
Graphics Library Programming Guide 9-1

Chapter 9

9. Lighting

This chapter describes the GL lighting facility and tells you how to create
lighted scenes.

• Section 9.1, “Introduction to GL Lighting,” presents some
terminology and basic principles of lighting that you need to know to
understand GL lighting.

• Section 9.2, “Setting Up GL Lighting,” tells you how to configure lighting
parameters.

• Section 9.3, “Binding Lighting Definitions,” tells you how to activate your
lighting definitions.

• Section 9.4, “Changing Lighting Settings,” tells you how to change
lighting definitions that you have set up.

• Section 9.5, “Default Settings,” describes the default lighting settings and
tells you how to create your own default definitions.

• Section 9.6, “Advanced Lighting Features,” tells you how to use special
lighting features for more complex lighting effects.

• Section 9.7, “Lighting Performance,” gives you some programming hints
to help you get the best performance from lighting.

• Section 9.8, “Color Map Lighting,” tells you how to use lighting in color
map mode, primarily for machines with limited RGB capability.

Code fragments are used extensively to encourage a learn-by-example
approach. A complete sample program is included at the end of the chapter.

9-2 Lighting

9.1 Introduction to GL Lighting

In the real world, when light falls on an opaque object, some of this light is
absorbed by the object and the rest of the light is reflected. Our eyes use this
reflected light to interpret the shape, color, and other details about the object.
The light that strikes the object from the light source is called incident light; the
light that bounces off the object’s surface is called reflected light.

In GL lighting, as in the real world, the characteristics of the light source
determine the direction, intensity, and wavelength(color) of the incident light.
The characteristics of the object geometry and its surface material determine
the direction, intensity, and color of the reflected light. How light is reflected
depends on the interaction between the incident light and the surface material.

The interaction between light and matter is far more complicated than can be
simulated in real time. Lighting on the IRIS achieves a balance between
realistic appearance and real-time drawing speed. The GL achieves this
balance by performing lighting calculations only at geometry vertices, rather
than calculating lighting for each pixel rendered.

You control GL lighting by creating a lighting definition that allows you to
specify and manipulate the characteristics of the incident light, the surface
properties of lighted objects, and the effects of the surrounding environment.
In a lighting definition, you set up the color, intensity, and position of light
sources, the properties of surface materials, and the characteristics of the
lighting environment in your scene. Once you have your lighting definition set
up, you can turn lights on and off, use different object materials, and use
advanced lighting techniques for interesting effects.

9.1.1 Color

A lighting definition determines how the color of incident light is modified
when it reflects from surfaces. For example, an object can appear blue because:

• A white light source shines on an object which reflects only the
wavelengths that our eyes interpret as blue. Although other wavelengths
of light are present, the object absorbs them and reflects only blue.

• The object reflects blue light and possibly other wavelengths, but only
blue light is shining on it. In this case, there are no other wavelengths for
the object to reflect.

Graphics Library Programming Guide 9-3

GL lighting allows both of these methods: you can define a blue light and shine
it on a white object, or you can define a white light and shine it on a blue object.

9.1.2 Reflectance

The ratio of incident light to reflected light is called reflectance. Some of the
factors that determine reflectance are inherent in an object’s geometry; other
properties that affect reflectance are controlled by GL lighting.

There are three reflectance properties that determine how a surface reflects
light:

• diffuse, which shows up as a matte, or flat, reflection

• specular, which shows up as highlights

• ambient, which simulates indirect light

Diffuse Reflectance

Diffuse reflectance gives the appearance of a matte, or flat, reflection from a
surface. The direction of the light as it falls on the surface determines how
bright the diffuse reflection is. Diffuse reflection is brightest where the incident
light strikes the perpendicular to the surface.

For example, consider a distant light shining directly on the north pole of a
sphere representing the earth. The diffuse reflectance of the sphere causes the
sphere to appear brightest at the north pole. The brightness falls off as you look
farther down the sides of the sphere. South of the equator there is no diffuse
reflectance at all.

Because diffuse light reflects equally in all directions, the viewer’s perception
of diffuse intensity is not affected by the viewing angle.

Specular Reflectance

Specular reflectance creates highlights and is dependent on the position of the
viewpoint. For example, consider the glare in your rear view mirror from the
headlights of a car behind you. If you shift your head a few inches to the right
or left, you cannot see the glaring headlights in your mirror. The intensity of
specular reflection is typically highest along the direct angle of reflection.

9-4 Lighting

Ambient Reflectance

Diffuse and specular reflectance simulate how objects in the scene reflect light
that comes directly from a light source. Ambient reflectance simulates light
reflected from other objects in the scene, rather than directly from the light
source. For example, if you look under your desk (presuming that you have a
light on your desk that does not shine directly under it), you can still see
things, even though the area under your desk is not directly illuminated. In
reality, this ambient light is reflected from other surfaces in the room.

The ambient component is most noticeable in areas of the scene that receive no
direct illumination.

