
Graphics Library Programming Guide 15-1

Chapter 15

15. Antialiasing

This chapter describes methods for reducing display artifacts.

• Section 15.1, “Sampling Accuracy,” describes how to smooth scan
conversion by enabling primitives to be drawn offset from pixel
centers.

• Section 15.3, “One-Pass Antialiasing—the Smooth Primitives,” describes
methods for antialiasing RGB images using a pixel-filling technique.

• Section 15.4, “Multipass Antialiasing with the Accumulation Buffer,”
describes techniques for quickly generating antialiased points, lines, and
polygons.

• Section 15.5, “Antialiasing on RealityEngine Systems,” describes the
advanced multiple sampling feature of RealityEngine systems.

15.1 Sampling Accuracy

You may have noticed that lines displayed on a monitor appear to be made of
a stairstep series of dots that make the line look jagged. Lines appear jagged
because the true mathematical line is approximated by a series of points that
are forced to lie on the pixel grid. Except in a few special cases (horizontal,
vertical, and 45-degree lines) many of the approximating pixels are not on the
mathematical line. Near-horizontal and near-vertical lines appear especially
jagged, because their pixel approximations are a sequence of exactly
horizontal or vertical segments, each offset one pixel from the next.

The jaggedness that you see is called aliasing, and techniques to eliminate or
reduce aliasing are called antialiasing.

15-2 Antialiasing

The following program, jagged.c, illustrates the aliasing problem.

/* Drag a color map aliased line with the cursor.*/

#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400

Device devs[2] = {MOUSEX,MOUSEY};
float orig[2] = {100.,100.};

main()
{

short val, vals[2];
long xorg, yorg;
float vert[2];

prefsize(WINSIZE, WINSIZE);
winopen("jagged");
mmode(MVIEWING);
ortho2(-0.5, WINSIZE-0.5, -0.5, WINSIZE-0.5);
doublebuffer();
gconfig();
qdevice(ESCKEY);
getorigin(&xorg, &yorg);

while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {
color(BLACK);
clear();
getdev(2,devs,vals);
vert[0] = vals[0] - xorg;
vert[1] = vals[1] - yorg;
color(WHITE);
bgnline();

v2f(orig);
v2f(vert);

endline();
swapbuffers();

}
gexit();
return 0;

}

This example draws a line from the point (100,100) to the current cursor
position. Move the cursor around, and notice how jagged the line appears,

Graphics Library Programming Guide 15-3

especially when it is nearly horizontal or nearly vertical. Even at angles far
from vertical or horizontal there is some jaggedness, although it is not as
noticeable.

The line you see on the screen is aliased because it is composed of discrete
pixels, each set either to the color of the line or to the background color. A
much better approximation can be developed by considering the exact
mathematical line to be the center line of a rectangle of width one, extending
the full length of the line. A correct, antialiased sampling of this rectangle onto
the pixel grid takes into account the fraction of each pixel that is obscured by
the rectangle, rather than simply selecting the pixels most obscured by it. Each
pixel is then set to a color between the color of the line and the color of the
background, based on the fraction of the pixel that is obscured, or covered, by
the line’s rectangle.

To correctly sample a point, line, or polygon, the fraction of every pixel
covered by the exact projection of the primitive must be computed, and that
fraction must be used to determine the color of the resulting pixel. Because
mathematical points and lines have no area, and therefore cannot be sampled,
it is necessary to define a geometry to be used for their sampling. Points are
best thought of as circles of diameter one, centered around the exact
mathematical point. Lines are rectangles of width one, centered around the
exact mathematical line.

Figure 15-1 shows an antialiased line.

Figure 15-1 Antialiased Line

A .040510
B .040510
C .878469
D .434259
E .007639
F .141435
G .759952

A

C

F

B ED

G IH

J K ML

N

H .759952
I .141435
J .007639
K .434258
L .878469
M .040510
N .040510

15-4 Antialiasing

15.1.1 Subpixel Positioning

Vertices, after they have been transformed and projected to screen coordinates,
are rounded to the nearest pixel center, rather than being treated with full
precision. A prerequisite for accurate scan conversion of points, lines, and
polygons is ensuring that their vertices are projected to the screen with subpixel
precision. When you enable subpixel() mode, you defeat the default
behavior of rounding projected vertices to the nearest pixel center. Exact vertex
position is made available to the sampling hardware.

Use subpixel() to control the placement of point, line, and polygon vertices
in screen coordinates:

void subpixel(Boolean b)

When subpixel() is FALSE, vertices are snapped (aligned) to the center of the
nearest pixel after they have been transformed to screen coordinates. When
subpixel() is TRUE, vertices are positioned with fractional precision.

The default setting for subpixel() depends on the system type. On IRIS
Indigo Entry, XS, XS24, and Elan systems, polygons are always drawn with
MicroPixel™ subpixel accuracy, regardless of the setting of subpixel() . On
VGX, VGXT, SkyWriter, and RealityEngine systems, the default for
subpixel() is FALSE, but performance is enhanced when subpixel
positioning is enabled. It is thus a good idea to call subpixel(TRUE) when
writing GL applications for these systems.

15.1.2 How Subpixel Positioning Affects Lines

In addition to its effect on vertex position, subpixel() also modifies the scan
conversion of lines. Specifically, non-subpixel-positioned lines are drawn
closed, meaning that connected line segments both draw the pixel at their
shared vertex. subpixel-positioned lines are drawn half open, meaning that
connected line segments share no pixels. Thus subpixel-positioned lines
produce better results when logicop or blendfunction() are used, but will
produce different, possibly undesirable results in 2-D applications where the
endpoints of lines have been carefully placed.

For example, using the standard 2-D projection shown below,
subpixel-positioned lines match non–subpixel-positioned lines pixel for pixel,
except that they omit either the right-most or top-most pixel.

Graphics Library Programming Guide 15-5

ortho2(left–0.5, right+0.5, bottom–0.5,top+0.5);
viewport (left,right,bottom,top);

Thus the non-subpixel-positioned line drawn from (0,0) to (0,2) fills pixels
(0,0), (0,1), and (0,2), while the subpixel-positioned line drawn between the
same coordinates fills only pixels (0,0) and (0,1).

On IRIS Indigo systems, subpixel-positioned lines are drawn closed rather that
half-open. subpixel() is not supported by all models for all primitives. Refer
to the subpixel() man page for details.

15.2 Blending

The pixel color value in the frame buffer is replaced with the incoming pixel
color when pixels are drawn. When operating in RGB mode, however, it is
possible to replace the color components of the frame buffer (destination) pixel
with values that are a function of both the incoming (source) pixel color
components and of the current frame buffer color components. This operation
is called blending. Not all systems support blending. See the blendfunction(3G)
man page for details.

The antialiasing techniques described in Section 15.3 require blending when
operating in RGB mode. Blending has other uses, including drawing
transparent objects, and compositing images. Blending is specified with the
blendfunction() command:

void blendfunction (long sfactr,long dfactr);

The blendfunction() arguments sfactr and dfactr specify how destination
pixels are computed, based on the incoming (source) pixel values and the
current framebuffer values. The token specified for sfactr selects the blending
factor used to scale the contribution from the source RGBA values. The token
specified for dfactr selects the blending factor used to scale the contribution
from the destination RGBA values.

Note: RealityEngine systems provide the ability to specify a constant color
for blending. Use blendcolor() to set the values of the color
components for the blending functions BF_CA, BF_MCA, BF_CC, and
BF_MCC.

15-6 Antialiasing

Blending factors sfactr and dfactr are chosen from the list of tokens in
Table 15-1.

Token Calculated Value Notes

BF_ZERO 0.0

BF_ONE 1.0

BF_SA Source Alpha/ 255

BF_MSA 1.0 – (source Alpha/ 255)

BF_DA Source Alpha/ 255 Requires alpha bitplanes

BF_MDA 1.0 – (source Alpha / 255) Requires alpha bitplanes

BF_SC Source RGBA / 255 dfactr only

BF_MSC 1.0 – (source RGBA/ 255) dfactr only

BF_DC Destination RGBA/ 255 sfactr only

BF_MDC 1.0 – (destination RGBA/ 255) sfactr only

BF_MIN_SA_MDA Min (BF_SA, BF_MDA) Requires alpha planes,
changes expression

BF_CC Constant RGBA/255 RealityEngine only

BF_MCC 1-(constant RGBA/255) RealityEngine only

BF_CA Constant alpha/255 RealityEngine only

BF_MCA 1-(constant alpha/255) RealityEngine only

BF_MIN Min(1, destination RGBA/source RGBA) RealityEngine only

BF_MAX Max(1, destination RGBA/source RGBA) RealityEngine only

Table 15-1 Blending Factors

Graphics Library Programming Guide 15-7

All the blending factors are defined to have values between 0.0 and 1.0
inclusive. In most cases, this range is obtained by dividing a color component
value, in the range 0 through 255, by 255. The blending arithmetic is done such
that a blending factor with a value of 1.0 has no effect on the color component
that it weights. Also, a blending factor of 0.0 forces its corresponding color
component to 0. Because the weighting factors are all positive, and because
each weighted sum is clamped to 255, colors blend toward white, rather than
wrapping back to low-intensity values.

Each frame buffer color component is replaced by a weighted sum of the
current value and the incoming pixel value. This sum is clamped to a
maximum of 255.

