PC SYSTEMS PRODUCTS

TI486DX2-G66, TI486DX2-G80 MICROPROCESSORS

SRZS006A — MAY 1995 — REVISED JANUARY 1996

- 486DX Architecture and Performance
 —486-Compatible Instruction Set and Register Set
 - —Integrated Floating-Point Unit (FPU)
 - —Integrated 16-Bit Hardware Multiplier
 - -On-Chip 8K-Byte, 32-Bit Instruction/Data Cache Can be Configured to Operate in Write-Through or Write-Back Mode
 - -Clock-Doubled Operation at 3.45-V With 5-V-Tolerant I/Os
 - -Highly Optimized, Variable-Length Pipeline
- High-Performance, Footprint-Compatible
 Upgrade for 486-Class Platforms
 - —Internal CPU Clock Speeds of 66/80 MHz
 - —Industry-Standard Footprints Using 168-Pin Ceramic PGA and 208-Pin Ceramic QFP

- Advanced Power-Management Features for Battery-Powered Notebook and Energy-Efficient Desktop PC Systems
 - -System-Management Mode (SMM)
 - -High-Priority System-Management Interrupt (SMI) With Separate Memory-Address Space
 - -Suspend Mode (Initiated by Hardware or Software)
 - -Fully Static Device Permits Clock-Stop State
 - -3.45-V Device With 5-V-Tolerant I/Os Can Be Used in 3.45-V-Only or Mixed 3.45-V/5-V Systems
- Architecture Features 32-Bit Internal and 32-Bit External Buses.
- Texas Instruments (TI[™]) EPIC[™] Submicron CMOS Technology

description

The TI486DX2 microprocessors are attractive for new 486-compatible system designs because they are instruction-set and footprint compatible with 486-class platforms. Additionally, they feature an on-chip floating point unit that simplifies implementation of high-performance levels with clock-doubled CPU, on-chip 8K-byte cache, and advanced power-management techniques. Industry-standard footprint facilitates implementation of energy-efficient desktop and/or battery-powered notebook systems.

The TI486DX2 microprocessors support 8-, 16-, and 32-bit data types and operate in real, virtual-8086, and protected modes. The microprocessors achieve high performance through use of a highly optimized, variable-length pipeline combined with a RISC-like, single-cycle execution unit, an integrated floating point unit, a hardware multiplier, and an 8K-byte integrated instruction and data cache. The microprocessor can access up to 4G bytes of physical memory using a 32-bit bus and can perform burst bus cycles to improve the efficiency of multiple word transfers.

The TI486DX2 microprocessors are ideal for battery-powered applications because they typically draw 200 μ A when the input clock is stopped in the suspend mode. The devices operate from a 3.45-V power supply in 3.45-V-only systems or mixed 3.45-V/5-V systems.

Торіс	Page	Торіс	Page
Terminal Assignments	5	Mixed 3.45-V and 5-V Operation	21
Terminal Functions	11	Electrical Specifications	22
Execution Pipeline	20	Absolute Maximum Ratings	24
On-Chip Write-Back Cache	20	Recommended Operating Conditions	24
Floating-Point Unit (FPU) Operations	21	Electrical Characteristics	25
Clock-Doubling	21	Switching Characteristics	26
Power Management	21	Switching Waveforms	29
System-Management Mode (SMM)	21	Thermal Characteristics	32
Suspend Mode and Static Operation	21	Mechanical Specifications	34

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and TI are trademarks of Texas Instruments Incorporated.

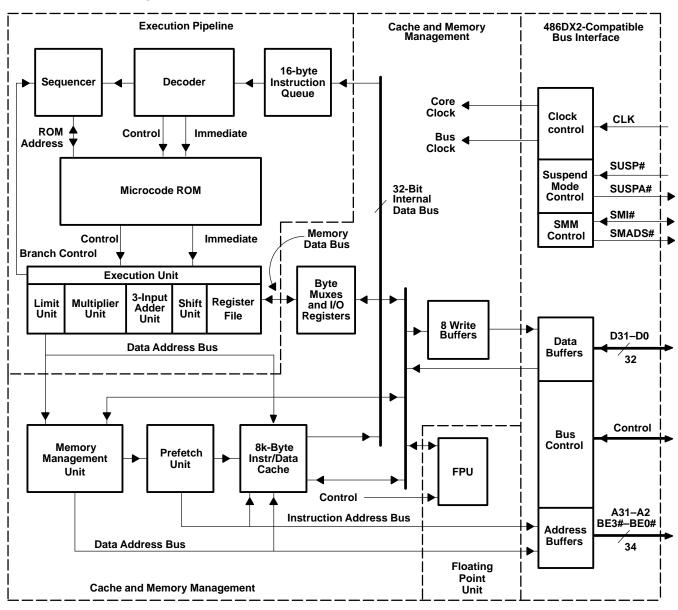
Copyright © 1996, Texas Instruments Incorporated

description (continued)

The TI486DX2 microprocessors contain an on-chip 8K-byte cache memory that can be configured to operate in write-through or write-back mode. Conventional write-through mode updates external memory for each cache transaction. The write-back mode permits cache transactions to occur without updating external memory until a cache miss occurs, a modified line is replaced in the cache, or when an external bus master requires access to data. Configuring the cache to operate in write-back mode can improve overall performance by up to 15% when compared to write-through mode.

The TI486DX2 microprocessors are fabricated using Texas Instruments EPIC submicron CMOS technology. The combination of high-performance 486 operation, on-chip floating point unit, internal 8K-byte cache, 32-bit external data path, and advanced power-management features makes the TI486DX2 well suited for energy-efficient desktop and notebook applications.

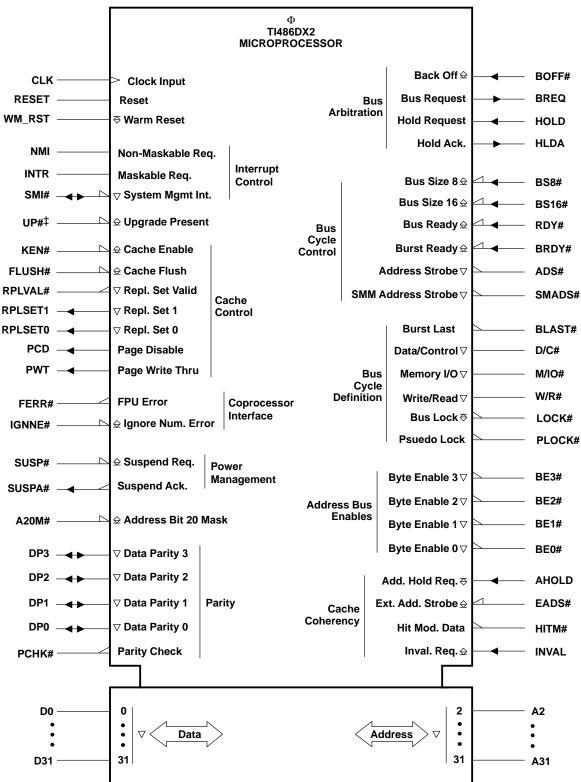
DEVICE PART NO.	SUPPLY	SPEED	(MHz)	PACKAGE	
DEVICE PART NO.	VOLTAGE [†]	CORE	BUS	FACKAGE	
TX486DX2-G80-GA	3.45 V	80	40	168-pin PGA	
TX486DX2-G66-GA	3.45 V	66	33		
TX486DX2-G80-WR	3.45 V	80	40	208-pin	
TX486DX2-G66-WR	3.45 V	66	33	Ceramic QFP	


TI486DX2 PRODUCT OPTIONS

[†] All devices have 5-V-tolerant I/Os.

SRZS006A — MAY 1995 — REVISED JANUARY 1996

functional block diagram



SRZS006A — MAY 1995 — REVISED JANUARY 1996

PC SYSTEMS PRODUCTS

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1991 and IEC Publication 617-12. [‡] 168-pin CPGA only

terminal assignments

The terminal assignments for the 168-pin, CPGA TI486DX2 microprocessors are shown as viewed from the terminal side (bottom) in Figure 1. The signal names are listed in Table 1 and Table 2 sorted by terminal number and signal name, respectively.

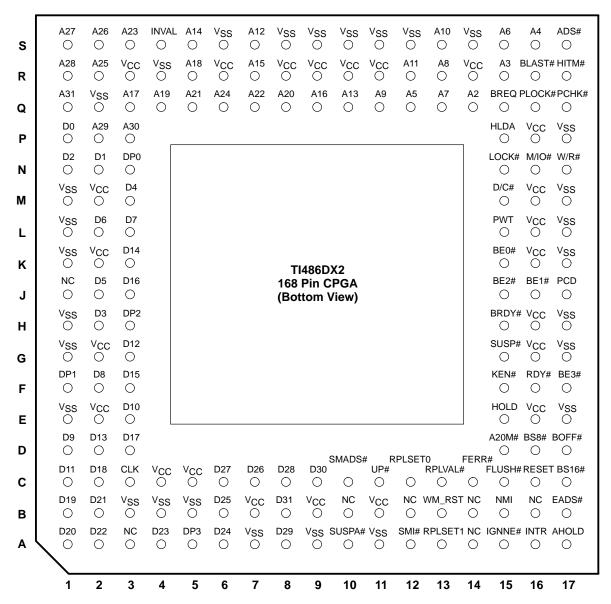


Figure 1. 168-Pin CPGA Terminal Assignments

NC — Make no external connection

NOTE A: Connecting or terminating (high or low) any NC terminal(s) may cause unpredictable results or nonperformance of the microprocessor.