Emission

Emission is the quality of giving off light. Adding an emission component is
useful for simulating the appearance of lights in a scene. A GL object that emits
light does not also automatically act as a light source; that is, it does not add
illumination to a scene. For this object to act as a light source in the scene, you
must add a light to the lighting model and position this light at the same
location as the object that is emitting light.

9.2 Setting Up GL Lighting

This section introduces fundamental GL lighting concepts, and tells you how
to create a static lighting environment.

Points, lines, polygons, and character strings can all be lighted. As a general
rule, any GL primitive that uses the current color can also be lighted. The
lighting calculation is performed at each vertex of a primitive.

To set up GL lighting:

1. Define the properties for each material, light and lighting model that you
want in your scene.

2. Activate (bind) your definitions.

3. Draw the scene. Provide surface normals, as discussed in Section 9.2.1,
“Defining Surface Normals,” for all primitives to be lighted.

Graphics Library Programming Guide 9-5

9.2.1 Defining Surface Normals

Surface normals are unit-length vectors that are perpendicular to a given
surface at a particular vertex. They serve as input to the lighting formula, and
are required for GL lighting.

When using GL NURBS surfaces (see Chapter 14, “Curves and Surfaces”),
normals can be generated automatically from the surface descriptions.

Specify a surface normal for each vertex using the n3f() subroutine. The GL
maintains a current normal, which remains the same until you change it. The
current normal is analogous to the current color.

This example specifies a point with a normal:

static float np[3] = {0, .7071, .7071};
static float vp[3] = {0, 0, -1};

bgnpoint();
n3f(np);
v3f(vp);

endpoint();

This example specifies a triangle with normals:

static float np[3][3] =
{{-.08716, 0, .9962}, {.08716, 0, .9962}, {0, 0, 1}};

static float vp[3][3] =
{{-.08716, 0, .9962}, {.08716, 0, .9962}, {0, .1, 1}};

bgnpolygon();
n3f(np[0]);
v3f(vp[0]);
n3f(np[1]);
v3f(vp[1]);
n3f(np[2]);
v3f(vp[2]);

endpolygon();

The relationship between the order of the vertices and the direction of the
normals is significant. When the order of the vertices of the projected triangle
is counterclockwise as seen from the viewer’s perspective, the front face of the
triangle is the side toward the viewer. In this case, the normals of the triangle
also point toward the viewer. This convention obeys the right-hand rule. The
example triangle given above displays this behavior. The right-hand rule

9-6 Lighting

makes it possible to distinguish between the front and the back faces of the
triangle. Although it is not necessary for you to follow the right-hand-rule
when using lighting, doing so allows you to use backface elimination (see
Chapter 8). Two-sided lighting, described in Section 9.6.3, requires you to
follow the right-hand-rule.

Non-Unit-Length Normals

The previous section stated that normals must be unit-length, which is the
default. The GL can handle non-unit-length normals, but there may be a
performance penalty associated with their use. See Section 9.7, “Lighting
Performance,” for information about performance considerations with
non-unit-length normals.

Use the nmode() subroutine to handle non-unit-length normals. The default
mode is NAUTO, which automatically corrects for situations where normals you
would expect to be unit-length become non-unit-length. When you know your
normals are unit-length, use this mode:

nmode(NAUTO);

To configure the GL to automatically normalize (correct to unit length) all
normals (when you are intentionally using non-unit length normals), use:

nmode(NNORMALIZE);

Note: Lighting does not have to be on to set nmode() .The nmode() command
is not available on all systems, see the nmode() man page for details.

9.2.2 Defining Lighting Components

You configure three lighting components to define GL lighting for your scene:

• material - determines how a surface responds to illumination

• light source - determines the characteristics of the incident light

• lighting model - determines the behavior of the lighting environment

The combination of these three components determines the appearance, or
more specifically, the color at each lighted vertex. The GL calculates the color
at each lighted vertex by summing the total ambient light (scaled by the

Graphics Library Programming Guide 9-7

material ambient reflectance), the material emitted light, and the contributions
of each light source.

The total ambient light is the sum of the ambient light associated with each
light source and the ambient light associated with the scene, as given by the
lighting model.

The contribution of each light source is the sum of:

1. Light source ambient color, scaled by material ambient reflectance.

2. Light source color, scaled by material diffuse reflection and the dot product
(see Foley and Van Dam, Computer Graphics Principles and Practice) of the
vertex normal and the vertex-to-light source vector.

3. Light source color, scaled by material specular reflectance and a function
of the angle between the vertex to viewpoint vector and the
vertex-to-light source vector.

You configure each of the three components using a two-step process. The first
step is definition, using lmdef() . The second step is activation, using lmbind() .

Use the lmdef() subroutine to establish your material, light source and
lighting model definitions.

The ANSI C specification of lmdef() is:

void lmdef(short deftype, short index, short np, float props[])

where:

deftype indicates whether the properties in the array apply to a
material, a light source, or a lighting model.

index defines an index to be associated with the definition.

np provides a count of symbols and floating point values in the
props array. You can usually set np to 0, in which case it is
ignored; however, operation over network connections is
more efficient when np is correctly specified.

props array of floating point symbols that define properties.

