
1

®

2/11/98

ST486 CORE

Standard 486 Processor Core

FEATURES

■ INDUSTRY STANDARD 486 COMPATIBILITY
■ ON-CHIP FPU
■ ON-CHIP 8KBYTE WRITE BACK L1 CACHE

■ DX / DX2 MODE OF OPERATION
■ ADVANCED POWER MANAGEMENT

1.1 DESCRIPTION

The ST486 CPU is an advanced 486DX/DX2
compatible processor. It incorporates an on-chip
8-KByte write-back cache and an integrated math
coprocessor.

The on-chip write-back cache allows up to 15%
higher performance by eliminating unnecessary
external write cycles. On traditonnal write-trough
CPUs, these external write cycles can create bus
bottlenecks affecting system-wide performance.

The integrated Floating Point Unit, based on ST’s
FasMath architecture, improves performance up
to 10% over the 80486DX as measured using
Power Meter Whetstone test.

Figure 1-1. Internal architecture.

This processor is designed to meet the power
management requirements in the newest genera-
tion of low-power desktops and notebooks. Power
is saved not only by usinglow power supply, but by
taking advantage of advanced power manage-
ment features such as static circuitry, SMM, and
automatic FPU power-down. Fast entry and exit of
SMM allows frequent use of the SMM feature with-
out noticeable performance degradation.

This CPU maintains compatibility with the installed
base of x86 software.

Decoder

Microcode ROM
Address

Sequencer

16-byte

Execution Unit

Limit

Unit

Multiplier

Unit

3-Input

Adder
Shift

Unit
Unit

Register

File

Data
Bus

Byte

& I/O
Regs

Muxes

Memory

Management
Unit

Prefetch

Unit

8 KByte
Instr/Data

Cache

Linear Address Bus

Memory

Instruction Address Bus

Data Address Bus

Address

Bus
Control

Buffers

Data

Control

Branch Control

Control Immediate

Control Immediate

D31-D0

A31-A2

ROM

Queue

Buffers

Instruction

32Execution Pipeline

8 Write

 32
Prefetch
Data Bus

Buffers

BE3#-BE0#

SUSP#

SUSPA#

CLK

SMI#

SMADS#

FPUCache and Memory

Management

486DX C tibl

SMM,
Suspend

Mode
and

Clock
Control

Core
Clock

Bus
Clock

Control

1

HOW TO USE THIS MANUAL

2

HOW TO USE THIS MANUAL

3

HOW TO USE THIS
MANUAL

2.3 INTRODUCTION

This manual provides full technical documentation
for the ST486 CPU Core. It is recommended that
the reader is familiar with the x86 series proces-
sors and PC compatible architectures before
reading this document. Many terms are used
which related directly to the PC architecture.

The manual itself is split into chapters. These
chapters hold the information for a particular func-
tional block of the ST486 Core.

2.4 SPECIFIC NOTES

2.4.1 RESERVED BITS

Many bits in the register descriptions are noted as
reserved. These bits are not internally connected,
physically not present or are used for testing pur-
poses. In all cases these bits should be set to a ‘0’
when writing to a register with reserved bits. When
reading from a register with reserved bits, these
specific bits should be masked from the data value
before action is taken on the data.
Any functionality found by setting the reserved bits
to levels other than ‘0’ cannot and will not be guar-
anteed on future revisions of the circuit design.
Thus it is not recommended to use the bits marked
as reserved in any way different from noted
above.

2.4.2 SIGNAL ACTIVE STATE

The pound symbol (#) following a signal name in-
dicates that when the signal is in its active (assert-
ed) state, the signal is at a logic low level. When
the “#” is not present at the end of a signal name,
the logic high level represents the active state.

2.4.3 HEX NOTATION
In this manual Hexadecimal (Hex) numbers (num-
bers to the base 16: [0-9,A-F]) are denoted by the
postfix ‘h’.

For example a memory address 7830A hexadeci-
mal will be written 783Ah.

2.4.4 ENDIAN

In common with the x86 architecture, values in
memory are little-endian, that is the lower part of
the memory contains the least significant byte.

For an 8-bit value
N 7 6 5 4 3 2 1 0

For a 16-bit (word) value
N 7 6 5 4 3 2 1 0
N+1 15 14 13 12 11 10 9 8

For a 24-bit value
N 7 6 5 4 3 2 1 0
N+1 15 14 13 12 11 10 9 8
N+2 23 22 21 20 19 18 17 16

For a 32-bit (long word) value
N 7 6 5 4 3 2 1 0
N+1 15 14 13 12 11 10 9 8
N+2 23 22 21 20 19 18 17 16
N+3 31 30 29 28 27 26 25 24

For a 64-bit (QUAD word) value

N 7 6 5 4 3 2 1 0
N+1 15 14 13 12 11 10 9 8
N+2 23 22 21 20 19 18 17 16
N+3 31 30 29 28 27 26 25 24
N+4 39 38 37 36 35 34 33 32
N+5 47 46 45 44 43 42 41 40
N+6 55 54 53 52 51 50 49 48
N+6 63 62 61 60 59 58 57 56

HOW TO USE THIS MANUAL

4

1

486 CORE

2

486 CORE

3

486 CORE
3.1 Introduction

In this chapter, the internal operations of the 486
core are described mainly from an application pro-
grammer’s point of view. Included in this chapter
are descriptions of processor initialization, the reg-
ister set, memory addressing, various types of in-

terrupts and the shutdown and halt process. In-
cluded is an overview of real, virtual 8086, and
protected operating modes. The FPU operations
are described separately at the end of this chap-
ter.

3.2 Processor Initialization

The 486 core is initialized when the RESET signal
is asserted. The processor is placed in real mode
and the registers listed in Table 3-1 are set to their
initialized values. RESET invalidates and disables
the 486 core cache, and turns off paging. When
RESET is asserted, the 486 core terminates all lo-
cal bus activity and all internal execution. During
the entire time that RESET is asserted, the inter-
nal pipeline is flushed and no instruction execution
or bus activity occurs.

Approximately 150 to 250 external clock cycles
(additional 220 + 60 if self-test is requested) after
RESET is negated, the processor begins execut-
ing instructions at the top of physical memory (ad-
dress location FFFF FFF0h). When the first in-
tersegment JUMP or CALL is executed, memory
address lines A31-A20 are driven low for code
segment-relative memory access cycles. While
A31-A20 are low, the 486 core executes instruc-
tions only in the lowest 1 MByte of physical ad-
dress space until system-specific initialization oc-
curs via program execution.

486 CORE

4

3.3 Instruction Set Overview

The 486 core instruction set can be divided into
eight types of operations:

– Arithmetic

– Bit Manipulation

– Control Transfer

– Data Transfer

– Floating Point

– High-Level Language Support

– Operating System Support

– Shift/Rotate

– String Manipulation.

All 486 core instructions operate on as few as 0
operands and as many as 3 operands. An NOP in-
struction (no operation) is an example of a 0 oper-
and instruction. Two operand instructions allow
the specification of an explicit source and destina-
tion pair as part of the instruction. These two oper-
and instructions can be divided into eight groups
according to operand types:

Table 3-1. Initialized Core Register Controls

Register Register Name
Initialized
Contents

Comments

EAX Accumulator xxxx xxxxh 0000 0000h indicates self-test passed.
EBX Base xxxx xxxxh
ECX Count xxxx xxxxh
EDX Data xxxx 0400 + Device ID Device ID = 80h.
EBP Base Pointer xxxx xxxxh
ESI Source Index xxxx xxxxh

EDI Destination Index xxxx xxxxh
ESP Stack Pointer xxxx xxxxh
EFLAGS Flag Word 0000 0002h
EIP Instruction Pointer 0000 FFF0h

ES Extra Segment 0000h
Base address set to 0000 0000h.
Limit set to FFFFh.

CS Code Segment F000h
Base address set to FFFF 0000h.
Limit set to FFFFh.

SS Stack Segment 0000h
Base address set to 0000 0000h.
Limit set to FFFFh.

DS Data Segment 0000h
Base address set to 0000 0000h.
Limit set to FFFFh.

FS Extra Segment 0000h
Base address set to 0000 0000h.
Limit set to FFFFh.

GS Extra Segment 0000h
Base address set to 0000 0000h.
Limit set to FFFFh.

IDTR
Interrupt Descriptor Table
Register

Base = 0, Limit = 3FFh

CR0 Machine Status Word 6000 0010h
CCR1 Configuration Control 1 00h
CCR2 Configuration Control 2 00h
CCR3 Configuration Control 3 00h

SMAR SMM Address Region 0000h
DIR0 Device Identification 0 586DX = 1Ah
DIR1 Device Identification 1 Step ID + Revision ID
DR7 Debug Register 7 0000 0400h
Note: x = Undefined value

486 CORE

5

– Register to Register

– Register to Memory

– Memory to Register

– Memory to Memory

– Register to I/O

– I/O to Register

– Immediate Data to Register

– Immediate Data to Memory.

An operand can be held in the instruction itself (as
in the case of an immediate operand), in a regis-
ter, in an I/O port or in memory. An immediate op-
erand is prefetched as part of the opcode for the
instruction.

Operand lengths of 8, 16, or 32 bits are supported
as well as 64 or 80 bit associated with floating
point instructions. Operand lengths of 8 or 32 bits
are generally used when executing code written
for 386- or 486-class (32-bit code) processors.
Operand lengths of 8 or 16 bits are generally used
when executing existing 8086 or 80286 code (16-
bit code). The default length of an operand can be
overridden by placing one or more instruction pre-
fixes in front of the opcode. For example, by using
prefixes, a 32-bit operand can be used with 16-bit
code or a 16-bit operand can be used with 32-bit
code.

Chapter 12 of this manual lists each instruction in
the 486 core instruction set along with the associ-
ated opcodes, execution clock counts and effects
on the FLAGS register.

3.3.1 Lock Prefix

The LOCK prefix may be placed before certain in-
structions that read, modify, then write back to
memory. The prefix asserts the LOCK# signal to
indicate to the external hardware that the CPU is
in the process of running multiple indivisible mem-
ory accesses. The LOCK prefix can be used with
the following instructions:

– Bit Test Instructions
(BTS, BTR, BTC)

– Exchange Instructions
(XADD, XCHG, CMPXCHG)

– One-operand Arithmetic and Logical Instructions
(DEC, INC, NEG, NOT)

– Two-operand Arithmetic and Logical Instructions
(ADC, ADD, AND, OR,_SBB, SUB, XOR).

An invalid opcode exception is generated if the
LOCK prefix is used with any other instruction, or
with the above instructions when no write opera-
tion to memory occurs (i.e., the destination is a
register). The LOCK prefix function may be disa-
bled by setting the NO_LOCK bit in Configuration
Control Register 1 (CCR1).

3.4 Register Set

There are 40 accessible registers in the 486 core
and these registers are grouped into two sets. The
application register set contains the registers fre-
quently used by application programmers, and the
system register set contains the registers typically
reserved for use by operating systems program-
mers.

The application register set is made up of eight
general purpose registers, six segment registers,
a flag register and a instruction pointer register.

The system register set is made up of the remain-
ing registers which include three control registers,
four system address registers, six debug regis-
ters, six configuration registers and five test regis-
ters.

Each of the registers is discussed in detail in the
following sections.

3.4.1 Application Register Set

The application register set, Figure 3-1, consists
of the registers most often used by the applica-
tions programmer.

These registers are generally accessible and are
not protected from read or write access.

The General Purpose Register contents are fre-
quently modified by assembly language instruc-
tions and typically contain arithmetic and logical
instruction operands.

486 CORE

6

Figure 3-1. Application Register Set

General

Segment

Instruction

EFLAGS

EIP

CS

SS

DS

ES

FS

GS

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

AX

SI

DI

BP

SP

31 16 15 8 7 0

15 0

1531 16 0

FLAGS

IP

1700403

BX

CX

DX

AH

BH

CH

DH

AL

BL

CL

DL Purpose
Registers

Registers

Pointer and
Flags Register

486 CORE

7

The Segment Register in real mode contains the
base address for each segment. In protected
mode the segment registers contain segment se-
lectors. The segment selectors provide indexing
for tables (located in memory) that contain the
base address for each segment, as well as other
memory addressing information.

The Flag Register contains control bits used to
reflect the status of previously executed instruc-
tions. This register also contains control bits that
effect the operation of some instructions.

The Instruction Pointer register points to the
next instruction that the processor will execute.
This register is automatically incremented by the
processor as execution progresses.

3.4.2 General Purpose Registers

The general purpose registers are divided into
four data registers, two pointer registers, and two
index registers as shown in Figure 3-2.

The Data Registers are used by the applications
programmer to manipulate data structures and to
hold the results of logical and arithmetic opera-
tions. Different portions of the general data regis-
ters can be addressed by using different names.
An “E” prefix identifies the complete 32-bit regis-
ter. An “X” suffix without the “E” prefix identifies
the lower 16 bits of the register. The lower two
bytes of the register can be addressed with an “H”
suffix to identify the upper byte or an “L” suffix to

identify the lower byte. When a destination oper-
and size specified by an instruction is smaller than
the specified destination register, the other bytes
of the destination register are not affected when
the operand is written to the register.

The Pointer and Index Registers are listed be-
low.

SI or ESI Source Index

DI or EDI Destination Index

SP or ESP Stack Pointer

BP or EBP Base Pointer

These registers can be addressed as 16- or 32-bit
registers, with the “E” prefix indicating 32 bits. The
pointer and index registers can be used as gener-
al purpose registers, however, some instructions
use a fixed assignment of these registers. For ex-
ample, repeated string operations always use ESI
as the source pointer, EDI as the destination
pointer, and ECX as a counter. The instructions
using fixed registers include multiply and divide, I/
O access, string operations, translate, loop, varia-
ble shift and rotate, and stack operations instruc-
tions. The 486 core processor implements a stack
using the ESP register. This stack is accessed
during the PUSH and POP instructions, procedure
calls, procedure returns, interrupts, exceptions,
and interrupt/exception returns. The microproces-
sor automatically adjusts the value of the ESP dur-
ing operation of these instructions.

486 CORE

8

Figure 3-2. General Purpose Registers

_X

E_X

A (Accumulator)

B (Base)

C (Count)

D (Data)

E_ _

BP (Base-Pointer)

SI (Source-Index)

DI (Destination-Index)

SP (Stack-Pointer)

_ _

_H _ L

31 16 15 8 7 0

Data Registers

Pointer and Index Registers

1700603

486 CORE

9

3.4.3 Segment Registers and Selectors

Segmentation provides a means of defining data
structures inside the memory space of the micro-
processor. There are three basic types of seg-
ments: code, data, and stack. Segments are used
automatically by the processor to determine the
location in memory of code, data, and stack refer-
ences.

There are six 16-bit segment registers:

CS Code Segment

DS Data Segment

ES Extra Segment

SS Stack Segment

FS Additional Data Segment

GS Additional Data Segment.

In real and virtual 8086 operating modes, a seg-
ment register holds a 16-bit segment base. The
16-bit segment base is multiplied by 16 and a 16-
bit or 32-bit offset is then added to it to create a lin-
ear address. The offset size is dependent on the
current address size. In real mode and in virtual
8086 mode with paging disabled, the linear ad-
dress is also the physical address. In virtual 8086
mode with paging enabled, the linear address is
translated to the physical address using the cur-
rent page tables.

3.4.3.1 Segment Selector Register

In protected mode, a 16_bit segment register
holds a Segment Selector containing a 13-bit in-
dex, a Table Indicator (TI) bit, and a two-bit Re-
quested Privilege Level (RPL) field.

Bits 15-3 Index. These bits point into a descriptor
table in memory and selects one of 8192 (213)
segment descriptors contained in the descriptor
table. A segment descriptor is an eight-byte value
used to describe a memory segment by defining
the segment base, the segment limit, and access
control information. To address data within a seg-
ment, a 16-bit or 32-bit offset is added to the seg-
ment’s base address. Once a segment selector
has been loaded into a segment register, an in-
struction needs to specify the offset only.

Bit 2 TI, Table Indicator. This bit of the selector,
defines which descriptor table the index points in-
to. If TI=’0’, the index references the Global De-
scriptor Table (GDT). If TI=’1’, the index referenc-
es the Local Descriptor Table (LDT). The GDT
and LDT are described in more detail later in this
chapter.

Bits 1-0 RPL, Requested Privilege Level. This
field contains a 2-bit segment privilege level (0 =
most privileged, 3 = least privileged). The RPL bits
are used when the segment register is loaded to
determine the Effective Privilege Level (EPL). If
the RPL bits indicate less privilege than the Cur-
rent Program Level (CPL), the RPL overrides the
CPL and the EPL is the less privileged level. If the
RPL bits indicate more privilege than the program,
the CPL overrides the RPL and again the EPL is
the less privileged level.

486 CORE

10

When a segment register is loaded with a seg-
ment selector, the segment base, segment limit
and access rights are also loaded from the de-
scriptor table into a user-invisible or hidden portion
of the segment register, i.e., cached on-chip. The
CPU does not access the descriptor table again
until another segment register load occurs. If the
descriptor tables are modified in memory, the seg-
ment registers must be reloaded with the new se-
lector values by the software.

The processor automatically selects a default seg-
ment register for memory references. Table 3-2
describes the selection rules. In general, data ref-
erences use the selector contained in the DS reg-
ister, stack references use the SS register and in-
struction fetches use the CS register. While some
of these selections may be overridden, instruction
fetches, stack operations, and the destination
write of string operations cannot be overridden.
Special segment override prefixes allow the use of
alternate segment registers including the use of
the ES, FS, and GS segment registers.

3.4.3.2 Instruction Pointer_Register

The Instruction Pointer (EIP) register contains
the offset into the current code segment of the
next instruction to be executed. The register is
normally incremented with each instruction execu-
tion unless implicitly modified through an interrupt,
exception or an instruction that changes the se-
quential execution flow (e.g., jump, call).

Table 3-2. Segment Register Selection Rules

Type of Memory References Implied (Default) Segment Segment Override Prefix
Code Fetch CS None
Destination of PUSH, PUSHF, INT,
CALL, PUSHA instructions

SS None

Source of POP, POPA, POPF, IRET,
RET instructions

SS None

Destination of STOS, MOVS, REP
STOS, REP MOVS instructions

ES None

Other data references with effective
address using base registers of:
EAX, EBX, ECX,
EDX, ESI, EDI,
EBP, ESP

DS

SS

CS, ES, FS, GS, SS

CS, ES, FS, GS

486 CORE

11

3.4.3.3 Flags Register

The Flags Register , EFLAGS, contains status in-
formation and controls certain operations on the
486 core microprocessor. The lower 16 bits of this
register are referred to as the FLAGS register that
is used when executing 8086 or 80286 code. The
flag bits are shown in Figure 3-3.

Bits 31-19 Reserved. These bits should be set to
'0'

Bit 18 AC, Alignment Check Enable. In conjunc-
tion with the AM flag in CR0, the AC flag deter-
mines whether or not misaligned accesses to
memory cause a fault. If AC is set, alignment
faults are enabled.

Bit 17 VM, Virtual 8086 Mode. If set while in pro-
tected mode, the microprocessor switches to virtu-
al 8086 operation handling segment loads as the
8086 does, but generating exception 13 faults on
privileged opcodes. The VM bit can be set by the
IRET instruction (if current privilege level=0) or by
task switches at any privilege level.

Bit 16 RF, Resume Flag. Used in conjunction with
debug register breakpoints. RF is checked at in-
struction boundaries before breakpoint exception
processing. If set, any debug fault is ignored on
the next instruction.

Bit 15 Reserved. This bit should be set to '0'

Bit 14 NT, Nested Task. While executing in pro-
tected mode, NT indicates that the execution of
the current task is nested within another task.

Bits 13-12, IOPL I/O Privilege Level. While exe-
cuting in protected mode, IOPL indicates the max-
imum current privilege level (CPL) permitted to ex-
ecute I/O instructions without generating an ex-
ception 13 fault or consulting the I/O permission
bit map. IOPL also indicates the maximum CPL al-
lowing alteration of the IF bit when new values are
popped into the EFLAGS register.

Bit 11 OF, Overflow Flag. Set if the operation re-
sulted in a carry or borrow into the sign bit of the

result but did not result in a carry or borrow out of
the high-order bit. Also set if the operation resulted
in a carry or borrow out of the high-order bit but did
not result in a carry or borrow into the sign bit of
the result.

Bit 10 DF, Direction Flag. When cleared, DF
causes string instructions to auto-increment (de-
fault) the appropriate index registers (ESI and/or
EDI). Setting DF causes auto-decrement of the in-
dex registers to occur.

Bit 9 IF, Interrupt Enable Flag. When set, mask-
able interrupts (INTR input pin) are acknowledged
and serviced by the CPU.

Bit 8 TF, Trap Enable Flag. Once set, a single-
step interrupt occurs after the next instruction
completes execution. TF is cleared by the single-
step interrupt.

Bit 7 SF, Sign Flag. Set equal to high-order bit of
result (0 indicates positive, 1 indicates negative).

Bit 6 ZF, Zero Flag. Set if result is zero; cleared
otherwise.

Bit 5 Reserved. This bit should be set to '0'

Bit 4 AF, Auxiliary Carry Flag. Set when a carry
out of (addition) or borrow into (subtraction) bit po-
sition 3 of the result occurs; cleared otherwise.

Bit 3 Reserved. This bit should be set to '0'

Bit 2 PF, Parity Flag. Set when the low-order 8
bits of the result contain an even number of ones;
cleared otherwise.

Bit 1 Reserved. This bit should be set to '1'

Bit 0 CF, Carry Flag. Set when a carry out of (ad-
dition) or borrow into (subtraction) the most signif-
icant bit of the result occurs; cleared otherwise.

486 CORE

12

Figure 3-3. EFLAGS Register

FLAGS

ALIGNMENT CHECK

1701103

VIRTUAL 8086 MODE

RESUME FLAG

NESTED TASK FLAG

I/O PRIVILEGE LEVEL

OVERFLOW
DIRECTION FLAG

INTERRUPT ENABLE

TRAP FLAG

SIGN FLAG
ZERO FLAG

AUXILIARY CARRY

PARITY FLAG
CARRY FLAG

0 0 0 0 0 0 0 0 0 0 0 0 0

0 OR 1 INDICATES RESERVED

A = ARITHMETIC FLAG, D = DEBUG FLAG, S = SYSTEM FLAG, C = CONTROL FLAG

S

S

D

S
S
A

C

S

D
A

A

A
A
A

9 8 7 6 5 4 3 1 2 0

C1P0A0ZSTIDOION0RVA

3
1

2
4

2
3

1
9

1 1 1 1 1 1 1 1 1
8 7 6 5 4 3 2 1 0

C M F T PL F F F F F F F F F

486 CORE

13

3.4.4 System Register Set

The system register set, shown in Figure 3-4, con-
sists of registers not generally used by application
programmers. These registers are typically em-
ployed by system level programmers who gener-
ate operating systems and memory management
programs.

The Control Registers control certain aspects of
the 486 core microprocessor such as paging, co-
processor functions, and segment protection.
When a paging exception occurs while paging is
enabled, the control registers retain the linear ad-
dress of the access that caused the exception.

The Descriptor Table Registers and the Task
Register can also be referred to as system ad-
dress or memory management registers. These
registers consist of two 48-bit and two 16-bit regis-
ters. These registers specify the location of the
data structures that control the segmentation used
by the 486 core microprocessor. Segmentation is
one available method of memory management.

The Configuration Registers are used to config-
ure the 486 core on-chip cache operation, coproc-
essor interface, power management features and
System Management Mode. The configuration
registers also provide information on the CPU de-
vice type and revision.

