
Issue 4, 1990

IBM Personal Systems Technical Solutions
--------- - ---- ---- - ---- - - ----------- ·-®

IBM Personal Systems Technical Solutions is
published quarterly by the U.S. Marketing
and Services Group, International Business
Machines Corporation, Roanoke, Texas,
U.S.A.

Editor
Consulting Editor
Automation Consultant
Little Solutions
Communications
Design
Illustrator
Manager

Libby Boyd
Ed Bamberger

Andy Frankford
Larry Pollis
Elisa Davis

Corporate Graphics
Bill Carr

Bill Hawkins

To correspond with IBM Personal Systems
Tecilnical Solutions, please write the editor at:

IBM Corporation
Internal Zip 40-A2-04
One East Kirkwood Blvd.
Roanoke, TX 76299-0015

To subscribe to this publication, use an IBM
System Library Subscription Service (SLSS)
form, available at IBM branches, and specify
form number GBOF-1229.

Permission to reprint material from this maga­
zine is granted to publications that are pro­
duced for non-commercial use and do not
charge a fee. When republishing, include the
names and companies of authors, and add the
words "Reprinted by permission of IBM Per­
sonal Systems Technical Solutions." Other

publications may reprint only with permis­
sion of the editor.

Titles and abstracts, but no other portions, of
information in this publication may be copied
and distributed by computer-based and other
information-service systems.

IBM believes the statements contained herein
are accurate as of the date of publication of
this document. However, IBM hereby dis­
claims all warranties as to materials and
workmanship, either expressed or implied, in­
cluding without limitation any implied war­
ranty of merchantability or fitness for a
particular purpose. In no event will IBM be
liable to you for any damages, including any
lost profits, lost savings or other incidental or
consequential damage arising out of the use
or inability to use any inforn1ation provided
through this service even if IBM has been ad­
vised of the possibility of such damages, or
for any claim by any other party.

Some states do not allow the limitation or ex­
clusion of liability for incidental or conse­
quential damages so the above limitation or
exclusion may not apply to you.

This publication could contain technical inac­
curacies or typographical errors. Also, illus­
trations contained herein may show prototype
equipment. Your system configuration may
differ slightly.

ABOUT THE COVER

IBM has tested the programs contained in
this publication. However, IBM does not
guarantee that the programs contain no errors.

This information is not intended to be a state­
ment of direction or an assertion of future ac­
tion. IBM expressly reserves the right to
change or withdraw current products that
may or may not have the san1e characteristics
or codes listed in this publication. Should
IBM modify its products in a way that may
affect the information contained in this publi­
cation, IBM assumes no obligation whatever
to inform any user of the modifications.

It is possible that this material may contain
reference to, or information about, IBM prod­
ucts (machines and programs), programming
or services that are not announced in your
country. Such references or information
must not be construed to mean that IBM in­
tends to armounce such products, program­
ming or services in your country.

IBM may use or distribute any of the infor­
mation you supply in any way it believes ap­
propriate without incurring any obligation
whatever.

All specifications are subject to change with­
out notice.

© Copyright 1990 by International Business
Machines Corporation

A mirror image? Look again. Closer examination will reveal a basic
difference in the two images. Likewise, operating systems may
appear similar at first glance, but have fundamental differences.
The article, "Operating Systems Platforms: A Business Perspective,"
explains some of the differences in today's operating systems.

_ ,,, ___ _
__ ____,
_____ c ~--H- a-rd_w_a-re ___________ _

1 First Look at the New IBM PS/1 ™ Computer

8 Using the IBM 4019 Laser Printer Effectively

1 8 Micro Channel® Interface Chip Sets

-------------i____, __ 23 ___ T_o_k_e_n_R_i_n_g_B_u_s_M_ a_st_e_r_L_A_N_ A_d_a_p_t_e_rs ________________ _

27 Extension of Wiring Rules for 4-Mbit/s Token Ring Using UTP Lobes s:::::: 32 SCSI and DISK386.SYS

Software
33 Operating System Platforms: A Business Perspective

39 Minimum OS/2® 1.2 DASO Requirements

45 User Profile Management

53 Understanding OS/21.2 LAN Server Performance

60 PM: An Object-Oriented Approach

7 5 DOS 4.00 SHARE

78 A "C" Programming Model for DOS Device Drivers

Random Data
91 An Electronic Bulletin Board for PC Users

93 Little Solutions

95 New Products

Trademarks

IBM, AIX, Micro Channel, Operating System/2, OS/2, Personal Computer AT, AT, DisplayWrite, Personal
System/2, PS/2, PROFS, Quietwriter, Quickwriter, RT, Wheelwriter and Writing to Read are registered
trademarks of International Business Machines Corp.

AD/Cycle, AIXwindows, Application System/400, AS/400, Assistant Series, Audio Visual Connection, A VC,
BookManager, C/2, COBOL/2, Communications Manager, Database Manager, DisplayWrite 4, FORTRAN/2,
GDDM, Independence Series, KnowledgeTool, LinkWay, MVS/ESA, MYS/SP, MVS/XA, NetView,
NetView/PC, Office Vision, OS/400, Pascal/2, Personal Computer XT, PC XT, Presentation Manager, PS/I ,
Storyboard, Systems Application Architecture, SAA, System/360, VM/XA, Writing to Write, and 3090 are
trademarks of International Business Machines Corp.

ARCnet is a trademark of Datapoint Corp.
DESQview is a trademark of Quaiterdeck Office Systems.
Ethernet is a registered trademai·k of Xerox Inc.
Excelsior is a registered trademark of Excelsior Softwai·e Inc.
Express Publisher is a trademai·k of Power Up Software Corp.
Hewlett-Packard, HP, HPGL, and LaserJet are registered trademarks of Hewlett-Packard Corp.
Intel is a registered trademark, and i860, 386, i486, 486, 80286, 80386, 80386SX, and 80486 are trademai·ks of

Intel Corp.
LANSchool is a trademark of LanFan Technologies Inc.
Laserwriter NT is a trademark of Apple Computer Inc.
Lotus is a registered trademark, and Lotus 1-2-3 is a trademark of Lotus Development Corp.
Microsoft. MS, and Works are registered trademarks , and Microsoft C and Windows are trademarks of

Microsoft Corp.
Novell is a trademark of Novell Inc.
Omni laser is a trademark of Texas Instruments.
Postscript is a trademark of Adobe Systems Inc.
YM/386 is a trademark of IGC.

First Look at
the New IBM
PS/1 Computer
E. Gene Barlow
IBM Corporation
Dallas, Texas

IBM recently announced a new
PS/1 personal computer system
and a wide selection of software
and services to go with it. Be­
cause of all the hardware options,
software applications, and service
offerings available with the PS/1
system, many small businesses,
students, and home computer
users will find it ideal for their per­
sonal computing needs.

Editor's note: To more effectively
reach home users, the PS/1 is sold
by leading department stores and by
IBM authorized dealers. It is not
sold through IBM branch offices.
Service and technical support are
described in this article. Support for
the PS/1 is not available through
IBMLink.

Let's take a look at the new IBM
PS/1, its technical features and capa­
bilities. We'll look first at the PS/1
hardware systems announced, then
examine the software features that
come with the system, and finally
investigate some service and sup­
port programs offered only to PS/1
users .

IBM PS/1 Hardware
The PS/1 system comes in four mod­
els - two diskette-only models, and
two hard-disk models, both with

1 I

. I . .

black-and-white or color displays.
This section explores the standard
and optional hardware features avail­
able with these PS/1 systems.

Packaging: The PS/1 comes with
everything you need to use your
PS/1 productively and quickly.
Upon opening the box, the first
thing you see is the small parts,
cords, and documentation placed in
special pockets in the styrofoam
packing that protects the top of the
computer. The booklet containing
setup instructions is already opened
to the page needed to help you set
up the system. Additional manuals
for the system and application soft­
ware are included elsewhere in the
box. A packet of diskettes contain­
ing software is included with disk­
ette-based models. Also included is
an IBM Mouse, and a cord to con­
nect the PS/1 to a telephone line.
You also will find a small phone­
line splitter, so both the telephone

Personal Systems/Issue 4, 1990

and new PS/1 computer can be con­
nected to a single phone jack in the
wall.

Under the styrofoam cover contain­
ing the small pieces are the three
main components of the PS/I com­
puter system. The largest compo­
nent is the video display. Next to it
is the PS/1 computer system unit,
standing on its side. Also standing
on its side is a long thin box con­
taining the keyboard. Once the com­
ponents are removed, you ' re ready
for setup.

Setting up the PS/1: You can set
up your PS/1 system in just min­
utes. Setting up a PS/1 is extremely
easy for even the newest of com­
puter users. The display can sit on
top of the small computer system
unit and has two connecting cables
and a power cord extending out the
back. The two cables connect to the
computer system unit, and the

power cord plugs into the wall. The
cables and plug are of different
sizes and no tools are required to at­
tach them, so connection is easy
and foolproof.

Plug the small keyboard cable into
the clearly-marked socket in the
back of the computer; then do the
same with the mouse cable. Finally,
snap the telephone cord into the
back of the computer system unit,
and attach the other end to either
the telephone wall jack directly or
to the telephone splitter to keep
your phone connected.

Then, if you 're an experienced com­
puter user, you're probably think­
ing, "now comes the hard part -
formatting the hard disk, installing
DOS, and loading some application
software." Before the PS/1, these
steps were indeed necessary. But
not now! Your PS/1 system comes
with its hard disk formatted, DOS
installed, and a selection of applica­
tions already installed. So, once
you've set up the four connecting
cables, power cord, and telephone
cord, the PS/1 is ready to use.

Press the power switch at the base
of the display. The system comes to
life with an attractive screen contain­
ing four graphical blocks (icons)
representing the four functional
areas of the system. You are ready
to use your PS/1 system produc­
tively just minutes after unpacking.

PS/I System Unit Facts: For most
new users, the unpacking and setup
are all they need to know to get
started. For users who are more
technically inclined, the following
information is provided.

The first thing you notice about the
PS/I system unit is its compact size.
It takes up only 10.8 by 13.8 inches
of your desktop, and is only 3.3

2

inches high. It's not much bigger
than a college dictionary , and not
much heavier. The unit weighs in at
only 9.25 pounds without a hard
disk, and at only 10.5 pounds with
one.

Even though the PS/I system unit is
small and lightweight, the case is
made of sturdy metal and is very du­
rable. The unit is painted an off­
white (cream) color, and has a
matte, textured finish similar to
other personal computer systems
from IBM. The overall impression
of the unit is one of quality.

The first thing you notice
about the PSI 1 is its

compact size.

The front of the unit contains a slot
for the 3.5-inch diskette drive and a
panel covering the hard disk drive.
Bevels for ventilation give the unit
a distinctive appearance.

All cables attach to the back of the
PS/1. From left to right, the attach­
ment plugs are the video display
connector from the display, the
power connector also from the dis­
play, a parallel connector for a
printer, the keyboard connector, and
the mouse connector. Just above the
mouse connector is a place for a
standard telephone cord to plug in.

The top, bottom, and sides of the
system unit are all nicely painted
and contain nothing to distract from
the clean lines of the unit. Rubber
feet are attached to the bottom to
prevent the unit from scratching the
desktop.

Personal Systems/Issue 4, 1990

All PS/1 models use an 80286 mi­
croprocessor running at a reliable
10 Mhz with one wait state. The
basic system unit without a hard
disk includes 512 KB of random ac­
cess memory (RAM), upgradable to
1 MB. The hard disk model of the
PS/I comes standard with I MB of
RAM installed. Additional RAM
can be added to the PS/I system
using Memory Expansion Adapter
cards.

All PS/1 models contain a 1.44 MB,
3.5-inch diskette drive on the front
left side. The basic PS/1 system unit
has an empty slot available next to
the diskette drive to accommodate
either a second 1.44 MB, 3.5-inch
diskette drive or a 30 MB hard disk
drive. The hard disk system unit has
a 30 MB hard disk drive already in­
stalled in the right disk slot. To help
the novice user, the diskette drive is
clearly marked A: and the hard disk
drive is clearly marked C:.

All U.S. models come standard with
a 2400-baud internal modem in­
stalled. Using this modem, every
PS/I user can access a wide selec­
tion of telecommunications services
available in the industry.

Inside the PS/I System Unit:
Getting inside the PS/1 system unit
is extremely simple, although most
users will never have to open it.
The front panel snaps forward and
can then be removed. Removing the
top cover from the PS/1 is equally
simple. Just depress a spring catch
located at the top front and slide the
cover forward before lifting it off.
No tools are required.

With the top cover removed, you
can see that the main system board
covers the bottom of the unit. This
board contains most of the elec­
tronic components needed by the
system, including the microproces-

sor, 512 KB of RAM, 256 KB of
read only memory (ROM), and the
electronics for attaching the
input/output (1/0) devices. The 1/0
devices supported as standard on
the main system board are the disk
drives, a Video Graphics Array
(VGA) connector for the display, a
parallel port commonly used to at­
tach a printer, and an internal serial
port that is occupied by the internal
modem. Also supported are the key­
board and mouse devices.

Above the main system board and
to the front of the unit are two disk
drive slots. Removal and installation
of disk drives are very straightfor­
ward. To remove a disk drive, de­
tach the connector cable from the
back of the drive and press the
spring catch at the bottom of the
drive while sliding the drive out of
its slot. Installing a new disk drive
is just as easy - simply slide the
disk drive into its slot until the
spring catch snaps into place, then
attach the connector cable to the
back of the drive.

The PS/1 's main system board
comes standard with 512 KB of
RAM. An additional 512 KB of
RAM, contained on a small mem­
ory card, is optional on the basic
unit, and standard on the hard disk
unit. This card is located at the front
of the unit, just below the disk
drives, and is easily removed or in­
stalled. To help remove the tight­
fitting card, two small arms are at­
tached to each side of the memory
card. By pulling outward on these
arms, you can carefully pull the
card out of its socket. To install the
optional additional RAM in the
basic unit, simply plug the small
memory card into its slot.

Above the main system board and
behind the diskette drive (A:) is the
internal modem card. There is a

3

small space above this card for at­
taching an optional audio and joy­
stick adapter card. In the middle
back of the system unit is a power
attachment card that connects to the
display unit, which contains the
main power supply.

Everything inside the system unit
shows the careful engineering and
design that went into the PS/1. This
completes our tour of the inside of
the PS/1 system unit.

You can replace the top cover and
front panel as quickly as you re­
moved them. Simply slide the top
cover to the back of the unit until
the spring catch at the front snaps
into place. Then set the bottom edge
of the front panel in place and snap
the top into place by pressing both
sides.

The color display has
25 6 different colors in

320 x 200 mode.

The PS/1 Display Unit: A PS/1
system comes with either a black­
and-white or color display. Either
display has an attractive wedge-like
cover with a rectangular base that
fits squarely on top of the PS/1 sys­
tem unit to give both units the ap­
pearance of one combined unit.
When set on a desk in front of the
operator, the screen ti lts slightly up­
ward to provide the best viewing
angle. If the display is set on a shelf
above the level of the keyboard, a
prop can be moved into place on
the bottom of the display to give the
display screen an almost-vertical
angle.

Personal Systems/Issue 4, 1990

Both displays have 12-inch screens
with 36-mm dot separation to give
the viewer a sharp and crisp dis­
play. The displays are driven by the
VGA circuitry on the main system
board. Having VGA capability has
become very popular in the personal
computer industry, and most soft­
ware packages today can take advan­
tage of this superior display
standard. In displaying graphics on
the screen using the VGA standard,
640 x 480 different pixel elements
can be individually addressed. The
color display has 256 different col­
ors in 320 x 200 mode, and the
black-and-white display has 64 dif­
ferent shades of gray.

The display unit contains parts that
are used by the entire PS/I system.
The power supply for the entire sys­
tem is contained within the covers
of the display unit. The main on/off
switch for the system is a white
push button located at the lower
right side of the display. Pressing
this button powers up both the dis­
play and the system unit. This de­
sign means that only one cord and
power socket are needed for the
PS/1 system.

The display unit also contains a
small audio speaker. The speaker is
located at the top rear portion of the
display unit, and produces clean and
clear audio signals. For individuals
who prefer to hear the audio in pri­
vate, a headphone jack is provided
on the front of the display.

Three sliding blue levers are conve­
niently located at the lower front
portion of the display head. These
are clearly marked and permit the
operator to adjust the speaker sound
volume, and the brightness and con­
trast of the display.

The PS/1 Keyboard: The key­
board is one of the most important

parts of any computer system. IBM
made sure that the PS/1 was de­
signed with a high-quality, full­
function keyboard that will make
communicating with the system a
dream. The PS/1 keyboard uses the
same 101-key layout that has be­
come the standard on most IBM per­
sonal systems. The size and
placement of the keys and indicator
lights are identical with other IBM
enhanced keyboards. The bottom of
the keyboard has rubber pads to pro­
tect the surface of the desk and two
adjustable feet to vary the tilt of the
keyboard.

The PS/1 designers made some im­
provements on the standard key­
board for the home user. The
overall size of the keyboard has
been reduced to better fit on a small
desk or table. This change was engi­
neered without reducing the key
size or placement by simply trim­
ming the excess border that sur­
rounds other larger keyboards. This
careful trimming also reduced the
weight of the keyboard to just over
two pounds, making it lighter to
hold or use on your lap.

Another improvement with the PS/I
keyboard is the cord connecting it
to the system unit. Instead of a
tightly coiled cord that seems to
have a mind of its own, the cord is
small, light, and is easy to hide
from view.

The feel of the PS/1 keyboard is
crisp and positive like other IBM
personal system keyboards. I've
used my PS/1 for several weeks
now and sense little difference be­
tween the touch of its keyboard and
the keyboard of my PS/2 system at
work.

Every PS/1 system comes standard
with an IBM two-button mouse.
The software included with the PS/1

4

takes advantage of the mouse as an
input device although keyboard al­
ternatives are available for those in­
dividuals not comfortable using a
mouse.

Optional 5.25-Inch Diskettes: If
you frequently need to access 5.25-
inch diskettes, an optional diskette
drive may be attached to the main
system unit. With the optional disk­
ette drive in place, either 3.5-inch
diskettes or 5.25-inch diskettes may
be used. Either a 360 KB or 1.2 MB
5.25-inch diskette drive can be at­
tached to the PS/1.

Every PSI 1 system comes
standard with an IBM

two-button mouse.

The optional 5.25-inch diskette
drive can be attached quickly with­
out any tools. The optional diskette
drive is approximately the same size
and shape as the system unit and at­
taches directly below it. To attach
the optional diskette drive, remove
the covers from the system unit and
a small panel in the base of the sys­
tem unit. The system unit snaps into
place on top of the 5.25-inch disk­
ette drive. A small power cable
feeds up through the bottom of the
main system unit and attaches to the
internal modem card. The flat rib­
bon cable that attaches the 3.5-inch
diskette drive to the system board is
replaced with a three-way cable that
connects both diskettes to the sys­
tem board. Simply replace the vari­
ous covers and you have a flexible
unit that supports both 3.5-inch and
5.25-inch diskettes.

Personal Systems/Issue 4, 1990

Optional Expansion Unit: For
most PS/1 users, the standard sys­
tem, perhaps with a printer attached,
will satisfy most of their needs for
years to come. But for users who
want to attach additional adapter
cards to the PS/1, an optional expan­
sion unit is available.

The expansion unit is as compact as
the main system unit. It has three
empty slots for the addition of AT­
standard adapter cards. Because the
system unit and the matching expan­
sion unit are compact, two adapter
cards can be 11 inches long and the
third card can be 9.5 inches long.
These are common sizes for adapter
cards; dozens of different cards cur­
rently available from various ven­
dors have been tested and claimed
compatible.

Attaching the optional expansion
unit to the system unit is simple and
can be done quickly without tools.
First, remove the front panel and
top cover from the main system
unit. A new cover for the system
unit is furnished with the expansion
unit. Slide the new cover over the
system unit until it snaps into place,
and replace the front panel of the
system unit. Next, place the expan­
sion unit on top of the newly cov­
ered system unit. A connector card
extends down through one opening
in the top of the system unit and
firmly anchors the expansion unit in
place. After adding adapter cards to
the expansion unit, the original top
cover of the system unit now slides
onto the expansion unit and covers
it. Finally, snap the front panel for
the expansion unit in place, and the
PS/1 is ready to be used.

The overall footprint of the PS/1 re­
mains the same with either or both
optional units installed. What
changes is the height of the system
unit and its connected optional

unit(s). If you have either the 5.25-
inch diskette unit or the expans ion
unit attached to the main system
unit, the combined height is slightly
over five inches. With both the 5.25-
inch diskette drive and the expan­
sion unit attached to the main
system unit, the total height is about
eight inches. This design permits
your PS/I system to grow without
taking up more of your limited
desktop space.

IBM PS/1 Software
The PS/I hardware system is an at­
tractive personal computer for home
use. But hardware alone does not
constitute a complete computer sys­
tem. Only when well-chosen soft­
ware is combined with the PS/1
hardware, does the total system
benefit the home user.

The PS/1 comes with many useful
software packages already loaded
and ready to use. Here's a descrip­
tion of that software and how it can
benefit you.

Main System Menu: When you
power-on your PS/1 system, the
main system menu is displayed. The
current date and time are shown
across the top of the screen. Below
this line are four icons representing
the main menu items available:

• INFORMATION - This icon
shows a telephone and books su­
perimposed on the world. Select
it to access the world of informa­
tion available over the telephone
and from the tutorials.

• MICROSOFf® WORKS - This
icon shows a calculator, a printed
letter, an arithmetical pie-chart,
and an address book. Select it to
use this popular software package
for a variety of record-keeping
functions in the home.

• YOUR SOFfW ARE - Here are
file folders and diskettes. Select

5

6--18- '30

INFORMATION

PS/1 Main System Menu

this icon to run your favorite soft­
ware packages, which you've
added to your PS/ I system.

• IBM DOS - This icon shows
diskettes and a computer display .
Select it to use the DOS operat­
ing system to organize your disk­
ette files and modify your PS/1
system.

To select any main system menu
item, simply point to it with the
mouse, then press and release the
left mouse button. When you finish
using that function, you will return
again to the main menu. The menu
serves as the anchor point of your
software systems and ties the entire
system together in one user-friendly
package.

Let's look at each of these four
areas and see what they provide.

Information: The Information area
gives you access to these informa­
tion sources outside the home and
within your PS/1 system:

Personal Systems/Issue 4, 1990

2 :11,..

MICROSOFT WORKS

• Users' Club

• PRODIGY

• System Tutorial

• Works Tutorial

The Users' Club is a service
through which all PS/1 users can
find and share PS/1 information via
telephone line. Select this option
and you will have access to a
database of PS/I questions and an­
swers. You can exchange informa­
tion about the PS/1 with other users,
review the latest news and tips
about your system, or send your
questions to IBM experts for per­
sonal answers.

PRODIGY is a nationwide informa­
tion service offered jointly by IBM
and Sears. Gain access to this ser­
vice, also, through a telephone con­
nection. PRODIGY offers a method
for sending messages to other
PRODIGY users across the country.
With it you can plan your vacations,
manage your investments, and shop
for many products at home. It offers

6

IBM PS/1 USERS' CLUB
0 ANSWER · BANK

El
II ► •-t· ,,... • -rr, • IIC:·E (... ~..L'.· .:, i t.1,__, -.

II WRITE TO us

PS/1 Users' Club

you the latest news, sports, and
weather and lets you read the ad­
vice of experts in a wide variety of
areas.

The System Tutorial lets you spend
time learning PS/I hardware, soft­
ware, and system care. The tutorial
is broken down into small, easily un­
derstood pieces of information that
can be reviewed at your conve­
nience. If you are new to personal
computers, this is an excellent way
to start using the PS/ 1.

The Works Tutorial helps you un­
derstand and use Microsoft Works.
It is broken into six separate topics,
each having four to six training ses­
sions. The sessions can be com­
pleted sequentially or at random.

Microsoft Works: The Microsoft
Works software package contains
four widely-used, integrated applica­
tions. Information may be shared
among all four applications or used
separately. All four applications are
designed with similarities, making it

Congra tu I at ions
to Tony Berman!!

Tony is the
winner of' the
News To Use
Mouse Tip
Contest. See
this week's
art i c I e to
read Tony's
award winning
tip .

easy to use all four packages once
you are familiar with one of them.

The most widely used PC applica­
tion is word processing. Microsoft
Works has an excellent word pro­
cessing system for writing letters
and reports. Students can use it for
written homework assignments and
term papers. It can be used to print
envelopes and mailing labels, too. It
can check spelling and offer syn­
onyms from its built-in thesaurus.

Another application often used on
personal computers is the
spreadsheet. Microsoft Works con­
tains an excellent spreadsheet for
setting up family budgets, estimat­
ing taxes, balancing the checkbook,
and tracking expenses. It is often
said that a picture is worth a thou­
sand words. With the Works
spreadsheet, endless lists of num­
bers can be displayed in meaningful
charts and graphs.

The third important application con­
tained in Microsoft Works is a

Personal Systems/Issue 4, 1990

database manager. You can use the
database to keep track of addresses,
birthdays, insurance records, greet­
ing card lists, and other information.
A query feature is provided to
quickly access information stored in
your database. A powerful reporting
feature lets you prepare printed re­
ports from the database.

The final function of Microsoft
Works is a communications system
that lets you link to other online in­
formation services and bulletin
board systems. This facility can also
be used to access your computer at
work.

Your Software: The PS/1 is not
limited by the software provided
with the system, but can accommo­
date an extensive selection of soft­
ware written for IBM personal
computer systems. This includes
special software for personal use in
the home, or business software
needed when bringing work home.
Software written for IBM personal
computers is the most widely avail­
able software in the world and most
of it will run on your PS/1.

When adding software packages to
your PS/1, follow the installation in­
structions that come with your soft­
ware. Most software will set aside a
subdirectory on your hard disk and
load the software into that subdirec­
tory. To use the software package,
you must access the subdirectory
and run one or more of the pro­
grams stored there. As you add
more software to your PS/1 system,
the number of subdirectories in­
creases and the method of using the
software varies. This all adds confu­
sion for the new computer user.

The area called "Your Software" is
designed to make it easier to access
the subdirectories on your hard disk
and to run the programs stored in

them. When you select "Your Soft­
ware," the DOS root directory and
the executable programs contained
in that directory are displayed. Near
the bottom of the screen are a num­
ber of labeled, closed folders, which
contain the subdirectories stored on
your hard disk. Selecting one of
these folders will display the names
of the executable software con­
tained in that subdirectory. You can
select a software program to run or
open another folder to gain access
to its software. In effect, This area
of the PS/1 manages the directories
and programs on your system and
gives quick, easy access to both.

IBM DOS: IBM DOS is the last
major section of your PS/1 software
system. Here you have access to all
the power and functions of the IBM
DOS operating system. This version
of DOS includes an excellent DOS
Shell that makes using DOS easier
and more powerful. When you se­
lect IBM DOS, you can access this
DOS Shell with some special adap­
tations for the PS/1.

Use the DOS Shell to set the date
and time, manage files, format disk­
ettes, copy disks and files, backup
and restore the system, and change
the color of the Shell screens. Two
special tasks are provided for the
PS/1 system. The first lets you
customize how your PS/1 system
starts up when powering on. Also, if
the hardware configuration is modi­
fied, the system may need to be up­
dated to reflect these changes.
Individuals comfortable with the
many DOS commands can exit the
DOS Shell and enter the commands
directly into the system. For those
who would like to try their hand at

7

programming, the PS/1 contains the
BASIC programming language.

The PS/1 system comes with a
wealth of ready-to-use software. A
graphical main system menu pulls
all of these software applications to­
gether in an easy-to-use format.
Still, this software system is open­
ended and expandable. It can run
most of the thousands of software
packages written to IBM personal
computer standards.

Send your question to
IBM's PS!l experts.

IBM PS/1 Marketing,
Service and Support
The IBM PS/1 is distributed in the
continental U.S. and Canada. To as­
sure that the PS/1 is easily avail­
able, it will be sold by leading
department stores and through IBM
authorized dealers.

The PS/1 comes with a one-year
warranty on all hardware and soft­
ware. If it should fail within that pe­
riod, here's how you correct the
problem. A toll-free phone number
is provided to assist you. If a part
needs to be replaced, you may ei­
ther take it to an authorized PS/1
remarketer for repair or use the
PS/1 Express Maintenance service.
Using the express maintenance ser­
vice, a replacement part will be sent
to you, arriving within 48 hours . Re-

Personal Systems/Issue 4, 1990

turn the defective part to IBM and
keep the new one.

Technical support for the PS/1
couldn't be easier. Simply connect
your PS/1 to the phone line and con­
tact the IBM PS/1 Users' Club.
Look first to see if the question has
been answered before, or send your
question to IBM's PS/1 experts
using the "Write to Us" option of
the Users' Club. You will most
likely have an answer within 24
hours .

Conclusion
With the PS/1 system, IBM has in­
troduced a new computer for the
whole family. It includes reliable
hardware that is expandable, and a
software system designed to make
the system easy to use, yet still pow­
erful enough for experienced, techni­
cal users. And behind the PS/1
stands IBM's determination to pro­
vide the PS/1 with outstanding sup­
port and service programs.

ABOUT THE AUTHOR

Gene Barlow is the program
manager within IBM responsible for
interfacing with all IBM PC user
groups. He was also the manager
responsible for the creation of this
publication, "IBM Personal Systems
Technical Solutions," and its
predecessor "Exchange." He has
held numerous technical and
management positions during the 28
years he has been with IBM. Gene
received his B.A. degree in
mathematics from Brigham Young
University.

Using the
IBM 4019
LaserPri nter
Effectively

This article was condensed from
material supplied by the IBM
printer development laboratory in
Lexington, Kentucky.

There continues to be confusion
about attaching the 4019
LaserPrinter to a PC or Personal
System/2® (PS/2®) and how to ef­
fectively use the 4019 family of
IB_M L_aserPrinters with various ap­
p~1cat1ons. This article attempts to
dispel some of the confusion
about the different emulation
modes and data streams sup­
ported by the 4019 and details the
function available with each emu­
lation mode.

To understand the capabilities of the
40 I 9 Laser Printer and what features
and functions are available with
each of its four modes of operation,
you need to understand how applica­
tions communicate with and control
the 4019. Communicating with,
passing data to, and controlling the
4019 LaserPrinter, as with most per­
sonal computer printers, are done
through a combination of com­
mands and printable characters
called the printer data stream. The
data stream is passed from the appli­
cation via a print driver to the
printer.

The simplest way to think of a
printer data stream is as a language
that the application uses to talk to
different printers. The precise lan­
guage used, and the printer's ability
to understand that language, deter­
mine exactly how the output will be
printed.

8

Printer Data Streams
Personal computer printer data
streams consist of eight-bit bytes
that contain a character to be
printed, a segment of a graphic
image, or an element of a printer
command.

Most data streams used today are de­
rived from the data stream devel­
oped for the IBM Graphics and
Epson® FX-80 printers. This data
stream was fairly simple because
these printers offered only basic
printing functions. But as printers
with new capabilities were devel­
oped, companies found they needed
to add commands that supported the
new functions in the original IBM
Graphics and Epson FX-80 data
streams.

The original PC printers used con­
trol codes and escape sequences to
control printer functions. Control
codes are single-byte commands
that specify printer functions, such
as carriage return (X'0D'), line feed
(X'0A'), and form feed (X'0C'). Es­
cape sequences are multibyte com­
mands that begin with an escape
character (X' 1B ') followed by a
character that defines the escape
command, followed by optional
data fields, if required. Escape F
(X'lB46'), the command to end em­
phasized printing, is an example of
an escape sequence.

Some newer printers have added
control sequences to the existing
control codes and escape sequences.
Control sequences are more com-

Esc [F Ln Hn pft
1

plex and often carry multiple com­
mands within one sequence. They
consist of a three-byte mnemonic
(Escape followed by the [symbol ,
followed by a control sequence iden­
tifier byte), a two-byte length count
- low byte, high byte - (allows the
4019 to determine the exact length
of the sequence), followed by the
bytes containing the commands.
The Page Presentation Media com­
mand shown in Figure 1 is a good
example of a control sequence.

IBM Personal Printer Data
Stream - (Extended IBM ASCII):
The data stream developed for the
IBM Graphics Printer (originally
called IBM ASCII) has evolved into
the Personal Printer Data Stream
(PPDS) used by the 4019
LaserPrinter. The evolution is fairly
well defined, starting with the IBM
Graphics Printer (Epson FX-80),
adding the Proprinters™ I through
III, followed by the Proprinter
X24s, the Quietwriter® III (or
Quickwriter®), and finally the 4019
and 4019-E LaserPrinter.

The PPDS data stream has three lev­
els of function. Each level was de­
signed to support newer printers as
they were developed. Each offers en­
hanced capabilities over the previ­
ous level while maintaining most of
the existing level ' s capabilities.

Level 1 is the basic level of PPDS.
It supports the 9-pin and 24-pin Pro­
printer family of printers. Level 1
supports basic paper handling,
limited font selection, and both

fc sd size copies
2 3 4 5

)

Start counting Ln value from here

Figure 1. Example of the Page Presentation Media Command

Personal Systems/Issue 4, 1990

9-wire and 24-wire bit-image graph­
ics with multiple resolutions.

PPDS level 2 enhances the data
stream to support the Quietwriter
and Quickwriter III printers. This
level of the PPDS data stream adds
better font selection and control, en­
hanced paper handling with cut­
sheet support, and better text justifi­
cation and formatting.

PPDS level 3 supplies support for
page printers such as the 4019. This
level of PPDS allows random place­
ment of text and graphic images,
limited drawing by the printer, selec­
tion of paper orientation, and the
use of typographic fonts.

HP® Page Control Language
Data Stream - PCL: Hewlett­
Packard® went through a similar
evolution with its PCL printer data
stream. The portion of the evolution
that is of interest to IBM 4019
LaserPrinter users begins with the
Hewlett-Packard LaserJet®. The
LaserJet used a version of PCL
called PCL-3, developed to be a lan­
guage for office word processing.
An enhancement to PCL-3, called
PCL-4, includes all the function of
PCL-3 and adds a set of page for­
matting commands. PCL-4 is used
in the LaserJet+, LaserJet 500+,
LaserJet II, LaserJet IID, and
LaserJet UP printers. Several ver­
sions of PCL-4 were developed as
the data stream matured, and func­
tions were added or removed to sup­
port different printer models. The
recently announced LaserJet III uses
an enhancement of PCL-4, called
PCL-5. The PCL-5 data stream in­
cludes all the functions of PCL-3
and PCL-4, and adds new com­
mands to support office publishing.

IBM selected PCL-4, the data
stream developed for use in the HP
LaserJet II, for use in the 4019

9

LaserPrinter. To the standard PCL-4
command set, IBM added a com­
mand that is not present in the
LaserJet II. IBM incorporated the
command used in the LaserJet 500+
and LaserJet IID for accessing its
secondary sheet feed to allow 4019
users to take advantage of the op­
tional second sheet feeder when run­
ning HP emulation. A second sheet
feeder is not available on the HP
LaserJet II, and therefore is not part
of the LaserJet II command set.

IBM and HP Graphics Language
Data Stream - GL: The IBM
Graphics Language (or HPGL) is a
data stream for creating plotter
drawings. The IBM LaserPrinter ac­
cepts many IBM-GL commands and
IBM-GL device-control instructions
when running in plotter mode. The
resulting images are similar or iden­
tical to those produced by many

Personal Systems/Issue 4, 1990

IBM and Hewlett-Packard multipen
graphic plotters. Most differences in
output are due to the physical differ­
ences between the multipen plotters
and the LaserPrinter.

The IBM 4019 LaserPrinter was de­
signed to emulate the IBM 7372
and HP 7475A multipen plotters.
The full set of 56 commands is in­
cluded in the emulation. The IBM
6128 and HP 7550A commands that
were added are: automatic paper
loading and unloading to support
the 4019 's sheet feeding capability,
and Download Character and Extra
Space, to give additional label com­
mand capability to the 4019. The
Download Character command al­
lows the 4019 to download any char­
acter set available for the various
supported plotters. The Extra Space
command produces more attractive
labels by adjusting the spacing be-

-==-=-=====

courier

courier-bold

helvetica

helvetica-bold

helvetica-narrow

helvetica-narrow-bold

times-roman

times-bold

symbol

Figure 2. Postscript Scalable Fonts

tween characters or words. The vari­
ous character sets used in the plotter
mode cannot be selected from the
control panel and must be selected
in the data stream.

Error-reporting features in the plot­
ter data stream are available only
when using the serial interface.
When the 4019 is running via the
parallel interface, responses nor­
mally sent to commands are
suppressed.

Postscript® Data Stream: The
newly announced PostScript Option
for the 4019 and 4019-E is the

avantgarde-book

avantgarde-demi

bookman-light

bookman-demi

helvetica-light

helvetica-black

new centuryschlbk-roman

new centuryschlbk-bold

palatino-roman

palatino-bold

zapfdingbats

Figure 3. Additional PostScript Fonts

10

courier-oblique

courier-boldoblique

he) vetica-oblique

helvetica-boldoblique

helvetica-narrow-oblique

helvetica-narrow-boldoblique

times-italic

times-bolditalic

fourth data stream type supported
by the family of LaserPrinters.

