
Embedded Pentium® Processor
Family
Developer’s Manual

December 1998

Order Number: 273204-001

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Pentium® processors may contain design defects or errors known as errata which may cause the products to deviate from published specifications.
Current characterized errata are available on request.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or MPEG enabled
platforms may require licenses from various entities, including Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-
548-4725 or by visiting Intel’s website at http://www.intel.com.

Copyright © Intel Corporation, 1996, 1997, 1998

*Third-party brands and names are the property of their respective owners.

Contents
Contents
1 Guide to this Manual ...1-1

1.1 Manual Contents ..1-1
1.2 Notation Conventions ...1-2

1.2.1 Bit and Byte Order...1-3
1.2.2 Reserved Bits and Software Compatibility ..1-3
1.2.3 Instruction Operands ...1-4
1.2.4 Hexadecimal and Binary Numbers..1-4
1.2.5 Segmented Addressing ...1-5
1.2.6 Exceptions...1-5

1.3 Special Terminology...1-5
1.4 Technical Support ..1-6

1.4.1 Electronic Support Systems ..1-6
1.4.1.1 Online Documents ...1-6
1.4.1.2 Intel Product Forums ...1-7

1.4.2 Telephone Technical Support ...1-7
1.5 Product Literature...1-7
1.6 Related Documents..1-8

2 Architectural Features ...2-1

2.1 Processor Features Overview ..2-1
2.2 Component Introduction ...2-3

3 Component Operation ...3-1

3.1 Pipeline and Instruction Flow ...3-1
3.1.1 Integer Pipeline Description ..3-2

3.1.1.1 Instruction Prefetch..3-3
3.1.2 Integer Instruction Pairing Rules ...3-4

3.2 Branch Prediction ...3-5
3.3 Floating-Point Unit..3-7

3.3.1 Floating-Point Pipeline Stages ..3-8
3.3.2 Instruction Issue ..3-8
3.3.3 Safe Instruction Recognition ...3-9
3.3.4 FPU Bypasses...3-10
3.3.5 Branching Upon Numeric Condition Codes...3-10

3.4 Intel MMX™ Technology Unit...3-11
3.4.1 MMX™ Technology Programming Environment3-11

3.4.1.1 MMX™ Technology Registers ...3-12
3.4.1.2 MMX™ Technology Data Types..3-12
3.4.1.3 Single Instruction, Multiple Data (SIMD) Execution Model 3-13
3.4.1.4 Memory Data Formats ...3-14
3.4.1.5 MMX™ Technology Register Data Formats3-14

3.4.2 MMX™ Instruction Set ..3-14
3.4.3 Intel MMX™ Technology Pipeline Stages ...3-15
3.4.4 Instruction Issue ..3-16

3.4.4.1 Pairing Two MMX™ Instructions3-16
3.4.4.2 Pairing an Integer Instruction in the U-pipe with an MMX

Instruction in the V-pipe ...3-17
Embedded Pentium® Processor Family Developer’s Manual iii

Contents
3.4.4.3 Pairing an MMX Instruction in the U-pipe with an
Integer Instruction in the V-pipe...3-17

3.5 On-Chip Caches...3-17
3.5.1 Cache Organization ..3-17
3.5.2 Cache Structure ..3-19
3.5.3 Cache Operating Modes ...3-19
3.5.4 Page Cacheability ...3-21

3.5.4.1 PCD and PWT Generation ..3-21
3.5.5 Inquire Cycles ...3-23
3.5.6 Cache Flushing ...3-23
3.5.7 Data Cache Consistency Protocol (MESI Protocol)3-23

3.5.7.1 State Transition Tables..3-24
3.5.7.5 Code Cache Consistency Protocol3-26

3.6 Write Buffers and Memory Ordering ..3-26
3.6.1 External Event Synchronization ..3-27
3.6.2 Serializing Operations ...3-28
3.6.3 Linefill and Writeback Buffers..3-29

3.7 External Interrupt Considerations...3-29
3.8 Introduction to Dual Processor Mode...3-30

3.8.1 Dual Processing Terminology ...3-31
3.8.2 Dual Processing Overview ..3-31

3.8.2.1 Conceptual Overview ..3-32
3.8.2.2 Arbitration Overview ..3-32
3.8.2.3 Cache Coherency Overview..3-33

3.9 APIC Interrupt Controller..3-35
3.9.1 APIC Configuration Modes..3-37

3.9.1.1 Normal Mode ...3-37
3.9.1.2 Bypass Mode...3-38
3.9.1.3 Through Local Mode..3-38
3.9.1.4 Masked Mode ..3-38
3.9.1.6 Dual Processing with the Local APIC3-39

3.9.2 Loading the APIC ID ...3-39
3.9.3 Response to HOLD ...3-39

3.10 Fractional Speed Bus...3-40
3.10.1 Fractional Bus Operation Examples..3-41

3.11 Power Management ...3-43
3.11.1 I/O Instruction Restart ...3-43
3.11.2 Stop Clock and Auto Halt Powerdown ..3-43

3.12 CPUID Instruction ..3-44
3.13 Model Specific Registers..3-46

4 Microprocessor Initialization and Configuration ..4-1

4.1 Power Up Specifications ..4-1
4.2 Test and Configuration Features..4-1

4.2.1 Built-in Self-Test ..4-2
4.2.2 Three-state Test Mode..4-2
4.2.3 Functional Redundancy Checking ..4-2
4.2.4 Lock Step APIC Operation ..4-2

4.3 Initialization with RESET, INIT and BIST ...4-3
4.3.1 Recognition of Interrupts after RESET..4-5
4.3.2 Pin State During/After RESET ..4-5
iv Embedded Pentium® Processor Family Developer’s Manual

Contents
4.4 Managing and Designing with the Symmetrical Dual
Processing Configuration ...4-7
4.4.1 Dual Processor Bootup Protocol ...4-7

4.4.1.1 Bootup Overview ...4-7
4.4.1.2 BIOS/Operating System Requirements4-7
4.4.1.3 System Requirements ...4-7
4.4.1.4 Start-up Behavior...4-8
4.4.1.5 Dual-Processor Presence Indication4-8

4.4.2 Dual-Processor Arbitration ..4-9
4.4.2.1 Basic Dual-Processor Arbitration Mechanism4-9
4.4.2.2 Dual-Processor Arbitration Interface..................................4-10
4.4.2.3 Dual-Processor Arbitration from a Parked Bus..................4-12

4.4.3 Dual-Processor Cache Consistency..4-13
4.4.3.1 Basic Cache Consistency Mechanism...............................4-13
4.4.3.2 Cache Consistency Interface...4-13
4.4.3.3 Pin Modifications Due to the Dual-Processor4-14
4.4.3.5 External Snoop Examples ...4-16
4.4.3.6 State Transitions Due to Dual-Processor

Cache Consistency..4-19
4.5 Designing with Symmetrical Dual Processors..4-21

4.5.1 Dual Processor Bus Interface..4-21
4.5.1.1 Intra- and Inter-Processor Pipelining4-22
4.5.1.2 FLUSH# Cycles ...4-22
4.5.1.3 Arbitration Exchange with Bus Parking..............................4-23
4.5.1.4 BOFF# ...4-24
4.5.1.5 Bus Hold ..4-24

4.5.2 Dual Processing Power Management ...4-25
4.5.2.1 STPCLK#...4-25
4.5.2.2 System Management Mode...4-25

4.5.3 Other Dual-Processor Considerations...4-25
4.5.3.1 Strong Write Ordering..4-25
4.5.3.2 Bus Snarfing ..4-25
4.5.3.3 Interrupts..4-25
4.5.3.4 INIT Sequences ...4-26
4.5.3.5 Boundary Scan ..4-26
4.5.3.6 Presence of a Processor in Socket 7.................................4-26
4.5.3.7 MRM Processor Indication...4-26

4.5.4 Dual-Processor Pin Functions...4-27

5 Hardware Interface..5-1

5.1 Detailed Pin Descriptions ...5-1
5.1.1 A20M# ...5-1
5.1.2 A31–A3..5-2
5.1.3 ADS# ...5-3
5.1.4 ADSC# ..5-4
5.1.5 AHOLD ..5-5
5.1.6 AP..5-6
5.1.7 APCHK# ..5-7
5.1.8 APICEN ...5-8
5.1.9 BE7#–BE0#...5-9
5.1.10 BF2–BF0 ...5-11
5.1.11 BOFF#...5-13
Embedded Pentium® Processor Family Developer’s Manual v

Contents
5.1.12 BP3–BP0...5-14
5.1.13 BRDY# ..5-15
5.1.14 BRDYC#..5-16
5.1.15 BREQ ..5-16
5.1.16 BUSCHK# ...5-17
5.1.17 CACHE#..5-18
5.1.18 CLK ...5-19
5.1.19 CPUTYP..5-20
5.1.20 D/C# ..5-21
5.1.21 D63–D0 ...5-21
5.1.22 D/P# ..5-22
5.1.23 DP7–DP0 ..5-23
5.1.24 DPEN# ..5-24
5.1.25 EADS# ..5-25
5.1.26 EWBE#..5-26
5.1.27 FERR# ..5-27
5.1.28 FLUSH# ..5-28
5.1.29 FRCMC# ...5-29
5.1.30 HIT# ..5-30
5.1.31 HITM# ...5-31
5.1.32 HLDA...5-32
5.1.33 HOLD ..5-33
5.1.34 IERR#..5-34
5.1.35 IGNNE#...5-36
5.1.36 INIT ...5-37
5.1.37 INTR..5-38
5.1.38 INV ..5-39
5.1.39 KEN#...5-40
5.1.40 LINT1–LINT0...5-41
5.1.41 LOCK# ..5-41
5.1.42 M/IO# ..5-42
5.1.43 NA# ...5-43
5.1.44 NMI..5-44
5.1.45 PBGNT#..5-45
5.1.46 PBREQ#..5-46
5.1.47 PCD...5-46
5.1.48 PCHK# ..5-47
5.1.49 PHIT# ..5-48
5.1.50 PHITM# ...5-49
5.1.51 PICCLK ...5-50
5.1.52 PICD1–PICD0 ...5-51
5.1.53 PEN#...5-51
5.1.54 PM1–PM0 ...5-52
5.1.55 PRDY ..5-53
5.1.56 PWT ..5-53
5.1.57 R/S# ..5-54
5.1.58 RESET ..5-54
5.1.59 SCYC ..5-56
5.1.60 SMI#..5-57
5.1.61 SMIACT#...5-58
vi Embedded Pentium® Processor Family Developer’s Manual

Contents
5.1.62 STPCLK# ..5-59
5.1.63 TCK ...5-60
5.1.64 TDI...5-60
5.1.65 TDO...5-61
5.1.66 TMS...5-62
5.1.67 TRST# ...5-62
5.1.68 VCC..5-63
5.1.69 VCC2 ..5-63
5.1.70 VCC3 ..5-63
5.1.71 VCC2DET#..5-64
5.1.72 W/R# ...5-64
5.1.73 WB/WT# ..5-65

6 Bus Functional Description..6-1

6.1 Physical Memory and I/O Interface ..6-1
6.2 Data Transfer Mechanism..6-2

6.2.1 Interfacing With 8-, 16-, 32-, and 64-Bit Memories................................6-4
6.3 Bus State Definition..6-8

6.3.1 State Transitions ...6-9
6.4 Bus Cycles ...6-10

6.4.1 Single-Transfer Cycle..6-11
6.4.2 Burst Cycles ..6-13

6.4.2.1 Burst Read Cycles ...6-14
6.4.2.2 Burst Write Cycles ...6-16

6.4.3 Locked Operations ..6-17
6.4.3.1 Programmer Generated Locks and Segment

Descriptor Updates ..6-18
6.4.3.2 Page Table/directory Locked Cycles6-18
6.4.3.3 LOCK# Operation During AHOLD/HOLD/BOFF#..............6-19
6.4.3.4 Inquire Cycles During LOCK#..6-19
6.4.3.5 LOCK# Timing and Latency...6-19

6.4.4 BOFF#...6-21
6.4.5 Bus Hold..6-23
6.4.6 Interrupt Acknowledge...6-25
6.4.7 Flush Operations ...6-26
6.4.8 Special Bus Cycles..6-26
6.4.9 Bus Error Support..6-28
6.4.10 Pipelined Cycles..6-28

6.4.10.1 KEN# and WB/WT# Sampling for Pipelined Cycles6-31
6.4.11 Dead Clock Timing Diagrams..6-32

6.5 Cache Consistency Cycles (Inquire Cycles) ..6-33
6.5.1 Restrictions on Deassertion of AHOLD ...6-37
6.5.2 Rate of Inquire Cycles ...6-40
6.5.3 Internal Snooping ..6-40
6.5.4 Snooping Responsibility ..6-40

6.6 Summary of Dual Processing Bus Cycles..6-43
6.6.1 Locked Cycle Sequences..6-44
6.6.2 Cycle Pipelining...6-44
6.6.3 Cycle Ordering Due to BOFF# ..6-44
6.6.4 Cache Line State...6-44
6.6.5 Back-to-Back Cycles ...6-45
Embedded Pentium® Processor Family Developer’s Manual vii

Contents
6.6.6 Address Parity Checking...6-45
6.6.7 Synchronous FLUSH# and RESET...6-45
6.6.8 PCHK# Assertion ..6-45
6.6.9 Flush Cycles..6-46
6.6.10 Floating-Point Error Handling..6-46

7 Electrical Differences Between Family Members..7-1

7.1 Differences Between Processors ...7-1
7.1.1 Power Supplies ...7-1

7.1.1.1 Power Supply Sequencing ..7-1
7.1.2 Connection Specifications...7-2

7.1.2.1 Power and Ground Connections ...7-2
7.1.2.4 3.3 V Inputs and Outputs...7-3
7.1.2.5 NC/INC and Unused Inputs ...7-4

7.1.3 Buffer Models ..7-4

8 I/O Buffer Models ..8-1

8.1 Buffer Model Parameters ...8-3
8.2 Signal Quality Specifications..8-6

8.2.1 Ringback ...8-6
8.2.2 Settling Time ...8-7
8.2.3 CLK/PICCLK Signal Quality Specification for the Pentium®

Processor with MMX™ Technology ..8-8
8.2.3.1 Clock Signal Measurement Methodology8-9

9 Testability ..9-1

9.1 Built-in Self-test (BIST)...9-1
9.2 Three-state Test Mode...9-2
9.3 IEEE 1149.1 Test Access Port and Boundary

Scan Mechanism..9-2
9.3.1 Test Access Port (TAP)...9-2

9.3.1.1 TAP Pins..9-3
9.3.1.2 TAP Registers ...9-4
9.3.1.3 TAP Controller State Diagram ...9-6

9.3.2 Boundary Scan..9-9
9.3.2.1 Boundary Scan TAP Instruction Set9-11

10 Error Detection ..10-1

10.1 Internal Error Detection ..10-1
10.2 Error Detection at the Processor Interface...10-2

10.2.1 Address Parity ...10-2
10.2.2 Data Parity ..10-3

10.2.2.1 Machine Check Exception as a Result
of a Data Parity Error ...10-4

10.2.3 Machine Check Exception...10-4
10.2.4 Bus Error ...10-5
10.2.5 Functional Redundancy Checking ..10-6

11 Execution Tracing ...11-1

12 Power Management ..12-1

12.1 Power Management Features..12-1
viii Embedded Pentium® Processor Family Developer’s Manual

Contents
12.2 System Management Interrupt Processing ..12-1
12.2.1 System Management Interrupt (SMI#) ..12-2

12.2.1.1 SMI# Synchronization for I/O Instruction Restart...............12-3
12.2.1.2 Dual Processing Considerations For SMI# Delivery..........12-3

12.2.2 System Management Interrupt Via APIC ..12-4
12.2.3 SMI Active (SMIACT#) ..12-4

12.2.3.1 Dual Processing Considerations for SMIACT#..................12-5
12.3 SMM — System Design Considerations ..12-6

12.3.1 SMRAM Interface ..12-6
12.3.2 Cache Flushes ..12-7

12.3.2.1 Dual Processing Considerations for Cache Flushes12-9
12.3.3 A20M# Signal ..12-9
12.3.4 SMM and Second Level Write Buffers ..12-10

12.4 Clock Control..12-11
12.4.1 Clock Generation...12-11
12.4.2 Stop Clock ...12-11

12.4.2.1 STPCLK# Signal..12-11
12.4.2.2 Dual Processing Considerations......................................12-12

12.4.3 Stop Grant Bus Cycle..12-13
12.4.4 Pin State During Stop Grant..12-14
12.4.5 Clock Control State Diagram...12-15

12.4.5.1 Normal State — State 1...12-15
12.4.5.2 Stop Grant State — State 2 ...12-15
12.4.5.3 Auto Halt Powerdown State — State 3............................12-16
12.4.5.4 Stop Clock Snoop State (Cache

Invalidations) — State 4...12-16
12.4.5.5 Stop Clock State — State 5 ...12-16

13 Debugging ...13-1

13.1 Introduction...13-1
13.2 Two Levels of Support..13-1

13.2.1 Level 1 Debug Port (L1) ..13-1
13.2.2 Level 2 Debug Port (L2) ..13-1

13.3 Debug Port Connector Descriptions...13-1
13.4 Signal Descriptions...13-2
13.5 Signal Quality Notes...13-4
13.6 Implementation Examples ..13-4

13.6.1 Example 1: Single Processor, Boundary Scan Not
Used by System ..13-4

13.6.2 Example 2: Single Processor, Boundary Scan
Used by System ..13-6

13.6.3 Example 3: Dual Processors, Boundary Scan
Not Used by System..13-7

13.6.4 Example 4: Dual Processors, Boundary Scan Used by System13-8
13.7 Implementation Details...13-9

13.7.1 Signal Routing Note ..13-9
13.7.2 Special Adapter Descriptions ..13-10

13.7.2.1 Uniprocessor Debug ..13-10
13.7.2.2 Dual-Processor Debug ..13-12
Embedded Pentium® Processor Family Developer’s Manual ix

Contents
14 Model Specific Registers and Functions ...14-1

14.1 Model Specific Registers..14-1
14.1.1 Model Specific Register Usage Restrictions14-1
14.1.2 Model Specific Register Access..14-2

14.2 Testability And Test Registers ...14-3
14.2.1 Cache, TLB and BTB Test Registers ..14-3

14.2.1.1 Cache Test Registers ..14-4
14.2.1.2 TLB Test Registers..14-8
14.2.1.3 Branch Target Buffer (BTB) Test Registers.....................14-12
14.2.1.4 Parity Reversal Register (TR1)..14-15

14.3 New Feature Control (TR12)..14-17
14.4 Performance Monitoring...14-19

14.4.1 Performance Monitoring Feature Overview.......................................14-20
14.4.2 Time Stamp Counter (TSC)...14-20
14.4.3 Programmable Event Counters (CTR0, CTR1).................................14-21
14.4.4 Control and Event Select Register (CESR).......................................14-21

14.4.4.1 Event Select (ES0, ES1) ...14-21
14.4.4.2 Counter Control (CC0, CC1) ...14-22
14.4.4.3 Pin Control (PC0, PC1) ...14-22

14.4.5 Performance Monitoring Events..14-23
14.4.6 Description of Events ..14-26

Figures

1-1 Bit and Byte Order..1-3
2-1 Embedded Pentium® Processor Block Diagram..2-5
3-1 Embedded Pentium® Processor Pipeline Execution..3-2
3-2 Branch Prediction Example..3-7
3-3 MMX™ Technology Register Set...3-12
3-4 Packed Data Types..3-13
3-5 Eight Packed Bytes in Memory (at Address 1000H) ..3-14
3-6 MMX™ Technology Pipeline Structure ..3-15
3-7 Pseudo-LRU Cache Replacement Strategy...3-18
3-8 Conceptual Organization of Code and Data Caches3-18
3-9 PCD and PWT Generation...3-22
3-10 Embedded Pentium® Processor Write Buffer Implementation.........................3-27
3-11 Dual Processors...3-32
3-12 Dual Processor Arbitration Mechanism..3-33
3-13 Dual Processor L1 Cache Consistency..3-35
3-14 APIC System Configuration ...3-36
3-15 Local APIC Interface ..3-37
3-16 Processor 1/2 Bus Internal/External Data Movement3-41
3-17 Processor 2/3 Bus Internal/External Data Movement3-42
3-18 Processor 2/5 Bus Internal/External Data Movement3-42
3-19 Processor 1/3 Bus Internal/External Data Movement3-43
3-20 EAX Bit Assignments for CPUID..3-44
4-1 Pin States during Reset ...4-6
4-2 EAX Bit Assignments for CPUID..4-7
x Embedded Pentium® Processor Family Developer’s Manual

Contents
4-3 Dual-Processor Arbitration Interface ..4-10
4-4 Typical Dual-Processor Arbitration Example..4-11
4-5 Arbitration from LRM to MRM when Bus is Parked..4-12
4-6 Cache Consistency Interface ...4-14
4-7 Dual-Processor Cache Consistency for Locked Accesses4-15
4-8 Dual-Processor Cache Consistency for External Snoops4-16
4-9 Dual-Processor Cache Consistency for External Snoops4-18
4-10 Dual-Processor Configuration ..4-21
4-11 Dual-Processor Boundary Scan Connections ..4-26
6-1 Memory Organization ...6-1
6-2 I/O Space Organization ..6-2
6-3 Embedded Pentium® Processor with 64-Bit Memory...6-4
6-4 Addressing 32-, 16- and 8-Bit Memories..6-5
6-5 Data Bus Interface to 32-, 16- and 8-Bit Memories ..6-6
6-6 Processor Bus Control State Machine ...6-9
6-7 Non-Pipelined Read and Write...6-12
6-8 Non-Pipelined Read and Write with Wait States ..6-13
6-9 Basic Burst Read Cycle..6-15
6-10 Slow Burst Read Cycle...6-16
6-11 Basic Burst Write Cycle..6-17
6-12 LOCK# Timing..6-20
6-13 Two Consecutive Locked Operations...6-20
6-14 Misaligned Locked Cycles..6-21
6-15 Back Off Timing..6-22
6-16 HOLD/HLDA Cycles ...6-24
6-17 Interrupt Acknowledge Cycles..6-25
6-18 Two Pipelined Cache Linefills ..6-29
6-19 Pipelined Back-to-Back Read/Write Cycles ...6-30
6-20 KEN# and WB/WT# Sampling with NA# ..6-31
6-21 KEN# and WB/WT# Sampling with BRDY# ...6-32
6-22 Bus Cycles without Dead Clock ...6-32
6-23 Bus Cycles with TD Dead Clock...6-33
6-24 Inquire Cycle that Misses the Processor Cache...6-35
6-25 Inquire Cycle that Invalidates a Non-M-State Line ...6-36
6-26 Inquire Cycle that Invalidates M-State Line..6-38
6-27 AHOLD Restriction during Write Cycles...6-39
6-28 AHOLD Restriction During TD..6-39
6-29 Snoop Responsibility Pickup — Non-Pipelined Cycles6-41
6-30 Snoop Responsibility Pickup — Pipelined Cycle..6-42
6-31 Latest Snooping of Writeback Buffer..6-43
8-1 Input Buffer Model, Except Special Group ...8-1
8-2 Input Buffer Model for Special Group ...8-2
8-3 First Order Output Buffer Model ...8-3
8-4 Overshoot/Undershoot and Ringback Guidelines ..8-6
8-5 Settling Time ..8-8
8-6 Maximum Overshoot Level, Overshoot Threshold Level, and Overshoot

Threshold Duration...8-10
8-7 Maximum Ringback Associated with the Signal High State8-10
8-8 Maximum Undershoot Level, Undershoot Threshold Level, and

Undershoot Threshold Duration ...8-11
Embedded Pentium® Processor Family Developer’s Manual xi

Contents
8-9 Maximum Ringback Associated with the Signal Low State..............................8-11
9-1 Test Access Port Block Diagram..9-3
9-2 Boundary Scan Register ..9-4
9-3 Format of the Device ID Register...9-5
9-4 TAP Controller State Diagram..9-6
10-1 Inquire Cycle Address Parity Checking..10-2
10-2 Data Parity During a Read and Write Cycle...10-3
10-3 Machine Check Type Register ...10-5
10-4 Conceptual IERR# Implementation for FRC ..10-7
12-1 Basic SMI# Interrupt Service..12-2
12-2 Basic SMI# Hardware Interface ...12-2
12-3 SMI# Timing ...12-3
12-4 SMIACT# Timing..12-5
12-5 SMRAM Location ...12-7
12-6 FLUSH# Mechanism During SMM with Overlay ..12-9
12-7 Flush with Non-Cached SMM with Overlay..12-9
12-8 Entering Stop Grant State ..12-13
12-9 Stop Clock State Machine..12-15
13-1 Debug Port Connector ...13-2
13-2 Single Processor – Boundary Scan Not Used ...13-5
13-3 Single Processor – Boundary Scan Used ..13-6
13-4 Dual Processor – Boundary Scan Not Used ..13-7
13-5 Dual Processor – Boundary Scan Used...13-8
13-6 Example of Processor Only in Scan Chain ..13-9
13-7 Example of Multiple Components in Scan Chain ...13-10
13-8 Uni-Processor Debug...13-12
13-9 Dual-Processor Debug Port Adapter..13-13
13-10 Shared Pins for Dual-Processor Adapter ...13-13
14-1 Cache Test Registers...14-4
14-2 TLB Test Registers ..14-8
14-3 BTB Test Registers ..14-12
14-4 Parity Reversal Register ..14-15
14-5 Test Register (TR12)..14-17
14-6 Control and Event Select Register ...14-21

Tables

1-1 Related Resources...1-8
3-1 Pipeline Stage Summary..3-16
3-2 Cache Operating Modes ..3-20
3-3 32-Bits/4-Kbyte Pages ...3-21
3-4 32-Bits/4-Mbyte Pages...3-21
3-5 Data Cache State Transitions for UNLOCKED Processor

Initiated Read Cycles ...3-24
3-6 Data Cache State Transitions for Processor Initiated Write Cycles3-25
3-7 Cache State Transitions During Inquiry Cycles..3-26
3-8 Embedded Pentium® Processor Interrupt Priority Scheme..............................3-30
3-9 APIC ID ..3-39
xii Embedded Pentium® Processor Family Developer’s Manual

Contents
3-10 Bus-to-Core Frequency Ratios for the Embedded Pentium®
Processor (at 100/133/166 MHz) ...3-40

3-11 Bus-to-Core Frequency Ratios for the Embedded Pentium®
Processor with MMX™ Technology ...3-40

3-12 Bus-to-Core Frequency Ratios for the Low-Power Embedded
Pentium® Processor with MMX™ Technology...3-41

3-13 EDX Bit Assignment Definitions (Feature Flags)..3-45
3-14 EAX Type Field Values ..3-46
4-1 Pentium® Processor Reset Modes...4-3
4-2 Register State after RESET, INIT and BIST...4-4
4-3 Read Cycle State Transitions Due to Dual-Processor4-19
4-4 Write Cycle State Transitions Due to Dual-Processor......................................4-20
4-5 Inquire Cycle State Transitions Due to External Snoop4-20
4-6 State Transitions in the LRM Due to Dual-Processor “Private” Snooping........4-20
4-7 Primary and Dual Processor Pipelining..4-22
4-8 Cycle Reordering Due to BOFF# ...4-24
4-9 Using D/P# to Determine MRM ..4-27
4-10 Dual-Processor Pin Functions vs. Pentium® Processor...................................4-27
5-1 Bus-to-Core Frequency Ratios for the Embedded Pentium®

Processor (at 100/133/166 MHz) ...5-12
5-2 Bus-to-Core Frequency Ratios for the Embedded Pentium®

Processor with MMX™ Technology ...5-12
5-3 Bus-to-Core Frequency Ratios for the Low-Power Embedded

Pentium® Processor with MMX™ Technology...5-12
6-1 Embedded Pentium® Processor Byte Enables and Associated Data Bytes6-3
6-2 Generating A2–A0 from BE7#–BE0# ...6-3
6-3 When BLE# is Active..6-3
6-4 When BHE# is Active ...6-4
6-5 When BE3’# is Active ...6-4
6-6 When BE2’# is Active ...6-4
6-7 When BE1’# is Active ...6-4
6-8 When BE0’# is Active ...6-4
6-9 Transfer Bus Cycles for Bytes, Words, Dwords and Quadwords.......................6-7
6-10 Processor Bus Activity..6-8
6-11 Processor Initiated Bus Cycles...6-11
6-12 Processor Burst Order..6-14
6-13 Special Bus Cycles Encoding...6-26
8-1 Parameters Used in the Specification of the First Order Input Buffer Mode8-2
8-2 Parameters Used in the Specification of the First Order Output Buffer Mode....8-3
8-3 Buffer Selection Chart ..8-4
8-4 Signal to Buffer Type..8-4
8-5 Input, Output and Bidirectional Buffer Model Parameters8-5
8-6 Input Buffer Model Parameters: D (Diodes) ...8-5
8-7 Overshoot Specification Summary ...8-9
8-8 Undershoot Specification Summary ...8-9
9-1 Device ID Register Values ...9-5
9-2 TAP Instruction Set and Instruction Register Encoding9-12
12-1 Dual Processing SMI# Delivery Options ..12-3
12-2 Scenarios for Cache Flushes with Writeback Caches......................................12-8
12-3 Pin State During Stop Grant Bus State ..12-14
13-1 Recommended Connectors..13-2
Embedded Pentium® Processor Family Developer’s Manual xiii

Contents
13-2 Debug Port Signals ..13-3
13-3 SPGA Socket ...13-11
13-4 Debug Port Connector Pinout ..13-14
14-1 Model Specific Register Descriptions...14-2
14-2 Encoding for Valid Bits in TR4 ...14-5
14-3 Encoding of the LRU Bit in TR4 ...14-5
14-4 Encoding of the WB Bit in TR5...14-6
14-5 Encoding of the Code/Data Cache Bit in TR5..14-6
14-6 Encoding of the Entry Bit in TR5 ..14-6
14-7 Encoding of the Control Bits in TR5 ...14-6
14-8 Definition of the WB Bit in TR5...14-7
14-9 Encoding for the Valid Bit in TR6 ...14-9
14-10 Encoding for the Dirty Bit in TR6..14-9
14-11 Encoding for the User Bit in TR6..14-9
14-12 Encoding for the Writeable Bit in TR6 ..14-9
14-13 Encoding for the Page Size Bit in TR6...14-9
14-14 Encoding for the Operation Bit TR6 ...14-10
14-15 Encoding for the Code/Data TLB in TR6..14-10
14-16 TR9 Register Description (BTB Test Register) ..14-13
14-17 TR10 Register Description (BTB Test Register) ..14-13
14-18 TR11 Register Description (BTB Command Test Register)...........................14-13
14-19 Format for TR11 Control Field ...14-14
14-20 Parity Reversal Register Bit Definition ...14-16
14-21 New Feature Controls ..14-18
14-22 Architectural Performance Monitoring Features...14-20
14-23 Model Specific Performance Monitoring Features ...14-20
14-24 Performance Monitoring Events...14-23
xiv Embedded Pentium® Processor Family Developer’s Manual

re,

g
g

ily.

ing
d

ed

.

n

e
Guide to this Manual 1

1.1 Manual Contents

This manual contains 14 chapters and an index. This section summarizes the contents of the
remaining chapters. The remainder of this chapter describes notation conventions and special
terminology used throughout the manual and provides references to related documentation.

Chapter 2, “Architectural
Features”

This chapter provides an overview of the embedded Pentium®
processor, including product features, system components, system
architecture, and applications.

Chapter 3, “Component
Operation”

This chapter describes the Pentium processor internal architectu
with an overview of the processor’s functional units.

Chapter 4, “Microprocessor
Initialization and
Configuration”

This chapter details the Pentium processor register set, includin
the base architecture registers, system-level registers, and debu
and test registers.

Chapter 5, “Hardware
Interface”

This chapter describes the signals for the Pentium processor fam

Chapter 6, “Bus Functional
Description”

This chapter describes the features of the processor bus, includ
bus cycle handling, interrupt and reset signals, cache control, an
floating-point error control.

Chapter 7, “Electrical
Differences Between
Family Members”

This section describes the electrical differences between the
embedded Pentium processor (at 100/133/166 MHz) and the
embedded Pentium processor with MMX™ technology .

Chapter 8, “I/O Buffer
Models”

This chapter describes the 3.3 V I/O buffer models of the embedd
Pentium processor.

Chapter 9, “Testability” This chapter describes the features which are included in the
embedded Pentium processor for the purpose of enhancing
testability. This chapter describes component testing using the
Built-In Self-Test (BIST) feature, three-state test mode, and the
IEEE 1149.1 “Test Access Port and Boundary Scan” mechanism

Chapter 10, “Error
Detection”

This chapter describes data integrity features that are focused o
the detection and limited recovery of errors. The data integrity
features provide capabilities for error detection of the internal
devices and the external interface.

Chapter 11, “Execution
Tracing”

This chapter describes the special bus cycles used to support
execution tracing. Execution tracing allows the external hardwar
to track the flow of instructions as they execute inside the
processor.
Embedded Pentium® Processor Family Developer’s Manual 1-1

Guide to this Manual

ort,

ey

hat
1.2 Notation Conventions

The following notations are used throughout this manual.

The pound symbol (#) appended to a signal name indicates that the signal
is active low.

Variables Variables are shown in italics. Variables must be replaced with correct
values.

Instructions Instruction mnemonics are shown in upper case. When you are
programming, instructions are not case-sensitive. You may use either
upper or lower case.

Numbers Hexadecimal numbers are represented by a string of hexadecimal digits
followed by the character H. A zero prefix is added to numbers that begin
with A through F. (For example, FF is shown as 0FFH.) Decimal and
binary numbers are represented by their customary notations. (That is,
255 is a decimal number and 1111 1111 is a binary number. In some
cases, the letter B is added for clarity.)

Units of Measure The following abbreviations are used to represent units of measure:

Chapter 12, “Power
Management”

The embedded Pentium processor family implements Intel’s
System Management Mode (SMM) architecture. This chapter
describes the hardware interface to SMM and Clock Control.

Chapter 13, “Debugging” This chapter describes the Pentium processor debugging supp
including the breakpoint instruction, single-step trap, and debug
registers.

Chapter 14, “Model
Specific Registers and
Functions”

This chapter introduces the model specific registers (MSRs) as th
are implemented on the embedded Pentium processor family.
Model specific registers are used to provide access to features t
are generally tied to implementation-dependent aspects of a
particular processor.

A amps, amperes

mA milliamps, milliamperes

µA microamps, microamperes

Mbyte megabytes

Kbyte kilobytes

Gbyte gigabyte

W watts

KW kilowatts

mW milliwatts

µW microwatts

MHz megahertz

ms milliseconds
1-2 Embedded Pentium® Processor Family Developer’s Manual

Guide to this Manual

tains
ister.

ed to

 the

cture
g from

reat
e

n
Bit and Signal Ranges When the text refers to a range of register bits or signals, the range is
represented by the highest and lowest number, separated by a dash
(example: A15–A8). For register bits, the first bit shown is the most-
significant and the second bit shown is the least-significant.

Register Names Register names are shown in upper case. When a register name con
a lower case, italic character, the name represents more than one reg
For example, CRn represents these registers: CR0, CR1, CR2, etc.

Signal Names Signal names are shown in upper case. A pound symbol (#) append
a signal name identifies an active-low signal.

1.2.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. Intel Archite
processors is a “little endian” machines; this means the bytes of a word are numbered startin
the least significant byte. Figure 1-1 illustrates these conventions.

1.2.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When bits
are marked as reserved, it is essential for compatibility with future processors that software t
these bits as having a future, though unknown, effect. The behavior of reserved bits should b
regarded as not only undefined, but unpredictable. Software should follow these guidelines i
dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.

ns nanoseconds

µs microseconds

µF microfarads

pF picofarads

V volts

Figure 1-1. Bit and Byte Order

Byte 3

Highest
Data Structure

Byte 1Byte 2 Byte 0

31 24 23 16 15 8 7 0Address

Lowest

Bit offset
28

24
20
16
12
8
4
0 Address

Byte Offset
Embedded Pentium® Processor Family Developer’s Manual 1-3

Guide to this Manual

sion
• Do not depend on the states of any reserved bits when storing to memory or to a register.

• Do not depend on the ability to retain information written into any reserved bits.

• When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

Note: Avoid any software dependence upon the state of reserved bits in Intel Architecture registers.
Depending upon the values of reserved register bits will make software dependent upon the
unspecified manner in which the processor handles these bits. Depending upon reserved values
risks incompatibility with future processors.

1.2.3 Instruction Operands

When instructions are represented symbolically, a subset of the Intel Architecture assembly
language is used. In this subset, an instruction has the following format:
label: mnemonic argument1, argument2, argument3

where:

• A label is an identifier which is followed by a colon.

• A mnemonic is a reserved name for a class of instruction opcodes which have the same
function.

• The operands argument1, argument2, and argument3 are optional. There may be from zero to
three operands, depending on the opcode. When present, they take the form of either literals or
identifiers for data items. Operand identifiers are either reserved names of registers or are
assumed to be assigned to data items declared in another part of the program (which may not
be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:
LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the
destination operand, and SUBTOTAL is the source operand. Some assembly languages put the
source and destination in reverse order.

1.2.4 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the
character H (for example, F82EH). A hexadecimal digit is a character from the following set: 0, 1,
2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the
character B (for example, 1010B). The “B” designation is only used in situations where confu
as to the type of number might arise.
1-4 Embedded Pentium® Processor Family Developer’s Manual

Guide to this Manual

cessor
bedded
ith

e
ther a
1.2.5 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a sequence
of bytes. Whether one or more bytes are being accessed, a byte address is used to locate the byte or
bytes memory. The range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program
may have many independent address spaces, called segments. For example, a program can keep its
code (instructions) and stack in separate segments. Code addresses would always refer to the code
space, and stack addresses would always refer to the stack space. The following notation is used to
specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment
pointed by the DS register:
DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.
CS:EIP

1.2.6 Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example, an
attempt to divide by zero generates an exception. However, some exceptions, such as breakpoints,
occur under other conditions. Some types of exceptions may provide error codes. An error code
reports additional information about the error. An example of the notation used to show an
exception and error code is shown below.

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a type
of fault is reported. Under some conditions, exceptions which produce error codes may not be able
to report an accurate code. In this case, the error code is zero, as shown below for a general-
protection exception.

#GP(0)

See Chapter 5, Interrupt and Exception Handling, in the Intel Architecture Software Developer’s
Manual, Volume 3, for a list of exception mnemonics and their descriptions.

1.3 Special Terminology

The general terms “processor,” “embedded Pentium processor,” and “embedded Pentium pro
family” are used throughout this manual to refer to the embedded Pentium processor, the em
Pentium processor with Voltage Reduction Technology, the embedded Pentium processor w
MMX technology, and the low-power embedded Pentium processor with MMX technology
together. Some of the features or functions described using these terms, however, may not b
available on each processor type. Refer to the datasheet for each product to determine whe
specific feature is offered.
Embedded Pentium® Processor Family Developer’s Manual 1-5

or with

ribe the

ctive
y
bol

 to

 be
 the

OS

FH.

 it a
 a

,
In some instances, the names “embedded Pentium processor,” “embedded Pentium process
Voltage Reduction Technology,” “embedded Pentium processor with MMX technology,” and
“low-power embedded Pentium processor with MMX technology” are used in this manual to
distinguish between processors when specific differences exist.

See “Related Documents” on page 1-8 for a list of datasheets and other documents that desc
operation of Pentium processors.

The following terms have special meanings in this manual.

Assert and Deassert The terms assert and deassert refer to the acts of making a signal a
and inactive, respectively. The active polarity (high/low) is defined b
the signal name. Active-low signals are designated by the pound sym
(#) suffix; active-high signals have no suffix. To assert FLUSH# is to
drive it low; to assert HOLD is to drive it high; to deassert FLUSH# is
drive it high; to deassert HOLD is to drive it low.

DOS I/O Address Peripherals that are compatible with PC/AT system architecture can
mapped into DOS (or PC/AT) addresses 0H–03FFH. In this manual,
terms DOS address and PC/AT address are synonymous.

Expanded I/O Address All peripheral registers reside at I/O addresses 0F000H–0FFFFH.
PC/AT-compatible integrated peripherals can also be mapped into D
(or PC/AT) address space (0H–03FFH).

PC/AT Address Integrated peripherals that are compatible with PC/AT system
architecture can be mapped into PC/AT (or DOS) addresses 0H–03F
In this manual, the terms DOS address and PC/AT address are
synonymous.

Set and Clear The terms set and clear refer to the value of a bit or the act of giving
value. If a bit is set, its value is “1”; setting a bit gives it a “1” value. If
bit is clear, its value is “0”; clearing a bit gives it a “0” value.

1.4 Technical Support

1.4.1 Electronic Support Systems

Intel’s site on the World Wide Web (http://www.intel.com/) provides up-to-date technical
information and product support. This information is available 24 hours a day, 7 days a week
providing technical information whenever you need it.

1.4.1.1 Online Documents

Product documentation is provided online in a variety of web-friendly formats at:

http://developer.intel.com/design/litcentr/index.htm

Guide to this Manual

tions
nical

tions
 voice
he U.S.
1.4.1.2 Intel Product Forums

Intel provides technical expertise through electronic messaging. With publicly accessible forums,
you have all of the benefits of email technical support, with the added benefit of the option of
viewing previous messages written by other participants, and providing suggestions and tips that
can help others.

Each of Intel’s technical support forums is based on a single product or product family. Ques
and replies are limited to the topic of the particular forum. Intel also provides several non-tech
support related forums.

Complete information on Intel forums is available at:

http://support.intel.com/newsgroups/index.htm

1.4.2 Telephone Technical Support

In the U.S. and Canada, technical support representatives are available to answer your ques
between 5 a.m. and 5 p.m. PST. You can also fax your questions to us. (Please include your
telephone number and indicate whether you prefer a response by phone or by fax). Outside t
and Canada, please contact your local distributor.

1.5 Product Literature

You can order product literature from the following Intel literature centers.

1-800-628-8686 U.S. and Canada

916-356-7599 U.S. and Canada

916-356-6100 (fax) U.S. and Canada

1-800-548-4725 U.S. and Canada

708-296-9333 U.S. (from overseas)

44(0)1793-431155 Europe (U.K.)

44(0)1793-421333 Germany

44(0)1793-421777 France

81(0)120-47-88-32 Japan (fax only)
Embedded Pentium® Processor Family Developer’s Manual 1-7

Guide to this Manual
1.6 Related Documents

Table 1-1. Related Resources

Document Title Order Number

Intel Architecture Software Developer’s Manual,
Volume 1: Basic Architecture 243190

Intel Architecture Software Developer’s Manual,
Volume 2: Instruction Set Reference 243191

Intel Architecture Software Developer’s Manual,
Volume 3: System Programming Guide 243192

Embedded Pentium® Processor datasheet 273202

Embedded Pentium® Processor with Voltage Reduction Technology datasheet 273203

Embedded Pentium® Processor with MMX™ Technology datasheet 273214

Low-Power Embedded Pentium® Processor with MMX™ Technology datasheet 273184

Pentium® Processor Specification Update 242480

Pentium® Processor for Embedded Applications Specification Update 273183

Optimizing for Intel’s 32-Bit Processors 241799

MultiProcessor Specification 242016

Embedded Pentium® Processor Flexible Motherboard Design Guidelines 273206

Implementation Guidelines for 3.3 V Pentium® Processors with VR/VRE
Specifications 242687

Voltage Guidelines for Pentium® Processors with MMX™ Technology 243186
1-8 Embedded Pentium® Processor Family Developer’s Manual

ting

cessor
bedded
ith

e
ther a

dded

ribe the
Architectural Features 2

This volume describes the basic features and operation of embedded Pentium® processors:

• Embedded Pentium processors with maximum operating frequencies of 100, 133, and 166
MHz

• Embedded Pentium processors with Voltage Reduction Technology with a maximum
operating frequency of 133 MHz

• Embedded Pentium processors with MMX™ technology with maximum operating
frequencies of 200 and 233 MHz

• Low-power embedded Pentium processors with MMX™ technology with maximum opera
frequencies of 166 and 266 MHz

The general terms “processor,” “embedded Pentium processor,” and “embedded Pentium pro
family” are used throughout this manual to refer to the embedded Pentium processor, the em
Pentium processor with Voltage Reduction Technology, the embedded Pentium processor w
MMX technology, and the low-power embedded Pentium processor with MMX technology
together. Some of the features or functions described using these terms, however, may not b
available on each processor type. Refer to the datasheet for each product to determine whe
specific feature is offered.

In some instances, the names “embedded Pentium processor (at 100/133/166 MHz),” “embe
Pentium processor with Voltage Reduction Technology,” “embedded Pentium processor with
MMX technology,” and “low-power embedded Pentium processor with MMX technology” are
used in this manual to distinguish between processors when specific differences exist.

See “Related Documents” on page 1-8 for a list of datasheets and other documents that desc
operation of Pentium processors.

2.1 Processor Features Overview

The embedded Pentium processor supports the features of previous Intel® architecture processors
and provides significant enhancements, including the following (refer to the datasheet for a specific
list of features supported by each processor):

• Superscalar architecture

• Dynamic branch prediction

• Pipelined Floating-Point Unit

• Improved instruction execution time

• Separate code and data caches

• Writeback MESI protocol in the data cache

• 64-bit data bus

• Bus cycle pipelining

• Address parity
Embedded Pentium® Processor Family Developer’s Manual 2-1

Architectural Features
• Internal parity checking

• Functional redundancy checking and lock-step operation

• Execution tracing

• Performance monitoring

• IEEE 1149.1 boundary scan

• System Management Mode

• Virtual Mode extensions

• Dual processing support

• Advanced SL power management features

• Fractional bus operation

• On-chip local APIC device

In addition, the embedded Pentium processor with MMX technology offers the following
enhancements over the embedded Pentium processor:

• Support for Intel MMX technology

• Dual power supplies—separate VCC2 (core) and VCC3 (I/O) voltage inputs

• Separate 16-Kbyte, 4-way set-associative code and data caches, each with improved fully
associative TLBs

• Pool of four write buffers used by both execution pipelines

• Enhanced branch prediction algorithm

• New Fetch pipeline stage between Prefetch and Instruction Decode

The following features are supported by the embedded Pentium processor, but are not supported by
the embedded Pentium processor with MMX technology:

• Functional redundancy checking and lock-step operation

• Support for the Intel 82498/82493 and 82497/82492 cache chipset products

• Split line accesses to the code cache

The following feature is supported by the embedded Pentium processor with MMX technology, but
is not supported by the low-power embedded Pentium processor with MMX technology:

• Dual processing support
2-2 Embedded Pentium® Processor Family Developer’s Manual

Architectural Features

new

es
 take

r are
gle
-point

een
e

write

fetches
etched
e

hip to

ed
ach
hysical
asis
sfers
e. The

orted to
nology
l ported.
. The

riteback
ress

ure
2.2 Component Introduction

The application instruction set of the embedded Pentium processor family includes the complete
instruction set of existing Intel Architecture processors to ensure backward compatibility, with
extensions to accommodate the additional functionality of the embedded Pentium processor. All
application software written for the Intel386™ and Intel486™ microprocessors runs on the
embedded Pentium processor without modification. The on-chip Memory Management Unit
(MMU) is completely compatible with Intel386 and Intel486 processors.

The embedded Pentium processor with MMX technology adds 57 new instructions and four
data types to accelerate the performance of multimedia and communications software. MMX
technology is based on the SIMD technique—Single Instruction, Multiple data—which enabl
increased performance on a wide variety of multimedia and communications applications. To
advantage of the MMX instructions, software modifications must be made. When the MMX
instructions are not used, no hardware or software modifications are needed.

The two instruction pipelines and the floating-point unit on the embedded Pentium processo
capable of independent operation. Each pipeline issues frequently used instructions in a sin
clock. Together, the dual pipes can issue two integer instructions in one clock, or one floating
instruction (under certain circumstances, two floating-point instructions) in one clock.

The embedded Pentium processor with MMX technology adds the Fetch pipeline stage betw
the Prefetch and Instruction decode stages, which increases the performance capability of th
processor. The embedded Pentium processor with MMX technology doubles the number of
buffers available to be used by the dual pipelines.

Branch prediction is implemented in the embedded Pentium processor. To support this, the
processor has two prefetch buffers, one to prefetch code in a linear fashion, and one that pre
code according to the Branch Target Buffer (BTB) so the needed code is almost always pref
before it is needed for execution. The branch prediction algorithm has been enhanced on th
embedded Pentium processor with MMX technology for increased accuracy.

The embedded Pentium processor includes separate code and data caches integrated on c
meet its performance goals. Each cache on the embedded Pentium processor with MMX
technology is 16 Kbytes in size, and is four-way set associative. The caches on the embedd
Pentium processor (at 100/133/166 MHz) are each 8 Kbytes and two-way set-associative. E
cache has a dedicated Translation Lookaside Buffer (TLB) to translate linear addresses to p
addresses. The data cache is configurable to be writeback or writethrough on a line-by-line b
and follows the MESI protocol. The data cache tags are triple ported to support two data tran
and an inquire cycle in the same clock. The code cache is an inherently write protected cach
code cache tags of the embedded Pentium processor (at 100/133/166 MHz) are also triple p
support snooping and split-line accesses. The embedded Pentium processor with MMX tech
does not support split line accesses to the code cache. As such, its code cache tags are dua
Individual pages can be configured as cacheable or non-cacheable by software or hardware
caches can be enabled or disabled by software or hardware.

The embedded Pentium processor has a 64-bit data bus and supports burst read and burst w
cycles. In addition, bus cycle pipelining has been added to allow two bus cycles to be in prog
simultaneously. The Memory Management Unit contains optional extensions to the architect
that allow four-Mbyte page sizes.
Embedded Pentium® Processor Family Developer’s Manual 2-3

Architectural Features

aster”
s it

entium

apability

 SMM
nce by

logy
all
d the

f the two

he.

tched
nch

y the

 that
control

ure-

mely an

all
pt
The embedded Pentium processor has added significant data integrity and error detection
capability. Data parity checking is still supported on a byte-by-byte basis. Address parity checking
and internal parity checking features have been added along with a new exception, the machine
check exception.

The embedded Pentium processor features functional redundancy checking to provide maximum
error detection of the processor and the interface to the processor. When functional redundancy
checking is used, a second processor, the “checker” is used to execute in lockstep with the “m
processor. The checker samples the master’s outputs, compares those values with the value
computes internally, and asserts an error signal when a mismatch occurs. The embedded P
processor with MMX technology does not support functional redundancy checking.

As more and more functions are integrated on-chip, the complexity of board-level testing is
increased. To address this, the embedded Pentium processor has increased test and debug c
by implementing IEEE Boundary Scan (Standard 1149.1).

System management mode (SMM) has been implemented along with some extensions to the
architecture. Enhancements to the Virtual 8086 mode have been made to increase performa
reducing the number of times it is necessary to trap to a Virtual 8086 monitor.

Figure 2-1 is a block diagram overview of the embedded Pentium processor with MMX techno
including the two instruction pipelines, the “u” pipe and the “v” pipe. The u-pipe can execute
integer and floating-point instructions. The v-pipe can execute simple integer instructions an
FXCH floating-point instruction.

The separate code and data caches are shown. The data cache has two ports, one for each o
pipes (the tags are triple ported to allow simultaneous inquire cycles). The data cache has a
dedicated TLB to translate linear addresses to the physical addresses used by the data cac

The code cache, branch target buffer and prefetch buffers are responsible for getting raw
instructions into the execution units of the embedded Pentium processor. Instructions are fe
from the code cache or from the external bus. Branch addresses are remembered by the bra
target buffer. The code cache TLB translates linear addresses to physical addresses used b
code cache.

The decode unit contains two parallel decoders which decode and issue up to the next two
sequential instructions into the execution pipeline. The control ROM contains the microcode
controls the sequence of operations performed by the processor. The control unit has direct
over both pipelines.

The embedded Pentium processor contains a pipelined floating-point unit that provides a
significant floating-point performance advantage over previous generations of Intel architect
based processors.

The embedded Pentium processor includes features to support multi-processor systems, na
on-chip Advanced Programmable Interrupt Controller (APIC). This APIC implementation
supports multiprocessor interrupt management (with symmetric interrupt distribution across
processors), multiple I/O subsystem support, 8259A compatibility, and inter-processor interru
support.
2-4 Embedded Pentium® Processor Family Developer’s Manual

Architectural Features

r easy
he
used in a
The dual processor configuration allows two embedded Pentium processors to share a single L2
cache for a low-cost symmetric multi-processor system. The two processors appear to the system
as a single embedded Pentium processor. Multiprocessor operating systems properly schedule
computing tasks between the two processors. This scheduling of tasks is transparent to software
applications and the end-user. Logic built into the processors support a “glueless” interface fo
system design. Through a private bus, the two embedded Pentium processors arbitrate for t
external bus and maintain cache coherency. The embedded Pentium processor can also be
conventional multi-processor system in which one L2 cache is dedicated to each processor.

Figure 2-1. Embedded Pentium® Processor Block Diagram

NOTES:
1. The Code and Data caches are each 8 Kbytes in size on the embedded Pentium® processor (at 100/133/166

MHz).
2. The MMX Technology Unit is present only on the embedded Pentium processor with MMX™ technology.
3. The internal instruction bus is 256 bits wide on the embedded Pentium processor.
4. Dual processing is not present on the embedded Pentium processor with Voltage Reduction Technology or the

low-power embedded Pentium processor with MMX technology.
5. The APIC is not present on the embedded Pentium processor with Voltage Reduction Technology.

A6105-01

DP
Logic4

Control
ROM

Control Unit

Address
Generate

(U Pipeline)

Address
Generate

(V Pipeline)

Control

Bus
Unit64-Bit

Data
Bus

32-Bit
Address

Bus

Control

APIC5

TLB

Data Cache
16 Kbytes1

Data

Control

Branch
Target
Buffer

M
M

X
™

 T
ec

hn
ol

og
y

U
ni

t2

Prefetch

Address

Instruction
Pointer

Prefetch Buffers

Instruction Decode

Code Cache
16 Kbytes1

TLB

1283

64

32
32

32

32

32

32

80

80

Control

Add

Floating Point
Unit

Register File

64-Bit
Data Bus

32-Bit
Addr. Bus

32

Integer Register File

ALU
(U Pipeline)

ALU
(V Pipeline)

Barrel Shifter

Branch Verification
and Target Address

Divide

Multiply

Page
Unit

U-Pipeline
Connection

V-Pipeline
Connection
Embedded Pentium® Processor Family Developer’s Manual 2-5

Architectural Features

s

al core
ssors of
” for

en the
d. The
ded

l
 lower

ember
In this document, in order to distinguish between two embedded Pentium processors in dual
processing mode, one processor is referred to as the Primary processor and the other as the Dual
processor. Note that this is a different concept than that of “master” and “checker” processor
described in the discussion on functional redundancy.

Dual processing is supported in a system only when both processors are operating at identic
and bus frequencies and are the same type of processor. Within these restrictions, two proce
different steppings may operate together in a system. See Chapter 3, “Component Operation
more details about Dual processing.

The embedded Pentium processor is produced on Intel’s advanced silicon technology. The
embedded Pentium processor also includes SL enhanced power management features. Wh
clock to the embedded Pentium processor is stopped, power dissipation is virtually eliminate
low VCC operating voltages and SL enhanced power management features make the embed
Pentium processor a good choice for energy-efficient designs.

The embedded Pentium processor supports fractional bus operation. This allows the interna
processor core to operate at high frequencies, while communicating with the external bus at
frequencies. See the datasheet for the bus-to-core frequency ratios supported by a specific m
of the embedded Pentium processor family.
2-6 Embedded Pentium® Processor Family Developer’s Manual

se

clock

rocess
n in
iring

, the
 to the
Component Operation 3

The embedded Pentium® processor has an optimized superscalar micro-architecture capable of
executing two instructions in a single clock. A 64-bit external bus, separate data and instruction
caches, write buffers, branch prediction, and a pipelined floating-point unit combine to sustain the
high execution rate. These architectural features and their operation are discussed in this chapter.

3.1 Pipeline and Instruction Flow

The integer instructions traverse a five stage pipeline in the embedded Pentium processor (the
embedded Pentium® processor with MMX™ technology has an additional pipeline stage). The
pipeline stages are as follows:

The embedded Pentium processor is a superscalar machine, built around two general purpo
integer pipelines and a pipelined floating-point unit capable of executing two instructions in
parallel. Both pipelines operate in parallel, allowing integer instructions to execute in a single
in each pipeline. Figure 3-1 depicts instruction flow in the embedded Pentium processor.

The pipelines in the embedded Pentium processor are called the “u” and “v” pipes and the p
of issuing two instructions in parallel is termed “pairing.” The u-pipe can execute any instructio
the Intel architecture, whereas the v-pipe can execute “simple” instructions as defined in ““Pa
Two MMX™ Instructions” on page 3-16” section of this chapter. When instructions are paired
instruction issued to the v-pipe is always the next sequential instruction after the one issued
u-pipe.

PF Prefetch

F Fetch (embedded Pentium processor with MMX technology only)

D1 Instruction Decode

D2 Address Generate

EX Execute - ALU and Cache Access

WB Writeback
Embedded Pentium® Processor Family Developer’s Manual 3-1

Component Operation

tch
r and
ed in

133, 166

en it is

on
tion is

vents
ution
3.1.1 Integer Pipeline Description

The embedded Pentium processor pipeline has been optimized to achieve higher throughput
compared to previous generations of Intel architecture processors.

The first stage of the pipeline is the Prefetch (PF) stage in which instructions are prefetched from
the on-chip instruction cache or memory. Because the processor has separate caches for
instructions and data, prefetches do not conflict with data references for access to the cache. If the
requested line is not in the code cache, a memory reference is made. In the PF stage, two
independent pairs of line-size (32-byte) prefetch buffers operate in conjunction with the branch
target buffer. This allows one prefetch buffer to prefetch instructions sequentially while the other
prefetches according to the branch target buffer predictions. The prefetch buffers alternate their
prefetch paths. In the embedded Pentium processor with MMX technology, four 16-byte prefetch
buffers operate in conjunction with the BTB to prefetch up to four independent instruction streams.
See the “Instruction Prefetch” on page 3-3 for further details on prefetch buffers.

In the embedded Pentium processor with MMX technology only, the next pipeline stage is Fe
(F), which is used for instruction length decode. It replaces the D1 instruction-length decode
eliminates the need for end-bits to determine instruction length. Also, any prefixes are decod
the F stage. The Fetch stage is not supported by the embedded Pentium processor (at 100,
MHz) or the embedded Pentium processor with VRT.

The embedded Pentium processor with MMX technology also features an instruction FIFO
between the F and D1 stages. This FIFO is transparent; it does not add additional latency wh
empty. During every clock cycle, two instructions can be pushed into the instruction FIFO
(depending on availability of the code bytes, and on other factors such as prefixes). Instructi
pairs are pulled out of the FIFO into the D1 stage. Since the average rate of instruction execu
less than two per clock, the FIFO is normally full. As long as the FIFO is full, it can buffer any
stalls that may occur during instruction fetch and parsing. If such a stall occurs, the FIFO pre
the stall from causing a stall in the execution stage of the pipe. If the FIFO is empty, an exec

Figure 3-1. Embedded Pentium® Processor Pipeline Execution

A6103-01

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

Clk0 Clk1 Clk2 Clk3 Clk4 Clk5 Clk6 Clk7

PF

D1

D2

EX

WB

Clk0 Clk1 Clk2 Clk3 Clk4 Clk5 Clk6 Clk7 Clk8

PF

F

D1

D2

EX

WB

NOTE: i1 refers to instruction 1

Pentium® Processor Pentium Processor with MMX™ Technology
3-2 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

O
.e.,

n which
coders
ring

e u-

at the
cond
or

 0FH
essor

 are

l D2
 able to

e
nch

ring

 state
anch

itions.
en an
peline
 EX, if

. No

ons in

refetch

dicts
ts
s to
tion
stall may result from the pipeline being “starved” for instructions to execute. Stalls at the FIF
entrance may be caused by long instructions or prefixes, or “extremely misaligned targets” (i
Branch targets that reside at the last bytes of 16-aligned bytes).

The pipeline stage after the PF stage in the embedded Pentium processor is Decode1 (D1), i
two parallel decoders work to decode and issue the next two sequential instructions. The de
determine whether one or two instructions can be issued contingent upon the instruction pai
rules described in “Pairing Two MMX™ Instructions” on page 3-16.” The embedded Pentium
processor requires an extra D1 clock to decode instruction prefixes. Prefixes are issued to th
pipe at the rate of one per clock without pairing. After all prefixes have been issued, the base
instruction is issued and paired according to the pairing rules. The one exception to this is th
embedded Pentium processor decodes near conditional jumps (long displacement) in the se
opcode map (0FH prefix) in a single clock in either pipeline. The embedded Pentium process
with MMX technology handles 0FH as part of the opcode and not as a prefix. Consequently,
does not take one extra clock to get into the FIFO. Note that in the embedded Pentium proc
with MMX technology, MMX instructions can be paired. This is discussed in “Pairing Two
MMX™ Instructions” on page 3-16.

The D1 stage is followed by Decode2 (D2) in which addresses of memory resident operands
calculated. In the Intel486™ processor, instructions containing both a displacement and an
immediate or instructions containing a base and index addressing mode require an additiona
clock to decode. The embedded Pentium processor removes both of these restrictions and is
issue instructions in these categories in a single clock.

The embedded Pentium processor uses the Execute (EX) stage of the pipeline for both ALU
operations and for data cache access; therefore, those instructions specifying both an ALU
operation and a data cache access require more than one clock in this stage. In EX, all u-pip
instructions and all v-pipe instructions except conditional branches are verified for correct bra
prediction. Microcode is designed to utilize both pipelines; therefore, those instructions requi
microcode execute faster.

The final stage is Writeback (WB), in which instructions are enabled to modify the processor
and complete execution. In this stage, v-pipe conditional branches are verified for correct br
prediction.

During their progression through the pipeline, instructions may be stalled due to certain cond
Both the u-pipe and v-pipe instructions enter and leave the D1 and D2 stages in unison. Wh
instruction in one pipe is stalled, the instruction in the other pipe is also stalled at the same pi
stage. Thus both the u-pipe and the v-pipe instructions enter the EX stage in unison. Once in
the u-pipe instruction is stalled, then the v-pipe instruction (if any) is also stalled. If the v-pipe
instruction is stalled, then the instruction paired with it in the u-pipe is not allowed to advance
successive instructions are allowed to enter the EX stage of either pipeline until the instructi
both pipelines have advanced to WB.

3.1.1.1 Instruction Prefetch

In the embedded Pentium processor PF stage, two independent pairs of line-size (32-byte) p
buffers operate in conjunction with the branch target buffer. Only one prefetch buffer actively
requests prefetches at any given time. Prefetches are requested sequentially until a branch
instruction is fetched. When a branch instruction is fetched, the branch target buffer (BTB) pre
whether the branch will be taken or not. If the branch is predicted not taken, prefetch reques
continue linearly. On a predicted taken branch the other prefetch buffer is enabled and begin
prefetch as though the branch were taken. If a branch is discovered mispredicted, the instruc
pipelines are flushed and prefetching activity starts over.
Embedded Pentium® Processor Family Developer’s Manual 3-3

Component Operation

uffers
the
in the
o-stage

r the
:

The embedded Pentium processor with MMX technology’s prefetch stage has four 16-byte b
that can prefetch up to four independent instruction streams, based on predictions made by
BTB. In this case, the Branch Target Buffer predicts whether the branch will be taken or not
PF stage. The embedded Pentium processor with MMX technology features an enhanced tw
Branch prediction algorithm, compared to the embedded Pentium processor.

For more information on branch prediction, see “Component Introduction” on page 2-3.

3.1.2 Integer Instruction Pairing Rules

The embedded Pentium processor can issue one or two instructions every clock. In order fo
processor to issue two instructions simultaneously, they must satisfy the following conditions

• Both instructions in the pair must be “simple” as defined below.

• There must be no read-after-write or write-after-write register dependencies between the
instructions.

• Neither instruction may contain both a displacement and an immediate.

• Instructions with prefixes can only occur in the u-pipe (except for JCC instructions with a 0FH
prefix on the embedded Pentium processor and instructions with a 0FH, 66H or 67H prefix on
the embedded Pentium processor with MMX technology).

• Instruction prefixes are treated as separate 1-byte instructions (except for all 0FH prefixed
instructions in the embedded Pentium processor with MMX technology).

Simple instructions are entirely hardwired; they do not require any microcode control and, in
general, execute in one clock. The exceptions are the ALU mem,reg and ALU reg,mem
instructions which are three and two clock operations, respectively. Sequencing hardware is used to
allow them to function as simple instructions. The following integer instructions are considered
simple and may be paired:

• mov reg, reg/mem/imm

• mov mem, reg/imm

• alu reg, reg/mem/imm

• alu mem, reg/imm

• inc reg/mem

• dec reg/mem

• push reg/mem

• pop reg

• lea reg,mem

• jmp/call/jcc near

• nop

• test reg, reg/mem

• test acc, imm
3-4 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

ual

xactly

nit”

In addition, conditional and unconditional branches may be paired only if they occur as the second
instruction in the pair. They may not be paired with the next sequential instruction. Also,
SHIFT/ROT by 1 and SHIFT by IMM may pair as the first instruction in a pair.

The register dependencies that prohibit instruction pairing include implicit dependencies via
registers or flags not explicitly encoded in the instruction. For example, an ALU instruction in the
u-pipe (which sets the flags) may not be paired with an ADC or an SBB instruction in the v-pipe.
There are two exceptions to this rule. The first is the commonly occurring sequence of compare and
branch, which may be paired. The second exception is pairs of pushes or pops. Although these
instructions have an implicit dependency on the stack pointer, special hardware is included to allow
these common operations to proceed in parallel.

Although two paired instructions generally may proceed in parallel independently, there is an
exception for paired “read-modify-write” instructions. Read-modify-write instructions are ALU
operations with an operand in memory. When two of these instructions are paired, there is a
sequencing delay of two clocks in addition to the three clocks required to execute the individ
instructions.

Although instructions may execute in parallel, their behavior as seen by the programmer is e
the same as if they were executed sequentially.

Information regarding pairing of FPU and MMX instructions is discussed in “Floating-Point U
on page 3-7 and “Intel MMX™ Technology Unit” on page 3-11 For additional details on code
optimization, refer to Optimizing for Intel’s 32-Bit Processors (order number 241799).

3.2 Branch Prediction

The embedded Pentium processor uses a Branch Target Buffer (BTB) to predict the outcome of
branch instructions, thereby minimizing pipeline stalls due to prefetch delays.

The processor accesses the BTB with the address of the instruction in the D1 stage. It contains a
Branch prediction state machine with four states: (1) strongly not taken, (2) weakly not taken, (3)
weakly taken, and (4) strongly taken. In the event of a correct prediction, a branch executes without
pipeline stalls or flushes. Branches that miss the BTB are assumed to be not taken. Conditional and
unconditional near branches and near calls execute in one clock and may be executed in parallel
with other integer instructions. A mispredicted branch (whether a BTB hit or miss) or a correctly
predicted branch with the wrong target address causes the pipelines to be flushed and the correct
target to be fetched. Incorrectly predicted unconditional branches incur an additional three clock
delay, incorrectly predicted conditional branches in the u-pipe incur an additional three clock delay,
and incorrectly predicted conditional branches in the v-pipe incur an additional four clock delay.

The benefits of branch prediction are illustrated in the following example. Consider the following
loop from a benchmark program for computing prime numbers:

for(k=i+prime;k<=SIZE;k+=prime)

flags[k]=FALSE;
Embedded Pentium® Processor Family Developer’s Manual 3-5

Component Operation

ded

 based

 cycles
d, the
nt

 and
ce due

em

 end of
though
 limit.
ode
 fetch
so the
le

cycles
y

00H.

000H.
A popular compiler generates the following assembly code (prime is allocated to ECX, K is
allocated to EDX, and AL contains the value FALSE):

inner_loop:

mov byte ptr flags[edx],al

add edx,ecx

cmp edx, SIZE

jle inner_loop

Each iteration of this loop executes in six clocks on the Intel486™ processor. On the embed
Pentium processor, the MOV is paired with the ADD; the CMP with the JLE. With branch
prediction, each loop iteration executes in two clocks.

Note: The dynamic branch prediction algorithm speculatively runs code fetch cycles to addresses
corresponding to instructions executed some time in the past. Such code fetch cycles are run
on past execution history, regardless of whether the instructions retrieved are relevant to the
currently executing instruction sequence.

One effect of the branch prediction mechanism is that the processor may run code fetch bus
to retrieve instructions that are never executed. Although the opcodes retrieved are discarde
system must complete the code fetch bus cycle by returning BRDY#. It is particularly importa
that the system return BRDY# for all code fetch cycles, regardless of the address.

It should also be noted that upon entering SMM, the branch target buffer (BTB) is not flushed
thus it is possible to get a speculative prefetch to an address outside of SMRAM address spa
to branch predictions based on code executed prior to entering SMM. If this occurs, the syst
must still return BRDY# for each code fetch cycle.

Furthermore, the processor may run speculative code fetch cycles to addresses beyond the
the current code segment (approximately 100 bytes past end of last executed instruction). Al
the processor may prefetch beyond the CS limit, it will not attempt to execute beyond the CS
Instead, it will raise a GP fault. Thus, segmentation cannot be used to prevent speculative c
fetches to inaccessible areas of memory. On the other hand, the processor never runs code
cycles to inaccessible pages (i.e., not present pages or pages with incorrect access rights),
paging mechanism guards against both the fetch and execution of instructions in inaccessib
pages.

For memory reads and writes, both segmentation and paging prevent the generation of bus
to inaccessible regions of memory. If paging is not used, branch prediction can be disabled b
setting TR12.NBP (bit 0)1 and flushing the BTB by loading CR3 before disabling any areas of
memory. Branch prediction can be re-enabled after re-enabling memory.

The following is an example of a situation that may occur:

1. Code passes control to segment at address C000H.

2. Code transfers control to code at different address (6000H) by using the FAR CALL
instruction.

3. This portion of the code does an I/O write to a port that disables memory at address C0

4. At the end of this segment, an I/O write is performed to re-enable memory at address C

5. Following the OUT instruction, there is a RET instruction to C000H segment.

1. Please refer to Chapter 14 of this volume.
3-6 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

The branch prediction mechanism of the embedded Pentium processor, however, predicts that the
RET instruction is going to transfer control to the segment at address C000H and performs a
prefetch from that address prior to the OUT instruction that re-enables that memory address. The
result is that no BRDY is returned for that prefetch cycle and the system hangs.

In this case, branch prediction should be disabled (by setting TR12.NBP and flushing the BTB by
loading CR3) prior to disabling memory at address C000H, and re-enabled after the RET
instruction by clearing TR12.NBP as indicated above. (See Chapter 14, “Model Specific Registers
and Functions” for more information on register operation.)

In the embedded Pentium processor with MMX technology, the branch prediction algorithm
changes from the embedded Pentium processor in the following ways:

• BTB Lookup is done when the branch is in the PF stage.

• The BTB Lookup tag is the Prefetch address.

• A Lookup in the BTB performs a search spanning sixteen consecutive bytes.

• BTB can contain four branch instructions for each line of 16 bytes.

• BTB is constructed from four independent Banks. Each Bank contains 64 entries and is 4-way
associative.

• Enhanced two-stage branch prediction algorithm.

3.3 Floating-Point Unit

The floating-point unit (FPU) of the embedded Pentium processor is integrated with the integer
unit on the same chip. It is heavily pipelined. The FPU is designed to be able to accept one floating-
point operation every clock. It can receive up to two floating-point instructions every clock, one of
which must be an exchange instruction.

For information on code optimization, please refer to Optimizing for Intel’s 32-Bit Processors
(order number 241799).

Figure 3-2. Branch Prediction Example

A6104-01

OUT ; disable c000H

OUT ; enable c000H
RET

FAR CALL

c000H

6000H
Embedded Pentium® Processor Family Developer’s Manual 3-7

Component Operation

s must
s calls
le

llow fast

e use

ory

P
“FPU

3.3.1 Floating-Point Pipeline Stages

The embedded Pentium processor FPU has eight pipeline stages, the first five of which it shares
with the integer unit. Integer instructions pass through only the first five stages. Integer instructions
use the fifth (X1) stage as a WB (write-back) stage. The eight FP pipeline stages, and the activities
that are performed in them are summarized below:

3.3.2 Instruction Issue

The rules of how floating-point (FP) instructions get issued on the embedded Pentium processor
are described as follows:

1. FP instructions do not get paired with integer instructions. However, a limited pairing of two
FP instructions can be performed.

2. When a pair of FP instructions is issued to the FPU, only the FXCH instruction can be the
second instruction of the pair. The first instruction of the pair must be one of a set F where F =
[FLD single/double, FLD ST(i), all forms of FADD, FSUB, FMUL, FDIV, FCOM, FUCOM,
FTST, FABS, FCHS].

3. FP instructions other than the FXCH instruction and other than instructions belonging to set F
(defined in rule 2) always get issued singly to the FPU.

4. FP instructions that are not directly followed by an FP exchange instruction are issued singly
to the FPU.

The embedded Pentium processor stack architecture instruction set requires that all instructions
have one source operand on the top of the stack. Since most instructions also have their destination
as the top of the stack, most instructions see a “top of stack bottleneck.” New source operand
be brought to the top of the stack before we can issue an arithmetic instruction on them. Thi
for extra usage of the exchange instruction, which allows the programmer to bring an availab
operand to the top of the stack. The processor FPU uses pointers to access its registers to a
execution of exchanges and the execution of exchanges in parallel with other floating-point
instructions. An FP exchange that is paired with other FP instructions takes zero clocks for its
execution. Because such exchanges can be executed in parallel, it is recommended that on
them when necessary to overcome the stack bottleneck.

PF Prefetch

F Fetch (applicable to the embedded Pentium processor with MMX technology only)

D1 Instruction decode

D2 Address generation

EX Memory and register read; conversion of FP data to external memory format and mem
write

X1 Floating-Point Execute stage one; conversion of external memory format to internal F
data format and write operand to FP register file; bypass 1 (bypass 1 is described in
Bypasses” on page 3-10)

X2 Floating-Point Execute stage two

WF Perform rounding and write floating-point result to register file; bypass 2 (bypass 2 is
described in “FPU Bypasses” on page 3-10)

ER Error Reporting/Update Status Word
3-8 Embedded Pentium® Processor Family Developer’s Manual

Component Operation
Note that when exchanges are paired with other floating-point instructions, they should not be
followed immediately by integer instructions. The processor stalls such integer instructions for a
clock if the FP pair is declared safe, or for four clocks if the FP pair is unsafe.

Also note that the FP exchange must always follow another FP instruction to get paired. The
pairing mechanism does not allow the FP exchange to be the first instruction of a pair that is issued
in parallel. If an FP exchange is not paired, it takes one clock for its execution.

3.3.3 Safe Instruction Recognition

The embedded Pentium processor FPU performs Safe Instruction Recognition or SIR in the X1
stage of the pipeline. SIR is an early inspection of operands and opcodes to determine whether the
instruction is guaranteed not to generate an arithmetic overflow, underflow, or unmasked inexact
exception. An instruction is declared safe if it cannot raise any other floating-point exception, and
if it does not need microcode assist for delivery of special results. If an instruction is declared safe,
the next FP instruction is allowed to complete its E stage operation. If an instruction is declared
unsafe, the next FP instruction stalls in the E stage until the current one completes (ER stage) with
no exception. This means a four clock stall, which is incurred even if the numeric instruction that
was declared unsafe does not eventually raise a floating-point exception.

For normal data, the rules used on the embedded Pentium processor for declaring an instruction
safe are as follows.

On the embedded Pentium processor, if FOP = FADD/FSUB/FMUL/FDIV, the instruction is safe
from arithmetic overflow, underflow, and unmasked inexact exceptions if:

1. Both operands have unbiased exponent ≤1FFEH

and

2. Both operands have unbiased exponent ≥−1FFEH

and

3. The inexact exception is masked.

Similarly, on the embedded Pentium processor with MMX technology, if FOP =
FADD/FSUB/FMUL/FDIV, the instruction is safe from arithmetic overflow, underflow, and
unmasked inexact exceptions if:

1. Both operands have unbiased exponent ≤1000H

and

2. Both operands have unbiased exponent ≥−0FFFH

and

3. The inexact exception is masked.

Note that arithmetic overflow of the double precision format occurs when the unbiased exponent of
the result is ≥400H, and underflow occurs when the exponent is ≤−3FFH. Hence, the SIR
algorithm on the embedded Pentium processor allows improved throughput on a much greater
range of numbers than that spanned by the double precision format.
Embedded Pentium® Processor Family Developer’s Manual 3-9

Component Operation

ch”
3.3.4 FPU Bypasses

The following section describes the floating-point register file bypasses that exist on the embedded
Pentium processor. The register file has two write ports and two read ports. The read ports are used
to read data out of the register file in the E stage. One write port is used to write data into the
register file in the X1 stage, and the other in the WF stage. A bypass allows data that is about to be
written into the register file to be available as an operand that is to be read from the register file by
any succeeding floating-point instruction. A bypass is specified by a pair of ports (a write port and
a read port) that get circumvented. Using the bypass, data is made available even before actually
writing it to the register file.

The following procedures are implemented:

1. Bypass the X1 stage register file write port and the E stage register file read port.

2. Bypass the WF stage register file write port and the E stage register file read port.

With bypass 1, the result of a floating-point load (that writes to the register file in the X1 stage) can
bypass the X1 stage write and be sent directly to the operand fetch stage or E stage of the next
instruction.

With bypass 2, the result of any arithmetic operation can bypass the WF stage write to the register
file, and be sent directly to the desired execution unit as an operand for the next instruction.

Note that the FST instruction reads the register file with a different timing requirement, so that for
the FST instruction, which attempts to read an operand in the E stage:

1. There is no bypassing the X1 stage write port and the E stage read port, i.e., no added bypass
for FLD followed by FST. Thus FLD (double) followed by FST (double) takes four clocks
(two for FLD, and two for FST).

2. There is no bypassing the WF stage write port and the E stage read port. The E stage read for
the FST happens only in the clock following the WF write for any preceding arithmetic
operation.

Furthermore, there is no memory bypass for an FST followed by an FLD from the same memory
location.

3.3.5 Branching Upon Numeric Condition Codes

Branching upon numeric condition codes is accomplished by transferring the floating-point SW to
the integer FLAGS register and branching on it. The “test numeric condition codes and bran
construct looks like:

FP instruction1; instruction whose effects on the status word are to be examined;

“numeric_test_and_branch_construct”:

FSTSW AX; move the status word to the ax register.

SAHF; transfer the value in ah to the lower half of the eflags register.

JC xyz; jump upon the condition codes in the eflags register.
3-10 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

This

y, is
ance of
gisters,

ned
,
ive

ng-

nd

tions
Note that all FP instructions update the status word only in the ER stage. Hence there is a built-in
status word interlock between FP instruction1 and the FSTSW AX instruction. The above piece of
code takes nine clocks before execution of code begins at the target of the jump. These nine clocks
are counted as:

Note that if there is a branch mispredict, there is a minimum of three clocks added to the clock
count of nine.

It is recommended that such attempts to branch upon numeric condition codes be preceded by
integer instructions; i.e., you should insert integer instructions in between FP instruction1 and the
FSTSW AX instruction that is the first instruction of the “numeric test and branch” construct.
allows the elimination of up to four clocks (the 4 E-stage stalls on FSTSW AX) from the cost
attributed to this construct, so that numeric branching can be accomplished in five clocks.

3.4 Intel MMX™ Technology Unit

Intel’s MMX technology, supported on the embedded Pentium processor with MMX technolog
a set of extensions to the Intel architecture that are designed to greatly enhance the perform
advanced media and communications applications. These extensions (which include new re
data types, and instructions) are combined with a single-instruction, multiple-data (SIMD)
execution model to accelerate the performance of applications such as motion video, combi
graphics with video, image processing, audio synthesis, speech synthesis and compression
telephony, video conferencing, and 2D and 3D graphics, which typically use compute-intens
algorithms to perform repetitive operations on large arrays of simple, native data elements.

MMX technology defines a simple and flexible software model, with no new mode or operati
system visible state. All existing software runs correctly, without modification, on Intel
architecture processors that incorporate MMX technology, even in the presence of existing a
new applications that incorporate this technology.

The following sections of this chapter describe the basic programming environment for the
technology, the MMX technology register set, data types and instruction set. Detailed descrip
of the MMX instructions are provided in Chapter 3 of the Intel Architecture Software Developer’s
Manual, Volume 2. The manner in which the MMX technology extensions fit into the Intel
architecture system programming model is described in Chapter 10 of the Intel Architecture
Software Developer’s Manual, Volume 3.