The Debug Registers provide debugging facili-
ties for the 486 core microprocessor and enable
the use of data access breakpoints and code exe-
cution breakpoints.

The Test Registers provide a mechanism to test
the contents of both the on-chip 8 KByte cache
and the Translation Lookaside Buffer (TLB). The
TLB is used as a cache for the tables which are
used in translating linear addresses to physical
addresses while paging is enabled. In the follow-
ing sections, the system register set is described
in greater detail.

3.4.4.1 Control Registers

The Control Registers (CR0, CR2 and CR3), are
shown in Figure 3-5.

When operating in protected mode, any program
can read the control registers. However, only priv-
ilege level 0 (most privileged) programs can mod-
ify the contents of these registers.

CONTROL REGISTER CR0

The CR0 register contains system control flags
which control operating modes and indicate the
general state of the CPU. The lower 16 bits of CR0
are referred to as the Machine Status Word
(MSW). The effects of combinations of EM, TS,
MP bits of CR0 are described in Table 3-3. The re-
served bits in CR0 should not be modified.

Bit 31 PG, Paging Enable Bit. If PG='1' and pro-
tected mode is enabled (PE='1'), paging is ena-
bled.

Bit 30 CD, Cache Disable. If CD='1', no further
cache fills occur. However, data already present in
the cache continues to be used if the requested
address hits in the cache. The cache must also be
invalidated to completely disable any cache activ-
ity.

Bit 29 NW, Not Write-Through. If NW='1', the on-
chip cache operates in write-back mode. In write-
back mode, writes are issued to the external bus
only for a cache miss, a line replacement of a
modified line, or as the result of a cache inquiry cy-
cle. If NW='0', the on-chip cache operates in write-
through mode. In write-through mode, all writes
(including cache hits) are issued to the external
bus.

Bits 28-19 Reserved. Do not attempt to modify.

Bit 18 AM, Alignment Check Mask. If AM='1', the
AC bit in the EFLAGS register is unmasked and
allowed to enable alignment check faults. Setting
AM='0' prevents AC faults from occurring.

Bits 17 Reserved. Do not attempt to modify.

486 CORE

14

Bit 16 WP, Write Protect. Protects read-only pag-
es from supervisor write access. WP='0' allows a
read-only page to be written from privilege level 0-
2. WP='1' forces a fault on a write to a read-only
page from any privilege level.

Bits 15-6 Reserved. Do not attempt to modify.
This bit must be set to ‘1’.

Bit 5 NE, Numerics Exception. NE='1' to allow
FPU exceptions to be handled by interrupt 16.
NE='0' if FPU exceptions are to be handled by ex-
ternal interrupts.

Bit 4 Reserved. Do not attempt to modify. This bit
must be maintained at '1'

Figure 3-4. System Register Set

Control

Debug

Test

TR3

TR4

DR0
DR1

DR2
DR3
DR6

DR7

GDTR
IDTR
LDTR

TR

CR0

CR2

CR3

1531 16 0

1516 0

Page Fault Linear Address Register

Page Directory Base Register

47

31 0
 Linear Breakpoint Address 0

Breakpoint Status
Breakpoint Control

Cache Test

Configuration

CCR1
CCR2

0

31 0

TLB Test Control

TR5
TR6
TR7TLB Test Status

Cache Test
Cache Test

Linear Breakpoint Address 1

Linear Breakpoint Address 2
Linear Breakpoint Address 3

7
CCR1
CCR2

Base
Base

Limit

Limit
Selector

Selector Task Register

Descriptor

1724000

Registers

Table
Registers

Registers

Registers
CCR3

SMM Address Region Register
CCR3
SMAR

Registers

DIR0

DIR1

DIR0
DIR1

23

CCR1 = Configuration Control 1
CCR2 = Configuration Control 2
CCR3 = Configuration Control 3
DIR0 = Device Identification 0
DIR1 = Device Identification 1

486 CORE

15

Bit 3 TS, Task Switched. Set whenever a task
switch operation is performed. Execution of a
floating point instruction with TS='1' causes a DNA
fault. If MP='1' and TS='1', a WAIT instruction also
causes a DNA fault.

Bit 2 EM, Emulate Processor Extension. If
EM='1', all floating point instructions cause a DNA
fault 7.

Bit 1 MP, Monitor Processor Extension. If
MP='1' and TS='1', a WAIT instruction causes De-
vice Not Available (DNA) fault 7. The TS bit is set
to '1' on task switches by the CPU. Floating point
instructions are not affected by the state of the MP
bit. The MP bit should be set to one during normal
operations.

Bit 0 PE, Protected Mode Enable. Enables the
segment based protection mechanism. If PE='1',
protected mode is enabled. If PE='0', the CPU op-

erates in real mode, with segment based protec-
tion disabled, and addresses are formed as in an
8086-class CPU.

Figure 3-5. Control Registers

PAGE FAULT LINEAR ADDRESS

CR3

CR2

CR0

1700703MSW

PAGE DIRECTORY BASE REGISTER (PDBR) RESV.RESERVED

31 12 11 4 3 0

P P

1RESERVED RESERVED
T E M PA WP C N

W
T

C
D

S M P EM P

01234161831 30 29

G D W
N
E

5

Table 3-3. Effects of combinations of EM, TS,
MP Bits

CR0 BIT Instruction Type
EM TS MP WAIT ESC
0 0 0 Execute Execute
0 0 1 Execute Execute
0 1 0 Execute Fault 7
0 1 1 Fault 7 Fault 7
1 0 0 Execute Fault 7
1 0 1 Execute Fault 7
1 1 0 Execute Fault 7
1 1 1 Fault 7 Fault 7

486 CORE

16

CONTROL REGISTER CR2

When paging is enabled and a page fault is gener-
ated, the CR2 register retains the 32-bit linear ad-
dress of the address that caused the fault.

Bits 31-0 Page Fault Linear Address.

CONTROL REGISTER CR3

Register CR3 contains the 20 most significant bits
of the physical base address of the page directory.
The page directory must always be aligned to a 4
KByte page boundary, therefore, the lower 12 bits
of CR3 are not required to specify the base ad-
dress.

Bits 31-12 PDBR, Page Directory Base.

Bits 11-5 Reserved.

Bit 4 PCD.

Bit 3 PWT.

Bits 3-0 Reserved.

486 CORE

17

3.4.4.2 Descriptor Table Registers and
Descriptors

Descriptor Table Registers

The Global, Interrupt and Local Descriptor Table
Registers (GDTR, IDTR and LDTR), shown in Fig-
ure 3-6, are used to specify the location of the data
structures that control segmented memory man-
agement. The GDTR, IDTR and LDTR are loaded
using the LGDT, LIDT and LLDT instructions, re-
spectively. The values of these registers are
stored using the corresponding store instructions.
The GDTR and IDTR load instructions are privi-
leged instructions when operating in protected
mode. The LDTR can only be accessed in protect-
ed mode.

The Global Descriptor Table Register (GDTR)
holds a 32-bit linear base address and 16-bit limit
for the Global Descriptor Table (GDT). The GDT is
an array of up to 8192 _8-byte descriptors. When
a segment register is loaded from memory, the TI
bit in the segment selector chooses either the
GDT or the Local Descriptor Table (LDT) to locate
a descriptor. If TI = ‘0’, the index portion of the se-
lector is used to locate a given descriptor within
the GDT table. The contents of the GDTR are
completely visible to the programmer. The first de-
scriptor in the GDT (location 0) is not used by the
CPU and is referred to as the “null descriptor”. If
the GDTR is loaded while operating in 16-bit oper-
and mode, the 486 core accesses a 32-bit base
value but the upper 8 bits are ignored resulting in a
24-bit base address.

The Interrupt Descriptor Table Register (IDTR)
holds a 32-bit linear base address and 16-bit limit
for the Interrupt Descriptor Table (IDT). The IDT is
an array of 256 8-byte interrupt descriptors, each
of which is used to point to an interrupt service
routine. Every interrupt that may occur in the sys-
tem must have an associated entry in the IDT. The
contents of the IDTR are completely visible to the
programmer.

The Local Descriptor Table Register (LDTR)
holds a 16-bit selector for the Local Descriptor Ta-
ble (LDT). The LDT is an array of up to 8192 8-
byte descriptors. When the LDTR is loaded, the
LDTR selector indexes an LDT descriptor that
must reside in the Global Descriptor Table (GDT).
The contents of the selected descriptor are
cached on-chip in the hidden portion of the LDTR.
The CPU does not access the GDT again until the
LDTR is reloaded. If the LDT descriptor is modi-
fied in memory in the GDT, the LDTR must be re-
loaded to update the hidden portion of the LDTR.

When a segment register is loaded from memory,
the TI bit in the segment selector chooses either
the GDT or the LDT to locate a segment descrip-
tor. If TI = ‘1’, the index portion of the selector is
used to locate a given descriptor within the LDT.
Each task in the system may be given its own
LDT, managed by the operating system. The
LDTs provide a method of isolating a given task’s
segments from other tasks in the system.

Figure 3-6. Descriptor Table Registers

1708003

BASE ADDRESS LIMIT

SELECTOR

48 16 15 0

LDTR

IDTR

GDTRBASE ADDRESS LIMIT

486 CORE

18

Descriptors

There are three types of descriptors:

■ Application Segment Descriptors that define
code, data and stack segments.

■ System Segment Descriptors that define an
LDT segment or a Task State Segment (TSS)
table described later in this text.

■ Gate Descriptors that define task gates,
interrupt gates, trap gates and call gates.

Application Segment Descriptors can be locat-
ed in either the LDT or GDT. System Segment De-
scriptors can only be located in the GDT. Depend-
ent on the gate type, gate descriptors may be lo-
cated in either the GDT, LDT or Interrupt Descrip-
tor Table (IDT) described later in this text. Figure
3-7 illustrates the descriptor format for both Appli-
cation Segment Descriptors and System Segment
Descriptors.

SEGMENT DESCRIPTOR REGISTER

MEMORY OFFSET +4

Bits 31-24 BASE, Segment base address Bits
31-24. 32-bit linear address that points to the be-
ginning of the segment.

Bits 19-16 LIMIT, Segment limit Bits 19-16. In
real mode, the default segment limit is always
64KBytes (0FFFFh).

Bit 23 G, Limit Granularity. '0' = byte granularity,
'1' = 4 KBytes (page) granularity.

Bit 22 D, Default length for operands and effec-
tive addresses. Valid for code and stack seg-
ments only: '0' = 16 bit, '1' = 32-bit.

Bit 21 Reserved. Must be set to '0'.

Bit 20 AVL, Segment available.

Bit 15 P, Segment present.

Bits 14-13 DPL, Descriptor privilege level.

Bit 12 DT, Descriptor type. '0' = system, '1' = ap-
plication.

Bits 11-8, TYPE Segment type.
– System descriptor (DT = '0'):

0010 = LDT descriptor.

1001 = TSS descriptor, task not busy.

1011 = TSS descriptor, task busy.

– Application descriptor (DT = '1'):

Bit 11 E. '0' = data, '1' = executable.

Bit 10 C/D.

SEGMENT DESCRIPTOR (continued)

Figure 3-7. Application and System Segment Descriptors

BASE 15-0

31

P DPL D TYPE

+0

+4

1707803

2324 16

G D 0
A

LIMIT 19-16 BASE 23-16

LIMIT 15-0

15 14 13 12 11 8 7 022 21 20 19

V
L TBASE 31-24

E C/D Function

0
0

expand up, limit is upper bound of seg-
ment.

1
expand down, limit is lower bound of
segment.

1
0 non-conforming.

1
conforming (runs at privilege level of
calling procedure).

486 CORE

19

Bit 9 R/W. If E = '0':
'0' = non-writable, '1' = writable.

Bit 8 A. '0' = not accessed, '1' = accessed.

Bits 7-0 BASE, Segment base address Bits 23-
16.

MEMORY OFFSET +0

Bits 31-16 BASE, Segment base address Bits
15-0.
Bits 15-0 LIMIT, Segment limit Bits 15-0.

GATE DESCRIPTORS

Gate Descriptors provide protection for executa-
ble segments operating at different privilege lev-
els. Figure 3-8 illustrates the format for Gate De-
scriptors.

Task Gate Descriptors (TGD) are used to switch
the CPU’s context during a task switch. The selec-
tor portion of the TGD locates a Task State Seg-
ment. TGDs can be located in the GDT, LDT or
IDT tables.

Interrupt Gate Descriptors are used to enter a
hardware interrupt service routine. Trap Gate De-
scriptors are used to enter exceptions or software
interrupt service routines. Trap Gate and Interrupt
Gate Descriptors can only be located in the IDT.

Call Gate Descriptors are used to enter a proce-
dure (subroutine) that executes at the same or a
more privileged level. A Call Gate Descriptor pri-
marily defines the procedure entry point and the
procedure’s privilege level.

Figure 3-8. Gate Descriptor

OFFSET 31-16

SELECTOR 15-0

31

P TYPE0 PARAMETERS

+0

+4

1707903

16

0

OFFSET 15-0

15 14 13 12 11 8 7 0

0 0DPL

486 CORE

20

GATE DESCRIPTOR REGISTER

MEMORY OFFSET +4

Bits 31-16 OFFSET Bits 31-16. Offset used dur-
ing a call gate to calculate the branch target.

Bits 15 P. Segment present.

Bits 14-13 DPL. Descriptor privilege level.

Bit 12 Reserved. This bit must be set to '0'.

Bits 11-8 TYPE. Segment type:

Bits 7-5 Reserved. These bits must be set to '0'.

Bits 4-0 PARAMETERS. Number of 32-bit param-
eters to copy from the caller's stack to the called
procedure's stack.

MEMORY OFFSET +0

Bits 31-16 SELECTOR. Segment selector used
during a call gate to calculate the branch target.

Bits 15-0 OFFSET Bits 15-0. Offset used during a
call gate to calculate the branch target.

4.4.4.3 Task Register

The Task Register (TR) holds a 16-bit selector for
the current Task State Segment (TSS) table as
shown in Figure 3-9. The TR is loaded and stored
via the LTR and STR instructions, respectively.
The TR can only be accessed during protected
mode and can only be loaded when the privilege
level is 0 (most privileged). When the TR is load-
ed, the TR selector field indexes a TSS descriptor
that must reside in the Global Descriptor Table
(GDT). The contents of the selected descriptor are
cached on-chip in the hidden portion of the TR.

During task switching, the processor saves the
current CPU state in the TSS before starting a
new task. The TR points to the current TSS. The
TSS can be either a 386/486-type 32-bit TSS (Fig-
ure 3-10) or a 286-type 16-bit TSS type (Figure 3-
11). An I/O permission bit map is referenced in the
32-bit TSS by the I/O Map Base Address.

Bits 11-8 Segment type
0100 16-bit call gate
0101 task gate
0110 16-bit interrupt gate
0111 16-bit trap gate
1100 32-bit call gate
1110 32-bit interrupt gate
1111 32-bit trap gate

Figure 3-9. Task Register

1708103

SELECTOR

15 0

486 CORE

21

Figure 3-10. 32-Bit Task State Segment (TSS) Table

+0h
+4h

+8h

+Ch
+10h

+14h
+18h

+1Ch

+20h
+24h

+28h
+2Ch

+30h

+34h

BACK LINK (OLD TSS SELECTOR)

SS for CPL = 0

SS for CPL = 1

SS for CPL = 2

+38h
+3Ch
+40h

+44h

+48h
+4Ch
+50h

+54h
+58h

+5Ch
+60h
+64h

ES

CS
SS

DS
FS

GS

SELECTOR FOR TASK'S LDT
T

ESP for CPL = 0

ESP for CPL = 1

ESP for CPL = 2

CR3

EIP
EFLAGS

EAX

ECX

EDX

31 16 15 0

EBX
ESP
EBP

ESI

EDI

I/O MAP BASE ADDRESS

1708203

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 = RESERVED.

486 CORE

22

Figure 3-11. 16-Bit Task State Segment (TSS) Table

1708803

BACK LINK (OLD TSS SELECTOR)

SP FOR PRIVILEGE LEVEL 0

SS FOR PRIVILEGE LEVEL 0

SP FOR PRIVILEGE LEVEL 1

SS FOR PRIVILEGE LEVEL 1

SP FOR PRIVILEGE LEVEL 2

SS FOR PRIVILEGE LEVEL 2

IP

FLAGS

AX

CX

DX

BX

SP

BP

SI

DI

ES

CS

SS

DS

SELECTOR FOR TASK'S LDT

+0h

+2h

+4h

+6h

+8h

+Ah

+Ch

+Eh

+10h

+12h

+14h

+16h

+18h

+1Ah

+16h

+1Eh

+20h

+22h

+24h

+26h

+28h

+2Ah

486 CORE

23

4.4.4.4 Configuration Registers

The ST486 Core provides three 8-bit Configura-
tion Control Registers (CCR1, CCR2 and CCR3)
used to control the on-chip write-back cache, the
coprocessor interface and SMM features. The
ST486 Core also provides two 8-bit internal read-
only device identification registers (DIR0 and
DIR1) and one 24-bit SMM Address Region Reg-
ister (SMAR). The CCR, DIR and SMAR registers
exist in IO memory spaceand are selected by a
“register index” number as listed in Table 3-4.

Access to these registers is achieved by writing
the index of the register to IO port 22h. IO port 23H
is then used for data transfer. Each IO port 23h
data transfer musr be preceded by an IO port 22h
register index selection, otherwise the second and
later IO port 23H operations are directed off-chip
and produce external IO cycles. If the register in-
dex number is outside the C0h-CFh, FEh-FFh
range, external IO cycles will also occur.

Table 3-4. Configuration registers

Register Name Register Index Width
Configuration Control 1
CCR1

C1h 8 bits

Configuration Control 2
CCR2

C2h 8 bits

Configuration Control 3
CCR3

C3h 8 bits

SMM Address Region
SMAR

CDh, CEh, CFh 24 bits

Device Identification 0
DIR0

FEh 8 bits

Device Identification 1
DIR1

FFh 8 bits

Note: The following register index numbers are reserved for future use: C0h through CFh and FEh, FFh.

486 CORE

24

CONTROL REGISTER 1, CCR1

The 8-bit CCR1 register (Figure 3-12) controls
SMM features and enables SMM and cache inter-
face pins.

Bits 7-5 Reserved.

Bit 4 NO_LOCK, Negate LOCK#. If = '1': All bus
cycles are issued with LOCK# internal signal ne-
gated except page table accesses. Interrupt ac-
knowledge cycles are executed as locked cycles
even though LOCK# is negated. With NO_LOCK
set, previously noncacheable locked cycles are
executed as unlocked cycles and therefore, may
be cached. This results in higher CPU perform-
ance.

Bit 3 MMAC, Main Memory Access. If = '1': All
data accesses which occur within an SMI service
routine (or when SMAC = '1') access main memo-
ry instead of SMM memory space. If = '0': No ef-
fect on access.

Bit 2 SMAC, System Management Memory Ac-
cess. If = '1': Any access to addresses within the
SMM memory space cause external bus cycles to
be issued with SMADS# output active. SMI# input
is ignored. If = '0': No effect on access.

Bit 1 SMI, Enable SMM internal signals. If = '1':
SMI# input/output pin and SMADS# output inter-
nal signal are enabled. If = '0': SMI# input is ig-
nored and SMADS# output floats.

Bit 0 RPL, Enable RPL Pins. If = '1': Enable out-
put pins RPLSET(1-0) and RPLVAL#. If = '0': Out-
put pins RPLSET(1-0) and RPLVAL# float.

Note: Bits 4-0 are cleared to '0' at reset.

Figure 3-12. Configuration Control Register 1

 7 6 5 4 3 2 1 0

REG. INDEX = C1h
1719703

NO_LOCK

= Reserved

CCR1MMAC SMAC SMI RPL

486 CORE

25

CONTROL REGISTER 2, CCR2

The CCR2 register (Figure 3-13) is used to setup
internal cache operation and enable suspend con-
trol pins.

Bit 7 SUSP, Enable Suspend Pins. If = '1':
SUSP# input and SUSPA# output are enabled. If
= '0': SUSP# input is ignored and SUSPA# output
floats.

Bit 6 BWRT, Enable Burst Write Cycles. If = '1':
Enables use of 16-byte burst write-back cycles.

Bit 5 BARB, Enable Cache Coherency on Bus
Arbitration. If = '1': Enable write-back of all dirty
cache data when HOLD is requested and prior to
asserting HLDA.

Bit 4 WT1, Write-Through Region 1. If = '1': Forc-
es all writes to the 640 KBytes to 1 MByte address
region that hit in the on-chip cache to be issued on
the external bus.

Bit 3 HALT, Suspend on HALT. If = '1': CPU en-
ters suspend mode following execution of a HALT
instruction.

Bit 2 LOCK_NW, LOCK NW Bit . If = '1': Prohibits
changing the state of the NW bit in CRO.

Bit 1 WBAK, EnableWrite-Back Cache Interface
Pins. If = '1': Enable INVAL and WM_RST input
pins, and HITM# output pin. If = '0': INVAL and
WM_RST input pins are ignored, and HITM# out-
put pin floats.

Note: All bits are cleared to zero at reset

Figure 3-13. Configuration Control Register 2

 7 6 5 4 3 2 1 0

REG. INDEX = C2h
17134400

COPWT1

= Reserved

BARBBWRT LOCK_NW WBAK CCR2SUSP HALT

486 CORE

26

CONTROL REGISTER 3, CCR3

The CCR3 register (Figure 3-14) controls addition-
al SMM features.

Bits 7-4 Reserved.

Bit 3 SMM_MODE, SMM Interface Mode. If = ‘0’:
the ST Interface mode is used for the SMM mode.
If = ‘1’: the SL-compatible mode is used. (Table 3-
5)

Bit 2 Reserved.

Bit 1 NMIEN, NMI Enable. If = '1': NMI is enabled
during SMM. If = '0': NMI is not recognized during
SMM.

Bit 0 SMI_LOCK, SMM Register Lock. If = '1': the
following SMM control bits cannot be modified:

CCR1 bits: 1, 2, and 3
CCR3: bits 1 and 3
all SMAR bits.

However, while operating within a SMI handler
these SMM control bits can be modified.

Once set,, the SMI_LOCK bit can only be cleared
by asserting the RESET pin.

Note: Bits 3,1-0 are cleared to zero at reset.

Figure 3-14. Configuration Control Register 3

 7 6 5 4 3 2 1 0

REG. INDEX = C3h 1713803

SMI_
LOCK

= Reserved

NMIEN
CCR3

SMM_
MODE

Table 3-5. SMM Pin Definitions

ST MODE SL-Compatible Mode
SMI : Bidirectional System management pin.

Asserted by the system logic to request an SMI interrupt.
Sampled by the CPU on each rising edge. Causes an I/O
trap to occur if sampled asserted at least two clocks prior
to RDY# sampled asserted for an IO cycle.

Asserted by the CPU during execution of an SMI service
routine or in response to SMINT if SMAC is set.

SMI : System Management Interrupt input pin

Asserted by the system logic to request an SMI interrupt.
Sampled by the CPU on each rising edge. SMI# is falling
edge sensitive and causes an I/O trap to occur if sampled
asserted at least three clocks prior to RDY/BRDY sampled
for any I/O cycle.

SMADS : SMI Address Strobe output is used to indicate
that the current bus cycle in an SMM memory access.

SMIACT : SMI Active output asserted by the CPU during
execution of an SMI service routine

486 CORE

27

SMM ADDRESS REGION, SMAR

The SMAR register (Figure 3-15), is used to de-
fine the location and size of the memory region as-
sociated with SMM memory space. The starting
address of the SMM address region must be on a

block size boundary. For example, a 128 KByte
block is allowed to have a starting address of 0
KBytes, 128 KBytes, 256 KBytes, etc. The SMM
block size must be defined for SMI# to be recog-
nized (Table 3-6).

