
Graphics Library Programming Guide 2-1

Chapter 2

2. Drawing

This chapter describes how to draw graphics primitives. Primitives are basic
geometric elements such as points, lines, and polygons. You can draw primitives
with different colors and techniques. You can draw points with different sizes,
lines with different widths and styles, and polygons with different patterns
and filling methods.

• Section 2.1, “Drawing with the GL,” describes how to draw
geometric figures with GL subroutines.

• Section 2.2, “Old-Style Drawing,” describes GL subroutines that were
used for drawing in early releases of the GL, and is included for
compatibility only.

2.1 Drawing with the GL

When you provide the specifications of a geometric figure, also called a
geometry, the GL draws it on the screen right away. This is called immediate
mode—the GL is drawing things as the drawing subroutines are called.

You describe a geometry in GL terms by specifying its edges and corners. Each
corner is a vertex (a point in space). You specify the coordinates (position in
space) of the vertices and the order in which the vertices are connected to form
edges. Edges then connect to form the geometry. Edges connected as lines make
a wireframe geometry; edges connected as polygons make a geometry with
solid faces.

2-2 Drawing

When you draw a geometry, you use one of the GL primitives to draw and
connect the vertices. You mark the beginning and end of the vertex list with
special bgn* and end* subroutines, which signify not only the beginning and
end of the list of vertices, but also the type of primitive, as indicated by the
asterisk (*). Which bgn* and end* subroutines you use depends on what kind
of geometry you are drawing. You will see the bgn*/end* programming
structure throughout the GL. It is analogous to the begin-end paradigm of
modular programming languages.

Note: You need to call gflush() after the end * statement to complete the
drawing process. If you have used the GL before, you may remember
that this step was previously necessary only when you were using the
DGL. Because the GL is network-transparent, all programs need to call
gflush() after the last drawing command.

You tell the GL to begin drawing with a bgngeometry statement, where
geometry denotes the primitive to use. You then specify a list of vertices,
whose coordinates are of the appropriate type of vertex data, to connect in
order to form the edges. Finally, you tell the GL to close the figure with an
endgeometry statement.

2.1.1 Vertex Subroutines

Specify a vertex list by calling the vertex() subroutine for each vertex
between the bgn* and end* statements.

The content of the bgn*/end* modules have the format illustrated by this
pseudocode:

bgngeometry ();
vtype (vertex 1);
vtype (vertex 2);
vtype (vertex .);
vtype (vertex .);
vtype (vertex n);

endgeometry ();
gflush();

Note: No drawing is guaranteed to happen until gflush() is called.

Graphics Library Programming Guide 2-3

The GL contains 12 forms of the vertex() subroutine—one for each possible
data type of a vertex coordinate. This group of subroutines is known
collectively as the v() , for vertex, subroutine.

You can specify vertex coordinates as short integers (16 bits), long integers (32
bits), single-precision–floating-point values (32 bits), and double-precision–
floating-point values (64 bits). For each of these types, there is a v() subroutine
for defining vertices in 2-D, 3-D, and 4-D, also called homogeneous coordinates.

Homogeneous coordinates are referred to as 4D because they use a fourth
parameter in addition to the 3-D coordinates. Homogeneous coordinates are
useful for matrix manipulations and other operations common to graphics.

All forms of the vertex subroutine begin with the letter v. The second character
is 2, 3, or 4, indicating the number of dimensions, and the final character
indicates the data type: s for short integer (16 bits), i for long integer (32 bits),
f for single-precision floating point (32 bits), d for double-precision floating
point (64 bits).

Table 2-1 lists the vertex subroutines.

Argument Type 2-D 3-D 4-D

16-bit integer v2s() v3s() v4s()

32-bit integer v2i() v3i() v4i()

32-bit floating point v2f() v3f() v4f()

64-bit floating point v2d() v3d() v4d()

Table 2-1 Vertex Subroutines

2-4 Drawing

This sample program, greensquare2.c, demonstrates the use of some of the
different vertex subroutines. This program draws a square with green lines.

#include <gl/gl.h>

short vert1[3] = {200, 200, 0}; /* lower left corner */
long vert2[2] = {200, 400}; /* upper left corner */
float vert3[2] = {400.0, 400.0}; /* upper right corner */
double vert4[3] = {400.0, 200.0, 0.0}; /* lower right corner */

main()
{

prefsize(400, 400);
winopen("greensquare2");
ortho2(100.5, 500.5, 100.5, 500.5);
color(WHITE);
clear();
color(GREEN);
bgnline();

v3s(vert1);
v2i(vert2);
v2f(vert3);
v3d(vert4);
v3s(vert1);

endline();
sleep(10);
gexit();
return 0;

}

You have seen the prefsize() and winopen() commands before. The
ortho2() command sets up a coordinate system inside your window to allow
you to see the output of the program at a reasonable size and perspective. See
Chapter 7, “Coordinate Transformations,” for more information on ortho2() .
The values have .5 added to them so that pixels are centered on whole
numbers. This eliminates the potential problem of roundoff error from
non-integer pixel locations causing the display to be shifted by one or more
pixel.

Graphics Library Programming Guide 2-5

Although it is unlikely that you would write a program like the one above, it
does illustrate two things:

• Within one geometric figure, you can mix different types of vertices. In a
typical application, all the vertices tend to have the same dimension and
the same form.

• In the GL, all geometric figures are 3-D and the hardware treats them as
such. 2-D versions of the vertex subroutines are actually shorthand for an
equivalent 3-D subroutine with the z coordinate set to zero.

This sample program, crisscross.c, clears a window to white, and then draws a
pair of intersecting red lines connecting its opposite corners.

#include <gl/gl.h>

long vert1[2] = {101, 101}; /* lower left corner */
long vert2[2] = {101, 500}; /* upper left corner */
long vert3[2] = {500, 500}; /* upper right corner */
long vert4[2] = {500, 101}; /* lower right corner */

main()
{

prefsize(400, 400);
winopen("crisscross");
ortho2(100.5, 500.5, 100.5, 500.5);
color(WHITE);
clear();
color(RED);
bgnline();

v2i(vert1);
v2i(vert3);

endline();
bgnline();

v2i(vert2);
v2i(vert4);

endline();
sleep(10);
gexit();
return 0;

}

This example declares four long arrays (vert1, vert2, vert3, and vert4) and
assigns values to all the elements of each array. The size of the next window to
be opened is established by prefsize() as 400 pixels by 400 pixels. Next,
winopen() opens a window with the title crisscross.

2-6 Drawing

The ortho2() call sets up the coordinate system so that a point with
coordinates (x, y) maps exactly to the point on the screen that has the same
coordinates. The ortho2() command is discussed in Chapter 7. The color()

call sets the current color to white and paints the window with the current
color, which is white.