The Postscript data stream is unlike
any of the three other data streams.
This data stream is composed al­
most entirely of drawing com­
mands, called the PostScript Page
Description Language. These com­
mands are analyzed and executed
by the PostScript interpreter resi­
dent within a 4019 printer equipped
with one of the 4019 PostScript Op­
tions. The 4019 PostScript Option
supports the entire PostScript lan­
guage as specified in the PostScript
Language Reference Manual (Addi­
son-Wesley Publishing Company,

avantgarde-bookoblique

avantgarde-dernioblique

bookman-lightitalic

bookman-demiitalic

helvetica-lightoblique

helvetica-blackoblique

new centuryschlbk-italic

new centuryschlbk-bolditalic

palatino-italic

palatino-bolditalic

zapfchancery-mediumitalic

Personal Systems/Issue 4, 1990

Reading, Mass., 1985), as well as
extensions to the language to sup­
port unique features of the 4019
LaserPrinter. These additional
PostScript operators are detailed in
the IBM PostScript Option for the
IBM LaserPrinter Technical Refer­
ence (S544-4265), and apply specif­
ically to Version 52.1 of the
Postscript interpreter.

Because the PostScript interpreter at­
tempts to recreate the output based
entirely upon drawing commands
rather than actual output, the
Postscript interpreter is very strict
about how drawing commands are
structured. Failure to follow the
PostScript Page Description Lan­
guage specifications exactly when
constructing the data stream, will re­
sult in an interpreter error and a fail­
ure to print the remaining pages.
Attempts to send non-PostScript
data streams to the 4019 while it is
in PostScript emulation will result
in the data stream being flushed
from the printer and no output
being printed. (This occurs with no
error indication at either the 4019 or
the application interface.

The PostScript Option for the IBM
4019 and 4019-E is available in two
versions. The entry level has 17
scalable fonts, which are listed in
Figure 2. (The text for this maga­
zine shows examples of Times­
Roman and Helvetica typefaces.)

The premium version has a font
card that brings the total number of
fonts to 39 scalable typefaces. The
additional 22 fonts are also avail­
able as an upgrade to the basic
Postscript Option. The additional
fonts are listed in Figure 3.

There are several Postscript manu­
als that detail the PostScript Page
Description Language. Those wish­
ing to become knowledgeable in the

PostScript language are encouraged
to read one of the following
manuals:

PostScript Language Reference
Manual, Addison-Wesley Publish­
ing Company, Reading, Mass., 1985

PostScript Language Tutorial and
Cookbook, Addison-Wesley Publish­
ing Company, Reading, Mass., 1985

PostScript Language Program De­
sign, Addison-Wesley Publishing
Company, Reading, Mass., 1988

Selecting a Driver to Use for
the 4019 in PPDS
Obviously, the best printer driver to
use is the one written specifically to
support the attached printer and use
as many of its features as possible.
Because many applications were
written before the 4019 was an­
nounced, you are often required to
select printer support other than
4019 when attaching a 4019
LaserPrinter to your system. To
help you select the correct printer
support for those applications, Fig­
ure 4 lists five additional printers
that use the PPDS data stream and
shows which features are available
with each printer and its related
driver.

Select the printer that most closely
matches the functions required by
your application. For word process­
ing applications, the Quietwriter III
supports almost all 4019 functions.
For graphics, however, the choice is
more difficult because none of the
printers supports the Raster Image
Graphics Command (300-pel All
Points Addressable Graphics for
IBM PPDS) and Rule and Fill.
Using other printer drivers will re­
sult in lower resolution that may
slightly distort the figure and take
longer to print.

11

Other considerations must be under­
stood when using 4019 line printer
emulation. For the 4019, the maxi­
mum page length for a standard
8.5 x 11-inch page at six LPI is 64
lines in portrait, and 48 lines in land­
scape mode. Documents of other
sizes are reduced by similar
amounts. A number 10, legal-size
envelope, for example, can have up
to 21 lines. Generally the printable
size is reduced by 1/2 inch from left
to right, and by 1/3 inch from top to
bottom when using the 4019 printer.
As a result, your application must
set the printer page length and right
margin to the corrected values. For
example, when using a line printer,
a standard 8.5 x 11-inch page nor­
mally requires 65 line feeds and a
form feed. Sending this data stream
to a 4019 would cause an extra
page to be fed, because the 4019
would form feed after the 64th line
feed, whereas the application form
feeds after the 66th line.

Failure to account for these differ­
ences can result in extra pages if the
application includes a page eject
command, or "page creeping" if the
application does not include a page
eject after the 66th line. With "page
creeping," two lines from a 66-line­
per-page document are moved to
each subsequent page. The first
page has the first 64 lines of page
one printed on it. The second page
has the last two lines from page one
and the first 62 lines for page two -
and this process continues for all fol­
lowing pages. The lines moved to
the following page may be blank
and can result in "extra blank
pages." Envelopes that are set to a
length greater than the printable
area for the size being used will
also show "creeping" or extra blank
pages. The length that should be
used for a standard U.S. number 10
envelope is 20 lines, but by using
19 lines the problem would defi-

Personal Systems/Issue 4, 1990

nitely be avoided. Figure 5 shows
the PPDS printable areas.

Another common problem is "line
wrapping," which occurs when lines
are too long and extend into the un­
printable area of the 4019. When
the machine is set in the normal
"Print Page Format," any characters
that extend into the right unprint­
able area are moved to the left mar­
gin of the next line. This usually
results in more lines on the page
than expected and either extra blank
pages or creeping text. It can be cor­
rected by reformatting the output to
the correct margins.

Poor print quality or blurred print
can occur on the last printable line
of a page, especially when using
small typefaces. In portrait mode
this is usually not a problem be­
cause few jobs print on the last line
or use a small typeface. However,
when printing a rotated job, such as
a spreadsheet, the bottom of the
page becomes the left side of the
page and smaller typefaces, such as
17 .1 Courier, are commonly used.
To prevent this problem, a left mar­
gin of at least .33 inch should be
used for landscape printing. This is
three to four characters in l O pitch,
four characters in 12 pitch or propor­
tional, and five to six characters in
17.1 pitch.

Selecting a Driver to Use for
the 4019 in HP-PCL
Selecting the best driver for use
when running the 4019 with the HP­
PCL data stream is similar to select­
ing a driver when running with the
PPDS data stream. Choose the
driver that closely matches the func­
tions and features of the attached
printer. However, when running in
an emulation mode, there is a slight
twist. Instead of matching the driver
to the printer, match the driver to

12

IBM 5152 Quick/Quiet- 4019
and Epson Proprinter Proprinter writer Laser-

FX-80 Proprinter I and II X24 III Printer

10 pitch X X X X X X

10 pi tch bold X

12 pitch X X X X X

17 pitch X X X X X X

Proportional printing X X X X

Variable point size fonts X

Select fonts X X

Select font global X X

Character font image download Note l Note I Note 1 X X

Underscore X X X X X

Overscore X X X X X X

Emphasized print X X X X X X

Double-strike print X X X X X X

Double-wide print X X X X X X

Set presentation highlights X X X

Super/sub script X X X X X X

Select print mode X X X X X X

Set horizontal margins X X X X

Set vertical margins X X

Backspace X X X X X X

Portrait/landscaoe with rotated fonts X

Page presentation media X X

Normal graphics 60 DPI X X X X X X

Dual-density 120 DPI X X X X X X

High-density 240 DPI X X X X X X

High-resolution 360 horizontal DPI X

Raster image 300 DPI X

1/8, 1/6, 7 n2 line space X X X X X X

Variable line spacing X X X X X X

Cursor movement X

Rule and Fill X

Include plot commands X

Macros X

Set initial conditions Note2 Note 2 X

Note I: This function is present, but may require a FontSet Driver to be compatible with the 4019 function, or may
be incompatible.

Note 2: This function is present in a limited form on the Proprinter Ill and the Proprinter X24E. It can be used to
initialize the printer, but not to select data stream.

Figure 4. Support for PPDS Functions on IBM Printers

Personal Systems/Issue 4, 1990

13

PPDS Portrait PPDS Landscape
Paper Number-Type 10 CPI 12 CPI 17.1 CPI 10 CPI 12 CPI 17.1 CPI - -
Letter 80chr x 641ns 96chr x 641ns l36chr x 641ns l06chr x 481ns l28chr x 48lns l 82chr x 48lns

I-

Legal 80chr x 821ns 96chr x 82lns I 36chr x 82lns 136chr x 481ns I 64chr x 481ns 233chr x 481ns

BS 66chr x S81ns 80chr x S8lns I 14chr x S8lns 97chr x 40 Ins I l 7chr x 40lns 167chr x 40lns

A4* 80chr x 68lns 96chr x 68lns I 36xhr x 68lns l 14chr x 48lns l 36chr x 48lns l 94chr x 481ns

Executive 67chr x 61 Ins 81 chr x 61 lns I I Sehr x 61 lns lOlchr x 401ns I 22chr x 40lns l 73chr x 40lns

Envelope Number-Type

7 3/4 (Executive) 7lchr x 20lns 86chr x 201ns l22chr x 201ns

9 (Enclosure) 85chr x 201ns I 02chr x 201ns 146chr x 201n~

IO (Business) 9lchr x 2l lns I lOchr x 211ns l56chr x 221ns -
DL 83chr x 22lns 99chr x 221ns 142chr x 221ns

cs 86chr x 351ns I 04chr x 35 Ins 148chr x 351ns

BS 95chr x 381ns l 14chr x 381ns l62chr x 38lns

Other (Maximum) l 36chr x 48lns 164chr x 48lns 233chr x 481ns

* A recent change has been made in machines manufactured for European markets that allows 80-character lines
to be printed on A4-size paper in IBM PPDS mode. Some U.S. manufactured machines still have a 77-character
writing line.

Figure 5. PPDS Printable Area Definitions in Characters at Six Lines per Inch

the features supported by the emula­
tion mode of the printer. For the
IBM 4019, this usually means select­
ing the HP LaserJet Series II driver.

There are, however, some excep­
tions. If you need hardware options
on the 4019 that are not available
on the LaserJet Series IT, you may
need to use a driver for a LaserJet
printer that supports the desired
hardware. If, for example, you need
the automatic envelope feeder, use
the HP LaserJet Series IID driver
rather than the Series II driver. Fig­
ure 6 shows the functions supported
by the various models of the
LaserJet printer and the 4019
LaserPrinter. From this table, select
the HP driver that supports the most
features you need. Remember, re­
gardless of the functions checked
for the HP printer chosen, every
function that you want to use must
be checked under the 4019 column
as well. Remember too, selecting an
HP driver for one function may

cause you to lose another. The HP
LaserJet 500+ supports secondary
sheetfeed, but not resident 10 pitch
bold. The following 4019 functions
are not available in PCL mode.

• Resident proportional fonts

• Resident 12-pitch font

• Overscore

• Emphasized print

• Double-strike print

• Double-wide print

• Set presentation highlights

• Rotation of soft fonts

• Support plot commands

In addition to those functions, there
are some other differences between
the HP Laser Jet II and the 4019
LaserPrinter. These differences can
affect printed output from applica­
tions that think they are printing to
an HP LaserJet printer.

Personal Systems/Issue 4, 1990

• The 4019 will feed and format:

- BS size international paper
(size Parameter 12)

- BS size international enve­
lopes (Parameter 99)

- Size 9 U.S. enclosure enve­
lopes (Parameter 89)

• When manually feeding odd-size
papers and envelopes, the loca­
tion of print on the paper may re­
quire different compensation than
on the LaserJet II. (This is be­
cause of the 4019's edge-fed
paper system.)

• The 4019 uses Courier 16.7 in­
stead of Lineprinter 16.7, which
is used on the LaserJet II.

• The 4019 does not accept HP
plug-in font cartridges.

• The 40 I 9 allows use of up to 99
different fonts per page. The
Series II allows only 16 fonts on
a page.

14

LaserJet LaserJet LaserJet LaserJet
LaserJet LaserJet+ 500+ II 4019 11D IIP

10 pitch X X X X X X X

IO pitch bold X X X X

12 pitch Note 3 X X

16.7 pitch X X X X X X

Assorted italics/bold Note 3 X X

ASCII, Roman Extended System set X X X Note 4 X X

Variable point size fonts X X X X X X

Select font ID# X X X X X X X

Soft fonts X X X X X X

Auto rotate soft fonts X

Underscore char+machine X X X X X X

Underscore char+machine+font X X X X

Executive-size paper X X X X

Half-line feed X X X X X X X

Set margins X X X X X X X

Set page length X X X X Note 4 X X

Set paper size X X X X

Select number of copies X X X X Note4 X X

Select 7-bit symbol set X Note4 X X

Backspace X X X X X X

Portrait/landscape X X X X X X X

Duplex print X

Secondary sheetfeed X X X X

Envelope feed option Note 5 X X

Manual feed envelooe X X X X

Graphics 75 to 300 DPI X X X X X X

Set lines per inch X X X X X X X

Vertical/horizontal motion index X X X X X X X

Cursor movement Note 6 X X X X X X

Rule and Fill X X X X X X

Macros X X X X X X

Set initial conditions X

Note 3: This function is available in the IBM 4019 with the addition of a font card (PIN 1255846) to match the
function of the HP IID, except for duplex capability.

Note 4: The IBM 4019 honors this data stream function, but does not allow selection from the control panel as a
default selection. The data stream does not allow permanent storage.

Note 5: The LaserJet II has a 15-envelope tray that replaces the primary paper tray. A different driver may be
needed to use the LaserJet II envelope feeder.

Note 6: Reduced function on the LaserJet I.

Figure 6. PCL Functions Supported by the IBM 4019 LaserPrinter

Personal Systems/Issue 4, 1990

15

PCL Portrait PCL Landscape
Paper Number-Type 10 CPI 12 CPI 16.7 CPI 10 CPI 12 CPI 16.7 CPI

Letter 80chr x 601ns 96chr x 60lns 133chr x 60lns lOOchr x 48lns 120chr X 48lns 167chr x 48lns

Le_gal 80chr x 78lns 96chr x 78lns 133chr x 78lns 130chr x 48lns 156chr x 48lns 217chr x 48lns

B5 66chr x 54lns 80chr x 54lns 11 lchr x 54lns 91chr x 401ns 109chr x 401ns 15 lchr x 40lns

A4 77chr x 64!ns 93chr x 64lns 129chr x 64lns 107chr x 46lns 128chr x 46lns 178chr x 46lns

Executive 67chr x 57lns 81chr X 57lns 112chr x 571ns 95chr x 41 Olns 114chr X 40lns 158chr x 40lns

Envelope Number-Type

7 3/4 (Executive) 65chr x 20lns 78chr x 201ns 108chr x 20lns

9 (Enclosure) 79chr x 201ns 94chr X 20lns 131chr X 20lns

10 (Business) 85chr x 21lns 102chr x 21 lns 14lchr x 211ns

DL 76chr x 221ns 91chr x 22lns 127cjr x 22lns

C5 80chr x 351ns 96chr x 35lns 133chr x 35lns

B5 88chr x 38lns 106chr x 38lns 147chr x 381ns

Figure 7. PCL Default Margin Area Definitions in Characters at Six Lines perlnch

• The 4019 can be reset with an
INIT* signal on the parallel inter­
face cable.

• IBM serial support is limited to
RS-232 signal interface. It does
not support RS-422. IBM re­
quires use of the DSR signal; HP
does not.

Note: This could result in the
computer or other hardware not
supplying the DTR signal on pin
20 of its RS-232 serial output
port (which becomes the DSR sig­
nal at the printer). It is imperative
that this condition be corrected
for proper operation of the IBM
4019 Laser Printer.

• XON/XOFF is returned with two
stop bits in all cases.

• ROBUST-XON is not supported.

• XOFF is transmitted only once.

• DTR inversion is not supported.

There are other hardware differ­
ences to consider when using PCL
on the 4019. The default margins
for an 8.5 x 11-inch page are
.5 inch top and bottom, .17 inch
left, and .33 inch right. To use these
HP default margins, set the line

length to 80 characters in 10 pitch,
96 in 12 or proportional, and 132 in
16. 7 pitch. Set the page length at 60
lines for six lines per inch or 80 for
eight lines per inch. Reduce other
size pages by comparable amounts.

Figure 7 lists the PCL default mar­
gin areas.

The unprintable areas of the page
are actually slightly smaller than the
margins. By sending the command
to change margins, the page length
can be increased to 10.6 inches or
63 lines for a standard U.S. sheet of
paper. When printing in landscape,
the default margins are .2 inch left
and right, .17 inch top, and .33 inch
bottom. The correct line settings be­
come 106 characters in 10 pitch,
127 in 12 pitch or proportional, and
177 in 16.7 pitch.

PCL also has the problem of leav­
ing unprinted information in printer
memory if a form feed isn't issued
at the end of a partial page. This
can usually be corrected by setting
"eject at end of job" to "ON" in the
software. "Wait between pages"
should be turned to "OFF."

Personal Systems/Issue 4, 1990

The PCL data stream has the same
limitation printing on the bottom
line of a page as the PPDS data
stream: blurring can occur with
smaller fonts. This generally has
less impact in PCL mode because
the default margins are larger than
the unprintable area for PPDS. If,
however, you are printing a rotated
spreadsheet, the bottom of the page
becomes the left side of the page,
and the default left margin is .2
inch. This is slightly less than the
.33-inch margin recommended to
avoid blurring, so this problem may
occur less frequently than when
using PPDS in landscape mode. To
prevent the problem, use a left mar­
gin of at least .33 inch for landscape
printing. This would be three to
four characters in 10 pitch, four
characters in 12 pitch or propor­
tional, and five to six characters in
17.1 pitch.

Fonts designed for use in the PPDS
mode are generally not usable in
PCL mode, and vice-versa. Excep­
tions are specifically noted in the
font descriptions. IBM 4019s will
accept download or soft fonts avail­
able from companies other than

IBM. Those fonts, however, will
not be rotated automatically when
the machine is in an orientation dif­
ferent than the one for which the
font was originally designed. For
landscape printing, use only land­
scape soft fonts, and for portrait
mode, only portrait soft fonts.

PPDS Versus PCL: Which
Data Stream to Use?
If you run only word processing and
spreadsheet applications, PPDS is
recommended. The PPDS data
stream provides more resident type­
faces (five) than are available in the
PCL mode (three) and gives access
to 12 pitch and proportional print­
ing. This is true even when the ac­
tual 4019 driver is not in use. The
Quietwriter III, Quickwriter, and
Proprinters support 12 pitch.
Quietwriter III, Quickwriter, or any
Proprinter except the Proprinter I
support proportional printing. Easy
access to both envelope feed and
secondary sheet feed is available
when using Quickwriter or Quietwri­
ter III drivers. This generally makes
PPDS the better selection for this
category.

If landscape printing is a require­
ment, the only PPDS driver you can
use is the 4019 driver. An alterna­
tive is available in PCL mode using
the HP LaserJet 11D driver. How­
ever, the LaserJet 11D has a larger
selection of resident fonts than the
4019's LaserJet II emulation; if
your application requires these
fonts, your output may be affected.
The same is true for the 11D's du­
plex function. The font difference
can be overcome by purchasing the
HP Mode Font Card (PIN
1255846), which brings the font se­
lection up to the level of the 11D.

For graphics applications, the decid­
ing factor is 4019 support. If the ap-

16

plications do not support the 4019,
you must select from among the
Quickwriter, Quietwriter III, Pro­
printer, or LaserJet Family. None of
the IBM printers can print
300 x 300 pel-per-inch graphics.
They are limited to the coarser
240 x 240 density. While the
LaserJet family of printers does sup­
port 300 x 300 pel-per-inch graph­
ics, the 4019 PPDS driver, if
available, usually performs faster
than the equivalent function in PCL.

The decision of which data stream
to use depends on whether 4019 sup­
port is available in the application.
If the 4019 is supported for most or
all of your applications, use the
4019 in PPDS mode. Substitute the
Quickwriter or Quietwriter III driv­
ers when the 4019 driver is not sup­
ported but enhanced paper-handling
options are required. If the 4019 is
not supported, and graphics or ad­
vanced functions are required, the
LaserJet II or 11D is the better selec­
tion. Use the 11D when the paper­
handling options are a factor. Fi­
nally, where PostScript Page De­
scription Language is required, the
PostScript data stream and related
PostScript driver are the only
options.

Plotter Emulation Using the
IBM and HPGL Data
Stream
When running the 4019 in plotter
emulation using the IBM-GL data
stream, required functions may vary
between the plotter and the 4019.
Some of these differences are based
upon the differences in the hard­
ware and some upon the emulation.
Here are some of the differences to
consider before using 4019 plotter
emulation.

When there is insufficient memory
available to process a plot in

Personal Systems/Issue 4, 1990

300 x 300 pel mode, the 4019 will
automatically switch to the coarser
150 x 150 pel mode.

In setting up the page for plotter em­
ulation, it is important to honor the
non-print areas. The margins used
for an 8.5 x 11-inch page should be
no greater than 7.573 x 10.240
inches. The difference between
page size and margins allows for
the width of the widest pen line out­
side the edge of the defined page.
The actual values vary depending
on whether the plot is in merged or
stand-alone mode. In stand-alone
mode the limits are 7,910 by 10,619
plotter units, and in merged mode
with autoscaling, they are 7,962 by
10,365 plotter units. In stand-alone
mode these values are equivalent to
being 64 pels in from the no-print
borders in each direction. This
value would apply to any paper
size. When using the merged mode,
the value must be increased to .22
inch to accommodate the command
to change to merge mode in printer
memory.

If automatic paper handling is not a
requirement, select the emulations
in the following order:

• IBM 7372/HP 7475A

• IBM 6128/HP 7550A

• IBM 6180/ HP Color Pro Plotter

Emulation of the IBM 6180 Pen
Plotter and the HP Color Pro Plotter
should work adequately, but may re­
sult in some 4019 functions not
being used. Use of other plotter em­
ulations may result in unacceptable
results, insufficient memory, or
slow performance.

The 4019 Plotter Emulation offers
color emulation. Color emulation is
supported by printing each color
line with a different broken line pat­
tern. The 4019 uses a unique pattern

for type 2 lines. All other lines con­
form to those produced by the line­
type command. The use of broken
lines includes text and legends. This
may make the plot difficult to read.
If the application supports the differ­
entiation of colors, it may perform
color plotting in a more pleasing
manner than the 4019. For example,
using the Lotus® single-color plot
usually produces a better-looking
plot than setting the 4019 into color
emulation.

None of the drivers will take advan­
tage of the 4019's envelope feeder
or secondary sheet feeder. However,
if the plotter mode is accessed from
the merged mode of the printer, the
PPDS commands for accessing
these options can be used before en­
tering plotter emulation. Note that
as yet no applications have been
written to take advantage of this
paper feeding capability.

When in size B emulation, the plot­
ter automatically scales the plot for
the currently active page size.

PostScript
When running the 4019 with the
PostScript Page Description Lan­
guage, the choice of drivers is more
limited because of the strict require­
ments of the PostScript interpreter.
As with plotter emulation, here are
some thoughts when using
PostScript on the 4019 LaserPrinter.

If a driver for the 4019 PostScript
option is not available, consider the
drivers for the Personal Page Printer
models 030 and 031. These drivers
may have additional fonts listed that
are not available on the 4019, and
you must take care not to specify
any unsupported fonts. If drivers for
the 4019 and IBM Personal Page

17

Printer Models 030 and 031 are not
available, you may use drivers for
the Texas Instruments 2108 Om­
nilaser or the Apple Laserwriter
NT. The 2108 Omnilaser provides
access to 13 of the 17 fonts offered
in the entry PostScript option, and
the Laserwriter NT provides access
to 35 of the 39 fonts available in the
Premium Postscript option.

If a driver for the 4019
PostScript option is not
available, consider the
drivers for the Personal

Page Printer models 030
and 031.

Problems can be encountered when
the application or driver sets the
timeout parameters outside the valid
range for the 4019 Postscript Op­
tion. For each type of printer, the
job timeout, manual feed timeout,
and wait timeout parameters of
PostScript's setdefaulttimeout oper­
ator are valid only within certain
ranges. The 4019's valid range for
the job timeout parameter is zero
(no timeout) or from 15 to 65535 .
The manual feed timeout valid
range is zero to 255. The wait
timeout range is zero (no wait) or
from 15 and 255.

Additional memory can impact
printer performance when using the
PostScript data stream. With 1 MB
memory option installed, the 4019
will approach six 8.5 x 11-inch
pages per minute for less complex
output, and output is restricted to a

Personal Systems/Issue 4, 1990

paper size no larger than 8.5 x 11
inches. When the 2 MB memory op­
tion is installed, output will more
consistently approach six pages per
minute and more complex output
can be built. The maximum page
size increases to 8.5 x 14 inches,
and there is more capacity for stor­
ing downloaded fonts. This elimi­
nates the need to rescale the
character and improves processing
speed. With 3.5 MB memory in­
stalled, the 4019 can approach a
speed of 10 pages per minute, build
more complex output, and maintain
the ability to print up to 8.5 x 14-
inch pages. The font cache is also
enlarged, which contributes to the
improved performance. The effects
of the memory on the performance
for the 4019-E are similar for the l
and 2 MB memory expansions; how­
ever, the lower throughput capabil­
ity of the 4019-E limits the
increased performance obtained
when the 3.5 MB memory expan­
sion is installed.

To access the envelope feeder and
sheet feeder on the 4019, the spe­
cialty drivers written for the Per­
sonal Pageprinter sheet feeder may
be used. However, the Personal
Pageprinter uses a different number­
ing scheme than the 4019
LaserPrinter for the various paper
feeders, which may result in feeding
from the wrong paper source. If you
are willing to experiment, and there
is an IBM Personal Pageprinter
driver available, accessing the
4019's various paper sources can be
accomplished while in PostScript.
You will have to try the various
combinations available with the
driver and determine which source
on the 4019 will actually be used.

Micro Channel
Interface Chip
Sets
Jim Bringley
IBM Corporation
Boca Raton, Florida

IBM, Intel®, and Chips and Tech­
nologies are developing a family
of chip sets that integrate the
logic required to attach to a Micro
Channel bus. This article dis­
cusses IBM's objectives in devel­
oping these chip sets and gives a
brief explanation of one bus mas­
ter design point. This is a high­
level, functional overview of the
design's external interfaces and a
description of advanced internal
features.

The Intel-marketed, 32-bit bus
master design implements many
advanced architectural features of
the Micro Channel, such as 32-bit
Streaming Data transfers, address
and data parity, and a register set
supporting the Subsystem Con­
trol Block architecture. The article
shows the generic bus master de­
sign is applicable to a wide range
of intelligent subsystem
applications.

Several groups within IBM have
taken on the mission to assist inde­
pendent option vendors in designing
Micro Channel adapter cards. One
strategy has been to supply to the in­
dustry general-purpose Micro Chan­
nel attachment chip sets for use on
feature cards for Micro Channel
computers. The goal was to inte­
grate common Micro Channel func­
tions in a generic set of components
that could be used across many de­
signs. With these components avail­
able from companies like Intel, and
Chips and Technologies, adapter
card builders can expect a lower
learning curve for engineering de-

18

sign and verification, and can bring
new feature cards to market faster.

One implementation of this strategy
is an on-going project between IBM
and Intel. IBM groups at Boca
Raton, Florida, and Burlington, Ver­
mont, have designed a family of
Micro Channel attachment chip sets
that address different design points
for interfacing to the Micro Chan­
nel. These chip sets will be avail­
able as off-the-shelf components
from Intel. For many applications,
independent card vendors can use
these chip sets in products for the
rapidly growing market for Micro
Channel adapter cards.

This discussion is about the first of­
ferings in this family of Micro Chan­
nel chip sets, Intel's 82325 Micro
Channel bus master interface
chip set.

Design Alternatives
Micro Channel architecture presents
new design challenges for develop­
ers who are building feature and op­
tion cards for IBM PS/2 computers.
The architecture offers different lev­
els of interfaces, making possible a
variety of adapter design points be­
yond programmed or memory­
mapped 1/0. Adapters can be OMA
slave devices that take advantage of
the system's OMA facilities, or full
bus master designs for applications
requiring higher performance and
greater function. Another design op­
tion exists for Micro Channel data
bus widths of 8, 16 or 32 bits. The
deciding criteria for these design op­
tions are usually based on the de­
sired price and performance targets
for adapters and the applications
that use them.

In addition to design-point alterna­
tives, today's adapter card builders
are faced with greater levels of com-

Personal Systems/Issue 4, 1990

plexity. Personal systems are becom­
ing faster and more reliable ma­
chines. Overall cycle times have
shortened, resulting in an increase
in system bandwidth. There are also
now many more types of bus cy­
cles, such as SET UP, ARBITRA­
TION, DEFAULT, and SYNC
EXTENDED. Programmable Op­
tion Select (POS) registers have re­
placed hardwired jumpers and
switches for configuration and reli­
ability purposes. These new com­
plexities have raised the bar for
experienced designers implementing
new advanced Micro Channel
functions.

Bus master designs offering ad­
vanced functions often require in­
creased levels of integration in
order to fit the function on one
adapter card. Higher logic speeds
are required for faster data transfers
and arbitration cycles. Bus master
designs require intelligent control
over address, data, and control
lines. Interfaces require the ability
to address both system memory and
1/0 ports located throughout the sys­
tem. At times, the logic required no
longer lends itself to conventional
programmable logic array (PLA)
designs.

Designers are finding that they need
standardized components for the
bus interface sections of adapter de­
signs. Use of such components en­
sures tested designs that meet all
required interface standards. Avail­
ability of standardized components
can reduce development costs and
the learning curve required for im­
plementing new adapter designs. At
the same time, standard interface
components can make it easier to
take advantage of new functions
available in Micro Channel
architecture.

A Family of Chips
A family of Micro Channel inter­
face chip sets has been designed to
provide standard front-end features
for Micro Channel adapters. Three
levels of interface design points
exist: DMA slave, shallow bus mas­
ter, and full bus master. These de­
signs are required to be compatible
with current and future implementa­
tions of IBM's Micro Channel and
PS/2 systems.

The availability of these chips will
help standardize Micro Channel
compliance and reduce the verifica­
tion efforts required for each new
adapter design. The result will be
more lower-cost, higher-function
adapters available to provide ad­
vanced application solutions to end
users. This discussion focuses on
the most complex of the three de­
sign points: the full bus master. Fea-

19

tures of Intel's two-chip 82325 im­
plementation are also discussed.

The 82325 bus master chip set was
designed to meet three main objec­
tives. The first objective was to de­
sign an intelligent interface for
adapter cards containing outboard
microprocessors in a wide range of
applications. Next, the design mini­
mizes the amount of available card
"real estate" required to implement
the bus-interface functions, leaving
the greatest amount of card space
available for card-level functional
components. The last objective was
to minimize the overall cost of com­
ponents associated with Micro Chan­
nel interfacing. By meeting these
objectives, the 82325 chip set en­
ables developers to design low-cost,
intelligent Micro Channel adapters
for high-volume applications.

Personal Systems/Issue 4, 1990

7
I

I
I

I
_!

82325 Full Bus Master: A
Two-Chip Set
The 82325 bus master interface con­
sists of two chips that require one
additional 245 transistor-transistor
logic (TTL) driver for direct attach­
ment to the Micro Channel. The
82325-MD chip is used for buffer­
ing and bus matching between the
Micro Channel and the internal card
interface. The 82325-MC chip con­
tains most of the state machine con­
trol functions for the design. The
Micro Channel address and data
lines can be driven directly. The
chip set meets the 24-mA current
level required by the Micro Channel
without external buffering. The
chips are built in 1-micron comple­
mentary metal-oxide semiconductor
(CMOS) technology and packaged
in 124-pin and 144-pin plastic flat
packs.

The 82325 chip set presents four ex­
ternal interfaces: the Micro Channel
interface, the local processor inter­
face, the local bypass interface, and
the interchip bus interface.

The Micro Channel interface con­
sists of the required signals for com­
pliance in several configurations.
Card designs can configure the com­
ponents to have a data bus of 16 or
32 bits with two or four data-parity
lines and one data-parity-enable con­
trol line. There are 32 address lines
for full address space access with
optional address parity support. Ad­
dress and data lines are driven with
24-mA CMOS drivers for direct
connection to the Micro Channel.
The design can drive and receive
control lines required for Micro
Channel arbitration (ARB/GRANT,
ARB0-3, PREEMPT) and data-trans­
fer signals (SBHE, DS16RTN,
DS32RTN, Streaming Data Rate
SDR0 and SDRl, and BURST).
One external 245 transceiver is re­
quired for control signals (CMD,
ADL, S0,Sl) with direction control
provided by the 82325. Direct con­
nection to the system set-up lines
such as RESET, SFDBK, and
CD_SETUP is supported also.

The 82325 chip set supports the 32-
bit Streaming Data Procedure.
Thirty-two-bit bus master operations
performed in 100 nanosecond (ns)
cycles can significantly increase the
data transfer rate of adapter cards
using this design.

The local microprocessor interface
is designed for direct attachment to
one of two popular Intel micropro­
cessor buses. Strapping the 186/376
pin determines the 1/0 pin defini­
tions to form an 80186 or 80386SX­
type local bus. (Intel's 80376 High
Performance 32-Bit Embedded Pro­
cessor offers the same external bus
structure as the 80386SX proces-

20

sor.) The 186 bus offers a multi­
plexed address and data bus with a
16-bit data path and 21 address bits.
The SX bus offers 16 data bits and
24 address lines, including the low­
and high-byte enables. In both con­
figurations the data transfer control
lines such as MEM/1O, ALE(ADS)
and _ WR_RD (R/W) are supported,
as are local interrupts and arbitra­
tion logic for local bus master
control.

The 82325 chip set
supports the 32-bit

Streaming Data
Procedure.

In addition to the local microproces­
sor interface, the bus master design
offers an option of adding a local
bypass bus to adapter designs. The
bypass bus isolation is done with
the addition of two 245-bus trans­
ceivers on the subsystem side. Con­
trol of the local bypass bus is also
provided by Jines driven by the
82325. The bypass bus can be used
in high bandwidth applications
where a local subsystem needs to si­
multaneously transfer data else­
where in the system while executing
instructions locally. This feature can
be used in most high-performance,
intelligent controller applications
such as DASD or LAN controllers.

The remaining pins on the bus mas­
ter chip set are used to form inter­
chip signals between the two
modules. This interface consists of a
9-bit bidirectional command/data
bus that is used for communications
between chip set modules . Com-

Personal Systems/Issue 4, 1990

mand and data exchanges are con­
trolled by two data flow control
clocks, a D clock for data, and a C
clock for commands. The remainder
of the signals are used for either
Micro Channel bus requests, 245 di­
rection control, or chip test signals.
The test signals are for manufactur­
ing purposes and are normally not
used in operational mode.

Internal Functions
Internally, the 82325 bus master
chip set contains many required
functions for Micro Channel inter­
facing. These functions include full
POS register support, arbitration,
and the address decoding logic re­
quired for memory and 1/0 slave op­
erations. In addition, the chip
contains a programmable DMA
channel and port, and a set of spe­
cial-function registers for the ex­
change of Subsystem Control Block
(SCB) information. The DMA and
SCB functions allow the 82325 chip
set to act as the interface logic be­
tween the PS/2 host system and the
intelligent subsystem implemented
on the adapter card.

DMA Port and Channel
Two features for direct memory ac­
cess between system and 1/0 subsys­
tem address spaces have been
designed into the 82325. The first is
called the DMA port. It allows the
local microprocessor subsystem to
transfer up to four bytes of data to
or from system memory. By pro­
gramming the Port Control, Ad­
dress, Data, and Start registers, read
and write operations to and from
system memory or 1/0 space are per­
formed. The Control register con­
tains programmable bits for counts
of one through four bytes in auto­
increment or non-increment address­
ing modes. Completion status for a
DMA port operation can be de­
tected by the local microprocessor

via local interrupt or polling status
bits in the Port Status register. Con­
ditions such as bus timeouts, write
checks, and data-size errors can be
detected from the Port Status
register bits.

DMA port operations can be pro­
grammed to operate on system data
found in either system memory or
I/0 ports. This feature is intended
as an independent port to the sys­
tem for control blocks or parameter
fetching across the Micro Channel.
The local processor would act as ei­
ther source or sink for the data of
all port operations.

For transferring larger blocks of
data, the 82325 contains a fully pro­
grammable DMA channel (DMAC).
This channel can be run in one of
two operating modes: direct or indi­
rect. Direct program control mode
of the DMA channel involves the
use of two address registers: a 32-
bit Channel System Address register
(CSAR) and a 24-bit Channel Local
Address register (CLAR). The Chan­
nel Byte Count register (CBCR)
size is 24 bits, allowing up to 16
MB data transfers to be performed
with one DMA channel sequence. A
status register of the same format as
the DMA port is provided, along
with an expanded control register.

The DMA Channel Control register
contains a field for the transfer
mode of the current channel opera­
tion. Sixteen different modes are
provided for transfers between vari­
ous different source/destination
pairs. Channel operations can move
source data from system memory or
I/0 space, local memory, or both im­
plicitly or explicitly addressed 1/0
ports on the local or bypass bus.
The destination for these operations
can be any of the same list. Comple­
tion status for the DMA channel is
available via local interrupt or poll-

21

ing as in the DMA port. The large
number of data-transfer modes sup­
ported provides extreme flexibility
for card designers to optimize over­
all data flows in a wide range of
applications.

The second mode of operation of
the DMA channel is called indirect
program control mode. This mode
allows linked lists of control block
information to be used to control
the channel operations. Control
blocks are constructed in local mem­
ory and can be chained together.
The content of the control blocks is
simple in form and resembles the
data that would be programmed in
the Channel registers. Linked-list
DMAC operations are enabled by
programming the Byte Count regis­
ter to zero, enabling linked-list oper­
ations in the Control register and
writing the local address of the first
linked-list control block in the 24-
bit Link List Pointer register.

Once programmed, DMA
channel operations are

performed by the chip set
independent of the local

microprocessor.