Figure 3-15. SMM Address Region Register (SMAR)

7

SIZE SMAR

0 7 4 3 0

REG. INDEX = CEh REG. INDEX = CFh

SMM ADDRESS REGION

A23 A16 A15 A12

1713403

A24 A31

07

REG. INDEX = CDh

STARTING ADDRESS

Table 3-6. SMAR Size Field

Bits 3-0 Block Size Bits 3-0 Block Size
0h Disabled 8h 512 KBytes
1h 4 KBytes 9h 1 MBytes
2h 8 KBytes Ah 2 MBytes
3h 16 KBytes Bh 4 MBytes
4h 32 KBytes Ch 8 MBytes
5h 64 KBytes Dh 16 MBytes
6h 128 KBytes Eh 32 MBytes
7h 256 KBytes Fh 4 KBytes (same as 1h)

486 CORE

28

DEVICE IDENTIFICATION 0, DIR0

DIR0 (Figure 3-16) contains an 8-bit value that
defines the device type.

Bits 7-0 DEVID, Device Identification. DEVID(7-
0) bits define the CPU type. These bits are read
only. ST5X86 Core = 1Ah for DX, 1Bh for DX2 and
1Fh for DX4.

DEVICE IDENTIFICATION 1, DIR1

DIR1 (Figure 3-17) contains additional device type
information. The upper 4 bits of DIR1 represent
the stepping number of the device and the lower 4
bits of DIR1 represent the particular revision
number of the stepping. Actual values for DIR0
and DIR1 are shown in Initialized Register Con-
trols, Table 3-1 earlier in this chapter.

Bits 7-4 SID, Stepping Identification. SID bits
are read only. and indicate device stepping
number

Bits 3-0 RID, Revision Identification. RID bits
are read only. and indicate device revision number

Note: DIR1 value is greater than or equal to 40h.

Figure 3-16. Device Identification Register 0

1723900

DEVID0 DIR0

01234567

REG. INDEX = FEh

DEVID7 DEVID6 DEVID5 DEVID4 DEVID3 DEVID2 DEVID1

Figure 3-17. Device Identification Register 1

1723800

RID0 DIR1

01234567

REG. INDEX = FFh

RID1RID2RID3SID0SID1SID2SID3

486 CORE

29

4.4.4.5 Debug Registers

Six debug registers (DR0-DR3, DR6 and DR7),
shown in Figure 3-18, support debugging on the
ST486 core. Memory addresses loaded in the de-
bug registers, referred to as “breakpoints”, gener-
ate a debug exception when a memory access of
the specified type occurs to the specified address.
A breakpoint can be specified for a particular kind
of memory access such as a read or a write. Code
and data breakpoints can also be set allowing de-
bug exceptions to occur whenever a given data
access (read or write) or code access (execute)

occurs. The size of the debug target can be set to
1, 2, or 4 bytes. The debug registers are accessed
via MOV instructions which can be executed only
at privilege level 0.

DEBUG REGISTERS DR0-DR3

The Debug Address Registers (DR0-DR3) each
contain the linear address for one of four possible
breakpoints.

Figure 3-18. Debug Registers

DR7

DR6

DR3

DR2

DR1

DR0

1703203ALL BITS MARKED AS 0 OR 1 ARE RESERVED AND SHOULD NOT BE MODIFIED.

BREAKPOINT 3 LINEAR ADDRESS

BREAKPOINT 2 LINEAR ADDRESS

BREAKPOINT 1 LINEAR ADDRESS

BREAKPOINT 0 LINEAR ADDRESS

0
B B B B BB

0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LEN R/W LEN R/W LEN R/W LEN R/W
0 0

G G L G L G L G L G L
0 0 1

3 3 2 2

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 9 8 7 6 5 4 3 2 1 01
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7

1 1 0

6 5 4 3 2 0
1
1

0

T S

D E E 3 3 2 2 1 1 0

3 2 1

0

0
1 1 1 1 1 1 1

486 CORE

30

DEBUG REGISTER DR7

Each breakpoint is further specified by bits in the
Debug Control Register (DR7). For each break-
point address in DR0-DR3, there are correspond-
ing fields L, R/W, and LEN in DR7 that specify the
type of memory access associated with the break-
point.

The R/W field can be used to specify instruction
execution as well as data access breakpoints. In-
struction execution breakpoints are always taken
before execution of the instruction that matches
the breakpoint.

R/Wi. (2 bits, i = 0..3) Applies to the DRi break-
point address register:

LENi (2 bits, i = 0..3) Applies to the DRi breakpoint
address register:

Gi (1 bit, i = 0..3) If set to a ‘1’, breakpoint in DRi is
globally enabled for all tasks and is not cleared by
the processor as the result of a task switch.

Li (1 bit, i = 0..3) If set to a ‘1’, breakpoint in DRi is
locally enabled for the current task and is cleared
by the processor as the result of a task switch.
GD (1 bit, i = 0..3) Global disable of debug register
access. GD bit is cleared whenever a debug ex-
ception occurs.

DEBUG REGISTER DR6

The Debug Status Register (DR6) reflects condi-
tions that were in effect at the time the debug ex-
ception occurred. The contents of the DR6 regis-
ter are not automatically cleared by the processor
after a debug exception occurs and, therefore,
should be cleared by software at the appropriate
time.

Bi (1 bit, i = 0..3) Bi is set by the processor if the
conditions described by DRi, R/Wi, and LENi oc-
curred when the debug exception occurred, even
if the breakpoint is not enabled via the Gi or Li bits.

BT (1 bit) BT is set by the processor before enter-
ing the debug handler if a task switch has oc-
curred to a task with the T bit in the TSS set.

BS (1 bit) BS is set by the processor if the debug
exception was triggered by the single-step execu-
tion mode (TF flag in EFLAGS set).

Code execution breakpoints may also be generat-
ed by placing the breakpoint instruction (INT 3) at
the location where control is to be regained. The
single-step feature may be enabled by setting the
TF flag in the EFLAGS register. This causes the
processor to perform a debug exception after the
execution of every instruction.

RWi Breakpoint on...
00 Break on instruction execution only
01 Break on data writes only
10 Not used
11 Break on data reads or writes

LENi Byte Length
00 One byte length
01 Two byte length
10 Not used
11 Four byte length

486 CORE

31

4.4.4.6 Test Registers

The five test registers, shown in Figure 3-19, are
used in testing the CPU’s Translation Look-aside
Buffer (TLB) and on-chip cache. TR6 and TR7 are
used for TLB testing, and TR3-TR5 are used for
cache testing. The bit definitions for the TR6 and
TR7 registers follow on the next page.

TLB Test Registers

The ST486 core TLB is a four-way set associative
memory with eight entries per set. Each TLB entry
consists of a 24-bit tag and 20-bit data. The 24-bit
tag represents the high-order 20 bits of the linear
address, a valid bit, and three attribute bits. The
20-bit data portion represents the upper 20 bits of
the physical address that corresponds to the linear
address.

Figure 3-19. Test Registers

TLB LINEAR ADDRESS

 = Reserved

V D U U# W 0 C TR6

1738100

31

TR5

CACHE DATA

31

DIRTY BITS TR4

31

TR3

TLB PHYSICAL ADDRESS

31 12 10 9 8 7 6 5

PCDPWT 0 0 0 TR7TLB LRU PL REP 0

4 3 2 01

D#

LINE SELECTION

W#

0

CTL

0CACHE TAG ADDRESS (31-11)

12 10 9 8 7 6 5 4 3 2 0131

11 10 9 8 7 6 5 4 3 2 01

9 8 7 6 5 4 3 2 01

11

11

0 0 0

CACHE

SET/

V

DWORD

LRU BITS

1011

486 CORE

32

TLB TEST CONTROL REGISTER, TR6

The TLB Test Control Register (TR6) contains a
command bit, the upper 20 bits of a linear ad-
dress, a valid bit and the attribute bits used in the
test operation. The contents of TR6 is used to cre-
ate the 24-bit TLB tag during both write and read
(TLB lookup) test operations. The command bit
defines whether the test operation is a read or a
write.

Bits 31-12 Linear address.
TLB lookup: The TLB is interrogated per this

address. If one and only one match occurs in
the TLB, the rest of the fields in TR6 and TR7
are updated per the matching TLB entry.

TLB write: A TLB entry is allocated to this linear
address.

Bit 11 Valid bit (V).
TLB write: If set, indicates that the TLB entry con-

tains valid data. If clear, target entry is invali-
dated.

Bits 10-9 D, D#, Dirty attribute bit and its com-
plement. Refer to Table 3-7.

Bits 8-7 U, U#, User/supervisor attribute bit and
its complement. Refer to Table 3-7.

Bits 6-5 R, R#, Read/write attribute bit and its
complement. Refer to Table 3-7.

Bit 0 C, Command bit. If = 0’: TLB write, If = ‘1’:
TLB lookup.

TLB TEST CONTROL REGISTER, TR7

The TLB Test Data Register (TR7) contains the
upper 20 bits of the physical address (TLB data
field), three LRU bits and a control bit. During TLB
write operations, the physical address in TR7 is
written into the TLB entry selected by the contents
of TR6. During TLB lookup operations, the TLB
data selected by the contents of TR6 is loaded into
TR7.

Bits 31-12 Physical address.
 TLB lookup: data field from the TLB.

 TLB write: data field written into the TLB.

Bit 11 PCD, Page-level cache disable bit. This
bit corresponds to the PCD bit of a page table en-
try.

Bit 10 PWT, Page-level cache write-through bit.
Corresponds to the PWT bit of a page table entry.

Bits 9-7 LRU bits.
TLB lookup: LRU bits associated with the TLB

entry prior to the TLB lookup.

TLB write: ignored.

Bit 4 PL bit.
TLB lookup: If = ‘1’, read hit occurred. If = ‘0’, read

miss occurred.

TLB write: If = ‘1’, REP field is used to select the
set. If = ‘0’, the pseudo-LRU replacement algo-
rithm is used to select the set.

Bits 3-2 REP, Set selection.
TLB lookup: If PL = ‘1’, set in which the tag was

found. If PL = ‘0’, undefined data.

TLB write: If PL = ‘1’, selects one of the four sets
for replacement. If PL = ‘0’, ignored.

Table 3-7. TR6 Attribute Bit Pairs

Bit (D, U or R)
Bit Complement
(D#, U#, or R#)

Effect On TLB Loolup Effect On TLB Write

0 0 Do not match. Undefined.
0 1 Match if D, U or R bit is a ‘0’. Clear the bit.
1 0 Match if D, U or R bit is a ‘1’. Set the bit.
1 1 Match if D, U or R bit is either a ‘1’ or ‘0’. Undefined.

486 CORE

33

Cache Test Registers

The ST486 core 8-KByte on-chip cache is a four-
way set associative memory that can be config-
ured as either write-back or write-through. Each
cache set contains 128 entries. Each entry con-
sists of a 21-bit tag address, a 16-byte data field, a
valid bit, and four dirty bits.

The 21-bit tag represents the high-order 21 bits of
the physical address. The 16-byte data represents
the 16 bytes of data currently in memory at the
physical address represented by the tag. The valid
bit indicates whether the data bytes in the cache
actually contain valid data. The four dirty bits indi-
cate if the data bytes in the cache have been mod-
ified internally without updating external memory
(write-back configuration). Each dirty bit indicates
the status for one double-word (4 bytes) within the
16-byte data field.

For each line in the cache, there are three LRU
bits that indicate which of the four sets was most
recently accessed. A line is selected using bits 0 -

4 of the physical address. Figure 3-20 illustrates
the ST486 core cache architecture.

The ST486 core contains three test registers that
allow testing of its internal cache. Using these reg-
isters, cache writes and reads may be performed.

Cache test writes cause the data in the cache fill
buffer to be written to the selected set and entry in
the cache. Data must be written to TR3 (32-bit
register) four times in order to fill the cache fill buff-
er. Once the cache fill buffer has been loaded, a
cache test write can be performed. For data to be
written to the allocated entry, the valid bit for the
entry must be set prior to the write of the data.

Cache test reads cause the data in the selected
set and entry to be loaded into the cache flush
buffer. Once the buffer has been loaded, data
must be read from TR3 four times in order to emp-
ty the cache flush buffer. For proper operation,
cache tests should be performed only when the
cache is disabled (CD bit in CR0 =’1’).

Figure 3-20. ST486 Cache Architecture

LINE

126

0

D

SET 0 SET 1 SET 2 SET 3 LRU
127

A10-A4

1738200

= Cache Entry (154 bits)
Tag Address (21 bits)

E
C
O
D
E

ADDRESS

Data (128 bits)
Valid Status (1 bit)
Dirty Status (4 bits)

153 --- 0 153 --- 0 153 --- 0 153 --- 0 2 -- 0

486 CORE

34

CACHE TEST REGISTER 5, TR5

Bits 10-4 Line Selection. Physical address bits
10-4 used to select one of 128 lines.
Bits 3-2 Set/DWord Selection.
Cache read: selects which of the four sets is used

as the source for data transferred to the cache
flush buffer.

Cache write: selects which of the four sets is used
as the destination for data transferred from the
cache fill buffer.

Flush buffer read: selects which of the four
dwords in the flush buffer is loaded into TR3.

Fill buffer write: selects which of the four dwords
in TR3 is written to the fill buffer.

Bits 1-0 Control Bits.

CACHE TEST REGISTER 4, TR4

Bits 31-11 Upper Tag Address.
Cache read: upper 21 bits of tag address of the

selected entry.

Cache write: data written into the upper 21 bits of
the tag address of the selected entry.

Bit 10 Valid Bit.

Cache read: valid bit for the selected entry.

Cache write: data written into the valid bit for the
selected entry.

Bits 9-7 LRU Bits.
Cache read: the LRU bits for the selected line.
xx1 = Set 0 or Set 1 most recently accessed.

xx0 = Set 2 or Set 3 most recently accessed.

x1x = Most recent access to Set 0 or Set 1 was to
Set 0.

x0x = Most recent access to Set 0 or Set 1 was to
Set 1.

1xx = Most recent access to Set 2 or Set 3 was to
Set 2.

0xx = Most recent access to Set 2 or Set 3 was to
Set 3.

Cache write: ignored.

Bits 6-3 Dirty Bits.
Cache read: the dirty bits for the selected entry

(one bit per dword).

Cache write: data written into the dirty bits for the
selected entry.

CACHE TEST REGISTER 3, TR3

Bits 31-0 Cache data.
Flush buffer read: data accessed from the cache

flush buffer.

Fill buffer write: data to be written into the cache fill
buffer.

3.5 Address Spaces

The STPC can directly address either memory or
IO space. Figure 3-21 illustrates the range of ad-
dresses available for memory and IO address

space. The addresses for physical memory range
between 0000 0000h and FFFF FFFFh (4
GBytes). The accessible IO addresses space
ranges between 0000 0000h and 0000 FFFFh

Bits 1-0 Cache Test Function

00
Flush read or fill buffer write. Writing to TR3
fill buffer write. Reading TR3 initiates flush
buffer read

01 Cache write
10 Cache read
11 Cache flush

486 CORE

35

(64KBytes). The ST486 Core does not use co-
processor space in upper IO space between 8000
00F8h and 8000 00FFh as do the 386-style CPUs.
The IO locations 22h and 23h are used for STPC

configuration and on-chip peripheral configuration
registers
.

Figure 3-21. Memory and IO Address Spaces

FFFF FFFFh

Physical Memory

Physical

0000 0000h

64 KBytes

Not

Accessible

PCConsumer0000 FFFFh

0000 0000h

FFFF FFFFh

1730901

Memory Space

4 GBytes

Programmed
I/O Space

Accessible

Configuration
Register IO
Space

0000 0023h
0000 0022h

486 CORE

36

4.5.1 I/O Address Space

The ST486 IO address space is accessed using
IN and OUT instructions to addresses referred to
as “ports”. The accessible IO address space is 64
KBytes and can be accessed as 8-bit, 16-bit or 32-
bit ports. The execution of any IN or OUT instruc-
tion causes the M/IO# pin to be driven low, there-
by selecting the IO space instead of memory
space.

The ST486 core configuration registers reside
within the IO address space at port addresses 22h
and 23h and are accessed using the standard IN
and OUT instructions. The configuration registers
are modified by writing the index of the configura-
tion register to port 22h and then transferring the
data through port 23h. Accesses to the on-chip
configuration registers do not generate external I/
O cycles. However, each port 23h operation must
be preceded by a port 22h write with a valid index
value.
Otherwise, the second and later port 23h opera-
tions are directed off-chip and generate external I/
O cycles without modifying the on-chip configura-
tion registers. Also, writes to port 22h outside of
the ST486 core index range (C0h-CFh and FEh-
FFh) result in external I/O cycles and do not effect
the _on-chip configuration registers. Reads of port
22h are always directed off-chip.

4.5.2 Memory Address Space

The ST486 core directly addresses up to 4 GBytes
of physical memory. Memory address space is ac-
cessed as bytes, words (16-bits) or doublewords
(32-bits). Words and doublewords are stored in

consecutive memory bytes with the low-order byte
located in the lowest address. The physical ad-
dress of a word or doubleword is the byte address
of the low-order byte.

With the ST486 core, memory can be addressed
using nine different addressing modes. These ad-
dressing modes are used to calculate an offset ad-
dress often referred to as an effective address.
Depending on the operating mode of the CPU, the
offset is then combined using memory manage-
ment mechanisms to create a physical address
that actually addresses the physical memory de-
vices.

Memory management mechanisms on the ST486
core consist of segmentation and paging. Seg-
mentation allows each program to use several in-
dependent, protected address spaces. Paging
supports a memory subsystem that simulates a
large address space using a small amount of RAM
and disk storage for physical memory. Either or
both of these mechanisms can be used for man-
agement of the ST486 core memory address
space.

4.5.2.1 Offset Mechanism

The offset mechanism computes an offset (effec-
tive) address by adding together up to three val-
ues: a base, an index and a displacement. The
base, if present, is the value in one of eight 32-bit
general registers at the time of the execution of
the instruction. The index, like the base, is a value
that is contained in one of the 32-bit general regis-
ters (except the ESP register) when the instruction
is executed. The index differs from the base in that
the index is first multiplied by a scale factor of 1, 2,

486 CORE

37

4 or 8 before the summation is made. The third
component added to the memory address calcula-
tion is the displacement which is a value of up to
32-bits in length supplied as part of the instruction.
Figure 3-22 illustrates the calculation of the offset
address.

Nine valid combinations of the base, index, scale
factor and displacement can be used with the
ST486 core instruction set. These combinations
are listed in Table 3-8. The base and index both
refer to contents of a register as indicated by
[Base] and [Index].

Figure 3-22. Offset Address Calculation

Index

Base Displacement

Scaling

Offset Address
1706603

x1, x2, x4, x8

(Effective Address)

Table 3-8. Memory Addressing Modes

Addressing Mode Base Index
Scale Factor

(SF)
Displacement

(DP)
Offset Address (OA)

Calculation
Direct x OA = DP
Register Indirect x OA = [BASE]
Based x x OA = [BASE] + DP
Index x x OA = [INDEX] + DP
Scaled Index x x x OA = ([INDEX] * SF) + DP

Based Index x x OA = [BASE] + [INDEX]
Based Scaled Index x x x OA = [BASE] + ([INDEX] * SF)
Based Index with
Displacement

x x x OA = [BASE] + [INDEX] + DP

Based Scaled
Index with
Displacement

x x x x
OA = [BASE] + ([INDEX] * SF)
+ DP

486 CORE

38

4.5.2.2 Real Mode Memory Addressing

In real mode operation, the ST486 core only ad-
dresses the lowest 1 MByte of memory. To calcu-
late a physical memory address, the 16-bit seg-
ment base address located in the selected seg-
ment register is multiplied by 16 and then the 16-
bit offset address is added. The resulting 20-bit
address is then extended with twelve zeros in the
upper address bits to create the 32-bit physical

address. Figure 3-23 illustrates the real mode ad-
dress calculation.

The addition of the base address and the offset
address may result in a carry. Therefore, the re-
sulting address may actually contain up to 21 sig-
nificant address bits that can address memory in
the first 64 KBytes above 1 MByte.

Figure 3-23. Real Mode Address Calculation

Offset Mechanism

Selected Segment

Offset Addresss

1708303

Linear Address = Physical Address

X 16
Register

+

486 CORE

39

4.5.2.3 Protected Mode Memory Addressing

In protected mode three mechanisms calculate a
physical memory address (Figure 3-24).

■ Offset Mechanism that produces the offset or
effective address as in real mode.

■ Selector Mechanism that produces the base
address.

■ Optional Paging Mechanism that translates a
linear address to the physical memory address.

The offset and base address are added together
to produce the linear address. If paging is not
used, the linear address is used as the physical
memory address. If paging is enabled, the paging
mechanism is used to translate the linear address
into the physical address. The offset mechanism
is described earlier in this section and applies to
both real and protected mode. The selector and
paging mechanisms are described in the following
paragraphs.

Figure 3-24. Protected Mode Address Calculation

Offset Mechanism

Selector Mechanism

Offset Addresss

Base Address

Optional Physical

1706503

Linear Address

Paging Mechanism Memory
Address

486 CORE

40

4.5.2.4 Selector Mechanism

Memory is divided into an arbitrary number of seg-
ments, each containing usually much less than the
232 byte (4 GByte) maximum.

The six segment registers (CS, DS, SS, ES, FS
and GS) each contain a 16-bit selector that is used
when the register is loaded to locate a segment
descriptor in either the global descriptor table
(GDT) or the local descriptor table (LDT). The seg-

ment descriptor defines the base address, limit
and attributes of the selected segment and is
cached on the ST486 core as a result of loading
the selector. The cached descriptor contents are
not visible to the programmer. When a memory
reference occurs in protected mode, the linear ad-
dress is generated by adding the segment base
address in the hidden portion of the segment reg-
ister to the offset address. If paging is not enabled,
this linear address is used as the physical memory
address. Figure 3-25 illustrates the operation of
the selector mechanism.

Figure 3-25. Selector Mechanism

(ACCESSED
SELECTOR

SEGMENT

GLOBAL DESCRIPTOR TABLE

15 0

1703303

INDEX TI RPL

BASE ADDRESS

 LOCAL DESCRIPTOR TABLE

TI=0 TI=1

 DESCRIPTOR

SELECTOR

DESCRIPTOR
SEGMENT

DESCRIPTOR

CACHE

SEGMENT
REGISTER)LOAD

CACHE UPDATE

FROM MEMORY

486 CORE

41

4.5.2.5 Paging Mechanism

The paging mechanism supports a memory sub-
system that simulates a large address space with
a small amount of RAM and disk storage. The
paging mechanism either translates a linear ad-
dress to its corresponding physical address or
generates an exception if the required page is not
currently present in RAM. When the operating
system services the exception, the required page
is loaded into memory and the instruction is then
restarted. Pages are either 4 KBytes or 1 MByte in
size. The CPU defaults to 4 KByte pages that are
aligned to 4 KByte boundaries.

A page is addressed by using two levels of tables
as illustrated in Figure 3-26. The upper 10 bits of
the 32-bit linear address are used to locate an en-
try in the page directory table. The page directory
table acts as a 32-bit master index to up to 1K in-
dividual second-level page tables. The selected

entry in the page directory table, referred to as the
directory table entry, identifies the starting ad-
dress of the second-level page table. The page di-
rectory table itself is a page and is, therefore,
aligned to a 4 KByte boundary. The physical ad-
dress of the current page directory table is stored
in the CR3 control register, also referred to as the
Page Directory Base Register (PDBR).