The next four lines of code draw a line from (101, 101) to (500, 500)—the
lower-left corner to the upper-right corner. bgnline() tells the system to
prepare to draw a line using the list of vertices immediately following it. v2i()

takes an array of coordinates as its argument and creates vertices at the
specified coordinates.

The first v2i() subroutine call creates the first endpoint of the line segment.
The second v2i() subroutine call creates the other endpoint of the line
segment and the system draws a line.

The endline() subroutine call tells the system that it has all the vertices for the
line. The next four lines draw a line from (101, 500) to (500, 101)—the
lower-right corner to the upper-left corner. The IRIX call sleep(10) delays the
program from exiting until 10 seconds have elapsed.

You can use any of the five primitives described in the next five
sections—points, lines, closed lines, polygons, and meshes—with the vertex
subroutines.

Graphics Library Programming Guide 2-7

2.1.2 Points

Use bgnpoint() and endpoint() to specify a vertex list that is drawn as a
group of disconnected points.

This sample program, pointpatch.c, draws a set of points arranged in a square
pattern. The square is 20 pixels wide by 20 pixels high, and the points are
spaced 10 pixels apart.

#include <gl/gl.h>

main()
{

long vert[2];
int i, j;

prefsize(400, 400);
winopen("pointpatch");
color(BLACK);
clear();
color(WHITE);
for (i = 0; i < 20; i++) {

vert[0] = 100 + 10 * i; /* load the x coordinate */
bgnpoint();
for (j = 0; j < 20; j++) {

vert[1] = 100 + 10 * j; /* load the y coordinate */
v2i(vert); /* draw the point */

}
endpoint();

}
sleep(10);
gexit();
return 0;

}

Mathematical points have no size, but a point must be assigned a size to be
displayed. The system draws a point as a 1-pixel point on the screen. On some
systems, you can define the size of the points that are drawn using the
pntsize() or pntsizef() subroutines. Specify the size of the point in pixels
as a short for pntsize() and as a float for pntsizef() . See the pntsize(3G) and
pntsizef(3G) man pages for information about point size limits and the
capabilities of different systems.

2-8 Drawing

2.1.3 Lines

The GL has two types of line primitives: polylines and closed lines. A polyline is
a series of connected line segments. A closed line automatically connects the
last vertex in a polyline to the first vertex in the polyline.

Polylines

Use bgnline() and endline() to specify a vertex list that is drawn as a
polyline. Line segments can cross each other, and vertices can be reused. If the
vertices are specified with 3-D or 4D coordinates, you can place them
anywhere in 3-D space; they need not all lie in the same plane.

This sample program, greensquare.c, draws lines that form a green square. The
bgnline()/endline() pair is used to select the polyline primitive for
drawing. The first vertex, v2i(vert1) , is repeated at the end of the vertex list
to connect the first and last line segments. It is better to draw such a sequence
using the closedline() primitive, as described next in “Closed Lines”.

#include <gl/gl.h>

long vert1[2] = {200, 200};
long vert2[2] = {200, 400};
long vert3[2] = {400, 400};
long vert4[2] = {400, 200};

main()
{

prefsize(400, 400);
winopen("greensquare");
ortho2(100.5, 500.5, 100.5, 500.5);
color(WHITE);
clear();
color(GREEN);
bgnline();

v2i(vert1);
v2i(vert2);
v2i(vert3);
v2i(vert4);
v2i(vert1);

endline();
sleep(10);
gexit();
return 0;

}

Graphics Library Programming Guide 2-9

Closed Lines

Use bgnclosedline() and endclosedline() to specify a vertex list that is
drawn as a series of line segments, in which the last vertex in the sequence is
automatically connected to the first vertex.

This sample program, n-gon.c, draws a regular n-gon, an n-sided polygon with
sides of equal length:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <gl/gl.h>
#define X 0
#define Y 1
#define XY 2

main(argc, argv)
int argc;
char *argv[];
{

int n, i;
float vert[XY];

/* Tell user to enter number of sides if no number is typed */
if (argc != 2) {

fprintf(stderr, "Usage: n-gon <number of sides>\n");
return 1;

}
n = atoi(argv[1]); /* Convert character entered to integer */
prefsize(400, 400);
winopen("n-gon");
color(WHITE);
clear();
color(RED);
bgnclosedline();
for (i = 0; i < n; i++) {

vert[X] = 200.0 + 100.0 * fcos(i * 2.0 * M_PI / n);
vert[Y] = 200.0 + 100.0 * fsin(i * 2.0 * M_PI / n);
v2f(vert);

}
endclosedline();
sleep(10);
gexit();
return 0;

}

2-10 Drawing

Run the program by typing ngon n, where n is the number of sides you want
in the n-gon. If you do not specify a number, the program exits and displays a
usage message telling you how to run it.

This example draws the n-gon only once, so there is no real penalty for
computing the coordinates of the vertices. If it were necessary to draw the
polygon over and over again, the calculated vertices should probably be saved
in an array. In applications that draw the same geometry repeatedly with
different viewing parameters, it is usually more efficient to save the
coordinates in arrays. The sample program does not save the coordinates
because the n-gon is drawn only once.

Linestyles

A linestyle describes the way the system draws lines on the screen. The
linestyle represents a 16-bit pattern on the screen. The least significant bit of the
pattern is the mask for the first pixel of the line and every sixteenth pixel
thereafter.

The mask determines which pixels are turned on and which pixels are left off.
Pixels corresponding to 1 in the linestyle are drawn; those corresponding to 0
are not drawn. For example, the linestyle 0xFFFF draws a solid line; 0xF0F0
draws a dashed line; and 0x8888 draws a dotted line. The system runs this
pattern repeatedly to determine which pixels in a 16-pixel line segment to
color. There is no concept of an opaque linestyle in the GL.

Defining a Linestyle

Use the deflinestyle() subroutine to define a line style to save in an indexed
table. When you want that style to be used, you retrieve it by its index. There
are 216 possible linestyle patterns. By default, index 0 contains linestyle 0xFFFF,
which draws solid lines. You cannot redefine linestyle 0.

To replace a linestyle in the table, specify the index of the new linestyle in place
of the old one. Use getlstyle() to query the index of the current linestyle.

The system uses the current linestyle to draw lines and to outline rectangles,
polygons, circles, and arcs. Linestyle 0 (solid line) is the default linestyle. Use
setlinestyle() to select another linestyle. Its argument is an index into the
linestyle table built by calls to deflinestyle() .

Graphics Library Programming Guide 2-11

Modifying the Linestyle Pattern

Two routines modify the application of the linestyle pattern: lsrepeat() and
linewidth() . You can get the current values for these attributes using
getstyle() , getlsrepeat() , and getlwidth() .