By default, sfactr is set to BF_ONE and dfactr is set to BF_ZERO, resulting in
simple replacement of the framebuffer color components:

Rdestination = Rsource
Gdestination = Gsource
Bdestination = Bsource
Adestination = Asource

When blendfunction() is called with sfactr set to a value other than BF_ONE,
or dfactr set to a value other than BF_ZERO, a more complex expression defines
the frame buffer replacement algorithm.

Rdest = min (255, ((Rsource * sfactr) + (Rdest * dfactr)))
Gdest = min (255, ((Gsource * sfactr) + (Gdest * dfactr)))
Bdest = min (255, ((Bsource * sfactr) + (Bdest * dfactr)))
Adest = min (255, ((Asource * sfactr) + (Adest * dfactr)))

Blending factors BF_DA, BF_MDA, and BF_MIN_SA_MDA require alpha bitplanes
for correct operation. Blending functions specified without using these three
symbolic constants work correctly, regardless of the availability of alpha
bitplanes.

Use the following command, testing for a nonzero return value, to determine
if your machine has alpha bitplanes:

getgdesc(GD_BITS_NORM_SNG_ALPHA)

15-8 Antialiasing

Blending factors BF_SC, BF_MSC, BF_DC, and MF_MDC weight each color
component by the corresponding weight component. For example, you can
scale each framebuffer color component by the incoming color component
with the blending function:

blendfunction (BF_DC,BF_ZERO)

Rdestination = min (255, (Rsource * (Rdestination / 255)))
Gdestination = min (255, (Gsource * (Gdestination / 255)))
Bdestination = min (255, (Bsource * (Bdestination / 255)))
Adestination = min (255, (Asource * (Adestination / 255)))

The special blending factor BF_MIN_SA_MDA is intended to support polygon
antialiasing, as described in Section 15.3.3. It must be used only for sfactr, and
only while dfactr is BF_ONE. In this case, the blending equations are:

blendfunction (BF_MIN_SA_MDA,BF_ONE)

Rdestination = min (255, ((Rsource * sfactr) + Rdestination)
Gdestination = min (255, ((Gsource * sfactr) + Gdestination)
Bdestination = min (255, ((Bsource * sfactr) + Bdestination)
sfactr = min ((Asource/255), (1.0 - (Adestination/255)))
Adestination = sfactr + Adestination

This special blending function accumulates pixel contributions until the pixel
is fully specified, then allows no further changes. Frame buffer alpha bitplanes,
which must be present, store the accumulated contribution percentage, or
“coverage”.

Although many blending functions are supported, the following function
stands out as the single most useful one.

blendfunction (BF_SA,BF_MSA)

It weights incoming color components by the incoming alpha value, and frame
buffer components by one minus the incoming alpha value. In other words, it
blends between the incoming color and the frame buffer color, as a function of
the incoming alpha. This function renders transparent objects by drawing
them correctly when they are drawn in sorted order from farthest to nearest,
specifying opacity as incoming alpha.

Graphics Library Programming Guide 15-9

This sample program, blendcircs.c, illustrates image composition. Three
colored circles are blended such that the first one is weighted by 0.5, the second
by 0.35, and the third by 0.15. The blending function blendfunction

(BF_SA,BF_ONE) is used, causing the colors to be added to each other, rather
than blended. The order in which the circles are drawn makes no difference.
Because the three weights add up to exactly 1.0, no clamping is done.

#include <stdio.h>
#include <gl/gl.h>
#define WINSIZE 400
#define RGB_BLACK 0x000000
#define RGB_RED 0x0000ff
#define RGB_GREEN 0x00ff00
#define RGB_BLUE 0xff0000
main()
{

if (getgdesc(GD_BITS_NORM_SNG_RED) == 0) {
fprintf(stderr, "Single buffered RGB not available\n");
return 1;

}
if (getgdesc(GD_BLEND) == 0) {

fprintf(stderr, "Blending not available\n");
return 1;

}
prefsize(WINSIZE, WINSIZE);
winopen("blendcircs");
mmode(MVIEWING);
RGBmode();
gconfig();
mmode(MVIEWING);
ortho2(-1.0, 1.0, -1.0, 1.0);
glcompat(GLC_OLDPOLYGON, 0);
blendfunction(BF_SA, BF_ONE);
cpack(RGB_BLACK);
clear();
cpack(0x80000000 | RGB_RED); /* red with alpha=128/255 */
circf(0.25, 0.0, 0.7);
sleep(2);
cpack(0x4f000000 | RGB_GREEN); /* green with alpha=79/255 */
circf(-0.25, 0.25, 0.7);
sleep(2);
cpack(0x30000000 | RGB_BLUE); /* blue with alpha=48/255 */
circf(-0.25, -0.25, 0.7);
sleep(10);
gexit();
return 0;

15-10 Antialiasing

}

15.3 One-Pass Antialiasing—the Smooth Primitives

Aliasing artifacts are especially objectionable in image animations, because
jaggies often introduce motion unrelated to the actual direction of motion of
the primitives. The techniques described in this section improve the sampling
quality of primitives without requiring that the primitives be drawn more than
once. These techniques therefore perform well enough to animate complex
scenes.

Note: Not all systems support smoothing and not every system supports
every type of smooth primitive, so refer to the man pages for details
about smoothing on different systems.

Modes are provided to support the drawing of antialiased points and lines in
both color map and RGB modes. Because their interactions are more critical to
the antialiasing quality, antialiased polygons are supported only in the more
general RGB mode. If you are drawing an image composed entirely of points
and/or lines, the routines in this section are always the right choice for
antialiasing. If you include polygons in the image, you should consider both
the techniques described in this section and the multipass accumulation
technique described in Section 15.4.

15.3.1 High-Performance Antialiased Points—pntsmooth

By default, IRIS-4D Series systems sample points by selecting and drawing the
pixel nearest the exact projection of the mathematical point. You can enable
subpixel sampling and use pntsmooth() to draw antialiased points.

subpixel(TRUE);
pntsmooth(SMP_ON);

When you enable subpixel() mode, you defeat the default behavior of
rounding projected vertices to the nearest pixel center. Exact point position is
made available to the sampling hardware. By enabling pntsmooth() mode,
you replace the default sampling of points with coverage sampling of a
unit-diameter* circle centered around the exact mathematical point position.
All that remains is instructing the system on how to use the computed pixel

Graphics Library Programming Guide 15-11

coverage to blend between the background color and the point color at each
pixel. This instruction differs based on whether the drawing is done in color
map mode or in RGB mode.

When you enable pntsmooth() while in color map mode, the antialiasing
hardware uses computed pixel coverage to replace the 4 least significant bits
of the point’s color. Therefore, for color map antialiased points to blend
correctly, you must initialize a 16-entry colormap block (whose lowest entry
location is a multiple of 16) to a ramp between the background color (lowest
index) and the point color (highest index). Before drawing points, clear the
background to the same color used as background in the colormap ramp.

When you draw a point with a color index in the range of the specified ramp,
pixels in the area of the exact mathematical point are written with color indices
that select ramp values based on the fraction of the pixel that is obscured by
the point’s unit-diameter circle. Because the sampling hardware modifies only
the 4 least significant bits of the point’s color, you can initialize and use
multiple color ramps, each with a different point color, in the same image.
Note that all ramps must blend to the same background color, which must be
the color of the background used for the image.

This sample program, pnt.cm.c, illustrates the difference in image quality when
you use pntsmooth() and subpixel() together to antialias color map points.
The antialiased points and lines drawn by these example programs look better
if you set gamma correction to 2.4, instead of the default value of 1.7.

/*
* Drag a string of color map antialiased points with the cursor.
* Disable antialiasing while the left mouse button is depressed.
* Disable subpixel positioning while the middle mouse button is depressed.
*/

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400
#define RAMPBASE 64 /* avoid the first 64 colors */
#define RAMPSIZE 16

* pntsize() and pntsizef() also affect antialiased points, but may not support the range
of sizes supported by aliased points. See the pntsize(3G) man page for details.

15-12 Antialiasing

#define RAMPSTEP (255 / (RAMPSIZE-1))
#define MAXPOINT 25

Device devs[2] = {MOUSEX,MOUSEY};

Graphics Library Programming Guide 15-13

main()
{

short val, vals[2];
long i, xorg, yorg;
float vert[2], x, y, interp;
if (getgdesc(GD_PNTSMOOTH_CMODE) == 0) {
fprintf(stderr, "Color map mode point antialiasing not available\n");
return 1;
}
if (getgdesc(GD_BITS_NORM_DBL_CMODE) < 8) {
fprintf(stderr, "Need 8 bitplanes in doublebuffer color map mode\n");
return 1;
}
prefsize(WINSIZE, WINSIZE);
winopen("pntsmooth.index");
mmode(MVIEWING);
ortho2(-0.5, WINSIZE-0.5, -0.5, WINSIZE-0.5);
doublebuffer();
gconfig();
qdevice(ESCKEY);
qdevice(LEFTMOUSE);
qdevice(MIDDLEMOUSE);
getorigin(&xorg, &yorg);
for (i = 0; i < RAMPSIZE; i++)

mapcolor(i + RAMPBASE, i * RAMPSTEP, i * RAMPSTEP, i * RAMPSTEP);
while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {

color(RAMPBASE);
clear();
getdev(2,devs,vals);
x = vals[0] - xorg;
y = vals[1] - yorg;
pntsmooth(getbutton(LEFTMOUSE) ? SMP_OFF : SMP_ON);
subpixel(getbutton(MIDDLEMOUSE) ? FALSE : TRUE);
color(RAMPBASE+RAMPSIZE-1);
bgnpoint();

for (i=0; i<=MAXPOINT; i++) {
 interp = (float)i / (float)MAXPOINT;
 vert[0] = 100.0 * interp + x * (1.0 - interp);
 vert[1] = 100.0 * interp + y * (1.0 - interp);
 v2f(vert);

}
endpoint();
swapbuffers();

}
gexit();
return 0;

15-14 Antialiasing

}

Notice how smoothly the antialiased points move as you move the cursor.
Now defeat the antialiasing by pressing the left mouse button, and notice that
the points move less smoothly, and that they do not line up nearly as well as
the antialiased points. The image quality degrades in exactly the same way
when you defeat subpixel positioning by pressing the middle mouse button.