Bits 12-21 of the 32-bit linear address, referred to
as the Page Table Index, locate a 32-bit entry in
the second-level page table. This Page Table En-
try (PTE) contains the base address of the desired
page frame. The second-level page table ad-
dresses up to 1K individual page frames. A sec-
ond-level page table is 4 KBytes in size and is it-
self a page. The lower 12 bits of the 32-bit linear
address, referred to as the Page Frame Offset
(PFO), locate the desired physical data within the
page frame.

Since the page directory table can point to 1K
page tables, and each page table can point to 1K
of page frames, a total of 1M of page frames can
be implemented. Since each page frame contains
4 KBytes, up to 4 GBytes of virtual memory can be

addressed by the ST486 core with a single page
directory table.

Figure 3-26. Paging Mechanism

CR3
1706703

Directory Table Index Page Table Index Page Frame Offset

31 22 21 12 11 0

Linear Address

Page Directory Table Page Table

DTE

PTE

0 0 0

4 Kb

Control Register

4 Kb4 Kb

(DTI) (PTI) (PFO)

Physical Page

Physical Address

486 CORE

42

In addition to the base address of the page table
or the page frame, each directory table entry or

page table entry contains attribute bits and a
present bit as illustrated in Figure 3-27.

DIRECTORY AND PAGE TABLE ENTRY

Bits 31-12 Base Address. Specifies the base ad-
dress of the page or page table.

Bits 11-9 User . These bits are undefined and are
available to the programmer.

Bits 8-7 Reserved. These bits are not available to
the programmer.

Bit 6 D, Dirty Bit. If set, indicates that a write ac-
cess has occurred to the page (PTE only, unde-
fined in DTE).

Bitb 5 A, Accessed Flag. If set, indicates that a
read access or write access has occurred to the
page.

Bit 4 PCD, Page Caching Disable Flag. If set, in-
dicates that the page is not cacheable in the on-
chip cache.

Bit 3 PWT, Page Write-Through Flag. If set, indi-
cates that writes to the page or page tables that hit
in the on-chip cache must update both the cache
and external memory.

Bit 2 U/S, User/Supervisor Attribute. If set (us-
er), page is accessible at privilege level 3. If clear

(supervisor), page is accessible only when CPL ≤
2.

Bit 1 W/R, Write/Read Attribute. If set (write),
page is writable. If clear (read), page is read only.

Bit 0 P, Present Flag. If set, indicates that the
page is present in RAM memory, and validates the
remaining DTE/PTE bits. If clear, indicates that
the page is not present in memory and the remain-
ing DTE/PTE bits can be used by the programmer.

If the present bit (P) is set in the DTE, the page ta-
ble is present and the appropriate page table entry
is read. If P=’1’ in the corresponding PTE (indicat-
ing that the page is in memory), the accessed and
dirty bits are updated, if necessary, and the oper-
and is fetched. Both accessed bits are set (DTE
and PTE), if necessary, to indicate that the table
and the page have been used to translate a linear
address. The dirty bit (D) is set before the first
write is made to a page.

The present bits must be set to validate the re-
maining bits in the DTE and PTE. If either of the
present bits are not set, a page fault is generated
when the DTE or PTE is accessed. If P=’0’, the
remaining DTE/PTE bits are available for use by
the operating system. For example, the operating
system can use these bits to record where on the
hard disk the pages are located. A page fault is
also generated if the memory reference violates
the page protection attributes.

3.6 Interrupts and Exceptions

The processing of either an interrupt or an excep-
tion changes the normal sequential flow of a pro-
gram by transferring program control to a select-

ed service routine. Except for SMM interrupts, the
location of the selected service routine is deter-
mined by one of the interrupt vectors stored in the
interrupt descriptor table.

Figure 3-27. Directory and Page Table Entry (DTE and PTE) Format

BASE ADDRESS AVAILABLE P
WU

D

31 012 11 9 8 123456710

A

1708503

RESERVED
PP

C
D

W
T

/
S

/
R

486 CORE

43

True interrupts are hardware interrupts and are
generated by signal sources external to the CPU.
All exceptions (including so-called software inter-
rupts) are produced internally by the CPU.

3.6.1 Interrupts

External events can interrupt normal program ex-
ecution by using one of the three interrupt pins on
the ST486 core.

■ Non-maskable Interrupt (NMI pin)
■ Maskable Interrupt (INTR pin)
■ SMM Interrupt (SMI# pin).

For most interrupts, program transfer to the inter-
rupt routine occurs after the current instruction has
been completed. When the execution returns to
the original program, it begins immediately follow-
ing the interrupted instruction.

The NMI interrupt cannot be masked by software
and always uses interrupt vector 2 to locate its
service routine. Since the interrupt vector is fixed
and is supplied internally, no interrupt acknowl-
edge bus cycles are performed. This interrupt is
normally reserved for unusual situations such as
parity errors and has priority over INTR interrupts.

Once NMI processing has started, no additional
NMIs are processed until an IRET instruction is
executed, typically at the end of the NMI service
routine. If NMI is re-asserted prior to execution of
the IRET instruction, one and only one NMI rising

edge is stored and then processed after execution
of the next IRET.

During the NMI service routine, maskable inter-
rupts may be enabled. If an unmasked INTR oc-
curs during the NMI service routine, the INTR is
serviced and execution returns to the NMI service
routine following the next IRET. If a HALT instruc-
tion is executed within the NMI service routine, the
ST486 core restarts execution only in response to
RESET, an unmasked INTR or an SMM interrupt.
NMI does not restart CPU execution under this
condition.

The INTR interrupt is unmasked when the Inter-
rupt Enable Flag (IF) in the EFLAGS register is set
to ‘1’. With the exception of string operations,
INTR interrupts are acknowledged between in-
structions. Long string operations have interrupt
windows between memory moves that allow INTR
interrupts to be acknowledged.

When an INTR interrupt occurs, the CPU performs
two locked interrupt acknowledge bus cycles. Dur-
ing the second cycle, the CPU reads an 8-bit vec-
tor which is supplied by an external interrupt con-
troller. This vector selects which of the 256 possi-
ble interrupt handlers will be executed in response
to the interrupt.

The SMM interrupt has higher priority than either
INTR or NMI. After SMI# is asserted, program ex-
ecution is passed to an SMI service routine which
runs in SMM address space reserved for this pur-
pose. The remainder of this section does not apply
to the SMM interrupts. SMM interrupts are de-
scribed in greater detail later in this chapter

486 CORE

44

3.6.2 Exceptions

Exceptions are generated by an interrupt instruc-
tion or a program error. Exceptions are classified
as traps, faults or aborts depending on the mech-
anism used to report them and the restartability of
the instruction which first caused the exception.

A Trap Exception is reported immediately follow-
ing the instruction that generated the trap excep-
tion. Trap exceptions are generated by execution
of a software interrupt instruction (INTO, INT 3,
INT n, BOUND), by a single- step operation or by
a data breakpoint.

Software interrupts can be used to simulate hard-
ware interrupts. For example, an INT n instruction
causes the processor to execute the interrupt
service routine pointed to by the nth vector in the
interrupt table. Execution of the interrupt service
routine occurs regardless of the state of the IF flag
in the EFLAGS register.

The one byte INT 3, or breakpoint interrupt (vector
3), is a particular case of the INT n instruction. By
inserting this one byte instruction in a program, the
user can set breakpoints in the code that can be
used during debug.

Single-step operation is enabled by setting the TF
bit in the EFLAGS register. When TF is set, the
CPU generates a debug exception (vector 1) after
the execution of every instruction. Data break-
points also generate a debug exception and are
specified by loading the debug registers (DR0-
DR7) with the appropriate values.

A Fault Exception is caused by a program error
and is reported prior to completion of the instruc-
tion that generated the exception. By reporting
the fault prior to instruction completion, the CPU is
left in a state which allows the instruction to be re-
started and the effects of the faulting instruction to
be nullified. Fault exceptions include divide-by-
zero errors, invalid opcodes, page faults and co-
processor errors. Debug exceptions (vector 1) are
also handled as faults (except for data breakpoints
and single-step operations). After execution of the
fault service routine, the instruction pointer points
to the instruction that caused the fault.

An Abort Exception is a type of fault exception that
is severe enough that the CPU cannot restart the
program at the faulting instruction. The double
fault (vector 8) is the only abort exception that oc-
curs on the ST486 core.

486 CORE

45

3.6.3 Interrupt Vectors

When the CPU services an interrupt or exception,
the current program’s instruction pointer and flags
are pushed onto the stack to allow resumption of
execution of the interrupted program. In protected
mode, the processor also saves an error code for
some exceptions. Program control is then trans-
ferred to the interrupt handler (also called the in-
terrupt service routine). Upon execution of an
IRET at the end of the service routine, program
execution resumes at the instruction pointer ad-
dress saved on the stack when the interrupt was
serviced.

Interrupt Vector Assignments

Each interrupt (except SMI#) and exception is as-
signed one of 256 interrupt vector numbers Table
3-9. The first 32 interrupt vector assignments are
defined or reserved. INT instructions acting as
software interrupts may use any of interrupt vec-
tors, 0 through 255.

The non-maskable hardware interrupt (NMI) is as-
signed vector 2. Illegal opcodes including faulty
FPU instructions will cause an illegal opcode ex-
ception, interrupt vector 6.

Table 3-9. Interrupt Vector Assignments

Interrupt Vector Function Exception Type
0 Divide error FAULT

1 Debug exception TRAP/FAULT*
2 NMI interrupt
3 Breakpoint TRAP
4 Interrupt on overflow TRAP
5 BOUND range exceeded FAULT
6 Invalid opcode FAULT
7 Device not available FAULT
8 Double fault ABORT
9 Reserved
10 Invalid TSS FAULT
11 Segment not present FAULT
12 Stack fault FAULT

13 General protection fault TRAP/FAULT
14 Page fault FAULT
15 Reserved
16 FPU error FAULT
17 Alignment check exception FAULT

18-31 Reserved
32-255 Maskable hardware interrupts TRAP
0-255 Programmed interrupt TRAP

*Note: Data breakpoints and single-steps are traps. All other debug exceptions are faults.

486 CORE

46

In response to a maskable hardware interrupt (IN-
TR), the ST486 core issues interrupt acknowledge
bus cycles used to read the vector number from
external hardware. These vectors should be in the
range 32 - 255 as vectors 0 - 31 are pre-defined.

Interrupt Descriptor Table

The interrupt vector number is used by the ST486
core to locate an entry in the interrupt descriptor
table (IDT). In real mode, each IDT entry consists
of a four-byte far pointer to the beginning of the
corresponding interrupt service routine. In protect-
ed mode, each IDT entry is an eight-byte descrip-
tor. The Interrupt Descriptor Table Register
(IDTR) specifies the beginning address and limit
of the IDT. Following reset, the IDTR contains a
base address of 0h with a limit of 3FFh.

The IDT can be located anywhere in physical
memory as determined by the IDTR register. The
IDT may contain different types of descriptors: in-
terrupt gates, trap gates and task gates. Interrupt
gates are used primarily to enter a hardware inter-
rupt handler. Trap gates are generally used to en-
ter an exception handler or software interrupt han-
dler. If an interrupt gate is used, the Interrupt Ena-
ble Flag (IF) in the EFLAGS register is cleared be-
fore the interrupt handler is entered. Task gates
are used to make the transition to a new task.

4.6.4 Interrupt and Exception Priorities

As the ST486 core executes instructions, it follows
a consistent policy for prioritizing exceptions and
hardware interrupts. The priorities for competing
interrupts and exceptions are listed in Table 3-10.
SMM interrupts always take precedence. Debug
traps for the previous instruction and next instruc-
tions are handled as the next priority. When NMI
and maskable INTR interrupts are both detected
at the same instruction boundary, the ST486 core
microprocessor services the NMI interrupt first.

The ST486 core checks for exceptions in parallel
with instruction decoding and execution. Several
exceptions can result from a single instruction.
However, only one exception is generated upon
each attempt to execute the instruction. Each ex-
ception service routine should make the appropri-
ate corrections to the instruction and then restart
the instruction. In this way, exceptions can be
serviced until the instruction executes properly.

The ST486 core supports instruction restart after
all faults, except when an instruction causes a
task switch to a task whose task state segment
(TSS) is partially not present. A TSS can be par-
tially not present if the TSS is not page aligned
and one of the pages where the TSS resides is not

486 CORE

47

Table 3-10. Interrupt and Exception Priorities

Priority Description Notes

0 SMM hardware interrupt.
SMM interrupts are caused by SMI# asserted
and always have highest priority.

1 Debug traps and faults from previous instruction.
Includes single-step trap and data breakpoints
specified in the debug registers.

2 Debug traps for next instruction.
Includes instruction execution breakpoints
specified in the debug registers.

3 Non-maskable hardware interrupt. Caused by NMI asserted.
4 Maskable hardware interrupt. Caused by INTR asserted and IF = ‘1’.

5 Faults resulting from fetching the next instruction.
Includes segment not present, general protec-
tion fault and page fault.

6 Faults resulting from instruction decoding.
Includes illegal opcode, instruction too long, or
privilege violation.

7 WAIT instruction and TS = ‘1’ and MP = ‘1’. Device not available exception generated.
8 ESC instruction and EM = ‘1’ or TS = ‘1’. Device not available exception generated.

9 Floating point error exception.
Caused by unmasked floating point exception
with NE = ‘1’.

10
Segmentation faults (for each memory reference
required by the instruction) that prevent transfer-
ring the entire memory operand.

Includes segment not present, stack fault, and
general protection fault.

11
Page Faults that prevent transferring the entire
memory operand.

12 Alignment check fault.

486 CORE

48

4.6.5 Exceptions in Real Mode

Many of the exceptions described in Table 3-10
are not applicable in real mode. Exceptions 10,

11, and 14 do not occur in real mode. Other ex-
ceptions have slightly different meanings in real
mode as listed in Table 3-11.

Table 3-11. Exception Changes in Real Mode

Vector Number Protected Mode Function Real Mode Function
8 Double fault. Interrupt table limit overrun.
10 Invalid TSS. --
11 Segment not present. --
12 Stack fault. SS segment limit overrun.
13 General protection fault. CS, DS, ES, FS, GS segment limit overrun.
14 Page fault. --

Note: -- = does not occur

486 CORE

49

4.6.6 Error Codes

When operating in protected mode, the following
exceptions generate a 16-bit error code:

– Double Fault

– Alignment Check

– Invalid TSS

– Segment Not Present

– Stack Fault

– General Protection Fault

– Page Fault.

The error code format is shown in Figure 3-28 and
the error code bit definitions are listed in Table 3-

12. Bits 15-3 (selector index) are not meaningful if
the error code was generated as the result of a
page fault. The error code is always zero for dou-
ble faults and alignment check exceptions.

3.7 System Management Mode

System Management Mode (SMM) provides an
additional interrupt which can be used for system
power management or software transparent emu-
lation of IO peripherals. SMM is entered using the
System Management Interrupt (SMI#) that has a
higher priority than any other interrupt, including
NMI. An SMI interrupt can also be triggered via the
software using an SMINT instruction. After an
SMI interrupt, portions of the CPU state are auto-
matically saved, SMM is entered, and program ex-
ecution begins at the base of SMM address space
(Figure 3-29). Running in protected SMM address

space, the interrupt routine does not interfere with
the operating system or any application program.
Eight SMM instructions have been added to the
ST486 instruction set that permit software initiated
SMM, and saving and restoring of the total CPU
state when in SMM mode.
SMM Operation is specific to ST and is not com-
patible with Intel one.
See ST486 SMM PROGRAMMING MANUAL for
more informations.

Figure 3-28. Error Code Format

1707003

SSS

015 123

Selector Index
2 1 0

Table 3-12. Error Code Bit Definitions

Fault
Type

Selector Index
(Bits 15-3)

S2
(Bit 2)

S1
(Bit 1)

S0
(Bit 0)

Page Fault Reserved.

Fault caused by:
‘0’ = not present page
‘1’ = page-level
protection violation.

Fault occurred during:
‘0’ = read access
‘1’ = write access.

Fault occurred during:
‘0’ = supervisor access
‘1’ = user access.

IDT Fault
Index of faulty IDT
selector.

Reserved. 1
If = ‘1’, exception occurred while
trying to invoke exception or hard-
ware interrupt handler.

Segment
Fault

Index of faulty
selector.

TI bit of faulty selector. 0
If = ’1’, exception occurred while
trying to invoke exception or hard-
ware interrupt handler.

486 CORE

50

Figure 3-29. System Management Memory Address Space

FFFF FFFFh

Physical Memory

Physical

0000 0000h

Potential

Defined

0000 0000h

FFFF FFFFh

1713603

Non-SMM Mode

SMADS# Active

ADS# Active

ADS# Active

4 KBytes to

SMM Mode

4 GBytes

Memory Space SMM Address
Space

SMM
Address
Space

32 MBytes

ADS# Active

486 CORE

51

3.7.1 SMM Operation

SMM operation is summarized in Figure 3-30. En-
tering SMM requires the assertion of the SMI# pin
for at least two CLK periods or execution of the
SMINT instruction. For the SMI# or SMINT in-
struction to be recognized, the following configura-
tion register bits must be set as shown in Table 3-
13. The configuration registers are discussed in
detail earlier in this chapter.

After recognizing SMI# or SMINT and prior to exe-
cuting the SMI service routine, some of the CPU
state information is changed. Prior to modification,
this information is automatically saved in the SMM
memory space header located at the top of SMM
memory space. After the header is saved, the
CPU enters real mode and begins executing the
SMI service routine starting at the SMM memory
base address.

The SMI service routine is user definable and may
contain system or power management software. If
the power management software forces the CPU
to power down, or the SMI service routine modi-
fies more than what is automatically saved, the
complete CPU state information can be saved.

Table 3-13. Requirement for Recognizing SMI#
and SMINT

Register (Bit) SMI# SMINT
SMI CCR1 (1) 1 1
SMAC CCR1 (2) 0 1
SMAR SIZE (3-0) > 0 > 0

Figure 3-30. SMI Execution Flow Diagram

1713703

SMI# Sampled Active or

CPU State Stored in SMM

Program Flow Transfers

CPU Enters Real Mode

Execution Begins at SMM

RSM Instruction Restores CPU

Normal Execution Resumes

Address Space Header

to SMM Address Space

Address Space Base Address

State Using Header Information

SMINT Instruction Executed

486 CORE

52

3.7.2 SMM Memory Space Header

With every SMI interrupt or SMINT instruction,
certain CPU state information is automatically
saved in the SMM memory space header located
at the top of SMM address space (Figure 3-31).

The header contains CPU state information that is
modified when servicing an SMI interrupt. Includ-
ed in this information are two pointers. The Cur-
rent IP points to the instruction executing when the
SMI was detected.

Figure 3-31. SMM Memory Space Header

DR7

EFLAGS

CR0

031

Top of SMM

-4h

-8h

-Ch

-10h

-14h

-18h

-1Ch

-20h

-24h

-28h

P

Current IP

Next IP

Reserved CS Selector

CS Descriptor (Bits 63-32)

CS Descriptor (Bits 31-0)

Reserved

ESI or EDI

I

1713503

31 16 15 0

31 2 1 0

-2Ch

-30h

Address Space

3

S

I/O Write AddressI/O Write Data Size

I/O Write Data

16 15

486 CORE

53

The Next IP points to the instruction that will be ex-
ecuted after exiting SMM. Also saved are the con-
tents of debug register 7 (DR7), the extended
flags register (EFLAGS), and control register 0
(CR0). If SMM has been entered due to an I/O trap
for a REP INSx or REP OUTSx instruction, the
Current IP and Next IP fields contain the same ad-
dresses and the I and P field contain valid informa-
tion.

If entry into SMM was caused by an I/O trap, it is
useful for the programmer to know the port ad-
dress, data size and data value associated with
that I/O operation. This information is also saved
in the header and is only valid for an I/O write op-
eration. The I/O write information is not restored
within the CPU when executing a RSM instruction.

Table 3-14. SMM Memory Space Header

Name Description Size
DR7 The contents of Debug Register 7. 4 Bytes
EFLAGS The contents of Extended Flags Register. 4 Bytes
CR0 The contents of Control Register 0. 4 Bytes

Current IP
The address of the instruction executed prior to servicing SMI in-
terrupt.

4 Bytes

Next IP
The address of the next instruction that will be executed after ex-
iting SMM mode.

4 Bytes

CS Selector Code segment register selector for the current code segment. 2 Bytes
CS Descriptor Code segment register descriptor for the current code segment. 8 Bytes
S Software SMM Entry Indicator.

S = ‘1’, if current SMM is the result of an SMINT instruction.
S = ‘0’, if current SMM is not the result of an SMINT instruction.

1 Bit

P REP INSx/OUTSx Indicator.
P = ‘1’ if current instruction has a REP prefix.
P = ‘0’ if current instruction does not have a REP prefix.

1 Bit

I IN, INSx, OUT, or OUTSx Indicator.
I = ‘1’ if current instruction performed is an I/O WRITE.
I = ‘0’ if current instruction performed is an I/O READ.

1 Bit

I/O Write Data Size
Indicates size of data for the trapped IO write.
01h = byte
03h = word
0Fh = dword

2 Bytes

I/O Write Address Address of the trapped I/O write. 2 Bytes

I/O Write Data Data associated with the trapped IO write. 4 Bytes

ESI or EDI
Restored ESI or EDI value. Used when it is necessary to repeat
a REP OUTSx or REP INSx instruction when one of the IO cycles
caused an SMI# trap.

4 Bytes

Note: INSx = INS, INSB, INSW or INSD instruction.
Note: OUTSx = OUTS, OUTSB, OUTSW and OUTSD instruction.

486 CORE

54

3.7.3 SMM Instructions

The ST486 core automatically saves the minimal
amount of CPU state information when entering
SMM which allows fast SMI service routine entry
and exit. After entering the SMI service routine,
the MOV, SVDC, SVLDT and SVTS instructions
can be used to save the complete CPU state infor-
mation. If the SMI service routine modifies more
than what is automatically saved or forces the
CPU to power down, the complete CPU state in-
formation must be saved. Since the CPU is a stat-
ic device, its internal state is retained when the in-
put clock is stopped. Therefore, an entire CPU
state save is not necessary prior to stopping the
input clock.

The new SMM instructions, listed in Table 3-15,
can only be executed if:

SMI# is enabled and

SMAR SIZE 0 and

the Current Privilege Level (CPL) = 0 and

the SMAC bit (CCR1, bit 2) is set] or

[the Current Privilege Level (CPL) = 0 and

the CPU is in an SMI service routine (SMI# =
0)].

If the above conditions are not met and an attempt
is made to execute an SVDC, RSDC, SVLDT,
RSLDT, SVTS, RSTS, SMINT or RSM instruction,
an invalid opcode exception is generated. These
instructions can be executed outside of defined
SMM space provided the above conditions are
met.

Table 3-15. SMM Instruction Set

Instruction Opcode Format Description
SVDC 0F 78 [mod sreg3 r/m] SVDC mem80, sreg3 Save Segment Register and Descriptor

Saves reg (DS, ES, FS, GS, or SS) to mem80.
RSDC 0F 79 [mod sreg3 r/m] RSDC sreg3, mem80

Restore Segment Register and Descriptor
Restores reg (DS, ES, FS, GS, or SS) from mem80.
Use RSM to restore CS.
Note: Processing “RSDC CS, Mem80” will produce an exception.

SVLDT 0F 7A [mod 000 r/m] SVLDT mem80 Save LDTR and Descriptor
Saves Local Descriptor Table (LDTR) to mem80.

