 227. Checking the effect of HOLDDATA on a specific SYSMOD

�1�Specifying the FORFMID operand will limit the list of SYSMODs to those that have the ++HOLD
statement with the FMID specified.

312 ABCs of OS/390 System Programming

Figure 228. Reports for REPORT ERRSYSMODS

3.11.2.2 Reports for REPORT ERRSYSMODS

At the end of the REPORT ERRSYSMODS processing, information about the held SYSMODs and any
resolving SYSMODs is written to the Exception SYSMOD report. At the same time, commands needed
to install the resolving SYSMODs are provided in the SMPPUNCH data set.

• Exception SYSMOD report

This report is produced at the completion of REPORT ERRSYSMODS processing during which
exception SYSMOD checking was done and HOLDERROR reason IDs were not resolved for
SYSMODs installed in the specified zone.

The report shows the exception SYSMODs that were previously installed, the HOLDERROR reason
IDs (APAR numbers) that have made them exception SYSMODs, resolving SYSMODs that have not
yet been installed, and the hold class and hold symptoms for each APAR.

The exception SYSMOD reports produced by a given REPORT ERRSYSMODs command are
arranged alphanumerically by zone name. Each report begins on a new page. The information
gathered for each zone is sorted in ascending order, first by FMID, then by SYSMOD name, then
APAR number, and finally by resolving SYSMOD.

Figure 229 on page 314 shows an example of exception SYSMOD report:

Chapter 3. System Modification Program/Enhanced (SMP/E) 313

� �
**************************** TOP OF DATA *******************************
PAGE 0001 - NOW SET TO GLOBAL ZONE DATE 04/21/99 TIME 10:16:50

EXCEPTION SYSMOD REPORT FOR ZONE MVST100 DATE: 01/01/98 - 03/01/99

HOLD SYSMOD APAR ---RESOLVING SYSMOD---- HOLD HOLD
FMID NAME NUMBER NAME STATUS RECEIVED CLASS SYMPTOMS

�1� HMJ4102 UW31189 AN80203 UW32213 GOOD YES PE IPL
�2� HQA5140 UW42146 AN90025 UW43610 HELD NO PE

PAGE 0002 - NOW SET TO GLOBAL ZONE DATE 04/21/99 TIME 10:16:5

EXCEPTION SYSMOD REPORT SUMMARY DATE: 01/01/98 - 03/01/99

 ZONE FMID TOTAL APARS�3� TOTAL RESOLVING�4�
AGAINST FMID SYSMODS AGAINST FMID

--
MVST100 HMJ4102 1 1

HQA5140 1 1

� �
Figure 229. Sample Exception SYSMOD Report

�1�UW31189 is an exception SYSMOD for function HMJ4102. The reason for being held is that it is
a PE (PTF in error). However, there is a resolving SYSMOD UW32213 which has already been
received and has no known problems.

�2�UW42146 is a PE for function HQA5140, and the supposed resolving SYSMOD, UW43610, is being
held for error described in APAR AN90025.

�3�This indicates the total number of APARs that have error holds against the FMID.

�4�This indicates the total number of resolving SYSMODs found against the FMID. The number
includes all received APARs and all PTFs (both received and unreceived, held and unheld) against
the FMID.

• The SMPPUNCH data set

In order to help you to install resolving SYSMODs for exception SYSMODs, SMP/E writes the
necessary commands to the SMPPUNCH data set:

− SET BOUNDARY

− RECEIVE (for unreceived resolving SYSMODs)

− RESETRC (sets the return codes for the preceding commands to zero)

− Either APPLY (for target zones) or ACCEPT (for distribution)

However, there are cases where nothing is written to SMPPUNCH for a specified zone:

− There are no exception SYSMODs for the specified zone.

− There are no resolving SYSMODs for any of the exception SYSMODs, or all resolving
SYSMODs identified are held.

− The specified zone is the global zone.

− NOPUNCH operand was specified on the REPORT ERRSYSMODS command.

Figure 230 on page 315 shows an example of SMPPUNCH output.

314 ABCs of OS/390 System Programming

� �
**************************** TOP OF DATA *******************************
SET BDY (GLOBAL). /* REMOVE COMMENT IF DOING RECEIVE
RECEIVE SELECT (

UW50483
UW50095
UW49599

.

.

.
UW55773
UW56914)
SYSMODS.

REMOVE COMMENT IF DOING RECEIVE */
RESETRC.
SET BDY (MPRDTZ).
APPLY SELECT (
 /* UW50483 RESOLVES AW29065 FOR HBB6605 FMID(HBB6605) */

UW52639 /* PTF RESOLVES AW29065 FOR HBB6605 FMID(HBB6605) */
.
.
.

UW53498 /* PTF RESOLVES AW35984 FOR UW51679 FMID(HPRF220) */
)

GROUP.
******************************** BOTTOM OF DATA ************************� �

Figure 230. Sample SMPPUNCH output

For more information on the LIST, REPORT ERRSYSMODS and the rest of the SMP/E commands, see OS/390
SMP/E Commands, SC28-1805.

Chapter 3. System Modification Program/Enhanced (SMP/E) 315

Figure 231. SMP/E Primary Option Menu

3.12 SMP/E dialogs
The SMP/E Primary Option Menu is the entry point to the SMP/E dialogs. It is on this panel that you
select which path of the dialogs you will be using. The global zone which is to be used by the dialogs
is specified in this screen.You must specify a global zone in this panel.

The SMP/E dialogs provide you with an online method of system management, software inventory, data
base inquiries, and guidance. For example, with the Query dialogs, you can look up information in the
CSI data set. The Query dialogs are one of the easiest and most direct methods you can use to obtain
the content and status of any SYSMOD that has been processed by SMP/E. You can use the Query
dialogs to display an entry in either a specific zone (CSI query) or in all zones (cross-zone query).

To get to the Query dialogs, you select SMP/E (option 1) on the initial SMP/E dialog panel (CIDPGV2).
Then, on the main menu for SMP/E options (GIM@PRIM), select Query (option 3). This takes you to the
initial Query panel. If you need assistance with using the Query dialogs (or any of the SMP/E dialogs),
help panels are available.

316 ABCs of OS/390 System Programming

Figure 232. Query Selection Menu

3.12.1 Query Selection Menu

Let′s assume you want to find out which SYSMODs have been applied to a particular target zone on
your system. You can accomplish this task using the QUERY SELECTION MENU and selecting the CSI
QUERY option (1).

Chapter 3. System Modification Program/Enhanced (SMP/E) 317

Figure 233. CSI Query Panel

3.12.2 CSI Query Panel

When the CSI QUERY panel is displayed, you can indicate that you want SMP/E to check target zone
MVST10A for all SYSMOD entries.

318 ABCs of OS/390 System Programming

Figure 234. CSI Query - Select Entry Panel

3.12.3 CSI Query - Select Entry Panel

Because the ENTRY NAME was left blank on the CSI QUERY panel, SMP/E displays another panel (see
the visual) that lists all the SYSMOD entries in target zone MVSTGT1.

Chapter 3. System Modification Program/Enhanced (SMP/E) 319

Figure 235. CSI Query - SYSMOD Entry Panel

3.12.4 CSI Query - SYSMOD Entry Panel

This panel shows all relevant information about the SYSMOD AL44935. As you can see, the PTF
AL44935 is superseded by UN29103; this means that PTF UN29103 has incorporated the code of
AL44935.

As you can see, the QUERY dialog panels provide a quick and easy way for you to obtain information
about your system.

320 ABCs of OS/390 System Programming

Figure 236. Building SMP/E jobs by using dialog

3.12.5 Building SMP/E jobs by using dialog
You can use the SMP/E dialog to generate jobs, for RECEIVE, APPLY, LIST, and so forth.

Suppose that you want to list all PTFs that are RECEIVED for an FMID. In the SMP/E Primary Option
Menu, you select Option (4), COMMAND GENERATION. You must also enter the SMPCSI DATA SET
field, or enter it on the next displayed panel. If you specify the name of the CSI, you receive the panel
on the next visual.

Chapter 3. System Modification Program/Enhanced (SMP/E) 321

Figure 237. Command Generation Selection Menu

3.12.6 Command Generation Selection Menu

Using this panel, SMP/E lists the commands that you can select. For an example of the use of this
panel, we will use OPTION (32) the LIST command.

The SMP/E data sets contain a great deal of information-- the global zone, target zones, distribution
zones, SMPPTS, SMPLOG, and SMPSCDS--that you may find useful when installing a new function,
preparing a user modification, or debugging a problem. You can use the SMP/E LIST command to
display that information.

SMP/E can display all the entries of a specified type (such as MOD, MAC, SYSMOD, and so on), or it
can display information for selected entries. In addition, for SYSMOD entries, SMP/E provides some
additional operands you can specify to list groups of SYSMODs that meet certain criteria.