The antialiased points look good when they are not drawn touching each
other. However, when you move the cursor near the lower-left corner of the
window, causing the points to bunch together, the image quality again
degrades. This is because pixels that are obscured by more than one point take
as their value the color computed for the last point drawn. There is no general
solution to the problem of overlapping primitives while drawing in color map
mode.

The problem of overlapping primitives is handled well when antialiasing in
RGB mode. When you enable pntsmooth() in RGB mode, the antialiasing
hardware uses computed pixel coverage to scale the alpha value of the point’s
color. If the alpha value of the incoming point is 1.0, scaling it by the computed
pixel coverage results in a pixel alpha value that is directly proportional to
pixel coverage. For RGB antialiased points to draw correctly, set
blendfunction() to merge new pixel color components into the frame buffer
using the incoming alpha value.

This sample program, pnt.rgb.c, illustrates RGB mode point antialiasing.

/*
 * Drag a string of RGB antialiased points with the cursor.
 * Change from a merge-blend to an accumulate-blend when the left
 * mouse button is depressed.Use the "smoother" antialiasing sampling
 * algorithm when the middlemouse button is depressed.
 */

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400
#define MAXPOINT 25

Device devs[2] = {MOUSEX,MOUSEY};

main()
{

Graphics Library Programming Guide 15-15

short val, vals[2];
long i, xorg, yorg;
float vert[2], x, y, interp;

if (getgdesc(GD_PNTSMOOTH_RGB) == 0) {
fprintf(stderr, "RGB mode point antialiasing not available\n");
return 1;

}
prefsize(WINSIZE, WINSIZE);
winopen("pntsmooth.rgb");
mmode(MVIEWING);
ortho2(-0.5, WINSIZE-0.5, -0.5, WINSIZE-0.5);
doublebuffer();
RGBmode();
gconfig();
qdevice(ESCKEY);
qdevice(LEFTMOUSE);
qdevice(MIDDLEMOUSE);
getorigin(&xorg, &yorg);
subpixel(TRUE);
while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {

cpack(0);
clear();
getdev(2,devs,vals);
x = vals[0] - xorg;
y = vals[1] - yorg;
cpack(0xffffffff);
blendfunction(BF_SA,getbutton(LEFTMOUSE) ? BF_ONE : BF_MSA);
pntsmooth(getbutton(MIDDLEMOUSE)?(SMP_ON | SMP_SMOOTHER) : SMP_ON);
bgnpoint();

for (i=0; i<=MAXPOINT; i++) {
interp = (float)i / (float)MAXPOINT;
vert[0] = 100.0 * interp + x * (1.0 - interp);
vert[1] = 100.0 * interp + y * (1.0 - interp);
v2f(vert);

}
endpoint();

swapbuffers();
}
gexit();
return 0;

}

Unlike the color map antialiased points, the RGB antialiased points look good
when they are bunched together. This is because RGB blending allows
multiple points to contribute to a single pixel in a meaningful way.

15-16 Antialiasing

In this demonstration a blend function that interpolates between the incoming
and frame buffer color components, based on the incoming alpha, is used by
default.

blendfunction(BF_SA,BF_MSA)

Press the left mouse button to switch to a blend function that simply
accumulates color, again scaled by incoming alpha:

blendfunction(BF_SA,BF_ONE)

The difference between blendfunction(BF_SA,BF_MSA) and
blendfunction(BF_SA,BF_ONE) is more apparent when you draw lines (see
Section 15.3.2). In this demonstration, note that bunched points are a little
brighter when you select the accumulating blending function.

You can switch from the standard antialiasing sampling algorithm to a
“smoother” algorithm by pressing the middle mouse button. Not all systems
support the higher-quality point sampling algorithm. Refer to the
pntsmooth() manual page for details. This algorithm modifies more pixels
per antialiased point than does the standard antialiasing algorithm. As a
result, it produces slightly higher-quality antialiased points, at the price of
slightly reduced performance. Set the “smoother” algorithm by calling

pntsmooth(SMP_ON | SMP_SMOOTHER);

Because RGB mode antialiased points are blended into the frame buffer, they
can be drawn in any color and over any background. Unless you want to draw
transparent, antialiased points, however, be sure to specify alpha as 1.0 when
drawing antialiased RGB points.

15.3.2 High-Performance Antialiased Lines—linesmooth

By default, IRIS-4D Series systems sample lines by selecting and drawing the
pixels nearest the projection of the mathematical line.You can enable subpixel
sampling and use linesmooth() to draw antialiased lines.

subpixel(TRUE);
linesmooth(SML_ON);

Graphics Library Programming Guide 15-17

By enabling linesmooth() mode, you replace the default sampling of lines
with coverage sampling of a unit-width* rectangle centered around the exact
mathematical line. All that remains is instructing the system on how to use the
computed pixel coverage to blend between the background color and the line
color at each pixel. This instruction differs based on whether the drawing is
done in color map mode or in RGB mode.

When you enable linesmooth() while in color map mode, the antialiasing
hardware uses computed pixel coverage to replace the 4 least significant bits
of the line’s color. Therefore, for color map antialiased lines to appear correct,
you must initialize a 16-entry colormap block (whose lowest entry location is
a multiple of 16) to a ramp between the background color (lowest index) and
the line color (highest index). Before drawing lines, clear the background to the
same color used as background in the color map ramp.

When you draw a line with a color index in the range of the specified ramp,
pixels in the area of the exact mathematical line are written with color indices
that select ramp values based on the fraction of the pixel that is obscured by
the line’s unit-width rectangle. Because the sampling hardware modifies only
the 4 least significant bits of the line’s color, you can initialize and use multiple
color ramps, each with a different line color, in the same image. Note that all
ramps must blend to the same background color, which must be the color of
the background used for the image.

Note: To improve antialiasing performance on the IRIS Indigo, set
zsource(ZRC_COLOR) .

* linewidth() and linewidthf() also affect antialiased lines, but may not support the
range of sizes supported by aliased lines. See the linewidth(3G) man page for details.

15-18 Antialiasing

This sample program, line.cm.c, illustrates the difference in image quality
when you use linesmooth() and subpixel() together to antialias color map
lines. The program draws a single straight line, made up of several individual
line segments.

/*
 *Drag a string of color map antialiased line segments with the cursor.
 *Disable antialiasing while the left mouse button is depressed.
 *Disable subpixel positioning while the middle mouse button is depressed.
 */

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400
#define RAMPBASE 64 /* avoid the first 64 colors */
#define RAMPSIZE 16
#define RAMPSTEP (255 / (RAMPSIZE-1))
#define MAXVERTEX 10

Device devs[2] = {MOUSEX,MOUSEY};

main()
{

short val, vals[2];
long i, xorg, yorg;
float vert[2], x, y, interp;

if (getgdesc(GD_LINESMOOTH_CMODE) == 0) {
fprintf(stderr, "Color map mode line antialiasing not available\n");
return 1;
}
if (getgdesc(GD_BITS_NORM_DBL_CMODE) < 8) {
fprintf(stderr, "Need 8 bitplanes in doublebuffer color map mode\n");
return 1;
}
prefsize(WINSIZE, WINSIZE);
winopen("linesmooth.index");
mmode(MVIEWING);
ortho2(-0.5, WINSIZE-0.5, -0.5, WINSIZE-0.5);
doublebuffer();
gconfig();
qdevice(ESCKEY);
qdevice(LEFTMOUSE);
qdevice(MIDDLEMOUSE);

Graphics Library Programming Guide 15-19

getorigin(&xorg, &yorg);
for (i = 0; i < RAMPSIZE; i++)

mapcolor(i + RAMPBASE, i * RAMPSTEP, i * RAMPSTEP, i * RAMPSTEP);

while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {
color(RAMPBASE);
clear();
getdev(2,devs,vals);
x = vals[0] - xorg;
y = vals[1] - yorg;
linesmooth(getbutton(LEFTMOUSE) ? SML_OFF : SML_ON);
subpixel(getbutton(MIDDLEMOUSE) ? FALSE : TRUE);
color(RAMPBASE+RAMPSIZE-1);
bgnline();

for (i=0; i<=MAXVERTEX; i++) {
interp = (float)i / (float)MAXVERTEX;
vert[0] = 100.0 * interp + x * (1.0 - interp);
 vert[1] = 100.0 * interp + y * (1.0 - interp);
v2f(vert);

}
endline();

swapbuffers();
}
gexit();
return 0;

}

Notice how smooth the edges of the antialiased lines are, and how smoothly
they move as you move the cursor. Now defeat the antialiasing by pressing the
left mouse button, and notice that the lines become jagged. When you defeat
subpixel positioning by pressing the middle mouse button, the individual line
segments that make up the long line remain antialiased, but they no longer
combine to form a single straight line. This is because the endpoints of the
segments have been coerced to the nearest pixel centers, which are rarely on
the exact mathematical line. Thus, you can antialias lines, unlike points, while
subpixel() mode is FALSE. However, the image quality is still greatly
enhanced when you enable subpixel positioning of vertices.