You specify properties as an array of floats. The array elements are terminated
by the special constant LMNULL, which must always be the last float in the array.
lmdef() associates the properties in your property array with an integer index
and copies these properties at the time of the call.

9-8 Lighting

Index 0 is reserved as the null definition for material, light source and lighting
model definitions. You use index 0 to turn definitions off, as described in
Section 9.4, “Changing Lighting Settings.” You cannot assign your own
definition to index 0.

Defining a Material

To define a material, you specify its properties in an array of floats.

For example, a greenish plastic-like material is defined like this:

static float mat[] = {
AMBIENT, .1, .1, .1,
DIFFUSE, 0, .369, .165,
SPECULAR, .5, .5, .5,
SHININESS, 30,
LMNULL

};
lmdef(DEFMATERIAL, 39, 5, mat);

In this example, the lmdef() call stores the material properties in the mat array
as material number 39 . This creates a material definition that will be referenced
later by its integer index, 39 .

Each property in the array expects a fixed number of floats to follow it.
DIFFUSE is followed by three floats that are the red, green, and blue diffuse
reflectance coefficients. Similarly, the AMBIENT and SPECULAR properties are
each followed by three floats that represent the red, green and blue ambient
and specular reflectance coefficients, respectively. All color components
should be in the range 0.0 to 1.0. The system clamps (limits) the color
components to a maximum value of 1.0, and scales the components by 255
before loading them in the framebuffer.

Specular reflectance also depends on the viewpoint. You specify the viewpoint
in the lighting model. (See the description of the LOCALVIEWER property under
Defining a Lighting Model in this Section for more details.)

SHININESS is followed by one float that controls the size and apparent
brightness of a specular highlight. The shininess value can range from 0 to 128.
Higher values result in smaller, more focused specular highlights. A shininess
value of 0 disables specular reflection entirely.

Graphics Library Programming Guide 9-9

EMISSION is followed by three floats, in the range 0.0 to 1.0, that specify the red,
green and blue components of the emitted light. This example defines a
material that has only an emission property:

static float mat[] = {
EMISSION, 0, .369, .165,
LMNULL

};
lmdef(DEFMATERIAL, 39, 2, mat);

Defining a Light Source

There are two types of light sources that you can use: a point light source and an
infinite light source. A point light source has a position and a direction. An
infinite light source represents a light a great distance away (like the sun).
Infinite light sources provide subtle overall lighting and have a performance
advantage over point light sources.

The next example defines a slightly reddish-colored point light source:

static float lt[] = {
LCOLOR, 1, .8, .8,
POSITION, 0, 1.5, -.5, 1,
LMNULL

};
lmdef(DEFLIGHT, 27, 0, lt);

This light source definition is associated with the integer index 27 , by which it
can later be referenced.

Although you use the same syntax for a light source as for a material, the
actual properties are different. In this case, the LCOLOR property is followed by
three floats that are the red, green, and blue components of the light source
color. A light source is normally omnidirectional; that is, it emits light of equal
intensity in all directions.

AMBIENT is followed by three floats, specifying the red, green and blue
components of the ambient light associated with the light source.

POSITION is followed by four floats that are the x, y, z, and w coordinates of the
light source. The x, y, and z coordinates represent the location of the light
source in object coordinates. Note that the light source direction points from
the vertex to the light source. The GL normalizes the light source direction.

9-10 Lighting

Light source position is defined in homogeneous coordinates. If the w
coordinate is zero, an infinite light source is defined; a non-zero w component
defines a point light source and the x, y, and z coordinates represent the
direction from the origin to the light source. This example defines a white light
source that is positioned infinitely far away on the positive z axis:

static float lt[] = {
LCOLOR, 1., 1., 1.,
POSITION, 0., 0., 1., 0.,
LMNULL

};
lmdef(DEFLIGHT, 27, 3, lt);

Defining a Lighting Model

The next example defines a typical lighting model:

static float lm[] = {
AMBIENT, .1, .1, .1,
LOCALVIEWER, 1,
LMNULL

};
lmdef(DEFLMODEL, 14, 0, lm);

Once again, use the same syntax for a lighting model as for a material or light
source. The AMBIENT property specifies the color of ambient light associated
with the entire scene. This ambient light is nondirectional.

Specular reflectance from a point on a surface depends on the normal, the
direction to the light source, and the direction to the viewpoint.

You can use a local viewpoint (placed at the origin) or an infinite viewpoint
(placed at an infinite distance on the positive z axis).

Use LOCALVIEWER to indicate whether the viewpoint is local or infinite.
LOCALVIEWER is followed by a single float, either 0.0 to indicate that the
viewpoint is infinite, or 1.0 to indicate that the viewpoint is local. With a local
viewpoint, the direction to the viewpoint needs to be recalculated at each
vertex, which may cause a decrease in performance.