3.4.1 MMX™ Technology Programming Environment

MMX technology provides the following new extensions to the Intel architecture programming
environment:

• Eight MMX technology registers (MM0 through MM7)

• Four MMX technology data types (packed bytes, packed words, packed doublewords and
quadword)

• The MMX technology instruction set

FP instruction1: X1, X2, WF, ER (4 E stage stalls for the FSTSWAX);

FSTSW AX: Two E clocks;

SAHF: Two E clocks;

JC xyz: One clock if no mispredict on branch.
Embedded Pentium® Processor Family Developer’s Manual 3-11

Component Operation
3.4.1.1 MMX™ Technology Registers

The MMX technology register set consists of eight 64-bit registers (Figure 3-3). The MMX
instructions access the registers directly using the register names MM0 through MM7. These
registers can only be used to perform calculations on MMX technology data types; they cannot be
used to address memory. Addressing of MMX instruction operands in memory is handled by using
the standard Intel architecture addressing modes and general-purpose registers (EAX, EBX, ECX,
EDX, EBP, ESI, EDI and ESP).

Although the MMX registers are defined in the Intel architecture as separate registers, they are
aliased to the registers in the FPU data register stack (R0 through R7). (See Chapter 10 in the Intel
Architecture Software Developer’s Manual, Volume 3, for a more detailed discussion of MMX
technology register aliasing.)

3.4.1.2 MMX™ Technology Data Types

The MMX technology defines the following new 64-bit data types (Figure 3-4):

The bytes in the packed bytes data type are numbered 0 through 7. Byte 0 is contained in the least
significant bits of the data type (bits 0 through 7) and byte 7 is contained in the most significant bits
(bits 56 through 63). The words in the packed words data type are numbered 0 through 4. Word 0 is
contained in the bits 0 through 15 of the data type and word 4 is contained in bits 48 through 63.
The doublewords in a packed doublewords data type are numbered 0 through 1. Doubleword 0 is
contained in bits 0 through 31 and doubleword 1 is contained in bits 32 through 63.

Figure 3-3. MMX™ Technology Register Set

A6106-01

63 0

MM7

MM6

MM5

MM4

MM3

MM2

MM1

MM0

Packed bytes Eight bytes packed into one 64-bit quantity.

Packed words Four (16-bit) words packed into one 64-bit quantity.

Packed doublewords Two (32-bit) doublewords packed into one 64-bit quantity.

Quadword One 64-bit quantity.
3-12 Embedded Pentium® Processor Family Developer’s Manual

Component Operation
The MMX instructions move the packed data types (packed bytes, packed words or packed
doublewords) and the quadword data type to-and-from memory or to-and-from the Intel
architecture general-purpose registers in 64-bit blocks. However, when performing arithmetic or
logical operations on the packed data types, the MMX instructions operate in parallel on the
individual bytes, words or doublewords contained in a 64-bit MMX register.

When operating on the bytes, words and doublewords within packed data types, the MMX
instructions recognize and operate on both signed and unsigned byte integers, word integers and
doubleword integers.

3.4.1.3 Single Instruction, Multiple Data (SIMD) Execution Model

The MMX technology uses the single instruction, multiple data (SIMD) technique for performing
arithmetic and logical operations on the bytes, words or doublewords packed in an MMX packed
data type. For example, the PADDSB instruction adds eight signed bytes from the source operand
to eight signed bytes in the destination operand and stores eight byte-results in the destination
operand. This SIMD technique speeds up software performance by allowing the same operation to
be carried out on multiple data elements in parallel. The MMX technology supports parallel
operations on byte, word and doubleword data elements when contained in MMX packed data
types.

The SIMD execution model supported in the MMX technology directly addresses the needs of
modern media, communications and graphics applications, which often use sophisticated
algorithms that perform the same operations on a large number of small data types (bytes, words
and doublewords). For example, most audio data is represented in 16-bit (word) quantities. The

Figure 3-4. Packed Data Types

A6107-01

63

Packed bytes (8x8 bits)

56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

63
Packed word (4x16 bits)

48 47 32 31 16 15 0

63

Packed doublewords (2x32 bits)

32 31 0

63

Quadword (64 bits)

0

Embedded Pentium® Processor Family Developer’s Manual 3-13

Component Operation
MMX instructions can operate on four of these words simultaneously with one instruction. Video
and graphics information is commonly represented as palletized 8-bit (byte) quantities. Here, one
MMX instruction can operate on eight of these bytes simultaneously.

3.4.1.4 Memory Data Formats

When stored in memory the bytes, words and doublewords in the packed data types are stored in
consecutive addresses, with the least significant byte, word or doubleword being stored at the
lowest address and the more significant bytes, words or doublewords being stored at consecutively
higher addresses (see Figure 3-5). The ordering of bytes, words or doublewords in memory is
always little endian. That is, the bytes with the lower addresses are less significant than the bytes
with the higher addresses.

3.4.1.5 MMX™ Technology Register Data Formats

Values in MMX registers have the same format as a 64-bit quantity in memory. MMX registers
have two data access modes: 64-bit access mode and 32-bit access mode.

The 64-bit access mode is used for 64-bit memory access, 64-bit transfer between registers, all
pack, logical and arithmetic instructions, and some unpack instructions.

The 32-bit access mode is used for 32-bit memory access, 32-bit transfer between integer registers
and MMX technology registers, and some unpack instructions.

3.4.2 MMX™ Instruction Set

The MMX instruction set consists of 57 instructions, grouped into the following categories:

• Data Transfer Instructions

• Arithmetic Instructions

• Comparison Instructions

• Conversion Instructions

• Logical Instructions

• Shift Instructions

• Empty MMX State (EMMS) Instruction

These instructions provide a rich set of operations that can be performed in parallel on the bytes,
words or doublewords of an MMX packed data type.

Figure 3-5. Eight Packed Bytes in Memory (at Address 1000H)

A6108-01

Memory Address 1000HMemory Address 1008H

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
3-14 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

tion,
one
When operating on the MMX packed data types, the data within a data type is cast by the type
specified by the instruction. For example, the PADDB (add packed bytes) instruction adds two
groups of eight packed bytes. The PADDW (add packed words) instruction, which adds packed
words, can operate on the same 64 bits as the PADDB instruction treating 64 bits as four 16-bit
words.

3.4.3 Intel MMX™ Technology Pipeline Stages

The MMX technology unit of the embedded Pentium processor with MMX technology has six
pipeline stages. The integration of the MMX technology pipeline with the integer pipeline is very
similar to that of the floating-point pipe.

The embedded Pentium processor with MMX technology adds an additional fetch stage to the
pipeline. The instruction bytes are prefetched from the code cache in the prefetch (PF) stage, and
they are parsed into instructions (and prefixes) in the fetch (F) stage. Additionally, any prefixes are
decoded in the F stage.

When instructions execute in the two pipes, their behavior is exactly the same as if they were
executed sequentially. When a stall occurs, successive instructions are not allowed to pass the
stalled instruction in either pipe. Figure 3-6 shows the pipelining structure for this scheme.

Instruction parsing is decoupled from the instruction decoding by means of an instruction FIFO,
which is situated between the F and D1 (Decode 1) stages. The FIFO has slots for up to four
instructions. This FIFO is transparent, it does not add additional latency when it is empty.

Every clock cycle, two instructions can be pushed into the instruction FIFO (depending on the
availability of the code bytes, and on other factors such as prefixes). Instruction pairs are pulled out
of the FIFO into the D1 stage. Since the average rate of instruction execution is less than two per
clock, the FIFO is normally full. If the FIFO is full, then the FIFO can buffer a stall that may have
occurred during instruction fetch and parsing. If this occurs, then that stall will not cause a stall in
the execution stage of the pipe. If the FIFO is empty, then an execution stall may result from the
pipeline being “starved” for instructions to execute. Also, if the FIFO contains only one instruc
then the instruction will not pair. Additionally, if an instruction is longer than 7 bytes, then only
instruction will be pushed into the FIFO. Figure 3-6 details the MMX pipeline on superscalar
processors and the conditions where a stall may occur in the pipeline.

Figure 3-6. MMX™ Technology Pipeline Structure

A6109-01

Decoupled Stages of the MMX™ Instruction Pipeline

PF F D1 D2 EX

EX EX2

EX2 EX3EX1

WB

Integer pipeline only

MMX instruction pipeline
integrated in integer pipeline

Mex WMulWM/M2 M3
Embedded Pentium® Processor Family Developer’s Manual 3-15

Component Operation
3.4.4 Instruction Issue

The rules of how MMX instructions get issued on the embedded Pentium processor with MMX
technology are summarized as follows:

• Pairing of two MMX instructions can be performed.

• Pairing of one MMX instruction with an integer instruction can be performed.

• MMX instructions do not get paired with floating-point instructions.

3.4.4.1 Pairing Two MMX™ Instructions

The rules of how two MMX instructions can be paired are listed below:

• Two MMX instructions that both use the MMX shifter unit (pack, unpack and shift
instructions) cannot pair since there is only one MMX shifter unit. Shift operations may be
issued in either the u-pipe or the v-pipe but not in both in the same clock cycle.

• Two MMX instructions that both use the MMX multiplier unit (PMULL, PMULH, PMADD
type instructions) cannot pair since there is only one MMX multiplier unit. Multiply
operations may be issued in either the u-pipe or the v-pipe but not in both in the same clock
cycle.

• MMX instructions that access either memory or the integer register file can be issued in the u-
pipe only. Do not schedule these instructions to the v-pipe as they will wait and be issued in
the next pair of instructions (and to the u-pipe).

• The MMX destination register of the u-pipe instruction should not match the source or
destination register of the v-pipe instruction (dependency check).

• The EMMS instruction is not pairable.

• If either the CR0.TS or the CR0.EM bits are set, MMX instructions cannot go into the v-pipe.

Table 3-1. Pipeline Stage Summary

Pipeline Stage Abbreviation Description

Prefetch PF Prefetches instructions

Fetch F

The prefetched instruction bytes are passed into instructions. The
prefixes are decoded and up to two instructions are pushed into the
FIFO. Two MMX instructions can be pushed if each of the instructions
are less than seven in bytes length.

Decode1 D1 Integer, floating-point and MMX instructions are decoded in the D1
pipe stage.

Decode2 D2 Source values are read.

Execution E The instruction is committed for execution.

MMX Execution Mex
Execution clock for MMX instructions. ALU, shift, pack, and unpack
instructions are executed and completed in this clock. First clock of
multiply instructions. No stall conditions.

Write/Multiply2 WM/M2
Single clock operations are written. Second stage of multiplier pipe. No
stall conditions.

Multiply3 M3 Third stage of multiplier pipe. No stall conditions.

Write of multiply Wmul Write of multiplier result. No stall conditions.
3-16 Embedded Pentium® Processor Family Developer’s Manual

Component Operation
3.4.4.2 Pairing an Integer Instruction in the U-pipe with an MMX
Instruction in the V-pipe

The rules of how an integer instruction in the u-pipe is paired with an MMX instruction in the
v-pipe are listed below:

• The MMX instruction cannot be the first MMX instruction following a floating-point
instruction.

• The v-pipe MMX instruction does not access either memory or the integer register file.

• The u-pipe integer instruction is a pairable u-pipe integer instruction.

3.4.4.3 Pairing an MMX Instruction in the U-pipe with an
Integer Instruction in the V-pipe

The rules of how an MMX instruction in the u-pipe is paired with an integer instruction in the
v-pipe are listed below:

• The v-pipe instruction is a pairable integer v-pipe instruction.

• The u-pipe MMX instruction does not access either memory or the integer register file.

3.5 On-Chip Caches

The embedded Pentium processor (at 100/133/166 MHz) implements two internal caches for a
total integrated cache size of 16 Kbytes: an 8-Kbyte data cache and a separate 8-Kbyte code cache.
These caches are transparent to application software to maintain compatibility with previous Intel
architecture generations. The embedded Pentium processor with MMX technology doubles the
internal cache size to 32 Kbytes: a 16-Kbyte data cache and a separate 16-Kbyte code cache.

The data cache fully supports the MESI (modified/exclusive/shared/invalid) cache consistency
protocol. The code cache is inherently write protected to prevent code from being inadvertently
corrupted, and as a consequence supports a subset of the MESI protocol, the S (shared) and I
(invalid) states.

The caches have been designed for maximum flexibility and performance. The data cache is
configurable as writeback or writethrough on a line-by-line basis. Memory areas can be defined as
non-cacheable by software and external hardware. Cache writeback and invalidations can be
initiated by hardware or software. Protocols for cache consistency and line replacement are
implemented in hardware, easing system design.

3.5.1 Cache Organization

On the embedded Pentium processor, each cache is 8 Kbytes and is organized as a 2-way set
associative cache. There are 128 sets in each cache; each set contains 2 lines (each line has its own
tag address). Each cache line is 32 bytes wide. The embedded Pentium processor with MMX
technology has two 16-Kbyte, 4-way set-associative caches the with a line length of 32 bytes.

On the embedded Pentium processor, replacement in both the data and instruction caches is
handled by the LRU mechanism, which requires one bit per set in each of the caches. The
embedded Pentium processor with MMX technology uses a pseudo-LRU replacement algorithm
that requires three bits per set in each of the caches. When a line must be replaced, the cache selects
Embedded Pentium® Processor Family Developer’s Manual 3-17

Component Operation
which of L0:L1 and L2:L3 was least recently used. Then the cache determines which of the two
lines was least recently used and marks it for replacement. This decision tree is shown in
Figure 3-7.

The data cache consists of eight banks interleaved on 4-byte boundaries. The data cache can be
accessed simultaneously from both pipes, as long as the references are to different cache banks. A
conceptual diagram of the organization of the data and code caches is shown in Figure 3-8. The
data cache supports the MESI writeback cache consistency protocol, which requires two state bits,
while the code cache supports the S and I state only and therefore requires only one state bit.

Figure 3-7. Pseudo-LRU Cache Replacement Strategy

A6111-01

No

No NoYesYes

Yes

Replace non-valid line

No: L2 or L3 least
recently used

B0 = 0?

B1 = 0? B2 = 0?

Replace
L3

Replace
L2

Replace
L1

Replace
L0

All four lines
in the set valid?

Yes: L0 or L1 least
recently used

Figure 3-8. Conceptual Organization of Code and Data Caches

A6112-01

Data
Cache

Code
Cache

Set

WAY 0

MESI
State

LRU
Tag Address

WAY 1

MESI
State

Tag Address

 WAY 2

MESI
State

Tag Address

 WAY 3

MESI
State

Tag Address

Set

WAY 0

State Bit
(S or I)

State Bit
(S or I)

State Bit
(S or I)

State Bit
(S or I)

LRU
Tag Address

WAY 1

Tag Address

 WAY 2

Tag Address

 WAY 3

Tag Address

Pentium ® Processor with MMX™ Technology

Data
Cache

Code
Cache

Set

WAY 0

MESI
State

LRU
Tag Address

WAY 1

MESI
State

Tag Address

Set

WAY 0

State Bit
(S or I)

State Bit
(S or I)

LRU
Tag Address

WAY 1

Tag Address

Pentium Processor (at 100, 133, 166 MHz)
3-18 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

as CD

ps are
,
n
3.5.2 Cache Structure

The instruction and data caches can be accessed simultaneously. The instruction cache can provide
up to 32 bytes of raw opcodes and the data cache can provide data for two data references all in the
same clock. This capability is implemented partially through the tag structure. The tags in the data
cache are triple-ported. One of the ports is dedicated to snooping while the other two are used to
lookup two independent addresses corresponding to data references from each of the pipelines. The
instruction cache tags of the embedded Pentium processor (at 100/133/166 MHz) are also triple-
ported. Again, one port is dedicated to support snooping and the other two ports facilitate split line
accesses (simultaneously accessing upper half of one line and lower half of the next line). Note that
the embedded Pentium processor with MMX technology does not support split line accesses to the
code cache; its code cache tags are dual ported.

The storage array in the data cache is single ported but interleaved on 4-byte boundaries to be able
to provide data for two simultaneous accesses to the same cache line.

Each of the caches are parity protected. In the instruction cache, there are parity bits on a quarter
line basis and there is one parity bit for each tag. The data cache contains one parity bit for each tag
and a parity bit per byte of data.

Each of the caches are accessed with physical addresses and each cache has its own TLB
(translation lookaside buffer) to translate linear addresses to physical addresses. The TLBs
associated with the instruction cache are single-ported whereas the data cache TLBs are fully dual-
ported to be able to translate two independent linear addresses for two data references
simultaneously. The tag and data arrays of the TLBs are parity protected with a parity bit associated
with each of the tag and data entries in the TLBs.

The data cache of the embedded Pentium processor has a 4-way set associative, 64-entry TLB for
4-Kbyte pages and a separate 4-way set associative, 8-entry TLB to support 4-Mbyte pages. The
code cache has one 4-way set associative, 32-entry TLB for 4-Kbyte pages and 4-Mbyte pages,
which are cached in 4-Kbyte increments. Replacement in the TLBs is handled by a pseudo-LRU
mechanism (similar to the Intel486 processor) that requires 3 bits per set. The embedded Pentium
processor with MMX technology has a 64-entry fully associative data TLB and a 32-entry fully
associative code TLB. Both TLBs can support 4-Kbyte pages as well as 4-Mbyte pages.

3.5.3 Cache Operating Modes

The operating modes of the caches are controlled by the CD (cache disable) and NW (not
writethrough) bits in CR0. See Table 3-2 for a description of the modes. For normal operation and
highest performance, these bits should both be cleared to “0.” The bits come out of RESET
= NW = 1.

When the L1 cache is disabled (CR0.NW and CR0.CD bits are both set to ‘1’) external snoo
accepted in a DP system and inhibited in a UP system. Note that when snoops are inhibited
address parity is not checked, and APCHK# will not be asserted for a corrupt address. Whe
snoops are accepted, address parity is checked (and APCHK# will be asserted for corrupt
addresses).
Embedded Pentium® Processor Family Developer’s Manual 3-19

Component Operation
To completely disable the cache, the following two steps must be performed:

1. CD and NW must be set to 1.

2. The caches must be flushed.

If the cache is not flushed, cache hits on reads will still occur and data will be read from the cache.
In addition, the cache must be flushed after being disabled to prevent any inconsistencies with
memory.

Table 3-2. Cache Operating Modes

CD NW Description

1 1

Read hits access the cache.

Read misses do not cause linefills.

Write hits update the cache, but do not access memory.

Write hits cause Exclusive State lines to change to Modified State.

Shared lines remain in the Shared state after write hits.

Write misses access memory.

Inquire and invalidation cycles do not affect the cache state or
contents.

This is the state after reset.

1 0

Read hits access the cache.

Read misses do not cause linefills.

Write hits update the cache.

Writes to Shared lines and write misses update external memory.

Writes to Shared lines can be changed to the Exclusive State under
the control of the WB/WT# pin.

Inquire cycles (and invalidations) are allowed.

0 1 GP(0)

0 0

Read hits access the cache.

Read misses may cause linefills.

These lines will enter the Exclusive or Shared state under the control
of the WB/WT# pin.

Write hits update the cache.

Only writes to shared lines and write misses appear externally.

Writes to Shared lines can be changed to the Exclusive State under
the control of the WB/WT# pin.

Inquire cycles (and invalidations) are allowed.
3-20 Embedded Pentium® Processor Family Developer’s Manual

Component Operation
3.5.4 Page Cacheability

Two bits for cache control, PWT and PCD are defined in the page table and page directory entries.
The state of these bits are driven out on the PWT and PCD pins during memory access cycles. The
PWT bit controls write policy for the second-level caches used with the embedded Pentium
processor. Setting PWT to 1 defines a writethrough policy for the current page, while clearing
PWT to 0 defines a writeback policy for the current page.

The PCD bit controls cacheability on a page-by-page basis. The PCD bit is internally ANDed with
the KEN# signal to control cacheability on a cycle-by-cycle basis. PCD = 0 enables cacheing,
while PCD = 1 disables it. Cache linefills are enabled when PCD = 0 and KEN# = 0.

3.5.4.1 PCD and PWT Generation

The value driven on PCD is a function of the PWT bits in CR3, the page directory pointer, the page
directory entry and the page table entry, and the CD and PG bits in CR0.

The value driven on PWT is a function of the PCD bits in CR3, the page directory pointer, the page
directory entry and the page table entry, and the PG bit in CR0 (CR0.CD does not affect PWT).

CR0.CD = 1

If cacheing is disabled, the PCD pin is always driven high. CR0.CD does not affect the PWT pin.

CR0.PG = 0

If paging is disabled, the PWT pin is forced low and the PCD pin reflects the CR0.CD. The PCD
and PWT bits in CR3 are assumed 0 during the caching process.

CR0.CD = 0, PG = 1, normal operation

The PCD and PWT bits from the last entry (can be either PDE or PTE, depends on 4 Mbyte or 4
Kbyte mode) are cached in the TLB and are driven anytime the page mapped by the TLB entry is
referenced.

CR0.CD = 0, PG = 1, during TLB Refresh

During TLB refresh cycles when the PDE and PTE entries are read, the PWT and PCD bits are
obtained as shown in Table 3-3 and Table 3-4.

Table 3-3. 32-Bits/4-Kbyte Pages

PCD/PWT Taken From During Accesses To

CR3 PDE

PDE PTE

PTE All other paged mem references

Table 3-4. 32-Bits/4-Mbyte Pages

PCD/PWT Taken From During Accesses To

CR3 PDE

PDE All other paged mem references
Embedded Pentium® Processor Family Developer’s Manual 3-21

Component Operation
Figure 3-9 shows how PCD and PWT are generated.

Figure 3-9. PCD and PWT Generation

A6070-01

Table
(optional) OffsetDirectory

Linear Address
31 22 12 0

PCD, PWT

Page Table

10 031

PCD, PWT

CR3

031

+

+

10

031

Page Directory

PG (Paging Enable)

CD (Cache Disable)

PWT

PCD

Cache transition to
E-state enable

PCD

WB/WT#

CACHE#

KEN#
Cache line fill enable

Cache Inhibit
TR12.3

CIUnlocked Memory Reads

Writeback Cycle

PCD

PWT
PCD, PWT

CR0
3-22 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

auses
aches
 and

D
aches
cial

ot
te to
 INVD

t.

tes are
d

ities and
a Cache
 in
e), S
nition
3.5.5 Inquire Cycles

Inquire cycles are initiated by the system to determine if a line is present in the code or data cache,
and what state the line is in. This manual refers to inquire cycles and snoop cycles interchangeably.

Inquire cycles are driven to the processor when a bus master other than the processor initiates a
read or write bus cycle. Inquire cycles are driven to the processor when the bus master initiates a
read to determine if the processor data cache contains the latest information. If the snooped line is
in the processor data cache in the modified state, the processor has the most recent information and
must schedule a writeback of the data. Inquire cycles are driven to the processor when the other bus
master initiates a write to determine if the processor code or data cache contains the snooped line
and to invalidate the line if it is present. Inquire cycles are described in detail in Chapter 6, “Bus
Functional Description.”

3.5.6 Cache Flushing

The on-chip cache can be flushed by external hardware or by software instructions.

Flushing the cache through hardware is accomplished by driving the FLUSH# pin low. This c
the cache to write back all modified lines in the data cache and mark the state bits for both c
invalid. The Flush Acknowledge special cycle is driven by the processor when all writebacks
invalidations are complete.

The INVD and WBINVD instructions cause the on-chip caches to be invalidated also. WBINV
causes the modified lines in the internal data cache to be written back, and all lines in both c
to be marked invalid. After execution of the WBINVD instruction, the Writeback and Flush spe
cycles are driven to indicate to any external cache that it should write back and invalidate its
contents.

INVD causes all lines in both caches to be invalidated. Modified lines in the data cache are n
written back. The Flush special cycle is driven after the INVD instruction is executed to indica
any external cache that it should invalidate its contents. Care should be taken when using the
instruction that cache consistency problems are not created.

Note that the implementation of the INVD and WBINVD instructions are processor dependen
Future processor generations may implement these instructions differently.

3.5.7 Data Cache Consistency Protocol (MESI Protocol)

The embedded Pentium processor Cache Consistency Protocol is a set of rules by which sta
assigned to cached entries (lines). The rules apply for memory read/write cycles only. I/O an
special cycles are not run through the data cache.

Every line in the data cache is assigned a state dependent on both processor generated activ
activities generated by other bus masters (snooping). The embedded Pentium processor Dat
Protocol consists of four states that define whether a line is valid (HIT/MISS), if it is available
other caches, and if it has been MODIFIED. The four states are the M (Modified), E (Exclusiv
(Shared) and the I (Invalid) states and the protocol is referred to as the MESI protocol. A defi
of the states is given below:
Embedded Pentium® Processor Family Developer’s Manual 3-23

Component Operation
3.5.7.1 State Transition Tables

Lines cached in the processor can change state because of processor-generated activity or as a
result of activity on the processor bus generated by other bus masters (snooping). State transitions
happen because of processor-generated transactions (memory reads/writes) and by a set of external
input signals and internally generated variables. The processor also drives certain pins as a
consequence of the Cache Consistency Protocol.

3.5.7.2 Read Cycle

Table 3-5 shows the state transitions for lines in the data cache during unlocked read cycles.
.

M - Modified: An M-state line is available in only one cache and it is also MODIFIED
(different from main memory). An M-state line can be accessed (read/written to)
without sending a cycle out on the bus.

E - Exclusive: An E-state line is also available in only one cache in the system, but the line is
not MODIFIED (i.e., it is the same as main memory). An E-state line can be
accessed (read/written to) without generating a bus cycle. A write to an E-state
line causes the line to become MODIFIED.

S - Shared: This state indicates that the line is potentially shared with other caches (i.e., the
same line may exist in more than one cache). A read to an S-state line does not
generate bus activity, but a write to a SHARED line generates a write-through
cycle on the bus. The write-through cycle may invalidate this line in other
caches. A write to an S-state line updates the cache.

I - Invalid: This state indicates that the line is not available in the cache. A read to this line
will be a MISS and may cause the processor to execute a LINE FILL (fetch the
whole line into the cache from main memory). A write to an INVALID line
causes the processor to execute a write-through cycle on the bus.

Table 3-5. Data Cache State Transitions for UNLOCKED Processor Initiated Read Cycles†

Present
State Pin Activity Next

State Description

M n/a M Read hit; data is provided to processor core by
cache. No bus cycle is generated.

E n/a E Read hit; data is provided to processor core by
cache. No bus cycle is generated.

S n/a S Read hit; data is provided to the processor by the
cache. No bus cycle is generated.

I

CACHE# low AND
KEN# low AND

WB/WT# high AND
PWT low

E

Data item does not exist in cache (MISS). A bus
cycle (read) will be generated. This state transition
will happen if WB/WT# is sampled high with first
BRDY# or NA#.

I
CACHE# low AND

KEN# low AND
(WB/WT# low OR PWT high)

S Same as previous read miss case except that
WB/WT# is sampled low with first BRDY# or NA#.

I CACHE# high OR KEN# high I KEN# pin inactive; the line is not intended to be
cached in the embedded Pentium processor.

† Locked accesses to the data cache cause the accessed line to transition to the Invalid state.
3-24 Embedded Pentium® Processor Family Developer’s Manual

Component Operation
Note the transition from I to E or S states (based on WB/WT#) happens only if KEN# is sampled
low with the first of BRDY# or NA#, and the cycle is transformed into a LINE FILL cycle. If
KEN# is sampled high, the line is not cached and remains in the I state.

3.5.7.3 Write Cycle

The state transitions of data cache lines during processor-generated write cycles are illustrated in
Table 3-6. Writes to SHARED lines in the data cache are always sent out on the bus along with
updating the cache with the write item. The status of the PWT and WB/WT# pins during these
write cycles on the bus determines the state transitions in the data cache during writes to S-state
lines.

A write to a SHARED line in the data cache generates a write cycle on the processor bus to update
memory and/or invalidate the contents of other caches. If the PWT pin is driven high when the
write cycle is run on the bus, the line is be updated and will stay in the S-state regardless of the
status of the WB/WT# pin that is sampled with the first BRDY# or NA#. If PWT is driven low, the
status of the WB/WT# pin sampled along with the first BRDY# or NA# for the write cycle
determines which state (E:S) the line transitions to.

The state transition from S to E is the only transition in which the data and the status bits are not
updated at the same time. The data is updated when the write is written to the processor write
buffers. The state transition does not occur until the write has completed on the bus (BRDY# has
been returned). Writes to the line after the transition to the E-state do not generate bus cycles.
However, it is possible that writes to the same line that were buffered or in the pipeline before the
transition to the E-state generate bus cycles after the transition to E-state.

An inactive EWBE# input stalls subsequent writes to an E- or an M-state line. All subsequent
writes to E- or M-state lines are held off until EWBE# is returned active.

Table 3-6. Data Cache State Transitions for Processor Initiated Write Cycles

Present
State Pin Activity Next

State Description

M n/a M Write hit; update data cache. No bus cycle generated to
update memory.

E n/a M Write hit; update cache only. No bus cycle generated; line is
now MODIFIED.

S PWT low AND
WB/WT# high E

Write hit; data cache updated with write data item. A write-
through cycle is generated on bus to update memory and/or
invalidate contents of other caches. The state transition
occurs after the writethrough cycle completes on the bus
(with the last BRDY#).

S PWT low AND
WB/WT# low S Same as above case of write to S-state line except that

WB/WT# is sampled low.

S PWT high S
Same as above cases of writes to S state lines except that
this is a write hit to a line in a writethrough page; status of
WB/WT# pin is ignored.

I n/a I Write MISS; a writethrough cycle is generated on the bus to
update external memory. No allocation done.

NOTE: Memory writes are buffered while I/O writes are not. There is no guarantee of synchronization between
completion of memory writes on the bus and instruction execution after the write. A serializing
instruction needs to be executed to synchronize writes with the next instruction if necessary.
Embedded Pentium® Processor Family Developer’s Manual 3-25

Component Operation

ed by
ncing
s it is
3.5.7.4 Inquire Cycles (Snooping)

The purpose of inquire cycles is to check whether the address being presented is contained within
the caches in the embedded Pentium processor. Inquire cycles may be initiated with or without an
INVALIDATION request (INV = 1 or 0). An inquire cycle is run through the data and code caches
through a dedicated snoop port to determine if the address is in one of the processor caches. If the
address is in a processor cache, the HIT# pin is asserted. If the address hits a modified line in the
data cache, the HITM# pin is also asserted and the modified line is then written back onto the bus.

The state transition tables for inquire cycles are given below:

3.5.7.5 Code Cache Consistency Protocol

The processor code cache follows a subset of the MESI protocol. Accesses to the code cache are
either a Hit (Shared) or a Miss (Invalid).

In the case of a read hit, the cycle is serviced internally to the processor and no bus activity is
generated. In the case of a read miss, the read is sent to the external bus and may be converted to a
linefill.

Lines are never overwritten in the code cache. Writes generated by the processor are snooped by
the code cache. If the snoop is a hit in the code cache, the line is invalidated. If there is a miss, the
code cache is not affected.

3.6 Write Buffers and Memory Ordering

The embedded Pentium processor has two write buffers, one corresponding to each of the
pipelines, to enhance the performance of consecutive writes to memory. These write buffers are
one quadword wide (64-bits) and can be filled simultaneously in one clock e.g., by two
simultaneous write misses in the two instruction pipelines. Writes in these buffers are driven out on
the external bus in the order they were generated by the processor core. No reads (as a result of
cache miss) are reordered around previously generated writes sitting in the write buffers. The
implication of this is that the write buffers will be flushed or emptied before a subsequent bus cycle
is run on the external bus (unless BOFF# is asserted and a writeback cycle becomes pending, see
“Linefill and Writeback Buffers” on page 3-29).

The embedded Pentium processor with MMX technology has four write buffers that can be us
either the u-pipe or v-pipe. Posting writes to these buffers enables the pipe to continue adva
when consecutive writes to memory occur. The writes will be executed on the bus as soon a
free, in FIFO order. Reads cannot bypass writes posted in these buffers.

Table 3-7. Cache State Transitions During Inquiry Cycles

Present
State

Next
State

 INV=1

Next
State
INV=0

Description

M I S
Snoop hit to a MODIFIED line indicated by HIT# and HITM# pins
low. embedded Pentium® processor schedules the writing back of
the modified line to memory.

E I S Snoop hit indicated by HIT# pin low; no bus cycle generated.

S I S Snoop hit indicated by HIT# pin low; no bus cycle generated.

I I I Address not in cache; HIT# pin high.
3-26 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

write

Y# is
ted.

ed
efore
The embedded Pentium processor supports strong write ordering only. That is, writes generated by
the embedded Pentium processor are driven to the bus or updated in the cache in the order in which
they occur. The embedded Pentium processor does not write to E or M-state lines in the data cache
if there is a write in either write buffer, if a write cycle is running on the bus, or if EWBE# is
inactive.

Note that only memory writes are buffered and I/O writes are not. There is no guarantee of
synchronization between completion of memory writes on the bus and instruction execution after
the write. The OUT instruction or a serializing instruction needs to be executed to synchronize
writes with the next instruction. Refer to “Serializing Operations” on page 3-28 for more
information.

No re-ordering of read cycles occurs on the embedded Pentium processor. Specifically, the
buffers are flushed before the IN instruction is executed.

3.6.1 External Event Synchronization

When the system changes the value of NMI, INTR, FLUSH#, SMI# or INIT as the result of
executing an OUT instruction, these inputs must be at a valid state three clocks before BRD
returned to ensure that the new value will be recognized before the next instruction is execu

Note that if an OUT instruction is used to modify A20M#, this will not affect previously prefetch
instructions. A serializing instruction must be executed to guarantee recognition of A20M# b
a specific instruction.

Figure 3-10. Embedded Pentium® Processor Write Buffer Implementation

A6113-01

D1

FPF

D2 EX WB

D1 D2 EX WB

4 Buffers
Write

WriteV-pipe

U-pipe

External Bus

Pentium ® Processor with MMX™ Technology

D1

PF

D2 EX WB

D1 D2 EX WB

Write

WriteV-pipe

U-pipe

External Bus

External Bus

Pentium Processor (100/133/166 MHz)

1 Buffer

1 Buffer
Embedded Pentium® Processor Family Developer’s Manual 3-27

Component Operation

ors
OV to
y

, the
3.

ping

tion is
uction

ese

/O

ng
lete

t stop
that
d and
unlike
nding
3.6.2 Serializing Operations

After executing certain instructions, the embedded Pentium processor serializes instruction
execution. This means that any modifications to flags, registers, and memory for previous
instructions are completed before the next instruction is fetched and executed. The prefetch queue
is flushed as a result of serializing operations.

The embedded Pentium processor serializes instruction execution after executing one of the
following instructions: MOV to Debug Register, MOV to Control Register, INVD, INVLPG,
IRET, IRETD, LGDT, LLDT, LIDT, LTR, WBINVD, CPUID, RSM and WRMSR.

The CPUID instruction can be executed at any privilege level to serialize instruction execution.

When the processor serializes instruction execution, it ensures that it has completed any
modifications to memory, including flushing any internally buffered stores; it then waits for the
EWBE# pin to go active before fetching and executing the next instruction. Systems may use the
EWBE# pin to indicate that a store is pending externally. In this manner, a system designer may
ensure that all externally pending stores complete before the processor begins to fetch and execute
the next instruction.

The processor does not generally writeback the contents of modified data in its data cache to
external memory when it serializes instruction execution. Software can force modified data to be
written back by executing the WBINVD instruction.

Whenever an instruction is executed to enable/disable paging (that is, change the PG bit of CR0),
this instruction must be followed with a jump. The instruction at the target of the branch is fetched
with the new value of PG (i.e., paging enabled/disabled); however, the jump instruction itself is
fetched with the previous value of PG. Intel386™, Intel486 and embedded Pentium process
have slightly different requirements to enable and disable paging. In all other respects, an M
CR0 that changes PG is serializing. Any MOV to CR0 that does not change PG is completel
serializing.

Whenever an instruction is executed to change the contents of CR3 while paging is enabled
next instruction is fetched using the translation tables that correspond to the new value of CR
Therefore the next instruction and the sequentially following instructions should have a map
based upon the new value of CR3.

The embedded Pentium processor implements branch-prediction techniques to improve
performance by prefetching the destination of a branch instruction before the branch instruc
executed. Consequently, instruction execution is not generally serialized when a branch instr
is executed.

Although the I/O instructions are not “serializing” because the processor does not wait for th
instructions to complete before it prefetches the next instruction, they do have the following
properties that cause them to function in a manner that is identical to previous generations. I
reads are not re-ordered within the processor; they wait for all internally pending stores to
complete. Note that the embedded Pentium processor does not sample the EWBE# pin duri
reads. If necessary, external hardware must ensure that externally pending stores are comp
before returning BRDY#. This is the same requirement that exists on Intel386 and Intel486
processor systems. The OUT and OUTS instructions are also not “serializing,” as they do no
the prefetcher. They do, however, ensure that all internally buffered stores have completed,
EWBE# has been sampled active indicating that all externally pending stores have complete
that the I/O write has completed before they begin to execute the next instruction. Note that
the Intel486 processor, it is not necessary for external hardware to ensure that externally pe
stores are complete before returning BRDY#.
3-28 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

If
n out
 in

d one
efill, it

ses that
efore

 in the
ed

R/S#,
on
n
ny
e and
On the embedded Pentium processor with MMX technology, serializing instructions require an
additional clock to complete compared to the embedded Pentium processor due to the additional
pipeline stage.

3.6.3 Linefill and Writeback Buffers

In addition to the write buffers corresponding to each of the internal pipelines, the embedded
Pentium processor has three writeback buffers. Each of the writeback buffers are 1 deep and 32-
bytes (1 line) wide.

A dedicated replacement writeback buffer stores writebacks caused by linefills that replace
modified lines in the data cache. In addition, an external snoop writeback buffer stores writebacks
caused by a inquire cycles that hit modified lines in the data cache. Finally, an internal snoop
writeback buffer stores writebacks caused by internal snoop cycles that hit modified lines in the
data cache. Internal and external snoops are discussed in detail in “Cache Consistency Cycles
(Inquire Cycles)” on page 6-33. Write cycles are driven to the bus with the following priority:

1. Contents of external snoop writeback buffer

2. Contents of internal snoop writeback buffer

3. Contents of replacement writeback buffer

4. Contents of write buffers.

Note that the contents of the write buffer that was written into first are driven to the bus first.
both write buffers were written to in the same clock, the contents of the u-pipe buffer is writte
first. In the embedded Pentium processor with MMX technology, the write buffers are written
order, even though there is no u-pipe buffer and no v-pipe buffer.

The embedded Pentium processor implements two linefill buffers, one for the data cache an
for the code cache. As information (data or code) is returned to the processor for a cache lin
is written into the linefill buffer. After the entire line has been returned to the processor it is
transferred to the cache. Note that the processor requests the needed information first and u
information as soon as it is returned. The processor does not wait for the linefill to complete b
using the requested information.

If a line fill causes a modified line in the data cache to be replaced, the replaced line remains
cache until the linefill is complete. After the linefill is complete, the line being replaced is mov
into the replacement writeback buffer and the new linefill is moved into the cache.

3.7 External Interrupt Considerations

The embedded Pentium processor recognizes the following external interrupts: BUSCHK#,
FLUSH#, SMI#, INIT, NMI, INTR and STPCLK#. These interrupts are recognized at instructi
boundaries. The instruction boundary is the first clock in the execution stage of the instructio
pipeline. This means that before an instruction is executed, the processor checks to see if a
interrupts are pending. If an interrupt is pending, the processor flushes the instruction pipelin
then services the interrupt.

The embedded Pentium processor interrupt priority scheme is shown in Table 3-8.
Embedded Pentium® Processor Family Developer’s Manual 3-29

Component Operation

 that this

ry

activity
 Pentium

perly in
istency,
.

3.8 Introduction to Dual Processor Mode

Symmetric dual processing in a system is supported with two embedded Pentium processors
sharing a single second-level cache. The processors must be of the same type, either two embedded
Pentium processors or two embedded Pentium processor with MMX technology. The two
processors appear to the system as a single processor. Multiprocessor operating systems properly
schedule computing tasks between the two processors. This scheduling of tasks is transparent to
software applications and the end-user. Logic built into the processors support a “glueless”
interface for easy system design. Through a private bus, the two processors arbitrate for the
external bus and maintain cache coherency.

In this manual, in order to distinguish between two processors in dual processing mode, one
processor is designated as the Primary processor and the other as the Dual processor. Note
is a different concept than that of “master” and “checker” processors.

The Dual processor is a configuration option of the embedded Pentium processor. The Dual
processor must operate at the same bus and core frequency and bus/core ratio as the Prima
processor.

The Primary and Dual processors include logic to maintain cache consistency between the
processors and to arbitrate for the common bus. The cache consistency and bus arbitration
causes the dual processor pair to issue extra bus cycles that does not appear in a embedded
processor uniprocessor system.

Chapter 4, “Microprocessor Initialization and Configuration,” describes in detail how the DP
bootup, cache consistency, and bus arbitration mechanisms operate. In order to operate pro
dual processing mode, the Primary and Dual processors require a private APIC, cache cons
and bus arbitration interfaces, as well as a multiprocessing-ready operating system.

Table 3-8. Embedded Pentium® Processor Interrupt Priority Scheme

Priority
Level ITR = 0 (default) ITR = 1

1 Breakpoint (INT 3) Breakpoint (INT 3)

2 BUSCHK# BUSCHK#

3 Debug Traps (INT 1) FLUSH#

4 R/S# SMI#

5 FLUSH# Debug Traps (INT 1)

6 SMI# R/S#

7 INIT INIT

8 NMI NMI

9 INTR INTR

10 Floating-Point Error Floating-Point Error

11 STPCLK# STPCLK#

12 Faults on Next Instruction Faults on Next Instruction

NOTE: ITR is bit 9 of the TR12 register.
3-30 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

g
l

s. The
 look

aster
dded
ext. If
to the

ss. The
ed

a

The dual processor interface allows the Dual processor to be added for a substantial increase in
system performance. The interface allows the Primary and Dual processor to operate in a coherent
manner that is transparent to the system.

The memory subsystem transparency was the primary goal of the cache coherency and bus
arbitration mechanisms.

3.8.1 Dual Processing Terminology

This section defines some terms used in the following discussions.

3.8.2 Dual Processing Overview

The Primary and Dual processor both have logic built-in to support “glueless” dual-processin
behind a shared L2 cache. Through a set of private handshake signals, the Primary and Dua
processors arbitrate for the external bus and maintain cache coherency between themselve
bus arbitration and cache coherency mechanisms allow the Primary and Dual processors to
like a single embedded Pentium processor to the external bus.

The Primary and Dual processors implement a fair arbitration scheme. If the Least Recent M
(LRM) requests the bus from the Most Recent Master (MRM), the bus is granted. The embe
Pentium processor arbitration scheme provides no penalty to switch from one master to the n
pipelining is used, the two processors pipeline into and out of each other’s cycles according
embedded Pentium processor specification.

Cache coherency is maintained between the two processors by snooping on every bus acce
LRM must snoop with every ADS# assertion of the MRM. Internal cache states are maintain
accordingly. If an access hits a modified line, a writeback is scheduled as the next cycle, in
accordance with the embedded Pentium processor specification.

Using the Dual processor may require special design considerations. Refer to Chapter 5,
“Hardware Interface” for more details.

Symmetric Multi-Processing: Two or more processors operating with equal priorities in
system. No individual processor is a master, and none is a
slave.

DP or Dual Processing: The Primary and Dual processor operating symmetrically
in a system sharing a second-level cache.

MRM or Most Recent Master: The processor (either the Primary or Dual) that currently
owns the processor address bus. When interprocessor
pipelining, this is the processor which last issued an
ADS#.

LRM or Least Recent Master: The processor (either the Primary or Dual) that does not
own the address bus. The LRM automatically snoops
every ADS# from the MRM processor in order to maintain
level-one cache coherency.

Primary Processor: The embedded Pentium processor when CPUTYP = VSS
(or left floating).

Dual Processor: The embedded Pentium processor when CPUTYP = VCC.
Embedded Pentium® Processor Family Developer’s Manual 3-31

Component Operation

ache

 set
rupts

l APIC
ethod

re high
or is

y
bedded
re

he

 The
3.8.2.1 Conceptual Overview

Figure 3-11 is a block diagram of a two processor system.

The dual processor pair appears to the system bus as a single, unified processor. The operation is
identical to a uni-processor embedded Pentium processor, except as noted in “Summary of Dual
Processing Bus Cycles” on page 6-43. The interface shields the system designer from the c
consistency and arbitration mechanisms that are necessary for dual processor operation.

Both the Primary and Dual processors contain local APIC modules. The system designer is
recommended to supply an I/O APIC or other multiprocessing interrupt controller in the chip
that interfaces to the local APIC blocks over a three-wire bus. The APIC allows directed inter
as well as inter-processor interrupts.

The Primary and Dual processors, when operating in dual processing mode, require the loca
modules to be hardware enabled in order to complete the bootup handshake protocol. This m
is used to “wake up” the Dual processor at an address other than the normal Intel architectu
memory execution address. On bootup, if the Primary processor detects that a Dual process
present, the dual processor cache consistency and arbitration mechanisms are automaticall
enabled. The bootup handshake process is supported in a protocol that is included in the em
Pentium processor. See Chapter 4, “Microprocessor Initialization and Configuration,” for mo
details on the APIC.

3.8.2.2 Arbitration Overview

In the dual processor configuration, a single-system bus provides the processors access to t
external system. This bus is a single, shared resource.

The dual processor pair must arbitrate for use of the system bus as requests are generated.
processors implement a fair arbitration mechanism.

Figure 3-11. Dual Processors

A6114-01

Primary
Processor

Dual
Processor

Private
Interface

Processor Bus Interface
3-32 Embedded Pentium® Processor Family Developer’s Manual

Component Operation
When the LRM processor needs to run a cycle on the bus it submits a request for bus ownership to
the MRM. The MRM processor grants the LRM processor bus ownership as soon as all
outstanding bus requests have finished on the processor bus. The LRM processor assumes the
MRM state, and the processor that was just the MRM, becomes the LRM. Figure 3-12 further
illustrates this point:

Diagram (a) of Figure 3-12 shows a configuration where the Primary processor is in the MRM state
and the Dual processor is in the LRM state. The Primary processor is running a cycle on the system
bus when it receives a bus request from the Dual processor. In diagram (b) of Figure 3-12 the
MRM (still the Primary processor) has received an indication that the bus request has finished. The
bus ownership has transferred in diagram (c) of Figure 3-12, where the Dual processor is now the
MRM. At this point, the Dual processor starts a bus transaction and continues to own the bus until
the LRM requests the bus.

3.8.2.3 Cache Coherency Overview

The Primary and Dual processors both contain separate code and data caches. The data cache uses
the MESI protocol to enforce cache consistency. A line in the data cache can be in the Modified,
Exclusive, Shared or Invalid state, whereas a line in the instruction cache can be either in the valid
or invalid state.

A situation can arise where the Primary and Dual processors are operating in dual processor mode
with shared code or data. The first-level caches attempt to cache this code and data whenever
possible (as indicated by the page cacheability bits and the cacheability pins). The private cache
coherency mechanism guarantees data consistency across the processors. If any data is cached in
one of the processors, and the other processor attempts to access the data, the processor containing

Figure 3-12. Dual Processor Arbitration Mechanism

A6115-01

Primary
Processor

Dual
Processor

Bus Request

MRM LRM

Primary
Processor

Dual
Processor

Bus Grant

New Cycle Starts

Cycle Completion
Indication

Bus Cycle
Active

LRM MRM

Primary
Processor

Dual
Processor

Bus Request

MRM LRM

[a] [b]

[c]
Embedded Pentium® Processor Family Developer’s Manual 3-33

Component Operation
the data notifies the requesting processor that it has cached the data. The state of the cache line in
the processor containing the data changes depending on the current state and the type of request the
other processor has made.

In some cases, the data returned by the system is ignored. This constraint is placed on the dual
processor cache consistency mechanism so that the dual processor pair looks like a single
processor to the system bus. However, in general, bus accesses are minimized to efficiently use the
available bus bandwidth.

The basic coherency mechanism requires the processor that is in the LRM state to snoop all MRM
bus activity. The MRM processor running a bus cycle watches the LRM processor for an indication
that the data is contained in the LRM cache. The following diagrams illustrate the basic coherency
mechanism. These figures show an example in which the Primary processor (the MRM) is
performing a cache line fill of data. The data requested by the Primary processor is cached by the
Dual processor (the LRM), and is in the modified state.

In diagram (a) of Figure 3-13, the Primary processor has already negotiated with the Dual
processor for use of the system bus and has started a cycle. As the Primary processor starts running
the cycle on the system bus, the Dual processor snoops the transaction. The key for the start of the
snoop sequence for the LRM processor is an assertion of ADS# by the MRM processor.

Diagram (b) of Figure 3-13 shows the Dual processor indicating to the Primary processor that the
requested data is cached and modified in the Dual processor cache. The snoop notification
mechanism uses a dedicated, two-signal interface that is private to the dual processor pair. At the
same time that the Dual processor indicates that the transaction is contained as Modified in the its
cache, the Dual processor requests the bus from the Primary processor (still the MRM). The MRM
processor continues with the transaction that is outstanding on the bus, but ignores the data
returned by the system bus.

After the Dual processor notifies the Primary processor that the requested data is modified in the
Dual processor cache, the Dual processor waits for the bus transaction to complete. At this point,
the LRM/MRM state will toggle, with the Primary processor becoming the LRM processor and the
Dual processor becoming the MRM processor. This sequence of events is shown in diagram (c) of
Figure 3-13.

Diagram (c) of Figure 3-13 also shows the Dual processor writing the data back on the system bus.
The write back cycle looks like a normal cache line replacement to the system bus. The final state
of the line in the Dual processor is determined by the value of the W/R# pin as sampled during the
ADS# assertion by the Primary processor.

Finally, diagram (d) of Figure 3-13 shows the Primary processor re-running the bus transaction that
started the entire sequence. The requested data is returned by the system as a normal line fill
request without intervention from the LRM processor.
3-34 Embedded Pentium® Processor Family Developer’s Manual

Component Operation
3.9 APIC Interrupt Controller

The embedded Pentium processor contains implementations of the Advanced Programmable
Interrupt Controller architecture. These implementations are capable of supporting a
multiprocessing interrupt scheme with an external APIC-compatible controller.

The Advanced Programmable Interrupt Controller (APIC) is an on-chip interrupt controller that
supports multiprocessing. In a uniprocessor system, the APIC may be used as the sole system
interrupt controller, or may be disabled and bypassed completely.

In a multiprocessor system, the APIC operates with an additional and external I/O APIC system
interrupt controller. The dual-processor configuration requires that the APIC be hardware enabled.
The APICs of the Primary and Dual processors are used in the bootup procedure to communicate
start-up information.

Note: The APIC is not hardware compatible with the 82489DX.

On the embedded Pentium processor, the APIC uses 3 pins: PICCLK, PICD0, and PICD1.
PICCLK is the APIC bus clock while PICD0-PICD1 form the two-wire communication bus.

To use the 8259A interrupt controller, or to completely bypass it, the APIC may be disabled using
the APICEN pin. You must use the local APICs when using the dual-processor component.

Figure 3-13. Dual Processor L1 Cache Consistency

A6116-01

Primary
Processor

Dual
Processor

MRM LRM

Cycle
Completes

Processor Bus

Processor Bus

New Cycle
Starts

Automatic
Snoop

Modified Data
Written Back

Primary
Processor

Dual
Processor

Bus Request

Snoop Hit
Indication

MRM LRM

[a]
Processor Bus

Primary
Processor

Dual
ProcessorBus Request

Bus Grant
LRM

PA

PA

PB PA PB

PB

MRM

[c]

[b]

Cycle
Restarted

Primary
Processor

Dual
Processor

Bus Grant

MRM LRM

Processor Bus

PA PB

[d]
Embedded Pentium® Processor Family Developer’s Manual 3-35

Component Operation
The main features of the APIC architecture include:

• Multiprocessor interrupt management (static and dynamic symmetric interrupt distribution
across all processors)

• Dynamic interrupt distribution that includes routing interrupts to the lowest-priority processor

• Inter-processor interrupt support

• Edge or level triggered interrupt programmability

• Various naming/addressing schemes

• System-wide processor control functions related to NMI, INIT, and SMI (see Chapter 12 for
APIC handling of SMI)

• 8259A compatibility by becoming virtually transparent with regard to an externally connected
8259A style controller, making the 8259A visible to software

• A 32-bit wide counter used as a timer to generate time slice interrupts local to that processor.

The AC timings of the embedded Pentium processor APIC are described in Chapter 7. Note that
although there are minor software differences from the 82489DX, programming to the integrated
APIC model ensures compatibility with the external 82489DX. For additional APIC programming
information, refer to the MultiProcessor Specification (order number 242016).

In a dual-processor configuration, the local APIC may be used with an additional device similar to
the I/O APIC. The I/O APIC is a device that captures all system interrupts and directs them to the
appropriate processors via various programmable distribution schemes. An external device
provides the APIC system clock. Interrupts that are local to each processor go through the APIC on
each chip. A system example is shown in Figure 3-14.

Figure 3-14. APIC System Configuration

A6117-01

Primary
Processor

Dual
Processor

Local
APIC

CLK
Generator

8259A

I/O APIC

Local
APIC

Local
Interrupts

System I/O
Interrupts

16

PICD1
PICD0
PICCLK

LINT0
LINT1

LINT0
LINT1

Local
Interrupts

3.3V
3-36 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

nd
ded

are

rate a

h no
The APIC devices in the Primary and Dual processors may receive interrupts from the I/O APIC
via the three-wire APIC bus, locally via the local interrupt pins (LINT0, LINT1), or from the other
processor via the APIC bus. The local interrupt pins, LINT0 and LINT1, are shared with the INTR
and NMI pins, respectively. When the APIC is bypassed (hardware disabled) or programmed in
“through local” mode, the 8259A interrupt (INTR) and NMI are connected to the INTR/LINT0 a
NMI/LINT1 pins of the processor. Figure 3-15 shows the APIC implementation in the embed
Pentium processor. Note that the PICCLK has a maximum frequency of 16.67 MHz.

When the local APIC is hardware enabled, data memory accesses to its 4 Kbyte address space
executed internally and do not generate an ADS# on the processor bus. However, a code memory
access in the 4 KByte APIC address space will not be recognized by the APIC and will gene
cycle on the processor bus.

Note: Internally executed data memory accesses may cause the address bus to toggle even thoug
ADS# is issued on the processor bus.

3.9.1 APIC Configuration Modes

There are four possible APIC Modes:

• Normal mode

• Bypass mode (hardware disable)

• Through local mode

• Masked mode (software disable)

3.9.1.1 Normal Mode

This is the normal operating mode of the local APIC. When in this mode, the local APIC is both
hardware and software enabled.

Figure 3-15. Local APIC Interface

A6118-01

Local APIC
Module

Pentium® Processor
Interrupt Logic

Pentium® Processor

APIC EnablePICD1
PICD0

PICCLK

LINT1 / NMI
LINT0 / INTR

INIT
SMI#
Embedded Pentium® Processor Family Developer’s Manual 3-37

Component Operation

IC is

e, the

order
”
y

tware
tup

3.9.1.2 Bypass Mode

Bypass mode effectively removes (bypasses) the APIC from the embedded Pentium processor,
causing it to operate as if there were no APIC present. Any accesses to the APIC address space go
to memory. APICEN is sampled at the falling edge of RESET, and later becomes the PICD1 (part
of the APIC 3-wire bus) signal. Bypass mode is entered by driving APICEN low at the falling edge
of RESET. Since the APIC must be used to enable the Dual processor after RESET, PICD1 must be
driven high at reset to ensure that APIC is hardware enabled if a second processor is present.

For hardware disabling operations, the following implications must be considered:

• The INTR and NMI pins become functionally equivalent to the corresponding interrupt pins in
the embedded Pentium processor, and the APIC is bypassed.

• The APIC PICCLK must be tied high.

• The system will not operate with the Dual Processor if the local APIC is hardware disabled.

3.9.1.3 Through Local Mode

Configuring in Through Local Mode allows the APICs to be used for the dual-processor bootup
handshake protocol and then pass interrupts through the local APIC to the core to support an
external interrupt controller.

To use the Through Local Mode of the local APIC, the APIC must be enabled in both hardware and
software. This is done by programming two local vector table entries, LVT1 and LVT2, at
addresses 0FEE00350H and 0FEE00360H, as external interrupts (ExtInt) and NMI, respectively.
The 8259A responds to the INTA cycles and returns the interrupt vector to the processor.

The local APIC should not be sent any interrupts prior to it’s being programmed. Once the AP
programmed it can receive interrupts.

Note that although external interrupts and NMI are passed through the local APIC to the cor
APIC can still receive messages on the APIC bus.

3.9.1.4 Masked Mode

The local APIC is initialized to masked mode once hardware enabled via the APICEN pin. In
to be programmed in normal or Through Local Modes, the APIC must be “software enabled.
Once operating in normal or Through Local Modes, the APIC may be disabled by software b
clearing bit 8 of the APIC’s spurious vector interrupt register (Note: this register is normally
cleared at RESET and INIT). This register is at address 0FEE000F0H. Disabling APIC in sof
returns it to Masked mode. With the exception of NMI, SMI, INIT, remote reads, and the star
IPI, all interrupts are masked on the APIC bus. The local APIC does not accept interrupts on
LINT0 or LINT1.

3.9.1.5 Software Disabling Implications

For the software disabling operations, the following implications must be considered:

• The 4-Kbyte address space for the APIC is always blocked for data accesses (i.e., external
memory in this region must not be accessed).

• The interrupt control register (ICR) can be read and written (e.g., interprocessor interrupts are
sent by writing to this register).
3-38 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

.

 the
110”

ocessor
Thus,

these

ET.

o a
 the
t been
• The APIC can continue to receive SMI, NMI, INIT, “startup,” and remote read messages

• Local interrupts are masked.

• Software can enable/disable the APIC at any time. After software disabling the local APICs,
pending interrupts must be handled or masked by software.

• The APIC PICCLK must be driven at all times.

3.9.1.6 Dual Processing with the Local APIC

The Dual processor bootup protocol may be used in the normal, through local, or masked modes.

3.9.2 Loading the APIC ID

Loading the APIC ID may be done with external logic that would drive the proper address at reset.
If the BE3#–BE0# signals are not driven and do not have external resistors to VCC or VSS, the
APIC ID value defaults to 0000 for the Primary processor and 0001 for the Dual processor.

Warning: An APIC ID of all 1s is an APIC special case (i.e., a broadcast) and must not be used. Since
Dual processor inverts the lowest order bit of the APIC ID placed on the BE pins, the value “1
should also be avoided when operating in Dual Processing mode.

In a dual processor configuration, the OEM and Socket 5 should have the four BE pairs tied
together. The OEM processor loads the value seen on these four pins at RESET. The dual pr
loads the value seen on these pins and automatically inverts bit 24 of the APIC ID Register.
the two processors have unique APIC ID values.

In a general multi-processing system consisting of multiple embedded Pentium processors,
pins must not be tied together, so each local APIC can have unique ID values.

These four pins must be valid and stable two clocks before and after the falling edge of RES

3.9.3 Response to HOLD

While the embedded Pentium processor is accessing the APIC, the processor will respond t
HOLD request with a maximum delay of six clocks. To external agents that are not aware of
APIC bus, this looks like the processor is not responding to HOLD even though ADS# has no
driven and the processor bus seems idle.

Table 3-9. APIC ID

APIC ID Register Bit Pin Latched at RESET

bit 24 BE0#

bit 25 BE1#

bit 26 BE2#

bit 27 BE3#
Embedded Pentium® Processor Family Developer’s Manual 3-39

Component Operation

2–BF0
put

e.
3 ratio

-core
ot be
 edge

nd a
m

ot
3.10 Fractional Speed Bus

The embedded Pentium processor is offered in various bus-to-core frequency ratios. The BF
configuration pins determine the bus-to-core frequency ratio. The processor multiplies the in
CLK by the bus-to-core ratio to achieve higher internal core frequencies.

Note: Only the Low-power Embedded Pentium Processor with MMX technology has a BF2 pin.

The external bus frequency is set on power-up RESET through the CLK pin. The processor
samples the BFn pins on the falling edge of RESET to determine which bus-to-core ratio to us
When the BFn pins are left unconnected, the embedded Pentium processor defaults to the 2/
and the embedded Pentium processor with MMX technology defaults to the 1/2 ratio. BFn settings
must not change its value while RESET is active. Changing the external bus speed or bus-to
ratio requires a “power-on” RESET pulse initialization. Once a frequency is selected, it may n
changed with a warm-reset (15 clocks). The BF pin must meet a 1 ms setup time to the falling
of RESET.

Each embedded Pentium processor is specified to operate within a single bus-to-core ratio a
specific minimum to maximum bus frequency range (corresponding to a minimum to maximu
core frequency range).

Caution: Operation in other bus-to-core ratios or outside the specified operating frequency range is n
supported.

Tables 3-10 through 3-12 summarize these specifications.
.

Table 3-10. Bus-to-Core Frequency Ratios for the Embedded Pentium®
Processor (at 100/133/166 MHz)

BF1 BF0
Embedded Pentium®
Processor Bus/Core

Ratio

Max Bus/Core
Frequency (MHz)

Min Bus/Core
Frequency (MHz)

0 0 2/5 66/166 33/83

1 0 1/2 66/133 33/66

1 1 2/3† 66/100 33/50

† This is the default bus fraction for the embedded Pentium processor (at 100/133/166 MHz). If the BF pins
are left floating, the processor will be configured for the 2/3 bus to core frequency ratio.

Table 3-11. Bus-to-Core Frequency Ratios for the Embedded Pentium®
Processor with MMX™ Technology

BF1 BF0 Embedded Pentium Processor with
MMX™ Technology Bus/Core Ratio

Max Bus/Core
Frequency (MHz)

Min Bus/Core
Frequency (MHz)

1 1 2/7 66/233 33/117

0 1 1/3 66/200 33/100

1 0 1/2† N/A N/A

† This is the default bus-to-core ratio for the Pentium processor with MMX technology. If the BF pins are left
floating, the processor will be configured for the 1/2 bus-to-core frequency ratio, which is unsupported. Do
not float the BF pins at RESET.
3-40 Embedded Pentium® Processor Family Developer’s Manual

Component Operation
3.10.1 Fractional Bus Operation Examples

The following examples illustrate the embedded Pentium processor synchronization mechanism.

Table 3-12. Bus-to-Core Frequency Ratios for the Low-Power Embedded
Pentium® Processor with MMX™ Technology

BF2 BF1 BF0
Low-Power Embedded Pentium

Processor with MMX™ Technology
Bus/Core Ratio 4

Max Bus/Core
Frequency (MHz)

Min Bus/Core
Frequency (MHz)

0 0 0 2/5 66/166

1 0 0 1/4 66/266

Figure 3-16. Processor 1/2 Bus Internal/External Data Movement

A6122-01

Int CLK

Ext CLK

Int Data

Int Data

Ext Data

Ext Data

Output

Input

A

B

A

A A

B

Embedded Pentium® Processor Family Developer’s Manual 3-41

Component Operation
Figure 3-18 shows how the embedded Pentium processor prevents data from changing in clock 2,
where the 2/3 external clock rising edge occurs in the middle of the internal clock phase, so it can
be properly synchronized and driven.

Figure 3-17. Processor 2/3 Bus Internal/External Data Movement

A6123-01

Int CLK

Ext CLK

Int Data

Int Data

Ext Data

Ext Data

Output

Input

A

A B

B

A

BA

1 2 3 4 5

B

Figure 3-18. Processor 2/5 Bus Internal/External Data Movement

A6119-01

Int CLK

Ext CLK

Int Data

Int Data

Ext Data

Ext Data

Output

Input

A

C D

B

A B

1 2 3 4 5 6

C D
3-42 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

 as a

hile
t allows

uction.

oHalt.
3.11 Power Management

3.11.1 I/O Instruction Restart

I/O Instruction restart is a power management feature of the embedded Pentium processor that
allows the processor to re-execute an I/O instruction. In this way, an I/O instruction can alert a
sleeping device in a system and SMI# can be recognized before the I/O instruction is re-executed.
SMI# assertion causes a wake-up routine to be executed, so the restarted I/O instruction can be
executed by the system.

3.11.2 Stop Clock and Auto Halt Powerdown

The embedded Pentium processor uses Stop Clock and Auto Halt Powerdown to immediately
reduce the power of each device. These features cause the clock to be stopped to most of the
processor’s internal units and thus significantly reduce power consumption by the processor
whole.

Stop clock is enabled by asserting the STPCLK# pin of the embedded Pentium processor. W
asserted, the embedded Pentium processor stops execution and does service interrupts, bu
external and interprocessor (Primary and Dual processor) snooping.

AutoHalt Powerdown is entered once the embedded Pentium processor executes a HLT instr
In this state, most internal units are powered-down, but the embedded Pentium processor
recognizes all interrupts and snoops.

Embedded Pentium processor pin functions (D/P#, etc.) are not affected by STPCLK# or Aut

For additional details on power management, refer to Chapter 12, “Power Management.”

Figure 3-19. Processor 1/3 Bus Internal/External Data Movement

A6125-01

Int CLK

Ext CLK

Int Data

Int Data

Ext Data

Ext Data

Output

Input

B

A

A A

B

Embedded Pentium® Processor Family Developer’s Manual 3-43

Component Operation

t

or

 flag
3.12 CPUID Instruction

The CPUID instruction provides information to software about the vendor, family, model and
stepping of the microprocessor on which it is executing. In addition, it indicates the features
supported by the processor.

When executing CPUID:

• If the value in EAX is “0,” then the 12-byte ASCII string “GenuineIntel” (little endian) is
returned in EBX, EDX, and ECX. Also, EAX contains a value of “1” to indicate the larges
value of EAX which should be used when executing CPUID.

• If the value in EAX is “1,” then the processor version is returned in EAX and the process
capabilities (feature flags) are returned in EDX.

• If the value in EAX is neither “0” nor “1”, the embedded Pentium processor writes “0” to
EAX, EBX, ECX, and EDX.

The following EAX value is defined for the CPUID instruction executed with EAX = 1. The
processor version EAX bit assignments are given in Figure 3-20. Table 3-13 lists the feature
bits assignment definitions.

Figure 3-20. EAX Bit Assignments for CPUID

A6126-01

0 (Reserved)EAX

31 1314

Type

1112 78 3 04

Family Model Stepping
3-44 Embedded Pentium® Processor Family Developer’s Manual

Component Operation
The family field for the embedded Pentium processor family is 0101B (5H). The model value for
the embedded Pentium processor is 0010B (2H) or 0111B (7H), and the model value for the
embedded Pentium processor with MMX technology is 0100B (4H). The model value for the low-
power embedded Pentium processor with MMX technology is 1000B (8H)

Table 3-13. EDX Bit Assignment Definitions (Feature Flags)

Bit Name Value Description When Flag=1 Comments

0 FPU 1 Floating-point unit on-chip
The processor contains an FPU that
supports the Intel 387 floating-point
instruction set.

1 VME 1 Virtual Mode Enhancements The processor supports extensions to
virtual-8086 mode.

2 DE 1 Debugging Extension

The processor supports I/O breakpoints,
including the CR4.DE bit for enabling
debug extensions and optional trapping of
access to the DR4 and DR5 registers.

3 PSE 1 Page Size Extension The processor supports 4-Mbyte pages.

4 TSC 1 Time Stamp Counter
The RDTSC instruction is supported
including the CR4.TSD bit for
access/privilege control.

5 MSR 1 Embedded Pentium® Processor
MSR

Model SpecificRegisters are implemented
with the RDMSR, WRMSR instructions.

6 PAE 0 Physical Address Extension Physical addresses greater than 32 bits
are supported.

7 MCE 1 Machine Check Exception
Machine Check Exception, Exception 18,
and the CR4.MCE enable bit are
supported.

8 CX8 1 CMPXCHG8B Instruction
Supported

The compare and exchange 8 bytes
instruction is supported.

9 APIC 1 On-chip PIC Hardware
Enabled† The processor contains a local APIC.

10-11 R Reserved Do not rely on its value.

12 MTRR 0 Memory Type Range Registers
The processor supports the Memory Type
Range Registers specifically the
MTRR_CAP register.

13 PGE 0 Page Global Enable The global bit in the PDE’s and PTE’s and
the CR4.PGE enable bit are supported.

14 MCA 0 Machine Check Architecture
The Machine Check Architecture is
supported, specifically the MCG_CAP
register.

15-22 R Reserved Do not rely on its value.

23 MMX
technology 1 Intel Architecture MMX™

technology supported

The processor supports the MMX
technology instruction set extensions to
the Intel Architecture.

24-31 R Reserved Do not rely on its value.

† Indicates that the APIC is present and hardware is enabled (software disabling does not affect this bit).
Embedded Pentium® Processor Family Developer’s Manual 3-45

Component Operation
Note: Use the MMX technology feature bit (bit23) in the EFLAGS register, not the model value, to detect
the presence of the MMX technology feature set.

For specific information on the stepping field, consult the embedded Pentium processor family
Specification Update. The type field is defined in Table 3-14.

3.13 Model Specific Registers

Each embedded Pentium processor contains certain Model Specific Registers that are used in
execution tracing, performance monitoring, testing, and machine check errors. They are unique to
that embedded Pentium processor and may not be implemented in the same way in future
processors.

Two instructions, RDMSR and WRMSR (read/write model specific registers) are used to access
these registers. When these instructions are executed, the value in ECX specifies which model
specific register is being accessed.

Software must not depend on the value of reserved bits in the model specific registers. Any writes
to the model specific registers should write “0” into any reserved bits.

For more information, refer to Chapter 14, “Model Specific Registers and Functions.”

Table 3-14. EAX Type Field Values

Bit 13 Bit 12 Processor Type

0 0
Embedded Pentium® processor, embedded Pentium
processor with MMX™ technology or low-power embedded
Pentium processor with MMX technology

0 1 Reserved

1 0 Dual embedded Pentium processor

1 1 Reserved
3-46 Embedded Pentium® Processor Family Developer’s Manual

ng the
.
),

NIT)
 of the

ures,

o

e

in

low

d
ted

Microprocessor Initialization and
Configuration 4

This chapter covers microprocessor initialization and configuration information for both uni-
processor and dual-processor implementations of the embedded Pentium® processor family. For
configuration information on symmetric dual-processing mode, refer to “Managing and Designing
with the Symmetrical Dual Processing Configuration” on page 4-7.

Before normal operation of the processor can begin, the processor must be initialized by drivi
RESET pin active. The RESET pin forces the processor to begin execution in a known state
Several features are optionally invoked at the falling edge of RESET: Built-in-Self-Test (BIST
Functional Redundancy Checking and Three-state Test Mode.

In addition to the standard RESET pin, the processor has implemented an initialization pin (I
that allows the processor to begin execution in a known state without disrupting the contents
internal caches or the floating-point state.

This chapter describes the embedded Pentium processor power up and initialization proced
and the test and configuration features enabled at the falling edge of RESET.

4.1 Power Up Specifications

During power up, RESET must be asserted while VCC is approaching nominal operating voltage t
prevent internal bus contention, which could negatively affect the reliability of the processor.

It is recommended that CLK begin toggling within 150 ms after VCC reaches its proper operating
level. For the embedded Pentium® processor with MMX™ technology, it is recommended that th
CLK signal begin toggling within 150 ms after the last VCC plane stabilizes. This recommendation
is only to ensure long term reliability of the device.

In order for RESET to be recognized, the CLK input needs to be toggling. RESET must rema
asserted for 1 millisecond after VCC and CLK have reached their AC/DC specifications.

4.2 Test and Configuration Features

The INIT, FLUSH#, and FRCMC# inputs are sampled when RESET transitions from high to
to determine if BIST will be run, or if three-state test mode, or checker mode will be entered
(respectively). If RESET is driven synchronously, these signals must be at their valid level an
meet setup and hold times on the clock before the falling edge of RESET. If RESET is asser
asynchronously, these signals must be at their valid level two clocks before and after RESET
transitions from high to low.
Embedded Pentium® Processor Family Developer’s Manual 4-1

Microprocessor Initialization and Configuration
4.2.1 Built-in Self-Test

Self-test is initiated by driving the INIT pin high when RESET transitions from high to low. No bus
cycles are run by the processor during self test. The duration of self test is approximately 219 core
clocks. Approximately 70% of the devices in the processor are tested by BIST. The embedded
Pentium processor BIST consists of two parts: hardware self-test and microcode self-test. During
the hardware portion of BIST, the microcode ROM and all large PLAs are tested. All possible input
combinations of the microcode ROM and PLAs are tested.

The constant ROMs, BTB, TLBs, and all caches are tested by the microcode portion of BIST. The
array tests (caches, TLBs and BTB) have two passes. On the first pass, data patterns are written to
arrays, read back, and checked for mismatches. The second pass writes the complement of the
initial data pattern, reads it back, and checks for mismatches. The constant ROMs are tested by
using the microcode to add various constants and check the result against a stored value.

Upon successful completion of BIST, the cumulative result of all tests are stored in the EAX
register. If EAX contains 0H, then all checks passed; any non-zero result indicates a faulty unit.
Note that when an internal parity error is detected during BIST, the processor asserts the IERR# pin
and attempts to shutdown.

4.2.2 Three-state Test Mode

When the FLUSH# pin is sampled low when RESET transitions from high to low, the processor
enters three-state test mode. The processor floats all of its output pins and bidirectional pins,
including pins that are never floated during normal operation (except TDO). Three-state test mode
can be initiated to facilitate testing board interconnects. The processor remains in three-state test
mode until the RESET pin is asserted again.

4.2.3 Functional Redundancy Checking

The functional redundancy checking (FRC) master/checker configuration input is sampled when
RESET is high to determine whether the processor is configured in master mode (FRCMC# high)
or checker mode (FRCMC# low). Note, the embedded Pentium processor with MMX technology
does not support FRC mode.

The final master/checker configuration of the processor is determined the clock before the falling
edge of RESET. When configured as a master, the processor drives its output pins as required by
the bus protocol. When configured as a checker, the processor three-states all outputs (except
IERR#, PICD0, PICD1 and TDO) and samples the output pins (that would normally be driven in
master mode). If the sampled value differs from the value computed internally, the processor
asserts IERR# to indicate an error. Note that IERR# is not asserted due to an FRC mismatch until
two clocks after the ADS# of the first bus cycle (or in the third clock of the bus cycle).

To avoid an FRC error caused by differences in the unitialized FPU state, FINIT/FNINIT must be
used to initialize the FPU state prior to using FSAVE/FNSAVE in FRC mode. The initialization
should be done before other FPU activity so that it does not corrupt the previous state.

4.2.4 Lock Step APIC Operation

Lock Step operation is entered by holding BE4# high during the falling edge of RESET. Lock Step
operation is not supported by the embedded Pentium processor with MMX technology.
4-2 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration

the

tion
RESET
d data

h target

tion
s A20-
ns in

top of

ycle
T is
 is
bus
Lock Step operation guarantees recognition of an interrupt on a specific clock by two processors
operating together that are using the APIC as the interrupt controller. This functionality is related to
FRC operation, but FRC on the APIC pins is not fully supported in this way. There is no FRC
comparator on the APIC pins, but mismatches on these pins result in a mismatch on other pins of
the processor.

Fault tolerant systems implemented with multiple processors that run identical code sequences and
generate identical bus cycles on all clocks may utilize Lock Step operation.

Setup and Hold time specifications PICCLK (in relation to CLK) are added for this functionality.
Additionally, there is a requirement to sustain specific integer ratios between the frequencies of
PICCLK and CLK. This ratio should support both the maximum bus frequency of the device and
the maximum frequency of PICCLK. Details of these specifications can be found in Chapter 7,
“Electrical Differences Between Family Members.”

4.3 Initialization with RESET, INIT and BIST

Two pins, RESET and INIT, are used to reset the processor in different manners. A “cold” or
“power on” RESET refers to the assertion of RESET while power is initially being applied to
processor. A “warm” RESET refers to the assertion of RESET or INIT while VCC and CLK remain
within specified operating limits.

Table 4-1 shows the effect of asserting RESET and/or INIT.
.

Toggling either the RESET pin or the INIT pin individually forces the processor to begin execu
at address FFFFFFF0H. The internal instruction cache and data cache are invalidated when
is asserted (modified lines in the data cache are NOT written back). The instruction cache an
cache are not altered when the INIT pin is asserted without RESET. In both cases, the branc
buffer (BTB) and translation lookaside buffers (TLBs) are invalidated.

After RESET (with or without BIST) or INIT, the processor starts executing instructions at loca
FFFFFFF0H. When the first Intersegment Jump or Call instruction is executed, address line
A31 are driven low for CS-relative memory cycles and the processor only executes instructio
the lower 1 Mbyte of physical memory. This allows the system designer to use a ROM at the
physical memory to initialize the system.

RESET is internally hardwired and forces the processor to terminate all execution and bus c
activity within two clocks. No instruction or bus activity occurs as long as RESET is active. INI
implemented as an edge triggered interrupt and is recognized when an instruction boundary
reached. As soon as the processor completes the INIT sequence, instruction execution and
cycle activity continues at address FFFFFFF0H even if the INIT pin is not deasserted.

Table 4-1. Pentium® Processor Reset Modes

RESET INIT BIST Run? Effect on Code
and Data Caches

Effect on FP
Registers

Effect on BTB and
TLBs

0 0 No n/a n/a n/a

0 1 No None None Invalidated

1 0 No Invalidated Initialized Invalidated

1 1 Yes Invalidated Initialized Invalidated
Embedded Pentium® Processor Family Developer’s Manual 4-3

Microprocessor Initialization and Configuration
At the conclusion of RESET (with or without self-test) or INIT, the DX register contains a
component identifier. The upper byte contain 05H and the lower byte contains a stepping identifier.

Table 4-2 defines the processor state after RESET, INIT, and RESET with BIST (built in self-test).
.

Table 4-2. Register State after RESET, INIT and BIST

Storage Element RESET (No BIST)
(Note 1)

RESET (BIST)
(Note 1) INIT

EAX 0 0 if pass 0

EDX 0500+stepping 0500+stepping 0500+stepping

ECX, EBX, ESP, EBP, ESI, EDI 0 0 0

EFLAGS 2 2 2

EIP 0FFF0 0FFF0 0FFF0

CS selector = F000 selector = F000 selector = F000

AR = P, R/W, A AR = P, R/W, A AR = P, R/W, A

base = FFFF0000 base = FFFF0000 base = FFFF0000

limit = FFFF limit = FFFF limit = FFFF

DS, ES, FE, GS, SS selector = 0 selector = 0 selector = 0

AR = P, R/W, A AR = P, R/W, A AR = P, R/W, A

base = 0 base = 0 base = 0

limit = FFFF limit = FFFF limit = FFFF

(I/G/L)DTR, TSS selector = 0 selector = 0 selector = 0

base = 0 base = 0 base = 0

AR = P, R/W AR = P, R/W AR = P, R/W

limit = FFFF limit = FFFF limit = FFFF

CR0 60000010 60000010 Note 2

CR2, 3, 4 0 0 0

DR3–DR0 0 0 0

DR6 FFFF0FF0 FFFF0FF0 FFFF0FF0

DR7 00000400 00000400 00000400

Time Stamp Counter 0 0 Unchanged

Control and Event Select 0 0 Unchanged

TR12 0 0 Unchanged

All other MSR’s Undefined Undefined Unchanged

CW 0040 0040 Unchanged

SW 0 0 Unchanged

TW 5555 5555 Unchanged

FIP, FEA, FCS, FDS, FOP 0 0 Unchanged

FSTACK 0 0 Unchanged

SMBASE 30000 30000 Unchanged

Data and Code Cache Invalid Invalid Unchanged

Code Cache TLB, Data Cache
TLB, BTB, SDC Invalid Invalid Invalid

NOTES:
1. Register States are given in hexadecimal format.
2. CD and NW are unchanged, bit 4 is set to 1, all other bits are cleared.
4-4 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration

4.3.1 Recognition of Interrupts after RESET

To guarantee recognition of the edge sensitive interrupts (FLUSH#, NMI, R/S#, SMI#) after
RESET or after RESET with BIST, the interrupt input must not be asserted until four clocks after
RESET is deasserted, regardless of whether or not BIST is run.

4.3.2 Pin State During/After RESET

The processor recognizes and responds to HOLD, AHOLD, and BOFF# during RESET. Figure 4-1
shows the processor state during and after a power on RESET if HOLD, AHOLD, and BOFF# are
inactive. Note that the address bus pins (A31–A3, AP, BE7#–BE0#) and cycle definition pins
(M/IO#, D/C#, W/R#, CACHE#, SCYC, PCD, PWT, PM0/BP0, PM1/BP1 and LOCK#) are
undefined from the time RESET is asserted until the start of the first bus cycle.

The following lists the state of the output pins after RESET assuming HOLD, AHOLD, and
BOFF# are inactive, boundary scan is not invoked, and no internal parity error is detected.