SRZS006A — MAY 1995 — REVISED JANUARY 1996

Table 1. 168-Pin PGA Signal Names Sorted by Terminal Number

Term. No.	Signal Name	Term. No.	Signal Name	Term. No.	Signal Name	Term. No.	Signal Name	Term. No.	Signal Name	Term. No.	Signal Name
No. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A16 A17 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10		No. B12 B13 B14 B15 B16 B17 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C7 C1 C1 C2 C3 C4 C5 C6 C7 C1 C1 C1 C2 C3 C4 C5 C6 C7 C1 C1 C2 C3 C4 C5 C6 C7 C1 C1 C2 C3 C4 C5 C6 C7 C1 C1 C1 C2 C3 C4 C5 C6 C7 C1 C1 C1 C2 C3 C4 C5 C6 C7 C1 C1 C1 C2 C3 C4 C5 C6 C7 C1 C1 C1 C1 C2 C3 C4 C5 C1 C1 C1 C2 C3 C4 C5 C1 C1 C1 C1 C1 C2 C3 C4 C5 C6 C7 C1 C1 C1 C1 C1 C1 C1 C2 C3 C4 C5 C6 C10 C11 C12 C13 C11 C12 C13 C14 C15 C10 C11 C12 C13 C14 C15 C16 C17 C15 C16 C17 C15 C16 C17 C12 C13 C14 C15 C16 C17 C15 C16 C17 C15 C16 C17 D1 D1 D2 D3 D15 D15		No. D17 E1 E2 E3 E15 E16 E17 F1 F2 F3 F16 F17 G1 G2 G3 G15 G16 G17 H1 H2 H3 H15 H16 H17 J1 J2		No. J15 J16 J17 K1 K2 K3 K15 K16 K17 L1 L2 L3 L15 L16 L17 M1 M2 M3 M15 M16 M17 N1 N2 N3 N15 N16 N17		No. P2 P3 P15 P16 P17 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 R1 R2 R3 R4 R5		No. R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16	
B11	VCC	D16	BS8#	J3	D16	P1	DO	R6	VCC	S17	ADS#

SRZS006A — MAY 1995 — REVISED JANUARY 1996

Table 2. 168-Pin PGA Terminal Numbers	Sorted by Signal Name
---------------------------------------	-----------------------

Signal Name	Term. No.	Signal Name	Term. No.	Signal Name	Term. No.	Signal Name	Term. No.	Signal Name	Term. No.	Signal Name	Term. No.
Name A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A20M# A21 A22	No. Q14 R15 S16 Q12 S15 Q13 R13 Q11 S13 R12 S7 Q10 S5 R7 Q9 Q3 R5 Q4 Q3 R5 Q4 Q4 Q5 Q5 Q7	Name A29 A30 A31 ADS# AHOLD BE0# BE1# BE2# BA3# BLAST# BOFF# BRDY# BREQ BS8# BS16# CLK D/C# D0 D1 D2 D3 D4	No. P2 P3 Q1 S17 A17 K15 J16 J15 F17 R16 D17 H15 Q15 D16 C17 C3 M15 P1 N2 N1 H2 M3	Name D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31 DP0	No. C1 G3 D2 K3 F3 J3 D3 C2 B1 A1 B2 A2 A4 A6 B6 C7 C6 C8 A8 C9 B8 N3	Name HITM# HLDA HOLD IGNNE# INTR INVAL KEN# LOCK# M/IO# NC NC NC NC NC NC NC NC NC NC NC NC NC	No. R17 P15 E15 A15 A16 S4 F15 N16 A3 A14 B10 B12 B14 B16 J1 B15 J17 Q16 L15 F16	Name SUSP# SUSPA# UP# VCC VCC VCC VCC VCC VCC VCC VC	No. G15 A10 C11 B7 B9 B11 C4 C5 E2 E16 G2 G16 H16 K2 K16 L16 K2 K16 L16 R3 R6 R8	Name VSS VSS VSS	No. A11 B3 B4 B5 E1 E17 G1 G17 H1 H17 K1 K17 L1 L17 M1 M17 P17 Q2 R4 S6 S8 S9
A23 A24 A25 A26 A27 A28	S3 Q6 R2 S2 S1 R1	D5 D6 D7 D8 D9 D10	J2 L2 L3 F2 D1 E3	DP1 DP2 DP3 EADS# FERR# FLUSH#	F1 H3 A5 B17 C14 C15	RESET RPLSET0 RPLSET1 RPLVAL# SMADS# SMI#	C16 C12 A13 C13 C10 A12	VCC VCC VCC VCC VCC VSS VSS	R9 R10 R11 R14 A7 A9	VSS VSS VSS VSS VSS W/R# WM_RST	S10 S11 S12 S14 N17 B13

NC — Make no external connection

SRZS006A — MAY 1995 — REVISED JANUARY 1996

The terminal assignments for the 208-pin, QFP TI486DX2 microprocessors are shown as viewed from the top side in Figure 2. The signal names are listed in Table 3 and Table 4 sorted by terminal number and signal name, respectively.

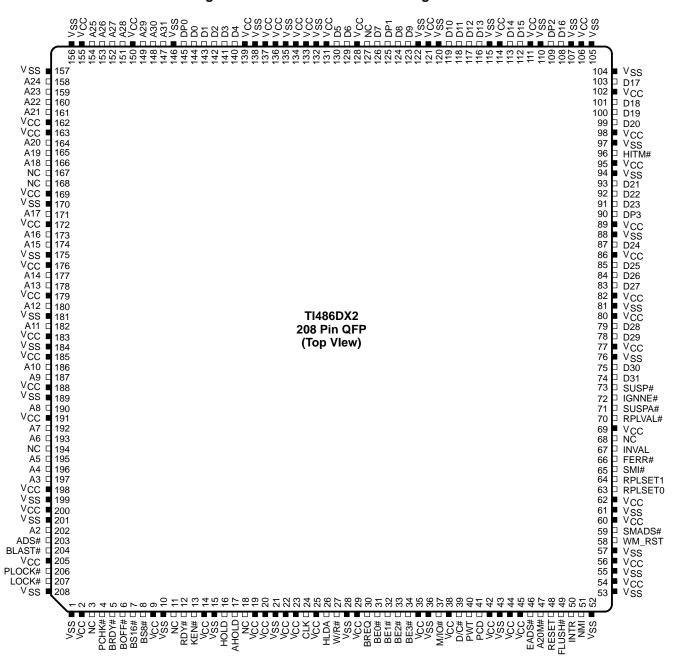


Figure 2. 208-Pin QFP Terminal Assignments

NC — Make no external connection

NOTE A: Connecting or terminating (high or low) any NC terminal(s) may cause unpredictable results or nonperformance of the microprocessor.

SRZS006A — MAY 1995 — REVISED JANUARY 1996

Term.	Signal	Term.	Signal	Term.	Signal	Term.	Signal
No.	Name	No.	Name	No.	Name	No.	Name
1	VSS	53	VSS	105	VSS	157	V _{SS} A24
2	VCC NC	54	Vcc	106	VCC	158	A24
3	NC	55	VSS	107	VSS	159	A23
4	PCHK#	56	Vcc	108	D16	160	A22
5	BRDY#	57	VSS WM_RST	109	DP2	161	A21
6	BOFF#	58	WM_RST	110	VSS	162	Vcc
7	BS16#	59	SMADS#	111	V _{CC} D15	163	VCC
8	BS8#	60	VCC	112	D15	164	A20
9	VCC	61	VSS	113	D14	165	A19
10	VSS	62	VCC	114	VCC	166	A18
11	NČ	63	RPLSET0	115	Vss	167	NC
12	RDY#	64	RPLSET1	116	D13	168	NC
13	KEN#	65	SMI#	117	D12	169	Vcc
14	VCC	66	FERR#	118	D11	170	Vss
15	Vee	67	INVAL	119	D10	171	VSS A17
16	V _{SS} HOLD	68	NC	120	V _{SS}	172	Vcc
17	AHOLD	69	Vcc	121	VCC	173	A16
18	NC	70	RPLVAL#	122	VSS	174	A15
19	Vcc	71	SUSPA#	123	D9	175	VSS
20	VCC	72	IGNNE#	124	D8	176	VCC
21	Vss	73	SUSP#	125	DP1	177	A14
22	VCC	70	D31	126	D7	178	A13
23	Vcc	75	D30	127	NC	179	Vcc
24	VCC CLK	76	V _{SS}	128	Vcc	180	A12
25	VCC	77	VCC	129	D6	181	V _{SS}
26	HLDA	78	D29	130	D5	182	A11
27	W/R#	79	D28	131	Vcc	183	Vcc
28	V _{SS}	80	VCC	132	VSS	184	VSS
29	VCC	81	Vss	133	VCC	185	VCC
30	BREQ	82	VSS	134	VCC	186	A10
31	BE0#	83	V _{CC} D27	135	VSS	187	A9
32	BE1#	84	D26	136	VCC	188	Vcc
33	BE2#	85	D25	137	VCC	189	VCC Voo
34	BE3#	86	VCC	138	VSS	190	VSS A8
35	V _{CC}	87	D24	139	VCC	191	Vcc
36	Vee	88	V _{SS}	140	D4	192	A7
37	V _{SS} M/IO#	89	V55 V00	141	D3	193	A6
38	V _{CC}	90	V _{CC} DP3	142	D3 D2	193	NC
39	D/C#	91	D23	142	D1	195	A5
40	PWT	92	D23 D22	143	DO	196	A3 A4
40	PCD	93	D22 D21	145	DP0	190	A4 A3
41		94	VSS	145		198	Vcc
42	V _{CC} V _{SS}	94 95	v SS Vee	140	Vss A31	198	VCC VSS
43		95 96	VCC HITM#	147	A31 A30	200	*55 Voc
44 45	Vcc	90 97		140	A30 A29	200	Vcc
45	VCC EADS#	97 98	Vss Vcc	149	VCC	201	V _{SS} A2
40	A20M#	98 99	D20	150	VCC A28	202	AZ ADS#
47	RESET	100	D20 D19	151	A26 A27	203	BLAST#
40	FLUSH#	100	D19 D18	152	A27 A26	204 205	
49 50	INTR	101		153	A26 A25	205	V _{CC} PLOCK#
50 51	NMI	102	V _{CC}	154		206 207	LOCK#
52		103	D17	155	VCC	207 208	
52	V _{SS}	104	V _{SS}	100	V _{SS}	200	V _{SS}