Use lsrepeat() to create linestyles that are longer than 16 bits. lsrepeat()

multiplies each bit in the pattern by factor. Consequently, each 0 in the linestyle
pattern becomes a series of factor×0, and each 1 becomes a series of factor×1.
For example, if the pattern is 0xFE00 and factor=1, the linestyle is 9 bits off
followed by 7 bits on. If factor=3, the linestyle is 27 bits off followed by 21 bits
on.

Use getlsrepeat() to query the factor (integer) by which the linestyle is
multiplied for patterns that are longer than 16 bits.

Use linewidth() or linewidthf() to specify the width of a line. Specify the
width of the line in pixels as a short for linewidth() , and as a float for
linewidthf() . The system measures the width in pixels along the x axis or
along the y axis. It defines the width of a line as the number of pixels along the
axis having the smallest difference between the endpoints of the line.

Use getlwidth() to query the current linewidth in pixels.

The ANSI C specifications for the line style and line width subroutines are:

void deflinestyle(short n, Linestyle ls);

long getlsrepeat(void);

long getlstyle(void);

long getlwidth(void);

void linewidth(short n);

void linewidthf(float n);

2-12 Drawing

2.1.4 Polygons

A polygon is specified by a connected sequence of vertices that all lie in a plane.
You define the boundary of the polygon by connecting the vertices in order: v1
to v2, v2 to v3, and so on, finally connecting vn back to v1. These connecting
segments are called edges. The interior of a polygon is the area inside its edges.
The GL lets you specify up to 255 vertices per polygon.

Note: Even though the GL supports polygons with up to 255 vertices,
performance is usually optimized only for polygons of 3 or 4 vertices.
Polygons with more than 4 vertices are typically better represented as
meshes. See Section 2.1.6, “Meshes,” for the definition of meshes and
for information about how they are used.

Figure 2-1 through Figure 2-6 contain some examples of polygons. The heavy
black dots represent vertices and the lines represent edges.

A polygon is simple if its edges intersect only at their common vertices. In other
words, the edges cannot cross or touch each other. A polygon is convex if a line
segment joining any two points in its interior is completely contained within
the polygon.

Figure 2-1 is a convex and simple polygon.

Figure 2-1 Simple Convex Polygon

Graphics Library Programming Guide 2-13

Figure 2-2 and Figure 2-3 are both simple, but not convex, polygons. They are
not convex because you can draw a line connecting two interior points (shown
as a dashed line) that appears outside of the polygon.

Figure 2-2 Simple Concave Polygon

Figure 2-3 Another Simple Concave Polygon

Non-convex polygons are also called concave. Algorithms that render only
convex polygons are much simpler than those that can render both convex and
concave polygons.

Some versions of the hardware automatically check for and draw concave
polygons correctly, but others do not. The function concave() guarantees that
the system renders concave polygons correctly. On some hardware there is a
performance penalty when you use concave() .

Note: If you intend to draw concave polygons, use concave() , even if your
code is running on a machine that automatically does the correct
thing. There is a minor performance penalty for setting the concave
flag, but it makes the code portable to other Silicon Graphics
machines. If you do not want to pay the performance penalty of using
concave() on any machine, break up the concave polygons into
smaller, convex polygons yourself.

2-14 Drawing

The GL and the Silicon Graphics hardware can correctly render any polygon if
it is simple, or if it consists of exactly four points.

Figure 2-4, Figure 2-5, and Figure 2-6 are not simple polygons.

Figure 2-4 Nonsimple Polygon

Figure 2-5 Another Nonsimple Polygon

Figure 2-6 shows a special type of polygon called a bowtie, a4-vertex
nonsimple polygon.

Figure 2-6 Bowtie Polygon

Graphics Library Programming Guide 2-15

The GL can render the simple polygons in Figure 2-1, Figure 2-2, Figure 2-3,
and the bowtie polygon in Figure 2-6. Bowtie polygons are handled in a
hardware-specific manner. The polygon appears either as a bowtie, or as a
quadrilateral with a segment missing from one edge. The results of rendering
the type of non-simple polygons shown in Figure 2-4 and Figure 2-5 are
unpredictable.

Draw polygons using the same basic syntax as the other primitives, that is,
specify a list of vertex subroutines between a bgnpolygon() /endpolygon()

pair. The system draws a polygon as a filled area on the screen. As it does with
closed lines, the GL automatically connects the first and the last point. You do
not need to repeat the first point at the end of the sequence.

This sample program, bluehex.c, draws a filled blue hexagon on the screen:

#include <gl/gl.h>

float hexdata[6][2] ={
{20.0, 10.0},
{10.0, 30.0},
{20.0, 50.0},
{40.0, 50.0},
{50.0, 30.0},
{40.0, 10.0}

};

main()
{

int i;

prefsize(400, 400);
winopen("bluehex");
ortho2(0.0, 60.0, 0.0, 60.0);
color(BLACK);
clear();
color(BLUE);
bgnpolygon();
for (i = 0; i < 6; i++)

v2f(hexdata[i]);
endpolygon();
sleep(10);
gexit();
return 0;

}

2-16 Drawing

If you approximate a surface with 4-sided polygons, some of them may not lie
in a plane. If the vertices of a polygon do not lie in a plane, it is likely that in
certain orientations the polygon on the screen may look like its edges cross.
This is especially true at the silhouette edges of a mesh, where the mesh wraps
around to the back of the shape. However, with 4 vertices, these distorted
polygons will all be interpreted as bowtie polygons that are correctly rendered
by the GL.

The GL can render the bowties that arise from surface-approximating meshes.
In most other circumstances, however, the GL routines generate only true
(planar) polygons.

If a polygon lies in a plane, the only way distortion can occur is from floating
point inaccuracies.

IRIS-4D Series systems convert all arguments to 32-bit floating point for
hardware calculations. Consequently, only long integers in the range of -223

and 223-1 retain full precision after conversion. Integers outside this range
retain 24 bits of precision after conversion.

Patterns

You can fill polygons (as well as rectangles and arcs) with patterns. A pattern is
an array of short integers that defines a rectangular pixel array. The pattern
controls which pixels the system colors when it draws filled polygons. The
system aligns the pattern to the lower-left corner of the screen, rather than to
the filled shape, so that the pattern appears continuous over large areas.

Use defpattern() to define a pattern to be saved in an indexed table. Specify
an index into a table of patterns (n), the length of the array (size), and an array
of short integers (mask). The size argument selects either a 16×16 (size=32) or a
32×32 (size=64) pattern.

The origin of the pattern is the lower-left corner of the screen. Define the
bottom row of the pattern first. Specify each row of a 16×16 pattern with a
single short. Specify each row of a 32×32 pattern with two shorts—first the left
16 bits, then the right 16 bits. Bit 0 of each short is the right-most bit of its
respective position in the row. There is no concept of an opaque pattern in the
GL.

Pattern 0 is the default pattern, which is solid. You cannot redefine the pattern
at index 0.

