
Nx586 Processor Recognition
Application Note

PRELIMINARY INFORMATION

, Incorporated.
1623 Buckeye Drive
Milpitas, CA 95035

ORDER # 754006-02

Copyright © 1994, 1995 by NexGen, Inc.

The goal of this databook is to enable our customers to make informed purchase
decisions and to design systems around our described products. Every effort is
made to provide accurate information in support of these goals. However,
representations made by this databook are not intended to describe the internal
logic and physical design. Wherever product internals are discussed, the
information should be construed as conceptual in nature. No presumptions should
be made about the internal design based on this document. Information about the
internal design of NexGen products is provided via nondisclosure agreement
("NDA") on a need to know basis.

The material in this document is for information only and is subject to change
without notice. NexGen reserves the right to make changes in the product
specification and design without reservation and without notice to its users. THIS
DOCUMENT DOES NOT CONSTITUTE A WARRANTY OF ANY KIND WITH
RESPECT TO THE NEXGEN INC. PRODUCTS, AND NEXGEN INC. SHALL NOT
BE LIABLE FOR ANY ERRORS THAT APPEAR IN THIS DOCUMENT.

All purchases of NexGen products shall be subject to NexGen's standard terms and
conditions of sale. THE WARRANTIES AND REMEDIES EXPRESSLY SET
FORTH IN SUCH TERMS AND CONDITIONS SHALL BE THE SOLE
WARRANTIES AND THE BUYER'S SOLE AND EXCLUSIVE REMEDIES, AND
NEXGEN INC. SPECIFICALLY DISCLAIMS ANY AND ALL OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING
THE IMPLIED WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE,
AGAINST INFRINGEMENT AND OF MERCHANTABILITY. No person is
authorized to make any other warranty or representation concerning the
performance of the NexGen products. In particular, NexGen's products are not
specifically designed, manufactured or intended for sale as components for the
planning, design, construction, maintenance, operation or use of any nuclear
facility or other ultra-hazardous activity, and neither NexGen nor its suppliers
shall have any liability with respect to such use

Trademark Acknowledgments

Nx586 is a registered trademark of NexGen, Inc.. NexGen, Nx686, RISC86,
NexBus, NxPCI, NxMC, and NxVL are trademarks of NexGen, Inc..

IBM, AT, and PS/2 are registered trademarks of International Business Machines,
Inc. Intel is a registered trademark of Intel Corporation. i386, i387, i486 and
Pentium are trademarks of Intel Corporation. Tri-state is a registered trademark
of National Semiconductor Corporation. VL-Bus is a trademark of Video
Electronics Standards Association.

Restricted Rights and Limitations

Use, duplication, or disclosure by the Government is subject to restrictions set
forth in subparagraph (c)(1)(ii) of the Rights in technical Data and Computer
Software clause at 252.2777-7013

Table of Contents

PRELIMINARY Nx586 Processor Recognition iii

ORDER # 754006-02

Contents
INTRODUCTION ..1

PROCESSOR RECOGNITION...1

RECOGNITION PROGRAM..3

CPUID INSTRUCTION ...15

List of Figures
FIGURE 1 FLOW CHART OF PROCESSOR RECOGNITION ROUTINE ..2
FIGURE 2 CPUID.ASM ...4
FIGURE 3 CPUCLK.ASM..7
FIGURE 4 NXCPU.C..13

List Of Tables
TABLE 1 NEXGEN ONLINE RESOURCES...3
TABLE 2 NEXGEN PROCESSOR SIGNATURES..16

Processor Recognition

PRELIMINARY Nx586 Processor Recognition 1

ORDER # 754006-02

Introduction

The NexGen Nx586 processor offers a powerful and affordable alternative to
Intel’s Pentium processor. The Nx586 processor is a 5th generation processor
with full x86 binary compatibility. In order to properly identify NexGen
processors and their features, NexGen is providing software that performs these
functions. As the number of alternatives in the x86 market increases it is important
for software to be able to identify the features and performance level associated
with a given processor.