Like color map antialiased points, color map antialiased lines interact poorly
when they intersect on the screen. The problem of overlapping primitives is
handled well when antialiasing in RGB mode. When you enable
linesmooth() in RGB mode, the antialiasing hardware uses computed pixel
coverage to scale the alpha value of the line’s color. If the alpha value of the
incoming line is 1.0, scaling it by the computed pixel coverage results in a pixel
alpha value that is directly proportional to pixel coverage.

15-20 Antialiasing

For RGB antialiased lines to draw correctly, set blendfunction() to merge
new pixel color components into the frame buffer using the incoming alpha
value.

This sample program, line.rgb.c, illustrates RGB mode line antialiasing:

/*
 * Rotate a pinwheel of antialiased lines drawn in RGB mode.
 * Change to the "smoother" sampling function when the left mouse button
 * is depressed.
 * Change to the "end-corrected" sampling function when the middle mouse
 * button is depressed.
 * Change to a "color index like" blend function when the i-key is pressed.
 * Change from merge-blend to accumulate-blend when the a-key is depressed.
 * Disable subpixel positioning when the s-key is depressed.
 */

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400
#define MAXLINE 48
#define ROTANGLE (360.0 / MAXLINE)

float vert0[2] = {0.0,0.0};
float vert1[2] = {0.8,0.0};

main()
{

int i;
int smoothmode;
short val;

if (getgdesc(GD_LINESMOOTH_RGB) == 0) {
fprintf(stderr, "RGB mode line antialiasing not available\n");
return 1;

}
prefsize(WINSIZE, WINSIZE);
winopen("linesmooth.rgb");
mmode(MVIEWING);
ortho2(-1.0,1.0,-1.0,1.0);
doublebuffer();
RGBmode();
gconfig();
qdevice(ESCKEY);

Graphics Library Programming Guide 15-21

qdevice(LEFTMOUSE);
qdevice(MIDDLEMOUSE);

while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {
cpack(0);
clear();
cpack(0xffffffff);
smoothmode = SML_ON;
if (getbutton(LEFTMOUSE))

smoothmode |= SML_SMOOTHER;
if (getbutton(MIDDLEMOUSE))

smoothmode |= SML_END_CORRECT;
linesmooth(smoothmode);
if (getbutton(IKEY))

blendfunction(BF_SA,BF_ZERO);
else if (getbutton(AKEY))

blendfunction(BF_SA,BF_ONE);
else

blendfunction(BF_SA,BF_MSA);
subpixel(getbutton(SKEY) ? FALSE : TRUE);
pushmatrix();
rot(getvaluator(MOUSEX) / 25.0,’z’);
for (i=0; i<MAXLINE; i++) {

bgnline();
v2f(vert0);
v2f(vert1);

endline();
rot(ROTANGLE,’z’);

}
popmatrix();
swapbuffers();

}
gexit();
return 0;

}

Notice that the RGB mode antialiased lines look good where they intersect at
the center of the pinwheel. This is because RGB blending allows multiple lines
to contribute to a single pixel in a meaningful way. In this demonstration a
blend function that interpolates between the incoming and frame buffer color
components, based on the incoming alpha, is used by default:

blendfunction(BF_SA,BF_MSA)

15-22 Antialiasing

You can switch to a blend function that simply accumulates color, again scaled
by incoming alpha, by pressing the <A> key:

blendfunction(BF_SA,BF_ONE)

This blending function makes the slight noise at the center of the pinwheel
disappear, because these pixels all accumulate and clamp at full brightness.
This technique works well with white lines on a black background, but does
not do well in other situations.

You can simulate the appearance of color map mode lines by pressing the <I>

key, which forces a blending function that overwrites pixels:

blendfunction(BF_SA,BF_ZERO);

When you defeat subpixel positioning of line endpoints by pressing the <S>

key, the pinwheel ceases to behave like a rigid object, and instead appears to
wiggle and twist as it is rotated.

You can switch from the standard antialiasing sampling algorithm to a
“smoother” algorithm by pressing the left mouse button. Not all systems
support the higher-quality line sampling algorithm. Refer to the man page for
details. This algorithm modifies more pixels per unit line length than does the
standard antialiasing algorithm. As a result, it produces slightly higher-quality
antialiased lines, at the price of slightly reduced performance. Set the
“smoother” algorithm by calling linesmooth (SML_ON | SML_SMOOTHER).

Notice that when it is selected, lines at all angles appear to have the same
width, and the “cloverleaf” pattern at the center of the pinwheel disappears.
When you rotate the pinwheel with the left mouse button pressed, the only
image artifact that remains is the sudden changing of line length observed at
the ends of the lines. Press the middle mouse button to select a sampling
algorithm that correctly samples line length as well as line cross-section.
Invoke this “end-corrected” algorithm by calling linesmooth(SML_ON |

SML_END_CORRECT).

When you select both “smoother” and “end-correct”, the rotating pinwheel
appears absolutely rigid, with even width lines and no jagged edges.

Because RGB antialiased lines are blended into the frame buffer, they can be
drawn in any color over any background. Unless you want to draw
transparent, anti-aliased lines, however, be sure to specify alpha as 1.0 when
drawing antialiased RGB lines.

Graphics Library Programming Guide 15-23

Note: Because RGB antialiased lines are blended, they interact well at
intersections. However, when two RGB antialiased lines are drawn
between the same vertices, the line quality is reduced noticeably.
When the polygons in a standard geometric model are drawn as lines,
either explicitly or using polymode, lines at the edges of adjacent
polygons are drawn twice, and therefore do not antialias well in RGB
mode. For best results, modify the database traversal so that edges of
adjacent polygons are drawn only once.

15.3.3 High-Performance Antialiased Polygons—polysmooth

By default, IRIS-4D Series systems sample polygons by selecting and drawing
the pixels whose exact center points are within the boundary described by the
projection of the mathematical polygon edges.

You can enable subpixel sampling and use polysmooth() to draw antialiased
polygons.

subpixel(TRUE);
polysmooth(PYSM_ON);

When you enable subpixel mode, you defeat the default behavior of rounding
projected vertices to the nearest pixel center. Exact polygon vertex positions
are made available to the sampling hardware. By enabling polysmooth()

mode, you replace the default sampling of polygons with coverage
sampling—the fraction of each pixel covered by the polygon is computed. All
that remains is instructing the system how to use the computed pixel coverage
to blend between the background color and the polygon color at each pixel.
Because this blending operation is more critical for polygon antialiasing than
it is for point or line antialiasing, polygon antialiasing is supported only in
RGB mode, not in color map mode.

This sample program, poly.rgb.c, draws a single antialiased triangle:

/*
 * Rotate a single antialiased triangle drawn in RGB mode.
 * Disable antialiasing when the left mouse button is depressed.
 * Disable subpixel positioning when the middle mouse button is depressed.
 */

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

15-24 Antialiasing

#define WINSIZE 400

float vert0[2] = {0.0,0.0};
float vert1[2] = {0.8,0.0};
float vert2[2] = {0.4,0.4};

main()
{

short val;

if (getgdesc(GD_POLYSMOOTH) == 0) {
fprintf(stderr, "polygon antialiasing not available\n");
return 1;

}
prefsize(WINSIZE, WINSIZE);
winopen("polysmooth.rgb");
mmode(MVIEWING);
ortho2(-1.0,1.0,-1.0,1.0);
doublebuffer();
RGBmode();
gconfig();
qdevice(ESCKEY);
qdevice(LEFTMOUSE);
qdevice(MIDDLEMOUSE);
blendfunction(BF_SA,BF_MSA);
while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {

cpack(0);
clear();
cpack(0xffffffff);
polysmooth(getbutton(LEFTMOUSE) ? PYSM_OFF : PYSM_ON);
subpixel(getbutton(MIDDLEMOUSE) ? FALSE : TRUE);
pushmatrix();
rot(getvaluator(MOUSEX) / 25.0,’z’);
rot(getvaluator(MOUSEY) / 10.0,’x’);
bgnpolygon();

v2f(vert0);
v2f(vert1);
v2f(vert2);

endpolygon();
popmatrix();
swapbuffers();

}
gexit();
return 0;

}

Graphics Library Programming Guide 15-25

Move the cursor left and right to rotate the triangle, and note the smoothness
of its edges. When you move the cursor toward the top of the screen, the
triangle rotates away from you until it becomes perpendicular to your viewing
direction. Note that when it is perpendicular, it disappears completely. This is
because the projection of a triangle on edge covers no area on the screen, and
therefore all pixel coverages are zero.