Graphics Library Programming Guide 2-17

Use setpattern() to select which defined pattern the system uses. The
argument for setpattern() is the index you defined with defpattern() . Use
getpattern() to query the index of the current pattern.

The ANSI C specifications for the pattern subroutines are:

void defpattern(short n, short size, unsigned short mask[]);

long getpattern(void);

void setpattern(short index);

2.1.5 Point-Sampled Polygons

This section tells you exactly which pixels are turned on when the system
displays a polygon. It is important to know which pixels are turned on for
display accuracy and drawing performance reasons, but you may want to skip
this section on your first reading, because it contains advanced concepts.

To represent a polygon on the screen, the system must turn on a group of
pixels. Given a set of coordinates for the vertices of a polygon, there is more
than one way to decide which pixels ought to be turned on.

To illustrate the problem, consider drawing the two rectangles shown in
Figure 2-7. The numbered grid represents pixels and the black dots represent
pixels that are on.

The rectangle on the left has sides of (2 ≤ x ≤ 5 and 1 ≤ y ≤ 4).
The rectangle on the right has sides of (2 ≤ x ≤ 5 and 4 ≤ y ≤ 6).

Figure 2-7 Non–Point-Sampled Polygons

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6

2-18 Drawing

What pixels should the system turn on in both cases? The most obvious answer
is shown in Figure 2-7. If you draw a figure consisting of the two polygons in
Figure 2-7, you would expect them to fit together. Unfortunately, if you draw
both rectangles the way Figure 2-7 shows, the pixels on the line y = 4 are
drawn twice—once for each polygon.

Drawing every overlapping edge twice is not a very efficient way to draw a
large number of polygons. Drawing the polygons in this manner also gives the
effect of outlining the polygon, which may not be the way you want the
polygons to look. For example, if the polygons represent a transparent surface,
the duplicated edge is twice as dense as the interior of the polygon, giving the
entire surface an outlined appearance.

Even if the surface is not transparent, filling the polygons in this way can still
create undesirable visual effects. If you draw a checkerboard pattern with
edges that overlap by exactly one pixel, then redraw it in single buffer mode,
the redrawing is visible because the edges of the squares flicker from one color
to the other, even though both images are identical. See Chapter 6,
“Animation,” for more information about single buffer mode.

The GL resolves these problems by using point-sampled polygons.
Point-sampled polygons assume that ideal mathematical lines (lines with no
thickness) connect the vertices. The system draws any pixel whose center lies
inside the mathematically precise polygon. Pixels whose centers lie outside the
polygon do not get drawn. Pixels whose centers lie exactly on a mathematical
line segment or vertex are filled in a hardware-dependent manner that
attempts to avoid both multiple fills and gaps at the boundaries of adjacent
polygons. All that is guaranteed about this algorithm is that pixels on the left
and bottom of a screen-aligned rectangle that is drawn on the exact pixel
centers are filled, whereas the pixels on the right and top of such a rectangle
are not filled.

Graphics Library Programming Guide 2-19

Figure 2-8 shows point-sampled versions of the two rectangles in Figure 2-7.
Point-sampling effectively eliminates the duplication of pixels from the right
and top edges of the polygon, but adjacent polygons can fill those pixels.

Figure 2-8 Point-Sampled Polygons

Another advantage of a point-sampled polygon without an outline is that the
drawn area of the polygon is much closer to the actual mathematical area of
the polygon. In the examples above, the drawn areas correspond exactly to the
true areas of the polygons. In non-rectangular polygons, the drawn area of the
polygon cannot be exact, but the drawn area of the point-sampled polygon is
closer to the true area of the polygon than is the area of an outlined polygon.
Outlined polygons that have increased area are sometimes called fat polygons.

Figure 2-9 illustrates the pixels that are turned on in a point-sampled
representation of the polygon that connects the vertices (1,1) (1,4) (5,6) and
(5,1). The pixels at (1, 4), (3, 5), (5,6), (5,5), (5,4), (5,3), (5,2), and (5,1) all lie
mathematically on the boundary of the polygon but are not drawn because
they are on the upper or right edge.

Figure 2-9 Point-Sampled Polygon with Edges Exactly on Pixel Centers

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6

2-20 Drawing

As mathematical entities, lines have no thickness. However, to represent a line
on the screen, the system assumes a thickness of exactly one pixel (or whatever
line width you have assigned). When you scale an object composed of lines,
the lines behave differently from polygons. No matter how much a
transformation magnifies or reduces an object composed of lines, the
representation of the line remains one pixel thick. If you draw a line around a
point-sampled polygon, it fills in the pixels at the upper and right-hand edges.

The default for the older subroutines such as polf() , rect() , circle() , is to
draw a line around the point-sampled polygon. However, if you use the
old-style subroutines, it is recommended that you use glcompat() as
described in Section 2.2.2, “Nonrecommended Old-Style Subroutines,” to
specify point-sampled polygons. You don’t have to do this for the vertex
subroutines because they draw point-sampled polygons by default.

Anomalies can occur in the display of very thin filled polygons. Figure 2-10
shows a thin point-sampled triangle connecting the points (1,1), (2,3), and
(12,7). The polygon looks like it has holes, but if you draw adjacent polygons
that share the same vertices, all the pixels are eventually filled.

Figure 2-10 Point Sampling Anomaly

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12

Graphics Library Programming Guide 2-21

2.1.6 Meshes

This section covers an advanced topic. You may want to skip it on the first
reading, because it mentions topics that are not fully covered until later in this
guide.

This section describes how to draw geometric figures that are constructed
entirely of adjacent 3-sided (triangular) or 4-sided (quadrilateral) polygons.
When you draw connecting polygons, a mesh is formed. A mesh made of
triangles is called a triangular mesh (t-mesh), and a mesh made of quadrilaterals
is called a quadrilateral strip (q-strip).

Figure 2-11 shows an example of a simple t-mesh.

Figure 2-11 Simple Triangle Mesh

In this example, the seven vertices form five triangles (123, 324, 345, 546, 567).
Vertex 1 and vertex 7 appear in one triangle, vertices 2 and 6 appear in two
triangles, and all the rest of the vertices each appear in three different triangles.
In a larger mesh, a higher percentage of the points would be used three times.
Drawing the geometry in Figure 2-11 as a t-mesh is more efficient than
drawing it as five separate triangles, because the t-mesh draws the shared
vertices only once.

To draw a t-mesh, you specify a sequence of vertices between a
bgntmesh()/endtmesh() pair.

The bgntmesh() call signifies that the vertices following it are connected as
triangles until an endtmesh() call is received. The system uses two memory
locations to remember the last two vertices and a pointer to keep track of what
it is doing. The pointer alternates from one retained vertex to the other while
it is drawing the mesh.

6 4 2

7 5 3 1

2-22 Drawing

Refer to Table 2-2 and the discussion following it to see the sequence of events
that happens internally when a t-mesh is drawn.