Table 3. 208-Pin QFP Signal Names Sorted by Terminal Number

NC — Make no external connection

SRZS006A — MAY 1995 — REVISED JANUARY 1996

Table 4. 208-Pin QFP	Terminal Numbers	Sorted by Signal Name
----------------------	------------------	-----------------------

Signal Name	Term. No.	Signal Name	Term. No.	Signal Name	Term. No.	Signal Name	Term. No.
A2	202	D8	124	PLOCK#	206	Vcc	163
A3	197	D9	123	PWT	40	Vcc	169
A4	196	D10	119	RDY#	12	Vcc	172
A5	195	D11	118	RESET	48	Vcc	176
A6	193	D12	117	RPLSET0	63	Vcc	179
A7	192	D13 D14	116	RPLSET1	64 70	Vcc	183
A8	190		113	RPLVAL# SMADS#	70	Vcc	185
A9 A10	187 186	D15 D16	112 108	SMADS# SMI#	59 65	Vcc	188 191
A10 A11	182	D16 D17	108	SUSP#	65 73	Vcc	191
A11 A12	180	D17 D18	103	SUSPA#	73	Vcc	200
A12 A13	178	D18 D19	101		2	Vcc	200 205
A13 A14	178	D19 D20	99	Vcc	2 9	Vcc	205
A14 A15	174	D20 D21	93	Vcc	9 14	VSS	10
A15 A16	174	D21 D22	92	VCC	19	VSS	10
A10 A17	173	D22 D23	92	VCC	20	V _{SS} V _{SS}	21
A17 A18	166	D23 D24	87	V _{CC} V _{CC}	20	VSS	28
A10 A19	165	D24 D25	85	VCC	22	VSS	36
A19 A20	164	D25 D26	84	VCC VCC	25	V _{SS} V _{SS}	43
A20 A20M#	47	D20 D27	83	VCC	29	VSS	43 52
A20101#	161	D28	79	VCC	35	VSS VSS	53
A21 A22	160	D28 D29	78	VCC	38	VSS	55 55
A22 A23	159	D29	75	VCC VCC	42	VSS VSS	55 57
A24	158	D31	74	VCC	44	VSS VSS	61
A25	154	D/C#	39	VCC	45	VSS VSS	76
A26	153	DP0	145	VCC	40 54	VSS VSS	81
A27	152	DP1	125	VCC	56	VSS	88
A28	151	DP2	109	VCC	60	V _{SS}	94
A29	149	DP3	90	VCC	62	VSS	97
A30	148	EADS#	46	VCC	69	VSS	104
A31	147	FERR#	66	VCC	77	V _{SS}	105
ADS#	203	FLUSH#	49	VCC	80	VSS	107
AHOLD	17	HITM#	96	VCC	82	VSS	110
BE0#	31	HLDA	26	VCC	86	VSS	115
BE1#	32	HOLD	16	VCC	89	VSS	120
BE2#	33	IGNNE#	72	VCC	95	VSS	122
BE3#	34	INTR	50	VCC	98	VSS	132
BLAST#	204	INVAL	67	Vcc	102	Vss	135
BOFF#	6	KEN#	13	VCC	106	VSS	138
BRDY#	5	LOCK#	207	VCC	111	VSS	146
BREQ	30	M/IO#	37	Vcc	114	Vss	156
BS16#	7	NC	3	VCC	121	VSS	157
BS8#	8	NC	11	VCC	128	VSS	170
CLK	24	NC	18	Vcc	131	VSS	175
D0	144	NC	68	VCC	133	VSS	181
D1	143	NC	127	Vcc	134	Vss	184
D2	142	NC	167	Vcc	136	Vss	189
D3	141	NC	168	Vcc	137	VSS	199
D4	140	NC	194	Vcc	139	VSS	201
D5	130	NMI	51	Vcc	150	VSS	208
D6	129	PCD	41	Vcc	155	WM_RST	58
D7	126	PCHK#	4	VCC	162	W/R#	27

NC — Make no external connection

PC SYSTEMS PRODUCTS

TI486DX2-G66, TI486DX2-G80 MICROPROCESSORS

SRZS006A — MAY 1995 — REVISED JANUARY 1996

Terminal Functions

	TERMINAL		
NAME	N 168-PIN	O. 208-PIN	DESCRIPTION
A2	Q14	202	
A3	R15	197	
A4	S16	196	
A5	Q12	195	
A6	S15	193	
A7	Q13	192	
A8	R13	190	
A9	Q11	187	
A10	S13	186	
A11	R12	182	
A12	S7	180	
A13	Q10	178	
A14	S5	177	Address Bus (active high). The address bus (A31–A2) signals provide addresses for physical memory and
A15	R7	174	I/O ports. Address lines A31-A4 are bidirectional signals used by the TI486DX2 to drive addresses to
A16	Q9	173	memory and I/O devices and are also used by the system logic to drive cache inquiry addresses into the
A17	Q3	171	processor. Address lines A3–A2 are output signals only and are ignored during cache inquiry cycles. All
A18	R5	166	address lines can be used for addressing physical memory allowing a 4G-byte address space (0000 0000h
A19	Q4	165	to FFFF FFFFh). During I/O port accesses, A31–A16 are driven low (except for coprocessor accesses). This
A20	Q4 Q8	164	permits a 64-Kbyte I/O address space (0000 0000h to 0000 FFFFh).
A21	Q5	161	
A22	Q7	160	
A23	S3	159	
A24	Q6	158	
A25	R2	154	
A26	S2	153	
A27	S1	152	
A28	R1	151	
A29	P2	149	
A30	P3	148	
A31	Q1	147	
ADS#	S17	203	Address Strobe (active low). This 3-state output indicates that the TI486DX2 microprocessor has driven a valid address (A31–A2, BE3#–BE0#) and bus-cycle definition (M/IO#, D/C#, W/R#) on the appropriate output pins. If the current cycle is a memory access, ADS# also indicates that the current bus cycle is intended for normal memory space rather than system management memory. ADS# floats while the microprocessor is in a hold-acknowledge or float state.
			An external pullup resistor is recommended to ensure negation during hold-acknowledge states.
AHOLD			Address Hold Request (active high). This input forces the microprocessor to float A31–2 in the next clock cycle. While AHOLD is asserted, only the address bus is disabled. The current bus cycle remains active and completes in the normal fashion. No additional bus cycles are generated while AHOLD is asserted, except cache line write-back cycles in response to a cache inquiry.
	A17	17	The microprocessor samples AHOLD during RESET. If AHOLD is asserted at the clock edge prior to the falling edge of RESET, built-in self test is executed prior to issuing any bus cycles.
			AHOLD is internally connected to a pulldown resistor to prevent it from floating active when left unconnected.

	TERMINAL		DESCRIPTION
NAME	168-PIN	_	DESCRIPTION
A20M#	D15	47	 Address Bit-20 Mask (active low). This input causes the microprocessor to mask (force low) physical address bit 20 when driving the external address bus or performing an internal cache access. Asserting A20M# emulates the 1M-byte address wraparound that occurs on the 8086. A20 masking should not be done by external logic. The A20M# input is ignored during three conditions: While paging is enabled While writing back dirty cache data to system memory. (This occurs only if the data was loaded into the cache when A20M# was inactive.) During system management address space accesses.
			A20M# is internally connected to a pullup resistor to prevent it from floating active when left unconnected.
BE3# BE2# BE1# BE0#	F17 J15 J16 K15	34 33 32 31	Byte Enables BE3#–BE0# (active low). These 3-state outputs determine which bytes within the 32-bit data bus are transferred during a memory or I/O access. During the first cycle of a cache line fill, the microprocessor expects data to be returned as if all data bytes are enabled regardless of the state of the byte enable outputs. BE3#–BE0# float during bus hold states.
BLAST#	R16	204	Burst Last (active low). This output indicates that the current 32-bit data transfer is either the last transfer of a multiple transfer cycle or a single transfer cycle. BLAST# is valid for the second and subsequent clock cycles within both burstable and nonburstable cycles. BLAST# floats during bus hold states.
BOFF#	D17	6	Back Off (active low). This input forces the microprocessor to abort the current bus cycle and relinquish control of the CPU local bus in the next clock. When asserted, the microprocessor enters the bus hold state but the HLDA output is not asserted. The bus hold state persists until BOFF# is negated. Once BOFF# is negated, the aborted bus cycle is restarted. While BOFF# is asserted, the microprocessor ignores any data returned. BOFF# is internally connected to a pullup resistor to prevent it from floating active when left unconnected.
BRDY#	H15	5	Burst Ready (active low). This input is generated by the system hardware to indicate that the current transfer within a bus cycle can be terminated. The microprocessor samples BRDY# in the second and subsequent clocks of a multiple transfer cycle. If BRDY# is returned instead of RDY# for the first transfer of a multiple transfer cycle, the microprocessor completes the remaining transfers as a burst cycle. BRDY# must be returned instead of RDY# for each transfer except the final transfer to maintain the burst cycle. If RDY# is returned simultaneously with BRDY#, BRDY# is ignored and the burst cycle is aborted. BRDY# is active during address hold states. The microprocessor is capable of bursting code fetches, memory data reads, memory data writes (also with BS16# or BS8# active), or cache line write-back cycles if the BWRT bit in CCR2 is set. The microprocessor
			bursts cache write-back cycles resulting from a cache inquiry only when all four doublewords within the cache line have been modified and need to be written back. When less than three doublewords are modified, the microprocessor issues the write-back cycles as nonburst 32-bit write cycles. BRDY# is internally connected to a pullup resistor to prevent it from floating active when left unconnected.
BREQ	Q15	30	Bus Request (active high). This output is asserted when a bus cycle is pending internally. BREQ is asserted in the first clock of a bus cycle as well as during bus hold and address hold states if a bus cycle is pending. If no other bus cycles are pending, BREQ is negated prior to termination of the current cycle.
BS16# BS8#	C17 D16	7 8	Bus Size 16 and Bus Size 8 (active low). These inputs allow connection of the 32-bit microprocessor data bus to an external bus of either 16 or 8 bits. When these inputs are asserted, the microprocessor performs multiple bus cycles to complete a single 32-bit transfer. BS16# and BS8# are sampled each clock. The state of these pins during the clock before RDY# goes low is used to determine the bus size for the current cycle. If both BS8# and BS16# are asserted, BS8# is used. During write cycles, valid data is driven only on the data pins corresponding to the active byte enables.
			BS16# and BS8# are each connected internally to a pullup resistor to prevent them from floating active when left unconnected.