Once programmed, DMA channel
operations are performed by the
chip set independent of the local mi­
croprocessor. Channel operations
are started via a local write to the
DMAC START address . The op­
tional linked-list structure allows
the channel to fetch the next com­
mand block for multiple DMAC op­
erations without processor

Personal Systems/Issue 4, 1990

intervention. DMAC operations can
be halted by writing the DMAC
HALT address or programming the
next linked-list control (LLC) bit to
zero while the channel is running.
Programmers familiar with linked­
list DMA operations recognize the
power and flexibility of such a
DMA channel structure for ring
buffer and frame-based subsystem
applications. Through local driver
code using the linked-list approach,
a limitless number of logical DMA
channels can be implemented.

Special Register Set
Another powerful feature of the
82325 bus master design is a set of
special-purpose registers designed
for subsystem control block and
command interchange. These regis­
ters allow an intelligent subsystem
to communicate in a controlled man­
ner with the host processor or other
intelligent subsystems residing on
the same Micro Channel. This set of
registers is collectively called the
SCB registers. The registers' base
1/0 addresses (IOAs) are set by the
using adapter's 1/0 address and a 4-
bit JOA field value is set in POS 2.
Some fields and bits are specified
for function, while others are left as
subsystem-dependent. The imple­
mentation of some commands speci­
fied in the register definitions will
differ between subsystems.

Six registers comprise the SCB hard­
ware register support provided in
the bus master chip set. These are
the 32-bit Command Interface Port
(CIP), the 8-bit Attention Port (AP),
Subsystem Control Port (SCP), In­
terrupt Status Port (ISP), Command
Busy/Status Port (CBSP), and a 16-
bit Direct Interrupt Identification
Port (DIIP).

Together the SCB registers form the
basic hardware support required to

implement subsystem control be­
tween intelligent bus controllers.
Driver code written to use these reg­
isters can implement a fast and effi­
cient means of command and data
communications for virtually any
type of intelligent subsystem. A de­
tailed discussion of SCB architec­
ture can be found in the article
"SCB - An Architecture for Micro
Channel Bus Masters" in Issue 4,
1989 (G325-5004) of this magazine.

Working Together
In summary, the 82325 bus master
chip set described here offers de­
signers an integrated solution for
high-function, intelligent interfaces
to the Micro Channel. Intelligent
subsystems can be built using the
bus master front end to directly at­
tach to the Micro Channel. Local­
side processing power can vary
based on the local processor selec­
tion of a 186, 376, or 386SX. By­
pass bus support allows high­
throughput subsystems to continue
outboard processing while transfer­
ring data to and from the system or
channel memory. These functions
are now integrated into two plastic
flat packs that require less than four
square inches on an adapter card.

The full bus master components con­
tain the required standard Micro
Channel features such as POS regis­
ters and arbitration state machines
for using bus masters. In addition,
they contain powerful state machine

22

designs for data transfers using the
32-bit Streaming Data protocol. The
internal features of the DMA port
and DMA channel allow flexible
subsystem designs. Efficient small
block data and command transfers
can be accomplished via the DMA
port, whereas larger data transfers
are handled by the programmable
DMA channel with linked-list com­
mand chaining. Data can be moved
from local memory or 1/0 space to
system or channel memory and 1/0
space depending on the card
implementation.

The full bus master chip
set will reduce the design

complexity, card real
estate, and cost of

implementating
high-function adapters

for Micro Channel
systems.

Intelligent subsystems can use the
SCB registers to implement inter­
locked command interfaces. System
and subsystem processors can com­
municate command and data infor­
mation for specific subsystem tasks.
General control fields are available

Personal Systems/Issue 4, 1990

to implement subsystem specific
commands.

The 82325 bus master chip set is
one way to connect intelligent bus
master subsystems to the Micro
Channel and presents an integration
of functions that will be commonly
used in Micro Channel designs. The
82325 design will set a base exam­
ple for other similar Micro Channel
designs with different back-end in­
terfaces for different applications.
The full bus master chip set will re­
duce the design complexity, card
real estate, and cost of implement­
ing high-function adapters for
Micro Channel systems. With the
availability of such integrated de­
signs from Intel, bus master designs
for the Micro Channel will be much
easier to implement.

ABOUT THE AUTHOR

Jim Bringley joined IBM in 1984
and currently manages the I/O VLSI
Development department for IBM's
Entry Systems Division. His
previous experience includes work
on the development of I/O
processors and local area network
(LAN) adapters for the AS/400™
and 9370 mid-range products. Jim
earned his B. S. and M. S. in
electrical engineering at the State
University of New York at Buffalo .

Token Ring
Bus Master
LAN Adapters
Ariel Gomez-Ortigoza
Lantana Technology Inc.
San Diego, California

This article discusses constraints
to accurately appraising LAN
adapter performance under differ­
ent system architectures. Prop­
erly configured benchmarks
demonstrate that Micro Channel­
based bus master adapters com­
prise the best architecture for
environments demanding high
data transfer rates.

Bus master adapters improve the
throughput of the input/output sub­
system of a microcomputer by as
much as 40 percent, and are increas­
ingly critical to local area networks
that demand high rates of data trans­
fer. Yet bus master LAN controllers
are mostly underutilized in installed
microcomputer networks, and "tradi­
tional" benchmark tools fail to re­
flect how bus masters affect
performance.

Consider a typical example of what
will be the normal operating envi­
ronment of corporate America dur­
ing the 1990s:

• An extensive and populated
token ring network consists of
several servers with hundreds of
users sharing local and remote re­
sources.

• This internetwork includes file
and print servers with gigabytes
of storage space and multiple
printing capabilities. Communica­
tions servers support local and re­
mote bridging and filtering
functions, as well as electronic­
mail services between different
rings and gateway services to

23

minicomputers and mainframes
throughout the country. Also part
of the network are data base serv­
ers with on-line data, which
users, company-wide, continually
access, update, and share.

• Each workstation is based on 32-
bit microprocessors. At some
sites, RISC technology is also
used. Advanced bus architectures
- such as the PS/2 Micro Chan­
nel, or comparable systems that
allow multiprocessing - are sup­
ported on all nodes.

• The servers and workstations
both run operating systems capa­
ble of delivering multitasking and
multiuser services, including
OS/2, LAN Manager, and AIX®.
Each demands user-friendly, win­
dow-based applications and ad­
vanced graphics from
Presentation Manager™ and
CAD Graphic tools, and each

Personal Systems/Issue 4, 1990

concurrently performs multiple
applications while maintaining a
session to download and access
the mainframe.

Increasingly prevalent, this environ­
ment challenges corporate users
with complex questions. What type
of network and system should the
user install in anticipation of this en­
vironment? How might the user pre­
vent obsolescence and bottlenecks
as technology advances? What
working benchmarks might be estab­
lished to effectively appraise
adapter performance?

Lantana Technology Inc. is the de­
veloper and marketer of several bus
master LAN adapters for ISA and
Micro Channel computers. It is
Lantana's experience that a bus mas­
ter token ring adapter is the best ar­
chitecture for environments that
demand high data transfer rates.

What is a Token Ring Bus
Master?
A bus master adapter is a peripheral
card that users add to a microcom­
puter system. It features a micropro­
cessor that is dedicated to executing
fast 1/0 data transfers. That micro­
processor complements the central
processor installed on the system
motherboard. It enables the adapter
to take control of the data transfer
and operate as an independent peer
of the central processor. Simply,
this is a peer-to-peer configuration
that improves adapter throughput -
especially in environments that de­
mand high data rates - by freeing
the central processor for other tasks.

Further, a bus arbitration scheme en­
ables the bus master adapter to
share control of the bus with the
host and several other bus masters
running in the same host. Bus arbi­
tration supports a preemption
method and a fairness algorithm for
equitable sharing of the bus.

In addition, bus arbitration schemes
enable distributed multiprocessing,
such as a communications protocol
between bus masters.

Architecture ISA

Clock freauencv (MHz) 1 4.77
Bandwidth (in bits) 8
OMA (MB/sec) 0.954
OMS bus master <MB/sec) NIA

24

The current 16 megabits-per-second
(Mbps) token ring platform is the
fastest LAN topology of the three
most popular standards, transferring
more data in less time than net­
works configured around the 10
Mbps Ethernet®, 2.5 Mbps ARC­
net™, and 4 Mbps token ring
standards.

In addition, token ring's advanced
management functions equip the net­
work administrator with tools that
facilitate network management, es­
pecially when complemented with
bus master capabilities.

The bus channel and the LAN
adapter 1/0 throughput capacity are
the two most critical architectural
constraints limiting network
performance.

Figure 1 demonstrates how the bus
architecture selected for servers and
workstations acting as nodes deter­
mines network performance. The
bus frequency in MHz, and the max­
imum bandwidth in bits generate
the theoretical maximum throughput
of different competing architectures,
as measured in megabytes per
second.

Maximum Throughput

(Megabytes per second)

ISA2 MC MC

8.33 10 10

16 16 32
1.6 5 10

16.?3 10 20

I. MC is an asynchronous bus, and clock frequency is for reference only.
2. Data assumes an 80286 processor.

Figure 1 presents ideal values that
are actually far from "real world" re­
sults, which are subject to such fac­
tors as network loading and the
number of users. However, this fig­
ure enables a comparison of the dif­
ferent system architectures.
Similarly, the limitations and range
of operation of each bus architec­
ture may also be analyzed.

Working with these ideal values,
the ISA non-bus-master architecture
is severely limited in performance
expansion.

Similarly, history demonstrates that
the 1/0 subsystem on the LAN
adapter is also a significant
bottleneck.

Also limited is the performance of
an ISA bus master adapter. Figure 1
reports a deceptively high theoreti­
cal throughput that is unattainable
in the real world, because an ISA
bus master is not a "true" bus mas­
ter; it cannot preempt and must in­
stead request the bus. The more
realistic measure of the 16-bit ISA
adapter is the DMA value.

AMC4 EISA NuBus

10 8 10
32 32 32

5-85

160 33 37.5

3. This value is attainable only on a bus master adapter. Otherwise, the result is the same as for OMA.
4. AMC = Advanced Micro Channel architecture.
5. Depends on EISA type A, B, or C.
NIA= not available in this platform.

Figure 1. Maximum Throughput

Personal Systems/Issue 4, 1990

25

Data Transfer

Time required to transfer 100 bytes (adjusted value)

Processor 286 286 286 386 386 386 68030
Architecture ISA ISA MC MC AMC EISA NuBus

Clock freauencv (MHz) 4.77 8.33 JO JO 10 8 JO
Bandwidth (in bits) 8 16 16 32 32 32 32
l/0-maooed 463.31 25.6 20.48 13.7 13.7 N/S N/S _

Memorv-maooed 192.24 25.6 20.48 10.7 10.7 N/S N/S
DMA 104.82 62.5 20 10 N/S 12.5 N/S
DMA bus master NIA 5.98 1 10 5 0.625 3 2.67

I. This value is attainable only on a bus master adapter. Otherwise, the result is the same as for OMA.
NIA = not available in this platform.
N/S = not specified, as data depends on specific implementation.

Figure 2. Data Transfer

Bus master functions were first in­
cluded in the ISA IBM AT® archi­
tecture, which was introduced in
1984. However, this implementation
was not a "true" bus master. It sup­
ported the operation of a single
adapter with a dedicated Direct
Memory Address (DMA) channel,
but lacked a bus arbitration scheme.
Multiple bus master adapters could
not operate concurrently, arbitrate,
or preempt for equitable sharing.
The implementation did not have
the intelligence to take control of
the bus or transfer information be­
tween peer-to-peer bus master
adapters.

The market responded accordingly.
Developers introduced few adapters
for ISA-based AT systems that used
bus master adapters to boost system
performance. This is beginning to
change with the introduction of
Micro Channel-based bus masters,
as developers reconsider the bus
master features of the AT.

However, the true benefit of the bus
master is realized only with intelli­
gent adapters for advanced architec­
tures such as the Micro Channel ,

which enables full bus master capa­
bilities. Figure 2 compares the ideal
time (in microseconds) required to
transfer 100 bytes when using differ­
ent architectures for network cards
that are 1/0-mapped or memory­
mapped, or designs that use DMA
or DMA bus masters.

Figure 3 interprets the same data
from a second vantage point. This
figure shows that the simplest card
design - an 1/0-mapped adapter in
an ISA-based PC - could take 741
times longer to transfer data than
the most advanced design, which is
a DMA bus master Advanced Micro
Channel-based 80386 system.

Bus Master Performance
Features
Bus master adapters, built around a
dedicated microprocessor, increase
throughput, improve concurrency,
and reduce bus utilization and over­
head by decreasing interrupt usage.

Technically, these benefits translate
into more tasks executed simulta­
neously, a key requirement for
multithreaded or multitasking operat­
ing systems such as OS/2.

Personal Systems/Issue 4, 1990

To the user seeking to protect sys­
tem investments, these technical
benefits should ensure the selection
and installation of devices that yield
as much throughput as possible for
current and future system
configurations.

Testing Considerations
Performance results obtained from a
site testing bus master designs could
be misleading. Normal testing condi­
tions are configured for low-level
demand, not high rates of data trans­
fer in advanced environments - ob­
scuring the benefits of bus master
adapters.

Benchmark designers should instead
bear in mind the old golden rule
that the system is only as fast as the
slowest of its parts. The difference
between " ideal" and "real world" re­
sults is a function of the most limit­
ing part of the system, not
necessarily the technology of the
LAN. Advanced architectures, work­
stations, operating systems, and ap­
plications must be properly
configured to ensure they are not
the factors that inhibit the perfor­
mance of a bus master.

26

Data Transfer

Time required to transfer 100 bytes (adjusted value)1

Processor 286 286 286 386 386 386 68030
Architecture ISA ISA MC MC AMC EISA NuBus

Clock frequency (MHz) 4.77 8.33 10 10 10 8 10
Bandwidth (bits) 8 16 16 32 32 32 32
1/0-mapped 741 41 33 22 22 N/S N/S

Memory-maooed 307 41 33 17 17 N/S N/S

DMA 167 100 32 16 N/S 20 N/S

DMA bus master NIA 102 16 8 l 5 4

I. Fastest implementation - AMC bus master - is used as a reference value.
2. This value is attainable only on a bus master adapter; otherwise, the result is the same as for DMA.
NIA= not available in this platform.
N/S = not specified, as data depends on specific implementation.

Figure 3. Data Transfer

A low throughput workstation such
as a non-bus-master, ISA-based PC
or AT biases the yield of the com­
plete network performance test. It is
also true that in trying to exercise a
bus master Micro Channel architec­
ture adapter on a server, several
very fast bus master workstations
should be used to produce the most
accurate indicator of benchmark
performance.

Otherwise, the bus master card out­
runs and is hindered by the ISA­
based workstations. This mistake is
common, as most benchmark testing
of networks typically involves no
more than six ISA workstations.

Benchmark results also depend on
whether the system is running soft­
ware capable of delivering all the
throughput. There are many layers
of protocol stacks that need to be
considered; the two that most affect
the testing results are the efficiency
of the LAN drivers and the service
and communications protocols.

A well-written LAN driver can
make 100 percent difference in test­
ing results. Also, bus master adapt-

ers are mostly used in multitasking
and multiuser environments, where
adapters operating in parallel run
multiple tasks under different appli­
cations. The faster the bus is uti­
lized, the faster it may be used by
the host for other tasks, which is the
environment where a token ring bus
master adapter will make a mark.

Additional Considerations
Benchmark performance is also af­
fected by other factors, such as
memory buffers on the server, stor­
age speed when the testing involves
read-and-write operations, worksta­
tion channel architecture, the soft­
ware protocol stacks involved, the
number of workstations, and multi­
tasking functions of the operating
system. The tougher the testing envi­
ronment, the better it is for bench­
marking bus master performance.

Conclusions
In the experience of Lantana, test­
ing Micro Channel architecture bus
master adapters under adequate con­
ditions improves performance 20 to
40 percent over non-bus-master
adapters. The results vary depend-

Personal Systems/Issue 4, 1990

ing on the speeds of the server and
workstations, as well as the data
rate demands of the applications
being run.

Today's enterprise-wide networks
are environments in which every
user needs such multiple services as
mainframe access , the ability to run
several applications concurrently,
and the use of presentation graphics
and windows. At the same time, the
user must be connected to the LAN
and internetwork, and be able to
share peripherals. It is in this type
of installation that advanced archi­
tectures such as Micro Channel are
most appropriate, and high-speed
token ring bus master adapters out­
perform standard LAN adapters.

ABOUT THE AUTHOR

Ariel Gomez-Ortigoza is president
of Lantana Technology Inc., a
company that designs,
manufactures, and markets local
area networking products.

Lantana Technology Inc.
(619) 565-6400

Extension of
Wiring Rules
for 4-Mbit/s
Token Ring
Using UTP
Lobes
Robert D. Love and Thomas Toher
IBM Corporation
Research Triangle Park,
North Carolina

IBM's published rules for 4-Mbit/s
token ring on unshielded tele­
phone wire provide two fixed wir­
ing configurations that are
adequate for many but not all
customer installations. This arti­
cle presents guidelines that ex­
tend those rules and maximize
flexibility when using unshielded
twisted pair (UTP). Formulas are
given for extending UTP configu­
rations beyond two wiring closets
without repeaters, and for trading
off distance between wiring clos­
ets for additional lobe length.

27

In 1985, IBM introduced its 4-
Mbit/s Token-Ring Network and si­
multaneously announced the
capability of using unshielded
twisted-pair (UTP) telephone wire
as an alternative to the IBM Ca­
bling System's shielded data-grade
media. The advantages of using
shielded data-grade media with its
superior transmission and noise im­
munity characteristics were appar­
ent; networks using UTP media
offered reduced performance and at­
tachment capability. It was ex­
pected, therefore, that telephone
wire would be an interim solution
used primarily for initial trials be­
fore installation of the superior data­
grade media (IBM cable types 1, 2,
and 9). IBM's UTP offering, there­
fore, was tailored to support 4-
Mbit/s token ring with simple,
easy-to-apply wiring rules.

However, with the tremendous suc­
cess of token ring, some users pre­
fer to stay with UTP as the media
of choice for 4-Mbit/s operation.
This market segment needs more
flexible rules to allow installations

Personal Systems/Issue 4, 1990

using UTP to go beyond the origi­
nal, simplified configurations with­
out sacrificing network integrity.

The basic wiring rules for 4-Mbit/s
token-ring operation on UTP are
presented in IBM Token-Ring Net­
work Telephone Twisted-Pair
Media Guide (GA27-3714). The
rules can be summarized as follows:

1) The maximum number of sta­
tions allowed on a ring is 72.

2) Each station using UTP must
have a Type 3 Media Filter installed
at the station.

3) If IBM 8218 or IBM 8219 repeat­
ers are used, the ring can be re­
garded as consisting of a sequence
of segments, with the repeaters at
the boundaries of each segment. All
maximum allowable length calcula­
tions are determined separately for
each ring segment.

4) All single-wiring-closet rings and
single-wiring-closet segments [that
is, segments with all IBM 8228

------ Wiring
Closet 10

I meters

Figure 1. Applying the ARL Formula

Multistation Access Units (MAUs)
contained in a single wiring closet],
have a maximum allowable lobe
length of 100 meters. All IBM 8218
and IBM 8219 repeaters bounding
the single closet segment must be
within 200 meters of the wiring
closet that contains the IBM 8228
MAUs.

5) For two-wiring-closet rings and
two-wiring-closet segments, the
maximum lobe length is 45 meters
of UTP, and the maximum separa­
tion between wiring closets without
repeaters is 120 meters of IBM Ca­
bling System Type 1 cable. Repeat­
ers must be within 90 meters of the
associated MAUs.

6) The maximum copper cabling dis­
tance between two pairs of 8218 re­
peaters is 600 meters of type 1
cable.

7) The maximum fiber cabling dis­
tance between two pairs of 8219 re­
peaters is 2 km of type 5 or
62.5/125 optical fiber cable.

8) Whenever 8218, 8219, or 8220
repeater/converters are used, a Data
Grade Media-to-Type 3 Filter must
be used with them, as described in

28

55
meters

Wiring Wiring Wiring
Closet 20 Closet 25 Closet

#2 meters #3 meters #4

The ARL is computed as follows:

ARL = 10 + 20 + 25 + 55 - 10 = 100 meters

the IBM Token-Ring Network Tele­
phone Twisted-Pair Media Guide.

9) All copper cabling between wir­
ing closets must be 150-ohm,
shielded, data-grade media.

10) Token rings that contain UTP
lobes can be bridged to 4- or 16-
Mbit/s rings with no change in rules
1 through 9.

In addition, there are rules for use
of data-grade lobes on rings that
also contain UTP lobes. The rules
can be summarized as follows:

1) Each device attached to a data­
grade media lobe must use a Data
Grade Media-to-Type-3 Filter. This
device is bilateral in operation, so
that either end may be attached to
the device side of the lobe.

2) You are allowed to use type 1 or
type 2 cable that is twice the allow­
able UTP lobe length as determined
by rules 1 through 9.

Personal Systems/Issue 4, 1990

Extended Flexibility for
4-Mbit/s Token Rings with
UTP Lobes
The existing rules have sufficed for
the design of token rings with UTP
lobes for over four years. Generally,
the rules are adequate and meet the
requirements of providing reason­
ably flexible and easily workable
guidelines. However, there is a con­
tinual trickle of requests to extend
these rules by allowing for a trade­
off of inter-wiring closet length and
number of 8228s for lobe distance,
and rules for configuring a ring with
more than two wiring closets be­
tween repeaters on 4-Mbit/s rings.
The following rules allow for this
additional flexibility.

Starting with a two-wiring closet
configuration with nine 8228
MAUs, 120 meters between wiring
closets and 45 meter lobes, modify
the allowable maximum lobe dis­
tance based on the following rules
and trade-offs.

1) No configurations are permitted
that have a computed maximum al­
lowable lobe length of less than 45
meters.

29

Longest allowed lobe length (LALL) in meters

LALL= 45 + 0.3 (120 - ARL) + 4 (9 - #8228s) - 2.5 (#WC - 2) (1)

Figure 2. Equation 1.

2) Use Adjusted Ring Length
(ARL) for configurations with more
than two wiring closets.

The ARL is the total cable length in
the main ring path between wiring
closets (assuming type 1 cable is
used) less the shortest inter-wiring
closet link. For rings without repeat­
ers or converters, the ARL should
not exceed 120 meters.

(For more information about ARL
see IBM Token-Ring Network Intro­
duction and Planning Guide (GA27-
3677), pages 2 through 16.)

An example of a ring with compo­
nents in four wiring closets is
shown in Figure 1.

3) Add 0.3 meters to the maximum
allowable lobe length (45 meters)

Wiring
Closet

10 # I
meters

2 MAUs

for each meter the ARL is below
the 120-meter maximum.

4) Add 4 meters to the maximum al­
lowable lobe length (45 meters) for
each 8228 MAU less than the maxi­
mum allowed number of nine.

5) Subtract 2.5 meters from the max­
imum allowable lobe length (45 me­
ters) for each wiring closet (WC)
greater than two. This subtraction
accounts for the increase in the
main ring path because of the addi­
tion of two 8-foot patch cables
needed to go into and out of the ad­
ditional wiring closets.

Using these rules, the original guide­
line given for a two wiring closet
ring can be modified:

• The longest allowable lobe
length is 45 meters

55
meters

Wiring
Closet

20 #2
meters

Wiring
Closet

#3

1 MAU 2 MAUs

• The maximum distance between
wiring closets is 120 meters

• The maximum number of 8228s
is nine

• The maximum number of wiring
closets is two

By trading off distance between wir­
ing closets, maximum number of
8228s, and the number of wiring
closets for lobe length, we arrive at
a rule with greater flexibility.

The new rule expressed in equation
form is shown in Figure 2. The con­
figuration must allow a maximum
lobe length of at least 45 meters.

Applying this formula to a ring that
spans four wiring closets with seven
MAUs and has an ARL of 100 me­
ters, the formula yields a maximum
allowable lobe length of 54 meters
(Figure 3).

Wiring

25
Closet

#4
meters

2 MAUs

LALL= 45 + 0.3 (120 - 100) + 4 (9 - 7) - 2.5 (4 - 2) = 54 meters

(computed by equation 1)

ARL = Adjusted ring length
#WC= Number of wiring closets

Figure 3. Applying Equation 1

Personal Systems/Issue 4, 1990

30

LALL = 45 + 0.3 (120 - MRPL) + 4 (9 - #8228s) - 2.5 (#WC - 2) (2)

MRPL = Main ring path length with the segment

Figure 4. Equation 2.

These guidelines also allow for ex­
tending the wiring rules to include
the case where repeaters and con­
verters (8218 Copper Repeaters,
8219 Optical Fiber Repeaters , and
8220 Optical Fiber Converters) are
used.

When a token ring contains repeat­
ers or converters, maximum cable
distances are computed indepen­
dently for each segment bounded by
repeaters or converters. The formu­
las presented above can be used for
the segments with a minor adjust­
ment. Instead of using ARL, the
main ring path length (MRPL) is
now used within the segment. Each
copper segment in the ring must be
checked.

When using 82 l 8s or 8219s, the
MRPL is the length of the cabling

-

- WC 20 8218s WC
#1 meters #2

-

from the first 8228 in the segment
to the last 8228 in the segment.
Cable lengths from the input and
output repeaters to the 8228s within
the segment are not part of the
MRPL. The allowable length of
these segments is computed as
twice the allowable UTP lobe
length computed for the segment.
Equation 1 is rewritten using MRPL
instead of ARL as equation 2
(shown in Figure 4) .

Consider the token ring (Figure 5)
with two 8228 MAUs in wiring clos­
ets I, 2, 3, and 4, and no 8228s in
wiring closet #5. This ring is di­
vided into two segments. The first
contains wiring closet #I and the 20-
meter and 140-meter cabling
lengths connecting that wiring
closet to the 8218s that bound it.
The longest allowable UTP lobe

140
meters

- -

30 WC 40 WC
meters #3 meters #4

- -

length for a single wiring closet seg­
ment is 100 meters, and the longest
allowable cabling run from the wir­
ing closet to an 8218 repeater is 2 x
I 00 meters = 200 meters.

The second ring segment contains
wiring closets 2, 3, and 4, and the
wiring from wiring closet 4 to the
8218s in wiring closet #5. Because
there are no 8228 MAUs in wiring
closet #5 , it is not counted as one of
the wiring closets in the segment.
The MRPL in this segment is 30 +
40 = 70 meters. From equation 2,
the longest allowable lobe length is
computed as 69.5 meters.

The longest allowable length from
wiring closet #4 to the 8218s in wir­
ing closet #5 is 2 x 69 .5 = 139 me­
ters. Because the actual distance is
50 meters, the configuration is valid.

-
50 WC 8218s

meters #5

LALL = 45 + 0.3 (120-70) + 4 (9-6) - 2.5 (3 - 2) = 45 + 15 + 12 - 2.5 = 69.5 meters

(computed by equation 2)

Figure 5. Applying Equation 2

Personal Systems/Issue 4, 1990

31

optical
fiber

- ~ ~

- -
8220 30 WC 20 WC 20 WC 40 WC 8220

meters #I meters #2 meters #3 meters #4

- - -

LALL= 45 + 0.3 (120 - 110) + 4 (9-8) - 2.5 (4 - 2) = 45 + 3 + 4 - 5 = 47 meters

(computed by equation 2)

Figure 6. Applying Equation 2

When 8220 optical fiber converters
are at one or both ends of the ring
segment, the cabling between the
8220 and its adjacent 8228 within
the segment is counted as a part of
the MRPL. For example, in Figure
6, with two 8228s each in wiring
closets l through 4, the MRPL in­
cludes the 30 meters from the first
8220 to wiring closet # l. Therefore,
MRPL = 30 + 20 + 20 + 40 = I I 0
meters. By equation 2, the longest
allowable lobe length is 47 meters.

Optical-fiber cable can be used in
the main ring path by bounding the
optical-fiber segments with 8219 re­
peaters or 8220 converters. When
using either 8219s and 8220s to
drive 62.5/125 or 100/140 multi­
mode optical-fiber cable, a distance
of at least 2 kilometers can be sup­
ported. Detailed fiber-link budgets
are presented in the publication IBM
Token-Ring Network Optical Fiber
Cable Options (GA27-3747).

Remember that when repeaters and
converters are used, the total num-

ber of devices on the ring must still
not exceed 72. Each 8218 and 8219
counts as one device towards that
limit, and each 8220 counts as two
devices towards that limit.

Using these rules, 4-Mbit/s token
rings with UTP lobes can be config­
ured with a maximum of flexibility
while minimizing the number of re­
peaters and converters needed in the
network.

ABOUT THE AUTHORS

Robert D. Love is a senior engineer
at IBM's Communication Systems
Division in Research Triangle Park,
North Carolina. He received his
B.S.E.E.from Columbia University ,
and an M.S. in electro-physics from
the Brooklyn Polytechnic Institute.
He joined IBM in 1968, and
presently works in the Future LAN
Cabling System department, where
he is working on enhancements to
the IBM Cabling System. Bob is an
expert on data transmission and

Personal Systems/Issue 4, 1990

represents IBM on various
standards bodies, including IEEE
802.5. He holds two chip patents
and has published several articles
on LAN transmission design,
transmission comparisons, and
token-ring design.

Thomas Toher is an advisory
information developer at IBM' s
Communication Systems Division in
Research Triangle Park, North
Carolina. He received a B.A . and
M.A. in English from Hobart
College and Clark University ,
respectively. He joined IBM in
1984, and presently works in the
Local Area Network Information
Development department. Tom is
the lead writer for all IBM Cabling
System, IBM Token-Ring Network,
and IBM PC Network information
products produced at the Research
Triangle Park laboratory. He is a
frequent speaker on the subjects of
cabling and planning for token-ring
networks at GUIDE as well as other
forums.

SCSI and
DISK386.SYS

Supplied hy IBM technical staff~ at
Boca Raton , Florida, and Dallas.
Texas

This is a description of the Up­
date Program Driver,
DISK386.SYS, for IBM SCSI adapt­
ers. This program should be in­
stalled only if the user is
experiencing problems, and only
after considering the performance
implications.

The IBM PS/2 Micro Channel SCSI
adapters announced by IBM on
March 20, 1990, are bus master
adapters. Because bus master adapt­
ers read and write data directly to or
from system memory, they do not
use the Direct Memory Access
(OMA) controller on the system
board. This increases performance
by allowing the system processor to
perform other tasks while the SCSI
bus master adapter transfers data.

The Update Program driver is pro­
vided in order to maintain compati­
bility with certain multitasking DOS
applications or memory extenders
that assume the fixed-disk drive will
use the system OMA controller.
When this driver is installed, it re­
serves a buffer in the first megabyte
of system memory that serves as an
intermediate location for data being
transferred between the SCSI
adapter and the requesting

32

application·s buffer. While the
driver allows you to run applica­
tions that assume the fixed-disk
drive will use the system OMA con­
troller, it may cause some perfor­
mance degradation in file access
time.

The Update Program driver should
only be installed when applications
providing DOS memory extensions
fail to work properly when used
with a PS/2 SCSI adapter. For exam­
ple, an application may fail to load
and return the user to the DOS
prompt; or when attempting to ac­
cess a SCSI device, the system may
"hang" or the screen may go blank.

This program should be
installed only if the user

is experiencing problems,
and only after

considering the
per/ ormance
implications.

Specific examples of applications
that do not need the Update Pro­
gram driver are Windows™ 3.0,
DESQview™ 386 with QEMM™
5.0, 386 MAX™ 4.08, 386 Profes­
sional™ 4.08, and YM/386™. Older
versions of these applications, and

Personal Systems/Issue 4, 1990

other applications that use extended
or expanded memory under DOS,
may need the Update Program
driver installed in order to operate
properly.

IBM recommends that users update
their applications to maximize over­
all system performance rather than
install the Update Program driver.
However, this program is made
available to provide the option of
maintaining compatibility with pre­
viously purchased applications.

These instructions also apply to the
generic Update Program driver,
GENS386.SYS, supplied on the op­
tion disks shipped with non-fixed
disk SCSI options such as the IBM
PS/2 CD-ROM Drive.

The following documents, which
are shipped with the products, in­
clude instructions for the installa­
tion of DISK386.SYS:

IBM Personal System/2 Micro Chan­
nel SCSI Adapter with Cache Instal­
lation Instructions (page 12)

IBM Personal System/2 Micro Chan­
nel SCSI Adapter Installation In­
structions (page 10)

IBM Personal System/2 Model 65
SX Quick Reference (page 74)

IBM Personal System/2 Model 80
Quick Reference (page 82)

Operating
System
Platforms:
A Business
Perspective
Pino Ferrari and Fernando Lope::.
IBM Corporation
Boca Raton, Florida

With DOS and OS/2® Version 1.2
and MS® Windows™ 3.0 available
now and OS/2 Version 2.0 on its
way, deciding on an operating
system platform is an important
and complex task. This article tak­
ing a business perspective, di~­
cusses the requirements for the
next generation of operating sys­
tems, describes the technology,
and compares the three platforms.

In the good old days life was sim­
ple. If you had a PC, you could go
out and buy applications (or write
your own) without worrying about
which operating system they had to
run under. Effectively, there was
only one operating system, and its
name was DOS.

DOS is inexpensive, modest in
memory requirements, straightfor­
ward to use, and it has a stable, flex­
ible program interface. It was
designed around the technology of
the original IBM PC, and intended
for a personal computing environ­
ment consisting of stand-alone PCs
processing text data. That environ­
ment suited the needs of a wide vari­
ety of users, and the investment in
DOS applications is measured in

33

'

l
I

' I

I

millions of dollars. That investment
must be protected, but the needs of
businesses are expanding:

• It's difficult to share data among
stand-alone personal systems.
Most businesses need to put per­
sonal systems on a network so
users can access data no matter
where it resides. Many busi­
nesses need an en terprise-wide
network with applications that
can automatica lly and concur­
rently acquire needed data from
multiple locations.

• Businesses want a more intuitive
user interface. They want to re­
duce training and technical sup­
port costs, make end users more
productive, and lower the barriers
that prevent new users from
using computers.

• Businesses need to process graph­
ical data in applications that
range from business charting to
sophisticated desktop publishing.
The technology is changing to
make graphics processing an inte­
gral part of hardware and soft­
ware design.

To meet these needs, an operating
system platform must be easy to
use, with windowing and an icon­
based user interface. It must be ca­
pable of exploiting new hardware
technology as it becomes available
while preserving previous applica-'
tion investments. And it must be ca­
pable of integrating desktop
computing systems with the rest of
an organization's information pro­
cessing technology. This means it
must be able to run multiple applica­
tions and multiple communications

Personal Systems/Issue 4, 1990

protocols concurrently, and it must
be able to perform multiple func­
tions concurrently inside a single
application.

Unfortunately, DOS doesn't meet
these requirements. It was designed
around the technology of the origi­
nal PC, the Intel 8088/8086 micro­
~rocessor, and that technology
imposes restrictions unacceptable in
today's environment.

The Technology
The 8088/8086 microprocessors
have a 20-bit address bus, which
means that they can never directly
address more than 1 MB of RAM.
Of this I MB, 384 KB is for inter­
nal system use, leaving only 640
KB avai lab le for the operating sys­
tem and user applications.

DOS was designed
around the technology of
the original PC, the Intel

8088/8086
mzcroprocessor.

The 8088/8086 microprocessors
lack the hardware assist features
necessary to properly handle more
than one application at a time. And
si nce DOS was designed around the
8088/8086, it is strict ly a single­
task, single-thread operating system;
that is, it can maintain only one

program in memory at a time, and it
services requests serially. Yet multi­
tasking - the ability to maintain sev­
eral applications in memory and
switch among them so quickly that
they seem to be running concur­
rently - is important in today's envi­
ronment as a productivity enhancer.
With a multitasking system, for ex­
ample, you could run a long data
base query, and at the same time
enter data in a spreadsheet or up­
date a document with a text process­
ing program.

Programming techniques that pro­
vide a certain degree of multitask­
ing under DOS have been
developed, but require additional
products (like Windows,
DESQview™, and so on). Such tech­
niques also add overhead, and they
lack the safety features a true multi­
tasking system provides.

Mullilhreading - the ability to run
several parts of an application con­
currently - allows more intelligent
applications to be developed. For ex­
ample, with applications running
under a single-thread operating sys­
tem like DOS, a user who must
gather data from different sources
(host machines, a LAN server, and
so on) must know how to perfom1
the data transfers, and in what se­
quence. A multithreading appl ica­
tion can perfom1 the transfers
automatically and concurrently.

In 1982, Intel introduced the
80286™, a microprocessor with sig­
nificantly enhanced function. The
80286 has two modes of operation:
real mode, in which it simulates an
8088/8086, and a new mode called
protect mode.

In protect mode, the 80286 has 24-
bi t addressing, which gives it access
to 16 MB of RAM. In addition, pro­
tect mode includes memory protec-

34

tion and privileged instructions,
which make true multitasking possi­
ble. It also has a mechanism called
virtual memory, which allows the
80286 to run applications larger
than the installed memory. The
80286 cannot, however, run real
mode (DOS) applications when it's
in protect mode.

M ultithreading - the
ability to run several

parts of an application
concurrently - allows

more intelligent
applications to he

developed.

When the 80286 is powered up, it
goes into real mode, in which it can
run DOS applications. In real mode
it acts like the 8088/8086, with the
640 KB memory limitation and the
lack of hardware assisted multitask­
ing functions. Software can switch
the 80286 from real mode to protect
mode, but the only way to switch it
back to real mode is to reset the mi­
croprocessor. That makes it very dif­
ficult for an operating system to
exploit the protect mode features of
the 80286 while providing compati­
bility with real mode.

The 80286 provides many of the fea­
tures necessary for an operating sys­
tem that can satisfy today's business
needs, but does not make those fea­
tures available to DOS applications.

