
Graphics Library Programming Guide 3-1

Chapter 3

3. Characters and Fonts

This chapter describes the subroutines that position and draw characters,
define fonts, and determine information about the currently defined font.

• Section 3.1, “Drawing Characters,” describes how to draw characters.

• Section 3.2, “Creating a Font,” tells you how to create and enable your
own font and how to query the system for font information.

The GL font interface supports the rapid display of raster characters in
user-selectable fonts. You can design and use your own fonts, or make use of
the default fonts supplied with the system. Typefaces exist or can be created
with a variety of point sizes and with a fixed or variable pitch.

The IRIS Font Manager™, described in the Graphics Library Windowing and Font
Library Programming Guide, offers a more flexible way to display text in a
program than the method presented in this chapter. You can use the IRIS Font
Manager to access externally created fonts, such as bitmap fonts, screen fonts,
and X Window System fonts like Portable Compiler Format (PCF) fonts. See the
Graphics Library Windowing and Font Library Programming Guide for information
about loading and using externally created fonts and other facilities available
through the IRIS Font Manager.

The font information in this chapter is provided mainly for performance
reasons. By using the techniques presented in this chapter, you are using
methods close to the hardware level of the system. Performance is as much as
four times faster than is possible using the IRIS Font Manager. To get your
application to display characters as rapidly as possible, use the techniques
presented in this chapter.

There are two versions of the font definition and character drawing routines.
The older version uses shorts as parameters and is thus limited to a character

3-2 Characters and Fonts

set that can only store 256 bitmap definitions and can handle only single-byte
character data. Newer subroutines that use long integers, signified by the letter
l in the subroutine name, can accommodate multibyte data and a more
extensive index space.

Because the long integer subroutines offer a more flexible interface, their use is
encouraged.

3.1 Drawing Characters

Use cmov() to position text and charstr() /lcharstr() to draw text. cmov()

determines where the system draws text on the screen, charstr() draws a
string of single-byte characters, and lcharstr() draws a string of multibyte
characters.

The character string is drawn in the current color and in the current font.
Scaling, rotating, or translating characters, operations that are described in
Chapter 7, “Coordinate Transformations,” has no effect on them. For example,
when a geometry that has text labels associated with it shrinks as it moves
away from the viewer, its labels remain the same size. Similarly, no matter
what rotation is in effect, the character string maintains the same orientation,
which is horizontal for any standard font.

3.1.1 Determining the Current Character Position

The current character position determines where the system draws text on the
screen. cmov() moves the current character position to a specified point (x, y, z)
in world coordinates. cmov() turns the world coordinates into window
coordinates for the new character position. cmov() does not draw anything—it
simply sets the character position where drawing is to occur when charstr()

is issued. cmov() does not affect the current graphics position.

The current character position is transformed (see Chapter 7) in exactly the
same way as a vertex to position a character string where it belongs.

Graphics Library Programming Guide 3-3

Table 3-1 lists the cmov() subroutines.

Note: Character position includes z values as well as x and y values. Because
of this, you can associate string origins with 3-D locations and you can
use z-buffering, described in Chapter 8, and depth-cueing, described
in Chapter 13, with characters.

3.1.2 Drawing Character Strings

Use charstr() to draw a string of raster characters. Use lcharstr() to draw
a character string using a long integer raster font—that is, characters that have
been defined with deflfont() .

The text string is drawn in the current font using the current color. The origin
of the first character in the string is the current character position. After the
system draws the string, it updates the current character position to the pixel
to the right of the last character in the string. Character strings are
null-terminated in ANSI C.

3.1.3 Clipping Character Strings

If the origin of a character string lies outside the viewport (see Chapter 7), no
characters in the string are drawn.

If the origin of a character string is inside the viewport, the characters are
individually clipped to the screenmask. A screenmask establishes a rectangular
boundary on the screen. Clipping means that characters inside the boundary
are displayed and characters outside of the boundary are not displayed.

