COMMUNICATION BOARDS

SIC 25-232
IF 613
RS 232-C Synchronous

ACE 16450
(286/386 CPU)

JUMPERS

JUMP.	POS.	FUNCTION
P1	$1-2$	Interrupt 3 (Default COM2)
	$3-4$	Interrupt 4 (COM1)
	$5-6$	Interrupt 5
	$7-8$	Interrupt 2
P3	IN	Open emitter TTL
	OUT	Tri-state TTL (Default)
P4	$1-2$	RxD/TxD normal (Default)
	$3-4$	TxD pin 2, RxD pin3
	$1-3$	RxD/TxD exchange
	$2-4$	TxD pin3, RxD pin2
P5	IN	High hysterisis receiver OUT
Low hysterisis receiver (Default)		

DIP-SWITCH P2

Address 2F8 (COM2) Default

ON
Address 3F8 (COM1)
DIP-SWITCH P2 FOR ANY OTHER ADDRESS

SIC 25-234 IF353 B - IF353 A RS 232-C/C.L. Asynchronous

JUMPERS

JUMPER	POSITION	FUNCTION
L1 - L2	OUT IN	Dedicated interrupt Default Shared interrupt
L3	IN	Interrupt 5
L4	IN	Interrupt 4
L5	IN	Interrupt 3
L6	IN	Interrupt 2
L7 - L11	IN OUT	Current Loop interface RS 232 interface

NOTE: IF353A - For ACE 8250(CPU 8086/ 8088).
IF353B - For ACE 16450(CPU 286/386).

EUE1A
DIP-SWITCH SW1 - SW2

DIP SWITCH SW3

SWITCH	POSITION	FUNCTION
1	OFF	Ports 1 and 2 addresses compatible with MS-DOS COM1 COM2. Ports 3 and 4 addresses set via switch 2. Ports 1,2,3,4 addresses set via switch 2.
2	ON	OFF
ON	Port1 1A0, port2 1A8, port3 1B0, port 4 1B8. Port1 2A0, port2 2A8, port3 2B0, port 4 2B8.	
3	OFF	Two boards installed in the system. Also on the other board this switch must be set OFF. One board installed.
4	ON	Not used.

PORT ADDRESSES

MODE	PORTS	ADDRESS
COMPATIBLE	Port 0 Port 1	$\begin{aligned} & 3 F 8-3 F F \\ & 2 F 8-2 F F \end{aligned}$
EXPANDED	Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Port 9	$\begin{aligned} & 2 \mathrm{~A} 0-2 \mathrm{~A} 7 \\ & 2 \mathrm{~A} 8-2 \mathrm{AF} \\ & 2 \mathrm{~B} 0-2 \mathrm{~B} 7 \\ & 2 \mathrm{~B} 8-2 \mathrm{BF} \\ & 1 \mathrm{AO}-1 \mathrm{~A} 7 \\ & 1 \mathrm{AB}-1 \mathrm{AF} \\ & 1 \mathrm{~B} 0-1 \mathrm{~B} 7 \\ & 1 \mathrm{~B} 8-1 \mathrm{BF} \end{aligned}$

INSTALLATION WITH SCO XENIX

COM1: IRQ4 Channels 2-5
Channels; tty 1a, tty 1b, tty 1c, tty 1d COM2: IRQ3 Channels 6-9 Channels; tty 2a, tty 2b, tty 2c, tty 2d
Board must be set as COM2; if it is set as COM1 the system board's serial port will be cut out.

EXAMPLE for SCO XENIX
COM1: SW1 3 ON all the rest OFF SW2 all OFF
SW3 2 and 3 ON all the rest OFF
COM2: \quad SW1 2 ON all the rest OFF
SW2 all OFF
SW3 3 ON all the rest OFF

SIC 2635 IF 378 RS 232/C.L.

JUMPERS

L1 - L8 INTERRUPT LEVELS							
L1	L2	L3	L4	L5	L6	L7	L8
IRQ2	IRQ3	IRQ4	IRQ5	IRQ10	IRQ11	IRQ12	IRQ15

L14, L15 Interrupt management

L14, L15 IN: Shared interrupt
L14, L15 OUT: Exclusive interrupt

L9, L10, L11, L12, L13 Interface selection

All IN: Current Loop
All OUT: RS 232 C

DIP-SWITCH

SELECTION OF I/O ADDRESSES (RANGE 000-3F8) OFF = ACTIVE 1

1	2	3	4	5	6	7		
Don't								
Care								Least
:---								
significant								
digit (0 or 8)	\quad	Intermediate digit (from 0 to F)						
:---								

Example: If address 2F8 is used, switches must be set as follows:

1	2	3	4	5	6	7	8
$X X$	OFF	OFF	OFF	OFF	OFF	ON	OFF
$X X$	$\mathbf{8}$	F					

SIC-1945 IF328 RS-232C/C.L.