Then, in 1985, Intel announced the
80386™ microprocessor, and later
the 80486™ microprocessor. The
386™ and 486™ have 32-bit ad-

Personal Systems/Issue 4, 1990

dressing, so they can use up to 4
gigabytes of real memory (more
memory than is available on the
IBM 3090™), and up to 64 ter­
abytes of virtual memory. Segment­
ing of 64 KB is supported for
compatibility with programs de­
signed for the 8088/8086 and
80286, but the 386 and 486 have lin­
ear addressing and can use seg­
ments as large as 4 gigabytes.
Because a program "segment" can
be as large as the real memory ad­
dressing capability of the micropro­
cessor, programs no longer have to
be collections of small pieces, and
storage management is much easier
for programmers.

In addition, the 386 and 486 micro­
processors include a virtual memory
mechanism called paging, similar to
that used on mainframe computers.
The paging hardware allows mem­
ory to be divided into 4 KB page
frames. The contents of the page
frames, called pages, are swapped
between auxiliary storage and RAM
as needed. Paging allows virtual
and real memory management to be
much more efficient.

As is the case with the 80286, the
386 and 486 come up in real mode,
simulating the 8088/8086, and arc
capable of running DOS applica­
tions. Under software control, the
386 and 486 can be switched into a
new mode called virlual protected
mode.

In virtual protected mode, the 386
and 486 can run programs designed
for the 80286 protect mode as well
as programs designed to take advan­
tage of 32-bit addressing, linear ad­
dressing, large virtual memory, and
paging. But perhaps more signifi­
cant to a business with an invest­
ment in DOS applications, the 386
and 486 can divide memory into a
number of simulated 8086

machines, each of which acts like a
separate computer. The 386 and 486
can then run multiple DOS applica­
tions concurrently, using hardware­
assisted multitasking.

Microprocessor technology has
evolved far beyond the simple,
single-task, single-thread
8088/8086. Today ' s microproces­
sors can access large amounts of
real memory and can use even
larger amounts of virtual memory.
They are capable of running several
applications concurrently and exe­
cuting several parts of the same ap­
plication concurrently. They can run
DOS-based applications, but DOS
cannot exploit the power of this
new technology. IBM and
Microsoft realized that a new-gener­
ation operating system was needed,
and OS/2 is the result.

Changing Platforms: The
Alternatives
Some businesses will stay with the
stand-alone, text-based personal
computing environments they have
now, but many will want to realize
the benefits of the new technology.
These businesses, depending on
their current situation and future
business requirements, have three
major alternatives: MS Windows
Version 3.0 running on DOS, OS/2
Version 1.2, and soon, the 32-bit
OS/2 (referred to hereafter as OS/2
Version 2.0.)

In any case, the costs of migrating
must be analyzed very carefully, be­
cause they will far outweigh the
costs of hardware and software. In
fact, the hardware and software
costs are comparable: the difference
between an OS/2 solution and a
Windows 3.0 solution comes down
to the cost of I MB of memory, and
(at list price) OS/2 costs only a few
dollars more than Windows 3.0 plus

35

• Train technical staff

• Evaluate current application environment

• Select and test hardware platform

• Determine application availability

• Certify new applications

• Migrate in-house applications

• Prepare deployment plan

• Select pilot groups

• Migrate power users

• Train end users

• Share migration experiences

• Adjust plan as necessary

Figure I. Migration Plan

DOS. The migration is the expen­
sive part; some of the steps in a typi­
cal migration are shown in Figure I.

MS Windows Version 3.0: If a

business has a large installed base
of 8088/8086 and 80286 machines,
and does not need the function of
OS/2 now or in the near future, MS
Windows 3.0 may be an acceptable
solution. Shipped as a single retai l
product that provides support for
8088/8086, 80286, 80386, and
80486 machines, Windows 3.0 pro­
vides many enhancements over pre­
vious versions.

The most obvious new features are
the icon-based program manager
that groups and starts both Win­
dows applications and
non-Windows appl ications, and the
graphical file management interface.
The windowing controls and the
look-and-feel are similar to the
OS/2 Version 1.2 Presentation Man-

Personal Systems/Issue 4, 1990

ager™ , although there are some
small differences.

The major improvements are the
ability of Windows 3.0 applications
to access 16 MB of memory, the ca­
pability for running multiple DOS
applications concurrently, and the
use of paging for virtual memory.
These improvements are, for the
most part, incorporated in two new
modes of operation.

MS Windows 3.0 provides three
modes of operation: Real mode,
standard mode, and 386 enhanced
mode. The program automatically
starts up in the appropriate mode for
the system, depending on the micro­
processor and memory installed, but
can be forced into a lesser mode by
command line switches.

Real mode is the only one of the
three modes capable of running

applications designed for Windows
2.X. It is similar to previous ver­
sions of MS Windows, so the major
benefit is the new user interface.
Real mode requires an 8088/8086
microprocessor or above and 640
KB of memory, and supports the
LIM 4.0 Expanded Memory Stan­
dard. Multiple Windows applica­
tions can run concurrently using a
technique known as cooperative
multitasking.

In a cooperative multitasking envi­
ronment, the tasks must be written
to voluntarily and periodically give
up control of the system to allow
other tasks to run. Unless the other
tasks are "well behaved," a Win­
dows application has no guarantee
that it will get any processor time
within a given period. The tech­
nique works well, but can cause
problems for programs (such as
communications) that need regular
processor attention. It does not pro­
tect tasks from one another as does
a true, hardware-assisted, multitask­
ing system.

Multiple DOS applications can be
invoked within the Windows envi­
ronment in real mode, but only one
application can be resident and run­
ning. DOS applications are swapped
out of memory to accommodate the
last one launched, and when a DOS
application is running, all Windows
applications are suspended. Simi­
larly, when a Windows application
is running, all DOS applications are
suspended.

Standard mode requires an 80286
microprocessor or above with at
least I MB of memory. Expanded
memory for DOS applications is
supported only with physical ex­
panded memory cards (not by emu­
lating expanded memory using
extended memory). However, stan­
dard mode provides a major en-

36

hancement to Windows: it exploits
the 80286 protect mode to give Win­
dows and Windows applications ac­
cess to 16 MB of memory.

The technique used to give Win­
dows applications access to ex­
tended memory (memory above I
MB) is similar to the techniques
used by DOS "extenders." It pro­
vides access to more memory and al­
lows the user to run more programs,
or to run programs more efficiently.
However, it requires more careful
application development, and the
processor must be reset to real
mode and switched back to protect
mode. Also, as is the case with co­
operative multitasking, the tech­
nique cannot protect one application
from another.

Windows applications
operate in a cooperative
multitasking environment

in all modes, and
because Windows 3 .0 is

based on DOS, it is a
single-thread
environment.

An 80386 microprocessor or above
with at least 2 MB of RAM is re­
quired for 386 enhanced mode. In
addition to the new user interface
and access to 16 MB of memory for
Windows applications , 386 en­
hanced mode exploits the virtual
protected mode of the 80386 and
80486 to provide multiple DOS en­
vironments for non-Windows appli­
cations. In addition, it uses the
386/486 paging feature to provide
virtual memory support.

Personal Systems/Issue 4, 1990

In 386 enhanced mode, multiple
DOS applications run in a time­
sliced environment. Each DOS ap­
plication is given a fixed number of
seconds to execute, then control is
passed to the next application in a
"round-robin" fashion .

However, even in 386 enhanced
mode, Windows applications run in
a cooperative multitasking environ­
ment. Further, DOS extender appli­
cations (such as Lotus 1-2-3™
Version 3.0) will not work in 386
enhanced mode, which introduces
possible incompatibilities between
DOS extenders and the Windows
3.0 extended memory manager, and
contains other conflicts with DOS
extenders.

MS Windows 3.0 can offer produc­
tivity gains through its graphical
user interface (and may reduce train­
ing costs in the event of a future up­
grade to OS/2). When run on an
80286, 80386, or 80486 machine , it
provides multitasking benefits and
improves program efficiency by al­
lowing Windows applications ac­
cess to up to 16 MB of memory. On
an 80386 or 80486 machine, Win­
dows also provides true multitask­
ing of DOS applications. But it has
limitations: Windows applications
operate in a cooperative multitask­
ing environment in all modes, and
because Windows 3.0 is based on
DOS, it is a single-thread
environment.

OS/2: OS/2 requires an 80286,
80386, or 80486. OS/2 takes advan­
tage of the large memory and hard­
ware-assisted multitasking features
of these microprocessors without
losing DOS compatibility, and it
has the rich function needed by ap­
plications critical to the operation of
the business. Version 2.0 will ex­
ploit the 386/486 virtual protected
mode to allow multitasking of

multiple DOS applications concur­
rently with applications written for
the 80286 and 386/486. Yet busi ­
nesses have been slow in acquiring
OS/2 licenses. One reason is the
vast installed base of 8088/8086-
based and 80286-based systems, but
there are other reasons, which, in
our opinion, arc becoming less and
less valid:

• Between 1985 and the OS/2 an­
nouncement in 1987, memory
cost quadrupled. However, the
cost of memory has been declin­
ing steadily ever since, at about
30 percent annually.

• When OS/2 was announced, it
provided programmers with a
new set of functions, a new appli­
cation interface, and a new user
interface - in short, a new pro­
gramming environment. Program­
mers were faced with the task of
learning the new environment
and producing applications that
were competitive with their DOS­
based counterparts. It has taken
time, but large numbers of appli­
cations are now being written.

OS/2 has become a viable, cost­
effective platform for taking advan­
tage of the advances in desktop in­
formation processing technology.
And it complies with IBM's Sys­
tems Application Architecture™,
which aids system integration with
other information processing
technologies.

If a business has or is ready to mi­
grate to 80386-based machines, and
needs to move toward integrating
desktop systems with the rest of the
enterprise's information processing
technology, OS/2 Version 1.2 (and,
in particular, OS/2 Extended Edi­
tion) is the appropriate choice.

Version 1.2 is a 16-bit operating sys­
tem. It improves user productivity

37

by providing a sophisticated but
easy-to-use, icon-based, windowing,
user interface. Version 1.2 protects
the DOS application investment
with a DOS compatibility mode for
running DOS applications. Yet it
takes full advantage of the 80286
and 80386 protect mode to provide
multitasking and multithrcading sup­
port for OS/2 applications. In addi­
tion to enhancing productivity, the
use of protect mode enhances the in­
tegrity of the environment, which is
vital when critical business applica­
tions move from host to desktop.
Preemptive (as opposed to coopera­
tive) multitasking and multithread­
ing provide prioritized access to the
system's resources, which is vital
for communications applications.

OS/2 has become a
viable, cost-effective
platform for taking

advantage of the
advances in desktop

information processing
technology.

In addition, Version 1.2 includes a
high performance file system
(HPFS) which, unlike the File Allo­
cation Table (FAT) system used by
DOS, was designed for large direct
access storage devices . HPFS is an
installable file system that maxi­
mizes performance, minimizes dead
space, has improved error process­
ing, and includes extended file attri­
butes. At the same time, OS/2
continues to support the FAT sys­
tem for compatibility with other sys­
tems and for diskette use.

Personal Systems/Issue 4, 1990

OS/2 Extended Edition Version 1.2
adds a powerful set of integrated
communications functions, includ­
ing the features required for a LAN­
based, multiuser environment, and a
relational data base manager. These
communications and data manage­
ment functions take advantage of
protect mode to make OS/2 a rich,
deployable platform that enables
businesses to start capitalizing on
application and system integration
benefits.

If a business is ready to install
80386- or 80486-based systems, and
has a large investment in DOS appli­
cations or a major requirement to
continue using existing DOS appli­
cations, yet needs the rich function
and system integration features of
OS/2, Version 2.0 is the proper
alternative.

OS/2 Version 2.0, according to a
joint statement of direction by IBM
and Microsoft, is scheduled for
availability in the near future. It re­
quires an 80386- or 80486-based
machine and has all the function
provided by Version 1.2, but ex­
ploits the features of the 386/486
virtual protected mode.

Version 2.0 can provide up to 16
concurrently running virtual DOS
machines. Each DOS machine has
the 640 KB limit, but because OS/2
emulates certain DOS functions
(such as file I/0), the applications
actually have more memory avail­
able to them than they would on
their own DOS-based systems. Fur­
ther, each DOS application can use
the LIM 4.0 standard automatically,
without the extra memory manager
required in simple DOS environ­
ments. Also, OS/2 Version 2.0 per­
mits DOS applications to be
windowed and allows the user to
copy data from one application to
another.

In addition to enhancing DOS per­
formance, OS/2 Version 2.0 runs ap­
plications designed for Version l.X
without changes, but provides a 32-
bit application program interface for
applications that exploit the 32-bit
flat memory model, and uses the
386/486 paging feature to support
virtual memory. Because this pag­
ing mechanism is so efficient, the
system will run acceptably in a nom­
inally overcommitted situation.

OS/2 Version 2.0 is a flexible plat­
form. The base product can provide
multiple DOS application multitask­
ing, as well as the multitasking and
multithreading functions of Version
1.2. Version 2.0 includes facilities
for 32-bit applications. And plans
are to make communications and
data base functions available to all
OS/2 users.

In the good old days, life was sim­
ple. Since then, technology has
grown more powerful to meet ex­
panding business needs, and with
that power has come complexity.
But OS/2 is bringing back the good

38

old days. It has the power, and the
rich function needed in today's envi­
ronment, yet it has the flexibility to
run virtually anything. Life is sim­
ple again.

OS/2 is bringing back
the good old days.

Editor's note: At COMDEX/Fall
1989, IBM and Microsoft an­
nounced their intention to deliver a
32-bit version of OS/2. That version
is ref erred in this article as OS/2
Version 2.0. As we go to press, no
formal announcement (official prod­
uct name, content, availability, and
so on) has been made by the two
companies. Reference to OS/2 Ver­
sion 2.0 does not indicate a commit­
ment by IBM to introduce a product
under that name.

Personal Systems/Issue 4, 1990

ABOUT THE AUTHORS

Pino Ferrari is a senior marketing
program administrator in the
National Distribution Division
Customer Executive Briefing Center
in Boca Raton. He joined IBM in
Italy in 1969. Previous positions
have included assignments in
development laboratories and
branch offices, focusing on
communications and software
aspects of the data processing
business.

Fernando Lopez is a senior
marketing program administrator in
the National Distribution Division
Executive Briefing Center in Boca
Raton. He currently presents
briefings about OS/2. Fernando
joined IBM in 1968. Past
assignments include programming
for MVS and VM operating systems,
World Trade technical and
marketing support for
communications products, and
software development manager.

39

Minimum These required files may not be deleted:

OS/2 1.2 DASD
ANSI EXE \OS2 NLS DLL \ OS2\DLL

Requirements ANSICALL DLL \OS2\DLL OS2SM DLL \OS2\DLL
BKSCALLS DLL \OS2\DLL OS2SMDUM DLL \OS2\DLL
BMSCALLS DLL \OS2\DLL OSOOOl MSG \OS2\SYSTEM

Craig Chambers BVHINIT DLL \OS2\DLL OSOOOlH MSG \OS2\SYSTEM
IBM Corporation BVHWNDW DLL \OS2\DLL PMAVIO DLL \OS2\DLL
Dallas , Texas BVSCALLS DLL \OS2\DLL PMBIND DLL \OS2\DLL

CHKDSK COM \OS2 PMCPL EXE \OS2
This is a listing of files that can CMD EXE \OS2 PMCPLH HLP \OS2\HELP
be deleted from an OS/2 1.2 sys- COMP COM \OS2 PMDD SYS \OS2
tern to increase the DASD space COUNTRY SYS \OS2\SYSTEM PMEXEC EXE \OS2
available on the C: drive. DDINSTAL EXE \OS2\INSTALL PMEXECH HLP \OS2\HELP

DISKCOMP COM \OS2 PMFILE EXE \OS2
There has been considerable di scus- DISKCOPY COM \OS2 PMFILEH HLP \OS2\HELP
sion about the amount of DASD re- DOSCALLl DLL \OS2\DLL PMGPI DLL \OS2\DLL
quired to run OS/2. IBM has DOSCALLS LIB \OS2 PMGRE DLL \OS2\DLL

investigated what a "bare bones" E EXE \OS2 PMHINIT DLL \OS2\DLL

OS/2 system might consist of, and EAUTIL EXE \OS2 PMMLE DLL \OS2\DLL

what steps would be required to EHXDDLGS DLL \ OS2\ DLL PMPIC DLL \OS2\DLL

achieve such a config uration. Listed EHXDL DLL \OS2\DLL PMSHAPI DLL \OS2\DLL
EHXHP HLP \OS2\HELP PMSHEL L EXE \OS2

here are the files that can and can- EXTDSKDD SYS \OS2 PMSHELLH HLP \OS2\HELP
not be eliminated. FIND EXE \OS2 PMSHLTKT DLL \OS2\DLL

FKA DLL \OS2\DLL PMTKT DLL \OS2\DLL
Part I describes the fil es that are in- FORMAT COM \OS2 PM VIOP DLL \OS2\DLL
eluded as part of OS/2 Standard Edi- HARDERR EXE \OS2\SYSTEM PMVIOP HLP \OS2\HELP
tion (SE) I .2. Part 2 examines OS/2 HELP BAT \OS2 PMWIN DLL \OS2\DLL
Extended Edition (EE) 1.2. HELP CMD \OS2 PMWINDUM DLL \ OS2\DLL

HELPMGR DLL \OS2\DLL PRINT COM \OS2
The fil e sizes mentioned in thi s arti- HELPMSG EXE \OS2 PSHH HLP \OS2\HELP
cle were recorded on a PS/2 system. HELP HLP \OS2\ HELP QUECALLS DLL \OS2\DLL

Where no sizes are noted, it is be- INI RC \OS2 REPLACE EXE \OS2

cause either those fil es are onl y in- IN I SYS RC \OS2 SESMGR DLL \OS2\DLL

stalled on AT-type systems, or the KBDCALLS DLL \OS2\DLL SWAPPER EXE \OS2\SYSTEM
MAKE IN I EXE \OS2 SYSLEVEL EXE \OS2

config uration options selected for
MODE COM \OS2 SYSLE VEL OS2 \OS2\INSTALL

the system did not call for the instal - MONCALLS DLL \OS2\DLL UNPACK EXE \OS2
lation of those fi les. Note that your MORE COM \OS2 VDISK SYS \OS2
fi le sizes may differ because of the MOUCALLS DLL \OS2\D LL VIOCALLS DLL \OS2\DLL
maintenance level, but the totals MSG DLL \OS2\D LL VIOTBL DCP \OS2
wi ll not be significantly different. NAM PIPES DLL \OS2\D LL XCOPY EXE \OS2
Totals are included where appropri-
ate to make it easier to see the ef- BASEDDOl SYS \ (PC AT only)

feet of deleting an entire component BASED D02 SYS \ (PS/2 only)

from the system. BASEDD03 SYS \ (PS/2 model 30/286 only)

Part 1 - OS/2 SE 1.2 Figure 1. OS/2 SE 1.2 Required Files
The required fi les listed in Figure I
may not be deleted. The fi les that

Any OS/2 SE fil es not li sted in Fig- can be deleted without adversely af-can be deleted are li sted in Figures
2a through 2d. ure I or in Figures 2a through 2d fee ling OS/2.

Personal Systems/Issue 4, 1990

40

Filename Extension Directory Size

If the Command Reference is not needed, these files can be deleted:

CMDREF INF \0S2\BOOK 366050
VIEW EXE \0S2 26672
VIEWDOC EXE \0S2 25392
VIEWH HLP \0S2\HELP 5615

If DOS support is not needed, these files can be deleted:

ANSI SYS \0S2 1976
APPEND EXE \OS2 6946
ASSIGN COM \0S2 1517
BASIC COM \OS2 585
BASICA COM \0S2 36253
COMMAND COM \OS2 29009
DOS SYS \OS2 2100
EDLIN COM \0S2 7996
EGA SYS \OS2 2599
GRAFTABL COM \OS2 8401
JOIN EXE \OS2 24848
MORTGAGE BAS \0S2 6380
SETCOM40 EXE \0S2 9387
SUBST EXE \0S2 24848

If Dual Boot is not needed, this file can be deleted:

BOOT COM \OS2 42384

If a font is not needed, it can be deleted:

COURIER FON \OS2\DLL 307760
HELV FO N \0S2\DLL 545456
SYSMONO FO N \0S2\DLL 39424
TIMES FON \OS2\DL L 603440

If High Performance File System (HPFS) is not used, these files can be deleted:

CACHE EXE \OS2 13984
HPFS IFS \OS2 100378
STARTLW
UHPFS

DLL
DLL

\OS2\DLL
\OS2\DLL

1076
157024

Total DASO Saved (bytes)

(433,729)

(162. 845)

(1, 496,080)

(272 , 462)

If the TOOLKIT or IBM programming languages will not be installed, these files can be deleted:

CPISPFPC DLL \OS2\DLL 129588
DMPC EXE \0S2\INSTALL 2798
DTM DLL \OS2\DLL 1786
INACALL DLL \OS2\DLL 1560
IN STAID CMD \OS2\INSTALL 254
INSTAID CNF \OS2\INSTALL 225
INSTAID LIB \OS2\INSTALL 27648
INST AID PRO \OS2\INSTALL 175
INSTAIDE EXE \OS2\INSTALL 93827
ISPD MSG \OS2\INSTALL 4551
ISPM MSG \OS2\INSTALL 1489
STXTDMPC DLL \OS2\DLL 14171 (278,072)

Figure 2a. OS/2 SE l.2 Fi les That Can Be Deleted

Personal Systems/Issue 4, 1990

41

Filename Extension Directory Size Total DASD Saved (bytes)

If Introducing OS/2 is not needed, these files can be deleted:

INT ROE EXE \OS2\INTRO 16905
INTRO I TUT \OS2\INTRO 56788
INTROS TUT \OS2\INTRO 39567 (113,260)

If mouse support is not needed, these files can be deleted:

IBMMOUOl SYS \OS2 2612
IBMMOU02 SYS \OS2 3124
MOUSE SYS \OS2 18484
MSBUSOl SYS \OS2 2612
MSINPOl SYS \OS2 2612
MSPS201 SYS \OS2 2612
MSPS202 SYS \OS2 3636
MSSEROl SYS \OS2 3124
MSSER02 SYS \OS2 3636
PCMOUOl SYS \OS2 3124
PCMOU02 SYS \OS2 3124
POINTDD SYS \OS2 6562
VISIONOl SYS \OS2 3124
VISION02 SYS \OS2 3124

If national language support is not needed, these files can be deleted:

4201 DCP \OS2 10683
5202 DCP \OS2 404
KEYB COM \OS2 17769
KEYBOARD DCP \OS2 94007 (122,863)

If any of these utilities are not needed, they can be deleted:

A TT RIB EXE \OS2 37619
BACKUP EXE \OS2 29095
FDISKPM EXE \OS2 82640
FDISKPMH HLP \OS2\HELP 10508
LABEL COM \OS2 33383
LINK EXE \OS2 142578
RECOVER COM \OS2 53184
RESTORE EXE \OS2 39285
SORT EXE \OS2 34385
TREE COM \OS2 36461
PICH HLP \OS2\HELP 11973
PICICHG EXE \OS2 35280
PICPH HLP \OS2\HELP 33413
PICPRINT EXE \OS2 126512
PICSHOW EXE \OS2 48608

Figure 2b. OS/2 SE 1.2 Files That Can Be Deleted

Personal Systems/Issue 4, 1990

42

Filename Extension Directory Size Total DASO Saved (bytes)

If OS/2 problem determination support is not needed, these files can be deleted:

CREATEDD EXE \0S2 50976
LOGDAEM EXE \0S2\SYSTEM 27867
0S2SM PDF \0S2 2676
PATCH EXE \0S2 43509
PMCOOOOO TFF \0S2\DLL 4228
PMClOOOO TFF \0S2\DLL 7125
PMC20000 TFF \0S2\DLL 26425
PMC30000 TFF \0S2\DLL 1450
PMC40000 TFF \0S2\DLL 365
PMC50000 TFF \0S2\DLL 21507
PMC60000 TFF \0S2\DLL 2872
PMC70000 TFF \0S2\DLL 4698
PMC80000 TFF \0S2\DLL 469
PMGPI PDF \0S2 7013
PMGRE PDF \0S2 363
PMPIC PDF \0S2 231
PMSHAPI PDF \0S2 1531
PMSPL PDF \0S2 1322
PMTRACE DLL \0S2\DLL 3444
PMWIN PDF \0S2 7740
PSTAT EXE \0S2 18047
SPLlB PDF \0S2 2112
SPL2B PDF \0S2 288
SYSLOG EXE \0S2 91776
TRACE EXE \0S2 27103
TRACEFMT EXE \0S2 73744
TRSEL EXE \0S2 19281

If the spooler will not be used, these files can be deleted:

IBM4201 DRV \0S2\DLL 83056
0S2SPLFS DLL \0S2\DLL 3582
PMPRINT QPR \0S2\DLL 12784
PMSPL DLL \0S2\DLL 13086
PMSPOOL EXE \0S2 101648
PMSPOOLH HLP \0S2\HELP 31060
SPLlB DLL \0S2\DLL 69520
SPL2B DLL \0S2\DLL 3759
SPLDVWRK EXE \0S2 9408
SPLPRM EXE \0S2 16848
SPOOL EXE \0S2 21309
SPOOLCP DLL \0S2\DLL 10178 (376,238)

These files can be deleted:

SYS INST SCD \0S2\INSTALL 5968
CONVERT EXE \0S2 19173

I
Figure 2c. 0S/2 SE 1.2 Files That Can Be Deleted

Personal Systems/Issue 4, 1990

43

Filename Extension Directory Size Total DASO Saved (bytes)

These files are used for display support. If they are not referenced in CONFIG.SYS, they can be deleted:

BVH8514A DLL \OS2\DLL 8810
BVHCGA
BVHEGA
BVHMPA
BVHVGA

DLL
DLL
DLL
DLL

\OS2\DLL
\OS2\DLL
\OS2\DLL
\OS2\DLL

The correct file is copied to DISPLAY.DLL. These files can be deleted:

23146
32362
15978
36970

IBMBGA DLL \OS2\DLL 335360
IBMCGA DLL \OS2\DLL 130048
IBM EGA
IBM VGA

DLL
DLL

\OS2\DLL
\OS2\DLL

145920
148480

These are the serial support files. If a file is not referenced in CONFIG.SYS, it can be deleted:

COMOl SYS \OS2 9780
COM02 SYS \OS2 16948

Figure 2d. OS/2 SE 1.2 Files That Can Be Deleted

Part 2 - OS/2 EE 1.2

Initial OS/2 EE Installation: A
minimum configuration (answering
"NO" to install prompts) was in­
stalled with the following:

• "NO" serial device support

• "NO" retrieve command support

• "NO" command reference

• "NO" device support diskette to
install

• Communications Manager with
test configuration file

• Database Manager, RDS and
Query Manager included (Re­
quester only, no local databases
to be used)

• LAN Requester

The amount of DASO left on the
test system was 13,582,336 versus
12,357,632 for a maximum configu­
ration setup (answering "YES" to in­
stall prompts). This constitutes a
savings of 1,224,704 MB after ini­
tial installation.

Communications Manager
Features: Once Communications
Manager has been installed and
customized, the keyboard remap
and configuration services files can
be deleted. To do this, execute a
REINST of Communications Man­
ager and specify that you want to re­
move those features.

Note: Once configuration services is
removed, modifications to the Com­
munications Manager configuration
file are not allowed. In addition, ver­
ification of other configuration files
will not be possible. However, con­
figuration files that have already
been verified can be copied from an­
other system and Communications
Manager will execute normally.

This amounts to a savings of over
3.5 MB.

Reinstallation Features: A num­
ber of files that control the installa­
tion and removal of EE subsystems
(for example, Communications Man­
ager, Database Manager, and LAN
Requester) can be deleted. It is im­
portant to understand that once

Personal Systems/Issue 4, 1990

these files are removed, a REINST
can never be done again. Before re­
moving the files, make sure that the
system is configured correctly or de­
vise a backup scheme for the de­
leted files so they can be restored if
needed again.

The files that can be deleted are
shown in Figure 3. Under the test
configuration, all of these files were
deleted except those in the
\OS2\DLL group, which were not
present. The DASO saved totaled
1,006,685 bytes.

Miscellaneous Features: Once
OS/2 is installed, a number of mis­
cellaneous feature files can be de­
leted. These files may not be
needed depending on the user 's in­
stalled base.

\OS2\INTRO 797,680
(OS/2 introduction and tutorial)

\OS2\BOOK 365,717
(used by command reference)

\OS2\DLL 360,876
(used by Database Services)

44

Under the test configuration, all of these files were deleted except those in the \OS2\DLL group, which were
not present. The DASD savings totaled 1,006,685 bytes.

Path: \OS2\INSTALL

CMDIR.DA*
CUSTBLD. PI*
CUSTINST.CM*
DBDIR. DA*
EEIN.MS*
EEINST.CN*
EE INST. LI*
EE INST. PI*
EEINST.PR*
EELOG.DA*
EICCNVSV.EX*
EICDELSV.EX*
EICERCON. PI*
EICERROR. PI*
EICLGMSG. PI*
EICSRVCS.EX*
EIDPNTXT. DA*
LPOINST.PI*
LRDIR.DA*
MUGDIR. DA*
ROCSDD.EX*
RE INST. CM*
RFRSHICO.EX*
VIEWBLOG.CM*
VIEWBLOG.PI*
VIEWLOG.CM*
VIEWLOG. PI*

Total: 335,524 bytes

Path: \OS2\DLL

ACS3ECT.DL*
ACSGCBLD.DL*
ACSMSGFM.DL*
ACSSVC.DL*
ISPMALLC.DL*
PICTDMPC.DL*
RCDAPIEX.DL*
RCFGFILE.DL*
RCOMAIN.DL*
RCVMAIN.DL*
RNLCHARS.DL*
RPSMAIN.DL*
RSMMAIN. DL*

Path: \OS2\INST ALL

ACSBIND.MS*
ACSE.MS*
APPCPC.DA*
CFG.DA*
CIKS.CN*
CIKS.LI*
CIKS.MS*
CIKS.PR*
CIKSTART.EX*
EECFG.CM*
ISPD.MS*
ISPM.MS*
PICT.MS*

Total: 421,976 bytes

Path: \OS2\INST ALL

CMCUBLD.PI*
CMCUINST.PI*
CMINST.PI*
CMREMOVE.CM*
CMREMOVE.PI*
CMRMPREV.CM*
CMTITLE. TX*
DBCUBLD.PI*
DBCUINST. PI*
DBDSGCl.DA*
DBDSGC2.DA*
DBDSGC3.DA*
DBDSGC4.DA*
DBDSGWSN.PI*
DBDSINST.PI*
DBDSIPAN.PI*
DBINST.PI*
DBLOADFT.PI*
DBQMGC.DA*
DBOMINST.PI*
DBREMOVE.PI*
DBRMPREV.CM*
DBRMVDS.PI*
DBRMVQM.PI*
DBSETVAR.PI*
DBSPACE.PI*
DEL TITLE.EX*
EIPCFGSY.PI*
EIPCHECK.PI*
EI PCM PIN. PI*
EIPERROR. PI*
EIPICECL.PI*

\OS2\INST ALL (cont.)

EIPINITL. PI*
EIPIPLUP.PI*
EIPSAVHV.PI*
EIPYES.TX*
IBM LAN. EX*
LRCHKSPC.PI*
LRCOPFIL.PI*
LRCUBLD.PI*
LRCUINST. PI*
LRDOINST. PI*
LRFIXINI. PI*
LRINST.PI*
LRMUGINS.PI*
LRREMOVE.PI*
LRRMPREV.CM*
LRSETVAR.PI*
LRSPECNM.PI*
LRUPDAIF. PI*
LRWKSSVC.PI*
MUGINST.EX*
MUGINST.PI*
REXXINST. PI*
SQLEMGDB.EX*
SQLENODE.EX*

Total: 249, 185 bytes

Figure 3. OS/2 EE 1.2 Files That Can Be Deleted

Total DASD Savings
Initial install. savings 1,224,704
Introducing OS/2 797,680
Files in Figure 3 1,006,685
Communications Mgr.
REIN ST 3,500,000

Total DASD saved: 6,529,069

After deleting all unnecessary files ,
OS/2 EE requires approximately 25
MB ofDASD.

ABOUT THE AUTHOR

W. Craig Chambers is a senior
market support representative. He
joined IBM as a systems engineer in
1969 after receiving B.S.M.E. and
M.S.M.E degrees from Purdue
University. His previous
assignments include lead systems
engineer at several large
MVSIJES2/JES3 accounts, technical
support for communications
products such as the 3270 system,

Personal Systems/Issue 4, 1990

the 3270-PC, the Workstation
Program, and Enhanced
Connectivity Facilities and
technical support for OS/2 SE. He
has been a presenter for IBM's
Technical Coordinator Program
television broadcasts to its
customers and has published
several IBM technical bulletins.

User Profile
Management
Laura Camp, Carolyn Easter,
and Roy Feigel
IBM Corporation
Austin, Texas

User Profile Management (UPM) is
a subcomponent of 0S/2 Ex­
tended Edition 1.2 (EE). It pro­
vides functions for identifying
users in support of Database Man­
ager™, Communications Man­
ager™, and the LAN Requester
components. Each workstation
that has OS/2 Extended Edition
1.2 installed has the UPM function.

UPM could be described by its
functions:

• Creation and deletion of users

• Management of user profiles by
UPM administrators

• Creation , deletion, and mainte­
nance of groups

• Management of user logon and
logoff functions , and maintaining
the state of users (that is, vali­
dated, password expired or re­
voked, and so on)

• Option for users to modify their
own passwords and comments

UPM could also be described by its
structures:

• Presentation Manager interface

• Application programming inter-
face

• Data structures

• Support for local area network

UPM is an enhancement to and an
extension of the Access Control Sys­
tem (ACS). Although database ob­
jects and LAN resources are
protected individually by these com­
ponents and not by UPM, these

45

components use the ACS applica­
tion programming interfaces (APis)
for access control or to query the
validation of a user ID. ACS is a set
of APls for user validation and ac­
cess control, and a data file,
NET.ACC, which contains user ID,
passwords, group names, and access
control lists.

The Database Manager maintains its
own set of authorization tables de­
fining which users and groups may
access particular databases, tables,
views, access plans, and so on.
LAN Server, on the other hand,
uses the Access Control System it­
self, using the application program­
ming interfaces provided by the
LAN Server component. Figure I
shows UPM as part of the Extended
Edition 1.2.

Concepts
A "user" is a unique user ID and
password defined to UPM on an
OS/2 EE system - whether in a
stand-alone or a physical LAN­
connected environment (that is,

UPM
0/1

- LOGON
-LOGOFF

- User/ group

LAN Server or Requester may or
may not be installed). UPM stores
these user definitions (user IDs and
encrypted passwords) in its own
UPM database on disk.

When defining users on a system
without OS/2 1.2 LAN Server or Re­
quester installed, the user ID defini­
tions will be stored only on that
particular workstation. When defin­
ing users on a system on which
OS/2 LAN 1.2 Server or Requester
is installed and the creator is logged
onto the domain, the user ID defini­
tions will be added to the domain
controller. During LAN operation,
when the domain controller and
other LAN servers are operational,
the user IDs and group IDs will au­
tomatically be propagated to all
OS/2 LAN servers in the domain.

LAN Configuration
Designing a network containing the
OS/2 Extended Edition components
requires a look at the possible con­
figurations. A domain controller
server is the central server for an

User Applications

Comm.
Mgr.

ACS - (Access Control System)
Provides internals and APls for:
- Managing users and groups
- LOGON / LOGOFF
- Query user status
- LAN resources access

Figure l. UPM and ACS System Structure

Personal Systems/Issue 4, 1990

46

LAN Requester LAN Server (Domain Controller)

LAN Server

LAN Server

0 User IDs maintained by LAN seNices

Figure 2. LAN / Database Combinations

OS/2 LAN Server network. This
server processes all of the logon re­
quests from DOS LAN Requesters
and OS/2 Extended Edition request­
ers to the named domain. This
server also contains all the defini­
tions and profiles for each user, ap­
plication, and aliases.

The access control for each resource
on a server resides on that server
machine in a file named NET.ACC.
This is the same file that contains
all the user IDs, group IDs and pass­
words for the user IDs. All user IDs
are created by an administrator and
stored on the domain controller
server. Other servers participating in
the LAN Server I .2 domain receive
the new user IDs and group IDs.
This enables a server that is not the
domain controller to allow or deny
access to a resource residing on that
server. A database server that is not
a LAN server cannot participate in
the automatic replication of user ID

and group ID information. How­
ever, a database server that is also a
LAN server can take advantage of
the automatic replication of user
information.

Figure 2 shows a network with
database and LAN servers.

Other advantages of running LAN
Server 1.2 and database server on a
single server machine are mani­
fested in the OS/2 command line
area. With LAN Server 1.2 in­
stalled, a network administrator can
control the password expiration pe­
riod, the password length , the num­
ber of unique passwords required,
and the minimum required pass­
word period.

Users and Logons
A user can log on in one of three
ways:

Personal Systems/Issue 4, 1990

LAN
Requester

• To a domain (the default for the
first logon in a system with OS/2
1.2 LAN Server or Requester
installed)

• To a remote node

• Locally (the default for the first
logon in a system where OS/2
1.2 LAN Server or Requester is
not installed)

The default for second and subse­
quent logons is local.