This application note explains the method for identifying a NexGen processor and
its features. It provides a software routine necessary to perform this function. It
also explains how this routine and the method it describes can be used by software
developers in BIOS code, software applications, and utilities to properly identify
current and future NexGen processors.

Processor Recognition

To best leverage existing processor recognition routines and minimize the effort
for software developers, the NexGen processor recognition code is designed as an
extension of the processor recognition code published by Intel in AP-485, Intel
Processor Identification With the CPUID Instruction Application Note.

Figure 1 provides a flow chart of the process used to identify different processors.
The areas in gray are those added to recognize NexGen processors. Note that
there are two code additions to recognize NexGen processors.

The first is for older Nx586 processors. Since all older Nx586s use the same
register and flag implementation as the 80386, Intel’s recognition code will identify
the Nx586 as an 80386. To identify the additional performance and features
available, NexGen has developed code to distinguish an Nx586 processor from an
80386. This is done by using the fact that the 80386 and Nx586

Processor Recognition

2 Nx586 Processor Recognition PRELIMINARY

ORDER # 754006-02

Figure 1 Flow Chart Of Processor Recognition Routine

processor affect the ZF flag (bit 6 of EFLAGs) differently as a result of a DIV
instruction and specific operands. The Nx586 does not change the value of the ZF
flag during the DIV while the 80386 changes the ZF flag according to the result of
the execution.

The second piece of code uses the CPUID instruction to determine the type of
processor and its features. NexGen supports the CPUID in newer versions of the
Nx586 processor. To determine if the CPUID instruction is supported, software
must test the ID bit (bit 21) in EFLAGS to determine if its value can be changed.
The code example in this application note includes this test. Once the software

EFLAGS
Bit 12-15

Set?

EFLAGS
Bit 12-15
Clear?

EFLAGS
AC bit

Writeable?

EFLAGS
ID bit

Writeable?

EFLAGS
ZF bit

Change?

Execute CPUID

Nx586 Other

486

386

286

Nx586

Yes

Yes

Yes

Yes

No

No

No

No

No

Yes

Processor Recognition

PRELIMINARY Nx586 Processor Recognition 3

ORDER # 754006-02

determines that the CPUID instruction is available, it can execute this instruction
to determine the processor’s vendor, family, type, features, and other useful
information. The section entitled “CPUID Instruction” describes the functionality
of the CPUID instruction.

Recognition Program

The following code examples (Figure 2, Figure 3, and Figure 4) enable software to
identify NexGen processors and the features that they support. These routines can
be integrated with the recognition routines for other x86 processors to provide a
complete solution for processor recognition.

An electronic copy of the code can be obtained from NexGen. The code is
available as a self-extracting zip file, CPUID52.EXE. Table 1 provides the paths
available for obtaining the code from NexGen.

file area filename

BBS (408)955-1839 Techdesk CPUID52.EXE

World Wide Web http://www.nexgen.com Support
Desk

CPUID52.EXE

FTP ftp.nexgen.com Techdesk CPUID52.EXE

Table 1 NexGen Online Resources

Figure 2 contains the file “cpuid.asm”. This file contains two routines,
“_get_nxcpu_type” and “_get_nxfpu”, that have been written in assembly
language. The “_get_nxcpu_type” routine implements the code necessary to
identify NexGen processors. It first checks for the AC bit (bit 18) in EFLAGS. If
the AC bit is not writeable, it then tests the ZF FLAG result from the DIV
instruction. If the ZF FLAG is unchanged, it is an Nx586 processor.

If during the initial test, the AC bit is found to be writeable, the code immediately
tests for the ID bit. If it is writeable, the code executes the CPUID instruction to
identify the vendor, family, model, and features associated with the processor.