• High: LOCK#, ADS#, ADSC#, APCHK#, PCHK#, IERR#, HIT#,
HITM#, FERR#, SMIACT#

• Low: HLDA, BREQ, BP3, BP2, PRDY

• High Independence: D63–D0, DP7–DP0

• Undefined: A31–A3, AP, BE7#–BE0#, W/R#, M/IO#, D/C#, PCD, PWT,
CACHE#, TDO, SCYC, PM0/BP0, PM1/BP1
Embedded Pentium® Processor Family Developer’s Manual 4-5

Microprocessor Initialization and Configuration
Figure 4-1. Pin States during Reset

A6127-01

1

Unidentified

Unidentified Valid

Valid

Unidentified Valid

Unidentified

CLK

Tx Tx Tx Tx Tx T1 T1 T1 T1

RESET

INT, FLUSH#
FRCMC# (SYNC)

INT, FLUSH#
FRCMC# (ASYNC)

ADS#, ADSC#

BREQ, HLDA,
BP3, BP2, PRDY

A31-A3, M/IO#, D/C#,
W/R#, SCYC, CACHE#,

BE7#-BE0#, AP, PCD,
PM0/BP0, PM1/BP1,

TDO, PWT

LOCK#, APCHK#,
PCHK#, IERR#,

HIT#, HITM#, FERR#,
SMIACT#

D63-D0
DP7-PD0

NOTES:
1. RESET must meet setup and hold times to guarantee recognition on a specific clock edge. If RESET

does not need to be recognized on a specific clock edge, it may be asserted asynchronously.

2. At power up, RESET needs to be asserted for 1 ms after Vcc and CLK have reached their AC/DC specifications.
For warm reset, RESET needs to be asserted for at least 15 clocks while Vcc and CLK remain within specified
operating limits.

3. If RESET is driven synchronously, FLUSH#, FRCMC# and INIT must be at their valid level and meet setup and
hold times to the clock before the falling edge of RESET.

4. If RESET is driven asynchronously, FLUSH#, FRCMC# and INIT must be at their valid level two clocks before
and after the falling edge of RESET.

5. An assertion of RESET takes at least two clocks to affect the pins.

5

3

4

219 Core Clock if BIST

150-200 Clocks if no BIST
4-6 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration

gister
sor

t for a

 pin.
ed,
d their

of
4.4 Managing and Designing with the Symmetrical Dual
Processing Configuration

4.4.1 Dual Processor Bootup Protocol

4.4.1.1 Bootup Overview

Systems using the embedded Pentium processor may be equipped with a second processor socket.
For correct system operation, the processor must be able to identify the presence and type of the
second processor (such as a Dual processor). Furthermore, since upgrade processors typically are
installed in the field by end users, system configuration may change between any two consecutive
power-down/up sequences. The system must therefore have a mechanism to ascertain the system
configuration during boot time. The boot up handshake protocol provides this mechanism.

4.4.1.2 BIOS/Operating System Requirements

The BIOS or HAL (hardware abstraction layer) of the operating system software should be generic,
independent of the kind of OEM or upgrade processor present in the system. BIOS/HAL are
specific to the system hardware, and should not need any change when an upgrade processor is
installed. For dual processors, if the BIOS is not DP-ready, it will be up to the operating system to
initialize and configure the dual processor appropriately.

The CPUID instruction is used to deliver processor-specific information. The embedded Pentium
processor CPUID status has been extended to supply the processor type information which
includes “turbo-upgrade” classification (“type” field: bits 13-12 = 0-1). For upgradability with a
future Pentium Overdrive processor, system software must allow the type field of the EAX re
following the CPUID instruction to contain the values for both the embedded Pentium proces
and the Pentium Overdrive processor. Note also that the model field of the CPUID is differen
Pentium OverDrive processor.

4.4.1.3 System Requirements

The number of Dual processors per Primary processor is limited to 1.

This bootup handshake protocol requires enabling the local APIC module using the APICEN
The startup IPI must be sent via the local APICs. Once the Dual processor has been initializ
software can later disable the local APIC module using several methods. These methods an
considerations are discussed in “APIC Interrupt Controller” on page 3-35.

The protocol does not preclude more generic multiprocessing systems where multiple pairs
Primary and Dual processors may exist on the system bus.

Figure 4-2. EAX Bit Assignments for CPUID

A6126-01

0 (Reserved)EAX

31 1314

Type

1112 78 3 04

Family Model Stepping
Embedded Pentium® Processor Family Developer’s Manual 4-7

Microprocessor Initialization and Configuration

 other
y the

clude

pace
4.4.1.4 Start-up Behavior

On RESET and INIT (message or pin), the processor begins execution at the reset vector
(0FFFFFFF0H). The Dual processor waits for a startup IPI from the BIOS or operating system via
the local APIC of the processor. The INIT IPI can be used to put the embedded Pentium processor
or Dual processor to sleep (once the INIT IPI is received, the processor must wait for the startup
IPI).

The startup IPI is specifically provided to start the Dual processor’s execution from a location
than the reset vector, although it also can be used for the processor. The startup IPI is sent b
system software via the local APIC by using a delivery mode of 110B. The startup IPI must in
an 8-bit vector that defines the starting address. The starting address = 000 VV 000H, where VV
indicates the vector field (in hex) passed through the IPI.

The 8-bit vector defines the address of a 4 Kbyte page in the Intel architecture Real Mode S
(1 Mbyte space). For example, a vector of 0CDH specifies a startup memory address of
000CD000H. This value is used by the processor to initialize the segment descriptor for the
upgrade’s CS register as follows:

• The CS selector is set to the startup memory address/16 (real mode addressing)

• The CS base is set to the startup memory address

• The CS limit is set to 64 Kbytes

• The current privilege level (CPL) and instruction pointer (IP) are set to 0

Note: Vectors of 0A0H to 0BFH are reserved by Intel. Do not use them.

The benefit of the startup IPI is that it does not require the APIC to be software enabled (the APIC
must be hardware enabled via the APICEN pin) and does not require the interrupt table to be
programmed. Startup IPIs are non-maskable and can be issued at any time to the embedded
Pentium processor or Dual processor. If the startup IPI message is not preceded by a RESET or
INIT (message or pin), it is ignored.

It is the responsibility of the system software to resend the startup IPI message if there is an error in
the IPI message delivery. Although the APIC need not be enabled in order to send the startup IPI,
the advantage to enabling the APIC prior to sending the startup IPI is to allow APIC error handling
to occur via the APIC error handling entry of the local vector table (ERROR INT or LVT3 at APIC
address 0FEE00370H). Otherwise, the system software would have to poll the delivery status bit of
the interrupt command register to determine if the IPI is pending (Bit 12 of the ICR=1) and resend
the startup IPI if the IPI remains pending after an appropriate amount of time.

4.4.1.5 Dual-Processor Presence Indication

The bootup handshake protocol becomes aware that an additional processor is present through the
DPEN# pin. The second processor is guaranteed to drive this signal low during RESETs falling
edge. If the system needs to remember the presence of a second processor for future use, it must
latch the state of the DPEN# pin during the falling edge of RESET.
4-8 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
4.4.2 Dual-Processor Arbitration

The embedded Pentium processor incorporates a private arbitration mechanism that allows the
Primary and Dual processors to arbitrate for the shared processor bus without assistance from a bus
controller. The arbitration scheme is architected in such a way that the dual processor pair appears
as a single processor to the system.

The processor arbitration logic uses a fair arbitration scheme. The arbitration state machine is
designed to efficiently use the processor bus bandwidth. The dual processor pair supports inter-
processor pipelining of most bus transactions. Furthermore, the arbitration mechanism does not
introduce any dead clocks on bus transactions.

4.4.2.1 Basic Dual-Processor Arbitration Mechanism

The basic set of arbitration premises requires that the processor check the second socket (Socket 7)
for a processor every time the processor enters reset. To perform the checking of the Socket 7 and
to perform the actual boot sequence, the processor in the 296-pin socket always comes out of reset
as the most-recent master (MRM). This requires the part in the Socket 7 to always come out of
reset as the least-recent master (LRM).

The LRM processor requests ownership of the processor bus by asserting the private arbitration
request pin, PBREQ#. The processor that is currently the MRM and owns the bus grants the bus to
the LRM as soon as any pending bus transactions have completed. The MRM grants the bus to the
LRM immediately if that processor has a pipelined cycle to issue. The MRM notifies that the LRM
can assume ownership by asserting the private arbitration grant pin, PBGNT#. The PBREQ# pin is
always the output of the LRM and the PBGNT# is always an input to the LRM.

A processor can park on the processor bus if there are no requests from the LRM. A parked
processor can be running cycles or just sitting idle on the bus. If a processor just ran a cycle on the
bus and has another cycle pending without an LRM request, the processor runs the second cycle on
the bus.

Locked cycles present an exception to the simple arbitration rules. All locked cycles are performed
as atomic operations without interrupt from the LRM. An exception to this rule is when a locked
access causes an assertion of PHITM# by the LRM. In this case, the MRM grants the bus to the
LRM and allows the writeback to complete.

The normal system arbitration pins (HOLD, HLDA, BOFF#) functions the same as in uni-
processor mode. Thus, the dual-processor pair always factors the state of the processor bus as well
as the state of the local arbitration before actually running a cycle on the processor bus.
Embedded Pentium® Processor Family Developer’s Manual 4-9

Microprocessor Initialization and Configuration
4.4.2.2 Dual-Processor Arbitration Interface

Figure 4-3 details the hardware arbitration interface.

Note: For proper operation, PBREQ# and PBGNT# must not be loaded by the system.

Figure 4-4 shows a typical arbitration exchange.

Diagram (a) of Figure 4-4 shows PA running a cycle on the processor bus with a transaction
pending. At the same time, PB has a cycle pending and has asserted the PBREQ# pin to notify PA
that PB needs the bus.

Diagram (b) of Figure 4-4 shows PA’s cycle completing with an NA# or the last BRDY#. Note here
that PA does not run the pending cycle, instead, PA grants the bus to PB to allow PB to run its
pending cycle.

In Diagram (c) of Figure 4-4, PB is running the pending transaction on the processor bus, and PA
asserts a request for the bus to PB. The bus is granted to PA, and Diagram (d) of Figure 4-4 shows
PA running the last pending cycle on the bus.

Figure 4-3. Dual-Processor Arbitration Interface

A6129-01

Primary
Processor

A31-A3 D63-D0

Dual
Processor

Processor Control

Processor Data Bus

Processor Address Bus

PBREQ#

PBGNT#

BOFF#

AHOLD

LOCK#

BREQ

HOLD

HLDA

PBREQ#

PBGNT#

BOFF#

AHOLD

LOCK#

BREQ

HOLD

HLDA
D63-D0 A31-A3
4-10 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
Figure 4-4. Typical Dual-Processor Arbitration Example

A6139-01

Primary
Processor

Dual
Processor

MRM LRM

Cycle
Completes

Processor Bus

Processor Bus

Bus
Transaction

Automatic
Snoop

Bus
Transaction

Automatic
Snoop

Primary
Processor

Dual
Processor

MRM LRM

[a]
Processor Bus

Primary
Processor Dual

Processor

PBGNT#

PBREQ#

PBGNT#

PBREQ#
PBREQ#

LRM

PA

PA

PB PA PB

PB

MRM

[c]

[b]

Bus
Transaction

Primary
Processor

Dual
Processor

MRM LRM

Processor Bus

PA PB

[d]

Cycle
Pending

Cycle
Pending

Cycle
Pending

Cycle
Pending

Cycle
Pending
Embedded Pentium® Processor Family Developer’s Manual 4-11

Microprocessor Initialization and Configuration
4.4.2.3 Dual-Processor Arbitration from a Parked Bus

When both processors are idle on the processor bus, and the LRM wants to issue an ADS#, there is
an arbitration delay in order that it may become the MRM. Figure 4-5 shows how the embedded
Pentium processor dual-processor arbitration mechanism handles this case.

This example shows the arbitration necessary for the LRM to gain control of the idle processor bus
in order to drive a cycle. In this example, PA is the Primary processor, and PB is the Dual processor.

Diagram (a) of Figure 4-5 shows PB requesting the bus from the MRM (PA). Diagram (b) of
Figure 4-5 shows PA granting control of the bus to PB. Diagram (c) of Figure 4-5 shows PB, now
the MRM, issuing a cycle.

Figure 4-5. Arbitration from LRM to MRM when Bus is Parked

A6140-01

Primary
Processor

Dual
Processor

MRM LRM

Processor Bus

Parked Bus Parked Bus

Primary
Processor

Dual
Processor

MRM LRM

[a]
Processor Bus

PBGNT#PBREQ#

PA PB PA PB

[b]

Bus Cycle

Primary
Processor

Dual
Processor

LRM MRM

Processor Bus

PA PB

[d]
4-12 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
4.4.3 Dual-Processor Cache Consistency

The embedded Pentium processor incorporates a mechanism to maintain cache coherency with the
Dual processor. The mechanism allows a dual processor to be inserted into the upgrade socket
without special considerations for the system hardware or software. The presence or absence of the
dual processor is totally transparent to the system.

4.4.3.1 Basic Cache Consistency Mechanism

A private snoop interface has been added to the embedded Pentium processor. The interface
consists of two pins (PHIT#, PHITM#) that only connect between the two sockets. The dual
processors arbitrate for the system bus via two private arbitration pins (PBREQ#, PBGNT#).

The LRM processor initiates a snoop sequence for all ADS# cycles to memory that are initiated by
the MRM. The LRM processor asserts the private hit indication (PHIT#) if the data accessed (read
or written) by the MRM matches a valid cache line in the LRM. In addition, if the data requested
by the MRM matches a valid cache line in the LRM that is in the modified state, the LRM asserts
the PHITM# signal. The system snooping indication signals (HIT#, HITM#) do not change state as
a result of a private snoop.

The processor supports system snooping via the EADS# pin in the same manner in which the
processor supports system snooping.

The private snoop interface is bidirectional. The processor that is currently the MRM samples the
private snoop interface, while the processor that is the LRM drives the private snoop signals.

The MRM initiates a self backoff sequence if the MRM detects an assertion of the PHITM# signal
while running a bus cycle. The self backoff sequence involves the following steps:

1. The MRM allows the cycle that was requested on the bus to finish. However, the MRM
ignores the data returned by the system.

2. The MRM-LRM exchanges ownership of the bus (as well as MRM-LRM state) to allow the
LRM to write the modified data back to the system.

3. The bus ownership will exchange one more time to allow the original bus master ownership of
the bus. At this point the MRM retries the cycle, receiving the fresh data from the system or
writing the data again.

The MRM uses an assertion of the PHIT# signal as an indication that the requested data is being
shared with the LRM. Independent of the WB/WT# pin, a cache line is placed in the cache in the
shared state if PHIT# is asserted. This makes all subsequent writes to that line externally visible
until the state of the line becomes exclusive (E or M states). In a uniprocessor system, the line may
have been placed in the cache in the E state. In this situation, all subsequent writes to that line are
not visible on the bus until the state is changed to I.

4.4.3.2 Cache Consistency Interface

Figure 4-6 details the hardware cache consistency interface.

Note: For proper operation, PHIT# and PHITM# must not be loaded by the system.
Embedded Pentium® Processor Family Developer’s Manual 4-13

Microprocessor Initialization and Configuration

r mode.

ons.
rm
4.4.3.3 Pin Modifications Due to the Dual-Processor

The processor, when operating in dual processing mode, modifies the functionality of the following
signals:

• A20M#, ADS#, BE4#–BE0#, CACHE#, D/C#, FERR#, FLUSH#, HIT#, HITM#, HLDA,
IGNNE#, LOCK#, M/IO#, PCHK#, RESET, SCYC, SMIACT#, W/R#

Table 4-10 on page 4-27 summarizes the functional changes of all the pins in dual processo

4.4.3.4 Locked Cycles

The processor implements atomic bus transactions by asserting the LOCK# pin. Atomic
transactions can be initiated explicitly in software by using a LOCK prefix on specific instructi
In addition, atomic cycles may be initiated implicitly for instructions or transactions that perfo
locked read-modify-write cycles. By asserting the LOCK# pin, the processor indicates to the
system that the bus transaction in progress cannot be interrupted.

Figure 4-6. Cache Consistency Interface

A6141-01

Primary
Processor

A31-A3 D63-D0

Dual
Processor

Processor Control

Processor Data Bus

Processor Address Bus

CACHE#

KEN#

BRDY#

ADS#

AHOLD

EADS#

HITM#

HIT#

PHIT#

PHITM#

W/R#

M/IO#

D/C#

EWBE#

WB/WT#

CACHE#

KEN#

BRDY#

ADS#

AHOLD

EADS#

HITM#

HIT#

PHIT#

PHITM#

W/R#

M/IO#

D/C#

EWBE#

WB/WT#

D63-D0 A31-A3
4-14 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
Lock cycles adhere to the following sequence:

1. An unlocked writeback occurs when a cache line is in the modified state in the MRM
processor. Two unlocked write back cycles may be required if the locked item spans two cache
lines that are both in the modified state.

2. A locked read to a cache line that is in the shared, exclusive or invalid state is always run on
the system bus. The cache line always is moved to the invalid state at the completion of the
cycle. A locked read cycle that is run by the MRM could hit a line that is in the modified state
in the LRM. In this case, the LRM asserts the PHITM# signal, indicating that the requested
data is modified in the LRM data cache. The MRM completes the locked read, but ignores the
data returned by the system. The components exchange ownership of the bus, allowing the
Modified cache line to be written back with LOCK# still active. The sequence completes with
the original bus owner re-running the locked read followed by a locked write. The sequence is
as shown in Figure 4-7.

In Figure 4-7, the small box inside each processor indicates the state of an individual cache line in
the sequence shown above. Diagram (c) of Figure 4-7 shows the locked writeback occurring as a
result of the inter-processor snoop hit to the M-state line.

Figure 4-7. Dual-Processor Cache Consistency for Locked Accesses

A6142-01

Primary
Processor

Dual
Processor

MRM LRM

Cycle
Completes

Processor Bus

Processor Bus

Locked
READ

Automatic
Snoop

Locked
Write Back

Primary
Processor

Dual
Processor

MRM LRM

[a]
Processor Bus

Primary
Processor Dual

Processor

PBGNT#

PBREQ#

PBGNT#

PBREQ#

PHITM#

LRM

PA

PA

PB PA PB

PB

MRM

[c]

[b]

Locked Read
Locked Write

Primary
Processor

Dual
Processor

MRM LRM

Processor Bus

PA PB

[d]

I

I IM

M

I

MI
Embedded Pentium® Processor Family Developer’s Manual 4-15

Microprocessor Initialization and Configuration
4.4.3.5 External Snoop Examples

Example 4-1. During a Write to an M-State Line

The following set of diagrams illustrates the actions performed when one processor attempts a
write to a line that is contained in the cache of the other processor. In this situation, the cached line
is in the M state in the LRM processor. The external snoop and the write are to the same address in
this example. In this example, PA is the Primary processor, and PB is the Dual processor.

In diagram (a) of Figure 4-8, processor PA starts a write cycle on the bus to a line that is in the M
state in processor PB. Processor PB notifies PA that the write transaction has hit an M-state line in
diagram (b) of Figure 4-8 by asserting the PHITM# signal. The MRM (PA) completes the write
cycle on the bus as if the LRM processor did not exist.

In this example, an external snoop happens just as the write cycle completes on the bus, but before
PB has a chance to write the modified data back to the system memory. Diagram (b) of Figure 4-8
shows PB asserting the HITM# signal, informing the system that the snoop address is cached in the
dual processing pair and is in the modified state. The external snoop in this example is hitting the
same line that caused the PHITM# signal to be asserted.

Diagram (c) of Figure 4-8 shows that an arbitration exchange has occurred on the bus, and PB is
now the MRM. Processor PB writes back the M state line; it appears to the system as if a single
processor was completing a snoop transaction.

Finally, diagram (d) of Figure 4-8 shows processor PA re-running the original write cycle after PB
has granted the bus back to PA.

Figure 4-8. Dual-Processor Cache Consistency for External Snoops

A6157-01

Primary
Processor

Dual
Processor

MRM LRM

Cycle
Completes

Processor Bus

Write
Cycle

Automatic
Snoop

Write
Back

Primary
Processor

Dual
Processor

MRM LRM

[a]
Processor Bus HITM#

Processor Bus HITM#

Primary
Processor Dual

Processor

PBREQ#

PBGNT#

PBREQ#

PHITM#

PBGNT#

LRM

PA

PA

PB PA PB

PB

MRM

[c]

[b]

Write
Cycle

Primary
Processor

Dual
Processor

MRM LRM

Processor Bus

PA PB

[d]

I

I I I I

M I M

System
Snoop
4-16 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
Example 4-2. During an MRM Self-Backoff

The following diagrams show an example in which an external snoop hits an M-state line during a
self backoff sequence.

In this example, PA is the Primary processor, and PB is the Dual processor.

In diagram (a) of Figure 4-9 processor PA initiates a write cycle that hits a line that is modified in
processor PB. In diagram of (b) of Figure 4-9, processor PB notifies PA that the line is modified in
its cache by asserting the PHITM# signal.

Diagram (c) of Figure 4-9 shows an external snoop occurring just as the bus arbitration has
exchanged ownership of the bus. Processor PB asserts the HITM# signal to notify the system that
the external snoop has hit a line in the cache. In this example, the external snoop hits a different
line that was just hit on the private snoop.

In diagram (d) of Figure 4-9, processor PB takes ownership of the processor bus from PA.
Processor PB initiates a writeback of the data just hit on the external snoop even though a
writeback due to the private snoop is pending. The external snoop causes processor PB to delay the
writeback that was initiated by the private snoop (to line 1).

Diagram (f) of Figure 4-9 shows the writeback of the modified data hit during the initial private
snoop. Processor PA then restarts the write cycle for the second time, and completes the write cycle
in Diagram (h) of Figure 4-9.
Embedded Pentium® Processor Family Developer’s Manual 4-17

Microprocessor Initialization and Configuration
Figure 4-9. Dual-Processor Cache Consistency for External Snoops

A6143-01

Primary
Processor

Dual
Processor

MRM LRM

Write Cycle
(line 1)

Processor Bus

Processor Bus

Write Cycle
(line 1)

Automatic
Snoop

Cycle
Completes

Primary
Processor

Dual
Processor

MRM LRM

[a]
Processor Bus

HITM# Processor Bus HITM#

Primary
Processor

Dual
Processor

PBGNT#

PBREQ#

PBREQ#

PBREQ#

PHITM#

LRM

PA

PA

PB PA PB

PB

MRM

[c]

[b]

Write
Back
(line 2)

Primary
Processor

Dual
Processor

LRM MRM

PA PB

[d]

I1 M1

I1 M1

M2

M2

I1 M1

M2

I1 M1

M2

Primary
Processor

Dual
Processor

LRM MRM

Write Back
(line 1)

Processor Bus

Write Back
Completes
(line2)

Primary
Processor

Dual
Processor

LRM MRM

[e]
Processor Bus

PBREQ#

PA PB PA PB

[f]

I1

I2

M1 I1 I1

I2

PBGNT#
Primary

Processor
Dual

Processor

MRM LRM

Write Cycle
(line 1)

Processor Bus

Primary
Processor

Dual
Processor

MRM LRM

[g]
Processor Bus

PA PB PA PB

[h]

I1 I1

I2

I1 I1

I2

System
Snoop
(hits line 2)
4-18 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
4.4.3.6 State Transitions Due to Dual-Processor
Cache Consistency

The following tables outline the state transitions that a cache line can encounter during various
conditions.

Table 4-3. Read Cycle State Transitions Due to Dual-Processor

Present State Pin Activity Next State Description

M n/a M Read hit. Data is provided to the processor
core by the cache. No bus activity.

E n/a E Read hit. Data is provided to the processor
core by the cache. No bus activity.

S n/a S Read hit. Data is provided to the processor
core by the cache. No bus activity.

I

CACHE#(L) &
KEN#(L) &

WB/WT#(H) &
PHIT#(H) &

PWT(L)

E

Cache miss. The cacheability information
indicates that the data is cacheable. A bus
cycle is requested to fill the cache line.
PHIT#(H) indicates that the data is not
shared by the LRM processor.

I

CACHE#(L) &
KEN#(L) &

[WB/WT#(L) +
PHIT#(L) +
PWT(H)]

S

Cache miss. The line is cacheable and a
bus cycle is requested to fill the cache line.
In this case, either the system or the LRM is
sharing the requested data.

I CACHE#(H) +
KEN#(h) I Cache miss. The system or the processor

indicates that the line is not cacheable.

NOTE: The assertion of PHITM# would cause the requested cycle to complete as normal, with the requesting
processor ignoring the data returned by the system. The LRM processor would write the data back
and the MRM would retry the cycle. This is called a self backoff cycle.
Embedded Pentium® Processor Family Developer’s Manual 4-19

Microprocessor Initialization and Configuration
Table 4-4. Write Cycle State Transitions Due to Dual-Processor

Present State Pin Activity Next State Description

M n/a M Write hit. Data is written directly to the
cache. No bus activity.

E n/a M Write hit. Data is written directly to the
cache. No bus activity.

S PWT(L) &
WB/WT#(H) E

Write hit. Data is written directly to the
cache. A write-through cycle is generated
on the bus to update memory and invalidate
the contents of other caches. The LRM
invalidates the line if it is sharing the data.
The state transition from S to E occurs
AFTER the write completes on the
processor bus.

S PWT(H) +
WB/WT#(L) S

Write hit. Data is written directly to the
cache. A write-through cycle is generated
on the bus to update memory and invalidate
the contents of other caches. The LRM
invalidates the line if it is sharing the data.

I n/a I
Write miss (the Pentium® processor does
not support write allocate). The LRM
invalidates the line if it is sharing the data.

Table 4-5. Inquire Cycle State Transitions Due to External Snoop

Present State Next State
(INV=1)

Next State
(INV=0) Description

M I S
Snoop hit to an M-state line. HIT# and
HITM# are asserted, followed by a
writeback of the line.

E I S Snoop hit. HIT# will be asserted.

S I S Snoop hit. HIT# will be asserted.

I I I Snoop miss.

Table 4-6. State Transitions in the LRM Due to Dual-Processor “Private” Snooping

Present State Next State
(MRM Write)

Next State
(MRM Read) Description

M I S

Snoop hit to an M state line. PHIT# and
PHITM# are asserted, followed by a
write-back of the line. Note that HIT#
and HITM# are NOT asserted.

E I S Snoop hit. PHIT# is asserted.

S I S Snoop hit. PHIT# is asserted.

I I I Snoop miss.
4-20 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
4.5 Designing with Symmetrical Dual Processors

Figure 4-10 shows how a typical system might be configured to support the Dual processor.

Refer to Table 4-10 on page 4-27 for a complete list of dual processor signal connection
requirements.

4.5.1 Dual Processor Bus Interface

The processor in the dual-processor configuration is designed to have an identical bus interface to a
standard processor system. The processor in dual processor mode has the capability to run the
following types bus of cycles:

• Single reads and writes from one processor.

• Burst reads and writes from one processor.

• Address pipelining with up to two outstanding bus cycles from one processor.

• Inter-processor address pipelining with up to two outstanding bus cycles, one from each
processor.

All cycles run by the two processors are clock-accurate to corresponding processor bus cycles.

Figure 4-10. Dual-Processor Configuration

A6152-01

Primary
Processor

A31-A3 D63-D0

Dual
Processor

System Control

Processor Control

Processor Data Bus

Processor Address Bus

Private Interface Private Interface

TCK

CACHE#

KEN#

BRDY#

STPCLK#

SMI#

TDO

ADS#

FLUSH#

TCK

CACHE#

KEN#

BRDY#

STPCLK#

SMI#

TDI

TDI TDO

ADS#

FLUSH#

D63-D0 A31-A3
Embedded Pentium® Processor Family Developer’s Manual 4-21

Microprocessor Initialization and Configuration
4.5.1.1 Intra- and Inter-Processor Pipelining

In uni-processor mode, the embedded Pentium processor supports bus pipelining with the use of
the NA# pin. The bus pipelining concept has been extended to the dual processor pair by allowing
inter-processor pipelining. This mechanism allows an exchange between LRM and MRM on
assertions of NA#.

When NA# is sampled low, the current MRM processor may drive one more cycle onto the bus or
it may grant the address bus and the control bus to the LRM. The MRM gives the bus to the LRM
only if its current cycle can have another cycle pipelined into it.

The cacheability (KEN#) and cache policy (WB/WT#) indicators for the current cycle are sampled
either in the same clock in which NA# is sampled or with the first BRDY# of the current cycle,
whichever comes first.

There are no restrictions on NA# due to dual processing mode.

Inter-processor pipelining is not supported in some situations, as shown in Table 4-7.

The table indicates that, unlike the uni-processor system, back-to-back write cycles are never
pipelined between the two processors.

The processor alone may pipeline I/O cycles into non-I/O cycles, non-I/O cycles into I/O cycles,
and I/O cycles into I/O cycles only for OUTS or INS (e.g., string instructions). I/O cycles may be
pipelined in any combination (barring writes into writes) between the Primary and Dual processors.

4.5.1.2 FLUSH# Cycles

The on-chip caches can be flushed by asserting the FLUSH# pin. The FLUSH# pin must be
connected to both the Primary and Dual processor parts. All cache lines in the instruction cache and
all lines in the data cache that are not in the modified state are invalidated when the FLUSH# pin is
asserted. All modified lines in the data cache are written back to system memory and then marked
as invalid in the data cache. The processor runs a special bus cycle to indicate that the flush process
has completed.

Table 4-7. Primary and Dual Processor Pipelining

Cycle Types
Primary and Dual Processor Pipelining

Inter-processor Intra-processor

First Cycle Pipelined Cycle Primary<>Dual Primary<>Primary Dual<>Dual

Write Back X No No No

LOCK# X No No No

X Write Back No No No

X LOCK# No No No

Write Write No Yes Yes

Write Read Yes Yes Yes

Read Write Yes Yes Yes

Read Read Yes Yes Yes

I/O I/O† Yes No No

† I/O write cycles may not be inter-processor pipelined into I/O write cycles
4-22 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration

t least

stem, a
flushed.

e
s will

an run
 the
essor

g
ined,

 the
cycle.
The embedded Pentium processor incorporates the following mechanism to present to the system a
unified view of the cache flush operation when used with a Dual processor part:

1. FLUSH# is asserted by the system.

2. The Dual processor requests the bus (if it is not already MRM when FLUSH# is recognized).
The Dual processor will always perform the cache flush operation first, but will not run a flush
special cycle on the system bus.

3. The Dual processor completes writebacks of modified cache lines, and invalidates all others.

4. Once the Dual processor caches are completely invalid, the processor grants the bus to the
Primary processor.

5. The Primary processor completes any pending cycles. The Primary processor may have
outstanding cycles if the Dual processor initiated its flush operation prior to the Primary
processor completing pending operations.

6. Primary processor flushes both of its internal caches and runs the cache flush special cycle.
The Primary processor maintains its status of MRM. The Dual processor halts all code
execution while the Primary processor is flushing its caches, and does not begin executing
code until it recognizes the flush acknowledge special cycle.

The atomic flush operation assumes that the system can tolerate potentially longer interrupt latency
during flush operations. The interrupt latency in a dual processor system can be double the
interrupt latency in a single processor system during flush operations.

The processor primary cache can be flushed using the WBINVD instruction. In a dual processor
system, the WBINVD instruction only flushes the cache in the processor that executed the
instruction. The other processor’s cache will be intact.

If the FLUSH# signal is deasserted before the corresponding Flush Acknowledge cycle, the
FLUSH# signal must not be asserted again until the Flush Acknowledge cycle is completed.
Similarly, if the FLUSH# signal is asserted in dual processing mode, it must be deasserted a
one clock prior to BRDY# of the Flush Acknowledge cycle to avoid dual-processor arbitration
problems. This requirement does not apply to a uni-processor system. In a dual processor sy
single Flush Acknowledge cycle is generated after the caches in both processors have been

Warning: If FLUSH# is recognized active a second time by the Primary and Dual processors prior to th
completion of the Flush Acknowledge special cycle, the private bus arbitration state machine
be corrupted.

4.5.1.3 Arbitration Exchange with Bus Parking

The dual processor pair supports a number of different types of bus cycles. Each processor c
single-transfer cycles or burst-transfer cycles. A processor can only initiate bus cycles if it is
MRM. To gain ownership of the bus, the LRM processor requests the bus from the MRM proc
by asserting PBREQ#.

In response to PBREQ# the MRM grants the address and control buses to the LRM by assertin
PBGNT#. If NA# is not asserted or if the current cycle on the bus is not capable of being pipel
the MRM waits until the end of the active cycle before granting the bus to the LRM. Once
PBGNT# is asserted, since the bus is idling, the LRM immediately becomes the MRM. While
MRM, the processor owns the address and the control buses and can therefore start a new
Embedded Pentium® Processor Family Developer’s Manual 4-23

Microprocessor Initialization and Configuration
4.5.1.4 BOFF#

If BOFF# is asserted, the dual-processor pair immediately (in the next clock) floats the address,
control, and data buses. Any bus cycles in progress are aborted, and any data returned to the
processor in the clock in which BOFF# is asserted is ignored. In response to BOFF#, Primary and
Dual processors float the same pins as when HOLD is active.

The Primary and Dual processors may reorder cycles after a BOFF#. The reordering occurs if there
is inter-processor pipelining at the time of the BOFF#, but the system cannot change the
cacheability of the cycles after the BOFF#. Note that there could be a change of bus ownership
transparent to the system while the processors are in the backed-off state. Table 4-8 illustrates the
flow of events which would result in cycle reordering due to BOFF#:

4.5.1.5 Bus Hold

The processor supports a bus hold/hold acknowledge protocol using the HOLD and HLDA signals.
When the processor completes all outstanding bus cycles, it releases the bus by floating the
external bus, and driving HLDA active. HLDA normally is driven two clocks after the later of the
last BRDY# or HOLD being asserted, but may be up to six clocks due to active internal APIC
cycles. Because of this, it is possible that an additional cycle may begin after HOLD is asserted but
before HLDA is driven. Therefore, asserting HOLD does not prevent a dual-processor arbitration
from occurring before HLDA is driven out. Even if an arbitration switch occurs, no new cycles are
started after HOLD has been active for two clocks.

Table 4-8. Cycle Reordering Due to BOFF#

Time† Processor A System Processor B

0 ADS# driven -- --

1 -- NA# active --

2 -- -- ADS# driven

3 Bus float BOFF# active Bus float

4 -- EADS# active --

5 -- -- HITM# driven

6 -- BOFF# inactive --

7 -- -- Write back ‘M’ data

8 -- BRDY#s --

9 -- -- Restart ADS#

10 Restart ADS# -- --

† Time is merely sequential, NOT measured in CLKs.
4-24 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration

ssor
ctions

te

the

s if
n

 owns

sor

, from
special

4.5.2 Dual Processing Power Management

4.5.2.1 STPCLK#

The Primary and Dual processor STPCLK# signals may be tied together or left separate. Refer to
Chapter 12, “Power Management.” for more information on stop clock and Autohalt.

4.5.2.2 System Management Mode

The embedded Pentium processor supports system management mode (SMM) with a proce
inserted in the upgrade socket. SMM provides a means to implement power management fun
and operating system independent functions. SMM consists of an interrupt (SMI), an alterna
address space and an instruction (RSM). SMM is entered by asserting the SMI# pin or delivering
the SMI interrupt via the local APIC.

Although SMM functions the same when a Dual processor is inserted in Socket 5/Socket 7,
dual processor operation of the system must be carefully considered. The SMI# pins may be tied
together or not, depending upon the power management features supported.

4.5.3 Other Dual-Processor Considerations

4.5.3.1 Strong Write Ordering

The ordering of write cycles in the processor can be controlled with the EWBE# pin. During
uniprocessor operation, the EWBE# pin is sampled by the processor with each BRDY# assertion
during a write cycle. The processor stalls all subsequent write operations to E or M state line
EWBE# is sampled inactive. If the EWBE# pin is sampled inactive, it continues to be sampled o
every clock until it is found to be active.

In dual processing mode, each processor tracks EWBE# independently of bus ownership. EWBE#
is sampled and handled independently between the two processors. Only the processor that
the bus (MRM) samples EWBE#. Once sampled inactive, the processor stalls subsequent write
operations.

4.5.3.2 Bus Snarfing

The dual processor pair does not support cache-to-cache transfers (bus snarfing). If a procesPB
requires data that is modified in processor PA, processor PA writes the data back to memory. After
PA has completed the data transfer, PB runs a read cycle to memory. Where PA is either the Primary
or the Dual processor, and PB is the other processor.

4.5.3.3 Interrupts

A processor may need to arbitrate for the use of the bus as a result of an interrupt. However
the simple arbitration model used by the embedded Pentium processor, an interrupt is not a
case. There is no interaction between dual-processor support and the interrupt model in the
embedded Pentium processor.
Embedded Pentium® Processor Family Developer’s Manual 4-25

Microprocessor Initialization and Configuration
4.5.3.4 INIT Sequences

The INIT operation in dual-processor mode is exactly the same as in uni-processor mode. The two
INIT pins must be tied together. However, in dual processor mode, the Primary processor must
send an IPI and a starting vector to the Dual processor via the local APIC modules.

4.5.3.5 Boundary Scan

The embedded Pentium processor supports the full IEEE JTAG specification. The system designer
is responsible to configure an upgrade ready system in such a way that the addition of a Dual
processor in Socket 7 allows the boundary scan chain to functional as normal. This could be
implemented with a jumper in Socket 7 that connects the TDI and TDO pins. The jumper would
then be removed when the dual processor is inserted.

Alternatively, Socket 7 could be placed near the end of the boundary scan chain in the system. A
multiplexer in the system boundary scan logic could switch between the TDO of the Primary and
the dual processors as a Dual processor part is inserted. An illustration of this approach is shown in
Figure 4-11.

4.5.3.6 Presence of a Processor in Socket 7

The Dual processor drives the DPEN# signal low during RESET to indicate to the Primary
processor that a processor is present in Socket 7. The processor samples this line during RESETs
falling edge.

DPEN# shares a pin with the APIC PICD0 signal.

4.5.3.7 MRM Processor Indication

In a dual-processor system, the D/P# (Dual processor/Primary processor Indication) signal
indicates which processor is running a cycle on the bus. Table 4-9 shows how the external
hardware can determine which processor is the MRM.

Figure 4-11. Dual-Processor Boundary Scan Connections

A6155-01

MUX

TDI TDI

Processor in Socket 5 Present

Level
Translator

Primary
Processor Socket 5

Other
System Logic

TDI

TDO TDI

TDO TDO TDO
4-26 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
D/P# can be sampled by the system with ADS# to determine which processor is driving the cycle
on the bus. D/P# is driven only by the processor when operating as the Primary processor. Because
of this, this signal is never driven by the Dual processor.

4.5.4 Dual-Processor Pin Functions

All the inputs pins are sampled with bus clock or test clock, and therefore, must meet setup and
hold times with respect to the rising edge of the appropriate clock. In the dual-processor
configuration, the RESET and FLUSH# pins have been changed to be synchronous (i.e., to meet
setup and hold times). There have been no changes to the other existing input pins.

If the FLUSH# signal is deasserted before the corresponding FLUSH ACK cycle, the FLUSH#
signal must not be asserted again until the FLUSH ACK cycle is generated. This requirement does
not apply to a uni-processor system. In a dual processor system, a single FLUSH ACK cycle is
generated after the caches in both processors have been flushed.

All system output pins are driven from the rising edge of the bus clock and meet maximum and
minimum valid delays with respect to the bus clock. TDO is driven with respect to the rising edge
of TCK and PICD0–PICD1 are driven with respect to the rising edge of PICCLK.

Table 4-10 summarizes the functional changes of all the pins in dual-processor mode.
.

Table 4-9. Using D/P# to Determine MRM

D/P# Bus Owner

0 Primary processor is MRM

1 Dual processor is MRM

Table 4-10. Dual-Processor Pin Functions vs. Pentium® Processor (Sheet 1 of 4)

Pin Name I/O Load
(Note 1)

Same?
(Note 2)

Tied
Together?

(Note 3)
Comments

A31–A3 I/O Y N Yes When the MRM becomes the LRM (and issues
PBGNT#), it three-states these signals for one CLK.

A20M# I Y Y Yes
Used in virtual mode and possibly in real mode by
DOS and DOS extenders. Internally masked by the
Dual processor.

ADS#,
ADSC#

I/O

O
Y N Yes

ADS# and ADSC# are three-stated by the LRM
processor in order to allow the MRM processor to
begin driving them. There are no system
implications.

AHOLD I Y Y Yes

AP I/O Y N Yes When the MRM becomes the LRM (and issues
PBGNT#), it three-states this signal for one CLK.

NOTES:
1. “Load” indicates whether the pin would introduce a capacitive load to the system board due to the presence of

the dual processor.
2. “N” indicates that there is a minor functional change to the pin(s) either as an enhancement to the embedded

Pentium processor or due to dual processor operation.
3. “Yes” means that both processors must see the same value on the pin(s) for proper dual-processor operation.

“No” means that the system must provide the signal to each processor independently. “May be” means that
the system designer can choose to provide the signal to both processors or provide independent signals to
each processor.
Embedded Pentium® Processor Family Developer’s Manual 4-27

Microprocessor Initialization and Configuration
APCHK# O N Y No Requires a system OR function.

BE7–BE5#
BE4# –BE0#

O
I/O

Y
Y

N
N

Yes
Yes

When the MRM becomes the LRM (and issues
PBGNT#), it three-states these signals for one CLK.
BE3#–BE0# are used by the local APIC modules to
load the APIC_ID at RESET. BE3#–BE0# will be
three-stated by the Primary and Dual processors
during RESET.

BF I Y n/a Yes

BOFF# I Y Y Yes

BP3–BP0 O N N No

BP3–BP0 now only indicates breakpoint match in
the I/O clock. Each processor must have different
breakpoints. Note that BP1–BP0 are muxed with
PM1–PM0.

BRDY#,
BRDYC# I Y Y Yes

BREQ O Y N Yes The MRM drives this signal as a combined bus cycle
request for itself and the LRM.

BUSCHK# I Y Y Yes

CACHE# I/O Y N Yes When the MRM becomes the LRM (and issues
PBGNT#), it three-states this signal for one CLK.

CLK I Y Y Yes Both processors must use the same system clock.

CPUTYP I Y n/a No

D/C# I/O Y N Yes When the MRM becomes the LRM (and issues
PBGNT#), it three-states this signal for one CLK.

D/P# O n/a n/a No The Primary processor always drives this signal.
This output is not defined on the Dual processor.

D63–D0 I/O Y Y Yes

DP7–DP0 I/O Y Y Yes

EADS# I Y Y Yes

EWBE# I Y Y Yes

This signal is sampled active with BRDY#, but
inactive asynchronously. For optimized performance
(minimum number of write E/M stalls) the chip
set/platform should allow a dead clock between
buffer going empty to buffer going full. This allows
this signal to be completely independent between
the two processors, rather than having one stall
internal cache writes due to the other filling the
external buffer.

FERR# O Y Y Yes
Used for DOS floating-point compatibility. The
Primary processor drives this signal. The Dual
processor never drives this signal.

Table 4-10. Dual-Processor Pin Functions vs. Pentium® Processor (Sheet 2 of 4)

Pin Name I/O Load
(Note 1)

Same?
(Note 2)

Tied
Together?
(Note 3)

Comments

NOTES:
1. “Load” indicates whether the pin would introduce a capacitive load to the system board due to the presence of

the dual processor.
2. “N” indicates that there is a minor functional change to the pin(s) either as an enhancement to the embedded

Pentium processor or due to dual processor operation.
3. “Yes” means that both processors must see the same value on the pin(s) for proper dual-processor operation.

“No” means that the system must provide the signal to each processor independently. “May be” means that
the system designer can choose to provide the signal to both processors or provide independent signals to
each processor.
4-28 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
FLUSH# I Y Y Yes

In a dual-processor system, the flush operation is
atomic with a single flush acknowledge bus cycle.
Therefore, FLUSH# must not be re-asserted until
the corresponding FLUSH ACK cycle is generated.

FRCMC# I N Y Yes
Both processors must be in Master mode. A
processor in the Socket 7 cannot be used as a
Checker.

HIT# I/O Y N Yes
This signal is asserted by the MRM based on the
combined outcome of the inquire cycle between the
two processors.

HITM# I/O Y N Yes See HIT#.

HLDA I/O Y N Yes Driven by the MRM.

HOLD I Y Y Yes

IERR# O N Y No

IGNNE# I Y Y Yes The Dual processor ignores this signal.

INIT I N N Yes In dual-processor mode, the Dual processor
requires an IPI during initialization.

INTR/LINT0 I N N May be
If the APIC is enabled, this pin is a local interrupt. If
the APIC is hardware disabled, this pin function is
not changed.

INV I Y Y Yes

KEN# I Y Y Yes

LOCK# I/O Y N Yes

The LRM samples the value of LOCK#, and drives
the sampled value in the clock in which it gets
ownership of the dual-processor bus. If sampled
active, then the LRM keeps driving the LOCK#
signal until ownership changes again.

M/IO# I/O Y N Yes When the MRM becomes the LRM (and issues
PBGNT#), it three-states this signal for one CLK.

NA# I Y Y Yes

NC n/a N Y No

NMI/LINT1 I N Y May be
If the APIC is enabled, then this pin is a local
interrupt. If the APIC is hardware disabled, this pin
function is not changed.

PBGNT# I/O n/a n/a Yes This signal is always driven by one of the
processors.

PBREQ# I/O n/a n/a Yes This signal is always driven by one of the
processors.

PCD O Y N Yes When the MRM becomes the LRM (and issues
PBGNT#), it three-states this signal for one CLK.

Table 4-10. Dual-Processor Pin Functions vs. Pentium® Processor (Sheet 3 of 4)

Pin Name I/O Load
(Note 1)

Same?
(Note 2)

Tied
Together?

(Note 3)
Comments

NOTES:
1. “Load” indicates whether the pin would introduce a capacitive load to the system board due to the presence of

the dual processor.
2. “N” indicates that there is a minor functional change to the pin(s) either as an enhancement to the embedded

Pentium processor or due to dual processor operation.
3. “Yes” means that both processors must see the same value on the pin(s) for proper dual-processor operation.

“No” means that the system must provide the signal to each processor independently. “May be” means that
the system designer can choose to provide the signal to both processors or provide independent signals to
each processor.
Embedded Pentium® Processor Family Developer’s Manual 4-29

Microprocessor Initialization and Configuration
PCHK# O N Y May be
May be wire-ANDed together in the system, tied
together, or the chip set may have two PCHK#
inputs for dual-processor data parity.

PEN# I Y Y Yes

PHIT# I/O n/a n/a Yes This signal is always driven by one of the
processors.

PHITM# I/O n/a n/a Yes This signal is always driven by one of the
processors.

PHITM# I/O n/a n/a Yes This signal is always driven by one of the
processors.

PICCLK I Y n/a Yes

PICD1–
PICD0 I/O Y n/a Yes

PM1–PM0 O N N No
Each processor may track different performance
monitoring events. Note that PM1–PM0 are mux’d
with BP1–BP0.

PRDY O N Y No

PWT O Y N Yes When the MRM becomes the LRM (and issues
PBGNT#), it three-states this signal for one CLK.

R/S# I N Y No

RESET I Y Y Yes
In dual-processor mode, RESET must be
synchronous to the processor CLK that goes to the
Primary and Dual processors.

SCYC I/O Y N Yes When the MRM becomes the LRM (and issues
PBGNT#), it three-states this signal for one CLK.

SMI# I N Y May be Refer to Chapter 12.

SMIACT# O N Y Yes Refer to Chapter 12.

STPCLK# I n/a n/a May be Refer to Chapter 12.

TCK I n/a n/a May be System dependent

TDI I n/a n/a No System dependent

TDO O n/a n/a No System dependent

TMS I n/a n/a May be System dependent

TRST# I n/a n/a May be System dependent

VCC I N N Yes VCC on the processor must be connected to 3.3 V.

VSS I N Y Yes

W/R# I/O Y N Yes When the MRM becomes the LRM (and issues
PBGNT#), it three-states this signal for one CLK.

WB/WT# I Y Y Yes

Table 4-10. Dual-Processor Pin Functions vs. Pentium® Processor (Sheet 4 of 4)

Pin Name I/O Load
(Note 1)

Same?
(Note 2)

Tied
Together?
(Note 3)

Comments

NOTES:
1. “Load” indicates whether the pin would introduce a capacitive load to the system board due to the presence of

the dual processor.
2. “N” indicates that there is a minor functional change to the pin(s) either as an enhancement to the embedded

Pentium processor or due to dual processor operation.
3. “Yes” means that both processors must see the same value on the pin(s) for proper dual-processor operation.

“No” means that the system must provide the signal to each processor independently. “May be” means that
the system designer can choose to provide the signal to both processors or provide independent signals to
each processor.
4-30 Embedded Pentium® Processor Family Developer’s Manual

s bit 20
s.
.

s bit
. Note

d
efore

in is

e

s are
Hardware Interface 5

5.1 Detailed Pin Descriptions

This chapter describes the embedded Pentium® processor pins that interface to the system. Both
the embedded Pentium processor and the embedded Pentium processor with MMX technology
have the same logical hardware interface. The embedded Pentium processor with MMX
technology has one extra signal, VCC2DET#.

The processor, when operating in dual processing mode, modifies the functionality of the following
signals:

• A20M#, ADS#, BE4#–BE0#, CACHE#, D/C#, FERR#, FLUSH#, HIT#, HITM#, HLDA,
IGNNE#, LOCK#, M/IO#, PCHK#, RESET, SCYC, SMIACT#, W/R#

5.1.1 A20M#

Signal Description

When the address 20 mask (A20M#) input is asserted, the processor masks physical addres
(A20) before performing a lookup to the internal caches or driving a memory cycle on the bu
A20M# is provided to emulate the address wraparound at 1 Mbyte which occurs on the 8086

Note: A20M# must be asserted only when the processor is in real mode. The effect of asserting A20M# in
protected mode is undefined and may be implemented differently in future processors.

Inquire cycles and writebacks caused by inquire cycles are not affected by this input. Addres
A20 is not masked when an external address is driven into the processor for an inquire cycle
that if an OUT instruction is used to modify A20M#, this does not affect previously prefetche
instructions. A serializing instruction must be executed to guarantee recognition of A20M# b
a specific instruction.

The processor, when configured as a Dual processor, ignores the A20M# input.

When Sampled/Driven

A20M# is sampled on every rising clock edge. A20M# is level sensitive and active low. This p
asynchronous, but must meet setup and hold times for recognition in any specific clock. To
guarantee that A20M# will be recognized before the first ADS# after RESET, A20M# must b
asserted within two clocks after the falling edge of RESET

Note: As the performance of embedded Pentium processors continues to improve, code sequence
executed faster. As a result, some code sequences that rely upon hardware timing may fail.
Specifically when a keyboard controller is used to toggle the A20M# pin and the keyboard

A20M# Address 20 Mask

Used to emulate the 1 Mbyte address wraparound on the 8086

Asynchronous Input
Embedded Pentium® Processor Family Developer’s Manual 5-1

Hardware Interface

m the

 space

r to
4 and
 meet

id from
, or

 in the
controller is slow in response, data or code may be read from a wrong address at some point in a
code sequence. Therefore, you should ensure that the keyboard controller switches the A20M#
signal fast enough to match the execution speed of the processor. Software should be written to
synchronize code execution with the toggling of the A20M# signal.

Relation to Other Signals

5.1.2 A31–A3

Signal Description

As outputs, the Address Lines (A31–A3) along with the byte enable signals (BE7#–BE0#) for
address bus and define the physical area of memory or I/O accessed.

The embedded Pentium processor is capable of addressing 4 gigabytes of physical memory
and 64 Kbytes of I/O address space.

As inputs, the address bus lines A31–A5 are used to drive addresses back into the processo
perform inquire cycles. Since inquire cycles affect an entire 32-byte line, the logic values of A
A3 are not used for the hit/miss decision, however A4 and A3 must be at valid logic level and
setup and hold times during inquire cycles.

When Sampled/Driven

When an output, the address is driven in the same clock as ADS#. The address remains val
the clock in which ADS# is asserted until the earlier of the last BRDY# or the clock after NA#
until AHOLD is asserted.

When an input, the address must be returned to the processor to meet setup and hold times
clock in which EADS# is sampled asserted.

Pin Symbol Relation to Other Signals

A20 When asserted, A20M# masks the value of address pin A20.

CPUTYP When strapped to VCC, the processor ignores the A20M# input.

A31–A3 Address Lines

Defines the physical area of memory or I/O accessed.

Input/Output
5-2 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface

1–

 cycle.
clock

e

de,
Relation to Other Signals

5.1.3 ADS#

Signal Description

The Address Strobe output indicates that a new valid bus cycle is currently being driven by the
processor. The following pins are driven to their valid level in the clock ADS# is asserted: A3
A3, AP, BE7#–BE0#, CACHE#, LOCK#, M/IO#, W/R#, D/C#, SCYC, PWT, PCD.

ADS# is used by external bus circuitry as the indication that the processor has started a bus
The external system may sample the bus cycle definition pins on the next rising edge of the
after ADS# is driven active.

ADS# floats during bus HOLD and BOFF#. ADS# is not driven low to begin a bus cycle whil
AHOLD is asserted unless the cycle is a writeback due to an external invalidation. An active
(floating low) ADS# in the clock after BOFF# is asserted should be ignored by the system.

This signal is normally identical to the ADSC# output. When operating in dual processing mo
the processor uses this signal for private snooping.

Pin Symbol Relation to Other Signals

A20M# When asserted, A20M# causes address pin A20 to be masked.

ADS#
A31–A3 are driven with ADS# (except when a external inquire cycle causes a
writeback before AHOLD is deasserted, see Chapter 6, “Bus Functional
Description”).

AHOLD A31–A3 are floated one clock after AHOLD is asserted.

AP Even address parity is driven/sampled with the address bus on AP.

APCHK# The status of the address parity check is driven on the APCHK# pin.

BE7#–BE0# Completes the definition of the physical area of memory or I/O accessed.

BOFF# A31–A3 are floated one clock after BOFF# is asserted.

EADS# A31–A5 are sampled with EADS# during inquire cycles.

HIT# HIT# is driven to indicate whether the inquire address driven on A31–A5 is valid
in an internal cache.

HITM# HITM# is driven to indicate whether the inquire address driven on A31–A5 is in
the modified state in the data cache.

HLDA A31–A3 are floated when HLDA is asserted.

INV INV determines whether the inquire address driven to the processor on A31–A5
should be invalidated or marked as shared if it is valid in an internal cache.

ADS# Address Strobe

Indication that a new valid bus cycle is currently being driven by the
processor.

Synchronous Input/Output
Embedded Pentium® Processor Family Developer’s Manual 5-3

Hardware Interface
When Sampled/Driven

ADS# is driven active in the first clock of a bus cycle and is driven inactive in the second and
subsequent clocks of the cycle. ADS# is driven inactive when the bus is idle.

This signal becomes an Input/Output when two embedded Pentium processors are operating
together in Dual Processing Mode.

Relation to Other Signals

5.1.4 ADSC#

Signal Description

This signal is identical to the ADS# output. This signal can be used to relieve tight board timings
by easing the load on the Address Strobe signal.

When Sampled/Driven

Refer to the ADS# signal description.

Note: ADSC# is not tested and timings are not specified. It is recommended that ADSC# not be used.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADSC# ADS# is identical to the ADSC# output.

APCHK# When operating in dual processing mode, APCHK# is driven in response
to ADS# for a private snoop.

D/P# When operating in dual processing mode, D/P# should be sampled with
an active ADS#.

SMIACT# When operating in dual processing mode, SMIACT# should be sampled
with an active ADS# and qualified by D/P#.

ADSC# Additional Address Strobe

Indicates that a new valid bus cycle is currently being driven by the
processor.

Synchronous Output

Pin Symbol Relation to Other Signals

ADS# ADSC# is identical to the ADS# output.
5-4 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface

in the
D
e cycle.
,
s 3
led.

ctive.
In

s

lished

 result
5.1.5 AHOLD

Signal Description

In response to the Address Hold request input, the processor stops driving A31–A3 and AP
next clock. This pin is intended to be used for running inquire cycles to the processor. AHOL
allows another bus master to drive the processor address bus with the address for an inquir
Since inquire cycles affect the entire cache line, although A31–A3 are floated during AHOLD
only A31–A5 are used by the processor for inquire cycles (and parity checking). Address pin
and 4 are logically ignored during inquire cycles but must be at a valid logic level when samp

While AHOLD is active, the address bus is floated, but the remainder of the bus can remain a
For example, data can be returned for a previously driven bus cycle when AHOLD is active.
general, the processor does not issue a bus cycle (ADS#) while AHOLD is active; the only
exception to this is that writeback cycles due to an external snoop are driven while AHOLD i
asserted.

Since the processor floats its bus immediately (in the next clock) in response to AHOLD, an
address hold acknowledge is not required.

When AHOLD is deasserted, the processor drives the address bus in the next clock. It is the
responsibility of the system designer to prevent address bus contention. This can be accomp
by ensuring that other bus masters have stopped driving the address bus before AHOLD is
deasserted. Note the restrictions to the deassertion of AHOLD discussed in the inquire cycle
section of the Chapter 6, “Bus Functional Description.”

AHOLD is recognized during RESET and INIT. Note that the internal caches are flushed as a
of RESET, so invalidation cycles run during RESET are unnecessary.

When Sampled

AHOLD is sampled on every rising clock edge, including during RESET and INIT.

Relation to Other Signals

AHOLD Address Hold

Floats the address bus so an inquire cycle can be driven to the processor.

Synchronous Input

Pin Symbol Relation to Other Signals

A31–A3 A31–A3 are floated as a result of the assertion of AHOLD.

ADS#
ADS# is not driven if AHOLD is asserted (except when a external inquire cycle
causes a writeback before AHOLD is deasserted). See Chapter 6, “Bus
Functional Description.”

AP AP is floated as a result of the assertion of AHOLD.

EADS# EADS# is recognized while AHOLD is asserted.
Embedded Pentium® Processor Family Developer’s Manual 5-5

Hardware Interface

there are

quire
ity

P pin
is the
s are

 the
ntil

quire
 is
en
5.1.6 AP

Signal Description

This is the bidirectional Address Parity pin for the address lines of processor. There is one address
parity pin for the address lines A31–A5. Note that A4 and A3 are not included in the parity
determination.

When an output, AP is driven by the processor with even parity information on all processor
generated cycles in the same clock as the address driven. (Even address parity means that
an even number of HIGH outputs on A31–A5 and the AP pins.)

When an input, even parity information must be returned to the processor on this pin during in
cycles in the same clock in which EADS# is sampled asserted to ensure that the correct par
check status is driven on the APCHK# output.

The value read on the AP pin does not affect program execution. The value returned on the A
is used only to determine even parity and drive the APCHK# output with the proper value. It
responsibility of the system to take appropriate actions if a parity error occurs. If parity check
not implemented in the system, AP may be connected to VCC through a pull-up resistor and the
APCHK# pin may be ignored.

When Sampled/Driven

When an output, AP is driven by the processor with even parity information on all processor
generated cycles in the same clock as the address driven. The AP output remains valid from
clock in which ADS# is asserted until the earlier of the last BRDY# or the clock after NA#, or u
AHOLD is asserted.

When an input, even parity information must be returned to the processor on this pin during in
cycles in the same clock that EADS# is sampled asserted to guarantee that the proper value
driven on APCHK#. The AP input must be at a valid level and meet setup and hold times wh
sampled.

Relation to Other Signals

AP Address Parity

Bidirectional address parity pin for the address lines of processor.

Input/Output

Pin Symbol Relation to Other Signals

A31–A5 The AP pin is used to create even parity with the A31–A5 pins.

ADS# AP is driven with ADS# (except when a external inquire cycle causes a write-
back before AHOLD is deasserted, see Chapter 6, “Bus Functional Description”).

AHOLD AP is floated one clock after AHOLD is asserted.

APCHK# The status of the address parity check is driven on the APCHK# output.

BOFF# AP is floated one clock after BOFF# is asserted.

EADS# AP is sampled with EADS# during inquire cycles.

HLDA AP is floated when HLDA is asserted.
5-6 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface

 are

sors.
. If an
riod.

.

or
5.1.7 APCHK#

Signal Description

APCHK# is asserted two clocks after EADS# is sampled active if the processor detects a parity
error on the A31–A5 during inquire cycles.

Driving APCHK# is the only effect that bad address parity has on the processor. It is the
responsibility of the system to take appropriate action if a parity error occurs. If parity checks
not implemented in the system, the APCHK# pin may be ignored.

Address parity is checked during every private snoop between the Primary and Dual proces
Therefore, APCHK# may be asserted due to an address parity error during this private snoop
error is detected, APCHK# will be asserted two clocks after ADS# for one processor clock pe
The system can choose to acknowledge this parity error indication at this time or do nothing

When Sampled/Driven

APCHK# is valid for one clock and should be sampled two clocks following ADS# and EADS
assertion. At all other times it is inactive (high). APCHK# is not floated with AHOLD, HOLD,
BOFF#. The APCHK# signal is glitch-free.

Relation to Other Signals

APCHK# Address Parity Check

The status of the address parity check is driven on this output.

Asynchronous Output

Pin Symbol Relation to Other Signals

ADS# When operating in dual processing mode, APCHK# is driven in response
to a private snoop.

AP Even address parity with the A31–A5 should be returned to the processor
on the AP pin. If even parity is not driven, the APCHK# pin is asserted.

A31–A5 The AP pin is used to create even parity with A31–A5. If even parity is not
driven to the processor, the APCHK# pin is asserted.

EADS# APCHK# is driven in response to an external snoop.
Embedded Pentium® Processor Family Developer’s Manual 5-7

Hardware Interface
5.1.8 APICEN

Signal Description

APICEN, if sampled high at the falling edge of RESET, enables the on-chip APIC. If it is sampled
low, then the on-chip APIC is not enabled and the processor uses the interrupts as if the APIC was
not present (Bypass mode).

APICEN must be driven by the system. This pin has an internal pulldown resistor and is sampled at
the falling edge of RESET. When using an active circuit to override the internal pulldown resistor,
the driver should have an internal effective pullup resistance of 1 KOhms or less.

When Sampled/Driven

APICEN should be valid and stable two clocks before and after the falling edge of RESET.

Relation to Other Signals

APICEN APIC Enable

This pin enables the APIC on the processor.

Synchronous Configuration Input

Needs external pull-up resistors.

Pin Symbol Relation to Other Signals

BE3#–BE0# When APICEN is sampled active, BE3#–BE0# are used to sample the
APIC ID.

INTR/LINT0 When APICEN is sampled active, this input becomes the APIC local
interrupt 0.

NMI/LINT1 When APICEN is sampled active, this input becomes the APIC local
interrupt 1.

PICCLK PICCLK must be tied or driven high when APICEN is sampled low at the
falling edge of RESET.

PICD1 APICEN shares a pin with PICD1.

RESET APICEN is sampled at the falling edge of RESET.
5-8 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface

essor
le, valid

parity
5.1.9 BE7#–BE0#

Signal Description

As outputs, the byte enable signals are used in conjunction with the address lines to provide
physical memory and I/O port addresses. The byte enables are used to determine which bytes of
data must be written to external memory, or which bytes were requested by the processor for the
current cycle.

• BE7# applies to D63–D56

• BE6# applies to D55–D48

• BE5# applies to D47–D40

• BE4# applies to D39–D32

• BE3# applies to D31–D24

• BE2# applies to D23–D16

• BE1# applies to D15–D8

• BE0# applies to D7–D0

In the case of cacheable reads (line fill cycles), all 8 bytes of data must be driven to the proc
regardless of the state of the byte enables. If the requested read cycle is a single transfer cyc
data must be returned on the data lines corresponding to the active byte enables. Data lines
corresponding to inactive byte enables need not be driven with valid logic levels. Even data
is checked and driven only on the data bytes that are enabled by the byte enables.

BE7#–BE0# Byte Enable Outputs / APIC ID Inputs

When operating in dual processing mode, BE4# is used to transfer
information between the Dual and Primary processors during the atomic
Flush operation.

At RESET, the BE3#–BE0# pins read the APIC ID bits for the processor.

After RESET, these pins are byte enables and help define the physical
area of memory to I/O accessed.

BE4#: Synchronous Input/Output, Dual Processing Mode.

BE3#–BE0#: Synchronous Configuration Inputs, during RESET.

BE3#–BE0#: Synchronous Outputs, following RESET.
Embedded Pentium® Processor Family Developer’s Manual 5-9

Hardware Interface

ins
ng
ion,
ing
ESET

se the
, the

ur byte
RESET.
e APIC

 cache
he
tration
flush
he line
sor is
dge

iven
ock in

ET.
.

E3#–
tem
The local APIC module on the embedded Pentium processor loads its 4-bit APIC ID value from the
four least significant byte-enable pins at the falling edge of RESET. The following table shows the
four pins that comprise the APIC ID.

Loading the APIC ID should be done with external logic that drives the proper address at reset. If
the BE3#–BE0# signals are not driven, the APIC ID value defaults to 0000 for the embedded
Pentium processor and 0001 for the Dual processor.

BE3#–BE0# pins establish the APIC ID for the processor and are input/output pins. These p
have strong internal pull down resistors and typically high external capacitive loading. A stro
pullup on BE3#–BE0# is needed to make sure that the pins reach the correct value. In addit
since these pins are also outputs, a large resistive load would degrade the signal output dur
normal operation. A 50-Ohm three-state driver is recommended to drive these pins during R
only.

Warning: An APIC ID of all 1s is an APIC special case (i.e., a broadcast) and must not be used. Becau
Dual processor inverts the lowest order bit of the APIC ID placed on the lowest four BE pins
value “1110” must not be used when operating in Dual Processing mode.

In a dual-processor configuration, the OEM socket and Socket 5/Socket 7 should have the fo
enable pairs tied together. The Primary processor loads the value seen on these four pins at
The Dual processor loads the value seen on these pins and automatically inverts bit 24 of th
ID register. Thus, the two processors will have unique APIC ID values.

The Primary and Dual processors incorporate a mechanism to present an atomic view of the
flush operation to the system when in dual processing mode. The Dual processor performs t
cache flush operation and grants the bus to the Primary processor by PBREQ#/PBGNT# arbi
exchange. The Primary processor then flushes both of its internal caches and runs a cache
acknowledge special cycle by asserting BE4#, to indicate to the external system that the cac
entries have been invalidated. The Dual processor halts all code execution while the proces
flushing its caches, and does not begin executing code until it recognizes the flush acknowle
special cycle. Refer to Chapter 6, “Bus Functional Description.”

When Sampled/Driven

As outputs, the byte enables are driven in the same clock as ADS#. The byte enables are dr
with the same timing as the address bus (A31–A3). The byte enables remain valid from the cl
which ADS# is asserted until the earlier of the last BRDY# or the clock after NA#. The byte
enables do not float with AHOLD.

The four least significant byte-enable bits are sampled for APIC ID at the falling edge of RES
These pins should be valid and stable two clocks before and after the falling edge of RESET

Note: Asserting the APIC ID is not specified for the rising edge of RESET. In a FRC system, the B
BE0# pins must not be driven for the two clocks following the rising edge of RESET. The sys
design should drive these signals on the third clock or later.

APIC ID Register Bit Pin Latched at RESET

bit 24 BE0#

bit 25 BE1#

bit 26 BE2#

bit 27 BE3#
5-10 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface

value
sted to
 of

nd a
m
g
There are strong pull down resistors on the byte enable pins internally that make it impractical to
use pullup circuits to drive the APIC ID (on BE3#–BE0#) or enter Lock Step operation (with
BE4#) at the falling edge of RESET. When not using the internal defaults on these pins, the
of the external pullup resistors would have to be 50 Ohms or less. For this reason it is sugge
use active drivers on these lines that would drive the byte enable pins during the falling edge
RESET. Passive pullups should be avoided.

Relation to Other Signals

5.1.10 BF2–BF0

Signal Description

The BFn pins determine whether the processor operates at a 1/2, 2/3, 2/5, 2/7 or 1/4 I/O bus-to-core
frequency ratio. Since some bus-to-core ratios are not supported, these pins should always be
connected to the proper level.

Note: External pulldowns of 500 Ohms or less must be used between the pins and ground to effectively
override the default (internal) pullups, while external pullups of 2.2 KOhms or less should be used
to override the default pulldowns on BF1–BF0.

Each embedded Pentium processor is specified to operate within a single bus-to-core ratio a
specific minimum to maximum bus frequency range (corresponding to a minimum to maximu
core frequency range). Operation in other bus-to-core ratios or outside the specified operatin
frequency range is not supported. Tables 5-1 through 5-3 summarize these specifications.

Pin Symbol Relation to Other Signals

A31–A3 A31–A3 and BE7#–BE0# together define the physical area of memory or I/O accessed.

ADS# BE7#–BE0# are driven with ADS#.

APICEN When APICEN is sampled active, BE3#–BE0# are used to sample the APIC ID.

BOFF# BE7#–BE0# are floated one clock after BOFF# is asserted.

D63–D0 BE7#–BE0# indicate which data bytes are being requested or driven by the processor.

DP7–DP0 Even data parity is checked/driven only on the data bytes enabled by BE7#–BE0#.

HLDA BE7#–BE0# are floated when HLDA is asserted.

RESET During reset the BE3#–BE0# pins are sampled to determine the APIC ID. Following
RESET, they function as byte-enable outputs.

BF2–BF0

Bus-to-core frequency ratio

Used to configure processor bus-to-core frequency ratio.

Asynchronous Input

Only the Low-power Embedded Pentium Processor with MMX technology
has a BF2 pin.
Embedded Pentium® Processor Family Developer’s Manual 5-11

Hardware Interface

, the

ower
is

; do

.

If BF1–BF0 are left unconnected on the embedded Pentium processor with MMX technology
bus-to-core ratio defaults to 1/2. If BF1–BF0 are left unconnected on the embedded Pentium
processor the bus-to-core ratio defaults to 2/3. If BF2–BF0 are left unconnected on the low-p
embedded Pentium processor with MMX technology, the bus-to-core ratio defaults to 2/5. Th
ratio is not supported by the low-power embedded Pentium processor with MMX technology
not float the BFn pins when using the low-power embedded Pentium processor with MMX
technology.

When Sampled/Driven

The BFn pins are sampled at RESET and cannot be changed until another non-warm (1 ms)
assertion of RESET. BFn must not change values while RESET is active.

Relation to Other Signals

Table 5-1. Bus-to-Core Frequency Ratios for the Embedded Pentium®
Processor (at 100/133/166 MHz)

BF1 BF0
Embedded Pentium ®
Processor Bus/Core

Ratio

Max Bus/Core
Frequency (MHz)

Min Bus/Core
Frequency (MHz)

0 0 2/5 66/166 33/83

1 0 1/2 66/133 33/66

1 1 2/3† 66/100 33/50

† This is the default bus fraction for the embedded Pentium processor (at 100/133/166 MHz). If the BF pins
are left floating, the processor will be configured for the 2/3 bus to core frequency ratio.

Table 5-2. Bus-to-Core Frequency Ratios for the Embedded Pentium®
Processor with MMX™ Technology

BF1 BF0 Embedded Pentium Processor with
MMX™ Technology Bus/Core Ratio

Max Bus/Core
Frequency (MHz)

Min Bus/Core
Frequency (MHz)

1 1 2/7 66/233 33/117

0 1 1/3 66/200 33/100

1 0 1/2† N/A N/A

† This is the default bus-to-core ratio for the Pentium processor with MMX technology. If the BF pins are left
floating, the processor will be configured for the 1/2 bus-to-core frequency ratio, which is unsupported. Do
not float the BFn pins at RESET.

Table 5-3. Bus-to-Core Frequency Ratios for the Low-Power Embedded
Pentium® Processor with MMX™ Technology

BF2 BF1 BF0
Low-Power Embedded Pentium

Processor with MMX™ Technology
Bus/Core Ratio

Max Bus/Core
Frequency (MHz)

Min Bus/Core
Frequency (MHz)

0 0 0 2/5 66/166

1 0 0 1/4 66/266

Pin Symbol Relation to Other Signals

RESET BF2–BF0 are sampled at the falling edge of RESET.
5-12 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface
5.1.11 BOFF#

Signal Description

In response to BOFF#, the processor aborts all outstanding bus cycles that have not yet completed
and floats the processor bus in the next clock. The processor floats all pins normally floated during
bus hold. Note that since the bus is floated in the clock after BOFF# is asserted, an acknowledge is
not necessary (HLDA is not asserted in response to BOFF#).

The processor remains in bus hold until BOFF# is negated, at which time the processor restarts any
aborted bus cycle(s) in their entirety by driving out the address and status and asserting ADS#.

This pin can be used to resolve a deadlock situation between two bus masters.

Any data with BRDY# returned to the processor while BOFF# is asserted is ignored.

BOFF# has higher priority than BRDY#. If both BOFF# and BRDY# occur in the same clock,
BOFF# takes effect.

BOFF# also has precedence over BUSCHK#. When BOFF# and BUSCHK# are both asserted
during a bus cycle, BUSCHK# is ignored.

When Sampled

BOFF# is sampled on every rising clock edge, including when RESET and INIT are asserted.

When a read cycle is running on the bus and an internal snoop of that read cycle hits a modified
line in the data cache, causing the system to assert BOFF#, the sequence of bus cycles is as follows:
Upon negation of BOFF#, the processor drives out a writeback resulting from the internal snoop
hit. After completion of the writeback, the processor then restarts the original read cycle. Thus, like
external snoop writebacks, internal snoop writebacks may also be reordered in front of cycles that
encounter a BOFF#. Also note that, although the original read encountered both an external
BOFF# and an internal snoop hit to an M-state line, it is restarted only once.

This circumstance can occur during accesses to the page tables/directories and during prefetch
cycles (these accesses cause a bus cycle to be generated before the internal snoop to the data cache
is performed).

BOFF# Backoff

The back off input is used to force the processor off the bus in the next clock.

Synchronous Input
Embedded Pentium® Processor Family Developer’s Manual 5-13

Hardware Interface

1 and

gured

 or more
 2/3 or
n

.

Relation to Other Signals

5.1.12 BP3–BP0

Signal Description

The Breakpoint pins (BP3–BP0) correspond to the debug registers, DR3–DR0. These pins
externally indicate a breakpoint match when the debug registers are programmed to test for
breakpoint matches. BP1 and BP0 are multiplexed with the performance monitoring pins (PM
PM0). The PB1 and PB0 bits in the debug mode control register determine if the pins are
configured as breakpoint or performance monitoring pins. The pins come out of RESET confi
for performance monitoring.

Because of the fractional-speed bus, each assertion of a processor BP pin indicates that one
BP matches occurred. The maximum number of matches per assertion is two when using the
1/2 bus-to-core ratios. Similarly, the maximum number of matches per assertion is three whe
using the 2/5 or 1/3 bus-to-core ratios.

When Sampled/Driven

The BP3–BP0 pins are driven in every clock and are not floated during bus HOLD of BOFF#

Pin Symbol Relation to Other Signals

A3–A31
ADS#
AP
BE7#–BE3#
CACHE#
D/C#
D63–D0
DP7–DP0
LOCK#
M/IO#
PCD
PWT
SCYC
W/R#

These signals float in response to BOFF#.

BRDY# If BRDY# and BOFF# are asserted simultaneously, BOFF# takes priority and
BRDY# is ignored.

EADS# EADS# is recognized when BOFF# is asserted.

HLDA The same pins are floated when HLDA or BOFF# is asserted.

BUSCHK# If BUSCHK# and BOFF# are both asserted during a bus cycle, BOFF# takes
priority and BUSCHK# is forgotten.

NA# If NA# and BOFF# are asserted simultaneously, BOFF# takes priority and
NA# is ignored.

BP3–BP0 Breakpoint signals

BP3–BP0 externally indicate a breakpoint match.

Synchronous Output
5-14 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface
Relation to Other Signals

5.1.13 BRDY#

Signal Description

The Burst Ready input indicates that the external system has presented valid data on the data pins
in response to a read, or that the external system has accepted the processor data in response to a
write request.

Each cycle generated by the processor is either a single transfer read (or write) or a burst cache line
fill (or writeback). For single data transfer cycles, one BRDY# is expected to be returned to the
processor. When this BRDY# is returned, the cycle is complete. For burst transfers, four data
transfers are expected by the processor. The cycle is ended when the fourth BRDY# is returned.

When Sampled

This signal is sampled in the T2, T12 and T2P bus states.

Relation to Other Signals

Pin Symbol Relation to Other Signals

PM1–PM0 BP1 and BP0 share pins with PM1 and PM0, respectively.

BRDY# Burst Ready

Transfer complete indication.

Synchronous Input

Pin Symbol Relation to Other Signals

BOFF# If BOFF# and BRDY# are asserted simultaneously, BOFF# takes priority and
BRDY# is ignored.

BUSCHK# BUSCHK# is sampled with BRDY#.

CACHE# In conjunction with the KEN# input, CACHE# determines whether the bus cycle
consists of 1 or 4 transfers.

D63–D0 During reads, the D63–D0 pins are sampled by the processor with BRDY#.
During writes, BRDY# indicates that the system has accepted D63–D0.

DP7–DP0 During reads, the DP7–DP0 pins are sampled by the processor with BRDY#.
During writes, BRDY# indicates that the system has accepted DP7–DP0.

EWBE# EWBE# is sampled with each BRDY# of a write cycle.

KEN#
KEN# is sampled and latched by the processor with the earlier of the first BRDY#
or NA#. Also, in conjunction with the CACHE# input, KEN# determines whether
the bus cycle will consist of 1 or 4 transfers (assertions of BRDY#).

LOCK# LOCK# is deasserted after the last BRDY# of the locked sequence.

PCHK# PCHK# indicates the results of the parity check two clocks after BRDY# is
returned for reads.

PEN# PEN# is sampled with BRDY# for read cycles.

WB/WT# WB/WT# is sampled and latched by the processor with the earlier of the first
BRDY# or NA#.
Embedded Pentium® Processor Family Developer’s Manual 5-15

Hardware Interface
5.1.14 BRDYC#

Signal Description

This signal is identical to the BRDY# input. This signal can be used to relieve tight board timings
by easing the load on the Burst Ready signal.

In addition to its normal functionality, BRDYC# is sampled with BUSCHK# at RESET to select
the buffer strength for some pins. BRDYC# has an internal pullup resistor. To override the default
settings for the buffer strengths, this pin should be driven and not permanently strapped to ground
because this would interfere with the normal operation of this pin. The driver should have an
internal resistance of 1 KOhms or less. This is a function only of BRDYC#. The BRDY# signal is
not sampled to select buffer sizes.

When Sampled/Driven

Refer to the BRDY# signal description.

Relation to Other Signals

5.1.15 BREQ

Signal Description

The processor asserts the BREQ output whenever a bus cycle is pending internally. BREQ is
always asserted in the first clock of a bus cycle with ADS#. Furthermore, if the processor is not
currently driving the bus (due to AHOLD, HOLD, or BOFF#), BREQ is asserted in the same clock
that ADS# would have been asserted if the processor were driving the bus. After the first clock of
the bus cycle, BREQ may change state. Every assertion of BREQ is not guaranteed to have a
corresponding assertion of ADS#.

External logic can use the BREQ signal to arbitrate between multiple processors. This signal is
always driven regardless of the state of AHOLD, HOLD or BOFF#.

BRDYC# Burst Ready

Transfer complete indication.

Synchronous Input

Pin Symbol Relation to Other Signals

BRDY# BRDYC# is identical to the BRDY# input.

RESET BRDYC# and BUSCHK# are sampled at RESET to select the buffer strength for some pins.

BREQ Bus Request

Indicates externally when a bus cycle is pending internally.

Output
5-16 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface
When Driven

BREQ is always driven by the processor, and is not floated during bus HOLD or BOFF#.

Relation to Other Signals

5.1.16 BUSCHK#

Signal Description

The Bus Check input pin allows the system to signal an unsuccessful completion of a bus cycle.
When this pin is sampled active, the processor latches the address and control signals of the failing
cycle in the machine check registers. When the MCE bit in CR4 is also set, the processor vectors to
the machine check exception upon completion of the current instruction.

If BUSCHK# is asserted in the middle of a cycle, the system must return all expected BRDY#
signals to the processor. BUSCHK# is remembered by the processor if asserted during a bus cycle.
The processor decides after the last BRDY# whether to take the machine check exception or not.

BOFF# has precedence over BUSCHK#. When BOFF# and BUSCHK# are both asserted during a
bus cycle, BUSCHK# is ignored.

In addition to its normal functionality, BUSCHK# is sampled with BRDYC# at RESET to select
the buffer strength for some pins. BUSCHK# has an internal pullup resistor. To override the default
settings for the buffer strengths, this pin should be driven and not permanently strapped to ground,
because this interferes with the normal operation of this pin. The driver should have an internal
resistance of 1 KOhms or less.

When Sampled

BUSCHK# is sampled when BRDY# is returned to the processor.

Note: The embedded Pentium processor can remember only one machine check exception at a time. This
exception is recognized on an instruction boundary. If BUSCHK# is sampled active while
servicing the machine check exception for a previous BUSCHK#, it is remembered by the
processor until the original machine check exception is completed. Then, the processor services the
machine check exception for the second BUSCHK#. Note that only one BUSCHK# is remembered
by the processor while the machine exception for the previous one is being serviced.

When the BUSCHK# is sampled active by the processor, the cycle address and cycle type
information for the failing bus cycle is latched upon assertion of the last BRDY# of the bus cycle.
The information is latched into the Machine Check Address (MCA) and Machine Check Type
(MCT) registers respectively. However, if the BUSCHK# input is not deasserted before the first

Pin Symbol Relation to Other Signals

ADS# BREQ is always asserted in the clock in which ADS# is asserted.