If the logon is to a domain and
LAN is installed, the LAN requester
will be started (if not yet started)
and LAN will send the user ID to
the domain controller for validation.
Again, if the user ID is valid, this
fact will be stored in the Logon
Entry Table of the requesting work­
station. For LAN Server logon, the
password is encrypted immediately.
If the logon is successful, the LAN
component of the requesting work-

station calls the ACS and places the
user in the "validated" state by set­
ting an indicator in a UPM-main­
tained RAM table called the Logon
Entry Table. The user remains in
the Jogged-on state until logged off.
The Logon Entry Table contains the
following information:

• User ID

• Password

• Remotename (if applicable)

• Nametype (local, remote LU6.2
node, or domain)

• Session ID

• Process ID

• Validated indicator

If the logon is local, UPM will va­
lidity check the user ID and pass­
word against the local UPM
database.

If the logon is to a remote node (for
example, for remote database ac­
cess), UPM at the local workstation
creates an entry for this logon in the
Logon Entry Table. When a connec­
tion is made to the remote node, an
attempt will be made to log this
user on at the remote node. The sta­
tus of this logon attempt will be
stored in the Logon Entry Table of
the requesting workstation as well.

There are two types of character
sets supported by UPM:

• Minimal character set - this set
of characters provides future
IBM SAA™ compatibility, and
consists of the common subset of
all characters supported by the
Extended Edition components
using UPM. These are the rules
that will be applied for validity
checking characters when adding
or updating a user ID, group ID,
or password.

• Expanded character set - Al­
though this set is currently sup-

47

ported by UPM, it does not con­
form to IBM SAA compatibility.
These are the rules that will be
applied for validity checking char­
acters at logon time for user ID
and password.

Group
User IDs may be combined to form
an entity called a group. Compo­
nents using UPM may allow or dis­
allow use of component-specific
objects for groups as well as for
users. Groups are named with
group IDs that have the same nam­
ing rules as user IDs. However, a
group ID must not be the same as
any user ID on that system.

UPM Authority Levels
Each user is defined to UPM with
one of the following three types:

• Administrator

• Local administrator

• User

This definition is made at the time
the user is added to UPM.

An administrator has the authority
to use all UPM functions. Within
any OS/2 EE component using
UPM, an administrator is allowed to
access all protected system objects
and perform all possible system
tasks. For example, within the
Database Manager component, a
UPM administrator has SYSADM
authority. (See the IBM Operating
System/2 Extended Edition Version
1.2 Database Manager Program­
ming Guide and Reference: Volume
1, S0IF-0269, for information about
SYSADM and other database
authorizations.)

A user with local administrator au­
thority has SYSADM authority
within the Database Manager on the
local system only. Within UPM

Personal Systems/Issue 4, 1990

(and to any Extended Edition com­
ponents other than Database Man­
ager), a local administrator has the
same level of authority as a UPM
user. There can only be one local ad­
ministrator per workstation. If a sec­
ond local administrator is defined,
the first one will become a normal
UPM user. The purpose of the local
administrator authority level is to
give users the capability to define
and use their local databases (since
this requires SYSADM database au­
thority) without giving them UPM
administrator authority (that is, the
ability to create and change user
and group definitions) on their own
workstations or across networks.

Users with UPM user authority are
allowed to log on, log off, and
change their own passwords and
comments. No other UPM functions
can be accessed. Authority to access
objects owned by a specific OS/2
EE component (such as authority to
access an OS/2 database or objects
in that database) is determined ac­
cording to rules within that OS/2
EE component.

Human Versus Program
Logons
There are two ways to log on via
UPM:

• Through human interaction (via
the OS/2 command line or
Desktop Manager windows)

• From a program (via an API call)

In both situations, multiple user IDs
can be logged on to an OS/2 EE sys­
tem simultaneously, as described in
the section Running under Multiple
User IDs.

For logon by human interaction,
User Profile Management provides
a Presentation Manager™ window
interface to its functions. Selecting

"User Profile Management Ser­
vices" from the 0S/2 Extended Edi­
tion Desktop Manager window
allows access to the following three
functions:

• Logon

• User Profile Management

• Logoff

These three functions can also be ac­
cessed directly from the 0S/2 com­
mand line. (See the command
descriptions in the section UPM
Command lnte,face.) Executing any
of these functions initiates one or
more popup windows that enable a
user to perform the desired UPM
functions.

In addition to allowing a human
user to log on and execute pro­
grams, an API is provided to allow
a program to log on. The program
logging on must provide a user ID
under which it is to be run and, op­
tionally, a password. To prevent an
unauthorized user from executing
such a program, additional checking
may be specified in the logon call
with the authorization check
(authcheck) option. The following
authcheck levels can be specified:

• The calling process must have
been started by the
C0NFIG.SYS configuration file,
or from a process so started

• The logged-on local user for the
calling session must have UPM
administrator authority

• No special authority is required
to execute the program

A process that logs on via the logon
API is responsible for logging off
via the logoff API when it com­
pletes execution. If the logoff is
omitted, indication of the logon will
remain in the Logon Entry Table
until the system is powered-off or
the next IPL is executed.

48

Running under Multiple
User IDs
The main reason for allowing multi­
ple users to be logged on simulta­
neously is to enable the running of
multiple programs where each has a
different authority for accessing pro­
tected objects. For example, you
may want a background application
to manage system-level database re­
sources, while simultaneously allow­
ing a user or user-initiated program
restricted access to the same
database.

Each logged-on user ID
has a unique process and
session ID identifying it.

Human Logons:
When operating with local human
logons, a system can run in one of
two modes:

• single local human logon at a
time

• multiple simultaneous local
human logons

The mode is set by the "/0" option
on the 0S/2 command line version
of the logon command (see UPM
Command Inre,face). When running
in single user mode (the default),
only one local human logon is al­
lowed at a time in the system. Any
programs initiated by the user will
run under that user ID. If the user re­
issues a local logon, the currently
active local user ID will be overlaid
with the newly specified one. Any
protected resources accessed after
that time will use the new user ID.
(Note: for Database Manager, the
user ID used for access control is es-

Personal Systems/Issue 4, 1990

tablished when the "Start Using
Database" call is issued.)

To run in multi-user mode, the
"/0=MUL TI" option is specified on
the logon command. When this op­
tion is active, the user will still be
allowed to initiate local logons (via
the command line or the Desktop
Manager windows). However, when
a protected resource is accessed
(such as a database), the local logon
window will be displayed, prompt­
ing the user to log on.

Why force the user to be prompted
for a logon in the /0=MUL TI envi­
ronment? Each logged-on user ID
has a unique process and session ID
identifying it. For this logon to be
associated with a running applica­
tion, the application must have the
same process and session ID. How­
ever, human-initiated logons cause a
new process to be started and then
closed. When an application is later
started, even if a logon was per­
formed by a user from the same ses­
sion as the application, this logon
will not have the same process ID
as the application. Hence, UPM will
not be able to ensure that the cor­
rect user ID is associated with the
application. Forcing the user to be
prompted for a logon from the run­
ning application will ensure that the
correct user ID is associated with
the application.

The /0 option does not apply to re­
mote node or domain logons. For re­
mote node logons, multiple logons
are allowed in a single 0S/2 ses­
sion, but each remote logon in that
session must be unique. If the user
logs on from a session with a re­
mote node name that is already
logged on for that session, the new
logon simply replaces the existing
entry for it in the Logon Entry
Table. For domain logons, a work­
station can only be logged onto one

domain at a time. Similarly, there
can be only one logon at a time for
a single user ID within a domain.

Program Logons: When operating
with program logons, every 0S/2
process and session can issue a
logon via the Logon APL The user
ID specified in the call is associated
with the process and session in
which the program is running. It is
used to verify the program's authori­
zation when it attempts to access
protected objects.

There is no limit to the number of
program logons per workstation be­
cause it is always possible to deter­
mine which logged-on user ID is to
be associated with a particular pro­
gram. Each session that logs on can
specify a user ID that has not yet
been logged on, or one that is al­
ready logged on. Each process
within a session can also log on
with a different user ID. The only
restriction is that the authcheck op­
tion must be the same as the parent
process. If an application in a spe­
cific process and session logs on
with a new user ID before logging
off the previous one, the previous
user ID will be overlaid with the
new one.

Distributed and LAN
Systems
UPM maintains a RAM table
(called the Logon Entry Table) of
the user IDs that have been logged
on from that system. These entries
may consist of local as well as re­
mote and domain logons.

If a user performs an action that
takes down a communications con­
nection with the remote node in use,
the next time a connection is made
to that remote node, the user will
not be reprompted for the user ID.
Instead, the 0S/2 EE component

49

making the connection will reuse
the previously specified user ID and
password for that remote node and
revalidate it by calling UPM at the
remote node.

Additionally, if the user defines the
same user ID and password both lo­
cally and in nodes and domains that
are accessed remotely, only a single
logon is required. If the first logon
is local, and later a remote logon is
required (to access a remote
database, for example), the OS/2 EE
component needing the remote con­
nection will automatically attempt a
remote logon (using the locally
logged on user ID). Likewise, if the
user has first logged on to a remote
node and later a local logon is re­
quired, an attempt will be made to
log the user on locally using the
logged-on user ID for that remote
node.

UP M maintains a RAM
table of the user IDs that

have been logged on
from that system.

When Query Manager is started, it
picks up the currently logged-on
user ID (whether that is a domain
user, node user or local user), and at­
tempts a local logon if the user is
not already logged on locally with
userid and password. If the
userid/password exists locally, the
local logon occurs and Query Man­
ager finishes its initialization with­
out the local logon prompt being
displayed.

However, if the userid/password
does not exist locally, the local

Personal Systems/Issue 4, 1990

logon window is displayed with the
failed userid displayed in the userid
field. The person at the keyboard
can disregard this prompt by press­
ing ESC and continuing Query Man­
ager initialization. Bypassing the
local logon operation causes the
Query Manager interface to
database administration functions to
be unavailable for the person at the
keyboard. To make the Query Man­
ager interface to these administra­
tion functions available (and usable
against a remote database), a UPM
Administrator userid/password must
be defined locally which matches
the userid/password defined at the
remote database location. The same
ID must be defined at the remote
database node with an equal level
of authority. If a local database is
accessed, only a local ID must be
defined. If database administration
functions are to be used, the ID
must be defined as an administrator
or local administrator.

Even though Query Manager is
packaged with OS/2 EE Database
Manager, it is merely an application
from Database Services' (and
OS/2's) point of view. That is, it
uses only published APis and func­
tions available to any application de­
veloper. Query Manager cannot use
lower-level UPM APis that the un­
derlying Database Services uses in
connecting to a database. The user
can escape out of Query Manager's
"logon," though this makes certain
administrator functions inaccessible
from Database Manager's window.
When you then connect to a
database, the previously described
"rules" apply, because connecting
to a database is a Database Services
function, not a pure Query Manager
function.

In more general terms, when an
0S/2 EE component (such as
Database Services) attempts to ac-

50

LOGON -,-----,-,-----1-T ____ I
user ID / p - - ------,

/P=Password
/0

/O=Domain
/N ----------J

/N=Node ----7

/L ------,
/O=Option ---------------~

Figure 3. LOGON Command.

cess a protected resource on behalf
of an application or user, the compo­
nent determines the location of the
resource (such as a database) and
then asks UPM for a logged-on user
ID for that location in the current
session. If UPM has an ID logged
on for that location in the current
session, it passes this ID back to the
requesting component. Otherwise
UPM guesses (using a predeter­
mined algorithm) which user ID
entry in the Logon Entry Table to
pass back to the requesting EE com­
ponent. This component then per­
forms the necessary functions to
connect to the desired location (if
necessary) and perform a logon.

Specifically, in the case of remote
database access, Database Manager
passes the user ID and password on
to Communications Manager, which
then calls UPM at the remote loca­
tion for user ID validation.

Likewise, on a LAN Requester
workstation, if the user first does an
explicit local logon and later LAN
Requester is started, UPM gives
LAN Requester this local user ID to
be validated at the domain
controller.

UPM Command Interface
UPM provides the following com­
mands that may be executed from
the OS/2 command line:

• LOGON

• LOGOFF

• UPMACCTS

• UPMCSET

Other commands that allow a user
to work with user and group IDs
and view logon status are provided
with OS/2 LAN Server 1.2. These
commands are documented in the
IBM Operating System/2 Local
Area Network Server Version 1 .2
Commands Reference (SO I F-0278).

LOGON: The LOGON command
can be issued at the OS/2 command
line. To automatically log a user
onto the system at IPL, this com­
mand can also be placed in the
CONFIG.SYS file (using the RUN=
command) or in the
STARTUP.CMD file. The format of
the LOGON command is shown in
Figure 3. The components of this
command are:

• User ID - If no user ID is speci­
fied, the Logon Popup window is
displayed.

• /0 - This option may be speci­
fied as either SINGLE, for single
local logon, or MULTI, for multi-

Personal Systems/Issue 4, 1990

pie local logons. If the option is
set to SINGLE, only one local
human logon entry will be al­
lowed in the Logon Entry Table.
After the first local logon, all ap­
plications run under that user ID
until a logoff or another local
logon occurs.

If the option is set to MULTI,
only implicit local logons are al­
lowed. UPM forces a new logon
panel for each new application
that accesses a protected re­
source. Access to multiple pro­
tected resources by a single
application process does not
cause a new logon for that
process.

• /P - This option allows the user
to specify a password. If no pass­
word is specified, but one is re­
quired , the Logon Popup is
displayed, prompting the user for
the password.

One of the next three options can be
specified to indicate where the
logon will occur. If none is speci­
fied, the default for the first logon
will be:

• To a domain if the OS/2 1.2
LAN Server or Requester is
installed

• Local if LAN Server or Re­
quester is not installed

The default for subsequent logons is
local. If specified, these options
work as follows:

• ID - This option lets the user
specify the name of a domain on
which to log on. A LAN worksta­
tion can only be logged on to one
domain at a time. The first logon
to the domain (whether by de­
fault or explicit) will start LAN
Requester if not yet started. If the
LAN is installed:

LOGOFF ~-------,----.
IS ____ __,

IN - -----<

/N=Node

/D -------<

/ L ___ _ __,

Figure 4. LOGOFF Command

- If /0 is specified without a do­
main name, UPM will first at­
tempt to log on to the default
domain for that workstation. If
this logon fails , UPM will dis­
play the Logan Popup for Re­
mote Domain Access,
prompting the user for a do­
main name.

- If /D=Domain is specified, an
attempt will be made to logon
to the specified domain.

If the LAN is not installed or
could not be started and /D is
specified, it will be ignored and a
local logon will be performed.

• /N - This option lets the user
specify the name of the node on
which to log on the next time the
system requires that node be ac­
cessed. If a node name is not
specified after the /N, the Logon
Popup for Remote Node Access
will appear, prompting the user
for the node name.

The user ID and password for the
remote node is not validated lo-

51

cally. Rather, "logon
/N=nodename" places an entry in
the local Logan Entry Table. The
user ID is validated at the remote
node at the time the remote con­
nection is made. An indication of
user ID and password validity is
returned to UPM at the request­
ing workstation and is recorded
in the local Logon Entry Table.

• /L - This option forces a local
logon. If the LAN is not in­
stalled, this is the default option.

LOGOFF: The format of the
LOGOFF command is shown in
Figure 4.

• /S - This option causes the cur­
rent session to be logged off.

• IN - Without any parameters,
this option specifies that entries
for all nodes in this session be re­
moved from the Logan Entry
Table. If a node name is speci­
fied, all entries with this node
name (from any session) are
logged off (that is, removed from
the Logan Entry Table).

• (D - This option causes the cur­
rent domain logon to be logged
off.

• /L - This option causes the
Logoff Popup to display a list of
all logons for that workstation.
This allows the user to se lect the
specific user IDs and session(s)
to log off.

Change logged-on user Group management User management
information (administrator only) (administrator onlv)

Change comment Add new grouo Add new user ID

Change password Update group Update user information

Select groups for user ID Erase group(s) View user profile
(administrator only)

Select groups for user ID

Erase user ID

Figure 5. Provided Functions

Personal Systems/Issue 4, 1990

UPMACCTS: The UPMACCTS
command displays the UPM Pri­
mary Window, giving the user ac­
cess to the various UPM functions.
If the current user has UPM admin­
istrator authority, the User Manage­
ment and Group Management
functions may be accessed. Figure 5
lists the functions provided. (Note
that if LAN is installed, the "Use
Domain" function is also provided.
See the IBM Operating System/2
Local Area Network Server Version
1.2 Commands Reference, S0lF-
0278, for details.)

When UPMACCTS is initiated, a
local or domain logon is required.
If no one is logged on to the work­
station, the user is prompted for a
local logon. If there are user IDs al­
ready logged on (local or other),
UPM first looks for a local ID to
use. If there is none, UPM chooses
a non-local ID and validates it
locally.

UPMCSET: This command deter­
mines the character set that will be
allowed when defining user IDs,
group IDs, and passwords. (For a
definition of the character sets, see
Concepts.) The format of the UP­
MCSET command is shown in
Figure 6.

• /M - Sets the character set to the
Minimal Character Set. This is
the default if no parameters are
specified on the UPMCSET com­
mand. This is also the default
that comes with Extended Edition
if the UPMCSET command is
never executed.

• /E - Sets the character set to the
Expanded Character Set.

UPMCSET -r/M

L ;E

Figure 6. UPMCSET Command

UPM Programming
Interface
The two APis provided by UPM are
for logon and logoff. If the LAN is
installed, additional APls are avail­
able. (For a description of these
APis , see the IBM Operating Sys­
tem/2 LAN Server Version 1.2 Appli­
cation Programmer's Reference,
S0IF-0256.)

Logon: The logon function identi­
fies that the process and session is
logging on to the system with the
specified user ID and password. If
LAN is not installed or could not be
started and a domain name is speci­
fied, an error will be returned to the
program. The parameters for the
logon call are:

• user ID - The UPM user ID that
is to be validated (and will be as­
sociated with the session and pro­
cess ID in which the logon
occurs).

• password - The unencrypted pass­
word associated with this user ID.

• remotename - The name identify­
ing the node or domain for which
the user ID and password are re­
quired. This parameter is ignored
when logging on to the local
workstation (that is, 'remotetype
= UPM_LOCAL').

• remotetype - The type of node
named in the remotename param­
eter. Valid values are:

- UPM_LOCAL - the local node

- UPM_DNODE - specifies that
remotename is an LU6.2 node
name

- UPM_DOMAIN - specifies
that remotename is an OS/2
LAN Server 1.2 domain name

52

• authcheck - An indicator of the
authority required for the calling
program to issue this logon.
Valid values are:

- UPM_CONFIG -The calling
process must have been started
from the CONFIG.SYS config­
uration file , or from a process
that was so started

- UPM_ADMIN - The logged­
on local user for the calling
session must have UPM admin­
istrator authority

- UPM_USER -The calling pro­
gram does not require any ad­
ditional authority and the
program can have been started
by a normal UPM user

Logoff: This function logs the call­
ing program off the system. There
must be one logoff call for every
logon call, and the logoff must
occur from the same process and
session that issued the logon. The
parameters to this call are:

• user ID - The UPM user ID to
be associated with the logging
off process

• remotename - The name identify­
ing the node from which the user
ID is to be logged off. This pa­
rameter is ignored if 'remotetype
= UPM_LOCAL'.

• remotetype - The type of node
named in the remotename param­
eter. Valid values are:

- UPM_LOCAL - the local node

- UPM_DNODE - specifies that
remotename is an LU6.2 node
name

- UPM_DOMAIN - specifies
that remotename is an OS/2
LAN Server 1.2 domain name

Personal Systems/Issue 4, 1990

ABOUT THE AUTHORS

Laura Camp is an advisory
programmer in IBM's Entry
Systems Division in Austin, Texas,
currently responsible for
dissemination of OS/2 Performance
Tools and Information . She joined
IBM in 1976 in the Office Products
Division software architecture.
Later she became involved in user
inte,face design and software
development for Disp/aywriter and
DisplayWrite® 2, 3, and 4 . In 1986,
Laura joined the OS/2 Database
Manager development team
followed by two years in OS/2 EE
Product Support, where she focused
on OS/2 EE Database Manager.
Laura holds a B.A. degree in
mathematics from Hope College.

Carolyn Easter is an advisory
programmer in IBM's Entry
Systems Division in Austin, Texas .
She joined IBM in 1980 and was
assigned to program the files and
database system on the 5520
Administration System. She has a
B.S. in mathematics from Southern
Methodist University and a B.A. in
computer science from the
University of Texas at Austin.

Roy Feigel is an advisory
programmer in IBM's Entry
Systems Division in Austin, Texas.
He is the lead designer for the OS/2
LAN Server 1.2/Extended Edition
1.2 LAN Requester/DOS LAN
Requester. In 1982, Roy joined IBM
as a programmer assigned to text
applications on the 5520
Administrative System. He received
a B.S. in computer science from the
University of Southwestern •
Louisiana.

Understanding
OS/2 1.2 LAN
Server
Performance
Ken Whitfield
IBM Corporation
Austin, Texas

The performance of any local area
network file server is influenced
by many factors. This article pro­
vides some information about the
effects of the server's file system,
and the server/requester data flow
logic and buffers on the perfor­
mance of Operating System/2®
1.2 LAN Server. Tuning recom­
mendations relative to server
workload and certain classes of
applications are suggested.

The performance of any local area
network (LAN) file server will be
determined by a myriad of factors,
including the following:

• CPU speed

• Hardware architecture

• Local area network speed and ar­
chitecture

• DASD access time and data trans­
fer rate

• File server operating system and
file system

• File server/requester software de­
sign

• Memory available for file system
caching and network buffers

• File server workload

• Other applications running on the
server

• Requester applications

The first four items in the list are
fixed with respect to OS/2 1.2 LAN
Server running on a particular per-

53

sonal computer and local area net­
work; therefore, this article will not
deal with those items. The article
contains information about how the
remaining factors affect OS/2 1.2
LAN Server performance. There is
considerable interaction between
some of these factors. Understand­
ing the nature of the individual fac­
tors can enable one to isolate the
predominant factors in a particular
environment and optimize the OS/2
1.2 LAN Server accordingly.

OS/2 1.2 File Systems
The File Allocation Table (FAT)
file system is the file system used in
all versions of the DOS and OS/2
operating systems. The cache used
by FAT is called DISKCACHE. A
read request results in a look into
the DISKCACHE memory (look­
aside cache) for the physical sectors
corresponding with the file handle
and offset passed in the read re­
quest. If the data is in the
DISKCACHE, it is passed to the ap­
plication from cache memory, avoid­
ing a time-consuming read from the
fixed disk.

How did the data get into
DISKCACHE? A read request must
also pass the amount of data it
wants to read (data buffer size). If
this amount is seven sectors (3.5
KB) or less, eight sectors of data
(two 2 KB cache pages) starting at
the first sector containing the data is
read into DISKCACHE. If the appli­
cation is reading 512 bytes sequen­
tially, one read of the fixed disk
gets eight sectors of data placed
into DISKCACHE, saving the time
of seven additional fixed-disk
accesses.

The check on the data size being re­
quested is referred to as the thresh­
old of the caching algorithm. A
threshold is used to prevent the

Personal Systems/Issue 4, 1990

DISKCACHE from being flushed
(old data being replaced with newer
data) by an operation such as pro­
gram load or file transfer, in which
the data buffer size is often 64 KB.
The two 2 KB cache pages of data
in DISKCACHE are eventually dis­
carded using a least recently used
(LRU) algorithm. OS/2 1.2 offers a
threshold that can be set if the
seven-sector default threshold is not
optimal. It can now be increased up
to 32 sectors (DISKCACHE =
2048,32). Another important point
to note is that the maximum size of
DISKCACHE is 7.2 MB.

Bigger is not always better, how­
ever, unless you are sure the cach­
ing algorithm being used by
DISKCACHE is putting data into
cache that will subsequently be
used. (See Pe,formance Tuning.)

The High Performance File System
(HPFS) solves many problems of
the FAT file system, but it is not de­
rived in any way from the FAT file
system. HPFS was designed from
scratch to take full advantage of a
multitasking environment. (For an
extensive description of HPFS, refer
to the article "Design Goals and Im­
plementation of the New High Per­
formance File System" in the
Microsoft Systems Journal, Volume
4, Number 5, and reprinted in IBM
Personal Systems Technical Solu­
tions, Issue 2, 1990.) Some of the
key performance and functional im­
provements over the FAT file sys­
tem are listed in Figure I (where
different, characteristics of both the
32- and 16-bit versions are noted) .

The cache used by the H PFS is
CACHE.EXE. Its characteristics dif­
fer from DISKCACHE in the fol­
lowing ways. The caching algorithm
uses a threshold value of 2 KB, and
it is not changeable. Other factors
such as the number of "dirty" cache

54

FAT

Maximum filename length (characters) l J (8.3 fonnat)

File attributes Bit flags plus up to 64 KB, text or binary

Maximum path length (characters) 64

Average wasted space per file 1/2 cluster (l KB)

Allocation infonnation for files Centralized in FAT on home track

Free disk space infonnation Centralized in FAT on home track

Directory structure Unsorted linear list, must be searched
exhaustively

Directory location Root directory on home track, others
scattered

Read-ahead None prior to DOS 4.0, primitive
read-ahead optional on DOS 4.0

Cache replacement strategy Simple LRU

Write-behind (lazy write) One sector (buffer' s function)

Figure 1. HPFS Improvements Over FAT File System

pages in the cache are also included
in the algorithm, which determines
when read data is put into the
cache. (More about "dirty" cache
pages later.)

Another important difference from
DISKCACHE is that the maximum
size for CACHE.EXE is 2 MB.
Both the threshold and maximum
size used in CACHE.EXE are pecu­
liar to the 16-bit version of the
HPFS used in OS/2 1.2, and are dif­
ferent from those used in the 32-bit
version of the HPFS.

One of the significant performance
improvements of the HPFS over
FAT is the optional capability to
use deferred, or " lazy," writes to the
fixed disk. With this feature, writes
to the HPFS go first into the cache
memory for subsequent writing to
the fixed disk at otherwise idle
times of the fixed disk. This allows
incoming read requests to be pro­
cessed ahead of write requests, thus
providing response time improve­
ments to the user application. The

data placed into the cache memory
to be "lazy" written is partitioned
into 2 KB cache pages. It is marked
as "dirty," meaning that it must be
written to the fixed disk (the applica­
tion was told that it was written to
disk). These "dirty" pages of data
cannot stay in cache indefinitely.
There are parameters associated
with CACHE.EXE that define how
long the "dirty" pages can remain in
cache. (See BUFFERIDLE,
MAXAGE, and MAXIDLE in the
IBM OS/2 Extended Edition Version
1.2 Commands Reference, 01F0282.)

Flow Control Logic
The OS/2 1.2 LAN Server and Re­
quester software is designed to opti­
mize the movement of file 1/0 data
from the server to the requester.
This would be a straightforward
task if there were not so many ways
in which a user application might ac­
cess data from a file system. From
the many ways that data may be ac­
cessed, it is helpful to consider the
following:

Personal Systems/Issue 4, 1990

HPFS

255

Bit flags plus up to 64 KB, text or binary

260

1 /2 sector per (256 bytes)

Located nearby each file in its FNODE

Located near free space in bit maps

Sorted B-Tree

Located near seek center of volume

Caches read in 2 KB blocks (286 version)
Sensitive to data type and usage history
(386 version)

Modified LRU (286 version)
Sensitive to data type and usage history
(386 version)

Optional, can also be defeated on a
per-file handle basis

1) A read request for a small
amount of data (for example, 512
bytes) , which may reside anywhere
in the file being accessed.

2) A series of read requests, each
for 512 bytes (one sector), the sec­
tors located one after the other on
the fixed disk.

Traditionally , Case 1 is called ran­
dom file access, and Case 2 is
called sequential file access.

Case 1) Random File Access

This type of file access is character­
ized by a request for a small
amount of data coming from any­
where in the file. Jn many cases,
this necessitates a disk seek. Seeks
take a relatively long amount of
time compared with reading the
same data from memory, illustrating
the importance of caching small re­
cord random I/0 data. If the file
being accessed is small compared to
the s ize of the cache and the file is
accessed frequently, then it is likely

that much of the file will reside in
cache.

As the size of the file becomes
large with respect to cache size, the
likelihood of finding the desired
data in the cache diminishes rap­
idly. The file may not be in the
cache because unused cache pages
are removed from the cache by the
LRU algorithm as a result of file
1/0 requests to other files at the
server. An extreme case is where
the file is much larger than the
cache size. This could lead to rare ly
finding the data requested in cache.
In fact, a large cache size could be
detrimental to performance because
the time required to search the
cache for the data, but never finding
it, is added to the time required to
physically access the fixed disk.

Case 2) Sequential File Access

This type of file access is character­
ized by successive calls to the file
system requesting data that is physi­
cally contiguous on the fixed disk.
It usually requires no physical move­
ment of the disk head assembly. Of
course, if the file being read or writ­
ten is larger than the amount of data
contained on a disk cylinder, the
disk head assembly would have to
be moved to adjacent cylinders. The
time to accomplish this is much
smaller than multicylinder moves
seen in random file accesses. Se­
quential file access throughput
(number of bytes per second) that
can be transferred from a fixeci disk
can be many times higher than for
random file access. This is because
the physical time to move the disk
head assembly to the data is
minimized.

Let's now look at how the OS/2 1.2
LAN Server/Requester handles
these two extreme cases of file
access.

55

An application running on the re­
quester issues a DOS read request
for 512 bytes of data from the
server. The request is passed to the
redirector code, which constructs a
Server Message Block (SMB) for
DOS Read and calls NETBIOS to
transmit the SMB to the server.
NETBIOS transports the SMB over
IBM Token-Ring or Ethernet™ to
the server, where it is processed.
The SMB is interpreted as a DOS
Read of 512 bytes, and a call is is­
sued to the server's file system. Be­
cause the amount of data requested
is less than 2 KB, the file system
reads 2 KB from the fixed disk,
writes it to cache (assumes the
HPFS Cache threshold), and returns
to the DOS Read call with the 512
bytes of data requested. The data
goes back to the requester in an
SMB, which correlates with the orig­
inal DOS Read SMB. The redirec­
tor strips the data out and returns it
to the application's DOS Read call.
This is the sequence of operations
that happens with each random file
read. (More about random 1/0 later
when buffers are described in the
section Buffers, Caches, and SMB
Protocols.)

Sequential file accesses can be han­
dled in a more efficient manner
than random because it is known
where the next data to be read is to
be found. An application at the re­
quester issues a read request for 512
bytes of data, like the random read
just described, and is processed in
the same way. After that read is
complete, the application issues a
read for the immediately adjacent
512 bytes. The requester code uti­
lizes this adjacent data request as a
signal that the file is being accessed
sequentially, and in itiates a special
mode of operation called buffered
read-ahead.

Personal Systems/Issue 4, 1990

An OS/2 requester has, by default,
60 KB of memory set aside for
buffering of SMB requests. Memory
is divided into fifteen 4 KB "work
buffers" (the number and size can
be changed in the IBMLAN.INI
file). The server has a correspond­
ing set of 4 KB buffers called "re­
quest buffers." Now that the
requester is aware that the applica­
tion is reading data sequentially, it
changes the DOS Read request com­
ing from the application from 512
bytes to 4 KB . This is because both
the requester and server have buffer
space to handle 4 KB just as effi­
ciently as 512 bytes.

When the application issues the
next 512-byte read, it is completed
from the requester's work buffer,
and the SMB is not issued. The
server software also detects the se­
quential access and goes into a com­
plementary read-ahead of its own.
This brings 4 KB from the fixed
disk into another requester buffer,
anticipating another 4 KB request
from the application. This is why
there should be at least two re­
quester buffers in the server for
each active workstation on that
server.

It is not an insignificant amount of
time to construct the SMB, send it
to the server, process it, and get the
response. Therefore, sending more
data with each SMB increases
server throughput and decreases re­
sponse time seen by the application.
What if the application is not going
to read any more than two 512-byte
records? The worst effect is that
some data sent to the requester will
never be used, at a small response­
time penalty. Just as the requester
derived a signal to go into buffered
read-ahead operation, the buffered
read-ahead is cancelled when two
successive read requests are not
contiguous.

The two extreme cases of file ac­
cess operations and an overview of
how the server/requester logic treats
them have been described. Specific
descriptions of server/requester buff­
ers, caches, and some SMB proto­
cols follow.

Buffers, Caches, and SMB
Protocols

0S/2 Server:

Requester Buffers

The most-used buffers in OS/2 1.2
LAN Server/Requester are the re­
quest buffers (numreqbuf,
sizereqbuf in the server
IBMLAN.INI file). The default con­
figuration is 36 buffers of 4 KB
each. These buffers are used by the
server to receive SMBs from the re­
questers and to hold the data being
transferred to and from the network
adapter card buffers. All data
moved to and from the server,
which originated with a read/write

56

request size of 4 KB or smaller, will
use these buffers.

Big Buffers

The other server buffers are called
simply "big buffers" (numbigbufs
in the server IBMLAN.INI file).
They are 64 KB and not change­
able. They are used whenever a
read/write request is made asking
for an amount of data greater than
the size of the request buffer (corre­
sponds with work buffer in the re­
quester). An example of these is the
DOS Copy command, which re­
quests 64 KB to be read and written
all at one time. Another example is
program load, although it may
cause smaller requests than 64 KB
at times. Applications, of course,
may issue read/write requests in any
size desired up to 64 KB (the DOS
and OS/2 limit). As described pre­
viously in the section Flow Control
Logic, server throughput can be in­
creased and requester application re­
sponse time decreased by
transferring more data with each

Personal Systems/Issue 4, 1990

SMB sent across the LAN. Big buff­
ers are used in association with the
SMB Raw Protocol to further en­
hance throughput and response time
for large sequential file transfers.

SMB Protocols Affecting File 110
Pe,formance

SMB Raw Protocol enables ex­
tremely fast data transfer across the
network. The term "Raw" means
that after the first SMB is sent, the
remaining transmission is all data,
with no SMB headers.

The SMB Raw Protocol is initiated
by the following sequence. An oper­
ator at a workstation copies a file
from the server to the local fixed
disk. The DOS Copy command is­
sues a read request of 64 KB to the
redirected drive, which results in
the redirector constructing an SMB.
Detecting the large data request, the
redirector issues a special SMB,
which requests 4 KB of data and
also polls the server for availability
of big buffers. The server sends the
4 KB of data requested and con­
firms its availability of big buffers.
The redirector issues a Read Block
Raw SMB for 64 KB to the server.
The server fills one of the big buff­
ers with up to 64 KB of data and re­
sponds to the SMB Read Block
Raw SMB sending 64 KB of data.
Again, as in the section Flow Con­
trol Logic, the server detects sequen­
tial accessing of the file being
copied and starts its own read-ahead
of the next 64 KB of the file into an­
other big buffer, if available. This
protocol provides extremely fast
data transfer across the network.

A variation to the SMB Read Block
Raw Protocol is Read Block Multi­
plex . Consider the same conditions
just described, except that neither
the server nor requester has big buff­
ers currently available. Therefore,

the data is transferred using the 4
KB request/work buffers as quickly
as they can be set up and processed.
This is Read Block Multiplex. Be­
cause SMBs are sent with each 4
KB of data, and 4 KB data mes­
sages are sent instead of 64 KB mes­
sages, it is not as fast as Read
Block Raw. The SMB Raw Proto­
col can be initiated by any
read/write request using a data
buffer size greater than the
request/work buffer size.

OS/2 Requester:

Work Buffers

The OS/2 requester has by default
fifteen 4 KB buffers called "work
buffers" (numwrkbuf,
sizeworkbut) as well as 64 KB of
memory called "work cache" (max­
wrkcache). The work buffers are
used in constructing the SMBs sent
to the server and also provide the
data buffering between the applica­
tion running in the requester and the
network adapter card. The work
buffers work in conjunction with
the request buffers in the server and
should be the same size for best per­
formance. The default size of 4 KB
is considered to be optimum for the
majority of LAN environments, but
may be changed if desired. Perfor­
mance may be improved in some
random file access environments by
increasing the number of work buff­
ers (numwrkbufs), providing local
data caching at the requester.

Work Cache

The memory space called work
cache (maxwrkcache) is used in
conjunction with the big buffers in
the server and the SMB Raw Block
Read Protocol previously described.
Performance may be improved in
some sequential file access environ­
ments by making work cache larger

57

(maxwrkcache, use 64 KB incre­
ments). Note that the local file sys­
tem cache in the requester does not
cache data requests to the redirected
drive.

DOS LAN Requester (DLR):

Network Buffers

The DLR has by default four net­
work buffers (NBC=4) of I KB
(NBS=lK). These buffers are used
in constructing the SMBs sent to
the server and also provide the data
buffering between the application
running in the DLR and the net­
work adapter card. Because the
DLR is limited to the 640 KB mem­
ory space of DOS, these buffers are
kept at small default values to con­
serve memory. If application mem­
ory requirements permit, network
buffer size (NBS) should be in­
creased to 2 KB or even 4 KB to im­
prove sequential file access
performance for data requests of
sizes less than the big buffer size
(BBS). NBC should not be reduced
from its default value.

Personal Systems/Issue 4, 1990

Big Buffers

Like the OS/2 requester, the DLR
also has big buffers (BBS=4K,
BBC=]) that are used in conjunc­
tion with the server 's big buffers
when the SMB Raw Block
Read/Write Protocol is initiated.
The amount of memory allocated by
default is minimized because of the
640 KB DOS memory constraint.
The big buffers in the DLR are not
as important as those in the OS/2 re­
quester because of the DLR User
Memory Transfer feature described
in the next section. The big buffer is
important in applications that per­
form sequential writes to the server
in data buffer sizes greater than
NBS, including DOS Copy opera­
tions directed to the server. The
write data goes across the network
in message sizes of BBS. The BBS
is required to be larger than NBS or
a Net Start error message will be is­
sued. The message size used in read
operations to the server from the re­
quester is described next with the
User Memory Transfer feature.