RSLDT 0F 7B [mod 000 r/m] RSLDT mem80
Restore LDTR and Descriptor
Restores Local Descriptor Table (LDTR) from mem80.

SVTS 0F 7C [mod 000 r/m] SVTS mem80
Save TSR and Descriptor
Saves Task State Register (TSR) to mem80.

RSTS 0F 7D [mod 000 r/m] RSTS mem80
Restore TSR and Descriptor
Restores Task State Register (TSR) from mem80.

SMINT 0F 7E SMINT Software SMM Entry
CPU enters SMM mode. CPU state information is saved
in SMM memory space header and execution begins at
SMM base address.

RSM 0F AA RSM Resume Normal Mode
Exits SMM mode. The CPU state is restored using the
SMM memory space header and execution resumes at
interrupted point.

Note: mem80 = 80-bit memory location

486 CORE

55

The SMINT instruction can be used by software to
enter SMM. The CPU will not drive the SMI# out-
put low during the software initiated SMM.

However, if the SMI# is asserted to the CPU dur-
ing a software SMM, the SMI# handshake occurs
normally. The hardware SMI# is serviced after the
software SMM has been exited by execution of the
RSM instruction.

All of the SMM instructions (except RSM and
SMINT) save or restore 80 bits of data, allowing
the saved values to include the hidden portion of
the register contents.

3.7.4 SMM Memory Space

SMM memory space is defined by specifying the
base address and size of the SMM memory space
in the SMAR register. The base address must be a
multiple of the SMM memory space size. For ex-
ample, a 32 KByte SMM memory space must be
located at a 32 KByte address boundary. The
memory space size can range from 4 KBytes to 32
MBytes.

SMM memory space accesses are always non-
cacheable. SMM accesses ignore the state of the
A20M# input pin and drive the A20 address bit to
the unmasked value.

Access to the SMM memory space can be made
while not in SMM mode by setting the SMAC bit in
the CCR1 register. This feature may be used to
initialize the SMM memory space.

While in SMM mode, SMADS# address strobes
are generated instead of ADS# for SMM memory
accesses. Any memory accesses outside the de-
fined SMM space result in normal memory ac-
cesses and ADS# strobes. Data (non-code) ac-
cesses to main memory that overlap with defined
SMM memory space are allowed if MMAC in
CCR1 is set. In this case, ADS# strobes are gen-
erated for data accesses only and SMADS#
strobes continue to be generated for code access-
es.

3.7.5 SMI Service Routine Execution

Upon entry into SMM, after the SMM header has
been saved, the CR0, EFLAGS, and DR7 regis-
ters are set to their reset values. The Code Seg-
ment (CS) register is loaded with the base, as de-
fined by the SMAR register, and a limit of 4

GBytes. The SMI service routine then begins exe-
cution at the SMM base address in real mode.

The programmer must save the value of any reg-
isters that may be changed by the SMI service
routine. For data accesses immediately after en-
tering the SMI service routine, the programmer
must use CS as a segment override. I/O port ac-
cess is possible during the routine but care must
be taken to save registers modified by the I/O in-
structions. Before using a segment register, the
register and the register’s descriptor cache con-
tents should be saved using the SVDC instruction.
While executing in the SMM space, execution flow
can transfer to normal memory locations.

Hardware interrupts, (INTRs and NMIs), may be
serviced during a SMI service routine. If interrupts
are to be serviced while executing in the SMM
memory space, the SMM memory space must be
within the 0 to 1 MByte address range to guaran-
tee proper return to the SMI service routine after
handling the interrupt.

INTRs are automatically disabled when entering
SMM since the IF flag is set to its reset value.
Once in SMM, the INTR can be enabled by setting
the IF flag. An NMI event in SMM mode can be en-
abled by setting NMIEN in the CCR3 register. If
NMI is not enabled while in SMM mode, the CPU
latches one NMI event and services the interrupt
after NMI has been enabled or after exiting SMM
mode through the RSM instruction.

Within the SMI service routine, protected mode
may be entered and exited as required, and real or
protected mode device drivers may be called.

To exit the SMI service routine, a Resume (RSM)
instruction, rather than an IRET, is executed. The
RSM instruction causes the ST486 core to restore
the CPU state using the SMM header information
and resume execution at the interrupted point. If
the full CPU state was saved by the programmer,
the stored values should be reloaded prior to exe-
cuting the RSM instruction using the MOV, RSDC,
RSLDT and RSTS instructions.

3.7.6 CPU States Related to SMM and Suspend
Mode

The state diagram shown in Figure 3-32 illustrates
the various CPU states associated with SMM and
suspend mode. While in the SMI service routine,
the ST486 core can enter suspend mode either by
(1) executing a halt (HLT) instruction or (2) by as-
serting the SUSP# input.

486 CORE

56

During SMM operations and while in SUSP# initi-
ated suspend mode, an occurrence of either NMI
or INTR is latched. (In order for INTR to be
latched, the IF flag must be set.) The INTR or NMI
is serviced after exiting suspend mode.

If suspend mode is entered via a HLT instruction
from the operating system or application software,
the reception of an SMI# interrupt causes the CPU
to exit suspend mode and enter SMM. If suspend
mode is entered via the hardware (SUSP# = ‘0’)
while the operating system or application software
is active, the CPU latches one occurrence of IN-
TR, NMI and SMI#.

Figure 3-32. SMM and Suspend Mode State Diagram

OS/Application

SoftwareRESET

RSM*SMI#=0

HLT*

SUSP#=1

NMI or INTR

SUSP#=0

SUSP#=1

HLT*

INTR or NMI
IRET*

INTR and NMI

IRET*

IRET*

* Instructions

SMI# = 0

(INTR, NMI and SMI latched)

(INTR and NMI latched)

SMI Service

1715903

Suspend Mode Interrupt Service

Suspend Mode

Suspend Mode

Suspend Mode

SUSP#=0

Non-SMM Operations

SMM Operations

(SUSPA# = 0) Routine

(SUSPA# = 0)

(SUSPA# = 0)

Routine
(SMI#=0)

(SUSPA# = 0)

Interrupt Service
Routine

Interrupt Service
Routine

SMINT*

NMI or INTR

486 CORE

57

3.8 Shutdown and Halt

The Halt Instruction (HLT) stops program execu-
tion and prevents the processor from using the lo-
cal bus until restarted. The ST486 core then en-
ters a low-power suspend mode if the HLT bit in
CCR2 is set. SMI, NMI, INTR with interrupts ena-
bled (IF bit in EFLAGS=’1’), or RESET forces the
CPU out of the halt state. If interrupted, the saved
code segment and instruction pointer specify the
instruction following the HLT.

Shutdown occurs when a severe error is detected
that prevents further processing. An NMI input can
bring the processor out of shutdown if the IDT limit
is large enough to contain the NMI interrupt vector
(at least 000Fh) and the stack has enough room to
contain the vector and flag information (i.e., stack
pointer is greater than 0005h). Otherwise, shut-
down can only be exited by a processor reset.

3.9 Protection

Segment protection and page protection are safe-
guards built into the ST486 core protected mode
architecture which deny unauthorized or incorrect
access to selected memory addresses. These
safeguards allow multitasking programs to be iso-
lated from each other and from the operating sys-
tem. Page protection is discussed earlier in this
chapter in Section 2.4. This section concentrates
on segment protection.

Selectors and descriptors are the key elements in
the segment protection mechanism. The segment
base address, size, and privilege level are estab-
lished by a segment descriptor. Privilege levels
control the use of privileged instructions, IO in-
structions and access to segments and segment
descriptors. Selectors are used to locate segment
descriptors.

Segment accesses are divided into two basic
types, those involving code segments (e.g., con-
trol transfers) and those involving data accesses.
The ability of a task to access a segment depends
on:

■ the segment type
■ the instruction requesting access
■ the type of descriptor used to define the

segment
■ the associated privilege levels (described

below).

Data stored in a segment can be accessed only by
code executing at the same or a more privileged
level. A code segment or procedure can only be
called by a task executing at the same or a less
privileged level.

3.9.1 Privilege Levels

The values for privilege levels range between 0
and 3. Level 0 is the highest privilege level (most
privileged), and level 3 is the lowest privilege level
(least privileged). The privilege level in real mode
is effectively 0.

The Descriptor Privilege Level (DPL) is the priv-
ilege level defined for a segment in the segment
descriptor. The DPL field specifies the minimum
privilege level needed to access the memory seg-
ment pointed to by the descriptor.

The Current Privilege Level (CPL) is defined as
the current task’s privilege level. The CPL of an
executing task is stored in the hidden portion of
the code segment register and essentially is the
DPL for the current code segment.

The Requested Privilege Level (RPL) specifies a
selector’s privilege level and is used to distinguish
between the privilege level of a routine actually ac-
cessing memory (the CPL), and the privilege level
of the original requestor (the RPL) of the memory
access. The lesser of the RPL and CPL is called
the effective privilege level (EPL). Therefore, if
RPL = 0 in a segment selector, the effective privi-
lege level is always determined by the CPL. If RPL
= 3, the effective privilege level is always 3 regard-
less of the CPL.

For a memory access to succeed, the effective
privilege level (EPL) must be at least as privileged
as the descriptor privilege level (EPL ≤ DPL). If the
EPL is less privileged than the DPL (EPL>DPL), a
general protection fault is generated. For exam-
ple, if a segment has a DPL = 2, an instruction ac-
cessing the segment only succeeds if executed
with an EPL ≤ 2.

486 CORE

58

3.9.2 I/O Privilege Levels

The I/O Privilege Level (IOPL) allows the operat-
ing system executing at CPL=0 to define the least
privileged level at which IOPL-sensitive instruc-
tions can unconditionally be used. The IOPL-sen-
sitive instructions include CLI, IN, OUT, INS,
OUTS, REP INS, REP OUTS, and STI. Modifica-
tion of the IF bit in the EFLAGS register is also
sensitive to the I/O privilege level.

The IOPL is stored in the EFLAGS register. An I/O
permission bit map is available as defined by the
32-bit Task State Segment (TSS). Since each task
can have its own TSS, access to individual I/O
ports can be granted through separate I/O permis-
sion bit maps.

If CPL ≤ IOPL, IOPL-sensitive operations can be
performed. If CPL > IOPL, a general protection
fault is generated if the current task is associated
with a 16-bit TSS. If the current task is associated
with a 32-bit TSS and CPL > IOPL, the CPU con-
sults the I/O permission bitmap in the TSS to de-
termine on a port-by-port basis whether or not I/O
instructions (IN, OUT, INS, OUTS, REP INS, REP
OUTS) are permitted, and the remaining IOPL-
sensitive operations generate a general protection
fault.

3.9.3 Privilege Level Transfers

A task’s CPL can be changed only through in-
tersegment control transfers using gates or task
switches to a code segment with a different privi-
lege level. Control transfers result from exception
and interrupt servicing and from execution of the
CALL, JMP, INT, IRET and RET instructions.

There are five types of control transfers that are
summarized in Table 3-16. Control transfers can
be made only when the operation causing the con-
trol transfer references the correct descriptor type.
Any violation of these descriptor usage rules caus-
es a general protection fault.

Any control transfer that changes the CPL within a
task results in a change of stack. The initial values
for the stack segment (SS) and stack pointer
(ESP) for privilege levels 0, 1, and 2 are stored in
the TSS. During a JMP or CALL control transfer,
the SS and ESP are loaded with the new stack
pointer and the previous stack pointer is saved on
the new stack. When returning to the original priv-
ilege level, the RET or IRET instruction restores
the less-privileged stack.

Table 3-16. Descriptor Types Used for Control Transfer

Type of Control Transfer Operation Types
Descriptor
Referenced

Descriptor Table

Intersegment within the same privi-
lege level.

JMP, CALL, RET, IRET* Code Segment GDT or LDT

Intersegment to the same or a more
privileged level.
Interrupt within task (could change
CPL level).

CALL Gate Call GDT or LDT
Interrupt Instruction,
Exception, External Interrupt

Trap or Interrupt Gate LDT

Intersegment to a less privileged level
(changes task CPL).

RET, IRET* Code Segment GDT or LDT

Task Switch via TSS CALL, JMP Task State Segment GDT

Task Switch via Task Gate CALL, JMP Task Gate GDT or LDT
IRET**, Interrupt Instruction,
Exception, External Interrupt

Task Gate IDT

 * NT (Nested Task bit in EFLAGS) = ‘0’
** NT (Nested Task bit in EFLAGS) = ‘1’

486 CORE

59

3.9.3.1 Gates

Gate descriptors provide protection for privilege
transfers among executable segments. Gates are
used to transition to routines of the same or a
more privileged level. Call gates, interrupt gates
and trap gates are used for privilege transfers
within a task. Task gates are used to transfer be-
tween tasks.

Gates conform to the standard rules of privilege.
In other words, gates can be accessed by a task if
the effective privilege level (EPL) is the same or
more privileged than the gate descriptor’s privi-
lege level (DPL).

3.9.4 Initialization and Transition
to Protected Mode

The ST486 core microprocessor switches to real
mode immediately after RESET. While operating
in real mode, the system tables and registers
should be initialized. The GDTR and IDTR must
point to a valid GDT and IDT, respectively. The
size of the IDT should be at least 256 bytes, and
the GDT must contain descriptors which describe
the initial code and data segments.

The processor can be placed in protected mode
by setting the PE bit in the CR0 register. After en-
abling protected mode, the CS register should be
loaded and the instruction decode queue should
be flushed by executing an intersegment JMP. Fi-
nally, all data segment registers should be initial-
ized with appropriate selector values.

3.10 Virtual 8086 Mode

Both real mode and virtual 8086 (V86) mode are
supported by the ST486 core CPU allowing exe-
cution of 8086 application programs and 8086 op-
erating systems. V86 Mode allows the execution
of 8086-type applications, yet still permits use of
the ST486 core protection mechanism. V86 tasks
run at privilege level 3. Upon entry, all segment
limits are set to FFFFh (64K) as in real mode.

3.10.1 Memory Addressing

While in V86 mode, segment registers are used in
an identical fashion to real mode. The contents of
the segment register are multiplied by 16 and add-
ed to the offset to form the segment base linear
address. The ST486 core CPU permits the operat-

ing system to select which programs use the V86
address mechanism and which programs use pro-
tected mode addressing for each task.

The ST486 core also permits the use of paging
when operating in V86 mode. Using paging, the 1-
MByte address space of the V86 task can be
mapped to anywhere in the 4-GByte linear ad-
dress space of the ST486 core CPU.

The paging hardware allows multiple V86 tasks to
run concurrently, and provides protection and op-
erating system isolation. The paging hardware
must be enabled to run multiple V86 tasks or to re-
locate the address space of a V86 task to physical
address space greater than 1 MByte.

486 CORE

60

3.10.2 Protection

All V86 tasks operate with the least amount of
privilege (level 3) and are subject to all of the
ST486 core protected mode protection checks. As
a result, any attempt to execute a privileged in-
struction within a V86 task results in a general pro-
tection fault.

In V86 mode, a slightly different set of instructions
are sensitive to the IO privilege level (IOPL) than
in protected mode. These instructions are: CLI,
INT n, IRET, POPF, PUSHF, and STI. The INT3,
INTO and BOUND variations of the INT instruction
are not IOPL sensitive.

3.10.3 Interrupt Handling

To fully support the emulation of an 8086-type ma-
chine, interrupts in V86 mode are handled as fol-
lows. When an interrupt or exception is serviced
in V86 mode, program execution transfers to the
interrupt service routine at privilege level 0 (i.e.,
transition from V86 to protected mode occurs) and
the VM bit in the EFLAGS register is cleared. The
protected mode interrupt service routine then de-
termines if the interrupt came from a protected

mode or V86 application by examining the VM bit
in the EFLAGS image stored on the stack. The in-
terrupt service routine may then choose to allow
the 8086 operating system to handle the interrupt
or may emulate the function of the interrupt han-
dler. Following completion of the interrupt service
routine, an IRET instruction restores the EFLAGS
register (restores VM=’1’) and segment selectors
and control returns to the interrupted V86 task.

3.10.4 Entering and Leaving V86 Mode

V86 mode is entered from protected mode by ei-
ther executing an IRET instruction at CPL = ‘0’ or
by task switching. If an IRET is used, the stack
must contain an EFLAGS image with VM = ‘1’. If a
task switch is used, the TSS must contain an
EFLAGS image containing a 1 in the VM bit posi-
tion. The POPF instruction cannot be used to en-
ter V86 mode since the state of the VM bit is not
affected. V86 mode can only be exited as the re-
sult of an interrupt or exception. The transition out
must use a 32-bit trap or interrupt gate which must
point to a non-conforming privilege level 0 seg-
ment (DPL = 0), or a 32-bit TSS. These restric-
tions are required to permit the trap handler to
IRET back to the V86 program.

3.11 FPU Operations

3.11.1 FPU Register Set

In addition to the registers described to this point,
the FPU circuitry within the ST486 core provides
the user eight data registers accessed in a stack-
like manner, a control register, and a status regis-
ter. The ST486 core also provides a data register
tag word which improves context switching and
stack performance by maintaining empty/non-
empty status for each of the eight data registers.
In addition, registers in the CPU contain pointers
to (a) the memory location containing the current
instruction word and (b) the memory location con-

taining the operand associated with the current in-
struction word (if any).

FPU Tag Word Register.

The ST486 core maintains a tag word register
comprised of two bits for each physical data regis-
ter. Tag values are maintained transparently by
the ST486 core and are only available to the pro-
grammer indirectly through the FSTENV and
FSAVE instructions. The tag word with tag fields
for each associated physical register, tag(n), is
shown in Figure 3-33.

TAGn Tag Word Fields (n=0..7). These fields
provide status information for the Data register n.

Figure 3-33. FPU Tag Word Register

15 13 9 1357

1739000

TAG(7) TAG(6) TAG(5) TAG(4) TAG(3) TAG(2) TAG(1) TAG(0)

11

486 CORE

61

Note: Denormal, Infinity, QNaN, SNaN and un-
supported formats are tagged as “Special”.

TAGn TAG value

00 Valid
01 Zero
10 Special
11 Empty

486 CORE

62

FPU Status Register.

The FPU circuitry communicates information
about its status and the results of operations to the
ST486 core via the FPU status register (Figure 3-

34). This register is continuously accessible to the
ST486 CPU core regardless of the state of the
Control or Execution Units.

Bit 15 B, Copy of the ES bit. (ES is bit 7)

Bit 14 C3, Condition code bit 3.

Bits 13-11 SSS, Top of stack register number.
The value held in this field points to the current
TOS.

Bits 10-8 C2-C0, Condition code bits 2-0.

Bit 7 ES, Error indicator. Set to ‘1’ if an un-
masked exception is detected.

Bit 6 SF, Stack Fault or invalid register opera-
tion Flag. Set to ‘1’ if an unmasked stack fault of
invalid exception is detected.

Bit 5 P, Precision error exception flag. Set to ‘1’
if an unmasked precision error exception is detect-
ed.

Bit 4 U, Underflow error exception flag. Set to
‘1’ if an unmasked underflow exception is detect-
ed.

Bit 3 O, Overflow error exception flag. Set to ‘1’
if an unmasked overflow exception is detected.

Bit 2 Z, Divide by zero exception flag. Set to ‘1’ if
an unmasked divide by zero exception is detect-
ed.

Bit 1 D, Denormalized operand error exception
flag. Set to ‘1’ if an unmasked denormalized oper-
and error exception is detected.

Bit 0 I, Invalid operation exception flag. Set to
‘1’ if an unmasked invalid operation exception is
detected.

Figure 3-34. FPU Status Register

IES US

12 08 24610

OPC0 DZ

15 13 9 1357

1739003

B C3

11

S C2 SFC1S

14

486 CORE

63

FPU Mode Control Register.

The FPU Mode Control Register (MCR) (Figure 3-
35) is used by the CPU to specify the operating
mode of the FPU. The MCR contains bit fields
which specify the rounding mode to be used, the

precision by which to calculate results, and the ex-
ception conditions which should be reported to the
CPU via traps. The user controls precision, round-
ing, and exception reporting by setting or clearing
appropriate bits in the MCR.

Bits 15-12 Reserved.

Bits 11-10 RC, Rounding Control bits:

Bits 9-8 PC, Precision Control bits:

Bits 7-6 Reserved.

Bit 5 P, Precision error exception bit mask.

Bit 4 U, Underflow error exception bit mask.

Bit 3 O, Overflow error exception bit mask.

Bit 2 Z, Divide by zero exception bit mask.

Bit 1 D, Denormalized operand error exception
bit mask.

Bit 0 I, Invalid operation exception bit mask.

Figure 3-35. FPU Mode Control Register

IU

12 08 24610

RESERVED OPPC DZ

15 9 1357

1739005

11

RC RC PC RESERVED

RC value Rounding Control
00 Round to nearest or even
01 Round towards minus infinity

10 Round towards plus infinity
11 Truncate

PC Value Precision Control
00 24-bit mantissa
01 Reserved
10 53-bit mantissa
11 64-bit mantissa

486 CORE

64

1

INSTRUCTION SET

2

INSTRUCTION SET

3

INSTRUCTION SET

4.1 Introduction

This section summarizes the ST486 instruction
set and provides detailed information on the in-
struction encodings. The instructions are compati-
ble and functionally identical to those of the
ST486DX/DX2 CPU. All instructions are listed in
the CPU Instruction Set Summary Table (Table
13-17, Page 13-12), and the FPU Instruction Set

Summary Table (Table 13-19, Page 13-28).
These tables provide information on the instruc-
tion encoding, and the instruction clock counts for
each instruction. The clock count values for both
tables are based on the assumptions described in
Section 13.3.

4.2 Instruction Set Summary

Depending on the instruction, the ST486 CPU in-
structions follow the general instruction format
shown in Figure 4-1. These instructions vary in
length and can start at any byte address. An in-
struction consists of one or more bytes that can in-
clude: prefix byte(s), at least one opcode byte(s),

mod r/m byte, s-i-b byte, address displacement
byte(s) and immediate data byte(s). An instruction
can be as short as one byte and as long as 15
bytes. If there are more than 15 bytes in the in-
struction a general protection fault (error code of
0) is generated.

Figure 4-1. Instruction Set Format

P P P P P P P P T T T T T T T T R R R ss index basemod r/m 32 16 8 none 32 16 8 none

prefix byte(s) op-code mod r/m byte s-i-b byte address

4,2,1,0 byte(s)

immediate

4,2,1,0 byte(s)

07

register and address
mode specifier

P= prefix bit
T= opcode bit
R= opcode bit or reg bit

displacement data(1 or 2 bytes)(optional)

07 07 07

INSTRUCTION SET

4

4.3 General Instruction Fields

The fields in the general instruction format at the
byte level are listed in Table 4-1.

4.3.1 Optional Prefix Bytes(s)
Prefix bytes can be placed in front of any instruc-
tion. The prefix modifies the operation of the next
instruction only. When more than one prefix is
used, the order is not important. There are five
type of prefixes as follows:
1. Segment Override explicitly specifies which

segment register an instruction will use for
effective address calculation.

2. Address Size switches between 16- and 32-bit
addressing. Selects the inverse of the default.

3. Operand Size switches between 16- and 32-bit
operand size. Selects the inverse of the default.

4. Repeat is used with a string instruction which
causes the instruction to be repeated for each
element of the string.

5. Lock is used to assert the hardware LOCK#
signal during execution of the instruction.

Table 4-2 lists the encodings for each of the avail-
able prefix bytes. The operand size and address
size prefixes allow the individual overriding of the
default value for operand size and effective ad-
dress size. The presence of these prefixes select
the opposite (non-default) operand size and/or ef-
fective address size as the case may be.