Processor Recognition

4 Nx586 Processor Recognition PRELIMINARY

ORDER # 754006-02

The “_get_nxfpu” routine implements the code necessary to determine if a floating
point processor is present when the CPUID instruction is not supported. This
routine tests for the presence of the floating point processor by testing the floating
point status word.

Figure 3 contains the file “cpuclk.asm”. This file contains a single assembly
language routine, “_Nx586_clock_rate” that determines the operating frequency
for the Nx586 processor. This routine calculates the CPU clock rate by
determining the time elapsed to execute a known number of CPU clock cycles.
The frequency calculated to the nearest 1/10th MHz and is returned in the AX
register as 10 times the number of MHz.

Figure 4 contains the file “nxcpu.c”. This file contains the C language program
that calls the “_get_nxcpu_type” and “_get_nxfpu” routines to identify the type of
processor and determine the presence of the numeric processor. It then prints the
results to the screen. In addition, the program calls “_Nx586_clock_rate” to
determine the processor’s operating frequency and display this information on the
screen. Finally, if the CPUID instruction is available, this routine displays the
vendor identification string, the processor signature (family, model, and stepping),
and the feature flags.

Figure 2 CPUID.ASM
page ,132

;**
;
; NexGen, Inc.
; 1623 Buckeye Drive
; Milpitas, CA 95035
; Phone: (408)435-0202
;
;**

;**
; File: cpuid.asm
; Revision: 1.0
;
; This sample file contains two routines: "_get_nxcpu_type" and "_get_nxfpu".
; "_get_nxcpu_type" identifies NexGen's processor and saves CPU information
; in the data segment, and "_get_nxfpu" tests if FPU is present.
;
;**

DOSSEG
.model small
.386
CPU_ID macro

db 0fh, 0a2h
endm

NONE equ 0
PRESENT equ 1

Processor Recognition

PRELIMINARY Nx586 Processor Recognition 5

ORDER # 754006-02

Nx586 equ 5
UNKNOWN equ 0

.data
public _nxcpu
public _cputype
public _cpuid_flag
public _vendor_id
public _cpu_signature
public _features_ecx
public _features_edx
public _features_ebx
public _nxfpu

_nxcpu db NONE ;default to none
_cputype db UNKNOWN ;default to unknown
_cpuid_flag db NONE ;default to no CPUID
_vendor_id db "************"
_cpu_signature dd 0
_features_ecx dd 0
_features_edx dd 0
_features_ebx dd 0
_nxfpu db NONE ;default to none
fp_status dw 0
NexGen_id db "NexGenDriven"

.code
;==
; _get_nxcpu_type
; This routine identifies NexGen's processor type in following steps:
;
; if (no AC flag) { //current Nx586 does not support AC flag
; set ZF=1;
; execute DIV to result a none zero value;
; if (ZF=0) { //ZF is changed
; not a NexGen processor;
; exit;
; } else { //Nx586 does not change ZF on DIV instruction
; if (ID bit not writeable) {
; CPU is Nx586 with no CPUID support
; } else { //Nx586 with CPUID support
; execute CPUID instruction;
; save CPU information;
; }
; }
; } else {
; if (ID bit not writeable) {
; not a NexGen processor;
; } else { //NexGen future processors support CPUID
; execute CPUID instruction;
; save CPU information;
; }
; }
;
;==

public _get_nxcpu_type
_get_nxcpu_type proc near

mov byte ptr _nxcpu,PRESENT ; default to present

; test AC bit on EFLAGS register
mov bx,sp ; save the current stack pointer
and sp,not 3 ; align the stack to avoid AC fault
pushfd ;
pop eax ; get the original EFLAGS
mov ecx,eax ; save the original EFLAGS
xor eax,40000h ; flip AC bit in EFLAGS
push eax ; save for EFLAGS
popfd ; copy it to EFLAGS
pushfd ;
pop eax ; get the new EFLAGS value
mov sp,bx ; restore stack pointer
xor eax,ecx ; if the AC bit is unchanged
je test_zf ; goto second step