User Memory Transfer

This is a feature from the PCLP re­
quester, which was incorporated
into the DLR. When the read data
request size is greater than the BBS,
the requester logic causes data to be
moved directly from the network
adapter card buffer to the user's
memory space that was allocated
for the data. This works for pro­
gram load as well as application
read requests. It eliminates moving
the data through big buffers before
sending it to the application. Unless
your application issues write re­
quests to the server in data buffer
sizes greater than the NBS, big buff­
ers do not come into play and can
be set to a minimum - for example,
BBS=5K if NBS=4K.

Performance Tuning
For best performance, the server
should have enough request buffers
available to handle a peak request
workload. A good rule of thumb is
to allocate two to three request buff­
ers (numreqbuf) for each requester
actively sending requests to the
server; this should be the typical
number of busy users. The request
buffers are in a pool and are shared
among all requests coming to the
server, so the rule-of-thumb number
can be diminished as the number of
active requesters gets larger. The de­
fault values (numreqbuf=36,
sizereqbuf=4 KB) will easily suf­
fice for 12 to 18 typical requesters
on a server.

For best performance, the server
should have enough big buffers
available to handle the normal work­
load for large sequential file access
operations. A suggested number is
two big buffers (numbigbufs) for
each requester that will be sending
this type of request concurrently to
the server. (These requesters are al-

58

most always busy handling large
file transfers.) Because each big
buffer is 64 KB, no more than the
number of big buffers necessary to
handle the typical environment
should be specified.

New heuristics were added in LAN
Server 1.2 (srvheuristics 18,19)
that modify the dynamic usage of
big buffers. This allows the server
to request additional memory from
the operating system when all the
big buffers are in use and more are
needed. The heuristics set the time
that the server keeps memory
locked for big buffers and also the
frequency at which it will reissue
the memory allocation if memory
was not available. If the server has
sufficient memory, set numbigbufs
by the suggested number previously
described for optimum performance.

Applications Running on the
Server: Any application that runs
on the server requires CPU and 1/0
resources and degrades file server
performance to some degree. A com­
mon application to find in the
server is the Print Spooler, which
services network print requests. In a
set of internal test cases, file server
performance degraded an average of
15 percent for random file I/0, and
an average of 25 percent for sequen­
tial file I/0, when 64 KB print jobs
were sent to the server at
five-second intervals.

There is a growing class of applica­
tions being used in networks, often
referred to as client/server applica­
tions. These usually include a high­
performance computer providing
processing services to less powerful
computers and communicating with
each other over a network using a
protocol such as IBM's Advanced
Program-to-Program Communica­
tion (APPC) or NETBIOS. An ex­
ample is OS/2 EE 1.2 Database

Personal Systems/Issue 4, 1990

Manager's Remote Data Services.
Structured Query Language (SQL)
queries are formulated at a Database
Manager requester workstation and
sent to a Database Manager server
for processing. The results of the
query are sent back to the Database
Manager requester. Because the
APPC protocol is being used, the
LAN server/requester code is not re­
quired to be running on the network.

However, the point is that Remote
Data Services, a LAN server Netrun
application, or another client/server
application, could be running in the
LAN server computer, causing file
server performance degradation. By
default, the server executes at a
higher priority than any other appli­
cation. To boost the relative priority
of an application running on the
OS/2 1.2 LAN Server computer,
srvheuristic 6 in the IBMLAN.INI
can be changed from four to five or
higher. This will, of course, degrade
the performance of all other OS/2
1.2 LAN Server services when the
client applications are being
executed.

Applications Running on the
Requesters: Loading DOS pro­
grams into the DLR requester from
the LAN server is an efficient opera­
tion that makes use of the Raw
Block Read Protocol and the User
Memory Transfer feature of the
DLR. Loading OS/2 programs from
an OS/2 requester is not as efficient.
The OS/2 Loader installs the code
by segment, and the segments are
not positioned in sequential order in
the .EXE file. Additionally, the
OS/2 Loader installs all the Dy­
namic Link Libraries (DLLs) associ­
ated with the .EXE file when
loading OS/2 programs across a net­
work. Only the DLLs marked "load
on call" are installed during a stand­
alone OS/2 program load. Design
changes are in progress to improve

the performance of OS/2 program
load across a network.

Recalling the description earlier of
the caching algorithm threshold,
note that for LAN Server I .2 nei­
ther DOS nor OS/2 programs will
be cached in the server. Conse­
quently, if program load time is im­
portant in your environment (for
example, a classroom), it is advis­
able to copy the .EXE file to a
VDISK in the server, and Net Share
the VDISK to the requesters. Alter­
natively, if you want to get a pro­
gram on the server into the server's
HPFS cache, you can copy the
.EXE file to another place on the
fixed disk. Because all HPFS "lazy"
writes go through cache, the pro­
gram will then reside in cache.

Usually there will be multiple re­
questers connected to OS/2 LAN
Server 1.2 that are running the same
application. An example is a
database application with the
database files located on the server.
If these files are small with respect
to the cache size, the database files
will be placed into cache, resulting
in good response times to the re­
questers. Conversely, if the database
files are large with respect to the
cache size, the overhead needed to
place the files into cache and subse­
quently search the cache with few
"hits" is detrimental to performance.
If this sounds like your environ­
ment, reduce the cache size to 64
KB and evaluate the results.

Some database applications main­
tain their own cache of data likely
to be used again. This is often re­
ferred to as a "buffer pool." If the
database program is running on the

59

OS/2 1.2 LAN Server computer
(client/server mode) performance
may be improved by increasing the
size of the buffer pool at the ex­
pense of cache memory. The idea
here is that the database program
knows more about the data than
does the file system cache.

Many applications in use today
were written for stand-alone opera­
tion with no thought given to per­
forming file 1/0 across a network.
Consequently, it is not uncommon,
especially in DOS database applica­
tions, to see reads/writes of very
small sizes and in very large quanti­
ties. These are usually random file
accesses and impose a heavy work­
load on the server to perform file
1/0 and process SMBs for data re­
quests and transmissions. To im­
prove performance, (1) get the
database files into cache, if possi­
ble, and (2) try to structure the

Personal Systems/Issue 4, 1990

database queries to minimize the
amount of data returned to the re­
quester. Encourage the user to move
to current database technologies
such as client/server.

ABOUT THE AUTHOR

Ken Whitfield is an advisory
programmer at IBM' s Austin
Programming Center. His 26 years
with IBM include experience with
personal systems hardware and
software in both engineering and
programming capacities. He
managed the Component Evaluation
Laboratory in Austin. In the past
three years, Ken has worked with
LAN pe,formance on PCLP 1.3,
OS/2 LAN Server 1.0, and was the
lead performance analyst for OS/2
LAN Server 1.2.

PM:An
Object-Oriented
Approach

Phil Spencer
QA Training
Cirencester, United Kingdom

The intent of this article is to
explain some of the benefits of
Object Orientation (00)
methodologies and introduce
some of the initial steps that can
be taken down the 00 path.

Object orientation is often discussed
in OS/2 Presentation Manager
(OS/2 PM) programming circles
today. Much of the material written
today, however, is conflicting.

As an OS/2 and PM consultant at
QA Training, I meet many people
who would like to know more about
the implications of 00 in PM pro­
gramming. There is no space here
for a full discussion of the merits
and implications of 00, nor to ex­
plain how to write PM programs in
general. I assume that readers are fa­
miliar with both these subjects and
are interested in pursuing them. For
those requiring background informa­
tion, an excellent introduction to
00 is given in:

Meyer, Bertrand, Object-Oriented
Software Construction, Prentice­
Hall, 1988.

The standard introduction to PM
programming is:

Petzold, Charles, Programming the
OS/2 Presentation Manager,
Microsoft Press, 1989.

60

I start from the perspective that 00
is the way forward and is the best
we can currently do to future-proof
our applications.

Note that the goals of 00 are inde­
pendent of programming language
and operating system. OS/2 PM is
quite supportive of (and in some
cases insistent upon) object-oriented
structure. The main language used
for programming OS/2 PM, how­
ever, is C, which is not considered
an object-oriented language. This
should not deter us. As we shall see
here, it is perfectly possible to write
object-oriented programs without
specific language support.

Some Historical Background
I'll begin by trying to put 00 into
historical perspective. Three design
techniques are of interest to us.

• Top-down

• Modular

• Object-oriented

A brief discussion of each of these
follows.

Top-Down Design: In the early
1960s the concept of top-down soft­
ware design began to emerge. It
was very successful when applied
carefully. The idea is that the solu­
tion to complex problems is
achieved by breaking them down
into simpler subproblems and solv­
ing the subproblems. The technique
is applied recursively until all the
sub-problems have a simple solution.

The transformation from the anar­
chy that existed before this simple
idea was introduced was pure magic!

Strengths
When applied correctly, this is an ef­
fective development strategy for pro­
grams written by a small number
(ideally one) of programmers. The

Personal Systems/Issue 4, 1990

technique is ideal for single-source
programs (see Note 1 at the end of
the text).

Weaknesses
As programs became larger, they be­
came more difficult to maintain. Pro­
grams developed by more than a
small number of people were partic­
ularly difficult because no single
person could grasp the full implica­
tions of a modification in the upper
levels of the design. A small change
in the original specification cas­
cades down through the levels of
the design and can result in almost
every function having to be
changed. The problem is not the
complexity of the changes, but their
number - in a well-structured pro­
gram, the actual changes required
should be well defined.

Modular Design: The next step
was the concept of modular soft­
ware design. The motivations be­
hind modularity were admirable and
simple. The idea is that when a pro­
gram becomes sufficiently large that
it is unmanageable as a single en­
tity, it should be broken down into
parts that are easier to manage (mod­
ules).

Strengths
When modularity is correctly ap­
plied, applications are split into sev­
eral modules with a minimal
number of interdependencies. Each
module can then be treated as a sep­
arate program to which top-down
design techniques can be.applied.

This technique considerably boosted
the maximum size of program that
could be considered manageable.

Weaknesses
The problem with modularity has al­
ways been finding the ideal modular
boundaries. Because overall applica­
tion design is still top-down in most

cases, it is often found that a small
change in the upper levels of a de­
sign results in quite different natural
modular boundaries at lower levels.
This results in either unmanageable
modules or requires extensive redis­
tribution of code. I will show later
how 00 absorbs the modularity
ideal and overcomes this problem.

Misinterpretation did much to dis­
credit modularity. Manageability is
the key to success, but unfortu­
nately size was often allowed to in­
fluence the division of code
between modules (see Note 2).

Object-Oriented Design: Object­
oriented software design has its
roots back in the late I 960s. It de­
veloped from projects involving sim­
ulation of real world events. We
will see that the 00 approach is rad­
ically different to the top-down ap­
proach. However, despite all the
"forget all you've ever learned
about designing programs" head­
lines that you may have seen, the
ideas and experiences of modular
and top-down program design are
still very useful and necessary in the
world of 00.

There are a few key 00 ideas that
need to be introduced before I can
suggest a strategy for their imple­
mentation. Those of particular im­
portance to us here are:

• The object - In the PM environ­
ment an object usually means a
window, and the wofdS are often
used interchangeably. A pure ob­
ject takes total responsibility for
itself; there is no "higher level"
of code that understands its
internals.

• The class - A class is essentially
a blueprint for an object. In PM,
for example, we create a window
with a given behavior by first de­
fining a class that specifies the

61

..
0 0

_____ 1rd[□I OD q
JI/'\ ~1111~11111; I I I I I
l111 11~l'1'il I I I
lk~~J11111 I I ~~=Voo l j I 1-1 CU -! I
1'--l -C}-))- I

(~ y;:::-, / I _/_< --1 I J '\ ___
- /A -~ (I

Tf-¥- -- I

behavior and then creating a win­
dow of that class. Several win­
dows can (and normally will) be
created of any class, which
means that the class function
(also called the window proce­
dure) must be fully reentrant be­
cause it will be used by several
windows simultaneously.

00 purists see objects not as an in­
tegral part of an application, but as
a generic component that may be
used by any application. Adopting
this view means that the classes
have to be the highest level of struc­
ture and completely self-contained.

Personal Systems/Issue 4, 1990

This solves the problem with modu­
lar programming previously de­
scribed. Classes make perfect
modules because of their self-con­
tainment. There is no higher level
of structure to be modified, which
could make us reconsider this
choice as our applications evolve.

An object of any class works by re­
sponding to events. In the PM envi­
ronment an object (or window) is
notified of events by the receipt of a
"message" (see Note 3). In 00 jar­
gon, the response of an object to an
event is called a "method" (see
Note 4). Each of the methods of a

I

class is more or less independent, so
when programming in C each
method should be coded as a sepa­
rate function.

Having now reduced the design to a
number of individual functions, we
can apply traditional top-down de­
sign to these functions. This of
course, is precisely where top-down
design excels. We also have the
added benefit of being able to cash
in on the vast wealth of experience
using this technique.

This is as far as I intend to take 00
ideas for the purposes of this article.
I don't claim that 00 is the solution
to all problems - nothing is perfect.
However, there are many points in
its favor at present, and a few
against.

Strengths
00 ideas lead us to view software
design as the production of generic,
reusable code units (objects) , rather
than the production of dedicated
applications.

Classes, being complete self-con­
tained units, are the perfect modules
that can be developed and main­
tained in isolation. Any change in
design is normally confined to a sin­
gle class, and hence we overcome
the major shortcoming of modular
programming strategies.

The class methods are independent
of each other and should be sepa­
rated into individual functions when
programming in C.

The design of the method functions
is all that is left. Here we can do no
better than to use the well-tried and
tested top-down design techniques.

Weaknesses
The ideas of 00 require a radically
different approach to the design of

62

software. It is far too easy to slip
back into the "old ways" and then
blame 00 for the resulting chaos.

Lack of widespread experience is
currently the biggest problem. Great
frustration exists among developers
applying 00 for the first time. They
frequently get to the "I know this
isn ' t quite right but who can set me
right" situation.

Some Examples
Let 's now look at the sources for
two variants of a simple PM pro­
gram. The programs (DEMO 1 and
DEM02) simply create a standard
window with a client and four chil­
dren. (These can all be seen in the
figures located at the end of the
article.)

The Sources: Take a look at the
source listings for the programs.
Only two files are involved in
DEMO!:

MAKEFILE (Figure 1)- This
makefile actually builds both
DEMO I .EXE and DEM02.EXE.
There should be no surpri ses here,
but note particularly:

• The use of the multithread library
llibcmt.lib

• The compilation flags required
for the use of this library

• The assumption that the include
environment variable includes the
path to the multithread C headers
(normally c:\ibmc2\include\mt)
and does not include the path to
the normal C headers (normally
c:\ibmc2\include).

DEMOl.C (Figures 2a through 2d)
contains all of the source for the tra­
ditionally structured program.

DEM02 takes a more object­
oriented approach and as a result its

Personal Systems/Issue 4, 1990

structure is radically different. This
time there are seven files involved:

MAKEFILE - This is the same
makefile as shown in Figure 1.

MACROS.ff (Figure 3) - The mac­
ros file allows us to take some of
the repetitiveness out of the coding
of a PM program. I will discuss this
file in more detail later.

MAIN.C (Figure 4) - contains only
minimal startup code. This code
will be almost the same for all PM
programs. In English, this code says
"make sure the classes
CLASS_DEM02 and
CLASS_CHILD are available and
give me a CLASS_DEM02 win­
dow." Notice that there is nothing
else here. We assume that the win­
dow is totally capable of looking
after itself.

DEM02.H (Figure 5) - defines all
that is public knowledge about
CLASS_DEM02 (that is, the class
name and the class registration func­
tion). Few module interfaces could
be smaller than thi s. Modularity has
come home!

DEM02.C (Figures 6a through 6c)
- contains all the code for
CLASS_DEM02, including the
class registration function . There is
a lot here. I will return to it in a
moment.

CHILD.ff (Figure 7) - defines all
that is public knowledge about
CLASS_CHILD. This is slightly
larger that DEM02.H, but still
small.

CHILD.C (Figures 8a and 8b) -
contains all the code for
CLASS_CHILD. Again , there is a
Jot here, and I will return to it in a
moment.

Discussion: First, an admission. I
have deliberately structured
DEMO I to illustrate some points.
Few people would write this spe­
cific application exactly in this man­
ner, but many larger programs have
a similar structure.

What has really happened in the
metamorphosis from DEMO I to
DEM02? The nature of the pro­
gram has changed:

• from a program with a parent
window and four child windows

• to a window of CLASS_DEM02

This change is much more radical
than it sounds at first.

The startup code in MAIN.C is now
incidental - an unfortunate neces­
sity that would be buried deep, and
out of sight, in the heart of a purer
00 system. This startup code is so
standard that the bulk of it can be
put out of sight in a Dynamic Link
Library (DLL) and forgotten.

In order to achieve this happy state
of affairs, I isolated the responsibili­
ties of the class from the responsibil­
ities of the startup. In particular, I
consider class registration as a class
method because it is something that
only the class should know how to
do. This is reflected in the structure
ofDEM02:

• Each class source contains a
class registration function.

• The public interface to the class
is defined in a .H file and con­
tains an absolute minimum of in­
formation. In the most isolated
classes this will contain only the
name of the class and the name
of the registration function.

A class of window that displays cen­
tered text "Child 1" in green letters
on a dark blue background has
rather limited use. Producing a class

63

like this, as in DEMO!, reflects an
application-oriented approach - this
window is a particular requirement
of this application. The 00 ap­
proach is to recognize the more ge­
neric case of a window that displays
centered text in any colors. This is
what CLASS_CHILD does. It is a
small step now to make this a pub­
lic class that can be used by any ap­
plication if required.

Notice the use of the control data
parameter in the WinCreateWindow
calls in CLASS_DEM02. The con­
trol data structure is a public struc­
ture that is declared in the header of
the class that requires it. Don't con­
fuse this with the internal class
structure that will be required by
most classes.

Careful consideration of the class
functions in DEMO I reveals that
conceptually they are tables of
chunks of code to be executed upon
receipt of specific messages. By
breaking out each of these chunks
into separate C functions, the tabu­
lar structure becomes more appar­
ent, and we find a great deal of
repetitive text appearing. In the file
MACROS.H I have defined some C
macros that allow us to reduce the
class functions to pure tab les and
eliminate some of the repetitiveness.
The macros are:

• WINPROTO - prototypes a mes­
sage or class function

• WIN CALL - calls a message or
class function

These macros are not particu larly
complex and should be easily under­
stood by any C programmer. These
macros encourage the separation of
the class methods into separate C
functions to which traditional top­
down programming styles are
applied.

Personal Systems/Issue 4, 1990

There is more than this to DEM02,
but time and space prohibit a full
discussion. Here is a list of some
things in DEM02 that are a benefit
or feature of 00 programming:

• restricted scope of local variables

• absence of global variables

• extensive use of the keyword
static (that is, private)

• re-use of the same function
names in different classes

• the use of window IDs rather
than saved window handles

• the use of WM_CREATE and
WM_DESTROY

• the allocation, use, and destruc­
tion of per-window data

• the use of control data structures

Summary
Object orientation is the flavor of
the day, perhaps of the decade. 00
design seems to have much to offer
even in the absence of specific lan­
guage support. Don't rush to forget
the experience of the last three de­
cades though, because possibly the
greatest strength of 00 is that it
finds a place for top-down and mod­
ular techniques that solves most of
their weaknesses.

I have presented a simple applica­
tion written in an application ori­
ented style and the same program
restructured to embrace some key
00 ideas. As I have said, there is
much more to 00 than this.

Note 1: I have seen and worked
with carefully top-down structured
Algol programs of 50,000 lines or
so that are much more maintainable
and manageable than some of their
later modular or object-oriented
counterparts. The fact that such pro­
grams can be maintainable and man­
ageable indicates that the top-down
design strategy works well. The fact

that such programs can be better
than modular or object-oriented
counterparts is mostly a reflection
of misapplication of the latter
techniques.

Note 2: I know from personal expe­
rience that misapplication of the
modularity ideas has done far more
damage than good to the quality of
some programs. I have worked on a
number of projects in organizations
where modularity was misapplied.
The worst case was an operating
system kernel where every function
was in a different module. Each
module also had a corresponding in­
terface description file (header).
The results were disastrous - there
were so many intermodule links that
the developers didn't have the pa­
tience to selectively include the re­
quired headers. Instead they

all : demo 1. exe demo2 . exe

flfl
BU I LO OEMOl
flfl
demo 1 . obj: demo 1 . c

cl /G2s /Alfu /W3 /c demol.c

demo 1. exe: demo 1 . obj

64

included all the headers in every
module. This left us with a program
that was effectively the same as a
huge, monolithic source, but was
much more difficult to maintain be­
cause almost every change involved
more than one source.

Note 3: It is important not to con­
fuse message basis with 00; they
are two totally unrelated ideas. It
just happens that the former is a con­
venient way of implementing the
latter.

Note 4: In some early non-message
based systems, methods were called
access procedures. I still like this ter­
minology because it always reminds
me that the only viewpoint I have
on an object is the one it chooses to
make available to me through its ac­
cess procedures (methods).

cl $** /Fe$@ /link /nod os2 llibcmt

flfl
BU I LO OEMO2
flfl
main . obj: main.c demo2.h child.h macros.h

cl /G2s /Alfu /W3 /c main.c

demo2.obj: demo2.c demo2.h child.h macros . h
cl /G2s /Alfu /W3 le demo2.c

child.obj: child.c child . h macros.h
cl /G2s /Alfu /W3 le child.c

demo2. exe: main. obj demo2 . obj child. obj
cl $** /Fe$@ /link /nod os2 llibcmt

Figure l. MAKEFILE

Personal Systems/Issue 4, 1990

ABOUT THE AUTHOR

Phil Spencer is a consultant at QA
Training. speciali:ing in OS/2 and
Presentation Manager. QA supplies
training worldwide in DOS, OS/2,
Unix. Windows and Presentation
Manager, Networking, Data
Management, C and C++, and the
technology of personal computer
systems. For those with an interest
in the topic of this arricle, QA can
offer design standards and
consultancy.

QA Training Ltd
Cecily Hill Castle Cirencester
Gloucestershire GL7 2EF
England

Telephone: Ol 1-44-285-655888

#define INCL_WIN
#include "os2.h"
/*

65

/* Include the Windowing subsystem interface ... */
I* ... to OS/2 PM */

** This program shows some of the 'unclean' features of traditional PM programs, for example:
**
** (1)

** (2)
** (3)
** (4)

** (5)

** (6)
** (7)

**

Use of global variables
Single source or unnatural distribution of code across sources
Public functions
Non function wide scope of local variables in sometimes very large window functions
Replication of data maintained by the system
Inline registration of classes: forcing class registration data to be publicized
Inline assignment (creation) of children to parents with resulting synchronization

problems
* /
ULONG fcf - FCF_STANDARD & -FCF_ ICON & ~FCF_ACCELTABLE & -FCF_MENU;
CHAR szClientClass[J - "Demol",

szChildlClass[J -"Demol.Childl",
szChild2Class[J -"Demol.Child2",
szChild3Class[J -"Demol.Child3",
szChild4Class[J -"Demol.Child4";

HWND hwndFrame, hwndClient, hwndChildl. hwndChild2, hwndChild3, hwndChild4;

MRESULT EXPENTRY
MRESULT mr
PSZ psz
HPS hps;
RECTL rel;

switch (msg)
case WM_PAINT:

ChildlWndProc(HWND hwnd,USHORT msg,MPARAM mpl,MPARAM mp2) (
- (MRESULT)O;
- "Child l";

hps = WinBeginPaint(hwnd,NULL,NULL);
WinQueryWindowRect(hwnd,&rcl);
WinDrawText(hps,-1,psz,&rcl ,CLR_GREEN,CLR_DARKBLUE,DT_CENTERIDT_VCENTERIDT_ERASERECT);
WinEndPaint(hps);
break;

default:
mr - WinDefWindowProc(hwnd,msg,mpl,mp2);

} /* endswi tch * /
return mr;

MRESULT EXPENTRY
MRESULT mr
PSZ psz
HPS hps;
RECTL rel;

switch (msg) {
case WM_ PAINT:

Child2WndProc(HWND hwnd,USHORT msg,MPARAM mpl,MPARAM mp2) {
(MRESULT)O;

- "Child 2";

hps = WinBeginPaint(hwnd,NULL,NULL);
WinQueryWindowRect(hwnd,&rcl);
WinDrawText(hps,-1,psz,&rcl ,CLR_ PINK,CLR_BROWN,DT_CENTERIDT_VCENTERIDT_ERASERECT);
WinEndPaint(hps);
break;

default:
mr = WinDefWindowProc(hwnd,msg,mpl,mp2);

) / * endswitch*/
return mr;

Figure 2a. DEMOl.C

Personal Systems/Issue 4, 1990

66

MRESULT EXPENTRY Child3WndProc(HWND hwnd,USHORT msg,MPARAM mpl,MPARAM mp2) {
MRESULT mr - (MRESULT)O;
PSZ psz = "Child 3":
HPS hps;
RECTL rel;

switch (msg)
case WM_PAINT:

hps = WinBeginPaint(hwnd,NULL,NULL):
WinOueryWindowRect(hwnd,&rcl);
WinDrawText(hps,-1,psz,&rcl ,CLR_YELLOW,CLR_CYAN,DT_CENTERjDT_VCENTERjDT_ERASERECT);
WinEndPaint(hps ;
break;

default:
mr - WinDefWindowProc(hwnd,msg,mpl,mp2);

} /* endswitch */
return mr:

MRESULT EXPENTRY
MRESULT mr

Child4WndProc(HWND hwnd,USHORT msg,MPARAM mpl,MPARAM mp2) {
CMRESULT)O;

PSZ psz
HPS hps;
RECTL rel;

switch (msg)
case WM_PA I NT:

= "Child 4";

hps = WinBeginPaint(hwnd,NULL,NULL);
WinQueryWindowRect(hwnd,&rcl);
WinDrawText(hps,-1,psz,&rcl ,CLR_RED,CLR_BLUE,DT_CENTERjDT_VCENTERjDT_ERASERECT);
WinEndPaint(hps);
break;

default:
mr - WinDefWindowProc(hwnd,msg,mpl,mp2);

} /* endswitch */
return mr;

MRESULT EXPENTRY
MRESULT mr

ClientWndProcCHWND hwnd,USHORT msg,MPARAM mpl,MPARAM mp2) {
= (MRESULT)O;

HPS hps;
RECTL rel;
USHORT ex:
USHORT cy;

switch (msg) {
case WM_PAINT:

hps = WinBeginPaint(hwnd,NULL,NULL):
WinQueryWindowRect(hwnd,&rcl);
Wi nFi 11 Rect(hps, &rel , CLR_BLACK);
WinEndPaint(hps);
break;

case WM_SIZE:
ex= SHORT1FROMMP(mp2);
cy = SHORT2FROMMP(mp2);
WinSetWindowPos(hwndChildl,HWND_TOP,5,
WinSetWindowPos(hwndChild2,HWND_TOP,cx/2+5,
WinSetWindowPos(hwndChild3,HWNO_TOP,5,
WinSetWindowPos(hwndChild4,HWND_TOP,cx/2+5,
break;

Figure 2b. DEMOl.C

cy/2+5,cx/2-10,cy/2-10,SWP_MOVEjSWP_SIZE);
cy/2+5,cx/2-10,cy/2-10,SWP_MOVEjSWP_SIZE);

5,cx/2-10,cy/2-10,SWP_MOVEjSWP_SIZE);
5,cx/2-10,cy/2-10,SWP_MOVEjSWP_SIZE):

Personal Systems/Issue 4, 1990

67

default:
mr - WinDefWindowProc(hwnd,msg,mpl,mp2);
/* endswi tch * /

return mr:

void main(void) {
HAB hab;
HMO hmq;
QMSG qmsg;
SWP swp;

hab - Winlnitialize(O);
hmq - WinCreateMsgQueue(hab,0);

WinRegisterClass(hab,szClientClass,ClientWndProc,CS_SIZEREDRAWICS_CLIPCHILDREN,O);
WinRegisterClass(hab,szChildlClass,ChildlWndProc,CS_SIZEREDRAW,O);
WinRegisterClass(hab,szChild2Class,Child2WndProc,CS_SIZEREDRAW,O);
WinRegisterClass(hab,szChild3Class.Child3WndProc,CS_SIZEREDRAW,O);
WinRegisterClass(hab.szChild4Class,Child4WndProc,CS_SIZEREDRAW,O);

hwndFrame - WinCreateStdWindow(
HWND_DESKTOP. /* Parent
WS_VISIBLE. /* Frame style
&fcf. /* Frame Content Flags
szClientClass. /* Client Class Name
" - Demol", /* Titlebar text
OL. /* Client style
(HMODULE)NULL. /* Resource Module Handle
o. /* Resource ID
&hwndClient): /* Returns Client Window Handle

hwndChildl WinCreateWindow(
hwndClient. /* Parent
szChildlClass. /* Class Name
NULL. /* Window Text
WS_VISIBLE. /* Window Style
o.o. /* Position
o.o. /* Size
NULL. /* Owner
HWND_TOP. /* Placement
o. /* ID
NULL. /* Control Data Pointer
NU LL) : /* Presentation Parameters Pointer

hwndChild2 - WinCreateWindow(
hwndClient. /* Parent
szChild2Class. /* Class Name
NULL. /* Window Text
WS_VISIBLE. /* Window Style
o.o. /* Position
0. 0. /* Size
NULL. /* Owner
HWND_TOP. /* Placement
0. /* ID
NULL, /* Control Data Pointer
NULL); /* Presentation Parameters Pointer

hwndChild3 WinCreateWindow(
hwndClient. /* Parent
szChild3Class. /* Class Name
NULL. /* Window Text

Figure 2c. DEMOl.C

Personal Systems/Issue 4, 1990

*I
*I
*I
*I
*I
*I
*I
*I
*I

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

*I
*I
*I

hwndChild4

WS_VISIBLE,
0. 0.
0. 0.
NULL,
HWND_TOP.
0.
NULL,
NU LL) ;

68

WinCreateWindow(
hwndClient.
szChild4Class,
NULL.
WS_VISIBLE,
0. 0.
0. 0.
NULL,
HWND_TOP,
0.
NULL,
NULL);

/ * Force a WM_SIZE to position children */

/* Window Style
/* Position
/* Size
/* Owner
/* Placement
/* ID
/* Control Data Pointer
/* Presentation Parameters Pointer

/ *Parent
/ *Class Name
/* Window Text
/* Window Style
/* Position
/* Size
/* Owner
/* Placement
/* ID
/* Control Data Pointer
/*Presentation Parameters Pointer

*I
*I
*I
*I
*I
*I
*I
*I

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

WinOueryWindowPos(hwndFrame.&swp);
WinSetWindowPos(hwndFrame,HWND_TOP.swp.x,swp.y,swp.cx+l,swp.cy+l,SWP_MOVEISWP_SIZEISWP_ZORDER) ;

while (WinGetMsg(hab,&qmsg,NULL,0,0)) WinDispatchMsg(hab,&qmsg);

WinDestroyWindow(hwndFrame);
WinDestroyMsgQueue(hmq);
WinTerminate(hab);

Figure 2d. DEMOl.C

Personal Systems/Issue 4, 1990

69

/*
** SOME MACROS TO ASSIST WITH OUR CODE STANDARDS
*/
#define WINPROTO(name) MRESULT EXPENTRY name(HWND hwnd,USHORT msg,MPARAM mpl,MPARAM mp2)
#define WINCALL(name) name(hwnd,msg,mpl,mp2)

Figure 3. MACROS.H

#include "process.h"
#include "os2.h"
#include "macros.h"
#include "demo2.h"
#include "child.h"

void main(void) (
I*

I* C runtime library interface
/* OS/2 PM interface
/* Application wide macro assistance
/* Our own calss interface description
/* CHILD_ CLASS interface description

** A standard PM 'main ·. Every PM program wi 11 have a 'main' that looks
** almost identical to this.
*I
QMSG qmsg;
ULONG fcf - FCF_STANDARD & ~FCF_ACCELTABLE & ~FCF_MENU & ~FCF_ICON;
HAB hab
HMO hmq
BOOL brc

HWND hwnd

- Winlnitialize(O);
= WinCreateMsgQueue(hab,0);
- RegisterClassDemo2(hab)

&& RegisterClassChild(hab)
- WinCreateStdWindow(

HWND_DESKTOP,
WS_VISIBLE,
&fcf,
CLASS_DEM02,
" - Demo2",
OL,
(HMODULE)NULL ,
0.
NULL);

/* Parent
/* Frame style
/* Frame Content Flags
/* Client Class Name
/* Titlebar text
/* Client style
/* Resource Module Handle
/* Resource ID
/* Returns Client Window Handle

while (WinGetMsg(hab,&qmsg,NULL,0,0)) WinDispatchMsg(hab,&qmsg);

WinDestroyWindow(hwnd);
WinDestroyMsgQueue(hmq);
WinTerminate(hab);
exit(O);

Figure 4. MAIN.C

Personal Systems/Issue 4, 1990

*I
*I
*I
*I
*I

*I
*I
*I
*I
*I
*I
*I
*I
*I

70

/***/
/** THIS FILE DECLARES ALL THE PUBLIC INTERFACES TO CLASS_ CHILD **/
/***/

/****** The Class Name Required by 'WinCreate[Std]Window' ******/

#define CLASS_ DEMO2 "Demo2 Client Class"

/****** The Class Registration Function Reauired by 'main'******/

BOOL RegisterClassDemo2(HAB hab);

Figure 5. DEM02.H

#define INCL_ WIN
#include "os2.h"
#include "macros.h"
#include "demo2.h"
#include "child.h"

/* Include the Windowing subsystem interface ... */
I* ... to OS/2 PM */
/* Application wide macro assistance */
/* Our own class interface description */
/* CHILD_ CLASS interface description */

/****** C 1 a s s M e t h o d ****** /

static WINPROTO(Wm_ Create)
I*
** Note one of the rare correct usages of global data - constant tables.
** This one is a table of the colors for the children .

I*

*/
static struct (LONG fclr; LONG bclr;} clrs[J = (

(CLR_GREEN. CLR_ DARKBLUE) •
(CLR_ PINK. CLR_ BROWN) .
(CLR_ YELLOW, CLR_ CYAN) •
(CLR_ RED, CLR_ BLUE).