Let P→ represent the pointer and let R1 and R2 represent the two vertices that
are retained:

1. The bgntmesh() call initializes the pointer to R1.

2. The first vertex (v1) is stored in the location pointed to by P, which is R1.
The pointer is now changed to point to R2.

3. The next vertex (v2) is stored in the location pointed to by P, which is R2.
The pointer is changed to point to R1.

4. The next vertex (v3) is the third vertex, so a triangle is drawn. Triangles
are drawn R1, R2, next vertex, so triangle 123 is drawn. v3 is stored in the
location pointed to by P, which is R1. The pointer is changed to point to
R2.

5. The next vertex (v4) is now connected to R1 and R2. R1 has v3 stored in it,
and R2 has v2 stored in it, so the triangle drawn (R1,R2,new) is triangle
324. v4 stored in the location pointed to by P, which is R2. The pointer is
changed to point to R1.

6. This process continues until the endtmesh() call is encountered.

This process draws the triangles 123, 324, 345, 546, and 567 for the mesh in
Figure 2-11.

Sequence Vertex P → R1 R2 Next Vertex

1 bgntmesh() R1 ~~~ ~~~ v1

2 v1 R2 v1 ~~~ v2

3 v2 R1 v1 v2 v3

4 v3 R2 v3 v2 v4

5 v4 R1 v3 v4 v5

6 v5 R2 v5 v4 v6

7 v6 R1 v5 v6 v7

Table 2-2 Sequence of Vertices in a Mesh

Graphics Library Programming Guide 2-23

Figure 2-12 illustrates a more complex situation. The first six triangles (123,
324, 345, 546, 567, 768) could be drawn as before, but if nothing is done, the
arrival of point 9 would cause triangle 789 to be drawn, not triangle 689 as
desired.

Figure 2-12 Example of swaptmesh() Construction

To draw meshes like the one in Figure 2-12, you must exchange the order of the
two stored vertices. Use the swaptmesh() subroutine to exchange the pointer
to the other retained vertex, as shown in the following code fragment:

bgntmesh();
v3f(vert1);
v3f(vert2);
v3f(vert3);
v3f(vert4);
v3f(vert5);
v3f(vert6);
v3f(vert7);

swaptmesh();
v3f(vert8);

swaptmesh();
v3f(vert9);

swaptmesh();
v3f(vert10);
v3f(vert4);
v3f(vert11);

endtmesh();

9 10 11

8 4 2

7 5 3 1

6

2-24 Drawing

Figure 2-13 shows another example of how to use swaptmesh() .

Figure 2-13 Another swaptmesh() Example

This sequence draws the mesh in Figure 2-13:

bgntmesh();
v3f(vert1);
v3f(vert2);
v3f(vert3);
v3f(vert4);
v3f(vert5);

swaptmesh();
v3f(vert6);
v3f(vert7);

swaptmesh();
v3f(vert8);
v3f(vert9);

endtmesh();

The arrows show that all the faces in this t-mesh specify their vertices in
counter-clockwise order. This is important if you want to do hidden-surface
removal, described in Chapter 8, or two-sided lighting, described in Chapter 9,
later. Because the faces are counter-clockwise, they specify front-facing
polygons, which display when backface removal is turned on. For lighting, the
counter-clockwise faces specify normals that follow the right-hand rule—that
is, point out of the paper toward you. If you take your right hand and curl your
fingers in the direction pointed to by the arrows, with your thumb sticking out,
your thumb points straight out, away from the paper. Your thumb represents
the vertex normals for the counter-clockwise faces.

5 3 1

6

8 7

9

4 2

Graphics Library Programming Guide 2-25

This sample program, octahedron.c, draws a three-dimensional octahedron
(8-sided regular polyhedron) using the t-mesh primitive. Because meshes in
two dimensions are of little use, the example is three-dimensional. Knowing
how to create a three-dimensional mesh is quite useful. This program also uses
a number of routines that are covered in later chapters, including
three-dimensional rotations, hidden surface removal, smooth
(double-buffered) motion, and cpack() , so ignore the subroutines that do not
apply to the specification of the geometry if you are studying the program to
understand the logic of mesh drawing. The calculations of rotation angles
simply cause the octahedron to tumble in an interesting way.

#include <stdio.h>
#include <gl/gl.h>

float octdata[6][3] = {
{ 1.0, 0.0, 0.0},
{ 0.0, 1.0, 0.0},
{ 0.0, 0.0, 1.0},
{-1.0, 0.0, 0.0},
{ 0.0, -1.0, 0.0},
{ 0.0, 0.0, -1.0}

};
unsigned long octcolor[6] = {

0xff0000, /* [0] = blue */
0x00ff00, /* [1] = green */
0x0000ff, /* [2] = red */
0xff00ff, /* [3] = magenta */
0xffff00, /* [4] = cyan */
0xffffff, /* [5] = white */

};

void vertex(i)
int i;
{

cpack(octcolor[i]);
v3f(octdata[i]);

}

void drawoctahedron()
{

bgntmesh();
shademodel(GOURAUD);
vertex(0);
vertex(1);

swaptmesh();
vertex(2);

2-26 Drawing

swaptmesh();
vertex(4);

swaptmesh();
vertex(5);

swaptmesh();
vertex(1);
vertex(3);

shademodel(FLAT);
vertex(2);

swaptmesh();
vertex(4);

swaptmesh();
vertex(5);

swaptmesh();
vertex(1);

endtmesh();
}
main()
{

Angle xang, yang, zang;
long zval;
int cnt;
if (getgdesc(GD_BITS_NORM_DBL_RED) == 0) {

fprintf(stderr, "Double buffered RGB not available\n");
return 1;

}
if (getgdesc(GD_BITS_NORM_ZBUFFER) == 0) {

fprintf(stderr, "Z-buffer not available\n");
return 1;

}
prefsize(400, 400);
winopen("octahedron");
doublebuffer();
RGBmode();
gconfig();
ortho(-2.0, 2.0, -2.0, 2.0, -2.0, 2.0);
zbuffer(TRUE); /* hidden surfaces removed with z-buffer */
zval = getgdesc(GD_ZMAX);
xang = yang = zang = 0;
for (cnt = 0; cnt < 1000; cnt++) {

czclear(0x000000, zval);
pushmatrix();/* save viewing transformation */

 rotate(xang, 'x'); /* rotate by xang about x axis */
 rotate(yang, 'y'); /* rotate by yang about y axis */
 rotate(zang, 'z'); /* rotate by zang about z axis */
 drawoctahedron();

Graphics Library Programming Guide 2-27

popmatrix(); /* restore viewing transformation */
swapbuffers(); /* show completed drawing */

xang += 10;
yang += 13;
if (xang + yang > 3000)

zang += 17;
if (xang > 3600)

xang -= 3600;
if (yang > 3600)

yang -= 3600;
if (zang > 3600)

zang -= 3600;
}
gexit();
return 0;

}

Quadrilateral Strips

In addition to the t-mesh, the GL supports quadrilateral strips (q-strips).
Q-strips are similar in many ways to t-meshes, but might be better suited for
the representation of shapes that are fundamentally quadrilateral rather than
triangular in nature.