ACE 8250 (CPU 8086/8088)

Install the board as Second serial port (COM2), $\mathrm{IRQ}=3,1 / \mathrm{O}$ address 2 F 8

DIP-SWITCH

SIC-2482 IF297 RS-232 C

ACE 8250 (CPU 8086)

JUMPERS

JUMP.	POS.	FUNCTION
P1	$1-2$	Interrupt 3 (Default Com2)
	$3-4$	Interrupt 4 (Com1)
	$5-6$	Interrupt 5
	$7-8$	Interrupt 2
P2	IN	Open collector TTL
	OUT	Tri-state TTL (Default)
P3	$1-2$	RxD/TxD normal (Default)
	$3-4$ $1-3$ P4 -4	RxD/TxD exchange
	IN	High hysterisis receiver
	OUT	Low hysterisis receiver (Default)

Address 2F8 (COM2) Default

ON

Address 3F8 (COM1)

SIC 2635 Serial Interface Board

AEB9A

B04BU DIP-SWITCH BLOCK

This DIP-Switch block allows mapping I/O address space reserved to board. I/O address is made up of three digits in hexadecimal code. I/O address range is 000 H to 3 F 8 H .1 to 7 DIP-Switch position from defines the value of the three address digits, according to the following convention.

DIP-Switch 7 and 8 Define the most significant value of board address
DIP-Switch 3 to 6 Define the intermediate value of board address
DIP-Switch $2 \quad$ Defines the least significant value of board address DIP-Switch 1 Indifferent.
The following tables show all possible DIP-Switch positions according to the three address digits.

MOST SIGNIFICANT DIGIT			INTERMEDIATE DIGIT					LEAST SIGNIFICANT DIGIT			
VALUE	DIP-SWITCH		VALUE	DIP-SWITCH				VALUE	DIP-SWITCH		
	8	7		6	5	4	3		2	1	
$\\| \begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	ON ON OFF OFF	ON OFF ON OFF	$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & \hline 8 \\ & 9 \\ & \text { A } \\ & \text { B } \\ & \text { C } \\ & \hline \text { D } \\ & \hline \text { E } \\ & \hline \end{aligned}$	ON ON ON ON ON ON ON ON ON OFF OFF OFF OFF OFF OFF OFF OFF OFF	ON ON ON ON OFF OFF OFF OFF ON ON ON ON OFF OFF OFF OFF	ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF	ON OFF ON OFF	8	$\begin{aligned} & \mathrm{ON} \\ & \mathrm{OFF} \end{aligned}$		

L1, L2, L3, L4, L5, L6, L7, L8 JUMPERS

These jumpers allow interrupt level to be selected.

L1	L2	L3	L4		
			\square	L1	Interrupt 2 level
				L2	Interrupt 3 level
				L3	Interrupt 4 level
L1	L2	L3	L4	L4	Interrupt 5 level
				L5	Interrupt 10 level
				L6	Interrupt 11 level
		Interrupt 12 level			
			Interrupt 13 level		

L14 AND L15 JUMPERS

These jumpers allow interrupt handling to be selected.
To allow correct interrupt mode handling (exclusive) these two jumpers must be not present

L9, L10, L11, L12, L13 JUMPERS

These jumpers allow interface type to be selected (RS-232 or Current Loop)

RS 232 interface type

SIC 4 X 2636 BUF MULTIPORT SERIAL INTERFACE BOARD

Possible configurations of this board are:

1. Four RS232 interface channels - Board addressing chosen between all possible addressings.

2. Channels A and B used as COM1 (fixed address 3F8) and COM 2 (fixed address 2F8) only, channels C and D not used.

3. Channels A and B are used as RS 232 interface at fixed addresses COM 1 (3F8) and COM 2 (2F8), channels C and D are used as RS 232 interface at selectable addresses.

4. Channel A with Current Loop interface.

Board base address can be selected by setting DIP-Switches of DIP-Switch A03.FF block. The first serial channel will be allocated at board base address, the other three channels at successive addresses, having jumps of 8 bytes. Example: If board base address is 260 H , serial channels addresses will be $260 \mathrm{H}-268 \mathrm{H}-276 \mathrm{H}-284 \mathrm{H}$.

Board base addresses are shown in the table below.

ADDRESS	DIP-SWITCH				
	1	2	3	4	5
000H	ON	ON	ON	ON	ON
020H	OFF	ON	ON	ON	ON
040H	ON	OFF	ON	ON	ON
060H	OFF	OFF	ON	ON	ON
080H	ON	ON	OFF	ON	ON
OAOH	OFF	ON	OFF	ON	ON
OCOH	ON	OFF	OFF	ON	ON
OEOH	OFF	OFF	OFF	ON	ON
100H	ON	ON	ON	OFF	ON
120H	OFF	ON	ON	OFF	ON
140H	ON	OFF	ON	OFF	ON
160 H	OFF	OFF	ON	OFF	ON
180 H	ON	ON	OFF	OFF	ON
1 AOH	OFF	ON	OFF	OFF	ON
1 COH	ON	OFF	OFF	OFF	ON
1E0H	OFF	OFF	OFF	OFF	ON
200H	ON	ON	ON	ON	OFF
220 H	OFF	ON	ON	ON	OFF
240H	ON	OFF	ON	ON	OFF
260H	OFF	OFF	ON	ON	OFF
280H	ON	ON	OFF	ON	OFF
2 AOH	OFF	ON	OFF	ON	OFF
2 COH	ON	OFF	OFF	ON	OFF
2E0H	OFF	OFF	OFF	ON	OFF
300 H	ON	ON	ON	OFF	OFF
320 H	OFF	ON	ON	OFF	OFF
340 H	ON	OFF	ON	OFF	OFF
360 H	OFF	OFF	ON	OFF	OFF
380h	ON	ON	OFF	OFF	OFF
3 AOH	OFF	ON	OFF	OFF	OFF
3 COH	ON	OFF	OFF	OFF	OFF
3 EOH	OFF	OFF	OFF	OFF	OFF