) ;
USHORT
SEL
PCHILD CTRLDATA

id;
se l ;
peed;

/* Window ID
/* Selector
/* Pointer to a CHILD CTRLDAT A

*I
*I
*I

** Allocate a child control data structure, initialize it, and create the child, passing the
** address of the structure. Note it is the responsibility of the child to take its own copy
** of the control data struct ure during its WM_CREATE processing. We are therefore at liberty
** to free or reuse our struct ure anytime after the 'WinCreateWindow· call.
*/

DosAl l ocSeg(si zeof(CHILD_ CTRLDATA) ,&sel ,SEG_ NONSHARED);
peed= MAKEP(sel,O);
for(id=O; id<4; id++) (

pccd->ChildNo id+l;
pccd->ClrText - clrs[id].fclr;
pccd->ClrBack - clrs[id].bclr;
WinCreateWindow(

hwnd,
C LASS_ CH ILD.
NULL,
WS VISIBLE.
0. 0.
0. 0.
NULL.
HWND_ TOP,

/* Parent
/* Class Name
/* Window Text
/* Window Style
/* Position
/* Size
/* Owner
/* Placement

Figure 6a. DEM02.C

Personal Systems/Issue 4, 1990

*I
*I
*I
*I
*I
*I
*I
*I

} /* endfor */
DosFreeSeg(sel);
return NU LL;

id.
peed.
NULL);

71

/* ID
/* Control Data Pointer
/* Presentation Parameters Pointer

*I
*I
*I

if (hwnd I I msg I I mpl I I mp2) /* Su press compiler 'unreferenced ... ' messages */ ;

/ ****** C l a s s M e t h o d ******?

static WINPROTO(Wm_ Paint)
HPS hps;
RECTL rel;

I*
** Paint our window . In this example simply fill the window with black.
*I
hps - WinBeginPaint(hwnd,NULL,NULL);
WinQueryWindowRect(hwnd, &rel);
WinFillRect(hps,&rcl,CLR_ BLACK);
WinEndPaint(hps);
return NULL;
if (hwndl lmsgl lmpll lmp2)

I****** C l a s s M e t h o d ****** /

static WINPROTO(Wm_ Size) {
USHORT id;
USHORT ex - SHORT1FROMMP(mp2);
USHORT cy - SHORT2FROMMP(mp2);
SWP aswp[4];

I*

/* Supress compiler 'unreferenced .. .' messages */ ;

** Our window has been resized - resize our children. This is normal WM SIZE processing.
** Note that in general • windows a re only resized by their pa rents .
*I
for (id=O;id <4:id++) (

aswp[id] . fs - SWP_MOVEISWP_SIZE;
a swp[id].x - (id--O)I l(id--2)? 5: cx/2+5;
aswp[id].y - (id--2) 11 (id--3)? 5: cy/2+5;
aswp[id].cx - cx / 2 - 10;
aswp[id].cy - cy/2-10;
aswp[id].hwndinsertBehind - HWND_ TOP;
aswp[id].hwnd - WinWindowFromID(hwnd,id);
} / * endfor */

WinSetMultWindowPos(WinQueryAnchorBlock(hwnd),aswp,4);
return NULL;
if (hwnd 11 msg 1 1 mpl 11 mp2) /* Supress compiler 'unreferenced .. .' messages */ ;

/****** T h e C l a s s F u n C t on******/

static WINPROTO(fnwp)
I*
** The Class Function is effectively a simple 'jump table'! I would like to have left that
** comment at that simple statement. but the casual reader may not have grasped the
** implications:
** (1) It is ripe for automation - name the messages you're interested in and the class
** function is fully specified

Figure 6b. DEM02.C

Personal Systems/Issue 4, 1990

72

** (2)
**

It is ripe for optimization - as implemented here it is a 'call table' rather than
a 'jump table'

** (3)

**
**

In the light of 1 & 2 let your dreams run wild - automatically generated optimal
code!? As a first step I have a tiny macro assembler source which allows me to
declare this class function as follows:

**
**
**

INCLUDE MASMFNWP.INC
FNWP <WM_CREATE,WM_ PAINT,WM_SIZE>

END
** more of this in a future article perhaps
*/
switch (msg) {
case WM_CREATE:
case WM_SIZE:
case WM_ PAINT :
default:
} /* endswitch */

return WINCALL(fnmsgWmCreate);
return WINCALL(fnmsgWmSize) ;
return WINCALL(fnmsgWmPaint);
return WINCALL(WinDefWindowProc);

I****** T h e C l a s s R e g i s t r a t o n ****** /

BOOL RegisterClassDemo2(HAB hab) {
I*
** The provision of a class registration function like this is recommended. It could be
** regarded as a class method but since it is invoked explicitly by external call rather
** than in response to a message it is better to describe it as an • access procedure· as
** mentioned in the article. The purpose of this function is to hide more class internals.
**
**
**
**
*I

- The window procedure can be made 'static'
- The class styles no longer have to be public
- The number of per window bytes no longer has to be public

return WinRegisterCla ss(

Figure 6c. DEM02.C

hab,
CLASS_DEM02,
fnwp,
CS_SIZEREDRAW I CS_CLIPCHILDREN,
0);

/* Anchor Block Handle
/* Class Name
/* Class Function
/* Class Styles
I* # per window bytes

Personal Systems/Issue 4, 1990

*I
*I
*I
*I
*I

73

/***/
/** THIS FILE DECLARES ALL THE PUBLIC INTERFACES TO CLASS_CHILD **/
/***/

/****** The Class Name Required by 'WinCreate[Std]Window' ******/

#define CLASS_CHILD "Child Class"

/****** The Class Registration Function Required by 'main'******/

BOOL RegisterClassChild(HAB hab):

/ ****** The Class Control Data Structure Required by 'WinCreateWindow' ******/

typedef st ruct {
USHORT ChildNo;
LONG ClrText;
LONG ClrBack;

CHILD_CTRLDATA, *PCHILD_CTRLDATA;

Figure 7. CHILD.ff

#include "stdio.h"
#define INCL_WIN
#include "os2.h"
ff;nclude "macros.h"
#include "child.h"

I* C runtime library interface */
/* Include the Windowing subsystem interface ... */
I* ... to OS/2 PM */
/* Application wide macro assistance */
/* Our own class interface description */

/****** T h e C a s s P r vat e D at a St r u ct u re******/

typedef st ruct (
CHILD_CTRLDATA ccd:

} C LASSSTRUCT, *PC LASSSTRUCT;

I ****** C l a s s M e t h o d ****** /

static WINPROTD(Wm_Create)
SEL sel;
PCHILD_CTRLDATA peed - PVOIDFROMMP(mpl);
PCLASSSTRUCT pcs;

I*

/* The Class Public Data Structure

/* Selector
/* Get ctrldata address
/* Pointer to a CLASSSTRUCT

** Allocate a CLASSSTRUCT and save its address in the per window data
*/
DosAllocSeg(sizeof(CLASSSTRUCT),&sel ,SEG_NONSHARED);
Wi nSetWi ndowPtr (hwnd. 0. pcs-MAKEP(se l . 0)):
/*
** Initialize the CLASSSTRUCT
*I
pcs->ccd - *peed:
return NULL:

*I

*I
*/
*/

if (hwnd I I msg I I mpl I I mp2) /* Supress compiler 'unreferenced ... ' messages */;

/****** C l a s s M e t h o d ****** /

static WINPROTO(Wm_Destroy) {
PC LASSSTRUCT pcs - Wi nQueryWi ndowPt r (hwnd, 0) : /* Get CLASSSTRUCT address */
/*
** Normally we would then free any resources described in the CLASSSTRUCT here AND THEN

Figure Sa. CHILD.C

Personal Systems/Issue 4, 1990

74

** free the structure itself. There are no resources that need freeing here so we only
** have to free the structure.
*/
DosFreeSeg(SELECTOROF(pcs));
return NULL;
if (hwnd I I msg I I mpl I I mp2 l /* Suppress compiler 'unreferenced ... " messages*/ ;

/****** C 1 a s s M e t h o d ****** /

static WINPROTO(Wm_Paint) {
PCLASSSTRUCT pcs = WinQueryWindowPtr(hwnd,0); /* Get CLASSSTRUCT address *I
char buf[32];
HPS hps;
RECTL rel;

I*
** Paint our window. In this example simply draw some text with WinDrawText. Note how we
** extract the required colors etc. from the per window data thus making this class generic
** and not having to use register a new class for each variant.
*I
hps = WinBeginPaint(hwnd,NULL,NULL);
WinQueryWindowRect(hwnd,&rcl);
sprintf(buf,"Child %d",pcs ->ccd.ChildNo);

WinDrawText(hps, -1,buf,&rcl ,pcs ->ccd.ClrText,pcs ->ccd.ClrBack,
DT_CENTERIDT_VCENTERIDT_ERASERECTJ;

WinEndPaint(hps);
return NULL;
if (hwnd I I ms g I I mp 11 I mp2) /* Su press compiler 'unreferenced ... ' messages */ ;

/****** T h e C 1 a s s F u n c t on******/

static WINPROTO(fnwp)
I*
** The Class Function is effectively a simple 'jump table"!
** See notes in DEM02.C
*I
switch(msg) {
case WM_CREATE:
case WM_DESTROY:
case WM_PAINT:
default:

} /* endswi tch *I

return
return
return
return

WINCALL(Wm_Create);
WINCALL(Wm_Destroy);
WINCALL(Wm_Paint);
WINCALL(WinDefWindowProc);

/****** T h e C 1 a s s R e g i s t r a t o n ****** I

BOOL RegisterClassChild(HAB hab) {
I*
** The provision of a class registration function like this is recommended.
** See notes in DEM02.C
*I
return WinRegisterClass(

hab,

Figure 8b. CHILD.C

C LASS_CH I LO,
fnwp,
CS_SIZEREDRAW,
sizeof(PCLASSSTRUCT));

/* Anchor Block Handle
/* Class Name
/* Class Function
/* Class Styles
I* # per window bytes

Personal Systems/Issue 4, 1990

*I
*I
*I
*I
*I

DOS 4.00
SHARE

Bill Lawton
IBM Corporation
Boca Raton, Florida

This article discusses the utility
SHARE and its function within
DOS. In fact, the behavior of DOS
changes depending on whether
SHARE is loaded and the method
used to load it. Because the func­
tion of SHARE was not usually re­
quired or used much before
version 4.0 of DOS (except with
file servers), it remains a mystery
to most users. This article ex­
plains the various functions and
methods of loading SHARE.

SHARE is an extension of DOS
that provides four major functions:

• File sharing - SHARE is re­
quired if the machine is a PC
local area network (LAN) file
server

• File locking

• Diskette change protection

• Support for File Control Blocks
(FCB) file I/0 on fixed-disk parti­
tions greater than 32 MB.
SHARE is required if any parti­
tions are greater than 32 MB.

Because SHARE is separately load­
able from DOS itself, memory can
be saved if it is not needed.

File Sharing and File
Locking
Before the introduction of DOS
4.00, SHARE was mostly used on
file servers in networking environ­
ments to allow files to be shared
among several users or running pro­
grams. SHARE provides the file­
sharing capability in two different
ways.

75

~-,-a--(,,, _-::::::::;,
,. -------1 I I

First, SHARE enforces file-sharing
rules on all DOS OPEN calls.
(Refer to IBM Disk Operating Sys­
tem Version 4.00 Technical Refer­
ence, 15Fl420, for a list of sharing
modes available in DOS 4.00.)

Second, it activates the file-locking
capability of DOS. When SHARE
is not loaded, the DOS FILE LOCK
calls (INT 2 lH, function SCH) do
not perform any function, but return
without error. File-locking is not
used by the PC LAN, but is used by
applications to lock portions of a
file to prevent access by other users
or programs. This allows more than
one program to open a file and read
from it, but not change a locked sec­
tion of it, as in a data base
application.

On the other hand, the file-sharing
rules of a DOS OPEN restrict pro­
grams from opening a file already
opened by another program, depend­
ing on the sharing modes specified
on the open call. In DOS, this is
called a sharing violation. DOS re­
tries the open call several times and,
if still unsuccessful, returns a shar­
ing violation to the calling program.
The application must also retry the
open until it can gain access to the
file, or return an error to the user.

Personal Systems/Issue 4, 1990

The advantage of using file-locking
is that a portion of the file can be
locked so other programs cannot
change it, but still have access to
other sections of the file. Therefore,
SHARE provides two different
methods of sharing files between
users and applications.

There are two side effects of the file­
sharing rules enforced by SHARE.
The first deals with the DOS RE­
NAME (INT 21H, function 56H)
and DOS Change File Mode (INT
21H, function 43H) functions. If a
file is opened in compatibility mode
when SHARE is loaded, then a
DOS RENAME or DOS Change
File Mode (CHMOD) to that file
causes SHARE to close the file.
Some applications that run without
SHARE loaded may not expect this
to happen, but it is correct behavior.
DOS closes the file to force the
changes to the file to take effect. If
the file had been opened under a dif­
ferent sharing mode, the DOS RE­
NAME or DOS CHMOD would
have failed, thereby enforcing the
file-sharing rules. Compatibility
mode does not restrict a second
open of an already open file.

The second side effect deals with
the DOS DELETE function. If
SHARE is loaded, DOS will not de­
lete a file previously opened with a

--

sharing mode that restricts writes to
the file.

Diskette Change Protection
A function of SHARE not com­
monly known is the diskette change
protection. SHARE does not actu­
ally contain the diskette change
logic, but this logic in DOS is inac­
tive (turned off) unless SHARE is
loaded. This function allows DOS
to ensure that users do not remove a
diskette from a disk drive while a
file is still open on that diskette.
This will prevent the data corrup­
tion that could occur without this
protection.

Part of this diskette change protec­
tion involves keeping track of the
number of open files on a diskette.
When a diskette change is detected
by DOS, this number is checked. If
it is not zero, DOS displays an
error, requesting that the previous
diskette be reinserted in the diskette
drive. This prevents any running ap­
plications from reading or writing to
the wrong diskette. However, this
also creates a compatibility problem
with some existing applications.

Some applications written before
this function was added to DOS
open files during installation, but
never close them before asking the
user to insert the next installation
diskette. These applications should
be used without SHARE loaded or
by allowing DOS to load SHARE if
you have a fixed-disk partition
greater than 32 MB.

FCB Support on Fixed-Disk
Partitions Greater than
32MB
The last major function of SHARE,
and one of the most misunderstood,
is the "greater than 32 MB" support
for FCBs. This particular function is
new with version 4.00 of DOS.

76

DOS versions prior to 4.00 did not
support fixed-disk partitions greater
than 32 MB. One reason for this
limitation was that DOS used 16
bits to represent a sector number on
a disk. The contents of a disk are di­
vided into units called sectors. DOS
reads and writes information in 512-
byte sectors. With version 4.00,
DOS uses 32 bits to represent a sec­
tor number on a disk. This allows
DOS to access larger fixed disks as
one partition instead of many 32
MB partitions.

This change to DOS did not come
without some compatibility prob­
lems. Many applications, such as
low-level, disk data analysis pro­
grams and disk utility programs, de­
pended on DOS using 16-bit sector
numbers, so they had to be modi­
fied to work with DOS 4.00.

Another compatibility problem cre­
ated by this change in sector num­
ber size deals with FCBs. Using
SHARE fixes the problem.

The use of FCBs is one of two
methods of accessing files in DOS.
The other method is the use of file
handles. An FCB is actually a data
structure that contains information
about an open file. It does not re­
side in DOS itself, but in an applica­
tion program's memory. (Refer to
the Disk Operating System 4.00
Technical Reference for the con­
tents of an FCB.) Applications pass
an FCB to DOS whenever accessing
a file using the FCB DOS calls.
One of the fields in an FCB is a 16-
bit sector number representing the
location of an open file. Because
DOS 4.00 must remain compatible
with previous versions, the FCB
structure could not be changed to ac­
commodate 32-bit sector numbers.
Therefore, DOS needed to keep the
other 16 bits of the 32-bit sector
number internally invisible to the ap-

Personal Systems/Issue 4, 1990

plication program and the FCB
structure.

When DOS opens a file, using ei­
ther FCBs or file handles, it keeps
an internal file table entry of infor­
mation about the file. With file han­
dles, all handles referring to the
same file point to the same internal
file table entry. With FCBs, the in­
formation is kept in an internal file
table entry only temporarily during
the execution of the DOS command
on that particular file. The informa­
tion is always copied back to the
FCB after each DOS call.

DOS always regenerates the internal
file table entry with each FCB call.
For DOS to keep the other 16 bits
of the sector number as just dis­
cussed, each FCB OPEN must be di­
rectly tied to a specific file table
entry. The entry keeps the 16-bit
number. But this means DOS must
keep the file table entry intact be­
tween DOS FCB calls. The file
table entry cannot be regenerated by
DOS from the FCB. This also
means that an infinite number of
FCB opens can no longer be han­
dled since each FCB must map to a
corresponding internal file table
entry. (Refer to the FCBS CON­
FIG.SYS command in Disk Operat­
ing System 4.00 Command
Reference, 6280253, for more infor­
mation on the limits imposed on the
number of FCBs.)

These restrictions are actually al­
ready a part of SHARE and how it
implements file sharing for FCBs
and file handles. This is the reason
SHARE is needed for greater than
32 MB support using FCBs. As you
can see, FCBs behave differently
when SHARE is loaded as opposed
to when it is not. It is important to
understand these differences and
how they relate to the fixed-disk par­
titions larger than 32 MB.

Loading SHARE
SHARE has two parameters:

• /F:filespace - Allocates memory
for file name information neccess­
ary for the file-sharing function
of SHARE. Filespace is repre­
sented in bytes with a default
value of 2048 bytes.

• /L :Jocks - Specifies the maxi­
mum number of locks needed.
The default value is 20 locks.

There are several ways to load
SHARE:

• For PC LAN file servers,
SHARE will be loaded if found
by the network start-up software
at boot-up time. The parameters
for share can be specified when
loading the network program.
(Refer to the PC Local Area Net­
work Program, 84X0162, for the
correct syntax.)

• Include the following in the
CONFIG.SYS:

INSTALL=SHARE.EXE

• Include the following in the
AUTOEXEC.BAT:

SHARE.EXE

• Type SHARE from the command
line immediately after boot-up.
SHARE should always be loaded
before running any application
that expects to use any function
of SHARE.

• For fixed-disk partitions greater
than 32 MB, DOS will attempt to
load SHARE from either the root
directory or the directory speci­
fied on the SHELL= statement in
the CONFIG.SYS if SHARE is
not already loaded. If DOS can­
not find SHARE to load, it will
send a warning message to the
display indicating that SHARE
should be loaded for "greater
than 32 MB" support. This all

77

happens after the CONFIG.SYS
file has been parsed and the com­
mands inside processed. This
method loads SHARE with de­
fault parameters; therefore, if the
default is not desired, use the IN­
ST ALL= method to load SHARE
and specify any parameters on
that line in the CONFIG.SYS.
(Refer to the Disk Operating Sys­
tem 4.00 Technical Reference for
the correct syntax.)

What are the differences?

All the preceding methods of load­
ing SHARE are equivalent, except
for the method dealing with fixed­
disk partitions greater than 32 MB.
If DOS determines that the machine
has at least one fixed-disk partition
greater than 32 MB, it will attempt
to load SHARE. Because the
"greater than 32 MB" support re­
quires only the internal data struc­
ture kept in SHARE, the
file-sharing, file-locking, and disk­
ette change protection remain inac­
tive (turned off). Some applications
do not expect any form of file­
sharing rule to be enforced during
file opens, and therefore may not
work with SHARE loaded unless
this function is inactive. This is why
DOS loads a partial function ver­
sion of SHARE if it detects a
"greater than 32 MB" partition, and
SHARE is not already loaded.

If any of the inactive functions are
needed, one of the other methods to
load SHARE during bootup must be
used; or, SHARE can be loaded
from the command line. If SHARE
is loaded from the command line,
you can specify parameters for
SHARE, but they will not take ef­
fect because SHARE is already
loaded. It will, however, trigger the
original SHARE to activate the inac­
tive functions.

Personal Systems/Issue 4, 1990

There is one other difference be­
tween the last method of loading
SHARE and the others. Many users
try to check for the presence of
SHARE by trying to load SHARE
from the command line. If SHARE
was previously loaded, DOS will re­
turn with an error message
"SHARE already installed," because
SHARE can only be loaded once on
a PC. This indicates that SHARE is
loaded, but this will work only if
SHARE was loaded explicitly by
the user using one of the methods
described earlier. It will not work if
DOS loaded SHARE for "greater
than 32 MB" support (the last
method just described). This is cor­
rect behavior, and it will prevent
error conditions in applications such
as the PC LAN program that load
SHARE and do not expect SHARE
to be already loaded.

Summary
As fixed-disk sizes increase, more
users will need to load some form
of SHARE for "greater than 32
MB" support. This article has ex­
plained some of the problems that
can arise while using SHARE and
how to load the function of SHARE
that is needed.

ABOUT THE AUTHOR

William W. Lawton is a senior
associate programmer at IBM's
Entry Systems Division in Boca
Raton, Florida, working as
technical team leader in Multimedia
Software Development. He joined
IBM in 1987, and until recently, he
was technical team leader in the
DOS Kernel Development
department. Bill received his B.S. in
computer science from Purdue
University.

A "C"
Programming
Model for DOS
Device Drivers

Dan Feriozi
IBM Corporation
Boca Raton, Florida

A practical and proven method of
writing DOS device drivers in the
C programming language is pre­
sented here. The C language was
chosen because of its docu­
mented suitability as a systems
programming language and be­
cause of its universal availability
for use on small systems.

The recent explosive growth in the
number of new and different types
of devices for use with personal
computers has put pressure on soft­
ware engineers to come up with
new and better ways of developing
software to run the devices. For
DOS device drivers, a simple and
fundamental improvement in the de­
velopment process would be to code
in a high-level language rather than
to follow the current practice of
using assembly language. The prob­
lem that many developers may face
is that it is not immediately appar­
ent that it is possible to code DOS
device drivers in a language other
than assembly.

This article sets forth the general
outline for a C language program­
ming model for DOS device driv­
ers. Some knowledge of device
drivers in general, and DOS device
driver specifically, is assumed.
Refer to the DOS Technical Refer­
ence for more information about
DOS device drivers. This program­
ming model was developed for use
with the IBM C/2™ compiler. It

78

\

1
\

--

should translate to the Microsoft
C® compiler with little or no modi­
fication. The general concepts pre­
sented should work with any C
compiler; however, specific details
of implementation may vary some­
what from one compiler to another.
Consult your compiler reference
manual to resolve any discrepancies.

The current DOS model for device
drivers assumes that they will be
written in assembly language. As a

Personal Systems/Issue 4, 1990

result, it is not possible to write a
DOS device driver completely in C,
using the IBM C/2 compiler. The
programming model set forth here
provides the ability to develop DOS
device drivers largely in C. The
exact ratio of C code to assembly
code in the device driver is unim­
portant. The primary concern is that
sections of code that require high­
level data and control structures are
written in C, whereas sections of
code that require hardware access or

very high performance are written
in assembly.

Problems to Be Solved
The C compiler creates object mod­
ules that are meant to be linked to­
gether to form an executable
program. The problem is that a de­
vice driver is not an executable pro­
gram. It is a special type of file that
resembles a library module more
than anything else. The program­
ming model used for a DOS device
driver must be able to do the
following:

• Logically group all code and data
into one segment

• Eliminate the C startup routines

• Eliminate the C runtime

• Convert a register calling conven­
tion into a stack calling
convention

• Discard the initialization code

These tasks are accomplished by an
assembly entry module in conjunc­
tion with a set of link and compile
flags.

Device Driver Structure
The device driver source code con­
sists of the following modules, at a
minimum:

• DOSDD.ASM - Main entry mod­
ule

• COMMANDS.C - Device driver
commands

• IOCTL.C - Ioctl commands

• RUNTIME.ASM - Assembly
subroutines

• INIT.C - Device driver initialize
command

Each module is described separately
in order to build a picture of the de­
vice driver from its components.

79

DGROUP group _DATA, _BSS, CONST, _TEXT, !NIT

DATA segment word PUBLIC 'DATA'
assume ds:DGROUP

- DATA ends

BSS segment word PUBLIC 'BSS'
assume ds:DGROUP

BSS ends

CONST segment word PUBLIC 'CONST'
assume ds:DGROUP

CONST ends

- TEXT segment word PUBLIC 'CODE'
assume cs:DGROUP

TEXT - ends

!NIT segment word PUBLIC • !NIT'
assume cs:DGROUP, ds:DGROUP

INIT ends

Figure 1. Beginning DOSDD.ASM Code

DOSDD.ASM: This is the main
module of the device driver. It per­
forms the following functions:

• Declares, groups, and orders all
segments

• Provides the device driver header

• Provides the strategy and inter­
rupt entry points

• Routes the device driver
command

This module begins with the assem­
bly code shown in Figure 1.

The default compiler-produced seg­
ments are grouped and ordered by
this code. The DOS device driver
model requires that the strategy and
interrupt points be in the same seg­
ment as the device header. This is
the reason for including the code
segment, TEXT, in with DGROUP.
Discardable initialization code and
data is placed in the INIT segment.
This segment is also included in
DGROUP so that it may be ac-

Personal Systems/Issue 4, 1990

cessed within the Small Model
framework.

The address of the end of code is de­
fined in the TEXT segment. This is
because most of the initialization
code is written in C. Because the
INIT segment follows the TEXT
segment, it is discarded entirely.
The INIT segment contains all of
the initialization data as well as any
assembly initialization routines that
may be required.

It should be clear at this point that
the proper definition and ordering
of segments is crucial to allowing
the initialization code and data to be
discarded. In addition, it is neces­
sary to order module linking to prop­
erly size the TEXT segment. The
initialization code is sequestered in
the INIT.C module for this reason.
The link statement must specify
INIT.OBJ as the last link module so
that no code will follow it and be
discarded accidentally. The link
statement should be something like
that shown in Figure 2.

The main module must be specified
first, and the init module must be
specified last. The order of the other
modules is not important.

The second major function of the
DOSDD.ASM module is to define
the device header at the beginning
of the device driver. The device
driver header is defined as the first
data object in the DAT A segment.
Because the DAT A segment is the
first segment of the DGROUP and
the DGROUP is the only group of
the device driver, and DOSDD is
the first link module, the device
header appears at offset zero of the
device driver, as required by the
DOS device driver model.

The strategy and interrupt entry
points are also defined in the
DOSDD.ASM module. The entry
points to the device driver must be
defined in an assembly module in
order to convert the DOS register
parameter-passing protocol to a
stack-based protocol that can be rec­
ognized by C functions. The strat­
egy routine saves the address of the
request packet for later use by the
interrupt routine. The address of the
request packet is contained in the
ES:BX register pair, which is saved
in the data area as a segment and an
offset.

The interrupt routine establishes a C
language environment and routes
the device driver command to a C
subroutine that does the work of sat­
isfying the request. The address of
the request packet is converted to a
far-pointer parameter to the C func­
tion by pushing the previously
saved segment and offset onto the

80

stack. Control is transferred to the C
routine by making an indirect ca ll
through a call table of DOS device
driver command codes. The func­
tion of the interrupt routine is sum­
marized as follows:

1. Save the entry context.

2. Switch to a local stack.

3. Restore ES:BX from the saved
data areas.

4. Verify the DOS command code.

5. Push ES:BX onto the stack.

6. Indirectly call CommandTable
[command].

7. Pop ES:BX.

8. Set the DONE bit of the status
that was returned.

9. Move the status code to the re­
quest packet.

10. Switch back to the system stack.

11. Restore the entry context.

12. Return to DOS.

The entry context must be saved by
the interrupt routine because DOS
does not perform this duty before
transferring control to the interrupt
entry point. All registers must be
saved before calling the C subrou­
tine. A stack switch is also neces­
sary because DOS provides only a
minimum stack. The C language
function calls and local data declara-

link DOSD. OBJ COMMAND. OBJ IOCTL. OBJ RUNTIME. OBJ IN IT. OBJ

Figure 2. Link statement

Personal Systems/Issue 4, 1990

tions tend to use up a fair amount of
stack space.

An unfortunate side effect of plac­
ing all code and data in the same
logical segment is that the address
of TEXT segment items must be
specified as being offset from
DGROUP. This is not a problem in
the assembly modules because a seg­
ment override can be specified. For
instance, the strategy entry point ad­
dress is specified in the device
header as

DGROUP:strategy

and the call table elements are simi­
larly defined as being offset from
DGROUP. However, there is no cor­
responding construct available in
the C language. This means that it
is not possible to take the address of
a function in this implementation of
C, and that indirect function calls
may not be made in the C code.
Also, an assembly subroutine is nec­
essary in order to set the ending ad­
dress of the device driver in the
initialization request packet.

The DOSDD.ASM module is al­
most entirely reusable as source
code. Only minor changes are
needed in the device header. For in­
stance, the device name and attri­
bute bits may change from one
driver to another.

Refer to Figures 5a through 5e at
the end of this article for a sample
copy of DOSDD.ASM. Note the
conditionally compiled code that is
marked as UNIT_TESTING. This
code enables the device driver to be
unit tested as a normal executable
program by using a symbolic
debugger.

COMMANDS.C: This file con­
tains C functions that correspond to
the DOS device driver commands.

These are the entry points that are
called indirectly by the interrupt rou­
tine through its call table of DOS
command codes. Example function
names are shown in
Figure 3.

Each function can access its DOS re­
quest block through the far pointer
that is passed to it from the inter­
rupt routine. The following duties
are performed.

1. Sati fy the DOS request.

2. Set any necessary values in the
command-specific part of the re­
quest header.

3. Return the completion status
code to the interrupt routine.

The status code is returned to the in­
terrupt routine rather than being set
directly for two reasons. First, it
makes for a clean interface, with the
C function satisfying a request and
then returning the result of that re­
quest to its caller. Second, it is
more efficient to set the status from
the assembly module. Access
through far pointers is somewhat ex­
pensive from C routines.

Refer to Figures 6a and b at the end
of this article, for a skeleton sample
of COMMANDS.C.

IOCTL.C: This module contains
the entry point for the Ioctl com­
mands. These commands and the
Initialize command are the only
DOS device driver commands that
are not included in COM-
MA DS.C. A separate module is
used for the Ioctl commands be­
cause they require further routing to
a worker routine. Also, the Ioctls
comprise a good functional unit that
can be separated from the rest of
the code.

81

MediaCheck (MediaReqBlk far * RequestBlock)
Read (ReadReqBlk far* RequestBlock)
DeviceOpen (OpenReqBlk far* RequestBlock)

Figure 3. Example function names

Recall that the C programming
model described herein does not
allow indirect function calls to be
made from the C code. As a result.
Ioctl routing must be done through
a SWITCH statement in this mod­
ule. If this is inconvenient or not ef­
ficient enough, Ioctl call tables can
be defined in an assembly module.
In this case. the router must also be
defined in assembly. The main com­
mand router would route the Ioctl re­
quest to a similar assembly
language Ioctl router that verifies
the subcommand code and makes
an indirect call through an Ioctl call
table.

Except for the additional level of in­
direction, the IOCTL module per­
forms exactly the same duties as the
COMMANDS module. That is, the
IOCTL module:

1. Satisfies the DOS request.

2. Sets any necessary values in the
command-specific part of the re­
quest header.

3. Returns the completion status
code.

The extra function call means that
the Ioctl routine must pass its argu­
ment along to the Ioctl worker rou­
tine. In turn , the worker routine
must return the request status com­
pletion code to the Ioctl function
which passes it back to the interr~pt
routine. This may seem like a lot of
shuffling of the status code; how­
ever, the C compiler handles func-

Personal Systems/Issue 4, 1990

tion return values efficiently, so that
very little penalty is incurred.

RUNTIME.ASM: This assembly
module contains any assembly lan­
guage routines that may be needed
after initialization time. These are
generally short routines that are call­
able from the C code. They are re­
quired in order to:

• Convert the C language register
parameter-passing protocol into a
stack-based, parameter-passing
protocol.

• Provide code optimization where
necessary.

A typical example of the first type
would be a BIOS interface routine
that would:

I. Load stack-based parameters into
registers.

2. Make the software interrupt call
to BIOS.

3. Return the BIOS return value to
the calling C function.

The Ioctl router and Ioctl call table
are good examples of the second
major type of assembly code that
may be needed.

Refer to your compiler reference
manual for specific details on how
to write assembly subroutines that
are callable from C routines.
Briefly, parameters are referenced
indirectly through the BP register.
Word size return values are placed
in the AX register and double-word

82

declared as:
extern int data object

and defined as:

_data_object
public _data_object
dw

Figure 4. Declaration and Definition of an Object

size return values are passed in the
DX:AX register pair.

INIT.C: This module contains all
of the C language initialization code
for the device driver. The Initialize
command is segregated in this mod­
ule so that it can be discarded after
initialization. Any auxiliary routines
used only during initialization are
also placed in this module and dis­
carded after use. Some examples of
INIT functions are:

• Display status and error messages.

• Find and register devices that are
active.

• Initialize devices.

• Set the end address of the device
driver.

As is the case with all of the DOS
device driver commands, Initialize
is called indirectly by the interrupt
routine that passes it a far pointer to
the request block. Initialize is re­
quired to return its status comple­
tion code to the interrupt routine
upon exit.

Initialization code is discarded by re­
porting the address of the first C
routine in INIT to the DOS kernel.
This is accomplished by calling an
assembly subroutine that is hard­
coded with the address of the Initial­
ize function, offset from the
DGROUP as alluded to earlier. Any
additional C language initialization
code must be located after the Ini­
tialize function for it to be properly
discarded. External data that is de-

fined in this module is not discard­
able. Data must be defined in the
INIT segment in order for it to be
discarded after use.

Discardable data that is defined in
an assembly module is made visible
to C routines by the PUBLIC decla­
ration and by using the proper nam­
ing conventions. C compilers
generally prefix an underscore to all
external names. Therefore, a data
object would be declared in the C
file and defined in the assembly
module as shown in Figure 4. This
naming convention also applies to
assembly subroutines that are to be
called from C code, and to C sub­
routines that are called from assem­
bly code.

Refer to Figure 7, at the end of this
article, for a simple example of the
INIT.C module.

Structure Summary: It should be
apparent at this point that the device
driver is actually an assembly pro­
gram with C language subroutines.
It must appear this way to the linker
so that the overall structure of the
device driver can conform to the
DOS model. The normal C ordering
of segments is reversed so that the
device header will appear at the be­
ginn ing of the device driver. The
linkage ordering is further con­
trolled in order to allow the initial­
ization code to be discarded after
use. All code and data are logically
grouped into one segment as re­
quired by DOS.

Personal Systems/Issue 4, 1990

Though the device driver is techni­
cally an assembly program, it ap­
pears to be a C language program to
the programmer. Most of the code
is written in C. The logic of the as­
sembly code is mainly trivial, easy­
to-understand bookkeeping. In
addition, the assembly modules are
reusable. The assembly code com­
mand router never changes. Unsup­
ported commands can be handled in
the COMMANDS module as empty
C functions that return UNKNOWN
COMMAND to the interrupt rou­
tine. Many of the RUNTIME mod­
ule routines would be generally
useful to any DOS device driver.

Compile and Link Issues
The C startup routines as well as
the C runtime can be eliminated by
simply specifying that default librar­
ies not be searched. With the IBM
C/2 Compiler, this is accomplished
by using compile and link control
flags. The compile flag is /Zl, and
the link flag is /NOD.

It should be apparent that the C
startup routines have no place in a
device driver. They establish the en­
vironment for an executable pro­
gram, which a device driver is not.
The reason for not using the C run­
time may not be so obvious. The an­
swer is that any library code that is
used will be linked after the main
body of the program. This means
that it will be discarded along with
the initialization code. Also, the li­
brary routines may contain stack
probes or system calls that will fail
in the device driver environment.

The other recommended compile
flags for use with the IBM C/2
Compiler are:

-Gs -Zp -Ox

The Gs option instructs the com­
piler not to generate stack probes

with the code. The stack probe code
is designed to work with the stack
that is created by the C startup rou­
tines. The device driver is linked
without a stack segment, because
DOS provides a stack for use at run­
time. Under these conditions, the
stack probes could not be expected
to work properly.

The Zp option directs the compiler
to pack data structures. That is,
structures are created with contigu­
ous members. If this option is not
specified, the compiler may gener­
ate structures that contain holes in
order to align data items on their
boundary type. Device driver data
structures must be packed because
the DOS request packets are packed.

The Ox option causes the compiler
to maximally optimize the code. A
good optimizing compiler can pro­
duce surprisingly efficient code if
given a free rein to do so. For exam­
ple, with this option specified, the
IBM C/2 Compiler will convert a
data movement FOR loop statement
in C to a REP MOYSW assembly
instruction.

It is also suggested that the /ML op­
tion be used with the assembly mod­
ules and that the /NOI link option
be used. Using these options will en­
force case sensitivity of names
within the assembly modules and
across the link process. Case sensi­
tivity must be preserved in order to
ensure compatibility with the C lan­
guage modules, because names in C
are always case-sensitive.

Performance Considerations
Because a DOS device driver is sys­
tem level code, every effort should
be made to ensure that the device
driver code is efficient without sacri-

83

ficing clarity in the source code.
The C programming language is
very flexible, providing many differ­
ent ways to accomplish the same
task. This makes it incumbent on
the programmer to make the best
choices for the application at hand.
Experienced C programmers know
all the tricks; the following are
some tips for beginners.

• Use register variables, especially
for pointers and counters.

• Inspect the compiler assembly
listing. This is useful for finding
possible inefficiencies in the
code. A knowledge of how the
compiler handles different con­
structs makes it easier to write ef­
ficient C code.

The C programming
language is a remarkable

software development
tool.

• Do a performance analys is of the
code and recode any bottlenecks
in assembly if it will help. The
original C code serves as pseudo­
code and documentation.

• Pay particular attention to far
pointer usage. Function calls
cause the compiler to forget the
extra segment, resulting in the re­
loading of a segment register.
The use of local temporary vari­
ables to store values until they
can all be moved through the
same far pointer is sometimes
helpful.

Personal Systems/Issue 4, 1990

These really are minor optimization
points that will have little effect on
the overall performance of the de­
vice driver. The algorithms that are
used always play the major role in
system performance. The use of a
high-level language allows the pro­
grammer to concentrate on algo­
rithm development because the
compiler keeps track of so many of
the low-level details of the code. In
many cases, this means that code de­
veloped in the C language actuallys
perform better than similar code de­
veloped directly in assembly lan­
guage. The greater the size and
complexity of the project, the more
likely it is that this will be the case.

The C programming language is a
remarkable software development
tool. It combines the best features
of a high-level language with the
best features of a low-level lan­
guage to produce an ideal general­
purpose programming language.
The high-level data and control con­
structs make the structure and func­
tion of the code visible, while
relieving the programmer of the te­
dious details associated with assem­
bly language programming. The
close correlation with machine-level
instructions allows the compiler to
produce compact and efficient code.
These qualities make the C program­
ming language the perfect choice
for DOS device driver development.

ABOUT THE AUTHOR

Dan Feriozi is a programmer in
IBM's Entry Systems Division
laboratory in Boca Raton, Florida.
He is currently working on the
development of device drivers for
SCSI devices. He holds an M.S .
degree in computer science from
Florida Atlantic University.