322 ABCs of OS/390 System Programming

Figure 238. Command Generation Selection Zone

3.12.7 Command Generation Selection Zone

Select the CSI data set that you want to use; in our case, shown in the visual is the GLOBAL CSI.

Chapter 3. System Modification Program/Enhanced (SMP/E) 323

Figure 239. Command Generation - LIST Command

3.12.8 Command Generation - LIST Command

In the visual, We selected ENTRY TYPE=SYSMOD and ENTRY NAME=ALL.

Note: If you left ENTRY TYPE or ENTRY NAME blank, SMP/E will display a panel with all entry types
and entry names listed and will ask you to make a selection.

324 ABCs of OS/390 System Programming

Figure 240. List Global zone SYSMOD options

3.12.9 List Global zone SYSMOD options

In the List Global Zone Option, we will select PTFs by entering YES, as shown in the visual (because
we want to list all PTFs that are received), and FORFMID as YES (because we want to restrict the
search for only two FMIDs).

Chapter 3. System Modification Program/Enhanced (SMP/E) 325

Figure 241. Command Generation - list FORFMID

3.12.10 Command Generation - list FORFMID

You can select one or more FMIDs in this panel. When you complete the list of names of FMIDs or
FMIDSETs, Enter END on the command line.

326 ABCs of OS/390 System Programming

Figure 242. Command Generation Selection Menu

3.12.11 Command Generation Selection Menu

After you finish your selection, SMP/E will issue the message The LIST command was created based on
your input, as shown in the visual.

Now, the job that you want is generated by SMP/E. If you want any other service of SMP/E, you can go
again to the panel and select another command. The second command will be generated in the same
job as the previous one. When you do not have any other changes to make, you can enter END in the
command line.

Chapter 3. System Modification Program/Enhanced (SMP/E) 327

Figure 243. Command Generation - SUBMIT

3.12.12 Command Generation - SUBMIT

After Entering END on the previous visual, you receive the panel shown in this visual.

In this panel you can Edit the job (Option E) or submit the job (Option S). When you submit the job, the
job executes and you can then browse the output to obtain the information you requested.

328 ABCs of OS/390 System Programming

Figure 244. The generated job

3.12.13 The generated job

This is the job generated by SMP/E; you can submit it and it will execute the commands that you
chose.

Chapter 3. System Modification Program/Enhanced (SMP/E) 329

330 ABCs of OS/390 System Programming

Appendix A. Special Notices

This publication is intended to help new system programmers who need to
understand S/390 and the OS/390 operating system. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by OS/390 Versions. See the PUBLICATIONS section of the
IBM Programming Announcement for OS/390 Version 2 Release 8, Program
Number 5647-A01 for more information about what publications are considered to
be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

 Copyright IBM Corp. 2000 331

You can reproduce a page in this document as a transparency, if that page has
the copyright notice on it. The copyright notice must appear on each page being
reproduced.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere., The Power To Manage.,
Anything. Anywhere., TME, NetView, Cross-Site, Tivoli Ready,
Tivoli Certified, Planet Tivoli, and Tivoli Enterprise are
trademarks or registered trademarks of Tivoli Systems Inc., an
IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjobenhavns Sommer -
Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or
other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

SET, SET Secure Electronic Transaction, and the SET logo are trademarks
owned by Secure Electronic Transaction LLC.

ACF/VTAM Advanced Function Printing
AFP AnyNet
CICS CICS/ESA
CICS/MVS DB2
DFSMS DFSMS/MVS
DFSMSdfp DFSMSdss
DFSMShsm DFSMSrmm
DFSORT ESCON
FICON IBM
IMS InfoPrint
Intelligent Printer Data Stream IPDS
IP PrintWay Language Environment
MVS (block letters) MVS/DFP
NetSpool NetView
OpenEdition OS/390
Parallel Sysplex PrintWay
RACF RAMAC
RMF S/390
S/390 Parallel Enterprise Server Sysplex Timer
VTAM

332 ABCs of OS/390 System Programming

UNIX is a registered trademark in the United States and other
countries licensed exclusively through the Open Group.

Other company, product, and service names may be trademarks or
service marks of others.

Appendix A. Special Notices 333

334 ABCs of OS/390 System Programming

Appendix B. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

B.1 IBM Redbooks
For information on ordering these ITSO publications see “How to get IBM
Redbooks” on page 339.

• OS/390 Release 5 Implementation, SG24-5151

• OS/390 Release 4 Implementation, SG24-2089

• OS/390 Release 3 Implementation, SG24-2067

• OS/390 Release 2 Implementation, SG24-4834

• cit.OS/390 Security Server 1999 Updates Technical Presentation Guide,
SG24-5627

• Security in OS/390-based TCP/IP Networks, SG24-5383

• Hierarchical File System Usage Guide, SG24-5482

• Enhanced Catalog Sharing and Management, SG245594

• Integrated Catalog Facility Backup and Recovery, SG24-5644

• OS/390 Version 2 Release 6 UNIX System Services Implementation and
Customiztion, SG24-5178

• IBM S/390 FICON Implementation Guide, SG24-5169

• Exploiting S/390 Hardware Cryptography with Trusted Key Entry, SG24-5455

• TCP/IP Tutorial and Technical Overview, GG24-3376

• Introduction to Storage Area Network SAN, SG2-45470

• TCP/IP in a Sysplex, SG24-5235

• SecureWay Communications Server for OS/390 V2R8 TCP/IP: Guide to
Enhancements, SG24-5631

• OS/390 eNetwork Communications Server V2R7 TCP/IP Implementation Guide
Volume 1: Configuration and Routing, SG24-5227

• OS/390 eNetwork Communications Server V2R7 TCP/IP Implementation Guide
Volume 3: MVS Applications, SG24-5229

• OS/390 Workload Manager Implementation and Exploitation, SG24-5326

• ADSM Server-to-Server Implementation and Operation, SG24-5244

• Stay Cool on OS/390: Installing Firewall Technology, SG24-2046

• Implementing DFSMSdss SnapShot and Virtual Concurrent Copy, SG24-5268

• TCP/IP OpenEdition Implementation Guide, SG24-2141

• IMS/ESA Version 5 Performance Guide, SG24-4637

• Parallel Sysplex Configuration: Overview, SG24-2075

• Parallel Sysplex Configuation: Cookbook, SG24-2076

• Parallel Sysplex Config.: Connectivity, SG24-2077

 Copyright IBM Corp. 2000 335

• DFSMS Optimizer Presentation Guide Update, SG24-4477

• MVS Parallel Sysplex Capacity Planning, SG24-4680

• Getting the Most Out of a Parallel Sysplex, SG24-2073

• OS/390 eNetwork Communication Server TCP/IP Implementation Guide
Volume 2, SG24-5228

B.2 IBM Redbooks collections
Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr Format) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694

B.3 Other resources
These publications are also relevant as further information sources:

• OS/390 Initialization and Tuning Guide, SC28-1751

• OS/390 Initialization and Tuning Reference, SC28-1752

• OS/390 Introduction and Release Guide, GC28-1725

• OS/390 MVS JCL User′s Guide, SC28-1758

• OS/390 MVS JCL Reference, GC28-1757

• OS/390 MVS System Diagnosis: Tools and Service Aids, LY28-1085, (available
to IBM licensed customers only)

• Interactive System Productivity Facility Getting Started, SC34-4440

• OS/390 Security Server (RACF) System Programmer ′s Guide, SC28-1913

• OS/390 TSO/E Customization, SC28-1965

• OS/390 TSO/E Primer, GC28-1967

• OS/390 TSO/E User′s Guide, SC28-1968

• OS/390 SMP/E Reference, SC28-1806

• OS/390 SMP/E User′s Guide, SC28-1740

• OS/390 SMP/E Commands, SC28-1805

• Standard Packaging Rules for MVS-Based Products, SC23-3695

• OS/390 MVS System Commands, GC28-1781

• OS/390 MVS IPCS Commands, GC28-1754

• OS/390 MVS IPCS User′s Guide, GC28-1756

336 ABCs of OS/390 System Programming

• DFSMS/MVS Using Data Sets, SC26-4922

• OS/390 Planning for Installation, GC28-1726

• OS/390 MVS System Data Sets Definition, GC28-1782

• ICKDSF R16 Refresh, User′s Guide, GC35-0033

• OS/390 MVS System Management Facilities (SMF), GC28-1783

• EREP V3R5 Reference, GC35-0152

• OS/390 JES2 Commands, GC28-1790

• OS/390 Hardware Configuration Definition User′s Guide, SC28-1848

• DFSMS/MVS DFSMSdss Storage Administration Reference, SC26-4929

• IBM ServerPac for OS/390 Using the Installation Dialog, SC28-1244

• OS/390 Hardware Configuration Definition Planning, GC28-1750

• OS/390 MVS Using the Subsystem Interface, SC28-1502

• DFSMS/MVS Version 1 Release 4: Managing Catalogs, SC26-4914

• DFSMS/MVS Version 1 Release4: Access Method Services for Integrated
Catalog Facility, SC26-4906

• DFSMS/MVS: DFSMShsm Implementation and Customization Guide,
SH21-1078

• DFSMS/MVS Access Method Services for ICF Catalogs, SC26-4500

• DFSMS/MVS DFSMSdfp Storage Administration Reference, SC26-4920

• OS/390 eNetwork Communications Server: SNA Resource Definition
Reference, SC31-8565

• OS/390 eNetwork Communications Server SNA Resource Definition Samples,
SC31-8566

• OS/390 eNetwork Communications Server: SNA Operation, SC31-8567

• OS/390 V2R7.0 eNetwork CS IP Configuration, SC31-8513

• eNetwork Communications Server: IP User′s Guide GC31-8514

• OS/390 UNIX System Services Planning, SC28-1890

• OS/390 TCP/IP OpenEdition: Configuration Guide SC31-8304

• OS/390 Open Systems Adapter Support Facility User′s Guide, SC28-1855.