SRZS006A — MAY 1995 — REVISED JANUARY 1996

TERMINAL			
NAME	N 168-PIN	O. 208-PIN	DESCRIPTION
CLK	C3	24	Clock Input (active high). This input signal is the basic timing reference for the TI486DX2 microprocessors. This signal is also used as an input to time the microprocessor, but the signal is first doubled within the TI486DX2 to provide an internal 2X CPU clock. The CLK signal controls external CPU bus timing. The rising edge of the CLK signal defines the starting point for measurement of external ac specifications for the microprocessor.
D/C#	M15	39	Data Control. This 3-state, bus-cycle-definition signal distinguishes between data and control operations. When high, this signal indicates that the current bus cycle is a data transfer to or from memory. When low, D/C# indicates that the current bus cycle involves a control function such as a halt, interrupt acknowledge, or code fetch.
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29	P1 N2 N1 H2 M3 J2 L2 L3 F2 D1 E3 C1 G3 D2 K3 F3 J3 C2 B1 A1 E2 A4 A6 B6 C7 C6 C8 A8	144 143 142 141 140 130 129 126 124 123 119 118 117 116 113 112 108 103 101 100 99 93 92 91 87 85 84 83 79 78	Data Bus (active high). The data bus (D31–D0) signals are 3-state bidirectional signals that provide the data path between the microprocessor and external memory and I/O devices. The data bus inputs data during memory read, I/O read, and interrupt-acknowledge cycles and outputs data during memory and I/O write cycles. Data read operations require that specified data setup and hold times be met for correct operation. The data bus signals float while the CPU is in a hold-acknowledge state.
D30 D31 DP3 DP2 DP1	C9 B8 A5 H3 F1	75 74 90 109 125	Data Parity bus (active high). The data parity bus signals are four 3-state bidirectional signals that provide the parity associated with the four-byte data bus. There is one data parity bit for each data byte. Even parity is driven on the data parity bus for all data write cycles. During read cycles, the data parity bus is read by
DP0	N3	145	the microprocessor and is used with the corresponding data bus byte to check for even parity.

SRZS006A — MAY 1995 — REVISED JANUARY 1996

TERMINAL			
NAME		O. 208-PIN	DESCRIPTION
EADS#	B17	46	External Address Strobe (active low). This input indicates that a valid cache inquiry address is being driven on the address bus (A31–2). The microprocessor checks the on-chip cache for this address. If the cache is operating in write-through mode and has no dirty-bit location, the cache line corresponding to the specified address is invalidated if it is present. If the cache is operating in write-back mode or contains dirty data from a previous write-back operation, the cache line corresponding to the specified address is checked for dirty data. If dirty data exists, the dirty data is written to external memory. The state of the INVAL pin at the time EADS# is sampled active determines the final state of the cache line.
			A cache inquiry cycle using EADS# may be run with the microprocessor in either an address hold or bus hold state and the inquiry address driven by an external device. Additionally, an inquiry cycle can be run while the microprocessor is driving the address bus. In this case, the current address is used as the inquiry address. EADS# is internally connected to a pullup resistor to prevent it from floating active when left unconnected.
FERR#	C14	66	Floating-Point Error (active low). This output is asserted when an unmasked floating point error occurs. FERR# is asserted during execution of the FPU instruction that caused the error. FERR# does not float during bus hold states.
FLUSH#	C15	49	Cache Flush (active low). This input invalidates (flushes) the entire cache while in write-through cache mode. If the cache is operating in write-back mode, FLUSH# forces the microprocessor to write back all dirty data in the cache. If the INVAL pin is asserted when FLUSH# is sampled, the microprocessor invalidates the cache contents following the write back of dirty data. FLUSH# needs to be asserted only for a single clock but must meet specified setup and hold times to ensure recognition at a particular clock edge.
			FLUSH# is internally connected to a pullup resistor to prevent it from floating active when left unconnected.
HITM#	R17	96	Hit on Modified Data (active low). This output indicates that the current cache inquiry address has been found in the cache and that dirty data exists in the cache line. HITM# is asserted one clock after EADS# is sampled active and remains asserted until all dirty data has been written to external memory. The microprocessor does not accept additional cache inquiry cycles while HITM# is asserted. HITM# is disabled (floats) following RESET and is enabled by setting the WBAK bit in CCR2.
HLDA	P15	26	Hold Acknowledge (active high). This output indicates that the microprocessor is in a hold-acknowledge state and has relinquished control of its local bus. While in the hold-acknowledge state, the microprocessor drives HLDA active. The microprocessor simultaneously drives the bus and deactivates HLDA when the HOLD request is driven inactive.
HOLD	E15	16	Hold Request (active high). This input indicates that another bus master requests control of the local bus. After recognizing the HOLD request and completing the current bus cycle, burst cycle, cache line fill, sequence of locked bus cycles, or cache line write back, the microprocessor responds by floating the local bus and asserting the hold acknowledge (HLDA) output. Once HLDA is asserted, the bus remains granted to the requesting bus master until HOLD becomes inactive. When the microprocessor recognizes HOLD is inactive, it simultaneously drives the local bus and drives HLDA inactive.

SRZS006A — MAY 1995 — REVISED JANUARY 1996

NAME		0.	DESCRIPTION
IGNNE#	168-PIN A15	208-PIN 72	Ignore Numeric Error (active low). This input forces the microprocessor to ignore any pending unmasked FPU errors and allows continued execution of floating point instructions. When IGNNE# is not asserted and an unmasked FPU error is pending, only these floating point instructions can be executed: FNCLEX, FNINIT, FNSAVE, FNSTCW, FNSTENV, and FNSTSW. IGNNE# is ignored when the NE bit in CR0 is set to a 1. This and related actions are detailed using this pseudo-code: if FERR# = 0 then { if NE = 1 then generate interrupt 16 at next FPU or WAIT instruction else { If IGNNE# = 0 then continue execution else while IGNNE# = 0 then continue execution else } while IGNNE# AND (FPU instruction OR WAIT instruction). wait until IGNNE# goes active. CPU stalls on a FPU instruction or WAIT instruction. CPU continues to service interrupts } } IGNNE# is internally connected to a pullup resistor to prevent it from floating active when left unconnected.
INTR	A16	50	Maskable Interrupt Request. This level-sensitive input causes the processor to suspend execution of the current instruction stream and begin execution of an interrupt service routine. The INTR input can be masked (ignored) through the Flag Word register IF bit. When unmasked, the microprocessor responds to the INTR input by issuing two locked interrupt-acknowledge cycles. During the second interrupt acknowledge cycle, the microprocessor reads an 8-bit value, the interrupt vector from an external interrupt controller. The 8-bit interrupt vector indicates the interrupt level that caused generation of the INTR and is used by the CPU to determine the beginning address of the interrupt service routine. To assure recognition of the INTR request, INTR must remain active until the start of the first interrupt-acknowledge cycle.
INVAL	S4	67	Invalidate Request (active high). This input can be driven by the system during a cache inquiry cycle to indicate the final state of the cache line if an inquiry hit occurs. INVAL is sampled with EADS# and is required only when operating the on-chip cache in write-back mode. Assertion of INVAL indicates that the final state of the cache line is invalid. Deassertion indicates that the final state of the cache line is valid and clean. The state of the INVAL input is also sampled with the FLUSH# input to determine the final state of the entire cache. INVAL is ignored following RESET and is enabled by setting the WBAK bit in CCR2.
KEN#	F15	13	Cache Enable (active low). This input indicates that the data being returned during the current cycle is cacheable. When KEN# is active one clock before the first BRDY# or RDY# and the microprocessor is performing a cacheable code fetch or memory data read cycle, the cycle is transformed into a 16-byte cache line fill. Returning KEN# active one clock before ready is returned during the last read in the cache line fill causes the line to be written to the on-chip cache. I/O accesses, locked reads, SMM address space accesses, and interrupt-acknowledge cycles are never cached. KEN# is internally connected to a pullup resistor to prevent it from floating active when left unconnected.

Terminal Functions (continued)