This example defines a lighting model with an infinite viewpoint:

static float lm[] = { LOCALVIEWER, 0, LMNULL };
lmdef(DEFLIGHT, 14, 2, lm);

Graphics Library Programming Guide 9-11

When you use an infinite viewpoint with infinite lights, primitives with the
same normal and material properties produce identical colors. In practice, this
means that surfaces are lighted with constant color, which might appear
slightly unrealistic.

9.3 Binding Lighting Definitions

After defining the three components of lighting, you must bind (activate) them.
Before binding any lighting definitions, you must be in multimatrix mode:

mmode(MVIEWING);

The next example shows how to bind the previously defined material, light
source, and lighting model.

lmbind(MATERIAL, 39);
lmbind(LIGHT0, 27);
lmbind(LMODEL, 14);

Material index 39 represents the material definition from our previous
example. You activate this material definition by binding it to the target
MATERIAL. Only one material can be active at any time. Light source 27 from
the previous example is activated by binding it to the target LIGHT0 .

There are at least eight light source targets available, named LIGHT0 , LIGHT1 ,
LIGHT2 , and so on. The actual number of these targets is defined in gl.h by the
constant MAXLIGHTS. Any number of the light source targets can be active at
any time. You can bind a light definition to only one light source target.

The current ModelView matrix transforms the position of the light source
when you call lmbind() (see Chapter 7, “Coordinate Transformations” for
more information on transformations). In this example, the position of the
light source has a non-zero w component. This makes it a point light source. Its
position is transformed in the same way that a point is transformed.

Lighting model index 14 represents the lighting model definition from a
previous example. You activate it by binding it to the target LMODEL. Only one
lighting model can be active at any time.

At this point, lighting is enabled. More specifically, lighting is enabled when
both a material and a lighting model are bound. The indexes 39 , 27 , and 14

9-12 Lighting

were chosen for this example and are arbitrary. You could use index 1 for all
three components because indexes for materials are separate from those of
lights, and lighting models. Any index between 1 and 65535 is legal. Index 0 is
used to turn lighting off, as described in Section 9.4, “Changing Lighting
Settings.”

9.4 Changing Lighting Settings

Use the lmbind() subroutine to change or deactivate (unbind) currently
bound lighting definitions. Specify index 0 with lmbind() to unbind a
material, light, or lighting model.

This example turns off the light source bound to LIGHT0 :

lmbind(LIGHT0, 0);

Note: After this lmbind() call, lighting remains on because the presence of
active lights is not necessary for lighting.

Recall that lighting is enabled when both a material and a lighting model are
bound. To turn off lighting, you must unbind either the material or the lighting
model. This example turns lighting off:

lmbind(LMODEL, 0);

Suppose you have defined more than one material for geometry you are
drawing. When you bind the second material definition, it becomes the active
material, overriding the previously bound material.

You can also use lmdef() to change the properties of an existing definition
instead of creating a new definition for each variation to that definition.

Recall the point light source definition 27 from the previous example. This
example changes this light source definition to produce a greenish color:

static float lt[] = {
LCOLOR, .8, 1, .8,
LMNULL

};
lmdef(DEFLIGHT, 27, 2, lt);

Graphics Library Programming Guide 9-13

If light source definition 27 is currently bound to a light source, such as
LIGHT0 , the light color change takes effect immediately. Because LCOLOR is the
only property in this array, only this property is changed. Changes made to
bound definitions are effective immediately. Only the specified properties are
changed, the other properties remain the same.

A light source position is transformed by the ModelView matrix at the time of
the lmbind() call. It can be retransformed by binding it again. This is often
used to make a light move from frame to frame. A light source that was
previously bound can only be rebound to its original light target.

9.5 Default Settings

When you create a definition with lmdef() , the properties are first set to their
default values. Properties specified in the array override these defaults. Later,
when you change this definition with lmdef() , properties not specified in
your array are left unchanged.

These definitions contain the default settings for material, light source, and
lighting model:

static float mat[] = {
ALPHA, 1.0,
AMBIENT, .2, .2, .2,
COLORINDEXES, 0, 127.5, 255,
DIFFUSE, .8, .8, .8,
EMISSION, 0.0, 0.0, 0.0,
SPECULAR, 0.0, 0.0, 0.0,
SHININESS, 0.0,
LMNULL

};

static float lt[] = {
AMBIENT, 0.0, 0.0, 0.0,
LCOLOR, 1.0, 1.0, 1.0,
POSITION, 0.0, 0.0, 1.0, 0.0,
SPOTLIGHT, 0.0, 180.0,
SPOTDIRECTION, 0.0, 0.0, -1.0,
LMNULL

};

9-14 Lighting

static float lm[] = {
AMBIENT, .2, .2, .2,
ATTENUATION, 1.0, 0.0,
ATTENUATION2, 0.0,
LOCALVIEWER, 0.0,
TWOSIDE, 0.0,
LMNULL

};

Passing NULL as the fourth parameter of an lmdef() call creates a definition of
a default set of properties. It is also equivalent to passing an array of type
float that has one element, the special constant LMNULL.