• OS/390 V2R6.0 MVS Planning: APPC/MVS Management, GC28-1807

• Print Services Facility for OS/390: Customization, S544-5622

• DFSMS/MVS Planning for Installation, SC26-4919

• DFSMS/MVS Implementing System-Managed Storage, SC26-3123

• DFSMS/MVS Remote Copy Administrator′s Guide and Reference, SC35-0169

• DFSMS/MVS Macro Instructions for Data Sets, SC26-4913

• DFSMS/MVS DFSMSdfp Diagnosis Guide, SY27-9605

• DFSMS/MVS DFSMSdfp Advanced Services, SC26-4921

• DFSMS/MVS Using Magnetic Tapes, SC26-4923

• DFSMS/MVS Utilities, SC26-4926

Appendix B. Related Publications 337

• Service Level Reporter User′s Guide: Reporting, SH19-6530

• DFSMS/MVS Object Access Method Application Programmer ′s Reference,
SC26-4917

• DFSMS/MVS Object Access Method Planning, Installation, and Storage
Administration Guide for Object Support, SC26-4918

• DFSORT Installation and Customization, SC26-7041

• DFSORT Getting Started with DFSORT R14, SC26-4109

• DFSMS/MVS Network File System Customization and Operation, SC26-7029

• DFSMS Optimizer User′s Guide and Reference, SC26-7047

• DFSMS/MVS DFSMSdss Storage Administration Guide, SC26-4930

• DFSMShsm Storage Administration Guide, SH21-1076

• DFSMShsm Storage Administration Reference, SH21-1075

• DFSMS/MVS Network File System User′s Guide, SC26-7028

• DFSMS/MVS DFSMSrmm Guide and Reference, SC26-4931

• DFSMS/MVS DFSMSrmm Implementation and Customization Guide,
SC26-4932

• MVS/ESA Storage Management Library Managing Data, SC26-3124

• MVS/ESA Storage Management Library Managing Storage Groups, SC26-3125

• MVS/ESA Storage Management Library Leading a Storage Administration
Group, SC26-3126.

• DFSMS/MVS Using the Interactive Storage Management Facility, SC26-4911

• ADSTAR Distributed Storage Manager for MVS Administrator′s Guide,
GC35-0277

• OS/390 MVS Programming: Assembler Services Guide, GC28-1762

• OS/390 MVS Programming: Resource Recovery, GC28-1739

• OS/390 MVS Setting Up a Sysplex, GC28-1779

• OS/390 MVS Sysplex Services Guide, GC28-1771

• OS/390 Parallel Sysplex Systems Management, GC28-1861

• OS/390 MVS Systems Codes, GC28-1780

• OS/390 MVS System Messages Volume 1, GC28-1784

• OS/390 MVS System Messages Volume 2, GC28-1785

• OS/390 MVS System Messages Volume 3, GC28-1786

• OS/390 MVS System Messages Volume 4, GC28-1787

• OS/390 MVS System Messages Volume 5, GC28-1788

• OS/390 MVS Installation Exits, SC28-1753

• OS/390 MVS Diagnosis Reference, SY28-1084

• CICS User′s Handbook, SX33-1188

• CICS Diagnosis Guide, LX33-6093

• MQSeries for MVS/ESA Messages and Codes, GC33-0819

338 ABCs of OS/390 System Programming

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this Redbooks
site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few chapters
will be published this way. The intent is to get the information out much quicker than the formal publishing
process allows.

• E-mail Orders

Send orders by e-mail including information from the redbook fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at the Redbooks Web site.

IBM Intranet for Employees

IBM employees may register for information on workshops, residencies, and Redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may access MyNews at http://w3.ibm.com/ for
redbook, residency, and workshop announcements.

In United States: e-mail address: usib6fpl@ibmmail.com
Outside North America: Contact information is in the ″How to Order″ section at this site:

http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU
Outside North America Country coordinator phone number is in the ″How to Order″ section at this site:

http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America Fax phone number is in the ″How to Order″ section at this site:

http://www.elink.ibmlink.ibm.com/pbl/pbl/

 Copyright IBM Corp. 2000 339

IBM Redbooks fax order form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

340 ABCs of OS/390 System Programming

abend

Glossary

A
abend . Termination of a task before its completion
because of an error condition that cannot be resolved
by recovery facilities while the task executing.

ACB . Access method control block.

access . A specific type of interaction between a
subject and an object that results in the flow of
information from one to the other.

access authority . An authority that relates to a
request for a type of access to protected resources.
In RACF, the access authorities are NONE, READ,
UPDATE, ALTER, and EXECUTE.

access list . A list within a profile of all authorized
users and their access authorities.

access method control block (ACB). . A control block
that links an application program to VTAM.

ACDS . Active control data set.

ACF/VTAM . An IBM licensed program that controls
communication and the flow of data in an SNA
network. It provides single-domain, multiple-domain,
and interconnected network capability. VTAM runs
under MVS (OS/VS1 and OS/VS2), VSE, and VM/SP
and supports direct control application programs and
subsystems such as VSE/POWER.

ACIF . (1) AFP conversion and indexing facility. (2) A
PSF utility program that converts a print file into AFP,
MO:DCA-P, creates an index file for input data, and
collects resources used by an AFP document into
separate file.

action message retention facility (AMRF) . A facility
that, when active, retains all action messages except
those specified by the installation in the MPFLSTxx
member in effect.

action message sequence number . A decimal
number assigned to action messages.

Advanced Function Presentation (AFP) . A set of
licensed programs, together with user applications,
that use the all-points-addressable concept to print on
presentation devices. AFP includes creating,
formatting, archiving, retrieving, viewing, distributing,
and printing information.

Advanced Program-to-Program Communications
(APPC) . A set of inter-program communication
services that support cooperative transaction
processing in a SNA network.

AFP . Advanced Function Presentation.

AFP Printer Driver for Windows . A component of
Infoprint Server for OS/390 that runs on a Windows 95
or Windows NT workstation and creates output in AFP
format, for printing on AFP printers.

AFP Viewer plug-in for Windows . A component of
Infoprint Server for OS/390 that runs on a Windows 95
or Windows NT workstation and allows you to view
files in AFP format.

AIX operating system . IBM′s implementation of the
UNIX operating system. The RS/6000 system, among
others, runs the AIX operating system.

allocate . To assign a resource for use in performing
a specific task.

alphanumeric character . A letter or a number.

amode . Addressing mode. A program attribute that
can be specified (or defaulted) for each CSECT, load
module, and load module alias. AMODE states the
addressing mode that is expected to be in effect when
the program is entered.

AMRF . action message retention facility

AOR . Application-owning region

APPC . Advanced Program-to-Program
Communications

APPN . Advanced Peer-to-Peer Networking.

ASCII (American Standard Code for Information
Interchange) . The standard code, using a coded
character set consisting of 7-bit coded characters
(8-bit including parity check), that is used for
information interchange among data processing
systems, data communication systems, and
associated equipment. The ASCII set consists of
control characters and graphic characters.

audit . To review and examine the activities of a data
processing system mainly to test the adequacy and
effectiveness of procedures for data security and data
accuracy.

authority . The right to access objects, resources, or
functions.

authorization checking . The action of determining
whether a user is permitted access to a
RACF-protected resource.

Authorized Program Analysis Report (APAR) . A
request for correction of problem caused by a defect
in a current unaltered release of a program.

 Copyright IBM Corp. 2000 341

authorized program facility (APF)

authorized program facility (APF) . A facility that
permits identification of programs authorized to use
restricted functions.

automated operations . Automated procedures to
replace or simplify actions of operators in both
systems and network operations.