AT8/AT16 MULTIPORT BOARD - For the M6-620

- The AT8 (MUX1708) board allows the management of up to 8 async ports through an 8-port expansion box.

DWC9A

- The AT16 (MUX1716) board allows the management of up to 16 async ports through a 16 -port expansion box.

The AT8 and AT16 multiport boards are multiple I/O controllers used for connecting terminals, printers and modems to the systems. Each board is installed inside the basic module and requires a distribution box with 8 or 16 asynchronous channels for the connection of terminals, printers and any other RS-232 module.
To enhance performance during data transfers with the system, this board is equipped with a 10 MHz 80186 CPU, a 64 KB Dual Port RAM and a 64 KB EPROM.

DISTRIBUTION BOX (DBOX)

The distribution box for the AT8 multiport board is supplied with the board itself and has the purpose of distributing the signals to the board. This box does not contain intelligent circuitry.

The distribution box for the AT16 multiport board is powered at low voltage by the multiport board and is equipped with a microcontroller capable of driving 16 RS-232 lines.

Both multiport boards are equipped with a 62-pin D-shell connector to which the distribution boxes connect by means of the appropriate cable. The distribution box is equipped with 8 or 168 -pin RJ45 RS-232 interface connectors.

BOARD ADDRESS

The multiport boards have eight DIP-switches used for:

1) diagnostic purposes
2) addressing the board's Dual Port memory.

AT8 BOARD

AT16 BOARD

DWF5A

- If switches 7 and 8 are set to OFF, the diagnostics are not run on the board and the board's base address is the one specified by the setting of switches 1-6.
- If switches $\mathbf{7}$ and 8 are set to ON, the diagnostics are run on the board and the position of switches 1-6 determines the test number.
- If the boards are mapped within the 512-640 KB range, address 8000:0 is assigned to the first board, address 8400:0 to the second, address 8800:0 to the third and address 8C00:0 to the fourth. In case the board's are mapped within the $16^{\text {th }}$ megabyte, each board will have to be mapped at an address which is selected from the seven possible choices indicated in the following table.

DIP-SWITCH (ADDRESS)						DIAG. DIP-SWITCH		MEGABYTE	SEGMENT
1	2	3	4	5	6	7	8		
off	0	8000:0							
on	off	0	8400:0						
off	on	off	off	off	off	off	off	0	8800:0
on	on	off	off	off	off	off	off	0	8C00:0
on	off	off	on	on	on	off	off	F $16{ }^{\text {TH }} \mathrm{MB}$	0800:0
off	on	off	on	on	on	off	off	$\mathrm{F} 16^{\text {TH }} \mathrm{MB}$	2400:0
on	on	off	on	on	on	off	off	$\mathrm{F} 16^{\text {TH }} \mathrm{MB}$	5000:0
off	off	on	on	on	on	off	off	F $16{ }^{\text {TH }} \mathrm{MB}$	8C00:0
on	off	on	on	on	on	off	off	$\mathrm{F} 16^{\text {TH }} \mathrm{MB}$	A800:0
off	on	on	on	on	on	off	off	$\mathrm{F} 16^{\text {TH }} \mathrm{MB}$	6400:0
on	on	on	on	on	on	off	off	F $16^{\text {TH }} \mathrm{MB}$	CC00:0

NOTE: When the AT8 and AT16 boards are used with the UNIX operating system, the AT16 boards must be mapped at higher addresses than the AT8 boards.

INTERRUPT CHANNEL (JUMPER P4) AND JUMPER E1-E2

The multiport boards use channel 15 (by default) for interrupt requests (IRQ15).
This value must be changed if another board already uses this channel.
AT8 and AT16 multiport boards share the same interrupt line.
This interrupt line cannot be shared with other non-Intelliport boards. The interrupts are selected via jumpers and the following can be set:
IRQ3, IRQ5, IRQ10, IRQ11, IRQ12, and IRQ15.
When installing more than one AT8/AT16 mutiport board within the 0 megabyte, the first board must always have jumper E1-E2 installed, while this jumper must not be installed on the other boards. Jumper E1-E2 enables the multiport boards to perform 16-bit transfers.

When more than one board is installed in Megabyte F, jumper E1-E2 must be installed on all boards.