TERMINAL NAME NO.		0	DESCRIPTION				
NAME		208-PIN	DESCRIPTION				
LOCK#	N15	207	Lock (active low). This 3-state, bus-cycle-definition signal is asserted to deny access to the CPU bus by other bus masters. The LOCK# signal may be explicitly activated during bus operations by including the lock prefix on certain instructions. LOCK# is always asserted during descriptor and page table updates, interrupt-acknowledge sequences, and when executing the XCHG instruction. The microprocessor does not enter the hold-acknowledge state in response to HOLD while the LOCK# output is active. An external pullup resistor is recommended to ensure negation during hold-acknowledge states.				
		-					
M/IO#	N16	37	Memory/IO. This 3-state, bus-cycle-definition signal distinguishes between memory and I/O operations. When high, this signal indicates that the current bus cycle is a memory read or write. When low, M/IO# indicates that the current bus cycle is an I/O read, I/O write, interrupt acknowledge cycle, or a special bus cycle.				
NC†	A3 A14 B10 B12 B14 B16 J1	3 11 18 68 127 167 168 194	Make no external connection.				
NMI	B15	51	Nonmaskable Interrupt Request. This rising-edge-sensitive input causes the processor to suspend execution of the current instruction stream and begin execution of an NMI interrupt service routine. The NMI interrupt service request cannot be masked by software. Asserting NMI causes an interrupt which internally supplies interrupt vector 2h to the CPU core. External interrupt-acknowledge cycles are not necessary since the NMI interrupt vector is supplied internally.				
PCD	J17	41	Page Cache Disable (active high). This output reflects the state of the PCD page attribute bit in the page table entry or the page directory entry. When paging is disabled or during cycles that are not paged, the PCD output is driven low. PCD is masked by the cache disable (CD) bit in CR0 and floats during bus hold states.				
PCHK#	Q17	4	Parity Check (active low). This output is used to indicate that a parity error has occurred on a read operation. Parity is checked for all reads except interrupt acknowledge cycles and coprocessor I/O cycles, and it is only checked for valid bytes as indicated by the byte enable outputs and the bus size inputs. PCHK# is valid only during the clock immediately after read data is returned to the microprocessor and is inactive otherwise. Parity errors signaled by a logic low on PCHK# have no effect on processor execution.				
PLOCK#	Q16	206	Pseudo Lock (active low). This output is asserted during reads and writes to/from memory that are greater that 32 bits meaning that multiple bus cycles are required to complete the read/write. PLOCK# is asserted during segment descriptor reads (64 bits), cache line fills (128 bits), and noncacheable prefetches (128 bits). The microprocessor does not enter a hold acknowledge state in response to HOLD while PLOCK# is active, except during noncacheable, nonburstable code prefetches. Under these conditions, the microprocessor acknowledges HOLD on bus-cycle boundaries even though PLOCK# is asserted.				
PWT	L15	40	Page Write Through (active high). This output reflects the state of the PWT page attribute bit in the page table entry or the page directory entry. When paging is disabled or during cycles that are not paged, the PCD output is driven low. PWT floats during bus hold states.				
RDY#	F16	12	Ready (active low). This input is generated by the system hardware to indicate that the current bus cycle can be terminated. During a read cycle, assertion of RDY# indicates that the system hardware has presented valid data to the CPU. When RDY# is sampled active, the microprocessor latches the input data and terminates the cycle. During a write cycle, RDY# assertion indicates that the system hardware has accepted the microprocessor output data. RDY# is active during address hold states. RDY# is internally connected to a pullup resistor to prevent it from floating active when left unconnected.				

[†] Connecting or terminating (high or low) any NC terminal(s) may cuase unpredictable results or nonperformance of the microprocessor.

SRZS006A — MAY 1995 — REVISED JANUARY 1996

Г		0	DESCRIPTION
NAME NO. 168-PIN 208-PIN			DESCRIPTION
RESET	C16	48	Reset (active high). When asserted, RESET suspends all operations in progress and places the microprocessor into a reset state. RESET is an asynchronous input but must meet specified setup and hold times to be properly recognized by the microprocessor at a particular clock edge. While RESET is active, only the HOLD input signal is recognized. The microprocessor output signals are initialized to their reset state during the internal reset sequence.
			Neither RESET nor WM_RST should be asserted during SMM as system hardware may not be returned to a known state if the SMI handler is not allowed to complete its routine.
RPLSET1 RPLSET0	A13 C12	64 63	Replacement Set $1-0$ (active high). These 3-state outputs indicate which set in the cache is currently undergoing a line replacement. The RPLSET1-0 outputs are disabled (floated) following reset and can be enabled using the RPL bit in the CCR1 Configuration Control register.
RPLVAL#	C13	70	Replacement Set Valid (active low). This three-state output is asserted during a cache line fill cycle indicating that RPLSET1–0 are valid for the current cycle. This output and the RPLSET1–0 outputs are provided so that external hardware can implement the capability for monitoring the cache LRU replacement algorithm. The RPLVAL output is disabled (floated) following reset and can be enabled using the RPL bit in the CCR1 Configuration Control register.
SMADS#	C10	59	SMM Address Strobe (active low). SMADS#, a three-state output, is asserted instead of the ADS# during SMM bus cycles and indicates that SMM memory is being accessed. SMADS# floats while the CPU is in a hold-acknowledge or float state. The SMADS# output is disabled (floated) following reset and can be enabled using the SMI bit in the CCR1 Configuration Control register.
			If bit 3 of CCR3 is set, this signal becomes SMIACT#, which indicates that SMI is active.
SMI#	A12	65	System Management Interrupt (active low). This 3-state, bidirectional, level-sensitive, input/output signal is an interrupt with higher priority than the NMI interrupt. SMI# must be active for at least one clock period to be recognized by the microprocessor. After the SMI is acknowledged, the SMI# pin is driven low by the microprocessor for the duration of the SMI service routine. The SMI# input is ignored following reset and can be enabled using the SMI bit in the CCR1 Configuration register.
			If bit 3 of CCR3 is set, this signal becomes an input only.
			An external pullup resistor is recommended to ensure negation during hold-acknowledge states.
			Suspend Request (active low). This input requests the microprocessor to enter suspend mode. After recognizing SUSP# active, the processor completes execution of the current instruction, any pending decoded instructions, and associated bus cycles. During suspend mode, internal clocks are stopped. With SUSPA# asserted, the external CLK input can be stopped in either phase. Stopping the CLK input reduces power consumption.
SUSP#	G15	73	To resume operation, the CLK input is restarted (if stopped), followed by negation of the SUSP# input. The microprocessor resumes instruction fetching and begins execution in the instruction stream at the point it stopped. SUSP# is a level-sensitive input but must meet specified setup and hold times to be properly recognized by the microprocessor at a particular clock edge. The SUSP# input is ignored following reset and can be enabled by setting the SUSP bit in the CCR2 Configuration Control register.
			SUSP# is internally connected to a pullup resistor to prevent it from floating active when left unconnected.
SUSPA#	A10	71	Suspend Acknowledge (active low). This output indicates that the microprocessor has entered the low-power suspend mode as a result of SUSP# assertion or execution of a HLT instruction. SUSPA# remains asserted until SUSP# is negated or until an interrupt is serviced if suspend mode was entered from a HLT instruction. The CLK input can be stopped after SUSPA# has been asserted to reduce power consumption. The SUSPA# output is disabled (floated) after reset and can be enabled by setting the SUSP bit in the CCR2 Configuration Control register.

PC SYSTEMS PRODUCTS

SRZS006A — MAY 1995 — REVISED JANUARY 1996

Terminal Functions (continued)

	TERMINA		
NAME	168-PIN	NO. 208-PIN	DESCRIPTION
UP#†	C11	_	Upgrade Present (active low). This input forces the TI486DX2 to float (3-state) all outputs and enter a power-down state. UP# is internally connected to a pullup resistor to prevent it from floating active when left unconnected.
Vcc	B7 B9 B11 C4 C5 E2 E16 G2 G16 H16 K2 K16 L16 M2 M16 P16 R3 R6 R9 R10 R11 R14	2, 9 14, 19 20, 22 23, 25 29, 35 38, 42 44, 45 54, 56 60, 62 69, 77 80, 82 86, 89 95, 98 102, 106 111, 114 121, 128 131, 133 134, 136 137, 139 150, 155 162, 163 169, 172 176, 179 183, 185 188, 191 198, 200 205	Power Supply. All pins must be connected and used.

†168-pin CPGA only

SRZS006A — MAY 1995 — REVISED JANUARY 1996

	TERMINA		
NAME	168-PIN	NO. 208-PIN	DESCRIPTION
VSS	A7 A9 A11 B3 B4 B5 E1 E17 G1 G17 H1 H17 K1 K17 L1 L17 K17 L1 L17 M1 M17 P17 Q2 R4 S6 S8 S9 S10 S11 S12 S14	1, 10 15, 21 28, 36 43, 52 53, 55 57, 61 76, 81 88, 94 97, 104 105, 107 110, 115 120, 122 132, 135 138, 146 156, 157 170, 175 181, 184 189, 199 201, 208	Ground Pins. All pins must be connected and used.
WM_RST	B13	58	 Warm Reset (active high). When asserted, WM_RST suspends all operations in progress and places the microprocessor into a reset state. WM_RST is an asynchronous input but must meet specified setup and hold times to be properly recognized by the microprocessor at a particular clock edge. WM_RST differs from RESET in that the valid and dirty bits in the on-chip cache and the system control bits in the Configuration registers remain unchanged. When RESET and WM_RST are asserted simultaneously, WM_RST is ignored and RESET takes priority. WM_RST is ignored following RESET but can be enabled using the WBAK bit in CCR2. WM_RST has the same timing and duration specifications as RESET. Neither RESET nor WM_RST should be asserted during SMM as system hardware may not be returned to a known state if the SMI handler is not allowed to complete its routine. WM_RST is internally connected to a pulldown resistor to prevent it from floating active when left unconnected.
W/R#	N17	27	Write/Read. This 3-state, bus-cycle-definition signal is low during read cycles (data is read from memory, I/O, or interrupt acknowledge cycle) and is high during write bus cycles (data is written to memory, I/O, or a special bus cycle).

execution pipeline

The execution path in the TI486DX2 microprocessor consists of five pipelined stages optimized for minimal instruction-cycle times. These five stages are:

- Code fetch
- Instruction decode
- Microcode ROM access
- Execution
- Memory/register file write-back

These stages have hardware interlocks that permit execution overlap for successive instructions.

The 16-byte instruction-prefetch queue fetches code in advance and prepares it for decode, helping to minimize overall execution time. The instruction decoder then decodes four bytes of instructions per clock, eliminating the need for a queue of decoded instructions. Sequential instructions are decoded quickly and provided to the microcode. Nonsequential operations do not have to wait for a queue of decoded instructions to be flushed and refilled before execution continues. As a result, both sequential and nonsequential instruction execution times are minimized.

The execution stage uses a RISC-like, single-cycle execution unit and a 16-bit hardware multiplier. The write-back stage provides single-cycle, 32-bit access to the on-chip cache and posts all writes to the cache and system bus using a two-deep write buffer. Posted writes allow the execution unit to proceed with program execution while the bus-interface unit completes the write cycle.

on-chip write-back cache

The on-chip cache is an 8K-byte unified instruction and data cache implemented using a four-way set associative architecture and a least recently used (LRU) replacement algorithm. The cache is designed for optimum performance in write-back mode; however, the cache can be operated in write-through mode. The cache line size is 16 bytes and new lines are allocated only during memory read cycles. Valid status is maintained on a 16-byte cache line basis, but modified or dirty status for write-back mode is maintained on a 4-byte (double-word) basis. Therefore, only the double words that have been modified are written back to external memory when a line is replaced in the cache. The CPU can access the cache in a single internal clock cycle for both reads and writes.