AVR . Automatic volume recognition.

B
banner page . A page printed before the data set is
printed.

basic mode . A central processor mode that does not
use logical partitioning. Contrast with logically
partitioned (LPAR) mode.

batch message processing (BMP) program . An IMS
batch processing program that has access to online
databases and message queues. BMPs run online,
but like programs in a batch environment, they are
started with job control language (JCL).

batch-oriented BMP program . A BMP program that
has access to online databases and message queues
while performing batch-type processing. A
batch-oriented BMP does not access the IMS message
queues for input or output. It can access online
databases, GSAM databases, and MVS files for both
input and output.

BMP . Batch message processing (BMP) program.

broadcast . (1) Transmission of the same data to all
destinations. (2) Simultaneous transmission of data
to more than one destination.

binary data . (1) Any data not intended for direct
human reading. Binary data may contain unprintable
characters, outside the range of text characters. (2) A
type of data consisting of numeric values stored in bit
patterns of 0s and 1s. Binary data can cause a large
number to be placed in a smaller space of storage.

BIND . In SNA, a request to activate a session
between two logical units (LUs).

buffer . A portion of storage used to hold input or
output data temporarily.

buffered device . A device where the data is written
to a hardware buffer in the device before it is placed
on the paper (for example, IBM 3820).

burst . To separate continuous-forms paper into
single sheets.

C
cache structure . A coupling facility structure that
enables high-performance sharing of cached data by
multisystem applications in a sysplex. Applications
can use a cache structure to implement several
different types of caching systems, including a
store-through or a store-in cache.

carriage control character . An optional character in
an input data record that specifies a write, space, or
skip operation.

carriage return (CR) . (1) A keystroke generally
indicating the end of a command line. (2) In text data,
the action that indicates to continue printing at the
left margin of the next line. (3) A character that will
cause printing to start at the beginning of the same
physical line in which the carriage return occurred.

CART . Command and response token.

case-sensitive . Pertaining to the ability to distinguish
between uppercase and lowercase letters.

catalog . (1) A directory of files and libraries, with
reference to their locations. (2) To enter information
about a file or a library into a (3) The collection of all
data set indexes that are used by the control program
to locate a volume containing a specific data set.

CBPDO . Custom Built Product Delivery Offering.

CEC. Synonym for central processor complex (CPC).

central processor (CP) . The part of the computer that
contains the sequencing and processing facilities for
instruction execution, initial program load, and other
machine operations.

central processor complex (CPC) . A physical
collection of hardware that includes main storage, one
or more central processors, timers, and channels.

CFRM . Coupling facility resource management.

channel-to-channel (CTC) . Refers to the
communication (transfer of data between programs on
opposite sides of a channel-to-channel adapter (CTCA

channel-to-channel adapter (CTCA) . An input/output
device that is used a program in one system to
communicate with a program in another system.

checkpoint . (1) A place in a routine where a check,
or a recording of data for restart purposes, is
performed. (2) A point at which information about the
status of a job and the system can be recorded so
that the job step can be restarted later.

checkpoint write . Any write to the checkpoint data
set. A general term for the primary, intermediate, and
final writes that update any checkpoint data set.

342 ABCs of OS/390 System Programming

CICS

CICS. Customer Information Control System.

CICSplex . A group of connected CICS regions.

CICSPlex SM . CICSPlex System Manager

client . A functional unit that receives shared services
from a server. See also client-server.

client-server . In TCP/IP, the model of interaction in
distributed data processing in which a program at one
site sends a request to a program at another site and
awaits a response. The requesting program is called
a client; the answering program is called a server.

CMOS . Complementary metal-oxide semiconductor.

CNGRPxx . The SYS1.PARMLIB member that defines
console groups for the system or sysplex.

code page . (1) A table showing codes assigned to
character sets. (2) An assignment of graphic
characters and control function meanings to all code
points. (3) Arrays of code points representing
characters that establish ordinal sequence (numeric
order) of characters. (4) A particular assignment of
hexadecimal identifiers to graphic elements.

code point . A 1-byte code representing one of 256
potential characters.

coexistence . Two or more systems at different levels
(for example, software, service or operational levels)
that share resources. Coexistence includes the ability
of a system to respond in the following ways to a new
function that was introduced on another system with
which it shares resources: ignore a new function,
terminate gracefully, support a new function.

command and response token (CART) . A parameter
on WTO, WTOR, MGCRE, and certain TSO/E
commands and REXX execs that allows you to link
commands and their associated message responses.

command prefix facility (CPF) . An MVS facility that
allows you to define and control subsystem and other
command prefixes for use in a sysplex.

COMMDS . Communications data set.

complementary metal-oxide semiconductor (CMOS) .
A technology that combines the electrical properties
of positive and negative voltage requirements to use
considerably less power than other types of
semiconductors.

connection . In TCP/IP, the path between two protocol
applications that provides reliable data stream
delivery service. In Internet communications, a
connection extends from a TCP application on one
syste system to a TCP application on another system.

console . That part of a computer used for
communication between the operator or user and the
computer.

console group . In MVS, a group of consoles defined
in CNGRPxx, each of whose members can serve as an
alternate console in console or hardcopy recovery or
as a console to display synchronous messages.

CONSOLxx . The SYS1.PARMLIB member used to
define message handling, command processing, and
MCS consoles.

control unit . Synonymous with device control unit.

conversation . A logical connection between two
programs over an LU type 6.2 session that allows
them to communicate with each other while
processing a transaction.

conversational . Pertaining to a program or a system
that carries on a dialog with a terminal user,
alternately accepting input and then responding to the
input quickly enough for the user to maintain a train
of thought.

copy group . One or more copies of a page of paper.
Each copy can have modifications, such as text
suppression, page position, forms flash, and overlays.

couple data set . A data set that is created through
the XCF couple data set format utility and, depending
on its designated type, is shared by some or all of the
MVS systems in a sysplex. See also sysplex couple
data set.

coupling facility . A special logical partition that
provides high-speed caching, list processing, and
locking functions in a sysplex.

coupling facility channel. . A high bandwidth fiber
optic channel that provides the high-speed
connectivity required for data sharing between a
coupling facility and the central processor complexes
directly attached to it.

coupling services . In a sysplex, the functions of XCF
that transfer data and status between members of a
group residing on one or more MVS systems in the
sysplex.

CP. Central processor.

CPC. Central processor complex.

CPF. Command prefix facility.

cross-system coupling facility (XCF) . XCF is a
component of MVS that provides functions to support
cooperation between authorized programs running
within a sysplex.

cryptography . The transformation of data to conceal
its meaning.

Glossary 343

cryptographic key

cryptographic key . A parameter that determines
cryptographic transformations between plaintext and
ciphertext.

CTC. Channel-to-channel.

Customer Information Control System (CICS) . An
IBM licensed program tha that enables transactions
entered at remote terminals to be processed
concurrently by user-written application programs. It
includes facilities for building, using, and maintaining
databases.

D
DAE . Dump analysis and elimination.

daemon . A program that runs unattended to perform
a standard service.

DASD . Direct access storage device.

data definition name . The name of a data definition
(DD) statement, which corresponds to a data control
block that contains the same name. Abbreviated as
ddname.

data definition (DD) statement . A job control
statement that describes a data set associated with a
particular job step.

data integrity . The condition that exists as long as
accidental or intentional destruction, alteration, or
loss of data does not occur.

data set . The major unit of data storage and
retrieval, consisting of a collection of data in one of
several prescribed arrangements and described by
control information to which the system has access.

data set label . (1) A collection of information that
describes the attributes of a data set and is normally
stored on the same volume as the data set. (2) A
general term for data set control blocks and tape data
set labels.

data set separator pages . Those pages of printed
output that delimit data sets.

data sharing . The ability of concurrent subsystems
(such as DB2 or IMS DB) or application programs to
directly access and change the same data while
maintaining data integrity.

data stream . (1) All information (data and control
commands) sent over a data link usually in a single
read or write operation. (2) A continuous stream of
data elements being transmitted, or intended for
transmission, in character or binary-digit form, using
a defined format.

DBCS . Double-byte character set.

DBCTL . IMS Database Control.

DBRC . Database Recovery Control.

DB2 . DATABASE 2 for MVS/ESA.

DB2 data sharing group . A collection of one or more
concurrent DB2 subsystems that directly access and
change the same data while maintaining data
integrity.

DB2 PM . DB2 Performance Monitor.

deallocate . To release a resource that is assigned to
a specific task.

default . A value, attribute, or option that is assumed
when no alternative is specified by the user.

destination node . The node that provides application
services to an authorized external user.

device control unit . A hardware device that controls
the reading, writing, or displaying of data at one or
more input/output devices or terminals.

device number . The unique number assigned to an
external device.

device type . The general name for a kind of device;
for example, 3330.