Processor Recognition

6 Nx586 Processor Recognition PRELIMINARY

ORDER # 754006-02

jmp nx_future_cpu

test_zf:
; test ZF on DIV instruction

mov ax,5555h ; init AX with a non-zero value
xor dx,dx ; set ZF=1
mov cx,2
div cx ; Nx586 processor does not modify ZF on DIV
jnz not_nx_cpu ; not a NexGen processor if ZF=0 (modified)

test_cpuid:
; test if CPUID instruction is available
; new Nx586 or future CPU supports CPUID instruction

pushfd ; get EFLAGs
pop eax
mov ecx,eax ; save it
xor eax,200000h ; modify ID bit
push eax
popfd ; save it in new EFLAGS
pushfd ; get new EFLAGS
pop eax ;
xor eax,ecx ; is ID bit changed?
jnz cpuid_present ; yes

mov byte ptr _cputype,Nx586 ; no, current Nx586
jz cpuid_exit ; stop testing

nx_future_cpu:
; all NexGen's future processors feature a CPUID instruction

mov eax,ecx ; get original EFLAGS
xor eax,200000h ; modify ID bit
push eax
popfd ; save it in new EFLAGS
pushfd ; get new EFLAGS
pop eax ;
xor eax,ecx ; is ID bit changed?
jz not_nx_cpu ; no, not a NexGen processor

cpuid_present:
; execute CPUID instruction to get vendor name, stepping and feature info

xor eax,eax
CPU_ID
mov dword ptr _vendor_id,ebx
mov dword ptr _vendor_id[+4],edx
mov dword ptr _vendor_id[+8],ecx

mov bx,ds
mov es,bx
mov si,offset _vendor_id
mov di,offset NexGen_id
mov cx,12
cld
repe cmpsb ; compare vendor ID string
jne not_nx_cpu

mov byte ptr _cpuid_flag,PRESENT
cmp eax,1 ; check highest level
jl cpuid_exit

mov eax,1
CPU_ID
mov _cpu_signature,eax
mov _features_ecx,ecx
mov _features_edx,edx
mov _features_ebx,ebx
shr eax,8
and al,0fh
mov _cputype,al
jmp cpuid_exit

not_nx_cpu:
mov byte ptr _nxcpu,NONE

cpuid_exit:

Processor Recognition

PRELIMINARY Nx586 Processor Recognition 7

ORDER # 754006-02

ret
_get_nxcpu_type endp

;==
; _get_nxfpu
; This procedure identifies NexGen's floating point processor by
; testing the floating point status word.
;
;==

public _get_nxfpu
_get_nxfpu proc near

mov _nxfpu, PRESENT ; default to present
fninit ; reset fpu status word
mov fp_status,0aa55h
fnstsw fp_status
mov ax,fp_status
cmp al,0
je nxfpu_end
mov _nxfpu, NONE

nxfpu_end:

ret
_get_nxfpu endp

end

Figure 3 CPUCLK.ASM
page ,132

;***
;
; NexGen, Inc.
; 1623 Buckeye Drive
; Milpitas, CA 95035
; Phone: (408)435-0202
;
;***

;***
; File: cpuclk.asm
; Revision: 1.0
;
; This file contains a "C" callable routine:
;
; 1) _Nx586_clock_rate returns CPU clock rate in MHz*10 unit.
; (i.e. A value of 600 means 60.0 MHz)
;
; The routine returns the result in AX register. You need to declare
; the function prototypes in the C program as:
;
; extern unsigned _Nx586_clock_rate (void);
;
; The _Nx586_clock_rate returns the clock rate in MHz*10 unit.;
;
; Notice: these routines are coded for SMALL memory model.
; You have to change the .MODEL directive if your C program is using
; a different memory model. For example, the following directive will
; make routines callable from a C program in the LARGE memory model.
;
; .MODEL LARGE, C
;
; To assemble this file into an object file if you are using Microsoft
; Assembler (5.10 or later), type this command:
;
; masm cpuclk;
;