Table 4-1. Instruction Fields

Field Name Description Width

Optional Prefix Byte(s)
Specifies segment register override, address and oper-
and size, repeat elements in string instruction, LOCK#
assertion.

1 or more bytes

Opcode Byte(s) Identifies instruction operation. 1 or 2 bytes
mod and r/m Byte Address mode specifier. 1 byte
s-i-b Byte Scale factor, Index and Base fields. 1 byte
Address Displacement Address displacement operand. 1, 2 or 4 bytes
Immediate data Immediate data operand. 1, 2 or 4 bytes

Table 4-2. Instruction Prefix Summary

Prefix Encoding Description
ES: 26h Override segment default, use ES for memory operand
CS: 2Eh Override segment default, use CS for memory operand
SS: 36h Override segment default, use SS for memory operand
DS: 3Eh Override segment default, use DS for memory operand
FS: 64h Override segment default, use FS for memory operand
GS: 65h Override segment default, use GS for memory operand
Operand Size 66h Make operand size attribute the inverse of the default
Address Size 67h Make address size attribute the inverse of the default

LOCK F0h Assert LOCK# hardware signal.
REPNE F2h Repeat the following string instruction.
REP/REPE F3h Repeat the following string instruction.

INSTRUCTION SET

5

4.3.2 Opcode Byte(s)

The opcode field is either one or two bytes in
length and may be further defined by additional
bits in the mod r/m byte. The opcode field speci-
fies the operation to be performed by the instruc-
tion. Some operations have more than one op-
code, each specifying a different form of the oper-
ation. Some opcodes name instruction groups.
For example, opcode 80h names a group of oper-
ations that have an immediate operand, and a reg-
ister or memory operand. The opcodes are given
in hex values unless shown within brackets ([]).
Values within brackets are given in binary. The reg
field may appear in the second opcode byte or in
the mod r/m byte.

4.3.2.1 w Field

The 1-bit w field selects the operand size during
16 and 32 bit data operations.

4.3.2.2 d Field

The d field determinds which operand is taken as
the source operand and which operand is taken as
the destination.

4.3.2.3 eee Field

The eee field is used to select the control, debug
and test registers in the MOV instructions. The
type of register and base registers selected by the
eee field are listed in Table 4-5. The values
shown in Table 4-5 are the only valid encodings
for the eee bits.

4.3.3 mod and r/m Byte
The mod and r/m fields, within the mod r/m byte,
select the type of memory addressing to be used.
Some instructions use a fixed addressing mode
(e.g., PUSH or POP) and therefore, these fields
are not present. Table 4-6 (next page) lists the ad-
dressing method when 16-bit addressing is used
and a mod r/m byte is present. Some mod r/m field
encodings are dependent on the w field and are
shown in Table 4-7 (next page).

Table 4-3. w Field Encoding

w Field
Operand Size

16-Bit Data
Operations

32-Bit Data
Operations

0 8 Bits 8 Bits

1 16 Bits 32 Bits

Table 4-4. d Field Encoding

d
Field

Direction of
Operation

Source
Operand

Dest
Operand

0
Register → Register
or
Register → Memory

reg

mod r
or
mod ss-
index-base

1
Register → Register
or
Memory → Register

mod r/m
or
mod ss-
index-base

reg

Table 4-5. eee Field Encoding

eee
Field

Register
Type

Base
Register

000 Control Register CR0
010 Control Register CR2
011 Control Register CR3
000 Debug Register DR0
001 Debug Register DR1
010 Debug Register DR2
011 Debug Register DR3

110 Debug Register DR6
111 Debug Register DR7
011 Test Register TR3
100 Test Register TR4
101 Test Register TR5
110 Test Register TR6
111 Test Register TR7

INSTRUCTION SET

6

Table 4-6. mod r/m Field Encoding

mod and r/m fields
16-Bit Address Mode

with mod r/m Byte

32-Bit Address Mode
with mod r/m Byte and
No s-i-b Byte Present

00 000 DS:[BX+SI] DS:[EAX]
00 001 DS:[BX+DI] DS:[ECX]
00 010 DS:[BP+SI] DS:[EDX]

00 011 DS:[BP+DI] DS:[EBX]
00 100 DS:[SI] s-i-b is present (Section 4.3.4)
00 101 DS:[DI] DS:[d32]
00 110 DS:[d16] DS:[ESI]
00 111 DS:[BX] DS:[EDI]

01 000 DS:[BX+SI+d8] DS:[EAX+d8]
01 001 DS:[BX+DI+d8] DS:[ECX+d8]
01 010 DS:[BP+SI+d8] DS:[EDX+d8]
01 011 DS:[BP+DI+d8] DS:[EBX+d8]
01 100 DS:[SI+d8] s-i-b is present (Section 4.3.4)

01 101 DS:[DI+d8] SS:[EBP+d8]
01 110 SS:[BP+d8] DS:[ESI+d8]
01 111 DS:[BX+d8] DS:[EDI+d8]

10 000 DS:[BX+SI+d16] DS:[EAX+d32]
10 001 DS:[BX+DI+d16] DS:[ECX+d32]
10 010 DS:[BP+SI+d16] DS:[EDX+d32]
10 011 DS:[BP+DI+d16] DS:[EBX+d32]
10 100 DS:[SI+d16] s-i-b is present (Section 4.3.4)
10 101 DS:[DI+d16] SS:[EBP+d32]
10 110 SS:[BP+d16] DS:[ESI+d32]
10 111 DS:[BX+d16] DS:[EDI+d32]

11000-11111 See Table 4-7 See Table 4-7

Table 4-7. mod r/m Field Encoding Dependent on w Field

mod r/m
16-Bit Operation

w = 0
16-Bit Operation

w = 1
32-Bit Operation

w = 0
32-Bit Operation

w = 1
11 000 AL AX AL EAX
11 001 CL CX CL ECX
11 010 DL DX DL EDX
11 011 BL BX BL EBX

11 100 AH SP AH ESP
11 101 CH BP CH EBP
11 110 DH SI DH ESI
11 111 BH DI BH EDI

INSTRUCTION SET

7

4.3.3.1 reg Field

The reg field determines which general registers
are to be used. The selected register is depend-
ent on whether a 16- or 32-bit operation is current
and the status of the w bit..

4.3.3.2 sreg3 Field

The sreg3 field (Table 4-9) is 3-bit field that is sim-
ilar to the sreg2 field, but allows use of the FS and
GS segment registers.

4.3.3.3 sreg2 Field

The sreg2 field (Table 4-10) is a 2-bit field that al-
lows one of the four 286-type segment registers to
be specified.

4.3.4 s-i-b Byte

The s-i-b fields provide scale factor, indexing and
a base field for address selection.

4.3.4.1 ss Field

The ss field (Table 4-11) specifies the scale factor
used in the offset mechanism for address calcula-
tion. The scale factor multiplies the index value to
provide one of the components used to calculate
the offset address.

Table 4-8. reg Field

reg

16-Bit
Operation

w Field Not
Present

32-Bit
Operation

w Field Not
Present

16-Bit
Operation

w=0

16-Bit
Operation

w=1

32-Bit
Operation

w=0

32-Bit
Operation

w=1

000 AX EAX AL AX AL EAX
001 CX ECX CL CX CL ECX
010 DX EDX DL DX DL EDX
011 BX EBX BL BX BL EBX
100 SP ESP AH SP AH ESP
101 BP EBP CH BP CH EBP
110 SI ESI DH SI DH ESI
111 DI EDI BH DI BH EDI

Table 4-9. sreg3 Field Encoding

sreg3 Field
Segment Register

Selected
000 ES
001 CS
010 SS
011 DS
100 FS
101 GS
110 undefined

111 undefined

Table 4-10. sreg2 Field Encoding

sreg2 Field
Segment Register

Selected
00 ES
01 CS
10 SS
11 DS

Table 4-11. ss Field Encoding

ss Field Scale Factor
00 x1
01 x2
01 x4
11 x8

INSTRUCTION SET

8

4.3.4.2 Index Field

The index field (Table 4-12) specifies the index
register used by the offset mechanism for offset
address calculation. When no register is used (in-
dex field = 100), the ss value must be 00 or the ef-
fective address is undefined

4.3.4.3 Base Field

In Table 4-6, the note "s-i-b present" for certain
entries forces the use of the mod and base field as
listed in Table 4-13. The first two digits in the first
column of Table 4-13 identifies the mod bits in the
mod r/m byte. The last three digits in the first col-
umn of this table identifies the base fields in the s-
i-b byte..

Table 4-12. index Field Encoding

Index Field Index Register
000 EAX
001 ECX
010 EDX
011 EBX

100 none
101 EBP
110 ESI
111 EDI

Table 4-13. mod base Field Encoding

mod Field
within mode/rm Byte

base Field
within s-i-b Byte

32-Bit Address Mode with mod
r/m and s-i-b Bytes Present

00 000 DS:[EAX+(scaled index)]
00 001 DS:[ECX+(scaled index)]
00 010 DS:[EDX+(scaled index)]
00 011 DS:[EBX+(scaled index)]

00 100 SS:[ESP+(scaled index)]
00 101 DS:[d32+(scaled index)]
00 110 DS:[ESI+(scaled index)]
00 111 DS:[EDI+(scaled index)]

01 000 DS:[EAX+(scaled index)+d8]
01 001 DS:[ECX+(scaled index)+d8]
01 010 DS:[EDX+(scaled index)+d8]
01 011 DS:[EBX+(scaled index)+d8]
01 100 SS:[ESP+(scaled index)+d8]
01 101 SS:[EBP+(scaled index)+d8]
01 110 DS:[ESI+(scaled index)+d8]

01 111 DS:[EDI+(scaled index)+d8]

10 000 DS:[EAX+(scaled index)+d32]
10 001 DS:[ECX+(scaled index)+d32]
10 010 DS:[EDX+(scaled index)+d32]
10 011 DS:[EBX+(scaled index)+d32]
10 100 SS:[ESP+(scaled index)+d32]
10 101 SS:[EBP+(scaled index)+d32]
10 110 DS:[ESI+(scaled index)+d32]
10 111 DS:[EDI+(scaled index)+d32]

INSTRUCTION SET

9

4.4 Instruction Set Tables

The ST486 instruction set is presented in two ta-
bles, the CPU Instruction Set (Table 13-17) and
the FPU Clock Count (Table 13-18). Additional in-
formation concerning the FPU Clock Count Table
is presented on page 13-28.

4.4.1 Assumptions Made in
Determining Instruction
Clock Count

The following assumptions have been made in
presenting the clock count values for the individual
instructions:

1. All clock counts refer to the internal CPU inter-
nal clock frequency.

2. The instruction has been prefetched, decoded
and is ready for execution.

3. Bus cycles do not require wait states.

4. There are no local bus HOLD requests delay-
ing processor access to the bus.

5. No exceptions are detected during instruction
execution.

6. If an effective address is calculated, it does not
use two general register components. One reg-
ister, scaling and displacement can be used
within the clock count shown. However, if the
effective address calculation uses two general
register components, add one clock to the
clock count shown.

7. All clock counts assume aligned 32-bit mem-
ory/IO operands.

8. If instructions access a 32-bit operand on odd
addresses, add one clock for read or write and
add two clocks for read and write.

9. For non-cached memory accesses, add two
clocks, assuming zero wait state memory
accesses.

10. Locked cycles are not cacheable. Therefore,
using the LOCK prefix with an instruction adds
additional clocks as specified in paragraph 9
above.

INSTRUCTION SET

10

4.4.2 CPU Instruction Set
Summary Table Abbreviations

The clock counts listed in the CPU Instruction Set
Summary Table are grouped by operating mode
and whether there is a register/cache hit or a

cache miss. In some cases, more than one clock
count is shown in a column for a given instruction,
or a variable is used in the clock count. The abbre-
viations used for these conditions are listed in Ta-
ble 4-14..

4.4.3 CPU Instruction Set
Summary Table Flags Table

The CPU Instruction Set Summary Table lists nine
flags that are affected by the execution of instruc-
tions. The conventions shown in Table 4-15 are
used to identify the different flags.

Table 4-16 lists the conventions used to indicate
what action the instruction has on the particular
flag.

Table 4-14. CPU Clock Count Abbreviations

Clock Count
SymbolL

Explanation

/ Register operand/memory operand.
n Number of times operation is repeated.
L Level of the stack frame.

|
Conditional jump taken | Conditional jump not taken.
(e.g. “4|1“ = 4 clocks if jump taken, 1 clock if jump not taken)

\
CPL ≤ IOPL \ CPL IOPL
(where CPL = Current Privilege Level, IOPL = I/O Privilege Level)

Table 4-15. Flag Abbreviations

Abbreviation Name of Flag
OF Overflow Flag
DF Direction Flag
IF Interrupt Enable Flag
TF Trap Flag
SF Sign Flag
ZF Zero Flag
AF Auxiliary Flag
PF Parity Flag
CF Carry Flag

Table 4-16. Action of Instruction on Flag

Instruction
Table Symbol

Action

x Flag is modified by the instruction.
- Flag is not changed by the instruction.
0 Flag is reset to “0”.
1 Flag is set to “1”.

IN
S

T
R

U
C

T
IO

N
 S

E
T11

Table 4-17. Instruction Set Summary

INSTRUCTION OPCODE
FLAGS REAL MODE

CLOCK COUNT
PROT. MODE

CLOCK COUNT NOTES

OF DF IF TF SF ZF AF PF CF Reg/Cache Hit Reg/Cache Hit
Real
Mode

Protected
Mode

AAA ASCII Adjust AL after Add 37 - - - - - - x - x 4 4
AAD ASCII Adjust AX before Divide D5 0A - - - - x x - x - 4 4

AAM ASCII Adjust AX after Multiply D4 0A - - - - x x - x - 16 16

AAS ASCII Adjust AL after Subtract 3F - - - - - - x - x 4 4

ADC Add with Carry x - - - x x x x x b h

Register to Register 1 [00dw] [11 reg r/m] 1

Register to Memory 1 [000w] [mod reg r/m] 3

Memory to Register 1 [001w] [mod reg r/m] 3

Immediate to Register/Memory 8 [00sw] [mod 010 r/m]# 1/3

Immediate to Accumulator 1 [010w] # 1

ADD Integer Add x - - - x x x x x b h

Register to Register 0 [00dw] [11 reg r/m] 1 1

Register to Memory 0 [000w] [mod reg r/m] 3 3

Memory to Register 0 [001w] [mod reg r/m] 3 3

Immediate to Register/Memory 8 [00sw] [mod 000 r/m]# 1/3 1/3

Immediate to Accumulator 0 [010w] # 1 1

AND Boolean AND 0 - - - x x - x 0 h

Register to Register 2 [00dw] [11 reg r/m] 1 1

Register to Memory 2 [000w] [mod reg r/m] 3 3

Memory to Register 2 [001w] [mod reg r/m] 3 3

Immediate to Register/Memory 8 [00sw] [mod 100 r/m]# 1/3 1/3

Immediate to Accumulator 2 [010w] # 1 1

ARPL Adjust Requested Privilege Level - - - - - x - - - a h

From Register/Memory 63 [mod reg r/m] 6/10

BOUND Check Array Boundaries 62 [mod reg r/m] - - - - - - - - - b,e g,h,j,k,r

If Out of Range (Int 5) 11+int 11+int

If In Range 11 11

BSF Scan Bit Forward - - - - - x - - - b h

Register/Memory, Register 0F BC [mod reg r/m] 5/7+n 5/7+n

BSR Scan Bit Reverse - - - - - x - - - b h

Register/Memory, Register 0F BC [mod reg r/m] 5/7+n 5/7+n

BSWAP Byte Swap 0F C[1 reg] - - - - - - - - - 4 4
BT Test Bit - - - - - - - - x

Register/Memory, Immediate 0F BA [mod 100 r/m]# 3/4 3/4

Register/Memory, Register 0F A3 [mod reg r/m] 3/6

IN
S

T
R

U
C

T
IO

N
 S

E
T

12 Table 4-17. Instruction Set Summary (Continued)

INSTRUCTION OPCODE
FLAGS REAL MODE

CLOCK COUNT
PROT. MODE

CLOCK COUNT NOTES

OF DF IF TF SF ZF AF PF CF Reg/Cache Hit Reg/Cache Hit Real
Mode

Protected
Mode

BTC Test Bit and Complement - - - - - - - - x b h

Register/Memory, Immediate 0F BA [mod 111 r/m]# 4/5 4/5

Register/Memory, Register 0F BB [mod reg r/m] 5/8 5/8

BTR Test Bit and Reset - - - - - - - - x b h

Register/Memory, Immediate 0F BA [mod 110 r/m]# 4/5 4/5

Register/Memory, Register 0F B3 [mod reg r/m] 5/8 5/8

BTS Test Bit and Set - - - - - - - - x b h

Register/Memory 0F BA [mod 101 r/m] 3/5 3/5

Register (short form) 0F AB [mod reg r/m] 4/7 4/7

CALL Subroutine Call - - - - - - - - - b h,j,k,r

Direct Within Segment E8 +++ 7 7

Register/Memory Indirect Within Segment FF [mod 010 r/m] 8/9 8/9

Direct Intersegment 9A [unsigned full offset, selector] 12 30

Call Gate to Same Privilege 41

Call Gate to Different Privilege No P 83

Call Gate to Different Privilege x P’s 81+4x

16-bit Task to 16-bit TSS 235

16-bit Task to 32-bit TSS 262

16-bit Task to V86 Task 179

32-bit Task to 16-bit TSS 238

32-bit Task to 32-bit TSS 265

32-bit Task to V86 Task 182

Indirect Intersegment FF [mod 011 r/m] 14 14

Call Gate to Same Privilege 43

Call Gate to Different Privilege No P 85

Call Gate to Different Privilege Level x P’s 86+4x

16-bit Task to 16-bit TSS 237

16-bit Task to 32-bit TSS 264

16-bit Task to V86 Task 181

32-bit Task to 16-bit TSS 240

32-bit Task to 32-bit TSS 267

32-bit Task to V86 Task 184

IN
S

T
R

U
C

T
IO

N
 S

E
T13

CBW Convert Byte to Word 98 - - - - - - - - - 3 3

CDQ Convert Doubleword to Quadword 99 - - - - - - - - - 1 1

CLC Clear Carry Flag F8 - - - - - - - - 0 1 1

CLD Clear Direction Flag FC - 0 - - - - - - - 1 1

CLI Clear Interrupt Flag FA - - 0 - - - - - - 7 7 m

CLTS Clear Task Switched Flag 0F 06 - - - - - - - - - 5 5 c l

CMC Complement the Carry Flag F5 - - - - - - - - x 1 1

CMP Compare Integers x - - - x x x x x

Register to Register 3 [10dw] [11 reg r/m] 1 1 b h

Register to Memory 3 [101w] [mod reg r/m] 3 3

Memory to Register 3 [100w] [mod reg r/m] 3 3

Immediate to Register/Memory 8 [00sw] [mod 111 r/m] # 1/3 1/3

Immediate to Accumulator 3 [110w] # 1 1

CMPS Compare String A [011w] x - - - x x x x x 7 7 b h

CMPXCHG Compare and Exchange x - - - x x x x x

Register1, Register2 0F B [000w] [11 reg2 reg1] 5 5

Memory, Register 0F B [000w] [mod reg r/m] 7 7

CWD Convert Word to Doubleword 99 - - - - - - - - - 1 1

CWDE Convert Word to Doubleword 98 - - - - - - - - - 3 3

DAA Decimal Adjust AL after Add 27 - - - - x x x x x 4 4

DAS Decimal Adjust AL after Subtract 2F - - - - x x x x x 4 4

DEC Decrement by 1 x - - - x x x x - b h

Register/Memory F [111w] [mod 001 r/m] 1/3 1/3

Register (short form) 4 [1 reg] 1 1

DIV Unsigned Divide F [011w] [mod 110 r/m] - - - - - - - - - b,e e,h

Accumulator by Register/Memory 14/15 14/15

Divisor: Byte 22/23 22/23

Word 38/39 38/39

Doubleword

ENTER Enter New Stack Frame C8 ++[8-bit Level] - - - - - - - - - b h

Level = 0 7 7

Level = 1 10 10

Level (L) > 1 6+4*L 6+4*L

HLT Halt F4 - - - - - - - - - 3 3 l

Table 4-17. Instruction Set Summary (Continued)

INSTRUCTION OPCODE
FLAGS REAL MODE

CLOCK COUNT
PROT. MODE

CLOCK COUNT NOTES

OF DF IF TF SF ZF AF PF CF Reg/Cache Hit Reg/Cache Hit Real
Mode

Protected
Mode

IN
S

T
R

U
C

T
IO

N
 S

E
T

14

IDIV Integer (Signed) Divide F [011w] [mod 111 r/m] - - - - - - - - - b,e e,h

Accumulator by Register/Memory

Divisor: Byte 19/20 19/20

Word 27/28 27/28

Doubleword 43/44 43/44

IMUL Integer (Signed) Multiply x - - - - - - - x b h

Accumulator by Register/Memory F [011w] [mod 101 r/m]

Multiplier: Byte 3/5 3/5

Word 3/5 3/5

Doubleword 7/9 7/9

Register with Register/Memory 0F AF [mod reg r/m]

Multiplier: Byte 3/5 3/5

Word 3/5 3/5

Doubleword 7/9 7/9

Register/Memory with Immediate to Register2 6 [10s1] [mod reg r/m] #

Multiplier: Byte 3/5 3/5

 Word 3/5 3/5

Doubleword 7/9 7/9

IN Input from I/O Port - - - - - - - - - m

Fixed Port E [010w] [port number] 16 6/19

Variable Port E [110w] 16 6/19

INC Increment by 1 x - - - x x x x - b h

Register/Memory F [111w] [mod 000 r/m] 1/3 1/3

Register (short form) 4 [0 reg] 1 1

INS Input String from I/O Port 6 [110w] - - - - - - - - - 20 6/19 b h,m

INT Software Interrupt - x 0 - - - - - - b,e g,j,k,r

INT i CD [i] 14

Protected Mode:

Interrupt or Trap to Same Privilege 49

Interrupt or Trap to Different Privilege 77

Continued on next page...

Table 4-17. Instruction Set Summary (Continued)

INSTRUCTION OPCODE
FLAGS REAL MODE

CLOCK COUNT
PROT. MODE

CLOCK COUNT NOTES

OF DF IF TF SF ZF AF PF CF Reg/Cache Hit Reg/Cache Hit Real
Mode

Protected
Mode

IN
S

T
R

U
C

T
IO

N
 S

E
T15

INT Software Interrupt (Continued) - x 0 - - - - - - b,e g,j,k,r

16-bit Task to 16-bit TSS by Task Gate 233

16-bit Task to 32-bit TSS by Task Gate 260

16-bit Task to V86 by Task Gate 177

16-bit Task to 16-bit TSS by Task Gate 236

32-bit Task to 32-bit TSS by Task Gate 263

32-bit Task to V86 by Task Gate 180

V86 to 16-bit TSS by Task Gate 236

V86 to 32-bit TSS by Task Gate 263

V86 to Privilege 0 by Trap Gate/Int Gate 93

INT 3 CC 14

Protected Mode:

Interrupt or Trap to Same Privilege 49

Interrupt or Trap to Different Privilege 77

16-bit Task to 16-bit TSS by Task Gate 233

16-bit Task to 32-bit TSS by Task Gate 260

16-bit Task to V86 by Task Gate 177

32-bit Task to 16-bit TSS by Task Gate 236

32-bit Task to 32-bit TSS by Task Gate 180

32-bit Task to V86 by Task Gate 236

V86 to 16-bit TSS by Task Gate 263

V86 to 32-bit TSS by Task Gate 93

V86 to Privilege 0 by Trap Gate/Int Gate

INT 0 CE - x 0 - - - - - - 1

If OF==0 1

If OF==1 (INT 4) 15

Protected Mode: 49

Interrupt or Trap to Same Privilege 77

Interrupt or Trap to Different Privilege 233

16-bit Task to 16-bit TSS by Task Gate 260

16-bit Task to 32-bit TSS by Task Gate 177

Continued on next page...