DFSMS. Data Facility Storage Management
Subsystem.

direct access storage device (DASD) . A device in
which the access time effectively independent of the
location of the data.

directory . (1) A type of file containing the names and
controll ing information for other fi les or other
directories. Directories can also contain
subdirectories, which can contain subdirectories of
their own. (2) A file that contains directory entries.
No two directory entries in the same directory can
have the same name. (POSIX.1). (3) A file that points
to files and to other directories. (4) An index used by
a control program to locate blocks of data that are
stored in separate areas of a data set in direct access
storage.

display console . In MVS, an MCS console whose
input/output function you can control.

DLL filter . A filter that provides one or more of these
functions in a dynamic load library - init(), prolog(),
process(), epilog(), and term(). See cfilter.h and
cfilter.c in the /usr/lpp/Printsrv/samples/ directory for
more information. See also filter. Contrast with DLL
filter.

DOM . An MVS macro that removes outstanding
WTORs or action messages that have been queued to
a console end-of-tape-marker. A marker on a

344 ABCs of OS/390 System Programming

dotted decimal notation

magnetic tape used to indicate the end of the
permissible recording area, for example, a
photo-reflective strip a transparent section of tape, or
a particular bit pattern.

dotted decimal notation . The syntactical
representation for a 32-bit integer that consists of four
8-bit numbers written in base 10 with periods (dots)
separating them. It is used to represent IP addresses.

double-byte character set (DBCS) . A set of
characters in which each character is represented by
a two-bytes code. Languages such as Japanese,
Chinese, and Korean, which contain more symbols
than can be represented by 256 code points, require
double-byte character sets. Because each character
requires two bytes, the typing, display, and printing of
DBCS characters requires hardware and programs
that support DBCS. Contrast with single-byte
character set.

drain . Allowing a printer to complete its current work
before stopping the device.

E
entry area . In MVS, the part of a console screen
where operators can enter commands or command
responses.

EMIF. ESCON Multiple Image Facility.

Enterprise Systems Connection (ESCON) . A set of
products and services that provides a dynamically
connected environment using optical cables as a
transmission medium.

EPDM. IBM SystemView Enterprise Performance
Data Manager/MVS.

ESCD. ESCON Director.

ESCM. ESCON Manager. The licensed program
System Automation for OS/390 includes all of the
function previosuly provided by ESCM.

ESCON. Enterprise Systems Connection.

ETR. External Time Reference. See also Sysplex
Timer.

extended MCS console . In MVS, a console other than
an MCS console from which operators or programs
can issue MVS commands and receive messages. An
extended MCS console is defined through an
OPERPARM segment.

F
FMID . Function modification identifier. The IBM
release-specific product identifier such as HJE6610 for
OS/390 Release 1 JES2.

FOR. File-owning region.

frame . For a System/390 microprocessor cluster, a
frame contains one or two central processor
complexes (CPCs), support elements, and AC power
distribution.

FSS. functional subsystem. An address space
uniquely identified as performing a specific function
related to the JES. An example of an FSS is the
program Print Services Facility that operates the 3800
Model 3 an 38xx printers.

functional subsystem (FSS) . An address space
uniquely identified as performing a specific function
related to the JES.

functional subsystem application (FSA) . The
functional application program managed by the
functional subsystem.

functional subsystem interface (FSI) . The interface
through which JES2 JES3 communicate with the
functional subsystem.

G
gateway node . A node that is an interface between
networks.

generalized trace facility (GTF) . Like system trace,
gathers information used to determine and diagnose
problems that occur during system operation. Unlike
system trace, however, GTF can be tailored to record
very specific system and user program events.

global access checking . The ability to allow an
installation to establish an in-storage table of default
values for authorization levels for selected resources.

global resource serialization . A function that
provides an MVS serialization mechanism for
resources (typically data sets) across multiple MVS
images.

global resource serialization complex . One or more
MVS systems that use global resource serialization to
serialize access to shared resources (such as data
sets on shared DASD volumes).

group . A collection of RACF users who can share
access authorities for protected resources.

GTF. Generalized trace facility.

Glossary 345

hardcopy log

H
hardcopy log . In systems with multiple console
support or a graphic console, a permanent record of
system activity.

hardware . Physical equipment, as opposed to the
computer program or method of use; for example,
mechanical, magnetic, electrical, or electronic
devices. Contrast with software.

hardware configuration dialog . In MVS, a panel
program that is part of the hardware configuration
definition. The program allows an installation to
define devices for MVS system configurations.

Hardware Management Console . A console used to
monitor and control hardware such as the System/390
microprocessors.

HCD. Hardware Configuration Definition.

highly parallel . Refers to multiple systems operating
in parallel, each of which can have multiple
processors. See also n-way.

I
ICMF . Integrated Coupling Migration Facility.

IMS . Information Management System.

IMS DB . Information Management System Database
Manager.

IMS DB data sharing group . A collection of one or
more concurrent IMS DB subsystems that directly
access and change the same data while maintaining
data integrity.

IMS TM. Information Management System
Transaction Manager.

initial program load (IPL) . The initialization procedure
that causes an operating system to begin operation.

instruction line . In MVS, the part of the console
screen that contains messages about console control
and input errors.

internal reader . A facility that transfers jobs to the
job entry subsystem (JES2 or JES3).

IOCDS. Input/output configuration data set.

IOCP. Input/output configuration program.

IODF. Input/output definition file.

IPL . Initial program load.

IRLM . Internal resource lock manager.

ISPF. Interactive System Productivity Facility.

J
JES common coupling services . A set of
macro-driven services that provide the
communication interface between JES members of a
sysplex. Synonymous with JES XCF.

JESXCF . JES cross-system coupling services. The
MVS component, common to both JES2 and JES3, that
provides the cross-system coupling services to either
JES2 multi-access spool members or JES3 complex
members, respectively.

JES2 . An MVS subsystem that receives jobs into the
system, converts them to internal format, selects
them for execution, processes their output, and
purges them from the system. In an installation with
more than one processor, each JES2 processor
independently controls its job input, scheduling, and
output processing.

JES2 multi-access spool configuration . A multiple
MVS system environment that consists of two or more
JES2 processors sharing the same job queue and
spool

JES3 . An MVS subsystem that receives jobs into the
system, converts them to internal format, selects
them for execution, processes their output, and
purges them from the system. In complexes that
have several loosely-coupled processing units, the
JES3 program manages processors so that the global
processor exercises centralized control over the local
processors and distributes jobs to them via a common
job queue.

JES3 complex . A multiple MVS system environment
that allows JES3 subsystem consoles and MCS
consoles with a logical association to JES3 to receive
messages and send commands across systems.

job entry subsystem (JES) . A system facility for
spooling, job queuing, and managing the scheduler
work area.

job separator page data area (JSPA) . A data area
that contains job-level information for a data set. This
information is used to generate job header, job trailer
or data set header pages. The JSPA can be used by
an installation-defined JES2 exit routine to duplicate
the information currently in the JES2 separator page
exit routine.

job separator pages . Those pages of printed output
that delimit jobs.

346 ABCs of OS/390 System Programming

keyword

K
keyword . A part of a command operand or
SYS1.PARMLIB statement that consists of a specific
character string (such as NAME= on the CONSOLE
statement of CONSOLxx).

L
LIC . Licensed Internal Code.

list structure . A coupling facility structure that
enables multisystem applications in a sysplex to
share information organized as a set of lists or
queues. A list structure consists of a set of lists and
an optional lock table, which can be used for
serializing resources in the list structure. Each list
consists of a queue of list entries.

lock structure . A coupling facility structure that
enables applications in a sysplex to implement
customized locking protocols for serialization of
application-defined resources. The lock structure
supports shared, exclusive, and application-defined
lock states, as well as generalized contention
management and recovery protocols.

logical partition (LP) . A subset of the processor
hardware that is defined to support an operating
system. See also logically partitioned (LPAR) mode.

logically partitioned (LPAR) mode . A central
processor complex (CPC) power-on reset mode that
enables use of the PR/SM feature and allows an
operator to allocate CPC hardware resources
(including central processors, central storage,
expanded storage, and channel paths) among logical
partitions. Contrast with basic mode.

logical unit (LU) . In SNA, a port through which an
end user accesses th SNA network in order to
communicate with another end user and through
which the end user accesses the functions provided
by system services control points (SSCPs).

logical unit type 6.2 . The SNA logical unit type that
supports general communication between programs in
a cooperative processing environment.

loosely coupled . A multisystem structure that
requires a low degree of interaction and cooperation
between multiple MVS images to process a workload.
See also tightly coupled.

LP . Logical partition.

LPAR . Logically partitioned (mode).