BUSCHK# Bus Check

Allows the system to signal an unsuccessful completion of a bus cycle.

Synchronous Input
Embedded Pentium® Processor Family Developer’s Manual 5-17

Hardware Interface
BRDY# of the next bus cycle, and the machine check exception for the first bus cycle has not
occurred, then new information is latched into the MCA and MCT registers, over-writing the
previous information at the completion of this new bus cycle. Therefore, in order for the MCA and
MCT registers to report the correct information for the failing bus cycle when the machine check
exception for this cycle is taken at the next instruction boundary, the system must deassert the
BUSCHK# input immediately after the completion of the failing bus cycle (i.e., before the first
BRDY# of the next bus cycle is returned).

Relation to Other Signals

5.1.17 CACHE#

Signal Description

The Cacheability output is a cycle definition pin. For processor initiated cycles, this pin indicates
internal cacheability of the cycle (if a read), and indicates a burst writeback (if a write). CACHE#
is asserted for cycles coming from the cache (writebacks) and for cycles that will go into the cache
if KEN# is asserted (linefills). More specifically, CACHE# is asserted for cacheable reads,
cacheable code fetches, and writebacks. It is driven inactive for non-cacheable reads, TLB
replacements, locked cycles (except writeback cycles from an external snoop that interrupt a
locked read/modify/write sequence), I/O cycles, special cycles and writethroughs.

For read cycles, the CACHE# pin indicates whether the processor allows the cycle to be cached.
When CACHE# is asserted for a read cycle, the cycle is turned into a cache line fill if KEN# is
returned active to the processor. When this pin is driven inactive during a read cycle, processor
does not cache the returned data, regardless of the state of the KEN#.

If this pin is asserted for a write cycle, it indicates that the cycle is a burst writeback cycle.
Writethroughs cause a non-burst write cycle to be driven to the bus. The processor does not support
write allocations (cache line fills as a result of a write miss).

When operating in dual processing mode, the embedded Pentium processors use this signal for
private snooping.

When Sampled/Driven

CACHE# is driven to its valid level in the same clock as the assertion of ADS# and remains valid
until the earlier of the last BRDY# or the clock after NA#.

Pin Symbol Relation to Other Signals

BOFF# If BOFF# and BUSCHK# are both asserted during a bus cycle, the BOFF# signal causes
the BUSCHK# to be forgotten.

BRDY# BUSCHK# is sampled with BRDY#.

BRDYC# BUSCHK# is sampled with BRDYC# at RESET to select the buffer strength for some pins.

RESET BUSCHK# and BRDYC# are sampled at RESET to select the buffer strength for some pins.

CACHE# Cacheability

External indication of internal cacheability.

Synchronous Input/Output
5-18 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface

DO,

. On

gling
sure

cy
al

peated.
 clock
This signal becomes an Input/Output when two embedded Pentium processors are operating
together in dual processing mode.

Relation to Other Signals

5.1.18 CLK

Signal Description

The Clock input provides the fundamental timing source for the embedded Pentium processor. Its
frequency is proportional to the internal operating frequency of the processor (as selected by the
BF1–BF0 pins) and requires a TTL level signal. All external timing parameters except TDI, T
TMS, and TRST# are specified with respect to the rising edge of CLK.

Note: The CLK signal on the embedded Pentium processor with MMX technology is 3.3 V tolerant
the embedded Pentium processor, the CLK input is 5.0 V tolerant.

When Sampled

CLK is used as a reference for sampling other signals. It is recommended that CLK begin tog
within 150 ms after VCC reaches its proper operating level. This recommendation is made to en
long term reliability of the device. VCC specifications and clock duty cycle, stability, and frequen
specifications must be met for 1 ms before the negation of RESET. If at any time during norm
operation one of these specifications is violated, the power on RESET sequence must be re
This requirement is made to ensure proper operation of the phase locked loop circuitry on the
input within the processor.

Pin Symbol Relation to Other Signals

ADS# CACHE# is driven to its valid level with ADS#.

BOFF# CACHE# floats one clock after BOFF# is asserted.

BRDY# In conjunction with the KEN# input, CACHE# determines whether the bus cycle
will consist of 1 or 4 transfers (assertions of BRDY#).

HLDA CACHE# floats when HLDA is asserted.

KEN# KEN# and CACHE# are used together to determine if a read will be turned into a
linefill.

CLK Clock

Fundamental timing source for the embedded Pentium processor.

Input
Embedded Pentium® Processor Family Developer’s Manual 5-19

Hardware Interface
Relation to Other Signals

5.1.19 CPUTYP

Signal Description

The CPUTYP pin is used to determine whether the embedded Pentium processor functions as a
Primary or Dual processor. CPUTYP must be strapped to either VCC or VSS. When CPUTYP is
strapped to VCC, the embedded Pentium processor functions as a Dual processor. When CPUTYP
is strapped to VSS (or left unconnected), the embedded Pentium processor functions as a Primary
processor. In a single socket system design, CPUTYP pin must be strapped to VSS.

When Sampled/Driven

CPUTYP is sampled at RESET and cannot be changed until another non-warm (1 ms) assertion of
RESET. CPUTYP must meet a 1 ms setup time to the falling edge of RESET. It is recommended
that CPUTYP be strapped to VCC or VSS.

Relation to Other Signals

Pin Symbol Relation to Other Signals

All except TCK
TDI
TDO
TMS
TRST#

External timing parameters are measured from the rising edge of CLK for all
signals except TDI, TDO, TMS, TCK, and TRST#.

CPUTYP Processor Type Definition Pin

Used to configure the embedded Pentium processor as a Dual processor.

Asynchronous Input

Pin Symbol Relation to Other Signals

A20M# When CPUTYP is strapped to VCC, the processor ignores the A20M# input.

BE4#–BE0#
The BE3#–BE0# input values are sampled during RESET to determine the APIC ID. The
Dual processor uses BE4# to indicate to the Primary processor that it has completed its
cache flush operation. Refer to the BE4#–BE0# pin description.

D/P# D/P# is driven by the processor only when the CPUTYP signal is strapped to VSS.

DPEN# When CPUTYP is strapped to VCC, DPEN# is driven active to indicate that the second
socket is occupied.

FERR# When CPUTYP is strapped to VCC, the FERR# output is undefined.

FLUSH# When operating in dual processing mode, the FLUSH# inputs become Synchronous to
the processor clock.

IGNNE# When CPUTYP is strapped to VCC, the processor ignores the IGNNE# input.

RESET CPUTYP is sampled at the falling edge of RESET. When operating in dual processing
mode, the RESET inputs become synchronous to the processor clock.
5-20 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface

sor.
t
Note: It is common practice to put either a pullup or pulldown resistor on a net. If a pullup resistor is
connected to the CPUTYP pin in order to operate in a Dual Processing mode, the value of this
resistor must be 100 Ohms or less to override the internal pulldown. In the absence of an external
pullup, the internal pulldown sufficiently pulls down the CPUTYP pin; therefore the pin can be left
floating.

5.1.20 D/C#

Signal Description

The Data/Code signal is one of the primary bus cycle definition pins. D/C# distinguishes between
data (D/C# = 1) and code/special cycles (D/C# = 0).

When operating in dual processing mode, the embedded Pentium processor uses this signal for
private snooping.

When Sampled/Driven

The D/C# pin is driven valid in the same clock as ADS# and the cycle address. It remains valid
from the clock in which ADS# is asserted until the earlier of the last BRDY# or the clock after
NA#.

This signal becomes an Input/Output when two embedded Pentium processors are operating
together in Dual Processing Mode.

Relation to Other Signals

5.1.21 D63–D0

Signal Description

The bidirectional lines D63–D0 form the 64 data bus lines for the embedded Pentium proces
Lines D7–D0 define the least significant byte of the data bus; lines D63–D56 define the mos
significant byte of the data bus.

D/C# Data/Code

Distinguishes a data access from a code access.

Synchronous Input/Output

Pin Symbol Relation to Other Signals

ADS# D/C# is driven with ADS#.

BOFF# D/C# floats one clock after BOFF# is asserted.

HLDA D/C# floats when HLDA is asserted.

D63–D0 Data Lines

Forms the 64-bit data bus.

Input/Output
Embedded Pentium® Processor Family Developer’s Manual 5-21

Hardware Interface

mary
 can be
In a

of the
When Sampled/Driven

When the processor is driving the data lines (during writes), they are driven during the T2, T12, or
T2P clocks for that cycle.

During reads, the processor samples the data bus when BRDY# is returned.

D63–D0 are floated during T1, TD, and Ti states.

Relation to Other Signals

5.1.22 D/P#

Signal Description

The D/P# pin is driven low when the Primary processor is driving the bus. Otherwise, the Pri
processor drives this pin high to indicate that the Dual processor owns the bus. The D/P# pin
sampled for the current cycle with ADS#. This pin is defined only on the Primary processor.
single socket system design, D/P# pin should be left NC.

When Sampled/Driven

The D/P# pin is always driven by the Primary processor and should be sampled with ADS#
current cycle.

Pin Symbol Relation to Other Signals

BE7#–BE0# BE7#–BE0# indicate which data bytes are being requested or driven by the processor.

BOFF# D63–D0 float one clock after BOFF# is asserted.

BRDY# BRDY# indicates that the data bus transfer is complete.

DP7–DP0 Even data parity is driven/sampled with the data bus on DP7–DP0.

HLDA D63–D0 float when HLDA is asserted.

PCHK# The status of the data bus parity check is driven on PCHK#.

PEN#
Even data parity with D63–D0 should be returned to the processor on the DP pin. If a
data parity error occurs, and PEN# is enabled, the cycle is latched and a machine check
exception is taken if CR4.MCE = 1.

D/P# Dual Processor / Primary Processor

Indicates whether the Dual processor or the Primary processor is driving the bus.

Synchronous Output
5-22 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface

rites
logic

same
.

o
ne even
error
 the

ty

e
y the

same
. The
Relation to Other Signals

5.1.23 DP7–DP0

Signal Description

These are the bidirectional Data Parity pins for the processor. There is one parity pin for each byte
of the data bus. For example, DP7 applies to D63–D56 and DP0 applies to D7–D0.

As outputs, the data parity pins are driven by the processor with even parity information for w
in the same clock as write data. Even parity means that there are an even number of HIGH
values on the eight corresponding data bus pins and the parity pin.

As inputs, even parity information must be driven back to the processor on these pins in the
clock as the data to ensure that the correct parity check status is indicated by the processor

The value read on the data parity pins does not affect program execution unless PEN# is als
asserted. If PEN# is not asserted, the value returned on the DP pins is used only to determi
parity and drive the PCHK# output with the proper value. If PEN# is asserted when a parity
occurs, the cycle address and type are latched in the MCA and MCT registers. If in addition,
MCE bit in CR4 is set, a machine check exception is taken.

It is the responsibility of the system to take appropriate actions if a parity error occurs. If pari
checks are not implemented in the system, the DP7–DP0 and PEN# pins should be tied to VCC
through a pullup resistor and the PCHK# pin may be ignored.

When Sampled/Driven

As outputs, the data parity pins are driven by the processor with even parity information in th
same clock as write data. The parity remains valid until sampled by the assertion of BRDY# b
system.

As inputs, even parity information must be driven back to the processor on these pins in the
clock as the data to ensure that the correct parity check status is indicated by the processor
data parity pins must be at a valid logic level and meet setup and hold times when sampled.

Pin Symbol Relation to Other Signals

ADS# D/P# is valid for the current cycle with ADS# (like a status pin).

CPUTYP D/P# is driven by the processor when the CPUTYP signal is strapped to VSS (or left
unconnected).

SMIACT# When operating in dual processing mode, D/P# qualifies the SMIACT# SMM indicator.

DP7–DP0 Data Parity

Bidirectional data parity pins for the data bus.

Input/Output
Embedded Pentium® Processor Family Developer’s Manual 5-23

Hardware Interface
Relation to Other Signals

5.1.24 DPEN#

Signal Description

DPEN# is driven during RESET by the processor when configured as a Dual processor to indicate
to the Primary processor in the first socket that there is a Dual processor present in the system.

This pin has an internal pullup resistor and is sampled at the falling edge of RESET. When using an
active circuit to override the internal pullup resistor, the driver should have an internal effective
pulldown resistance of 1 KOhms or less.

When Sampled/Driven

DPEN# is driven during RESET by the Dual processor, and sampled at the falling edge of RESET
by the Primary processor. This pin becomes PICD0 following the falling edge of RESET. This pin
should be valid and stable two clocks before and after the falling edge of RESET.

Relation to Other Signals

Pin Symbol Relation to Other Signals

BE7#–BE0# Even data parity is checked/driven only on the data bytes enabled by BE7#–BE0#.

BOFF# DP7–DP0 are floated one clock after BOFF# is asserted.

BRDY# DP7–DP0 are sampled with BRDY# for reads.

D63–D0 The DP7–DP0 pins are used to create even parity with D63–D0 on a byte by byte
basis. DP7–DP0 are driven with D63–D0 for writes.

HLDA DP7–DP0 are floated when HLDA is asserted.

PCHK# The status of the data parity check is driven on the PCHK# output.

PEN#
The DP7–DP0 pins are used to create even parity with D63–D0. If even parity is not
detected, and PEN# is enabled, the cycle address and type are latched. If in
addition CR4.MCE = 1, the machine check exception is taken.

DPEN# Second Socket Occupied

Configuration signal which indicates that the second socket in a dual socket system
is occupied.

Synchronous Input (to the processor)

Synchronous Output (from the processor, when configured as a Dual processor)

Pin Symbol Relation to Other Signals

CPUTYP When CPUTYP is strapped to VCC, DPEN# is driven active to indicate that the second
socket is occupied.

RESET DPEN# is valid during the falling edge of RESET.

PICD0 DPEN# shares a pin with PICD0.
5-24 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface
5.1.25 EADS#

Signal Description

The EADS# input indicates that a valid external address has been driven onto the processor address
pins to be used for an inquire cycle. The address driven to the processor when EADS# is sampled
asserted is checked with the current cache contents. The HIT# and HITM# signals are driven to
indicate the result of the comparison. When the INV pin is returned active (high) to the processor in
the same clock as EADS# is sampled asserted, an inquire hit will result in that line being
invalidated. When the INV pin is returned inactive (low), an inquire hit will result in that line being
marked Shared (S).

When Sampled

To guarantee recognition, EADS# should be asserted two clocks after an assertion of AHOLD or
BOFF#, or one clock after an assertion of HLDA. In addition, the processor ignores an assertion of
EADS# if the processor is driving the address bus, or if HITM# is active, or in the clock after
ADS# or EADS# is asserted.

Relation to Other Signals

EADS# External Address Strobe

Signals the processor to run an inquire cycle with the address on the bus.

Synchronous Input

Pin Symbol Relation to Other Signals

A31–A5 The inquire cycle address must be valid on A31–A5 when EADS# is sampled asserted.

A4–A3 These signals must be at a valid logic level when EADS# is sampled asserted.

AHOLD EADS# is recognized while AHOLD is asserted.

AP AP is sampled when EADS# is sampled asserted.

APCHK# APCHK# is driven to its valid level two clocks after EADS# is sampled asserted.

BOFF# EADS# is recognized while BOFF# is asserted.

HIT# HIT# is driven to its valid level two clocks after EADS# is sampled asserted.

HITM# HITM# is driven to its valid level two clocks after EADS# is sampled asserted.

HLDA EADS# is recognized while HLDA is asserted.

INV INV is sampled with EADS# to determine the final state of the cache line in the case of an
inquire hit.
Embedded Pentium® Processor Family Developer’s Manual 5-25

Hardware Interface
5.1.26 EWBE#

Signal Description

The External write Buffer Empty input, when inactive (high), indicates that a writethrough cycle is
pending in the external system. When the processor generates a write (memory or I/O), and
EWBE# is sampled inactive, the processor holds off all subsequent writes to all E or M-state lines
until all writethrough cycles have completed, as indicated by EWBE# being active. In addition, if
the processor has a write pending in a write buffer, the processor also holds off all subsequent
writes to E- or M-state lines. This insures that writes are visible from outside the processor in the
same order as they were generated by software.

When the processor serializes instruction execution through the use of a serializing instruction, it
waits for the EWBE# pin to go active before fetching and executing the next instruction.

After the OUT or OUTS instructions are executed, the processor ensures that EWBE# has been
sampled active before beginning to execute the next instruction. Note that the instruction may be
prefetched if EWBE# is not active, but it does not execute until EWBE# is sampled active.

When Sampled

EWBE# is sampled with each BRDY# of a write cycle. If sampled deasserted, the processor
repeatedly samples EWBE# in each clock until it is asserted. Once sampled asserted, the processor
ignores EWBE# until the next BRDY# of a write cycle.

Relation to Other Signals

EWBE# External Write Buffer Empty

Provides the option of strong write ordering to the memory system.

Synchronous Input

Pin Symbol Relation to Other Signals

BRDY# EWBE# is sampled with each BRDY# of a write cycle.

SMIACT# SMIACT# is not asserted until EWBE# is asserted.
5-26 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface
5.1.27 FERR#

Signal Description

The Floating-Point Error output is driven active when an unmasked floating-point error occurs.
FERR# is similar to the ERROR# pin on the Intel387 math coprocessor. FERR# is included for
compatibility with systems using DOS type floating-point error reporting.

In some cases, FERR# is asserted when the next floating-point instruction is encountered and in
other cases it is asserted before the next floating-point instruction is encountered depending upon
the execution state of the instruction causing the exception.

The following class of floating-point exceptions drive FERR# at the time the exception occurs (i.e.,
before encountering the next floating-point instruction):

1. Stack fault, all invalid operation exceptions and denormal exceptions on: all transcendental
instructions, FSCALE, FXTRACT, FPREM, FPREM(1), FBLD, FLD_extended, FRNDINT,
and stack fault and invalid operation exceptions on Floating-Point arithmetic instructions with
an integer operand (FIADD/FIMUL/FISUB/FIDIV, etc.).

2. All real stores (FST/FSTP), Floating-Point integer stores (FIST/FISTP) and BCD store
(FBSTP) (true for all exception on stores except Precision Exception).

The following class of floating-point exceptions drive FERR# only after encountering the next
floating-point instruction. Note that the embedded Pentium processor with MMX technology
reports a pending floating-point exception (assert FERR#) upon encountering the next floating-
point or MMX instruction.

1. Numeric underflow, overflow and precision exception on: Transcendental instructions,
FSCALE, FXTRACT, FPREM, FPREM(1), FRNDINT, and Precision Exception on all types
of stores to memory.

2. All exceptions on basic arithmetic instructions (FADD/FSUB/FMUL/FDIV/
FSQRT/FCOM/FUCOM...)

FERR# is deasserted when the FCLEX, FINIT, FSTENV, or FSAVE instructions are executed. In
the event of a pending unmasked floating-point exception the FNINIT, FNCLEX, FNSTENV,
FNSAVE, FNSTSW, FNSTCW, FNENI, FNDISI, and FNSETPM instructions assert the FERR#
pin. Shortly after the assertion of the pin, an interrupt window is opened during which the
processor samples and services interrupts, if any. If no interrupts are sampled within this window,
the processor then executes these instructions with the pending unmasked exception. However, for
the FNCLEX, FNINIT, FNSTENV, and FNSAVE instructions, the FERR# pin is deasserted to
enable the execution of these instructions. For details please refer to the Intel Architecture Software
Developer’s Manual, Volume 1 (Chapter 7 and Appendix D).

This signal is undefined when the embedded Pentium processor is configured as a Dual processor.

FERR# Floating-Point Error

The floating-point error output is driven active when an unmasked floating-point error occurs.

Synchronous Output
Embedded Pentium® Processor Family Developer’s Manual 5-27

Hardware Interface
When Sampled/Driven

FERR# is driven in every clock and is not floated during bus HOLD or BOFF#. The FERR# signal
is glitch free.

The embedded Pentium processor, when configured as a Dual processor, does not drive this signal
to valid levels.

Relation to Other Signals

5.1.28 FLUSH#

Signal Description

When asserted, the Cache Flush input forces the processor to writeback all modified lines in the
data cache and invalidate both internal caches. A Flush Acknowledge special cycle is generated by
the processor, indicating completion of the invalidation and writeback.

FLUSH# is implemented in the processor as an interrupt, so it is recognized on instruction
boundaries. External interrupts are ignored while FLUSH# is being serviced. Once FLUSH# is
sampled active, it is ignored until the flush acknowledge special cycle is driven.

If FLUSH# is sampled low when RESET transitions from high to low, three-state test mode is
entered.

The processor, when operating with a second processor in dual processing mode, incorporates a
mechanism to present an atomic cache flush operation to the system. The Dual processor performs
the cache flush operation first, then grants the bus to the Primary processor. The Primary processor
flushes its internal caches, and then runs the cache flush special cycle. This could cause the total
flush latency of two embedded Pentium processors in dual processor mode to be up to twice that of
the embedded Pentium processor in uni-processor mode.

The flush latency of the embedded Pentium processor with MMX technology may be up to twice
that of the embedded Pentium processor due to the implementation of larger on-chip caches.

When Sampled/Driven

FLUSH# is sampled on every rising clock edge. FLUSH# is falling edge sensitive and is
recognized on instruction boundaries. Recognition of FLUSH# is guaranteed in a specific clock if
it is asserted synchronously and meets the setup and hold times. If it meets setup and hold times,
FLUSH# need only be asserted for one clock. To guarantee recognition if FLUSH# is asserted

Pin Symbol Relation to Other Signals

CPUTYP When CPUTYP is strapped to VCC, the FERR# output is undefined.

FLUSH# Cache Flush

Writes all modified lines in the data cache back and flushes the code and data caches.

Asynchronous Input (Normal, Uni-processor mode)

Synchronous Input (Dual processor mode)
5-28 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface

m

ery
de
or
cessor
rmally
e

hanged
rted to
asynchronously, it must have been deasserted for a minimum of two clocks before being returned
active to the embedded Pentium processor and remain asserted for a minimum pulse width of two
clocks.

If the processor is in the HALT or Shutdown state, FLUSH# is still recognized. The processor
returns to the HALT or Shutdown state after servicing the FLUSH#.

If FLUSH# is sampled low when RESET transitions from high to low, three-state test mode is
entered. If RESET is negated synchronously, FLUSH# must be at its valid level and meet setup and
hold times on the clock before the falling edge of RESET. If RESET is negated asynchronously,
FLUSH# must be at its valid level two clocks before and after RESET transitions from high to low.

When operating in a dual processing system, FLUSH# must be sampled synchronously to the
rising CLK edge to ensure both processors recognize an active FLUSH# signal in the same clock.

Relation to Other Signals

5.1.29 FRCMC#

Note: Functional Redundancy Checking is not supported on the embedded Pentium processor with MMX
technology. The FRCMC# pin is defined only for the embedded Pentium processor. This pin
should be left as a “NC” or tied to VCC3 via an external pullup resistor on the embedded Pentiu
processor with MMX technology.

Signal Description

The Functional Redundancy Checking Master/Checker Configuration input is sampled in ev
clock that RESET is asserted to determine whether the processor is configured in master mo
(FRCMC# high) or checker mode (FRCMC# low). When configured as a master, the process
drives its output pins as required by the bus protocol. When configured as a checker, the pro
three-states all outputs (except IERR# and TDO) and samples the output pins that would no
be driven in master mode. If the sampled value differs from the value computed internally, th
Checker processor asserts IERR# to indicate an error.

Note that the final configuration as a master or checker is set after RESET and may not be c
other than by a subsequent RESET. FRCMC# is sampled in every clock that RESET is asse
prevent bus contention before the final mode of the processor is determined.

Pin Symbol Relation to Other Signals

ADS# and cycle definition
pins.

Writeback cycles are driven as a result of FLUSH# assertion.

The Flush Special Cycle is driven as a result of FLUSH# assertion.

RESET If FLUSH# is sampled low when RESET transitions from high to low,
three-state test mode is entered.

CPUTYP When operating in dual processing mode, the FLUSH# inputs become
synchronous to the processor clock.

FRCMC# Functional Redundancy Checking Master/Checker Configuration

Determines whether the processor is configured as a Master or Checker.

Asynchronous Input
Embedded Pentium® Processor Family Developer’s Manual 5-29

Hardware Interface
When Sampled

This pin is sampled in any clock in which RESET is asserted. FRCMC# is sampled in the clock
before RESET transitions from high to low to determine the final mode of the processor. If RESET
is negated synchronously, FRCMC# must be at its valid level and meet setup and hold times on the
clock before the falling edge of RESET. If RESET is negated asynchronously, FRCMC# must be at
its valid level two clocks before and after RESET transitions from high to low.

Relation to Other Signals

5.1.30 HIT#

Signal Description

The HIT# output is driven to reflect the outcome of an inquire cycle. If an inquire cycle hits a valid
line (M, E, or S) in either the processor data or instruction cache, HIT# is asserted two clocks after
EADS# has been sampled asserted by the processor. If the inquire cycle misses the processor
cache, HIT# is negated two clocks after EADS# is sampled asserted. This pin changes its value
only as a result of an inquire cycle and retains its value between cycles.

When operating in dual processing mode, the embedded Pentium processor uses this signal for
private snooping.

When Sampled/Driven

HIT# reflects the hit or miss outcome of the inquire cycle two clocks after EADS# is sampled
asserted. After RESET, this pin is driven high. It changes it value only as a result of an inquire
cycle. This pin is always driven. It is not floated during bus HOLD or BOFF#.

This signal becomes an Input/Output when two embedded Pentium processors are operating
together in dual processing mode.

Pin Symbol Relation to Other Signals

IERR# IERR# is asserted by the Checker processor in the event of an FRC error.

RESET FRCMC# is sampled when RESET is asserted to determine if the processor is in
Master or Checker mode.

HIT# Inquire Cycle Hit/Miss

Externally indicates whether an inquire cycle resulted in a hit or miss.

Synchronous Input/Output
5-30 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface
Relation to Other Signals

5.1.31 HITM#

Signal Description

The HITM# output is driven to reflect the outcome of an inquire cycle. If an inquire cycle hits a
modified line in the embedded Pentium processor data cache, HITM# is asserted two clocks after
EADS# has been sampled asserted by the processor and a writeback cycle is scheduled to be driven
to the bus. If the inquire cycle misses the processor cache, HITM# is negated two clocks after
EADS# is sampled asserted.

HITM# can be used to inhibit another bus master from accessing the data until the line is
completely written back.

HITM# is asserted two clocks after an inquire cycle hits a modified line in the processor cache.
ADS# for the writeback cycle is asserted no earlier than two clocks after the assertion of HITM#.
ADS# for the writeback cycle is driven even if AHOLD for the inquire cycle is not yet deasserted.
ADS# for a writeback of an external snoop cycle is the only ADS# that is driven while AHOLD is
asserted.

When operating in dual processing mode, the embedded Pentium processor uses this signal for
private snooping.

When Sampled/Driven

HITM# is driven two clocks after EADS# is sampled asserted to reflect the outcome of the inquire
cycle. HITM# remains asserted until two clocks after the last BRDY# of writeback is returned.
This pin is always driven. It is not floated during bus HOLD or BOFF#.

This signal becomes an input/output when two embedded Pentium processors are operating
together in dual processing mode.

Pin Symbol Relative to Other Signals

A31–A5 HIT# is driven to indicate whether the inquire address driven on
A31–A5 is valid in an internal cache.

EADS# HIT# is driven two clocks after EADS# is sampled asserted to indicate the outcome of
the inquire cycle.

HITM# HITM# is never asserted without HIT# also being asserted.

HITM# Inquire Cycle Hit/Miss to a Modified Line

Externally indicates whether an inquire cycle hit a modified line in the data cache.

Synchronous Input/Output
Embedded Pentium® Processor Family Developer’s Manual 5-31

Hardware Interface
Relation to Other Signals

5.1.32 HLDA

Signal Description

The Bus Hold Acknowledge output goes active in response to a hold request presented on the
HOLD pin. HLDA indicates that the processor has given the bus to another local bus master.
Internal instruction execution continues from the internal caches during bus HOLD/HLDA.

When leaving bus hold, HLDA is driven inactive and the processor resumes driving the bus. A
pending bus cycle is driven in the same clock in which HLDA is deasserted by the processor and
one clock after HLDA is deasserted by the processor.

The operation of HLDA is not affected by the assertion of BOFF#. If HOLD is asserted while
BOFF# is asserted, HLDA is asserted two clocks later. If HOLD goes inactive while BOFF# is
asserted, HLDA is deasserted two clocks later.

When operating in dual processing mode, the embedded Pentium processor uses this signal for
private snooping.

When Sampled/Driven

When the embedded Pentium processor bus is idle, HLDA is driven high two clocks after HOLD is
asserted, otherwise, HLDA is driven high two clocks after the last BRDY# of the current cycle is
returned. It is driven active in the same clock that the embedded Pentium processor floats its bus.
When leaving bus hold, HLDA is driven inactive two clocks after HOLD is deasserted and the
embedded Pentium processor resumes driving the bus. The HLDA signal is glitch free.

This signal becomes an input/output when two embedded Pentium processors are operating
together in dual processing mode.

Pin Symbol Relation to Other Signals

A31–A5 HITM# is driven to indicate whether the inquire address driven on A31–A5 is in the
modified state in the data cache.

EADS# HITM# is driven two clocks after EADS# is sampled asserted.

HIT# HITM# is never asserted without HIT# also being asserted.

HLDA Bus Hold Acknowledge

External indication that the processor outputs are floated.

Synchronous Input/Output
5-32 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface
Relation to Other Signals

5.1.33 HOLD

Signal Description

The Bus Hold request input allows another bus master complete control of the embedded Pentium
processor bus. In response to HOLD, after completing all outstanding bus cycles the embedded
Pentium processor floats most of its output and input/output pins and asserts HLDA. The
embedded Pentium processor maintains its bus in this state until HOLD is deasserted. Cycles that
are locked together are not interrupted by bus HOLD. HOLD is recognized during RESET.

When Sampled

HOLD is sampled on every rising clock edge including during RESET and INIT.

Pin Symbol Relation to Other Signals

A31–A3
ADS#
AP
BE7#–BE3#
CACHE#
D/C#
D63–D0
DP7–DP0
LOCK#
M/IO#
PCD
PWT
SCYC
W/R#

These signals float in response to HLDA.

BOFF# The same pins are floated when HLDA or BOFF# is asserted.

EADS# EADS# is recognized while HLDA is asserted.

HOLD The assertion of HOLD causes HLDA to be asserted when all outstanding cycles
are complete.

HOLD Bus Hold

The bus hold request input allows another bus master complete control of the
processor bus.

Synchronous Input
Embedded Pentium® Processor Family Developer’s Manual 5-33

Hardware Interface
Relation to Other Signals

5.1.34 IERR#

Signal Description

The Internal Error output is used to alert the system of two types of errors, internal parity errors and
functional redundancy errors.

If a parity error occurs on a read from an internal array (reads during normal instruction execution,
reads during a flush operation, reads during BIST and testability cycles, and reads during inquire
cycles), the embedded Pentium processor asserts the IERR# pin for one clock and then shuts down.
Shutdown occurs provided the processor is not prevented from doing so by the error.

If the embedded Pentium processor is configured as a checker (by FRCMC# being sampled low
while RESET is asserted) and a mismatch occurs between the value sampled on the pins and the
value computed internally, the embedded Pentium processor asserts IERR# two clocks after the
mismatched value is returned. Shutdown is not entered as a result of a function redundancy error.

It is the responsibility of the system to take appropriate action if an internal parity or FRC error
occurs.

Pin Symbol Relation to Other Signals

A31–A3
ADS#
AP
BE7#–BE3#
CACHE#
D/C#
D63–D0
DP7–DP0
LOCK#
M/IO#
PCD
PWT
SCYC
W/R#

These are the signals floated in response to HOLD.

HLDA HLDA is asserted when the processor relinquishes the bus in
response to the HOLD request.

IERR#

Internal or Functional Redundancy Check Error.
(Functional Redundancy Checking is not supported on the embedded Pentium®
processor with MMX™ technology or the low-power embedded Pentium
processor with MMX technology).

Alerts the system of internal parity errors and functional redundancy errors.

Output
5-34 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface
When Driven

IERR# is driven in every clock. While RESET is active IERR# is driven high. After RESET is
deasserted, IERR# is not asserted due to an FRC mismatch until after the first clock of the first bus
cycle. Note however that IERR# may be asserted due to an internal parity error before the first bus
cycle. IERR# is asserted for one clock for each detected FRC or internal parity error, two clocks
after the error is detected. IERR# is asserted for each detected mismatch, so IERR# may be
asserted for more than one consecutive clock.

IERR# is not floated with HOLD or BOFF#. IERR# is a glitch free signal.

When paging is turned on, an additional parity check occurs to page 0 for all TLB misses. If this
access is a valid entry in the cache and this entry also has a parity error, then IERR# is asserted and
shutdown occurs even though the pipeline is frozen to service the TLB miss.

During a TLB miss, a cache lookup occurs (to the data cache for a data TLB miss, or the code
cache for a code TLB miss) to a default page 0 physical address until the correct page translation
becomes available. At this time, if a valid cache entry is found at the page 0 address, then parity is
checked on the data read out of the cache. However, the data is not used until after the correct page
address becomes available. If this valid line contains a true parity error, then the error is reported.
This does not cause an unexpected parity error. It can cause a parity error and shutdown at a time
when the data is not being used because the pipeline is frozen to service the TLB miss. However, it
still remains that a true parity error must exist within the cache in order for IERR# assertion and
shutdown to occur. For more details on TLB, refer to Section 3.7 of the Intel Architecture Software
Developer’s Manual, Volume 1.

Relation to Other Signals

Pin Symbol Relative to Other Signals

FRCMC# If the processor is configured as a Checker, IERR# is asserted in the event of an FRC error.
Embedded Pentium® Processor Family Developer’s Manual 5-35

Hardware Interface
5.1.35 IGNNE#

Signal Description

This is the Ignore Numeric Exception input. This pin has no effect when the NE bit in CR0 is set to
1. When the CR0.NE bit is 0, this pin functions as follows:

When the IGNNE# pin is asserted, the embedded Pentium processor ignores any pending
unmasked numeric exception and continues executing floating-point instructions for the entire
duration that this pin is asserted.

When IGNNE# is not asserted and a pending unmasked numeric exception exists, (SW.ES = 1), the
embedded Pentium processor behaves as follows:

On encountering a floating-point instruction that is one of FNINIT, FNCLEX, FNSTENV,
FNSAVE, FNSTSW, FNSTCW, FNENI, FNDISI, or FNSETPM, the embedded Pentium processor
asserts the FERR# pin. Subsequently, the processor opens an interrupt sampling window. The
interrupts are checked and serviced during this window. If no interrupts are sampled within this
window, the processor then executes these instructions in spite of the pending unmasked exception.
For further details please refer to the Intel Architecture s Software Developer’s Manual, Volume1
(Chapter 7 and Appendix D).

On encountering any floating-point instruction other than FINIT, FCLEX, FSTENV, FSAVE,
FSTSW, FSTCW, FENI, FDISI, or FSETPM, the embedded Pentium processor stops execution
and waits for an external interrupt.

The embedded Pentium processor, when configured as a Dual processor, ignores the IGNNE#
input.

When Sampled/Driven

IGNNE# is sampled on every rising clock edge. Recognition of IGNNE# is guaranteed in a specific
clock if it is asserted synchronously and meets setup and hold times. To guarantee recognition if
IGNNE# is asserted asynchronously, it must have been deasserted for a minimum of two clocks
before being returned active to the embedded Pentium processor and remain asserted for a
minimum pulse width of two clocks.

Relation to Other Signals

IGNNE# Ignore Numeric Exception

Determines whether or not numeric exceptions should be ignored.

Asynchronous Input

Pin Symbol Relation to Other Signals

CPUTYP When strapped to VCC, the processor ignores the IGNNE# input.
5-36 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface
5.1.36 INIT

Signal Description

The Initialization input forces the embedded Pentium processor to begin execution in a known
state. The processor state after INIT is the same as the state after RESET except that the internal
caches, write buffers, model specific registers, and floating-point registers retain the values they
had prior to INIT. The embedded Pentium processor starts execution at physical address
FFFFFFF0H.

INIT can be used to help performance for DOS extenders written for the 80286. INIT provides a
method to switch from protected to real mode while maintaining the contents of the internal caches
and floating-point state. INIT may not be used instead of RESET after power-up.

Once INIT is sampled active, the INIT sequence begins on the next instruction boundary (unless a
higher priority interrupt is requested before the next instruction boundary). The INIT sequence
continues to completion and then normal processor execution resumes, independent of the
deassertion of INIT. ADS# is asserted to drive bus cycles even if INIT is not deasserted.

If INIT is sampled high when RESET transitions from high to low, the embedded Pentium
processor performs built-in self test (BIST) prior to the start of program execution.

When Sampled

INIT is sampled on every rising clock edge. INIT is an edge sensitive interrupt. Recognition of
INIT is guaranteed in a specific clock if it is asserted synchronously and meets the setup and hold
times. To guarantee recognition if INIT is asserted asynchronously, it must have been deasserted
for a minimum of two clocks before being returned active to the embedded Pentium processor and
remain asserted for a minimum pulse width of two clocks. INIT must remain active for three clocks
prior to the BRDY# of an I/O write cycle to guarantee that the embedded Pentium processor
recognizes and processes INIT right after an I/O write instruction.

If INIT is sampled high when RESET transitions from high to low the embedded Pentium
processor performs built-in self test. If RESET is driven synchronously, INIT must be at its valid
level the clock before the falling edge of RESET. If RESET is driven asynchronously, INIT must
be at its valid level two clocks before and after RESET transitions from high to low.

Relation to Other Signals

INIT Initialization

Forces the processor to begin execution in a known state without flushing the caches or
affecting the floating-point state.

Asynchronous Input

Pin Symbol Relation to Other Signals

RESET If INIT is sampled high when RESET transitions from high to low, BIST will be
performed.
Embedded Pentium® Processor Family Developer’s Manual 5-37

Hardware Interface

l of an

the
5.1.37 INTR

Signal Description

The INTR input indicates that an external interrupt has been generated. The interrupt is maskable
by the IF bit in the EFLAGS register. If the IF bit is set, the embedded Pentium processor will
vector to an interrupt handler after the current instruction execution is completed. Upon
recognizing the interrupt request, the embedded Pentium processor will generate two locked
interrupt acknowledge bus cycles in response to the INTR pin going active. INTR must remain
active until the first interrupt acknowledge cycle is completed to assure that the interrupt is
recognized.

When the local APIC is hardware disabled, this pin is the INTR input for the processor. It bypasses
the local APIC in that case.

When the local APIC is hardware enabled, this pin becomes the programmable interrupt LINT0. It
can be programmed in software in any of the interrupt modes. Since this pin is the INTR input
when the APIC is disabled, it is logical to program the vector table entry for this pin as ExtINT
(i.e., through local mode). In this mode, the interrupt signal is passed on to the processor through
the local APIC. The processor generates the interrupt acknowledge, INTA, cycle in response to this
interrupt and receives the vector on the processor data bus.

When Sampled/Driven

INTR is sampled on every rising clock edge. INTR is an asynchronous input, but recognition of
INTR is guaranteed in a specific clock if it is asserted synchronously and meets the setup and hold
times. To guarantee recognition if INTR is asserted asynchronously it must have been deasserted
for a minimum of two clocks before being returned active to the embedded Pentium processor.

Note: This applies only when using the APIC in the through local (virtual wire) mode. Once INTR has
been asserted (by a rising edge), it must not be asserted again until after the end of the first resulting
interrupt acknowledge cycle. Otherwise, the new interrupt may not be recognized. The end of an
interrupt acknowledge cycle is defined by the end of the system’s BRDY# response to the
processor cycle. Note that the APIC through local mode was designed to match the protoco
8259A PIC, and an 8259A will always satisfy this requirement.

To ensure INTR is not recognized inadvertantly a second time, deassert INTR no later than
BRDY# of the second INTA cycle and no earlier than the BRDY# of the first INTA cycle.

INTR External Interrupt

Indicates that an external interrupt has been generated.

Asynchronous Input
5-38 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface
Relation to Other Signals

5.1.38 INV

Signal Description

The INV input is driven to the embedded Pentium processor during an inquire cycle to determine
the final cache line state (S or I) in case of an inquire cycle hit. If INV is returned active (high) to
the embedded Pentium processor in the same clock as EADS# is sampled asserted, an inquire hit
will result in that line being invalidated. If the INV pin is returned inactive (low), an inquire hit will
result in that line being marked Shared (S). If the inquire cycle is a miss in the cache, the INV input
has no effect.

If an inquire cycle hits a modified line in the data cache, the line will be written back regardless of
the state of INV.

When Sampled

The INV input is sampled with the EADS# of the inquire cycle.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# and cycle definition pins An interrupt acknowledge cycle is driven as a result of the INTR pin assertion.

APICEN When the APICEN configuration input is sampled inactive, this input becomes
the INTR interrupt.

LINT0 INTR shares a pin with LINT0.

LOCK# LOCK# is asserted for interrupt acknowledge cycles.

INV Invalidation Request

Determines final state of a cache line as a result of an inquire hit.

Synchronous Input

Pin Symbol Relative to Other Signals

A31–A5 INV determines if the inquire address driven to the processor on A31–A5 should be
invalidated or marked as shared if it is valid in an internal cache.

EADS# INV is sampled with EADS#.
Embedded Pentium® Processor Family Developer’s Manual 5-39

Hardware Interface
5.1.39 KEN#

Signal Description

KEN# is the cache enable input. It is used to determine whether the current cycle is cacheable or
not and consequently is used to determine cycle length.

When the embedded Pentium processor generates a read cycle that can be cached (CACHE#
asserted) and KEN# is active, the cycle will be transformed into a burst cache linefill. During a
cache line fill the byte enable outputs should be ignored and valid data must be returned on all 64
data lines. The embedded Pentium processor will expect 32 bytes of valid data to be returned in
four BRDY# transfers.

If KEN# is not sampled active, a linefill will not be performed (regardless of the state of CACHE#)
and the cycle will be a single transfer read.

Once KEN# is sampled active for a cycle, the cacheability cannot be changed. If a cycle is restarted
for any reason after the cacheability of the cycle has been determined, the same cacheability
attribute on KEN# must be returned to the processor when the cycle is redriven.

When Sampled

KEN# is sampled once in a cycle to determine cacheability. It is sampled and latched with the
earlier of the first BRDY# or NA# of a cycle, however it must meet setup and hold times on every
clock edge.

Relation to Other Signals

KEN# Cache Enable

Indicates to the processor whether or not the system can support a cache line fill for
the current cycle.

Synchronous Input

Pin Symbol Relative to Other Signals

BRDY#
KEN# is sampled with the earlier of the first BRDY# or NA# for that cycle. Also, in
conjunction with the CACHE# input, KEN# determines whether the bus cycle will
consist of 1 or 4 transfers (assertions of BRDY#).

CACHE# KEN# determines cacheability only if the CACHE# pin is asserted.

NA# KEN# is sampled with the earlier of the first BRDY# or NA# for that cycle.

W/R# KEN# determines cacheability only if W/R# indicates a read.
5-40 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface

ese
tor
 the

ts,

0 are
e being

-write
ead-

5.1.40 LINT1–LINT0

Signal Description

When the local APIC is hardware enabled, these pins become the programmable interrupts
(LINT1–LINT0). They can be programmed in software in any of the interrupt modes. Since th
pins are the INTR and NMI inputs when the APIC is disabled, it is logical to program the vec
table entry for them as ExtINT (i.e. through local mode) and NMI, respectively. In this mode,
interrupt signals are passed on to the processor through the local APIC.

When the local APIC is hardware disabled, these pins are the INTR and NMI inputs for the
processor. They bypass the APIC in that case.

When Sampled

LINT1–LINT0 are sampled on every rising clock edge. LINT1–LINT0 are asynchronous inpu
but recognition of LINT1–LINT0 are guaranteed in a specific clock if they are asserted
synchronously and meets the setup and hold times. To guarantee recognition if LINT1–LINT
asserted asynchronously they must have been deasserted for a minimum of two clocks befor
returned active to the embedded Pentium processor.

Relation to Other Signals

5.1.41 LOCK#

Signal Description

The bus lock output indicates that the embedded Pentium processor is running a read-modify
cycle where the external bus must not be relinquished between the read and write cycles. R
modify-write cycles of this type are used to implement memory based semaphores. Interrupt
Acknowledge cycles are also locked.

LINT1–LINT0 Local Interrupts 1 and 0

APIC Programmable Interrupts.

Asynchronous Inputs

Pin Symbol Relation to Other Signals

APICEN When the APICEN configuration input is sampled inactive, these inputs become the
INTR and NMI interrupts.

INTR INTR shares a pin with LINT0.

NMI NMI shares a pin with LINT1.

LOCK# Bus Lock

Indicates to the system that the current sequence of bus cycles should not be
interrupted.

Synchronous Input/Output
Embedded Pentium® Processor Family Developer’s Manual 5-41

Hardware Interface
If a cycle is split due to a misaligned memory operand, two reads followed by two writes may be
locked together. When LOCK# is asserted, the current bus master should be allowed exclusive
access to the system bus.

The embedded Pentium processor will not allow a bus hold when LOCK# is asserted, but address
holds (AHOLD) and BOFF# are allowed. LOCK# is floated during bus hold.

All locked cycles will be driven to the external bus. If a locked address hits a valid location in one
of the internal caches, the cache location is invalidated (if the line is in the modified state, it is
written back before it is invalidated). Locked read cycles will not be transformed into cache line fill
cycles regardless of the state of KEN#.

LOCK# is guaranteed to be deasserted for at least one clock between back to back locked cycles.

When operating in dual processing mode, the embedded Pentium processor uses this signal for
private snooping.

When Sampled/Driven

LOCK# goes active with the ADS# of the first locked bus cycle and goes inactive after the BRDY#
is returned for the last locked bus cycle. The LOCK# signal is glitch free.

This signal becomes an input/output when two embedded Pentium processors are operating
together in dual processing mode.

Relation to Other Signals

5.1.42 M/IO#

Signal Description

The Memory/Input-Output signal is one of the primary bus cycle definition pins. M/IO#
distinguishes between memory (M/IO# =1) and I/O (M/IO# =0) cycles.

Pin Symbol Relation to Other Signals

ADS# LOCK# is driven with the ADS# of the first locked cycle.

BOFF# LOCK# floats one clock after BOFF# is asserted.

BRDY# LOCK# is deasserted after the last BRDY# of the locked sequence.

HLDA LOCK# floats when HLDA is asserted.

NA# ADS# is not asserted to pipeline an additional cycle if LOCK# is asserted, regardless of
the state of NA#.

INTR LOCK# is asserted for interrupt acknowledge cycles.

SCYC SCYC is driven active if the locked cycle is misaligned.

M/IO# Memory Input/Output

Distinguishes a memory access from an I/O access.

Synchronous Input/Output
5-42 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface
When operating in dual processing mode, the embedded Pentium processor uses this signal for
private snooping.

When Sampled/Driven

M/IO# is driven valid in the same clock as ADS# and the cycle address. It remains valid from the
clock in which ADS# is asserted until the earlier of the last BRDY# or the clock after NA#.

This signal becomes an input/output when two embedded Pentium processors are operating
together in dual processing mode.

Relation to Other Signals

5.1.43 NA#

Signal Description

The Next Address input, when active, indicates that external memory is ready to accept a new bus
cycle although all data transfers for the current cycle have not yet completed. This is referred to as
bus cycle pipelining.

The embedded Pentium processor will drive out a pending cycle in response to NA# no sooner than
two clocks after NA# is asserted. The embedded Pentium processor supports up to 2 outstanding
bus cycles. ADS# is not asserted to pipeline an additional cycle if LOCK# is asserted, or during a
writeback cycle. In addition, ADS# will not be asserted to pipeline a locked cycle or a writeback
cycle into the current cycle.

NA# is latched internally, so once it is sampled active during a cycle, it need not be held active to
be recognized. The KEN#, and WB/WT# inputs for the current cycle are sampled with the first
NA#, if NA# is asserted before the first BRDY# of the current cycle.

When Sampled

NA# is sampled in all T2, TD and T2P clocks.

Pin Symbol Relation to Other Signals

ADS# M/IO# is driven to its valid state with ADS#.

BOFF# M/IO# floats one clock after BOFF# is asserted.

HLDA M/IO# floats when HLDA is asserted.

NA# Next Address

Indicates that external memory is prepared for a pipelined cycle.

Synchronous Input
Embedded Pentium® Processor Family Developer’s Manual 5-43

Hardware Interface
Relation to Other Signals

5.1.44 NMI

Signal Description

The Non-Maskable interrupt request input indicates that an external non-maskable interrupt has
been generated. Asserting NMI causes an interrupt with an internally supplied vector value of 2.
External interrupt acknowledge cycles are not generated.

When a second NMI is asserted during the execution of the NMI service routine, the second NMI
will remain pending and will be recognized after IRET is executed by the NMI service routine. At
most, one assertion of NMI will be held pending. If NMI is reasserted prior to the NMI service
routine entry, the reassertion will be ignored.

When the local APIC is hardware enabled, this pin becomes the programmable interrupt LINT1. It
can be programmed in software in any of the interrupt modes. Since this pin is the NMI input when
the APIC is disabled, it is logical to program the vector table entry for this pin as NMI. In this
mode, the interrupt signal is passed on to the processor through the local APIC.

When the local APIC is hardware disabled, this pin is the NMI input for the processor. It bypasses
the APIC in that case.

When Sampled

NMI is sampled on every rising clock edge. NMI is rising edge sensitive. Recognition of NMI is
guaranteed in a specific clock if it is asserted synchronously and meets the setup and hold times. To
guarantee recognition if NMI is asserted asynchronously, it must have been deasserted for a
minimum of two clocks before being returned active to the embedded Pentium processor and
remain asserted for a minimum pulse width of two clocks.

Pin Symbol Relation to Other Signals

ADS# If NA# is sampled asserted and an internal bus request is pending, the processor drives
out the next bus cycle and asserts ADS#.

KEN# KEN# is sampled with the earlier of the first BRDY# or NA# for that cycle.

WB/WT# WB/WT# is sampled with the earlier of the first BRDY# or NA# for that cycle.

LOCK# ADS# is not asserted to pipeline an additional cycle if LOCK# is asserted, regardless of
the state of NA#.

BOFF# If NA# and BOFF# are asserted simultaneously, BOFF# takes priority and NA# is ignored.

NMI Non-Maskable Interrupt

Indicates that an external non-maskable interrupt has been generated.

Asynchronous Input
5-44 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface
Relation to Other Signals

5.1.45 PBGNT#

Signal Description

Two embedded Pentium processors, when configured as dual processors, will arbitrate for the
system bus via two private arbitration pins (PBREQ# and PBGNT#). The processor that currently
owns the system bus is referred to as the MRM processor. The processor that does not own the bus
is referred to as the LRM processor.

PBGNT# is used by the dual processing private arbitration mechanism to indicate that bus
ownership will change in the next clock. The LRM processor will request ownership of the
processor bus by asserting the private arbitration request pin, PBREQ#. The processor that is
currently the MRM and owns the bus, will grant the bus to the LRM as soon as any pending bus
transactions have completed. The MRM will notify that the LRM can assume ownership by
asserting the private arbitration grant pin, PBGNT#. The PBGNT# pin is always the output of the
MRM and an input to the LRM.

Note: In a single socket system design, PBGNT# pin should be left NC. For proper operation, PBGNT#
must not be loaded by the system.

When Sampled/Driven

PBGNT# is driven by the MRM processor in response to the PBREQ# signal from the LRM
processor. It is asserted following the completion of the current cycle on the processor bus, or in the
clock following the request if the bus is idle.

Relation to Other Signals

Pin Symbol Relation to Other Signals

APICEN When the APICEN configuration input is sampled inactive, this input becomes the
NMI interrupt.

LINT1 NMI shares a pin with LINT1.

PBGNT# Dual Processor Bus Grant

Indicates to the LRM processor that it will become the MRM in the next clock.

Synchronous Input (to the Least Recent Master, LRM, processor)

Synchronous Output (of the Most Recent Master, MRM, processor)

Pin Symbol Relation to Other Signals

PBREQ# PBGNT# is asserted in response to a bus request, PBREQ#, from the LRM
processor.

A31–A3, AP, BE7#–BE0#,
CACHE#, D/C#, M/IO#, PCD,
PWT, SCYC, W/R#

These signals are three-stated for one CLK in response to PBGNT# (when the
MRM becomes the LRM).
Embedded Pentium® Processor Family Developer’s Manual 5-45

Hardware Interface
5.1.46 PBREQ#

Signal Description

Two embedded Pentium processors, when configured as dual processors, will arbitrate for the
system bus via two private arbitration pins (PBREQ# and PBGNT#). The processor that currently
owns the system bus is referred to as the MRM processor. The processor that does not own the bus
is referred to as the LRM processor.

PBREQ# is used by the dual processing private arbitration mechanism to indicate that the LRM
processor requests bus ownership. The processor that is currently the MRM and owns the bus, will
grant the bus to the LRM as soon as any pending bus transactions have completed. The MRM will
notify that the LRM can assume ownership by asserting the private arbitration grant pin, PBGNT#.
The PBREQ# pin is always the output of the LRM and an input to the MRM.

Note: In a single socket system design, PBREQ# pin should be left NC. For proper operation, PBREQ#
must not be loaded by the system.

When Sampled/Driven

PBREQ# is driven by the LRM processor, and sampled by the MRM processor.

Relation to Other Signals

5.1.47 PCD

Signal Description

PCD is driven to externally reflect the cache disable paging attribute bit for the current cycle. PCD
corresponds to bit 4 of CR3, the Page Directory Entry, or the Page Table Entry. For cycles that are
not paged when paging is enabled (for example I/O cycles), PCD corresponds to bit 4 in CR3. In
real mode or when paging is disabled, the PCD pin reflects the cache disable bit in control register
0 (CR0.CD).

PBREQ# Dual Processor Bus Request

Indicates to the MRM processor that the LRM processor requires ownership of the bus.

Synchronous Input (to the Most Recent Master, MRM, processor)

Synchronous Output (of the Least Recent Master, LRM, processor)

Pin Symbol Relation to Other Signals

PBGNT# PBGNT# is asserted in response to a bus request, PBREQ#, from the LRM processor.

PCD Page Cacheability Disable

Externally reflects the cacheability paging attribute bit in CR3, PDE, or PTE.

Output
5-46 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface
PCD is masked by the CD (cache disable) bit in CR0. When CD=1, the embedded Pentium
processor forces PCD high. When CD=0, PCD is driven with the value of the Page Table
Entry/Directory.

The purpose of PCD is to provide an external cacheability indication on a page by page basis.

When Driven

The PCD pin is driven valid in the same clock as ADS# and the cycle address. It remains valid
from the clock in which ADS# is asserted until the earlier of the last BRDY# or the clock after
NA#.

Relation to Other Signals

5.1.48 PCHK#

Signal Description

The data parity check pin indicates the result of a parity check on a data read. Data parity is
checked during code reads, memory reads, and I/O reads. Data parity is not checked during the first
Interrupt Acknowledge cycle. PCHK# indicates the parity status only for the bytes on which valid
data is expected. Parity is checked for all data bytes for which a byte enable is asserted. In addition,
during a cache linefill, parity is checked on the entire data bus regardless of the state of the byte
enables.

PCHK# is driven low two clocks after BRDY# is returned if incorrect parity was returned.

Driving PCHK# is the only effect that bad data parity has on the embedded Pentium processor
unless PEN# is also asserted. The data returned to the processor is not discarded.

If PEN# is asserted when a parity error occurs, the cycle address and type will be latched in the
MCA and MCT registers. If in addition, the MCE bit in CR4 is set, a machine check exception will
be taken.

It is the responsibility of the system to take appropriate actions if a parity error occurs. If parity
checks are not implemented in the system, the PCHK# pin may be ignored, and PEN# pulled high
(or CR4.MCE cleared).

When operating in dual processing mode, the PCHK# signal can be asserted either 2 OR 3 CLKs
following incorrect parity being detected on the data bus. When operating in Dual Processing
mode, the PCHK# pin circuit is implemented as a weak driving high output that operates similar to

Pin Symbol Relation to Other Signals

ADS# PCD is driven valid with ADS#.

BOFF# PCD floats one clock after BOFF# is asserted.

HLDA PCD floats when HLDA is asserted.

PCHK# Data Parity Check

Indicates the result of a parity check on a data read.

Synchronous Output
Embedded Pentium® Processor Family Developer’s Manual 5-47

Hardware Interface
an open drain output. This implementation allows connection of the two processor PCHK# pins
together in a dual processing system with no ill effects. Nominally, this circuit acts like a 360 Ohm
resistor tied to VCC.

When Sampled/Driven

PCHK# is driven low two clocks after BRDY# is returned if incorrect parity was returned. PCHK#
remains low one clock for each clock in which a parity error was detected. At all other times
PCHK# is inactive (high). PCHK# is not floated during bus HOLD or BOFF#. PCHK# is a glitch
free signal.

Relation to Other Signals

5.1.49 PHIT#

Signal Description

A private snoop interface has been added to the embedded Pentium processor for use in dual
processing. The interface consists of two pins (PHIT# and PHITM#).

The LRM processor will initiate a snoop sequence for all ADS# cycles that are initiated by the
MRM. The LRM processor will assert the private hit indication (PHIT#) if the data requested by
the MRM matches a valid cache line in the LRM. In addition, if the data requested by the MRM
matches a valid cache line in the LRM that is in the modified state, the LRM will also assert the
PHITM# signal. The system snooping indication signals (HIT#, HITM#) will not change state as a
result of a private snoop.

The MRM will use an assertion of the PHIT# signal as an indication that the requested data is being
shared with the LRM. Independent of the WB/WT# pin, a cache line will be placed in the shared
state if PHIT# is asserted. This will make all subsequent writes to that line externally visible until
the state of the line becomes exclusive (E or M states). In a uni-processor system, the line may have
been placed in the cache in the E state. In this situation, all subsequent writes to that line will not be
visible on the bus until the state is changed to I.

PHIT# will also be driven by the LRM during external snoop operations (e.g., following EADS#)
to indicate the private snoop results.

Pin Symbol Relation to Other Signals

BRDY# PCHK# is driven to its valid level two clocks after the assertion of BRDY#.

D63–D0 The DP7–DP0 pins are used to create even parity with D63–D0. If even parity is not
returned, the PCHK# pin is asserted.

DP7–DP0 Even data parity with D63–D0 should be returned on to the processor on the dual
processor pin. If even parity is not returned, the PCHK# pin is asserted.

PHIT# Private Inquire Cycle Hit/Miss Indication

Indicates whether a private, dual processor, inquire cycle resulted in a hit or miss.

Synchronous Input (to the Most Recent Master, MRM, processor)

Synchronous Output (of the Least Recent Master, LRM, processor)
5-48 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface
Note: In a single socket system, PHIT# pin should be left NC. For proper operation, PHIT# must not be
loaded by the system.

When Sampled/Driven

PHIT# is driven by the LRM processor, and sampled by the MRM processor. It is asserted within
two clocks following an assertion of ADS# or EADS#.

Relation to Other Signals

5.1.50 PHITM#

Signal Description

A private snoop interface has been added to the embedded Pentium processor for use in dual
processing. The interface consists of two pins (PHIT# and PHITM#).

The LRM processor will initiate a snoop sequence for all ADS# cycles that are initiated by the
MRM. The LRM processor will assert the private hit indication (PHIT#) if the data requested by
the MRM matches a valid cache line in the LRM. In addition, if the data requested by the MRM
matches a valid cache line in the LRM that is in the modified state, the LRM will also assert the
PHITM# signal. The system snooping indication signals (HIT#, HITM#) will not change state as a
result of a private snoop.

PHITM# will also be driven by the LRM during external snoop operations (e.g. following EADS#)
to indicate the private snoop results.

Note: In a single socket system, PHITM# pin should be left NC. For proper operation, PHITM# must not
be loaded by the system.

Pin Symbol Relation to Other Signals

A31–A5 PHIT# is driven to indicate whether the private inquire address driven on A31–A5 is
valid in the LRM’s on-chip cache.

ADS# PHIT# is driven within two clocks after ADS# is sampled asserted to indicate the
outcome of the private inquire cycle.

EADS# PHIT# is driven within two clocks after EADS# is sampled asserted to indicate the
outcome of the external inquire cycle.

PHITM# PHITM# is never asserted without PHIT# also being asserted.

WB/WT# The state of the WB/WT# pin will be ignored by the MRM if the PHIT# pin is sampled
active, and the cache line placed in the shared state.

PHITM# Private Inquire Cycle Hit/Miss to a Modified Line Indication

Indicates whether a private, dual processor, inquire cycle resulted in a hit or miss to a
Modified line.

Synchronous Input (to the Most Recent Master, MRM, processor)

Synchronous Output (of the Least Recent Master, LRM, processor)
Embedded Pentium® Processor Family Developer’s Manual 5-49

Hardware Interface
When Sampled/Driven

PHITM# is driven by the LRM processor, and sampled by the MRM processor. It is asserted within
two clocks following an assertion of ADS# or EADS#.

Relation to Other Signals

5.1.51 PICCLK

Signal Description

This pin provides the clock timings for the on-chip APIC unit of the processor. This clock input
controls the frequency for the APIC operation and data transmission on the 2-wire APIC serial data
bus. All the timings on APIC bus are referenced to this clock.

When hardware disabled, PICCLK must be tied high.

Note that the PICCLK signal on the embedded Pentium processor with MMX technology is 3.3V
tolerant, while on the embedded Pentium processor the PICCLK input is 5.0V tolerant.

When Sampled

PICCLK is a clock signal and is used as a reference for sampling the APIC data signals.

Relation to Other Signals

Pin Symbol Relation to Other Signals

A31–A5 PHITM# is driven to indicate whether the private inquire address driven on A31–A5 is
modified in the LRM’s on-chip cache.

ADS# PHITM# is driven within two clocks after ADS# is sampled asserted to indicate the
outcome of the private inquire cycle.

EADS# PHITM# is driven within two clocks after EADS# is sampled asserted to indicate the
outcome of the external inquire cycle.

PHIT# PHITM# is never asserted without PHIT# also being asserted.

PICCLK Processor Interrupt Controller Clock

This pin drives the clock for the APIC serial data bus operation.

Input

Pin Symbol Relation to Other Signals

APICEN PICCLK must be tied or driven high when APICEN is sampled low at the falling edge of
RESET.

PICD0–PICD1 External timing parameters for the PICD0–PICD1 pins are measured with respect to
this clock.
5-50 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface

 bus.

be
ck a
ntrol
chine
chine
 does
g

ond
5.1.52 PICD1–PICD0

Signal Description

The PICD1–PICD0 are bidirectional pins which comprise the data portion of the 3-wire APIC

When Sampled/Driven

These signals are sampled with the rising edge of PICCLK.

Relation to Other Signals

5.1.53 PEN#

Signal Description

The PEN# input (along with CR4.MCE) determines whether a machine check exception will
taken as a result of a data parity error on a read cycle. If this pin is sampled active in the clo
data parity error is detected, the embedded Pentium processor will latch the address and co
signals of the cycle with the parity error in the machine check registers. If, in addition, the ma
check enable bit in CR4 is set to “1,” the embedded Pentium processor will vector to the ma
check exception before the beginning of the next instruction. If this pin is sampled inactive, it
not prevent PCHK# from being asserted in response to a bus parity error. If systems are usin
PCHK#, they should be aware of this usage of PEN#.

This pin may be tied to VSS.

When Sampled

This signal is sampled when BRDY# is asserted for memory and I/O read cycles and the sec
interrupt acknowledge cycle.

PICD1–PICD0 Processor Interrupt Controller Data

These are the data pins for the 3-wire APIC bus.

Synchronous Input/Output to PICCLK

Needs external pull-up resistors.

Pin Symbol Relation to Other Signals

APICEN PICD1 shares a pin with APICEN.

DPEN# PICD0 shares a pin with DPEN#.

PEN# Parity Enable

Indicates to the processor that the correct data parity is being returned by the system.
Determines if a Machine Check Exception should be taken if a data parity error is
detected.

Synchronous Input
Embedded Pentium® Processor Family Developer’s Manual 5-51

Hardware Interface

 bus

 the
ared or

the
nting a
 the

lso be
e
Relation to Other Signals

5.1.54 PM1–PM0

Signal Description

The performance monitoring pins can be individually configured to externally indicate either that
the associated performance monitoring counter has incremented or that it has overflowed. PM1
indicates the status of CTR1; PM0 indicates the status of CTR0.

BP1 and BP0 are multiplexed with the Performance Monitoring pins (PM1 and PM0). The PB1
and PB0 bits in the Debug Mode Control Register determine if the pins are configured as
breakpoint or performance monitoring pins. The pins come out of reset configured for performance
monitoring.

When Driven

The BP3–BP2, PM1/BP1–PM0/BP0 pins are driven in every clock and are not floated during
HOLD or BOFF#.

The PM1/PM0 pins externally indicate the status of the performance monitoring counters on
embedded Pentium processor. These counters are undefined after RESET, and must be cle
pre-set (using the WRMSR instruction) before they are assigned to specific events.

However, it is possible for these pins to toggle even during RESET. This may occur ONLY if
RESET pin was asserted while the embedded Pentium processor was in the process of cou
particular performance monitoring event. Since the event counters continue functioning until
CESR (Control and Event Select Register) is cleared by RESET, it is possible for the event
counters to increment even during RESET. Externally, the state of the event counters would a
reflected on the PM1/PM0 pins. Any assertion of the PM1/PM0 pins during RESET should b
ignored until after the start of the first bus cycle.

Pin Symbol Relation to Other Signals

BRDY# PEN# is sampled with BRDY# for read cycles.

D63–D0
The DP7–DP0 pins are used to create even parity with D63–D0. If even parity is not
returned, and PEN# is enabled, the cycle will be latched and an MCE will be taken if
CR4.MCE = 1.

DP7–DP0
Even data parity with D63–D0 should be returned to the processor on the dual-processor
pins. If even parity is not returned, and PEN# is enabled, the cycle will be latched and a
MCE will be taken if CR4.MCE = 1.

PM1/BP1–
PM0/BP0 Performance Monitoring

PM1–PM0 externally indicate the status of the performance monitor counter.

Output pins
5-52 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface

ycle.
les

t 3 in
T low.

, the
Relation to Other Signals

5.1.55 PRDY

Signal Description

The PRDY pin is provided for use with the Intel debug port described in the Chapter 13,
“Debugging.”

When Driven

This output is always driven by the embedded Pentium processor. It is not floated during bus
HOLD or BOFF#.

Relation to Other Signals

5.1.56 PWT

Signal Description

PWT is driven to externally reflect the cache writethrough paging attribute bit for the current c
PWT corresponds to bit 3 of CR3, the Page Directory Entry, or the Page Table Entry. For cyc
that are not paged when paging is enabled (for example I/O cycles), PWT corresponds to bi
CR3. In real mode or when paging is disabled, the embedded Pentium processor drives PW

PWT can override the effect of the WB/WT# pin. If PWT is asserted for either reads or writes
line is saved in, or remains in, the Shared (S) state.

Pin Symbol Relation to Other Signals

BP1–BP0 PM1 and PM0 are share pins with BP1 and BP0.

PRDY Probe Ready

For use with the Intel debug port.

Output

Pin Symbol Relation to Other Signals

R/S# R/S# is also used with the Intel debug port.

PWT Page Writethrough

Externally reflects the writethrough paging attribute bit in CR3, PDE, or PTE.

Output
Embedded Pentium® Processor Family Developer’s Manual 5-53

Hardware Interface
When Driven

The PWT pin is driven valid in the same clock as ADS# and the cycle address. It remains valid
from the clock in which ADS# is asserted until the earlier of the last BRDY# or the clock after
NA#.

Relation to Other Signals

5.1.57 R/S#

Signal Description

The R/S# pin is provided for use with the Intel debug port described in Chapter 13, “Debugging.”

When Sampled

This pin should not be driven except in conjunction with the Intel debug port.

Relation to Other Signals

5.1.58 RESET

Pin Symbol Relation to Other Signals

ADS# PWT is driven valid with ADS#.

BOFF# PWT floats one clock after BOFF# is asserted.

HLDA PWT floats when HLDA is asserted.

WB/WT# PWT is used in conjunction with the WB/WT# pin to determine the MESI state of
cache lines.

R/S# Run/Stop

For use with the Intel debug port.

Asynchronous Input

Pin Symbol Relation to Other Signals

PRDY PRDY is also used with the Intel debug port.

RESET Reset

Forces the processor to begin execution at a known state.

Asynchronous Input (Normal, Uni-processor, mode)

Synchronous Input (Dual processor mode)
5-54 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface

er

SET

serted
rned

ine
iven
e clock
 at

 CLK
Signal Description

The RESET input forces the embedded Pentium processor to begin execution at a known state. All
the embedded Pentium processor internal caches (code and data caches, the translation lookaside
buffers, branch target buffer and segment descriptor cache) will be invalidated upon the RESET.
Modified lines in the data cache are not written back. When RESET is asserted, the embedded
Pentium processor will immediately abort all bus activity and perform the RESET sequence. The
embedded Pentium processor starts execution at FFFFFFF0H.

When RESET transitions from high to low, FLUSH# is sampled to determine if three-state test
mode is to be entered, FRCMC# is sampled to determine if the embedded Pentium processor will
be configured as a master or a checker (only on the embedded Pentium processor), and INIT is
sampled to determine if BIST will be run.

When Sampled/Driven

RESET is sampled on every rising clock edge. RESET must remain asserted for a minimum of 1
millisecond after VCC and CLK have reached their AC/DC specifications for the “cold” or “pow
on” reset. During power up, RESET should be asserted while VCC is approaching nominal
operating voltage (the simplest way to insure this is to place a pullup resistor on RESET). RE
must remain active for at least 15 clocks while VCC and CLK are within their operating limits for a
“warm reset.” Recognition of RESET is guaranteed in a specific clock if it is asserted
synchronously and meets the setup and hold times. To guarantee recognition if RESET is as
asynchronously, it must have been deasserted for a minimum of two clocks before being retu
active to the embedded Pentium processor.

FLUSH#, FRCMC# and INIT are sampled when RESET transitions from high to low to determ
if three-state test mode or checker mode will be entered, or if BIST will be run. If RESET is dr
synchronously, these signals must be at their valid level and meet setup and hold times on th
before the falling edge of RESET. If RESET is driven asynchronously, these signals must be
their valid level two clocks before and after RESET transitions from high to low.

When operating in a dual processing system, RESET is sampled synchronously to the rising
edge to ensure both processors recognize the falling edge in the same clock.

Relation to Other Signals

Pin Symbol Relation to Other Signals

APICEN APICEN is sampled at the falling edge of RESET.

BE3#–BE0# During reset the BE3#–BE0# pins are sampled to determine the APIC ID. Following
RESET, they function as Byte Enable outputs.

BF1–BF0 BF1–BF0 are sampled at the falling edge of RESET.

CPUTYP CPUTYP is sampled at the falling edge of RESET.

DPEN# DPEN# is valid during RESET.

FLUSH# If FLUSH# is sampled low when RESET transitions from high to low, three-state test
mode will be entered.

FRCMC# FRCMC# is sampled when RESET transitions from high to low to determine if the
embedded Pentium processor is in Master or Checker mode.

INIT If INIT is sampled high when RESET transitions from high to low, BIST will be
performed.
Embedded Pentium® Processor Family Developer’s Manual 5-55

Hardware Interface
5.1.59 SCYC

Signal Description

The Split Cycle output is activated during misaligned locked transfers. It is asserted to indicate that
more than two cycles will be locked together. This signal is defined for locked cycles only. It is
undefined for cycles which are not locked.

The embedded Pentium processor defines misaligned transfers as a 16-bit or 32-bit transfer which
crosses a 4-byte boundary, or a 64-bit transfer which crosses an 8-byte boundary.

When operating in dual processing mode, the embedded Pentium processor uses this signal for
private snooping.

When Sampled/Driven

SCYC is only driven during the length of the locked cycle that is split. SCYC is asserted with the
first ADS# of a misaligned split cycle and remains valid until the earlier of the last BRDY# of the
last split cycle or the clock after NA# of the last split cycle.

This signal becomes an input/output when two embedded Pentium processors are operating
together in dual processing mode.

Relation to Other Signals

SCYC Split Cycle Indication

Indicates that a misaligned locked transfer is on the bus.

Synchronous Input/Output

Pin Symbol Relation to Other Signals

ADS# SCYC is driven valid in the same clock as ADS#.

BOFF# SCYC is floated one clock after BOFF# is asserted.

HLDA SCYC is floated when HLDA is asserted.

LOCK# SCYC is defined for locked cycles only.
5-56 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface
5.1.60 SMI#

Signal Description

The System Management Interrupt input latches a System Management Interrupt request. After
SMI# is recognized on an instruction boundary, the embedded Pentium processor waits for all
writes to complete and EWBE# to be asserted, then asserts the SMIACT# output. The processor
will then save its register state to SMRAM space and begin to execute the SMM handler. The RSM
instruction restores the registers and returns to the user program.

SMI# has greater priority than debug exceptions and external interrupts. This means that if more
than one of these conditions occur at an instruction boundary, only the SMI# processing occurs, not
a debug exception or external interrupt. Subsequent SMI# requests are not acknowledged while the
processor is in system management mode (SMM). The first SMI# interrupt request that occurs
while the processor is in SMM is latched, and serviced when the processor exits SMM with the
RSM instruction. Only one SMI# will be latched by the processor while it is in SMM.

When Sampled

SMI# is sampled on every rising clock edge. SMI# is a falling edge sensitive input. Recognition of
SMI# is guaranteed in a specific clock if it is asserted synchronously and meets the setup and hold
times. To guarantee recognition if SMI# is asserted asynchronously, it must have been deasserted
for a minimum of two clocks before being returned active to the embedded Pentium processor and
remain asserted for a minimum pulse width of two clocks.

Relation to Other Signals

SMI# System Management Interrupt

Latches a System Management Interrupt request.

Asynchronous Input

Internal Pullup Resistor

Pin Symbol Relation to Other Signals

SMIACT# When the SMI# input is recognized, the processor asserts SMIACT#.
Embedded Pentium® Processor Family Developer’s Manual 5-57

Hardware Interface
5.1.61 SMIACT#

Signal Description

The System Management Interrupt Active output is asserted in response to the assertion of SMI#. It
indicates that the processor is operating in System Management Mode (SMM). It will remain
active (low) until the processor executes the RSM instruction to leave SMM.

When the system is operating in dual processing mode, the D/P# signal alternates between asserted
and deasserted based on whether the Primary or Dual processor owns the bus (MRM). The
SMIACT# pins may be tied together or be used separately to insure SMRAM access by the correct
processor.

Caution: If SMIACT# is used separately, note that the SMIACT# signal is only driven by the processor
when it is the MRM (so this signal must be qualified with the D/P# signal).

Connecting the SMIACT# signals on the Primary and Dual processors together is strongly
recommended for operation with the Dual processor and upgradability with the Pentium
OverDrive® processor.

In dual processing systems, SMIACT# may not remain low (e.g., may toggle) if both processors
are not in SMM mode. The SMIACT# signal is asserted by either the Primary or Dual processor
based on two conditions: the processor is in SMM mode and is the bus master (MRM). If one
processor is executing in normal address space, the SMIACT# signal will go inactive when that
processor is MRM. The LRM processor, even if in SMM mode, will not drive the SMIACT# signal
low.

When Sampled/Driven

SMIACT# is driven active in response to the assertion of SMI# after all internally pending writes
are complete and the EWBE# pin is active (low). It will remain active (low) until the processor
executes the RSM instruction to leave SMM. This signal is always driven. It does not float during
bus HOLD or BOFF#.

When operating in dual processing mode, the SMIACT# output must be sampled with an active
ADS# and qualified with the D/P# signal to determine which embedded Pentium processor (i.e.,
the Primary or Dual) is driving the SMM cycle.

Relation to Other Signals

SMIACT# System Management Interrupt Active

Indicates that the processor is operating in SMM.

Synchronous Output

Pin Symbol Relation to Other Signals

ADS# SMIACT# should be sampled with an active ADS# during dual processing operation.

D/P# When operating in dual processing mode, D/P# qualifies the SMIACT# SMM
indicator.

EWBE# SMIACT# is not asserted until EWBE# is active.

SMI# SMIACT# is asserted when the SMI# is recognized.
5-58 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface

ing

nizes

ng
5.1.62 STPCLK#

Signal Description

Assertion of STPCLK# causes the embedded Pentium processor to stop its internal clock and
consume less power while still responding to interprocessor and external snoop requests. This low-
power state is called the stop grant state. When the processor recognizes a STPCLK# interrupt, the
processor will do the following:

1. Wait for all instructions being executed to complete.

2. Flush the instruction pipeline of any instructions waiting to be executed.

3. Wait for all pending bus cycles to complete and EWBE# to go active.

4. Drive a special bus cycle (stop grant bus cycle) to indicate that the clock is being stopped.

5. Enter low power mode.

The stop grant bus cycle consists of the following signal states: M/IO# = 0, D/C# = 0, W/R# = 1,
Address Bus = 0000 0010H (A4 = 1), BE7#–BE0# = 1111 1011, Data bus = undefined.

STPCLK# must be driven high (not floated) to exit the stop grant state. The rising edge of
STPCLK# will tell the processor that it can return to program execution at the instruction follow
the interrupted instruction.

When Sampled/Driven

STPCLK# is treated as a level triggered interrupt to the embedded Pentium processor and is
prioritized below all of the external interrupts. When the embedded Pentium processor recog
the STPCLK# interrupt, the processor will stop execution on the instruction boundary followi
the STPCLK# assertion.

Relation to Other Signals

STPCLK# Stop Clock

Used to stop the internal processor clock and consume less power.

Asynchronous Input

Pin Symbol Relation to Other Signals

A4, Cycle Control signals
(M/IO#, D/C#, W/R#, BE7#–
BE0#, D/P#)

The Stop Grant Special Bus Cycle is driven on these pins in response to an
assertion of the STPCLK# signal. M/IO# = 0, D/C# = 0, W/R# = 1. Address
Bus = 0000 0010H (A4 = 1), BE7#–BE0# = 1111 1011.

EWBE# After STPCLK# has been recognized, all pending cycles must be completed
and EWBE# must go active before the internal clock will be disabled.

External Interrupt signals
(FLUSH#, INIT, INTR, NMI,
R/S#, SMI#)

While in the Stop Grant state, the processor will latch transitions on the
external interrupt signals. All of these interrupts are taken after the
deassertion of STPCLK#. The processor requires that INTR be held active
until the processor issues an interrupt acknowledge cycle in order to
guarantee recognition.

HLDA The processor will not respond to a STPCLK# request from a HLDA state
because it cannot generate a Stop Grant cycle.
Embedded Pentium® Processor Family Developer’s Manual 5-59

Hardware Interface

e.”

t
r, the
5.1.63 TCK

Signal Description

This is the Testability Clock input that provides the clocking function for the embedded Pentium
processor boundary scan in accordance with the boundary scan interface (IEEE Std 1149.1). It is
used to clock state information and data into and out of the embedded Pentium processor during
boundary scan. State select information and data are clocked into the embedded Pentium processor
on the rising edge of TCK on TMS and TDI inputs respectively. Data is clocked out of the
embedded Pentium processor on the falling edge of TCK on TDO.

When TCK is stopped in a low state, the boundary scan latches retain their state indefinitely. When
boundary scan is not used, TCK should be tied high or left as a no-connect.

When Sampled

TCK is a clock signal and is used as a reference for sampling other boundary scan signals.

Relation to Other Signals

5.1.64 TDI

Signal Description

This is the serial input for the Boundary Scan test logic. TAP instructions and data are shifted into
the embedded Pentium processor on the TDI pin on the rising edge of TCK when the TAP
controller is in the SHIFT-IR and SHIFT-DR states. During all other states, TDI is a “don’t car

An internal pull-up resistor is provided on TDI to ensure a known logic state if an open circui
occurs on the TDI path. Note that when “1” is continuously shifted into the instruction registe
BYPASS instruction is selected.

TCK Test Clock Input

Provides Boundary Scan clocking function.

Input

Pin Symbol Relation to Other Signals

TDI Serial data is clocked into the processor on the rising edge of TCK.

TDO Serial data is clocked out of the processor on the falling edge of TCK.

TMS TAP controller state transitions occur on the rising edge of TCK.

TDI Test Data Input

Input to receive serial test data and instructions.

Synchronous Input to TCK
5-60 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface

d out
P
n to

g bus
When Sampled

TDI is sampled on the rising edge of TCK during the SHIFT-IR and SHIFT-DR states. During all
other states, TDI is a “don’t care.”

Relation to Other Signals

5.1.65 TDO

Signal Description

This is the serial output of the Boundary Scan test logic. TAP instructions and data are shifte
of the embedded Pentium processor on the TDO pin on the falling edge of TCK when the TA
controller is in the SHIFT-IR and SHIFT-DR states. During all other states, the TDO pin is drive
the high impedance state to allow connecting TDO of different devices in parallel.