The following example sets defaults for the example lighting model:

lmdef(DEFMATERIAL, 39, 0, NULL);
lmdef(DEFLIGHT, 27, 0, NULL);
lmdef(DEFLMODEL, 14, 0, NULL);

9.6 Advanced Lighting Features

This section covers advanced lighting features. Not all lighting features are
supported on all systems. Consult the lmdef() man page to determine which
features are available on your system.

9.6.1 Attenuation

In reality, the effect of a light source on a surface diminishes as the distance
between the light source and the surface increases. You can simulate this effect
with the attenuation feature of GL lighting. Attenuation is defined in the
lighting model and applies to all point light sources. Attenuation does not
apply to infinite or ambient light sources. Attenuation is not supported on all
systems; it is ignored on systems that do not support it.

Attenuation is a function of the distance between a point light source and the
surface it illuminates. You can specify constant, linear and distance-squared
attenuation factors.

Graphics Library Programming Guide 9-15

The formula for attenuation is:

attenuation factor = 1 / (k0 + k1∗dist + k2∗dist∗dist) (EQ 9-1)

where:

dist is the distance between the vertex and the point light source.
This distance is never negative.

k0 controls constant attenuation.

k1 controls linear attenuation.

k2 controls distance-squared attenuation.

The attenuation formula is calculated for each lighted vertex. The following
example specifies constant and linear attenuation factors for lighting model
14 .

static float atten[] = {
ATTENUATION, .1, 1,
LMNULL

};
lmdef(DEFLMODEL, 14, 2, atten);

The ATTENUATION property is followed by two non-negative floats. These
floats specify k0 and k1 of the attenuation formula.

This example adds distance-squared attenuation to lighting model 14 :

static float atten[] = {
ATTENUATION, .1, 0,
ATTENUATION2, 1,
LMNULL

};
lmdef(DEFLMODEL, 14, 3, atten);

The ATTENUATION2 property is followed by one non-negative float, specifying
k2.

The attenuation factor defaults are k0 = 1, k1 = 0, and k2 = 0. These values define
a lighting model without attenuation. You can disable attenuation by restoring
these default values.

Both of these examples use a small, but non-zero value for the constant term
k0. As dist approaches zero, a non-zero k0 bounds the maximum value of the
attenuation formula; otherwise, it would approach infinity.

9-16 Lighting

9.6.2 Spotlights

A point light source is omnidirectional by default. You can make a point light
source into a directional spotlight using the SPOTLIGHT property. Spotlights are
available only on certain systems. See the lmdef() man page to determine
whether your system supports spotlights.

A spotlight emits a cone of light that is centered along the spotlight direction.
The intensity of a spotlight is a function of the angle between the spotlight
direction and the direction to the vertex being illuminated. Typically, the
intensity falls off as this direction angle increases.

You can control the shape of a spotlight’s intensity falloff with two values: an
exponent and a spread angle. An exponent of 1 produces a gradual falloff that is
actually the cosine of the direction angle. An exponent of 128 gives the
sharpest possible falloff; an exponent of 0 gives a constant intensity. The
spread angle defines a cone outside which no light is emitted. The intensity
falloff as controlled by the exponent is cut off by this cone. The cone defined
by the spread angle is independent of the intensity falloff controlled by the
exponent.

This example defines and binds a white spotlight:

static float spot[] = {
LCOLOR, 1, 1, 1,
POSITION, 0, 2, 0, 1,
SPOTDIRECTION, 0, -1, 0,
SPOTLIGHT, 100, 45,
LMNULL

};
lmdef(DEFLIGHT, 11, 5, spot);
lmbind(LIGHT0, 11);

The SPOTLIGHT property is followed by two floats specifying the exponent and
spread angle of the light cone. The exponent can range from 0 to 128; an
exponent of 100 specifies a sharp falloff. The spread angle can range from 0 to
90 degrees; a spread angle of 45 defines a cone with a radius angle of 45
degrees. A special value of 180 degrees is also permitted, and is used in the
next example.

The SPOTDIRECTION property is followed by three floats, the x, y, and z
coordinates of the spotlight direction vector. The direction vector is
automatically normalized. This example points the spotlight in the direction of

Graphics Library Programming Guide 9-17

the negative y axis. The spotlight direction vector is transformed by the current
ModelView matrix in the same manner as a normal.

Notice that the POSITION property specifies a point light source. This is
necessary for a spotlight. The SPOTLIGHT property is ignored for an infinite
light source.

This example turns off the spotlight effect:

static float spotoff[] = { SPOTLIGHT, 0.0, 180.0, LMNULL };
lmdef(DEFLIGHT, 11, 2, spotoff);

The combination of setting the exponent to 0.0 and the spread angle to 180.0
turns off the spotlight effect. By default, a point light source is not a spotlight.
The SPOTDIRECTION property is ignored when the light source is not a
spotlight.

