Philips Components-Signetics

Document No.	853-0033				
ECN No.	96054				
Date of Issue	March 14, 1989				
Status	Product Specification				
Memory Produ	ıcts				

82LS135 2K-bit TTL bipolar PROM

DESCRIPTION

The 82LS135 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

The 82LS135 includes on-chip decoding and two Chip Enable inputs for ease of memory expansion, and features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

FEATURES

- · Address access time: 100ns max
- Power dissipation: 200µW/bit typ
- Input loading: -100µA max
- Two Chip Enable inputs
- · On-chip address decoding
- No separate fusing pins
- Fully TTL compatible
- Unprogrammed outputs are Low level
- Outputs: 3-State

APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATIONS

2K-bit TTL bipolar PROM (256 \times 8)

82LS135

ORDERING INFORMATION

DESCRIPTION	ORDER CODE		
20-Pin Plastic Dual-In-Line 300mil-wide	N82LS135 N		
20-Pin Plastic Small Outline 300mil-wide	N82LS135 D		
20-Pin Plastic Leaded Chip Carrier 350mil-square	N82LS135 A		

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT	
V _{CC}	Supply voltage	+7.0	V _{DC}	
V _{IN}	input voltage	+5.5	V _{DC}	
V _O	Output voltage Off-State	+5.5	V _{DC}	
T _{amb}	Operating temperature range	0 to +75	°C	
T _{stg}	Storage temperature range	-65 to +150	°C	

DC ELECTRICAL CHARACTERISTICS 0° C \leq T_{amb} \leq +75 $^{\circ}$ C, 4.75V \leq V_{CC} \leq 5.25V

			LIMITS				
SYMBOL PARAMETER		TEST CONDITIONS ^{1,2}	Min	Тур3	Max	UNIT	
Input volt	age		•	•			
V _{IL}	Low				0.8	V	
V _{IH}	High		2.0			٧	
V_{IC}	Clamp	I _W = -12mA			-1.2	٧	
Output vo	oltage			•			
V _{OL}	Low	I _{OUT} = 16mA			0.5	v	
V_{OH}	High	I _{OUT} = -2mA, High stored	2.4			٧	
Input cur	rent			•			
I _{IL}	Low	V _{IN} = 0.45V			-100	μА	
I _{IH}	High	$V_{iN} = 5.5V$			40	μA	
Output cu	ırrent		- 4	•			
loz	Hi-Z state	CE1, CE2 = High, V _{OUT} = 0.5V			-40	μА	
		CE1, CE2 = High, V _{OUT} = 5.5V		1	40	μA	
los	Short circuit ⁴	CE1, CE2 = Low, V _{OUT} = 0V, High stored	-15		-75	mA	
Supply co	ırrent ⁵		•	•			
Icc	***************************************	V _{CC} = 5.25V		80	100	mA	
Capacita	nce		•	•			
		V _{CC} = 5.0V, CE = High		T			
CIN	Input	$V_{IN} = 2.0V$		5		рF	
Cout	Output	V _{OUT} = 2.0V	1	8		pF	

- 1. Positive current is defined as into the terminal referenced.

- 2. All voltages with respect to network ground.
 3. Typical values are at V_{CC} = 5V, T_{amb} = +25°C.
 4. Duration of short circuit should not exceed 1 second.
- 5. Measured with all inputs grounded and all outputs open.

March 14, 1989 289

AC ELECTRICAL CHARACTERISTICS

 $R_1 = 270\Omega, \ R_2 = 600\Omega, \ C_L = 30 pF, \ 0^{\circ}C \le T_{amb} \le +75^{\circ}C, \ 4.75V \le V_{CC} \le 5.25V$

SYMBOL	PARAMETER	то	FROM	LIMITS			
				Min	Typ ¹	Max	UNIT
Access time	2						
taa		Output	Address		70	100	ns
t _{CE}		Output	Chip Enable		30	50	ns
Disable time	3						
t _{CD}		Output	Chip Disable		30	60	ns

NOTES:

- 1. Typical values are at V_{CC} = 5V, T_{arrib} = +25°C.
- 2. Tested at an address cycle time of 1µs.
- 3. Measured at a delta of 0.5V from Logic Level with $R_1 = 750\Omega$, $R_2 = 750\Omega$, $C_L = 5pF$.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