When Driven

TDO is driven on the falling edge of TCK during the SHIFT-IR and SHIFT-DR TAP controller
states. At all other times, TDO is driven to the high impedance state. TDO does not float durin
HOLD or BOFF#.

Relation to Other Signals

Pin Symbol Relation to Other Signals

TCK TDI is sampled on the rising edge of TCK.

TDO In the SHIFT-IR and SHIFT-DR TAP controller states, TDO contains the output
data of the register being shifted, and TDI provides the input.

TMS TDI is sampled only in the SHIFT-IR and SHIFT DR states (controlled by TMS).

TDO Test Data Output

Outputs serial test data and instructions.

Output

Pin Symbol Relation to Other Signals

TCK TDO is driven on the falling edge of TCK.

TDI In the SHIFT-IR and SHIFT-DR TAP controller states, TDI provides the input data
to the register being shifted, and TDO provides the output.

TMS TDO is driven only in the SHIFT-IR and SHIFT DR states (controlled by TMS).
Embedded Pentium® Processor Family Developer’s Manual 5-61

Hardware Interface
5.1.66 TMS

Signal Description

This a Boundary Scan test logic control input. The value of this input signal sampled at the rising
edge of TCK controls the sequence of TAP controller state changes.

To ensure deterministic behavior of the TAP controller, TMS is provided with an internal pullup
resistor. If boundary scan is not used, TMS may be tied to VCC or left unconnected.

When Sampled

TMS is sampled on every rising edge of TCK.

Relation to Other Signals

5.1.67 TRST#

Signal Description

This is a Boundary Scan test logic reset or initialization pin. When asserted, it allows the TAP
controller to be asynchronously initialized. When asserted, TRST# will force the TAP controller
into the Test Logic Reset State. When in this state, the test logic is disabled so that normal
operation of the device can continue unhindered. During initialization, the embedded Pentium
processor initializes the instruction register with the IDCODE instruction.

An alternate method of initializing the TAP controller is to Drive TMS high for at least 5 TCK
cycles. In addition, the embedded Pentium processor implements a power on TAP controller reset
function. When the embedded Pentium processor is put through its normal power on/RESET
function, the TAP controller is automatically reset by the processor. The user does not have to
assert the TRST# pin or drive TMS high after the falling edge of RESET.

When Sampled

TRST# is an asynchronous input.

TMS Test Mode Select

Controls TAP controller state transitions.

Synchronous Input to TCK

Pin Symbol Relation to Other Signals

TCK TMS is sampled on every rising edge of TCK.

TDI TDI is sampled only in the SHIFT-IR and SHIFT DR states (controlled by TMS).

TDO TDO is driven only in the SHIFT-IR and SHIFT DR states (controlled by TMS).

TRST# Test Reset

Allows the TAP controller to be asynchronously initialized.

Asynchronous Input
5-62 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface
Relation to Other Signals

None

5.1.68 VCC

Signal Description

The embedded Pentium processor requires 3.3 V VCC inputs.

5.1.69 VCC2

Signal Description

The embedded Pentium processor with MMX technology requires a 2.8 V VCC2 (core) voltage.

The low-power embedded Pentium processor with MMX technology core voltage VCC2 is 1.9 V
for the PPGA package. The core voltage VCC2 for the HL-PBGA package is 1.8 V (166 MHz) or
2.0 V (266 MHz).

5.1.70 VCC3

Signal Description

The embedded Pentium processor with MMX technology requires a 3.3 V VCC3 (I/O) voltage. This
enables compatibility with embedded Pentium processor system components.

The low-power embedded Pentium processor with MMX technology requires a 2.5 V VCC3 (I/O)
voltage.

VCC Supply Voltage for the processor

VCC is used to supply power to the embedded Pentium processor.

Power Input

VCC2 Core Supply Voltage

VCC2 is used to supply the core of the embedded Pentium processor with MMX technology
and the low-power embedded Pentium processor with MMX technology.

Power Input

VCC3 I/O Supply Voltage

VCC3 is used to supply the I/O of the embedded Pentium processor with MMX technology and
the low-power embedded Pentium processor with MMX technology.

Power Input
Embedded Pentium® Processor Family Developer’s Manual 5-63

Hardware Interface
5.1.71 VCC2DET#

Signal Description

The embedded Pentium processor with MMX technology requires 2.8 V on the VCC2 pins and
3.3 V on the VCC3 pins. By using the VCC2DET# signal the system can adjust the core voltage to
the processor when a embedded Pentium processor with MMX technology is inserted into
Socket 7.

VCC2DET# is driven active (low) to indicate that a embedded Pentium processor with MMX
technology is installed in the system and can be used in flexible motherboard designs to configure
the voltage regulator output set-point appropriately for the VCC2 inputs of the embedded Pentium
processor with MMX technology.

This pin can be used to differentiate between the Pentium Processor with MMX technology and the
low-power embedded Pentium processor with MMX technology. This is an Internal No Connect
(INC) pin on the low-power embedded Pentium processor with MMX technology. This pin is not
defined on the HL-PBGA package.

When Sampled/Driven

This pin is internally strapped to VSS.

5.1.72 W/R#

Signal Description

The Write/Read signal is one of the primary bus cycle definition pins. W/R# distinguishes between
write (W/R# = 1) and read cycles (W/R# = 0).

When operating in dual processing mode, the embedded Pentium processor uses this signal for
private snooping.

When Sampled/Driven

W/R# is driven valid in the same clock as ADS# and the cycle address. It remains valid from the
clock in which ADS# is asserted until the earlier of the last BRDY# or the clock after NA#.

VCC2DET# VCC2 Detect

VCC2DET# can be used in flexible motherboard implementations to configure the
voltage regulator output set-point appropriately for the VCC2 inputs of the embedded
Pentium® processor with MMX™ technology. This pin can also be used to differentiate
between the Pentium Processor with MMX technology and the low-power embedded
Pentium processor with MMX technology

Output

NOTE: This pin is an INC on the embedded Pentium processor.

W/R# Write/Read

Distinguishes a Write cycle from a Read cycle.

Synchronous Input/Output
5-64 Embedded Pentium® Processor Family Developer’s Manual

Hardware Interface
This signal becomes an input/output when two embedded Pentium processors are operating
together in dual processing mode.

Relation to Other Signals

5.1.73 WB/WT#

Signal Description

This pin allows a cache line to be defined as writeback or writethrough on a line by line basis. As a
result, in conjunction with the PWT pin, it controls the MESI state in which the line is saved.

If WB/WT# is sampled high during a memory read cycle and the PWT pin is low, the line is saved
in the Exclusive (E) state in the cache. If WB/WT# is sampled low during a memory read cycle, the
line is saved in the Shared (S) state in the cache.

If WB/WT# is sampled high during a write to a shared line in the cache and the PWT pin is low, the
line transitions to the E state. If WB/WT# is sampled low during a write to a shared line in the
cache, the line remains in the S state.

If for either reads or writes the PWT pin is high, the line is saved in, or remains in, the Shared (S)
state.

When Sampled

This pin is sampled with KEN# on the clock in which NA# or the first BRDY# is returned,
however it must meet setup and hold times on every clock edge.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# W/R# is driven to its valid state with ADS#.

BOFF# W/R# floats one clock after BOFF# is asserted.

HLDA W/R# floats when HLDA is asserted.

KEN# KEN# determines cacheability only if W/R# indicates a read.

WB/WT# Writeback/Writethrough

This pin allows a cache line to be defined as writeback or writethrough on a line
by line basis.

Synchronous Input

Pin Symbol Relation to Other Signals

BRDY#
NA# WB/WT# is sampled with the earlier of the first BRDY# or NA# for that cycle.

PWT If PWT is high, WB/WT# is a “don’t care.”
Embedded Pentium® Processor Family Developer’s Manual 5-65

Bus Functional Description 6

Embedded Pentium® family processors support the same bus functionality. The processor bus
supports a 528-Mbyte/s data transfer rate at 66 MHz. All data transfers occur as a result of one or
more bus cycles. This chapter describes the processor bus cycles and the processor data transfer
mechanism.

6.1 Physical Memory and I/O Interface

Processor memory is accessible in 8-, 16-, 32-, and 64-bit quantities. Processor I/O is accessible in
8-, 16-, and 32-bit quantities. The processor can directly address up to 4 Gbytes of physical
memory, and up to 64 Kbytes of I/O.

In hardware, memory space is organized as a sequence of 64-bit quantities. Each 64-bit location
has eight individually addressable bytes at consecutive memory addresses (see Figure 6-1).

The I/O space is organized as a sequence of 32-bit quantities. Each 32-bit quantity has four
individually addressable bytes at consecutive memory addresses. See Figure 6-2 for a conceptual
diagram of the I/O space.

Figure 6-1. Memory Organization

A6159-01

Physical
Memory
4 Gbytes

Physical Memory
Space

64-Bit Wide Memory Organization

FFFFFFFFH

FFFFFFFFH

FFFFFFF8H

FFFFFFF8H

00000007H

00000007H

00000000H

00000000H
BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0#
Embedded Pentium® Processor Family Developer’s Manual 6-1

Bus Functional Description

l
ddress

rds
lines
ing to
d

e byte

, word,
ary, but

 or 4-
d that

High-
 form

h the
le
on
er
Sixty-four-bit memories are organized as arrays of physical quadwords (8-byte words). Physical
quadwords begin at addresses evenly divisible by 8. The quadwords are addressable by physical
address lines A31–A3.

Thirty-two-bit memories are organized as arrays of physical dwords (4-byte words). Physica
dwords begin at addresses evenly divisible by 4. The dwords are addressable by physical a
lines A31–A3 and A2. A2 can be decoded from the byte enables according to Table 6-2.

Sixteen-bit memories are organized as arrays of physical words (2-byte words). Physical wo
begin at addresses evenly divisible by two. The words are addressable by physical address
A31–A3, A2–A1, BHE#, and BLE#. A2 and A1 can be decoded from the byte enables accord
Table 6-2, BHE# and BLE# can be decoded from the byte enables according to Table 6-3 an
Table 6-4.

To address 8-bit memories, the lower three address lines (A2–A0) must be decoded from th
enables as indicated in Table 6-2.

6.2 Data Transfer Mechanism

All data transfers occur as a result of one or more bus cycles. Logical data operands of byte
dword, and quadword lengths may be transferred. Data may be accessed at any byte bound
two cycles may be required for misaligned data transfers. The processor considers a 2-byte
byte operand that crosses a 4-byte boundary to be misaligned. In addition, an 8-byte operan
crosses an 8-byte boundary is misaligned.

Like the Intel486™ processor, the processor address signals are split into two components.
order address bits are provided by the address lines A31–A3. The byte enables BE7#–BE0#
the low-order address and select the appropriate byte of the 8-byte data bus.

The byte enable outputs are asserted when their associated data bus bytes are involved wit
present bus cycle as shown in Table 6-1. For both memory and I/O accesses, the byte enab
outputs indicate which of the associated data bus bytes are driven valid for write cycles and
which bytes data is expected back for read cycles. Non-contiguous byte enable patterns nev
occur.

Figure 6-2. I/O Space Organization

A6160-01

Not
Accessible

64 Kbyte
0000FFFCH

00000000H

0000FFFFH

00000003H
6-2 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description

g to
HE#

g to
HE#
Address bits A2–A0 of the physical address can be decoded from the byte enables accordin
Table 6-2. The byte enables can also be decoded to generate BLE# (byte low enable) and B
(byte high enable) to address 16-bit memory systems (see Table 6-3 and Table 6-4).

Address bits A2–A0 of the physical address can be decoded from the byte enables accordin
Table 6-2. The byte enables can also be decoded to generate BLE# (byte low enable) and B
(byte high enable) to address 16-bit memory systems (see Table 6-3 and Table 6-4).

Table 6-1. Embedded Pentium® Processor Byte Enables and Associated Data Bytes

Byte Enable Signal Associated Data Bus Signals

BE0# D0–D7 (byte 0 — least significant)

BE1# D8–D15 (byte 1)

BE2# D16–D23 (byte 2)

BE3# D24–D31 (byte 3)

BE4# D32–D39 (byte 4)

BE5# D40–D47 (byte 5)

BE6# D48–D55 (byte 6)

BE7# D56–D63 (byte 7 — most significant)

Table 6-2. Generating A2–A0 from BE7#–BE0#

A2 A1 A0 BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0#

0 0 0 X X X X X X X Low

0 0 1 X X X X X X Low High

0 1 0 X X X X X Low High High

0 1 1 X X X X Low High High High

1 0 0 X X X Low High High High High

1 0 1 X X Low High High High High High

1 1 0 X Low High High High High High High

1 1 1 Low High High High High High High High

Table 6-3. When BLE# is Active

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# BLE#

X X X X X X X Low Low

X X X X X Low High High Low

X X X Low High High High High Low

X Low High High High High High High Low
Embedded Pentium® Processor Family Developer’s Manual 6-3

Bus Functional Description

t
6.2.1 Interfacing With 8-, 16-, 32-, and 64-Bit Memories

In 64-bit physical memories such as Figure 6-3, each 8-byte quadword begins at a byte address that
is a multiple of eight. A31–A3 are used as an 8-byte quadword select and BE7#–BE0# selec
individual bytes within the word.

Table 6-4. When BHE# is Active

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# BHE#

X X X X X X Low X Low

X X X X Low X High High Low

X X Low X High High High High Low

Low X High High High High High High Low

Table 6-5. When BE3’# is Active

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# BE3’#

Low X X X Low X X X Low

Table 6-6. When BE2’# is Active

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# BE2’#

X Low X X X Low X X Low

Table 6-7. When BE1’# is Active

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# BE1’#

X X Low X X X Low X Low

Table 6-8. When BE0’# is Active

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# BE0’#

X X X Low X X X Low Low

Figure 6-3. Embedded Pentium® Processor with 64-Bit Memory

A6161-01

A31-A3, BE7#-BE0#

D63-D0

Pentium® Processor 64-Bit Memory
6-4 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description

.
ry
to the

fer (with
r at

st be

ress

Memories that are 32 bits wide require external logic for generating A2 and BE3’#–BE0’#.
Memories that are 16 bits wide require external logic for generating A2, A1, BHE# and BLE#
Memories that are 8 bits wide require external logic for generating A2, A1, and A0. All memo
systems that are less than 64 bits wide require external byte swapping logic for routing data
appropriate data lines.

The processor expects all the data requested by the byte enables to be returned as one trans
one BRDY#), so byte assembly logic is required to return all requested bytes to the processo
one time. Note that the processor does not support BS8#, BS16# or BS32#, so this logic mu
implemented externally if necessary.

Figure 6-4 shows the processor address bus interface to 64, 32, 16 and 8-bit memories. Add
bits A2, A1, and A0 and BHE#, BLE#, and BE3’#–BE0’# are decoded as shown in Table 6-2
through Table 6-8.

Figure 6-4. Addressing 32-, 16- and 8-Bit Memories

A6162-01

BE7#-BE0#

A2, BE3'# - BE0'#

BHE#, BLE#, A2, A1

A2, A1, A0

A31-A3
Pentium®

Processor
64-Bit

Memory

32-Bit
Memory

16-Bit
Memory

8-Bit
Memory

Byte
Select
Logic
Embedded Pentium® Processor Family Developer’s Manual 6-5

Bus Functional Description
Figure 6-5 shows the processor data bus interface to 32-, 16- and 8-bit wide memories. External
byte swapping logic is needed on the data lines so that data is supplied to and received from the
processor on the correct data pins (see Table 6-1). For memory widths smaller than 64 bits, byte
assembly logic is needed to return all bytes of data requested by the processor in one cycle.

Operand alignment and size dictate when two cycles are required for a data transfer. Table 6-9
shows the transfer cycles generated by the processor for all combinations of logical operand
lengths and alignment and applies to both locked and unlocked transfers. When multiple cycles are
required to transfer a multi-byte logical operand, the highest order bytes are transferred first.

Figure 6-5. Data Bus Interface to 32-, 16- and 8-Bit Memories

A6163-01

Pentium®

Processor 64-Bit
Memory

D7-D0

D15-D8

D23-D16

D31-D24

D39-D32

D47-D40

D55-D48

D63-D56

A
31-A

3 B
E

7#-B
E

0#

32

D7-D0
D15-D8

D23-D16
D31-D24
D39-D32
D47-D40
D55-D48
D63-D56

64-Bit
Data Assembly

Logic

Byte
Swap
Logic

32-Bit
Memory

16
Byte
Swap
Logic

16-Bit
Memory

8 8-Bit
Memory

Byte
Swap
Logic
6-6 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
↑ ↑
byte with highest address byte with lowest address

Table 6-9. Transfer Bus Cycles for Bytes, Words, Dwords and Quadwords

Length of Transfer 1 Byte 2 Bytes

Low Order Address xxx 000 001 010 011 100 101 110 111

1st transfer b w w w hb w w w hb

Byte enables driven 0 BE0–1# BE1–2# BE2–3# BE4# BE4–5# BE5–6# BE6–7# BE0#

Value driven on A3 0 0 0 0 0 0 0 1

2nd transfer (if
needed) lb lb

Byte enables driven BE3# BE7#

Value driven on A3 0 0

Length of Transfer 4 Bytes

Low Order Address 000 001 010 011 100 101 110 111

1st transfer d hb hw h3 d hb hw h3

Byte enables driven BE0–3# BE4# BE4–5# BE4–6# BE4–7# BE0# BE0–1# BE0–2#

Low order address 0 0 0 0 0 1 1 1

2nd transfer (if
needed) l3 lw lb l3 lw lb

Byte enables driven BE1–3# BE2–3# BE3# BE5–7# BE6–7# BE7#

Value driven on A3 0 0 0 0 0 0

Length of Transfer 8 Bytes

Low Order Address 000 001 010 011 100 101 110 111

1st transfer q hb hw h3 hd h5 h6 h7

Byte enables driven BE0–7# BE0# BE0–1# BE0–2# BE0–3# BE0–4# BE0–5# BE0–6#

Value driven on A3 0 1 1 1 1 1 1 1

2nd transfer (if
needed) l7 l6 l5 ld l3 lw lb

Byte enables driven BE1–7# BE2–7# BE3–7# BE4–7# BE5–7# BE6–7# BE7#

Value driven on A3 0 0 0 0 0 0 0

Key:

b = byte transfer w = 2-byte transfer 3 = 3-byte transfer d = 4-byte transfer

5 = 5-byte transfer 6 = 6-byte transfer 7 = 7-byte transfer q = 8-byte transfer

h = high order ll = low order

8-byte operand:

high order
byte byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 low order

byte
Embedded Pentium® Processor Family Developer’s Manual 6-7

Bus Functional Description
6.3 Bus State Definition

This section describes the processor bus states in detail. See Figure 6-6 for the bus state diagram.

Ti: This is the bus idle state. In this state, no bus cycles are being run. The processor may or may
not be driving the address and status pins, depending on the state of the HLDA, AHOLD, and
BOFF# inputs. An asserted BOFF# or RESET always forces the state machine back to this state.
HLDA is only driven in this state.

T1: This is the first clock of a bus cycle. Valid address and status are driven out and ADS# is
asserted. There is one outstanding bus cycle.

T2: This is the second and subsequent clock of the first outstanding bus cycle. In state T2, data is
driven out (if the cycle is a write), or data is expected (if the cycle is a read), and the BRDY# pin is
sampled. There is one outstanding bus cycle.

T12: This state indicates there are two outstanding bus cycles, and that the processor is starting the
second bus cycle at the same time that data is being transferred for the first. In T12, the processor
drives the address and status and asserts ADS# for the second outstanding bus cycle, while data is
transferred and BRDY# is sampled for the first outstanding cycle.

T2P: This state indicates there are two outstanding bus cycles, and that both are in their second and
subsequent clocks. In T2P, data is being transferred and BRDY# is sampled for the first
outstanding cycle. The address, status and ADS# for the second outstanding cycle were driven
sometime in the past (in state T12).

TD: This state indicates there is one outstanding bus cycle, that its address, status and ADS# have
already been driven sometime in the past (in state T12), and that the data and BRDY# pins are not
being sampled because the data bus requires one dead clock to turn around between consecutive
reads and writes, or writes and reads. The processor enters TD if in the previous clock there were
two outstanding cycles, the last BRDY# was returned, and a dead clock is needed. The timing
diagrams in the next section give examples when a dead clock is needed.

Table 6-10 gives a brief summary of bus activity during each bus state. Figure 6-6 shows the
processor bus state diagram.

Table 6-10. Processor Bus Activity

Bus State Cycles Outstanding ADS# Asserted
New Address Driven

BRDY# Sampled
Data Transferred

Ti 0 No No

T1 1 Yes No

T2 1 No Yes

T12 2 Yes Yes

T2P 2 No Yes

TD 1 No No
6-8 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description

ed
on of
6.3.1 State Transitions

The state transition equations with descriptions are listed below. In the equations, “&” means
logical AND, “+” means logical OR, and “#” placed after label means active low. The NA# us
here is actually a delayed version of the external NA# pin (delayed by one clock). The definiti
request pending is:

• The processor has generated a new bus cycle internally & HOLD (delayed by one clock)
negated & BOFF# negated & (AHOLD negated + HITM# asserted).

Note that once NA# is sampled asserted, the processor latches NA#. The processor pipelines a
cycle when one becomes pending even if NA# is subsequently deasserted.

Figure 6-6. Processor Bus Control State Machine

A6164-01

 ADS# asserted
 If BOFF# is asserted during any state, a state transition to Ti occurs in the next clock (not shown)

 If RESET is sampled asserted in any state, a state transition to Ti will occur (not shown

NOTES:

Ti

T1

T2

TD

T12

[0]

[1]

[2]

[6]

[3]

[9]

[11]

[10]

[4]

[5]

[14]

[7]

[13]

[8]

[12]

T2P
Embedded Pentium® Processor Family Developer’s Manual 6-9

Bus Functional Description

e
6.4 Bus Cycles

The following terminology is used in this document to describe the processor bus functions. The
processor requests data transfer cycles, bus cycles, and bus operations. A data transfer cycle is one
data item, up to 8 bytes in width, being returned to the processor or accepted from the processor
with BRDY# asserted. A bus cycle begins with the embedded Pentium processor driving an
address and status and asserting ADS#, and ends when the last BRDY# is returned. A bus cycle
may have 1 or 4 data transfers. A burst cycle is a bus cycle with 4 data transfers. A bus operation is
a sequence of bus cycles to carry out a specific function, such as a locked read-modify-write or an
interrupt acknowledge.

“Bus State Definition” on page 6-8 describes each of the bus states, and shows the bus stat
diagram.

(0) No Request Pending

(1) Request Pending: The processor starts a new bus cycle & ADS# is
asserted in the T1 state.

(2) Always:
With BOFF# negated, and a cycle outstanding the
processor always moves to T2 to process the data
transfer.

(3) Not Last BRDY# & (No Request Pending
+ NA# Negated):

The processor stays in T2 until the transfer is over if no
new request becomes pending or if NA# is not asserted.

(4) Last BRDY# & Request Pending & NA#
Sampled Asserted:

If there is a new request pending when the current cycle
is complete, and if NA# was sampled asserted, the
processor begins from T1.

(5) Last BRDY# & (No Request Pending +
NA# Negated):

If no cycle is pending when the processor finishes the
current cycle or NA# is not asserted, the processor goes
back to the idle state.

(6) Not Last BRDY# & Request Pending &
NA# Sampled Asserted:

While the processor is processing the current cycle (one
outstanding cycle), if another cycle becomes pending
and NA# is asserted, the processor moves to T12
indicating that the processor now has two outstanding
cycles. ADS# is asserted for the second cycle.

(7) Last BRDY# & No dead clock: When the processor finishes the current cycle, and no
dead clock is needed, it goes to the T2 state.

(8) Last BRDY# & Need a dead clock: When the processor finishes the current cycle and a
dead clock is needed, it goes to the TD state.

(9) Not Last BRDY#:
With BOFF# negated, and the current cycle not
complete, the processor always moves to T2P to process
the data transfer.

(10) Not Last BRDY#: The processor stays in T2P until the first cycle transfer is
over.

(11) Last BRDY# & No dead clock: When the processor finishes the first cycle and no dead
clock is needed, it goes to T2 state.

(12) Last BRDY# & Need a dead clock: When the first cycle is complete, and a dead clock is
needed, it goes to TD state.

(13) Request Pending & NA# sampled
asserted:

If NA# was sampled asserted and there is a new request
pending, it goes to T12 state.

(14) No Request Pending + NA# Negated: If there is no new request pending, or NA# was not
asserted, it goes to T2 state.
6-10 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
Table 6-11 lists all of the bus cycles that are generated by the processor. Note that inquire cycles
(initiated by EADS#) may be generated from the system to the processor.

Note that all burst reads are cacheable, and all cacheable read cycles are bursted. There are no non-
cacheable burst reads or non-burst cacheable reads.

The remainder of this chapter describes all of the above bus cycles in detail. In addition, locked
operations and bus cycle pipelining is discussed.

6.4.1 Single-Transfer Cycle

The processor supports a number of different types of bus cycles. The simplest type of bus cycle is
a single-transfer non-cacheable 64-bit cycle, either with or without wait states. Non-pipelined read
and write cycles with 0 wait states are shown in Figure 6-7.

The processor initiates a cycle by asserting the address status signal (ADS#) in the first clock. The
clock in which ADS# is asserted is by definition the first clock in the bus cycle. The ADS# output
indicates that a valid bus cycle definition and address is available on the cycle definition pins and
the address bus. The CACHE# output is deasserted (high) to indicate that the cycle is a single
transfer cycle.

Table 6-11. Processor Initiated Bus Cycles

M/IO# D/C# W/R# CACHE#† KEN# Cycle Description # of Transfers

0 0 0 1 x Interrupt Acknowledge
(2 locked cycles) 1 transfer each cycle

0 0 1 1 x Special Cycle (Table 6-13) 1

0 1 0 1 x I/O Read, 32-bits or less,
non-cacheable 1

0 1 1 1 x I/O Write, 32-bits or less,
non-cacheable 1

1 0 0 1 x Code Read, 64-bits,
non-cacheable 1

1 0 0 x 1 Code Read, 64-bits,
non-cacheable 1

1 0 0 0 0 Code Read, 256-bit burst
line fill 4

1 0 1 x x Intel Reserved (is not driven
by the processor) n/a

1 1 0 1 x Memory Read, 64 bits or
less, non-cacheable 1

1 1 0 x 1 Memory Read, 64 bits or
less, non-cacheable 1

1 1 0 0 0 Memory Read, 256-bit burst
line fill 4

1 1 1 1 x Memory Write, 64 bits or
less, non-cacheable 1

1 1 1 0 x 256-bit Burst Writeback 4

† CACHE# is not asserted for any cycle in which M/IO# is driven low or for any cycle in which PCD is driven
high.
Embedded Pentium® Processor Family Developer’s Manual 6-11

Bus Functional Description

 the

arity

y not
e and
e end
For a zero wait state transfer, BRDY# is returned by the external system in the second clock of the
bus cycle. BRDY# indicates that the external system has presented valid data on the data pins in
response to a read or the external system has accepted data in response to a write. The processor
samples the BRDY# input in the second and subsequent clocks of a bus cycle (the T2, T12 and T2P
bus states; see the “Bus State Definition” on page 6-8 for more information).

The timing of the data parity input, DP, and the parity check output, PCHK#, is also shown in
Figure 6-7. DP is driven by the processor and returned to the processor in the same clock as
data. PCHK# is driven two clocks after BRDY# is returned for reads with the results of the p
check.

If the system is not ready to drive or accept data, wait states can be added to these cycles b
returning BRDY# to the processor at the end of the second clock. Cycles of this type, with on
two wait states added are shown in Figure 6-8. Note that BRDY# must be driven inactive at th
of the second clock. Any number of wait states can be added to processor bus cycles by
maintaining BRDY# inactive.

Figure 6-7. Non-Pipelined Read and Write

A6069-01

CLK

ADDR

ADS#

CACHE#

W/R#

BRDY#

DATA

PCHK#

T1 T2 Ti T1 T2 Ti T1

DP

NA#

InvalidInvalid ValidValid

To CPU

To CPU From CPU

From CPU
6-12 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
6.4.2 Burst Cycles

For bus cycles that require more than a single data transfer (cacheable cycles and writeback
cycles), the processor uses the burst data transfer. In burst transfers, a new data item can be
sampled or driven by the processor in consecutive clocks. In addition the addresses of the data
items in burst cycles all fall within the same 32-byte aligned area (corresponding to an internal
processor cache line).

The implementation of burst cycles is via the BRDY# pin. While running a bus cycle of more than
one data transfer, the processor requires that the memory system perform a burst transfer and
follow the burst order (see Table 6-12). Given the first address in the burst sequence, the address of
subsequent transfers must be calculated by external hardware. This requirement exists because the
processor address and byte-enables are asserted for the first transfer and are not re-driven for each
transfer. The burst sequence is optimized for two bank memory subsystems and is shown in
Table 6-12.

Figure 6-8. Non-Pipelined Read and Write with Wait States

A6165-01

T1 T2 T2 T2T1Ti T2 T2

TO CPU From CPU

CLK

ADDR

ADS#

NA#

CACHE#

W/R#

BRDY#

DATA / DP#

PCHK#

Valid Valid
Embedded Pentium® Processor Family Developer’s Manual 6-13

Bus Functional Description
The cycle length is driven by the processor together with cycle specification (see Table 6-11), and
the system should latch this information and terminate the cycle on time with the appropriate
number of transfers. The fastest burst cycle possible requires two clocks for the first data item to be
returned/driven with subsequent data items returned/driven every clock.

6.4.2.1 Burst Read Cycles

When initiating any read, the processor presents the address and byte enables for the data item
requested. When the cycle is converted into a cache linefill, the first data item returned should
correspond to the address sent out by the processor; however, the byte enables should be ignored,
and valid data must be returned on all 64 data lines. In addition, the address of the subsequent
transfers in the burst sequence must be calculated by external hardware since the address and byte
enables are not re-driven for each transfer.

Figure 6-9 shows a cacheable burst read cycle. Note that in this case the initial cycle generated by
the processor might have been satisfied by a single data transfer, but was transformed into a
multiple-transfer cache fill by KEN# being returned active on the clock that the first BRDY# is
returned. In this case KEN# has such an effect because the cycle is internally cacheable in the
processor (CACHE# pin is driven active). KEN# is only sampled once during a cycle to determine
cacheability.

PCHK# is driven with the parity check status two clocks after each BRDY#.

Table 6-12. Processor Burst Order

1st Address 2nd Address 3rd Address 4th Address

0 8 10 18

8 0 18 10

10 18 0 8

18 10 8 0

NOTE: The addresses are represented in hexadecimal format
6-14 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
Data is sampled only in the clock that BRDY# is returned, which means that data need not be sent
to the processor every clock in the burst cycle. An example burst cycle where two clocks are
required for every burst item is shown in Figure 6-10.

Figure 6-9. Basic Burst Read Cycle

A6166-01

T2
CLK

ADDR

ADS#

CACHE#

W/R#

BRDY#

DATA/DP

PCHK#

T1 T2 T2 T2

KEN#

Ti

Valid

To CPU To CPU To CPUTo CPU
Embedded Pentium® Processor Family Developer’s Manual 6-15

Bus Functional Description
6.4.2.2 Burst Write Cycles

Figure 6-11 shows the timing diagram of basic burst write cycle. KEN# is ignored in burst write
cycle. If the CACHE# pin is active (low) during a write cycle, it indicates that the cycle is a burst
writeback cycle. Burst write cycles are always writebacks of modified lines in the data cache.
Writeback cycles have several causes:

1. Writeback due to replacement of a modified line in the data cache.

2. Writeback due to an inquire cycle that hits a modified line in the data cache.

3. Writeback due to an internal snoop that hits a modified line in the data cache.

4. Writebacks caused by asserting the FLUSH# pin.

5. Writebacks caused by executing the WBINVD instruction.

Writeback cycles are described in more detail in the Inquire Cycle section of this chapter.

The only write cycles that are burstable by the processor are writeback cycles. All other write
cycles are 64 bits or less, single transfer bus cycles.

Figure 6-10. Slow Burst Read Cycle

A6167-01

T1 T2 T2 T2T2T2 T2 T2

TO CPU TO CPU TO CPU TO CPU

CLK

ADDR

ADS#

CACHE#

W/R#

KEN#

BRDY#

DATA/DP

PCHK#
6-16 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
For writeback cycles, the lower five bits of the first burst address always starts at zero; therefore,
the burst order becomes 0, 8H, 10H, and 18H. Again, note that the address of the subsequent
transfers in the burst sequence must be calculated by external hardware since the processor does
not drive the address and byte enables for each transfer.

6.4.3 Locked Operations

The embedded Pentium processor family architecture provides a facility to perform atomic
accesses of memory. For example, a programmer can change the contents of a memory-based
variable and be assured that the variable was not accessed by another bus master between the read
of the variable and the update of that variable. This functionality is provided for select instructions
using a LOCK prefix, and also for instructions which implicitly perform locked read modify write
cycles such as the XCHG (exchange) instruction when one of its operands is memory based.
Locked cycles are also generated when a segment descriptor or page table entry is updated and
during interrupt acknowledge cycles.

In hardware, the LOCK functionality is implemented through the LOCK# pin, which indicates to
the outside world that the processor is performing a read-modify-write sequence of cycles, and that
the processor should be allowed atomic access for the location that was accessed with the first
locked cycle. Locked operations begin with a read cycle and end with a write cycle. Note that the
data width read is not necessarily the data width written. For example, for descriptor access bit
updates the processor fetches eight bytes and writes one byte.

Figure 6-11. Basic Burst Write Cycle

A6168-01

T2

ADDR

CLK

ADS#

CACHE#

W/R#

BRDY#

DATA/DP

PCHK#

T1 T2 T2 T2 Ti

Valid

From CPU From CPU From CPUFrom CPU
Embedded Pentium® Processor Family Developer’s Manual 6-17

Bus Functional Description
A locked operation is a combination of one or multiple read cycles followed by one or multiple
write cycles. Programmer generated locked cycles and locked page table/directory accesses are
treated differently and are described in the following sections.

6.4.3.1 Programmer Generated Locks and Segment Descriptor Updates

For programmer generated locked operations and for segment descriptor updates, the sequence of
events is determined by whether or not the accessed line is in the internal cache and what state that
line is in.

Cached Lines in the Modified (M) State

Before a programmer initiated locked cycle or a segment descriptor update is generated, the
processor first checks if the line is in the Modified (M) state. If it is, the processor drives an
unlocked writeback first, leaving the line in the Invalid (I) state, and then runs the locked read on
the external bus. Since the operand may be misaligned, it is possible that the processor may do two
writeback cycles before starting the first locked read. In the misaligned scenario the sequence of
bus cycles is: writeback, writeback, locked read, locked read, locked write, then the last locked
write. Note that although a total of six cycles are generated, the LOCK# pin is active only during
the last four cycles. In addition, the SCYC pin is asserted during the last four cycles to indicate that
a misaligned lock cycle is occurring. In the aligned scenario the sequence of cycles is: writeback,
locked read, locked write. The LOCK# pin is asserted for the last two cycles (SCYC is not asserted,
indicating that the locked cycle is aligned). The cache line is left in the Invalid state after the locked
operation.

Non-Cached (I-State), S-State and E-State Lines

A programmer initiated locked cycle or a segment descriptor update to an I, S, or E -state line is
always forced out to the bus and the line is transitioned to the Invalid state. Since the line is not in
the M-State, no writeback is necessary. Because the line is transitioned to the Invalid state, the
locked write is forced out to the bus also. The cache line is left in the Invalid state after the locked
operation.

6.4.3.2 Page Table/directory Locked Cycles

In addition to programmer generated locked operations, the processor performs locked operations
to set the dirty and accessed bits in page tables/page directories. The processor runs the following
sequence of bus cycles to set the dirty/accessed bit.

Cached Lines in the Modified (M) State

If there is a TLB miss, the processor issues an (unlocked) read cycle to determine if the dirty or
accessed bits need to be set. If the line is modified in the internal data cache, the line is written back
to memory (lock not asserted). If the dirty or accessed bits need to be set, the processor then issues
a locked read-modify-write operation. The sequence of bus cycles to set the dirty or accessed bits
in a page table/directory when the line is in the M-state is: unlocked read, unlocked writeback,
locked read, then locked write. The line is left in the Invalid state after the locked operation. Note
that accesses to the page tables/directories will not be misaligned.
6-18 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description

tion
ed.

n
n

e
nd the

d for

cked
op hit

 the
ws an
 at
e
d
Non-Cached (I-State), S-State and E-State Lines

If the line is in the I, S or E-state, the locked cycle is always forced out to the bus and the line is
transitioned to the Invalid state. The sequence of bus cycles for an internally generated locked
operation is locked read, locked write. The line is left in the Invalid state. Note that accesses to the
page tables/directories are not misaligned.

6.4.3.3 LOCK# Operation During AHOLD/HOLD/BOFF#

LOCK# is not deasserted if AHOLD is asserted in the middle of a locked cycle.

LOCK# is floated during bus HOLD, but if HOLD is asserted during a sequence of locked cycles,
HLDA is not asserted until the locked sequence is complete.

LOCK# floats if BOFF# is asserted in the middle of a locked cycle, and is driven low again when
the cycle is restarted. If BOFF# is asserted during the read cycle of a locked read-modify write, the
locked cycle is redriven from the read when BOFF# is deasserted. If BOFF# is asserted during the
write cycle of a locked read-modify-write, only the write cycle is re-driven when BOFF# is
deasserted. The system is responsible for ensuring that other bus masters do not access the operand
being locked if BOFF# is asserted during a LOCKed cycle.

6.4.3.4 Inquire Cycles During LOCK#

This section describes the processor bus cycles that occur when an inquire cycle is driven while
LOCK# is asserted. Note that inquire cycles are only recognized if AHOLD, BOFF# or HLDA is
asserted and the external system returns an external snoop address to the processor. If AHOLD,
BOFF# or HLDA is not asserted when EADS# is driven, EADS# is ignored. Note also that an
inquire cycle cannot hit the “locked line” because the LOCK cycle invalidated it.

Because HOLD is not acknowledged when LOCK# is asserted, inquire cycles run in conjunc
with the assertion of HOLD cannot be driven until LOCK# is deasserted and HLDA is assert

BOFF# takes priority over LOCK#. Inquire cycles are permitted while BOFF# is asserted. If a
inquire cycle hits a modified line in the data cache, the writeback due to the snoop hit is drive
before the locked cycle is re-driven. LOCK# is asserted for the writeback.

An inquire cycle with AHOLD may be run concurrently with a locked cycle. If the inquire cycl
hits a modified line in the data cache, the writeback may be driven between the locked read a
locked write. If the writeback is driven between the locked read and write, LOCK# is asserte
the writeback.

Note: Only writebacks due to an external snoop hit to a modified line may be driven between the lo
read and the locked write of a LOCKed sequence. No other writebacks (due to an internal sno
or data cache replacement) are allowed to invade a LOCKed sequence.

6.4.3.5 LOCK# Timing and Latency

The timing of LOCK# is shown in Figure 6-12. Note that LOCK# is asserted with the ADS# of
read cycle and remains active until the BRDY# of the write cycle is returned. Figure 6-13 sho
example of two consecutive locked operations. Note that the processor automatically inserts
least one idle clock between two consecutive locked operations to allow the LOCK# pin to b
sampled inactive by external hardware. Figure 6-14 shows an example of a misaligned locke
operation with SCYC asserted.
Embedded Pentium® Processor Family Developer’s Manual 6-19

Bus Functional Description
The maximum number of processor initiated cycles that can be locked together is four. Four cycles
are locked together when data is misaligned for programmer generated locks (read, read, write,
write). SCYC is asserted for misaligned locked cycles. Note that accesses to the page
tables/directories are not misaligned.

Figure 6-12. LOCK# Timing

Figure 6-13. Two Consecutive Locked Operations

A6169-01

Ti
CLK

ADDR

ADS#

W/R#

BRDY#

DATA

LOCK#

T1 T2 T1 T2 Ti

To CPU From CPU

ValidValid Invalid

A6170-01

T1 T2 Ti TiT2T1 T1 T2

To
CPU

To
CPUFrom CPU

CLK

ADDR

ADS#

CACHE#

W/R#

BRDY#

DATA

LOCK#

Valid

Rd RdWr

Valid ValidInvalidInvalid

Min1 clock
6-20 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
6.4.4 BOFF#

In a multi-master system, another bus master may require the use of the bus to enable the processor
to complete its current cycle. The BOFF# pin is provided to prevent this deadlock situation. If
BOFF# is asserted, the processor immediately (in the next clock) floats the bus (see Figure 6-15).
Any bus cycles in progress are aborted and any data returned to the processor in the clock BOFF#
is asserted is ignored. In response to BOFF#, the processor floats the same pins as HOLD, but
HLDA is not asserted. BOFF# overrides BRDY#, so if both are sampled active in the same clock,
BRDY# is ignored. The processor samples the BOFF# pin every clock.

Figure 6-14. Misaligned Locked Cycles

A6177-01

T1 T2 Ti T1 T2 Ti T1 T2 Ti T1 T2 Ti

CLK

ADS#

W/R#

DATA

CACHE

BRDY#

LOCK#

SCYC

From
CPU

To
CPU

From
CPU

To
CPU
Embedded Pentium® Processor Family Developer’s Manual 6-21

Bus Functional Description
The device that asserts BOFF# to the processor is free to run any bus cycle while the processor is in
the high impedance state. If BOFF# is asserted after the processor has started a cycle, the new
master should wait for memory to return BRDY# before driving a cycle. Waiting for BRDY#
provides a handshake to insure that the memory system is ready to accept a new cycle. If the bus is
idle when BOFF# is asserted, the new master can start its cycle two clocks after issuing BOFF#.
The system must wait two clocks after the assertion of BOFF# to begin its cycle to prevent address
bus contention.

The bus remains in the high impedance state until BOFF# is negated. At that time, the processor
restarts all aborted bus cycles from the beginning by driving out the address and status and
asserting ADS#. Any data returned before BOFF# was asserted is used to continue internal
execution, however that data is not placed in an internal cache. Any aborted bus cycles are restarted
from the beginning.

External hardware should assure that if the cycle attribute KEN# was returned to the processor
(with the first BRDY# or NA#) before the cycle was aborted, it must be returned with the same
value after the cycle is restarted. In other words, backoff cannot be used to change the cacheability
property of the cycle. The WB/WT# attribute may be changed when the cycle is restarted.

If more than one cycle is outstanding when BOFF# is asserted, the processor restarts both
outstanding cycles in their original order. The cycles are not pipelined unless NA# is asserted
appropriately.

A pending writeback cycle due to an external snoop hit is reordered in front of any cycles aborted
due to BOFF#. For example, if a snoop cycle is run concurrently with a line fill, and the snoop hits
an M-state line and then BOFF# is asserted, the writeback cycle due to the snoop is driven from the
processor before the cache linefill cycle is restarted.

Figure 6-15. Back Off Timing

A6178-01

T1 T1T2 T2 T2 TiT2 T2

CLK

CACHE#

BOFF#

ADS#

BRDY#
6-22 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description

ter
The system must not rely on the original cycle, that was aborted due to BOFF#, from restarting
immediately after BOFF# is deasserted. In addition to reordering writebacks due to external snoop
hit in front of cycles that encounter a BOFF#, the processor may also reorder bus cycles in the
following situations:

• A pending writeback cycle due to an internal snoop hit is reordered in front of any cycles
aborted due to BOFF#. If a read cycle is running on the bus, and an internal snoop of that read
cycle hits a modified line in the data cache, and the system asserts BOFF#, the processor
drives out a writeback cycle resulting from the internal snoop hit. After completion of the
writeback cycle, the processor then restarts the original read cycle. This circumstance can
occur during accesses to the page tables/directories, and during prefetch cycles, since these
accesses cause a bus cycle to be generated before the internal snoop to the data cache is
performed.

• If BOFF# is asserted during a data cache replacement writeback cycle, the writeback cycle is
aborted and then restarted once BOFF# is deasserted. However, if the processor encounters a
request to access the page table/directory in memory during the BOFF#, this request is
reordered in front of the replacement writeback cycle that was aborted due to BOFF#. The
processor is first run the sequence of bus cycles to service the page table/directory access and
then restart the original replacement writeback cycle.

Asserting BOFF# in the same clock as ADS# may cause the processor to leave the ADS# signal
floating low. Since ADS# is floating low, a peripheral device may think that a new bus cycle has
begun even though the cycle was aborted. There are several ways to approach this situation:

• Design the system’s state machines/logic such that ADS# is not recognized the clock af
ADS# is sampled active.

• Recognize a cycle as ADS# asserted and BOFF# negated in the previous clock.

• Assert AHOLD one clock before asserting BOFF#.

6.4.5 Bus Hold

The embedded Pentium processor provides a bus hold, hold acknowledge protocol using the
HOLD and HLDA pins. HOLD is used to indicate to the processor that another bus master wants
control of the bus. When the processor completes all outstanding bus cycles, it releases the bus by
floating its external bus, and drives HLDA active. An example HOLD/HLDA transaction is shown
in Figure 6-16.
Embedded Pentium® Processor Family Developer’s Manual 6-23

Bus Functional Description
The processor recognizes HOLD while RESET is asserted, when BOFF# is asserted, and during
BIST (built in self test). HOLD is not recognized when LOCK# is asserted. Once HOLD is
recognized, HLDA is asserted two clocks after the later of the last BRDY# or HOLD assertion.
Because of this, it is possible that a cycle may begin after HOLD is asserted, but before HLDA is
driven. The maximum number of cycles that are driven after HOLD is asserted is one. BOFF# may
be used if it is necessary to force the processor to float its bus in the next clock. Figure 6-16 shows
the latest HOLD may be asserted relative to ADS# to guarantee that HLDA is asserted before
another cycle is begun.

The operation of HLDA is not affected by the assertion of BOFF#. If HOLD is asserted while
BOFF# is asserted, HLDA is asserted two clocks later. If HOLD goes inactive while BOFF# is
asserted, HLDA is deasserted two clocks later.

Note that HOLD may be acknowledged between two bus cycles in a misaligned access.

All outputs are floated when HLDA is asserted except: APCHK#, BREQ, FERR#, HIT#, HITM#,
HLDA, IERR#, PCHK#, PRDY, BP3–BP2, PM1/BP1, PM0/BP0, SMIACT# and TDO.

Figure 6-16. HOLD/HLDA Cycles

A6179-01

T1 T2 T2 TiTiTi Ti T1

To
CPU

CLK

ADDR

ADS#

CACHE#

W/R#

BRDY#

DATA

HOLD

HLDA

Valid Valid
6-24 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description

g the

 states
 clock
t
6.4.6 Interrupt Acknowledge

The processor generates interrupt acknowledge cycles in response to maskable interrupt requests
generated on the interrupt request input (INTR) pin (if interrupts are enabled). Interrupt
acknowledge cycles have a unique cycle type generated on the cycle type pins.

An example interrupt acknowledge transaction is shown in Figure 6-17. Interrupt acknowledge
cycles are generated in locked pairs. Data returned during the first cycle is ignored, however the
specified data setup and hold times must be met. The interrupt vector is returned during the second
cycle on the lower 8 bits of the data bus. The processor has 256 possible interrupt vectors.

The state of address bit 2 (as decoded from the byte enables) distinguishes the first and second
interrupt acknowledge cycles. The byte address driven during the first interrupt acknowledge cycle
is 4: A31–A3 = 0, BE4# = 0, BE7#–BE5# = 1, and BE3#–BE0# = 1. The address driven durin
second interrupt acknowledge cycle is 0: A31–A3 = 0, BE0# = 0 and BE7#–BE1# = 1H.

Interrupt acknowledge cycles are terminated when the external system returns BRDY#. Wait
can be added by withholding BRDY#. The processor automatically generates at least one idle
between the first and second cycles; however the external system is responsible for interrup
controller (8259A) recovery.

Figure 6-17. Interrupt Acknowledge Cycles

A6181-01

Ti T1 T2 T2T1Ti Ti Ti

To
CPU

To
CPU

CLK

ADS#

ADDR

BRDY#

DATA

LOCK#

Valid Valid
Embedded Pentium® Processor Family Developer’s Manual 6-25

Bus Functional Description

aries

mory.
 and

3 are

A3 are
6.4.7 Flush Operations

The FLUSH# input is implemented in the processor as an asynchronous interrupt, similar to NMI.
Therefore, unlike the Intel486™ microprocessor, FLUSH# is recognized on instruction bound
only. FLUSH# is latched internally. Once setup, hold and pulse width times have been met,
FLUSH# may be deasserted, even if a bus cycle is in progress.

To execute a flush operation, the processor first writes back all modified lines to external me
The lines in the internal caches are invalidated as they are written back. After the write-back
invalidation operations are complete, a special cycle, flush acknowledge, is generated by the
processor to inform the external system.

6.4.8 Special Bus Cycles

The processor provides six special bus cycles to indicate that certain instructions have been
executed, or certain conditions have occurred internally. The special bus cycles in Table 6-1
defined when the bus cycle definition pins are in the following state: M/IO# = 0, D/C# = 0 and
W/R# = 1. During most special cycles the data bus is undefined and the address lines A31–
driven to “0.” The external hardware must acknowledge all special bus cycles by returning
BRDY#.

Shutdown can be generated due to the following reasons:

• If any other exception occurs while the processor is attempting to invoke the double-fault
handler.

• An internal parity error is detected.

Prior to going into shutdown, the processor does not writeback the M-state lines. Upon entering
shutdown, the state of the processor is unpredictable and may or may not be recoverable. RESET
or INIT should be asserted to return the system to a known state. Although some system operations
(i.e., FLUSH# and R/S#) are generally recognized during shutdown, these operations may not
complete successfully in some cases once shutdown is entered. During shutdown, the internal
caches remain in the same state unless an inquire cycle is run or the cache is flushed.

Table 6-13. Special Bus Cycles Encoding

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# Special Bus Cycle

1 1 1 1 1 1 1 0 Shutdown

1 1 1 1 1 1 0 1 Flush
(INVD,WBINVD instr)

1 1 1 1 1 0 1 1 Halt/Stop Grant†

1 1 1 1 0 1 1 1 Writeback
(WBINVD instruction)

1 1 1 0 1 1 1 1 Flush Acknowledge
(FLUSH# assertion)

1 1 0 1 1 1 1 1 Branch Trace Message

† The definition of the Stop Grant bus cycle is the same as the HALT cycle definition, with the exception that
the address bus is driven with the value 0000 0010H during the Stop Grant bus cycle.
6-26 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description

l. The
ddress

The processor remains in shutdown until NMI, INIT, or RESET is asserted. Furthermore, upon exit
from shutdown with NMI (to the NMI handler), the SS, ESP and EIP of the task that was executing
when shutdown occurred can no longer be relied upon to be valid. Therefore, using NMI to exit
shutdown should be used only for debugging purposes and not to resume execution from where
shutdown occurred.

If invoking NMI to exit shutdown, use a task gate rather than an interrupt or trap gate in slot 2 of
the IDT. One of the conditions that may lead to shutdown is an attempt to use an invalid stack
segment selector (SS). In this case, if the NMI successfully exits shutdown, it immediately re-
enters shutdown because it has no valid stack on which to push the return address. It is more robust
to vector NMI through a task gate rather than an interrupt gate in the IDT, since the task descriptor
allocates a new stack for the NMI handler context.

The Flush Special Cycle is driven after the INVD (invalidate cache) or WBINVD (writeback
invalidate cache) instructions are executed. The Flush Special Cycle is driven to indicate to the
external system that the internal caches were invalidated and that external caches should also be
invalidated.

Note: INVD should be used with care. This instruction does not write back modified cache lines.

The Halt Special Cycle is driven when a Halt instruction is executed. Externally, halt differs from
shutdown in only two ways:

• In the resulting byte enables that are asserted.

• The processor exits the Halt state if INTR is asserted and maskable interrupts are enabled in
addition to the assertion of NMI, INIT or RESET.

A special Stop Grant bus cycle is driven after the processor recognizes the STPCLK# interrupt.
The definition of the Stop Grant bus cycle is the same as the HALT cycle definition, with the
exception that the address bus is driven with the value 0000 0010H during the Stop Grant bus
cycle.

The Writeback Special Cycle is driven after the WBINVD instruction is executed and it indicates
that modified lines in the processor data cache were written back to memory or a second level
cache. The Writeback Special Cycle also indicates that modified lines in external caches should be
written back. After the WBINVD instruction is executed, the Writeback Special cycle is generated,
followed by the Flush Special Cycle. Note that INTR is not recognized while the WBINVD
instruction is being executed.

When the FLUSH# pin is asserted to the processor, all modified lines in the data cache are written
back and all lines in the code and data caches are invalidated. The Flush Acknowledge Special
Cycle is driven after the writeback and invalidations are complete. The Flush Acknowledge Special
Cycle is driven only in response to the FLUSH# pin being activated. Note that the Flush
Acknowledge Special Cycle indicates that all modified lines were written back and all cache lines
were invalidated while the Flush special cycle only indicates that all cache lines were invalidated.

The Branch Trace Message Special Cycle is part of the processor’s execution tracing protoco
Branch Trace Message Special Cycle is the only special cycle that does not drive 0’s on the a
bus, however like the other special cycles, the data bus is undefined. When the branch trace
message is driven, bits 31–3 of the branch target linear address are driven on A31–A3.
Embedded Pentium® Processor Family Developer’s Manual 6-27

Bus Functional Description

ing
quire

ample,
,

ne is
 are
er
r
g cycle

at
ing

lined

A#
6.4.9 Bus Error Support

The processor provides basic support for bus error handling through data and address parity check.
Even data parity is generated by the processor for every enabled byte in write cycles and is checked
for all valid bytes in read cycles. The PCHK# output signals if a data parity error is encountered for
reads.

Even address parity is generated for A31–A5 during write and read cycles, and checked dur
inquire cycles. The APCHK# output signals if an address parity error is encountered during in
cycles.

External hardware is free to take whatever actions are appropriate after a parity error. For ex
external hardware may signal an interrupt if PCHK# or APCHK# is asserted. See Chapter 10
“Error Detection” for details.

6.4.10 Pipelined Cycles

The NA# input indicates to the processor that it may drive another cycle before the current o
completed. Cacheability (KEN#) and cache policy (WB/WT#) indicators for the current cycle
sampled in the same clock NA# is sampled active (or the first BRDY# for that cycle, whichev
comes first). Note that the WB/WT# and KEN# inputs are sampled with the first of BRDY# o
NA# even if NA# does not cause a pipelined cycle to be driven because there was no pendin
internally or two cycles are already outstanding.

The NA# input is latched internally, so even if a cycle is not pending internally in the clock th
NA# is sampled active, but becomes pending before the current cycle is complete, the pend
cycle is driven to the bus even if NA# is subsequently deasserted.

LOCK# and writeback cycles are not pipelined into other cycles and other cycles are not pipe
into them (regardless of the state of NA#). Special cycles and I/O cycles may be pipelined.

An example of burst pipelined back to back reads is shown in Figure 6-18. The assertion of N
causes a pending cycle to be driven two clocks later. Note KEN# timing.
6-28 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description

es are
Write cycles can be pipelined into read cycles and read cycles can be pipelined into write cycles,
but one dead clock is inserted between read and write cycles to allow bus turnover (see Figure 6-6,
“Processor Bus Control State Machine” on page 6-9). Pipelined back-to-back read/write cycl
shown in Figure 6-19.

Figure 6-18. Two Pipelined Cache Linefills

A6182-01

T1 T2 T2 T2PT12T2 T2 T2 T2

CLK

ADDR

ADS#

CACHE#

W/R#

KEN#

NA#

BRDY#

DATA

Valid Validb

b

a

a

a a a a b b b
Embedded Pentium® Processor Family Developer’s Manual 6-29

Bus Functional Description
Figure 6-19. Pipelined Back-to-Back Read/Write Cycles

A6183-01

T1 T2 T2 T2PT12T2 TD T2 Ti

CLK

ADDR

ADS#

CACHE#

W/R#

KEN#

NA#

BRDY#

DATA

Valid Validb

wr

a

rd

To
CPU

To
CPU

To
CPU

To
CPU

From
CPU
6-30 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
6.4.10.1 KEN# and WB/WT# Sampling for Pipelined Cycles

KEN# and WB/WT# are sampled with NA# or BRDY# for that cycle, whichever comes first.
Figure 6-20 and Figure 6-21 clarify this specification.

Figure 6-20 shows that even though two cycles have been driven, the NA# for the second cycle still
causes KEN# and WB/WT# to be sampled for the second cycle. A third ADS# is not driven until
all the BRDY#s for cycle 1 are returned to the processor.

Figure 6-21 shows that two cycles are outstanding on the processor bus. The assertion of NA#
caused the sampling of KEN# and WB/WT# for the first cycle. The assertion of the four BRDY#s
for the first cycle DO NOT cause the KEN# and WB/WT# for the second cycle to be sampled. In
this example, KEN# and WB/WT# for the second cycle are sampled with the first BRDY# for the
second cycle.

Figure 6-20. KEN# and WB/WT# Sampling with NA#

A6184-01

T1 T2 T2 T2P T2P T2P T2PT2PT12 T2 T12

CLK

ADS#

NA#

KEN#

W/R#

BRDY#

WB/WT#

Cycle 2

Cycle 1

Cycle 1
Embedded Pentium® Processor Family Developer’s Manual 6-31

Bus Functional Description

le 2 is
a write
6.4.11 Dead Clock Timing Diagrams

The timing diagrams in Figure 6-22 and Figure 6-23 show bus cycles with and without a dead
clock.

In Figure 6-22, cycles 1 and 2 can be either read or write cycles and no dead clock would be needed
because only one cycle is outstanding when those cycles are driven. To prevent a dead clock from
being necessary after cycle 3 is driven, it must be of the “same type” as cycle 2. That is if cyc
a read cycle, cycle 3 must also be a read cycle in order to prevent a dead clock. If cycle 2 is
cycle, cycle 3 must also be a write cycle to prevent a dead clock.

Figure 6-21. KEN# and WB/WT# Sampling with BRDY#

A6185-01

T1 T2 T2 T2P T2P T2PT2PT12 T2 T2 T2

CLK

ADS#

KEN#

BRDY#

Cycle 1 Cycle 2

WB/WT#

W/R#

NA#

Cycle 1 Cycle 2

Figure 6-22. Bus Cycles without Dead Clock

A6186-01

T1 T2 T2 T2 T12 T2T2T1 T2 Ti Ti

ADS#

NA#

BRDY#

wr

1

1 2 3

2 3

rd rd
6-32 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description

 need
uts

high)

the

pled
e only
M#
e.
rrent
rite it
ack

high
he
cache
Note: Although the processor ignores BRDY# during this dead clock when configured in uni-processor
mode, BRDY# may be falsely recognized in an inter-processor pipelined cycle. As such, dual
processing system designs must not drive BRDY# low during this dead clock.

6.5 Cache Consistency Cycles (Inquire Cycles)

The purpose of an inquire cycle is to check whether a particular address is cached in a processor
internal cache and optionally invalidate it. After an inquire cycle is complete, the system has
information on whether or not a particular address location is cached and what state it is in.

An inquire cycle is typically performed by first asserting AHOLD to force the processor to float its
address bus, waiting two clocks, and then driving the inquire address and INV and asserting
EADS#. Inquire cycles may also be executed while the processor is forced off the bus due to
HLDA, or BOFF#. Because the entire cache line is affected by an inquire cycle, only A31–A5
to be driven with the valid inquire address. Although the value of A4–A3 is ignored, these inp
should be driven to a valid logic level during inquire cycles for circuit reasons. The INV pin is
driven along with the inquire address to indicate whether the line should be invalidated (INV
or marked as shared (INV low) in the event of an inquire hit.

After the processor determines if the inquire cycle hit a line in either internal cache, it drives
HIT# pin. HIT# is asserted (low) two clocks after EADS# is sampled asserted1 if the inquire cycle
hit a line in the code or data cache. HIT# is deasserted (high) two clocks after EADS# is sam
asserted if the inquire cycle missed in both internal caches. The HIT# output changes its valu
as a result of an inquire cycle. It retains its value between inquire cycles. In addition, the HIT
pin is asserted two clocks after EADS# if the inquire cycle hit a modified line in the data cach
HITM# is asserted to indicate to the external system that the processor contains the most cu
copy of the data and any device needing to read that data should wait for the processor to w
back. The HITM# output remains asserted until two clocks after the last BRDY# of the writeb
cycle is asserted.

The external system must inhibit inquire cycles during BIST (initiated by INIT being sampled
on the falling edge of RESET), and during the Boundary Scan Instruction RUNBIST. When t
model specific registers (test registers) are used to read or write lines directly to or from the

Figure 6-23. Bus Cycles with TD Dead Clock

A6187-01

dead
CLK

dead
CLK

wrrd

rdrd wr wr
ADS

T1 T2 T2 T2 T2P T2PT12 T12 T12TD TD

W/R#

NA#

BRDY#

1. Since the EADS# input is ignored by the processor in certain clocks, the two clocks reference is from the clock in which EADS# is asserted
and actually sampled by the processor at the end of this clock (i.e., rising edge of next clock) as shown in Figure 6-25.
Embedded Pentium® Processor Family Developer’s Manual 6-33

Bus Functional Description
it is important that external snoops (inquire cycles) are inhibited to guarantee predictable results
when testing. This can be accomplished by inhibiting the snoops externally or by putting the
processor in SRAM mode (CR0.CD=CR0.NW=1).

The EADS# input is ignored during external snoop writeback cycles (HITM# asserted), or during
the clock after ADS# or EADS# is active. EADS# is also ignored when the processor is in SRAM
mode, or when the processor is driving the address bus.

Note that the processor may drive the address bus in the clock after AHOLD is deasserted. It is the
responsibility of the system designer to ensure that address bus contention does not occur. This can
be accomplished by not deasserting AHOLD to the processor until all other bus masters have
stopped driving the address bus.

Figure 6-24 shows an inquire cycle that misses both internal caches. Note that both the HIT# and
HITM# signals are deasserted two clocks after EADS# is sampled asserted.

Figure 6-25 shows an inquire cycle that invalidates a non-modified line. Note that INV is asserted
(high) in the clock that EADS# is returned. Note that two clocks after EADS# is sampled asserted,
HIT# is asserted and HITM# is deasserted.

Figure 6-24 and Figure 6-25 both show that the AP pin is sampled/driven along with the address
bus, and that the APCHK# pin is driven with the address parity status two clocks after EADS# is
sampled asserted.

An inquire cycle that hits a M-state line is shown in Figure 6-26. Both the HIT# and HITM#
outputs are asserted two clocks after EADS# is sampled asserted. ADS# for the writeback cycle
occurs no earlier than two clocks after the assertion of HITM#.
6-34 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
Figure 6-24. Inquire Cycle that Misses the Processor Cache

A6188-01

CLK

ADS#

W/R#

T2

BRDY#

DATA

T2T2 T1T iT iT1

AHOLD

EADS#

ADDR

INV

HIT#

HITM#

APCHK#

AP

To CPU

To CPUFrom CPU From CPU

To CPUFrom CPU From CPU
Embedded Pentium® Processor Family Developer’s Manual 6-35

Bus Functional Description
HITM# is asserted only if an inquire cycle (external snoop) hits a modified line in the processor
data cache. HITM# is not asserted for internal snoop writeback cycles or cache replacement
writeback cycles. HITM# informs the external system that the inquire cycle hit a modified line in
the data cache and that line is written back. Any ADS# driven by the processor while HITM# is
asserted will be the ADS# of the writeback cycle. The HITM# signal stays active until the last
BRDY# is returned for the corresponding inquire cycle. Writeback cycles start at burst address 0.

Note that ADS# is asserted despite the AHOLD signal being active. This ADS# initiates a
writeback cycle corresponding to the inquire hit. Such a cycle can be initiated while address lines
are floating to support multiple inquires within a single AHOLD session. This functionality can be
used during secondary cache replacement processing if its line is larger than the processor cache
line (32 bytes). Although the cycle specification is driven properly by the processor, address pins
are not driven because AHOLD forces the processor off the address bus. If AHOLD is cleared
before the processor drives out the inquire writeback cycle, the processor drives the correct address
for inquire writeback in the next clock. The ADS# to initiate a writeback cycle as a result of an
inquire hit is the only time ADS# is asserted while AHOLD is also asserted.

Figure 6-25. Inquire Cycle that Invalidates a Non-M-State Line

A6189-01

CLK

ADS#

W/R#

T2

BRDY#

DATA

T2T2 T1T iT iT1

AHOLD

EADS#

INV

HIT#

HITM#

APCHK#

ADDR/AP

To CPU

To CPUFrom CPU From CPU
6-36 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
Note that in the event of an address parity error during inquire cycles, the snoop cycle is not
inhibited. If the inquire hits a modified line in this situation and an active AHOLD prevents the
processor from driving the address bus, the processor potentially writes back a line at an address
other than the one intended. If the processor is not driving the address bus during the writeback
cycle, it is possible that memory will corrupted.

If BOFF# or HLDA were asserted to perform the inquire cycle, the writeback cycle would wait
until BOFF# or HLDA was deasserted.

State machines should not depend on a writeback cycle to follow an assertion of HITM#. HITM#
may be negated without a corresponding writeback cycle being run. This may occur as a result of
the internal caches being invalidated due to the INVD instruction or by testability accesses. Note
that inquire cycles occurring during testability accesses generate unpredictable results. In addition,
a second writeback cycle is not generated for an inquire cycle that hits a line already being written
back (see Figure 6-28). This can happen if an inquire cycle hits a line in one of the processor
writeback buffers.

6.5.1 Restrictions on Deassertion of AHOLD

To prevent the address and data buses from switching simultaneously, the following restrictions are
placed on the negation of AHOLD: (i) AHOLD must not be negated in the same clock as the
assertion of BRDY# during a write cycle; (ii) AHOLD must not be negated in the dead clock
between write cycles pipelined into read cycles; and (iii) AHOLD must not be negated in the same
clock as the assertion of ADS# while HITM# is asserted. Note that there are two clocks between
EADS# being sampled asserted and HITM# being asserted, and a further minimum of two clocks
between an assertion of HITM# and ADS#.

These restrictions on the deassertion of AHOLD are the only considerations the system designer
needs to make to prevent the simultaneous switching of the address and data buses. All other
considerations are handled internally.

Figure 6-26 can be used to illustrate restrictions (i) and (iii). AHOLD may be deasserted in Clock
2, 3, or 4, but not in Clock 5, 6, 7, 8 or 9.

Figure 6-27 and Figure 6-28 depict restrictions (i) and (ii) respectively. Note that there are no
restrictions on the assertion of AHOLD.
Embedded Pentium® Processor Family Developer’s Manual 6-37

Bus Functional Description
Figure 6-27 shows a writeback (due to a previous snoop that is not shown). ADS# for the writeback
is asserted even though AHOLD is asserted. Note that AHOLD can be deasserted in Clock 2, 4, 7,
or 9. AHOLD cannot be deasserted in Clock 1, 3, 5, 6, or 8.

Figure 6-26. Inquire Cycle that Invalidates M-State Line

A6190-01

T2

1 2 3 4 5 6 7 8 9 10 11

T2 Ti T2 T2 T2 T2T1Ti Ti Ti

To
CPU

To
CPU

From
CPU

From
CPU

From
CPU

From
CPU

ADS#

CLK

CACHE#

W/R#

DATA

BRDY#

AHOLD

EADS#

ADDR

INV

HIT#

HITM#
6-38 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
Figure 6-28 shows a write cycle being pipelined into a read cycle. Note that if AHOLD is asserted
in Clock 5, it can be deasserted in Clock 7 before the TD, or in Clock 10 after the TD, but it cannot
be deasserted in Clock 8 (the TD clock). AHOLD cannot be deasserted in Clock 9 because BRDY#
for the write cycle is being returned.

Figure 6-27. AHOLD Restriction during Write Cycles

A6191-01

T1 T2 T2 T2 T2 T2 T2 T2 T i
1 2 3 4 5 6 7 8 9

ADS#

W/R#

BRDY#

HOLD

CACHE#

HITM#

Figure 6-28. AHOLD Restriction During TD

A6192-01

Cycle 1

W/R#

NA#

BRDY#

CACHE#

AHOLD

ADS#

T1 T2 T2 T12 T2 T12T2P T2P T2P TD

1 2 3 4 5 6 7 8 9 10

Cycle 2Cycle 1

Cycle 2
Embedded Pentium® Processor Family Developer’s Manual 6-39

Bus Functional Description

 that is
he
n

iss. In
ed. If
ated.

iss or a
idated.

cache,
ritten

 and
ctivity.
that the
 to each

the

cle. If a
ore
ing

the
ntil it
d the
during
perand
d in a

on-

r NA#.
6.5.2 Rate of Inquire Cycles

The processor can accept inquire cycles at a maximum rate of one every other clock. However, if
an inquire cycle hits an M-state line of the processor, subsequent inquire cycles will be ignored
until the line is written back and HITM# is deasserted. EADS# is also ignored the clock after ADS#
is asserted.

6.5.3 Internal Snooping

“Internal snoop” is the term used to describe the snooping of the internal code or data caches
not initiated by the assertion of EADS# by the external system. Internal snooping occurs in t
three cases described below. Note that neither HIT# nor HITM# are asserted as a result of a
internal snoop.

1. An internal snoop occurs if an access is made to the code cache, and that access is a m
this case, if the accessed line is in the S or E state in the data cache, the line is invalidat
the accessed line is in the M state in the data cache, the line is written back then invalid

2. An internal snoop occurs if an access is made to the data cache, and that access is a m
writethrough. In this case, if the accessed line is valid in the code cache, the line is inval

3. An internal snoop occurs if there is a write to the accessed and/or dirty bits in the page
table/directory entries. In this case, if the accessed line is valid in either the code or data
the line is invalidated. If the accessed line is in the M state in the data cache, the line is w
back then invalidated.

6.5.4 Snooping Responsibility

In systems with external second level caches allowing concurrent activity of the memory bus
processor bus, it is desirable to run invalidate cycles concurrently with other processor bus a
Writes on the memory bus can cause invalidations in the secondary cache at the same time
processor fetches data from the secondary cache. Such cases can occur at any time relative
other, and therefore the order in which the invalidation is requested, and data is returned to
processor becomes important.

The processor always snoops the instruction and data caches when it accepts an inquire cy
snoop comes in during a linefill, the processor also snoops the line currently being filled. If m
than one cacheable cycle is outstanding (through pipelining), the addresses of both outstand
cycles are snooped.

For example, during linefills, the processor starts snooping the address(es) associated with
line(s) being filled after KEN# has been sampled active for the line(s). Each line is snooped u
is put in the cache. If a snoop hits a line being currently filled, the processor asserts HIT# an
line ends up in the cache in the S or I state, depending on the value of the INV pin sampled
the inquire cycle. However, the processor uses the data returned for that line as a memory o
for the instruction that caused the data cache miss/line fill or execute an instruction containe
code cache miss/line fill.

Figure 6-29 and Figure 6-30 illustrate the snoop responsibility pickup. Figure 6-29 shows a n
pipelined cycle, while Figure 6-30 illustrates a pipelined cycle. The figures show the earliest
EADS# assertion that causes snooping of the line being cached relative to the first BRDY# o
6-40 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
Figure 6-29. Snoop Responsibility Pickup — Non-Pipelined Cycles

A6193-01

T1 T2 T2 T2T2T2 T2 T2 Ti

CLK

ADDR

ADS#

AHOLD

EADS#

HIT#

CACHE#

W/R#

KEN#

BRDY#

DATA

From CPU To CPU

To
CPU

To
CPU

To
CPU

To
CPU
Embedded Pentium® Processor Family Developer’s Manual 6-41

Bus Functional Description

s the
op hit
t an
The processor also snoops M state lines in the writeback buffers until the writeback of the M state
lines are complete. If a snoop hits an M state line in a writeback buffer, both HIT# and HITM# are
asserted. Figure 6-31 illustrates snooping (snoop responsibility drop) of an M state line that is
being written back because it has been replaced with a “new” line in the data cache. It show
latest EADS# assertion, relative to the last BRDY# of the writeback cycle that results in a sno
to the line being written back. HITM# stays asserted until the writeback is complete. Note tha
additional ADS# is not asserted during the writeback cycle.

The HIT# signal is a super set of the HITM# signal; it is always asserted with HITM#.

Figure 6-30. Snoop Responsibility Pickup — Pipelined Cycle

A6194-01

T1 T2 T2 T2T2T2 T2 T2 TI

CLK

ADDR

ADS#

AHOLD

EADS#

HIT#

CACHE#

W/R#

NA#

BRDY#

KEN#

DATA

From
CPU

To
CPU

To
CPU

To
CPU

To
CPU

To
CPU
6-42 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
6.6 Summary of Dual Processing Bus Cycles

The following is a list of bus cycles or bus cycle sequences which would not occur in embedded
Pentium processor uni-processor systems, but may be seen in Dual processor systems.

• Locked Cycle Sequences

• Cycle Pipelining

• Cycle Ordering Due to BOFF#

• Cache Line State

• Back-to-Back Cycles

• Address Parity Checking

• Synchronous FLUSH# and RESET

• PCHK# Assertion

• Flush Cycles

• Floating-Point Error Handling

Figure 6-31. Latest Snooping of Writeback Buffer

A6195-01

CLK

ADS#

W/R#

BRDY#

DATA

AHOLD

T2 T2T2 T2

EADS#

ADDR

HIT#

HITM#

T2 T2 T2 T i T iT1

From CPU From
CPU

From CPU To
CPU

From
CPU

From
CPU

From
CPU
Embedded Pentium® Processor Family Developer’s Manual 6-43

Bus Functional Description

em sees

 NA#
itration
e I/O
ation

 dual
F#

 by the
that

ssor
stems
6.6.1 Locked Cycle Sequences

1. Locked read to address X

2. Locked write back to address X

3. Locked read to address X

4. Locked write to address X

May occur due to the inter-processor cache consistency mechanism. Refer to Chapter 4,
“Microprocessor Initialization and Configuration.”

Implications

Processor bus hardware needs to handle this locked sequence. The only other time the syst
a locked write back is when an external snoop hits a modified line while a locked cycle is in
progress (this can occur in a uni-processor or a dual-processor system).

6.6.2 Cycle Pipelining

Inter-processor (Primary/Dual processor) back-to-back write cycles are not pipelined even if
has been asserted. The purpose of this rule is to prevent data bus contention during bus arb
from one processor to the other. In dual processor mode, the Primary processor may pipelin
cycles into I/O cycles from the Dual processor (and vice versa) for any I/O instruction combin
(i.e., except I/O writes into writes).

Implications

System hardware designers should be aware of these bus changes.

6.6.3 Cycle Ordering Due to BOFF#

Cycle ordering following an assertion of BOFF# may be different between uni-processor and
processor modes. This occurs when there are pipelined cycles from both processors, a BOF
stalls both cycles, and an external snoop hits a modified line in the LRMs cache.

Implications

System hardware designers should be aware of these bus changes.

6.6.4 Cache Line State

In embedded Pentium processor family uni-processor systems, if a line is put into the E state
system hardware using the WB/WT# signal during the line fill, then all subsequent writes to
line are handled internally via the on-chip cache. In dual-processor systems, under certain
circumstances, even if the system puts a line into the E state using WB/WT#, the dual-proce
protocol may force the line to be stored in the S state. Private snooping in dual processor sy
can also cause a line to be placed into the S or I state.
6-44 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
Implications

There are no system implications. The system may be required to handle writes to a line which
would not otherwise have been seen.

Note: In a dual processing system where NW=1 and CD=1 are set, (i.e., SRAM mode), an inquire cycle
invalidates a cache line with INV on a HIT#.

6.6.5 Back-to-Back Cycles

Due to the dual-processor cache consistency protocol, the Primary and Dual processors may follow
a write to address X with a write back to a 32-byte area which contains X. This does not occur in
uni-processor systems. Also, a read to address X may be followed by a write back to a 32-byte area
which contains X.

Implications

There are no system implications.

6.6.6 Address Parity Checking

Address parity is checked during every private snoop between the Primary and Dual processors.
Therefore, APCHK# may be asserted due to an address parity error during this private snoop. If an
error is detected, APCHK# is asserted two clocks after ADS# for one processor clock period. The
system can choose to acknowledge this parity error indication at this time or do nothing.

Implications

There are no system implications. The system designers get extra address parity checking with dual
processors due to the automatic private snooping.

6.6.7 Synchronous FLUSH# and RESET

When the Dual processor is present, the FLUSH# and RESET signals must be recognized by both
processors at the same time.

Implications

FLUSH# and RESET must be asserted on the same clock to both the Primary and Dual processors.

6.6.8 PCHK# Assertion

In a dual-processor configuration, there is the possibility that the PCHK# signal can be asserted
either two or three CLKs following incorrect parity being detected on the data bus (depending on
the bus-to-core ratio).

Implications

Chip sets must account for this difference from the embedded Pentium processor in their logic or
state machines.
Embedded Pentium® Processor Family Developer’s Manual 6-45

Bus Functional Description
6.6.9 Flush Cycles

The Primary and Dual processors incorporate a mechanism to present a unified view of the cache
flush operation to the system when in dual processing mode. The Dual processor performs the
cache flush operation first, then grants the bus to the Primary processor. The Primary processor
flushes its internal caches, and then runs the cache flush special cycle.

Implications

The system hardware must not assert a subsequent FLUSH# to the processors until the flush
acknowledge special cycle has completed on the processor bus. The assertion of FLUSH# to the
processors prior to this point would result in a corruption of the dual processing bus arbitration
state machines.

6.6.10 Floating-Point Error Handling

The embedded Pentium processor, when configured as a Dual processor, ignores the IGNNE#
input. The FERR# output is also undefined in the Dual processor.

Implications

None.
6-46 Embedded Pentium® Processor Family Developer’s Manual

rious

 V
nded
.

Electrical Differences Between Family
Members 7

This section describes the electrical differences between the embedded Pentium® processor family
members.

7.1 Differences Between Processors

When designing an embedded Pentium® processor with MMX™ technology system from an
existing embedded Pentium processor (at 100/133/166 MHz) system, there are a number of
electrical differences that require attention. Designing a single motherboard that supports va
members of the embedded Pentium processor family can be accomplished easily.

Refer to the Embedded Pentium® Processor Flexible Motherboard Design Guidelines (order
number 273206) for more information and specific implementation examples.

The following sections highlight key electrical issues pertaining to power supplies, connection
specifications, and buffer models.

7.1.1 Power Supplies

One key electrical difference between family processors is the operating voltage.

• The embedded Pentium processor (at 100/133/166 MHz) requires a single voltage supply for
all VCC pins. This single supply powers both the core and I/O pins.

• The embedded Pentium processor with Voltage Reduction Technology, the embedded Pentium
processor with MMX technology, and the low-power embedded Pentium processor with
MMX technology require two separate voltage inputs, VCC2 and VCC3. The VCC2 pins supply
power to the core, while the VCC3 pins supply power to the processor I/O pins.

By connecting all of the VCC2 pins together and all the VCC3 pins together on separate power
islands, embedded Pentium processor (at 100/133/166 MHz) designs can easily be converted to
support the embedded Pentium processor with MMX technology. In order to maintain
compatibility with embedded Pentium processor-based platforms, embedded Pentium processors
with MMX technology supports the standard 3.3 V specification on its VCC3 pins.

Refer to each processor’s datasheet for complete electrical specifications.

7.1.1.1 Power Supply Sequencing

There is no specific power sequence required for powering up or powering down the separateCC2
and VCC3 supplies of the embedded Pentium processor with MMX technology. It is recomme
that the VCC2 and VCC3 supplies be either both ON or both OFF within 1 second of each other
Embedded Pentium® Processor Family Developer’s Manual 7-1

Electrical Differences Between Family Members
7.1.2 Connection Specifications

Connection specifications for the power and ground inputs, 3.3 V inputs and outputs, and the
NC/INC and unused inputs are discussed in the following sections.

7.1.2.1 Power and Ground Connections

For clean on-chip power distribution, the embedded Pentium processor has 53 VCC (power) and 53
VSS (ground) inputs.

Power and ground connections must be made to all VCC and VSS pins of the embedded Pentium
processor. On the circuit board, all VCC pins must be connected to a VCC plane. All VSS pins must
be connected to a VSS plane.

It is imperative that the system decoupling be sufficient to maintain ALL VCC pins of the processor
within their specified operating range regardless of whether a unified-plane or split-plane processor
is installed.

The unified-plane embedded Pentium processor packages have a single internal VCC plane. This
plane may be used as the means of conduction between the VCC2 and VCC3 motherboard power
planes when a unified-plane processor is installed in the system. Should such an implementation be
used, it must be ensured that the maximum current flowing through the processor package does not
exceed 8 Amps, including the power required by the processor. (The embedded Pentium processor
(100/133/166) is a unified plane processor.)

Given the above specifications, many different implementations of power distribution are possible
for embedded Pentium processor-based motherboard designs. These can be broadly categorized
into two groups:

1. Unified-plane processors receive power externally to all VCC2 and VCC3 pins, while split-
plane processors receive power from independent sources for VCC2 and VCC3.