The TI486DX2 on-chip cache can be configured to run in write-through or in write-back mode. By using the write-back cache configuration, performance increases due to a reduction in the number of external memory write cycles. The write-back mode optimizes performance of the CPU core as external memory writes are required only when a cache miss occurs, a modified line is replaced in the cache, or an external bus master requires access to the data. The write-back architecture is especially effective in improving performance of the TI486DX2 devices.

Write-through cache architectures require that all writes to the cache simultaneously update external memory. These updates are unnecessary as long as the cache contains the updated instruction/data necessary to perform the operations. The write-back architecture allows the data to be written to the cache without updating external memory, thereby eliminating unnecessary external writes that can reduce system performance.

floating-point unit (FPU) operations

The TI486DX2 FPU high-performance coprocessor is an integrated part of the microprocessor, thereby eliminating the overhead associated with an external math coprocessor. When the FPU is not in use it is automatically powered down to reduce power consumption. The external system is supported by two terminals, FERR# and IGNNE#. FERR# output reports that an unmasked floating point error has occurred. The input IGNNE# is provided so that the system can signal the processor to ignore numeric error.

clock-doubling

The TI486DX2 microprocessor is designed with an on-chip clock-doubler feature. Upon power-up, the microprocessor's internal core operates at twice the input clock frequency, while the external bus interface remains the same as the input clock frequency. This increases the speed of the on-chip cache, FPU, instruction decode, and instruction execution while the external interface remains the same.

The TI486DX2 provides up to 1.8 times the performance of a 486DX at the same external clock frequency. This performance is achieved by doubling the frequency of the input clock to drive the CPU core. To further enhance this architecture, the TI486DX2 on-chip cache avoids unnecessary external memory accesses by taking advantage of cache write-back and the support of eight write buffers.

In addition to the clock-doubler feature, the TI486DX2 microprocessor supports stopping the CLK input.

power management

The TI486DX2 microprocessors incorporate advanced power-management features such as suspend mode, static operation, and operation at 3.45 V. These capabilities are attractive for battery-powered notebook and energy-efficient desktop PC systems.

system-management mode (SMM)

System-management mode (SMM) provides an additional interrupt and a separate address space that can be used for system power management or software-transparent emulation of I/O peripherals. SMM is entered using the system-management interrupt (SMI#) input or the SMINT instruction. SMI# has a higher priority than any other interrupt. While running in protected SMM address space, the SMI interrupt routine can execute without interfering with the operating system or application programs.

After receiving an SMI# interrupt, portions of the CPU state are automatically saved, SMM is entered, and program execution begins at the base of SMM address space. The location and size of the SMM memory is programmable in the TI486DX2 microprocessors. Eight SMM instructions have been added to the 486 instruction set that permit software entry into SMM and saving and restoring the total CPU state when in SMM mode.

suspend mode and static operation

The power-management feature in the TI486DX2 microprocessors allows a dramatic reduction in the current required when the microprocessor is in suspend mode (typically using less than one percent of the operating current). Suspend mode is entered either by a hardware or software-initiated action. Using hardware to initiate suspend mode involves a two-pin handshake using the SUSP# and SUSPA# signals.

The software initiates suspend mode with execution of the HLT instruction. Once the microprocessor is in suspend mode, power consumption can be reduced further by stopping the external clock input. The resulting current draw is typically 200 μ A.

Since these microprocessors are static devices, no internal CPU data is lost when the clock input is stopped.

mixed 3.45-V and 5-V operation

The TI486DX2 devices operate from a 3.45-V supply. The microprocessors feature 5-V-tolerant inputs and outputs meaning that they can be incorporated in system designs that use both 3.45-V and 5-V devices.

electrical specifications

Electrical specifications include electrical connection requirements for all package pins, maximum ratings, recommended operating conditions, dc electrical characteristics, and ac characteristics.

electrical connections

Requirements are given for power and ground connections, decoupling, termination of inputs with internal pullup/pulldown resistors, termination of system functional inputs requiring external pullup resistors, termination of unused inputs, and connection to terminals designated NC.

power and ground connections and decoupling

The TI486DX2 microprocessors must be installed and tested using standard high-frequency techniques. The high clock frequencies used in the microprocessors and their output buffer circuits can cause transient power surges when several output buffers switch output levels simultaneously. These effects can be minimized by filtering the dc power leads with low-inductance decoupling capacitors, by using low-impedance wiring, and by making connection to all of the V_{CC} and V_{SS} (GND) terminals.

pullup/pulldown resistors

Table 5 lists the terminals that are internally connected to pullup or pulldown resistors. The pullup resistors are connected to V_{CC} and the pulldown resistors are connected to V_{SS} . When unused, these inputs do not require connection to external pullup or pulldown resistors. The SUSP# terminal is unique because it is connected to a pullup resistor only when it is not asserted.

The internal pullup and pulldown resistors are designed to tie-off the individual internal signal associated with that pin. External signals should not be terminated to any of these pins.

SIGNAL	168-TERMINAL	208-TERMINAL	RESISTOR
A20M#	D15	47	Pullup
AHOLD	A17	17	Pulldown
BOFF#	D17	6	Pullup
BS16#	C17	7	Pullup
BS8#	D16	8	Pullup
BRDY#	H15	5	Pullup
EADS#	B17	46	Pullup
FLUSH#	C15	49	Pullup
IGNNE#	A15	72	Pullup
INVAL	S4	67	Pullup
KEN#	F15	13	Pullup
RDY#	F16	12	Pullup
UP#†	C11	194	Pullup
SUSP#	G15	73	Pullup
WM_RST	B13	58	Pulldown

Table 5. Terminals Connected to Internal Pullup and Pulldown Resistors

† 168-pin CPGA only

TI recommends that the ADS#, LOCK#, and SMI# output terminals be connected to pullup resistors, as indicated in Table 6. The external pullups ensure that the signals remain negated during hold-acknowledge states.

SIGNAL	168-TERMINAL	208-TERMINAL	EXTERNAL RESISTOR
ADS#	S17	203	20-kΩ pullup
LOCK#	N15	207	20-kΩ pullup
SMI#	A12	65	20-k Ω pullup

Table 6. Terminals Requiring External Pullup Resistors

NC designated terminals

Terminals designated NC must be left disconnected. Connecting or terminating any NC terminal(s) to a pullup resistor, pulldown resistor, or an active signal can cause unpredictable results or nonperformance of the microprocessor.

unused signal input terminals

All signal inputs not used by the system designer and not listed in Table 5 should be connected either to V_{SS} or to V_{CC} . Connect active-high inputs to V_{SS} through a 20-k Ω (±10%) pulldown resistor and active-low inputs to V_{CC} through a 20-k Ω (±10%) pullup resistor to prevent possible spurious operation.

SRZS006A — MAY 1995 — REVISED JANUARY 1996

absolute maximum ratings over operating case temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC}	
Voltage on any terminal	0.5 to 6 V
Input clamp current, I _{IK}	10 mA
Output clamp current, I _{OK}	25 mA
Case temperature, T _C	-65°C to 110°C
Storage temperature, T _{stg}	-65°C to 150°C

[†] Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

				MIN	MAX	UNIT
VCC	Supply voltage	With respect to V_{SS}		3.3	3.6	V
V_{IH}	High-level input voltage				5.5	V
VIL	Low-level input voltage			-0.3	0.6	V
ЮН	High-level output current	$V_{OH} = V_{OH}(min)$			-1	mA
IOL	Low-level output current	V _{OL} =V _{OL} (max)			3	mA
Ta		Dower opplied	GA 168-pin PGA	0	85	°C
тс	Case temperature F	Power applied	WR 208-pin QFP	0	0 75	

SRZS006A — MAY 1995 — REVISED JANUARY 1996

electrical characteristics at recommended operating conditions

	PARAMET		TEST CONDIT		168-PIN PACKAGE			208-PIN PACKAGE				
	PARAMEI	ER	TEST CONDITIONS		MIN	түр†	MAX	MIN	түр†	MAX	UNIT	
VOL	Low-level output voltage		IOL = 5 mA				0.35			0.35	V	
VOH	High-level output	ut voltage	$I_{OH} = -1 \text{ mA}$		2.4			2.4			V	
lj	Input current (le	akage)	$V_{IN} = 0, V_{IN} \ge V_{CC},$	See Note 1			±15			±15	μA	
IIН	High-level input current		V _{IH} = 2.4 V,	See Note 2			200			200	μΑ	
۱ _{IL}	Low-level input current		V _{IL} = 0.45 V,	See Note 1			-400			-400	μΑ	
Supply cur	Supply current	TI486DX2-G66	CLK = 66 MHz,	See Note 3		400	850		400	850	mA	
ICC	(active mode)	TI486DX2-G80	CLK = 80 MHz,	See Note 3		450	950		450	950	mA	
	Supply current	TI486DX2-66	CLK = 66 MHz,	See Notes 3 and 4		14	46		14	46	mA	
ICCSM	mode)		TI486DX2-80	CLK = 80 MHz,	See Notes 3 and 4		16	48		16	48	mA
ICCSS	Supply current (standby)		0 MHz, Suspended, CLK stopped	See Note 5		0.2	15		0.2	1	mA	
Ci	Input capacitance		f = 1 MHz,	See Note 5			20			20	pF	
Co	Output or I/O ca	apacitance	f = 1 MHz,	See Note 6			20			20	pF	
C _{clk}	Clock input cap	acitance	f = 1 MHz,	See Note 6			20			20	pF	

[†] Typical values are at V_{CC} = 3.45 V and T_A = 25° C.

NOTES: 1. Applicable for all input terminals except those with an internal pullup resistor. See Table 5.