Argument Type 2-D 3-D

Short integer cmov2s() cmovs()

Long integer cmov2i() cmovi()

Float cmov2() cmov()

Table 3-1 cmov() Subroutines

3-4 Characters and Fonts

Figure 3-1 shows how characters are clipped to the viewport and screenmask.

Figure 3-1 How Character Strings are Clipped

In gross clipping, character strings that appear outside the viewport are clipped
out (not displayed).

There is a “gray area” between the screenmask and the viewport when the
viewport is larger than the screenmask. In fine clipping, character strings that
begin inside the viewport are clipped to the screenmask.

3.1.4 Getting Character Information

Use getcpos() to return the screen coordinates of the current character
position into the locations pointed to by ix and iy:

void getcpos(short *ix, short *iy)

Lorogr ipsum do lor s i t amet , consecte tur ad ipsctmer e l i t '
i sb a e iusmod tempor inc idunt u t labore e t do lon mag

Ut en imin omin imim ven iami q ius nodmuid

before clipping viewport

screenmask

i sb a e iusmod tempor inc idunt u t labore e t do lo
Ut en imin omin imim ven iami q ius nod

after gross clipping viewport

screenmask

i sb a e iusmod tempor inc idunt u t labore e t do l
Ut en imin omin imim ven iami q ius nod

after fine clipping viewport

screenmask

Graphics Library Programming Guide 3-5

Use strwidth() /lstrwidth() to return the width of a text string in pixels:

long strwidth(String str)

long lstrwidth(long type, void *str)

The string can be any null-terminated ASCII string of characters. The value
returned does not necessarily represent the width of a character times the
number of characters in the string, because in some fonts, the character width
varies from one character to another. The default font has a fixed width of nine
pixels, so for that font, strwidth() does return nine times the string’s length.

The rasterchars.c sample program draws two lines of text.

#include <gl/gl.h>

main()
{

prefsize(400, 400);
winopen("rasterchars");
color(BLACK);
clear();
color(RED);
cmov2i(50, 80);
charstr("The first line is drawn ");
charstr("in two parts. ");
cmov2i(50, 80 - 14);
charstr("This line is 14 pixels lower. ");
sleep(10);
gexit();
return 0;

}

The first line of text in rasterchars.c is drawn in two parts. The first cmov2i()

sets the current character position to 50 pixels to the right and 80 pixels up
from the lower-left corner of the window. After the first string is drawn, the
current character position is automatically advanced to follow the space
character at the end of the line. When the character string "in two parts. " is
drawn, it continues from the current character position. Next, the character
position is set to start 14 pixels below the beginning of the top line, and the
second line is drawn.

The characters are drawn in the current color (RED). Because nothing was
mentioned in the program about fonts, all the strings are drawn in the default
font (font 0), which is defined when winopen() is called.

3-6 Characters and Fonts

The next sample program, rasterchars2.c, shows that character strings are
drawn in the same orientation no matter where they move, and that the
current character position is transformed like any other geometry.

#include <gl/gl.h>

float p[3][2] = {
{0.0, 0.0},
{0.6, 0.0},
{0.0, 0.6}

};

main()
{

int i;

prefsize(400, 400);
winopen("rasterchars2");
ortho2(-1.0, 1.0, -1.0, 1.0);
for (i = 0; i < 40; i++) {

color(BLACK);
clear();
rotate(50, ‘z’);
color(RED);
bgnpolygon();

v2f(p[0]);
v2f(p[1]);
v2f(p[2]);

endpolygon();
color(GREEN);
cmov2(p[0][0], p[0][1]);
charstr("vert0");
cmov2(p[1][0], p[1][1]);
charstr("vert1");
cmov2(p[2][0], p[2][1]);
charstr("vert2");
sleep(1);

}
gexit();
return 0;

}

The output of rasterchars2.c shows a red triangle with its three vertices labeled
vert1, vert2, and vert3. As the triangle rotates about vert1, the labels vert2 and
vert3 move along with the triangle is if they were pinned to their respective
vertices. The labels are drawn horizontally, no matter what position the
triangle is in.

Graphics Library Programming Guide 3-7

The rotate() subroutine rotates the scene about the z axis (coming directly
out of the screen) by 5 degrees each time. The rotation is about the origin, so
vertex p1 remains fixed. See Chapter 7 for a description of rotate() .

3.2 Creating a Font

A font is a collection of rectangular arrays of masks. Masks determine whether
or not a pixel is turned on. If a 1 appears in a mask, the corresponding pixel is
turned on to the current color; if a 0 appears, the pixel is left as it is. For
example, the following bitmask might be used to draw the character A:

Binary Hexadecimal
0000011000000000 = 0x0600
0000011000000000 = 0x0600
0000111100000000 = 0x0F00
0000111100000000 = 0x0F00
0001100110000000 = 0x1980
0001100110000000 = 0x1980
0011000011000000 = 0x30C0
0011111111000000 = 0x3FC0
0110000001100000 = 0x6060
0110000001100000 = 0x6060
1100000000110000 = 0xC030
1100000000110000 = 0xC030

Figure 3-2 Bitmask for the Character A

A font made up of single-byte characters can have definitions for any character
value between 1 and 255. Typically, the bitmask entry for each ASCII character
is a mask that draws that character. For example, the ASCII value of A is 65
(decimal), so entry 65 in the font is associated with the bitmask for A shown in
Figure 3-2. If this font were defined, the string “AAA” would draw three copies
of the character whose bitmask appears in Figure 3-2.

In addition to the bitmask information for each character, you need to know
the width and height of the character in pixels. The width cannot be inferred
from the bitmask, because all bitmask data comes in 16-bit words. In the letter
A example in Figure 3-2, the width is 12 and the height is also 12.

Normally, a character’s origin is at the lower-left corner of the bitmask, as is
the case for the A. The character is drawn by placing its bitmask so that the
bitmask’s origin is at the current character position.

3-8 Characters and Fonts

Figure 3-3 shows a sample character definition for the letter g.

Figure 3-3 Character Bitmap Created with defrasterfont()

To define a single character like the one in Figure 3-3, you need the bitmask
itself, width, height, xoffset, yoffset, and xincrement. The defrasterfont() and
deflfont() subroutines allow you to define a collection of such characters.

For a character with a descender, such as g, j, or y, the two bottom lines of the
bitmask should lie below the current character position, so the origin should
not be at the lower-left corner. Two values, the xoffset and the yoffset, tell how
far the character’s origin must be moved to bring it to the lower-left corner. For
characters with descenders, yoffset is typically negative (see Figure 3-3).

Finally, another number for each character indicates how far to the right the
current character position must be advanced after drawing the character. This
is usually different from the width, and is labeled the x increment. In the A
example above, the character position would probably be advanced by 14
pixels to leave a little space between it and the next character.

To simplify matters, the character bitmasks are packed together in one array of
16-bit values, so the bitmask is determined by the offset into the bitmask array.

For example, if a single-byte font contains the letter A from Figure 3-2 as its first
character, and a bitmask for B as its second, the offset for B is 12 shorts (the
length of the bitmask definition of A). The length and width together
determine the number of shorts in a character’s definition.

w

h

baseline

yoffset -2

xinc 9

Graphics Library Programming Guide 3-9

3.2.1 Defining the Font

There are two different subroutines for defining a font: defrasterfont() and
deflfont() .

The defrasterfont() command is limited to 256 bitmap definitions within
the raster array and uses charstr() to operate on the input string as a stream
of single-byte character data.

Extended character sets require the use of multibyte character data, which is
supported by deflfont() . The interface for using multibyte character sets is
analogous to the single-byte interface, but is capable of containing more font
information. This interface was designed primarily to support international
fonts; however, you may find it useful for other purposes as well.

Using Single Byte Character Data

Use defrasterfont() to define a single-byte raster font. Font 0 is the default
raster font, which you cannot redefine. It is a Helvetica-like font with
fixed-pitch characters. If the viewport is set to the whole screen, approximately
142 of the default characters fit on a line (1 character occupies 9 pixels). If
baselines are 16 pixels apart, 64 lines of the default characters fit on the screen.

The ANSI C specification for defrasterfont() is:

void defrasterfont(short n, short ht, short nc,
Fontchar [chars],short nr,unsigned short raster[])

where:

n is an index into a font table. Font 0 is the default font; it cannot
be redefined.

ht is the maximum height of the font characters in pixels.

nc is the number of elements in the chars array. The first 32 entries
of chars are usually undefined because they correspond to the
ASCII control characters.

chars is an array of character descriptions of type Fontchar, which is
defined in the header file gl.h. The description includes the
height and width of the character in pixels, the offsets from the

3-10 Characters and Fonts

character origin to the lower-left corner of the bounding box,
an offset into the array of rasters, and the amount to add to x of
the current character position after drawing the character.

nr is the number of 16-bit integers in raster.

raster is a one-dimensional array of nr bitmask bytes, ordered from
left to right, then bottom to top. Mask bits are left-justified in
the character’s bounding box.

The following code fragment contains the defining parameters for the
character in Figure 3-3 and shows the data in location 724 of the chars array:

defrasterfont(n, ht, nc, chars, nr, rasters);
chars ['g'] = {724, 8, 9, 0, -2, 9 }
short rasterarry [] = {...

...
0x7E00, 0xC300, 0x0300, 0x0300,
0x7F00, 0xC300, 0xC300, 0xC300,
0x7E00,
...
}

Using Multiple Byte Character Data

Extensive character sets such as Asian ideograms require more raster data and
a larger index space than is provided by defrasterfont() . Use deflfont()

for multibyte character sets. The deflfont() subroutine is similar to
defrasterfont() , except that:

• Larger amounts of raster data are supported because the number of raster
elements is a long integer instead of a short integer.

• Character movement in the y-direction can be specified, allowing vertical
displacement of characters.

• Very large bitmaps of characters can be supported, because height and
width are short integers, instead of single-byte unsigned chars.

• Characters can be defined with an index beyond the single-byte,
256-character limit.

• Additional characters can be registered with an existing raster font after
its initial definition. That is, if a character is currently defined at a specific
offset within the raster array, it can be replaced with a new/different
character. The same set of operations applied with defrasterfont()

Graphics Library Programming Guide 3-11

results in the removal of the entire font set; thus, a single character can be
modified with far less overhead using deflfont() .

The ANSI C specification for deflfont() is:

void deflfont(short n,long nc,Lfontchar chars, long nr, unsigned short raster[])

where:

n is the value to use as the identifier for this raster font. The
default font is a fixed-pitch ASCII font with a height of 15,
width of 9, character values 0 through 127 defined, and is
specified by a font identifier of 0. Font 0 cannot be redefined.

nc is the number of elements in the chars array.

chars is an array of character description structures of type
Lfontchar. One structure is required for each character in the
font.

The Lfontchar structure is defined in <gl/gl.h> as:

typedef struct {
unsigned long value;
unsigned long offset;
short w, h;
short xoff, yoff;
short xmove, ymove;

} Lfontchar;

value is the integer value corresponding to this character. When
value is encountered by charstr() or lcharstr() this
character is drawn.

offset is the element number of the raster at which the bitmap data
for this character begins. Element numbers start at zero.

w is the number of columns in the bitmap that contain set bits
(character width).

h is the number of rows in the bitmap of the character
(including ascender and descender).

xoff is the offset in bitmap columns between the start of the
character’s bitmap and the start of the character.

3-12 Characters and Fonts

yoff is the number rows between the character’s baseline and the
bottom of the bitmap. For characters with descenders this
value is a negative number. For characters that rest entirely on
the baseline, this value is zero.

xmove is the pixel spacing for the character. This signed value is
added to the x-coordinate of the current raster position after
the character is drawn.

ymove is the pixel spacing for the character. This signed value is
added to the y-coordinate of the current raster position after
the character is drawn.

nr is the number of 16-bit integers in raster.

raster is a one-dimensional array containing all the bitmap data for
the characters in the font. The bitmap data for each character
is a set of consecutive, 16-bit integers, comprising the bit mask
for the character from left to right, bottom to top. For
characters of width greater than 16, the rows of a bitmap span
more than one array element; however, each new row in the
character bitmap must start with its own array element.