2. Unified-plane processors receive power externally to either the VCC2 or VCC3 pins, while
split-plane processors receive power from independent sources for VCC2 and VCC3.

The second implementation discussed above implies that when a unified-plane processor is
installed, either the VCC2 or VCC3 voltage regulator will shut down if the voltage from the other
regulator is higher than its own output setpoint. This will leave one voltage regulator powering
either the VCC2 or VCC3 pins directly. The remaining functioning voltage regulator must be capable
of providing the total required current independently. In the case when a split-plane processor is
installed, both voltage regulators must continue to function at the proper voltage levels.

7.1.2.2 VCC Measurement Specification

The values of VCC should be measured at the bottom side of the processor pins using an
oscilloscope with a 3 dB bandwidth of at least 20 MHz (100 MS/s digital sampling rate). There
should be a short isolation ground lead attached to a processor pin on the bottom side of the board.

The measurement should be taken at the following VCC/VSS pairs: AN13/AM10, AN21/AM18,
AN29/AM26, AC37/Z36, U37/R36, L37/H36, A25/B28, A17/B20, A7/B10, G1/K2, S1/V2,
AC1/Z2. Note that on the embedded Pentium processor with MMX technology, one-half of these
pins are VCC2 while the others are VCC3; the operating ranges for the VCC2 and VCC3 pins are
specified at different voltages.
7-2 Embedded Pentium® Processor Family Developer’s Manual

Electrical Differences Between Family Members
The display should show continuous sampling of the VCC line, at 20 mV/div, and 500 ns/div with
the trigger point set to the center point of the range. Slowly move the trigger to the high and low
ends of the specification, and verify that excursions beyond these limits are not observed. There are
no allowances for crossing the high and low limits of the voltage specification. For more
information on measurement techniques, see the Implementation Guidelines for 3.3 V Pentium®
Processors with VR/VRE Specifications (order number 242687) and Voltage Guidelines for
Pentium® Processors with MMX™ Technology (order number 243186) application notes.

7.1.2.3 Decoupling Recommendations

Liberal decoupling capacitance should be placed near the embedded Pentium processor. The
embedded Pentium processor driving its large address and data buses at high frequencies can cause
transient power surges, particularly when driving large capacitive loads.

Low inductance capacitors and interconnects are recommended for best high frequency electrical
performance. Inductance can be reduced by shortening circuit board traces between the embedded
Pentium processor and decoupling capacitors as much as possible. These capacitors should be
evenly distributed around each component on the power plane. Capacitor values should be chosen
to ensure they eliminate both low and high frequency noise components.

For the embedded Pentium processor, the power consumption can transition from a low level of
power to a much higher level (or high to low power) very rapidly. A typical example would be
entering or exiting the Stop Grant State. Another example would be executing a HALT instruction,
causing the embedded Pentium processor to enter the AutoHALT Power Down State, or
transitioning from HALT to the Normal State. All of these examples may cause abrupt changes in
the power being consumed by the embedded Pentium processor. Note that the AutoHALT Power
Down feature is always enabled even when other power management features are not
implemented.

Bulk storage capacitors with a low ESR (Effective Series Resistance) in the 10 Ω to 100 Ω range
are required to maintain a regulated supply voltage during the interval between the time the current
load changes and the point that the regulated power supply output can react to the change in load.
In order to reduce the ESR, it may be necessary to place several bulk storage capacitors in parallel.

These capacitors should be placed near the embedded Pentium processor on the power plane(s) to
ensure that the supply voltage stays within specified limits during changes in the supply current
during operation.

Detailed decoupling recommendations are provided in the Embedded Pentium® Processor Flexible
Motherboard Design Guidelines (order number 273206).

7.1.2.4 3.3 V Inputs and Outputs

The inputs and outputs of the embedded Pentium processor comply with the 3.3 V JEDEC standard
levels. Both inputs and outputs are also TTL-compatible, although the inputs cannot tolerate
voltage swings above the VIN3 (max.) specification.

System support components which use TTL-compatible inputs will interface to the embedded
Pentium processor without extra logic. This is because the embedded Pentium processor drives
according to the 5 V TTL specification (but not beyond 3.3 V).

For embedded Pentium processor inputs, the voltage must not exceed the 3.3 V VIN3 (max.)
specification. System support components can consist of 3.3 V devices or open-collector devices.
In an open-collector configuration, the external resistor should be biased to VCC3.
Embedded Pentium® Processor Family Developer’s Manual 7-3

Electrical Differences Between Family Members
All pins, other than the CLK and PICCLK of the embedded Pentium processor (100/133/166), are
3.3 V-only. If an 8259A interrupt controller is used, for example, the system must provide level
converters between the 8259A and the embedded Pentium processor.

The CLK and PICCLK inputs of the embedded Pentium processor (100/133/166) are 5 V tolerant.
This allows a 5 V clock driver to be used for the embedded Pentium processor (100/133/166).
These inputs, however, are not 5 V tolerant on the embedded Pentium processor with MMX
technology. The embedded Pentium processor with MMX technology CLK and PICCLK inputs
are 3.3 V tolerant only. A 3.3 V clock driver should be used in systems designed to support both the
embedded Pentium processor with MMX technology and embedded Pentium processor
(100/133/166).

7.1.2.5 NC/INC and Unused Inputs

All NC and INC pins must remain unconnected.

For reliable operation, always connect unused inputs to an appropriate signal level. Unused active
low inputs of the embedded Pentium processor with MMX technology should be connected to
VCC3, and unused active low inputs of the embedded Pentium processor (100/133/166) should be
connected to VCC. Unused active high inputs should be connected to VSS (ground).

7.1.3 Buffer Models

The structure of the buffer models for the embedded Pentium processor with MMX technology and
the embedded Pentium processor (100/133/166) are identical. Some of the values of the
components have changed to reflect the minor manufacturing process and package differences
between the processors. The system should see insignificant differences between the AC behavior
of the Pentium Processor with MMX Technology and the embedded Pentium processor
(100/133/166).

Simulation of AC timings using the embedded Pentium processor buffer models is recommended
to ensure robust system designs. Pay specific attention to the signal quality restrictions imposed by
3.3 V buffers.
7-4 Embedded Pentium® Processor Family Developer’s Manual

 are

I/O Buffer Models 8

This chapter describes the 3.3 V I/O buffer models of the embedded Pentium® processor.

The first order I/O buffer model is a simplified representation of the complex input and output
buffers used in the Pentium processor family. Figure 8-1 and Figure 8-2 show the structure of the
input buffer model and Figure 8-3 shows the output buffer model. Table 8-1 and Table 8-2 show
the parameters used to specify these models.

Although simplified, these buffer models will accurately model flight time and signal quality. For
these parameters, there is very little added accuracy in a complete transistor model.

The following two models represent the input buffer models. The first model, Figure 8-1,
represents all of the input buffers of the Pentium processor except for a special group of input
buffers. The second model, Figure 8-2, represents these special buffers. These buffers are:
AHOLD, EADS#, KEN#, WB/WT#, INV, NA#, EWBE#, BOFF#, CLK, and PICCLK.

The embedded Pentium processor supports 5 V tolerant buffers on the CLK and PICCLK pins. It is
important to note that all inputs of the embedded Pentium processor with MMX™ technology
3.3 V tolerant only. The CLK and PICCLK pins are not 5 V tolerant on the embedded Pentium
processor with MMX technology.

Figure 8-1. Input Buffer Model, Except Special Group

A5899-01

VSS

Lp

VCC

RS

RS

CinCp D 1

D 2
Embedded Pentium® Processor Family Developer’s Manual 8-1

I/O Buffer Models
l

Figure 8-3 shows the structure of the output buffer model. This model is used for all of the output
buffers of the Pentium processor.

Figure 8-2. Input Buffer Model for Special Group

Table 8-1. Parameters Used in the Specification of the First Order Input Buffer Mode

Parameter Description

Cin
Minimum and Maximum value of the capacitance of the input buffer
model.

Lp Minimum and Maximum value of the package inductance.

Cp Minimum and Maximum value of the package capacitance.

Rs Diode Series Resistance

D1, D2 Ideal Diodes

A5900-01

Lp

RS

6 x RS

CinCp D 1

D 2

D 2

D 2

D 2

D 2

D 2
8-2 Embedded Pentium® Processor Family Developer’s Manual

I/O Buffer Models
l

In addition to the input and output buffer parameters, input protection diode models are provided
for added accuracy. These diodes have been optimized to provide ESD protection and provide
some level of clamping. Although the diodes are not required for simulation, it may be more
difficult to meet specifications without them.

Note however, that some signal quality specifications require that the diodes be removed from the
input model. The series resistors (Rs) are a part of the diode model. Remove these when removing
the diodes from the input model.

8.1 Buffer Model Parameters

This section gives the parameters for each Pentium processor input, output, and bidirectional
signals, and the settings for the configurable buffers.

In dual processor mode, a few signals change from output signals to I/O signals. These signals are:
ADS#, M/IO#, D/C#, W/R#, LOCK#, CACHE#, SCYC, HLDA, HIT#, and HITM#. When
simulating these signals use the correct operation of the buffer while in DP mode.

Some pins on the processor have selectable buffer sizes to allow for faster switching of the buffer
in heavily loaded environments. The buffer selection is done through the setting of configuration
pins at power on RESET. Once selected, these cannot be changed without a power on RESET. The

Figure 8-3. First Order Output Buffer Model

Table 8-2. Parameters Used in the Specification of the First Order Output Buffer Mode

Parameter Description

dV/dt Minimum and maximum value of the rate of change of the open circuit
voltage source used in the output buffer model.

Ro
Minimum and maximum value of the output impedance of the output buffer
model.

Co
Minimum and Maximum value of the capacitance of the output buffer
model.

Lp Minimum and Maximum value of the package inductance.

Cp Minimum and Maximum value of the package capacitance.

A5901-01

LpRo

dV/dt CpCp
Embedded Pentium® Processor Family Developer’s Manual 8-3

I/O Buffer Models
BUSCHK# and BRDYC# pins are used to select the different buffer size. All configurable pins get
set to the selected buffer size. There is no selection for specific signal groups to get specific buffers.
Keep in mind that the largest buffer size is not always the best selection especially in a lightly
loaded environment. AC timing and signal quality simulations should be done to ensure that the
buffers used meet required timing and signal quality specifications for the components that will be
used in the specific board design.

The pins with selectable buffer sizes use the configurable output buffer EB2. Table 8-3 shows the
drive level required at falling edge of RESET, to select the buffer strength. Once selected, the
buffer size cannot be changed without a power on RESET. The buffer sizes selected should be the
appropriate size required, otherwise AC timings might not be met, or too much overshoot and
ringback may occur. There are no other selection choices, all the configurable buffers get set to the
same size at the same time.

Table 8-3 shows the proper settings on BRDYC# and BUSCHK# for proper buffer size selection.

The input, output and bidirectional buffers values are listed in Table 8-5. Table 8-5 contains listings
for all three types; do not get them confused during simulation. When a bidirectional pin is
operating as an input, just use the Cin, Cp and Lp values, if it is operating as a driver use all the data
parameters.

Table 8-3. Buffer Selection Chart

Environment BRDYC# BUSCHK# Buffer Selection

Typical Stand Alone Component 1 X EB2

Loaded Component 0 1 EB2A

Heavily Loaded Component 0 0 EB2B

NOTE: X is a “don’t care” (0 or 1). Please refer to Table 8-4 for the groupings of the buffers

Table 8-4. Signal to Buffer Type

Signals Type Driver Buffer
Type

Receiver
Buffer Type

CLK I ER0

A20M#, AHOLD, BF1–BF0, BOFF#, BRDY#, BRDYC#,
BUSCHK#, EADS#, EWBE#, FLUSH#, FRCMC#2, HOLD,
IGNNE#, INIT, INTR, INV, KEN#, NA#, NMI, PEN#, PICCLK,
R/S#, RESET, SMI#, STPCLK#, TCK, TDI, TMS, TRST#,
WB/WT#

I ER1

ADSC#, APCHK#, BE7#–BE5#, BP3–BP2, BREQ, FERR#,
IERR#, PCD, PCHK#, PM0/BP0, PM1/BP1, PRDY, PWT,
SMIACT#, TDO, D/P#

O ED1

A31–A21, AP, BE4#–BE0#, CACHE#, D/C#, D63–D0, DP7–
DP0, HLDA, LOCK#, M/IO#, PBGNT#, PBREQ#, PHIT#,
PHITM#, SCYC

I/O EB1 EB1

A20–A3, ADS#, HITM#, W/R# I/O EB2/A/B EB2

HIT# I/O EB3 EB3

PICD0, PICD1 I/O EB4 EB4

NOTES:
1. VCC2DET# has no buffer model – it is simply a short to VSS on the embedded Pentium® processor with

MMX™ technology . This pin is an INC on the embedded Pentium processor.
2. FRCMC# is defined only for the embedded Pentium processor.
8-4 Embedded Pentium® Processor Family Developer’s Manual

I/O Buffer Models
Table 8-5. Input, Output and Bidirectional Buffer Model Parameters

Buffer
Type Transition dV/dt

(V/nsec)
Ro

(Ohms)
Cp
(pF)

Lp
(nH)

Co/Cin
(pF)

min max min max min max min max min max

ER0 Rising 3.0 5.0 4.0 7.2 0.8 1.2

(input) Falling 3.0 5.0 4.0 7.2 0.8 1.2

ER1 Rising 1.1 6.1 4.7 15.3 0.8 1.2

(input) Falling 1.1 6.1 4.7 15.3 0.8 1.2

ED1 Rising 3/3.0 3.7/0.9 21.6 53.1 1.1 8.2 4.0 17.7 2.0 2.6

(output) Falling 3/2.8 3.7/0.8 17.5 50.7 1.1 8.2 4.0 17.7 2.0 2.6

EB1 Rising 3/3.0 3.7/0.9 21.6 53.1 1.3 8.7 4.0 18.7 2.0 2.6

(bidir) Falling 3/2.8 3.7/0.8 17.5 50.7 1.3 8.7 4.0 18.7 2.0 2.6

EB2 Rising 3/3.0 3.7/0.9 21.6 53.1 1.3 8.3 4.4 16.7 9.1 9.7

(bidir) Falling 3/2.8 3.7/0.8 17.5 50.7 1.3 8.3 4.4 16.7 9.1 9.7

EB2A Rising 3/2.4 3.7/0.9 10.1 22.4 1.3 8.3 4.4 16.7 9.1 9.7

(bidir) Falling 3/2.4 3.7/0.9 9.0 21.2 1.3 8.3 4.4 16.7 9.1 9.7

EB2B Rising 3/1.8 3.7/0.7 5.5 12.9 1.3 8.3 4.4 16.7 9.1 9.7

(bidir) Falling 3/1.8 3.7/0.7 4.6 12.3 1.3 8.3 4.4 16.7 9.1 9.7

EB3 Rising 3/3.0 3.7/0.9 21.6 53.1 1.9 7.5 9.9 14.3 3.3 3.9

(bidir) Falling 3/2.8 3.7/0.8 17.5 50.7 1.9 7.5 9.9 14.3 3.3 3.9

EB4 Rising 3/3.0 3.7/0.9 100K† 100K† 2.0 6.9 5.8 14.6 5.0 7.0

(bidir) Falling 3/2.8 3.7/0.8 17.5 50.7 2.0 6.9 5.8 14.6 5.0 7.0

† The buffer is an open drain. For simulation purposes it should be modeled by a very large internal resistor
with an additional external pull-up.

Table 8-6. Input Buffer Model Parameters: D (Diodes)

Symbol Parameter D1 D2

IS Saturation Current 1.4e–14 A 2.78e–16 A

N Emission Coefficient 1.19 1.00

RS Series Resistance 6.5 ohms 6.5 ohms

TT Transit Time 3 ns 6 ns

VJ PN Potential 0.983 V 0.967 V

CJ0 Zero Bias PN Capacitance 0.281 pF 0.365 pF

M PN Grading Coefficient 0.385 0.376
Embedded Pentium® Processor Family Developer’s Manual 8-5

I/O Buffer Models

sor,
 using
input

8.2 Signal Quality Specifications

Signals driven by the system into the Pentium processor must meet signal quality specifications to
guarantee that the components read data properly and to ensure that incoming signals do not affect
the reliability of the component. There are two signal quality parameters: Ringback and Settling
Time. For more information, see “CLK/PICCLK Signal Quality Specification for the Pentium®
Processor with MMX™ Technology” on page 8-8.

8.2.1 Ringback

Excessive ringback can contribute to long-term reliability degradation of the Pentium proces
and can cause false signal detection. Ringback is simulated at the input pin of a component
the input buffer model. Ringback can be simulated with or without the diodes that are in the
buffer model.

Ringback is the absolute value of the maximum voltage at the receiving pin below VCC (or above
VSS) relative to VCC (or VSS) level after the signal has reached its maximum voltage level. The
input diodes are assumed present.

• Maximum Ringtrack on Inputs = 0.8 V (with diodes)

If simulated without the input diodes, follow the Maximum Overshoot/Undershoot specification.
By meeting the overshoot/undershoot specification, the signal is guaranteed not to ringback
excessively.

If simulated with the diodes present in the input model, follow the maximum ringback
specification.

Overshoot (Undershoot) is the absolute value of the maximum voltage above VCC (below VSS).
The guideline assumes the absence of diodes on the input.

• Maximum Overshoot/Undershoot on 3.3 V Pentium processor Inputs (including CLK and
PICCLK) = 1.4 V above VCC3 (without diodes)

Figure 8-4. Overshoot/Undershoot and Ringback Guidelines

A5902-01

Maximum
Ringback

Maximum
Ringback

Maximum
Overshoot

Maximum
Undershoot

Vcc Vcc
8-6 Embedded Pentium® Processor Family Developer’s Manual

I/O Buffer Models
8.2.2 Settling Time

The settling time is defined as the time a signal requires at the receiver to settle within 10% of VCC
or VSS. Settling time is the maximum time allowed for a signal to reach within 10% of its final
value.

Most available simulation tools are unable to simulate settling time so that it accurately reflects
silicon measurements. On a physical board, second-order effects and other effects serve to dampen
the signal at the receiver. Because of all these concerns, settling time is a recommendation or a tool
for layout tuning and not a specification.

Settling time is simulated at the slow corner, to make sure that there is no impact on the flight times
of the signals if the waveform has not settled. Settling time may be simulated with the diodes
included or excluded from the input buffer model. If diodes are included, settling time
recommendation will be easier to meet.

Although simulated settling time has not shown good correlation with physical, measured settling
time, settling time simulations can still be used as a tool to tune layouts.

Use the following procedure to verify board simulation and tuning with concerns for settling time.

1. Simulate settling time at the slow corner for a particular signal.

2. If settling time violations occur, simulate signal trace with DC diodes in place at the receiver
pin. The DC diode behaves almost identically to the actual (non-linear) diode on the part as
long as excessive overshoot does not occur.

3. If settling time violations still occur, simulate flight times for five consecutive cycles for that
particular signal.

4. If flight time values are consistent over the five simulations, settling time should not be a
concern. If however, flight times are not consistent over the five simulations, tuning of the
layout is required.

Note that, for signals that are allocated two cycles for flight time, the recommended settling time is
doubled.

Maximum Settling Time to within 10% of VCC is: 12.5 ns @66 MHz.
Embedded Pentium® Processor Family Developer’s Manual 8-7

I/O Buffer Models

e

s
8.2.3 CLK/PICCLK Signal Quality Specification for the Pentium®

Processor with MMX™ Technology

The maximum overshoot, maximum undershoot, overshoot threshold duration, undershoot
threshold duration, and maximum ringback specifications for CLK/PICCLK are described below:

Maximum Overshoot And Maximum Undershoot Specification: The maximum overshoot of
the CLK/PICCLK signals should not exceed VCC3, nominal +0.9 V. The maximum undershoot of
the CLK/PICCLK signals must not drop below –0.9 V.

Overshoot Threshold Duration Specification: The overshoot threshold duration is defined as th
sum of all time during which the CLK/PICCLK signal is above VCC3, nominal +0.5 V within a
single clock period. The overshoot threshold duration must not exceed 20% of the period.

Undershoot Threshold Duration Specification: The undershoot threshold duration is defined a
the sum of all time during which the CLK/PICCLK signal is below –0.5 V within a single clock
period. The undershoot threshold duration must not exceed 20% of the period.

Maximum Ringback Specification: The maximum ringback of CLK/PICCLK associated with
their high states (overshoot) must not drop below VCC3 –0.8 V as shown in Figure 8-7. Similarly,
the maximum ringback of CLK/PICCLK associated with their low states (undershoot) must not
exceed 0.8 V as shown in Figure 8-9.

Refer to Table 8-7 and Table 8-8 for a summary of the clock overshoot and undershoot
specifications for the embedded Pentium processor with MMX technology.

Figure 8-5. Settling Time

A5903-01

VCC + 10%

VCC -10%

Settl ing Time

VCC
8-8 Embedded Pentium® Processor Family Developer’s Manual

I/O Buffer Models
.

8.2.3.1 Clock Signal Measurement Methodology

The waveform of the clock signals should be measured at the bottom side of the processor pins
using an oscilloscope with a 3 dB bandwidth of at least 20 MHz (100 ms/s digital sampling rate).
There should be a short isolation ground lead attached to a processor pin on the bottom side of the
board. A 1 MOhm probe with loading of less than 1 pF (e.g., Tektronics 6243 or Tektronics 6245)
is recommended. The measurement should be taken at the CLK (AK18) and PICCLK (H34) pins
and their nearest VSS pins (AM18 and H36, respectively).

Maximum Overshoot, Maximum Undershoot And Maximum Ringback Specifications: The
display should show continuous sampling (e.g., infinite persistence) of the waveform at 500
mV/div and 5 ns/div (for CLK) or 20 ns/div (for PICCLK) for a recommended duration of
approximately five seconds. Adjust the vertical position to measure the maximum overshoot and
associated ringback with the largest possible granularity. Similarly, readjust the vertical position to
measure the maximum undershoot and associated ringback. There is no allowance for crossing the
maximum overshoot, maximum undershoot or maximum ringback specifications.

Overshoot Threshold Duration Specification: A snapshot of the clock signal should be taken at
500 mV/div and 500 ps/div (for CLK) or 2 ns/div (for PICCLK). Adjust the vertical position and
horizontal offset position to view the threshold duration. The overshoot threshold duration is
defined as the sum of all time during which the clock signal is above VCC3, nominal +0.5 V within
a single clock period. The overshoot threshold duration must not exceed 20% of the period.

Table 8-7. Overshoot Specification Summary

Specification Name Value Units Notes

Threshold Level VCC3, nominal +0.5 V (1) (2)

Maximum Overshoot Level VCC3, nominal +0.9 V (1) (2)

Maximum Threshold Duration 20% of clock period above threshold
voltage ns (2)

Maximum Ringback VCC3, nominal –0.8 V (1) (2)

NOTES:
1. VCC3, nominal refers to the voltage measured at the bottom side of the VCC3 pins.
2. See Figure 8-6 and Figure 8-7.

Table 8-8. Undershoot Specification Summary

Specification Name Value Units Notes

Threshold Level –0.5 V (1)

Minimum Undershoot Level –0.9 V (1)

Maximum Threshold Duration 20% of clock period below threshold
voltage ns (1)

Maximum Ringback 0.8 V (1)

NOTE:
1. See Figure 8-8 and Figure 8-9.
Embedded Pentium® Processor Family Developer’s Manual 8-9

I/O Buffer Models
Undershoot Threshold Duration Specification: A snapshot of the clock signal should be taken at
500 mV/div and 500 ps/div (for CLK) or 2 ns/div (for PICCLK). Adjust the vertical position and
horizontal offset position to view the threshold duration. The undershoot threshold duration is
defined as the sum of all time during which the clock signal is below –0.5 V within a single clock
period. The undershoot threshold duration must not exceed 20% of the period.

These overshoot and undershoot specifications are illustrated in Figures 8-6 to 8-9.

Figure 8-6. Maximum Overshoot Level, Overshoot Threshold Level, and Overshoot
Threshold Duration

Figure 8-7. Maximum Ringback Associated with the Signal High State

A6203-01

Overshoot
Threshold Duration

Maximum Overshoot Level

Overshoot Threshold Level

VCC3, nominal

A6215-01

VCC3, nominal

Maximum Ringback
8-10 Embedded Pentium® Processor Family Developer’s Manual

I/O Buffer Models
Figure 8-8. Maximum Undershoot Level, Undershoot Threshold Level, and
Undershoot Threshold Duration

Figure 8-9. Maximum Ringback Associated with the Signal Low State

A6216-01

Undershoot
Threshold Duration

Maximum Overshoot Level

Undershoot Threshold Level

VSS, Nominal

A6217-01

Maximum
Ringback

VSS, Nominal
Embedded Pentium® Processor Family Developer’s Manual 8-11

luded
, new

e
n
 also

ism are

of the

bus
t is
y

le

. The
ritten to
the
 by

en
n
pt to
Testability 9

This chapter describes the features which are included in the embedded Pentium® processor for the
purpose of enhancing testability. The capability of the Intel486™ processor test hooks are inc
in the embedded Pentium processor; however, some are implemented differently. In addition
test features were added to assure timely testing and production of the system product.

Internal component testing through the Built-In Self-Test (BIST) feature provides 100% singl
stuck at fault coverage of the microcode ROM and large PLAs. Some testing of the instructio
cache, data cache, Translation Lookaside Buffers (TLBs), and Branch Target Buffer (BTB) is
performed. In addition, the constant ROMs are checked.

Three-State Test Mode and the IEEE 1149.1 “Test Access Port and Boundary Scan” mechan
included to facilitate testing of board connections.

See “Testability And Test Registers” on page 14-3 for more information regarding the testing
on-chip caches, translation lookaside buffers, branch target buffer, second level caches, the
superscalar architecture, and internal parity checking through the test registers.

9.1 Built-in Self-test (BIST)

Self-test is initiated by driving the INIT pin high when RESET transitions from high to low. No
cycles are run by the embedded Pentium processor during self-test. The duration of self-tes
approximately 219 core clocks. Approximately 70% of the devices in the processor are tested b
BIST. The BIST consists of two parts: hardware self-test and microcode self-test.

During the hardware portion of BIST, the microcode and all large PLAs are tested. All possib
input combinations of the microcode ROM and PLAs are tested.

The constant ROMs, BTB, TLBs and all caches are tested by the microcode portion of BIST
array tests (caches, TLBs and BTB) have two passes. On the first pass, data patterns are w
arrays, read back and checked for mismatches. The second pass writes the complement of
initial data pattern, reads it back and checks for mismatches. The constant ROMs are tested
using the microcode to add various constants and check the result against a stored value.

Upon completion of BIST, the cumulative result of all tests are stored in the EAX register. Wh
EAX contains 0H, all checks passed; any non-zero result indicates a faulty unit. Note that if a
internal parity error is detected during BIST, the processor will assert the IERR# pin and attem
shutdown.
Embedded Pentium® Processor Family Developer’s Manual 9-1

Testability

 All

, four
ists
ontrol
9.2 Three-state Test Mode

When the FLUSH# pin is sampled low in the clock prior to the RESET pin going from high to low,
the processor enters three-state test mode. The processor floats all of its output pins and
bidirectional pins including pins which are never floated during normal operation (except TDO).
Three-state test mode can be initiated in order to facilitate testing of board connections. The
processor remains in three-state test mode until the RESET pin is toggled again.

In a dual-processor system, the private interface pins are not floated in Three-state Test mode.
These pins are PBREQ#, PBGNT#, PHIT#, and PHITM#.

Note: There are several pins that have internal pullups or pulldowns attached that show these pins going
high or low, respectively, during Three-state Test mode. There is one pin, PICD1, that has an
internal pulldown attached that shows this pin going low during Three-state Test mode. The five
pins that have pullups are PHIT#, PHITM#, PBREQ#, PBGNT#, and PICD0. There are two other
pins that have pullups attached during dual processor mode, HIT# and HITM#. The pullups on
these pins (except HIT#) have a value of about 30 KOhms, HIT# is about 2 KOhms.

9.3 IEEE 1149.1 Test Access Port and Boundary
Scan Mechanism

The IEEE Standard Test Access Port and Boundary Scan Architecture (Standard 1149.1) is
implemented in the embedded Pentium processor. This feature allows board manufacturers to test
board interconnects by using “boundary scan,” and to test the processor itself through BIST.
output pins are three-stateable through the IEEE 1149.1 mechanism.

9.3.1 Test Access Port (TAP)

The processor Test Access Port (TAP) contains a TAP controller, a Boundary Scan Register
input pins (TDI, TCK, TMS, and TRST#) and one output pin (TDO). The TAP controller cons
of an Instruction Register, a Device ID Register, a Bypass Register, a Runbist Register and c
logic. See Figure 9-1 for the TAP Block Diagram.
9-2 Embedded Pentium® Processor Family Developer’s Manual

Testability
9.3.1.1 TAP Pins

As mentioned in the previous section, the TAP includes four input pins and one output pin. TDI
(test data in) is used to shift data or instructions into the TAP in a serial manner. TDO (test data out)
shifts out the response data. TMS (test mode select) is used to control the state of the TAP
controller. TCK is the test clock. The TDI and TMS inputs are sampled on the rising edge of this
TCK. Asserting TRST# will force the TAP controller into the Test Logic Reset State (see the TAP
controller state diagram, Figure 9-4). The input pins (TDI, TMS, TCK, and TRST#) have pullup
resistors.

Figure 9-1. Test Access Port Block Diagram

A6073-01

Boundary Scan Test Register

External Pins and
Control Cells

TDI

TRST#

TCK

TMS

TAP Controller

TDO-EN

TDO

Pentium® Processor

Device Identification

BYPASS Register

RUNBIST Register

Instruction Decode/
Control Logic

Instruction Register
Embedded Pentium® Processor Family Developer’s Manual 9-3

Testability

er
een
9.3.1.2 TAP Registers

Boundary Scan Register

The IEEE standard requires that an extra single bit shift register be inserted at each pin on the
processor. These single bit shift registers are connected into a long shift register, the Boundary
Scan Register. Therefore, the Boundary Scan Register is a single shift register path containing the
boundary scan cells that are connected to all input and output pins of the processor. Figure 9-2
shows the logical structure of the Boundary Scan Register. While output cells determine the value
of the signal driven on the corresponding pin, input cells only capture data; they do not affect the
normal operation of the device (the INTEST instruction is not supported by the embedded Pentium
processor). Data is transferred without inversion from TDI to TDO through the Boundary Scan
Register during scanning. The Boundary Scan Register can be operated by the EXTEST and
SAMPLE/PRELOAD instructions. The Boundary Scan Register order is defined later in this
chapter.

Bypass Register

The Bypass Register is a one-bit shift register that provides the minimal length path between TDI
and TDO. This path can be selected when no test operation is being performed by the component to
allow rapid movement of test data to and from other components on the board. While the bypass
register is selected data is transferred from TDI to TDO without inversion. The Bypass Register
loads a logic 0 at the start of a scan cycle.

Device ID Register

The Device Identification Register contains the manufacturer’s identification code, part numb
code, and version code in the format shown in Figure 9-3. It is selected to be connected betw
TDI and TDO by using the IDCODE instruction.

Figure 9-2. Boundary Scan Register

A6218-01

TCK

Processor
Core
Logic

System
Logic
Input

System
Three-State
Output

System
Bidirectional
Pin

B/S
Cell

B/S
Cell

B/S
Cell

B/S
Cell

B/S
Cell

Boundary Scan Register

TDOTDI
9-4 Embedded Pentium® Processor Family Developer’s Manual

Testability

0”

icate

o
The processor has divided the 16-bit part number into three fields. The upper 7 bits are used to
define the product type (examples: Cache, processor architecture). The middle 4 bits are used to
represent the generation or family (examples: Intel486 processor, embedded Pentium processor).
The lower 5 bits are used to represent the model (examples: SX, DX). Using this definition, the
embedded Pentium processor ID code is shown in Table 9-1.

The version field is used to indicate the stepping ID.

Runbist Register

The Runbist Register is a one bit register used to report the results of the embedded Pentium
processor BIST when it is initiated by the RUNBIST instruction. This register is loaded with “
upon successful completion of BIST.

Instruction Register

This register is 13 bits wide. The command field (the lower 4 bits of instruction) is used to ind
one of the following instructions: EXTEST, IDCODE, RUNBIST, SAMPLE/PRELOAD and
BYPASS. The upper 9 bits are reserved.

The most significant bit of the Instruction Register is connected to TDI, the least significant t
TDO.

Figure 9-3. Format of the Device ID Register

A6219-01

1
MANUFACTURER

IDENTITYPART NUMBERVERSION

Table 9-1. Device ID Register Values

Processor Stepping Version

Part Number
Manufacturing

ID “1” Entire Code
Product

Type Generation Model

Pentium
processor

(100/133/166)
x xH 01H 05H 04H 09H 1 x82A4013H

Pentium
processor with

MMX™
technology

x xH 01H 05H 03H 09H 1 x82A3013H
Embedded Pentium® Processor Family Developer’s Manual 9-5

Testability
9.3.1.3 TAP Controller State Diagram

Figure 9-4 shows the 16-state TAP controller state diagram. A description of each state follows.
Note that the state machine contains two main branches to access either data or instruction
registers.

Test-Logic-Reset State

In this state, the test logic is disabled so that normal operation of the device can continue
unhindered. During initialization, the processor initializes the instruction register such that the
IDCODE instruction is loaded.

No matter what the original state of the controller, the controller enters Test-Logic-Reset state
when the TMS input is held high (logic 1) for at least five rising edges of TCK. The controller
remains in this state while TMS is high. The TAP controller is forced to enter this state when the
TRST# pin is asserted (with TCK toggling or TCK at a high logic value). The processor
automatically enters this state at power-up.

Figure 9-4. TAP Controller State Diagram

A6220-01

0

1

1

0

1

0 Run-Test-Idle

Test-Logic-Reset

0

1 1
Select-DR-Scan Select-IR-Scan

Capture-DR

0

0Shift-DR

1
1

Exit1-DR

0

0Pause-DR

1

Exit2-DR

1

01

Update-DR

1

0

0

Capture-IR

0

0Shift-IR

1
1

Exit1-IR

0

0Pause-IR

1

Exit2-IR

1

01

Update-IR
9-6 Embedded Pentium® Processor Family Developer’s Manual

Testability
Run-Test/Idle State

This is a controller state between scan operations. Once in this state, the controller remains in this
state as long as TMS is held low. In devices supporting the RUNBIST instruction, the BIST is
performed during this state and the result is reported in the Runbist Register. For instructions not
causing functions to execute during this state, no activity occurs in the test logic. The instruction
register and all test data registers retain their previous state. When TMS is high and a rising edge is
applied to TCK, the controller moves to the Select-DR state.

Select-DR-Scan State

This is a temporary controller state. The test data register selected by the current instruction retains
its previous state. If TMS is held low and a rising edge is applied to TCK when in this state, the
controller moves into the Capture-DR state, and a scan sequence for the selected test data register is
initiated. If TMS is held high and a rising edge is applied to TCK, the controller moves to the
Select-IR-Scan state.

The instruction does not change in this state.

Capture-DR State

In this state, the Boundary Scan Register captures input pin data if the current instruction is
EXTEST or SAMPLE/PRELOAD. The other test data registers, which do not have parallel input,
are not changed.

The instruction does not change in this state.

When the TAP controller is in this state and a rising edge is applied to TCK, the controller enters
the Exit1-DR state if TMS is high or the Shift-DR state if TMS is low.

Shift-DR State

In this controller state, the test data register connected between TDI and TDO as a result of the
current instruction shifts data one stage toward its serial output on each rising edge of TCK.

The instruction does not change in this state.

When the TAP controller is in this state and a rising edge is applied to TCK, the controller enters
the Exit1-DR state if TMS is high or remains in the Shift-DR state if TMS is low.

Exit1-DR State

This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK
causes the controller to enter the Update-DR state, which terminates the scanning process. If TMS
is held low and a rising edge is applied to TCK, the controller enters the Pause-DR state.

The test data register selected by the current instruction retains its previous value during this state.
The instruction does not change in this state.

Pause-DR State

The pause state allows the test controller to temporarily halt the shifting of data through the test
data register in the serial path between TDI and TDO. An example use of this state could be to
allow a tester to reload its pin memory from disk during application of a long test sequence.
Embedded Pentium® Processor Family Developer’s Manual 9-7

Testability
The test data register selected by the current instruction retains its previous value during this state.
The instruction does not change in this state.

The controller remains in this state as long as TMS is low. When TMS goes high and a rising edge
is applied to TCK, the controller moves to the Exit2-DR state.

Exit2-DR State

This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK
causes the controller to enter the Update-DR state, which terminates the scanning process. If TMS
is held low and a rising edge is applied to TCK, the controller enters the Shift-DR state.

The test data register selected by the current instruction retains its previous value during this state.
The instruction does not change in this state.

Update-DR State

The Boundary Scan Register is provided with a latched parallel output to prevent changes at the
parallel output while data is shifted in response to the EXTEST and SAMPLE/PRELOAD
instructions. When the TAP controller is in this state and the Boundary Scan Register is selected,
data is latched onto the parallel output of this register from the shift-register path on the falling
edge of TCK. The data held at the latched parallel output does not change other than in this state.

All shift-register stages in the test data register selected by the current instruction retains their
previous value during this state. The instruction does not change in this state.

Select-IR-Scan State

This is a temporary controller state. The test data register selected by the current instruction retains
its previous state. If TMS is held low and a rising edge is applied to TCK when in this state, the
controller moves into the Capture-IR state, and a scan sequence for the instruction register is
initiated. If TMS is held high and a rising edge is applied to TCK, the controller moves to the Test-
Logic-Reset state. The instruction does not change in this state.

Capture-IR State

In this controller state the shift register contained in the instruction register loads a fixed value on
the rising edge of TCK.

The test data register selected by the current instruction retains its previous value during this state.
The instruction does not change in this state.

When the controller is in this state and a rising edge is applied to TCK, the controller enters the
Exit1-IR state if TMS is held high, or the Shift-IR state if TMS is held low.

Shift-IR State

In this state the shift register contained in the instruction register is connected between TDI and
TDO and shifts data one stage towards its serial output on each rising edge of TCK.

The test data register selected by the current instruction retains its previous value during this state.
The instruction does not change in this state.

When the controller is in this state and a rising edge is applied to TCK, the controller enters the
Exit1-IR state if TMS is held high, or remains in the Shift-IR state if TMS is held low.
9-8 Embedded Pentium® Processor Family Developer’s Manual

Testability
Exit1-IR State

This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK
causes the controller to enter the Update-IR state, which terminates the scanning process. If TMS is
held low and a rising edge is applied to TCK, the controller enters the Pause-IR state.

The test data register selected by the current instruction retains its previous value during this state.
The instruction does not change in this state.

Pause-IR State

The pause state allows the test controller to temporarily halt the shifting of data through the
instruction register.

The test data register selected by the current instruction retains its previous value during this state.
The instruction does not change in this state.

The controller remains in this state as long as TMS is low. When TMS goes high and a rising edge
is applied to TCK, the controller moves to the Exit2-IR state.

Exit2-IR State

This is a temporary state. While in this state, if TMS is held high, a rising edge applied to TCK
causes the controller to enter the Update-IR state, which terminates the scanning process. If TMS is
held low and a rising edge is applied to TCK, the controller enters the Shift-IR state.

The test data register selected by the current instruction retains its previous value during this state.
The instruction does not change in this state.

Update-IR State

The instruction shifted into the instruction register is latched onto the parallel output from the shift-
register path on the falling edge of TCK. Once the new instruction has been latched, it becomes the
current instruction.

Test data registers selected by the current instruction retain their previous value.

9.3.2 Boundary Scan

The IEEE Standard 1149.1 Boundary Scan is implemented using the Test Access Port and TAP
Controller as described above. The embedded Pentium processor implements all of the required
boundary scan features as well as some additional features. The required pins (all 3.3 V) are: TDI,
TDO, TCK and TMS. The required registers are: Boundary Scan, Bypass, and the Instruction
Register. Required instructions include: BYPASS, SAMPLE/PRELOAD and EXTEST. The
additional pin, registers, and instructions are implemented to add additional test features.

On the board level, the TAP provides a simple serial interface that makes it possible to test all
signal traces with only a few probes. The testing is controlled through the TAP Controller State
machine that can be implemented with automatic test equipment or a PLD.

On power up the TAP controller is automatically initialized to the test logic reset state (test logic
disabled), so normal processor behavior is the default. The Test Logic Reset State is also entered
when TRST# is asserted, or when TMS is high for five or more consecutive TCK clocks.
Embedded Pentium® Processor Family Developer’s Manual 9-9

Testability

onal
are
 pins:
To implement boundary scan, the TDO of one device is connected to TDI of the next in a
daisy-chain fashion. This allows all of the I/O of the devices on this chain to be accessed through a
long shift register. TMS and TCK are common to all devices.

The Boundary Scan Register for the embedded Pentium processor contains a cell for each pin.

The following is the bit order of the embedded Pentium processor with MMX technology
Boundary Scan Register (left to right, top to bottom):

TDO→Disapsba†, PICD1, PICD0, Reserved, PICCLK, D0, D1, D2, D3, D4, D5, D6, D7, DP0,
D8, D9, D10, D11, D12, D13, D14, D15, DP1, D16, D17, D18, D19, D20, D21, D22, D23, DP2,
D24, D25, D26, D27, D28, D29, D30, D31, DP3, D32, D33, D34, D35, D36, D37, D38, D39, DP4,
D40, D41, D42, D43, D44, D45, D46, Diswr†, D47, DP5, D48, D49, D50, D51, D52, D53, D54,
D55, DP6, D56, D57, D58, D59, D60, D61, D62, D63, DP7, IERR#, FERR#, PM0BP0, PM1BP1,
BP2, BP3, M/IO#, CACHE#, EWBE#, INV, AHOLD, KEN#, BRDYC#, BRDY#, BOFF#, NA#,
Disbus†, Dismisch†, Disbusl†, Dismisc†, Disua2bus†, Disua1bus†, Dismisca†, Dismiscf†,
WB/WT#, HOLD, PHITM#, PHIT#, PBREQ#, PBGNT#, SMIACT#, PRDY, PCHK#, APCHK#,
BREQ, HLDA, AP, LOCK#, ADSC#, PCD, PWT, D/C#, EADS#, ADS#, HITM#, HIT#, W/R#,
BUSCHK#, FLUSH#, A20M#, BE0#, BE1#, BE2#, BE3#, BE4#, BE5#, BE6#, BE7#, SCYC,
CLK, RESET, Disabus†, A20, A19, A18, A17, A16, A15, A14, A13, A12, A11, A10, A9, A8, A7,
A6, A5, A4, A3, A31, A30, A29, A28, A27, A26, A25, A24, A23, A22, A21, D/P#, NMI, RS#,
INTR, SMI#, IGNNE#, INIT, PEN#, FRCMC#, Reserved, Reserved, Reserved, Reserved,
Reserved, STPCLK#, Reserved, Reserved, Reserved, Reserved, Reserved, Reserved, Reserved
→TDI

The following is the bit order of the embedded Pentium processor (100/133/166) Boundary Scan
Register (left to right, top to bottom):

TDI → Disapsba†, PICD1, PICD0, Reserved, PICCLK, D0, D1, D2, D3, D4, D5, D6, D7, DP0,
D8, D9, D10, D11, D12, D13, D14, D15, DP1, D16, D17, D18, D19, D20, D21, D22, D23, DP2,
D24, D25, D26, D27, D28, D29, D30, D31, DP3, D32, D33, D34, D35, D36, D37, D38, D39, DP4,
D40, D41, D42, D43, D44, D45, D46, Diswr†, D47, DP5, D48, D49, D50, D51, D52, D53, D54,
D55, DP6, D56, D57, D58, D59, D60, D61, D62, D63, DP7, IERR#, FERR#, PM0/BP0,
PM1/BP1, BP2, BP3, M/IO#, CACHE#, EWBE#, INV, AHOLD, KEN#, BRDYC#, BRDY#,
BOFF#, NA#, Disbus†, Dismisch†, Disbus1†, Dismisc†, Disua2bus†, Disua1bus†, Dismisca†,
Dismiscfa†, WB/WT#, HOLD, PHITM#, PHIT#, PBREQ#, PBGNT#, SMIACT#, PRDY, PCHK#,
APCHK#, BREQ, HLDA, AP, LOCK#, ADSC#, PCD, PWT, D/C#, EADS#, ADS#, HITM#,
HIT#, W/R#, BUSCHK#, FLUSH#, A20M#, BE0#, BE1#, BE2#, BE3#, BE4#, BE5#, BE6#,
BE7#, SCYC, CLK, RESET, Disabus†, A20, A19, A18, A17, A16, A15, A14, A13, A12, A11,
A10, A9, A8, A7, A6, A5, A4, A3, A31, A30, A29, A28, A27, A26, A25, A24, A23, A22, A21,
D/P#, NMI, R/S#, INTR, SMI#, IGNNE#, INIT, PEN#, FRCMC#, Reserved, Reserved, BF0, BF1,
Reserved, STPCLK#, Reserved, Reserved, Reserved, Reserved, Reserved, Reserved, CPUTYP →
TDO

“Reserved” includes the no connect “NC” signals on the embedded Pentium processor.

The cells marked with an “†” are control cells that are used to select the direction of bidirecti
pins or three-state the output pins. If “1” is loaded into the control cell, the associated pin(s)
three-stated or selected as input. The following lists the control cells and their corresponding
9-10 Embedded Pentium® Processor Family Developer’s Manual

Testability
For the embedded Pentium processor with MMX technology:

For the embedded Pentium processor (at 100/133/166 MHz):

9.3.2.1 Boundary Scan TAP Instruction Set

Table 9-2 shows the Boundary Scan TAP instructions and their instruction register encoding. A
description of each instruction follows. The IDCODE and BYPASS instructions may also be
executed concurrent with processor execution. The following instructions are not affected by the
assertion of RESET: EXTEST, SAMPLE/PRELOAD, BYPASS, and IDCODE.

The instructions should be scanned in to the TAP port least significant bit first (bit 0 of the TAP
Command field is the first bit to be scanned in).

Disabus: A31–A3, AP.

Disbus: BE7–BE0#, CACHE#, SCYC, M/IO#, D/C#, W/R#, PWT, PCD.

Disbusl: ADS#, ADSC#, LOCK#.

Dismisc: APCHK#, PCHK#, PRDY, BP3, BP2, PM1/BP1, PM0/BP0.

Dismiscf: D/P#.

Dismisch: FERR#, SMIACT#, BREQ, HLDA, HIT#, HITM#.

Dismisca: IERR#.

Disua1bus: PBREQ#, PHIT#, PHITM#.

Disua2bus: PBGNT#.

Diswr: D63–D0, DP7–DP0.

Disapsba: PICD1–PICD0

Disabus: A31–A3, AP

Dismiscfa: D/P#, FERR#

Dismisca: IERR#

Disua1buS: PBREQ#, PHIT#, PHITM#

Disua2bus: PBGNT#

Dismisc: APCHK#, PHCK#, PRDY#, BP3, BP2, PM1/BP1, PM0/BP0

Disbus1: ADS#, ADSC#, LOCK#

Dismisch: HIT#, HITM#, HLDA, BREQ#, SMIACT#

Disbus: SCYC, BE7#–BE0#, W/R#, D/C#, PWT, PCD, CACHE#, M/IO#

Diswr: DP7–DP0, D63–D0

Disapsba: PICD0, PICD1
Embedded Pentium® Processor Family Developer’s Manual 9-11

Testability

n the
 the

ding

ons
he

ust

tputs
ls

sing
e
be

g
The TAP Command field encodings not listed in Table 9-2 (1101, 1110) are unimplemented and
will be interpreted as Bypass instructions.

EXTEST The EXTEST instruction allows testing of circuitry external to the
component package, typically board interconnects. It does so by driving
the values loaded into the processor’s Boundary Scan Register out o
output pins corresponding to each boundary scan cell and capturing
values on the processor input pins to be loaded into their correspon
Boundary Scan Register locations. I/O pins are selected as input or
output, depending on the value loaded into their control setting locati
in the Boundary Scan Register. Values shifted into input latches in t
Boundary Scan Register are never used by the internal logic of the
processor. Note: after using the EXTEST instruction, the processor m
be reset before normal (non-boundary scan) use.

SAMPLE/PRELOAD The SAMPLE/PRELOAD performs two functions. When the TAP
controller is in the Capture-DR state, the SAMPLE/PRELOAD
instruction allows a “snap-shot” of the normal operation of the
component without interfering with that normal operation. The
instruction causes Boundary Scan Register cells associated with ou
to sample the value being driven by the processor. It causes the cel
associated with inputs to sample the value being driven into the
processor. On both outputs and inputs the sampling occurs on the ri
edge of TCK. When the TAP controller is in the Update-DR state, th
SAMPLE/PRELOAD instruction preloads data to the device pins to
driven to the board by executing the EXTEST instruction. Data is
preloaded to the pins from the Boundary Scan Register on the fallin
edge of TCK.

Table 9-2. TAP Instruction Set and Instruction Register Encoding

Instruction Name Instruction Register [Bits 12:4] TAP Command Field [Bits 3:0]

EXTEST XXXXXXXXX 0000

Sample/Preload XXXXXXXXX 0001

IDCODE XXXXXXXXX 0010

Private Instruction XXXXXXXXX 0011

Private Instruction XXXXXXXXX 0100

Private Instruction XXXXXXXXX 0101

Private Instruction XXXXXXXXX 0110

RUNBIST XXXXXXXXX 0111

Private Instruction XXXXXXXXX 1000

Private Instruction XXXXXXXXX 1001

Private Instruction XXXXXXXXX 1010

HI-Z XXXXXXXXX 1011

Private Instruction XXXXXXXXX 1100

BYPASS XXXXXXXXX 1111
9-12 Embedded Pentium® Processor Family Developer’s Manual

Testability

lso

ing

r
 out
n
 a

ed
ely.
T#

 first
te
us

d to
sor
en

pull-

.

IDCODE The IDCODE instruction selects the device identification register to be
connected to TDI and TDO. This allows the device identification code to
be shifted out of the device on TDO.

RUNBIST The RUNBIST instruction selects the one (1) bit Runbist Register, loads
a value of “1” into the Runbist Register, and connects it to TDO. It a
initiates the built-in self test (BIST) feature of the embedded Pentium
processor. After loading the RUNBIST instruction code in the
instruction register, the TAP controller must be placed in the Run-
Test/Idle state. BIST begins on the first rising edge of TCK after enter
the Run-Test/Idle state. The TAP controller must remain in the Run-
Test/Idle state until BIST is completed. It requires 219 core clock cycles
to complete BIST and report the result to the Runbist Register. Afte
completing BIST, the value in the Runbist Register should be shifted
on TDO during the Shift-DR state. A value of “0” being shifted out o
TDO indicates BIST successfully completed. A value of “1” indicates
failure occurred. The CLK clock must be running in order to execute
RUNBIST. After executing the RUNBIST instruction, the processor
must be reset prior to normal (non-boundary scan) operation.

HI-Z The TAP Hi-Z instruction causes all outputs and I/Os of the embedd
Pentium processor to go to a high-impedance state (float) immediat
The Hi-Z state is terminated by either resetting the TAP with the TRS
pin, by issuing another TAP instruction, or by entering the
Test_Logic_Reset state. The Hi-Z state is enabled or disabled on the
TCK clock after the TAP instruction has entered the UPDATE-IR sta
of the TAP control state machine. This instruction overrides all other b
cycles. Resetting the processor will not disable this instruction since
CPU RESET does not reset the TAP.

BYPASS The BYPASS instruction selects the Bypass Register to be connecte
TDI and TDO. This effectively bypasses the test logic on the proces
by reducing the shift length of the device to one bit. Note that an op
circuit fault in the board level test data path will cause the Bypass
Register to be selected following an instruction scan cycle due to a
up resistor on the TDI input. This was implemented to prevent any
unwanted interference with the proper operation of the system logic
Embedded Pentium® Processor Family Developer’s Manual 9-13

Error Detection 10

The embedded Pentium processor incorporates a number of data integrity features that are focused
on the detection and limited recovery of errors. The data integrity features provide capabilities for
error detection of the internal devices and the external interface. The processor also provides the
capability to obtain maximum levels of error detection by incorporating Functional Redundancy
Checking (FRC) support. Error detecting circuits in the embedded Pentium processor do not limit
the operating frequency of the chip.

The data integrity features can be categorized as (1) internal error detection, (2) error detection at
the bus interface, and (3) FRC support.

10.1 Internal Error Detection

Detection of errors of a majority of the devices in the processor is accomplished by employing
parity checking in the large memory arrays of the chip. The data and instruction caches (both
storage and tag arrays), translation lookaside buffers, and microcode ROM are all parity protected.
The following describes the parity checking employed in the major memory arrays in the processor
(MESI status bits are not parity protected):

• Parity bit per byte in the data cache storage array.

• Parity bit per entry in the data cache tag array.

• Four Parity bits: One for each of the even upper, even lower, odd upper, odd lower bits of an
instruction cache line.

• Parity bit per entry in the instruction cache tag array.

• Parity bit per entry in both the data and instruction TLBs storage arrays.

• Parity bit per entry in both the data and instruction TLBs tag arrays.

• Parity bit per entry in the microcode ROM.

Parity checking as described above provides error detection coverage of 53% of the on-chip
devices. This error detection coverage number also includes the devices in the branch target buffer
since branch predictions are always verified.

If a parity error has occurred internally, processor operation can no longer be trusted. Normally, a
parity error on a read from an internal array will cause the processor to assert the IERR# pin and
then shutdown. (Shutdown will be entered assuming it is not prevented from doing so by the
error.); however, if TR1.NS is set, IERR# will not result in processor shutdown. Execution will
continue, but operation will not be reliable. Parity errors on reads during normal instruction
execution, reads during a flush operation, reads during BIST and testability cycles, and reads
during inquire cycles will cause IERR# to be asserted. The IERR# pin will be asserted for one
clock for each clock a parity error is detected and may be latched by the system. The IERR# pin is
a glitch free signal, so no spurious assertions of IERR# will occur.

In general, internal timing constraints of the processor do not allow the inhibition of writeback
cycles caused by inquire cycles, FLUSH# assertion or the WBINVD instruction when a parity error
is encountered. In those cases where an internal parity error occurred during the generation of a
writeback cycle, and that cycle was not able to be inhibited, the IERR# pin can be used to
Embedded Pentium® Processor Family Developer’s Manual 10-1

Error Detection

ng

dress
ssor
.

HK#
nquire.
rams

ill be
stem.

e
ddress
ack
recognize that the writeback should be ignored. If an internal parity error occurs during a flush
operation, the processor will assert the IERR# pin as stated above, and the internal caches will be
left in a partially flushed state. The flush, flush acknowledge, or writeback special cycles will not
be run.

10.2 Error Detection at the Processor Interface

The processor provides parity checking on the external address and data buses. There is one parity
bit for each byte of the data bus and one parity bit for bits A31–A5 of the address bus.

10.2.1 Address Parity

A separate and independent mechanism is used for parity checking on the address bus duri
inquire cycles. Even address parity is driven along with the address bus during all processor
initiated bus cycles and checked during inquire cycles. When the processor is driving the ad
bus, even parity is driven on the AP pin. When the address bus is being driven into the proce
during an inquire cycle, this pin is sampled in any clock in which EADS# is sampled asserted
APCHK# is driven with the parity status two clocks after EADS# is sampled active. The APC
output (when active) indicates that a parity error has occurred on the address bus during an i
Figure 10-1 depicts an address parity error during an inquire cycle. For additional timing diag
which show address parity, see Chapter 6, “Bus Functional Description.” The APCHK# pin w
asserted for one clock for each clock a parity error is detected and may be latched by the sy
The APCHK# pin is a glitch free signal, so no spurious assertions of APCHK# will occur.

In the event of an address parity error during inquire cycles, the internal snoop will not be
inhibited. If the inquire hits a modified line in this situation and an active AHOLD prevents th
processor from driving the address bus, the processor will potentially writeback a line at an a
other than the one intended. If the processor is not driving the address bus during the writeb
cycle, it is possible that memory will be corrupted.

Figure 10-1. Inquire Cycle Address Parity Checking

A5906-01

1 2 3 4

CLK

AHOLD

EADS#

APCHK#

HIT#

ADDR/AP To CPU From CPU
10-2 Embedded Pentium® Processor Family Developer’s Manual

Error Detection

during
 back
data
ow if
 for
CHK#
when
al

bility
Driving APCHK# is the only effect that bad address parity has on the processor. It is the
responsibility of the system to take appropriate action if a parity error occurs. If parity checks are
not implemented in the system, the APCHK# pin may be ignored.

10.2.2 Data Parity

Even data parity is driven on the DP7–DP0 pins in the same clock as the data bus is driven
all processor initiated data write cycles. During reads, even parity information may be driven
to the processor on the data parity pins along with the data being returned. Parity status for
sampled is driven on the PCHK# pin two clocks after the data is returned. PCHK# is driven l
a data parity error was detected, otherwise it is driven high. The PCHK# pin will be asserted
one clock for each clock a parity error is detected and may be latched by the system. The P
pin is a glitch free signal, so no spurious assertions of PCHK# will occur. Figure 10-2 shows
the data parity (DP) pins are driven/sampled and when the PCHK# pin is driven. For addition
timing diagrams that show data parity, see Chapter 6, “Bus Functional Description.”

Driving PCHK# is the only effect that bad data parity has on the processor. It is the responsi
of the system to take appropriate action if a parity error occurs. If parity checks are not
implemented in the system, the PCHK# pin may be ignored.

Figure 10-2. Data Parity During a Read and Write Cycle

A6069-01

CLK

ADDR

ADS#

CACHE#

W/R#

BRDY#

DATA

PCHK#

T1 T2 Ti T1 T2 Ti T1

DP

NA#

InvalidInvalid ValidValid

To CPU

To CPU From CPU

From CPU
Embedded Pentium® Processor Family Developer’s Manual 10-3

Error Detection

e

e

is the
us to
terrupt

check
ption.
 check
pt

ter to
E to 1,

ction
llow
ror code
 an
d the

rity

he
ll
g

ific,
ysical

T and
), the
 MCT
10.2.2.1 Machine Check Exception as a Result of a Data Parity Error

The PEN# input determines whether a machine check interrupt will be taken as a result of a data
parity error. If a data parity error occurs on a read for which PEN# was asserted, the physical
address and cycle information of the cycle causing the parity error will be saved in the Machine
Check Address Register and the Machine Check Type Register. If in addition, the CR4.MCE is set
to 1, the machine check exception is taken. See “Machine Check Exception” on page 10-4 for mor
information.

The parity check pin, PCHK#, is driven as a result of read cycles regardless of the state of th
PEN# input.

10.2.3 Machine Check Exception

As mentioned in the earlier section, a new exception has been added to the processor. This
machine check exception which resides at interrupt vector 18 (decimal). In processors previo
the Pentium processor, interrupt vector 18 was reserved and, therefore, there should be no in
routine located at vector 18. For compatibility, the MCE bit of the CR4 register will act as the
machine check enable bit. When set to “1,” this bit will enable the generation of the machine
exception. When reset to “0,” the processor will inhibit generation of the machine check exce
CR4.MCE will be cleared on processor reset. In the event that a system is using the machine
interrupt vector for another purpose and the Machine Check Exception is enabled, the interru
routine at vector 18 must examine the state of the CHK bit in the Machine Check Type regis
determine the cause of its activation. Note that at the time the system software sets CR4.MC
it must read the Machine Check Type register in order to clear the CHK bit.

The Machine Check Exception is an abort; that is, it is not possible to reliably restart the instru
stream or identify the instruction causing the exception. Therefore, the exception does not a
the restart of the program that caused the exception. The processor does not generate an er
for this exception. Since the machine check exception is synchronous to a bus cycle and not
instruction, the IP pushed on to the stack may not be pointing to the instruction which cause
failing bus cycle.

The Machine Check Exception can be caused by one of two events: 1) Detection of data pa
error during a read when the PEN# input is active, or 2) The BUSHCK# input being sampled
active. When either of these events occur, the cycle address and type will be latched into the
Machine Check Address (MCA) and Machine Check Type (MCT) registers (independent of t
state of the CR4.MCE bit). If in addition, the CR4.MCE is “1,” a machine check exception wi
occur. When the MCA and MCT registers are latched, the MCT.CHK bit is set to “1” indicatin
that their contents are valid (Figure 10-3).

The Machine Check Address register, and the Machine Check Type register are model spec
read only registers. The Machine Check Address register is a 64-bit register containing the ph
address for the cycle causing the error. The Machine Check Type register is a 64-bit register
containing the cycle specification information, as defined in Figure 10-3. These registers are
accessed using the RDMSR instruction. When the MCT.CHK is zero, the contents of the MC
MCA registers are undefined. When the MCT register is read (using the RDMSR instruction
CHK bit is reset to zero. Therefore, software must read the MCA register before reading the
register.
10-4 Embedded Pentium® Processor Family Developer’s Manual

Error Detection

it

 in
r a

a bus
If this
heck

riate
an

ause

e. This

he
or will

ing

ycle.
rs

 next
The bits in the Machine Check Type Register are defined as follows:

CHK: This bit is set to 1 when the Machine Check Type register is latched and
is reset to 0 after the Machine Check Type register is read via the
RDMSR instruction. In the event that the Machine Check Type register
is latched in the same clock in which it is read, the CHK bit will be set.
The CHK bit is reset to “0” on assertion of RESET. When the CHK b
is “0,” the contents of the MCT and MCA registers are undefined.

M/IO#, D/C#, W/R#: These cycle definition pins can be decoded to determine if the cycle
error was a memory or I/O cycle, a data or code fetch, and a read o
write cycle. (See the embedded Pentium processor datasheets for
detailed pin definitions.)

LOCK: Set to “1” if LOCK# is asserted for the cycle

10.2.4 Bus Error

The BUSCHK# input provides the system a means to signal an unsuccessful completion of
cycle. This signal is sampled on any edge in which BRDY# is sampled, for reads and writes.
signal is sampled active, then the cycle address and type will be latched into the Machine C
Address and Machine Check Type registers. If in addition, the CR4.MCE bit is set to 1, the
processor will be vectored to the machine check exception.

Even if BUSCHK# is asserted in the middle of a cycle, BRDY# must be asserted the approp
number of clocks required to complete the bus cycle. The purpose of BUSCHK# is to act as
indication of an error that is synchronous to bus cycles. If the machine check interrupt is not
enabled, i.e., the MCE bit in the CR4 register is zero, then an assertion of BUSCHK# will not c
the processor to vector to the machine check exception.

The embedded Pentium processor can remember only one machine check exception at a tim
exception is recognized on an instruction boundary. If BUSCHK# is sampled active while
servicing the machine check exception for a previous BUSCHK#, it will be remembered by t
processor until the original machine check exception is completed. It is then that the process
service the machine check exception for the second BUSCHK#. Note that only one BUSCHK
will be remembered by the processor while the machine exception for the previous one is be
serviced.

When the BUSCHK# is sampled active by the processor, the cycle address and cycle type
information for the failing bus cycle is latched upon assertion of the last BRDY# of the bus c
The information is latched into the Machine Check Address and Machine Check Type registe
respectively. However, if the BUSCHK# input is not deasserted before the first BRDY# of the

Figure 10-3. Machine Check Type Register

A6221-01

M
/
I
O

D
/
C

W
/
R

6
3

0
0

0
1

0
2

0
3

0
4

0
5

L
O
C
K

C
H
K

Reserved
Embedded Pentium® Processor Family Developer’s Manual 10-5

Error Detection

er”
signals

is not

er must
ates
are
C) so
ted
r-
ether.

t to the

during
l
nal

ock,
low for
ive.
ter the

r to the
essor

that the
puts
 same
e

ble to
to one,
e used
bus cycle, and the machine check exception for the first bus cycle has not occurred, then new
information will be latched into the MCA and MCT registers, over-writing the previous
information at the completion of this new bus cycle. Therefore, in order for the MCA and MCT
registers to report the correct information for the failing bus cycle when the machine check
exception for this cycle is taken at the next instruction boundary, the system must deassert the
BUSCHK# input immediately after the completion of the failing bus cycle and before the first
BRDY# of the next bus cycle is returned.

10.2.5 Functional Redundancy Checking

Functional Redundancy Checking (FRC) in the embedded Pentium processor will provide
maximum error detection (>99%) of on-chip devices and the processor’s interface. A “check
processor that executes in lock step with the “master” processor is used to compare output
every clock.

Note: The embedded Pentium processor with MMX technology does not support FRC. Also, FRC
supported in Dual processor designs.

Two embedded Pentium processors are required to support FRC. Both the master and check
be of the same stepping and same bus fraction. The processor configured as a master oper
according to bus protocol described in this document. The outputs of the checker processor
three-stated (except IERR#, TDO, PICD0, PICD1—however, these signals are not part of FR
the outputs of the master can be sampled. If the sampled value differs from the value compu
internally by the checker, the checker asserts the IERR# output to indicate an error. A maste
checker pair should have all pins except FRCMC#, IERR#, PICD0, PICD1 and TDO tied tog

The processors are configured either as a master or a checker by driving the FRCMC# inpu
appropriate level while RESET is asserted. If sampled low during reset, the processor enters
checker mode and three-states all outputs except IERR# and TDO (IERR# is driven inactive
reset). This feature is provided to prevent bus contention before reset is completed. The fina
master/checker configuration is determined when RESET transitions from high to low. The fi
master/checker configuration may not be changed other than by a subsequent RESET.

The IERR# pin reflects the result of the master-checker comparison. It is asserted for one cl
two clocks after the mismatch. It is asserted for each detected mismatch, so IERR# may be
more than one consecutive clock. During the assertion of RESET, IERR# will be driven inact
After RESET is deasserted, IERR# will not be asserted due to a mismatch until two clocks af
ADS# of the first bus cycle (i.e., in the third clock of the first bus cycle). IERR# will reflect pin
comparisons thereafter. Note that IERR# may be asserted due to an internal parity error prio
first bus cycle. It is possible for FRC mismatches to occur in the event that an undefined proc
state is driven off-chip, therefore no processor state should be stored without having been
previously initialized.

In order for the master-checker pair to operate correctly, the system must be designed such
master and the checker sample identical input states in the same clock. All asynchronous in
should change state in such a manner that both the master and checker sample them in the
state in the same clock. The simplest way to do this is to design all asynchronous inputs to b
synchronously controlled.

The TDO pin is not tested by FRC since it operates on a separate clock. Note that it is possi
use boundary scan to verify the connection between the master and checker by scanning in
latching the outputs of the other and then scanning out. The Stop Clock state feature cannot b
in dual processing or functional redundancy checking modes because there is no way to re-
synchronize the internal clocks of the two processors.
10-6 Embedded Pentium® Processor Family Developer’s Manual

Error Detection
Figure 10-4 illustrates the configuration of output pins with respect to FRC. The comparators at
each output compare the value of the package pin with the value being driven from the core to that
pin, not the value driven by boundary scan to that pin. Therefore, during the use of boundary scan,
FRC mismatches (IERR# assertion) can be expected to occur.

Figure 10-4. Conceptual IERR# Implementation for FRC

A6222-01

Core

Boundary Scan Chain

Output
Enable

Input
Buffer

IERR#

Output Pin
Embedded Pentium® Processor Family Developer’s Manual 10-7

Execution Tracing 11

The embedded Pentium® processor family uses special bus cycles to support execution tracing.
These bus cycles, which are optional, have a significant impact on overall performance. Execution
tracing allows the external hardware to track the flow of instructions as they execute inside the
processor.

The special bus cycles generated by the processor are Branch Trace Messages (BTM). Due to
physical limitations, the maximum number of outstanding taken branches allowed is two. Once the
second taken branch reaches the last stage of the pipeline, execution is stalled until the first branch
message is sent on the bus.

Branch trace messages may be enabled by setting the Execution Tracing bit, TR, of TR12 (bit 1) to
a 1. Once enabled, there are two forms of branch trace messages: normal and fast. Normal
messages produce two cycles, one for the branch target linear address, and one for the linear
address of the instruction causing the taken branch. Fast messages only produce the second of these
two cycles. The second message will always contain the linear address of the instruction executed
in the u pipe even if the instruction that caused the branch was executed in the v pipe. For
serializing instructions and segment descriptor loads the address field of the first cycle will contain
the address of the next sequential instruction after the instruction that caused the BTM. Fast
execution tracing is enabled by setting bit 8 of TR12 to 1. Note that switching between the normal
and fast formats by using the WRMSR instruction to change bit 8 of TR12, the WRMSR
instruction causes a branch trace message when they are enabled. The format for this branch trace
message will be the format that was programmed before the WRMSR instruction was executed.

Normal and fast branch trace messages may be delayed by 0 or more clocks after the cycle in
which the branch was taken depending on the bus activity. Also, higher priority cycles may be run
between the first and second cycles of a normal branch trace message. In dual-processor mode,
branch trace message cycles may be interleaved with cycles from the other processor. Branch trace
message cycles are buffered so they do not normally stall the processor.

Branch trace messages, normal and fast, may be identified by the following special cycle:

The address and data bus fields for the two bus cycles associated with a branch trace message are
defined below:

First Cycle (Normal)

M/IO# = 0

D/C# = 0

W/R# = 1

BE7#–BE0# = 0DFH

A31–A4 Bits 31 – 4 of the branch target linear address

A3 “1” if the default operand size is 32 bits
“0” if the default operand size is 16 bits

D63–D60 Bits 3 – 0 of the branch target linear address

D59 “0” - indicating the first of the two cycles

D58–D0 Reserved. Driven to a valid state, but must be ignored
Embedded Pentium® Processor Family Developer’s Manual 11-1

Execution Tracing

h

h

h

Second Cycle (Normal)

Fast Cycle

In addition to conditional branches, jumps, calls, returns, software interrupts, and interrupt returns,
the processor treats the following operations as causing taken branches:

• Serializing instructions

• Some segment descriptor loads

• Hardware interrupts

• Certain floating-point exceptions (both masked and unmasked) and all other exceptions that
invoke a trap or fault handler

• Exiting the HALT state

With execution tracing enabled, these operations will also cause a corresponding branch trace
message cycle. The processor data bus is valid during branch trace message special cycles.
Instructions which cause masked floating point exceptions may cause one or more branch trace
special cycles. This is because execution of an instruction may be aborted and restarted several
times due to the exception.

Also note that the WRMSR instruction to enable branch trace messages will cause a BTM to be
generated (WRMSR is a serializing instruction and serializing instructions cause BTMs). A
WRMSR to disable BTMs will not generate a BTM. Conditions which cause the VERR, VERW,
LAR and LSL instruction to clear the ZF bit in EFLAGS will also cause these instructions to be
treated as taken branches. However, if these instructions fail the protection checks, no branch trace
message will be generated.

Note that if an instruction faults, it does not complete execution but instead is flushed from the
pipeline and an exception handler is invoked. This faulting instruction effectively causes a branch;
a branch trace message is generated accordingly.

A31–A4 Bits 31 – 4 of the linear address of the instruction causing the taken branc

A3 “1” if the default operand size is 32 bits

“0” if the default operand size is 16 bits

D63–D60 Bits 3 – 0 of the linear address of the instruction causing the taken branch

D59 “1” - indicating the second of the two cycles

D58–D0 Reserved. Driven to a valid state, but must be ignored

A31–A4 Bits 31 – 4 of the linear address of the instruction causing the taken branc

A3 “1” if the default operand size is 32 bits

“0” if the default operand size is 16 bits

D63–D60 Bits 3 – 0 of the linear address of the instruction causing the taken branc

D59 Driven to a “1”

D58–D0 Reserved. Driven to a valid state, but must be ignored
11-2 Embedded Pentium® Processor Family Developer’s Manual

M)

ntext

Power Management 12

The embedded Pentium® processor family implements Intel’s System Management Mode (SM
architecture. This chapter describes the hardware interface to SMM and Clock Control.

12.1 Power Management Features

• System Management Interrupt can be delivered through the SMI# signal or through the local
APIC using the SMI# message, which enhances the SMI interface, and provides for SMI
delivery in APIC-based Pentium processor dual processing systems.

• In dual processing systems, SMIACT# from the bus master (MRM) behaves differently than in
uniprocessor systems. If the LRM processor is the processor in SMM mode, SMIACT# will be
inactive and remain so until that processor becomes the MRM.

• The Pentium processor is capable of supporting an SMM I/O instruction restart. This feature is
automatically disabled following RESET. To enable the I/O instruction restart feature, set bit 9
of the TR12 register to “1”.

• The Pentium processor default SMM revision identifier has a value of 2 when the SMM I/O
instruction restart feature is enabled.

• SMI# is NOT recognized by the processor in the shutdown state.

12.2 System Management Interrupt Processing

The system interrupts the normal program execution and invokes SMM by generating a System
Management Interrupt (SMI#) to the processor. The processor will service the SMI# by executing
the following sequence. See Figure 12-1.

1. Wait for all pending bus cycles to complete and EWBE# to go active.

2. The processor asserts the SMIACT# signal while in SMM indicating to the system that it
should enable the SMRAM.

3. The processor saves its state (context) to SMRAM, starting at address location SMBASE +
0FFFFH, proceeding downward in a stack-like fashion.

4. The processor switches to the System Management Mode processor environment (a pseudo-
real mode).

5. The processor will then jump to the absolute address of SMBASE + 8000H in SMRAM to
execute the SMI handler. This SMI handler performs the system management activities.

6. The SMI handler will then execute the RSM instruction which restores the processor’s co
from SMRAM, deasserts the SMIACT# signal, and then returns control to the previously
interrupted program execution.
Embedded Pentium® Processor Family Developer’s Manual 12-1

Power Management
Note: The default SMBASE value following RESET is 30000H.

Figure 12-2 describes the System Management Interrupt hardware interface which consists of the
SMI# interrupt request input and the SMIACT# output used by the system to decode the SMRAM.

12.2.1 System Management Interrupt (SMI#)

SMI# is a falling-edge triggered, non-maskable interrupt request signal. SMI# is an asynchronous
signal, but setup and hold times, t28 and t29, must be met in order to guarantee recognition on a
specific clock. The SMI# input need not remain active until the interrupt is actually serviced. The
SMI# input only needs to remain active for a single clock if the required setup and hold times are
met. SMI# will also work correctly if it is held active for an arbitrary number of clocks.

The SMI# signal is synchronized internally and must be asserted at least three CLK periods prior to
asserting the BRDY# signal in order to guarantee recognition on a specific instruction boundary.
See Figure 12-3.

The SMI# input must be held inactive for at least four clocks after it is asserted to reset the edge
triggered logic. A subsequent SMI# might not be recognized if the SMI# input is not held inactive
for at least four clocks after being asserted.

SMI#, like NMI, is not affected by the IF bit in the EFLAGS register and is recognized on an
instruction boundary. An SMI# will not break locked bus cycles. The SMI# has a higher priority
than NMI and is not masked during an NMI.

Figure 12-1. Basic SMI# Interrupt Service

A5907-01

SMI#

Instr

#1 #2 #3

#4 #5

Instr Instr

State Save

Active during bus cycles in SMM

SMI Handler RSM State Restore

Instr Instr

SMI#

SMIACT#

Figure 12-2. Basic SMI# Hardware Interface

A6223-01

P r o c e s s o r
C o r e

SMI#
} SMI Interface

SMIACT#
12-2 Embedded Pentium® Processor Family Developer’s Manual

Power Management
After the SMI# interrupt is recognized, the SMI# signal will be masked internally until the RSM
instruction is executed and the interrupt service routine is complete. Masking the SMI# prevents
recursive SMI# calls. If another SMI# occurs while the SMI# is masked, the pending SMI# will be
recognized and executed on the next instruction boundary after the current SMI# completes. This
instruction boundary occurs before execution of the next instruction in the interrupted application
code, resulting in back to back SMM handlers. Only one SMI# can be pending while SMI# is
masked.

12.2.1.1 SMI# Synchronization for I/O Instruction Restart

The SMI# signal is synchronized internally and must be asserted at least three CLK periods prior to
asserting the BRDY# signal in order to guarantee recognition on a specific I/O instruction
boundary. This is important for servicing an I/O trap with an SMI# handler. Due to the
asynchronous nature of SMI# delivery with the APIC, it is impossible to synchronize the assertion
of BRDY#. As a result, the SMM I/O instruction restart feature cannot be used when an SMI is
delivered via the local APIC.

12.2.1.2 Dual Processing Considerations For SMI# Delivery

Although the SMM functions the same when the dual processor is inserted into Socket 7, the dual
processor operation of the system must be carefully considered. Table 12-1 shows the four possible
options for SMI# delivery depending on the SMM applications (mainly power management) the
system has to support. There are implications to system design and the SMM handler. Note that for
operation with the Dual processor and upgradability with a future upgrade processor, Option #3 is
strongly recommended.

Figure 12-3. SMI# Timing

SMI#
Sampled

CLK

SMI#

BRDY#

A: Setup time for recognition on instruction boundary

tsu thd
A

A5908-01

Table 12-1. Dual Processing SMI# Delivery Options

SMI# Pins Tied Together SMI# Pins NOT Tied Together

SMI# pins
delivering SMI

Option #1
Both processors enter SMM.

Option #2
One processor enters SMM.

APIC
delivering SMI

Option #3
One or Both processors enter SMM.

Option #4
One or Both processors enter SMM
Embedded Pentium® Processor Family Developer’s Manual 12-3

Power Management

o
ven
its state

t on
Note: The I/O Instruction Restart Power Management feature should not be used when delivering the
system management interrupt via the local APIC. Refer to the Intel Architecture Software
Developer’s Manual, Volume 3 for additional details on I/O instruction restart.

Implications

1. SMI# pin delivery of SMI with the SMI# pins tied together: Any assertion of the SMI# pin will
cause both the Primary and Dual processors to interrupt normal processing, enter SMM mode
and start executing SMM code in their respective SMRAM spaces. In this case, using the I/O
Instruction restart feature in Dual Processor mode will require additional system hardware
(D/P# pin) and software (detection of which processor was the MRM when the SMI# pin was
asserted) considerations.

2. SMI# pin delivery of SMI with the SMI# pins NOT tied together: Only the processor whose
SMI# pin is asserted will handle SMM processing. It is possible that both the Primary and
Dual processor will be doing SMM processing at the same time, especially if the I/O
Instruction restart feature is being used. If I/O instruction restart is not supported, then it is
possible to dedicate only one processor for SMM handling at any time.

3. APIC SMI# delivery of SMI with the SMI# pins tied together: This option is strongly
recommended for operation with the Dual processor and upgradability with the Pentium
OverDrive® processor. System Management Interrupts should be delivered via the APIC for
DP systems, and may be delivered either via the APIC or the SMI# pin for turbo-upgraded
systems. Either the Primary or Dual processor can be the assigned target for SMI# delivery and
hence SMM handling. The SMM I/O instruction restart feature may be used in a uniprocessor
system or in a system with a (with SMI# pin delivery of the interrupt), but the system must not
use this feature when operating in dual processing mode (with APIC delivery of the interrupt).

4. APIC SMI# delivery of SMI with the SMI# pins NOT tied together: I/O Instruction Restart
feature is not recommended when delivering SMI via the local APIC. Either the Primary or
Dual processor can be the assigned target for SMI# delivery and hence SMM handling.

12.2.2 System Management Interrupt Via APIC

When SMI# is asserted (SMI# pin asserted low or APIC SMI# message) it causes the processor to
invoke SMM.

12.2.3 SMI Active (SMIACT#)

SMIACT# indicates that the processor is operating in System Management Mode. The processor
asserts SMIACT# in response to an SMI interrupt request on the SMI# pin or through the APIC
message. SMIACT# is driven active for accesses only after the processor has completed all
pending write cycles (including emptying the write buffers — EWBE# returned active by the
system). SMIACT# will be asserted for all accesses in SMM beginning with the first access t
SMRAM when the processor saves (writes) its state (or context) to SMRAM. SMIACT# is dri
active for every access until the last access to SMRAM when the processor restores (reads)
from SMRAM. The SMIACT# signal is used by the system logic to decode SMRAM.

The number of CLKs required to complete the SMM state save and restore is very dependen
system memory performance and the processor bus frequency.
12-4 Embedded Pentium® Processor Family Developer’s Manual

Power Management
As shown in Figure 12-4, the approximate time required to enter an SMI handler routine for the
Pentium processor (from the completion of the interrupted instruction) is given by:

Latency to beginning of SMI handler = A + B + C = ~184 CLKs

The approximate time required to return to the interrupted application (following the final SMM
instruction before RSM) is given by:

Latency to continue interrupted application = E + F + G = ~207 CLKs

12.2.3.1 Dual Processing Considerations for SMIACT#

When the processor is the only processor present, then it always drives the D/P# signal low.
SMIACT# is asserted when the processor enters SMM and is deasserted only when the processor
exits SMM.

When the Dual processor is also present, the D/P# signal toggles depending upon whether the
Primary or Dual processor owns the bus (MRM). The SMIACT# pins may be tied together or be
used separately to ensure SMRAM access by the correct processor.

Caution: If SMIACT# is used separately: the SMIACT# signal is only driven by the Primary or Dual
processor when it is the MRM, so this signal must be qualified with the D/P# signal.