2. Applicable for all inputs that have an internal pulldown resistor. See Table 5.

3. Refers to the internal frequency

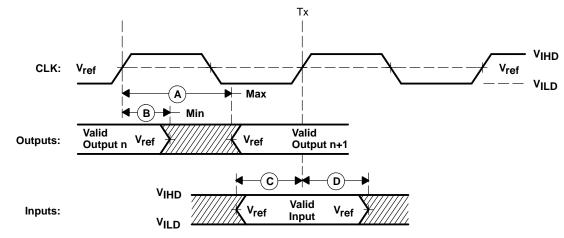
4. All inputs at 0.4 V or V_{CC-0.4}. All inputs held static, (except CLK as indicated). All outputs unloaded (static I_{OUT} = 0). Valid for UP# = 0 (168-pin CPGA only).

5. All inputs at 0.4 V or $V_{CC-0.4}$. All inputs held static,. All outputs unloaded (static I_{OUT} = 0).

6. Not 100% tested

switching characteristics

The switching characteristics provide detailed information regarding measurement points, specific timing requirements for setup and hold times, and propagation delay times of the TI486DX2 microprocessors.


measurement points for switching characteristics

The rising-clock-edge reference level, V_{ref} , and other reference levels are specified in Table 7. Input or output signals must cross these levels during testing.

SYMBOL	MEASUREMENT LEVEL	UNIT
V _{ref}	1.5	V
VIHD	2.3	V
V _{ILD}	0	V

Table 7. Measurement Levels for Switching Characteristics

Figure 3 shows delays (A and B) and input setup and hold times (C and D). Input setup and hold times are specified minimums, defining the smallest acceptable sampling window during which a synchronous input signal must be stable for correct operation.

LEGEND: A - Maximum Output Delay Specification

- B Minimum Output Delay Specification
- C Minimum Input Setup Specification
- D Minimum Input Hold Specificaton

Figure 3. Measurement Points for Delay, Setup, and Hold Times

switching characteristics and timing requirements for TI486DX2-G66 over recommended supply voltage and operating case temperature ranges

		ALT.		NOTES	TI486DX		
	PARAMETER	SYMBOL	FIGURES	NOTES	MIN	MAX	UNIT
fclock	CLK frequency (internal)	fCLK		see Note 7		66	MHz
t _C ^t wH ^t wL t _f	CLK period Pulse duration, CLK high Pulse duration, CLK low CLK fall time CLK rise time	T1 T2 T3 T4 T5	Figure 4	see Note 8	30 11 11	33	ns
^t pd ^t pd ^t dis ^t dis	A31–A2, ADS#, BE3#–BE0#, BREQ, D/C#, HLDA, FERR#, LOCK#, M/IO#, PCD, PWT, W/R# valid delay SMADS#, SMI# valid delay A31–A2 ADS#, BE3#–BE0#, BREQ, D/C#, HLDA, LOCK#, M/IO#, PCD, PWT, W/R# float delay SMADS#, SMI# float delay	T6 T6a T7 T7a	Figure 6 Figure 6 Figure 7 Figure 7	$C_L = 50 \text{ pF}$ $C_L = 50 \text{ pF}$ see Note 9 see Note 9	2 2	16 16 20 20	ns
tpd tpd tpd tdis tdis	PCHK# valid delay BLAST#, PLOCK# valid delay HITM#, RPLSET1–0, RPLVAL#, SUSPA# valid delay BLAST#, PLOCK# float delay RPLSET1–0, RPLVAL# Float delay	T8 T8a T8b T9 T9a	Figure 5 Figure 6 Figure 6 Figure 7 Figure 7	C _L = 50 pF see Note 9 see Note 9	2 2 2	22 20 20 20 22	ns
^t pd ^t pd	D31–0, DP3–0 write valid delay D31–0, DP3–0 write float delay	T10 T11	Figure 6 Figure 7	$C_{L} = 50 \text{ pF}$ see Note 10 $C_{L} = 50 \text{ pF}$ see Note 9	2	19 20	ns
t _{su} t _{su} t _h th	EADS# setup time INVAL setup time EADS# hold time INVAL hold time	T12 T12a T13 T13a	Figure 8		6 6 3 3		ns
t _{su} t _h	BS16#, BS8#, KEN# setup time BS16#, BS8#, KEN# hold time	T14 T15	Figure 8		6 3		ns
t _{su} t _{su}	BRDY#, RDY# setup time BRDY#, RDY# setup time	T16 T17	Figure 8		6 3		ns
t _{su} t _{su} t _h	AHOLD, HOLD setup time BOFF# setup time AHOLD, HOLD, BOFF# hold time	T18 T18a T19	Figure 8		6 9 3		ns
t _{su} t _{su}	A20M#, FLUSH#, IGNNE#, INTR, NMI, RESET setup time SMI#, SUSP#, WM_RST setup time	T20 T20a	Figure 8	see Note 11	6 6		ns
ĥ h	A20M#, FLUSH#, IGNNE#, INTR, NMI, RESET hold time SMI#, SUSP#, WM_RST hold time	T21 T21a	Figure 8	see Notes 10 and 11	3 3		ns
^t su ^t h	A31–4, D31–0, DP3–0 read setup time A31–4, D31–0, DP3–0 read hold time	T22 T23	Figure 8		6 3		ns

NOTES: 7. Input clock can be stopped; therefore, minimum CLK frequency is 0 MHz.

8. These parameters are not tested. They are determined by design characterization.

9. Float condition occurs when maximum output current becomes less than I_I in magnitude. Float is not 100% tested.

10. Not 100% tested.

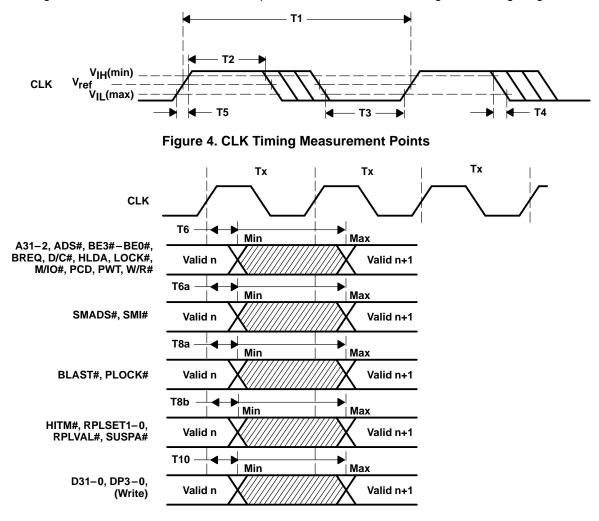
11. These inputs are allowed to be asynchronous to CLK. The setup and hold specifications are given for testing purposes, to assure recognition within a specific CLK period.

switching characteristics and timing requirements for TI486DX2-G80 over recommended supply voltage and operating case temperature ranges

	DADAMETED		FIGURES	NOTES	TI486DX2-G80		
PARAMETER		SYMBOL			MIN	MAX	UNIT
fclock	CLK frequency (internal)	^f CLK		see Note 7		80	MHz
t _C twH twL tf tr	CLK period Pulse duration, CLK high Pulse duration, CLK low CLK fall time CLK rise time	T1 T2 T3 T4 T5	Figure 4	see Note 8	25 9 9	33	ns
^t pd ^t pd ^t dis	A31–A2, ADS#, BE3#–BE0#, BREQ, D/C#, HLDA, FERR#, LOCK#, M/IO#, PCD, PWT, W/R# valid delay SMADS#, SMI# valid delay A31–A2 ADS#, BE3#–BE0#, BREQ, D/C#, HLDA, LOCK#, M/IO#, PCD, PWT, W/R# float delay SMADS#, SMI# float delay	T6 T6a T7 T7a	Figure 6 Figure 6 Figure 7 Figure 7	$C_L = 50 \text{ pF}$ $C_L = 50 \text{ pF}$ see Note 9 see Note 9	3 3	14 14 19 19	ns
^t pd ^t pd ^t dis ^t dis	PCHK# valid delay BLAST#, PLOCK# valid delay HITM#, RPLSET1–0, RPLVAL#, SUSPA# valid delay BLAST#, PLOCK# float delay RPLSET1–0, RPLVAL# Float delay	T8 T8a T8b T9 T9a	Figure 5 Figure 6 Figure 6 Figure 7 Figure 7	C _L = 50 pF see Note 9 see Note 9	3 3 3	18 16 16 16	ns
^t pd ^t pd	D31–0, DP3–0 write valid delay D31–0, DP3–0 write float delay	T10 T11	Figure 6 Figure 7	$C_L = 50 \text{ pF}$ see Note 10 $C_L = 50 \text{ pF}$ see Note 9	3	17 19	ns
t _{su} t _{su} t _h th	EADS# setup time INVAL setup time EADS# hold time INVAL hold time	T12 T12a T13 T13a	Figure 8		6 6 3 3		ns
t _{su} t _h	BS16#, BS8#, KEN# setup time BS16#, BS8#, KEN# hold time	T14 T15	Figure 8		6 3		ns
t _{su} t _{su}	BRDY#, RDY# setup time BRDY#, RDY# setup time	T16 T17	Figure 8		6 3		ns
t _{su} t _{su} t _h	AHOLD, HOLD setup time BOFF# setup time AHOLD, HOLD, BOFF# hold time	T18 T18a T19	Figure 8		6 8 3		ns
t _{su} t _{su}	A20M#, FLUSH#, IGNNE#, INTR, NMI, RESET setup time SMI#, SUSP#, WM_RST setup time	T20 T20a	Figure 8	see Note 11	6 6		ns
t _h th	A20M#, FLUSH#, IGNNE#, INTR, NMI, RESET hold time SMI#, SUSP#, WM_RST hold time	T21 T21a	Figure 8	see Notes 10 and 11	3 3		ns
t _{su} t _h	A31–4, D31–0, DP3–0 read setup time A31–4, D31–0, DP3–0 read hold time	T22 T23	Figure 8		6 3		ns

NOTES: 7. Input clock can be stopped; therefore, minimum CLK frequency is 0 MHz.