84

·**
'
;* FUNCTION: To enable writing DOS device drivers in C

·**
'

.286c

.seq

rh struc

rh_length db ?
rh unit db ?
rh_command db ?
rh_status dw ?
rh reservedl dd ?
rh reserved2 dd ? -
rh ends

rhO struc

rhO rh db size rh dup (?)
rhO_numberOfUnits db ?
rhO_endAddress dd ?
rhO_bpb dd ?
rhO blockDeviceNumber db ?
rhO

PRIVATE

extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn
extrn

DGROUP
DATA

DATA

_BSS

BSS

CONST

CONST

TEXT

macro
endm

ends

UnknownCommand:near
Initial ize:near

_ Input:near
_Peeklnput : near
_InputStatus:near
_ InputFlush:near
_Output:near
_OutputStatus:near
_OutputFlush:near
_DeviceOpen:near

DeviceClose:near

group
segment
assume
ends

segment
assume
ends

segment
assume
ends

segment

_DATA, _BSS, CONST, _TEXT, !NIT
word PUBLIC 'DATA'
ds:DGROUP

word PUBLIC 'BSS'
ds:DGROUP

word PUBLIC 'CONST'
ds:DGROUP

word PUBLIC 'CODE'

Figure Sa. Sample DOSDD.ASM File

Personal Systems/Issue 4, 1990

; DOS request header

; initialize request

; dummy macro to
; label private

; C functions to
; handle DOS requests

85

assume cs:DGROUP, ds:DGROUP
TEXT ends

!NIT segment word PUBLIC '!NIT'
assume cs:DGROUP, ds:DGROUP

!NIT ends

;************************ DATA SEGMENT ******************************

DATA

ifndef UNIT_TESTING
entry_point:

endif

Device header

Device_name

rh_offset
rh_segment
saveSP
saveSS
local stack
topofstack

CommandTable

DATA

segment

ends

PUBLIC
label
dd
dw
dw
dw
db
dw
db
db

dw
dw
dw
dw
dw
dw

label
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

_Device_header, Device_name
word
-1
8OOOh
DGROUP:strategy
DGROUP:interrupt
'DOSDD
0
0
1

?
?
?
?
128h dup (. s.)
DGROUP:$

word
DGROUP: Initialize
DGROUP: UnknownCommand
DGROUP: UnknownCommand
DGROUP: UnknownCommand -
DGROUP: _ Input
DGROUP: _Peek Input
DGROUP: _InputStatus
DGROUP: _InputFlush
DGROUP: _Output
DGROUP: Output
DGROUP: OutputStatus
DGROUP: _OutputFlush
DGROUP: UnknownCommand -
DGROUP: _DeviceOpen
DGROUP: _DeviceClose
DGROUP: _UnknownCommand

;*********************** TEXT SEGMENT *****************************

TEXT segment

Figure Sb. Sample DOSDD.ASM File

Personal Systems/Issue 4, 1990

next device
; attribute
; entry point
; entry point
; device name
; reserved
; drive letter
; number of units supported

86

·***
'
;* FUNCTION: To save the pointer to the request header

·*** '

strategy

strategy

PRIVATE
proc

mov
mov
ret

endp

far

cs: rh_offset. bx
cs:rh_segment. es

·***
'
;* FUNCTION: Handle the interrupt call from DOS

·*** '
ifdef UNIT_TESTING

entry_point:
endif

interrupt

not extended:

PRIVATE
proc
pushf
pusha
push
push

mov
mov
mov
mov

C 1 i
mov
mov
sti

mov
mov
mov
mov
cmp
jb
mov
xor
shl

mov
push
push
ca 11
pop

Figure Sc. Sample DOSDD.ASM File

far

es
ds

ax. cs
ds. ax
saveSP, sp
saveSS. ss

sp. topofstack
ss. ax

ax. rh _segment
es. ax
bx. rh offset
a 1. es:[bx].rh_ command
a 1. 15
not extended
a 1. 15
ah. ah
ax. 1

s i. ax
es
bx
CommandTable[siJ
bx

Personal Systems/Issue 4, 1990

; save the offset
; save the segment

; save entry context

; establish addressing
; for C and local data
; save entry stack

; stack switch

; ax== cs

; restore es:bx
; from strategy routine

; call request
; unknown command
; in the table
; unknown command

; for word offset in table

; fen parameters on stack
; to C, far ptr to rh

87

pop es
mov es:bx.rh_status, ax

cl i
mov sp, saveSP
mov ss. saveSS
sti

pop ds
pop es
papa
popf
ret
even

interrupt endp

_TEXT ends

;•••••••••••••••••••••••• INIT SEGMENT••••••••••••••••••••••••••••••

INIT segment

•• '
;• FUNCTION : Display a String

•• '
PUBLIC _DisplayString

_DisplayString proc near
push bp
mov bp, sp
push di
push si

mov ah, 9
mov dx, [bp+4]
int 21h

pop si
pop di
pop bp
ret

_DisplayString endp

•• '
;• FUNCTION: Set the end of code address in the request header

•• '
PUBLIC SetEndAddress

SetEndAddress proc near
push bp
mov bp, sp
push di

Figure Sd. Sample DOSDD.ASM File

Personal Systems/Issue 4, 1990

; set status

; restore entry stack

; restore entry context

; align for next part of seg

; init segment code is discarded

; display a string
; string$ pointer
; DOS functions interrupt

88

push si

mov
mov

di • [bp+4 J
ax. [bp+6]

mov es. ax

; offset of rh
; segment of rh

mov word ptr es:di.rhO_endAddress, offsetGROUP: _ Initialize
mov word ptr es :di. rhO_endAddress+2. cs

pop si
pop di
pop bp
ret

SetEndAddress endp

;************************ INIT DAT A *********************************

_ Init_msgl
_ Init_msg2

acrtused

I NIT

PUBLIC
PUBLIC
db
db
dw

ends

_ Init_msgl. _ Init_msg2
acrtused

1

was loaded'. OOh, OAh, '$', 0
failed to load'. ODh, OAh, '$'. 0

end entry _ point

Figure Se. Sample DOSDD.ASM File

Personal Systems/Issue 4, 1990

; for the MS compiler

; entry point for debugging
; or for exe2bin (at 0)

89

/***
* FUNCTION: Handle requests to the device driver

***/

#include "status.h"
#include "reqhdr.h"

PUBLIC
UnknownCommand (rh)
{

struct Rh far * rh;

return (ERROR+ UNKNOWN_COMMAND + DONE);

PUBLIC
Input (rh)
{

struct Rh4 far * rh;

return (DONE);

PUBLIC
Peeklnput (rh) struct Rh5

return (BUSY + DONE);

PUBLIC
InputStatus (rh)
{

return (DONE);

PUBLIC
InputFlush (rh)
{

return (DONE);

PUBLIC
Output (rh)
{

return (DONE);

struct Rh6

struct Rh7

struct Rh8

far * rh;

far * rh;

far * rh;

far * rh;

PUBLIC
OutputStatus (rh)
{

struct RhlO far * rh;

return (DONE);

PUBLIC
OutputFl ush (rh)
{

return (DONE);

struct Rhll

Figure 6a. Skeleton COMMANDS.C File

far * rh;

Personal Systems/Issue 4, 1990

/* for unsupported commands */

/* read from the device */

/* look at the next character */

/* check the input status */

/* flush the input queue */

/* write to the device */

/* check the output status */

/* flush the output queue */

PUBLIC
Devi ceOpen (rh)
{

return (DONE);

PUBLIC
DeviceClose (rh)
{

return (DONE);

struct Rh13

struct Rh14

Figure 6b. Skeleton COMMANDS.C File

90

far * rh; /* prepare to use the device */

far * rh; /* finished using the device*/

/***
* FUNCTION: Initialize a DOS device driver
***/

#include "status.h"
#include "reqhdr.h"

extern
char Init_msgl[J.

Device_ name[J;

PUBLIC
Initialize (rh)
{

struct RhO

char
register
char

name (12];

ui nt n:

*p - name,
*dev_name;

dev_name - Device_name;
for (n - 8; n>O; --n){

if (*dev_ name -- • ·)
break;

*p++ - *dev_ name++;
}
*p - • $.;

Di spl ayString (name);
DisplayString (Init_msgl);
SetEndAddress (rh):

return (DONE);

Figure 7. Simple Example of the INIT.C File

/* in the INIT DATA segment*/

far * rh:

/* local storage for the device name*/

/* get the device name from the header */

/* stop at spaces */

/* end of string marker*/

/* display the initialization message */

Personal Systems/Issue 4, 1990

An Electronic
Bulletin Board
for PC Users
Wyn Easton
IBM Corporation
Atlanta, Georgia

This article talks about the IBM
National Support Center Bulletin
Board System, how users can
join, and what information can be
found on it.

Imagine being able to share informa­
tion with thousands of computer
users who have interests and con­
cerns similar to yours. Also imagine
being able to easily find product in­
formation, or having access to files
and software that you can use on
your own systems.

Is this reality? Yes, it is. This is
what an electronic bulletin board is
all about: fast, organized access to
information that interests you. Bulle­
tin boards are a medium for all
users to obtain and share
information.

IBM has an electronic bulletin
board called the IBM National Sup­
port Center Bulletin Board System
(BBS). This board is operational 24
hours a day, seven days a week.
After free registration, PC users can
call into the system; their only cost
is toll charges.

Accessing the BBS
To connect to the BBS, you will
need a modem and communications

91

software. The BBS supports asyn­
chronous modems from 300 to 9600
baud, and your software should be
set to 8-N-l. Once ready, dial (404)
835-6600, and get connected. First­
time callers can then register for the
service by answering a few ques­
tions and assigning themselves a
password. After that, callers have
full access to the system for up to
two hours per day.

What's on the BBS?
The BBS has extensive databases of
available IBM hardware and soft­
ware. Users can search on a multi­
tude of topics, ranging from

Personal Systems/Issue 4, 1990

software available on OS/2 to Micro
Channel adapters. IBM employees
join the discussions in product con­
ferences and answer users'
questions.

One section of the bulletin board
lists all the files and programs that
can be downloaded on users' sys­
tems. Your communications soft­
ware must have downloading
capabilities in order for you to do
this. In this section, there are entries
such as OS/2 device drivers, DOS
corrective service diskettes, and pro­
gramming examples. Public domain
"shareware" is also available. All of

Conference
Number

2

3

4

5

ll

12

13

15

18

19

20

24

28

30

92

Conference Tonic

General Q&A

OS/2 General Usage Q&A

OS/2 Programming Q&A

OS/2 Application Specific Q&A

OS/2 on Non-IBM Hardware Q&A

DOS Q&A

DOS Programming

AIXQ&A

Networking Q&A

Personal System/2 Q&A

RISC Based Systems Q&A

IBM PC, XT, AT, PCjr Q&A

User Group Officer Messages

NSCPD Messages - National Support Center
for Persons with Disabilities

Suggestions and Comments

Figure 1. Conference Selections

the programs come from IBM or
from registered PC user groups.

In the bulletin section, you can ob­
tain IBM's latest hardware and soft­
ware announcements pertaining to
personal systems. These announce­
ments can be downloaded for read­
ing at your leisure.

On your first call, you might want
to explore some of the available con-

ferences to see if any spark your in­
terest. A conference is an area of
the bulletin board system where you
can view, respond to, or leave mes­
sages. There are many conferences,
each devoted to a specific topic. Fig­
ure 1 lists the conference selections.

To join a conference, type "J L"
(for "join list") at the main com­
mand prompt, and press Enter. A
menu of all the available confer-

Personal Systems/Issue 4, 1990

ences will be listed. Then type a
conference number, and press Enter.
At this point, you can read mes­
sages, or perhaps leave a message
with the system operator (SysOp).
When ready to terminate the ses­
sion, type "G" (for "goodbye").

Help in using the conference com­
mands is available in the user guide
(HELP.BBS), which can be
downloaded. Online help is avail­
able by pressing "H" at the com­
mand line.

The BBS offers PS/2 users many
benefits. Once connected, you will
find a wealth of information that is
well organized and easy to use.
Give it a try!

ABOUT THE AUTHOR

Wyn Easton is a market support
representative for the IBM National
Distribution Division National
Support Center in Atlanta, Georgia.
In 1973, after receiving a degree in
mathematics and computer science
from Central State University of
Oklahoma, he joined IBM as a
customer engineer in Tulsa,
Oklahoma. His previous
assignments include supporting
software developers, programming,
and systems engineering. Wyn's
current responsibility is managing
the IBM National Support Center
Bulletin Board System.

93

Little Solutions

We invite you to share bits of information that may solve a problem or ex­
plain "why" to your fellow PC enthusiasts. Send us your Little Solutions
in care of the editor.

Long File Names for HPFS
There's a little confusion about the
implementation and use of Long
File Name support for OS/2 1.2 and
HPFS in an application. Let' s see if
a few points can be clarified.

The only requirements for including
the ability to use Long File Names
in an application you are writing
are to:

• Include the phrase
LONGNAMES on the NAME
line in your .DEF file

• Use the LINK.EXE that comes
with OS/2 1.2

LINK.EXE files dated after the
OS/2 1.2 version should be OK also.

Does C support Long File Names?
The answer is "no," but C does not
support printing either. C does not
know (or .care) about the concept of
Long File Names. As for printing, a
PRINTF(...) function was written to

allow printing. Long File Names
can be included in an application
just by an FOPEN("THIS IS A
LONG FILE.NAME", ... and it's up
to the operating system to deal with
it from there.

Remember, Long File Names are
not compatible with the FAT file
system. If you want to create an ap­
plication that will use the HPFS and
Long File Names, remember we are
still very committed to the FAT sys­
tem and floppies. You will have to
take into consideration the process
to be used if a file with a Long File
Name is to be copied to floppy, and
perhaps later copied back. - Larry
Pol/is, Dallas

OS/2 Print & System Error
If a "System Error" is displayed dur­
ing the print screen operation, it's
usually because the printer device
driver is not associated with the ap­
propriate printer queue. Check to en­
sure the correct device driver has

Personal Systems/Issue 4, 1990

been selected during Print Queue
Setup under the Printer Manager
icon. The printer queues point to
specific printer(s); incorrectly speci­
fying the device driver can result in
a "System Error" message. If you
have selected more than one printer
driver to be associated with a given
printer, the last driver selected be­
comes the default driver. Deselect­
ing the other printer drivers results
in the desired single printer driver
being selected for that printer.
- Michelle Hillery, Dallas

Fast Mouse
Are you an OS/2 user who is using
an IBM mouse? Are you frustrated
with the sluggish performance of
said rodent? Do you require a 400-
square-inch mouse pad, where oth­
ers can get away with 100 square
inches? If you answered "yes" to
these questions, try this:

Make sure the file MSPS202.SYS is
in your \OS2 directory. Then, in
your CONFIG.SYS file, locate
these two lines:

DEVICE=C:\0S2\IBMMOU02.SYS
DEVICE=C:\0S2\MOUSE.SYS

TYPE-IBMMOU$

Change these lines to read:

DEVICE- C:\0S2\MSPS202.SYS
DEVICE=C:\0S2\MOUSE.SYS

TYPE- MSPS2$

Now reboot your system and ob­
serve the difference. Using the new
driver should cut mouse movement
in half.

It's always wise to save a copy of
CONFIG.SYS before altering it.
This way, if you make a mistake
that renders your system unusable,
you can boot up from the installa­
tion disk, copy the saved file into
CONFIG.SYS, and try it again. -
Mark Chapman, Atlanta

OSO001.MSG Error
Are you getting the following error
at boot time?

SYS0319: The system cannot
read message file 0S0001 .MSG

One cause for this is a bad (mis­
spelled or missing) entry in your
DP A TH statement. If there is such
an entry, the search for the message
file stops at this point. Valid entries
beyond this point are never looked
at, and chances are that the path
(C:\OS2\5YSTEM) for the message
files are found there.

Another cause, recently discovered,
deals with path entries that are point­
ing to HPFS drives. For example, in
the DPATH statement

DPATH-C:\0S2;C:\MUGLIB\DLL;
C:\CMLIB;C:\0S2\INSTALL;
F:\TK12\IPFC;F:\TK12\DM;
F:\TK12\DTL;G:\EASEL-EE;
C:\0S2\SYSTEM

F: and G: are logical drives format­
ted for the HPFS. Because
C:\OS2\5YSTEM follows the en­
tries for the F: and G: drives, the
system cannot find OSO001.MSG.

To fix this problem, remove all ref­
erences to invalid or nonexistent
paths from DP ATH, and place all
paths to the HPFS at the end of the
statement. The system can now find
the message files and operate
properly. - Larry Pollis, Dallas

Accessing Your OS2.INI File
As you may have found out, once
OS/2 has control of your hardware,
the only way to access the OS2.INI
file is through Presentation Man­
ager. External attempts to update or
delete the file are prevented by
OS/2, which informs you that the
file is already in use by another pro­
cess. I needed to control the menu

94

options and screen colors of 45 user
workstations from a single point.
Therefore, I had to devise a way to
download a "generic" OS2.INI file
from the file server to each user sta­
tion. I did this by implementing the
following three steps:

1. Place the OS2.INI file in a shared
subdirectory on the file server. Call
this directory \CONTROL\OS2\.
The file will be named OS2.INI.
When users log on, they access this
subdirectory as network drive S:.

2. When the user logs on, copy the
shared OS2.INI file to a "staging"
area on the user's hard disk. Why to
a staging area? Because copying the
file to its final destination will have
to be accomplished before Presenta­
tion Manager has started, but before
the user has access to shared re­
sources on the network. This is ac­
complished by creating a batch file
that first logs the user on, and once
logged on, successfully copies the
new .INI file to the staging area.

• Log the user on to the network.

NET LOGON PPOGGI

• Execute file UPDATE.CMD to
copy the new .INI file to the
user's local hard disk (Figure 1).

3. Move the "staged" OS2.INI file
to its final destination. How do you
do this if the file will be locked by
PM? Do it by performing the copy
prior to PM starting. I did it by plac­
ing a RUN command as the first
statement in the user's
CONFIG.SYS file (Figure 2).

Once the system has completed the
boot process and OS/2 begins exe­
cuting, Presentation Manager uses
the new OS2.INI file, which is
placed there by the XCOPY com­
mand from CONFIG.SYS.

You can use this method to save
hours by distributing changes to
user menus from the file server,
rather than implementing the
changes one at a time on each user
station. You could use this to:

• Change menu options

• Establish screen color standards

• Control just about anything that
is maintained in the OS2.INI file,
and set by the Presentation Man­
ager Control Panel. - Peter
Poggi, Rockville, Maryland

Editor's note: The purpose of the
.IN/ file is circumvented by this pro­
cess. The .IN/ file is used to store
the positions and sizes of windows
in some applications, and data and
information to restore features and
functions in others. If you replace
the .IN/ file at startup, data set by
the person using the system will be
lost. In a classroom or training sem­
inar this may be ideal. In other in­
stances it may not be.

The methods described here may be
helpful to keep other files current.
Data files that an application may
use or updates of executable code
can be transferred in the same man­
ner. Just "request" the file at
startup before you start the
application.

COPY S:\CONTROL\0S2\0S2.INI D:\CONTROL

Figure 1. Copy Command

RUN-C:\0S2\XCOPY.EXE D:\CONTROL\0S2 .I NI C:\0S2\0S2.INI

Figure 2. RUN Statement

Personal Systems/Issue 4, 1990

New Products

Hardware

Token Ring Network 16/4
Trace and Performance
Adapters
The Token Ring Network 16/4 Trace
and Performance Adapter and Token
Ring Network 16/4 Trace and Perfor­
mance Adapter/A are feature cards that
can be installed in IBM PCs and PS/2
products. These feature cards work with
the Token Ring Network 16/4 Trace and
Performance Program to provide a real­
time view of the traffic on token ring
networks operating at 4 or 16 megabits
per second (Mbps). This combination of
hardware and software analyzes trace
data, measures usage, and collects ring
station traffic statistics. Using this data,
companies can get valuable information
for debugging application software, ca­
pacity planning, and network
reconfiguration.

Highlights:

• System management of token ring
networks is enhanced with the visibil­
ity into the network provided by the
combination of 16/4 Trace and Per­
formance Adapters and 16/4 Trace
and Performance Program

• The 16/4 Trace and Performance
Adapters and 16/4 Trace and Perfor­
mance Program provide utilization
data that will enable companies to de­
cide when to increase the ring speed
from 4 to I 6 Mbps

• Token ring network administrator pro­
ductivity is increased with an identi­
cal, easy-to-use, menu-driven
interface to debug and troubleshoot
ring segments running at 4 or 16
Mbps

• Investments are protected by allow­
ing a machine to be used as a stan­
dard workstation when not used for
trace or performance tasks

Letter #190-090, June 5, 1990

95

Software

IBM Token-Ring Network
16/4 Trace and
Performance Program
The IBM Token-Ring Network 16/4
Trace and Performance Program works
in conjunction with the IBM Token­
Ring Network 16/4 Trace and Perfor­
mance adapters. This program provides
a realtime view of the traffic on the
token ring networks operating at 4 or 16
megabits per second (Mbps). This com­
bination of hardware and software ana­
lyzes trace data, measures media usage,
and collects ring station traffic statistics.
Using this data, companies can get valu­
able information for debugging applica­
tion software, capacity planning, and
network reconfigurations.

Letter #290-284, June 5, 1990

IBM Token-Ring Network
Bridge Program Version 2.2
IBM Token-Ring Network Bridge Pro­
gram Version 2.2 connects two local or
remote IBM Token-Ring Networks into
one logical ring. The connected rings
can be any combination of 4 or 16 mega­
bit per second (Mbps) IBM Token-Ring
Networks. IBM Token-Ring Network
Bridge Program Version 2.2 offers in­
creased frame sizes from 2,052 bytes to
4,472 bytes in the remote configuration
and feature dial support.

Dial support allows the remote IBM
Token-Ring Network Bridge halves to
initiate and receive calls by the com­
mand of a user workstation. The connec­
tion between the bridge halves would be
made only when there was data to be
transmitted. Once the data transmission
is complete, the connection would be
dropped. Dial support is provided
through a V.25 bis (functionally equiva­
lent) modem such as the IBM 7855-10
V.32 Modem connecting the bridge to
the switched te leprocessing (TP) line.
Line speeds for dial support are modem­
dependent; the typical line speed is 9.6
kilobits per second (Kbps).

Personal Systems/Issue 4, 1990

IBM Token-Ring Network Bridge Pro­
gram Version 2.2, like IBM Token-Ring
Network Bridge Program Version 2.1,
also features remote bridge connectivity
via a leased TP line at speeds up to
1.344 Mbps. IBM Token-Ring Network
Bridge Program Version 2.2 also sup­
ports the IBM 7820 Integrated Services
Digital Network (ISDN) Terminal
Adapter attachment.

Letter #290-303, June 19, 1990

IBM Local Area Network
Support Program Version
1.2
The IBM Local Area Network Support
Program has been extended to support
Ethernet™ DIX Version 2 and IEEE
802.3 LANs in addition to token ring
and PC Networks.

Highlights:

• Additional business solutions are pro­
vided by allowing DOS applications
using IBM LAN Support Program
Version 1.2 to run on 802.3 and
Ethernet LANs

• Growth is enabled by allowing 802.3
and Ethernet users to expand their
networks by connecting to IBM
Token Ring LANs via an IBM 8209
LAN Bridge

• Investment protection is achieved by
supporting existing 802.3 and
Ethernet users

Letter #290-305, June 19, 1990

IBM LinkWay™ Version 2.0
IBM LinkWay is an easy-to-use, low­
cost application development tool that
enables users to create, present, and
modify applications containing text, pic­
tures, video images, and sound without
requiring a background in programming
or other computer skills. This version of
IBM LinkWay contains major improve­
ments, which include VGA graphics, en­
hanced paint program, improved text
editors, and a full-function script
language.

Highlights:

• High-function script language with
subroutines, bit maps, and button
controls

• Many usability aids such as contex­
tual help, text reflow, and on-line
tutorials

• Enhanced paint program with scal­
ing, cut-and-paste, test smoothing,
and pixel editing

• Reference buttons to provide scroll­
ing "hypertext"

• VGA mode (640 x 480 by 16 colors)

• Grey-scale printing of MCGA 256-
color pictures

• User selection and creation of palettes

• Performance improvements in picture
loading and page-to-page transitions

Letter #290-385, July 3, 1990

BookManager™ Solutions
for Online Documentation
BookManager software programs pro­
vide an on-line solution for managing
large amounts and complex documenta­
tion used in the workplace. These new
and enhanced BookManager programs
are for VM, OS/2, and DOS environ­
ments. The BookManager solution will
be available as a Systems Application
Architecture (SAA) application in a
number of key IBM systems environ­
ments. The OS/2 program is the first
SAA program in the BookManager
family.

The BookManager solution transforms
information ordinarily used to produce
printed documents into on-line informa­
tion, also known as softcopy. In this
form, the information is electronically
distributed and available on line to give
end users the ability to find, browse,
and use the information at their work­
stations. Organizations can ensure
higher quality, current information, in­
creased information and worker produc­
tivity, and paper-handling delays and
expense are reduced.

96

On-line information created with
BookManager is usable without modifi­
cation across different operating sys­
tems. This capability and the support for
key platforms makes it possible for com­
panies to implement softcopy applica­
tions to be used throughout the
enterprise. On-line information can be
used across enterprises, extending bene­
fits to customers, vendors, and business
partners.

IBM is using BookManager to make on­
line versions of IBM product applica­
tions. IBM software products can
include softcopy documentation in the
form of on-line files directly viewable
with BookManager READ programs,
source fi Jes, or both.

Copies of the softcopy documentation in­
cluded in IBM products may be used in
as many systems as needed within an en­
terprise. Electronic libraries containing
IBM product manuals will be available
so end users can access accurate and
consistent IBM product information
whenever needed. After receiving per­
mission from IBM, companies can mod­
ify source files or create customized
printed or softcopy manuals using
BookManager and other IBM publish­
ing products.

Highlights:

• Helps organizations manage the "in­
formation explosion" by enabling
computerized on-line delivery of in­
formation that traditionally was pro­
vided only in hardcopy

• Enables enterprise and cross­
enterprise on-line documentation ap­
plication by providing a common
on-line information format and
BookManager programs to provide
softcopy functions across platforms

• Enables IBM to ship softcopy ver­
sions of IBM product manuals to and
meet company requirements for elec­
tronic distribution and storage

• Allows companies using IBM Docu­
ment Composition Facility (DCF)
and Master Series products to move
from hardcopy to softcopy to publish­
ing using existing source files and
without significant special effort

Personal Systems/Issue 4, 1990

• Helps end users find information
faster and handle larger libraries

• Improves end-user productivity by en­
abling on-line annotation as well as
copying and printer-retrieved
information

• Improves support for non-U.S. lan­
guage documentation, providing a so­
lution for multinational and non-U.S.
firms

Letter #290-374, July 3, 1990

BookManager READ/DOS
1.2
IBM BookManager Read/DOS 1.2 en­
ables users to read softcopy information,
and use the hypertext facility to search,
take notes, and print that information. It
gives businesses a solution for handling
information by easily and quickly ac­
cessing information at reduced cost. End
users' productivity can be improved by
finding information quickly and easily
without leaving the workstation.
BookManager READ/DOS 1.2 in­
creases businesses' ability to manage in­
formation vital to their growth, by
making electronically stored information
useful. System management is improved
through the use of BookManager
READ/DOS 1.2 by accessing IBM
softcopy manuals and publications at
the workstation.

BookManager READ/DOS 1.2 is a
member of the BookManager family of
on-line documentation solutions.

Highlights:

• Softcopy books enhance users' abil­
ity to manage information.
BookManager READ/DOS 1.2 ex­
pands the abi lity to access business
information at the workstation

• Productivity gains are realized by pro­
fessional, technical, and office end
users, by locating and accessing infor­
mation using sophisticated search­
access books and linking capabilities
within those books

• Business growth is enabled through
managing increased amounts of

information in softcopy publications.
Softcopy documents stored on a
LAN server, an AS/400 folder, fixed
disks, diskette, or CD-ROM, allow
quick access to information as it is
needed

• Information is a key asset to any busi­
ness. A company's investment is lost
if information in the "stacks" cannot
be found and used. BookManager
protects the company 's investment
by making all information accessible
and usable upon demand

• System management is improved by
using BookManager READ/DOS 1.2
to access IBM softcopy publications,
or with the company's own manuals
built with BookManager BUILD/VM
Release 2 or Release I

• The needs of many companies are
supported by BookManager's ability
to use softcopy books that are written
in many languages

Letter #290-375, July 3, 1990

BookManager READ/2 1.2
Softcopy documentation can help com­
panies manage the ever-increasing vol­
umes of information needed to operate a
business and reduce the expenses of pub­
lishing in hard copy. Making informa­
tion available on softcopy can increase
worker productivity by giving end users
the ability to find, read, and use the in­
formation they need right at their OS/2
workstations.

IBM BookManager READ/2 1.2 en­
ables users to read softcopy information,
perform searches using the hypertext fa­
cility, take notes, and print that informa­
tion. It offers businesses a solution for
handling information by providing a
method to easily and quickly access in­
formation at reduced cost. End users '
productivity can be improved with its
ability to find information quickly and
easily without leaving the workstation.
BookManager READ/2 1.2 increases
businesses' ability to manage informa­
tion that is vital to their growth. The
company's investment is therefore pro­
tected by making electronically stored
information available at a workstation.

97

By using BookManager READ/21.2,
system management is improved by its
ability to access IBM softcopy manuals
and publications at the workstation.

BookManager READ/2 1.2 is a member
of the BookManager family of on-line
documentation solutions.

Highlights:
Highlights are the same as those listed
for BookManagerREAD/DOS.

Letter #290-376, July 3, 1990

IBM Classroom LAN
Administration System
Version 1.30
IBM Classroom LAN Administration
System Version 1.30 is an educational
product that combines software and doc­
umentation to help manage courseware
and other applications in a LAN environ­
ment. This offering is available only to
qualifying educational institutions with
an IBM Educational Allowance Amend­
ment in effect. Version 1.30 simplifies
network installation, which enables
teachers to set a bookmark for the Basic
Skills applications for the entire class or
for some students, individually .

Version 1.30 includes a teacher's menu
that can be tailored for easy application
access. It has a teacher/student function
that allows teachers to distribute files to
their students and copy files from the
students' home directory as well contain­
ing send and receive files. Version 1.30
provides office/administrative personnel
access to the system through the addi­
tion of a new group called "Office."
IBM Classroom LAN Administration
System Version 1.30 is appropriate in
school environments requiring a
network.

Highlights:

• Teachers can create their own menu
to run applications from outside a
class, using two directories from
which applications (courseware and
noncourseware) can be selected

• Individual menus for teachers and of­
fice users can be tailored by selecting

Personal Systems/Issue 4, 1990

programs from a list of available
applications

• Version 1.30 maintains support of
the installation tape

• A SUPERADMIN ID has been
added that belongs to the Office
group, but has more rights and privi­
leges than the Office group

• SUPERADMIN has menus that en­
able the loading and running of non­
courseware applications on the
network

• The print station function has been
enhanced to show the print queues
that are already in use

• Teachers may set bookmarks for
those applications that support book­
marks, such as the Basic Skills
applications

• Installation of noncourseware applica­
tions on the system is now available
for teachers and administrative
personnel

• Installation of courseware from sub­
directories is included to facilitate in­
stalling applications from a fixed
disk or from diskettes that have more
than one application

Letter #290-386, July 3, 1990

IBM Education LAN and
Tools
IBM Education LAN and Tools is an ed­
ucation network package that consists of
network software, productivity tools ,
and related publications for each item.
This offering is available only to qualify­
ing educational institutions with an IBM
Educational Allowance Amendment in
effect. The network software includes
IBM Classroom LAN Administration
Version 1.30 and Novell Advanced
Netware™ Version 2.15. The productiv­
ity tools are comprised of IBM Link­
Way Version 2.00, Microsoft Works®
Version 2.0A, LANSchool™ Version
3.0, Excelsior® GRADE Version 1.6,
Excelsior QUIZ Version 2.5, and Ex­
press Publisher™ Version 1.1.

IBM Classroom LAN Administration
System Version 1.30 is an education net­
work product that combines software
and documentation to help manage
courseware and other applications in a
LAN environment. It uses the Novell
NetWare LAN operating system and
IBM DOS.

The productivity tools found in
Microsoft Works consist of a word pro­
cessor with spell checking, spreadsheet
with graphics, data base with reporting
capabilities, and communication. IBM
LinkWay Version 2.00 is an easy-to­
use, teacher/student productivity tool
that enables users to organize, store, and
retrieve text, pictures, graphic (video)
images, and sound (audio) without re­
quiring an extensive programming or
computer skills background.
LANSchool is an instructional tool that
allows teachers to "broadcast" computer
screens to student workstations con­
nected to the network and project an on­
screen pointer for easy instruction.
Excelsior GRADE is a teacher's grade
book offering a student data base, grade
data management, test scoring, and re­
port generation. Excelsior QUIZ is a de­
sign and compiler application for
customizing tests from a teacher's data
base of questions to develop student
tests and quizzes. QUIZ can provide a
direct link with the Microsoft Works
word processor for creating test items.
Express Publisher is a page design pro­
gram that allows for graphics and text to
be combined to produce newsletters, re­
ports, flyers, or presentation graphics. It
can import pictures and text from other
word processors.

Letter #290-383 , July 3, 1990

IBM PROLOG for OS/2
IBM PROLOG is for the OS/2 platform.
A key feature of the programming lan­
guage is its environment for developing,
debugging, and compiling Prolog
applications.

98

IBM PROLOG for OS/2 runs under
OS/2 Presentation Manager (PM) and
lets Prolog programs be created, de­
bugged, interpreted, or compiled and ex­
ecuted. It provides access to Database
Manager, Dialog Manager, and IBM
PROLOG's on-line help information.

IBM PROLOG Runtime for OS/2 is re­
quired by applications created with IBM
PROLOG for OS/2 for deploying other
PS/2 devices.

Highlights:

• IBM PROLOG is designed to pro­
vide versatility in addressing busi­
ness problems, particularly in the
areas of complex data structures and
relational databases

• Rapid prototyping and deployment of
applications using IBM PROLOG are
key to user productivity gains

• IBM PROLOG applications can
grow with the businesses' need to
grow

• Portability to multiple platforms, ex­
tensive system integration, and multi­
ple syntax support minimize the
impact to existing solutions and skills

• IBM PROLOG has been structured
to fit well into today's data process­
ing environments

Letter #290-401, July 24, 1990

Statement of
Direction

IBM Writing to Write™
Statement of Direction
IBM Educational Systems intends to an­
nounce the Writing to Write elementary
school writing series that will be de­
signed to enable elementary school chil­
dren to learn to write what they think.
Writing to Write will be a balanced

Personal Systems/Issue 4, 1990

curriculum where the teacher and the
courseware are equal instructional part­
ners. The program design will be instruc­
tional , so students actively participate
and learn by doing, as opposed to "drill
and practice." Writing to Write will en­
compass the stages of the writing pro­
cess approach: prewriting, drafting,
editing, revising, publishing, and shar­
ing. The spiral curriculum, the combina­
tion and coordination of computer
exercises, the ancillary print activities,
and the teacher instruction will make
Writing to Write a courseware product
that takes full advantage of technology.

Writing to Write elementary school writ­
ing series will make extensive use of
PS/2 graphics and voice capability. Writ­
ing to Write will serve as a follow-on to
Writing to Read® and complement
IBM's Teaching and Learning with
Computers methodology. Writing to
Write will employ a spiral curriculum
with problem-solving techniques, and
will be designed as the primary source
of instructional sequence and methodol­
ogy for teaching writing in elementary
schools.

Writing to Write elementary school writ­
ing series will be made up of networked
products only, and will run under the
IBM Classroom LAN Administration
System Version 1.11 or later.

Field testing of the new series has
begun at selected schools. IBM is an­
nouncing this Statement of Direction at
this time to allay uncontrolled specula­
tion that might otherwise result as our
field testing becomes more apparent to
the general public. IBM's current inten­
tions and plans are subject to review,
and announcement of products in this
new series will be based on IBM's tech­
nical and business judgment.

Letter #290-249, May 29, 1990

Index to Past Issues of

IBM Personal Systems Technical Solutions

Issue 3, 1990 (G325-5007)
DOS - A Look under the Hood to See How It Spins
Memory Management in a DOS Environment
FASTOPEN - The DOS Performance Enhancer
DOS 4.00 Compatibility issues
'Out of Environment Space' Errors
A New LAN Requester for DOS Systems
Creating a Dialog Box Dynamically Using WinCreateDlg
An Alternative for the OS/2 ST ART Command
CUA: A Consistent Interface

Issue 2, 1990 (G325-5006)
OS/2 End User Advantages
What's New in OS/2 Standard Edition Version 1.2?
An Application Developer's View of OS/2
Object-Oriented Programming with C and OS/2 PM - Is It Possible?
Design Goals and Implementation of the New High Performance File System
OS/2 EE 1.2 Database Manager - Remote Data Services
OS/2 EE Database Manager Precompiler API
UNION, INTERSECT, EXCEPT
Writing a Database Manager COBOL/2 Program
Database Manager Programming with Procedures Language 2/REXX
APPC Performance Tips for OS/2 EE
EASEL OS/2 EE PROFS: Host Code Interface
PS/2 RPG II Application Platform and Toolkit
The IBM Independence Series Products

Issue 1, 1990 (G325-5005)
Introduction to Local Area Networks
IEEE 802.3 LAN Considerations
The IBM Token-Ring Network: A New Generation
How to Design and Build a 4-Mbit/s Token-Ring LAN
How to Design and Build a 16-Mbit/s Token-Ring LAN
Making the Cabling Decision
IBM Cabling System Highlights
Communications Strategy for Growth

Issue 4, 1989 (G325-5004)
Requirements for Advanced Bus Architecture
Micro Channel System Configuration Considerations
Features and Benefits
Bus Masters and Applications
Overview of Extended Micro Channel Functions
New Micro Channel Features
SCB - An Architecture for Micro Channel Bus Masters
Design Alternatives with Micro Channel Systems
The IBM PS/2 Micro Channel SCSI Adapters
PS/2 Wizard Adapter
Experience in Bus Master Design
Bus Master Adapters from Independent Option Vendors
Bus Masters and OS/2
Micro Channel Issues in AIX PS/2
Information for Developers
Book Report: "The Winn Rosch Hardware Bible"

The 82325 chip set supports the 32-bit
Streaming Data Procedure. (page 20)

If a driver for the 4019 Postscript option is not available, consider the
drivers for the Personal Page Printer Models 030 and 031. (page 17)

A well-written LAN driver can make 100 percent difference
in testing results. (page 26)

Multithreading - the ability to run several parts of an application concurrently - allows
more intelli ent a lications to be develo ed. (a e 34)

Each logged-on user ID has a unique process
and session ID identifying it. (page 48)

After deleting all unnecessary files, OS/2 EE requires
a roximatel 25 MB of DASO. (a e 44

SMB Raw Protocol enables extremely fast data
transfer across the network. (page 56)

This is what an electronic bulletin board
is all about. (a e 91)

Object-oriented software design has its roots back
in the late 1960s. (page 61)

6325-5009-00

111111111111