Use bgnqstrip() and endqstrip() to specify vertex list that forms
quadrilateral strips.

The bgnqstrip() and endqstrip() commands must surround an even
number of vertex commands that is four or greater, and is unbounded. Filling
results are undefined if these conditions are not met. There is no maximum to
the number of vertices that can be specified between bgnqstrip() and
endqstrip() . If the number is odd, however, the result is undefined.

Vertices specified after bgnqstrip() and before endqstrip() form a sequence
of quadrilaterals. You cannot alter the replacement algorithm, because there is
no quadrilateral equivalent to the swaptmesh() command.

2-28 Drawing

For example, this sequence draws the three quadrilaterals: (1,2,4,3), (3,4,6,5),
and (5,6,8,7) in Figure 2-14:

bgnqstrip();
v3f(vert1);
v3f(vert2);
v3f(vert3);
v3f(vert4);
v3f(vert5);
v3f(vert6);
v3f(vert7);
v3f(vert8);

endqstrip();

8--6--4--2
| | | |
| | | |
7--5--3--1

Figure 2-14 Mesh of Quadrilateral Strips

Note: The quadrilaterals are drawn as though each quadrilateral were an
independent polygon with vertex order (n, n+1, n+3, n+2).

Note that the vertex order required by q-strips matches the order required for
“equivalent” triangle meshes. The example vertex sequence that produces the
mesh in Figure 2-14 produces triangles (123, 324, 345, 546, 567, 768), as shown
in Figure 2-15 when bounded by bgntmesh() and endtmesh() calls.

8--6--4--2
| /| /| /|
|/ |/ |/ |
7--5--3--1

Figure 2-15 Equivalent T-mesh

In general, quadrilateral data looks better when drawn with q-strips than with
a t-mesh. This is because Gouraud shading calculations operate on the original
quadrilateral data, rather than on the decomposed triangles.

Note: IRIS-4D VGX, VGXT, SkyWriter, and RealityEngine graphics use
vertex normals to determine how to decompose quadrilaterals into
triangles during scan conversion. If you do not specify vertex normals,
or, equivalently, if the four vertices share the same normal, the selected
decomposition matches that of the equivalent triangle mesh.

Graphics Library Programming Guide 2-29

2.1.7 Controlling Polygon Rendering

Use the polymode() subroutine to specify how the system renders polygons.
This statement controls polygons created with triangular mesh or
quadrilateral strips as well as explicit polygons (that is, polygons created
inside a bgn*/end* loop).

The ANSI C specification for polymode() is:

void polymode(long mode);

where mode is defined by one of the following symbols:

PYM_POINT draw only points at each vertex.

PYM_LINE draw lines from vertex to vertex.

PYM_FILL fill the polygon interior.

PYM_HOLLOW fill only interior pixels at the boundaries.

PYM_POINT and PYM_LINE draw points and lines consistent with all applicable
point and line modes. Therefore the antialiasing mode, pntsmooth() , or
linesmooth() as well as linewidth and linestipple are significant. PYM_FILL is
the standard fill operation that was previously the only option. See Chapter 15,
“Antialiasing,” for information on antialiasing.

Figure 2-16 shows how PYM_LINE affects clipping. Polygons drawn in
PYM_LINE mode clip differently from closed lines. The PYM_LINE polygon
always clips to a closed line, with line segments generated along the edges of
the clipping planes, which are usually the borders of the viewport.

Figure 2-16 Clipping Behavior of PYM_LINE

PYMLINEClosed line polygon

2-30 Drawing

PYM_HOLLOW supports a special kind of polygon fill with the following
properties:

• Only pixels on the polygon edge are filled. These pixels form a
single-width line (regardless of the current linewidth) around the
inner perimeter of the polygon.

• Only pixels that would have been filled (PYM_FILL) are changed (that is,
the outline does not extend beyond the exact polygon boundaries).

• Changed pixels take the exact color and depth values they would have,
had the polygon been filled.

Because their pixel depth values are exact, hollow polygons can be accurately
composed of filled polygons. Both hidden-line and scribed-surface renderings
can be done taking advantage of this fact. See Chapter 8, “Hidden-Surface
Removal,” for more information on hidden surfaces.

Note: Not all systems support polymode() . Use getgdesc() with the
GD_POLYMODE argument to determine whether polymode is
supported. The IRIS-4D VGX requires special setup to support
PYM_HOLLOW. See the polymode(3G) man page for details.

2.2 Old-Style Drawing

This section describes drawing methods that were used in previous releases of
the GL. Skip this section if you are developing new GL applications.

The vertex drawing subroutines described in the last section are the preferred
way to draw any geometry except curves and surfaces, which are covered in
Chapter 14, “Curves and Surfaces.” All new development should use the
vertex method. It is OK to use the subroutines described under Section 2.2.1,
“Basic Shapes,” but the subroutines described in Section 2.2.2,
“Nonrecommended Old-Style Subroutines,” are not recommended.

The architecture of earlier Silicon Graphics systems was tuned to a different set
of subroutines for drawing points, lines, and polygons. For compatibility, all of
the earlier subroutines are still in the GL.

In most cases, the internals of these earlier subroutines have been rewritten to
use the vertex subroutines. However, to guarantee that you get the optimal

Graphics Library Programming Guide 2-31

performance of the new programs, use the vertex subroutines described at the
beginning of this chapter.

Except for polygons, the figures drawn by the old-style subroutines are the
same as those drawn by the vertex subroutines. For example, points are drawn
as a single pixel. However, the earlier subroutines did not draw point-sampled
polygons. They effectively drew point-sampled polygons with lines
connecting the vertices. For compatibility, the old polygon subroutines draw
point-sampled polygons with an outline, so they appear exactly the way they
did before. For many polygons, the drawing time is increased when both the
polygon and its outline are drawn.

In most cases, absolute compatibility with the old polygon filling style is not
required, so there is a subroutine, glcompat() , that you can use to turn off
outlining for the old-style subroutines. You can significantly increase polygon
drawing performance for old code by turning off the compatibility mode.
glcompat() takes two arguments. The first is the compatibility mode, and the
second is the value to which it is set.

The default GLC_OLDPOLYGON value is 1, in which outlining is turned on. To
turn off polygon outlining, use:

glcompat(GLC_OLDPOLYGON, 0);

Performance for the basic shapes subroutines can also be improved
significantly by calling glcompat(GLC_OLDPOLYGON, 0) to draw
point-sampled polygons and defeat polygon outlining.