You can combine spotlights with attenuation to yield an effect that is
reminiscent of a real spotlight. The spotlight effect can create a highly
non-linear intensity gradient across a surface. To make the approximation of
the gradient as accurate as possible, place the vertices of the surface
illuminated by a spotlight very close to one another.

9.6.3 Two-Sided Lighting

In general, lighting calculations are correct only when you view the side of a
polygon where the normal faces toward you. If you use the right-hand rule to
define the polygons and their normals, lighting calculations are correct for the
front faces of those polygons. This is called one-sided lighting. With two-sided
lighting, the lighting for backfacing polygons is also correct. Two-sided lighting
is available only on certain systems. Use getgdesc(GD_LIGHTING_TWOSIDE)

to determine if two-sided lighting is available.

This example adds two-sided lighting to a lighting model definition:

static float two[] = { TWOSIDE, 1, LMNULL };
lmdef(DEFLMODEL, 14, 3, two);

The TWOSIDE property is followed by one float, either 1.0 or 0.0, that specifies
whether the two-sided lighting feature should be enabled or disabled,
respectively. It is disabled by default.

9-18 Lighting

Two-sided lighting applies only to primitives with facets, such as polygons or
triangle meshes. Two-sided lighting is ignored for other lighted primitives,
such as points or lines.

With two-sided lighting, the material properties of the front and back faces are
normally identical; that is, the active material is used for both the front and the
back faces. You can also specify independent front and back material
properties. Independent front and back materials can be useful to distinguish
between the inside and the outside of an object. This feature is quite effective
when combined with user-defined clipping planes. See Chapter 8,
“Hidden-Surface Removal”, for more information about two-sided polygons.

This example binds material definition 40 to the back material as follows:

lmbind(BACKMATERIAL, 40);

You unbind the back material by binding it to 0:

lmbind(BACKMATERIAL, 0);

By default, the back material is bound to 0. Whether a back material is bound
or not has no effect on whether lighting is on or off.

9.6.4 Fast Updates to Material Properties

When you change the properties of an active (currently bound) definition,
those changes take effect immediately.

Assume that material definition 39 exists and is currently bound. The
following example changes its DIFFUSE property immediately:

static float mat[] = {
DIFFUSE, .369, 0, .165,
LMNULL

};
lmdef(DEFMATERIAL, 39, 2, mat);

This mechanism provides a general method for updating the properties of a
material, a light source, or a lighting model.

It is useful to have an even more efficient method of changing material
properties. For example, it is reasonable to change a specific material property

Graphics Library Programming Guide 9-19

at each vertex of many polygons. For this reason, the GL provides a fast update
mechanism for material properties.

You use the lmcolor() subroutine to set a mode where the current color
updates a specific material property. The current color should be set explicitly
after the call to lmcolor() and before a vertex or normal is issued. The current
color can be set with c, cpack() , or RGBcolor() .

Note: For higher performance, call lmcolor() only once, prior to drawing a
large number of primitives. Do not call lmcolor() within a primitive
(between bgn and end calls). If you must change more than one
material property per vertex, excluding related LMC_AD ambient or
diffuse changes, it is probably better to use lmdef() than to mix
lmcolor() and color() calls within a single primitive.

Some of the color commands specify red, green, blue, and alpha as integers in
the range of 0 to 255. This range is mapped to a 0.0 to 1.0 range when used to
update material properties.

This example illustrates using lmcolor() to update the DIFFUSE property of
the current material.

lmcolor(LMC_DIFFUSE);
RGBcolor(94, 0, 42);
lmcolor(LMC_COLOR);

The first call to lmcolor() sets LMC_DIFFUSE mode. In this mode, the
RGBcolor() call directly updates the diffuse property. The second call to
lmcolor() restores the default mode.

This example sets the diffuse property of the active material to roughly the
same values as the previous example, but there is an important difference.
When you use lmdef() to change an active material, the material definition also
changes.

When you use lmcolor() to change an active material, the change has no effect
on the material definition. Actually, any changes made to the active material
using lmcolor() are lost when you use lmbind() to bind another material.

9-20 Lighting

This example updates the ambient and diffuse properties of the current
material at each vertex of a polygon.

lmcolor(LMC_AD);
bgnpolygon();

cpack(0x800000ff);
n3f(np[0]);
v3f(vp[0]);
cpack(0x8000ff00);
n3f(np[1]);
v3f(vp[1]);
cpack(0x80ff0000);
n3f(np[2]);
v3f(vp[2]);

endpolygon();
lmcolor(LMC_COLOR);

This example uses a normal array, np, and a vertex array, vp, in the same
manner as the triangle example in Section 9.2.1, “Defining Surface Normals.”
The call to lmcolor(LMC_AD) sets a mode where the calls to cpack() directly
update the ambient and diffuse material properties simultaneously.