When you press the left mouse button, the triangle is drawn aliased. When you
press the middle mouse button, the triangle vertices are no longer
subpixel-positioned. Notice that the edges remain smooth, but that the triangle
motion is no longer smooth, and the triangle no longer appears rigid.

This simple example of a single antialiased triangle drawn on a black
background works correctly with the standard blending function:

blendfunction(BF_SA,BF_MSA)

However, when multiple antialiased triangles are drawn with adjacent edges,
the standard blending function no longer produces good results.

This sample program, poly2.rgb.c, draws a bowtie-shaped object, constructed
of four triangles in a planar mesh:

/*
 * Rotate a patch of antialiased triangles drawn in RGB mode.
 * Disable special polygon-blend when the left mouse button is depressed.
 * Disable subpixel positioning when the middle mouse button is depressed.
 */

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400

float vert0[2] = {0.0,0.0};
float vert1[2] = {0.0,0.4};
float vert2[2] = {0.4,0.1};
float vert3[2] = {0.4,0.3};
float vert4[2] = {0.8,0.0};
float vert5[2] = {0.8,0.4};

15-26 Antialiasing

main()
{
 short val;

if (getgdesc(GD_POLYSMOOTH) == 0) {
fprintf(stderr, "polygon antialiasing not available\n");
return 1;

}
prefsize(WINSIZE, WINSIZE);
winopen("polysmooth2.rgb");
mmode(MVIEWING);
ortho(-1.0,1.0,-1.0,1.0,-1.0,1.0);
doublebuffer();
RGBmode();
gconfig();
qdevice(ESCKEY);
qdevice(LEFTMOUSE);
qdevice(MIDDLEMOUSE);
polysmooth(PYSM_ON);
shademodel(FLAT);
while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {

cpack(0);
clear();
cpack(0xffffffff);
if (getbutton(LEFTMOUSE))

blendfunction(BF_SA,BF_MSA);
else

blendfunction(BF_MIN_SA_MDA,BF_ONE);
subpixel(getbutton(MIDDLEMOUSE) ? FALSE : TRUE);
pushmatrix();
rot(getvaluator(MOUSEX) / 25.0,’z’);
rot(getvaluator(MOUSEY) / 10.0,’x’);
bgntmesh();

v2f(vert0);
v2f(vert1);
v2f(vert2);
v2f(vert3);
v2f(vert4);
v2f(vert5);

endtmesh();
popmatrix();
swapbuffers();

 }
gexit();
return 0;

}

Graphics Library Programming Guide 15-27

Notice that the internal edges of the four triangles that make up the bowtie are
visible. Press the left mouse button, enabling the special polygon blending
function, and note that these internal edges disappear. They are visible when
you use the standard blending function because the standard blending
function operates with uncorrelated coverages, such as those generated by
antialiased points and lines.

Two adjacent polygons generate pixel coverages that are highly
correlated—they always sum to 100% for pixels covered by the shared
edge—and are therefore inappropriate for the standard blending function.
Consider, for example, a pixel that is covered 60% by the first polygon that
intersects it, and 40% by a second polygon adjacent to the first. Assuming
white polygons and a black background, the first polygon raises the pixel
intensity to 0.6, which is the correct value. However, the second polygon raises
the pixel intensity to only 0.76, rather than to 1.0 as is desired. This is because
the standard blending function assumes that the 60% and 40% coverages are
uncorrelated, so 60% of the additional 40% is assumed to have been covered
by the original 60%. Thus in uncorrelated coverage arithmetic, 60% plus 40%
equals 76%, not 100%.

The special blending function blendfunction(BF_MIN_SA_MDA,BF_ONE)

works with correlated coverages, the kind generated by antialiased polygon
images. As the example code illustrated, the correlated blend does a good job
with polygonal data. It is, however, much more difficult to use correlated
blending than uncorrelated blending.

The requirements for using the correlated blending function are:

• You must have alpha bitplanes.

• You must draw polygons in order from the nearest to the farthest (not
farthest to nearest as in the other antialiasing examples).

• You must not draw backfacing polygons (use backface()).

• The background color bitplanes, including the alpha bitplanes, must be
cleared to zero before drawing starts.

• If the background is any color other than black, it must be filled as a
polygon (i.e. not with a clear() command) after all polygons are drawn.

• You must draw all primitives (points, lines, and polygons) using the
correlated blending function.

15-28 Antialiasing

The correlated blending function works by accumulating pixel coverage in the
frame buffer alpha bitplanes. The coverage granted each pixel write is limited
by the total remaining at that pixel. When no coverage is left, additional writes
to that pixel are ignored.

Because polygons must be drawn in depth-sorted order, you cannot use the
z-buffer to eliminate hidden surfaces. Thus, polygon antialiasing, unlike point
and line antialiasing, requires significant changes to the way the object data are
traversed. It is therefore more difficult to use than are point and line
antialiasing. If performance is not an absolute requirement, the accumulation
buffer technique described in Section 15.4 is a better choice for polygon
antialiasing.

This sample program, poly3.rgb.c, demonstrates correct polygon antialiasing of
two cubes against a non-black background:

/*
 * Rotate two antialiased cubes in RGB mode.
 * Disable antialiasing by depressing the left mouse button.
 */

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400
#define SIZE (0.2)
#define OFFSET(0.5)
#define CUBE0 OFFSET
#define CUBE1 (-OFFSET)

float vert0[4] = {-SIZE,-SIZE, SIZE};
float vert1[4] = { SIZE,-SIZE, SIZE};
float vert2[4] = {-SIZE, SIZE, SIZE};
float vert3[4] = { SIZE, SIZE, SIZE};
float vert4[4] = {-SIZE, SIZE,-SIZE};
float vert5[4] = { SIZE, SIZE,-SIZE};
float vert6[4] = {-SIZE,-SIZE,-SIZE};
float vert7[4] = { SIZE,-SIZE,-SIZE};

float cvert0[2] = {-1.0,-1.0};
float cvert1[2] = { 1.0,-1.0};
float cvert2[2] = { 1.0, 1.0};
float cvert3[2] = {-1.0, 1.0};

Graphics Library Programming Guide 15-29

main()
{

short val;
float xang;

if (getgdesc(GD_POLYSMOOTH) == 0) {
fprintf(stderr, "polygon antialiasing not available\n");
return 1;

 }
prefsize(WINSIZE, WINSIZE);
winopen("polysmooth3.rgb");
mmode(MVIEWING);
ortho(-1.0,1.0,-1.0,1.0,-1.0,1.0);
doublebuffer();
RGBmode();
gconfig();
device(ESCKEY);
qdevice(LEFTMOUSE);
blendfunction(BF_MIN_SA_MDA,BF_ONE);
subpixel(TRUE);
backface(TRUE);
shademodel(FLAT);

while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {
cpack(0);
clear();
polysmooth(getbutton(LEFTMOUSE) ? PYSM_OFF : PYSM_ON);
pushmatrix();
xang = getvaluator(MOUSEY) / 5.0;
rot(xang,’x’);
rot(getvaluator(MOUSEX) / 5.0,’z’);
if (xang < 90.0) {

drawcube(CUBE0);
drawcube(CUBE1);

} else {
drawcube(CUBE1);
drawcube(CUBE0);

}
popmatrix();
drawbackground();
swapbuffers();

}
gexit();
return 0;

}

15-30 Antialiasing

drawcube(offset)
float offset;
{

pushmatrix();
translate(0.0,0.0,offset);
bgntmesh();

v3f(vert0);
v3f(vert1);
cpack(0xff0000ff);
v3f(vert2);
v3f(vert3);
cpack(0xff00ff00);
v3f(vert4);
v3f(vert5);
cpack(0xffff0000);
v3f(vert6);
v3f(vert7);
cpack(0xff00ffff);
v3f(vert0);
v3f(vert1);

endtmesh();
bgntmesh();

v3f(vert0);
v3f(vert2);
cpack(0xffff00ff);
v3f(vert6);
v3f(vert4);

endtmesh();
bgntmesh();

v3f(vert1);
v3f(vert7);
cpack(0xffffff00);
v3f(vert3);
v3f(vert5);

endtmesh();
popmatrix();
}

drawbackground() {
cpack(0xffffffff);
bgnpolygon();

v2f(cvert0);
v2f(cvert1);
v2f(cvert2);
v2f(cvert3);

endpolygon();
}

Graphics Library Programming Guide 15-31

Note that the nearer cube is drawn first, that cube faces are not sorted because
back face elimination handles the sorting of convex solids, and that the
background is drawn last as a single polygon.

When you press the left mouse button, antialiasing is disabled, but the
correlated blend function remains enabled. Otherwise, the drawing order of
the primitives would have to be changed.

15.4 Multipass Antialiasing with the Accumulation Buffer

This section describes techniques for computing pixel area coverage for
various primitives, and using this coverage information to blend pixels into
the framebuffer. This technique, called accumulation, is an iterative process that
converges on a very accurate image. It easily handles all combinations of
points, lines, and polygons, but it cannot typically be used to generate an
interactive image. Accumulation also has applications in other advanced
rendering techniques.

Accumulation is somewhat like blending, in that multiple images are
composited to produce the final image. It differs from blending, however, in
that its operation is completely separated from the rendering of a single frame.
The accumulation buffer is an extended range bitplane bank in the normal
frame buffer. You do not draw images into it; rather, images drawn in the front
or back buffer of the normal frame buffer are added to the contents of the
accumulation buffer after they are completely rendered.

15.4.1 Configuring the Accumulation Buffer

Before you can use the accumulation buffer, you must allocate bitplanes for it.
acsize() specifies the number of bitplanes to be allocated for each color
component in the accumulation buffer:

void acsize(long planes)

The number of bits that can be allocated to the accumulation buffer varies,
depending on the system type. Sizes of 0 and 16 are used for most IRIS-4D
systems, IRIS Indigo uses 32, and RealityEngine uses either a 12-bit unsigned
or 24-bit signed accumulation buffer.

15-32 Antialiasing

Color components in the accumulation buffer are signed values, so the range
for each component depends on the size of the accumulation buffer. For
example, a 16-bit accumulation buffer actually allocates 64 bitplanes, 16 each
for red, green, blue, and alpha. You must call gconfig() after acsize() to
activate the new specification.

15.4.2 Using the Accumulation Buffer

After bitplanes have been allocated for the accumulation buffer, you can use
the acbuf() command to add the contents of the front or back bitplanes of the
normal frame buffer to the accumulation buffer, and to return the
accumulation buffer contents to either the front or back bitplanes. Call
acbuf() only while the normal frame buffer is in RGB mode.

acbuf() operates on the accumulation buffer, which must already have been
allocated using acsize() and gconfig() . When op is AC_CLEAR, each
component of the accumulation buffer is set to value. When op is
AC_ACCUMULATE, pixels are taken from the current readsource() (front,
back, or z-buffer). Pixel components red, green, blue and alpha are each scaled
by value, which must be in the range -256.0 value 256.0, and added to the
current contents of the accumulations buffer.

Finally, when op is AC_RETURN, pixels are taken from the accumulation buffer.
Each pixel component is scaled by value, which must be in the range 0.0
through 1.0, clamped to the integer range 0 through 255, and returned to the
currently active drawing buffer (as specified by the frontbuffer() ,
backbuffer() , and zdraw commands). All special pixel
operations—including z-buffer, blending function, logical operation,
stenciling, and texture mapping—are ignored during this transfer. (These
commands implement several other accumulation buffer operations. See the
man pages for details on these operations.)

Accumulation buffer pixels map one-to-one with pixels in the window. All
accumulation buffer operations affect the pixels within the viewport, limited
by the screen mask and by the edges of the window itself. Like front, back, and
z-buffer pixels, accumulation buffer pixels corresponding to window pixels
that are obscured by another window, or are not on the screen, are undefined.

You can use the accumulation buffer to average many renderings of the same
scene into one final image. By jittering the viewing frustum slightly for each

Graphics Library Programming Guide 15-33

image, you can produce a single antialiased image as the result of many
averaged images. For this to work, you must:

1. Completely render the image for each pass, including using the z-buffer
to eliminate hidden surfaces, if appropriate.

2. Enable subpixel positioning of all primitives used (see subpixel).

3. Slightly perturb the viewing frustum before rendering each image. By
slightly perturbing the projection transformation before rendering each
image, you can effectively move the sample position in each pixel away
from the pixel center. This is particularly easy to implement when you
use an orthographic projection.

This sample program, acbuf.rgb.c, draws an antialiased circle using a 2-D
orthographic projection:

/*
*Draw an antialiased circle using the accumulation buffer.
*Disable antialiasing when the left mouse button is depressed.
*Disable subpixel positioning when the middle mouse button is depressed.
*/

#include<stdio.h>
#include<gl/gl.h>
#include<gl/device.h>

#defineWINSIZE100
#defineSAMPLES3
#defineDELTA(2.0/(WINSIZE*SAMPLES))

main()
{

longx,y;
shortval;

if(getgdesc(GD_BITS_ACBUF)==0){
fprintf(stderr,"accumulation buffer not available\n");
return1;

}
prefsize(WINSIZE,WINSIZE);
winopen("acbuf.rgb");
mmode(MVIEWING);
glcompat(GLC_OLDPOLYGON,0); /*point sample the circle*/
doublebuffer();
RGBmode();
acsize(16);

15-34 Antialiasing

gconfig();
qdevice(ESCKEY);
qdevice(LEFTMOUSE);
qdevice(MIDDLEMOUSE);

while(!(qtest() && qread(&val) == ESCKEY && val==0)){
subpixel(getbutton(MIDDLEMOUSE) ? FALSE : TRUE);
if(getbutton(LEFTMOUSE)){
drawcirc(0.0,0.0);
}else{

acbuf(AC_CLEAR,0.0);
for(x=0;x<SAMPLES;x++){
for(y=0;y<SAMPLES;y++){
drawcirc((x-(SAMPLES/2))*DELTA,(y-(SAMPLES/2))*DELTA);
acbuf(AC_ACCUMULATE,1.0);
}

}
acbuf(AC_RETURN,1.0/(SAMPLES*SAMPLES));
}
swapbuffers();

}
gexit();
return0;

}
drawcirc(xdelta,ydelta)

floatxdelta,ydelta;
{
ortho2(-1.0+xdelta,1.0+xdelta,-1.0+ydelta,1.0+ydelta);
cpack(0);
clear();
cpack(0xffffffff);
circf(0.0,0.0,0.8);

}

The circle is drawn nine times on a regular three-by-three grid. After the ninth
accumulation, the resulting image is returned to the back buffer, and the
buffers are swapped, making the antialiased circle visible. Note that the edges
of the circle are smooth, and that when you press the left mouse button, the
edges become jagged (aliased). Also note the reduction in image quality when
you defeat subpixel positioning by pressing the middle mouse button.

Graphics Library Programming Guide 15-35

Some other points about this sample program:

• The orthographic projection is perturbed by multiples of DELTA, a
constant that is a function of the ratio of units in orthographic
coordinates to window coordinates, and of the resolution of the
subsampling.

Note that you cannot use the viewport to jitter the sample points, both
because the viewport is specified with integer coordinates, and because
pixels near the viewport boundary would sample incorrectly.

• Old polygon mode is defeated. Otherwise the circle would be drawn with
the old fill style, rather than the new point-sampled style. Point sampling
and subpixel positioning are both required to use the accumulation buffer
accurately.

• Each drawing pass clears the back buffer to black, then draws the circle.
In general, all drawing operations (such as clearing and using the
z-buffer) must be duplicated for each pass.

You can perform accumulation buffer antialiasing with perspective projections
as well as orthographic projections. The following subroutines do all the
arithmetic required to implement pixel jitter using the perspective and
window projection calls:

#include <math.h>

void subpixwindow(left,right,bottom,top,near,far,pixdx,pixdy)
float left,right,bottom,top,near,far,pixdx,pixdy;

{
short vleft,vright,vbottom,vtop;
float xwsize,ywsize,dx,dy;
int xpixels,ypixels;
getviewport(&vleft,&vright,&vbottom,&vtop);
xpixels = vright - vleft + 1;
ypixels = vtop - vbottom + 1;
xwsize = right - left;
ywsize = top - bottom;
dx = -pixdx * xwsize / xpixels;
dy = -pixdy * ywsize / ypixels;
window(left+dx,right+dx,bottom+dy,top+dy,near,far);

}

void subpixperspective(fovy,aspect,near,far,pixdx,pixdy)
Angle fovy;

15-36 Antialiasing

float aspect, near, far, pixdx, pixdy;

{
float fov2,left,right,bottom,top;
fov2 = ((fovy*M_PI) / 1800) / 2.0;
top = near / (fcos(fov2) / fsin(fov2));
bottom = -top;
right = top * aspect;
left = -right;

subpixwindow(left,right,bottom,top,near,far,pixdx,pixdy);
}

In many applications, you can condition use of the accumulation buffer on
user input. For example, when mouse position determines view angle, you can
accumulate and display a progressively higher-quality antialiased image
while the mouse is stationary. At any time during an antialiasing
accumulation, the contents of the accumulation buffer represent a better image
than the aliased image. You might choose a sample pattern that optimizes the
intermediate results, then display each intermediate result, rather than waiting
for the accumulation to be complete.

The antialiasing example implements a box filter—samples are evenly
distributed inside a square pixel, and each sample has the same effect on the
resulting image. Antialiasing filter quality improves when the samples are
distributed in a circular pattern that is larger than a pixel, perhaps with a
diameter of 0.75 pixels or so. You can further improve the filter quality by
shaping it as a symmetric Gaussian function, either by changing the density of
sample locations within the circle, or by keeping the sample density constant
and assigning different weights to the samples. The weight of a sample is
specified by value when you call acbuf(AC_ACCUMULATE, value) . A
circularly symmetric Gaussian filter function yields smoother edges than does
a unit-size box filter.

See /usr/people/4Dgifts/examples/acbuf for examples of different filters.

Regardless of the filter function, fewer samples are required to achieve a given
antialiasing quality level when the samples are distributed in a random
fashion, rather than in regular rows and columns.

The accumulation buffer has many rendering applications other than
antialiasing. For example, to limit depth of field, you can average images
projected from slightly different viewpoints and directions. To produce motion
blur, you can average images with moving objects rendered in different

Graphics Library Programming Guide 15-37

locations along their trajectories. To implement a filter kernel, you can
convolve images with rectcopy() and the accumulation buffer. Because the
accumulation buffer operates on signed color components, and clamps these
components to the display range of 0 through 255 when they are returned to
the display buffer, you can implement filters with negative components in
their kernels.

Additional details of the theory and use of the accumulation buffer, as well as
example images, are available in “The Accumulation Buffer: Hardware
Support for High-Quality Rendering,” in SIGGRAPH’90 Conference
Proceedings, Volume 24, Number 3, August 1990.

15.5 Antialiasing on RealityEngine Systems

This section discusses advanced features that are available only on systems
with RealityEngine graphics, so you may want to skip to Chapter 16 if you do
not have one of these systems.

The techniques discussed in the previous sections of this chapter suggest some
different ways to reduce aliasing. RealityEngine graphics offers high
performance on all the traditional antialiasing methods presented in the
previous sections of this chapter. In addition, RealityEngine supports real-time
antialiasing through the advanced feature of multisampling.

The scan conversion hardware in most graphics systems samples points, lines,
and polygons with a single sample located at the center of each pixel. See
Chapter 2 for more information on point-sampling.

When these single-sampled primitives are rendered, aliasing artifacts can
appear. Aliasing occurs because the pixels that are only partially covered by
the primitive do not get colored if the center of the pixel is not covered.

Not having enough sample points within the pixel to adequately determine
the amount of pixel coverage is called undersampling, which results in an
aliased image. A sufficient sampling method accounts for the areas of all the
polygons that contribute to the shading of each pixel, rather than just a single
sample point. That way, the pixel can be accurately shaded to a value that
represents all polygons that are visible within that pixel.

15-38 Antialiasing

15.5.1 Multisample Antialiasing

In single-pass multisample antialiasing, up to 16 subsamples can be evaluated
at each pixel without repeatedly rendering the frame and accumulating the
results. Multisampling provides for greater accuracy when rendering
primitives while still maintaining a high level of geometry performance.
Depth and stencil values are also evaluated and stored at each subsample, if
those features are enabled.

Figure 15-2 shows example dot patterns for multisampling. Each dot
represents a subsample within a single pixel. The example dot patterns shown
here are not very efficient sampling locations. The actual sample patterns used
by the hardware are efficient.

Figure 15-2 Example Multisample Patterns

15.5.2 Configuring Your System for Multisampling

In its default configuration, the standard framebuffer is configured to store a
single value at each pixel. In multisampling, the multisample framebuffer is
configured to store 0, 4, 8, or 16 subsamples for each pixel. The default
multisample size is zero, corresponding to point-sampling.

Storage for multiple subsamples is allocated from graphics memory, as is
storage for framebuffers and other features. Rather than limit the way you can
use multisampling with other features by establishing fixed boundaries for
memory partitions, RealityEngine allows a flexible configuration that lets you
choose the combination of features that best suits your application needs.

Your RealityEngine system contains either 1, 2, or 4 Raster Manager (RM)
boards. The base configuration contains one RM board. Each additional RM
increases the pixel throughput, the memory for graphics features, and the
amount of screen resolution available from a variety of user-selectable video
formats. One additional RM lets you use either advanced graphics features
such as multisampling, or lets you select a high-resolution video format. The

Default single sample 4 Subsamples 8 Subsamples 16 Subsamples

Graphics Library Programming Guide 15-39

maximum configuration of four RMs provides both advanced graphics
features and high screen resolution.

To set up multisampling, you must configure the multisample buffer with the
number of samples to use. The combination of the number of RMs installed in
your system, the depth of the color framebuffer (either 8 bits or 12 bits per
component), the screen resolution, and the use of other features such as
z-buffering, stereo buffering, or stenciling determines the number of samples
available.

The framebuffer resolution that you select can affect the features that are
available, such as the number of subsamples you can use, or whether color
computations are performed at 8 or 12 bits per component. You can balance the
trade-off between screen real estate and sample size to suit your needs.

Multisampling can be used only in RGB mode when the draw mode is
NORMALDRAW. Because it is not possible to allocate a multisample buffer in color
index mode, multisample() is always ignored in color index mode. When a
multisample buffer is configured, multisampling is enabled by default.

Selecting the Number of Samples

Evaluating a greater number of samples provides more accuracy. You can
select 0, 4, 8, or 16 samples per pixel. Use mssize() to configure the number of
subsamples in the multisample buffer. mssize() takes three arguments:

samples Number of subsamples to use, dependent on system
configuration. Use either 0 (default single sampling), 4, 8, or
16.

zsise Number of bits of z-buffer data to store at each subsample.
Use either 0 or 32.

ssize Number of bits of stencil data to store at each subsample. Use
either 0, 1, or 8.

The GL allocates framebuffer memory when you request rendering modes.
When you issue a gconfig() , the system attempts to honor all of your
requests. If the system is unable to honor all of the requests, it may reduce the
sample size or disable the use of other options such as the accumulation buffer
or stereo buffering. For example, you may be granted the requested number of
multisamples, but not a hardware accumulation buffer. In that case, a software
accumulation buffer is substituted for the hardware accumulation buffer.

15-40 Antialiasing

Another example is a request for 4 multisamples and stereo double buffering.
If not enough resources are available to supply all of these requests, the
multisample size request may be approved, but stereo buffering may be
denied.

Figure 15-3 shows a conceptual diagram of how graphics memory, screen
resolution, and framebuffer requests determine the configuration granted.

Figure 15-3 Flexible Framebuffer Configuration

REALITYENGINE

1 RM
40 MB Image Memory
80 M Pixels/sec.

80 MB Image Memory
160 M Pixels/sec.

160 MB Image Memory
320 M Pixels/sec.4 RM

2 RM

SiliconGraphics

STANDARD
HIGH RES

NTSC
PAL

HDTV
MULTIPLE CHANNELS

GLFRAMEBUFFER
REQUESTS

Configuration
grantedTotal memory Total pixels

Bytes
available

per
pixel

getgconfig();

gconfig()

doublebuffer();/
singlebuffer();

mssize();

stereobuffer();/
monobuffer();

RGBsize();

acsize();

stensize();

zbsize();

Graphics Library Programming Guide 15-41

The GL makes reasonable assumptions about the priority of the requests when
it allocates memory.

You can query the system for the resources actually received. Use
getgconfig() to read back the framebuffer configuration. getgconfig()

returns the configured size of a buffer in the current drawmode.

Programs should be coded to request their most desirable configuration first,
then back off and try configurations that are less stringent, but still acceptable.

The following sample code fragment illustrates this heuristic approach to
configuring the RealityEngine framebuffer.

#include <gl/gl.h>

main()
{

winopen("Request");

/*this code requests 8 multisamples, but is willing to accept 4 or none*/
RGBmode(); /* RGB mode */
doublebuffer(); /* double buffering */
zbsize(0); /* deallocate main zbuffer */
mssize(8,32,0); /* 8 multisamples with zbuffer */
gconfig();

/* check for at least 4 multisamples */
if (getgconfig(GC_MS_SAMPLES) < 4)
{

/* did not get enough multisamples */
mssize(0,0,0); /* remove multisample request */
zbsize(32); /* restore main zbuffer */
gconfig();

}
}

Note: As illustrated in the sample code, be sure to restore the z-buffer if
multisampling is not used.

Freeing Standard Framebuffer Memory

If an mssize() request is honored, the configuration requests for the z-buffer
and stenciling apply to the multisample buffer rather than the standard
framebuffer. However, memory is not automatically deallocated from the

15-42 Antialiasing

standard framebuffer memory for z-buffer and stencil usage. Therefore, you
should free this memory by setting the standard z-buffer size, as well as the
standard stencil size, to zero. The default stencil size is already zero unless you
have changed it, but the default z-buffer size is 32 bits.

Note: Unless you need the standard z-buffer in addition to the multisample
buffer, deallocate memory from the standard z-buffer and stencil
planes when using multisampling. The default 32-bit z-buffer on the
main framebuffer uses up valuable memory that may be needed for
multisampling. If multisampling is not going to be used—perhaps
because a multisample request was requested, but not
granted—remember to restore the z-buffer size to 32 bits.

Use zbsize() and stensize() to allocate/deallocate z-buffer and stencil
memory from the standard framebuffer.

zbsize(n) specifies the number of z-buffer bits allocated for
the standard framebuffer. When using
multisampling, no z-buffer data is stored with the
standard framebuffer sample.

stensize(n) specifies the number of stencil bits allocated for
the standard framebuffer. When using
multisampling, no stencil data is stored with the
standard framebuffer sample.

You can use RGBsize() to reduce the color resolution in order to gain more
memory for framebuffer requests. Specify the number of bits to be allocated
per component. RealityEngine supports either 8 or 12 bits per component.

Summary

The following list summarizes the steps involved in using multisampling:

1. Set the drawing and color modes for normal drawing and RGB color:

drawmode(NORMALDRAW); (default)

RGBmode();

2. Specify the other framebuffer modes:

singlebuffer() (default) or doublebuffer();

monobuffer() (default) or stereobuffer();

Graphics Library Programming Guide 15-43

3. Specify the number of samples:

mssize(samples , zsize , ssize);

4. Deallocate z-buffer and stencil bits from the main framebuffer:

stensize(0);

zbsize(0)

5. Configure the GL:

gconfig();

6. Enable multisampling:

multisample(TRUE); (default)

Note: multisample() can be called at any time during the rendering of a
scene, except between bgn/end calls. Mixing multisampling and
default sampling in the same scene is permitted but not
recommended. The reason for this is that while the color information
in the standard framebuffer is continuously updated with
multisample data, the standard z-buffer is not. Therefore, z data
updated at subsample locations is lost while multisampling is turned
off.

15.5.3 How Multisampling Affects Rendering

The multisample buffer is a part of the color framebuffer. multisample()

should be called only while drawmode is NORMALDRAW. Multisampling affects
the results of rendering when multisampling is enabled (TRUE) and when the
draw mode is NORMALDRAW.

When multisample is true, rendered primitives directly affect the samples in
the multisample buffer. Immediately after the multisample locations at a pixel
are modified, the front and/or back framebuffer colors are written with the
“average” value of the multisample color values. No change is made to the
standard z-buffer or stencil buffer that may be associated with the color
buffers, and their contents do not affect rendering operations.

The framebuffer modes of alpha test, blending, dithering, and writemask
affect the modification of the individual subsamples, and have no effect on the
transfer of the average color value to the front or back color buffers.
Conversely, buffer enables frontbuffer() , backbuffer() , leftbuffer() ,

15-44 Antialiasing

and rightbuffer() have no effect on the modification of the individual
multisample locations; they affect only the transfer of the average color.

There are no special clear commands for the multisample buffer. Rather, the
standard clear() , zclear() , sclear() , and czclear() commands affect the
multisample buffer much as they affect the standard color, stencil, and z
buffers. Clear modifies the enabled color buffers, and always modifies the
color portion of each multisample location. zclear() operates on all
multisample z locations. sclear() operates on all multisample stencil
locations. czclear() behaves like clear() /zclear() , except that the z value
is specified.

When multisample() is false, polysmooth() , linesmooth() , and
pntsmooth() can be used with no performance degradation. However, unlike
smooth primitives, multisampling does antialias geometry at intersection and
interpenetration points.

Note: Antialiased primitives using the smooth rendering modes
pntsmooth() , linesmooth() , and polysmooth() are superceded by
multisampling— that is, these modes are undefined when
multisampling is on. However, blendfunction() is still operational,
which can adversely affect rendering performance in multisample
mode. Therefore, for the best performance when multisampling, you
should turn blendfunction() off when not performing blending.
Don’t use blendfunction() for antialiasing along with
multisampling. This is especially applicable when porting previously
developed code that used smooth primitives and blending for
antialiasing to RealityEngine.

Multisampled Points

Until circles are implemented, points are sampled into the multisample buffer
as squares centered on the exact point location.

Multisampled Lines

Lines are sampled into the multisample buffer as rectangles centered on the
exact zero-area segment. The rectangle width is equal to the current linewidth.
Its length is exactly equal to the length of the segment. The rectangles of
colinear, abutting line segments abut exactly, so no subsamples are missed or
drawn twice near the shared vertex.

Graphics Library Programming Guide 15-45

Multisampled Polygons

Polygons are sampled into the multisample buffer much as they are into the
standard single-sample buffer. A single color value is computed for the entire
pixel, regardless of the number of subsamples at that pixel. Each multisample
location is then written with this color if and only if it is geometrically within
the exact polygon boundary.

If the z-buffer is enabled, the correct depth value at each multisample location
is computed and used to determine whether that sample should be written or
not. If stencil is enabled, the test is performed at each multisample location.

Polygon pattern bits apply equally to all multisample locations at a pixel. All
sample locations are considered for modification if the pattern bit is 1. None
are considered if the pattern bit is zero.

Pixels are sampled into the multisample buffer by treating each pixel as an
xzoom × yzoom square, which is then sampled just like a polygon.

15.5.4 Using Advanced Multisample Options

You can generate special effects with advanced multisample options, which
generally apply to a very specific application. Example applications include:

• Using the accumulation buffer with multisampled images.

• Using a multisample mask to select writeable sample locations.

• Using alpha values to feather-blend texture edges.

Accumulating Multisampled Images

The accumulation buffer averages several samples obtained by storing
multiple renderings of the same primitive, each with the primitive offset by a
specific amount, a technique known as jittering.

Just as the default single-sample location is the center of each pixel, there are
default locations for the multiple sample points, located in a cluster
surrounding the center of each pixel. The default locations are chosen to
produce optimum rendering quality for single-pass rendering.

15-46 Antialiasing

Superlative image quality can be achieved when several multisampled images
are composited using the accumulation buffer. Each rendering pass should use
a slightly different sample pattern. These patterns have been selected to
produce optimum rendering quality for the corresponding number of passes.

Accumulating multisample results can also extend the capabilities of your
system. For example, if you have only enough resources to allow 4
subsamples, but you are willing to render the image twice, you can achieve the
same effect as multisampling with 8 subsamples.

Use mspattern() to select the sample pattern. Select the sample pattern for
mspattern() according to the number of rendering passes to accumulate.
Table 15-2 lists the tokens for selecting accumulation multisample patterns.

The pattern should be changed only between complete rendering passes. It
should not be changed between the time clear() /czclear() is called and the
time that the rendered image is complete.

The following example configures the framebuffer with both a multisample
buffer and an accumulation buffer for a 2-pass rendering:

RGBmode();
doublebuffer();
acsize(12);
mssize(4,32,0);
zbsize(0);
gconfig();
lsetdepth(getgdesc(GD_ZMAX),getgdesc(GD_ZMIN));
zfunction(ZF_GEQUAL);

Pattern Token Purpose

MSP_DEFAULT Default multisample pattern

MSP_2PASS_0 First pass of a 2-pass accumulation

MSP_2PASS_1 Second pass of a 2-pass accumulation

MSP_4PASS_0 First pass of a 4-pass accumulation

MSP_4PASS_1 Second pass of a 4-pass accumulation

MSP_4PASS_2 Third pass of a 4-pass accumulation

MSP_4PASS_3 Fourth pass of a 4-pass accumulation

Table 15-2 Tokens for Selecting Accumulation Multisample Patterns

Graphics Library Programming Guide 15-47

zbuffer(TRUE);
multisample(TRUE);
mspattern(MSP_2PASS_0);
czclear(0,0);
/* draw the scene */
acbuf(AC_CLEAR_ACCUMULATE,1.0);
mspattern(MSP_2PASS_1);
czclear(0,0);
/* draw the scene again */
acbuf(AC_ACCUMULATE,1.0);
acbuf(AC_RETURN,0.5);
swapbuffers();

To maintain greater precision in the accumulation buffer, substitute the
following values in the acbuf() commands:

acbuf(AC_CLEAR_ACCUMULATE,2.0);
acbuf(AC_ACCUMULATE,2.0);
acbuf(AC_RETURN,0.25);

or, for even greater precision, use the following values:

acbuf(AC_CLEAR_ACCUMULATE,4.0);
acbuf(AC_ACCUMULATE,4.0);
acbuf(AC_RETURN,0.0625);

This is because only 8 bits out of 12 are accumulated when using a value
of 1.0, 9 bits are accumulated when using a value of 2.0, and so on—up to
a maximum of 12 bits with acsize(n).

Using a Multisample Mask

You can use a mask to specify a subset of multisample locations to be written
at a pixel. This feature is useful for implementing fade-level-of-detail in visual
simulation applications. Multisample masks can be used to perform the
blending from one model to the next by rendering the additional data in the
detail model using a steadily increasing percentage of subsamples as the
viewpoint nears the object.

The mask specifies the ratio of writable and non-writable locations at each
pixel. However, it does not single out specific locations for writing. Mask
values range from 0 to 1, where 0 indicates that no locations are to be written
and 1 indicates that all sample locations are to be written.

15-48 Antialiasing

You can also set a Boolean to create the inverse mask. For example,
msmask(0.75, FALSE) will generate a mask that allows 75% of the samples to
be written, and msmask(0.75, TRUE) will generate a mask that allows the
other 25% of the samples to be written.

Using Alpha and Color Blending Options

Multisampling can be used to solve the problem of blurred edges on textures
with irregular edges, such as trees, that require extreme magnification. When
the texture is magnified, the edges of the tree look artificial, as if the tree is a
paper cutout. You can feather the edges to make them look more natural by
including alpha in the multisample mask.

By using msalpha() and afunction() together, you can represent objects
such as trees, bridges, and fences with pictures of those objects superimposed
on top of a simple rectangle polygon. The see-through effect is achieved by
enabling alpha blending and afunction() to ignore the area of the polygon
not covered by the texture. See Chapter 18 to learn more about using textures.

You can use msalpha() to specify whether you want alpha values to be
included in the multisample mask.

When msalpha is set to MSA_MASK or MSA_MASK_ONE while multisampling is
enabled, alpha values generated by rasterization are converted to multisample
masks immediately prior to the per-pixel alpha test. At each pixel, the resulting
multisample mask is logically ANDed with the mask specified by msmask.
Only multisample locations enabled by the resulting mask are considered for
modification.

If msalpha is set to MSA_MASK_ONE, the alpha value presented to alpha test and
to each multisample location is the maximum value supported by the
framebuffer configuration, effectively 1.0.

When msalpha is set to MSA_ALPHA, no change is made to the alpha values
generated by rasterization or to the mask specified by msmask() .

None of the multisample options— msmask() , msalpha() or
mspattern()— has any effect when multisample is FALSE, but they are
maintained for potential future use.