M
MAS . Multi-access spool.

master console . In an MVS system or sysplex, the
main console used for communication between the
operator and the system from which all MVS
commands can be entered. The first active console
with AUTH(MASTER) defined becomes the master
console in a system or sysplex.

master console authority . In a system or sysplex, a
console defined with AUTH(MASTER) other than the
master console from which all MVS commands can be
entered.

master trace . A centralized data tracing facility of
the master scheduler, used in servicing the message
processing portions of MVS.

MCS . Multiple console support.

MCS console . A non-SNA device defined to MVS that
is locally attached to an MVS system and is used to
enter commands and receive messages.

member . A specific function (one or more
modules/routines) of a multisystem application that is
defined to XCF and assigned to a group by the
multisystem application. A member resides on one
system in the sysplex and can use XCF services to
communicate (send and receive data) with other
members of the same group.

message processing facility (MPF) . A facility used to
control message retention, suppression, and
presentation.

message queue . A queue of messages that are
waiting to be processed or waiting to be sent to a
terminal.

message text . The part of a message consisting of
the actual information that is routed to a user at a
terminal or to a program.

microprocessor . A processor implemented on one or
a small number of chips.

mixed complex . A global resource serialization
complex in which one or more of the systems in the
global resource serialization complex are not part of a
multisystem sysplex.

MP . Multiprocessor.

MPF. Message processing facility.

MPFLSTxx . The SYS1.PARMLIB member that
controls the message processing facility for the
system.

MRO . Multiregion operation.

Glossary 347

multiple console support (MCS)

multiple console support (MCS) . The operator
interface in an MVS system.

multi-access spool (MAS) . A complex of multiple
processors running MVS/JES2 that share a common
JES2 spool and JES2 checkpoint data set.

multiprocessing . The simultaneous execution of two
or more computer programs or sequences of
instructions. See also parallel processing.

multiprocessor (MP) . A CPC that can be physically
partit ioned to form two operating processor
complexes.

multisystem application . An application program that
has various functions distributed across MVS images
in a multisystem environment.

multisystem console support . Multiple console
support for more than one system in a sysplex.
Multisystem console support allows consoles on
different systems in the sysplex to communicate with
each other (send messages and receive commands)

multisystem environment . An environment in which
two or more MVS images reside in one or more
processors, and programs on one image can
communicate with programs on the other images.

multisystem sysplex . A sysplex in which two or more
MVS images are allowed to be initialized as part of
the sysplex.

MVS image . A single occurrence of the MVS/ESA
operating system that has the ability to process work.

MVS router . The MVS router is a system service that
provides an installation with centralized control over
system security processing.

MVS system . An MVS image together with its
associated hardware, which collectively are often
referred to simply as a system, or MVS system.

MVS/ESA . Multiple Virtual Storage/ESA.

MVSCP. MVS configuration program.

N
n-way . The number (n) of CPs in a CPC. For
example, a 6-way CPC contains six CPs.

NIP. Nucleus initialization program.

NJE . Network job entry.

no-consoles condition . A condition in which the
system is unable to access any full-capability console
device.

nonstandard labels . Labels that do not conform to
American National Standard or IBM System/370
standard label conventions.

nucleus initialization program (NIP) . The stage of
MVS that initializes the control program; it allows the
operator to request last minute changes to certain
options specified during initialization.

O
offline . Pertaining to equipment or devices not under
control of the processor.

OLTP . Online transaction processing.

online . Pertaining to equipment or devices under
control of the processor.

OPC/ESA . Operations Planning and Control.

operating system (OS) . Software that controls the
execution of programs and that may provide services
such as resource allocation, scheduling, input/output
control, and data management. Although operating
systems are predominantly software, partial hardware
implementations are possible.

operations log . In MVS, the operations log is a
central record of communications and system
problems for each system in a sysplex.

OPERLOG . The operations log.

OPERPARM . In MVS, a segment that contains
information about console attributes for extended
MCS consoles running on TSO/E.

OS/390. OS/390 is a network computing-ready,
integrated operating system consisting of more than
50 base elements and integrated optional features
delivered as a configured, tested system.

OS/390 Network File System . A base element of
OS/390, that allows remote access to MVS host
processor data from workstations, personal
computers, or any other system on a TCP/IP network
that is using client software for the Network File
System protocol.

OS/390 UNIX System Services (OS/390 UNIX) . The
set of functions provided by the SHELL and UTILITIES,
kernel, debugger, f i le system, C/C++ Run-Time
Library, Language Environment, and other elements
of the OS/390 operating system that allow users to
write and run application programs that conform to
UNIX standards.

348 ABCs of OS/390 System Programming

parallel processing

P
parallel processing . The simultaneous processing of
units of work by many servers. The units of work can
be either transactions or subdivisions of large units of
work (batch). See also highly parallel.

Parallel Sysplex . A sysplex that uses one or more
coupling facilities.

partitionable CPC . A CPC that can be divided into 2
independent CPCs. See also physical partition,
single-image mode, MP, side.

partitioned data set (PDS) . A data set on direct
access storage that is divided into partitions, called
members, each of which can contain a program, part
of a program, or data.

partitioned data set extended (PDSE) . A
system-managed data set that contains an indexed
directory and members that are similar to the
directory and members of partitioned data sets. A
PDSE can be used instead of a partitioned data set.

password . A unique string of characters known to a
computer system and to a user, who must specify the
character string to gain access to a system and to the
information stored within it.

permanent data set . A user-named data set that is
normally retained for longer than the duration of a job
or interactive session. Contrast with temporary data
set.

PFK . Program function key.

PFK capability . On a display console, indicates that
program function keys are supported and were
specified at system generation.

PFKTABxx . The SYS1.PARMLIB member that
controls the PFK table settings for MCS consoles in a
system.

physical partition . Part of a CPC that operates as a
CPC in its own right, with its own copy of the
operating system.

physically partitioned (PP) configuration . A system
configuration that allows the processor controller to
use both central processor complex (CPC) sides as
individual CPCs. The A-side of the processor
controller controls side 0; the B-side of the processor
controller controls side 1. Contrast with single-image
(SI) configuration.

PR/SM. Processor Resource/Systems Manager.

Print Services Facility (PSF) . The access method that
supports the 3800 Printing Subsystem Models 3 and 8.
PSF can interface either directly to a user′s

application program or indirectly through the Job
Entry Subsystem (JES) of MVS.

printer . (1) A device that writes output data from a
system on paper or other media.

processor controller . Hardware that provides support
and diagnostic functions for the central processors.

Processor Resource/Systems Manager (PR/SM) . The
feature that allows the processor to use several MVS
images simultaneously and provides logical
partit ioning capability. See also LPAR.

profile . Data that describes the significant
characteristics of a user, a group of users, or one or
more computer resources.

program function key (PFK) . A key on the keyboard
of a display device that passes a signal to a program
to call for a particular program operation.

program status word (PSW) . A doubleword in main
storage used to control the order in which instructions
are executed, and to hold and indicate the status of
the computing system in relation to a particular
program.

pseudo-master console . A subsystem-allocatable
console that has system command authority like that
of an MCS master console.

PSW. Program status word.

R
RACF . See Resource Access Control Facility.

RAID . See redundant array of independent disk.

RAMAC Virtual Array (RVA) system . An online,
random access disk array storage system composed
of disk storage and control unit combined into a single
frame.

read access . Permission to read information.

recording format . For a tape volume, the format of
the data on the tape, for example, 18, 36, 128, or 256
tracks.

recovery . The process of rebuilding data after it has
been damaged or destroyed, often by using a backup
copy of the data or by reapplying transactions
recorded in a log.

redundant array of independent disk (RAID) . A disk
subsystem architecture that combines two or more
physical disk storage devices into a single logical
device to achieve data redundancy.

remote operations . Operation of remote sites from a
host system.

Glossary 349

Resource Access Control Facility (RACF)

Resource Access Control Facility (RACF) . An
IBM-licensed program or a base element of OS/390,
that provides for access control by identifying and
verifying the users to the system, authorizing access
to protected resources, logging the detected
unauthorized attempts to enter the system and
logging the detected accesses to protected resources.

restructured extended executor (REXX) . A
general-purpose, procedural language for end-user
personal programming, designed for ease by both
casual general users and computer professionals. It
is also useful for application macros. REXX includes
the capability of issuing commands to the underlying
operating system from these macros and procedures.
Features include powerful character-string
manipulation, automatic data typing, manipulation of
objects familiar to people, such as words, numbers,
and names, and built-in interactive debugging.

REXX. See restructured extended executor.

RMF . Resource Measurement Facility.

rmode . Residency mode. A program attribute that
can be specified (or defaulted) for each CSECT, load
module, and load module alias. RMODE states the
virtual storage location (either above 16 megabytes
or anywhere in virtual storage) where the program
should reside.

roll mode . The MCS console display mode that
allows messages to roll of off the screen when a
specified time interval elapses.

roll-deletable mode . The console display mode that
allows messages to roll off the screen when a
specified time interval elapses. Action messages
remain at the top of the screen where operators can
delete them.

routing . The assignment of the communications path
by which a message will reach its destination.

routing code . A code assigned to an operator
message and used to route the message to the
proper console.