The modes LMC_AD, which updates both the ambient and diffuse properties,
and LMC_DIFFUSE, which updates only the diffuse property, also update the
ALPHA material property with the alpha component of the current color. See
Section 9.6.5, “Transparency,” for alpha information. Note that the alpha
component in this example is set to 0x80 (roughly 0.5) at each vertex.

The default mode, LMC_COLOR, has an interesting property. If no normals are
present for a primitive, that primitive is not lighted. More exactly, if a color
command follows the last normal before a primitive is drawn, that primitive is
not lighted.

LMC_EMISSION, LMC_AMBIENT, and LMC_SPECULAR update their corresponding
material properties. In LMC_NULL mode, color commands are ignored while
lighting is enabled.

If two-sided lighting is enabled and no BACKMATERIAL is bound, then fast
updates to material properties affect both the front and back faces. If a
BACKMATERIAL is bound, changes to material properties affect only the front
face.

Graphics Library Programming Guide 9-21

9.6.5 Transparency

Normally, materials are opaque. You can control the transparency of a material
with the alpha component. Not all systems support alpha. Alpha information
is ignored by systems that do not support it. In lighting, alpha is specified in
the material definition.

static float mat[] = {
ALPHA, .5,
LMNULL

};

The ALPHA property is followed by one float. When used in conjunction with
blendfunction() , a transparent effect can be achieved. The use of
LMC_DIFFUSE or LMC_AD mode overrides the ALPHA material property with the
alpha of the current color.

The ALPHA property works with two-sided lighting. You can achieve different
front and back transparencies by binding material definitions with different
ALPHA properties to MATERIAL and BACKMATERIAL. See Chapter 4 for more
information on transparency.

9.6.6 Lighting Multiple GL Windows

You can use lighting in more than one GL window. The definitions that
lmdef() creates and modifies are shared among all GL windows of a process.
On the other hand, the material, light sources, and lighting model that
lmbind() activates are specific to the GL window that was active at the time
of the lmbind() call.

9-22 Lighting

9.7 Lighting Performance

This section gives a general feeling for the performance implications of specific
lighting features. The performance of a given feature might vary among the
different graphics products as well as among different software releases on the
same product. Nevertheless, there are some guidelines you can follow.

9.7.1 Restrictions on ModelView, Projection, and User-Defined
Matrices

Many GL programs change the ModelView matrix using only rot() ,
rotate() , scale() , and translate() . They change the Projection matrix
using only ortho2() , ortho() , perspective() , and window() . These calls all
work with lighting; however, there are certain restrictions to be aware of.

These restrictions apply to the ModelView, Projection and user-defined
transformation matrices when lighting is used:

• In some cases, normals transformed by the ModelView matrix do not
maintain their unit length. The GL detects this condition of the matrix
and automatically renormalizes the transformed normals. To avoid
this extra calculation, use uniform scale factors; scale(x,y,z) only if
x = y = z.

• Ensure that you use an orthonormal (see the lmdef() man page for a
definition of orthonormal) matrix with loadmatrix() or multmatrix() .
If you use loadmatrix() or multmatrix() to specify a non-orthonormal
matrix in the ModelView matrix, you must use nmode(NNORMALIZE) to
renormalize the normals properly.

• No projection components are allowed in the ModelView matrix. More
specifically, the right-most column of the matrix must be [0 0 0 1] .

• Two restrictions apply to the Projection matrix:

– No rotation is allowed.

– The top two elements of the right column must be 0.

IRIS-4D/VGX, VGXT and SkyWriter systems permit a general 4×4
Projection matrix, so the Projection matrix restrictions do not apply to
these systems.

Graphics Library Programming Guide 9-23

9.7.2 Computational Considerations

Certain lighting features and operations take longer to calculate than others.
The following are areas where there are performance tradeoffs:

• Two-sided lighting takes extra computation, but its performance
should be better than half the performance of one-sided lighting.

• Each additional light source takes extra computation. The more you use,
the longer it takes to compute the color for a vertex.

• A time-consuming calculation that can occur in lighting is the square root
operation. It is used for a local viewpoint, a point light source, and in
normalizing non-unit-length normals. Any of these features adversely
affects performance.

• GL calls other than n, v, c , cpack(), and RGBcolor() between bgn* and
end* calls might incur a performance penalty. In fact, only a limited set of
calls are allowed between a bgn* and end* call. See Appendix A for
subroutines that can be called between a bgn/end sequence.

• Calling lmcolor() with an argument other than LMC_COLOR or LMC_NULL

might incur a slight performance penalty.

Following are suggestions for getting the highest possible performance from
lighting:

• Use an infinite viewpoint by setting LOCALVIEWER to 0, the default.

• Use a single infinite light source.

• Use the default lmcolor(LMC_COLOR) or use lmcolor(LMC_NULL) .

• Use the default nmode(NAUTO).

• Take advantage of drawing primitives that share vertices for lines or
polygons; for instance, use bgntmesh() or bgnqstrip for drawing
polygons.

• On IRIS-4D/VGX and SkyWriter systems, using less than one normal per
vertex (such as one normal per polygon) does not reduce the lighting
calculation specifically. However, it does reduce the amount of data
transferred to the Geometry Engines.