Processor Recognition

8 Nx586 Processor Recognition PRELIMINARY

ORDER # 754006-02

; If you are using Borland Turbo Assembler, type this command:
;
; tasm cpuclk;
;
;
; Revision History:
; 1.0 - initial release
;
;***

.MODEL small

.386p

.DATA
clkcnt dw 16 dup (0)

.CODE

;==
; _Nx586_clock_rate
; This routine calculates the CPU clock rate by reading the time
; elapsed on a known number of CPU clock cycles. The total number of
; clock cycles is obtained from the cycle number defference of two
; instruction loops; a long cycle loop (DIV EBX) and a short cycle loop
; (DIV BX). The time elapsed on executing these number of cycles is
; the time difference of the long and short loop.
;
; This routine gets the time difference of the two cycle loops for
; five times, and calculates their average. Then, the routine computes
; the CPU clock rate in MHz*100 unit, rounds off the last digit, and
; return the clock rate in MHz*10 unit. The calling program (C program)
; has to convert it to MHz unit.
;
; Input: none
; Output: AX = clock rate in MHz*10 unit
;==

PUBLIC _Nx586_clock_rate
_Nx586_clock_rate PROC

push ds
push es

mov ax,@data
mov ds,ax
mov es,ax
ASSUME DS:@data

mov cx,1 ; execute sub-routine once to make sure
; cache hit

xor al,al ; a dummy call to clock routine
call getclk

mov di,offset clkcnt
cld
mov cx,5 ; run clock detection for 5 times

nextcount:
push cx

; for each time:
mov cx,400 ; perform 400 short delay loops (DIV BX)
mov al,1 ; select short cycle loop
call getclk ; get timer tic
mov bx,ax ; save it
mov cx,400 ; perform 400 long delay loops (DIV EBX)
xor al,al ; select long cycle loop
call getclk ; get timer tic
sub ax,bx ; calculate time difference of the two loops
stosw ; save it
pop cx
loop nextcount

xor dx,dx ; init DX:AX
xor ax,ax
mov cx,5
mov si,offset clkcnt

totalcount: ; sum the total time difference in DX:AX

Processor Recognition

PRELIMINARY Nx586 Processor Recognition 9

ORDER # 754006-02

add ax,[si]
adc dx,+0
inc si
inc si
loop totalcount

mov bx,5 ; calculate average time difference of
div bx ; each loop

mov bx,ax ; calculate clock rate in MHz*100 unit
mov ax,64000 ; freq=(total cycle/time elapsed)*100
mov cx,1193 ; =(("DIV EBX" clock - "DIV BX" clock)*100
xor dx,dx ; *400 loops)/(time difference/1.193 MHz)
mul cx ; *100
div bx ; =((34-18)*100*400/(timer difference/

; 1193000))*100
; =64000*1193/time difference

xor dx,dx
add ax,5 ; round off the last digit
adc dx,+0
mov bx,10 ; disgard the last digit
div bx ; return clock rate in MHz*10 unit
pop es
pop ds
ret

_Nx586_clock_rate ENDP

;===
; Getclk
;
; Get timer tics after executing one of two clock loops. The long
; clock loop performs 100 "DIV EBX" instructions, and the short clock
; loop executes 100 "DIV BX" instructions. A loop count is passed through
; CX register to extend the total delay time.
;
; The time tics returned from long and short clock loops can be used
; for clock rate calculation. The time difference of two clock loops is
; exactly same as the total cycle difference of the two loops. The total
; cycle difference is:
;
; (34-18)*100*loopcount
;
; The Nx586 processor uses 34 cycles to execute "DIV EBX" instruction, and
; uses 18 cycles to execute "DIV BX" instruction.
;
; Input: CX = loop count
; AL = 0 to select long clock loop
; = 1 to select short clock loop
;
; Output: AX = timer tic from timer 2
;===