The number of 16-bit integers per row in a character’s bitmap
is (w+15)/16. The total number of 16-bit integers in a
character’s raster definition is h∗((w+15)/16).

Bit 15 of each element is left-most when displayed. Bits that
are 1 are drawn; bits that are 0 are masked.

Examples of how to use this interface are included in 4Dgifts/examples/intl.

3.2.2 Selecting the Font

Use font() to select the font that the system uses for drawing a text string. Its
argument is the font number assigned to the font built by defrasterfont() or
deflfont() . This font remains the current font until you call font() to select
another font.

The next sample program, font.c, defines a font with three characters: a
lowercase j, an arrow, and the Greek letter sigma. The j is assigned to the ASCII
value of j, and the arrow and sigma are assigned to ASCII values 1 and 2
(written \001 and \002 in the C code). Two sample strings are then written out,
the first of which contains only characters that are defined, while the second

Graphics Library Programming Guide 3-13

contains undefined characters. When characters are not defined, no error
occurs, but nothing is drawn for them.

/*
 * Define a font with three characters -- a lower-case j,
 * an arrow, and a Greek sigma. Use ASCII values 1 and 2
 * (‘\001’ and ‘\002’) for the arrow and sigma. Use the
 * ASCII value of j (= ‘\152’) for the j character.
 */
#include <gl/gl.h>

#define EXAMPLEFONT 1
#define efont_ht 16
#define efont_nc 127
#define efont_nr((sizeof efont_bits)/sizeof(unsigned short))

#define ASSIGN(fontch, of, wi, he, xof, yof, wid) \
fontch.offset = of; \
fontch.w = wi; \
fontch.h = he; \
fontch.xoff = xof; \
fontch.yoff = yof; \
fontch.width = wid

Fontchar efont_chars[efont_nc];
unsigned short efont_bits[] = {

/* lower-case j */
0x7000, 0xd800, 0x8c00, 0x0c00, 0x0c00, 0x0c00, 0x0c00,
0x0c00, 0x0c00, 0x1c00, 0x0000, 0x0000, 0x0c00, 0x0c00,

/* arrow */
0x0200, 0x0300, 0x0380, 0xafc0, 0xafe0, 0xaff0, 0xafe0,
0xafc0, 0x0380, 0x0300, 0x0200,

/* sigma */
0xffc0, 0xc0c0, 0x6000, 0x3000, 0x1800, 0x0c00, 0x0600,
0x0c00, 0x1800, 0x3000, 0x6000, 0xc180, 0xff80,

};

main()
{

ASSIGN(efont_chars[‘j’], 0, 6, 14, 0, -2, 8);
ASSIGN(efont_chars[‘\001’], 14, 12, 11, 0, 0, 14);
ASSIGN(efont_chars[‘\002’], 25, 10, 13, 0, 0, 12);

prefsize(400, 400);
winopen("font");

3-14 Characters and Fonts

color(BLACK);
clear();
defrasterfont(EXAMPLEFONT, efont_ht, efont_nc,

efont_chars, efont_nr, efont_bits);
font(EXAMPLEFONT);
color(RED);
cmov2i(100, 100);
charstr("j\001\002\001jj\002");
cmov2i(100, 84);
charstr("ajb\001c\002d");
sleep(10);
gexit();
return 0;

}

3.2.3 Querying the System for Font Information

The following subroutines return information about the current font: its index,
the height of its characters, and the maximum descender for its characters.

Use getfont() to query for the index of the current raster font:

long getfont(void)

Use getheight() to query for the maximum height, in pixels, of a character in
the current raster font, including ascenders (present in tall characters, such as
the letters t and h) and descenders (present in such characters as the letters y
and p, which descend below the baseline):

long getheight(void)

Use getdescender() to query for the longest descender in the current font. It
returns the number of pixels that the longest descender extends below the
baseline:

long getdescender(void)