9-24 Lighting

9.8 Color Map Lighting

You can do lighting in color map mode, but that method is generally designed
for systems without enough bitplanes to support RGB mode. On graphics
systems with enough bitplanes, RGB mode lighting is recommended.

Color map lighting generates a pseudo-intensity, which is a function of the
direction to the light source and the direction to the viewpoint. This
pseudo-intensity is mapped to a color map value. A well-chosen range of color
map values gives a reasonable lighting effect. You can represent multiple
materials by creating a color map range for each material. Color map lighting
is enabled when both lighting and color map mode are enabled.

Color map lighting has inherent limitations, and many of the advanced
lighting features are not supported. Color map lighting recognizes only a
limited set of properties, described here.

A material definition in color map mode uses the COLORINDEXES and
SHININESS properties:

static float mat[] = {
COLORINDEXES, 512, 576, 639,
SHININESS, 5,
LMNULL

};

This property is followed by three floats, representing an ambient index, a
diffuse index, and a specular index. These indices should correspond to
appropriate values in the color map. Lighting produces values that range from
the ambient index to the specular index. Lighting generates the ambient index
when there is no diffuse or specular reflection. It generates the diffuse index
when the diffuse reflection is at a maximum, but there is no specular reflection.
It generates the specular index when the specular reflection is at a maximum.
The specular index must be greater than or equal to the diffuse index, which
must in turn be greater than or equal to the ambient index. All other material
properties are ignored.

A light source definition in color map mode uses only the POSITION property:

static float lt[] = {
POSITION, 0, 0, 1, 0,
LMNULL

};

Graphics Library Programming Guide 9-25

Each light source contributes an intensity proportional to its LCOLOR values,
so that the scene doesn’t get washed out when more that one light source is
used.

IRIS Indigo systems allow local lights in color map mode. On other systems,
only infinite light source positions are allowed. This requires that you set the
w component of POSITION to 0. All other light source properties are ignored.
You can specify zero or more light sources.

A lighting model definition in color map mode uses only the LOCALVIEWER

property:

static float lm[] = {
LOCALVIEWER, 0,
LMNULL

};

Only an infinite viewpoint is allowed. LOCALVIEWER can be set only to 0, which
is the default.

9.9 Sample Lighting Program

The following sample program, cylinder2.c, demonstrates GL lighting.

#include <math.h>
#include <gl/gl.h>
#include <gl/device.h>

Matrix Identity = { 1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1 };

float mat[] = {
AMBIENT, .1, .1, .1,
DIFFUSE, 0, .369, .165,
SPECULAR, .5, .5, .5,
SHININESS, 10,
LMNULL,

};

static float lm[] = {
AMBIENT, .1, .1, .1,
LOCALVIEWER, 1,
LMNULL

};

9-26 Lighting

static float lt[] = {
LCOLOR, 1, 1, 1,
POSITION, 0, 0, 1, 0,
LMNULL

};

main()
{
long xorigin, yorigin, xsize, ysize;
float rx, ry;
short val;

winopen("cylinder");
qdevice(ESCKEY);
getorigin(&xorigin, &yorigin);
getsize(&xsize, &ysize);
RGBmode();
doublebuffer();
gconfig();
lsetdepth(getgdesc(GD_ZMIN), getgdesc(GD_ZMAX));
zbuffer(1);
mmode(MVIEWING);
loadmatrix(Identity);
perspective(600, xsize/(float)ysize, .25, 15.0);
lmdef(DEFMATERIAL, 1, 0, mat);
lmdef(DEFLIGHT, 1, 0, lt);
lmdef(DEFLMODEL, 1, 0, lm);
lmbind(MATERIAL, 1);
lmbind(LMODEL, 1);
lmbind(LIGHT0, 1);
translate(0, 0, -4);

while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {
ry = 300 *

(2.0*(getvaluator(MOUSEX)-xorigin)/xsize-1.0);
rx = -300 *

(2.0*(getvaluator(MOUSEY)-yorigin)/ysize-1.0);
czclear(0x404040, getgdesc(GD_ZMAX));
pushmatrix();
rot(ry, 'y');
rot(rx, 'x');
drawcyl();
popmatrix();
swapbuffers();

}
}

Graphics Library Programming Guide 9-27

drawcyl()
{
double dy = .2;
double theta, dtheta = 2*M_PI/20;
double x, y, z;
float n[3], v[3];
int i, j;

for (i = 0, y = -1; i < 10; i++, y += dy) {
bgntmesh();
for (j = 0, theta = 0; j <= 20; j++, theta += dtheta) {

if (j == 20) theta = 0;
x = cos(theta);
z = sin(theta);
n[0] = x; n[1] = 0; n[2] = z;
n3f(n);
v[0] = x; v[1] = y; v[2] = z;
v3f(v);
v[1] = y + dy;
v3f(v);

}
endtmesh();

}
}

9-28 Lighting