RVA . See RAMAC Virtual Array system.

S
SCDS. Source control data set.

SDSF. System Display and Search Facility.

shared DASD option . An option that enables
independently operating computing systems to jointly
use common data residing on shared direct access
storage devices.

side . A part of a partitionable CPC that can run as a
physical partition and is typically referred to as the
A-side or the B-side.

single point of control . The characteristic a sysplex
displays when you can accomplish a given set of
tasks from a single workstation, even if you need
multiple IBM and vendor products to accomplish that
particular set of tasks.

single system image . The characteristic a product
displays when multiple images of the product can be
viewed and managed as one image.

single-image (SI) mode . A mode of operation for a
multiprocessor (MP) system that allows it to function
as one CPC. By definition, a uniprocessor (UP)
operates in single-image mode. Contrast with
physically partitioned (PP) configuration.

single-system sysplex . A sysplex in which only one
MVS system is allowed to be initialized as part of the
sysplex. In a single-system sysplex, XCF provides
XCF services on the system but does not provide
signalling services between MVS systems. See also
multisystem sysplex, XCF-local mode.

SLR . Service Level Reporter.

small computer system interface (SCSI) . A standard
hardware interface that enables a variety of
peripheral devices to communicate with one another.

SMF. System management facilit ies.

SMP/E. System Modification Program Extended.

SMS . Storage Management Subsystem.

SMS communication data set . The primary means of
communication among systems governed by a single
SMS configuration. The SMS communication data set
(COMMDS) is a VSAM linear data set that contains
the current util ization statistics for each
system-managed volume, which SMS uses to help
balance space usage among systems.

SMS configuration . The SMS definitions and routines
that the Storage Management Subsystem uses to
manage storage.

SMS system group . All systems in a sysplex that
share the same SMS configuration and
communications data sets, minus any systems in the
sysplex that are defined individually in the SMS
configuration.

software . (1) All or part of the programs, procedures,
rules, and associated documentation of a data
processing system. (2) Contrast with hardware. A set
of programs, procedures, and, possibly, associated
documentation concerned with the operation of a data
processing system. For example, compilers, l ibrary

350 ABCs of OS/390 System Programming

spanned record

routines, manuals, circuit diagrams. Contrast with
hardware.

spanned record . A logical record contained in more
than one block.

status-display console . An MCS console that can
receive displays of system status but from which an
operator cannot enter commands.

storage administrator . A person in the data
processing center who is responsible for defining,
implementing, and maintaining storage manageme
policies.

storage class . A collection of storage attributes that
identify performance goals and availabil ity
requirements, defined by the storage administrator,
used to select a device that can meet those goals and
requirements.

storage group . A collection of storage volumes and
attributes, defined the storage administrator. The
collections can be a group of DASD volume or tape
volumes, or a group of DASD, optical, or tape
volumes treated as single object storage hierarchy.
See tape storage group.

storage management . The activities of data set
allocation, placement, monitoring, migration, backup,
recall, recovery, and deletion. These can be done
either manually or by using automated processes.
cThe Storage Management Subsystem automates
these processes for you, while optimizing storage
resources. See also Storage Management
Subsystem.

Storage Management Subsystem (SMS) . A
DFSMS/MVS facility used to automate and centralize
the management of storage. Using SMS, a storage
administrator describes data allocation
characteristics, performance and availability goals,
backup and retention requirements, and storage
requirements to the system through data class,
storage class, management class, storage group, and
ACS routine definitions.

storage subsystem . A storage control and its
attached storage devices. See also tape subsystem.

structure . A construct used by MVS to map and
manage storage on a coupling facility. See cache
structure, list structure, and lock structure.

subsystem-allocatable console . A console managed
by a subsystem like JES3 or NetView used to
communicate with an MVS system.

subsystem interface (SSI) . An MVS component that
provides communication between MVS and JES.

supervisor call instruction (SVC) . An instruction that
interrupts a program being executed and passes

control to the supervisor so that it can perform a
specific service indicated by the instruction.

support element . A hardware unit that provides
communications, monitoring, and diagnostic functions
to a central processor complex (CPC).

SVC routine . A control program routine that
performs or begins a contro program service
specified by a supervisor call instruction.

symmetry . The characteristic of a sysplex where all
systems, or certain subsets of the systems, have the
same hardware and software configurations and
share the same resources.

synchronous messages . WTO or WTOR messages
issued by an MVS system during certain recovery
situations.

SYSLOG . The system log data set.

sysplex . A set of MVS systems communicating and
cooperating with each other through certain
multisystem hardware components and software
services to process customer workloads. See also
MVS system, Parallel Sysplex.

sysplex couple data set . A couple data set that
contains sysplex-wide data about systems, groups,
and members that use XCF services. All MVS
systems in a sysplex must have connectivity to the
sysplex couple data set. See also couple data set.

Sysplex Timer . An IBM unit that synchronizes the
time-of-day (TOD) clocks in multiple processors or
processor sides. External Time Reference (ETR) is
the MVS generic name for the IBM Sysplex Timer
(9037).

system control element (SCE) . Hardware that
handles the transfer of data and control information
associated with storage requests between the
elements of the processor.

system console . In MVS, a console attached to the
processor controller used to initialize an MVS system.

system log (SYSLOG) . In MVS, the system log data
set that includes all entries made by the WTL
(write-to-log) macro as well as the hardcopy log.
SYSLOG is maintained by JES in JES SPOOL space.

system management facilities (SMF) . An optional
control program feature of OS/390 and MVS that
provides the means for gathering and recording
information that can be used to evaluate system
usage.

System Modification Program Extended (SMP/E) . In
addition to providing the services of SMP, SMP/E
consolidates installation data, allows more flexibility
in selecting changes to be installed, provides a dialog

Glossary 351

Systems Network Architecture (SNA)

interface, and supports dynamic allocation of data
sets.

Systems Network Architecture (SNA) . A description
of the logical structure, formats, protocols, and
operational sequences for transmitting information
units through, and controlling the configuration and
operation of networks.

system trace . A chronological record of specific
operating system events. The record is usually
produced for debugging purposes.

T
temporary data set . A data set that is created and
deleted in the same job.

terminal . A device, usually equipped with a keyboard
and some kind of display, capable of sending and
receiving information over a link.

terminal user . In systems with time-sharing, anyone
who is eligible to log on.

tightly coupled . Multiple CPs that share storage and
are controlled by a single copy of MVS. See also
loosely coupled, tightly coupled multiprocessor.

tightly coupled multiprocessor . Any CPU with
multiple CPs.

Time Sharing Option (TSO) . An option on the
operating system; for OS/390 the option provides
interactive time sharing from remote terminals.

TOR. Terminal-owning region.

transaction . In APPC/MVS, a unit of work performed
by one or more transaction programs, involving a
specific set of input data and initiating a specific
process or job.

transaction program (TP) . For APPC/MVS, any
program on MVS that issues APPC/MVS or CPI
Communication calls, or is scheduled by the
APPC/MVS transaction scheduler.

U
undelivered message . An action message or WTOR
that cannot be queued for delivery to the expected
console. MVS delivers these messages to any
console with the UD console attribute in a system or
sysplex.

uniprocessor (UP) . A CPC that contains one CP and
is not partitionable.

UP. Uniprocessor.

V
VM . Virtual Machine.

virtual telecommunications access method (VTAM) . A
set of programs that maintain control of the
communication between terminals and application
programs running under DOS/VS, OS/VS1, and
OS/VS2 operating systems.

volume . (1) That portion of a single unit of storage
which is accessible to a single read/write mechanism,
for example, a drum, a disk pack, or part of a disk
storage module. (2) A recording medium that is
mounted and demounted as a unit, for example, a reel
of magnetic tape, a disk pack, a data cell.

volume serial number . A number in a volume label
that is assigned when a volume is prepared for use in
the system.

volume table of contents (VTOC) . A table on a direct
access volume that describes each data set on the
volume.

VSAM . Virtual Storage Access Method.

VTAM . Virtual Telecommunications Access Method.

VTOC. Volume table of contents.

W
wait state . Synonymous with waiting time.

waiting time . (1) The condition of a task that depends
on one or more events in order to enter the ready
condition. (2) The condition of a processing unit when
all operations are suspended.