2.2.1 Basic Shapes

In this section and the next, the subroutine names follow a pattern. The root
name of the subroutine indicates the shape that is drawn. Letters appended to
the root name indicate whether the shape is filled or drawn as an outline and
also indicate its data type. The default data type is floating point (32 bits):

f indicates that the figure is filled rather than drawn as an
outline (32 bits).

s indicates that the data type is a short integer (16 bits).

i indicates that the data type is a long integer (32 bits).

2-32 Drawing

Rectangles

The GL provides two types of rectangle subroutines—filled and unfilled.
Filled rectangles are rectangular polygons, and unfilled rectangles are
rectangular outlines. rect() draws a rectangular outline, while rectf()

draws a filled (solid) rectangle. Only the x and y coordinates of the corners of
the rectangle are given, and the z coordinate is forced to zero. The rectangle is
aligned with the x and y axes.

Table 2-3 lists the six different forms of the rectangle subroutine.

The arguments to the rectangle subroutines are the coordinates of the corners
(x1, y1, x2, y2). The point (x1, y1) is one corner of the rectangle, and (x2, y2) is
the opposite corner. Because the rectangle is aligned with the axes, the
coordinates of the other corners would be (x1, y2) and (y1, x2).

Rectangles can undergo transformations as described in Chapter 7,
“Coordinate Transformations,” and the resulting figure need not appear to be
a rectangle. For example, imagine rotating the rectangle about the x axis so that
one end is farther from you, then viewing it in perspective. On the screen, the
rotated rectangle appears to be a trapezoid.

It is important to understand that although rectangles created with rectf() or
its variants can be transformed by the statements described in Chapter 7,
primitives such as rectangles, circles, arcs, and character strings are planar, and
the apparent rotation or translation takes place because of manipulations to
the underlying transformation matrix.

If you wish to build a composite of different rectangular shapes (for instance,
a 3-D cube) that is to be part of a 3-D model, the correct way to proceed is to
use the 3-D drawing functions bgnpolygon() and endpolygon() .

Argument Type Filled Unfilled

16-bit integer rectfs() rects()

32-bit integer rectfi() recti()

32-bit float rectf() rect()

Table 2-3 Rectangle Subroutines

Graphics Library Programming Guide 2-33

The following sample program, chessboard.c draws a chess board with black
and white squares and red outlines on a green background.

#include <gl/gl.h>

#define ODD(n) ((n) % 2)

main()
{

int i, j;

prefsize(400, 400);
winopen("chessboard");
color(GREEN);
clear();
for (i = 0; i < 8; i++) {

for (j = 0; j < 8; j++) {
if (ODD(i + j))

color(WHITE);
else

color(BLACK);
sboxfi(100 + i*25, 100 + j*25, 124 + i*25, 124 + j*25);

}
}
color(RED);
recti(97, 97, 302, 302);
sleep(10);
gexit();
return 0;

}

Screen Boxes

Screen boxes are a subclass of rectangles. They are always 2-D and are always
aligned with the screen coordinates. Draw screen boxes with sbox() and
sboxf() . As with rect() and rectf() , the f signifies that the screen box is
filled with the current color and pattern.

All screen box commands use four arguments:

x1 x coordinate of one corner of the box

y1 y coordinate of one corner of the box

x2 x coordinate of the opposite corner of the box

y2 y coordinate of the opposite corner of the box

2-34 Drawing

The screen box drawing commands fill in the rectangle given these diagonal
corner coordinates. The sbox() statements draw 2-D, screen-aligned
rectangles using the current color, writemask, and linestyle. The sboxf()

statements draw filled 2-D, screen-aligned rectangles using the current color,
writemask, and pattern.

Table 2-4 lists the screen box subroutines.

You cannot use lighting, backfacing, depth-cueing, z-buffering, Gouraud
shading, or alpha blending with the sbox() or sboxf() command.

Circles

Like rectangles, circles are 2-D figures that lie in the x-y plane, with z
coordinates equal to zero. All six circle subroutines have the same parameters:
x, y, and radius. Like rectangles, circles are either filled or unfilled, and the
center coordinates and radius are specified in integers, short integers, or floats.

Table 2-5 lists the circle subroutines.

Circles are drawn with 80 equally spaced vertices, either as a closed line
(unfilled circles) or as a polygon (filled circles). If your program draws many
circles, you can write a circle primitive that uses fewer line segments to speed
up the drawing. Circles drawn with 80 segments look reasonably good over a

Argument Type Filled Unfilled

16-bit integer sboxfs() sboxs()

32-bit integer sboxfi() sboxi()

32-bit floating point sboxf() sbox()

Table 2-4 Screen Box Subroutines

Argument Type Filled Unfilled

16-bit integer circfs() circs()

32-bit integer circfi() circi()

32-bit floating point circf() circ()

Table 2-5 Circle Subroutines

Graphics Library Programming Guide 2-35

wide range of sizes, but on large circles, you can easily see the straight line
segments. You can also draw circles with NURBS, as explained in Chapter 14.

This sample program, bullseye.c, draws an archery target using filled circles:

#include <gl/gl.h>
main()
{

prefsize(400, 400);
winopen("bullseye");
ortho2(-1.0, 1.0, -1.0, 1.0);
color(BLACK);
clear();
color(GREEN);
circf(0.0, 0.0, 0.9);
color(YELLOW);
circf(0.0, 0.0, 0.7);
color(BLUE);
circf(0.0, 0.0, 0.5);
color(CYAN);
circf(0.0, 0.0, 0.3);
color(RED);
circf(0.0, 0.0, 0.1);
sleep(10);
gexit();
return 0;

}

Arcs

Arcs are also 2-D figures, and like circles and rectangles, they lie in the plane
z=0. Arcs can be either unfilled (segments of circles) or filled (pie wedges). Arcs
have a center (x, y), a radius, a starting angle, and an ending angle. Angles are
measured counterclockwise from the positive x axis; negative angles are
clockwise. Angles are in tenths of degrees, so a 90-degree angle is written as
900.

An arc is drawn from the starting angle to the ending angle, so if startang is 0
and endang is 100, a 10 degree arc is drawn. Arcs are approximated by straight
lines, and a full 360 degree arc consists of 80 segments. You can speed up arc
drawing by making an arc primitive that uses fewer line segments.

2-36 Drawing

Table 2-6 lists the arc() subroutines.

The following sample program draws a pie chart using filled arcs:

#include <gl/gl.h>

main()
{

prefsize(400, 400);
winopen("piechart");
ortho2(-1.0, 1.0, -1.0, 1.0);
color(BLACK);
clear();
color(RED);
arcf(0.0, 0.0, 0.9, 0, 800);
color(GREEN);
arcf(0.0, 0.0, 0.9, 800, 1200);
color(YELLOW);
arcf(0.0, 0.0, 0.9, 1200, 2200);
color(MAGENTA);
arcf(0.0, 0.0, 0.9, 2200, 3400);
color(BLUE);
arcf(0.0, 0.0, 0.9, 3400, 0);
sleep(10);
gexit();
return 0;

}

 Argument Type Filled Unfilled

16-bit integer arcfs() arcs()

32–bit integer arcfi() arci()

32-bit float arcf() arc()

Table 2-6 Arc Subroutines

Graphics Library Programming Guide 2-37

2.2.2 Nonrecommended Old-Style Subroutines

This section describes nonrecommended subroutines from previous releases of
the GL. Skip this section if you are developing new GL applications.