getclk PROC NEAR

push si
push di
push bx
push dx
mov bl,al ; save cycle loop selection
xor dx,dx
in al,61h ; get current value from port 61h
and al,0FCh ; disable Gate2 and Speaker Data
out 61h,al
mov al,0B4h ; program timer 2 with mode 2 (rate generator)
out 43h,al

mov al,0ffh ; init timer 2 starting count
out 42h,al ; write LSB
out 42h,al ; then MSB

in al,61h ; read port 61h again
mov di,ax ; save this value for later use (to disarm

; timer 2
or al,1 ; enable timer 2 by enabling Gate2

Processor Recognition

10 Nx586 Processor Recognition PRELIMINARY

ORDER # 754006-02

cmp bl,0 ; check which loop to perform
je long_loop
jmp short_loop

long_loop:
cli ; disable interrupt
out 61h,al ; arm timer 2
mov ebx,2 ; set divisor to a simple value
xor edx,edx ; init EDX:EAX
xor eax,eax ; NOTE: the time spent on instructions after

; arming the timer 2 and before the DIV loop
; will be eliminated by calculating the
; time difference of two cycle loops. (see
; short_loop below)

next_long:
div ebx ; perform "DIV EBX" for 100 times
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx

Processor Recognition

PRELIMINARY Nx586 Processor Recognition 11

ORDER # 754006-02

div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx
div ebx

dec cx
jnz next_long
jmp end_loop

short_loop: ; select short cycle loop
cli ; disable interrupts
out 61h,al ; arm timer 2
mov ebx,2 ; init divisor to a simple value
xor edx,edx ; init EDX:EAX
xor eax,eax ; these three instructions are exactly same

; the ones used in the long cycle loop
next_short:

div bx ; perform "DIV BX" for 100 times
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx

Processor Recognition

12 Nx586 Processor Recognition PRELIMINARY

ORDER # 754006-02

div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx
div bx

Processor Recognition

PRELIMINARY Nx586 Processor Recognition 13

ORDER # 754006-02

div bx
div bx
div bx
div bx
div bx
div bx

dec cx
jnz next_short
jmp end_loop ; same JMP instruction as the one used in the
nop ; long loop
nop

end_loop:
mov ax,di ; retrieve saved value for port 61h
out 61h,al ; disarm timer 2
sti ; enable interrupt
in al,42h ; read LSB from timer 2
xchg ah,al
in al,42h ; read MSB
xchg ah,al
neg ax ; total count elasped

pop dx
pop bx
pop di
pop si

ret
getclk ENDP

END

Figure 4 NXCPU.C
//***
//
// NexGen, Inc.
// 1623 Buckeye Drive
// Milpitas, CA 95035
// Phone: (408)435-0202
//
//***

//***
// File: nxcpu.c
// Revision: 1.0
//
// This sample C program identifies Nx586 processor and prints its information
// according to the data saved by the external procedures "get_nxcpu_type",
// "get_nxfpu", and "cpuclk". If the CPUID instruction is available, the
// vendor ID, family ID, stepping number and features supported will be
// displayed.
//
// The first two external functions can be found in CPUID.ASM. The
// CPUID.ASM is assembled in SMALL model, and should be linked with this
// program.
//
// The third routine, "Nx586_clock_rate", is found in CPUCLK.ASM. It should
// also be assembled in SMALL model, and linked with this program.
//
// Revision History:
// 1.0 - initial release
//
//***

#include <stdio.h>

extern char nxcpu;

Processor Recognition

14 Nx586 Processor Recognition PRELIMINARY

ORDER # 754006-02

extern char cputype;
extern char cpuid_flag;
extern unsigned long cpu_signature;
extern unsigned long features_ecx;
extern unsigned long features_edx;
extern unsigned long features_ebx;
extern char nxfpu;
extern void get_nxcpu_type(void);
extern void get_nxfpu(void);
extern int Nx586_clock_rate(void);

void main (void)
{

get_nxcpu_type();
get_nxfpu();
print_cpu_info();