In a dual socket system, connecting the SMIACT# signals together on the Primary and Dual
processor sockets is strongly recommended for dual processing operation.

Figure 12-4. SMIACT# Timing

A5909-01

B

A

A: Last BRDY# from non-SMM transfer to SMIACT# assertion:
B: SMIACT# assertion to first ADS# for SMM state save:
C: SMM state save (dependent on memory performance):
D: SMM handler:
E: SMM state restore (dependent on memory performance):
F: Last RDY# from SMM transfer to deassertion of SMIACT#:
G: SMIACT# deassertion to first non-SMM ADS#:

2 CLKs minimum
2 CLKs minimum
Approximately 180 CLKs
User determined
Approximately 200 CLKs
2 CLKs minimum
5 CLKs minimum

SMIACT#

BRDY#

ADS#

SMI#

CLK

C D E F

G

Normal
State

Normal StateSystem Management ModeNormal State

State
Restore

SMM
Handler

State
Save

T1 T2
Embedded Pentium® Processor Family Developer’s Manual 12-5

Power Management
In dual processing systems, SMIACT# may not remain low (e.g., may toggle) if both processors
are not in SMM mode. he SMIACT# signal is asserted by either the Primary or Dual processor
based on two conditions: the processor is in SMM mode and is the bus master (MRM). If one
processor is executing in normal address space, the SMIACT# signal will go inactive when that
processor is MRM. The LRM processor, even if in SMM mode, will not drive the SMIACT# signal
low.

12.3 SMM — System Design Considerations

12.3.1 SMRAM Interface

The hardware designed to control the SMRAM space must follow these guidelines:

1. A provision should be made to allow for initialization of SMRAM space during system boot
up. This initialization of SMRAM space must happen before the first occurrence of an SMI#
interrupt. Initializing the SMRAM space must include installation of an SMM handler, and
may include installation of related data structures necessary for particular SMM applications.
The memory controller providing the interface to the SMRAM should provide a means for the
initialization code to manually open the SMRAM space.

2. A minimum initial SMRAM address space of SMBASE + 8000H to SMBASE + 0FFFFH
should be decoded by the memory controller.

3. Alternate bus masters (such as DMA controllers) should not be allowed to access SMRAM
space. Only the processor, either through SMI or during initialization, should be allowed
access to SMRAM.

4. In order to implement a zero-volt suspend function, the system must have access to all of
normal system memory from within an SMM handler routine. If the SMRAM is going to
overlay normal system memory, there must be a method of accessing any system memory that
is located underneath SMRAM.

5. Inquire cycles are permitted during SMM, but it is the responsibility of the system to ensure
that any snoop writeback completes to the correct memory space, irrespective of the state of
the SMIACT# pin. Specifically, if SMM is overlaid, and SMM space is non cacheable, then
any snoop writeback cycle occurring during SMM must complete to system memory, even
though SMIACT# will remain active.

If an inquire cycle occurs after assertion of SMI# to the processor, but before SMIACT# is
returned, note that SMIACT# could be returned at any point during the snoop writeback cycle.
Depending on the timing of SMI# and the inquire cycle, SMIACT# could change states during
the writeback cycle. Again, it is the responsibility of the system, if it supports snooping during
SMM, to ensure that the snoop writeback cycle completes to the correct memory space,
irrespective of the state of the SMIACT# pin.

6. It should also be noted that upon entering SMM, the branch target buffer (BTB) is not flushed
and thus it is possible to get a speculative prefetch to an address outside of SMRAM address
space due to branch predictions based on code executed prior to entering SMM. If this occurs,
the system must still return BRDY# for each code fetch cycle.
12-6 Embedded Pentium® Processor Family Developer’s Manual

Power Management
12.3.2 Cache Flushes

The processor does not unconditionally writeback and invalidate its cache before entering SMM
(this option is left to the system designer). If the SMRAM is in an area that is cacheable and
overlaid on top of normal memory that is visible to the application or operating system (default),
then it is necessary for the system to flush both the processor cache and any second level cache
upon entering SMM. This may be accomplished by asserting flush the same time as the request to
enter SMM (i.e., cache flushing during SMM entry is accomplished by asserting the FLUSH# pin
at the same time as the request to enter SMM through SMI#). The priorities of FLUSH# and SMI#
are such that the FLUSH# will be serviced first. To guarantee this behavior, the constraints on setup
and hold timings on the interaction of FLUSH# and SMI# as specified for a processor should be
obeyed. When the default SMRAM location is used, SMRAM is overlaid on top of system main
memory (at SMBASE + 8000H to SMBASE + 0FFFFH).

In a system where FLUSH# and SMI# pins are synchronous and setup/hold times are met, then the
FLUSH# and SMI# pins may be asserted in the same clock. In asynchronous systems, the FLUSH#
pin must be asserted at least one clock before the SMI# pin to guarantee that the FLUSH# pin is
serviced first. Note that in systems that use the FLUSH# pin to write back and invalidate the cache
contents before entering SMM, the processor prefetches at least one cache line in between the time
the Flush Acknowledge special cycle is run and the recognition of SMI# and the driving of
SMIACT# for SMRAM accesses. It is the obligation of the system to ensure that these lines are not
cached by returning KEN# inactive.

If SMRAM is located in its own distinct memory space, which can be completely decoded with
only the processor address signals, it is said to be non-overlaid. In this case, there is one new
requirement for maintaining cache coherency. Refer to Table 12-2.

Figure 12-5. SMRAM Location

A6232-01

SMRAM

SMRAM

Normal
Memory

Normal
Memory

Normal
Memory

Shadowed Region

Non-overlaid
(caches must be flushed)

Overlaid
(caches must be flushed)
Embedded Pentium® Processor Family Developer’s Manual 12-7

Power Management
Note: Writeback cacheable SMRAM is not recommended. When flushing upon SMM exit, SMIACT#
will be deasserted and may cause regular memory to be overwritten.

The processor implements writeback caches. Hence the performance hit due to flushing the cache
for SMM execution can be more significant. Due to the writeback nature of the cache, flushing the
cache has the following penalties:

1. Before entry into SMM (when SMRAM is cacheable), the cache has to be flushed. Hence, all
dirty lines need to be written back. This may cause a large number of bus cycles and increase
SMM entry latency.

2. If the cache had to be flushed upon SMM exit, execution starts with cache miss 100%. The
cache fill cycles reduce performance.

Table 12-2. Scenarios for Cache Flushes with Writeback Caches

Is SMRAM
overlapped with

normal
memory?

Is Normal
Memory

cacheable?

Is SMRAM
cacheable?

Flush required
during SMM

entry?

Flush required
during SMM

exit?
Comments

No No No No No

No WT No No

WT No No No

WB No No† No

†Snoop WBs
must always go
to normal
memory space

WT WT No No

WB WT No† No

†Snoop and
Replacement
WBs must go to
normal memory
space.

Yes No No No No

No WT No Yes

WT No Yes No

WB No Yes No

WT WT Yes Yes

WB WT Yes Yes
12-8 Embedded Pentium® Processor Family Developer’s Manual

Power Management

The method suggested is shown in Figure 12-7.

12.3.2.1 Dual Processing Considerations for Cache Flushes

Cache flushing during SMM exit is not possible while both the Primary and Dual processors are
present due to the fact that it is not possible to clearly predict when the processor in SMM has
exited. This is because the SMIACT# is not a static status indicator but only a bus cycle indicator
for SMRAM accesses.

12.3.3 A20M# Signal

Systems based on the MS-DOS* operating system contain a feature that enables the processor
address bit A20 to be forced to 0. This limits physical memory to a maximum of 1 Mbyte, and is
provided to ensure compatibility with those programs that relied on the physical address wrap
around functionality of the original IBM PC. The A20M# pin on the processor provides this
function. When A20M# is active, all external bus cycles will drive A20 low, and all internal cache
accesses will be performed with A20 low.

Figure 12-6. FLUSH# Mechanism During SMM with Overlay

A5910-01

InstrInstrInstr

#3#2#1

SMI#

SMI#

RSM
SMIACT#

State Save

Cache must be empty
Flush Cache

Cache must be empty

SMM Handler State Resume

InstrInstr

#5#4

Figure 12-7. Flush with Non-Cached SMM with Overlay

A6231-01

Normal
Cycle

State
Resume

SMM
Handler

RSM

State
Slave

SMI#

SMIACT#

KEN#

FLUSH#
Embedded Pentium® Processor Family Developer’s Manual 12-9

Power Management
The A20M# pin is recognized while the processor is in SMM. The functionality of the A20M#
input must be recognized in two instances:

1. If the SMM handler needs to access system memory space above 1 Mbyte (for example, when
saving memory to disk for a zero-volt suspend), the A20M# pin must be deasserted before the
memory above 1 Mbyte is addressed.

2. If SMRAM has been relocated to address space above 1 Mbyte, and A20M# is active upon
entering SMM, the processor will attempt to access SMRAM at the relocated address, but with
A20 low. This could cause the system to crash, since there would be no valid SMM interrupt
handler at the accessed location.

In order to account for the above two situations, the system designer must ensure that A20M# is
deasserted on entry to SMM. A20M# must be driven inactive before the first cycle of the SMM
state save, and must be returned to its original level after the last cycle of the SMM state restore.
This can be done by blocking the assertion of A20M# whenever SMIACT# is active.

In addition to blocking the assertion of A20M# whenever SMIACT# is active, the system must also
guarantee that A20M# is de-asserted at least one I/O clock prior to the assertion of SMIACT#. The
processor may start the SMM state save as soon as SMIACT# is asserted. Processors faster than
200 MHz may not have enough time to recognize the de-assertion of A20M# before starting the
SMM state save. As a result, this may cause the processor to start the first few cycles of the SMM
state save with A20M# asserted. To avoid this, the system designer can use either of the following:

• When relocating the SMRAM above 1 Megabyte, ensure that the SMRAM does not coincide
with any odd megabyte addresses. (Note that systems which use A20M# and SMM but do not
relocate SMRAM above 1 Megabyte are not affected.)

• Use external logic to prevent the assertion of SMI to the processor until A20M# is de-asserted
(and guarantee that A20M# remains de-asserted while in SMM). Note that the A20M# input
must also meet setup and hold times in order to be recognized in a specific clock.

12.3.4 SMM and Second Level Write Buffers

Before the processor enters SMM, it empties its internal write buffers. This is necessary so that the
data in the write buffers is written to normal memory space, not SMM space. Once the processor is
ready to begin writing an SMM state save to SMRAM, it asserts the SMIACT# signal for SMRAM
references. SMIACT# may be driven active by the processor before the system memory controller
has had an opportunity to empty the second level write buffers.

To prevent the data from these second level write buffers from being written to the wrong location,
the system memory controller needs to direct the memory write cycles to either SMM space or
normal memory space. This can be accomplished by saving the status of SMIACT# along with the
address for each word in the write buffers.

EWBE# can also be used to prevent the processor from asserting SMIACT# before write buffers
are empty. The processor will wait for an active EWBE# before asserting SMIACT#.
12-10 Embedded Pentium® Processor Family Developer’s Manual

Power Management

ternal

e bus
rnal

ontrol
 the
he

e next
it,
clock.

serted,
ution

 the

t

erted
r will
12.4 Clock Control

12.4.1 Clock Generation

To understand the additional power management fears of the Pentium processor and how it
manipulates the clock to conserve power, it is necessary to understand how the clock operates. The
processor is capable of running internally at frequencies much higher than the bus speed via the
various bus frequency settings. This allows simpler system design by lowering the clock speeds
required in the external system. The high frequency internal clock relies on an internal Phase Lock
Loop (PLL) to generate the two internal clock phases, “phase one” and “phase two.” Most ex
timing parameters are specified with respect to the rising edge of CLK. The PLL requires a
constant frequency CLK input, and therefore the CLK input cannot be changed dynamically.

On the embedded Pentium processor, CLK provides the fundamental timing reference for th
interface unit. The internal clock converter enhances all operations functioning out of the inte
cache and/or operations not blocked by external bus accesses.

12.4.2 Stop Clock

The processor provides an interrupt mechanism, STPCLK#, that allows system hardware to c
the power consumption of the processor by stopping the internal clock (output of the PLL) to
processor core in a controlled manner. This low-power state is called the Stop Grant state. T
target for low-power mode supply current in the Stop Grant state is ~15% of normal ICC.

When the processor recognizes a STPCLK# interrupt, the processor will stop execution on th
instruction boundary (unless superseded by a higher priority interrupt), stop the pre-fetch un
complete all outstanding writes, generate a Stop Grant bus cycle, and then stop the internal
At this point, the processor is in the Stop Grant state.

Note: If STPCLK# is asserted during RESET and continues to be held active after RESET is deas
the processor will execute one instruction before the STPCLK# interrupt is recognized. Exec
of instructions will therefore stop on the second instruction boundary after the falling edge of
RESET.

The processor cannot respond to a STPCLK# request from a HLDA state because it cannot
generate a Stop Grant cycle.

The rising edge of STPCLK# will tell the processor that it can return to program execution at
instruction following the interrupted instruction.

Unlike the normal interrupts, INTR and NMI, the STPCLK# interrupt does not initiate interrup
table reads. Among external interrupts, STPCLK# is the lowest priority.

12.4.2.1 STPCLK# Signal

STPCLK# is treated as a level triggered interrupt to the processor. This interrupt may be ass
asynchronously and is prioritized below all of the external interrupts. If asserted, the processo
recognize STPCLK# on the next instruction boundary, and then do the following:

1. Flush the instruction pipeline of any instructions waiting to be executed.

2. Wait for all pending bus cycles to complete and EWBE# to go active.
Embedded Pentium® Processor Family Developer’s Manual 12-11

Power Management

onse.

 of

rtion

CLK#
 these
mes

nce
 to
ate,

cision
LK#

 with

ually
e
r,

r and
 Grant

, the
uld not
Grant
3. Drive a special bus cycle (Stop Grant bus cycle) to indicate that the clock is being stopped.

4. Enter low power mode.

STPCLK# is active low. To ensure STPCLK# recognition, the system must keep this signal active
until the appropriate special cycle has been issued by the processor. To guarantee that every
STPCLK# assertion, and subsequent deassertion and re-assertion, is recognized and thus will get a
Stop Grant bus cycle response (which will also ensure that each deassertion of STPCLK# allows
execution of at least one instruction), the system must meet the following requirements:

1. Hold STPCLK# active at least until the processor’s Stop Grant cycle response has been
completed by the system’s BRDY# response.

2. STPCLK# must not be re-asserted until five clocks after the last of the following events:

a. The processor’s Stop Grant cycle has been completed by the system’s BRDY# resp

b. HITM# is deasserted. (This applies only if HITM# was asserted while waiting for one
the other two events listed here, or within two bus clocks of their completion.)

c. EWBE# becomes active after it was sampled inactive at the last relevant BRDY#. A
relevant BRDY# is one which ends either a stop-grant cycle or an external snoop
writeback caused by HITM# being asserted as in case b) above.

Events b) and c) can in principle alternate indefinitely, continuing to delay STPCLK# deasse
recognition, if the system design allows that to happen.

Note that if a system is not relying on either a Stop Grant bus cycle response for every STP
assertion, or for each deassertion of STPCLK# to allow execution of at least one instruction,
detailed requirements can be ignored. Though STPCLK# is asynchronous, setup and hold ti
may be met to ensure recognition on a specific clock.

The STPCLK# input must be driven high (not floated) in order to exit the Stop Grant state. O
STPCLK# is deasserted and the processor resumes execution, the processor is guaranteed
execute at least one instruction before STPCLK# is recognized again. To return to normal st
external hardware must deassert STPCLK#.

12.4.2.2 Dual Processing Considerations

The Primary and Dual processors may or may not tie their STPCLK# signals together. The de
is dependent on system specific processor power conservation needs. Connecting the STPC
signals on the Primary and Dual processors together is strongly recommended for operation
the Dual processor.

Tying the STPCLK# signals together causes both the Primary and Dual processors to event
enter the Stop Grant state on assertion of STPCLK#. The system ceases processing until th
STPCLK# signal is deasserted. In Dual Processor mode with the STPCLK# pins tied togethe
independent STPCLK# control of each processor is not possible. Both the Primary processo
Dual processor will go into the Stop Grant state independently, and will each generate a Stop
special bus cycle.

Note: In a dual processing system where STPCLK# is tied to both the primary and dual processors
system expects to see two Stop Grant Bus Cycles after STPCLK# is asserted. FLUSH# sho
be asserted between the time STPCLK# is asserted and the completion of the second Stop
12-12 Embedded Pentium® Processor Family Developer’s Manual

Power Management

ould

for
s cycle

CLK#

p

 = 1,

the
ill
e

 current
ance.
Bus Cycle. If FLUSH# is asserted during this interval, the system may not see the second Stop
Grant Bus Cycle until after STPCLK# is deasserted.

Not tying the STPCLK# signals together gives the flexibility to control either or both the
processors’ power consumption based on the system performance required. External logic w
be required to control this signal to each processor in a DP system.

12.4.3 Stop Grant Bus Cycle

A special Stop Grant bus cycle will be driven to the bus after the processor recognizes the
STPCLK# interrupt. The definition of this bus cycle is the same as the HALT cycle definition
the standard Intel486 microprocessor architecture, with the exception that the Stop Grant bu
drives the value 0000 0010H on the address pins. In a Dual Processor system, with both STP
signals tied together, two stop grant cycles will occur in a row. The system hardware must
acknowledge the Stop Grant cycle by returning BRDY#. The processor will not enter the Sto
Grant state until BRDY# has been returned.

The Stop Grant Bus cycle consists of the following signal states: M/IO# = 0, D/C# = 0, W/R#
Address Bus = 0000 0010H (A4 = 1), BE7#–BE0# = 1111 1011, Data bus = undefined.

Note: When operating in dual processing mode, and the STPCLK# signals are tied together, both
Primary processor and Dual processor will go into the Stop Grant state independently, and w
each generate a Stop Grant special bus cycle. The system must return BRDY# for both of th
special bus cycles.

The latency between a STPCLK# request and the Stop Grant bus cycle is dependent on the
instruction, the amount of data in the processor write buffers, and the system memory perform
Refer to Figure 12-8.

Figure 12-8. Entering Stop Grant State

A5912-01

Tsu Thd

CLK

STPCLK#

ADDR Stop Grant Bus Cycle

BRDY#
Embedded Pentium® Processor Family Developer’s Manual 12-13

Power Management
12.4.4 Pin State During Stop Grant

During the Stop Grant state, most output and input/output signals of the microprocessor will be
held at their previous states (the level they held when entering the Stop Grant state). See
Table 12-3. However, the data bus and data parity pins will be floated. In response to HOLD being
driven active during the Stop Grant state (when the CLK input is running), the processor will
generate HLDA and three-state all output and input/output signals that are three-stated during the
HOLD/HLDA state. After HOLD is deasserted, all signals will return to their states prior to the
HOLD/HLDA sequence.

In order to achieve the lowest possible power consumption during the Stop Grant state, the system
designer must ensure the input signals with pull-up resistors are not driven low and the input
signals with pull-down resistors are not driven high.

All inputs, except data bus pins, must be driven to the power supply rails to ensure the lowest
possible current consumption during Stop Grant or Stop Clock modes. Data pins should be driven
low to achieve the lowest power consumption. Pull down resistors or bus keepers are needed to
minimize the leakage current.

Table 12-3. Pin State During Stop Grant Bus State

Signal Type State

A31–A3 I/O Previous State

D63–D0 I/O Floated

BE7#–BE0# O Previous State

DP7–DP0 I/O Floated

W/R#, D/C#, M/IO# O Previous State

ADS#, ADSC# O Inactive

LOCK# O Inactive

BREQ O Previous State

HLDA O As per HOLD

FERR# O Previous State

PCHK# O Previous State

PWT, PCD O Previous State

SMIACT# O Previous State
12-14 Embedded Pentium® Processor Family Developer’s Manual

Power Management
12.4.5 Clock Control State Diagram

Figure 12-9 shows the state descriptions and the state transitions for the clock control architecture.

A Flush State can be entered from states 1, 2 and 3 by asserting the FLUSH# input signal. The
flush state is exited (e.g., the processor returns to the state from which it came) when the Flush
Acknowledge Special Bus Cycle is issued by the processor.

12.4.5.1 Normal State — State 1

This is the normal operating state of the processor.

12.4.5.2 Stop Grant State — State 2

The Stop Grant state (~15% of normal state ICC) provides a fast wake-up state that can be entered
by simply asserting the external STPCLK# interrupt pin. Once the Stop Grant bus cycle has been
placed on the bus, and BRDY# is returned, the processor is in this state. The processor returns to
the normal execution state in approximately 10 clock periods after STPCLK# has been deasserted.

Figure 12-9. Stop Clock State Machine

A6234-01

3 Auto HALT Power Down
State

CLK Running
Icc - 15% of Active Icc

2 Stop Grant State

CLK Running
Icc ~ 15% of Active Icc

4 Stop Clock Snoop State

Perform cache
invalidation/writeback

5 Stop Clock State

Internal Powerdown
CLK Stopped
(held low)

1 Normal State

Normal Execution

EADS#

EADS#

Last BRDY#

Last BRDY#

Stop CLK

Start
CLK + PLL
Startup
Latency

STPCLK# asserted
and stop grant cycle

generated

HALT asserted and Halt
bus cycle generated

INTR , NMI, SMI#, RESET, INIT
(if enabled)

STPCLK#
deasserted
Embedded Pentium® Processor Family Developer’s Manual 12-15

Power Management
For minimum processor power consumption, all other input pins should be driven to their inactive
level while the processor is in the Stop Grant state. A RESET will bring the processor from the
Stop Grant state to the normal state (note: unless STPCLK# is also deasserted, an active RESET
will only bring the processor out of the Stop Grant state for a few cycles). The processor will
recognize the inputs required for maintaining cache coherency (e.g., HOLD, AHOLD, BOFF#, and
EADS# for cache invalidations and snoops) as explained later in this section. The processor will
not recognize any other inputs while in the Stop Grant state. Input signals to the processor will not
be recognized until 1 CLK after STPCLK# is deasserted.

While in the Stop Grant state, the processor will latch transitions on the external interrupt signals
(SMI#, NMI, INTR, FLUSH#, R/S#, and INIT). All of these interrupts are taken after the
deassertion of STPCLK# (e.g., upon re-entering the normal state). The Pentium processor requires
INTR to be held active until the processor issues an interrupt acknowledge cycle in order to
guarantee recognition.

The processor will generate a Stop Grant bus cycle only when entering that state from the normal
state. When the processor enters the Stop Grant state from the Stop Clock Snoop state, the
processor will not generate a Stop Grant bus cycle.

12.4.5.3 Auto Halt Powerdown State — State 3

The execution of a HLT instruction will also cause the Pentium processor to automatically enter the
Auto HALT Power Down state where ICC will be ~15% of ICC in the Normal state. The processor
will issue a normal HALT bus cycle when entering this state. The processor will transition to the
normal state upon the occurrence of INTR, NMI, SMI#, RESET, or INIT.

A FLUSH# event during the Auto HALT power down state will be latched and acted upon while in
this state.

STPCLK# is not recognized by the processor while in the Auto HALT Powerdown state. The
system can generate a STPCLK# while the processor is in the Auto HALT Powerdown state, but
the processor will only service this interrupt if the STPCLK# pin is still asserted when the Pentium
returns to the normal state.

While in Auto HALT Powerdown state, the processor will only recognize the inputs required for
maintaining cache coherency (e.g., HOLD, AHOLD, BOFF#, and EADS# for cache invalidations
and snoops) as explained later in this section.

12.4.5.4 Stop Clock Snoop State (Cache Invalidations) — State 4

When the processor is in the Stop Grant state or the Auto HALT Powerdown state, the processor
will recognize HOLD, AHOLD, BOFF# and EADS# for cache invalidation/writebacks. When the
system asserts HOLD, AHOLD, or BOFF#, the processor will float the bus accordingly. When the
system then asserts EADS#, the processor will transparently enter the Stop Clock Snoop state and
perform the required cache snoop cycle. It will then re-freeze the clock to the processor core and
return to the previous state. The processor does not generate the Stop Grant bus cycle or HALT
special cycle when it returns to the previous state.

12.4.5.5 Stop Clock State — State 5

Stop Clock state (~ 1% of normal state ICC) is entered from the Stop Grant state by stopping the
CLK input. Note: the CLK must be held at a logic low while stopped. None of the processor input
signals should change state while the CLK input is stopped. Any transition on an input signal (with
the exception of INTR) before the processor has returned to the Stop Grant state will result in
12-16 Embedded Pentium® Processor Family Developer’s Manual

Power Management
unpredictable behavior. If INTR is driven active while the CLK input is stopped, and held active
until the processor issues an interrupt acknowledge bus cycle, it will be serviced in the normal
manner once the clock has been restarted. The system design must ensure the processor is in the
correct state prior to asserting cache invalidation or interrupt signals to the processor.

While the processor is in the Stop Clock state, all pins with static pullups or pulldowns must be
driven to their appropriate values as specified in the datasheet.

During the Stop Clock state the processor input frequency may be changed to any frequency
between the minimum and maximum frequency listed in the AC timing specifications found in the
datasheet. To exit out of the Stop Clock state, the CLK input must be restarted and remain at a
constant frequency for a minimum of 1 ms. The PLL requires this amount of time to properly
stabilize. After the PLL stabilizes, the processor will return to Stop Grant state and the STPCLK#
signal may be deasserted to take the processor out of Stop Grant state and back to the Normal state.

In order to realize the maximum power reduction while in the Stop Clock state, PICCLK and TCK
should also be stopped. These clock inputs have the same restarting restrictions as CLK. The local
APIC cannot be used while in the Stop Clock state since it also uses the system clock, CLK.

Warning: The Stop Clock state feature cannot be used in dual processing or functional redundancy checking
modes because there is no way to re-synchronize the internal clocks of the two processors.
Embedded Pentium® Processor Family Developer’s Manual 12-17

fore,
ug port.

t. The
em

or to

set of
d
gger to

g port.

port (as
nector
r at the
Debugging 13

13.1 Introduction

Embedded Pentium® processor-based system designers intending to use integration tools to debug
their prototype systems can interface to the processor using two methods:

• Insert an emulator probe into the processor socket.

• Include simple logic on their board that implements a debug port connection.

Inserting an emulator probe into the processor socket allows access to all bus signals, but
capacitive loading issues may affect high speed operation. In contrast, the debug port connection
allows debugger access to the processor’s registers and signals without affecting high speed
operation. This allows the system to operate at full speed with the debugger attached. There
Intel recommends that all embedded Pentium processor-based system designs include a deb

13.2 Two Levels of Support

Two levels of support are defined for the debug port, the second level being a superset of firs
system designer should choose the level of support that is appropriate for the particular syst
design and implement that level. Samples of each level of implementation are given in
“Implementation Examples” on page 13-4.

13.2.1 Level 1 Debug Port (L1)

The Level 1 debug port supports systems with a single processor. L1 uses a 20-pin connect
allow a debugger access to the processor’s registers and signals.

13.2.2 Level 2 Debug Port (L2)

L2 extends the 20-pin debug port connector to 30 pins. The extra ten pins include a second
boundary scan signals as well as additional R/S# and PRDY signals. The additional R/S# an
PRDY signals are added to support the a dual-processor configuration. This enables a debu
provide separate control over the two processors during debug.

Signals on pins 1 through 20 of the L2 debug port are identical to the signals on the L1 debu

13.3 Debug Port Connector Descriptions

A debugger can have a 30-pin connector on its probe that supports both levels of the debug
described previously, L1 or L2). Two cables can be provided, each cable having a 30-pin con
at one end (to mate with the debugger’s probe connector) and the appropriate size connecto
Embedded Pentium® Processor Family Developer’s Manual 13-1

Debugging

ot

tor

r is a

rd from
d in the

probes
or

stem
other end to mate with the debug port in the system under debug. (For example, the L1 debug port
Cable can be a 20-conductor cable with a 20-pin connector at one end and a 30-pin connector at the
other end, leaving pins 21 to 30 unconnected.)

Intel-recommended connectors for mating with debug port cables are available in either a vertical
or right-angle configuration. Use the one that fits best in your design. The connectors are
manufactured by AMP Incorporated and are in their AMPMODU System 50 line. Table 13-1
shows the AMP part numbers for the various connectors:

Note: These are high density through hole connectors with pins on 0.050” by 0.100” centers. Do n
confuse these with the more common 0.100” by 0.100” center headers.

Figure 13-1 is an example of the pinout of the connector footprint as viewed from the connec
side of the circuit board. This is just an example. Contact your third-party tools vendor to
determine the correct implementation for the tool you will use. Note that the 30-pin connecto
logical extension of the 20-pin connector with the key aligned with pin 15.

13.4 Signal Descriptions

Table 13-2 shows the debug port signals. Direction is given as follows: O = output from the
Pentium processor-based board to a debugger; I = input to the Pentium processor-based boa
a debugger. These are either 2.5 V or 3.3 V signals, depending on the Pentium processor use
system. For the L1 debug port, ignore signals on pins 21 through 30.

Note: Target systems should be sure to provide a way for debugging tools like emulators, in-target
and logic analyzers to reset the entire system, including upgrade processor, chip sets, etc. F
example, if you follow the debug port implementation described below, the DBRESET signal
provides this functionality. If you are not implementing the debug port, make sure that your sy
has a test point connected into the system reset logic to which a debug tool can connect.

Table 13-1. Recommended Connectors

Connector Vertical Right-Angle

20-pin shrouded header 104068-1 104069-1

30-pin shrouded header 104068-3 104069-5

Figure 13-1. Debug Port Connector

20 18 16 14 12 10 8 6 4 2

19 17 15 13 11 9 7 5 3 1

A5913-01
13-2 Embedded Pentium® Processor Family Developer’s Manual

Debugging
Table 13-2. Debug Port Signals (Sheet 1 of 2)

Signal Name Dir Pin Description

INIT O 1
(Pentium® processor signal). A debugger may use INIT to support
emulating through the processor INIT sequence while maintaining
breakpoints or breaking on INIT.

DBRESET I 2

Debugger Reset output. A debugger may assert DBRESET (high)
while performing the “RESET ALL” and “RESET TARGET”
debugger commands. DBRESET should be connected to the
system reset circuitry such that the system and processor(s) are
reset when DBRESET is asserted. This is useful for recovering from
conditions like a “ready hang.” This signal is asynchronous.

RESET O 3 (Pentium processor signal). A debugger may use RESET to support
emulating through the reset while maintaining breaking on RESET.

GND 4 Signal ground.

SMIACT# 0 5 (Pentium processor signal) System Management mode interrupt
active.

VCC 6
VCC from the system. A debugger uses this signal to sense that
system power is on and to determine signal I/O voltage levels.
Connect this signal to VCC3 through a 1 KOhm (or smaller) resistor.

R/S# I 7 Connect to the R/S# pin of the.

GND 8 Signal ground.

NC 9 No connect. Leave this pin unconnected.

GND 10 Signal ground.

PRDY O 11 From the PRDY pin of the.

TDI I 12
Boundary scan data input (signal). This signal connects to TDI of
the. For dual processor operation, TDI of the Dual would connect to
TDO of the.

TDO O 13
Boundary scan data output (signal). This signal connects to TDO
from the for a single processor design, or to TDO from the Dual
Pentium for dual processor operation.

TMS I 14 Boundary scan mode select (signal).

GND 15 Signal ground.

TCK I 16 Boundary scan clock (signal).

GND 17 Signal ground.

TRST# I 18 Boundary scan reset (signal).

DBINST# I 19
DBINST# is asserted (connected to GND) while the debugger is
connected to the debug port. DBINST# can be used to control the
isolation of signals while the debugger is installed.

BSEN# I 20

Boundary scan enable. This signal can be used by the system to
control multiplexing of the boundary scan input pins (TDI, TMS,
TCK, and TRST# signals) between the debugger and other
boundary scan circuitry in the system. The debugger asserts (low)
BSEN# when it is driving the boundary scan input pins. Otherwise,
the debugger drivers are high impedance. If the boundary scan pins
are actively driven by the system, then BSEN# should control the
system drivers/multiplexers on the boundary scan input pins. See
“Example 2: Single Processor, Boundary Scan Used by System” on
page 13-6.

PRDY2 O 21 From the PRDY pin of the Dual (for dual processor operation).
Embedded Pentium® Processor Family Developer’s Manual 13-3

Debugging
13.5 Signal Quality Notes

Since debuggers can connect to the system via cables of significant length (e.g., 18 inches), care
must be taken in Pentium processor-based system design with regard to the signals going to the
debug port. If system outputs to the debug port (i.e., TDO, PRDY, INIT and RESET) are used
elsewhere in the system they should have dedicated drivers to the debug port. This will isolate them
from the reflections from the end of the debugger cable. Series termination is recommended at the
driver output. If the boundary scan signals are used elsewhere in the system, then the TDI, TMS,
TCK, and TRST# signals from the debug port should be isolated from the system signals with
multiplexers.

13.6 Implementation Examples

13.6.1 Example 1: Single Processor, Boundary Scan Not
Used by System

Figure 13-2 shows a schematic of a minimal Level 1 debug port implementation for a Pentium
processor, single-processor system in which the boundary scan pins of the are not used in the
system.

GND 22 Signal ground.

R/S#2 I 23 Connect to the R/S# pin of the Dual (for dual processor operation).

NC 24

NC 25

NC 26

NC 27

NC 28

GND 29 Signal ground.

NC 30

Table 13-2. Debug Port Signals (Sheet 2 of 2)

Signal Name Dir Pin Description
13-4 Embedded Pentium® Processor Family Developer’s Manual

Debugging
Figure 13-2. Single Processor – Boundary Scan Not Used

A6253-01

RESET

CPU

DEBUG PORT

TO/FROM SYSTEM
RESET CIRCUIT

INIT

33

6
2

3

1

7

9

19

11

12

14

16

18
20

13

4
8

10
15
17

DBRESET

RESET

INIT

R/S#

N/C

DBINST#

PRDY

TDI

TMS

TCK

TRST#
BSEN#

TD0

GND
GND
GND
GND
GND

Vcc3

Vcc

33

33

33

5 SMIACT#
33

1.
0K

R/S#

PRDY

TDI

TMS

TCK

TRST#

TD0

SMIACT#

SMIACT#
TO SYSTEM
Embedded Pentium® Processor Family Developer’s Manual 13-5

Debugging

ger is
13.6.2 Example 2: Single Processor, Boundary Scan
Used by System

Figure 13-3 shows a schematic of a Level 1 debug port implementation for a single-processor
system in which the boundary scan pins are used. Note that the BSEN# signal controls the
multiplexing of the boundary scan signals. With this implementation, the system could use the
boundary scan (through the) while the debugger is “emulating,” but could not while the debug
“halted” (because the chain is broken).

Figure 13-3. Single Processor – Boundary Scan Used

A6254-01

TO/FROM SYSTEM
RESET CIRCUIT

TO/FROM SYSTEM
BOUNDARY SCAN

DBRESET

RESET

INIT

R/S#

N/C

DBINST#

PRDY

TCK

TRST#1

TMS

TDI

TDO

BSEN#

TDO

TDI

TMS

TCK

TRST#

PRDY

INIT

33

33

33

33

6
2

3

1

9

7

19

11

18

16

14

12

13

20

10
K

1.
0K

R/S#

RESET

Vcc
Vcc

Vcc

DEBUG PORT

CPU

5 SMIACT#
33

SMIACT#

SMIACT#
TO SYSTEM

4
8

10
15
17

GND
GND
GND
GND
GND
13-6 Embedded Pentium® Processor Family Developer’s Manual

Debugging

er.
13.6.3 Example 3: Dual Processors, Boundary Scan
Not Used by System

Figure 13-4 shows a schematic of a typical Level 2 debug port implementation for a Pentium
processor, dual-processor system in which the boundary scan pins are not used. The multiplexer
circuit for use with the “upgrade socket” concept is shown, but could be replaced with a jump

Note: Contact your third-party tools vendor for information on implementing SMIACT# in a dual
processor system.

Figure 13-4. Dual Processor – Boundary Scan Not Used

TO/FROM SYSTEM
RESET CIRCUIT

UPGRADE
PRESENT

RESET RESET

DBRESET

INIT
R/S#
PRDY
N/C
DBINST#
TRST#
TCK
TMS
TDI
TDO
BSEN#

R/S#2
PRDY2
N/C
N/C
N/C
N/C
N/C
N/C
GND
GND
GND
GND
GND
GND
GND

Vcc

Vcc

INIT

R/S#
PRDY

TRST#
TCK
TMS
TDI

TDO

33

33

33

33

33

6
2

3

1

7

11
9

19
18
16
14
12
13

20

23
21

25
24
30
28
26
27

4
8

10
15
17
22
29

1.
0K

RESET
INIT

R/S#

PRDY

TRST#
TCK
TMS
TDI

TDO

PROCESSOR

PROCESSOR

L2 DEBUG PORT

5
SMIACT#†33

SMIACT#

SMIACT#
TO SYSTEM

† Contact third party tools provider for implementing SMIACT# in dual CPU systems.
Embedded Pentium® Processor Family Developer’s Manual 13-7

Debugging

 is
13.6.4 Example 4: Dual Processors, Boundary Scan Used by
System

Figure 13-5 shows a schematic of a Level 2 debug port implementation for a dual-processor system
that uses boundary scan. Note that the BSEN# signal controls the multiplexing of the boundary
scan signals. With this implementation, the system could use the boundary scan (through the) while
the debugger is “emulating,” but could not while the debugger is “halted” (because the chain
broken).

Note: Contact your third-party tools vendor for information on implementing SMIACT# in a dual
processor system.

Figure 13-5. Dual Processor – Boundary Scan Used

A6255-01

TO/FROM SYSTEM
RESET CIRCUIT

TO/FROM SYSTEM
BOUNDARY SCAN

UPGRADE
PRESENT

RESET
DBRESET

Vcc Vcc

Vcc

RESET

INIT
R/S#
PRDY
N/C
DBINST#
TRST#
TCK

2
6

3

1

7

11
9

19
18
16
14
12

13

23

21

5

20
24
30
28
26
27
25

4
8

10
15
17
22
29

33

33

33

10
K

1.
0K

33

33

TMS
TDI
TDO

R/S#2

PRDY2

BSEN#
N/C
N/C
N/C
N/C
N/C
N/C
GND
GND
GND
GND
GND
GND
GND

INIT

R/S#
PRDY

TRST#
TCK
TMS
TDI

TDO

RESET
INIT

R/S#
PRDY

TRST#
TCK
TMS
TDI

TDO

PROCESSOR

PROCESSOR

L2 DEBUG PORT

SMIACT#

SMIACT#

SMIACT#
TO SYSTEM

33

† Contact third party tools provider for implementing SMIACT# in dual CPU systems.
13-8 Embedded Pentium® Processor Family Developer’s Manual

Debugging
13.7 Implementation Details

13.7.1 Signal Routing Note

The debugger software communicates with the processor through the debug port using the
boundary scan signals listed above. Typically, the debugger expects the processor to be the first and
only component in the scan chain (from the perspective of the debug port). That is, it expects TDI
to go directly from the debug port to the TDI pin of the processor, and the TDO pin to go directly
from the processor to the debug port (see Figure 13-6). If you have designed your system so that
this is not the case (for instance, see Figure 13-7), you will need to provide the debugger software
with the following information: (1) position of the processor in the scan chain, (2) the length of the
scan chain, (3) instruction register length of each device in the scan chain. Without this information
the debugger will not be able to establish communication with the processor.

Figure 13-6. Example of Processor Only in Scan Chain

A6235-01

D
eb

ug
 P

or
t

Processor

82497

82492 82492

82492 82492

82492 82492

82492 82492

TDI

TDO

TDI

TDO
Embedded Pentium® Processor Family Developer’s Manual 13-9

Debugging

eplace
provide
uld

ting the
ssor

ly one
A

 the

p
13.7.2 Special Adapter Descriptions

For those designs where board real estate is a concern or where the design is finished and it is too
late to implement the debug port, it may be possible to use a special “debug port adapter” to r
the on-board debug port described in the previous sections. The purpose of the adapter is to
easy access to the boundary scan signals of the processor(s). For simplicity, the adapter sho
make the boundary scan signals accessible to the debug tool while at the same time preven
target system from accessing them. Two debug port adapters are described: (1) for uniproce
debug, (2) for dual-processor debug.

Standard PPGA adapters are available from many third-party tools vendors.

13.7.2.1 Uniprocessor Debug

A debug port adapter for use in uniprocessor systems, or dual-processor systems where on
processor will be debugged at a time, can be built by reworking two Pentium processor SPG
sockets (see Figure 13-8).

Note: This adapter can be used only when the processor is not included in the target system boundary
scan string. In addition, when used in dual-processor systems you will only be able to debug
processor to which the adapter is connected.

Table 13-3 show which pins to connect lines of appropriate 20- or 30- wire cable to on the to
socket.

Figure 13-7. Example of Multiple Components in Scan Chain

A6236-01

D
eb

ug
 P

or
t

Processor

82497

82492 82492

82492 82492

82492

82492

TDI TDO

TDO TDI

TDI TDO

TDO TDI

TDI TDO

TDO TDI

TDO

TDI

TDI

TDO

TDO

82492

82492

TDI TDO

TDO TDI

…
…

……
13-10 Embedded Pentium® Processor Family Developer’s Manual

Debugging
Note: You may connect the GND pins to any pin marked VSS on the SPGA pinout diagram. The NC pins
are no connects. You may simply cut those wires.

Table 13-3. SPGA Socket

Cable Wire Number SPGA Pin Number Signal

1 AA33 INIT

2 NC DRESET

3 AK20 RESET

4 AD36 (VSS) GND

5 AG03 SMIACT#

6 U37 (VCC3) VCC

7 AC35 R/S#

8 AB36 (VSS) GND

9 NC NC

10 Z36 (VSS) GND

11 AC05 PRDY

12 N35 TDI

13 N33 TDO

14 P34 TMS

15 X36 (VSS) GND

16 M34 TCK

17 R36 (VSS) GND

18 Q33 TRST#

19 NC DBINST#

20 NC BSEN#
Embedded Pentium® Processor Family Developer’s Manual 13-11

Debugging
Connect a double-row receptacle (AMP# 111196-7) to the debug port connector end of the cable.
This is a 30-pin connector, so that it fits into the socket on the debugger buffer board.

Remove the following pins from the bottom socket:

Connect the two sockets together. Make sure not to crush the wires between the pins.

13.7.2.2 Dual-Processor Debug

A debug port adapter for use in dual processor debugging can be built by reworking four Pentium
processor-based SPGA sockets. (See Figure 13-9).

Note: This adapter can be used only when the processors are not included in the target system boundary
scan string.

You will need to use two SPGA sockets per processor location. For this discussion, assume that the
startup processor is called processor 1 and that the upgrade processor is called processor 2. Thus,
you will use two SPGA sockets to connect to processor 1 and two SPGA sockets to connect to

Figure 13-8. Uni-Processor Debug

A5918-01

Mount processor here

Debug Port Connector
(AMP#111196-7)

Connect to socket
mounted on debugger board

Plug into processor
socket on system board

R/S# AC35

PRDY AC05

TDI N35

TDO N33

TMS P34

TCK M34

TRST# Q33
13-12 Embedded Pentium® Processor Family Developer’s Manual

Debugging
processor 2. Certain debug port signals must be shared by Processor 1 and Processor 2. These
signals must be connected from the debug port connector end of the cable (on which you will place
a double-row receptacle: AMP# 111196-7) to both double SPGA sockets.

Connect lines of 30-wire cable to the pins on the top SPGA sockets for both processor 1 and 2.
Following are the signals which should be connected to each processor socket. Make sure to
connect the shared lines to both top sockets.

Figure 13-9. Dual-Processor Debug Port Adapter

A5919-01

Debug Port Connector
(AMP#111196-7)

Connect to socket
mounted on debugger board

Plug into processor 1
socket on system board

Mount processor 1 here Mount processor 2 here

Plug into processor 2
socket on system board

Figure 13-10. Shared Pins for Dual-Processor Adapter

A6237-01

TDO

TMS
TCK

TRST#
RESET

TMS
TCK
TRST#
RESET
INITINIT

PRDY2#
R/S2#

TDO

PRDY1#
R/S1#
TDI

TDI

30-Pin Debug Port

Processor Upgrade
Processor
Embedded Pentium® Processor Family Developer’s Manual 13-13

Debugging
Note: You can connect the VCC and GND pins to any convenient power or ground pin.

Connect a double-row receptacle (AMP# 111196-7) to the debug port end of the cable. This is a 30-
pin connector, so that it fits into the socket on the debugger buffer board.

Table 13-4. Debug Port Connector Pinout

Cable Wire Number SPGA Pin Number Processor Socket Signal

1 AA33 1,2 INIT

2 NC DBRESET

3 AK20 1,2 RESET

4 VSS 1 GND

5 AG03 SMIACT#†

6 VCC 1 VCC

7 AC35 1 R/S1#

8 VSS 1 GND

9 NC NC

10 VSS 1 GND

11 AC05 1 PRDY1

12 N35 1 TDI

13 N33 2 TDO

14 P34 1,2 TMS

15 VSS 1 GND

16 M34 1,2 TCK

17 VSS 1 GND

18 Q33 1,2 TRST#

19 NC DBINST#

20 NC BSEN#

21 AC05 2 PRDY2

22 VSS 2 GND

23 AC35 2 R/S2#

24 NC NC

25 NC NC

26 NC NC

27 NC NC

28 NC NC

29 VSS 2 GND

30 NC NC

† Contact your third-party tools vendor for information on implementing SMIACT# in a dual processor
system.
13-14 Embedded Pentium® Processor Family Developer’s Manual

Debugging
Remove the following pins from the bottom of both double sockets:

Connect each set of two sockets together. Make sure not to crush the wires between the pins.

R/S# AC35

PRDY AC05

TDI N35

TDO N33

TMS P34

TCK M34

TRST# Q33
Embedded Pentium® Processor Family Developer’s Manual 13-15

dded
s.

 the

led
the

 be
o to

nt to
ew
Model Specific Registers
and Functions 14

This chapter introduces the model specific registers (MSRs) as they are implemented on the
embedded Pentium® processor family. Model specific registers are used to provide access to
features that are generally tied to implementation dependent aspects of a particular processor. For
example, testability features that provide test access to physical structures such as caches, and
branch target buffers are inherently model specific. Features to measure the performance of the
processor or particular components within the processor are also model specific.

The features provided by the model specific registers are expected to change from processor
generation to processor generation and may even change from model to model within the same
generation. Because these features are implementation dependent, they are not recommended for
use in portable software. Specifically, software developers should not expect that the features
implemented within the MSRs will be supported in an upward or downward compatible manner
across generations or even across different models within the same generation.

The embedded Pentium processor with MMX™ technology MSRs are different than the embe
Pentium processor MSRs. When possible, fields were preserved between the two processor
Differences between the MSRs are noted throughout this chapter.

14.1 Model Specific Registers

The embedded Pentium processor processor family implements the RDMSR and WRMSR
instructions to read and write the MSR’s respectively. A feature bit in EDX (bit 5), reported by
CPUID instruction, indicates whether the processor supports the RDMSR and WRMSR
instructions. The Pentium processor with MMX technology implements a new instruction cal
RDPMC (Read Performance Monitoring Counter). This instruction enables the user to read
performance monitoring counters in “Current Privilege Level = 3” given bit 8 is set in CR4
(CR4.PCE).

14.1.1 Model Specific Register Usage Restrictions

Proper use of the MSR features described in this chapter requires that the CPUID instruction
used not only to validate that the FAMILY reported in the EAX register is equal to “5”, but als
validate the specific MODEL number within that FAMILY. Note that this requirement is
significantly more restrictive than is required for new architectural features where it is sufficie
validate that the FAMILY is equal to or greater than that of the first family to implement the n
feature. For more information regarding the use of the CPUID instruction, refer to the Intel
Architecture Software Developer’s Manual.
Embedded Pentium® Processor Family Developer’s Manual 14-1

Model Specific Registers and Functions
14.1.2 Model Specific Register Access

Access to the model specific registers is provided through the RDMSR and WRMSR instructions.
Access to a particular MSR is achieved by loading the ECX register with the appropriate ECX
value from Table 14-1 below, and then executing either RDMSR or WRMSR. For more
information regarding the use of these instructions, refer to the Intel Architecture Software
Developer’s Manual.

Table 14-1. Model Specific Register Descriptions

ECX Value (in Hex) Register Name Description

00 Machine Check Address(1) Stores address of cycle causing
the exception

01 Machine Check Type(1) Stores cycle type of cycle causing
the exception

02 Test Register 1 Parity Reversal Register

03 RESERVED

04 Test Register 2(2) Instruction Cache End Bit

05 Test Register 3 Cache Test Data

06 Test Register 4 Cache Test Tag

07 Test Register 5 Cache Test Control

08 Test Register 6 TLB Test Linear Address

09 Test Register 7 TLB Test Control & Physical
Address 31–12

0A RESERVED

0B Test Register 9 BTB Test Tag

0C Test Register 10 BTB Test Target

0D Test Register 11 BTB Test Control

0E Test Register 12 New Feature Control

0F RESERVED

10 Time Stamp Counter Performance Monitor

11 Control and Event Select Performance Monitor

12 Counter 0 Performance Monitor

13 Counter 1 Performance Monitor

14+ RESERVED

NOTES:
1. CR4.MCE must be 1 in order to utilize the machine check exception feature.
2. Reserved on the embedded Pentium® processor with MMX™ technology.
14-2 Embedded Pentium® Processor Family Developer’s Manual

Model Specific Registers and Functions

Buffer
 caches,
ism)
de and

rs
e used
o
W to

fter

ith
e

ters, the
iss in
he

ory
not

isters,
 a miss
back
14.2 Testability And Test Registers

The processor provides testability access to the on-chip caches, TLBs, BTB and internal parity
checking features through model specific test registers. The RDMSR/WRMSR instructions may be
utilized by the processor to access the test registers.

14.2.1 Cache, TLB and BTB Test Registers

The processor contains several test registers. The purpose of these test registers is to provide direct
access to the processor’s caches, Translation Look-aside Buffers (TLB), and Branch Target
(BTB) so test programs can easily exercise these structures. Because the architecture of the
TLBs, and BTB is different, a different set of test registers (along with a different test mechan
is required for each processor family member. Most test registers are shared between the co
data caches.

The test registers should be written to for testability purposes only. Writing to the test registe
during normal operation causes unpredictable behavior. Note that when the test registers ar
to read or write lines directly to or from the cache, external inquire cycles must be inhibited t
guarantee predictable results when testing. This is done by setting both CR0.CD and CR0.N
“1”. In addition, the INVD, WBINVD and INVLPG instructions may be executed before and a
but not during testing.

Caution: Writing to the test registers during normal operation causes unpredictable behavior.

Since the on-board caches, TLBs, and BTB implemented in embedded Pentium processor w
MMX technology differ than those in embedded Pentium processor, the test register interfac
differs.

If a memory data access occurs during a code cache testability operation using the test regis
data cache is checked before the external memory operation in initiated. If the access is a m
the data cache, then if the accessed line is valid in the code cache, it is invalidated through t
internal snooping mechanism. In addition, the same cache line fill buffer is used for cache
testability writes and to temporarily store data from memory data reads. For this reason, mem
data reads should be done with care or avoided to ensure data from the memory read does
overwrite data from the testability write in the cache line fill buffer.

Similarly, if a code access occurs during a data cache testability operation using the test reg
the code cache is checked before the external memory operation is initiated. If the access is
in the code cache, then the accessed line if valid in the data cache is invalidated (or written
and then invalidated if in the M state) through the internal snooping mechanism.
Embedded Pentium® Processor Family Developer’s Manual 14-3

Model Specific Registers and Functions

ches.

It
e
d or write
is

he end

n
e after
d, the
 be

sually
14.2.1.1 Cache Test Registers

The registers in Figure 14-1 provide direct access to the Pentium processor’s code and data ca

On the embedded Pentium processor, TR2 is the End Bit Test Register for the code cache.
contains four end bits. Each end bit corresponds to one byte of instruction in TR3 during cod
cache testability access. Since a cache line has 32 bytes, eight accesses are needed to rea
the end bits for the entire cache line. TR2 is used for accesses to the code cache only. TR2
reserved on the embedded Pentium processor with MMX technology.

End bits are used to indicate instruction boundaries on the embedded Pentium processor. T
bit mechanism aids the decode of two variable length instructions per clock by providing
information on where the boundary between instruction is. If a given byte is the last byte in a
instruction, the corresponding end bit is set to one. When a line is written into the code cach
a miss, all end bits corresponding to the line are initialized to one. As instructions are decode
end bits are checked for correctness and modified if incorrect. In order for two instructions to
issued in a single clock, the end bits of the u-pipe instruction must have the correct values,
otherwise only one instruction will be issued. This does have the effect that instructions are u
not paired the first time that they are put in the code cache.

Figure 14-1. Cache Test Registers

A6238-01

6
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

6
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

6
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

6
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

TR2
End Bit

Test Register
Reserved End

Bits1

TR3
Cache Data

Test Register

TR4
Cache Status
Test Register

Data

Tag [31:12] LRU2

TR5
Cache Control

Test Register
BufferSet Select

Valid

Cntl

Entry [0]

Reserved

Entry [1] 3 WB
CD

NOTES:
1: TR2 is reserved on the Pentium® processor with MMX™ technology
2: TR4.3 and TR4.4 are reserved on the Pentium processor (100/133/166 MHz)
3: TR5.19 is reserved on the Pentium processor
14-4 Embedded Pentium® Processor Family Developer’s Manual

Model Specific Registers and Functions
TR3 is the Cache Data Test Register. This is where the data is held on its way into or out of the
cache. Prior to a cache testability write, software must load an entire cache line into the 32-byte fill
buffer using TR3, 4 bytes at a time. Similarly, during a cache testability read, the processor extracts
a specified 4-byte data quantity from a cache line and places the data in TR3. A 32-byte cache line
may be written to or read from TR3 as eight 4-byte accesses.

TR4 is the Cache Status Test Register. It contains the tag, LRU and valid bits to be written to or
read from the cache. Like TR3, TR4 must be loaded with the tag/LRU/valid bits prior to a
testability write, and gets updated with the tag/LRU/valid bits as a result of a testability read. Note
that TR4[31:28] are reserved and always return a zero as a result of a testability read.The two valid
bits are interpreted differently by the code and data caches, depending upon the setting of TR5.CD
bit. The encodings for TR4.valid are shown in Table 14-2. The encodings for the LRU bits are
shown in Table 14-3 for the embedded Pentium processor and the embedded Pentium processor
with MMX technology.

Note: The LRU bits for the instruction cache change state when an entry is read using the test registers,
with CR0.CD=1. The LRU bits for the data cache, however, do not change their state during
testability reads with CR0.CD=1.

TR5 is the Cache Control Test Register. It contains the writeback bit, the CD bit, the cache entry,
the set address, the buffer select, and a two-bit control field, cntl.

Table 14-2. Encoding for Valid Bits in TR4

TR5.CD=1 (Data Cache) valid[1] valid[0] Meaning

0 0 Cache line in I state

0 1 Cache line in S state

1 0 Cache line in E state

1 1 Cache line in M state

TR5.CD=0 (Code Cache) valid[1] valid[0] Meaning

X 0 Cache line invalid

X 1 Cache line valid

Table 14-3. Encoding of the LRU Bit in TR4

Pentium® Processor (100/133/166)

LRU[0] Points to WAY

0 0

1 1

Pentium Processor with MMX™ Technology

LRU[2] LRU[1] LRU[0] Points to WAY

X 0 0 0

X 1 0 1

0 X 1 2

1 X 1 3
Embedded Pentium® Processor Family Developer’s Manual 14-5

Model Specific Registers and Functions
The writeback bit determines whether that particular line is configured for writethrough or allows
the possibility of writeback. It is used by the data cache only (i.e., if the writeback bit is set and a
flush occurs (TR5.cntl=11), then if the addressed line in the data cache is modified, it will be
invalidated and written back to the bus). The CD bit distinguishes between the code and data cache.
The entry field selects one of the four ways in the embedded Pentium processor with MMX
technology (two ways in the embedded Pentium processor) in the cache. The set address field
selects one of 128 sets within the cache to be accessed. The buffer field selects one of the eight
portions of a cache line to be visible through TR3. The control field selects one of the four possible
operation modes. The encodings for the TR5 fields are shown in Table 14-4, Table 14-5,
Table 14-6 and Table 14-7.

Note: The Entry[1] bit, Way 2 and Way 3 are specific to the embedded Pentium processor with MMX
technology.

Direct Cache Access

To access the cache for testing, the programmer specifies a set address and entry and requests a
testability read or write. No tag comparison is done; the programmer can directly read/write a
particular entry in a particular set. Note that since TR2 is reserved for the embedded Pentium
processor with MMX technology, there is no TR2 access when reading an entry from the cache.

Table 14-4. Encoding of the WB Bit in TR5

WB Writeback or Writethrough

0 Writethrough

1 Writeback

Table 14-5. Encoding of the Code/Data Cache Bit in TR5

CD Cache

0 Code cache

1 Data cache

Table 14-6. Encoding of the Entry Bit in TR5

Entry[1] Entry[0] Way

0 0 0

0 1 1

1 0 2

1 1 3

Table 14-7. Encoding of the Control Bits in TR5

Cntl1 Cntl0 Command

0 0 Normal operation

0 1 Testability write

1 0 Testability read

1 1 Flush
14-6 Embedded Pentium® Processor Family Developer’s Manual

Model Specific Registers and Functions

ver

rnal
e if

the
m
d to
To write down an entry into the cache:

• Disable replacements by setting CR0.CD=1.

• For each 4-byte access:

— Write address into TR5.buffer. Here, TR5.cntl=00.

— Write data into TR3.

— Write end bits into TR2 (for instruction cache only).

• Write the desired tag, LRU and valid bits into TR4. Note that the contents of TR4 completely
overwrites the previous tag, LRU and valid bits in the cache.

• Perform a testability write by loading TR5 with the appropriate CD, entry, set address, and cntl
fields. Here, TR5.cntl=01.

To read an entry from the cache:

• For each 4-byte access:

— Write the appropriate CD, entry, set address, buffer and cntl fields into TR5. Here,
TR5.cntl=10.

— Read data from TR3.

— Read end bits from TR2[3:0] (for instruction cache only).

— Read the tag, LRU, and valid bits from TR4. No hit/comparison is performed. Whate
was in that entry in that set is read into TR4, TR3, and TR2.

To invalidate the cache or invalidate an entry:

• When TR5.cntl=11 (flush), and CD=0 (code cache), the entire code cache is invalidated.
However, if TR5.cntl=11 and CD=1 (data cache), the user can specify through the TR5.WB bit
whether to invalidate the entire data cache, or invalidate and writeback only the cache line
specified by TR5 (see Figure 14-8).

Note that TR2, TR3, and TR4 permit both reads and writes, whereas TR5 is a write-only register.
The test registers should be written to for testability accesses only. Writing to the test registers
during normal operation may cause unpredictable behavior. For example, inadvertent cache hits
can be created.

Note: During cache testability operations, the internal snooping mechanism functions similar to that
described in “Internal Snooping” on page 6-40. If a memory data access occurs during a code
cache testability operation using the test registers, the date cache is checked before the exte
memory operation is initiated. If the access is a miss in the data cache, then the accessed lin
valid in the code cache is invalidated through the internal snooping mechanism. In addition,
same cache line fill buffer is used for cache testability writes and to temporarily store data fro
memory data reads. For this reason, memory data reads should be done with care or avoide

Table 14-8. Definition of the WB Bit in TR5

TR5.cntl=11 TR5.WB Meaning

CD=0 X Invalidate the entire code cache.

CD=1 0 Invalidate entire data cache. Modified lines are not written back.

CD=1 1 Invalidate line. Writeback if modified.
Embedded Pentium® Processor Family Developer’s Manual 14-7

Model Specific Registers and Functions

 for 4-
y one
es are
ully
 that,
ology
nd 4-
ensure data from the memory read does not overwrite data from the testability write in the cache
line fill buffer.

Similarly, if a code access occurs during a data cache testability operation using the test registers,
the code cache is checked before the external memory operation is initiated. If the access is a miss
in the code cache, then the accessed line if valid in the data cache is invalidated (or written back
and then invalidated if in the M-state) through the internal snooping mechanism.

When the FLUSH# pin is asserted, it is treated as an interrupt, and when serviced at the next
instruction boundary, it causes a writeback of the data cache and then invalidation of the internal
caches. The cache test registers TR2, TR3, TR4 and TR5 are used in this process, and thus their
values after FLUSH# has been serviced are unpredictable. Therefore FLUSH# should not be
asserted while code is being executed which uses these test registers.

14.2.1.2 TLB Test Registers

The registers in Figure 14-2 provide access to the Pentium processor’s code and data cache
translation lookaside buffers (TLBs). Note that the data cache has two TLBs: a 64-entry TLB
Kbyte data pages and an 8-entry TLB for 4-Mbyte data pages. The code cache contains onl
32-entry TLB for both 4-Kbyte code pages and 4-Mbyte code pages. The 4-Mbyte code pag
cached in 4-Kbyte increments (the PS bit in TR6 is ignored). The code cache contains one f
associative 32-entry TLB which is also integrated for both 4-Kbyte and 4-Mbyte pages. Note
unlike the embedded Pentium processor, the embedded Pentium processor with MMX techn
data cache contains one fully associative 64-entry TLB which is integrated for both 4-Kbyte a
Mbyte pages.

Figure 14-2. TLB Test Registers

A6239-01

6
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

6
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

6
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

TR6
TLB Command

Test Register

TR7
TLB Data Test Register for

Penium® processor
(100/133/166)

Physical Address [31:12]

Physical Address [31:12]

TR7
TLB Data Test Register for

Pentium processor with
MMX® technology

H
P
W
T

P
C
D

Entry

PS
CD

OP

Reserved

Entry [5:4]
Entry [3:0]

P
C
D

P
W
T

L
2

L
1

L
0

H

Linear Address V D U W
14-8 Embedded Pentium® Processor Family Developer’s Manual

Model Specific Registers and Functions
TR6 is the TLB Command Test Register. It contains the linear address, code/data TLB select (CD),
operation (Op) bits and the following status bits: valid (V), dirty (D), user (U), writeable (W), and
page size (PS) bits.

The status bits are inputs to the TLB entry during testability writes, and outputs from the TLB entry
during testability reads. The V bit indicates whether a TLB entry is valid or invalid during
testability writes. The D bit indicates whether or not a write access was made to the page. The U bit
indicates the privilege level that the processor must be in to access the page. The W bit is one of the
factors in determining the read/write protection of the page. The PS (page size) bit specifies the
page size for the TLB entry. The CD bit determines if the code or data TLB is being accessed. The
Op bit distinguished between a read and write cycle.

The W-bit, D-bit, and PS-bit are defined only for the data TLB.

Tables 14-9 through 14-16 list the encodings for the fields in the TR6 register.

Note: Normally the user should not allocate a page entry in both the TLBs; during testability however if a
match is found in both, then the processor reports that it found it for the 4-Mbyte page size (PS=1).

Table 14-9. Encoding for the Valid Bit in TR6

Valid Valid/Invalid TLB Entry

0 Invalid

1 Valid

Table 14-10. Encoding for the Dirty Bit in TR6

D-bit Write access made to page?

0 Write access was not made

1 Write access was made

Table 14-11. Encoding for the User Bit in TR6

U-bit Privilege Level Access Allowed

0 PL=0,1,2,3

1 PL=0

Table 14-12. Encoding for the Writeable Bit in TR6

W-bit Writes Allowed?

0 No writes, read only

1 Allows writes

Table 14-13. Encoding for the Page Size Bit in TR6

PS-bit Page Size

0 4 KByte

1 4 MByte
Embedded Pentium® Processor Family Developer’s Manual 14-9

Model Specific Registers and Functions
TR7 is the TLB Data Test Register. In the embedded Pentium processor it contains bits 31:12 of the
physical address, the hit indicator H, a two-bit entry pointer, and the status bits. The status bits of
the Pentium processor include the two paging attribute bits PCD and PWT, and three LRU bits (L0,
L1, and L2). PCD is the page level cache disable bit. PWT is the page level write through bit. The
LRU bits determine which entry is to be replaced according to the pseudo-LRU algorithm. TLB
reads which result in hits and TLB writes can change the LRU bits. The LRU bits reported for a test
read are the value before the TLB read. The LRU bits are then changed according to the pseudo-
LRU replacement algorithm. The two entry bits determine which one of the four ways to write to in
the code or data TLB during testability writes.

In the embedded Pentium processor with MMX technology, the entry pointer has been extended
from two bits to six bits. The six entry bits determine which one of the 64 entries to write to in the
data TLB during testability writes. The lower five entry bits determine which one of the 32 entries
to write to in the code TLB during testability writes. Also, the L0, L1 and L2 bits are reserved in
the Pentium processor with MMX technology.

The H is the hit indicator. This bit needs to be set to 1 during testability writes. During testability
reads, if the input linear address matches a valid entry in the TLB, the H bit is set to 1. The two
entry bits determine in which one of the four ways to write to the TLB during testability writes.
During testability reads, they indicate the way that resulted in a read bit.

TR6, and TR7 are read/write registers. The test registers should be written to for testability
accesses only. Writing to the test registers during normal operation causes unpredictable behavior.

When reading from the code cache TLB (TR5.CD = 0), the TR6 register zeros out bits [31:12]
(corresponding to the linear address) at the end of the TLB testability read cycle. This does not
mean that an incorrect linear address was used. All operations happen normally (with whatever
linear address was written into TR6 before the testability read operation).

Table 14-14. Encoding for the Operation Bit TR6

Op Command

0 TLB write

1 TLB read

Table 14-15. Encoding for the Code/Data TLB in TR6

CD Cache

0 Code TLB

1 Data TLB
14-10 Embedded Pentium® Processor Family Developer’s Manual

Model Specific Registers and Functions

 does
atever
TLB Access

Unlike the caches, the TLB is structured as a CAM cell and, thus, can only be searched (rather than
directly read). In other words, the programmer can directly read/write a particular entry in a
particular set of the code or data caches, however the TLB only reports a hit or a miss in the Hit bit
in TR7. Dumping the TLB requires the programmer to step through the entire linear address space
one page at a time. Also, please note the following changes which apply to the Pentium processor
with MMX technology:

• LRU bits of TR7 (bits 9:7) are reserved on the embedded Pentium processor with MMX
technology.

• The entry pointer in TR7 has been extended from two bits to six bits in the embedded Pentium
processor with MMX technology.

• To assure correct functioning, software MUST flush the TLB after testability writes and prior
to return to normal operation mode by writing to CR3.

• It is recommended that users do not use testability reads to load the TLB with overlapping
4 Kbyte and 4 Mbyte pages.

To write an entry into the TLB:

• Write the physical address bits [31:12], attribute bits, LRU bits and replacement entry into
TR7, setting TR7.H=1.

• Write the linear address, protection bits, and page size bit into TR6, setting TR6.Op=0.

To read an entry from the TLB:

• Write the linear address, CD, and OP bits into TR6, setting TR6.Op=1.

• If TR7.H is set to 1, the read resulted in a hit. Read the translated physical address, attribute
bits, and entry from TR7. Read the V, D, U, and W bits from TR6. If TR7.H is cleared to 0, the
read was a miss and the physical address is undefined.

Note that when reading from the TLB, the PS bit in the TR6 register does not have to be set; the PS
bit is actually written by the processor at the end of the TLB (testability) lookup. Based on the PS
bit the user is supposed to infer whether the linear address found in the TLB corresponds to the 4-
Kbyte or 4-Mbbyte page size. Normally the user should not allocate a page entry in both the TLBs;
during testability however if a match is found in both, then the processor reports that it found it for
the 4-Mbyte page size (PS=1).

Also note that when reading from the code cache TLB (TR5.CD=0), the TR6 register zeros out bits
12–31 (corresponding to the linear address) at the end of the TLB testability read cycle. This
not mean that an incorrect linear address was used. All operations happen normally (with wh
linear address was written into TR6 before the testability read operation).
Embedded Pentium® Processor Family Developer’s Manual 14-11

Model Specific Registers and Functions
14.2.1.3 Branch Target Buffer (BTB) Test Registers

The test registers in Figure 14-3 provide direct access to the branch target buffer. Note that the
branch prediction mechanism should be disabled through test register 12 before doing any BTB
testability access.

TR9 is the BTB Tag Test Register. Before writing any entry into the BTB, software must first load
TR9 with the appropriate information. After reading any entry in the BTB, the processor places the
retrieved information in TR9.

Figure 14-3. BTB Test Registers

A6240-01

6
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

6
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

6
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

6
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Way

Control

Control [0-1]Control [2]

6
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Set

Tag Address

Tag Address

Set Select

Bnk Way

BTB Target Address

Pred. Bit

HistoryOffset

Valid Bit

History

Branch Type

Reserved

TR9
BTB Tag Test Register

for Pentium® Processor
(100/133/166)

TR11
BTB Command Test Register

for Pentium Processor
(100/133/166)

TR11
BTB Command Test Register

for Pentium Processor
with MMX technology

TR10
BTB Target Test Register

TR9
BTB Tag Test Register
for Pentium Processor

with MMX™ technology
14-12 Embedded Pentium® Processor Family Developer’s Manual

Model Specific Registers and Functions
Note: The format for the control field is shown in Table 14-19.

Table 14-16. TR9 Register Description (BTB Test Register)

Bits in the
Embedded
Pentium®
Processor

Bits in the
Embedded Pentium

Processor with
MMX™ Technology

TR9 Register Description (BTB Test Register)

63:32 63:32 Reserved

31:6 31:8 Tag Address: Bits 31:6 or 31:8 of the address of the last byte
of the branch

N/A 7:6 Offset: Bits 1:0 of the address of the last byte of the branch

N/A 5 Valid bit: If set, the entry is allocated in the BTB

N/A 4 Prediction bit: Defines if this branch is predicted taken or not
taken by the BTB

1:0 3:0 History: Contains the previous history for this branch

Table 14-17. TR10 Register Description (BTB Test Register)

Bits TR10 Register Description (BTB Target Test Register)

63:32 Reserved

31:0 BTB Target Address: Linear address of the branch’s target

Table 14-18. TR11 Register Description (BTB Command Test Register)

Bits in the
Embedded
Pentium®
Processor

Bits in the
Embedded Pentium

Processor with
MMX™ Technology

TR11 Register Description
(BTB Command Test Register)

63:32 63:32 Reserved

31:12 31:26 Reserved

N/A 25:24 Branch type: 00 JCC (Jump if condition is met), 01
unconditional jump, 10 call, 11 return

N/A 23:13 Reserved

N/A 12 Control: Selects either Normal operation, or Testability
Read/Write, Flush and Testability Read Tag

11:6 11:8
Set: Selects one of 64 sets to access in the embedded
Pentium processor or 16 sets in the embedded Pentium
processor with MMX technology

N/A 7:6 Bank: Selects one of the 4 banks per BTB cache line. The
bank number corresponds to bits 3:2 of the branch address

5:4 5:4 Reserved

3:2 3:2 Way: Selects one of four ways within the Set (i.e., 00 = Way1,
01 = Way2, 10 = Way3 and 11 = Way4)

1:0 1:0 Control: Selects either Normal operation, or Testability
Read/Write, Flush and Testability Read Tag
Embedded Pentium® Processor Family Developer’s Manual 14-13

Model Specific Registers and Functions

d
G.)

bility
havior.

that the
TR10 is the BTB Target Test Register. Like TR9, TR10 must be loaded with the target address
before a testability write. After a BTB testability read, the target address is placed in this register.

TR11 is the BTB Command Test Register. This register is used to issue read and write commands
to the BTB. The set address field selects one of 16 sets (64 sets in the embedded Pentium
processor) to access. The entry field selects one of four ways within the set on the embedded
Pentium processor. A BTB testability cycle is initiated by loading TR11 controls bits with the
appropriate values. The format for the control field is shown in Table 14-19.

TR9, TR10 and TR11 are all read/write registers. The test registers should be written to for
testability accesses only. Writing to the test registers during normal operation causes unpredictable
behavior.

The following BTB testability cycles exist:

1. Testability read data. Reads the Target, branch type, offset, history-prediction (according to
spec bit)., and prediction bit of a BTB line defined by a set, way and bank into the
corresponding testability register field.

2. Testability read TAG and valid bit (Pentium processor with MMX technology only). Reads the
Tag defined by the testability registers set, way and bank into the corresponding testability
register field.

3. Testability BTB flush. Clear all BTB valid bits.

4. Testability Write Data. Writes all the BTB fields from the corresponding test registers. If there
is an entry on the same bank and set, with the same TAG, the write overwrites this entry even
if the way chosen in TR11 is different from the existing entry’s way. (This is done to avoi
having two entries in the same bank and same set, but different ways, with the same TA

TR9, TR10, TR11 are all read/write registers. The test registers should be written to for testa
accesses only. Writing to the test registers during normal operation causes unpredictable be

Direct BTB Access

The BTB contents are directly accessible, in a manner similar to the code/data caches. Note
branch prediction mechanism should be disabled before doing any BTB testability access.

To write an entry into the BTB for the embedded Pentium processor:

1. Disable BTB entry allocation by setting TR12.NBP=1 (see Feature Control section)

2. Write the tag address and history information in TR9

Table 14-19. Format for TR11 Control Field

Cntl2(1) Cntl1 Cntl0 Command

0 0 0 Normal operation

0 0 1 Testability write data

0 1 0 Testability read data

0 1 1 Testability BTB flush

1 0 1 Testability read TAG(2)

NOTES:
1. Applies to the embedded Pentium processor with MMX technology only.
2. Other combinations are reserved.
14-14 Embedded Pentium® Processor Family Developer’s Manual

Model Specific Registers and Functions

he read
3. Write the target address in TR10

4. Write the appropriate set address, entry fields and control bits in TR11.

To write an entry into the BTB for the embedded Pentium processor with MMX technology:

1. Disable BTB entry allocation by setting TR12.NBP=1 (see Feature Control section)

2. Write the tag address and history, offset, valid and prediction information in TR9

3. Write the target address in TR10

4. Write the appropriate set address and entry fields, way, bank, branch type and control bits in
TR11.

To read an entry from the BTB for the embedded Pentium processor:

1. Perform a testability read by writing to TR11 with the appropriate set address entry fields.

2. Read the tag address and history information from TR9.

3. Read the target address from TR10.

To read an entry from the BTB for the embedded Pentium processor with MMX technology:

1. Disable BTB entry allocation by setting TR12.NBP=1 (see Feature Control section)

2. Perform a testability read by writing to TR11 with the appropriate set address and entry fields,
way, bank and control bits.

3. Read the tag address, history information, offset, prediction and valid bits from TR9.

4. Read the target address from TR10.

5. Read the branch type from TR11.

6. Perform a testability read tag by writing to TR11 with the appropriate set address, way, bank
and control bits.

7. Read the branch tag from TR9

Note: Read Tag and Read data does not destroy the other’s cycle fields in TR9. This means that t
from TR9 can be done only once after both cycles were executed.

14.2.1.4 Parity Reversal Register (TR1)

A model specific register, TR1, the Parity Reversal Register (PRR), allows the parity check
mechanism to be tested. Figure 14-4 shows the format of the PRR.

Figure 14-4. Parity Reversal Register

A6241-01

6
3 ...

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

TR1 M
C

I
T

N
S

D
D

D
T

D
T
D

D
T
T

I
T
D

I
T
T

I
D
3

I
D
2

I
D
1

I
D
0

P
E
S

Parity Reversal Register

Reserved
Embedded Pentium® Processor Family Developer’s Manual 14-15

Model Specific Registers and Functions
Table 14-20 lists each of the bits in the parity reversal register and their function.

Writing a one into bits 2-12 reverses the sense of the parity generation for any write into the
corresponding array. This includes both normal cache replacements as well as testability writes and
data writes. Parity is checked during both normal reads and testability reads.

To test parity error detection, software should write a one into the appropriate bit of the parity
reversal register (PRR), perform a testability write into the array, and then perform a testability
read. Upon successful detection of the parity error, the Pentium processor asserts the IERR# pin
and may shutdown. Alternatively, after writing a one into the appropriate bit of the PRR, software
may perform a normal write and read of the array by creating a cache miss and doing a read.

As an option, software may mask the shutdown by setting PRR.NS to 1 if the system is unable to
recover from a shutdown. To determine if a parity error has occurred, software may read the parity
error summary bit, PRR.PES. Hardware sets this bit on any parity error, and it remains set until
cleared by software.

For the microcode, bad parity may be forced on a read by a transition of the PRR.MC bit from 0 to
1. No bad parity will be forced by setting the PRR.MC bit if the bit was already set.

Bit 0 of TR1 is read/write. The remaining bits are write only. The test registers should be written to
for testability accesses only. Writing to the test registers during normal operation causes
unpredictable behavior.

Table 14-20. Parity Reversal Register Bit Definition

Bit Name Description

PES Parity Error Summary, set on any parity error

NS
0 = set PRR.PES, assert IERR#, and shutdown on parity error

1 = set PRR.PES, and assert IERR# on parity error

IT code (instruction) cache tag

ID0 code cache data even bits 126, 124... 2,0

ID1 code cache data odd bits 127, 125... 3,1

ID2 code cache data even bits 254, 252... 130,128

ID3 code cache data odd bits 255, 253... 131, 129

ITT code TLB tag

ITD code TLB data

DT data cache tag

DD data cache data, use byte writes for individual access

DTT data TLB tag

DTD data TLB data

MC microcode, reverse parity on read
14-16 Embedded Pentium® Processor Family Developer’s Manual

Model Specific Registers and Functions
14.3 New Feature Control (TR12)

The new features of branch prediction, execution tracing, and instruction pairing in the Pentium
processor can be selectively enabled or disabled through individual bits in test register TR12
(Figure 14-5). The branch prediction, execution tracing, and instruction pairing features of the
Pentium processor family can be selectively enabled or disabled through individual bits in test
register TR12. In addition, level 1 caching can be disabled without affecting the PCD output to
allow testing of a second level cache.

Figure 14-5. Test Register (TR12)

A6242-01

TR2

Test Register 12

S
E

T
R

I
T
R

F
T
R

C
I

N
B
P

Reserved

NOTE: Bits TR12.19 and TR12.20 are reserved on the Pentium® processor (100/133/166 MHz)

6
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

D
C
I

C
C
I

Embedded Pentium® Processor Family Developer’s Manual 14-17

Model Specific Registers and Functions
TR12.NBP, TR12.TR, TR12.SE, and TR12.CI are initialized to zero on reset. This register is write
only and the reserved bits should be written with zeros.

Table 14-21. New Feature Controls

Name Position Function

NBP 0

No Branch Prediction controls the allocation of new entries in the BTB.
When TR12.NBP is clear, the code cache allocates entries in the BTB.
When TR12.NBP is set, no new entry is allocated in the BTB, however,
entries already in the BTB may continue to cause a BTB hit and result in the
pipeline being reloaded from the predicted branch target. To completely
disable branch prediction, first set TR12.NBP to 1 and then flush the entire
BTB by loading CR3.

TR 1

Execution Tracing controls the Branch Trace message Special Cycle. When
the TR12.TR bit is set to 1, a branch trace message special cycle is
generated whenever a taken branch is executed. Two cycles are produced:
one for the linear address of the instruction causing the taken branch, and
one for the branch target linear address.

SE 2

Single Pipe Execution controls instruction pairing. When TR12.SE is cleared
to zero, instructions are issued to both the u and v pipes contingent on
pairing restrictions. When TR12.SE is set to one, the v pipe is disabled and
instructions are issued only to the u pipe. Microcoded instructions are
designed to utilize both pipes concurrently, independent of the state of
TR12.SE. Note that all instructions requiring microcode are not pairable.

CI 3

Cache Inhibit controls line fill behavior. When TR12.CI is reset to 0, the on-
chip data and instruction caches operate normally. When TR12.CI is set to
1, all cache line fills are inhibited and all bus cycles due to cache misses are
run as single transfer cycles (CACHE# is not asserted). Unlike CR0.CD,
TR12.CI does not affect the state of the PCD output pin. This allows the first
level cache to be disabled while the second level cache is still active and
can be tested. Note that the contents of the instruction and data caches are
not affected by the state of TR12.CI, e.g., they are not flushed. The second
level cache test sequence should be: set TR12.CI to 1, flush the internal
caches, run the second level cache tests.

4-7 Reserved

FTR 8

Fast Execution Tracing is similar to Execution Tracing (TR12.TR). If
TR12.FTR is set to 1 while execution tracing is enabled (TR12.TR = 1), only
one branch trace message special cycle is produced containing the linear
address of the instruction causing the taken branch.

ITR 9 IO Trap Restart enables proper interrupt prioritization to support restarting
IO accesses trapped by System Management Mode.

10–18 Reserved

CCI 19† Code Cache Inhibit is the same instruction as Cache Inhibit (CI), but only
applies to the code cache.

DCI 20† Data Cache Inhibit is the same instruction as Cache Inhibit (CI), but only
applies to the data cache.