Table 4-17. Instruction Set Summary (Continued)

INSTRUCTION OPCODE
FLAGS REAL MODE

CLOCK COUNT
PROT. MODE

CLOCK COUNT
NOTES

OF DF IF TF SF ZF AF PF CF Reg/Cache Hit Reg/Cache Hit Real
Mode

Protected
Mode

IN
S

T
R

U
C

T
IO

N
 S

E
T

16

INT Software Interrupt (Continued) - x 0 - - - - - - b,e g,j,k,r

16-bit Task to V86 by Task Gate 236

32-bit Task to 16-bit TSS by Task Gate 263

32-bit Task to 32-bit TSS by Task Gate 180

32-bit Task to V86 by Task Gate 236

V86 to 16-bit TSS by Task Gate 263

V86 to 32-bit TSS by Task Gate 93

V86 to Privilege 0 by Trap Gate/Int Gate,

INVD Invalidate Cache 0F 08 - - - - - - - - - 4 4

INVLPG Invalidate TLB Entry 0F 01 [mod 111 r/m] - - - - - - - - - 4 4

RET Interrupt Return CF x x x x x x x x x g,h,j,k,r

Real Mode 14

Protected Mode:

 Within Task to Same Privilege 31

 Within Task to Different Privilege 66

16-bit Task to 16-bit Task 229

16-bit Task to 32-bit TSS 256

16-bit Task to V86 Task 173

32-bit Task to 16-bit TSS 232

32-bit Task to 32-bit TSS 259

32-bit Task to V86 Task 176

JB/JNAE/JC Jump on Below/Not Above
or Equal/Carry

- - - - - - - - - r

8-bit Displacement 72 + 4 | 1 6 | 1

Full Displacement 0F 82 +++ 4 | 1 6 | 1

JBE/JNA Jump on Below or Equal/Not Above - - - - - - - - - r

8-bit Displacement 76 + 4 | 1 6 | 1

Full Displacement 0F 86 +++ 4 | 1 6 | 1

JCXZ Jump on CX Zero E3 + - - - - - - - - - 7 | 3 7 | 3 r

JE/JZ Jump on Equal/Zero - - - - - - - - - r

8-bit Displacement 74 + 4 | 1 6 | 1

Full Displacement 0F 84 +++ 4 | 1 6 | 1

JECXZ Jump on ECX Zero E3 + - - - - - - - - - 7 | 3 7 | 3 r

Table 4-17. Instruction Set Summary (Continued)

INSTRUCTION OPCODE
FLAGS

REAL MODE
CLOCK COUNT

PROT. MODE
CLOCK COUNT NOTES

OF DF IF TF SF ZF AF PF CF Reg/Cache Hit Reg/Cache Hit Real
Mode

Protected
Mode

IN
S

T
R

U
C

T
IO

N
 S

E
T17

JL/JNGE Jump on Less/Not Greater or Equal - - - - - - - - - r

8-bit Displacement 7C + 4 | 1 6 | 1

Full Displacement 0F 8C +++ 4 | 1 6 | 1

JLE/JNG Jump on Less or Equal/Not Greater - - - - - - - - - r

8-bit Displacement 7E + 4 | 1 6 | 1

Full Displacement 0F 8E +++ 4 | 1 6 | 1

JMP Unconditional Jump - - - - - - - - - b h,j,k,r

Short EB + 4 6

Direct within Segment E9 +++ 4 6

Register/Memory Indirect Within Segment FF [mod 100 r/m] 6/8 6/8

Direct Intersegment EA [full offset, selector] 9 26

Call Gate Same Privilege Level 37

16-bit Task to 16-bit TSS 238

16-bit Task to 32-bit TSS 265

16-bit Task to V86 Task 182

32-bit Task to 16-bit TSS 241

 32-bit Task to 32-bit TSS 268

 32-bit Task to V86 Task 185

Indirect Intersegment FF [mod 101 r/m] 11 30

Call Gate Same Privilege Level 39

16-bit Task to 16-bit TSS 240

16-bit Task to 32-bit TSS 267

16-bit Task to V86 Task 184

32-bit Task to 16-bit TSS 243

32-bit Task to 32-bit TSS 270

32-bit Task to V86 Task 187

JNB/JAE/JNC Jump on Not Below/Above
or Equal/Not Carry

- - - - - - - - - r

8-bit Displacement 73 + 4 | 1 6 | 1

Full Displacement 0F 83 +++ 4 | 1 6 | 1

JNBE/JA Jump on Not Below or Equal/Above - - - - - - - - - r

8-bit Displacement 77 + 4 | 1 6 | 1

Full Displacement 0F 87 +++ 4 | 1 6 | 1

Table 4-17. Instruction Set Summary (Continued)

INSTRUCTION OPCODE
FLAGS REAL MODE

CLOCK COUNT
PROT. MODE

CLOCK COUNT
NOTES

OF DF IF TF SF ZF AF PF CF Reg/Cache Hit Reg/Cache Hit Real
Mode

Protected
Mode

IN
S

T
R

U
C

T
IO

N
 S

E
T

18

JNE/JNZ Jump on Not Equal/Not Zero - - - - - - - - - r

8-bit Displacement 75 + 4 | 1 6 | 1

Full Displacement 0F 85 +++ 4 | 1 6 | 1

JNL/JGE Jump on Not Less/Greater or Equal - - - - - - - - - r

8-bit Displacement 7D + 4 | 1 6 | 1

Full Displacement 0F 8D +++ 4 | 1 6 | 1

JNLE/JG Jump on Not Less or Equal/Greater - - - - - - - - - r

8-bit Displacement 7F + 4 | 1 6 | 1

Full Displacement 0F 8F +++ 4 | 1 6 | 1

JNO Jump on Not Overflow - - - - - - - - - r

8-bit Displacement 71 + 4 | 1 6 | 1

Full Displacement 0F 81 +++ 4 | 1 6 | 1

JNP/JPO Jump on Not Parity/Parity Odd - - - - - - - - - r

8-bit Displacement 7B + 4 | 1 6 | 1

Full Displacement 0F 8B +++ 4 | 1 6 | 1

JNS Jump on Not Sign - - - - - - - - - r

8-bit Displacement 79 + 4 | 1 6 | 1

Full Displacement 0F 89 +++ 4 | 1 6 | 1

JO Jump on Overflow - - - - - - - - - r

8-bit Displacement 70 + 4 | 1 6 | 1

Full Displacement 0F 80 +++ 4 | 1 6 | 1

JP/JPE Jump on Parity/Parity Even - - - - - - - - - r

8-bit Displacement 7A + 4 | 1 6 | 1

Full Displacement 0F 8A +++ 4 | 1 6 | 1

JS Jump on Sign - - - - - - - - - r

8-bit Displacement 78 + 4 | 1 6 | 1

Full Displacement 0F 88 +++ 4 | 1 6 | 1

LAHF Load AH with Flags 9F - - - - - - - - - 2 2

LAR Load Access Rights - - - - - x - - - a g,h,j,p

From Register/Memory 0F 02 [mod reg r/m] 11/12

LDS Load Pointer to DS C5 [mod reg r/m] - - - - - - - - - 6 19 b h,i,j

LEA Load Effective Address 8D [mod reg r/m] - - - - - - - - -

No Index Register 2 2

With Index Register 3 3

Table 4-17. Instruction Set Summary (Continued)

INSTRUCTION OPCODE
FLAGS

REAL MODE
CLOCK COUNT

PROT. MODE
CLOCK COUNT NOTES

OF DF IF TF SF ZF AF PF CF Reg/Cache Hit Reg/Cache Hit Real
Mode

Protected
Mode

IN
S

T
R

U
C

T
IO

N
 S

E
T19

LEAVE Leave Current Stack Frame C9 - - - - - - - - - 3 3 b h

LES Load Pointer to ES C4 [mod reg r/m] - - - - - - - - - 6 19 b h,i,j

LFS Load Pointer to FS 0F B4 [mod reg r/m] - - - - - - - - - 6 19 b h,i,j

LGDT Load GDT Register 0F 01 [mod 010 r/m] - - - - - - - - - 9 9 b,c h,l

LGS Load Pointer to GS 0F B5 [mod reg r/m] - - - - - - - - - 6 19 b h,i,j

LIDT Load IDT Register 0F 01 [mod 011 r/m] - - - - - - - - - 9 9 b,c h,l

LLDT Load LDT Register - - - - - - - - - a g,h,j,l

From Register/Memory 0F 00 [mod 010 r/m] 16/17

LMSW Load Machine Status Word - - - - - - - - - b,c h,l

From Register/Memory 0F 01 [mod 110 r/m] 5 5

LODS Load String A [110 w] - - - - - - - - - 4 4 b h

LOOP Offset Loop/No Loop E2 + - - - - - - - - - 7 | 3 9 | 3 r

LOOPNZ/LOOPNE Offset E0 + - - - - - - - - - 7 | 3 9 | 3 r

LOOPZ/LOOPE Offset E1 + - - - - - - - - - 7 | 3 9 | 3 r

LSL Load Segment Limit - - - - - x - - - 14/15 a g,h,j,p

From Register/Memory 0F 03 [mod reg r/m]

LSS Load Pointer to SS 0F B2 [mod reg r/m] - - - - - - - - - 6 19 a h,i,j

LTR Load Task Register - - - - - - - - - a g,h,j,l

From Register/Memory 0F 00 [mod reg r/m] 16/17

MOV Move Data - - - - - - - - - b h,i,j

Register to Register/Memory 8 [100w] [mod reg r/m] 1/2 1/2

Register/Memory to Register 8 [101w] [mod reg r/m] 1/2 1/2

Immediate to Register/Memory C [011w] [mod 000 r/m] # 1/2 1/2

Immediate to Register (short form) B [w reg] # 1 1

Memory to Accumulator (short form) A [000w] +++ 2 2

Accumulator to Memory (short form) A [001w] +++ 1/2 1/2

Register/Memory to Segment Register 8E [mod sreg3 r/m] 2/3 15/16

Segment Register to Register/Memory 8C [mod reg r/m] 1/2 1/2

MOV Move to/from Control/Debug/Test Regs - - - - - - - - - l

Register to CR0/CR2/CR3 0F 22 [11 eee reg] 11/3/3 11/3/3

CR0/CR2/CR3 to Register 0F 20 [11 eee reg] 1/3/3 1/3/3

Continued on next page...

Table 4-17. Instruction Set Summary (Continued)

INSTRUCTION OPCODE
FLAGS REAL MODE

CLOCK COUNT
PROT. MODE

CLOCK COUNT NOTES

OF DF IF TF SF ZF AF PF CF Reg/Cache Hit Reg/Cache Hit Real
Mode

Protected
Mode

IN
S

T
R

U
C

T
IO

N
 S

E
T

20

MOV Move to/from Control/Debug/Test Regs - - - - - - - - - l

Register to DR0-DR3 0F 23 [11 eee reg] 1 1

DR0-DR3 to Register 0F 21 [11 eee reg] 3 3

Register to DR6-DR7 0F 23 [11 eee reg] 1 1

DR6-DR7 to Register 0F 21 [11 eee reg] 3 3

Register to TR3-5 0F 26 [11 eee reg] 5 5

TR3-5 to Register 0F 24 [11 eee reg] 5 5

Register to TR6-TR7 0F 26 [11 eee reg] 1 1

TR6-TR7 to Register 0F 24 [11 eee reg] 3 3

MOVS Move String A [010w] - - - - - - - - - 5 5 b h

MOVSX Move with Sign Extension - - - - - - - - - b h

Register from Register/Memory 0F B[111w] [mod reg r/m] 1/3 1/3

MOVZX Move with Zero Extension - - - - - - - - - b h

Register from Register/Memory 0F B[011w] [mod reg r/m] 2/3 2/3

MUL Unsigned Multiply F [011w] [mod 100 r/m] x - - - - - - - x b h

Accumulator with Register/Memory

 Multiplier - Byte 3/5 3/5

 - Word 3/5 3/5

 - Doubleword 7/9 7/9

NEG Negate Integer F [011w] [mod 011 r/m] x - - - x x x x x b h

NOP No Operation 90 - - - - - - - - - 1 1

NOT Boolean Complement F [011w] [mod 010 r/m] - - - - - - - - - 1/3 1/3 b h

OR Boolean OR 0 - - - x x x x 0 b h

Register to Register 0 [10dw] [11 reg r/m] 1 1

Register to Memory 0 [100w] [mod reg r/m] 3 3

Memory to Register 0 [101w] [mod reg r/m] 3 3

Immediate to Register/Memory 8 [000w] [mod 001 r/m] # 1/3 1/3

Immediate to Accumulator 0 [110w] # 1 1

OUT Output to Port - - - - - - - - - m

Fixed Port E [011w] [port number] 18 4\17

Variable Port E [111w] 18 4\17

OUTS Output String 6 [111w] - - - - - - - - - 20 6\19 b h,m

Table 4-17. Instruction Set Summary (Continued)

INSTRUCTION OPCODE
FLAGS REAL MODE

CLOCK COUNT
PROT. MODE

CLOCK COUNT NOTES

OF DF IF TF SF ZF AF PF CF Reg/Cache Hit Reg/Cache Hit Real
Mode

Protected
Mode

IN
S

T
R

U
C

T
IO

N
 S

E
T21

POP Pop Value off Stack - - - - - - - - - b h,i,j

Register/Memory 8F [mod 000 r/m] 3/5 3/5

Register (short form) 5 [1 reg] 3 3

Segment Register (ES, CS, SS, DS) [000 sreg2 110] 4 18

Segment Register (ES, CS, SS, DS, FS, GS) 0F [10 sreg3 001] 4 18

POPA Pop All General Registers 61 - - - - - - - - - 18 18 b h

POPF Pop Stack into FLAGS 9D x x x x x x x x x 4 4 b h,n

PREFIX BYTES - - - - - - - - -

Assert Hardware LOCK Prefix F0 m

Address Size Prefix 67

Operand Size Prefix 66

Segment Override Prefix

CS 2E

DS 3E

ES 26

FS 64

GS 65

SS 36

PUSH Push Value onto Stack - - - - - - - - - b h

Register/Memory FF [mod 110 r/m] 2/4 2/4

Register (short form) 5 [0 reg] 2 2

Segment Register (ES, CS, SS, DS) [000 sreg2 110] 2 2

Segment Register (ES, CS, SS, DS, FS, GS) 0F [10 sreg3 000] 2 2

Immediate 6 [10s0] # 2 2

PUSHA Push All General Registers 60 - - - - - - - - - 17 17 b h

PUSHF Push FLAGS Register 9C - - - - - - - - - 2 2 b h

RCL Rotate Through Carry Left x - - - - - - - x b h

Register/Memory by 1 D [000w] [mod 010 r/m] 9/9 9/9

Register/Memory by CL D [001w] [mod 010 r/m] 9/9 9/9

Register/Memory by Immediate C [000w] [mod 010 r/m] # 9/9 9/9

RCR Rotate Through Carry Right x - - - - - - - x b h

Register/Memory by 1 D [000w] [mod 011 r/m] 9/9 9/9

Register/Memory by CL D [001w] [mod 011 r/m] 9/9 9/9

Register/Memory by Immediate C [000w] [mod 011 r/m] # 9/9 9/9

Table 4-17. Instruction Set Summary (Continued)

INSTRUCTION OPCODE
FLAGS REAL MODE

CLOCK COUNT
PROT. MODE

CLOCK COUNT
NOTES

OF DF IF TF SF ZF AF PF CF Reg/Cache Hit Reg/Cache Hit Real
Mode

Protected
Mode

IN
S

T
R

U
C

T
IO

N
 S

E
T

22

REP INS Input String F2 6[110w] - - - - - - - - - 20+9n 5+9n\
18+9n

b h,m

REP LODS Load String F2 A[110w] - - - - - - - - - 4+5n 4+5n b h

REP MOVS Move String F2 A[010w] - - - - - - - - - 5+4n 5+4n b h

REP OUTS Output String F2 6[111w] - - - - - - - - - 20+4n 5+4n\
18+4n

b

REP STOS Store String F2 A[101w] - - - - - - - - - 3+4n 3+4n b h

REPE CMPS Compare String F3 A[011w] x - - - x x x x x 5+8n 5+8n b h

(Find non-match)

REPE SCAS Scan String F3 A[111w] x - - - x x x x x 4+5n 4+5n b h

(Find non-AL/AX/EAX)

REPNE CMPS Compare String F2 A[011w] x - - - x x x x x 5+8n 5+8n b h

(Find match)

REPNE SCAS Scan String F2 A[111w] x - - - x x x x x 4+5n 4+5n b h

(Find AL/AX/EAX)

RET Return from Subroutine - - - - - - - - - b g,h,j,k,r

Within Segment C3 10 10

Within Segment Adding Immediate to SP C2 ++ 10 10

Intersegment CB 13 26

Intersegment Adding Immediate to SP CA ++ 13 26

Protected Mode: Different Privilege Level

Intersegment 61

Intersegment Adding Immediate to SP 61

ROL Rotate Left x - - - - - - - x b h

Register/Memory by 1 D[000w] [mod 000 r/m] 2/4 2/4

Register/Memory by CL D[001w] [mod 000 r/m] 3/5 3/5

Register/Memory by Immediate C[000w] [mod 000 r/m] # 2/4 2/4

ROR Rotate Right x - - - - - - - x b h

Register/Memory by 1 D[000w] [mod 001 r/m] 2/4 2/4

Register/Memory by CL D[001w] [mod 001 r/m] 3/5 3/5

Register/Memory by Immediate C[000w] [mod 001 r/m] # 2/4 2/4

RSDC Restore Segment Register and Descrip-
tor 0F 79 [mod sreg3 r/m] - - - - - - - - - 10 10 s s

RSLDT Restore LDTR and Descriptor 0F 7B [mod 000 r/m] - - - - - - - - - 10 10 s s

RSM Resume from SMM Mode 0F AA - - - - - - - - - 76 76 s s

Table 4-17. Instruction Set Summary (Continued)

INSTRUCTION OPCODE
FLAGS

REAL MODE
CLOCK COUNT

PROT. MODE
CLOCK COUNT NOTES

OF DF IF TF SF ZF AF PF CF Reg/Cache Hit Reg/Cache Hit Real
Mode

Protected
Mode

IN
S

T
R

U
C

T
IO

N
 S

E
T23

RSTS Restore TSR and Descriptor 0F 7D [mod 000 r/m] - - - - - - - - - 10 10 s s

SAHF Store AH in FLAGS 9E x - - - x x - x x 2 2

SAL Shift Left Arithmetic x - - - x x - x x

Register/Memory by 1 D[000w] [mod 100 r/m] 2/4 2/4

Register/Memory by CL D[001w] [mod 100 r/m] 3/5 3/5

Register/Memory by Immediate C[000w] [mod 100 r/m] # 2/4 2/4

SAR Shift Right Arithmetic x - - - x x x x x

Register/Memory by 1 D[000w] [mod 111 r/m] 2/4 2/4

Register/Memory by CL D[001w] [mod 111 r/m] 3/5 3/5

Register/Memory by Immediate C[000w] [mod 111 r/m] # 2/4 2/4

SBB Integer Subtract with Borrow x - - - x x x x x

Register to Register 1[10dw] [11 reg r/m] 1 1

Register to Memory 1[100w] [mod reg r/m] 3 3

Memory to Register 1[101w] [mod reg r/m] 3 3

Immediate to Register/Memory 8[00sw] [mod 001 r/m] # 1/3 1/3

Immediate to Accumulator (short form) 1[110w] # 1 1

SCAS Scan String A [111w] x - - - x x x x x 5 5 b h

SETB/SETNAE/SETC Set Byte on Below/Not
Above or Equal/Carry

- - - - - - - - - h

To Register/Memory 0F 92 [mod 000 r/m] 2/2 2/2

SETBE/SETNA Set Byte on Below or Equal/Not
Above

- - - - - - - - - h

To Register/Memory 0F 96 [mod 000 r/m] 2/2 2/2

SETE/SETZ Set Byte on Equal/Zero - - - - - - - - - h

To Register/Memory 0F 94 [mod 000 r/m] 2/2 2/2

SETL/SETNGE Set Byte on Less/Not Greater or
Equal

- - - - - - - - - h

To Register/Memory 0F 9C [mod 000 r/m] 2/2 2/2

SETLE/SETNG Set Byte on Less or Equal/Not
Greater

- -
-

- - - - - - h

To Register/Memory 0F 9E [mod 000 r/m] 2/2 2/2

SETNB/SETAE/SETNC Set Byte on Not Below/
Above or Equal/Not Carry

- - - - - - - - - h

To Register/Memory 0F 93 [mod 000 r/m] 2/2 2/2

Table 4-17. Instruction Set Summary (Continued)

INSTRUCTION OPCODE
FLAGS REAL MODE

CLOCK COUNT
PROT. MODE

CLOCK COUNT
NOTES

OF DF IF TF SF ZF AF PF CF Reg/Cache Hit Reg/Cache Hit Real
Mode

Protected
Mode

IN
S

T
R

U
C

T
IO

N
 S

E
T

24

SETNBE/SETA Set Byte on Not Below or Equal/
Above

- - - - - - - - - h

To Register/Memory 0F 97 [mod 000 r/m] 2/2 2/2

SETNE/SETNZ Set Byte on Not Equal/Not Zero - - - - - - - - - h

To Register/Memory 0F 95 [mod 000 r/m] 2/2 2/2

SETNL/SETGE Set Byte on Not Less/Greater or
Equal

- - - - - - - - - h

To Register/Memory 0F 9D [mod 000 r/m] 2/2 2/2

SETNLE/SETG Set Byte on Not Less or Equal/
Greater

- - - - - - - - - h

To Register/Memory 0F 9F [mod 000 r/m] 2/2 2/2

SETNO Set Byte on Not Overflow - - - - - - - - - h

To Register/Memory 0F 91 [mod 000 r/m] 2/2 2/2

SETNP/SETPO Set Byte on Not Parity/Parity
Odd

- - - - - - - - - h

To Register/Memory 0F 9B [mod 000 r/m] 2/2 2/2

SETNS Set Byte on Not Sign - - - - - - - - - h

To Register/Memory 0F 99 [mod 000 r/m] 2/2 2/2

SETO Set Byte on Overflow - - - - - - - - - h

To Register/Memory 0F 90 [mod 000 r/m] 2/2 2/2

SETP/SETPE Set Byte on Parity/Parity Even - - - - - - - - - h

To Register/Memory 0F 9A [mod 000 r/m] 2/2 2/2

SETS Set Byte on Sign - - - - - - - - - h

To Register/Memory 0F 98 [mod 000 r/m] 2/2 2/2

SGDT Store GDT Register - - - - - - - - - b,c h

To Register/Memory 0F 01 [mod 000 r/m] 6 6

SHL Shift Left Logical x - - - x x - x x b h

Register/Memory by 1 D [000w] [mod 100 r/m] 1/3 1/3

Register/Memory by CL D [001w] [mod 100 r/m] 2/4 2/4

Register/Memory by Immediate C [000w] [mod 100 r/m] # 1/3 1/3

SHLD Shift Left Double - - - - x x - x x

Register/Memory by Immediate 0F A4 [mod reg r/m] # 1/3 1/3

Register/Memory by CL 0F A5 [mod reg r/m] 3/5 3/5

Table 4-17. Instruction Set Summary (Continued)