WLM . MVS workload management.

wrap mode . The console display mode that allows a
separator line between old and new messages to
move down a full screen as new messages are added.
When the screen is filled and a new message is
added, the separator line overlays the oldest
message and the newest message appears
immediately before the line.

write-to-log (WTL) message . A message sent to
SYSLOG or the hardcopy log.

write-to-operator (WTO) message . A message sent to
an operator console informing the operator of errors
and system conditions that may need correcting.

write-to-operator-with-reply (WTOR) message . A
message sent to an operator console informing the
operator of errors and system conditions that may
need correcting. The operator must enter a response.

352 ABCs of OS/390 System Programming

WTL message

WTL message . Write-to-log message

WTO message . Write-to-operator message

WTOR message . Write-to-operator-with-reply
message.

X
XCF. Cross-system coupling facility.

XCF PR/SM policy . In a multisystem sysplex on
PR/SM, the actions that XCF takes when one MVS
system in the sysplex fails. This policy provides high

availabil ity for multisystem applications in the
sysplex.

XCF-local mode . The state of a system in which XCF
provides limited services on one system and does not
provide signalling services between MVS systems.
See also single-system sysplex.

XRF. Extended recovery facility.

Glossary 353

354 ABCs of OS/390 System Programming

IBM Redbooks evaluation

ABCs of OS/390 System Programming Volume 3
SG24-5653-00

Your feedback is very important to help us maintain the quality of IBM Redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
__Customer __Business Partner __Solution Developer __IBM employee
__None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 2000 355

SG24-5653-00
Printed in the U.S.A.

A
B

C
s of O

S
/390 S

ystem
 P

rogram
m

ing V
olum

e 3
S

G
24-5653-00IBML

	ABCs of OS/390 System Programming
	Volume 3
	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction to DFSMS/MVS
	Introduction to data management
	Data sets
	Data set name rules
	Logical records
	Record formats
	Data set organization (DSORG)
	Locating a data set
	Cataloged and uncataloged data sets
	Volume Table of Contents (VTOC)
	Data set control block (DSCB) types
	Index VTOC structure
	Creating the VTOC and index VTOC
	ICKDSF
	Initializing a DASD volume
	VTOC and index VTOC
	ICKDSF stand- alone version
	Problem determination
	Traditional DASD
	Redundant Array of Independent Disks (RAID)
	RVA highlights
	Seascape architecture
	Powerful storage server
	Enterprise Storage Server
	Serial Storage Architecture (SSA)
	ESS universal access
	Operating systems supporting ESS
	ESS new performance functions
	WLM controlling PAVs
	ESS copy services
	StorWatch product highlights
	Introduction to tape processing
	Describing the labels
	Initializing tape cartridges
	Tape capacity
	3494 tape library
	Introduction to VTS
	Introduction to utilities
	System utilities programs
	Data set utility programs
	IEFBR14
	IEBCOMPR (compare data set) program
	Data sets that can be compared
	Data sets that cannot be compared
	IEBCOPY
	IEBCOPY copy operation
	IEBCOPY compress operation
	IEBGENER
	Adding members to a PDS using IEBGENER
	Copying data to tape
	IEHLIST
	LISTVTOC output
	Access method services
	Invoking access method services
	Functional commands
	Data Collection Facility (DCOLLECT)
	AMS modal commands
	Generation data groups (GDG)
	Defining a generation data group
	Absolute generation and version numbers
	Relative generation number
	Rolled in and rolled off
	Access method functions
	Major DFSMS/ MVS access methods
	BPAM to access PDS and PDSE
	PDS and PDSE data organizations
	PDSE structure
	Sequential access methods
	Virtual Storage Access Method (VSAM)
	VSAM resource pool
	VSAM components
	Key sequenced data set (KSDS)
	Data/ Index relationship
	Relative record data set (RRDS)
	Typical RRDS processing
	Linear data set (LDS)
	Data- in- virtual
	Data- in- virtual objects
	Mapping a linear data set
	Entry sequenced data set (ESDS)
	Typical ESDS processing (ESDS)
	DFSORT
	DFSMS/ MVS Network File System
	DFSMS/ MVS Optimizer
	DFSMSdss
	DFSMSdss: physical and logical processing
	DFSMSdss: logical processing
	DFSMSdss: physical processing
	DFSMSdss stand- alone services
	DFSMShsm
	Availability management
	Space management
	Storage device hierarchy
	HSM volume types
	Automatic space management
	Recall
	Removable media manager (DFSMSrmm)
	Libraries and locations
	What DFSMSrmm can manage
	Removable media library
	Storage location
	Managing libraries and storage locations

	Chapter 2. Storage management
	DFSMS/ MVS environment
	The DFSMS/ MVS functional components
	Introduction to system- managed storage (SMS)
	Benefits of system- managed storage
	Implementing your storage management policies
	Implementing and monitoring storage management policies
	Monitoring your policies
	Managing data with SMS
	How to be system- managed
	Using data classes
	Using storage classes
	Using management classes
	Management class functions
	Using storage groups
	Using aggregate backup and recovery support (ABARS)
	Using automatic class selection routines
	Defining the storage management subsystem configuration
	Activating a minimal SMS configuration
	Managing data with a minimal SMS configuration
	Steps for a minimal SMS configuration
	Allocating SMS control data sets
	Define GRS resource names for active SMS control data sets
	Defining a minimal SMS configuration
	DFSMS setup for OS/ 390
	Activating and starting SMS
	Display SMS configuration
	Controlling SMS processing with MVS operator commands
	Enforcing standards with DC ACS routine
	Establishing installation standards
	Data types that can be system managed
	Data types that cannot be system managed
	Developing naming conventions
	Lowest- level qualifiers (LLQ) standards
	Simplifying JCL
	Allocating data
	Creating a VSAM cluster
	Using retention period and expiration date
	Managing data allocation
	Using data class to standardize data allocation
	Data class attributes
	Planning and defining data classes
	Ensuring device independence
	SMS PDSE support
	PDSE conversion
	Program objects
	Selecting data sets to allocate as PDSEs
	Allocating new PDSEs
	Identifying PDSEs
	Introduction to ISMF
	ISMF products relationship
	What you can do with ISMF
	Accessing ISMF
	Navigating through ISMF
	Selecting an option from the ISMF Primary Option menu
	ISMF Profile Option Menu
	Data Set Selection Entry Panel
	Data Set List panel
	Volume List Selection Menu
	ISMF Volume List panel
	Management Class Application Selection
	ISMF management class list
	Data Class Application Selection
	ISMF data class list
	Storage Class Application Selection
	ISMF storage class List
	Saved ISMF Lists
	Removable Media Manager (DFSMSrmm)

	Chapter 3. System Modification Program/Enhanced (SMP/E)
	Introduction to SMP/ E
	SYSMODs
	Introducing an element - the function SYSMOD
	Preventing problems with an element (PTF)
	Fixing problems with an element - the APAR SYSMOD
	Customizing an element - the USERMOD SYSMOD
	Data sets used by SMP/ E
	Dynamic allocation of SMP/ E data sets
	Standard defaults
	How dynamic allocation works
	Consolidated Software Inventory (CSI)
	The organization of the CSI data set
	How to organize CSI data sets
	How to allocate a CSI data set
	How to initialize a CSI data set
	Defining zones for your system
	SMP/ E commands you need to know
	Displaying SMP/ E data
	Receiving SYSMODs
	Packaging of the SYSMODs
	The RECEIVE Process
	Managing exception SYSMOD through HOLLDATA
	SMP/ E data sets used in the RECEIVE Process
	Reports for RECEIVE processing
	Rejecting SYSMODs
	Processing modes of the REJECT command
	The APPLY Process
	Selecting SYSMODS
	How SMP/ E keeps track of APPLY processing
	The APPLY CHECK Process
	The RESTORE process
	Removing SYSMODs
	Selecting elements
	Replacing the elements in the target libraries
	How SMP/ E keeps track of RESTORE processing
	The RESTORE command
	Restore examples
	The ACCEPT process
	Selecting SYSMODs
	Selecting elements
	Updating the distribution libraries
	How SMP/ E keeps track of ACCEPT processing
	The ACCEPT command
	ACCEPT CHECK facility
	The reporting output
	ACCEPT examples
	Other useful SMP/ E commands
	Using the LIST command
	Using the REPORT ERRSYSMOD command
	SMP/ E dialogs
	Query Selection Menu
	CSI Query Panel
	CSI Query - Select Entry Panel
	CSI Query - SYSMOD Entry Panel
	Building SMP/ E jobs by using dialog
	Command Generation Selection Menu
	Command Generation Selection Zone
	Command Generation - LIST Command
	List Global zone SYSMOD options
	Command Generation - list FORFMID
	Command Generation Selection Menu
	Command Generation - SUBMIT
	The generated job

	Appendix A. Special Notices
	Appendix B. Related Publications
	B. 1 IBM Redbooks
	B. 2 IBM Redbooks collections
	B. 3 Other resources

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Glossary
	IBM Redbooks evaluation