The naming conventions for the rest of the subroutines in this chapter are
similar to those used by the arc() , circle() , and rectangle() subroutines.
However, because the remaining subroutines are usually three-dimensional,
they come in 2-D and 3-D versions. As with arc() , circle() , and
rectangle() , the two-dimensional versions are assumed to lie in the plane
z = 0, but those figures can be transformed out of that plane by the various
transformation and viewing subroutines discussed in Chapter 7.

The naming convention assumes that most subroutines are three-dimensional,
so, for example, the point subroutine pnt() is the three-dimensional version,
and pnt2() requires no z component to its arguments.

Current Graphics Position

In the new architecture, graphical figures are sent together—a set of points, a
polyline, and a polygon are sent bracketed by a bgngeometry and an
endgeometry subroutine. The drawing of the figure might not start until the
endgeometry arrives.

In older systems, points were sent as individual subroutines, lines as a series
of move and draw subroutines, and polygons as a polygon move, followed by
a polygon draw subroutines, and finally a polygon close subroutine.

Between the old-style subroutines drawing polylines or polygons, the system
maintains a current graphics position. Each draw subroutine draws from the
current graphics position to the point specified by draw() . The current
graphics position is then set to the new point. The current graphics position as
used by the old-style polygon subroutines is discussed in the next sections.

getgpos

Because the system automatically maintains the current graphics position, few
applications need to access it directly. Those that do use getgpos() to return
the current graphics position. Its arguments include four pointers to floating
point numbers in which the homogeneous coordinates of the current
transformed point are returned. The returned values are in clip coordinates.

2-38 Drawing

For compatibility, the current graphics position is maintained in exactly the
same way for all the graphics subroutines listed in the rest of this chapter.

Old-Style Points

Table 2-7 shows the old-style point subroutines.

The arguments are (x, y) for the 2-D subroutines, (x, y, z) for the 3-D
subroutines. In addition to drawing a point, pnt() updates the current
graphics position to its location.

This sample program, pointsquare.c, draws 100 points in a square area of the
window:

#include <gl/gl.h>

main()
{

int i, j;

prefsize(400, 400);
winopen("pointsquare");
color(BLACK);
clear();
color(GREEN);

for (i = 0; i < 100; i++) {
for (j = 0; j < 100; j++)

pnt2i(i*4 + 1, j*4 + 1);
}
sleep(10);
gexit();
return 0;

}

Argument Type 2-D 3-D

16-bit integer pnt2s() pnts()

32-bit integer pnt2i() pnti()

32-bit float pnt2() pnt()

Table 2-7 Old-Style Point Subroutines

Graphics Library Programming Guide 2-39

Old-Style Lines

Old-style lines are drawn using two subroutines: move() and draw() . The
arguments and types of the move() and draw() subroutines are the same as for
the point() subroutines. The move() subroutine sets the current graphics
position to the specified vertex and draw() draws from the current graphics
position to the specified point, then updates the current graphics position to
that vertex.

Table 2-8 lists the move() and draw() subroutines.

This sample program, bluebox.c, draws the outline of a blue box on the screen
using the move() and draw() subroutines:

#include <gl/gl.h>
main()
{

prefsize(400, 400);
winopen("bluebox");
color(BLACK);
clear();
color(BLUE);
move2i(200, 200);
draw2i(200, 300);
draw2i(300, 300);
draw2i(300, 200);
draw2i(200, 200);
sleep(10);
gexit();
return 0;

}

Argument Type 2–D 3-D

16-bit integer move2s() moves()

32-bit integer move2i() movei()

32-bit float move2() move()

16-bit integer draw2s() draws()

32-bit integer draw2i() drawi()

32-bit float draw2() draw()

Table 2-8 Old-Style Move and Draw Subroutines

2-40 Drawing

Old-Style Polygons

The old-style subroutines that draw filled polygons corresponding to the
move() and draw() subroutines are pmv() and pdr() .

Table 2-9 lists the filled polygon subroutines.

A polygon is specified by a pmv() to locate the first point on the boundary, then
a sequence of pdr() subroutines for each additional vertex, and finally a
pclos() to close and fill the polygon. The pclos() subroutine has no
arguments; all the other subroutines take either two or three arguments of the
appropriate type.

Caution: Be sure not to spell the pclos() command pclose, because pclose is
the IRIX command to close a pipe.

Argument Type 2-D 3-D

16-bit integer pmv2s() pmvs()

32-bit integer pmv2i() pmvi()

32-bit float pmv2() pmv()

16-bit integer pdr2s() pdrs()

32-bit integer pdr2i() pdri()

32-bit float pdr2() pdr()

Table 2-9 Old-Style Filled Polygon Move and Draw Subroutines

Graphics Library Programming Guide 2-41

The following sample program, bluebox3.c, draws a filled blue polygon:

#include <gl/gl.h>

main()
{

prefsize(400, 400);
winopen("bluebox3");
color(BLACK);
clear();
color(BLUE);
pmv2i(200, 200);
pdr2i(200, 300);
pdr2i(300, 300);
pdr2i(300, 200);
pclos();
sleep(10);
gexit();
return 0;

}

The GL has two sets of subroutines that take arrays of vertex coordinates and
draw filled and unfilled polygons. Filled polygons are drawn by polf() , and
polygon outlines are drawn by poly() .

Both the polf() and the poly() subroutines take two arguments. The first
argument, n, is the number of vertices in the polygon, and the second is a
two-dimensional array containing the coordinates.

Table 2-10 lists the polygon and filled polygon subroutines.

Argument Type 2-D 3-D

16-bit integer poly2s() polys()

32-bit integer poly2i() polyi()

32-bit float poly2() poly()

16-bit integer polf2s() polfs()

32-bit integer polf2i() polfi()

32-bit float polf2() polf()

Table 2-10 Old-Style Polygon and Filled Polygon Subroutines

2-42 Drawing

This sample program, hexagon.c, draws a filled hexagon using polf() :

#include <gl/gl.h>

long parray[6][2] = {
{100, 0},
{ 0, 200},
{100, 400},
{300, 400},
{400, 200},
{300, 0}

};

main()
{

prefsize(400, 400);
winopen("hexagon");
color(BLACK);
clear();
color(GREEN);
polf2i(6, parray);
sleep(10);
gexit();
return 0;

}