INSTRUCTION OPCODE
FLAGS REAL MODE

CLOCK COUNT
PROT. MODE

CLOCK COUNT NOTES

OF DF IF TF SF ZF AF PF CF Reg/Cache Hit Reg/Cache Hit Real
Mode

Protected
Mode

IN
S

T
R

U
C

T
IO

N
 S

E
T25

SHR Shift Right Logical x - - - x x - x x b h

Register/Memory by 1 D [000w] [mod 101 r/m] 1/3 1/3

Register/Memory by CL D [001w] [mod 101 r/m] 2/4 2/4

Register/Memory by Immediate C [000w] [mod 101 r/m] # 1/3 1/3

SHRD Shift Right Double - - - - x x - x x

Register/Memory by Immediate 0F AC [mod reg r/m] # 1/3 1/3

Register/Memory by CL 0F AD [mod reg r/m] 3/5 3/5

SIDT Store IDT Register - - - - - - - - - b,c h

To Register/Memory 0F 01 [mod 001 r/m] 6 6

SLDT Store LDT Register - - - - - - - - - a h

To Register/Memory 0F 01 [mod 000 r/m] 1/2

SMINT Software SMM Entry 0F 7E - - - - - - - - - 24 24 s s

SMSW Store Machine Status Word 0F 01 [mod 100 r/m] - - - - - - - - - 1/2 1/2 b,c h

STC Set Carry Flag F9 - - - - - - - - 1 1 1

STD Set Direction Flag FD - 1 - - - - - - - 1 1

STI Set Interrupt Flag FB - - 1 - - - - - - 7 7 m

STOS Store String A [101w] - - - - - - - - - 3 3 b h

STR Store Task Register - - - - - - - - - a h

To Register/Memory 0F 00 [mod 001 r/m] 1/2

SUB Integer Subtract x - - - x x x x x b h

Register to Register 2 [10dw] [11 reg r/m] 1 1

Register to Memory 2 [100w] [mod reg r/m] 3 3

Memory to Register 2 [101w] [mod reg r/m] 3 3

Immediate to Register/Memory 8 [00sw] [mod 101 r/m] # 1/3 1/3

Immediate to Accumulator (short form) 2 [110w] # 1 1

SVDC Save Segment Register and Descriptor 0F 78 [mod sreg3 r/m] - - - - - - - - - 18 18 s s

SVLDT Save LDTR and Descriptor 0F 7A [mod 000 r/m] - - - - - - - - - 18 18 s s

SVTS Save TSR and Descriptor 0F 7C [mod 000 r/m] - - - - - - - - - 18 18 s s

TEST Test Bits 0 - - - x x - x 0 b h

Register/Memory and Register 8 [010w] [mod reg r/m] 1/3 1/3

Immediate Data and Register/Memory F [011w] [mod 000 r/m] # 1/3 1/3

Immediate Data and Accumulator A [100w] # 1 1

VERR Verify Read Access - - - - - x - - - a g,h,j,p

To Register/Memory 0F 00 [mod 100 r/m] 9/10

Table 4-17. Instruction Set Summary (Continued)

INSTRUCTION OPCODE
FLAGS REAL MODE

CLOCK COUNT
PROT. MODE

CLOCK COUNT
NOTES

OF DF IF TF SF ZF AF PF CF Reg/Cache Hit Reg/Cache Hit
Real
Mode

Protected
Mode

IN
S

T
R

U
C

T
IO

N
 S

E
T

26

VERW Verify Write Access - - - - - x - - - a g,h,j,p

To Register/Memory 0F 00 [mod 101 r/m] 9/10

WAIT Wait Until FPU Not Busy 9B - - - - - - - - - 5 5

WBINVD Write-Back and Invalidate Cache 0F 09 - - - - - - - - - 4 4

XADD Exchange and Add x - - - x x x x x

Register1, Register2 0F C[000w] [11 reg2 reg1] 3 3

Memory, Register 0F C[000w] [mod reg r/m] 6 6

XCHG Exchange - - - - - - - - - b,f f,h

Register/Memory with Register 8[011w] [mod reg r/m] 3/4 3/4

Register with Accumulator 9[0 reg] 3 3

XLAT Translate Byte D7 - - - - - - - - - 3 3 h

XOR Boolean Exclusive OR 0 - - - x x - x 0 b h

Register to Register 3 [00dw] [11 reg r/m] 1 1

Register to Memory 3 [000w] [mod reg r/m] 3 3

Memory to Register 3 [001w] [mod reg r/m] 3 3

Immediate to Register/Memory 8 [00sw] [mod 110 r/m] # 1/3 1/3

Immediate to Accumulator (short form) 3 [010w] # 1 1

Table 4-17. Instruction Set Summary (Continued)

INSTRUCTION OPCODE
FLAGS

REAL MODE
CLOCK COUNT

PROT. MODE
CLOCK COUNT NOTES

OF DF IF TF SF ZF AF PF CF Reg/Cache Hit Reg/Cache Hit Real
Mode

Protected
Mode

Instruction Notes for Instruction Set Summary

= immediate data
++ = 16-bit displacement
x = modified
+ = 8-bit displacement
+++ = 32 bit displacement (full)
- = unchanged

Notes a through c apply to Real Address Mode only:

a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid op-code).

b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the
maximum CS, DS, ES, FS, or GS segment limit (FFFFH). Exception 12 fault (stack segment limit violation or not present) will occur in
Real Mode if an operand reference is made that partially or fully extends beyond the maximum SS limit.

c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected Mode.

IN
S

T
R

U
C

T
IO

N
 S

E
T27

Notes e through g apply to Real Address Mode and Protected Virtual Address Mode:

e. An exception may occur, depending on the value of the operand.

f. LOCK is automatically asserted, regardless of the presence or absence of the LOCK prefix.

g. LOCK is asserted during descriptor table accesses.

Notes h through r apply to Protected Virtual Address Mode only:

h. Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an
access rights violation. If a stack limit is violated, an exception 12 occurs.

i. For segment load operations, the CPL, RPL, and DPL must agree with the privilege rules to avoid an exception 13 fault. The segment's
descriptor must indicate "present" or exception 11 (CS, DS, ES, FS, GS not present). If the SS register is loaded and a stack segment not
present is detected, an exception 12 occurs.

j. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK# to maintain descriptor integ-
rity in multiprocessor systems.

k. JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilege rule
is violated.

l. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

m. An exception 13 fault occurs if CPL is greater than IOPL.

n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are updated only if
CPL = 0.

o. The PE bit of the MSW (CR0) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit.

p. Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared.

q. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault will occur before the ESC
instruction is executed. An exception 12 fault will occur if the stack limit is violated by the operand's starting address.

r. The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault wil l occur.

Note s applies to SGS THOMSON specific SMM instructions:

s. All memory accesses to SMM space are non-cacheable. An invalid opcode exception 6 occurs unless SMI is enabled and SMAR size 0,
and CPL = 0 and [SMAC is set or if in an SMI handler].

INSTRUCTION SET

28

3

4.5 FPU Clock Counts

The CPU can be divided into the FPU which proc-
esses floating point instructions and the remaining
circuity collectively called the integer unit. The
FPU can execute instructions independently of the
integer unit. For example, the integer unit can is-
sue a floating point instruction without memory op-
erands, in two clock cycles and then pass the op-
eration to the FPU to execute. The integer unit will
continue to execute instructions until the next
floating point instruction is encountered. The FPU
loads from memory are similar in that the integer
unit issues the FPU instruction, transfers data to
the FPU and then is free to execute integer in-
structions. However, when executing a floating

point store, the resources of both the FPU and in-
teger unit are used.

4.5.1 Instruction Set Summary
Table 4-19 summarizes the operation and allowed
forms of the ST486 FPU instruction set.

4.5.2 Abbreviations
The abbreviations used in Table 4-19 are listed in
the table below:

Table 4-18. FPU Table Abbreviations

Abbreviations Meaning
n Stack register number

TOS Top of stack register pointed to by SSS in the status register.
ST(1) FPU register next to TOS

ST(n) A specific FPU register, relative to TOS
M.WI 16-bit integer operand from memory
M.SI 32-bit integer operand from memory
M.LI 64-bit integer operand from memory
M.SR 32-bit real operand from memory
M.DR 64-bit real operand from memory
M.XR 80-bit real operand from memory

M.BCD 18-digit BCD integer operand from memory
CC FPU condition code

Env Regs Status, Mode Control and Tag Registers, Instruction Pointer and Operand Pointer

IN
S

T
R

U
C

T
IO

N
 S

E
T29

Table 4-19. FPU Instruction Set Summary

FPU Instruction OP Code Operation Clock Count Notes

F2XM1 Function Evaluation 2x-1 D9 F0 TOS ← 2TOS-1 98 -114 See Note 2

FABS Floating Absolute Value D9 E1 TOS ← |TOS | 5

FADD Floating Point Add

Top of Stack DC [1100 0 n] ST(n) ← ST(n) + TOS 10 - 16

80-bit Register D8 [1100 0 n] TOS ← TOS + ST(n) 10 - 16

64-bit Real DC [mod 000 r/m] TOS ← TOS + M.DR 11 - 17

32-bit Real D8 [mod 000 r/m] TOS ← TOS + M.SR 13 - 19

FADDP Floating Point Add, Pop DE [1100 0 n] ST(n) ← ST(n) + TOS; then pop TOS 10 - 16

FIADD Floating Point Integer Add

32-bit integer DA [mod 000 r/m] TOS ← TOS + M.SI 18 - 27

16-bit integer DE [mod 000 r/m] TOS ← TOS + M.WI 18 - 26

FCHS Floating Change Sign D9 E0 TOS ← TOS 5

FCLEX Clear Exceptions (9B) DB E2 Wait then Clear Exceptions 8

FNCLEX Clear Exceptions DB E2 Clear Exceptions 5

FCOM Floating Point Compare

80-bit Register D8 [1101 0 n] CC set by TOS - ST(n) 8

64-bit Real DC [mod 010 r/m] CC set by TOS - M.DR 12

32-bit Real D8 [mod 010 r/m] CC set by TOS - M.SR 10

FCOMP Floating Point Compare, Pop

80-bit Register D8 [1101 1 n] CC set by TOS - ST(n); then pop TOS 8

64-bit Real DC [mod 011 r/m] CC set by TOS - M.DR; then pop TOS 12

32-bit Real D8 [mod 011 r/m] CC set by TOS - M.SR; then pop TOS 10

FCOMPP Floating Point Compare, Pop DE D9 CC set by TOS - ST(1); then pop TOS and ST(1) 8

Two Stack Elements

FICOM Floating Point Compare

32-bit integer DA [mod 010 r/m] CC set by TOS - M.WI 15 - 17

16-bit integer DE [mod 010 r/m] CC set by TOS - M.SI 15 - 16

FICOMP Floating Point Compare

32-bit integer DA [mod 011 r/m] CC set by TOS - M.WI; then pop TOS 15 - 17

16-bit integer DE [mod 011 r/m] CC set by TOS - M.SI; then pop TOS 15 - 16

FCOS Function Evaluation: Cos(x) D9 FF TOS ← COS(TOS) 98 - 143 See Note 1

FDECSTP Decrement Stack Pointer D9 F6 Decrement top of stack pointer 5

FDIV Floating Point Divide

Top of Stack DC [1111 1 n] ST(n) ← ST(n) / TOS 28 -34

80-bit Register D8 [1111 0 n] TOS ← TOS / ST(n) 28 - 34

64-bit Real DC [mod 110 r/m] TOS ← TOS / M.DR 35 - 41

32-bit Real D8 [mod 110 r/m] TOS ← TOS / M.SR 33 - 39

IN
S

T
R

U
C

T
IO

N
 S

E
T

30

FDIVP Floating Point Divide, Pop DE [1111 1 n] ST(n) ← ST(n) / TOS; then pop TOS 28 - 34

FDIVR Floating Point Divide Reversed

Top of Stack DC [1111 0 n] TOS ← ST(n) / TOS 28 -34

80-bit Register D8 [1111 1 n] ST(n) ←TOS / ST(n) 28 - 34

64-bit Real DC [mod 111 r/m] TOS ← M.DR / TOS 35 - 41

32-bit Real D8 [mod 111 r/m] TOS ← M.SR / TOS 33 - 39

FIDIVRP Floating Point Integer Divide

Reversed, Pop DE [1111 0 n] ST(n) ← TOS / ST(n); then pop TOS 28 -34

FIDIV Floating Point Integer Divide

32-bit Integer

16-bit Integer DA [mod 110 r/m] TOS ← TOS / M.SI 36 - 44

FIDIVR Floating Point Integer DE [mod 110 r/m] TOS ← TOS / M.WI 36 - 43

Reversed

32-bit Integer DA [mod 111 r/m] TOS ← M.SI / TOS 36 - 44

16-bit Integer DE [mod 111 r/m] TOS ← M.WI / TOS 36 - 43

FFREE Free Floating Point Register DD [1100 0 n] TAG(n) ← Empty 5

FINCSTP Increment Stack Pointer D9 F7 Increment top of stack pointer 5

FINIT Initialize FPU (9B)DB E3 Wait then initialize 8

FNINIT Initialize FPU DB E3 Initialize 5

FLD Load Data to FPU Reg.

Top of Stack D9 [1100 0 n] Push ST(n) onto stack 4

80-bit Real DB [mod 101 r/m] Push M.XR onto stack 9

64-bit Real DD [mod 000 r/m] Push M.DR onto stack 7

32-bit Real D9 [mod 000 r/m] Push M.SR onto stack 5

FBLD Load Packed BCD Data to FPU Reg. DF [mod 100 r/m] Push M.BCD onto stack 49 - 53

FILD Load Integer Data to FPU Reg.

64-bit Integer DF [mod 101 r/m] Push M.LI onto stack 9 - 13

32-bit Integer DB [mod 000 r/m] Push M.SI onto stack 8 - 10

16-bit Integer DF [mod 000 r/m] Push M.WI onto stack 8 - 9

FLD1 Load Floating Const.= 1.0 D9 E8 Push 1.0 onto stack 6

FLDCW Load FPU Mode Control Register D9 [mod 101 r/m] Ctl Word ← Memory 5

FLDENV Load FPU Environment D9 [mod 100 r/m] Env Regs ← Memory 28 - 38

FLDL2E Load Floating Const.= Log2(e) D9 EA Push Log2(e) onto stack 6

FLDL2T Load Floating Const.= Log2(10) D9 E9 Push Log2(10) onto stack 6

FLDLG2 Load Floating Const.= Log10(2) D9 EC Push Log10(2) onto stack 6

FLDLN2 Load Floating Const.= Ln(2) D9 ED Push Loge(2) onto stack 6

FLDPI Load Floating Const.= π D9 EB Push π onto stack 6

FLDZ Load Floating Const.= 0.0 D9 EE Push 0.0 onto stack 6

Table 4-19. FPU Instruction Set Summary

FPU Instruction OP Code Operation Clock Count Notes

IN
S

T
R

U
C

T
IO

N
 S

E
T31

FMUL Floating Point Multiply

Top of Stack DC [1100 1 n] ST(n) ← ST(n) / TOS 12

80-bit Register D8 [1100 1 n] TOS ← TOS / ST(n) 12

64-bit Real DC [mod 001 r/m] TOS ← TOS / M.DR 15

32-bit Real D8 [mod 001 r/m] TOS ← TOS / M.SR 13

FMULP Floating Point Multiply & Pop DE [1100 1 n] ST(n) ← ST(n) / TOS; then pop TOS 12

FIMUL Floating Point Integer Multiply

32-bit Integer DA [mod 001 r/m] TOS ← TOS/ M.SI 21 - 25

16-bit Integer DE [mod 001 r/m] TOS ← TOS / M.WI 21 - 24

FNOP No Operation D9 D0 No Operation 3

FPATAN Function Eval: Tan-1(y/x) D9 F3 ST(1) ← ATAN[ST(1) / TOS]; then pop TOS 97 - 161 See Note 3

FPREM Floating Point Remainder D9 F8 TOS ← Rem[TOS / ST(1)] 82 - 93

FPREM1 Floating Point Remainder IEEE D9 F5 TOS ← Rem[TOS / ST(1)] 82 - 93

FPTAN Function Eval: Tan(x) D9 F2 TOS ← TAN(TOS); then push 1.0 onto stack 123 - 140 See Note 1

FRNDINT Round to Integer D9 FC TOS ← Round(TOS) 12 - 21

FRSTOR Load FPU Environment and Reg. DD [mod 100 r/m] Restore state. 110 - 120

FSAVE Save FPU Environment and Reg (9B)DD [mod 110 r/m] Wait then save state. 143 - 153

FNSAVE Save FPU Environment and Reg DD [mod 110 r/m] Save state. 140 - 150

FSCALE Floating Multiply by 2n D9 FD TOS ← TOS x 2(ST(1)) 10 - 15
FSIN Function Evaluation: Sin(x) D9 FE TOS ← SIN(TOS) 81 - 159 See Note 1

FSINCOS Function Eval.: Sin(x)& Cos(x) D9 FB temp ← TOS;
TOS ← SIN(temp); then

push COS(temp) onto stack

150 - 165 See Note 1

FSQRT Floating Point Square Root D9 FA TOS ← Square Root of TOS 61 - 62

FST Store FPU Register

80-bit Register DD [1101 0 n] ST(n) ← TOS 5

80-bit Real DB [mod 111 r/m] M.XR ← TOS 15

64-bit Real DD [mod 010 r/m] M.DR ← TOS 12

32-bit Real D9 [mod 010 r/m] M.SR ← TOS 9

FSTP Store FPU Register, Pop

Top of Stack DB [1101 1 n] ST(n) ← TOS; then pop TOS 5

80-bit Real DB [mod 111 r/m] M.XR ← TOS; then pop TOS 15

64-bit Real DD [mod 011 r/m] M.DR ← TOS; then pop TOS 12

32-bit Real D9 [mod 011 r/m] M.SR ← TOS; then pop TOS 9

FBSTP Store BCD Data, Pop DF [mod 110 r/m] M.BCD ← TOS; then pop TOS 77 - 82

Table 4-19. FPU Instruction Set Summary

FPU Instruction OP Code Operation Clock Count Notes

IN
S

T
R

U
C

T
IO

N
 S

E
T

32

FIST Store Integer FPU Register

32-bit Integer DB [mod 010 r/m] M.SI ← TOS 16 - 22

16-bit Integer DF [mod 010 r/m] M.WI ← TOS 12 - 18

FISTP Store Integer FPU Register, Pop

64-bit Integer DF [mod 111 r/m] M.LI ← TOS; then pop TOS 19 - 27

32-bit Integer DB [mod 011 r/m] M.SI ← TOS; then pop TOS 16 - 22

16-bit Integer DF [mod 011 r/m] M.WI ← TOS; then pop TOS 12 - 18

FSTCW Store FPU Mode Control Register (9B) D9 [mod 111 r/m] Wait Memory ← Control Mode Register 6

FNSTCW Store FPU Mode Control Register D9 [mod 111 r/m] Memory ← Control Mode Register 3

FSTENV Store FPU Environment (9B) D9 [mod 110 r/m] Wait Memory ← Env. Registers 30 - 40

FNSTENV Store FPU Environment D9 [mod 110 r/m] Memory ← Env. Registers 27 - 37

FSTSW Store FPU Status Register (9B) DD [mod 111 r/m] Wait Memory ← Status Register 6

FNSTSW Store FPU Status Register DD [mod 111 r/m] Memory ← Status Register 3

FSTSW AX Store FPU Status Register to AX E0 Wait AX ← Status Register 6

FNSTSW AX Store FPU Status Register to AX E0 AX ← Status Register 3

FSUB Floating Point Subtract

Top of Stack DC [1110 1 n] ST(n) ← ST(n) - TOS 10 - 16

80-bit Register D8 [1110 0 n] TOS ← TOS - ST(n) 10 - 16

64-bit Real DC [mod 100 r/m] TOS ← TOS - M.DR 13 - 19

32-bit Real D8 [mod 100 r/m] TOS ← TOS - M.SR 11 - 17

FSUBP Floating Point Subtract, Pop DE [1110 1 n] ST(n) ← ST(n) - TOS; then pop TOS 10 - 16

FSUBR Floating Point Subtract Reverse

Top of Stack DC [1110 0 n] TOSST(n) - TOS 10 - 16

80-bit Register D8 [1110 1 n] ST(n) ← TOS - ST(n) 10 - 16

64-bit Real DC [mod 101 r/m] TOS ← M.DR - TOS 13 - 19

32-bit Real D8 [mod 101 r/m] TOS ← M.SR - TOS 11 - 17

FSUBRP Floating Point Subtract Reverse, Pop DE [1110 0 n] ST(n) ← TOS - ST(n); then pop TOS 10 - 16

FISUB Floating Point Integer Subtract

32-bit Integer DA [mod 100 r/m] TOS ← TOS - M.SI 18 - 27

16-bit Integer DE [mod 100 r/m] TOS ← TOS - M.WI 18 - 26

FISUBR Floating Point Integer Subtract Reverse

32-bit Integer Reversed DA [mod 101 r/m] TOS ← M.SI - TOS 18 - 27

16-bit Integer Reversed DE [mod 101 r/m] TOS ← M.WI - TOS 18 - 26

FTST Test Top of Stack D9 E4 CC set by TOS - 0.0 10

FUCOM Unordered Compare DD [1110 0 n] CC set by TOS - ST(n) 8

Table 4-19. FPU Instruction Set Summary

FPU Instruction OP Code Operation Clock Count Notes

IN
S

T
R

U
C

T
IO

N
 S

E
T33

3

FUCOMP Unordered Compare, Pop DD [1110 1 n] CC set by TOS - ST(n); then pop TOS 8

FUCOMPP Unordered Compare, DA E9 CC set by TOS - ST(I); then pop TOS and ST(1) 8

 Pop two elements

FWAIT Wait 9B Wait for FPU not busy 3

FXAM Report Class of Operand D9 E5 CC ← Class of TOS 4

FXCH Exchange Register with TOS D9 [1100 1 n] TOS ← ST(n) Exchange 9

FXTRACT Extract Exponent D9 F4
temp ← TOS;

TOS ← exponent (temp); then
TOS ← push significant (temp) onto stack

11 - 16

FLY2X Function Eval. y x Log2(x) D9 F1 ST(1) ← ST(1) x Log2(TOS); then pop TOS 145 - 154

FLY2XP1 Function Eval. y x Log2(x+1) D9 F9 ST(1) ← ST(1) x Log2(1+TOS); then pop TOS 131 - 133 See Note 4

Table 4-19. FPU Instruction Set Summary

FPU Instruction OP Code Operation Clock Count Notes

FPU Instruction Summary Notes

All references to TOS and ST(n) refer to stack layout prior to execution.

Values popped off the stack are discarded.

A pop from the stack increments the top stack pointer.

A push to the stack decrements the top of the stack pointer.

Note 1:
For FCOS, FSIN, FSINCOS and FPTAN, time shown is for absolute value of TOS < 3π /4.
Add 90 clock counts for argument reduction if outside this range.

For FCOS, clock count is 143 if TOS < π /4 and clock count is 98 if π /4 < TOS > π /2
For FSIN, clock count is 81 to 82 if absolute value of TOS < π /4.

Note 2:

For F2XM1, clock count is 98 if absolute value of TOS < 0.5.

Note 3:
For FPATAN, clock count is 97 if ST(1)/TOS < π /32.

Note 4:

For FYL2XP1, clock count is 170 if TOS is out of range and regular FYL2X is called.

	ST486
	CPU Core
	Instruction Set

