Philips Components-Signetics | Document No. | 853-0033 | | | | | |---------------|-----------------------|--|--|--|--| | ECN No. | 96054 | | | | | | Date of Issue | March 14, 1989 | | | | | | Status | Product Specification | | | | | | Memory Produ | ıcts | | | | | ## 82LS135 2K-bit TTL bipolar PROM #### DESCRIPTION The 82LS135 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix. The 82LS135 includes on-chip decoding and two Chip Enable inputs for ease of memory expansion, and features 3-State outputs for optimization of word expansion in bused organizations. Ordering information can be found on the following page. #### **FEATURES** - · Address access time: 100ns max - Power dissipation: 200µW/bit typ - Input loading: -100µA max - Two Chip Enable inputs - · On-chip address decoding - No separate fusing pins - Fully TTL compatible - Unprogrammed outputs are Low level - Outputs: 3-State #### **APPLICATIONS** - Prototyping/volume production - Sequential controllers - Microprogramming - Hardwired algorithms - Control store - Random logic - Code conversion #### PIN CONFIGURATIONS ## 2K-bit TTL bipolar PROM (256 \times 8) 82LS135 #### ORDERING INFORMATION | DESCRIPTION | ORDER CODE | | | |---|------------|--|--| | 20-Pin Plastic Dual-In-Line
300mil-wide | N82LS135 N | | | | 20-Pin Plastic Small Outline
300mil-wide | N82LS135 D | | | | 20-Pin Plastic Leaded Chip Carrier
350mil-square | N82LS135 A | | | #### **ABSOLUTE MAXIMUM RATINGS** | SYMBOL | PARAMETER | RATING | UNIT | | |------------------|-----------------------------|-------------|-----------------|--| | V _{CC} | Supply voltage | +7.0 | V _{DC} | | | V _{IN} | input voltage | +5.5 | V _{DC} | | | V _O | Output voltage Off-State | +5.5 | V _{DC} | | | T _{amb} | Operating temperature range | 0 to +75 | °C | | | T _{stg} | Storage temperature range | -65 to +150 | °C | | # DC ELECTRICAL CHARACTERISTICS 0° C \leq T_{amb} \leq +75 $^{\circ}$ C, 4.75V \leq V_{CC} \leq 5.25V | | | | LIMITS | | | | | |------------------|---|--|----------------|------|------|------|--| | SYMBOL PARAMETER | | TEST CONDITIONS ^{1,2} | Min | Тур3 | Max | UNIT | | | Input volt | age | | • | • | | | | | V _{IL} | Low | | | | 0.8 | V | | | V _{IH} | High | | 2.0 | | | ٧ | | | V_{IC} | Clamp | I _W = -12mA | | | -1.2 | ٧ | | | Output vo | oltage | | | • | | | | | V _{OL} | Low | I _{OUT} = 16mA | | | 0.5 | v | | | V_{OH} | High | I _{OUT} = -2mA, High stored | 2.4 | | | ٧ | | | Input cur | rent | | | • | | | | | I _{IL} | Low | V _{IN} = 0.45V | | | -100 | μА | | | I _{IH} | High | $V_{iN} = 5.5V$ | | | 40 | μA | | | Output cu | ırrent | | - 4 | • | | | | | loz | Hi-Z state | CE1, CE2 = High, V _{OUT} = 0.5V | | | -40 | μА | | | | | CE1, CE2 = High, V _{OUT} = 5.5V | | 1 | 40 | μA | | | los | Short circuit ⁴ | CE1, CE2 = Low, V _{OUT} = 0V, High stored | -15 | | -75 | mA | | | Supply co | ırrent ⁵ | | • | • | | | | | Icc | *************************************** | V _{CC} = 5.25V | | 80 | 100 | mA | | | Capacita | nce | | • | • | | | | | | | V _{CC} = 5.0V, CE = High | | T | | | | | CIN | Input | $V_{IN} = 2.0V$ | | 5 | | рF | | | Cout | Output | V _{OUT} = 2.0V | 1 | 8 | | pF | | - 1. Positive current is defined as into the terminal referenced. - 2. All voltages with respect to network ground. 3. Typical values are at V_{CC} = 5V, T_{amb} = +25°C. 4. Duration of short circuit should not exceed 1 second. - 5. Measured with all inputs grounded and all outputs open. March 14, 1989 289 ### **AC ELECTRICAL CHARACTERISTICS** $R_1 = 270\Omega, \ R_2 = 600\Omega, \ C_L = 30 pF, \ 0^{\circ}C \le T_{amb} \le +75^{\circ}C, \ 4.75V \le V_{CC} \le 5.25V$ | SYMBOL | PARAMETER | то | FROM | LIMITS | | | | |-----------------|-----------|--------|--------------|--------|------------------|-----|------| | | | | | Min | Typ ¹ | Max | UNIT | | Access time | 2 | | | | | | | | taa | | Output | Address | | 70 | 100 | ns | | t _{CE} | | Output | Chip Enable | | 30 | 50 | ns | | Disable time | 3 | | | | | | | | t _{CD} | | Output | Chip Disable | | 30 | 60 | ns | #### NOTES: - 1. Typical values are at V_{CC} = 5V, T_{arrib} = +25°C. - 2. Tested at an address cycle time of 1µs. - 3. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$, $C_L = 5pF$. ### **TEST LOAD CIRCUIT** ## **VOLTAGE WAVEFORMS**