}

print_cpu_info()
{

if (!nxcpu) {
printf ("This system does not have a NexGen processor.\n");
exit(-1);

}
printf ("This system has an ");
switch (cputype) {

case 5:
 printf ("Nx586[R] processor ");
 if (nxfpu)
 printf ("and a floating point processor");
 printf ("\n");
 printf ("\nProcessor running at %d MHz\n",

(int)Nx586_clock_rate()/10);
 printf ("\n");
 if (cpuid_flag)
 print_id_info(); //print more CPU information
 break;
default:

//reserved for future expansion
 break;

}
}

print_id_info()
{

printf ("Vendor ID: NexGenDriven\n");
printf ("Processor Family: %x\n",(char)((cpu_signature>>8) & 0xff));
printf ("Stepping: %x\n",(char)(cpu_signature & 0xf));
printf ("Feature Flags: %x\n",(char)(features_edx & 1));

}

Processor Recognition

PRELIMINARY Nx586 Processor Recognition 15

ORDER # 754006-02

CPUID Instruction

The CPUID instruction is an application level instruction that software can execute
to identify the processor and its feature set. It can be executed from any privilege
level. Software can use this information to tune functionality for the specific
processor and its features.

Not all processors implement the CPUID instruction. Before executing the
instruction, software should first test to see if the instruction exists. Existence of
the CPUID instruction is indicated by the ID bit (21) in the EFLAGS register. If
this bit is writeable, the CPUID instruction exists.

Opcode: 0F A2

Input: EAX

Output: EAX, EBX, ECX, EDX

Function:

EAX = 0:
EAX = Highest input value recognized by CPUID instruction

EBX, EDX, ECX = Vendor identification string

EAX = 1:
EAX = Processor signature

EBX = Reserved

ECX = Reserved

EDX = Feature flags

EAX > 1:
EAX = Undefined

EBX = Undefined

ECX = Undefined

EDX = Undefined

Highest Input Value:

The highest input value recognized by the CPUID instruction in the
Nx586 or Nx686 is 1. If an input value greater than 1 is used the
values returned in EAX, EBX, ECX, and EDX are undefined.
Future processors may implement higher values and the results
returned by these values will be defined at that time.

Processor Recognition

16 Nx586 Processor Recognition PRELIMINARY

ORDER # 754006-02

Vendor Identification String:

The vendor identification string identifies NexGen as the vendor for
the CPU. It does so by returning “NexGenDriven” in the EBX,
EDX, and ECX registers.

EBX = 4778654Eh (GxeN)

EDX = 72446E65h (rDne)

ECX = 6E657669h (nevi)

Processor Signature:

The processor signature identifies the specific CPU by providing
information regarding its type, family, model, and stepping revision.
The information is formatted as follows:

EAX[0:3] = Stepping Revision

EAX[4:7] = CPU Model

EAX[8:11] = CPU Family

EAX[12:31] = Reserved

Feature Flags:

The feature flags indicate the existence or presence of specific
features. In most cases a “1” indicates the feature is present. The
following is an explanation of the feature flags currently defined.
Reserved bits will be used in the future for new features as they are
added.

EDX[0] = Floating Point Unit (1 indicates floating point unit is
present, 0 indicates no floating point unit)

EDX[1:31] = Reserved

Note: All registers and bits marked “Reserved” should return 0.

Table 2 NexGen Processor Signatures

CPU
Family

CPU
Model

Stepping
Revision1

Description

0101 0000 xxxx Nx586 Processor

0110 0000 xxxx Nx686 Processor

Notes:

Processor Recognition

PRELIMINARY Nx586 Processor Recognition 17

ORDER # 754006-02

1. Contact NexGen for specific stepping revision information.