21–63 Reserved

† These bits are reserved on the Pentium processor (100/133/166).
14-18 Embedded Pentium® Processor Family Developer’s Manual

Model Specific Registers and Functions
14.4 Performance Monitoring

The processor includes features to measure and monitor various parameters that contribute to the
performance of the processor. This information can be then used for compiler and memory system
tuning. For memory system tuning, it is possible to measure data and instruction cache hit rates,
and time spent waiting for the external bus. The performance monitor allows compiler writers to
gauge the effectiveness of instruction scheduling algorithms by measuring address generation
interlocks and parallelism.

While the performance monitoring features that are provided by the Pentium processor are
generally model specific and available only to privileged software, the Pentium processor also
provides an architectural Time Stamp Counter that is available to the user. With this notable
exception, the performance monitor features and the events they monitor are otherwise
implementation dependent, and consequently, they are not considered part of the Pentium
processor architecture. The performance monitor features are expected to change in future
implementations.

Note: It is essential that software abide by the usage restrictions for accessing model specific registers as
discussed in section “Model Specific Register Usage Restrictions” on page 14-1.
Embedded Pentium® Processor Family Developer’s Manual 14-19

Model Specific Registers and Functions
14.4.1 Performance Monitoring Feature Overview

Processor performance monitoring features include:

14.4.2 Time Stamp Counter (TSC)

A dedicated, free-running, 64-bit time stamp counter is provided on chip. Note that on the Pentium
processor, this counter increments on every clock cycle, although it is not guaranteed that this will
be true on future processors. As a time stamp counter, the RDTSC instruction reports values that
are guaranteed to be unique and monotonically increasing. Portable software should not expect that
the counter reports absolute time or clock counts. The user level RDTSC (Read Time Stamp
Counter) instruction is provided to allow a program of any privilege level to sample its value. A bit
in CR4, TSD (Time Stamp Disable) is provided to disable this instruction in secure environments.
Supervisor mode programs may sample this counter using the RDMSR instruction or reset/preset
this counter with a WRMSR instruction. The counter is cleared after reset.

While the user level RDTSC instruction and a corresponding 64-bit time stamp counter will be
provided in all future Pentium processor compatible processors, access to this counter via the
RDMSR/WRMSR instructions is dependent upon the particular implementation.

Table 14-22. Architectural Performance Monitoring Features

RDTSC Read Time Stamp Counter - a user level instruction to provide read access to a 64-bit
free-running counter

RDPMC

Read Performance Monitoring Counter - this instruction enables reading of the
performance monitoring counters (in CPL = 3) provided bit 8 of CR4 (CR4.PCE) is set.

Note: The RDPMC instruction is only defined on the embedded Pentium processor with
MMX technology. Execution of the RDPMC instruction in a embedded Pentium
processor will result in an invalid opcode exception.

CPUID
(EDX.TSC)

Time Stamp Counter Feature Bit - Bit 4 of EDX is set to 1 to indicate that the processor
implements the TSC and RDTSC instruction

CR4.TSD
Time Stamp Disable - A method for a supervisor program to disable user access to the
time stamp counter in secure systems. When bit 2 of CR4 is set to 1, an attempt to
execute the RDTSC instruction generates an general protection exception (#GP).

Table 14-23. Model Specific Performance Monitoring Features

CTR0, CTR1 Counter 0, Counter 1 - two programmable counters

CESR Control and Event Select Register - programs CTR0, CTR1

TSC Time Stamp Counter - provides read and write access to the architectural 64-bit counter
in a manner that is model specific.

PM0/BP0,
PM1/BP1

Event Monitoring Pins - These pins allow external hardware to monitor the activity in
CTR0 and CTR1.
14-20 Embedded Pentium® Processor Family Developer’s Manual

Model Specific Registers and Functions

re or

ounter,
trol
 to be
itten

t field.
14.4.3 Programmable Event Counters (CTR0, CTR1)

Two programmable 40-bit counters CTR0 and CTR1 are provided. The implementation of these
two counters is slightly different between the embedded Pentium processor with MMX technology
and the embedded Pentium processor. In the embedded Pentium processor each counter may be
programmed to count any event from a pre-determined list of events. These events, which are
described in the Events section of this chapter, are selected by programming the Control and Event
Select Register (CESR). In the embedded Pentium processor with MMX technology some
additional events were added and cannot be assigned to either of the two counters independently.
These new events are paired, so when one event is assigned to counter 0, a second related event is
automatically assigned to counter 1. The counters are not affected by writes to CESR and must be
cleared or pre-set when switching to a new event. The counters are undefined after RESET.

Associated with each counter is an event pin (PM1/BP1, PM0/BP0) which externally signals the
occurrence of the selected event.

Note that neither the CTR0/CTR1 nor CESR are part of the processor state that is automatically
saved and restored during a context switch. If it is desired to coordinate the use of the
programmable counters in a multiprocessing system, it is the software’s responsibility to sha
restrict the use of these counters through a semaphore or other appropriate mechanism.

14.4.4 Control and Event Select Register (CESR)

A 32-bit Control and Event Select Register (CESR) is used to control operation of the
programmable counters and their associated pins. Figure 14-6 depicts the CESR. For each c
the CESR contains a 6-bit Event Select field (ES), a Pin Control bit (PC), and a three bit con
field (CC). It is not possible to selectively write a subset of the CESR. If only one event needs
changed, the CESR must first be read, the appropriate bits modified, and all bits must be wr
back. At reset, all bits in the Control and Event Select Register are cleared.

14.4.4.1 Event Select (ES0, ES1)

Up to two events may be monitored by placing the appropriate event code in the Event Selec
The events and codes are listed in the Events section of this chapter.

Figure 14-6. Control and Event Select Register

A6243-01

0
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1

CC1
P
C
1

P
C
0

ES1 ES0CC0

Reserved

TR2
Embedded Pentium® Processor Family Developer’s Manual 14-21

Model Specific Registers and Functions

at
at the
l clock

rflow
A
d
locks
pt,

r
 is
ociated
re
d until
14.4.4.2 Counter Control (CC0, CC1)

A three bit field is used to control the operation of the counter. the highest order bit selects between
counting events and counting clocks. The middle bit enables counting when the CPL=3. The low
order bit enables counting when the CPL=0, 1 or 2.

While a counter need not be stopped to sample its contents, it must be stopped and cleared or pre-
set before switching to a new event.

14.4.4.3 Pin Control (PC0, PC1)

Associated with CTR0 and CTR1 are two pins, PM0 and PM1 (PM0/BP0, PM1/BP1), and two bits
which control their operation, PC0 and PC1. These pins may be programmed by the PC0/PC1 bits
in the CESR to indicate either that the associated counter has incremented or that it has overflowed.
Note that the external signalling of the event on the pins will lag the internal event by a “few”
clocks as the signals are latched and buffered.

When the pins are configured to signal that a counter has incremented, it should be noted th
although the counters may increment by 1 or 2 in a single clock, the pins can only indicate th
event occurred. Moreover, since the internal clock frequency may be higher than the externa
frequency, a single external clock may correspond to multiple internal clocks.

A “count up to” function may be provided when the event pin is programmed to signal an ove
of the counter. Because the counters are 40 bits, a carry out of bit 39 indicates an overflow.
counter may be preset to a specific value less than 240 - 1. After the counter has been enabled an
the prescribed number of events has transpired, the counter will overflow. Approximately 5 c
later, the overflow is indicated externally and appropriate action, such as signaling an interru
may then be taken.

When the performance monitor pins are configured to indicate when the performance monito
counter has incremented and an “occurrence event” is being counted, the associated PM pin
asserted (high) each time the event occurs. When a “duration event” is being counted the ass
PM pin is asserted for the entire duration of the event. When the performance monitor pins a
configured to indicate when the counter has overflowed, the associated PM pin is not asserte
the counter has overflowed.

CC Meaning

000 Count Nothing (Disable Counter)

001 Count the selected Event while the CPL=0, 1 or 2

010 Count the selected Event while the CPL=3

011 Count the selected Event regardless of the CPL

100 Count Nothing (Disable Counter)

101 Count Clocks while the CPL=0, 1 or 2

110 Count Clocks while the CPL=3

111 Count Clocks regardless of the CPL

PC PM pin signals when the corresponding counter:

0 has incremented

1 has overflowed
14-22 Embedded Pentium® Processor Family Developer’s Manual

Model Specific Registers and Functions

tium
The PM0/BP0, PM1/BP1 pins also serve to indicate breakpoint matches during in Circuit
Emulation, during which time the counter increment or overflow function of these pins is not
available. After RESET, the PM0/BP0, PM1/BP1 pins are configured for performance monitoring,
however a hardware debugger may re-configure these pins to indicate breakpoint matches.

14.4.5 Performance Monitoring Events

Events may be considered to be of two types: those that count OCCURRENCES, and those that
count DURATION. Each of the events listed below is classified accordingly.

Occurrences events are counted each time the event takes place. If the PM0 or PM1 pins are
configured to indicate when a counter increments, they are asserted each clock the counter
increments. Note that if an event can happen twice in one clock the counter increments by 2,
however the PM0/1 pins are asserted only once.

For Duration events, the counter counts the total number of clocks that the condition is true. When
configured to indicate when a counter increments, the PM0 and PM1 pins are asserted for the
duration of the event.

Table 14-24 lists the events that can be counted, and their encodings for the Control and Event
Select Register.

The performance monitoring features present in the embedded Pentium processor have been
extended in the embedded Pentium processor with MMX technology. The event list is longer, and
there is a new instruction defined to facilitate use of the instruction monitoring. To leave room for
future additions all new embedded Pentium processor with MMX technology events are assigned
to just one of the two events counters (CTR0, CTR1). It is not possible to assign these events to any
of the two counters at will. “Twin events” (such as “D1 starvation and FIFO is empty”) are
assigned to different counters to allow their concurrent measurement.

The Read Performance Monitoring Counter (RDPMC) is implemented in the embedded Pen
processor with MMX technology. See the Intel Architecture Software Developer’s Manual for
more information about the RDPMC instruction.

Table 14-24. Performance Monitoring Events (Sheet 1 of 4)

Decimal
Encoding

Binary
Encoding

Counter
0

Counter
1 Performance Monitoring Event Occurrence or

Duration?

0 000000 Yes Yes Data Read Occurrence

1 000001 Yes Yes Data Write Occurrence

2 000010 Yes Yes Data TLB Miss Occurrence

3 000011 Yes Yes Data Read Miss Occurrence

4 000100 Yes Yes Data Write Miss Occurrence

5 000101 Yes Yes Write (hit) to M- or E-state lines Occurrence

6 000110 Yes Yes Data Cache Lines Written Back Occurrence

7 000111 Yes Yes External Snoops Occurrence

8 001000 Yes Yes External Data Cache Snoop Hits Occurrence

9 001001 Yes Yes Memory Accesses in Both Pipes Occurrence

10 001010 Yes Yes Bank Conflicts Occurrence

NOTE: Shaded areas only apply to the embedded Pentium® processor with MMX™ technology.
Embedded Pentium® Processor Family Developer’s Manual 14-23

Model Specific Registers and Functions
11 001011 Yes Yes Misaligned Data memory or I/O
References Occurrence

12 001100 Yes Yes Code Read Occurrence

13 001101 Yes Yes Code TLB Miss Occurrence

14 001110 Yes Yes Code Cache Miss Occurrence

15 001111 Yes Yes Any Segment Register Loaded Occurrence

16 010000 Yes Yes Reserved

17 010001 Yes Yes Reserved

18 010010 Yes Yes Branches Occurrence

19 010011 Yes Yes BTB Hits Occurrence

20 010100 Yes Yes Taken Branch or BTB hit Occurrence

21 010101 Yes Yes Pipeline Flushes Occurrence

22 010110 Yes Yes Instructions Executed Occurrence

23 010111 Yes Yes Instructions Executed in the v pipe
e.g. parallelism/pairing Occurrence

24 011000 Yes Yes Clocks while a bus cycle is in
progress (bus utilization) Duration

25 011001 Yes Yes Number of clocks stalled due to full
write buffers Duration

26 011010 Yes Yes Pipeline stalled waiting for data
memory read Duration

27 011011 Yes Yes Stall on write to an E- or M-state
line Duration

28 011100 Yes Yes Locked Bus Cycle Occurrence

29 011101 Yes Yes I/O Read or Write Cycle Occurrence

30 011110 Yes Yes Non-Cacheable memory reads Occurrence

31 011111 Yes Yes Pipeline stalled because of an
address generation interlock Duration

32 100000 Yes Yes Reserved

33 100001 Yes Yes Reserved

34 100010 Yes Yes FLOPs Occurrence

35 100011 Yes Yes Breakpoint match on DR10
Register Occurrence

36 100100 Yes Yes Breakpoint match on DR1 Register Occurrence

37 100101 Yes Yes Breakpoint match on DR2 Register Occurrence

38 100110 Yes Yes Breakpoint match on DR3 Register Occurrence

39 100111 Yes Yes Hardware Interrupts Occurrence

40 101000 Yes Yes Data Read or Data Write Occurrence

41 101001 Yes Yes Data Read Miss or Data Write Miss Occurrence

Table 14-24. Performance Monitoring Events (Sheet 2 of 4)

Decimal
Encoding

Binary
Encoding

Counter
0

Counter
1 Performance Monitoring Event Occurrence or

Duration?

NOTE: Shaded areas only apply to the embedded Pentium® processor with MMX™ technology.
14-24 Embedded Pentium® Processor Family Developer’s Manual

Model Specific Registers and Functions
42 101010 Yes No Bus Ownership Latency Duration

42 101010 No Yes Bus Ownership Transfers Occurrence

43 101011 Yes No MMX instructions executed in u
pipe Occurrence

43 101011 No Yes MMX instructions executed in v pipe Occurrence

44 101100 Yes No Cache M-Sate line Sharing Occurrence

44 101100 No Yes Cache Line Sharing Occurrence

45 101101 Yes No EMMS instructions executed Occurrence

45 101101 No yes Transition between MMX
instructions and FP instructions Occurrence

46 101110 Yes No Bus Utilization Due to processor
Activity Duration

46 101110 No Yes Writes to Non-Cacheable Memory Occurrence

47 101111 Yes No Saturating MMX instructions
executed Occurrence

47 101111 No Yes Saturations performed Occurrence

48 110000 Yes No Number of Cycles Not in HLT State Duration

48 110000 No Yes Number of Cycles Not in HLT State Duration

49 110001 Yes No MMX instruction data reads Occurrence

49 110001 No Yes MMX instructions data read misses Occurrence

50 110010 Yes No Floating Point Stalls Duration

50 110010 No Yes Taken Branches Occurrence

51 110011 Yes No D 1 Starvation and FIFO is empty Occurrence

51 110011 No Yes D1 Starvation and only one
instruction in FIFO Occurrence

52 110100 Yes No MMX instruction data writes Occurrence

52 110100 No Yes MMX instruction data write misses Occurrence

53 110101 Yes No Pipeline flushed due to wrong
branch prediction Occurrence

53 110101 No Yes
Pipeline flushes due to wrong
branch predictions resolved in WB-
stage

Occurrence

54 110110 Yes No Misaligned data memory references
on MMX instruction Occurrence

54 110110 No Yes Pipeline stalled waiting for MMX
instruction data memory read Duration

55 110111 Yes No Returns Predicted Incorrectly or not
predicted at all Occurrence

55 110111 No Yes Returns Predicted (Correctly and
Incorrectly) Occurrence

56 111000 Yes No MMX multiply unit interlock Duration

Table 14-24. Performance Monitoring Events (Sheet 3 of 4)

Decimal
Encoding

Binary
Encoding

Counter
0

Counter
1 Performance Monitoring Event Occurrence or

Duration?

NOTE: Shaded areas only apply to the embedded Pentium® processor with MMX™ technology.
Embedded Pentium® Processor Family Developer’s Manual 14-25

Model Specific Registers and Functions
14.4.6 Description of Events

The following descriptions clarify the events. The event codes are provided in parenthesis.

Data Read (0, 000000), Data Write (1, 000001), Data Read or Data Write (40, 101000):

These are memory data reads and/or writes (internal data cache hit and miss combined), I/O is not
included. The individual component reads and writes for split cycles are counted individually. Data
Memory Reads that are part of TLB miss processing are not included. These events may occur at a
maximum of two per clock.

Data TLB Miss (2, 000010):

This event counts the number of misses to the data cache translation look-aside buffer.

Data Read Miss (3, 000011), Data Write Miss (4, 000100), Data Read Miss or Data
Write Miss (41, 101001):

These are memory read and/or write accesses that miss the internal data cache whether or not the
access is cacheable or non-cacheable. Additional reads to the same cache line after the first
BRDY# of the burst linefill is returned but before the final (fourth) BRDY# has been returned, will
not cause the Data Read Miss counter to be incremented additional times. Data accesses that are
part of TLB miss processing are not included. Accesses directed to I/O space are not included.

Write (hit) to M- or E-state lines (5, 000101):

This measures the number of write hits to exclusive or modified lines in the data cache. (These are
the writes which may be held up if EWBE# is inactive.) This event may occur at a maximum of
two per clock.

Data Cache Lines Written Back (6, 000110):

This counts ALL Dirty lines that are written back, regardless of the cause. Replacements and
internal and external snoops can all cause writeback and are counted.

56 111000 No Yes MOVD/MOVQ state stall due to
previous operation Duration

57 111001 Yes No Returns Occurrence

57 111001 No Yes Reserved

58 111010 Yes No BTB false entries Occurrence

58 111010 No Yes BTB miss prediction on a Not-Taken
branch Occurrence

59 111011 Yes No
Number of clocks stalled due to full
write buffers while executing MMX
instructions

Duration

59 111011 No Yes Stall on MMX instruction write to E-
or M-state line Duration

Table 14-24. Performance Monitoring Events (Sheet 4 of 4)

Decimal
Encoding

Binary
Encoding

Counter
0

Counter
1 Performance Monitoring Event Occurrence or

Duration?

NOTE: Shaded areas only apply to the embedded Pentium® processor with MMX™ technology.
14-26 Embedded Pentium® Processor Family Developer’s Manual

Model Specific Registers and Functions
External Snoops (7, 000111), Data Cache Snoop Hits (8, 001000):

The first event counts accepted external snoops whether they hit in the code cache or data cache or
neither. Assertions of EADS# outside of the sampling interval are not counted. No internal snoops
are counted. The second event applies to the data cache only. Snoop hits to a valid line in either the
data cache, the data line fill buffer, or one of the write back buffers are all counted as hits.

Memory Accesses in Both Pipes (9, 001001):

Data memory reads or writes which are paired in the pipeline. Note that these accesses are not
necessarily run in parallel due to cache misses, bank conflicts, etc.

Bank Conflicts (10, 001010):

These are the number of actual bank conflicts.

Misaligned Data Memory or I/O References (11, 001011):

Memory or I/O reads or writes that are misaligned. A two or four byte access is misaligned when it
crosses a four byte boundary; an eight byte access is misaligned when it crosses an eight byte
boundary. Ten byte accesses are treated as two separate accesses of eight and two bytes each.

Code Read (12, 001100), Code TLB Miss (13, 001101), Code Cache Miss (14, 001110):

Total instruction reads and reads that miss the code TLB or miss the internal code cache whether or
not the read is cacheable or non-cacheable. Individual eight byte non-cacheable instruction reads
are counted.

Any Segment Register Loaded (15, 001111):

Writes into any segment register in real or protected mode including the LDTR, GDTR, IDTR, and
TR. Segment loads are caused by explicit segment register load instructions, far control transfers,
and task switches. Far control transfers and task switches causing a privilege level change will
signal this event twice. Note that interrupts and exceptions may initiate a far control transfer.

Branches (18, 010010):

In addition to taken conditional branches, jumps, calls, returns, software interrupts, and interrupt
returns, the Pentium processor treats the following operations as causing taken branches:
serializing instructions, VERR and VERW instructions, some segment descriptor loads, hardware
interrupts (including FLUSH#), and programmatic exceptions that invoke a trap or fault handler.
Both Taken and Not Taken Branches are counted. The pipe is not necessarily flushed. The number
of branches actually executed is measured, not the number of predicted branches.

BTB Hits (19, 010011):

Hits are counted only for those instructions that are actually executed.

Taken Branch or BTB Hit (20, 010100):

This is a logical OR of taken branches and BTB hits (defined above). It represents an event that
may cause a hit in the BTB. Specifically, it is either a candidate for a space in the BTB, or it is
already in the BTB.
Embedded Pentium® Processor Family Developer’s Manual 14-27

Model Specific Registers and Functions
Pipeline Flushes (21, 010101):

BTB Misses on taken branches, mis-predictions, exceptions, interrupts, and some segment
descriptor loads all cause pipeline flushes. This event counter will not be incremented for
serializing instructions (serializing instructions cause the prefetch queue to be flushed but will not
trigger the Pipeline Flushed event counter) and software interrups (software interrupts do not flush
the pipeline).

Instructions Executed (22, 010110):

Up to two per clock. Invocations of a fault handler are considered instructions. All hardware and
software interrupts and exceptions will also cause the count to be incremented. Repeat prefixed
string instructions will only increment this counter once despite the fact that the repeat loop
executes the same instruction multiple times until the loop criteria is satisfied. This applies to all
the Repeat string instruction prefixes (i.e., REP, REPE, REPZ, REPNE, and REPNZ). This counter
will also only increment once per each HLT instruction executed regardless of how many cycles
the processor remains in the HALT state.

Instructions Executed in the v pipe e.g. parallelism/pairing (23, 010111):

Same as the Instructions executed counter except it only counts the number of instructions actually
executed in the v pipe. It indicates the number of instructions that were paired.

Clocks while a bus is in progress (bus utilization) (24, 011000):

Including HLDA, AHOLD, BOFF# clocks.

Number of clocks stalled due to full write buffers (25, 011001):

This event counts the number of clocks that the internal pipeline is stalled due to full write buffers.
Full write buffers stall data memory read misses, data memory write misses, and data memory
write hits to S state lines. Stalls on I/O accesses are not included.

Pipeline stalled waiting for data memory read (26, 011010):

Data TLB Miss processing is also included. The pipeline stalls while a data memory read is in
progress including attempts to read that are not bypassed while a line is being filled.

Locked Bus Cycle (28, 011100):

LOCK prefix or LOCK instruction, Page Table Updates, and Descriptor Table Updates. Only the
Read portion of the Locked Read-Modify-Write is counted. Split Locked cycles (SCYC active)
count as two separate accesses. Cycles restarted due to BOFF# are not recounted.

I/O Read or Write Cycle (29, 011101):

Bus cycles directed to I/O space. Misaligned I/O accesses will generate two bus cycles. Bus cycles
restarted due to BOFF# are not re-counted.

Non-cacheable memory reads (30, 011110):

Non-cacheable instruction or data memory read bus cycles. Includes read cycles caused by TLB
misses; does not include read cycles to I/O space. Cycles restarted due to BOFF# are not re-
counted.
14-28 Embedded Pentium® Processor Family Developer’s Manual

Model Specific Registers and Functions
Pipeline stalled because of an address generation interlock (31, 011111):

Number of address generation interlocks (AGIs). An AGI occurring in both the u- and v- pipelines
in the same clock signals this event twice. An AGI occurs when the instruction in the execute stage
of either of u- or v-pipelines is writing to either the index or base address register of an instruction
in the D2 (address generation) stage of either the u- or v- pipelines.

FLOPs (34, 100010);

Number of floating point adds, subtracts, multiplies, divides, remainders, and square roots. The
transcendental instructions consist of multiple adds and multiplies and will signal this event
multiple times. Instructions generating the divide by zero, negative square root, special operand, or
stack exceptions will not be counted. Instructions generating all other floating point exceptions will
be counted. The integer multiply instructions and other instructions which use the floating-point
arithmetic circuitry will be counted.

Breakpoint match on DR0 Register (35, 100011),

Breakpoint match on DR1 Register (36, 100100),

Breakpoint match on DR2 Register (37, 100101),

Breakpoint match on DR3 Register (38, 100110):

If programmed for one of these breakpoint match events, the performance monitor counters will be
incremented in the event of a breakpoint match whether or not breakpoints are enabled. However,
if breakpoints are not enabled, code breakpoint matches will not be checked for instructions
executed in the v-pipe and will not cause this counter to be incremented (they are checked on
instruction executed in the u-pipe only when breakpoints are not enabled). These events correspond
to the signals driven on the BP[3:0] pins. Please refer to the Debugging chapter of this volume for
more information.

Hardware Interrupts (39, 100111):

Number of taken INTR and NMI only.

Bus ownership latency (42, 101010/0), Bus ownership transfers (42, 101010/1):

The first event measures the time from LRM bus ownership request to bus ownership granted, the
time from the earlier of PBREQ (0), PHITM# or HITM# to PBGNT. The second event is count of
the number of PBREQ (0). The ratio of these two events is the average stall time due to bus
ownership conflict.

MMX instructions executed in U pipe (43, 101011/0):

Total number of MMX instructions executed in U-pipe.

MMX instructions executed in V pipe (43, 101011/1):

Total number of MMX instructions executed in V-pipe.
Embedded Pentium® Processor Family Developer’s Manual 14-29

Model Specific Registers and Functions

sed by

.

ts
ree

 event
cuting
y the
nnot

 buffer
data
Cache M-state line sharing (44, 101100/0):

Counts the number of times a processor identified a hit to a modified line due to a memory access
in the other processor (PHITM (O)). If the average memory latencies of the system are known, this
event enables the user to count the Write Backs on PHITM(O) penalty and the Latency on Hit
Modified(I) penalty.

Cache line sharing (44, 101100/1):

Counts the number of shared data lines in the L1 cache (PHIT (O)).

EMMS instructions executed (45, 101101/0):

Counts number of EMMS instructions executed.

Transition between MMX instructions and FP instructions (45, 101101/1):

Counts first floating point instruction following any MMX instruction or first MMX instruction
following a floating point instruction. May be used to estimate the penalty in transitions between
FP state and MMX state. An even count indicates the processor is in MMX state. an odd count
indicates it is in FP state.

Bus utilization due to processor activity (46, 101110/0):

Counts the number of clocks the bus is busy due to the processor’s own activity, i.e., the bus
activity which is caused by the processor.

Writes to non-cacheable memory (46, 101110/1):

Counts the number of write accesses to non-cacheable memory. It includes write cycles cau
TLB misses and I/O write cycles. Cycles restarted due to BOFF# are not recounted.

Saturating MMX instructions executed (47, 101111/0):

Counts saturating MMX instructions executed, independently of whether or not they actually
saturated. Saturating MMX instructions may perform either add, subtract or pack operations

Saturations performed (47, 101111/1):

Counts number of MMX instructions that used saturating arithmetic and that at least one of i
results actually saturated; i.e., if an MMX instruction operating on four dwords saturated in th
out of the four results, the counter will be incremented by one only.

Number of cycles not in HLT state (48, 110000/0):

This event counts the number of cycles the processor is not idle due to HLT instruction. This
will enable the user to calculate “net CPI”. Note that during the time that the processor is exe
the HLT instruction, the Time Stamp Counter is not disabled. Since this event is controlled b
Counter Controls CC0, CC1 it can be used to calculate the CPI at CPL=3 which the TSC ca
provide.

Clocks stalled on Data cache TLB miss (48, 110000/1):

Counts the number of clocks the pipeline is stalled due to a data cache translation look-aside
(TLB) miss. This is the same as the event with encoding 011010 (pipeline stalled waiting for
memory read), but only for TLB miss.
14-30 Embedded Pentium® Processor Family Developer’s Manual

Model Specific Registers and Functions

ns
the
ingle
fined
econd
o

es

ranches
 later
peline

ber of
 is the

.

MMX instruction data reads (49, 110001/0):

Analogous to “Data reads,” counting only MMX instruction accesses.

MMX instruction data read misses (49, 110001/1):

Analogous to “Data read misses,” counting only MMX instruction accesses.

Floating Point stalls (50, 110010/0):

This event counts the number of clocks while pipe is stalled due to a floating-point freeze.

Taken Branches (50, 110010/1):

This event counts the number of taken branches.

D1 starvation and FIFO is empty (51, 110011/0), D1 starvation and only one
instruction in FIFO (51, 110011/1):

The D1 stage can issue 0, 1, or 2 instructions per clock if those are available in an instructio
FIFO buffer. The first event counts how many times D1 cannot issue ANY instructions since
FIFO buffer is empty. The second event counts how many times the D1-stage issues just a s
instruction since the FIFO buffer had just one instruction ready. Combined with previously de
events, Instruction Executed (010110) and Instruction Executed in the V-pipe (010110), the s
event enables the user to calculate the numbers of time pairing rules prevented issuing of tw
instructions.

MMX instruction data writes (52, 110001/1):

Analogous to “Data writes,” counting only MMX instruction accesses.

MMX instruction data write misses (52, 110100/1):

Analogous to “Data write misses,” counting only MMX instruction accesses.

Pipeline flushes due to wrong branch prediction (53, 110101/0), Pipeline flushes
due to wrong branch prediction resolved in WB-stage(53, 110101/1):

Counts any pipeline flush due to a branch which the pipeline did not follow correctly. It includ
cases where a branch was not in the BTB, cases where a branch was in the BTB but was
mispredicted, and cases where a branch was correctly predicted but to the wrong address. B
are resolved in either the Execute stage (E-stage) or the Writeback stage (WB-stage). In the
case, the misprediction penalty is larger by one clock. The two events count the number of pi
flushes due to wrong branch predictions. The first event counts the number of wrong branch
predictions resolved in either the E-stage or the WB-stage. The second event counts the num
wrong branch prediction resolved in the WB-stage. The difference between these two counts
number of E-stage resolved branches.

Misaligned data memory reference on MMX instruction (54, 110110/0):

Analogous to “Misaligned data memory reference,” counting only MMX instruction accesses

Pipeline stalled waiting for MMX instruction data memory read (54, 110110/1):

Analogous to “Pipeline stalled waiting for data memory read,” counting only MMX instruction
accesses.
Embedded Pentium® Processor Family Developer’s Manual 14-31

Model Specific Registers and Functions

on

s.
Returns predicted incorrectly or not predicted at all (55, 110111/0):

These are the actual number of Returns that were either incorrectly predicted or were not predicted
at all. It is the difference between the total number of executed returns and the number of returns
that were correctly predicted. Only RET instructions are counted (e.g., IRET instructions are not
counted.).

Returns predicted (correctly and incorrectly) (55, 110111/1):

This is the actual number of Returns for which a prediction was made. Only RET instructions are
counted (e.g. IRET instructions are not counted).

MMX multiply unit interlock (56, 111000/0):

This is the number of clocks the pipe is stalled since the destination of previous MMX multiply
instruction is not ready yet. The counter will not be incremented if there is another cause for a stall.
For each occurrence of a multiply interlock this event will be counted twice (if the stalled
instruction comes on the next clock after the multiply) or by one (if the stalled instruction comes
two clocks after the multiply).

MOVD/MOVQ store stall due to previous operation (56, 111000/1):

Number of clocks a MOVD/MOVQ store is stalled in D2 stage due to a previous MMX operation
with a destination to be used in the store instruction.

Returns (57, 111001/0):

This is the actual number of Returns executed. Only RET instructions are counted (e.g., IRET
instructions are not counted). Any exception taken on a RET instruction and any interrupt
recognized by the processor on the instruction boundary prior to the execution of the RET
instruction will also cause this counter to be incremented.

BTB false entries (58, 111010/0):

Counts the number of false entries in the Branch Target Buffer. False entries are causes for
misprediction other than a wrong prediction.

BTB miss prediction on a Not-Taken Branch (58, 111010/1):

Counts the number of times the BTB predicted a Not-Taken branch as Taken.

Number of clocks stalled due to full write buffers while executing MMX instructions
(59, 111011/0):

Analogous to “Number of clocks stalled due to full write buffers,” counting only MMX instructi
accesses.

Stall on MMX instruction write to an E- or M-state line (59, 111011/1):

Analogous to “Stall on write to an E- or M-state line,” counting only MMX instruction accesse
14-32 Embedded Pentium® Processor Family Developer’s Manual

Index

-

#, defined 1-2
16-bit memories 6-2
3.3 V inputs and outputs 7-3
32-bit memories 6-2
64-bit memories 6-2

interfacing 6-4
8259A 7-4

A
A20M# 12-9

Address 20 Mask signal 5-1
A31-A3

Address signals 5-2
Additional Address Strobe signal 5-4
Address Hold signal 5-5
Address Parity Check signal 5-7
Address parity checking cycles 6-45
Address Parity signal 5-6
Address signals 5-2
Address Strobe signal 5-3
Addressing, segments 1-5
ADS# 5-3
ADSC# 5-4
Advanced Programmable Interrupt Controller 2-4, 3-35

see also APIC
AHOLD 5-5

deassertion restrictions 6-37
ALU operations 3-3
AP 5-6
APCHK# 5-7, 6-28
APIC 2-2, 3-32, 3-35

bus 3-37
configuration modes 3-37

Bypass mode 3-38
Masked mode 3-38
Normal mode 3-37
Through Local mode 3-38

data memory accesses 3-37
dual processing 3-39
dual processors 4-7
ID 3-39
interface 3-37
Lock Step operation 4-2
response to HOLD 3-39
software disabling 3-38

APIC Enable signal 5-8
APICEN 5-8
Architectural features 3-1
Assert, defined 1-6
Auto Halt Powerdown state 3-43, 12-16

B
Backoff signal 5-13
Back-off timing 6-22
Back-to-back cycles 6-45
BE7#-BE0# 5-9

generating address signals 6-3

BF2-BF0 5-11
BHE# 6-3

when active 6-4
Binary numbers 1-4
BIST 9-1

register states 4-4
Bit order 1-3
BLE# 6-3

when active 6-3
BOFF# 5-13, 6-21

timing 6-22
Boundary scan 2-2, 9-9

architecture 9-2
dual processors 4-26

Boundary Scan register 9-4
bit order for Pentium® processor 9-10
bit order for Pentium® processor with MMX™ technol

ogy 9-10
BP3-BP0 5-14
Branch prediction 2-1, 2-3, 3-3, 3-5

algorithm 3-4
BRDY# 3-6
changes with MMX technology processors 3-7
segmentation 3-6
SMM 3-6

Branch Target Buffer 2-3, 3-3, 3-5
Command Test register 14-14
direct access 14-14
test registers 14-12
testability cycles 14-14

Branch Trace message 11-1
special cycle 6-27

Branching upon numeric condition codes 3-10
BRDY# 5-15, 6-13
BRDYC# 5-16
Breakpoint signals 5-14
BREQ 5-16
BTB 3-3
BTB Target Test register 14-14
Buffer models 7-4

parameters 8-5
Buffer size selection 8-4
Buffers

linefill 3-29
writeback 3-29

Built in Self-Test (BIST) 4-2
Burst cycles 6-13

read 6-14
write 6-16

Burst order 6-14
Burst Ready signal 5-15, 5-16
Burst writeback bus cycle 6-11
Bus Check signal 5-17
Bus cycles

address parity checking 6-45
back-to-back 6-45
branch trace message 6-27
burst 6-13
burst order 6-14
burst read 6-14
Embedded Pentium® Processor Family Developer’s Manual Index-1

Index
burst write 6-16
cache consistency 6-33
cache line state 6-44
cycle ordering due to BOFF 6-44
cycle pipelining 6-44
dual processing 6-43–6-46
floating-point error handling 6-46
flush 6-26, 6-46
halt 6-27
HOLD/HLDA 6-24
inquire 6-19, 6-33
interrupt acknowledge 6-25
non-pipelined read and write 6-12
PCHK# assertion 6-45
pipelined 2-3, 6-28
shutdown 6-26
single-transfer 6-11
slow burst read 6-16
special 6-26
special flush 6-27
Stop Grant 6-27, 12-13, 12-14
synchronous FLUSH# and RESET 6-45
terminology 6-10
writeback 6-16
writeback special cycle 6-27

Bus error handling 6-28
Bus Hold 6-23

dual processors 4-24
signal 5-33

Bus Hold Acknowledge signal 5-32
Bus Lock signal 5-41
Bus operation 2-2
Bus Request signal 5-16
Bus snarfing 4-25
Bus states 6-8

T1 6-10
T12 6-10
T2 6-10
T2P 6-10
TD 6-10

BUSCHK# 5-17, 10-5
Bus-to-Core Frequency Ratio signals 5-11
Bus-to-core ratio 3-40
BYPASS instruction 9-9
Bypass register 9-4
Byte Enable Output signals 5-9, 6-2
Byte order 1-3
Byte swapping logic

external 6-6

C
Cache 3-17

accessing for testing 14-6
code 2-1, 2-3, 3-26
data 2-1, 2-3
disabling 3-20
flushing 3-23
generating PWT and PCD 3-21
inquire cycle 3-26

line fill 3-24
MESI protocol 3-23
operating modes 3-19
organization 3-17
page cacheability 3-21
parity bits 3-19
read cycle 3-24
replacement strategy 3-18
snooping 3-19, 3-26
state transitions 3-24
structure 3-19
write cycle 3-25

Cache consistency
dual processors 4-13

Cache consistency cycles 6-33
Cache Control Test register 14-5
Cache Data Test register 14-5
Cache Enable signal 5-40
Cache Flush signal 5-28
Cache flushing

scenarios 12-8
System Management Mode 12-7

Cache line state cycle 6-44
Cache Status Test register 14-5
Cache test registers 14-4
CACHE# 5-18
Cacheability signal 5-18
Cached lines

pipelined 6-29
Checker mode 4-2
Checker processor 2-4
Clear, defined 1-6
CLK 5-19
Clock control 12-11
Clock control state machine 12-15
Clock signal 5-19

measurement 8-9
Code cache 2-1, 2-3, 3-26
Code read bus cycle 6-11
Compatibility

software 1-3
Configuration features 4-1
Configuration modes

Checker 4-2
Master 4-2

Connection specifications 7-2
Connectors for debug port 13-2
Control and Event Select register 14-21
Core Supply Voltage 5-63
Counters

programmable event 14-21
time stamp 14-20

CPU Data/Code signal 5-21
CPU Type Definition signal 5-20
CPUID instruction 3-44

dual processors 4-7
CPUTYP 5-20
Cycle ordering due to BOFF# 6-44
Cycle pipelining 6-44
Index-2 Embedded Pentium® Processor Family Developer’s Manual

Index
D
D/C# 5-21
D/P# 5-22
D63-D0 5-21
Data bus 2-1
Data cache 2-1, 2-3

access 3-3
Data formats

memory 3-14
Data Line signals 5-21
Data Parity Check signal 5-47
Data Parity signals 5-23
Data transfers 6-2
Dead clock timings 6-32
Deassert, defined 1-6
Debug port

implementation examples 13-4–13-8
signal quality 13-4
signals 13-2–13-4

Debug port adapter
dual processor systems 13-12
uniprocessor systems 13-10

Debug port connector 13-1
pinout 13-14

Decode unit 2-4
Decode1 stage 3-3
Decode2 stage 3-3
Decoupling 7-2

recommendations 7-3
Device ID register 9-4

values 9-5
Diodes 8-5
Direct cache access 14-6
Documents online 1-6
DOS address, defined 1-6
DP7-DP0 5-23
DPEN# 5-24
Dual Processor Bus Grant signal 5-45
Dual Processor Bus Request signal 5-46
Dual Processor Enable signal 5-24
Dual Processor/Primary Processor signal 5-22
Dual processors 2-2, 2-6, 3-30, 3-31

and Stop Grant cycles 12-13
arbitration 3-31, 3-32, 4-10–4-12
BOFF# signal 4-24
bootup protocol 4-7
boundary scan 4-26
bus arbitration 4-23
bus hold 4-24
bus interface 4-21
bus snarfing 4-25
cache coherency 3-31, 3-33
cache consistency 4-13
cache flushes 12-9
configuration 2-5
CPUID 4-7
debug port adapter 13-12
designing with 4-7, 4-21
detecting presence 4-8

determining the MRM 4-26
flush cycles 4-22
INIT sequences 4-26
interrupts 4-25
locked cycles 4-14
pin functions 4-27
pin modification 4-14
pipelining 4-22
power management 4-25
signal differences 5-1
SMI# delivery options 12-3
Socket 7 processor detection 4-26
start-up 4-8
state transitions 4-19–4-20
STPCLK# considerations 12-12
strong write ordering 4-25
System Management Mode (SMM) 4-25
using SMIACT# 12-5

Dual-processor systems
Three-State Test Mode 9-2

E
EADS# 5-25
EAX register 4-2
Electrical differences between processors 7-1
Emulator probe 13-1
ERR# 5-34
EWBE# 5-26
Exceptions

machine check 10-4
notation 1-5

Exclusive state 3-24
Execution tracing 2-2, 11-1
Expanded address, defined 1-6
External Address Strobe signal 5-25
External bus frequency 3-40
External byte swapping logic 6-6
External Interrupt signal 5-38
External interrupts 3-29
External Write Buffer Empty signal 5-26
EXTEST instruction 9-4, 9-9

F
Feature flags

APIC 3-45
CX8 3-45
DE 3-45
FPU 3-45
MCA 3-45
MCE 3-45
MMX technology 3-45
MSR 3-45
MTRR 3-45
PAE 3-45
PGE 3-45
PSE 3-45
TSC 3-45
Embedded Pentium® Processor Family Developer’s Manual Index-3

Index
VME 3-45
Features of embedded Pentium® processor 2-1
FERR# 5-27
Fetch pipeline stage 2-2, 2-3
First order output buffer mode

parameters 8-3
Floating-point error handling cycles 6-46
Floating-point Error signal 5-27
Floating-point instructions

issuing 3-8
pairing 3-8

Floating-point pipeline stages 3-8
Floating-point unit 2-1, 2-4, 3-1, 3-7

bypasses 3-10
Flush cycles 6-26, 6-46

dual processors 4-22
special 6-27

FLUSH# 5-28, 6-26
System Management Mode 12-7
Three-state Test Mode 4-2

FPU
see Floating-point unit

Fractional bus operation 2-6
Fractional bus speed 3-40
FRC

<italic>see Functional redundancy checking
FRCMC# 5-29
Frequency

bus-to-core ratio 3-40
Functional Redundancy Check Error signal 5-34
Functional redundancy checking 2-4, 4-2, 10-6
Functional Redundancy Checking Master signal 5-29
FXCH 2-4

H
Halt special cycle 6-27
Hexadecimal numbers 1-4
HIT# 5-30
HITM# 5-31
HLDA 5-32

example 6-23
HOLD 5-33

example 6-23

I
I/O instruction restart 3-43, 12-1
I/O read bus cycle 6-11
I/O space 6-1
I/O Supply Voltage signal 5-63
I/O write bus cycle 6-11
IDCODE instruction 9-4
IEEE 1149.1 Test Access Port 9-2
IERR# 10-7

BIST 4-2
IGNNE# 5-36
Ignore Numeric Exception signal 5-36
INC pins 7-4

INIT 5-37
BIST 4-2
initiating self-test 9-1
register states 4-4

INIT IPI 4-8
INIT sequences

dual processors 4-26
Initialization 4-3
Initialization signal 5-37
Input buffer model parameters 8-5
Inquire Cycle Hit/Miss signal 5-30
Inquire Cycle Hit/Miss to a Modified Line signal 5-31
Inquire cycles 6-19, 6-33

rate of 6-40
Instruction execution through pipeline 3-2
Instruction FIFO 3-2, 3-15
Instruction operands 1-4
Instruction pairing 3-4, 3-5
Instruction pipelines 2-4
Instruction prefetch 3-3
Instruction register 9-5
Instruction set 2-3

MMX™ technology 3-14
Instruction stack 3-8
Instructions

BYPASS 9-9
EXTEST 9-9
IDCODE 9-4
mixing instruction types 3-17
pairable 3-4
PRELOAD 9-9
RUNBIST 9-5, 9-7
SAMPLE 9-9
serializing 3-28

Instructions, notational conventions 1-2
Integer instruction pairing 3-4
Integer instructions flow 3-1
Integer pipeline 3-2
Intel reserved bus cycle 6-11
Intel386™ microprocessor

application software compatibility 2-3
Intel486™ microprocessor

address signals 6-2
application software compatibility 2-3
flush cycles 6-26
testability 9-1

Interfacing to the processor 13-1
Internal cache 3-17
Internal snooping 6-40
Interrupt acknowledge bus cycle 6-11, 6-25
Interrupts

dual processors 4-25
external 3-29
priority 3-29
System Management Mode 12-1

INTR 5-38
INV 5-39
Invalid state 3-24
Invalidate Cache signal 6-27
Invalidation Request signal 5-39
Index-4 Embedded Pentium® Processor Family Developer’s Manual

Index
INVD 6-27
IPI, start-up for dual processors 4-8

K
KEN# 5-40

sampling for pipelined cycles 6-31

L
Least recent master 3-31, 4-9
Level 1 debug port 13-1
Level 2 debug port 13-1
Linefill buffers 3-29
LINT1-LINT0 5-41
Local Interrupt 1 and 0 signals 5-41
Lock Step operation 4-2
LOCK# 5-41, 6-17
Locked cycle sequences 6-44
Locked cycles

bus arbitration 4-9
dual processors 4-14
misaligned 6-21
timing 6-20
two consecutive 6-20

Locked operations 6-17
Low inductance capacitors 7-3
LRU 3-17

M
M/IO# 5-42
Machine Check Address register 10-4
Machine check exception 10-4
Machine Check Type register 10-4
Master mode 4-2
Master processor 2-4
Measurements, defined 1-2
Memory

interfacing to 16-bit 6-2
interfacing to 32-bit 6-2
interfacing to 64-bit 6-2, 6-4
organization 6-1

Memory data formats 3-14
Memory Input/Output signal 5-42
Memory Management Unit 2-3
Memory read bus cycle 6-11
Memory write bus cycle 6-11
MESI protocol 2-1, 3-17, 3-23

exclusive state 3-24
invalid state 3-24
modified state 3-24
shared state 3-24

MMX instruction operands 3-12
MMX instructions

pairing 3-16
MMX™ technology 2-2, 2-3, 3-11

data formats 3-14
data types 3-11, 3-12

instruction set 3-11, 3-14
pipeline stage summary 3-16
programming environment 3-11
register data formats 3-14
registers 3-11

Model specific registers 3-46
defined 14-1
descriptions 14-2

Modified (M) state 3-24, 6-18
Most recent master 3-31, 4-9

determining which processor 4-26
MSR

see Model specific registers
M-state 6-18

N
NA# 5-43, 6-9, 6-28
NC pins 7-4
Next Address signal 5-43
NMI 5-44

invoking to exit shutdown 6-27
Non-Maskable Interrupt signal 5-44
Notation

bit and byte order 1-3
exceptions 1-5
hexadecimal and binary numbers 1-4
instruction operands 1-4
reserved bits 1-3
segmented addressing 1-5

O
On-chip cache 3-17
Online help 1-6
Operand

instruction 1-4
Operands 3-8
Operations

serializing 3-28
Overshoot 8-10

Pentium® processor 8-6
Pentium® processor with MMX™ technology 8-8

P
Packed data types 3-12
Page cacheability 3-21
Page Cacheability Disable signal 5-46
Page Writethrough signal 5-53
Pairable instructions 3-4
Pairing 3-4

exceptions 3-5
Parity 2-1
Parity Enable signal 5-51
Parity Reversal register 14-15
Part number 9-5
PBGNT# 5-45
PBREQ# 5-46
Embedded Pentium® Processor Family Developer’s Manual Index-5

Index
PC/AT address, defined 1-6
PCD 3-21, 5-46
PCHIT# 5-48
PCHITM# 5-49
PCHK# 5-47, 6-28
PCHK# assertion cycles 6-45
PEN# 5-51
Performance monitoring 2-2, 14-19

architectural features 14-20
events 14-23
model specific features 14-20
signals 5-52

PICCLK 5-50
PICD1-PICD0 5-51
Pins

see signal name
Pipeline

integer 3-2
Pipeline stage 3-1

floating-point 3-8
MMX™ technology 3-15
summary for MMX™ technology 3-16

Pipelining 2-1
bus cycles 6-28
dual processors 4-22

PM1-PM0 5-52
Power management 3-43

dual processors 4-25
features 12-1

Power supplies
differences between the processors 7-1

Power up specifications 4-1
PRDY 5-53
Prefetch buffer 3-4
Prefetch stage 3-2
PRELOAD instruction 9-4, 9-9
Primary processor 2-6, 3-30, 3-31
Private bus 3-30
Private Inquire Cycle/Hit Miss signal 5-48
Private Inquire Cycle/Hit Miss to a Modified Line signal 5-49
Probe Ready signal 5-53
Processor features 2-1
Processor Interrupt Controller Clock signal 5-50
Processor Interrupt Controller Data signals 5-51
Product literature, ordering 1-7
Programmable counters 14-21
Programmer generated locked operations 6-18
PWT 3-21, 5-53

R
R/S# 5-54
Read cycles

burst 6-14
pipelined, back-to-back 6-30
slow burst 6-16

Redundancy checking 2-2
Register data formats

MMX™ technology 3-14
Registers

Boundary Scan 9-4
BTB 14-12
Bypass 9-4
Cache Test 14-4
Control and Event Select 14-21
Device ID 9-4
EAX 4-2
Instruction 9-5
Machine Check Address 10-4
Machine Check Type 10-4
model specific 14-2
notational conventions 1-3
Parity Reversal 14-15
Runbist 9-5
Test 14-3, 14-17
test

see also Test registers
Test Access Port 9-4
TLB 14-8

Request pending 6-9
Reserved bits 1-3
RESET 5-54

cold 4-3
interrupts 4-5
pin states 4-5
power on 4-3
register states 4-4
warm 4-3

Reset modes 4-3
RESET pin

and processor initialization 4-1
Ringback 8-10, 8-11

Pentium® processor 8-6
Pentium® processor with MMX™ technology 8-8

Run/Stop signal 5-54
RUNBIST instruction 9-5, 9-7
Runbist register 9-5

S
Safe instruction recognition 3-9
SAMPLE instruction 9-4, 9-9
SCYC 5-56
Second level write buffers 12-10
Segment descriptor updates 6-18
Segmentation

branch prediction 3-6
Segmented addressing 1-5
Set, defined 1-6
Settling time 8-7
Shared state 3-24
Shutdown 6-26
Signal quality

Pentium® processor 8-6
Pentium® processor with MMX™ technology 8-8

Signals
debug port 13-2–13-4
notational conventions 1-3
see signal name

SIMD 2-3, 3-13
Index-6 Embedded Pentium® Processor Family Developer’s Manual

Index
Single-transfer bus cycle 6-11
SL power management 2-2, 2-6
Slow burst cycles

read 6-16
SMI# 5-57, 12-2

delivered via APIC 12-4
hardware interface 12-2
interrupt service 12-2
power management 12-1
timing 12-3

SMIACT# 5-58, 12-4
dual processors 12-5
power management 12-1
timing 12-5

SMM
see System Management Mode

SMRAM 12-6
Snooping 3-19, 3-26

dual processors 4-16–4-18
Special bus cycles 6-11, 6-26, 11-1

branch trace messages 11-1
shutdown 6-26

Special cycles
branch trace message 6-27
flush 6-27
halt 6-27
Stop Grant 6-27
writeback 6-27

Split Cycle Indication signal 5-56
State machines

bus control 6-9
clock control 12-15

State transitions 6-9
Stop clock 3-43
Stop Clock signal 5-59, 12-11
Stop Clock Snoop state 12-16
Stop Clock state 12-16
Stop Grant bus cycle 12-13

pin states 12-14
Stop Grant special bus cycle 6-27
Stop Grant state 12-15
STPCLK# 5-59, 12-11

dual processing considerations 12-12
Supply Voltage signal 5-63
Symmetric multi-processing 3-31
Synchronous FLUSH# and RESET cycles 6-45
System Management Interrupt Active signal 5-58
System Management Interrupt signal 5-57
System Management Mode 2-2

cache flushes 12-7
design considerations 12-6
dual processors 4-25
hardware interface 12-2
interrupt service 12-2
interrupts 12-1
revision identifier 12-1
second level write buffers 12-10

T
T1 bus state 6-8, 6-10
T12 bus state 6-8, 6-10
T2 bus state 6-8, 6-10
T2P bus state 6-8, 6-10
TAP

see Test Access Port
TCK 5-60
TD bus state 6-8, 6-10
TDI 5-60
TDO 5-61, 10-6
Technical support 1-6
Terminology 1-2
Test Access Port 9-2

block diagram 9-3
instruction set 9-11
pins 9-3
registers 9-4

Test Access Port controller 9-9
state diagram 9-6

Test Clock Input signal 5-60
Test Data Input signal 5-60
Test Data Output signal 5-61
Test features 4-1

BIST 4-2
functional redundancy checking (FRC) 4-2
Three-state Test Mode 4-2

Test Mode Select signal 5-62
Test registers 14-3, 14-17

Branch Target Buffer 14-12
Branch Target Buffer Command 14-14
BTB Target Test 14-14
Cache Control 14-5
Cache Data 14-5
Cache Status 14-5
Parity Reversal 14-15
TLB 14-8
TLB Command 14-9
TLB Data 14-10

Test Reset signal 5-62
Testability

using model-specific test registers 14-3
Three-state Test Mode 4-2, 9-1
Ti bus state 6-8
Time stamp counter 14-19, 14-20
Timing diagrams

dead clock 6-32
TLB 2-4, 3-19

accessing 14-11
miss 6-18
test registers 14-8

TLB Command Test register 14-9
TLB Data Test register 14-10
TMS 5-62
TR12 11-1
TR12 register 14-17
Transfer bus cycles 6-7
Translation Lookaside Buffer

see TLB
Embedded Pentium® Processor Family Developer’s Manual Index-7

Index
TRST# 5-62
TTL specifications 7-3

U
Undershoot 8-11

Pentium® processor 8-6
Pentium® processor with MMX™ technology 8-8

Undershoot threshold duration 8-11
Undershoot threshold level 8-11
Unified-plane Pentium® processor 7-2
Units of measure, defined 1-2
U-pipe 2-4, 3-1
URL 1-6

V
VCC 5-63

measurment specification 7-2
VCC2 5-63
VCC2 Detect signal 5-64
VCC2DET# 5-64
VCC3 5-63

Virtual Mode 2-2
V-pipe 2-4, 3-1

W
W/R# 5-64
WB/WT#

sampling for pipelined cycles 6-31
WBINVD 6-27
World Wide Web 1-6
Write buffers 2-2, 3-26
Write cycles

burst 6-16
pipelined, back-to-back 6-30

Write ordering 3-27
Write/Read signal 5-64
Writeback buffers 3-29
Writeback cycles 6-16
Writeback special cycle 6-27
Writeback stage 3-3
Writeback/Writethrough signal
www.intel.com 1-6
Index-8 Embedded Pentium® Processor Family Developer’s Manual

	Embedded Pentium ® Processor
	Contents
	Figures
	Figure 1�1. Bit and Byte Order
	Figure 2�1. Embedded Pentium® Processor Block Diagram
	Figure 3�1. Embedded Pentium® Processor Pipeline Execution
	Figure 3�2. Branch Prediction Example
	Figure 3�3. MMX™ Technology Register Set
	Figure 3�4. Packed Data Types
	Figure 3�5. Eight Packed Bytes in Memory (at Address 1000H)
	Figure 3�6. MMX™ Technology Pipeline Structure
	Figure 3�7. Pseudo-LRU Cache Replacement Strategy
	Figure 3�8. Conceptual Organization of Code and Data Caches
	Figure 3�9. PCD and PWT Generation
	Figure 3�10. Embedded Pentium® Processor Write Buffer Implementation
	Figure 3�11. Dual Processors
	Figure 3�12. Dual Processor Arbitration Mechanism
	Figure 3�13. Dual Processor L1 Cache Consistency
	Figure 3�14. APIC System Configuration
	Figure 3�15. Local APIC Interface
	Figure 3�16. Processor 1/2 Bus Internal/External Data Movement
	Figure 3�17. Processor 2/3 Bus Internal/External Data Movement
	Figure 3�18. Processor 2/5 Bus Internal/External Data Movement
	Figure 3�19. Processor 1/3 Bus Internal/External Data Movement
	Figure 3�20. EAX Bit Assignments for CPUID
	Figure 4�1. Pin States during Reset
	Figure 4�2. EAX Bit Assignments for CPUID
	Figure 4�3. Dual-Processor Arbitration Interface
	Figure 4�4. Typical Dual-Processor Arbitration Example
	Figure 4�5. Arbitration from LRM to MRM when Bus is Parked
	Figure 4�6. Cache Consistency Interface
	Figure 4�7. Dual-Processor Cache Consistency for Locked Accesses
	Figure 4�8. Dual-Processor Cache Consistency for External Snoops
	Figure 4�9. Dual-Processor Cache Consistency for External Snoops
	Figure 4�10. Dual-Processor Configuration
	Figure 4�11. Dual-Processor Boundary Scan Connections
	Figure 6�1. Memory Organization
	Figure 6�2. I/O Space Organization
	Figure 6�3. Embedded Pentium® Processor with 64-Bit Memory
	Figure 6�4. Addressing 32-, 16- and 8-Bit Memories
	Figure 6�5. Data Bus Interface to 32-, 16- and 8-Bit Memories
	Figure 6�6. Processor Bus Control State Machine
	Figure 6�7. Non-Pipelined Read and Write
	Figure 6�8. Non-Pipelined Read and Write with Wait States
	Figure 6�9. Basic Burst Read Cycle
	Figure 6�10. Slow Burst Read Cycle
	Figure 6�11. Basic Burst Write Cycle
	Figure 6�12. LOCK# Timing
	Figure 6�13. Two Consecutive Locked Operations
	Figure 6�14. Misaligned Locked Cycles
	Figure 6�15. Back Off Timing
	Figure 6�16. HOLD/HLDA Cycles
	Figure 6�17. Interrupt Acknowledge Cycles
	Figure 6�18. Two Pipelined Cache Linefills
	Figure 6�19. Pipelined Back-to-Back Read/Write Cycles
	Figure 6�20. KEN# and WB/WT# Sampling with NA#
	Figure 6�21. KEN# and WB/WT# Sampling with BRDY#
	Figure 6�22. Bus Cycles without Dead Clock
	Figure 6�23. Bus Cycles with TD Dead Clock
	Figure 6�24. Inquire Cycle that Misses the Processor Cache
	Figure 6�25. Inquire Cycle that Invalidates a Non-M-State Line
	Figure 6�26. Inquire Cycle that Invalidates M-State Line
	Figure 6�27. AHOLD Restriction during Write Cycles
	Figure 6�28. AHOLD Restriction During TD
	Figure 6�29. Snoop Responsibility Pickup — Non-Pipelined Cycles
	Figure 6�30. Snoop Responsibility Pickup — Pipelined Cycle
	Figure 6�31. Latest Snooping of Writeback Buffer
	Figure 8�1. Input Buffer Model, Except Special Group
	Figure 8�2. Input Buffer Model for Special Group
	Figure 8�3. First Order Output Buffer Model
	Figure 8�4. Overshoot/Undershoot and Ringback Guidelines
	Figure 8�5. Settling Time
	Figure 8�6. Maximum Overshoot Level, Overshoot Threshold Level, and Overshoot Threshold Duration
	Figure 8�7. Maximum Ringback Associated with the Signal High State
	Figure 8�8. Maximum Undershoot Level, Undershoot Threshold Level, and Undershoot Threshold Duration
	Figure 8�9. Maximum Ringback Associated with the Signal Low State
	Figure 9�1. Test Access Port Block Diagram
	Figure 9�2. Boundary Scan Register
	Figure 9�3. Format of the Device ID Register
	Figure 9�4. TAP Controller State Diagram
	Figure 10�1. Inquire Cycle Address Parity Checking
	Figure 10�2. Data Parity During a Read and Write Cycle
	Figure 10�3. Machine Check Type Register
	Figure 10�4. Conceptual IERR# Implementation for FRC
	Figure 12�1. Basic SMI# Interrupt Service
	Figure 12�2. Basic SMI# Hardware Interface
	Figure 12�3. SMI# Timing
	Figure 12�4. SMIACT# Timing
	Figure 12�5. SMRAM Location
	Figure 12�6. FLUSH# Mechanism During SMM with Overlay
	Figure 12�7. Flush with Non-Cached SMM with Overlay
	Figure 12�8. Entering Stop Grant State
	Figure 12�9. Stop Clock State Machine
	Figure 13�1. Debug Port Connector
	Figure 13�2. Single Processor – Boundary Scan Not Used
	Figure 13�3. Single Processor – Boundary Scan Used
	Figure 13�4. Dual Processor – Boundary Scan Not Used
	Figure 13�5. Dual Processor – Boundary Scan Used
	Figure 13�6. Example of Processor Only in Scan Chain
	Figure 13�7. Example of Multiple Components in Scan Chain
	Figure 13�8. Uni-Processor Debug
	Figure 13�9. Dual-Processor Debug Port Adapter
	Figure 13�10. Shared Pins for Dual-Processor Adapter
	Figure 14�1. Cache Test Registers
	Figure 14�2. TLB Test Registers
	Figure 14�3. BTB Test Registers
	Figure 14�4. Parity Reversal Register
	Figure 14�5. Test Register (TR12)
	Figure 14�6. Control and Event Select Register

	Tables
	Table 1�1. Related Resources
	Table 3�1. Pipeline Stage Summary
	Table 3�2. Cache Operating Modes �
	Table 3�3. 32-Bits/4-Kbyte Pages
	Table 3�4. 32-Bits/4-Mbyte Pages
	Table 3�5. Data Cache State Transitions for UNLOCKED Processor Initiated Read Cycles†
	Table 3�6. Data Cache State Transitions for Processor Initiated Write Cycles
	Table 3�7. Cache State Transitions During Inquiry Cycles
	Table 3�8. Embedded Pentium® Processor Interrupt Priority Scheme
	Table 3�9. APIC ID
	Table 3�10. Bus-to-Core Frequency Ratios for the Embedded Pentium® Processor (at 100/133/166 MHz)
	Table 3�11. Bus-to-Core Frequency Ratios for the Embedded Pentium® Processor with MMX™ Technology
	Table 3�12. Bus-to-Core Frequency Ratios for the Low-Power Embedded Pentium® Processor with MMX™ ...
	Table 3�13. EDX Bit Assignment Definitions (Feature Flags)�
	Table 3�14. EAX Type Field Values
	Table 4�1. Pentium® Processor Reset Modes
	Table 4�2. Register State after RESET, INIT and BIST�
	Table 4�3. Read Cycle State Transitions Due to Dual-Processor
	Table 4�4. Write Cycle State Transitions Due to Dual-Processor
	Table 4�5. Inquire Cycle State Transitions Due to External Snoop
	Table 4�6. State Transitions in the LRM Due to Dual-Processor “Private” Snooping
	Table 4�7. Primary and Dual Processor Pipelining
	Table 4�8. Cycle Reordering Due to BOFF#
	Table 4�9. Using D/P# to Determine MRM
	Table 4�10. Dual-Processor Pin Functions vs. Pentium® Processor (Sheet 1 of 4)
	Table 5�1. Bus-to-Core Frequency Ratios for the Embedded Pentium® Processor (at 100/133/166 MHz)
	Table 5�2. Bus-to-Core Frequency Ratios for the Embedded Pentium® Processor with MMX™ Technology
	Table 5�3. Bus-to-Core Frequency Ratios for the Low-Power Embedded Pentium® Processor with MMX™ T...
	Table 6�1. Embedded Pentium® Processor Byte Enables and Associated Data Bytes
	Table 6�2. Generating A2–A0 from BE7#–BE0#
	Table 6�3. When BLE# is Active
	Table 6�4. When BHE# is Active
	Table 6�5. When BE3’# is Active
	Table 6�6. When BE2’# is Active
	Table 6�7. When BE1’# is Active
	Table 6�8. When BE0’# is Active
	Table 6�9. Transfer Bus Cycles for Bytes, Words, Dwords and Quadwords
	Table 6�10. Processor Bus Activity
	Table 6�11. Processor Initiated Bus Cycles
	Table 6�12. Processor Burst Order
	Table 6�13. Special Bus Cycles Encoding
	Table 8�1. Parameters Used in the Specification of the First Order Input Buffer Mode
	Table 8�2. Parameters Used in the Specification of the First Order Output Buffer Mode
	Table 8�3. Buffer Selection Chart
	Table 8�4. Signal to Buffer Type �
	Table 8�5. Input, Output and Bidirectional Buffer Model Parameters
	Table 8�6. Input Buffer Model Parameters: D (Diodes)
	Table 8�7. Overshoot Specification Summary
	Table 8�8. Undershoot Specification Summary
	Table 9�1. Device ID Register Values
	Table 9�2. TAP Instruction Set and Instruction Register Encoding �
	Table 12�1. Dual Processing SMI# Delivery Options
	Table 12�2. Scenarios for Cache Flushes with Writeback Caches
	Table 12�3. Pin State During Stop Grant Bus State
	Table 13�1. Recommended Connectors
	Table 13�2. Debug Port Signals (Sheet 1 of 2)
	Table 13�3. SPGA Socket �
	Table 13�4. Debug Port Connector Pinout
	Table 14�1. Model Specific Register Descriptions
	Table 14�2. Encoding for Valid Bits in TR4
	Table 14�3. Encoding of the LRU Bit in TR4
	Table 14�4. Encoding of the WB Bit in TR5
	Table 14�5. Encoding of the Code/Data Cache Bit in TR5
	Table 14�6. Encoding of the Entry Bit in TR5
	Table 14�7. Encoding of the Control Bits in TR5
	Table 14�8. Definition of the WB Bit in TR5
	Table 14�9. Encoding for the Valid Bit in TR6
	Table 14�10. Encoding for the Dirty Bit in TR6
	Table 14�11. Encoding for the User Bit in TR6
	Table 14�12. Encoding for the Writeable Bit in TR6
	Table 14�13. Encoding for the Page Size Bit in TR6
	Table 14�14. Encoding for the Operation Bit TR6
	Table 14�15. Encoding for the Code/Data TLB in TR6
	Table 14�16. TR9 Register Description (BTB Test Register)
	Table 14�17. TR10 Register Description (BTB Test Register)
	Table 14�18. TR11 Register Description (BTB Command Test Register)
	Table 14�19. Format for TR11 Control Field
	Table 14�20. Parity Reversal Register Bit Definition
	Table 14�21. New Feature Controls �
	Table 14�22. Architectural Performance Monitoring Features
	Table 14�23. Model Specific Performance Monitoring Features
	Table 14�24. Performance Monitoring Events (Sheet 1 of 4)

	Guide to this Manual 1
	1.1 Manual Contents
	1.2 Notation Conventions
	1.2.1 Bit and Byte Order
	1.2.2 Reserved Bits and Software Compatibility
	1.2.3 Instruction Operands
	1.2.4 Hexadecimal and Binary Numbers
	1.2.5 Segmented Addressing
	1.2.6 Exceptions

	1.3 Special Terminology
	1.4 Technical Support
	1.4.1 Electronic Support Systems
	1.4.1.1 Online Documents
	1.4.1.2 Intel Product Forums

	1.4.2 Telephone Technical Support

	1.5 Product Literature
	1.6 Related Documents

	Architectural Features 2
	2.1 Processor Features Overview
	2.2 Component Introduction

	Component Operation 3
	3.1 Pipeline and Instruction Flow
	3.1.1 Integer Pipeline Description
	3.1.1.1 Instruction Prefetch

	3.1.2 Integer Instruction Pairing Rules

	3.2 Branch Prediction
	3.3 Floating-Point Unit
	3.3.1 Floating-Point Pipeline Stages
	3.3.2 Instruction Issue
	3.3.3 Safe Instruction Recognition
	3.3.4 FPU Bypasses
	3.3.5 Branching Upon Numeric Condition Codes

	3.4 Intel MMX™ Technology Unit
	3.4.1 MMX™ Technology Programming Environment
	3.4.1.1 MMX™ Technology Registers
	3.4.1.2 MMX™ Technology Data Types
	3.4.1.3 Single Instruction, Multiple Data (SIMD) Execution Model
	3.4.1.4 Memory Data Formats
	3.4.1.5 MMX™ Technology Register Data Formats

	3.4.2 MMX™ Instruction Set
	3.4.3 Intel MMX™ Technology Pipeline Stages
	3.4.4 Instruction Issue
	3.4.4.1 Pairing Two MMX™ Instructions
	3.4.4.2 Pairing an Integer Instruction in the U-pipe with an MMX Instruction in the V-pipe
	3.4.4.3 Pairing an MMX Instruction in the U-pipe with an Integer Instruction in the V-pipe

	3.5 On-Chip Caches
	3.5.1 Cache Organization
	3.5.2 Cache Structure
	3.5.3 Cache Operating Modes
	3.5.4 Page Cacheability
	3.5.4.1 PCD and PWT Generation

	3.5.5 Inquire Cycles
	3.5.6 Cache Flushing
	3.5.7 Data Cache Consistency Protocol (MESI Protocol)
	3.5.7.1 State Transition Tables
	3.5.7.5 Code Cache Consistency Protocol

	3.6 Write Buffers and Memory Ordering
	3.6.1 External Event Synchronization
	3.6.2 Serializing Operations
	3.6.3 Linefill and Writeback Buffers

	3.7 External Interrupt Considerations
	3.8 Introduction to Dual Processor Mode
	3.8.1 Dual Processing Terminology
	3.8.2 Dual Processing Overview
	3.8.2.1 Conceptual Overview
	3.8.2.2 Arbitration Overview
	3.8.2.3 Cache Coherency Overview

	3.9 APIC Interrupt Controller
	3.9.1 APIC Configuration Modes
	3.9.1.1 Normal Mode
	3.9.1.2 Bypass Mode
	3.9.1.3 Through Local Mode
	3.9.1.4 Masked Mode
	3.9.1.6 Dual Processing with the Local APIC

	3.9.2 Loading the APIC ID
	3.9.3 Response to HOLD

	3.10 Fractional Speed Bus
	3.10.1 Fractional Bus Operation Examples

	3.11 Power Management
	3.11.1 I/O Instruction Restart
	3.11.2 Stop Clock and Auto Halt Powerdown

	3.12 CPUID Instruction
	3.13 Model Specific Registers

	Microprocessor Initialization and Configuration 4
	4.1 Power Up Specifications
	4.2 Test and Configuration Features
	4.2.1 Built-in Self-Test
	4.2.2 Three-state Test Mode
	4.2.3 Functional Redundancy Checking
	4.2.4 Lock Step APIC Operation

	4.3 Initialization with RESET, INIT and BIST
	4.3.1 Recognition of Interrupts after RESET
	4.3.2 Pin State During/After RESET

	4.4 Managing and Designing with the Symmetrical Dual Processing Configuration
	4.4.1 Dual Processor Bootup Protocol
	4.4.1.1 Bootup Overview
	4.4.1.2 BIOS/Operating System Requirements
	4.4.1.3 System Requirements
	4.4.1.4 Start-up Behavior
	4.4.1.5 Dual-Processor Presence Indication

	4.4.2 Dual-Processor Arbitration
	4.4.2.1 Basic Dual-Processor Arbitration Mechanism
	4.4.2.2 Dual-Processor Arbitration Interface
	4.4.2.3 Dual-Processor Arbitration from a Parked Bus

	4.4.3 Dual-Processor Cache Consistency
	4.4.3.1 Basic Cache Consistency Mechanism
	4.4.3.2 Cache Consistency Interface
	4.4.3.3 Pin Modifications Due to the Dual-Processor
	4.4.3.5 External Snoop Examples
	4.4.3.6 State Transitions Due to Dual-Processor Cache Consistency

	4.5 Designing with Symmetrical Dual Processors
	4.5.1 Dual Processor Bus Interface
	4.5.1.1 Intra- and Inter-Processor Pipelining
	4.5.1.2 FLUSH# Cycles
	4.5.1.3 Arbitration Exchange with Bus Parking
	4.5.1.4 BOFF#
	4.5.1.5 Bus Hold

	4.5.2 Dual Processing Power Management
	4.5.2.1 STPCLK#
	4.5.2.2 System Management Mode

	4.5.3 Other Dual-Processor Considerations
	4.5.3.1 Strong Write Ordering
	4.5.3.2 Bus Snarfing
	4.5.3.3 Interrupts
	4.5.3.4 INIT Sequences
	4.5.3.5 Boundary Scan
	4.5.3.6 Presence of a Processor in Socket 7
	4.5.3.7 MRM Processor Indication

	4.5.4 Dual-Processor Pin Functions

	Hardware Interface 5
	5.1 Detailed Pin Descriptions
	5.1.1 A20M#
	5.1.2 A31–A3
	5.1.3 ADS#
	5.1.4 ADSC#
	5.1.5 AHOLD
	5.1.6 AP
	5.1.7 APCHK#
	5.1.8 APICEN
	5.1.9 BE7#–BE0#
	5.1.10 BF2–BF0
	5.1.11 BOFF#
	5.1.12 BP3–BP0
	5.1.13 BRDY#
	5.1.14 BRDYC#
	5.1.15 BREQ
	5.1.16 BUSCHK#
	5.1.17 CACHE#
	5.1.18 CLK
	5.1.19 CPUTYP
	5.1.20 D/C#
	5.1.21 D63–D0
	5.1.22 D/P#
	5.1.23 DP7–DP0
	5.1.24 DPEN#
	5.1.25 EADS#
	5.1.26 EWBE#
	5.1.27 FERR#
	5.1.28 FLUSH#
	5.1.29 FRCMC#
	5.1.30 HIT#
	5.1.31 HITM#
	5.1.32 HLDA
	5.1.33 HOLD
	5.1.34 IERR#
	5.1.35 IGNNE#
	5.1.36 INIT
	5.1.37 INTR
	5.1.38 INV
	5.1.39 KEN#
	5.1.40 LINT1–LINT0
	5.1.41 LOCK#
	5.1.42 M/IO#
	5.1.43 NA#
	5.1.44 NMI
	5.1.45 PBGNT#
	5.1.46 PBREQ#
	5.1.47 PCD
	5.1.48 PCHK#
	5.1.49 PHIT#
	5.1.50 PHITM#
	5.1.51 PICCLK
	5.1.52 PICD1–PICD0
	5.1.53 PEN#
	5.1.54 PM1–PM0
	5.1.55 PRDY
	5.1.56 PWT
	5.1.57 R/S#
	5.1.58 RESET
	5.1.59 SCYC
	5.1.60 SMI#
	5.1.61 SMIACT#
	5.1.62 STPCLK#
	5.1.63 TCK
	5.1.64 TDI
	5.1.65 TDO
	5.1.66 TMS
	5.1.67 TRST#
	5.1.68 VCC
	5.1.69 VCC2
	5.1.70 VCC3
	5.1.71 VCC2DET#
	5.1.72 W/R#
	5.1.73 WB/WT#

	Bus Functional Description 6
	6.1 Physical Memory and I/O Interface
	6.2 Data Transfer Mechanism
	6.2.1 Interfacing With 8-, 16-, 32-, and 64-Bit Memories

	6.3 Bus State Definition
	6.3.1 State Transitions

	6.4 Bus Cycles
	6.4.1 Single-Transfer Cycle
	6.4.2 Burst Cycles
	6.4.2.1 Burst Read Cycles
	6.4.2.2 Burst Write Cycles

	6.4.3 Locked Operations
	6.4.3.1 Programmer Generated Locks and Segment Descriptor Updates
	6.4.3.2 Page Table/directory Locked Cycles
	6.4.3.3 LOCK# Operation During AHOLD/HOLD/BOFF#
	6.4.3.4 Inquire Cycles During LOCK#
	6.4.3.5 LOCK# Timing and Latency

	6.4.4 BOFF#
	6.4.5 Bus Hold
	6.4.6 Interrupt Acknowledge
	6.4.7 Flush Operations
	6.4.8 Special Bus Cycles
	6.4.9 Bus Error Support
	6.4.10 Pipelined Cycles
	6.4.10.1 KEN# and WB/WT# Sampling for Pipelined Cycles

	6.4.11 Dead Clock Timing Diagrams

	6.5 Cache Consistency Cycles (Inquire Cycles)
	6.5.1 Restrictions on Deassertion of AHOLD
	6.5.2 Rate of Inquire Cycles
	6.5.3 Internal Snooping
	6.5.4 Snooping Responsibility

	6.6 Summary of Dual Processing Bus Cycles
	6.6.1 Locked Cycle Sequences
	6.6.2 Cycle Pipelining
	6.6.3 Cycle Ordering Due to BOFF#
	6.6.4 Cache Line State
	6.6.5 Back-to-Back Cycles
	6.6.6 Address Parity Checking
	6.6.7 Synchronous FLUSH# and RESET
	6.6.8 PCHK# Assertion
	6.6.9 Flush Cycles
	6.6.10 Floating-Point Error Handling

	Electrical Differences Between Family Members 7
	7.1 Differences Between Processors
	7.1.1 Power Supplies
	7.1.1.1 Power Supply Sequencing

	7.1.2 Connection Specifications
	7.1.2.1 Power and Ground Connections
	7.1.2.4 3.3�V Inputs and Outputs
	7.1.2.5 NC/INC and Unused Inputs

	7.1.3 Buffer Models

	I/O Buffer Models 8
	8.1 Buffer Model Parameters
	8.2 Signal Quality Specifications
	8.2.1 Ringback
	8.2.2 Settling Time
	8.2.3 CLK/PICCLK Signal Quality Specification for the Pentium® Processor with MMX™ Technology
	8.2.3.1 Clock Signal Measurement Methodology

	Testability 9
	9.1 Built-in Self-test (BIST)
	9.2 Three-state Test Mode
	9.3 IEEE 1149.1 Test Access Port and Boundary Scan Mechanism
	9.3.1 Test Access Port (TAP)
	9.3.1.1 TAP Pins
	9.3.1.2 TAP Registers
	9.3.1.3 TAP Controller State Diagram

	9.3.2 Boundary Scan
	9.3.2.1 Boundary Scan TAP Instruction Set

	Error Detection 10
	10.1 Internal Error Detection
	10.2 Error Detection at the Processor Interface
	10.2.1 Address Parity
	10.2.2 Data Parity
	10.2.2.1 Machine Check Exception as a Result of a Data Parity Error

	10.2.3 Machine Check Exception
	10.2.4 Bus Error
	10.2.5 Functional Redundancy Checking

	Execution Tracing 11
	Power Management 12
	12.1 Power Management Features
	12.2 System Management Interrupt Processing
	12.2.1 System Management Interrupt (SMI#)
	12.2.1.1 SMI# Synchronization for I/O Instruction Restart
	12.2.1.2 Dual Processing Considerations For SMI# Delivery

	12.2.2 System Management Interrupt Via APIC
	12.2.3 SMI Active (SMIACT#)
	12.2.3.1 Dual Processing Considerations for SMIACT#

	12.3 SMM — System Design Considerations
	12.3.1 SMRAM Interface
	12.3.2 Cache Flushes
	12.3.2.1 Dual Processing Considerations for Cache Flushes

	12.3.3 A20M# Signal
	12.3.4 SMM and Second Level Write Buffers

	12.4 Clock Control
	12.4.1 Clock Generation
	12.4.2 Stop Clock
	12.4.2.1 STPCLK# Signal
	12.4.2.2 Dual Processing Considerations

	12.4.3 Stop Grant Bus Cycle
	12.4.4 Pin State During Stop Grant
	12.4.5 Clock Control State Diagram
	12.4.5.1 Normal State — State 1
	12.4.5.2 Stop Grant State — State 2
	12.4.5.3 Auto Halt Powerdown State — State 3
	12.4.5.4 Stop Clock Snoop State (Cache Invalidations) — State 4
	12.4.5.5 Stop Clock State — State 5

	Debugging 13
	13.1 Introduction
	13.2 Two Levels of Support
	13.2.1 Level 1 Debug Port (L1)
	13.2.2 Level 2 Debug Port (L2)

	13.3 Debug Port Connector Descriptions
	13.4 Signal Descriptions
	13.5 Signal Quality Notes
	13.6 Implementation Examples
	13.6.1 Example 1: Single Processor, Boundary Scan Not Used by System
	13.6.2 Example 2: Single Processor, Boundary Scan Used by System
	13.6.3 Example 3: Dual Processors, Boundary Scan Not Used by System
	13.6.4 Example 4: Dual Processors, Boundary Scan Used by System

	13.7 Implementation Details
	13.7.1 Signal Routing Note
	13.7.2 Special Adapter Descriptions
	13.7.2.1 Uniprocessor Debug
	13.7.2.2 Dual-Processor Debug

	Model Specific Registers and Functions 14
	14.1 Model Specific Registers
	14.1.1 Model Specific Register Usage Restrictions
	14.1.2 Model Specific Register Access

	14.2 Testability And Test Registers
	14.2.1 Cache, TLB and BTB Test Registers
	14.2.1.1 Cache Test Registers
	14.2.1.2 TLB Test Registers
	14.2.1.3 Branch Target Buffer (BTB) Test Registers
	14.2.1.4 Parity Reversal Register (TR1)

	14.3 New Feature Control (TR12)
	14.4 Performance Monitoring
	14.4.1 Performance Monitoring Feature Overview
	14.4.2 Time Stamp Counter (TSC)
	14.4.3 Programmable Event Counters (CTR0, CTR1)
	14.4.4 Control and Event Select Register (CESR)
	14.4.4.1 Event Select (ES0, ES1)
	14.4.4.2 Counter Control (CC0, CC1)
	14.4.4.3 Pin Control (PC0, PC1)

	14.4.5 Performance Monitoring Events
	14.4.6 Description of Events

	Index