8. These parameters are not tested. They are determined by design characterization.


9. Float condition occurs when maximum output current becomes less than I₁ in magnitude. Float is not 100% tested.

10. Not 100% tested.

11. These inputs are allowed to be asynchronous to CLK. The setup and hold specifications are given for testing purposes, to assure recognition within a specific CLK period.

switching waveforms

Switching waveforms for the TI486DX2 microprocessor are illustrated in Figure 4 through Figure 8.

Figure 5. PCHK# Valid Delay Timing

SRZS006A — MAY 1995 — REVISED JANUARY 1996

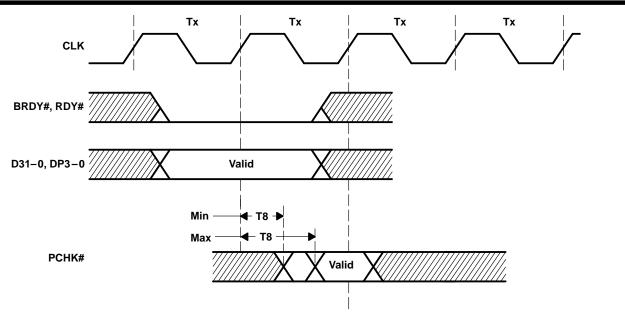


Figure 6. Output Signal Valid Delay Timing

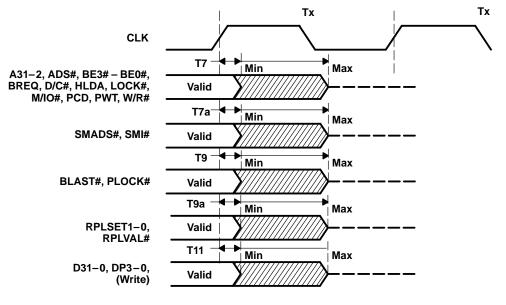


Figure 7. Output Signal Float Delay Timing

PC SYSTEMS PRODUCTS

TI486DX2-G66, TI486DX2-G80 MICROPROCESSORS

SRZS006A — MAY 1995 — REVISED JANUARY 1996

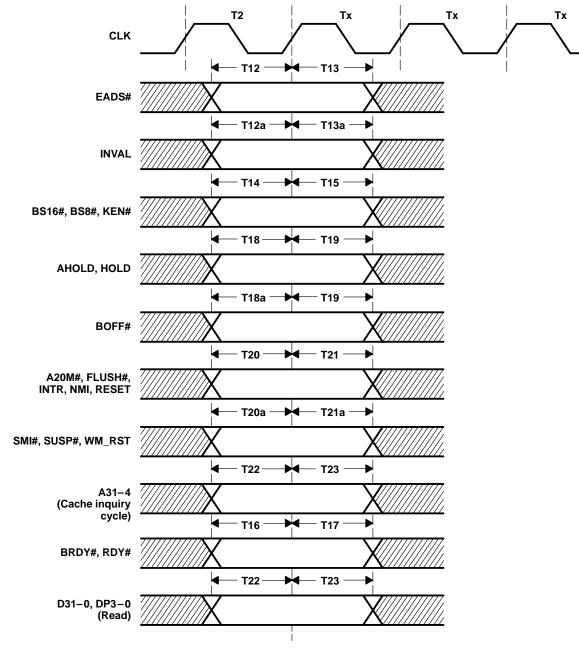
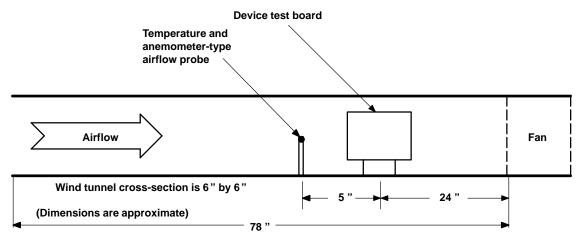


Figure 8. Input Signal Setup and Hold Timing

thermal characteristics


The junction-to-ambient (typical) values vary for individual applications depending on factors relating to how the device is mounted and the surrounding environment such as:

- Circuit trace density of the printed circuit board (PCB) and/or the presence or absence of ground or power planes internal to the PCB that affect the ability of the board to conduct heat away from the device
- Whether the device is soldered to the PCB or is inserted into a socket
- Orientation of the PCB on which device is mounted and the proximity of adjacent PCBs or system enclosure features that impede natural convection air circulation around the device
- Ambient-air temperature in close proximity to the device and the proximity of other high-power devices in the system

The final responsibility for verifying designs incorporating any version of a TI microprocessor rests with the customer originating the design. Recommended case temperature extremes are specified in recommended operating conditions.

airflow measurement setup

The wind tunnel used for airflow measurements is represented schematically in Figure 9.

Figure 9. Wind Tunnel Schematic Diagram

Typically, the devices undergoing thermal test are mounted on a test board consisting of 0.062-inch thick FR4 printed circuit board material with one-ounce copper etch. Surface-mount devices are soldered to the test board using matching footprints with the minimal circuit-trace density required to electrically interconnect the device to the board. PGA devices are typically inserted in a socket that is soldered to the test board.

thermal parameter definitions

The maximum average junction temperature (T_J max) and the maximum ambient temperature (T_A max) can be calculated using the following equations:

$$T_{J}max = T_{C} + (P_{max} \times R_{\theta JC})$$

 $I_A max = I_J - (P_{max} \times R_{\theta JA})$

where:

 T_J max = Maximum average junction temperature (°C)

 T_C = Case temperature at top center of package (°C)

Pmax = Maximum device power dissipation (W)

 $R_{\theta JC}$ = Junction-to-case thermal resistance (°C/W)

 $T_Amax = Maximum ambient temperature (°C)$

 T_J = Average junction temperature (°C)

 $R_{\theta,JA}$ = Junction-to-ambient thermal resistance (°C/W)

Values for $R_{\theta JA}$ and $R_{\theta JC}$ are given in Table 8 and Table 9 for various airflows.

	THERMAL RESISTANCE (°C/W) 168-PIN CERAMIC PGA PACKAGE			
AIRFLOW (FT/MIN)	R _θ JC	R _θ JA		
0	3	19		
100	3	16		
200	3	14		
400	3	11		
600	3	10		

Table 8. 168-Pin CPGA Thermal Resistance and Airflow

Thermal resistance values shown are based on measurements made on similar ceramic PGA packages.

Table 9. 208-Pin CQFP Thermal Resistance and Airflow

	THERMAL RESISTANCE (°C/W)		
	208-PIN CERAMIC QUAD FLAT PACKAGE		
AIRFLOW (FT/MIN)	R _θ JC	$R_{\theta JA}$	
0	4	29	
100	4	25	
200	4	22	
400	4	19	
600	4	16	

Thermal resistance values shown are based on measurements made on similar ceramic PGA packages.

SRZS006A — MAY 1995 — REVISED JANUARY 1996

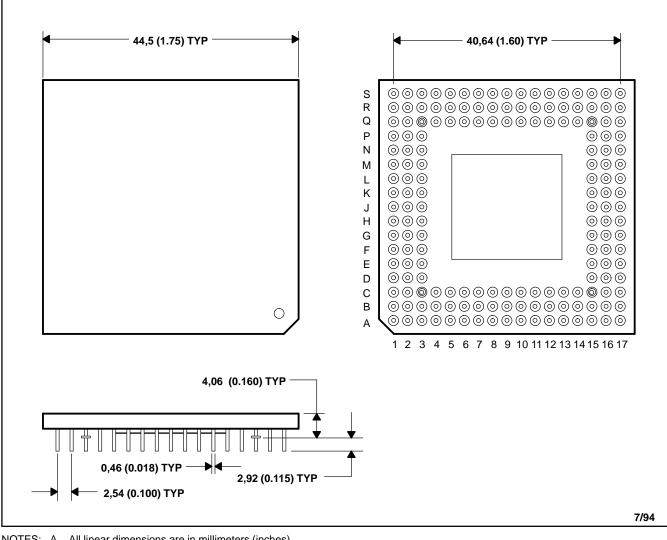
mechanical specifications

The TI486DX2 microprocessor is supplied in the following packages:

- 168-pin, ceramic pin grid array package
- 208-pin, ceramic quad flat package

Mechanical specifications provide physical dimensions for the 168-pin and 208-pin packages.

Industry-standard dimensioned drawings are supplied for each package.



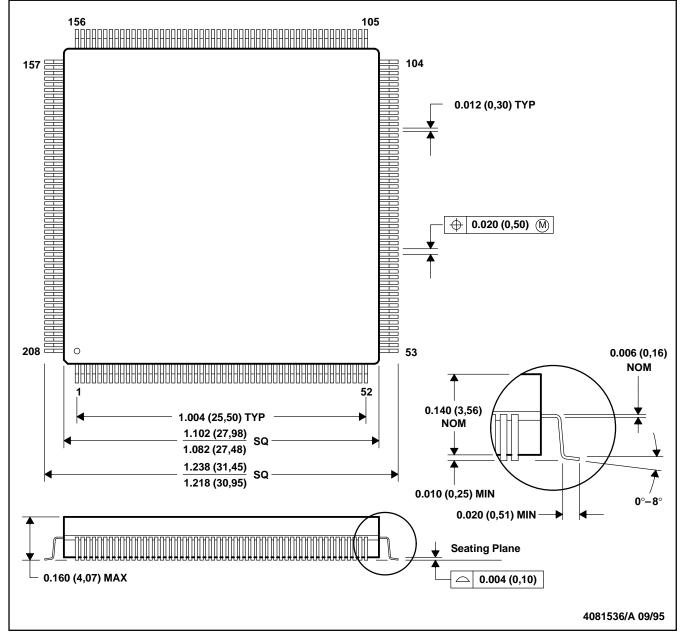
SRZS006A — MAY 1995 — REVISED JANUARY 1996

MECHANICAL DATA

CPGA-168 PIN

CERAMIC PIN GRID ARRAY

NOTES: A. All linear dimensions are in millimeters (inches). B. This drawing is subject to change without notice.



SRZS006A — MAY 1995 — REVISED JANUARY 1996

MECHANICAL DATA

NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated