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Guide to this Manual 1

1.1 Manual Contents

This manual contains 14 chapters and an index. This section summarizes the contents of the
remaining chapters. The remainder of this chapter describes notation conventions and special
terminology used throughout the manual and provides referencesto related documentation.

Chapter 2, “Architectural
Features”

Chapter 3, “Component
Operation”

This chapter provides an overview of the embedded Pefitium
processor, including product features, system components, system
architecture, and applications.

This chapter describes the Pentium processor internal architecture,
with an overview of the processor’s functional units.

Chapter 4, “MicroprocessorThis chapter details the Pentium processor register set, including

Initialization and
Configuration”

Chapter 5, “Hardware
Interface”

the base architecture registers, system-level registers, and debug
and test registers.

This chapter describes the signals for the Pentium processor family.

Chapter 6, “Bus Functional This chapter describes the features of the processor bus, including

Description”

Chapter 7, “Electrical
Differences Between
Family Members”

Chapter 8, “I/O Buffer
Models”

Chapter 9, “Testability”

Chapter 10, “Error
Detection”

Chapter 11, “Execution
Tracing”

bus cycle handling, interrupt and reset signals, cache control, and
floating-point error control.

This section describes the electrical differences between the
embedded Pentium processor (at 100/133/166 MHz) and the
embedded Pentium processor with MMX™ technology .

This chapter describes the 3.3 V I/O buffer models of the embedded
Pentium processor.

This chapter describes the features which are included in the
embedded Pentium processor for the purpose of enhancing
testability. This chapter describes component testing using the
Built-In Self-Test (BIST) feature, three-state test mode, and the
IEEE 1149.1 “Test Access Port and Boundary Scan” mechanism.

This chapter describes data integrity features that are focused on
the detection and limited recovery of errors. The data integrity
features provide capabilities for error detection of the internal
devices and the external interface.

This chapter describes the special bus cycles used to support
execution tracing. Execution tracing allows the external hardware
to track the flow of instructions as they execute inside the
processor.
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Chapter 12, “Power
Management”

intel.

The embedded Pentium processor family implements Intel’s
System Management Mode (SMM) architecture. This chapter
describes the hardware interface to SMM and Clock Control.

Chapter 13, “Debugging”

Chapter 14, “Model

Specific Registers and

This chapter describes the Pentium processor debugging support,

including the breakpoint instruction, single-step trap, and debug
registers.

This chapter introduces the model specific registers (MSRs) as they

are implemented on the embedded Pentium processor family.

Functions” Model specific registers are used to provide access to features that
are generally tied to implementation-dependent aspects of a
particular processor.
1.2 Notation Conventions

The following notations are used throughout this manual.

#

Variables

I nstructions

Numbers

Units of M easure

1-2

The pound symbol (#) appended to asignal nameindicatesthat the signal
isactive low.

Variables are shown in italics. Variables must be replaced with correct
values.

Instruction mnemonics are shown in upper case. When you are
programming, instructions are not case-sensitive. You may use either
upper or lower case.

Hexadecimal numbers are represented by a string of hexadecimal digits
followed by the character H. A zero prefix isadded to numbersthat begin
with A through F. (For example, FF is shown as OFFH.) Decimal and
binary numbers are represented by their customary notations. (That is,
255 isadecimal number and 1111 1111 is a binary number. In some
cases, the letter B is added for clarity.)

The following abbreviations are used to represent units of measure:

A

mA
HA
Mbyte
Kbyte
Ghyte

KW
mw
pW
MHz
ms

amps, amperes
milliamps, milliamperes
microamps, microamperes
megabytes

kilobytes

gigabyte

watts

kilowatts

milliwatts

microwatts

megahertz
milliseconds
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ns nanoseconds
us microseconds
uF microfarads
pF picofarads

Vv volts

Bit and Signal Ranges  When the text refers to arange of register bits or signals, therangeis
represented by the highest and lowest number, separated by a dash
(example: A15-A8). For register bits, the first bit shown is the most-
significant and the second bit shown is the least-significant.

Register Names Register names are shown in upper case. When a register name contains
alower case, italic character, the name represents more than one register.
For example, CRrepresents these registers: CR0, CR1, CR2, etc.

Signal Names Signal names are shown in upper case. A pound symbol (#) appended to
a signal name identifies an active-low signal.

1.2.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. Intel Architecture
processors is a “little endian” machines; this means the bytes of a word are numbered starting from
the least significant byte. Figure 1-1 illustrates these conventions.

Figure 1-1. Bit and Byte Order

) Data Structure

Jghest 39 24 23 16 15 8 7 0 <« Bit offset
28

24

20

16

12

8

4

Lowest
Byte3 | Byte2 | Bytel | ByteO |0 Address

Byte Offset

1.2.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are markestragd. When bits
are marked as reserved, it is essential for compatibility with future processors that software treat
these bits as having a future, though unknown, effect. The behavior of reserved bits should be

regarded as not only undefined, but unpredictable. Software should follow these guidelines in
dealing with reserved bits:

* Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.
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1.2.3

1.2.4

1-4

Note:

¢ Do not depend on the states of any reserved bits when storing to memory or to aregister.
¢ Do not depend on the ability to retain information written into any reserved bits.

* When loading aregister, dways load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

Avoid any software dependence upon the state of reserved bitsin Intel Architecture registers.
Depending upon the values of reserved register bits will make software dependent upon the
unspecified manner in which the processor handles these bits. Depending upon reserved values
risks incompatibility with future processors.

Instruction Operands

When instructions are represented symbolically, a subset of the Intel Architecture assembly
language is used. In this subset, an instruction has the following format:
| abel : mmenoni ¢ argunent 1, argunent?2, argunent3

where:
¢ A label isan identifier which isfollowed by a colon.

* A mnemonicisareserved name for aclass of instruction opcodes which have the same
function.

* The operands argumentl1, argument2, and argument3 are optional. There may be from zero to
three operands, depending on the opcode. When present, they take the form of either literals or
identifiers for data items. Operand identifiers are either reserved names of registers or are
assumed to be assigned to data items declared in another part of the program (which may not
be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:
LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG isalabel, MOV isthe mnemonic identifier of an opcode, EAX isthe

destination operand, and SUBTOTAL is the source operand. Some assembly languages put the
source and destination in reverse order.

Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the
character H (for example, F82EH). A hexadecimal digit is a character from the following set: O, 1,
2,3,4,56,7,8,9,A,B,C,D,E,andF.

Base 2 (binary) numbers are represented by a string of 1s and Os, sometimes followed by the

character B (for example, 1010B). The “B” designation is only used in situations where confusion

as to the type of number might arise.
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1.25 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a sequence
of bytes. Whether one or more bytes are being accessed, a byte addressis used to locate the byte or
bytes memory. The range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. Thisis aform of addressing where a program
may have many independent address spaces, called segments. For example, a program can keep its
code (instructions) and stack in separate segments. Code addresses would always refer to the code
space, and stack addresses would always refer to the stack space. The following notation is used to
specify a byte address within a segment:

Segment-register: Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment
pointed by the DS register:
DS: FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.
CS: EIP

1.2.6 Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example, an
attempt to divide by zero generates an exception. However, some exceptions, such as breakpoints,
occur under other conditions. Some types of exceptions may provide error codes. An error code
reports additional information about the error. An example of the notation used to show an
exception and error code is shown below.

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming atype
of fault is reported. Under some conditions, exceptions which produce error codes may not be able
to report an accurate code. In this case, the error code is zero, as shown below for a general-
protection exception.

#GP(0)

See Chapter 5, Interrupt and Exception Handling, in the Intel Architecture Software Developer’s
Manual, Volume 3or alist of exception mnemonics and their descriptions.

1.3 Special Terminology

The general terms “processor,” “embedded Pentium processor,” and “embedded Pentium processor
family” are used throughout this manual to refer to the embedded Pentium processor, the embedded
Pentium processor with Voltage Reduction Technology, the embedded Pentium processor with
MMX technology, and the low-power embedded Pentium processor with MMX technology
together. Some of the features or functions described using these terms, however, may not be
available on each processor type. Refer to the datasheet for each product to determine whether a
specific feature is offered.
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In some instances, the names “embedded Pentium processor,” “embedded Pentium processor with
\oltage Reduction Technology,” “embedded Pentium processor with MMX technology,” and
“low-power embedded Pentium processor with MMX technology” are used in this manual to
distinguish between processors when specific differences exist.

See “Related Documents” on page 1-8 for a list of datasheets and other documents that describe the
operation of Pentium processors.

The following terms have special meanings in this manual.

Assert and Deassert The terms assert and deassert refer to the acts of making a signal active
and inactive, respectively. The active polarity (high/low) is defined by
the signal name. Active-low signals are designated by the pound symbol
(#) suffix; active-high signals have no suffix. To assert FLUSH# is to
drive it low; to assert HOLD is to drive it high; to deassert FLUSH# is to
drive it high; to deassert HOLD is to drive it low.

DOS|/O Address Peripherals that are compatible with PC/AT system architecture can be
mapped into DOS (or PC/AT) addresses OH-03FFH. In this manual, the
termsDOS address andPC/AT address are synonymous

Expanded |/O Address All peripheral registers reside at 1/0 addresses 0FOOOH-OFFFFH.
PC/AT-compatible integrated peripherals can also be mapped into DOS
(or PC/AT) address space (OH-03FFH).

PC/AT Address Integrated peripherals that are compatible with PC/AT system
architecture can be mapped into PC/AT (or DOS) addresses OH—03FFH.
In this manual, the term30S address andPC/AT address are
Synonymous.

Set and Clear The terms set and clear refer to the value of a bit or the act of giving it a
value. If a bit is set, its value is “1”; setting a bit gives it a “1” value. If a
bit is clear, its value is “0”; clearing a bit gives it a “0” value.

Technical Support

Electronic Support Systems
Intel's site on the World Wide Web (http://www.intel.com/) provides up-to-date technical

information and product support. This information is available 24 hours a day, 7 days a week,
providing technical information whenever you need it.

Online Documents
Product documentation is provided online in a variety of web-friendly formats at:

http://developer.intel.com/design/litcentr/index.htm
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Intel Product Forums

Intel provides technical expertise through electronic messaging. With publicly accessible forums,
you have all of the benefits of email technical support, with the added benefit of the option of
viewing previous messages written by other participants, and providing suggestions and tips that
can help others.

Each of Intel's technical support forums is based on a single product or product family. Questions
and replies are limited to the topic of the particular forum. Intel also provides several non-technical
support related forums.

Complete information on Intel forums is available at:

http://support.intel.com/newsgroups/index.htm

Telephone Technical Support

In the U.S. and Canada, technical support representatives are available to answer your questions
between 5 a.m. and 5 p.m. PST. You can also fax your questions to us. (Please include your voice
telephone number and indicate whether you prefer a response by phone or by fax). Outside the U.S.
and Canada, please contact your local distributor.

1-800-628-8686 U.S. and Canada
916-356-7599 U.S. and Canada
916-356-6100 (fax) U.S. and Canada

Product Literature

You can order product literature from the following Intel literature centers.

1-800-548-4725 U.S. and Canada
708-296-9333 U.S. (from overseas)
44(0)1793-431155 Europe (U.K.)
44(0)1793-421333 Germany
44(0)1793-421777 France
81(0)120-47-88-32 Japan (fax only)
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1.6 Related Documents

Table 1-1. Related Resources

Document Title Order Number

Intel Architecture Software Developer’s Manual, 243190
Volume 1: Basic Architecture
Intel Architecture Software Developer’s Manual, 243191
Volume 2: Instruction Set Reference
Intel Architecture Software Developer’s Manual, 243192
Volume 3: System Programming Guide
Embedded Pentium® Processor datasheet 273202
Embedded Pentium® Processor with Voltage Reduction Technology datasheet 273203
Embedded Pentium® Processor with MMX ™ Technology datasheet 273214
Low-Power Embedded Pentium® Processor with MMX™ Technology datasheet 273184
Pentium® Processor Specification Update 242480
Pentium® Processor for Embedded Applications Specification Update 273183
Optimizing for Intel’s 32-Bit Processors 241799
MultiProcessor Specification 242016
Embedded Pentium® Processor Flexible Motherboard Design Guidelines 273206
Implementation Guidelines for 3.3 V Pentium® Processors with VR/VRE

i 242687
Specifications
Voltage Guidelines for Pentium® Processors with MMX ™ Technology 243186
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2.1

This volume describes the basic features and operation of embedded Penti um® processors:

* Embedded Pentium processors with maximum operating frequencies of 100, 133, and 166
MHz

* Embedded Pentium processors with Voltage Reduction Technology with a maximum
operating frequency of 133 MHz

* Embedded Pentium processors with MMX™ technology with maximum operating
frequencies of 200 and 233 MHz

* Low-power embedded Pentium processors with MMX™ technology with maximum operating
frequencies of 166 and 266 MHz

The general terms “processor,” “embedded Pentium processor,” and “embedded Pentium processor
family” are used throughout this manual to refer to the embedded Pentium processor, the embedded
Pentium processor with Voltage Reduction Technology, the embedded Pentium processor with
MMX technology, and the low-power embedded Pentium processor with MMX technology
together. Some of the features or functions described using these terms, however, may not be
available on each processor type. Refer to the datasheet for each product to determine whether a
specific feature is offered.

In some instances, the names “embedded Pentium processor (at 100/133/166 MHz),” “embedded
Pentium processor with Voltage Reduction Technology,” “embedded Pentium processor with
MMX technology,” and “low-power embedded Pentium processor with MMX technology” are
used in this manual to distinguish between processors when specific differences exist.

See “Related Documents” on page 1-8 for a list of datasheets and other documents that describe the
operation of Pentium processors.

Processor Features Overview

The embedded Pentium processor supports the features of previo@ls\rlchﬂbcture processors
and provides significant enhancements, including the following (refer to the datasheet for a specific
list of features supported by each processor):

* Superscalar architecture

¢ Dynamic branch prediction

* Pipelined Floating-Point Unit

* Improved instruction execution time

® Separate code and data caches

¢ Writeback MESI protocol in the data cache
* 64-bit data bus

* Bus cycle pipelining

* Address parity
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Internal parity checking

Functional redundancy checking and lock-step operation
Execution tracing

Performance monitoring

|EEE 1149.1 boundary scan

System Management Mode

Virtual Mode extensions

Dual processing support

Advanced SL power management features
Fractional bus operation

On-chip local APIC device

In addition, the embedded Pentium processor with MM X technology offers the following
enhancements over the embedded Pentium processor:

Support for Intel MM X technology
Dual power supplies—separated (core) and V3 (I/0) voltage inputs

Separate 16-Kbyte, 4-way set-associative code and data caches, each with improved fully
associative TLBs

Pool of four write buffers used by both execution pipelines
Enhanced branch prediction algorithm
New Fetch pipeline stage between Prefetch and Instruction Decode

Thefollowing features are supported by the embedded Pentium processor, but are not supported by
the embedded Pentium processor with MM X technol ogy:

Functional redundancy checking and lock-step operation
Support for the Intel 82498/82493 and 82497/82492 cache chipset products
Split line accesses to the code cache

Thefollowing featureis supported by the embedded Pentium processor with MM X technology, but
is not supported by the low-power embedded Pentium processor with MM X technol ogy:

2-2

Dual processing support
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Component Introduction

The application instruction set of the embedded Pentium processor family includes the complete
instruction set of existing Intel Architecture processorsto ensure backward compatibility, with
extensions to accommodate the additional functionality of the embedded Pentium processor. All
application software written for the Intel386™ and Intel486™ microprocessors runs on the
embedded Pentium processor without modification. The on-chip Memory Management Unit
(MMU) is completely compatible with Intel386 and Intel486 processors.

The embedded Pentium processor with MMX technology adds 57 new instructions and four new
data types to accelerate the performance of multimedia and communications software. MMX
technology is based on the SIMD technique—Single Instruction, Multiple data—which enables
increased performance on a wide variety of multimedia and communications applications. To take
advantage of the MMX instructions, software modifications must be made. When the MMX
instructions are not used, no hardware or software modifications are needed.

The two instruction pipelines and the floating-point unit on the embedded Pentium processor are
capable of independent operation. Each pipeline issues frequently used instructions in a single
clock. Together, the dual pipes can issue two integer instructions in one clock, or one floating-point
instruction (under certain circumstances, two floating-point instructions) in one clock.

The embedded Pentium processor with MMX technology adds the Fetch pipeline stage between
the Prefetch and Instruction decode stages, which increases the performance capability of the
processor. The embedded Pentium processor with MMX technology doubles the number of write
buffers available to be used by the dual pipelines.

Branch prediction is implemented in the embedded Pentium processor. To support this, the
processor has two prefetch buffers, one to prefetch code in a linear fashion, and one that prefetches
code according to the Branch Target Buffer (BTB) so the needed code is almost always prefetched
before it is needed for execution. The branch prediction algorithm has been enhanced on the
embedded Pentium processor with MMX technology for increased accuracy.

The embedded Pentium processor includes separate code and data caches integrated on chip to
meet its performance goals. Each cache on the embedded Pentium processor with MMX
technology is 16 Kbytes in size, and is four-way set associative. The caches on the embedded
Pentium processor (at 100/133/166 MHz) are each 8 Kbytes and two-way set-associative. Each
cache has a dedicated Translation Lookaside Buffer (TLB) to translate linear addresses to physical
addresses. The data cache is configurable to be writeback or writethrough on a line-by-line basis
and follows the MESI protocol. The data cache tags are triple ported to support two data transfers
and an inquire cycle in the same clock. The code cache is an inherently write protected cache. The
code cache tags of the embedded Pentium processor (at 100/133/166 MHz) are also triple ported to
support snooping and split-line accesses. The embedded Pentium processor with MMX technology
does not support split line accesses to the code cache. As such, its code cache tags are dual ported.
Individual pages can be configured as cacheable or non-cacheable by software or hardware. The
caches can be enabled or disabled by software or hardware.

The embedded Pentium processor has a 64-bit data bus and supports burst read and burst writeback
cycles. In addition, bus cycle pipelining has been added to allow two bus cycles to be in progress
simultaneously. The Memory Management Unit contains optional extensions to the architecture

that allow four-Mbyte page sizes.
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The embedded Pentium processor has added significant data integrity and error detection
capability. Data parity checking is till supported on a byte-by-byte basis. Address parity checking
and internal parity checking features have been added along with anew exception, the machine
check exception.

The embedded Pentium processor features functional redundancy checking to provide maximum

error detection of the processor and the interface to the processor. When functional redundancy

checking is used, a second processor, the “checker” is used to execute in lockstep with the “master”
processor. The checker samples the master’s outputs, compares those values with the values it
computes internally, and asserts an error signal when a mismatch occurs. The embedded Pentium
processor with MMX technology does not support functional redundancy checking.

As more and more functions are integrated on-chip, the complexity of board-level testing is
increased. To address this, the embedded Pentium processor has increased test and debug capability
by implementing IEEE Boundary Scan (Standard 1149.1).

System management mode (SMM) has been implemented along with some extensions to the SMM
architecture. Enhancements to the Virtual 8086 mode have been made to increase performance by
reducing the number of times it is necessary to trap to a Virtual 8086 monitor.

Figure 2-1 is a block diagram overview of the embedded Pentium processor with MMX technology
including the two instruction pipelines, the “u” pipe and the “v” pipe. The u-pipe can execute all
integer and floating-point instructions. The v-pipe can execute simple integer instructions and the
FXCH floating-point instruction.

The separate code and data caches are shown. The data cache has two ports, one for each of the two
pipes (the tags are triple ported to allow simultaneous inquire cycles). The data cache has a
dedicated TLB to translate linear addresses to the physical addresses used by the data cache.

The code cache, branch target buffer and prefetch buffers are responsible for getting raw
instructions into the execution units of the embedded Pentium processor. Instructions are fetched
from the code cache or from the external bus. Branch addresses are remembered by the branch
target buffer. The code cache TLB translates linear addresses to physical addresses used by the
code cache.

The decode unit contains two parallel decoders which decode and issue up to the next two
sequential instructions into the execution pipeline. The control ROM contains the microcode that
controls the sequence of operations performed by the processor. The control unit has direct control
over both pipelines.

The embedded Pentium processor contains a pipelined floating-point unit that provides a
significant floating-point performance advantage over previous generations of Intel architecture-
based processors.

The embedded Pentium processor includes features to support multi-processor systems, namely an
on-chip Advanced Programmable Interrupt Controller (APIC). This APIC implementation

supports multiprocessor interrupt management (with symmetric interrupt distribution across all
processors), multiple 1/0 subsystem support, 8259A compatibility, and inter-processor interrupt
support.
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Figure 2-1. Embedded Pentium® Processor Block Diagram
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NOTES:
1. The Code and Data caches are each 8 Kbytes in size on the embedded Pentium® processor (at 100/133/166
MHz).

2. The MMX Technology Unit is present only on the embedded Pentium processor with MMX™ technology.
3. The internal instruction bus is 256 bits wide on the embedded Pentium processor.
4

. Dual processing is not present on the embedded Pentium processor with Voltage Reduction Technology or the
low-power embedded Pentium processor with MMX technology.

5. The APIC is not present on the embedded Pentium processor with Voltage Reduction Technology.

The dual processor configuration allows two embedded Pentium processors to share asingle L2

cache for alow-cost symmetric multi-processor system. The two processors appear to the system

as a single embedded Pentium processor. Multiprocessor operating systems properly schedule

computing tasks between the two processors. This scheduling of tasksis transparent to software

applications and the end-user. Logic built into the processors support a “glueless” interface for easy
system design. Through a private bus, the two embedded Pentium processors arbitrate for the
external bus and maintain cache coherency. The embedded Pentium processor can also be used in a
conventional multi-processor system in which one L2 cache is dedicated to each processor.
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In this document, in order to distinguish between two embedded Pentium processorsin dual
processing mode, one processor is referred to as the Primary processor and the other as the Dual
processor. Note that this is a different concept than that of “master” and “checker” processors
described in the discussion on functional redundancy.

Dual processing is supported in a system only when both processors are operating at identical core
and bus frequencies and are the same type of processor. Within these restrictions, two processors of
different steppings may operate together in a system. See Chapter 3, “Component Operation” for
more details about Dual processing.

The embedded Pentium processor is produced on Intel's advanced silicon technology. The
embedded Pentium processor also includes SL enhanced power management features. When the
clock to the embedded Pentium processor is stopped, power dissipation is virtually eliminated. The
low V¢ operating voltages and SL enhanced power management features make the embedded
Pentium processor a good choice for energy-efficient designs.

The embedded Pentium processor supports fractional bus operation. This allows the internal
processor core to operate at high frequencies, while communicating with the external bus at lower
frequencies. See the datasheet for the bus-to-core frequency ratios supported by a specific member
of the embedded Pentium processor family.
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The embedded Pentium® processor has an optimized superscalar micro-architecture capable of
executing two instructions in asingle clock. A 64-bit external bus, separate data and instruction
caches, write buffers, branch prediction, and a pipelined floating-point unit combine to sustain the
high execution rate. These architectural features and their operation are discussed in this chapter.

3.1 Pipeline and Instruction Flow

Theinteger instructions traverse afive stage pipeline in the embedded Pentium processor (the
embedded Pentium® processor with MMX™ technology has an additional pipeline stage). The
pipeline stages are as follows:

PF Prefetch

F Fetch (embedded Pentium processor with MMX technology only)
D1 Instruction Decode

D2 Address Generate

EX Execute - ALU and Cache Access

WB Writeback

The embedded Pentium processor is a superscalar machine, built around two general purpose
integer pipelines and a pipelined floating-point unit capable of executing two instructions in
parallel. Both pipelines operate in parallel, allowing integer instructions to execute in a single clock
in each pipeline. Figure 3-1 depicts instruction flow in the embedded Pentium processor.

The pipelines in the embedded Pentium processor are called the “u” and “v” pipes and the process
of issuing two instructions in parallel is termed “pairing.” The u-pipe can execute any instruction in
the Intel architecture, whereas the v-pipe can execute “simple” instructions as defined in ““Pairing
Two MMX™ [nstructions” on page 3-16" section of this chapter. When instructions are paired, the
instruction issued to the v-pipe is always the next sequential instruction after the one issued to the

u-pipe.
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Figure 3-1. Embedded Pentium® Processor Pipeline Execution
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Integer Pipeline Description

The embedded Pentium processor pipeline has been optimized to achieve higher throughput
compared to previous generations of Intel architecture processors.

Thefirst stage of the pipelineis the Prefetch (PF) stage in which instructions are prefetched from
the on-chip instruction cache or memory. Because the processor has separate caches for
instructions and data, prefetches do not conflict with data references for access to the cache. If the
reguested line is not in the code cache, a memory reference is made. In the PF stage, two
independent pairs of line-size (32-byte) prefetch buffers operate in conjunction with the branch
target buffer. This allows one prefetch buffer to prefetch instructions sequentially while the other
prefetches according to the branch target buffer predictions. The prefetch buffers alternate their
prefetch paths. In the embedded Pentium processor with MM X technology, four 16-byte prefetch
buffers operate in conjunction with the BTB to prefetch up to four independent instruction streams.
See the “Instruction Prefetch” on page 3-3 for further details on prefetch buffers.

In the embedded Pentium processor with MMX technology only, the next pipeline stage is Fetch

(F), which is used for instruction length decode. It replaces the D1 instruction-length decoder and
eliminates the need for end-bits to determine instruction length. Also, any prefixes are decoded in
the F stage. The Fetch stage is not supported by the embedded Pentium processor (at 100, 133, 166
MHz) or the embedded Pentium processor with VRT.

The embedded Pentium processor with MMX technology also features an instruction FIFO
between the F and D1 stages. This FIFO is transparent; it does not add additional latency when it is
empty. During every clock cycle, two instructions can be pushed into the instruction FIFO
(depending on availability of the code bytes, and on other factors such as prefixes). Instruction
pairs are pulled out of the FIFO into the D1 stage. Since the average rate of instruction execution is
less than two per clock, the FIFO is normally full. As long as the FIFO is full, it can buffer any

stalls that may occur during instruction fetch and parsing. If such a stall occurs, the FIFO prevents
the stall from causing a stall in the execution stage of the pipe. If the FIFO is empty, an execution
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stall may result from the pipeline being “starved” for instructions to execute. Stalls at the FIFO
entrance may be caused by long instructions or prefixes, or “extremely misaligned targets” (i.e.,
Branch targets that reside at the last bytes of 16-aligned bytes).

The pipeline stage after the PF stage in the embedded Pentium processor is Decodel (D1), in which
two parallel decoders work to decode and issue the next two sequential instructions. The decoders
determine whether one or two instructions can be issued contingent upon the instruction pairing
rules described in “Pairing Two MMX™ Instructions” on page 3-16.” The embedded Pentium
processor requires an extra D1 clock to decode instruction prefixes. Prefixes are issued to the u-
pipe at the rate of one per clock without pairing. After all prefixes have been issued, the base
instruction is issued and paired according to the pairing rules. The one exception to this is that the
embedded Pentium processor decodes near conditional jumps (long displacement) in the second
opcode map (OFH prefix) in a single clock in either pipeline. The embedded Pentium processor
with MMX technology handles OFH as part of the opcode and not as a prefix. Consequently, OFH
does not take one extra clock to get into the FIFO. Note that in the embedded Pentium processor
with MMX technology, MMX instructions can be paired. This is discussed in “Pairing Two

MMX™ [nstructions” on page 3-16.

The D1 stage is followed by Decode?2 (D2) in which addresses of memory resident operands are
calculated. In the Intel486™ processor, instructions containing both a displacement and an
immediate or instructions containing a base and index addressing mode require an additional D2
clock to decode. The embedded Pentium processor removes both of these restrictions and is able to
issue instructions in these categories in a single clock.

The embedded Pentium processor uses the Execute (EX) stage of the pipeline for both ALU
operations and for data cache access; therefore, those instructions specifying both an ALU
operation and a data cache access require more than one clock in this stage. In EX, all u-pipe
instructions and all v-pipe instructions except conditional branches are verified for correct branch
prediction. Microcode is designed to utilize both pipelines; therefore, those instructions requiring
microcode execute faster.

The final stage is Writeback (WB), in which instructions are enabled to modify the processor state
and complete execution. In this stage, v-pipe conditional branches are verified for correct branch
prediction.

During their progression through the pipeline, instructions may be stalled due to certain conditions.
Both the u-pipe and v-pipe instructions enter and leave the D1 and D2 stages in unison. When an
instruction in one pipe is stalled, the instruction in the other pipe is also stalled at the same pipeline
stage. Thus both the u-pipe and the v-pipe instructions enter the EX stage in unison. Once in EX, if
the u-pipe instruction is stalled, then the v-pipe instruction (if any) is also stalled. If the v-pipe
instruction is stalled, then the instruction paired with it in the u-pipe is not allowed to advance. No
successive instructions are allowed to enter the EX stage of either pipeline until the instructions in
both pipelines have advanced to WB.

Instruction Prefetch

In the embedded Pentium processor PF stage, two independent pairs of line-size (32-byte) prefetch
buffers operate in conjunction with the branch target buffer. Only one prefetch buffer actively
requests prefetches at any given time. Prefetches are requested sequentially until a branch
instruction is fetched. When a branch instruction is fetched, the branch target buffer (BTB) predicts
whether the branch will be taken or not. If the branch is predicted not taken, prefetch requests
continue linearly. On a predicted taken branch the other prefetch buffer is enabled and begins to
prefetch as though the branch were taken. If a branch is discovered mispredicted, the instruction
pipelines are flushed and prefetching activity starts over.
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3.1.2
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The embedded Pentium processor with MMX technology’s prefetch stage has four 16-byte buffers
that can prefetch up to four independent instruction streams, based on predictions made by the
BTB. In this case, the Branch Target Buffer predicts whether the branch will be taken or not in the
PF stage. The embedded Pentium processor with MMX technology features an enhanced two-stage
Branch prediction algorithm, compared to the embedded Pentium processor.

For more information on branch prediction, see “Component Introduction” on page 2-3.

Integer Instruction Pairing Rules
The embedded Pentium processor can issue one or two instructions every clock. In order for the
processor to issue two instructions simultaneously, they must satisfy the following conditions:

¢ Both instructions in the pair must be “simple” as defined below.

* There must be no read-after-write or write-after-write register dependencies between the
instructions.

¢ Neither instruction may contain both a displacement and an immediate.

* Instructionswith prefixes can only occur in the u-pipe (except for JCC instructions with a OFH
prefix on the embedded Pentium processor and instructions with a OFH, 66H or 67H prefix on
the embedded Pentium processor with MM X technology).

* Instruction prefixes are treated as separate 1-byte instructions (except for all OFH prefixed
instructions in the embedded Pentium processor with MM X technology).

Simple instructions are entirely hardwired; they do not require any microcode control and, in
general, execute in one clock. The exceptions are the ALU mem,reg and ALU reg,mem
instructions which are three and two clock operations, respectively. Sequencing hardware is used to
allow them to function as simple instructions. The following integer instructions are considered
simple and may be paired:

* mov reg, reg/mem/imm
* mov mem, reg/imm
¢ alureg, reg/mem/imm
¢ alumem, reg/imm

* increg/mem

¢ dec reg/mem

* push reg/mem

¢ popreg

* leareg,mem

¢ jmp/call/jcc near

* nop

* test reg, reg/mem

* test acc, imm
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In addition, conditional and unconditional branches may be paired only if they occur as the second
instruction in the pair. They may not be paired with the next sequential instruction. Also,
SHIFT/ROT by 1 and SHIFT by IMM may pair as the first instruction in a pair.

The register dependencies that prohibit instruction pairing include implicit dependenciesvia
registers or flags not explicitly encoded in the instruction. For example, an ALU instruction in the
u-pipe (which sets the flags) may not be paired with an ADC or an SBB instruction in the v-pipe.
There aretwo exceptionsto thisrule. Thefirst isthe commonly occurring sequence of compare and
branch, which may be paired. The second exception is pairs of pushes or pops. Although these
instructions have an implicit dependency on the stack pointer, special hardwareisincluded to allow
these common operations to proceed in parallel.

Although two paired instructions generally may proceed in parallel independently, thereisan

exception for paired “read-modify-write” instructions. Read-modify-write instructions are ALU
operations with an operand in memory. When two of these instructions are paired, there is a
sequencing delay of two clocks in addition to the three clocks required to execute the individual
instructions.

Although instructions may execute in parallel, their behavior as seen by the programmer is exactly
the same as if they were executed sequentially.

Information regarding pairing of FPU and MMX instructions is discussed in “Floating-Point Unit”
on page 3-7 and “Intel MMX™ Technology Unit” on page 3-11 For additional details on code
optimization, refer t@ptimizing for Intel's 32-Bit Processo(srder number 241799).

3.2 Branch Prediction

The embedded Pentium processor uses a Branch Target Buffer (BTB) to predict the outcome of
branch instructions, thereby minimizing pipeline stalls due to prefetch delays.

The processor accesses the BTB with the address of the instruction in the D1 stage. It contains a
Branch prediction state machine with four states: (1) strongly not taken, (2) weakly not taken, (3)
weakly taken, and (4) strongly taken. In the event of acorrect prediction, abranch executes without
pipeline stalls or flushes. Branches that missthe BTB are assumed to be not taken. Conditional and
unconditional near branches and near calls execute in one clock and may be executed in parallel
with other integer instructions. A mispredicted branch (whether a BTB hit or miss) or a correctly
predicted branch with the wrong target address causes the pipelines to be flushed and the correct
target to be fetched. Incorrectly predicted unconditional branches incur an additional three clock
delay, incorrectly predicted conditional branchesin the u-pipeincur an additional three clock delay,
and incorrectly predicted conditional branches in the v-pipe incur an additional four clock delay.

The benefits of branch prediction areillustrated in the following example. Consider the following
loop from a benchmark program for computing prime numbers:

for (k=i +pri me; k<=Sl ZE; k+=pri ne)
f 1 ags[ k] =FALSE;
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Note:

A popular compiler generates the following assembly code (prime is allocated to ECX, K is
allocated to EDX, and AL contains the value FAL SE):

i nner _| oop:
nov byte ptr flags[edx], al
add edx, ecx
cnp edx, SIZE
jle inner_loop

Each iteration of this loop executes in six clocks on the Intel486™ processor. On the embedded
Pentium processor, the MOV is paired with the ADD; the CMP with the JLE. With branch
prediction, each loop iteration executes in two clocks.

The dynamic branch prediction algorithm speculatively runs code fetch cycles to addresses
corresponding to instructions executed some time in the past. Such code fetch cycles are run based
on past execution history, regardless of whether the instructions retrieved are relevant to the
currently executing instruction sequence.

One effect of the branch prediction mechanism is that the processor may run code fetch bus cycles
to retrieve instructions that are never executed. Although the opcodes retrieved are discarded, the
system must complete the code fetch bus cycle by returning BRDY#. It is particularly important
that the system return BRDY# for all code fetch cycles, regardless of the address.

It should also be noted that upon entering SMM, the branch target buffer (BTB) is not flushed and
thus it is possible to get a speculative prefetch to an address outside of SMRAM address space due
to branch predictions based on code executed prior to entering SMM. If this occurs, the system
must still return BRDY# for each code fetch cycle.

Furthermore, the processor may run speculative code fetch cycles to addresses beyond the end of
the current code segment (approximately 100 bytes past end of last executed instruction). Although
the processor may prefetch beyond the CS limit, it will not attempt to execute beyond the CS limit.
Instead, it will raise a GP fault. Thus, segmentation cannot be used to prevent speculative code
fetches to inaccessible areas of memory. On the other hand, the processor never runs code fetch
cycles to inaccessible pages (i.e., not present pages or pages with incorrect access rights), so the
paging mechanism guards against both the fetch and execution of instructions in inaccessible
pages.

For memory reads and writes, both segmentation and paging prevent the generation of bus cycles
to inaccessible regions of memory. If paging is not used, branch prediction can be disabled by
setting TR12.NBP (bit )and flushing the BTB by loading CR3 before disabling any areas of
memory. Branch prediction can be re-enabled after re-enabling memory.

The following is an example of a situation that may occur:
1. Code passes control to segment at address COOOH.

2. Code transfers control to code at different address (6000H) by using the FAR CALL
instruction.

3. This portion of the code does an I/O write to a port that disables memory at address COO0H.
4. At the end of this segment, an I/O write is performed to re-enable memory at address COO0H.
5. Following the OUT instruction, there is a RET instruction to COO0H segment.

1. Pleaserefer to Chapter 14 of this volume.

3-6
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Figure 3-2. Branch Prediction Example

> OUT ; disable cOO0OH

OUT ; enable cOO0OH
RET

6000H

A

FAR CALL

cO00H

A6104-01

The branch prediction mechanism of the embedded Pentium processor, however, predicts that the
RET instruction is going to transfer control to the segment at address CO0OOH and performs a
prefetch from that address prior to the OUT instruction that re-enables that memory address. The
result isthat no BRDY isreturned for that prefetch cycle and the system hangs.

In this case, branch prediction should be disabled (by setting TR12.NBP and flushing the BTB by
loading CR3) prior to disabling memory at address COOOH, and re-enabled after the RET

instruction by clearing TR12.NBP asindicated above. (See Chapter 14, “Model Specific Registers
and Functions” for more information on register operation.)

In the embedded Pentium processor with MMX technology, the branch prediction algorithm
changes from the embedded Pentium processor in the following ways:

¢ BTB Lookup is done when the branch is in the PF stage.

* The BTB Lookup tag is the Prefetch address.

* A Lookup in the BTB performs a search spanning sixteen consecutive bytes.
* BTB can contain four branch instructions for each line of 16 bytes.

* BTB isconstructed from four independent Banks. Each Bank contains 64 entries and is 4-way
associative.

¢ Enhanced two-stage branch prediction algorithm.

3.3 Floating-Point Unit

The floating-point unit (FPU) of the embedded Pentium processor is integrated with the integer
unit on the same chip. It is heavily pipelined. The FPU is designed to be able to accept one floating-
point operation every clock. It can receive up to two floating-point instructions every clock, one of
which must be an exchange instruction.

For information on code optimization, please refer to Optimizing for Intel's 32-Bit Processors
(order number 241799).

Embedded Pentium® Processor Family Developer’s Manual 3-7



u
Component Operation I nt9I ®

3.3.1 Floating-Point Pipeline Stages

The embedded Pentium processor FPU has eight pipeline stages, the first five of which it shares
with the integer unit. Integer instructions pass through only the first five stages. Integer instructions
usethefifth (X1) stage as a WB (write-back) stage. The eight FP pipeline stages, and the activities
that are performed in them are summarized below:

PF Prefetch
F Fetch (applicable to the embedded Pentium processor with MMX technology only)

D1 Instruction decode

D2 Address generation

EX  Memory and register read; conversion of FP data to external memory format and memory
write

X1 Floating-Point Execute stage one; conversion of external memory format to internal FP
data format and write operand to FP register file; bypass 1 (bypass 1 is described in “FPU
Bypasses” on page 3-10)

X2 Floating-Point Execute stage two

WF  Perform rounding and write floating-point result to register file; bypass 2 (bypass 2 is
described in “FPU Bypasses” on page 3-10)

ER Error Reporting/Update Status Word

3.3.2 Instruction Issue

The rules of how floating-point (FP) instructions get issued on the embedded Pentium processor
are described as follows:

1. FPinstructions do not get paired with integer instructions. However, alimited pairing of two
FP instructions can be performed.

2. When apair of FP instructionsisissued to the FPU, only the FXCH instruction can be the
second instruction of the pair. Thefirst instruction of the pair must be one of aset F where F =
[FLD single/double, FLD ST(i), al forms of FADD, FSUB, FMUL, FDIV, FCOM, FUCOM,
FTST, FABS, FCHS].

3. FPinstructions other than the FXCH instruction and other than instructions belonging to set F
(defined in rule 2) aways get issued singly to the FPU.

4. FPinstructionsthat are not directly followed by an FP exchange instruction are issued singly
to the FPU.

The embedded Pentium processor stack architecture instruction set requires that all instructions

have one source operand on the top of the stack. Since most instructions also have their destination

as the top of the stack, most instructions see a “top of stack bottleneck.” New source operands must
be brought to the top of the stack before we can issue an arithmetic instruction on them. This calls
for extra usage of the exchange instruction, which allows the programmer to bring an available
operand to the top of the stack. The processor FPU uses pointers to access its registers to allow fast
execution of exchanges and the execution of exchanges in parallel with other floating-point
instructions. An FP exchangfeat is paired with other FP instructions takes zero clocks for its
execution. Because such exchanges can be executed in parallel, it is recommended that one use
them when necessary to overcome the stack bottleneck.
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Note that when exchanges are paired with other floating-point instructions, they should not be
followed immediately by integer instructions. The processor stalls such integer instructions for a
clock if the FP pair is declared safe, or for four clocksif the FP pair is unsafe.

Also note that the FP exchange must always follow another FP instruction to get paired. The
pairing mechanism does not allow the FP exchange to be the first instruction of a pair that isissued
in parallel. If an FP exchange is not paired, it takes one clock for its execution.

Safe Instruction Recognition

The embedded Pentium processor FPU performs Safe Instruction Recognition or SIR inthe X1
stage of the pipeline. SIR is an early inspection of operands and opcodes to determine whether the
instruction is guaranteed not to generate an arithmetic overflow, underflow, or unmasked inexact
exception. Aninstruction is declared safe if it cannot raise any other floating-point exception, and
if it does not need microcode assist for delivery of special results. If aninstruction is declared safe,
the next FP instruction is allowed to complete its E stage operation. If an instruction is declared
unsafe, the next FP instruction stallsin the E stage until the current one completes (ER stage) with
no exception. This means afour clock stall, which isincurred even if the numeric instruction that
was declared unsafe does not eventually raise a floating-point exception.

For normal data, the rules used on the embedded Pentium processor for declaring an instruction
safe are as follows.

On the embedded Pentium processor, if FOP = FADD/FSUB/FMUL/FDIV, the instruction is safe
from arithmetic overflow, underflow, and unmasked inexact exceptions if:

1. Both operands have unbiased exponent <1FFEH
and

2. Both operands have unbiased exponent >—1FFEH
and

3. Theinexact exception is masked.

Similarly, on the embedded Pentium processor with MM X technology, if FOP =
FADD/FSUB/FMUL/FDIV, the instruction is safe from arithmetic overflow, underflow, and
unmasked inexact exceptionsiif:
1. Both operands have unbiased exponent <1000H
and
2. Both operands have unbiased exponent =—0FFFH
and
3. Theinexact exception is masked.
Note that arithmetic overflow of the double precision format occurs when the unbiased exponent of
the result is 2400H, and underflow occurs when the exponent is <—3FFH. Hence, the SIR

algorithm on the embedded Pentium processor allows improved throughput on a much greater
range of humbers than that spanned by the double precision format.
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3.3.5
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FPU Bypasses

The following section describes the floating-point register file bypasses that exist on the embedded
Pentium processor. The register file has two write ports and two read ports. The read ports are used
to read data out of the register filein the E stage. One write port is used to write data into the
register file in the X1 stage, and the other in the WF stage. A bypass allows data that is about to be
written into the register file to be available as an operand that is to be read from the register file by
any succeeding floating-point instruction. A bypassis specified by a pair of ports (awrite port and
aread port) that get circumvented. Using the bypass, datais made available even before actually
writing it to the register file.

The following procedures are implemented:

1. Bypassthe X1 stage register file write port and the E stage register file read port.
2. Bypassthe WF stage register file write port and the E stage register file read port.

With bypass 1, the result of afloating-point load (that writesto the register filein the X1 stage) can
bypass the X1 stage write and be sent directly to the operand fetch stage or E stage of the next
instruction.

With bypass 2, the result of any arithmetic operation can bypass the WF stage write to the register
file, and be sent directly to the desired execution unit as an operand for the next instruction.

Note that the FST instruction reads the register file with a different timing requirement, so that for
the FST instruction, which attempts to read an operand in the E stage:

1. Thereisno bypassing the X1 stage write port and the E stage read port, i.e., no added bypass
for FLD followed by FST. Thus FLD (double) followed by FST (double) takes four clocks
(two for FLD, and two for FST).

2. Thereisno bypassing the WF stage write port and the E stage read port. The E stage read for
the FST happens only in the clock following the WF write for any preceding arithmetic
operation.

Furthermore, there is no memory bypass for an FST followed by an FLD from the same memory
location.

Branching Upon Numeric Condition Codes

Branching upon numeric condition codes is accomplished by transferring the floating-point SW to
the integer FLAGS register and branching on it. The “test numeric condition codes and branch
construct looks like:

FP instructionl; instruction whose effects on the status word are to be examined;
“numeric_test_and_branch_construct™:

FSTSW AX; move the status word to the ax register.

SAHF; transfer the value in ah to the lower half of the eflags register.

JC xyz; jump upon the condition codes in the eflags register.

Embedded Pentium® Processor Family Developer’s Manual



3.4

3.4.1

Component Operation

Note that all FP instructions update the status word only in the ER stage. Hence there is a built-in
status word interlock between FP instructionl and the FSTSW AX instruction. The above piece of
code takes nine clocks before execution of code begins at the target of the jump. These nine clocks
are counted as:

FPinstructionl: X1, X2, WF, ER (4 E stage stalls for the FSTSWAX);
FSTSW AX: Two E clocks;

SAHF: Two E clocks;

JC xyz: One clock if no mispredict on branch.

Note that if there is a branch mispredict, there is a minimum of three clocks added to the clock
count of nine.

It is recommended that such attempts to branch upon numeric condition codes be preceded by

integer instructions; i.e., you should insert integer instructions in between FP instructionl and the
FSTSW AX instruction that is the first instruction of the “numeric test and branch” construct. This
allows the elimination of up to four clocks (the 4 E-stage stalls on FSTSW AX) from the cost
attributed to this construct, so that numeric branching can be accomplished in five clocks.

Intel MMX™ Technology Unit

Intel's MMX technology, supported on the embedded Pentium processor with MMX technology, is

a set of extensions to the Intel architecture that are designed to greatly enhance the performance of
advanced media and communications applications. These extensions (which include new registers,
data types, and instructions) are combined with a single-instruction, multiple-data (SIMD)

execution model to accelerate the performance of applications such as motion video, combined
graphics with video, image processing, audio synthesis, speech synthesis and compression,
telephony, video conferencing, and 2D and 3D graphics, which typically use compute-intensive
algorithms to perform repetitive operations on large arrays of simple, native data elements.

MMX technology defines a simple and flexible software model, with no new mode or operating-
system visible state. All existing software runs correctly, without modification, on Intel
architecture processors that incorporate MMX technology, even in the presence of existing and
new applications that incorporate this technology.

The following sections of this chapter describe the basic programming environment for the
technology, the MMX technology register set, data types and instruction set. Detailed descriptions
of the MMX instructions are provided in Chapter 3 of lthtel Architecture Software Developer’s
Manual Volume 2. The manner in which the MM X technology extensions fit into the Intel

architecture system programming model is described in Chapter 10 of the Intel Architecture

Software Developer’s Manualolume 3.

MMX™ Technology Programming Environment
MMX technology provides the following new extensionsto the Intel architecture programming
environment:

¢ Eight MMX technology registers (MMO through MM7)

* Four MMX technology data types (packed bytes, packed words, packed doublewords and
quadword)

* The MMX technology instruction set
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34.1.1

MMX™ Technology Registers

The MMX technology register set consists of eight 64-bit registers (Figure 3-3). The MM X
instructions access the registers directly using the register names MMO through MM7. These
registers can only be used to perform calculations on MM X technology data types; they cannot be
used to address memory. Addressing of MM X instruction operandsin memory is handled by using
the standard Intel architecture addressing modes and general-purpose registers (EAX, EBX, ECX,
EDX, EBP, ESI, EDI and ESP).

Figure 3-3. MMX™ Technology Register Set

3.4.1.2

3-12

63 0
MM7

MM6

MM5
MM4

MM3
MM2

MM1
MMO

A6106-01

Although the MMX registers are defined in the Intel architecture as separate registers, they are
aliased to the registersin the FPU data register stack (RO through R7). (See Chapter 10 in the Intel
Architecture Software Developer's Manpéblume 3, for a more detailed discussion of MM X
technology register aliasing.)

MMX™ Technology Data Types

The MMX technology defines the following new 64-bit data types (Figure 3-4):

Packed bytes Eight bytes packed into one 64-bit quantity.

Packed words Four (16-bit) words packed into one 64-bit quantity.
Packed doublewords Two (32-bit) doublewords packed into one 64-bit quantity.
Quadword One 64-bit quantity.

The bytesin the packed bytes data type are numbered O through 7. Byte O is contained in the least
significant bits of the datatype (bits 0 through 7) and byte 7 is contained in the most significant bits
(bits 56 through 63). The words in the packed words data type are numbered O through 4. Word O is
contained in the bits 0 through 15 of the data type and word 4 is contained in bits 48 through 63.
The doublewords in a packed doublewords data type are numbered O through 1. Doubleword O is
contained in bits 0 through 31 and doubleword 1 is contained in bits 32 through 63.
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Figure 3-4. Packed Data Types

3.4.1.3

Packed bytes (8x8 bits)
63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Packed word (4x16 bits)
63 48 47 32 31 16 15 0

Packed doublewords (2x32 bits)
63 32 31 0

Quadword (64 bits)
63 0

A6107-01

The MMX instructions move the packed data types (packed bytes, packed words or packed
doublewords) and the quadword data type to-and-from memory or to-and-from the Intel
architecture general -purpose registers in 64-bit blocks. However, when performing arithmetic or
logical operations on the packed data types, the MM X instructions operate in parallel on the
individual bytes, words or doublewords contained in a 64-bit MM X register.

When operating on the bytes, words and doublewords within packed data types, the MM X
instructions recognize and operate on both signhed and unsigned byte integers, word integers and
doubleword integers.

Single Instruction, Multiple Data (SIMD) Execution Model

The MMX technology uses the single instruction, multiple data (SIMD) technique for performing
arithmetic and logical operations on the bytes, words or doublewords packed in an MM X packed
data type. For example, the PADDSB instruction adds eight signed bytes from the source operand
to eight signed bytes in the destination operand and stores eight byte-results in the destination
operand. This SIMD technique speeds up software performance by allowing the same operation to
be carried out on multiple data elementsin parallel. The MM X technology supports parallel
operations on byte, word and doubleword data el ements when contained in MM X packed data

types.

The SIMD execution model supported in the MM X technology directly addresses the needs of
modern media, communications and graphics applications, which often use sophisticated
algorithms that perform the same operations on alarge number of small data types (bytes, words
and doublewords). For example, most audio data is represented in 16-bit (word) quantities. The
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MMX instructions can operate on four of these words simultaneously with one instruction. Video
and graphics information is commonly represented as palletized 8-bit (byte) quantities. Here, one
MM X instruction can operate on eight of these bytes simultaneously.

34.1.4 Memory Data Formats

When stored in memory the bytes, words and doublewords in the packed data types are stored in
consecutive addresses, with the least significant byte, word or doubleword being stored at the
lowest address and the more significant bytes, words or doublewords being stored at consecutively
higher addresses (see Figure 3-5). The ordering of bytes, words or doublewordsin memory is
always little endian. That is, the bytes with the lower addresses are less significant than the bytes
with the higher addresses.

Figure 3-5. Eight Packed Bytes in Memory (at Address 1000H)

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

Memory Address 1008H Memory Address 1000H

A6108-01

3.4.15 MMX™ Technology Register Data Formats

Valuesin MMX registers have the same format as a 64-bit quantity in memory. MMX registers
have two data access modes: 64-bit access mode and 32-bit access mode.

The 64-bit access mode is used for 64-bit memory access, 64-bit transfer between registers, all
pack, logical and arithmetic instructions, and some unpack instructions.

The 32-bit access mode is used for 32-bit memory access, 32-hit transfer between integer registers
and MM X technology registers, and some unpack instructions.

3.4.2 MMX™ |nstruction Set

The MMX instruction set consists of 57 instructions, grouped into the following categories:
¢ DataTransfer Instructions
¢ Arithmetic Instructions
¢ Comparison Instructions
¢ Conversion Instructions
¢ Logical Instructions
¢ Shift Instructions
¢ Empty MMX State (EMMYS) Instruction

These instructions provide arich set of operations that can be performed in parallel on the bytes,
words or doublewords of an MM X packed data type.
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When operating on the MM X packed data types, the data within a data typeis cast by the type

specified by the instruction. For example, the PADDB (add packed bytes) instruction adds two

groups of eight packed bytes. The PADDW (add packed words) instruction, which adds packed
words, can operate on the same 64 hits as the PADDB instruction treating 64 bits as four 16-bit
words.

3.4.3 Intel MMX™ Technology Pipeline Stages

The MMX technology unit of the embedded Pentium processor with MM X technology has six
pipeline stages. The integration of the MM X technology pipeline with the integer pipelineisvery
similar to that of the floating-point pipe.

The embedded Pentium processor with MM X technology adds an additional fetch stage to the
pipeline. Theinstruction bytes are prefetched from the code cache in the prefetch (PF) stage, and
they are parsed into instructions (and prefixes) in the fetch (F) stage. Additionally, any prefixes are
decoded in the F stage.

When instructions execute in the two pipes, their behavior is exactly the same asif they were
executed sequentially. When a stall occurs, successive instructions are not allowed to pass the
stalled instruction in either pipe. Figure 3-6 shows the pipelining structure for this scheme.

Figure 3-6. MMX™ Technology Pipeline Structure

Decoupled Stages of the MMX™ Instruction Pipeline
Mex |WMM,| M3 |wMmul |

[pr| F | p1|D2|EX|wWa]
X[
EX, [EX[EXs

MMX instruction pipeline
integrated in integer pipeline

I:I Integer pipeline only

A6109-01

Instruction parsing is decoupled from the instruction decoding by means of an instruction FIFO,
which is situated between the F and D1 (Decode 1) stages. The FIFO has slots for up to four
instructions. This FIFO is transparent, it does not add additional latency when it is empty.

Every clock cycle, two instructions can be pushed into the instruction FIFO (depending on the
availability of the code bytes, and on other factors such as prefixes). Instruction pairsare pulled out

of the FIFO into the D1 stage. Since the average rate of instruction execution is less than two per

clock, the FIFO isnormally full. If the FIFO isfull, then the FIFO can buffer astall that may have
occurred during instruction fetch and parsing. If this occurs, then that stall will not cause astall in

the execution stage of the pipe. If the FIFO is empty, then an execution stall may result from the

pipeline being “starved” for instructions to execute. Also, if the FIFO contains only one instruction,
then the instruction will not pair. Additionally, if an instruction is longer than 7 bytes, then only one
instruction will be pushed into the FIFO. Figure 3-6 details the MMX pipeline on superscalar
processors and the conditions where a stall may occur in the pipeline.
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Table 3-1. Pipeline Stage Summary
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Pipeline Stage

Abbreviation

Description

Prefetch PF Prefetches instructions
The prefetched instruction bytes are passed into instructions. The
Fetch = prefixes are decoded and up to two instructions are pushed into the
FIFO. Two MMX instructions can be pushed if each of the instructions
are less than seven in bytes length.
Integer, floating-point and MMX instructions are decoded in the D1
Decodel D1 pipe stage.
Decode2 D2 Source values are read.
Execution E The instruction is committed for execution.
Execution clock for MMX instructions. ALU, shift, pack, and unpack
MMX Execution Mex instructions are executed and completed in this clock. First clock of
multiply instructions. No stall conditions.
Write/Multiply2 WM/M3 Single clo_c_k operations are written. Second stage of multiplier pipe. No
stall conditions.
Multiply3 M3 Third stage of multiplier pipe. No stall conditions.
Write of multiply Wmul Write of multiplier result. No stall conditions.

Instruction Issue

The rules of how MM X instructions get issued on the embedded Pentium processor with MM X
technology are summarized as follows:

¢ Pairing of two MMX instructions can be performed.

¢ Pairing of one MM X instruction with an integer instruction can be performed.

¢ MMX instructions do not get paired with floating-point instructions.

Pairing Two MMX™ [nstructions

The rules of how two MM X instructions can be paired are listed below:

¢ Two MMX instructions that both use the MM X shifter unit (pack, unpack and shift
instructions) cannot pair since thereis only one MMX shifter unit. Shift operations may be
issued in either the u-pipe or the v-pipe but not in both in the same clock cycle.

* Two MMX instructions that both use the MM X multiplier unit (PMULL, PMULH, PMADD
typeinstructions) cannot pair since there is only one MM X multiplier unit. Multiply
operations may be issued in either the u-pipe or the v-pipe but not in both in the same clock

cycle.

* MMX instructions that access either memory or the integer register file can be issued in the u-
pipe only. Do not schedule these instructions to the v-pipe as they will wait and be issued in
the next pair of instructions (and to the u-pipe).

* The MMX destination register of the u-pipe instruction should not match the source or
destination register of the v-pipe instruction (dependency check).

* The EMMSinstruction is not pairable.
¢ If either the CRO.TS or the CRO.EM hits are set, MM X instructions cannot go into the v-pipe.
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Pairing an Integer Instruction in the U-pipe with an MMX
Instruction in the V-pipe

Therules of how an integer instruction in the u-pipeis paired with an MMX instruction in the
v-pipe are listed below:

* The MMX instruction cannot be the first MM X instruction following a floating-point
instruction.

* Thev-pipe MMX instruction does not access either memory or the integer register file.

* Theu-pipeinteger instruction is a pairable u-pipe integer instruction.

Pairing an MMX Instruction in the U-pipe with an
Integer Instruction in the V-pipe

Therules of how an MMX instruction in the u-pipe is paired with an integer instruction in the
v-pipe are listed below:

* Thev-pipeinstruction is a pairable integer v-pipe instruction.

* Theu-pipe MMX instruction does not access either memory or the integer register file.

On-Chip Caches

The embedded Pentium processor (at 100/133/166 MHz) implements two internal cachesfor a
total integrated cache size of 16 Kbytes: an 8-Kbyte data cache and a separate 8-Kbyte code cache.
These caches are transparent to application software to maintain compatibility with previous I ntel
architecture generations. The embedded Pentium processor with MM X technology doubles the
internal cache size to 32 Kbytes: a 16-Kbyte data cache and a separate 16-Kbyte code cache.

The data cache fully supports the MESI (modified/exclusive/shared/invalid) cache consistency
protocol. The code cache isinherently write protected to prevent code from being inadvertently
corrupted, and as a consequence supports a subset of the MESI protocol, the S (shared) and |
(invalid) states.

The caches have been designed for maximum flexibility and performance. The data cacheis
configurable as writeback or writethrough on aline-by-line basis. Memory areas can be defined as
non-cacheabl e by software and external hardware. Cache writeback and invalidations can be
initiated by hardware or software. Protocols for cache consistency and line replacement are
implemented in hardware, easing system design.

Cache Organization

On the embedded Pentium processor, each cache is 8 Kbytes and is organized as a 2-way set
associative cache. There are 128 sets in each cache; each set contains 2 lines (each line has its own
tag address). Each cache lineis 32 bytes wide. The embedded Pentium processor with MM X
technology has two 16-Kbyte, 4-way set-associative caches the with aline length of 32 bytes.

On the embedded Pentium processor, replacement in both the data and instruction cachesis
handled by the LRU mechanism, which requires one bit per set in each of the caches. The
embedded Pentium processor with MM X technology uses a pseudo-L RU replacement algorithm
that requiresthree bits per set in each of the caches. When aline must be replaced, the cache selects

Embedded Pentium® Processor Family Developer’s Manual 3-17



u
Component Operation I nt9I ®

which of LO:L1 and L2:L3 was least recently used. Then the cache determines which of the two
lines was least recently used and marks it for replacement. This decision treeis shown in

Figure 3-7.
Figure 3-7. Pseudo-LRU Cache Replacement Strategy
All four lines No -
inthe set valid? ———> Replace non-valid line
Yes
BO =0?
Yes: LO or L1 least No: L2 or L3 least
recently used recently used
B1=0? B2=0?
Yes No Yes No
Replace Replace Replace Replace
Lo L1 L2 L3
AB111-01

The data cache consists of eight banks interleaved on 4-byte boundaries. The data cache can be
accessed simultaneously from both pipes, as long as the references are to different cache banks. A
conceptual diagram of the organization of the data and code caches is shown in Figure 3-8. The
data cache supports the MESI writeback cache consistency protocol, which requires two state bits,
while the code cache supports the S and | state only and therefore requires only one state hit.

Figure 3-8. Conceptual Organization of Code and Data Caches

MESI MESI MESI MESI
State State State State
LRU
CaD(?P:Z Set[TagAddress| | | [<—=] [TagAddress| | | [TagAddress] | | [TagAddress| | |
WAY 0 WAY 1 WAY 2 WAY 3
State Bit State Bit State Bit State Bit
(Sorl) (Sorl) (Sorl) (Sorl)
Code LRU
Cache Set [ Tag Address| | [=—] [Tag Address] ] [Tag Address| ] [Tag Address| ]
WAY 0 WAY 1 WAY 2 WAY 3

Pentium ® Processor with MMX™ Technology

MESI MESI
State State
Data L
Cache Set |Tag Address | | | |<—>| |Tag Address| | |
WAY 0 WAY 1
State Bit State Bit
(Sorl) (Sorl)
Code LR
Cache Set|Tag Address - Tag Address -
WAY 0 WAY 1

Pentium Processor (at 100, 133, 166 MHz)

A6112-01
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Cache Structure

Theinstruction and data caches can be accessed simultaneously. The instruction cache can provide
up to 32 bytes of raw opcodes and the data cache can provide datafor two data references all in the
same clock. This capability isimplemented partialy through the tag structure. The tagsin the data
cache are triple-ported. One of the ports is dedicated to snooping while the other two are used to
lookup two independent addresses corresponding to data references from each of the pipelines. The
instruction cache tags of the embedded Pentium processor (at 100/133/166 MHZz) are also triple-
ported. Again, one port is dedicated to support snooping and the other two ports facilitate split line
accesses (simultaneously accessing upper half of oneline and lower half of the next ling). Note that
the embedded Pentium processor with MM X technology does not support split line accesses to the
code cache; its code cache tags are dual ported.

The storage array in the data cache is single ported but interleaved on 4-byte boundaries to be able
to provide data for two simultaneous accesses to the same cache line.

Each of the caches are parity protected. In the instruction cache, there are parity bits on a quarter
line basis and thereis one parity bit for each tag. The data cache contains one parity bit for each tag
and a parity bit per byte of data.

Each of the caches are accessed with physical addresses and each cache hasitsown TLB
(translation lookaside buffer) to translate linear addresses to physical addresses. The TLBs
associated with the instruction cache are single-ported whereas the data cache TLBs are fully dual-
ported to be able to translate two independent linear addresses for two data references
simultaneously. The tag and data arrays of the TLBs are parity protected with a parity bit associated
with each of the tag and data entriesin the TLBs.

The data cache of the embedded Pentium processor has a 4-way set associative, 64-entry TLB for
4-Kbyte pages and a separate 4-way set associative, 8-entry TLB to support 4-Mbyte pages. The
code cache has one 4-way set associative, 32-entry TLB for 4-Kbyte pages and 4-Mbyte pages,
which are cached in 4-Kbyte increments. Replacement in the TLBsis handled by a pseudo-LRU
mechanism (similar to the Intel486 processor) that requires 3 bits per set. The embedded Pentium
processor with MM X technology has a 64-entry fully associative data TLB and a 32-entry fully
associative code TLB. Both TLBs can support 4-Kbyte pages as well as 4-Mbyte pages.

Cache Operating Modes

The operating modes of the caches are controlled by the CD (cache disable) and NW (not

writethrough) bitsin CRO. See Table 3-2 for a description of the modes. For normal operation and

highest performance, these bits should both be cleared to “0.” The bits come out of RESET as CD
=NW =1

When the L1 cache is disabled (CRO.NW and CRO.CD bits are both set to ‘1’) external snoops are
accepted in a DP system and inhibited in a UP system. Note that when snoops are inhibited,
address parity is not checked, and APCHK# will not be asserted for a corrupt address. When
shoops are accepted, address parity is checked (and APCHK# will be asserted for corrupt
addresses).
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Table 3-2. Cache Operating Modes

CD NW Description

Read hits access the cache.

Read misses do not cause linefills.

Write hits update the cache, but do not access memory.

Write hits cause Exclusive State lines to change to Modified State.

1 1 Shared lines remain in the Shared state after write hits.

Write misses access memory.

Inquire and invalidation cycles do not affect the cache state or
contents.

This is the state after reset.

Read hits access the cache.

Read misses do not cause linefills.

Write hits update the cache.

1 0 Writes to Shared lines and write misses update external memory.

Writes to Shared lines can be changed to the Exclusive State under
the control of the WB/WT# pin.

Inquire cycles (and invalidations) are allowed.

0 1 GP(0)

Read hits access the cache.

Read misses may cause linefills.

These lines will enter the Exclusive or Shared state under the control
of the WB/WT# pin.

0 0 Write hits update the cache.

Only writes to shared lines and write misses appear externally.

Writes to Shared lines can be changed to the Exclusive State under
the control of the WB/WT# pin.

Inquire cycles (and invalidations) are allowed.

To completely disable the cache, the following two steps must be performed:
1. CD and NW must be set to 1.
2. The caches must be flushed.
If the cache is not flushed, cache hits on reads will still occur and data will be read from the cache.

In addition, the cache must be flushed after being disabled to prevent any inconsistencies with
memory.
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Page Cacheability

Two bits for cache control, PWT and PCD are defined in the page table and page directory entries.
The state of these bits are driven out on the PWT and PCD pins during memory access cycles. The
PWT bit controls write policy for the second-level caches used with the embedded Pentium
processor. Setting PWT to 1 defines awritethrough policy for the current page, while clearing
PWT to 0 defines a writeback policy for the current page.

The PCD bit controls cacheability on a page-by-page basis. The PCD bit isinternally ANDed with
the KEN# signal to control cacheability on a cycle-by-cycle basis. PCD = 0 enables cacheing,
while PCD = 1 disablesit. Cache linefills are enabled when PCD = 0 and KEN# = 0.

PCD and PWT Generation

Thevalue driven on PCD isafunction of the PWT bitsin CR3, the page directory pointer, the page
directory entry and the page table entry, and the CD and PG bitsin CRO.

Thevauedriven on PWT isafunction of the PCD bitsin CR3, the page directory pointer, the page
directory entry and the page table entry, and the PG bit in CRO (CR0.CD does not affect PWT).

CRO.CD=1
If cacheing is disabled, the PCD pinis aways driven high. CR0.CD does not affect the PWT pin.
CRO.PG=0

If paging is disabled, the PWT pinisforced low and the PCD pin reflects the CR0.CD. The PCD
and PWT bitsin CR3 are assumed 0 during the caching process.

CRO0.CD =0, PG =1, normal operation

The PCD and PWT bits from the last entry (can be either PDE or PTE, depends on 4 Mbyte or 4
Kbyte mode) are cached in the TLB and are driven anytime the page mapped by the TLB entry is
referenced.

CR0O.CD =0,PG =1, during TLB Refresh

During TLB refresh cycles when the PDE and PTE entries are read, the PWT and PCD bits are
obtained as shown in Table 3-3 and Table 3-4.

Table 3-3. 32-Bits/4-Kbyte Pages

PCD/PWT Taken From During Accesses To
CR3 PDE
PDE PTE
PTE All other paged mem references

Table 3-4. 32-Bits/4-Mbyte Pages

PCD/PWT Taken From During Accesses To
CR3 PDE
PDE All other paged mem references
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Figure 3-9 shows how PCD and PWT are generated.
Figure 3-9. PCD and PWT Generation

Linear Address
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Inquire Cycles

Inquire cycles areinitiated by the system to determine if alineis present in the code or data cache,
and what state the lineisin. This manual refersto inquire cycles and snoop cycles interchangeably.

Inquire cycles are driven to the processor when a bus master other than the processor initiates a
read or write bus cycle. Inquire cycles are driven to the processor when the bus master initiates a
read to determine if the processor data cache contains the latest information. If the snooped lineis
in the processor data cache in the modified state, the processor has the most recent information and
must schedul e awriteback of the data. Inquire cycles are driven to the processor when the other bus
master initiates awrite to determine if the processor code or data cache contains the snooped line
and to invalidate theline if it is present. Inquire cycles are described in detail in Chapter 6, “Bus
Functional Description.”

Cache Flushing

The on-chip cache can be flushed by external hardware or by software instructions.

Flushing the cache through hardware is accomplished by driving the FLUSH# pin low. This causes
the cache to write back all modified lines in the data cache and mark the state bits for both caches
invalid. The Flush Acknowledge special cycle is driven by the processor when all writebacks and
invalidations are complete.

The INVD and WBINVD instructions cause the on-chip caches to be invalidated also. WBINVD
causes the modified lines in the internal data cache to be written back, and all lines in both caches
to be marked invalid. After execution of the WBINVD instruction, the Writeback and Flush special
cycles are driven to indicate to any external cache that it should write back and invalidate its
contents.

INVD causes all lines in both caches to be invalidated. Modified lines in the data cache are not
written back. The Flush special cycle is driven after the INVD instruction is executed to indicate to
any external cache that it should invalidate its contents. Care should be taken when using the INVD
instruction that cache consistency problems are not created.

Note that the implementation of the INVD and WBINVD instructions are processor dependent.
Future processor generations may implement these instructions differently.

Data Cache Consistency Protocol (MESI Protocol)

The embedded Pentium processor Cache Consistency Protocol is a set of rules by which states are
assigned to cached entries (lines). The rules apply for memory read/write cycles only. 1/O and
special cycles are not run through the data cache.

Every line in the data cache is assigned a state dependent on both processor generated activities and
activities generated by other bus masters (snooping). The embedded Pentium processor Data Cache
Protocol consists of four states that define whether a line is valid (HIT/MISS), if it is available in
other caches, and if it has been MODIFIED. The four states are the M (Modified), E (Exclusive), S
(Shared) and the | (Invalid) states and the protocol is referred to as the MESI protocol. A definition

of the states is given below:
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M - Modified: An M-stateline is availablein only one cache and it is also MODIFIED
(different from main memory). An M-state line can be accessed (read/written to)
without sending a cycle out on the bus.

E - Exclusive:  AnE-statelineisalso available in only one cache in the system, but thelineis
not MODIFIED (i.e., it isthe same as main memory). An E-state line can be
accessed (read/written to) without generating a bus cycle. A write to an E-state
line causes the line to become MODIFIED.

S - Shared: This state indicates that the lineis potentially shared with other caches (i.e., the
same line may exist in more than one cache). A read to an S-state line does not
generate bus activity, but awrite to a SHARED line generates a write-through
cycle on the bus. The write-through cycle may invalidate thisline in other
caches. A writeto an S-state line updates the cache.

| - Invalid: This state indicates that the line is not available in the cache. A read to thisline
will be aMISS and may cause the processor to execute a LINE FILL (fetch the
whole line into the cache from main memory). A writeto an INVALID line
causes the processor to execute awrite-through cycle on the bus.

State Transition Tables

Lines cached in the processor can change state because of processor-generated activity or asa
result of activity on the processor bus generated by other bus masters (snooping). State transitions
happen because of processor-generated transactions (memory reads/writes) and by a set of external
input signals and internally generated variables. The processor also drives certain pinsas a
consequence of the Cache Consistency Protocol.

Read Cycle

Table 3-5 shows the state transitions for lines in the data cache during unlocked read cycles.

Table 3-5. Data Cache State Transitions for UNLOCKED Processor Initiated Read CycIesJr

3-24

Present . . Next -
State Pin Activity State Description
M n/a M Read hit; data is provided to processor core by
cache. No bus cycle is generated.
E nia E Read hit; data is provided to processor core by
cache. No bus cycle is generated.
s nia s Read hit; data is provided to the processor by the
cache. No bus cycle is generated.
CACHE# low AND Data item does not exist in cache (MISS). A bus
| KEN# low AND E cycle (read) will be generated. This state transition
WB/WT# high AND will happen if WB/WT# is sampled high with first
PWT low BRDY# or NA#.
CACHE# low AND . .
| KEN# low AND s San;l\i/as _prewousl rg?d m|s_shcfgse except that
(WB/WT# low OR PWT high) WB/WT# is sampled low with first BRDY# or NA#.
. . KEN# pin inactive; the line is not intended to be
! CACHE# high OR KEN# high ! cached in the embedded Pentium processor.

1T Locked accesses to the data cache cause the accessed line to transition to the Invalid state.

Embedded Pentium® Processor Family Developer’s Manual



3.5.7.3

Component Operation

Note the transition from | to E or S states (based on WB/WT#) happens only if KEN# is sampled
low with the first of BRDY# or NA#, and the cycleistransformed into aLINE FILL cycle. If
KEN# is sampled high, the lineis not cached and remainsin the | state.

Write Cycle

The state transitions of data cache lines during processor-generated write cycles areillustrated in
Table 3-6. Writesto SHARED lines in the data cache are always sent out on the bus along with
updating the cache with the write item. The status of the PWT and WB/WT# pins during these
write cycles on the bus determines the state transitions in the data cache during writes to S-state
lines.

A write to a SHARED line in the data cache generates a write cycle on the processor bus to update
memory and/or invalidate the contents of other caches. If the PWT pin is driven high when the
write cycleisrun on the bus, the lineis be updated and will stay in the S-state regardless of the
status of the WB/WT# pin that is sampled with the first BRDY# or NA#. If PWT isdriven low, the
status of the WB/WT# pin sampled along with the first BRDY # or NA# for the write cycle
determines which state (E:S) the line transitions to.

The state transition from S to E is the only transition in which the data and the status bits are not
updated at the same time. The data is updated when the write is written to the processor write
buffers. The state transition does not occur until the write has completed on the bus (BRDY # has
been returned). Writes to the line after the transition to the E-state do not generate bus cycles.
However, it is possible that writes to the same line that were buffered or in the pipeline before the
transition to the E-state generate bus cycles after the transition to E-state.

An inactive EWBE# input stalls subsequent writes to an E- or an M-state line. All subsequent
writes to E- or M-state lines are held off until EWBE# is returned active.

Table 3-6. Data Cache State Transitions for Processor Initiated Write Cycles

Present . - Next .
State Pin Activity State Description
Write hit; update data cache. No bus cycle generated to
M n/a M
update memory.
E nia M Write hit; update cache only. No bus cycle generated; line is

now MODIFIED.

Write hit; data cache updated with write data item. A write-
through cycle is generated on bus to update memory and/or

S PWT low A.ND E invalidate contents of other caches. The state transition
WB/WT# high ;
occurs after the writethrough cycle completes on the bus
(with the last BRDY#).
s PWT low AND s Same as above case of write to S-state line except that
WB/WT# low WB/WT# is sampled low.

Same as above cases of writes to S state lines except that
S PWT high S this is a write hit to a line in a writethrough page; status of
WB/WT# pin is ignored.

Write MISS; a writethrough cycle is generated on the bus to

! n/a ! update external memory. No allocation done.

NOTE: Memory writes are buffered while 1/0 writes are not. There is no guarantee of synchronization between
completion of memory writes on the bus and instruction execution after the write. A serializing
instruction needs to be executed to synchronize writes with the next instruction if necessary.
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3.5.74 Inquire Cycles (Snooping)

The purpose of inquire cycles is to check whether the address being presented is contained within
the caches in the embedded Pentium processor. Inquire cycles may be initiated with or without an
INVALIDATION request (INV =1 or 0). Aninquire cycle is run through the data and code caches
through a dedicated snoop port to determine if the addressisin one of the processor caches. If the
addressisin aprocessor cache, the HIT# pin is asserted. If the address hits amodified linein the
data cache, the HITM# pin is a so asserted and the modified line is then written back onto the bus.

The state transition tables for inquire cycles are given below:

Table 3-7. Cache State Transitions During Inquiry Cycles

Next Next
State State Description
INV=1 INV=0

Present
State

Snoop hit to a MODIFIED line indicated by HIT# and HITM# pins
M | S low. embedded Pentium® processor schedules the writing back of
the modified line to memory.

| S Snoop hit indicated by HIT# pin low; no bus cycle generated.

| S Snoop hit indicated by HIT# pin low; no bus cycle generated.

| | | Address not in cache; HIT# pin high.

3.5.75 Code Cache Consistency Protocol

The processor code cache follows a subset of the MESI protocol. Accesses to the code cache are
either a Hit (Shared) or a Miss (Invalid).

In the case of aread hit, the cycleis serviced internally to the processor and no bus activity is
generated. In the case of aread miss, theread is sent to the external bus and may be converted to a
linefill.

Lines are never overwritten in the code cache. Writes generated by the processor are snooped by
the code cache. If the snoop is a hit in the code cache, the lineisinvalidated. If there is a miss, the
code cache is not affected.

3.6 Write Buffers and Memory Ordering

The embedded Pentium processor has two write buffers, one corresponding to each of the
pipelines, to enhance the performance of consecutive writes to memory. These write buffers are
one quadword wide (64-bits) and can be filled simultaneously in one clock e.g., by two
simultaneous write missesin the two instruction pipelines. Writesin these buffers are driven out on
the external busin the order they were generated by the processor core. No reads (as a result of
cache miss) are reordered around previously generated writes sitting in the write buffers. The
implication of thisisthat the write bufferswill be flushed or emptied before a subsequent bus cycle
isrun on the external bus (unless BOFF# is asserted and a writeback cycle becomes pending, see
“Linefill and Writeback Buffers” on page 3-29).

The embedded Pentium processor with MMX technology has four write buffers that can be used by
either the u-pipe or v-pipe. Posting writes to these buffers enables the pipe to continue advancing
when consecutive writes to memory occur. The writes will be executed on the bus as soon as it is
free, in FIFO order. Reads cannot bypass writes posted in these buffers.
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Figure 3-10. Embedded Pentium® Processor Write Buffer Implementation
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The embedded Pentium processor supports strong write ordering only. That is, writes generated by
the embedded Pentium processor are driven to the bus or updated in the cache in the order in which
they occur. The embedded Pentium processor does not write to E or M-state lines in the data cache
if thereisawritein either write buffer, if awrite cycleisrunning on the bus, or if EWBE# is
inactive.

Note that only memory writes are buffered and 1/O writes are not. There is no guarantee of
synchronization between completion of memory writes on the bus and instruction execution after
the write. The OUT instruction or a serializing instruction needs to be executed to synchronize
writes with the next instruction. Refer to “Serializing Operations” on page 3-28 for more
information.

No re-ordering of read cycles occurs on the embedded Pentium processor. Specifically, the write

buffers are flushed before the IN instruction is executed.

External Event Synchronization

When the system changes the value of NMI, INTR, FLUSH#, SMI# or INIT as the result of

executing an OUT instruction, these inputs must be at a valid state three clocks before BRDY# is
returned to ensure that the new value will be recognized before the next instruction is executed.

Note that if an OUT instruction is used to modify A20M#, this will not affect previously prefetched
instructions. A serializing instruction must be executed to guarantee recognition of A20M# before

a specific instruction.
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Serializing Operations

After executing certain instructions, the embedded Pentium processor serializes instruction
execution. This means that any modifications to flags, registers, and memory for previous
instructions are completed before the next instruction is fetched and executed. The prefetch queue
isflushed as aresult of serializing operations.

The embedded Pentium processor serializes instruction execution after executing one of the
following instructions: MOV to Debug Register, MOV to Control Register, INVD, INVLPG,
IRET, IRETD, LGDT, LLDT, LIDT, LTR, WBINVD, CPUID, RSM and WRMSR.

The CPUID instruction can be executed at any privilege level to serialize instruction execution.

When the processor serializes instruction execution, it ensures that it has completed any
modifications to memory, including flushing any internally buffered stores; it then waits for the
EWBEH# pin to go active before fetching and executing the next instruction. Systems may use the
EWBEH# pin to indicate that a store is pending externally. In this manner, a system designer may
ensure that all externally pending stores complete before the processor begins to fetch and execute
the next instruction.

The processor does not generally writeback the contents of modified datain its data cache to
external memory when it serializes instruction execution. Software can force modified data to be
written back by executing the WBINVD instruction.

Whenever an instruction is executed to enable/disable paging (that is, change the PG bit of CRO),
thisinstruction must be followed with ajump. The instruction at the target of the branch is fetched

with the new value of PG (i.e., paging enabled/disabled); however, the jump instruction itself is

fetched with the previous value of PG. Intel386™, Intel486 and embedded Pentium processors
have slightly different requirements to enable and disable paging. In all other respects, an MOV to
CRO that changes PG is serializing. Any MOV to CRO that does not change PG is completely
serializing.

Whenever an instruction is executed to change the contents of CR3 while paging is enabled, the
next instruction is fetched using the translation tables that correspond to the new value of CR3.
Therefore the next instruction and the sequentially following instructions should have a mapping
based upon the new value of CR3.

The embedded Pentium processor implements branch-prediction techniques to improve
performance by prefetching the destination of a branch instruction before the branch instruction is
executed. Consequently, instruction execution is not generally serialized when a branch instruction
is executed.

Although the I/O instructions are not “serializing” because the processor does not wait for these
instructions to complete before it prefetches the next instruction, they do have the following
properties that cause them to function in a manner that is identical to previous generations. I/O
reads are not re-ordered within the processor; they wait for all internally pending stores to
complete. Note that the embedded Pentium processor does not sample the EWBE# pin during
reads. If necessary, external hardware must ensure that externally pending stores are complete
before returning BRDY#. This is the same requirement that exists on Intel386 and Intel486
processor systems. The OUT and OUTS instructions are also not “serializing,” as they do not stop
the prefetcher. They do, however, ensure that all internally buffered stores have completed, that
EWBE# has been sampled active indicating that all externally pending stores have completed and
that the 1/0O write has completed before they begin to execute the next instruction. Note that unlike
the Intel486 processor, it is not necessary for external hardware to ensure that externally pending
stores are complete before returning BRDY#.
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On the embedded Pentium processor with MM X technology, serializing instructions require an
additional clock to complete compared to the embedded Pentium processor due to the additional
pipeline stage.

Linefill and Writeback Buffers

In addition to the write buffers corresponding to each of the internal pipelines, the embedded
Pentium processor has three writeback buffers. Each of the writeback buffers are 1 deep and 32-
bytes (1 line) wide.

A dedicated replacement writeback buffer stores writebacks caused by linefills that replace
modified lines in the data cache. In addition, an external snoop writeback buffer stores writebacks
caused by ainquire cycles that hit modified lines in the data cache. Finally, an internal snoop
writeback buffer stores writebacks caused by internal snoop cycles that hit modified linesin the
data cache. Internal and external snoops are discussed in detail in “Cache Consistency Cycles
(Inquire Cycles)” on page 6-33. Write cycles are driven to the bus with the following priority:

1. Contents of external snoop writeback buffer
2. Contents of internal snoop writeback buffer
3. Contents of replacement writeback buffer
4

. Contents of write buffers.

Note that the contents of the write buffer that was written into first are driven to the bus first. If
both write buffers were written to in the same clock, the contents of the u-pipe buffer is written out
first. In the embedded Pentium processor with MMX technology, the write buffers are written in
order, even though there is no u-pipe buffer and no v-pipe buffer.

The embedded Pentium processor implements two linefill buffers, one for the data cache and one
for the code cache. As information (data or code) is returned to the processor for a cache linéefill, it

is written into the linefill buffer. After the entire line has been returned to the processor it is
transferred to the cache. Note that the processor requests the needed information first and uses that
information as soon as it is returned. The processor does not wait for the linefill to complete before
using the requested information.

If a line fill causes a modified line in the data cache to be replaced, the replaced line remains in the
cache until the linefill is complete. After the linefill is complete, the line being replaced is moved
into the replacement writeback buffer and the new linefill is moved into the cache.

External Interrupt Considerations

The embedded Pentium processor recognizes the following external interrupts: BUSCHK#, R/S#,
FLUSH#, SMI#, INIT, NMI, INTR and STPCLK#. These interrupts are recognized at instruction
boundaries. The instruction boundary is the first clock in the execution stage of the instruction
pipeline. This means that before an instruction is executed, the processor checks to see if any
interrupts are pending. If an interrupt is pending, the processor flushes the instruction pipeline and
then services the interrupt.

The embedded Pentium processor interrupt priority scheme is shown in Table 3-8.
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Table 3-8. Embedded Pentium® Processor Interrupt Priority Scheme

3.8

3-30

tel.

Priority ITR=0 (default) ITR =1
Level
1 Breakpoint (INT 3) Breakpoint (INT 3)
2 BUSCHK# BUSCHK#
3 Debug Traps (INT 1) FLUSH#
4 R/IS# SMI#
5 FLUSH# Debug Traps (INT 1)
6 SMI# R/S#
7 INIT INIT
8 NMI NMI
9 INTR INTR
10 Floating-Point Error Floating-Point Error
11 STPCLK# STPCLK#
12 Faults on Next Instruction Faults on Next Instruction
NOTE: ITR is bit 9 of the TR12 register.

Introduction to Dual Processor Mode

Symmetric dual processing in asystem is supported with two embedded Pentium processors

sharing asingle second-level cache. The processors must be of the same type, either two embedded
Pentium processors or two embedded Pentium processor with MM X technology. The two
processors appear to the system as a single processor. Multiprocessor operating systems properly
schedule computing tasks between the two processors. This scheduling of tasksis transparent to
software applications and the end-user. Logic built into the processors support a “glueless”
interface for easy system design. Through a private bus, the two processors arbitrate for the
external bus and maintain cache coherency.

In this manual, in order to distinguish between two processors in dual processing mode, one
processor is designated as the Primary processor and the other as the Dual processor. Note that this
is a different concept than that of “master” and “checker” processors.

The Dual processor is a configuration option of the embedded Pentium processor. The Dual
processor must operate at the same bus and core frequency and bus/core ratio as the Primary
processor.

The Primary and Dual processors include logic to maintain cache consistency between the
processors and to arbitrate for the common bus. The cache consistency and bus arbitration activity
causes the dual processor pair to issue extra bus cycles that does not appear in a embedded Pentium
processor uniprocessor system.

Chapter 4, “Microprocessor Initialization and Configuration,” describes in detail how the DP

bootup, cache consistency, and bus arbitration mechanisms operate. In order to operate properly in
dual processing mode, the Primary and Dual processors require a private APIC, cache consistency,
and bus arbitration interfaces, as well as a multiprocessing-ready operating system.
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The dual processor interface allows the Dual processor to be added for a substantial increasein
system performance. The interface allows the Primary and Dual processor to operate in a coherent
manner that is transparent to the system.

The memory subsystem transparency was the primary goal of the cache coherency and bus
arbitration mechanisms.

Dual Processing Terminology

This section defines some terms used in the following discussions.

Symmetric Multi-Processing: Two or more processors operating with equal priorities in a
system. No individual processor is a master, and none is a
slave.

DP or Dual Processing: The Primary and Dual processor operating symmetrically

in a system sharing a second-level cache.

MRM or Most Recent Master: The processor (either the Primary or Dual) that currently
owns the processor address bus. When interprocessor
pipelining, this is the processor which last issued an
ADS#.

LRM or Least Recent Master: The processor (either the Primary or Dual) that does not
own the address bus. The LRM automatically snoops
every ADS# from the MRM processor in order to maintain
level-one cache coherency.

Primary Processor: The embedded Pentium processor when CPUTY¥P = V
(or left floating).

Dual Processor: The embedded Pentium processor when CPUT¥R. = V

Dual Processing Overview

The Primary and Dual processor both have logic built-in to support “glueless” dual-processing
behind a shared L2 cache. Through a set of private handshake signals, the Primary and Dual
processors arbitrate for the external bus and maintain cache coherency between themselves. The
bus arbitration and cache coherency mechanisms allow the Primary and Dual processors to look
like a single embedded Pentium processor to the external bus.

The Primary and Dual processors implement a fair arbitration scheme. If the Least Recent Master
(LRM) requests the bus from the Most Recent Master (MRM), the bus is granted. The embedded
Pentium processor arbitration scheme provides no penalty to switch from one master to the next. If
pipelining is used, the two processors pipeline into and out of each other’s cycles according to the
embedded Pentium processor specification.

Cache coherency is maintained between the two processors by snooping on every bus access. The
LRM must snoop with every ADS# assertion of the MRM. Internal cache states are maintained
accordingly. If an access hits a modified line, a writeback is scheduled as the next cycle, in
accordance with the embedded Pentium processor specification.

Using the Dual processor may require special design considerations. Refer to Chapter 5,
“Hardware Interface” for more details.
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Conceptual Overview

Figure 3-11 is ablock diagram of a two processor system.

Figure 3-11. Dual Processors

3.8.2.2

3-32
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The dual processor pair appears to the system bus as a single, unified processor. The operation is

identical to a uni-processor embedded Pentium processor, except as noted in “Summary of Dual
Processing Bus Cycles” on page 6-43. The interface shields the system designer from the cache
consistency and arbitration mechanisms that are necessary for dual processor operation.

Both the Primary and Dual processors contain local APIC modules. The system designer is
recommended to supply an I/O APIC or other multiprocessing interrupt controller in the chip set
that interfaces to the local APIC blocks over a three-wire bus. The APIC allows directed interrupts
as well as inter-processor interrupts.

The Primary and Dual processors, when operating in dual processing mode, require the local APIC
modules to be hardware enabled in order to complete the bootup handshake protocol. This method
is used to “wake up” the Dual processor at an address other than the normal Intel architecture high
memory execution address. On bootup, if the Primary processor detects that a Dual processor is
present, the dual processor cache consistency and arbitration mechanisms are automatically
enabled. The bootup handshake process is supported in a protocol that is included in the embedded
Pentium processor. See Chapter 4, “Microprocessor Initialization and Configuration,” for more
details on the APIC.

Arbitration Overview

In the dual processor configuration, a single-system bus provides the processors access to the
external system. This bus is a single, shared resource.

The dual processor pair must arbitrate for use of the system bus as requests are generated. The
processors implement a fair arbitration mechanism.
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When the LRM processor needsto run a cycle on the bus it submits a request for bus ownership to
the MRM. The MRM processor grants the LRM processor bus ownership as soon as all
outstanding bus requests have finished on the processor bus. The LRM processor assumes the
MRM state, and the processor that was just the MRM, becomes the LRM. Figure 3-12 further
illustrates this point:

Diagram (@) of Figure 3-12 shows a configuration where the Primary processor isinthe MRM state
and the Dual processor isinthe LRM state. The Primary processor is running a cycle on the system
bus when it receives a bus request from the Dual processor. In diagram (b) of Figure 3-12 the
MRM (still the Primary processor) has received an indication that the bus request has finished. The
bus ownership has transferred in diagram (c) of Figure 3-12, where the Dual processor is now the
MRM. At this point, the Dual processor starts a bus transaction and continues to own the bus until
the LRM requests the bus.

Figure 3-12. Dual Processor Arbitration Mechanism

3.8.2.3
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Cache Coherency Overview

The Primary and Dual processors both contain separate code and data caches. The data cache uses
the MESI protocol to enforce cache consistency. A linein the data cache can be in the Modified,
Exclusive, Shared or Invalid state, whereas aline in the instruction cache can be either in the valid
orinvalid state.

A situation can arise where the Primary and Dual processors are operating in dual processor mode
with shared code or data. The first-level caches attempt to cache this code and data whenever
possible (asindicated by the page cacheability bits and the cacheability pins). The private cache
coherency mechanism guarantees data consistency across the processors. If any datais cached in
one of the processors, and the other processor attempts to access the data, the processor containing
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the data notifies the requesting processor that it has cached the data. The state of the cachelinein
the processor containing the data changes depending on the current state and the type of request the
other processor has made.

In some cases, the data returned by the system isignored. This constraint is placed on the dual
processor cache consistency mechanism so that the dual processor pair looks like asingle
processor to the system bus. However, in general, bus accesses are minimized to efficiently use the
available bus bandwidth.

The basic coherency mechanism requires the processor that isin the LRM state to snoop all MRM
bus activity. The MRM processor running abus cycle watches the LRM processor for an indication
that the data is contained in the LRM cache. The following diagrams illustrate the basic coherency
mechanism. These figures show an example in which the Primary processor (the MRM) is
performing a cache linefill of data. The data requested by the Primary processor is cached by the
Dual processor (the LRM), and isin the modified state.

In diagram (a) of Figure 3-13, the Primary processor has already negotiated with the Dual
processor for use of the system bus and has started a cycle. Asthe Primary processor starts running
the cycle on the system bus, the Dual processor snoops the transaction. The key for the start of the
snoop sequence for the LRM processor is an assertion of ADS# by the MRM processor.

Diagram (b) of Figure 3-13 shows the Dual processor indicating to the Primary processor that the
reguested data is cached and modified in the Dual processor cache. The snoop notification
mechanism uses a dedicated, two-signal interface that is private to the dual processor pair. At the
same time that the Dual processor indicates that the transaction is contained as Modified in the its
cache, the Dual processor requests the bus from the Primary processor (still the MRM). The MRM
processor continues with the transaction that is outstanding on the bus, but ignores the data
returned by the system bus.

After the Dual processor notifies the Primary processor that the requested datais modified in the
Dual processor cache, the Dual processor waits for the bus transaction to complete. At this point,
the LRM/MRM state will toggle, with the Primary processor becoming the LRM processor and the
Dual processor becoming the MRM processor. This sequence of eventsis shown in diagram (c) of
Figure 3-13.

Diagram (c) of Figure 3-13 also shows the Dual processor writing the data back on the system bus.
The write back cycle looks like anormal cache line replacement to the system bus. The final state
of thelinein the Dual processor is determined by the value of the W/R# pin as sampled during the
ADSH# assertion by the Primary processor.

Finally, diagram (d) of Figure 3-13 shows the Primary processor re-running the bus transaction that

started the entire sequence. The requested data is returned by the system as a normal line fill
reguest without intervention from the LRM processor.
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Figure 3-13. Dual Processor L1 Cache Consistency
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3.9 APIC Interrupt Controller

The embedded Pentium processor contains implementations of the Advanced Programmable
Interrupt Controller architecture. These implementations are capable of supporting a
multiprocessing interrupt scheme with an external APIC-compatible controller.

The Advanced Programmable Interrupt Controller (APIC) is an on-chip interrupt controller that
supports multiprocessing. In a uniprocessor system, the APIC may be used as the sole system
interrupt controller, or may be disabled and bypassed completely.

In amultiprocessor system, the APIC operates with an additional and external 1/0 APIC system
interrupt controller. The dual-processor configuration requires that the APIC be hardware enabled.

The APICs of the Primary and Dual processors are used in the bootup procedure to communicate
start-up information.

Note: The APIC isnot hardware compatible with the 82489DX.

On the embedded Pentium processor, the APIC uses 3 pins: PICCLK, PICDO, and PICDL1.
PICCLK isthe APIC bus clock while PICDO-PICD1 form the two-wire communication bus.

To use the 8259A interrupt controller, or to completely bypassit, the APIC may be disabled using
the APICEN pin. You must use the local APICs when using the dua-processor component.
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The main features of the APIC architecture include:

M ultiprocessor interrupt management (static and dynamic symmetric interrupt distribution
across al processors)

Dynamic interrupt distribution that includes routing interrupts to the lowest-priority processor
I nter-processor interrupt support

Edge or level triggered interrupt programmability

Various naming/addressing schemes

System-wide processor control functions related to NMI, INIT, and SMI (see Chapter 12 for
APIC handling of SMI)

8259A compatibility by becoming virtually transparent with regard to an externally connected
8259A style controller, making the 8259A visible to software

A 32-bit wide counter used as a timer to generate time slice interrupts local to that processor.

The AC timings of the embedded Pentium processor APIC are described in Chapter 7. Note that
although there are minor software differences from the 82489DX, programming to the integrated
APIC model ensures compatibility with the external 82489DX. For additional APIC programming
information, refer to the MultiProcessor Specification (order number 242016).

In a dual-processor configuration, the local APIC may be used with an additional device similar to
the I/O APIC. The l/O APIC isadevice that captures all system interrupts and directs them to the
appropriate processors via various programmabl e distribution schemes. An external device
provides the APIC system clock. Interruptsthat are local to each processor go through the APIC on
each chip. A system example is shown in Figure 3-14.

Figure 3-14. APIC System Configuration

Primary Dual
Processor Processor
Local Local
Interrupts Interrupts
LINTO —>] ;%CI?:' 33V | INTO —>] /'R%ﬁ‘é'
LINT1 —>» LINT1 —>»
AAA PICD1 A A A
PICDO 1
PICCLK
A
CLK
Generator Y Y Y
System 1/O
Interrupts
// > 1/0 APIC
16
>1 8259A
A6117-01

Embedded Pentium® Processor Family Developer’s Manual



Note:

Component Operation

The APIC devices in the Primary and Dual processors may receive interrupts from the 1/O APIC

viathe three-wire APIC bus, locally viathelocal interrupt pins (LINTO, LINT1), or from the other
processor viathe APIC bus. The local interrupt pins, LINTO and LINTL, are shared with the INTR

and NMI pins, respectively. When the APIC is bypassed (hardware disabled) or programmed in
“through local” mode, the 8259A interrupt (INTR) and NMI are connected to the INTR/LINTO and
NMI/LINT1 pins of the processor. Figure 3-15 shows the APIC implementation in the embedded
Pentium processor. Note that the PICCLK has a maximum frequency of 16.67 MHz.

When the local APIC is hardware enabldata memory accesses to its 4 Kbyte address space are
executed internally and do not generate an ADS# on the processor bus. Howesemamory

access in the 4 KByte APIC address space will not be recognized by the APIC and will generate a
cycle on the processor bus.

Internally executed data memory accesses may cause the address bus to toggle even though no
ADS# is issued on the processor bus.

Figure 3-15. Local APIC Interface
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APIC Configuration Modes

There are four possible APIC Modes:
* Norma mode
¢ Bypass mode (hardware disable)
¢ Through local mode
* Masked mode (software disable)

Normal Mode

Thisisthe normal operating mode of the local APIC. When in this mode, the local APIC is both
hardware and software enabled.
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Bypass Mode

Bypass mode effectively removes (bypasses) the APIC from the embedded Pentium processor,
causing it to operate as if there were no APIC present. Any accesses to the APIC address space go
to memory. APICEN is sampled at the falling edge of RESET, and later becomes the PICD1 (part
of the APIC 3-wire bus) signal. Bypass mode is entered by driving APICEN low at the falling edge
of RESET. Since the APIC must be used to enable the Dual processor after RESET, PICD1 must be
driven high at reset to ensure that APIC is hardware enabled if a second processor is present.

For hardware disabling operations, the following implications must be considered:

¢ ThelINTR and NMI pins become functionally equivalent to the corresponding interrupt pinsin
the embedded Pentium processor, and the APIC is bypassed.

¢ The APIC PICCLK must be tied high.
* The system will not operate with the Dual Processor if the local APIC is hardware disabled.

Through Local Mode

Configuring in Through Local Mode allows the APICs to be used for the dual -processor bootup
handshake protocol and then pass interrupts through the local APIC to the core to support an
external interrupt controller.

To usethe Through Local Mode of the local APIC, the APIC must be enabled in both hardware and
software. Thisis done by programming two local vector table entries, LVT1 and LVT2, at
addresses OFEEO0350H and OFEEQ0360H, as external interrupts (Extint) and NMI, respectively.
The 8259A respondsto the INTA cycles and returns the interrupt vector to the processor.

The local APIC should not be sent any interrupts prior to it's being programmed. Once the APIC is
programmed it can receive interrupts.

Note that although external interrupts and NMI are passed through the local APIC to the core, the
APIC can still receive messages on the APIC bus.

Masked Mode

The local APIC is initialized to masked mode once hardware enabled via the APICEN pin. In order
to be programmed in normal or Through Local Modes, the APIC must be “software enabled.”
Once operating in normal or Through Local Modes, the APIC may be disabled by software by
clearing bit 8 of the APIC’s spurious vector interrupt register (Note: this register is normally
cleared at RESET and INIT). This register is at address OFEEOOOFOH. Disabling APIC in software
returns it to Masked mode. With the exception of NMI, SMI, INIT, remote reads, and the startup
IPI, all interrupts are masked on the APIC bus. The local APIC does not accept interrupts on
LINTO or LINT1.

Software Disabling Implications

For the software disabling operations, the following implications must be considered:

* The 4-Kbyte address space for the APIC is aways blocked for data accesses (i.e., externa
memory in this region must not be accessed).

* Theinterrupt control register (ICR) can be read and written (e.g., interprocessor interrupts are
sent by writing to this register).
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* The APIC can continue to receive SMI, NMI, INIT, “startup,” and remote read messages.
* Local interrupts are masked.

¢ Software can enable/disable the APIC at any time. After software disabling the local APICs,
pending interrupts must be handled or masked by software.

* The APIC PICCLK must bedriven at al times.

Dual Processing with the Local APIC

The Dual processor bootup protocol may be used in the normal, through local, or masked modes.

Loading the APIC ID

Loading the APIC ID may be done with external logic that would drive the proper address at reset.
If the BE3#—BEOQ# signals are not driven and do not have external resistass tw Vss, the
APIC ID value defaults to 0000 for the Primary processor and 0001 for the Dual processor.

APIC ID
APIC ID Register Bit Pin Latched at RESET
bit 24 BEO#
bit 25 BE1#
bit 26 BE2#
bit 27 BE3#

An APIC ID of all 1s is an APIC special case (i.e., a broadcast) and must not be used. Since the
Dual processor inverts the lowest order bit of the APIC ID placed on the BE pins, the value “1110”
should also be avoided when operating in Dual Processing mode.

In a dual processor configuration, the OEM and Socket 5 should have the four BE pairs tied
together. The OEM processor loads the value seen on these four pins at RESET. The dual processor
loads the value seen on these pins and automatically inverts bit 24 of the APIC ID Register. Thus,
the two processors have unique APIC ID values.

In a general multi-processing system consisting of multiple embedded Pentium processors, these
pins must not be tied together, so each local APIC can have unique ID values.

These four pins must be valid and stable two clocks before and after the falling edge of RESET.

Response to HOLD

While the embedded Pentium processor is accessing the APIC, the processor will respond to a
HOLD request with a maximum delay of six clocks. To external agents that are not aware of the
APIC bus, this looks like the processor is not responding to HOLD even though ADS# has not been
driven and the processor bus seems idle.
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3.10 Fractional Speed Bus

The embedded Pentium processor is offered in various bus-to-core frequency ratios. The BF2—BFO
configuration pins determine the bus-to-core frequency ratio. The processor multiplies the input
CLK by the bus-to-core ratio to achieve higher internal core frequencies.

Note:  Only the Low-power Embedded Pentium Processor with MMX technology has a BF2 pin.

The external bus frequency is set on power-up RESET through the CLK pin. The processor
samples the Birpins on the falling edge of RESET to determine which bus-to-core ratio to use.
When the BR pins are left unconnected, the embedded Pentium processor defaults to the 2/3 ratio
and the embedded Pentium processor with MMX technology defaults to the 1/2 ratsetifgs

must not change its value while RESET is active. Changing the external bus speed or bus-to-core
ratio requires a “power-on” RESET pulse initialization. Once a frequency is selected, it may not be
changed with a warm-reset (15 clocks). The BF pin must meet a 1 ms setup time to the falling edge
of RESET.

Each embedded Pentium processor is specified to operate within a single bus-to-core ratio and a

specific minimum to maximum bus frequency range (corresponding to a minimum to maximum
core frequency range).

Caution: Operation in other bus-to-core ratios or outside the specified operating frequency range is not
supported.

Tables 3-10 through 3-12 summarize these specifications.

Table 3-10. Bus-to-Core Frequency Ratios for the Embedded Pentium®
Processor (at 100/133/166 MHz)

Embedded Pentium® .
BF1 BFO Processor Bus/Core Max Bus/Core Min Bus/Core
Ratio Frequency (MHz) Frequency (MHz)
0 0 2/5 66/166 33/83
1 0 1/2 66/133 33/66
1 1 2/3" 66/100 33/50

T This is the default bus fraction for the embedded Pentium processor (at 100/133/166 MHz). If the BF pins
are left floating, the processor will be configured for the 2/3 bus to core frequency ratio.

Table 3-11. Bus-to-Core Frequency Ratios for the Embedded Pentium®
Processor with MMX™ Technology

BE1 BEO Embedded Pentium Processor v_vith Max Bus/Core Min Bus/Core
MMX™ Technology Bus/Core Ratio Frequency (MHz) Frequency (MHz)
1 1 217 66/233 33/117
0 1 1/3 66/200 33/100
1 0 121 N/A N/A

Tt This is the default bus-to-core ratio for the Pentium processor with MMX technology. If the BF pins are left
floating, the processor will be configured for the 1/2 bus-to-core frequency ratio, which is unsupported. Do
not float the BF pins at RESET.
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Table 3-12. Bus-to-Core Frequency Ratios for the Low-Power Embedded
Pentium® Processor with MMX™ Technology

BF2 BF1 BFO

Low-Power Embedded Pentium
Processor with MMX™ Technology
Bus/Core Ratio 4

Max Bus/Core
Frequency (MHz)

Min Bus/Core
Frequency (MHz)

2/5

66/166

1/4

66/266

3.10.1 Fractional Bus

Operation Examples

The following examples illustrate the embedded Pentium processor synchronization mechanism.

Figure 3-16. Processor 1/2 Bus Internal/External Data Movement

Int CLK _| |

Ext CLK I '

Int Data —:—<

Output
Ext Data

Input
Int Data

|

|

|

|

- . . :

| |
Ext Data |—< B >-|—

|

|

|

|

|

ﬁf
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Figure 3-17. Processor 2/3 Bus Internal/External Data Movement

Int CLK I_

Ext CLK i

Int Data —< A (( X B >_

Output ;
Ext Data : : A : X . BI
e —( A\ X 5 )>— 1
Input ; : T — 7 , : ;
Int Data ; E —:( A 2 X B >:— E
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Figure 3-18 shows how the embedded Pentium processor prevents data from changing in clock 2,
where the 2/3 external clock rising edge occurs in the middle of the internal clock phase, so it can
be properly synchronized and driven.

Figure 3-18. Processor 2/5 Bus Internal/External Data Movement
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Output ; . . A —
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Ext Data '—< C :\ X D >—
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Figure 3-19. Processor 1/3 Bus Internal/External Data Movement

3.11

3.11.1

3.11.2

Int CLK _| | | | | | | L

| | | | | | |
Ext CLK | | | |
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Input | | | \1\—\ | | |
| | | | | |
| | | | |
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Power Management

I/O Instruction Restart

I/O Instruction restart is a power management feature of the embedded Pentium processor that
allows the processor to re-execute an 1/O instruction. In thisway, an /O instruction can alert a
sleeping device in a system and SMI# can be recognized before the 1/0 instruction is re-executed.
SMI# assertion causes a wake-up routine to be executed, so the restarted 1/0 instruction can be
executed by the system.

Stop Clock and Auto Halt Powerdown

The embedded Pentium processor uses Stop Clock and Auto Halt Powerdown to immediately

reduce the power of each device. These features cause the clock to be stopped to most of the

processor’s internal units and thus significantly reduce power consumption by the processor as a
whole.

Stop clock is enabled by asserting the STPCLK# pin of the embedded Pentium processor. While
asserted, the embedded Pentium processor stops execution and does service interrupts, but allows
external and interprocessor (Primary and Dual processor) snooping.

AutoHalt Powerdown is entered once the embedded Pentium processor executes a HLT instruction.
In this state, most internal units are powered-down, but the embedded Pentium processor
recognizes all interrupts and snoops.

Embedded Pentium processor pin functions (D/P#, etc.) are not affected by STPCLK# or AutoHalt.

For additional details on power management, refer to Chapter 12, “Power Management.”
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3.12 CPUID Instruction

The CPUID instruction provides information to software about the vendor, family, model and
stepping of the microprocessor on which it is executing. In addition, it indicates the features
supported by the processor.

When executing CPUID:

¢ If the value in EAX is “0,” then the 12-byte ASCII string “Genuinelntel” (little endian) is
returned in EBX, EDX, and ECX. Also, EAX contains a value of “1” to indicate the largest
value of EAX which should be used when executing CPUID.

¢ If the value in EAX is “1,” then the processor version is returned in EAX and the processor
capabilities (feature flags) are returned in EDX.

¢ If the value in EAX is neither “0” nor “1”, the embedded Pentium processor writes “0” to
EAX, EBX, ECX, and EDX.

The following EAX value is defined for the CPUID instruction executed with EAX = 1. The
processor version EAX bit assignments are given in Figure 3-20. Table 3-13 lists the feature flag
bits assignment definitions.

Figure 3-20. EAX Bit Assignments for CPUID

31 141312 11 8 7 4 3 0

EAX 0 (Reserved) Type Family Model Stepping

A6126-01
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Table 3-13. EDX Bit Assignment Definitions (Feature Flags)

Component Operation

Bit Name Value Description When Flag=1 Comments
The processor contains an FPU that
0 FPU 1 Floating-point unit on-chip supports the Intel 387 floating-point
instruction set.
) The processor supports extensions to
1 VME 1 Virtual Mode Enhancements virtual-8086 mode.
The processor supports I/O breakpoints,
. . including the CR4.DE bit for enabling
2 DE 1 Debugging Extension debug extensions and optional trapping of
access to the DR4 and DRS5 registers.
3 PSE 1 Page Size Extension The processor supports 4-Mbyte pages.
The RDTSC instruction is supported
4 TSC 1 Time Stamp Counter including the CR4.TSD bit for
access/privilege control.
5 MSR 1 Embedded Pentium®Processor | Model SpecificRegisters are implemented
MSR with the RDMSR, WRMSR instructions.
. . Physical addresses greater than 32 bits
6 PAE 0 Physical Address Extension are supported.
Machine Check Exception, Exception 18,
7 MCE 1 Machine Check Exception and the CR4.MCE enable bit are
supported.
CMPXCHGSB Instruction The compare and exchange 8 bytes
8 CX8 1 . A
Supported instruction is supported.
9 APIC 1 On-chlprC Hardware The processor contains a local APIC.
Enabled
10-11 R Reserved Do not rely on its value.
The processor supports the Memory Type
12 MTRR 0 Memory Type Range Registers | Range Registers specifically the
MTRR_CAP register.
The global bit in the PDE’s and PTE'’s and
13 PGE 0 Page Global Enable the CR4.PGE enable bit are supported.
The Machine Check Architecture is
14 MCA 0 Machine Check Architecture supported, specifically the MCG_CAP
register.
15-22 R Reserved Do not rely on its value.
MMX Intel Architecture MMX™ The processor supports the MMX.
23 technolo 1 technoloay supported technology instruction set extensions to
oy gy supp the Intel Architecture.
24-31 R Reserved Do not rely on its value.

T Indicates that the APIC is present and hardware is enabled (software disabling does not affect this bit).

The family field for the embedded Pentium processor family is 0101B (5H). The model value for
the embedded Pentium processor is 0010B (2H) or 0111B (7H), and the model value for the
embedded Pentium processor with MM X technology is 0100B (4H). The model value for the low-
power embedded Pentium processor with MM X technology is 1000B (8H)
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Note:

Usethe MMX technology feature bit (bit23) in the EFLAGS register, not the model value, to detect
the presence of the MM X technology feature set.

For specific information on the stepping field, consult the embedded Pentium processor family
Specification Update. The type field is defined in Table 3-14.

Table 3-14. EAX Type Field Values

3.13

3-46

Bit 13 Bit 12 Processor Type

Embedded Pentium® processor, embedded Pentium
0 0 processor with MMX™ technology or low-power embedded
Pentium processor with MMX technology

0 1 Reserved
1 0 Dual embedded Pentium processor
1 1 Reserved

Model Specific Registers

Each embedded Pentium processor contains certain Model Specific Registersthat are used in
execution tracing, performance monitoring, testing, and machine check errors. They are uniqueto
that embedded Pentium processor and may not be implemented in the same way in future
Processors.

Two instructions, RDM SR and WRM SR (read/write model specific registers) are used to access
these registers. When these instructions are executed, the value in ECX specifies which model
specific register is being accessed.

Software must not depend on the value of reserved bits in the model specific registers. Any writes
to the model specific registers should write “0” into any reserved bits.

For more information, refer to Chapter 14, “Model Specific Registers and Functions.”
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This chapter covers microprocessor initialization and configuration information for both uni-
processor and dual-processor implementations of the embedded Pentium® processor family. For
configuration information on symmetric dual-processing mode, refer to “Managing and Designing
with the Symmetrical Dual Processing Configuration” on page 4-7.

Before normal operation of the processor can begin, the processor must be initialized by driving the
RESET pin active. The RESET pin forces the processor to begin execution in a known state.
Several features are optionally invoked at the falling edge of RESET: Built-in-Self-Test (BIST),
Functional Redundancy Checking and Three-state Test Mode.

In addition to the standard RESET pin, the processor has implemented an initialization pin (INIT)
that allows the processor to begin execution in a known state without disrupting the contents of the
internal caches or the floating-point state.

This chapter describes the embedded Pentium processor power up and initialization procedures,
and the test and configuration features enabled at the falling edge of RESET.

4.1 Power Up Specifications

During power up, RESET must be asserted whilg ¥ approaching nominal operating voltage to
prevent internal bus contention, which could negatively affect the reliability of the processor.

It is recommended that CLK begin toggling within 150 ms afigk Xeaches its proper operating
level. For the embedded Pentifiprocessor with MMX™ technology, it is recommended that the
CLK signal begin toggling within 150 ms after the lagic\plane stabilizes. This recommendation
is only to ensure long term reliability of the device.

In order for RESET to be recognized, the CLK input needs to be toggling. RESET must remain
asserted for 1 millisecond afteg) and CLK have reached their AC/DC specifications.

4.2 Test and Configuration Features

The INIT, FLUSH#, and FRCMC# inputs are sampled when RESET transitions from high to low
to determine if BIST will be run, or if three-state test mode, or checker mode will be entered
(respectively). If RESET is driven synchronously, these signals must be at their valid level and
meet setup and hold times on the clock before the falling edge of RESET. If RESET is asserted
asynchronously, these signals must be at their valid level two clocks before and after RESET
transitions from high to low.
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42.1

4.2.2

4.2.3

4.2.4

4-2

Built-in Self-Test

Self-test isinitiated by driving the INIT pin high when RESET transitions from high to low. No bus
cycles are run by the processor during self test. The duration of self test is approximately 219 core
clocks. Approximately 70% of the devicesin the processor are tested by BIST. The embedded
Pentium processor BIST consists of two parts: hardware self-test and microcode self-test. During
the hardware portion of BIST, the microcode ROM and all large PLAs aretested. All possibleinput
combinations of the microcode ROM and PLAS are tested.

The constant ROMs, BTB, TLBs, and all caches are tested by the microcode portion of BIST. The
array tests (caches, TLBs and BTB) have two passes. On thefirst pass, data patterns are written to
arrays, read back, and checked for mismatches. The second pass writes the complement of the
initial data pattern, reads it back, and checks for mismatches. The constant ROMs are tested by
using the microcode to add various constants and check the result against a stored value.

Upon successful completion of BIST, the cumulative result of all tests are stored in the EAX
register. If EAX contains OH, then all checks passed; any non-zero result indicates a faulty unit.
Note that when an internal parity error is detected during BIST, the processor asserts the |ERR# pin
and attempts to shutdown.

Three-state Test Mode

When the FLUSH# pin is sampled low when RESET transitions from high to low, the processor
enters three-state test mode. The processor floats all of its output pins and bidirectional pins,
including pins that are never floated during normal operation (except TDO). Three-state test mode
can beinitiated to facilitate testing board interconnects. The processor remains in three-state test
mode until the RESET pin is asserted again.

Functional Redundancy Checking

The functional redundancy checking (FRC) master/checker configuration input is sampled when
RESET is high to determine whether the processor is configured in master mode (FRCM C# high)
or checker mode (FRCM C# low). Note, the embedded Pentium processor with MM X technology
does not support FRC mode.

The final master/checker configuration of the processor is determined the clock before the falling
edge of RESET. When configured as a master, the processor drives its output pins as required by
the bus protocol. When configured as a checker, the processor three-states al outputs (except
IERR#, PICDO, PICD1 and TDO) and samples the output pins (that would normally be drivenin
master mode). If the sampled value differs from the value computed internally, the processor
asserts |ERR# to indicate an error. Note that IERR# is not asserted due to an FRC mismatch until
two clocks after the ADS# of the first bus cycle (or in the third clock of the bus cycle).

To avoid an FRC error caused by differencesin the unitialized FPU state, FINIT/FNINIT must be

used to initialize the FPU state prior to using FSAVE/FNSAVE in FRC mode. Theinitialization
should be done before other FPU activity so that it does not corrupt the previous state.

Lock Step APIC Operation

Lock Step operation is entered by holding BE4# high during the falling edge of RESET. Lock Step
operation is not supported by the embedded Pentium processor with MM X technology.
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Table 4-1.

Microprocessor Initialization and Configuration

Lock Step operation guarantees recognition of an interrupt on a specific clock by two processors
operating together that are using the APIC astheinterrupt controller. Thisfunctionality isrelated to
FRC operation, but FRC on the APIC pinsis not fully supported in thisway. Thereisno FRC
comparator on the APIC pins, but mismatches on these pins result in a mismatch on other pins of
the processor.

Fault tolerant systems implemented with multiple processors that run identical code sequences and
generate identical bus cycleson all clocks may utilize Lock Step operation.

Setup and Hold time specifications PICCLK (in relation to CLK) are added for this functionality.
Additionally, there is a requirement to sustain specific integer ratios between the frequencies of
PICCLK and CLK. Thisratio should support both the maximum bus frequency of the device and
the maximum frequency of PICCLK. Details of these specifications can be found in Chapter 7,
“Electrical Differences Between Family Members.”

Initialization with RESET, INIT and BIST

Two pins, RESET and INIT, are used to reset the processor in different manners. A “cold” or

“power on” RESET refers to the assertion of RESET while power is initially being applied to the

processor. A “warm” RESET refers to the assertion of RESET or INIT whjleavid CLK remain
within specified operating limits.

Table 4-1 shows the effect of asserting RESET and/or INIT.

Pentium® Processor Reset Modes
0 0 No n/a n/a n/a
0 1 No None None Invalidated
1 0 No Invalidated Initialized Invalidated
1 1 Yes Invalidated Initialized Invalidated

Toggling either the RESET pin or the INIT pin individually forces the processor to begin execution

at address FFFFFFFOH. The internal instruction cache and data cache are invalidated when RESET
is asserted (modified lines in the data cache are NOT written back). The instruction cache and data
cache are not altered when the INIT pin is asserted without RESET. In both cases, the branch target
buffer (BTB) and translation lookaside buffers (TLBs) are invalidated.

After RESET (with or without BIST) or INIT, the processor starts executing instructions at location
FFFFFFFOH. When the first Intersegment Jump or Call instruction is executed, address lines A20-
A31 are driven low for CS-relative memory cycles and the processor only executes instructions in
the lower 1 Mbyte of physical memory. This allows the system designer to use a ROM at the top of
physical memory to initialize the system.

RESET is internally hardwired and forces the processor to terminate all execution and bus cycle
activity within two clocks. No instruction or bus activity occurs as long as RESET is active. INIT is
implemented as an edge triggered interrupt and is recognized when an instruction boundary is
reached. As soon as the processor completes the INIT sequence, instruction execution and bus
cycle activity continues at address FFFFFFFOH even if the INIT pin is not deasserted.
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At the conclusion of RESET (with or without self-test) or INIT, the DX register contains a
component identifier. The upper byte contain 05H and the lower byte contains a stepping identifier.

Table 4-2 defines the processor state after RESET, INIT, and RESET with BIST (built in self-test).

Table 4-2. Register State after RESET, INIT and BIST

Storage Element RESI(E,-\‘ro(t’\(iol)BIST) RE(S,\IIE(;I'te(BlI)ST) INIT
EAX 0 0 if pass 0
EDX 0500+stepping 0500+stepping 0500+stepping
ECX, EBX, ESP, EBP, ESI, EDI 0 0 0
EFLAGS 2 2 2
EIP OFFFO OFFFO OFFFO
CSs selector = FOO0 selector = FOO0 selector = FO00
AR =P, R/W, A AR =P, RIW, A AR =P, R/IW, A
base = FFFFO000 base = FFFF0000 base = FFFF0000
limit = FFFF limit = FFFF limit = FFFF
DS, ES, FE, GS, SS selector =0 selector =0 selector =0
AR =P, R/W, A AR =P, RIW, A AR =P, R/IW, A
base =0 base =0 base =0
limit = FFFF limit = FFFF limit = FFFF
(/IG/IL)DTR, TSS selector =0 selector =0 selector =0
base =0 base =0 base =0
AR =P, RIW AR =P, RIW AR =P, RIW
limit = FFFF limit = FFFF limit = FFFF
CRO 60000010 60000010 Note 2
CR2, 3,4 0 0 0
DR3-DRO 0 0 0
DR6 FFFFOFFO FFFFOFFO FFFFOFFO
DR7 00000400 00000400 00000400
Time Stamp Counter 0 0 Unchanged
Control and Event Select 0 0 Unchanged
TR12 0 0 Unchanged
All other MSR’s Undefined Undefined Unchanged
CW 0040 0040 Unchanged
SwW 0 0 Unchanged
TW 5555 5555 Unchanged
FIP, FEA, FCS, FDS, FOP 0 0 Unchanged
FSTACK 0 0 Unchanged
SMBASE 30000 30000 Unchanged
Data and Code Cache Invalid Invalid Unchanged
?ngBCTag,hgg(';B' Data Cache | 4 Invalid Invalid
NOTES:

1. Register States are given in hexadecimal format.
2. CD and NW are unchanged, bit 4 is set to 1, all other bits are cleared.
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4.3.1 Recognition of Interrupts after RESET

To guarantee recognition of the edge sensitive interrupts (FLUSH#, NMI, R/S#, SMI#) after
RESET or after RESET with BIST, the interrupt input must not be asserted until four clocks after
RESET is deasserted, regardless of whether or not BIST isrun.

4.3.2 Pin State During/After RESET

The processor recognizes and respondsto HOLD, AHOL D, and BOFF# during RESET. Figure 4-1
shows the processor state during and after a power on RESET if HOLD, AHOLD, and BOFF# are
inactive. Note that the address bus pins (A31-A3, AP, BE7#-BEO#) and cycle definition pins
(M/IO#, DIC#, W/R#, CACHE#, SCYC, PCD, PWT, PM0/BPO, PM1/BP1 and LOCK#) are
undefined from the time RESET is asserted until the start of the first bus cycle.

The following lists the state of the output pins after RESET assuming HOLD, AHOLD, and
BOFF# are inactive, boundary scan is not invoked, and no internal parity error is detected.

* High: LOCK#, ADS#, ADSCH#, APCHK#, PCHK#, IERR#, HIT#,
HITM#, FERR#, SMIACT#

* Low: HLDA, BREQ, BP3, BP2, PRDY

¢ High Independence: D63-D0, DP7-DPO

¢ Undefined: A31-A3, AP, BE7#-BEO#, W/R#, M/IO#, D/C#, PCD, PWT,

CACHE#, TDO, SCYC, PM0/BPO, PM1/BP1
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Figure 4-1. Pin States during Reset
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NOTES:

1. RESET must meet setup and hold times to guarantee recognition on a specific clock edge. If RESET
does not need to be recognized on a specific clock edge, it may be asserted asynchronously.

2. At power up, RESET needs to be asserted for 1 ms after V¢cc and CLK have reached their AC/DC specifications.
For warm reset, RESET needs to be asserted for at least 15 clocks while V¢ and CLK remain within specified
operating limits.

3. If RESET is driven synchronously, FLUSH#, FRCMC# and INIT must be at their valid level and meet setup and
hold times to the clock before the falling edge of RESET.

4. If RESET is driven asynchronously, FLUSH#, FRCMC# and INIT must be at their valid level two clocks before
and after the falling edge of RESET.

5. An assertion of RESET takes at least two clocks to affect the pins.

A6127-01
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4.4.1.2

Microprocessor Initialization and Configuration

Managing and Designing with the Symmetrical Dual
Processing Configuration

Dual Processor Bootup Protocol

Bootup Overview

Systems using the embedded Pentium processor may be equipped with a second processor socket.
For correct system operation, the processor must be able to identify the presence and type of the
second processor (such as a Dual processor). Furthermore, since upgrade processors typically are
installed in the field by end users, system configuration may change between any two consecutive
power-down/up sequences. The system must therefore have a mechanism to ascertain the system
configuration during boot time. The boot up handshake protocol provides this mechanism.

BIOS/Operating System Requirements

TheBIOS or HAL (hardware abstraction layer) of the operating system software should be generic,
independent of the kind of OEM or upgrade processor present in the system. BIOS/HAL are
specific to the system hardware, and should not need any change when an upgrade processor is
installed. For dual processors, if the BIOS is not DP-ready, it will be up to the operating system to
initialize and configure the dual processor appropriately.

The CPUID instruction is used to deliver processor-specific information. The embedded Pentium

processor CPUID status has been extended to supply the processor type information which

includes “turbo-upgrade” classification (“type” field: bits 13-12 = 0-1). For upgradability with a
future Pentium Overdrive processor, system software must allow the type field of the EAX register
following the CPUID instruction to contain the values for both the embedded Pentium processor
and the Pentium Overdrive processor. Note also that the model field of the CPUID is different for a
Pentium OverDrive processor.

Figure 4-2. EAX Bit Assignments for CPUID

44.1.3

31 141312 11 8 7 4 3 0

EAX 0 (Reserved) Type Family Model Stepping

A6126-01

System Requirements
The number of Dual processors per Primary processor is limited to 1.

This bootup handshake protocol requires enabling the local APIC module using the APICEN pin.
The startup IPI must be sent via the local APICs. Once the Dual processor has been initialized,
software can later disable the local APIC module using several methods. These methods and their
considerations are discussed in “APIC Interrupt Controller” on page 3-35.

The protocol does not preclude more generic multiprocessing systems where multiple pairs of
Primary and Dual processors may exist on the system bus.
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44.1.4 Start-up Behavior

On RESET and INIT (message or pin), the processor begins execution at the reset vector
(OFFFFFFFOH). The Dual processor waits for a startup 1Pl from the BIOS or operating system via
the local APIC of the processor. The INIT IPI can be used to put the embedded Pentium processor
or Dual processor to sleep (once the INIT IPI isreceived, the processor must wait for the startup
IPI).

The startup IPI is specifically provided to start the Dual processor’s execution from a location other
than the reset vector, although it also can be used for the processor. The startup IPI is sent by the
system software via the local APIC by using a delivery mode of 110B. The startup IPI must include
an 8-bit vector that defines the starting address. The starting ad@@»%% 000H, whereVV

indicates the vector field (in hex) passed through the IPI.

The 8-bit vector defines the address of a 4 Kbyte page in the Intel architecture Real Mode Space
(1 Mbyte space). For example, a vector of 0OCDH specifies a startup memory address of
000CDOOOH. This value is used by the processor to initialize the segment descriptor for the
upgrade’s CS register as follows:

* The CSselector is set to the startup memory address/16 (real mode addressing)
* The CSbaseis set to the startup memory address

* The CSlimitisset to 64 Kbytes

¢ The current privilegelevel (CPL) and instruction pointer (IP) are set to 0

Note: Vectors of OAOH to OBFH are reserved by Intel. Do not use them.

The benefit of the startup IPI is that it does not require the APIC to be software enabled (the APIC
must be hardware enabled viathe APICEN pin) and does not require the interrupt table to be
programmed. Startup |PIs are non-maskable and can be issued at any time to the embedded
Pentium processor or Dual processor. If the startup 1Pl message is not preceded by a RESET or
INIT (message or pin), it isignored.

It isthe responsibility of the system software to resend the startup 1Pl message if thereisan error in
the IPI message delivery. Although the APIC need not be enabled in order to send the startup IPI,
the advantage to enabling the APIC prior to sending the startup IPI isto allow APIC error handling
to occur viathe APIC error handling entry of the local vector table (ERROR INT or LVT3at APIC
address OFEE00370H). Otherwise, the system software would have to poll the delivery status bit of
the interrupt command register to determineif the IPI is pending (Bit 12 of the ICR=1) and resend
the startup 1Pl if the IPI remains pending after an appropriate amount of time.

4415 Dual-Processor Presence Indication

The bootup handshake protocol becomes aware that an additional processor is present through the
DPEN# pin. The second processor is guaranteed to drive this signal low during RESETs falling
edge. If the system needs to remember the presence of a second processor for future use, it must
latch the state of the DPEN# pin during the falling edge of RESET.
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4.4.2 Dual-Processor Arbitration

The embedded Pentium processor incorporates a private arbitration mechanism that allows the
Primary and Dual processorsto arbitrate for the shared processor bus without assistance from abus
controller. The arbitration scheme is architected in such away that the dual processor pair appears
as asingle processor to the system.

The processor arbitration logic uses afair arbitration scheme. The arbitration state machineis
designed to efficiently use the processor bus bandwidth. The dual processor pair supports inter-
processor pipelining of most bus transactions. Furthermore, the arbitration mechanism does not
introduce any dead clocks on bus transactions.

4421 Basic Dual-Processor Arbitration Mechanism

The basic set of arbitration premises requires that the processor check the second socket (Socket 7)
for a processor every time the processor enters reset. To perform the checking of the Socket 7 and
to perform the actual boot sequence, the processor in the 296-pin socket always comes out of reset
as the most-recent master (MRM). This requires the part in the Socket 7 to always come out of
reset as the least-recent master (LRM).

The LRM processor requests ownership of the processor bus by asserting the private arbitration
reguest pin, PBREQ#. The processor that is currently the MRM and owns the bus grants the bus to
the LRM as soon as any pending bus transactions have completed. The MRM grants the bus to the
LRM immediately if that processor has a pipelined cycle to issue. The MRM notifiesthat the LRM
can assume ownership by asserting the private arbitration grant pin, PBGNT#. The PBREQ#pinis
always the output of the LRM and the PBGNT# is always an input to the LRM.

A processor can park on the processor bus if there are no requests from the LRM. A parked
processor can be running cycles or just sitting idle on the bus. If a processor just ran a cycle on the
bus and has another cycle pending without an LRM request, the processor runs the second cycle on
the bus.

L ocked cycles present an exception to the simple arbitration rules. All locked cycles are performed
as atomic operations without interrupt from the LRM. An exception to thisrule is when alocked
access causes an assertion of PHITM# by the LRM. In this case, the MRM grants the bus to the
LRM and allows the writeback to complete.

The normal system arbitration pins (HOLD, HLDA, BOFF#) functions the same as in uni-

processor mode. Thus, the dual -processor pair always factors the state of the processor bus as well
asthe state of the local arbitration before actually running a cycle on the processor bus.
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44272 Dual-Processor Arbitration Interface

Figure 4-3 details the hardware arbitration interface.

Note:  For proper operation, PBREQ# and PBGNT# must not be loaded by the system.

Figure 4-3. Dual-Processor Arbitration Interface

PBREQ# | > | PBREQ#
Primary PBGNT# |- > | PBGNT# Dual
Processor BOFF# | 7y > | BOFF# Processor
AHOLD | \ > | AHOLD
LOCK# | > | LOCK#
BREQ |- > | BREQ
HOLD | Y > | HOLD
A31-A3 De3D0 DA [ i >|HPA  pe3po A31-A3
A A vy A A
Processor Control
Y Processor Data Bus Y
Y Processor Address Bus Y
A6129-01

Figure 4-4 shows atypical arbitration exchange.

Diagram (a) of Figure 4-4 shows PA running a cycle on the processor bus with a transaction
pending. At the same time, PB has a cycle pending and has asserted the PBREQ# pin to notify PA
that PB needs the bus.

Diagram (b) of Figure 4-4 shows PA’s cycle completing with an NA# or the last BRDY #. Note here
that PA does not run the pending cycle, instead, PA grants the bus to PBto alow PBto run its
pending cycle.

In Diagram (c) of Figure 4-4, PBis running the pending transaction on the processor bus, and PA

asserts arequest for the bus to PB. The busis granted to PA, and Diagram (d) of Figure 4-4 shows
PA running the last pending cycle on the bus.
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When both processors are idle on the processor bus, and the LRM wantsto issue an ADSH#, thereis
an arbitration delay in order that it may become the MRM. Figure 4-5 shows how the embedded
Pentium processor dual-processor arbitration mechanism handles this case.

Dual-Processor Arbitration from a Parked Bus

This example shows the arbitration necessary for the LRM to gain control of the idle processor bus
in order to drive acycle. In this example, PA isthe Primary processor, and PB isthe Dual processor.

Diagram (a) of Figure 4-5 shows PB requesting the bus from the MRM (PA). Diagram (b) of
Figure 4-5 shows PA granting control of the busto PB. Diagram (c) of Figure 4-5 shows PB, how

the MRM, issuing a cycle.

Figure 4-5. Arbitration from LRM to MRM when Bus is Parked

4-12
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4.4.3.2

Note:

Microprocessor Initialization and Configuration

Dual-Processor Cache Consistency

The embedded Pentium processor incorporates a mechanism to maintain cache coherency with the
Dual processor. The mechanism allows a dual processor to be inserted into the upgrade socket
without special considerations for the system hardware or software. The presence or absence of the
dual processor istotally transparent to the system.

Basic Cache Consistency Mechanism

A private snoop interface has been added to the embedded Pentium processor. The interface
consists of two pins (PHIT#, PHITM#) that only connect between the two sockets. The dual
processors arbitrate for the system bus via two private arbitration pins (PBREQ#, PBGNT#).

The LRM processor initiates a snoop sequence for all ADS# cyclesto memory that are initiated by
the MRM. The LRM processor asserts the private hit indication (PHIT#) if the data accessed (read
or written) by the MRM matches avalid cacheline in the LRM. In addition, if the data requested
by the MRM matches avalid cache lineinthe LRM that isin the modified state, the LRM asserts
the PHITM# signal. The system snooping indication signals (HIT#, HITM#) do not change state as
aresult of aprivate snoop.

The processor supports system snooping via the EADS# pin in the same manner in which the
processor supports system snooping.

The private snoop interface is bidirectional. The processor that is currently the MRM samples the
private snoop interface, while the processor that is the LRM drives the private snoop signals.

The MRM initiates a self backoff sequence if the MRM detects an assertion of the PHITM# signal
while running a bus cycle. The self backoff sequence involves the following steps:

1. The MRM allows the cycle that was requested on the bus to finish. However, the MRM
ignores the data returned by the system.

2. The MRM-LRM exchanges ownership of the bus (aswell as MRM-LRM state) to allow the
LRM to write the modified data back to the system.

3. Thebus ownership will exchange one more timeto allow the original bus master ownership of
the bus. At this point the MRM retries the cycle, receiving the fresh data from the system or
writing the data again.

The MRM uses an assertion of the PHIT# signal as an indication that the requested data is being
shared with the LRM. Independent of the WB/WT# pin, a cache lineis placed in the cachein the
shared state if PHIT# is asserted. This makes all subsequent writes to that line externally visible
until the state of the line becomes exclusive (E or M states). In a uniprocessor system, the line may
have been placed in the cache in the E state. In this situation, all subsequent writesto that line are
not visible on the bus until the stateis changed to I.

Cache Consistency Interface

Figure 4-6 details the hardware cache consistency interface

For proper operation, PHIT# and PHITM# must not be loaded by the system.
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Figure 4-6. Cache Consistency Interface
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Pin Modifications Due to the Dual-Processor
The processor, when operating in dual processing mode, modifies the functionality of the following
signals:
* A20M#, ADS#, BE4#-BEO#, CACHE#, D/C#, FERR#, FLUSH#, HIT#, HITM#, HLDA,
IGNNE#, LOCK#, M/IO#, PCHK#, RESET, SCYC, SMIACT#, W/R#

Table 4-10 on page 4-27 summarizes the functional changes of all the pins in dual processor mode.

Locked Cycles

The processor implements atomic bus transactions by asserting theffdCIKtomic

transactions can be initiated explicitly in software by using a LOCK prefix on specific instructions.
In addition, atomic cycles may be initiated implicitly for instructions or transactions that perform
locked read-modify-write cycles. By asserting the LG GHn, the processor indicates to the

system that the bus transaction in progress cannot be interrupted.
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Lock cycles adhere to the following sequence:

1. An unlocked writeback occurs when a cache lineisin the modified state in the MRM

Microprocessor Initialization and Configuration

processor. Two unlocked write back cycles may berequired if the locked item spanstwo cache
lines that are both in the modified state.

. A locked read to a cache line that isin the shared, exclusive or invalid stateis alwaysrun on
the system bus. The cache line always is moved to the invalid state at the completion of the
cycle. A locked read cycle that is run by the MRM could hit alinethat isin the modified state
in the LRM. In this case, the LRM asserts the PHITM# signal, indicating that the requested
datais modified in the LRM data cache. The MRM completes the locked read, but ignoresthe
data returned by the system. The components exchange ownership of the bus, allowing the
Modified cache line to be written back with LOCK# still active. The sequence completes with
the original bus owner re-running the locked read followed by alocked write. The sequenceis

as shown in Figure 4-7.

In Figure 4-7, the small box inside each processor indicates the state of an individual cachelinein
the sequence shown above. Diagram (c) of Figure 4-7 shows the locked writeback occurring as a

result of the inter-processor snoop hit to the M-state line.

Figure 4-7. Dual-Processor Cache Consistency for Locked Accesses
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4-16

External Snoop Examples

Example 4-1. During a Write to an M-State Line

The following set of diagrams illustrates the actions performed when one processor attempts a
writeto alinethat is contained in the cache of the other processor. In this situation, the cached line
isinthe M statein the LRM processor. The external snoop and the write are to the same addressin
this example. In this example, PA isthe Primary processor, and PB is the Dual processor.

In diagram (&) of Figure 4-8, processor PA starts awrite cycle on the busto aline that isin the M
state in processor PB. Processor PB notifies PA that the write transaction has hit an M-state line in
diagram (b) of Figure 4-8 by asserting the PHITM# signal. The MRM (PA) compl etes the write
cycle onthe bus asif the LRM processor did not exist.

In this example, an external snoop happens just as the write cycle completes on the bus, but before
PB has a chance to write the modified data back to the system memory. Diagram (b) of Figure 4-8
shows PB asserting the HITM# signal, informing the system that the snoop addressis cached in the
dual processing pair and isin the modified state. The external snoop in this example is hitting the
same line that caused the PHITM# signal to be asserted.

Diagram (c) of Figure 4-8 shows that an arbitration exchange has occurred on the bus, and PB is
now the MRM. Processor PB writes back the M state line; it appears to the system as if asingle
processor was compl eting a snoop transaction.

Finally, diagram (d) of Figure 4-8 shows processor PA re-running the original write cycle after PB
has granted the bus back to PA.

Figure 4-8. Dual-Processor Cache Consistency for External Snoops
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Example 4-2. During an MRM Self-Backoff

The following diagrams show an example in which an external snoop hits an M-state line during a
self backoff sequence.

In this example, PA isthe Primary processor, and PB is the Dual processor.

In diagram (&) of Figure 4-9 processor PA initiates awrite cycle that hitsaline that is modified in
processor PB. In diagram of (b) of Figure 4-9, processor PB notifies PA that the line is modified in
its cache by asserting the PHITM# signal.

Diagram (c) of Figure 4-9 shows an external snoop occurring just as the bus arbitration has
exchanged ownership of the bus. Processor PB asserts the HITM# signal to notify the system that
the external snoop has hit aline in the cache. In this example, the external snoop hits a different
line that was just hit on the private snoop.

In diagram (d) of Figure 4-9, processor PB takes ownership of the processor bus from PA.
Processor PB initiates a writeback of the datajust hit on the external snoop even though a
writeback dueto the private snoop is pending. The external snoop causes processor PB to delay the
writeback that was initiated by the private snoop (to line 1).

Diagram (f) of Figure 4-9 shows the writeback of the modified data hit during theinitial private

snoop. Processor PA then restarts the write cycle for the second time, and completes the write cycle
in Diagram (h) of Figure 4-9.
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Figure 4-9.

Dual-Processor Cache Consistency for External Snoops
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4436 State Transitions Due to Dual-Processor
Cache Consistency

The following tables outline the state transitions that a cache line can encounter during various
conditions.

Table 4-3. Read Cycle State Transitions Due to Dual-Processor

Present State Pin Activity Next State Description

Read hit. Data is provided to the processor

M na M core by the cache. No bus activity.

Read hit. Data is provided to the processor

E na E core by the cache. No bus activity.
s na s Read hit. Data is provided to the processor
core by the cache. No bus activity.
CACHE#(L) & Cache miss. The cacheability information
KEN#(L) & indicates that the data is cacheable. A bus
| WB/WT#(H) & E cycle is requested to fill the cache line.
PHIT#(H) & PHIT#(H) indicates that the data is not
PWT(L) shared by the LRM processor.
CQEEEZT_()%& Cache miss. The line is cacheable and a
bus cycle is requested to fill the cache line.
| [WB/WT#(L) + S hi ither th h .
PHITH#(L) + Inht is caﬁe, either t Zzystem orthe LRM is
PWT(H)] sharing the requested data.

CACHE#(H) + | Cache miss. The system or the processor

! KEN#(h) indicates that the line is not cacheable.

NOTE: The assertion of PHITM# would cause the requested cycle to complete as normal, with the requesting
processor ignoring the data returned by the system. The LRM processor would write the data back
and the MRM would retry the cycle. This is called a self backoff cycle.

Embedded Pentium® Processor Family Developer’s Manual 4-19



Microprocessor Initialization and Configuration

4-20

In

Table 4-4. Write Cycle State Transitions Due to Dual-Processor

Present State

Pin Activity

Next State

Description

M

n/a

M

Write hit. Data is written directly to the
cache. No bus activity.

n/a

M

Write hit. Data is written directly to the
cache. No bus activity.

PWT(L) &
WB/WTH#(H)

Write hit. Data is written directly to the
cache. A write-through cycle is generated
on the bus to update memory and invalidate
the contents of other caches. The LRM
invalidates the line if it is sharing the data.
The state transition from S to E occurs
AFTER the write completes on the
processor bus.

PWT(H) +
WB/WTH#(L)

Write hit. Data is written directly to the
cache. A write-through cycle is generated
on the bus to update memory and invalidate
the contents of other caches. The LRM
invalidates the line if it is sharing the data.

n/a

Write miss (the Pentium® processor does
not support write allocate). The LRM
invalidates the line if it is sharing the data.

Table 4-5. Inquire Cycle State Transitions Due to External Snoop

Next State Next State "
Present State (INV=1) (INV=0) Description
Snoop hit to an M-state line. HIT# and
M | S HITM# are asserted, followed by a

writeback of the line.

Snoop hit. HIT# will be asserted.

Snoop hit. HIT# will be asserted.

Snoop miss.

Table 4-6. State Transitions in the LRM Due to Dual-Processor “Private” Snooping

Present State Next State Next State Description
(MRM Write) (MRM Read) P
Snoop hit to an M state line. PHIT# and
M | s PHITM# are asserted, followed by a

write-back of the line. Note that HIT#
and HITM# are NOT asserted.

Snoop hit. PHIT# is asserted.

Snoop hit. PHIT# is asserted.

Snoop miss.
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Designing with Symmetrical Dual Processors

Figure 4-10 shows how atypical system might be configured to support the Dual processor.

Figure 4-10. Dual-Processor Configuration
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Refer to Table 4-10 on page 4-27 for a complete list of dual processor signal connection

reguirements.

Dual Processor Bus Interface

The processor in the dual -processor configuration is designed to have an identical businterfaceto a
standard processor system. The processor in dual processor mode has the capability to run the
following types bus of cycles:

* Single reads and writes from one processor.

¢ Burst reads and writes from one processor.

* Address pipelining with up to two outstanding bus cycles from one processor.

* Inter-processor address pipelining with up to two outstanding bus cycles, one from each

Processor.

All cycles run by the two processors are clock-accurate to corresponding processor bus cycles.
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451.1

Intra- and Inter-Processor Pipelining

In uni-processor mode, the embedded Pentium processor supports bus pipelining with the use of
the NA# pin. The bus pipelining concept has been extended to the dual processor pair by allowing
inter-processor pipelining. This mechanism allows an exchange between LRM and MRM on
assertions of NA#.

When NA# is sampled low, the current MRM processor may drive one more cycle onto the bus or
it may grant the address bus and the control bus to the LRM. The MRM gives the bus to the LRM
only if its current cycle can have another cycle pipelined into it.

The cacheability (KEN#) and cache policy (WB/WT#) indicators for the current cycle are sampled
either in the same clock in which NA# is sampled or with the first BRDY # of the current cycle,
whichever comesfirst.

There are no restrictions on NA# due to dual processing mode.

Inter-processor pipelining is not supported in some situations, as shown in Table 4-7.

Table 4-7. Primary and Dual Processor Pipelining

45.1.2

4-22

Primary and Dual Processor Pipelining
Cycle Types
Inter-processor Intra-processor

First Cycle Pipelined Cycle | Primary<>Dual Primary<>Primary Dual<>Dual
Write Back X No No No
LOCK# X No No No
X Write Back No No No
X LOCK# No No No
Write Write No Yes Yes
Write Read Yes Yes Yes
Read Write Yes Yes Yes
Read Read Yes Yes Yes
10 1ot Yes No No

T 1/O write cycles may not be inter-processor pipelined into 1/0 write cycles

The table indicates that, unlike the uni-processor system, back-to-back write cycles are never
pipelined between the two processors.

The processor alone may pipeline I/O cyclesinto non-1/O cycles, non-1/0 cyclesinto 1/O cycles,
and 1/0 cyclesinto I/O cycles only for OUTS or INS (e.g., string instructions). I/O cycles may be
pipelined in any combination (barring writes into writes) between the Primary and Dual processors.

FLUSH# Cycles

The on-chip caches can be flushed by asserting the FLUSH# pin. The FLUSH# pin must be
connected to both the Primary and Dual processor parts. All cache linesin theinstruction cache and
al linesin the data cache that are not in the modified state are invalidated when the FLUSH# pinis
asserted. All modified lines in the data cache are written back to system memory and then marked
asinvalid in the data cache. The processor runs a special bus cycle to indicate that the flush process
has compl eted.
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Warning:

45.1.3

Microprocessor Initialization and Configuration

The embedded Pentium processor incorporates the following mechanism to present to the system a
unified view of the cache flush operation when used with a Dual processor part:

1. FLUSH# isasserted by the system.

2. The Dual processor requests the bus (if it is not already MRM when FLUSH# is recognized).
The Dual processor will always perform the cache flush operation first, but will not run aflush
special cycle on the system bus.

3. The Dual processor completes writebacks of modified cache lines, and invalidates all others.

4. Once the Dual processor caches are completely invalid, the processor grants the busto the
Primary processor.

5. The Primary processor completes any pending cycles. The Primary processor may have
outstanding cycles if the Dual processor initiated its flush operation prior to the Primary
processor completing pending operations.

6. Primary processor flushes both of itsinternal caches and runs the cache flush special cycle.
The Primary processor maintains its status of MRM. The Dual processor halts all code
execution while the Primary processor is flushing its caches, and does not begin executing
code until it recognizes the flush acknowledge special cycle.

The atomic flush operation assumes that the system can tolerate potentially longer interrupt latency
during flush operations. The interrupt latency in adual processor system can be double the
interrupt latency in a single processor system during flush operations.

The processor primary cache can be flushed using the WBINVD instruction. In adual processor
system, the WBINVD instruction only flushes the cache in the processor that executed the
instruction. The other processor’s cache will be intact.

If the FLUSH signal is deasserted before the corresponding Flush Acknowledge cycle, the
FLUSH# signalmust not be asserted again until the Flush Acknowledge cycle is completed.
Similarly, if the FLUSH# signal is asserted in dual processing mode, it must be deasserted at least
one clock prior to BRDY# of the Flush Acknowledge cycle to avoid dual-processor arbitration
problems. This requirement does not apply to a uni-processor system. In a dual processor system, a
single Flush Acknowledge cycle is generated after the caches in both processors have been flushed.

If FLUSH# is recognized active a second time by the Primary and Dual processors prior to the
completion of the Flush Acknowledge special cycle, the private bus arbitration state machines will
be corrupted.

Arbitration Exchange with Bus Parking

The dual processor pair supports a number of different types of bus cycles. Each processor can run
single-transfer cycles or burst-transfer cycles. A processor can only initiate bus cycles if it is the
MRM. To gain ownership of the bus, the LRM processor requests the bus from the MRM processor
by asserting PBRE®

In response to PBREf}he MRM grants the address and control buses to the LRM by asserting
PBGNT#. If NA# is not asserted or if the current cycle on the bus is not capable of being pipelined,
the MRM waits until the end of the active cycle before granting the bus to the LRM. Once
PBGNT# is asserted, since the bus is idling, the LRM immediately becomes the MRM. While the
MRM, the processor owns the address and the control buses and can therefore start a new cycle.
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45.1.4

BOFF#

If BOFF# is asserted, the dual-processor pair immediately (in the next clock) floats the address,
control, and data buses. Any bus cyclesin progress are aborted, and any data returned to the
processor in the clock in which BOFF# is asserted is ignored. In response to BOFF#, Primary and
Dual processors float the same pins as when HOLD is active.

The Primary and Dual processors may reorder cycles after aBOFF#. The reordering occurs if there
isinter-processor pipelining at the time of the BOFF#, but the system cannot change the
cacheability of the cycles after the BOFF#. Note that there could be a change of bus ownership
transparent to the system while the processors are in the backed-off state. Table 4-8 illustrates the
flow of events which would result in cycle reordering due to BOFF#:

Table 4-8. Cycle Reordering Due to BOFF#

4515

4-24

Time' Processor A System Processor B
0 ADS# driven --
1 NA# active
2 ADS# driven
3 Bus float BOFF# active Bus float
4 EADS# active
5 HITM# driven
6 BOFF# inactive
7 Write back ‘M’ data
8 BRDY#s
9 Restart ADS#
10 Restart ADS# -

T Time is merely sequential, NOT measured in CLKs.

Bus Hold

The processor supports a bus hold/hold acknowledge protocol using the HOLD and HLDA signals.
When the processor completes all outstanding bus cycles, it releases the bus by floating the
external bus, and driving HLDA active. HLDA normally is driven two clocks after the later of the
last BRDY# or HOLD being asserted, but may be up to six clocks dueto active internal APIC
cycles. Because of this, it is possible that an additional cycle may begin after HOLD is asserted but
before HLDA is driven. Therefore, asserting HOL D does not prevent a dual-processor arbitration
from occurring before HLDA is driven out. Even if an arbitration switch occurs, no new cycles are
started after HOLD has been active for two clocks.
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Microprocessor Initialization and Configuration

Dual Processing Power Management

STPCLK#

The Primary and Dual processor STPCLK# signals may be tied together or left separate. Refer to
Chapter 12, “Power Management.” for more information on stop clock and Autohalt.

System Management Mode

The embedded Pentium processor supports system management mode (SMM) with a processor
inserted in the upgrade socket. SMM provides a means to implement power management functions
and operating system independent functions. SMM consists of an interrupt (SMI), an alternate
address space and an instruction (RSM). SMM is entered by asserting thpiSki delivering

the SMI interrupt via the local APIC.

Although SMM functions the same when a Dual processor is inserted in Socket 5/Socket 7, the
dual processor operation of the system must be carefully considered. TH@iBMimay be tied
together or not, depending upon the power management features supported.

Other Dual-Processor Considerations

Strong Write Ordering

The ordering of write cycles in the processor can be controlled with the B\WBEDuring
uniprocessor operation, the EWBRin is sampled by the processor with each BR@¥sertion
during a write cycle. The processor stalls all subsequent write operations to E or M state lines if
EWBE# is sampled inactive. If the EWBBpIn is sampled inactive, it continues to be sampled on
every clock until it is found to be active.

In dual processing mode, each processor tracks EfBtependently of bus ownership. EWBE

is sampled and handled independently between the two processors. Only the processor that owns
the bus (MRM) samples EWBEONce sampled inactive, the processor stalls subsequent write
operations.

Bus Snarfing

The dual processor pair does not support cache-to-cache transfers (bus snarfing). If a (#Bcessor
requires data that is modified in procesB&y processoPA writes the data back to memory. After

PA has completed the data transRB,runs a read cycle to memory. Whé¥eis either the Primary

or the Dual processor, aiB is the other processor.

Interrupts

A processor may need to arbitrate for the use of the bus as a result of an interrupt. However, from
the simple arbitration model used by the embedded Pentium processor, an interrupt is not a special
case. There is no interaction between dual-processor support and the interrupt model in the
embedded Pentium processor.
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45.3.5

INIT Sequences

The INIT operation in dual-processor mode is exactly the same as in uni-processor mode. The two
INIT pins must be tied together. However, in dual processor mode, the Primary processor must
send an IPl and a starting vector to the Dual processor viathe local APIC modules.

Boundary Scan

The embedded Pentium processor supports the full |IEEE JTAG specification. The system designer
is responsible to configure an upgrade ready system in such away that the addition of a Dual
processor in Socket 7 alows the boundary scan chain to functional as normal. This could be
implemented with ajumper in Socket 7 that connects the TDI and TDO pins. The jumper would
then be removed when the dual processor isinserted.

Alternatively, Socket 7 could be placed near the end of the boundary scan chain in the system. A
multiplexer in the system boundary scan logic could switch between the TDO of the Primary and
the dual processors as aDual processor part isinserted. Anillustration of this approach is shownin
Figure 4-11.

Figure 4-11. Dual-Processor Boundary Scan Connections

45.3.6

45.3.7

4-26

Primary
DI Processor Socket5
Level
TDO Translator
TDI TDO TDI TDO
Other

System Logic

Y
Processor in Socket 5 Present —> MUX

A6155-01

Presence of a Processor in Socket 7

The Dual processor drives the DPEN# signal low during RESET to indicate to the Primary
processor that a processor is present in Socket 7. The processor samples this line during RESETs
falling edge.

DPEN# shares a pin with the APIC PICDO signal.

MRM Processor Indication
In a dual-processor system, the D/P# (Dual processor/Primary processor Indication) signal

indicates which processor is running a cycle on the bus. Table 4-9 shows how the external
hardware can determine which processor isthe MRM.
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Table 4-9. Using D/P# to Determine MRM

4.5.4

D/P# Bus Owner
0 Primary processor is MRM
1 Dual processor is MRM

D/P# can be sampled by the system with ADS# to determine which processor is driving the cycle
on the bus. D/P# is driven only by the processor when operating as the Primary processor. Because
of this, this signal is never driven by the Dual processor.

Dual-Processor Pin Functions

All the inputs pins are sampled with bus clock or test clock, and therefore, must meet setup and
hold times with respect to the rising edge of the appropriate clock. In the dual-processor
configuration, the RESET and FL USH# pins have been changed to be synchronous (i.e., to meet
setup and hold times). There have been no changes to the other existing input pins.

If the FLUSH# signal is deasserted before the corresponding FLUSH ACK cycle, the FLUSH#
signal must not be asserted again until the FLUSH ACK cycleis generated. This requirement does
not apply to a uni-processor system. In adual processor system, asingle FLUSH ACK cycleis
generated after the caches in both processors have been flushed.

All system output pins are driven from the rising edge of the bus clock and meet maximum and
minimum valid delays with respect to the bus clock. TDO is driven with respect to the rising edge
of TCK and PICDO-PICD1 are driven with respect to the rising edge of PICCLK.

Table 4-10 summarizes the functional changes of all the pins in dual-processor mode.

Table 4-10. Dual-Processor Pin Functions vs. Pentium® Processor (Sheet 1 of 4)

Pin N jo | Load | Samed | CEL c t
in Name ogether? omments
(Note 1) | (Note 2) (Note 3)
A31-A3 /o v N Yes When the MRM becomes the LRM (and issues

PBGNT#), it three-states these signals for one CLK.

Used in virtual mode and possibly in real mode by
A20M# | Y Y Yes DOS and DOS extenders. Internally masked by the
Dual processor.

ADS# and ADSC# are three-stated by the LRM

ADSH#, 110 v N Yes processor in order to allow the MRM processor to

ADSC# [e) begin driving them. There are no system
implications.

AHOLD | Y Y Yes

AP e v N Yes When the MRM becomes the LRM (and issues

PBGNT#), it three-states this signal for one CLK.

NOTES:

1. “Load” indicates whether the pin would introduce a capacitive load to the system board due to the presence of
the dual processor.

2. “N” indicates that there is a minor functional change to the pin(s) either as an enhancement to the embedded
Pentium processor or due to dual processor operation.

3. “Yes” means that both processors must see the same value on the pin(s) for proper dual-processor operation.
“No” means that the system must provide the signal to each processor independently. “May be” means that
the system designer can choose to provide the signal to both processors or provide independent signals to
each processor.
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Table 4-10. Dual-Processor Pin Functions vs. Pentium® Processor (Sheet 2 of 4)

Load Same? Tied
Pin Name /0 (Note 1) | (Note 2') Together? Comments
(Note 3)
APCHK# (@) N Y No Requires a system OR function.
When the MRM becomes the LRM (and issues
PBGNT#), it three-states these signals for one CLK.
BE7-BES# (0] Y N Yes BE3#-BEO# are used by the local APIC modules to
BE4# —BEO# 110 Y N Yes load the APIC_ID at RESET. BE3#—BEO# will be
three-stated by the Primary and Dual processors
during RESET.
BF | Y n/a Yes
BOFF# | Y Y Yes
BP3-BPO0 now only indicates breakpoint match in
the I/O clock. Each processor must have different
BP3-BPO o N N No breakpoints. Note that BP1-BPO are muxed with
PM1-PMO.
BRDY#,
BRDYC# | Y Y Yes
The MRM drives this signal as a combined bus cycle
BREQ o Y N Yes request for itself and the LRM.
BUSCHK# | Y Y Yes
When the MRM becomes the LRM (and issues
CACHE# Vo Y N Yes PBGNT#), it three-states this signal for one CLK.
CLK | Y Y Yes Both processors must use the same system clock.
CPUTYP | Y n/a No
When the MRM becomes the LRM (and issues
DIC# Vo Y N Yes PBGNT#), it three-states this signal for one CLK.
The Primary processor always drives this signal.
D/P# o nfa nfa No This output is not defined on the Dual processor.
D63-D0 110 Y Y Yes
DP7-DPO 110 Y Y Yes
EADS# | Y Y Yes
This signal is sampled active with BRDY#, but
inactive asynchronously. For optimized performance
(minimum number of write E/M stalls) the chip
set/platform should allow a dead clock between
EWBE# | Y Y Yes buffer going empty to buffer going full. This allows
this signal to be completely independent between
the two processors, rather than having one stall
internal cache writes due to the other filling the
external buffer.
Used for DOS floating-point compatibility. The
FERR# (@] Y Y Yes Primary processor drives this signal. The Dual
processor never drives this signal.
NOTES:

1. “Load” indicates whether the pin would introduce a capacitive load to the system board due to the presence of

the dual processor.

2. “N” indicates that there is a minor functional change to the pin(s) either as an enhancement to the embedded

Pentium processor or due to dual processor operation.

3. “Yes” means that both processors must see the same value on the pin(s) for proper dual-processor operation.
“No” means that the system must provide the signal to each processor independently. “May be” means that
the system designer can choose to provide the signal to both processors or provide independent signals to
each processor.

Embedded Pentium® Processor Family Developer’s Manual




Microprocessor Initialization and Configuration

Table 4-10. Dual-Processor Pin Functions vs. Pentium® Processor (Sheet 3 of 4)

Load Same? Tied
Pin Name 1/0 (Note 1) | (Note 2') Together? Comments
(Note 3)
In a dual-processor system, the flush operation is
atomic with a single flush acknowledge bus cycle.
FLUSH# ! Y Y Yes Therefore, FLUSH# must not be re-asserted until
the corresponding FLUSH ACK cycle is generated.
Both processors must be in Master mode. A
FRCMC# | N Y Yes processor in the Socket 7 cannot be used as a
Checker.
This signal is asserted by the MRM based on the
HIT# 110 Y N Yes combined outcome of the inquire cycle between the
two processors.
HITM# 110 Y N Yes See HIT#.
HLDA 110 Y N Yes Driven by the MRM.
HOLD | Y Y Yes
IERR# (0] N Y No
IGNNE# | Y Y Yes The Dual processor ignores this signal.
INIT | N N Yes In du_al-processor mod_e,_ t_hg Dgal processor
requires an IPI during initialization.
If the APIC is enabled, this pin is a local interrupt. If
INTR/LINTO | N N May be the APIC is hardware disabled, this pin function is
not changed.
INV | Y Y Yes
KEN# | Y Y Yes
The LRM samples the value of LOCK#, and drives
the sampled value in the clock in which it gets
LOCK# 110 Y N Yes ownership of the dual-processor bus. If sampled
active, then the LRM keeps driving the LOCK#
signal until ownership changes again.
When the MRM becomes the LRM (and issues
M/O# o Y N Yes PBGNT#), it three-states this signal for one CLK.
NA# | Y Y Yes
NC n/a N Y No
If the APIC is enabled, then this pin is a local
NMI/LINT1 | N Y May be interrupt. If the APIC is hardware disabled, this pin
function is not changed.
This signal is always driven by one of the
PBGNT# 110 n/a n/a Yes PIrOCESSOrs.
PBREQ# e n/a na Yes This signal is always driven by one of the
processors.
When the MRM becomes the LRM (and issues
PCD 0 Y N es PBGNT#), it three-states this signal for one CLK.
NOTES:

1. “Load” indicates whether the pin would introduce a capacitive load to the system board due to the presence of

the dual processor.

2. “N” indicates that there is a minor functional change to the pin(s) either as an enhancement to the embedded

Pentium processor or due to dual processor operation.

3. “Yes” means that both processors must see the same value on the pin(s) for proper dual-processor operation.
“No” means that the system must provide the signal to each processor independently. “May be” means that
the system designer can choose to provide the signal to both processors or provide independent signals to
each processor.
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Table 4-10. Dual-Processor Pin Functions vs. Pentium® Processor (Sheet 4 of 4)

Load Same? Tied
Pin Name /0 (Note 1) | (Note 2') Together? Comments
(Note 3)

May be wire-ANDed together in the system, tied
PCHK# (@] N Y May be together, or the chip set may have two PCHK#
inputs for dual-processor data parity.

PEN# | Y Y Yes
This signal is always driven by one of the
PHIT# /10 n/a n/a Yes processors.
PHITM# e na nia Yes This signal is always driven by one of the
processors.
PHITM# e nia nia Yes This signal is always driven by one of the
processors.
PICCLK | Y n/a Yes
PICD1-
PICDO 1/0 Y n/a Yes
Each processor may track different performance
PM1-PMO (@] N N No monitoring events. Note that PM1-PMO0 are mux'd
with BP1-BPO.
PRDY o} N Y No
When the MRM becomes the LRM (and issues
PWT o Y N Yes PBGNT#), it three-states this signal for one CLK.
R/S# | N Y No

In dual-processor mode, RESET must be
RESET | Y Y Yes synchronous to the processor CLK that goes to the
Primary and Dual processors.

When the MRM becomes the LRM (and issues

scye Vo Y N Yes PBGNT#), it three-states this signal for one CLK.
SMI# | N Y May be Refer to Chapter 12.

SMIACT# (0] N Y Yes Refer to Chapter 12.

STPCLK# | n/a n/a May be Refer to Chapter 12.

TCK | n/a n/a May be System dependent

TDI | n/a n/a No System dependent

TDO (0] n/a n/a No System dependent

TMS | n/a n/a May be System dependent

TRST# | n/a n/a May be System dependent

Vee | N N Yes Vcc on the processor must be connected to 3.3 V.
Vss | N Y Yes

wre Lo | v [ [ e e e e i
WB/WT# | Y Y Yes

NOTES:

1. “Load” indicates whether the pin would introduce a capacitive load to the system board due to the presence of
the dual processor.

2. “N” indicates that there is a minor functional change to the pin(s) either as an enhancement to the embedded
Pentium processor or due to dual processor operation.

3. “Yes” means that both processors must see the same value on the pin(s) for proper dual-processor operation.
“No” means that the system must provide the signal to each processor independently. “May be” means that
the system designer can choose to provide the signal to both processors or provide independent signals to
each processor.
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Hardware Interface 5

5.1 Detailed Pin Descriptions

This chapter describes the embedded Pentium® processor pins that interface to the system. Both
the embedded Pentium processor and the embedded Pentium processor with MM X technology
have the same logical hardware interface. The embedded Pentium processor with MM X
technology has one extrasignal, VCC2DET#.

The processor, when operating in dual processing mode, modifies the functionality of the following
signals:

* A20M#, ADS#, BE4#-BEO#, CACHE#, D/C#, FERR#, FLUSH#, HIT#, HITM#, HLDA,
IGNNE#, LOCK#, M/I0#, PCHK#, RESET, SCYC, SMIACT#, W/R#

5.1.1 A20M#

A20M# Address 20 Mask

Used to emulate the 1 Mbyte address wraparound on the 8086

Asynchronous Input

Signal Description

When the address 20 mask (A20M#) input is asserted, the processor masks physical address bit 20
(A20) before performing a lookup to the internal caches or driving a memory cycle on the bus.
A20M# is provided to emulate the address wraparound at 1 Mbyte which occurs on the 8086.

Note: A20M# must be asserted only when the processor is in real Mtagleffect of asserting A20M#in
protected mode is undefined and may be implemented differently in future processors.

Inquire cycles and writebacks caused by inquire cycles are not affected by this input. Address bit
A20 is not masked when an external address is driven into the processor for an inquire cycle. Note
that if an OUT instruction is used to modify A20M#, this does not affect previously prefetched
instructions. A serializing instruction must be executed to guarantee recognition of A20M# before
a specific instruction.

The processor, when configured as a Dual processor, ignores the A20M# input.

When Sampled/Driven

A20M# is sampled on every rising clock edge. A20M# is level sensitive and active low. This pin is
asynchronous, but must meet setup and hold times for recognition in any specific clock. To
guarantee that A20M# will be recognized before the first ADS# after RESET, A20M# must be
asserted within two clocks after the falling edge of RESET

Note: As the performance of embedded Pentium processors continues to improve, code sequences are
executed faster. As a result, some code sequences that rely upon hardware timing may fail.
Specifically when a keyboard controller is used to toggle the A20M# pin and the keyboard
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5.1.2

5-2

controller is slow in response, data or code may be read from awrong address at some point in a
code sequence. Therefore, you should ensure that the keyboard controller switches the A20M#
signal fast enough to match the execution speed of the processor. Software should be written to
synchronize code execution with the toggling of the A20M# signal.

Relation to Other Signals

Pin Symbol Relation to Other Signals
A20 When asserted, A20M# masks the value of address pin A20.
CPUTYP When strapped to V¢, the processor ignores the A20M# input.
A31-A3 Address Lines

Defines the physical area of memory or I/O accessed.

Input/Output

Signal Description

As outputs, the Address Lines (A31-A3) along with the byte enable signals (BE7#-BEO#) form the
address bus and define the physical area of memory or I/O accessed.

The embedded Pentium processor is capable of addressing 4 gigabytes of physical memory space
and 64 Kbytes of /0O address space.

As inputs, the address bus lines A31-A5 are used to drive addresses back into the processor to
perform inquire cycles. Since inquire cycles affect an entire 32-byte line, the logic values of A4 and
A3 are not used for the hit/miss decision, however A4 and A3 must be at valid logic level and meet
setup and hold times during inquire cycles.

When Sampled/Driven

When an output, the address is driven in the same clock as ADS#. The address remains valid from
the clock in which ADS# is asserted until the earlier of the last BRDY# or the clock after NA#, or
until AHOLD is asserted.

When an input, the address must be returned to the processor to meet setup and hold times in the
clock in which EADS# is sampled asserted.
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Relation to Other Signals

Pin Symbol Relation to Other Signals
A20M# When asserted, A20M# causes address pin A20 to be masked.
A31-A3 are driven with ADS# (except when a external inquire cycle causes a
ADS# writeback before AHOLD is deasserted, see Chapter 6, “Bus Functional
Description”).
AHOLD A31-A3 are floated one clock after AHOLD is asserted.
AP Even address parity is driven/sampled with the address bus on AP.
APCHK# The status of the address parity check is driven on the APCHK# pin.
BE7#-BEO# Completes the definition of the physical area of memory or I/O accessed.
BOFF# A31-A3 are floated one clock after BOFF# is asserted.
EADS# A31-A5 are sampled with EADS# during inquire cycles.
HIT# HIT# is driven to indicate whether the inquire address driven on A31-A5 is valid

in an internal cache.

HITM# is driven to indicate whether the inquire address driven on A31-A5 is in

HITM# the modified state in the data cache.

HLDA A31-A3 are floated when HLDA is asserted.

INV INV determines whether the inquire address driven to the processor on A31-A5
should be invalidated or marked as shared if it is valid in an internal cache.

ADS# Address Strobe

Indication that a new valid bus cycle is currently being driven by the
processor.

Synchronous Input/Output

Signal Description

The Address Strobe output indicates that a new valid bus cycleis currently being driven by the
processor. The following pins are driven to their valid level in the clock ADS# is asserted: A31-
A3, AP, BE7#-BEO#, CACHE#, LOCK#, M/IO#, W/R#, D/C#, SCYC, PWT, PCD.

ADS# is used by external bus circuitry as the indication that the processor has started a bus cycle.
The external system may sample the bus cycle definition pins on the next rising edge of the clock
after ADS# is driven active.

ADS# floats during bus HOLD and BOFF#. ADS# is not driven low to begin a bus cycle while
AHOLD is asserted unless the cycle is a writeback due to an external invalidation. An active
(floating low) ADS# in the clock after BOFF# is asserted should be ignored by the system.

This signal is normally identical to the ADSC# output. When operating in dual processing mode,
the processor uses this signal for private snooping.
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Note:

When Sampled/Driven

ADSH# isdriven active in the first clock of abus cycle and is driven inactive in the second and
subsequent clocks of the cycle. ADS# is driven inactive when the busisidle.

This signal becomes an Input/Output when two embedded Pentium processors are operating
together in Dual Processing Mode.

Relation to Other Signals

Pin Symbol Relation to Other Signals
ADSC# ADS# is identical to the ADSC# output.
APCHK# When operating in dual processing mode, APCHK# is driven in response

to ADS# for a private snoop.

When operating in dual processing mode, D/P# should be sampled with
D/P# .
an active ADS#.

SMIACT# When operating in dual processing mode, SMIACT# should be sampled
with an active ADS# and qualified by D/P#.

ADSCH#

ADSC# Additional Address Strobe

Indicates that a new valid bus cycle is currently being driven by the
processor.

Synchronous Output

Signal Description

Thissignal isidentical to the ADS# output. Thissignal can be used to relieve tight board timings
by easing the load on the Address Strobe signal.

When Sampled/Driven
Refer to the ADS# signal description.

ADSCH# is not tested and timings are not specified. It is recommended that ADSC# not be used.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# ADSCH is identical to the ADS# output.
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5.1.5 AHOLD

AHOLD Address Hold

Floats the address bus so an inquire cycle can be driven to the processor.

Synchronous Input

Signal Description

In response to the Address Hold request input, the processor stops driving A31-A3 and AP in the
next clock. This pin is intended to be used for running inquire cycles to the processor. AHOLD
allows another bus master to drive the processor address bus with the address for an inquire cycle.
Since inquire cycles affect the entire cache line, although A31-A3 are floated during AHOLD,

only A31-A5 are used by the processor for inquire cycles (and parity checking). Address pins 3
and 4 are logically ignored during inquire cycles but must be at a valid logic level when sampled.

While AHOLD is active, the address bus is floated, but the remainder of the bus can remain active.
For example, data can be returned for a previously driven bus cycle when AHOLD is active. In
general, the processor does not issue a bus cycle (ADS#) while AHOLD is active; the only
exception to this is that writeback cycles due to an external snoop are driven while AHOLD is
asserted.

Since the processor floats its bus immediately (in the next clock) in response to AHOLD, an
address hold acknowledge is not required.

When AHOLD is deasserted, the processor drives the address bus in the next clock. It is the
responsibility of the system designer to prevent address bus contention. This can be accomplished
by ensuring that other bus masters have stopped driving the address bus before AHOLD is
deasserted. Note the restrictions to the deassertion of AHOLD discussed in the inquire cycle
section of the Chapter 6, “Bus Functional Description.”

AHOLD is recognized during RESET and INIT. Note that the internal caches are flushed as a result
of RESET, so invalidation cycles run during RESET are unnecessary.

When Sampled
AHOLD is sampled on every rising clock edge, including during RESET and INIT.

Relation to Other Signals

Pin Symbol Relation to Other Signals

A31-A3 A31-A3 are floated as a result of the assertion of AHOLD.

ADS# is not driven if AHOLD is asserted (except when a external inquire cycle
ADS# causes a writeback before AHOLD is deasserted). See Chapter 6, “Bus
Functional Description.”

AP AP is floated as a result of the assertion of AHOLD.

EADS# EADS# is recognized while AHOLD is asserted.
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AP

AP Address Parity

Bidirectional address parity pin for the address lines of processor.

Input/Output

Signal Description

Thisisthe bidirectional Address Parity pin for the address lines of processor. There is one address
parity pin for the address lines A31-A5. Note that A4 and A3 are not included in the parity
determination.

When an output, AP is driven by the processor with even parity information on all processor
generated cycles in the same clock as the address driven. (Even address parity means that there are
an even number of HIGH outputs on A31-A5 and the AP pins.)

When an input, even parity information must be returned to the processor on this pin during inquire
cycles in the same clock in which EADS# is sampled asserted to ensure that the correct parity
check status is driven on the APCHK# output.

The value read on the AP pin does not affect program execution. The value returned on the AP pin
is used only to determine even parity and drive the APCHK# output with the proper value. It is the
responsibility of the system to take appropriate actions if a parity error occurs. If parity checks are
not implemented in the system, AP may be connecteg¢¢ahfough a pull-up resistor and the
APCHK# pin may be ignored.

When Sampled/Driven

When an output, AP is driven by the processor with even parity information on all processor
generated cycles in the same clock as the address driven. The AP output remains valid from the
clock in which ADS# is asserted until the earlier of the last BRDY# or the clock after NA#, or until
AHOLD is asserted.

When an input, even parity information must be returned to the processor on this pin during inquire
cycles in the same clock that EADS# is sampled asserted to guarantee that the proper value is
driven on APCHK#. The AP input must be at a valid level and meet setup and hold times when
sampled.

Relation to Other Signals

Pin Symbol Relation to Other Signals
A31-A5 The AP pin is used to create even parity with the A31-A5 pins.
ADSH# AP is driven with ADS# (except when a external inquire cycle causes a vv_rit_e-
back before AHOLD is deasserted, see Chapter 6, “Bus Functional Description”).
AHOLD AP is floated one clock after AHOLD is asserted.
APCHK# The status of the address parity check is driven on the APCHK# output.
BOFF# AP is floated one clock after BOFF# is asserted.
EADS# AP is sampled with EADS# during inquire cycles.
HLDA AP is floated when HLDA is asserted.

Embedded Pentium® Processor Family Developer’s Manual



[ ]
I nt9| o Hardware Interface

5.1.7 APCHK#

APCHK# Address Parity Check

The status of the address parity check is driven on this output.

Asynchronous Output

Signal Description

APCHK# is asserted two clocks after EADS# is sampled active if the processor detects a parity
error on the A31-A5 during inquire cycles.

Driving APCHK# is the only effect that bad address parity has on the processor. It is the
responsibility of the system to take appropriate action if a parity error occurs. If parity checks are
not implemented in the system, the APCHK# pin may be ignored.

Address parity is checked during every private snoop between the Primary and Dual processors.
Therefore, APCHK# may be asserted due to an address parity error during this private snoop. If an
error is detected, APCHK# will be asserted two clocks after ADS# for one processor clock period.
The system can choose to acknowledge this parity error indication at this time or do nothing.

When Sampled/Driven

APCHK# is valid for one clock and should be sampled two clocks following ADS# and EADS#
assertion. At all other times it is inactive (high). APCHK# is not floated with AHOLD, HOLD, or
BOFF#. The APCHK# signal is glitch-free.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# When operating in dual processing mode, APCHK# is driven in response
to a private snoop.

AP Even address parity with the A31-A5 should be returned to the processor
on the AP pin. If even parity is not driven, the APCHK# pin is asserted.

A31-A5 The AP pin is used to create even parity with A31-A5. If even parity is not
driven to the processor, the APCHK# pin is asserted.

EADS# APCHK# is driven in response to an external snoop.
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APICEN

APICEN

APIC Enable

This pin enables the APIC on the processor.

Synchronous Configuration Input

Needs external pull-up resistors.

Signal Description

APICEN, if sampled high at the falling edge of RESET, enables the on-chip APIC. If it is sampled
low, then the on-chip APIC is not enabled and the processor uses the interrupts asif the APIC was
not present (Bypass mode).

APICEN must be driven by the system. This pin has an internal pulldown resistor and is sampled at
the falling edge of RESET. When using an active circuit to override the internal pulldown resistor,

the driver should have aninternal effective pullup resistance of 1 KOhms or less.

When Sampled/Driven

APICEN should be valid and stable two clocks before and after the falling edge of RESET.

Relation to Other Signals

Pin Symbol Relation to Other Signals

BE34#_BEO# When APICEN is sampled active, BE3#-BEO# are used to sample the
APIC ID.
When APICEN is sampled active, this input becomes the APIC local

INTR/LINTO interrupt 0.
When APICEN is sampled active, this input becomes the APIC local

NMI/LINTL interrupt 1.

PICCLK PICCLK must be tied or driven high when APICEN is sampled low at the
falling edge of RESET.

PICD1 APICEN shares a pin with PICD1.

RESET APICEN is sampled at the falling edge of RESET.
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5.1.9 BE7#-BEO#

BE7#-BEO# Byte Enable Outputs / APIC ID Inputs

When operating in dual processing mode, BE4# is used to transfer
information between the Dual and Primary processors during the atomic
Flush operation.

At RESET, the BE3#—BEO# pins read the APIC ID bits for the processor.

After RESET, these pins are byte enables and help define the physical
area of memory to 1/O accessed.

BE4#: Synchronous Input/Output, Dual Processing Mode.
BE3#-BEO#: Synchronous Configuration Inputs, during RESET.
BE3#-BEO#: Synchronous Outputs, following RESET.

Signal Description

As outputs, the byte enable signals are used in conjunction with the address lines to provide
physical memory and 1/0O port addresses. The byte enables are used to determine which bytes of
data must be written to external memory, or which bytes were reguested by the processor for the
current cycle.

BE7# applies to D63-D56
BEG6# applies to D55-D48
BES# applies to D47-D40
BE4# applies to D39-D32
BE3# applies to D31-D24
BE2# applies to D23-D16
BE1# applies to D15-D8
BEO# applies to D7-DO0

In the case of cacheable reads (line fill cycles), all 8 bytes of data must be driven to the processor
regardless of the state of the byte enables. If the requested read cycle is a single transfer cycle, valid
data must be returned on the data lines corresponding to the active byte enables. Data lines
corresponding to inactive byte enables need not be driven with valid logic levels. Even data parity
is checked and driven only on the data bytes that are enabled by the byte enables.
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Note:

Thelocal APIC module on the embedded Pentium processor loadsits 4-bit APIC ID value from the
four least significant byte-enable pins at the falling edge of RESET. The following table shows the
four pins that comprise the APIC ID.

APIC ID Register Bit Pin Latched at RESET
bit 24 BEO#
bit 25 BE1#
bit 26 BE2#
bit 27 BE3#

Loading the APIC ID should be done with external logic that drives the proper address at reset. If
the BE3#—BEO# signals are not driven, the APIC ID value defaults to 0000 for the embedded
Pentium processor and 0001 for the Dual processor.

BE3#-BEO# pins establish the APIC ID for the processor and are input/output pins. These pins
have strong internal pull down resistors and typically high external capacitive loading. A strong
pullup on BE3#-BEO# is needed to make sure that the pins reach the correct value. In addition,
since these pins are also outputs, a large resistive load would degrade the signal output during
normal operation. A 50-Ohm three-state driver is recommended to drive these pins during RESET
only.

An APIC ID of all 1s is an APIC special case (i.e., a broadcast) and must not be used. Because the
Dual processor inverts the lowest order bit of the APIC ID placed on the lowest four BE pins, the
value “1110” must not be used when operating in Dual Processing mode.

In a dual-processor configuration, the OEM socket and Socket 5/Socket 7 should have the four byte
enable pairs tied together. The Primary processor loads the value seen on these four pins at RESET.
The Dual processor loads the value seen on these pins and automatically inverts bit 24 of the APIC
ID register. Thus, the two processors will have unique APIC ID values.

The Primary and Dual processors incorporate a mechanism to present an atomic view of the cache
flush operation to the system when in dual processing mode. The Dual processor performs the
cache flush operation and grants the bus to the Primary processor by PBREQ#/PBGNT# arbitration
exchange. The Primary processor then flushes both of its internal caches and runs a cache flush
acknowledge special cycle by asserting BE4#, to indicate to the external system that the cache line
entries have been invalidated. The Dual processor halts all code execution while the processor is
flushing its caches, and does not begin executing code until it recognizes the flush acknowledge
special cycle. Refer to Chapter 6, “Bus Functional Description.”

When Sampled/Driven

As outputs, the byte enables are driven in the same clock as ADS#. The byte enables are driven
with the same timing as the address bus (A31-A3). The byte enables remain valid from the clock in
which ADS# is asserted until the earlier of the last BRDY# or the clock after NA#. The byte
enables do not float with AHOLD.

The four least significant byte-enable bits are sampled for APIC ID at the falling edge of RESET.
These pins should be valid and stable two clocks before and after the falling edge of RESET.

Asserting the APIC ID is not specified for the rising edge of RESET. In a FRC system, the BE3#—
BEO# pins must not be driven for the two clocks following the rising edge of RESET. The system
design should drive these signals on the third clock or later.
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There are strong pull down resistors on the byte enable pins internally that make it impractical to

use pullup circuits to drive the APIC ID (on BE3#—BEO#) or enter Lock Step operation (with

BE4#) at the falling edge of RESET. When not using the internal defaults on these pins, the value
of the external pullup resistors would have to be 50 Ohms or less. For this reason it is suggested to
use active drivers on these lines that would drive the byte enable pins during the falling edge of
RESET. Passive pullups should be avoided.

Relation to Other Signals

Pin Symbol Relation to Other Signals
A31-A3 A31-A3 and BE7#-BEO# together define the physical area of memory or 1/O accessed.
ADS# BE7#-BEO# are driven with ADS#.
APICEN When APICEN is sampled active, BE3#-BEO# are used to sample the APIC ID.
BOFF# BE7#-BEO# are floated one clock after BOFF# is asserted.
D63-D0 BE7#-BEO# indicate which data bytes are being requested or driven by the processor.
DP7-DPO Even data parity is checked/driven only on the data bytes enabled by BE7#-BEO#.
HLDA BE7#-BEO# are floated when HLDA is asserted.
RESET During reset the BI_E3#—BEO# pins are sampled to determine the APIC ID. Following

RESET, they function as byte-enable outputs.

5.1.10 BF2-BFO

Bus-to-core frequency ratio

Used to configure processor bus-to-core frequency ratio.

BF2-BFO Asynchronous Input

Only the Low-power Embedded Pentium Processor with MMX technology
has a BF2 pin.

Signal Description

The BFn pins determine whether the processor operatesat a1/2, 2/3, 2/5, 2/7 or 1/4 1/O bus-to-core
frequency ratio. Since some bus-to-core ratios are not supported, these pins should always be
connected to the proper level.

Note: External pulldowns of 500 Ohms or less must be used between the pins and ground to effectively
override the default (internal) pullups, while external pullups of 2.2 KOhms or less should be used
to override the default pulldowns on BF1-BFO.

Each embedded Pentium processor is specified to operate within a single bus-to-core ratio and a
specific minimum to maximum bus frequency range (corresponding to a minimum to maximum
core frequency range). Operation in other bus-to-core ratios or outside the specified operating
frequency range is not supported. Tables 5-1 through 5-3 summarize these specifications.
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Table 5-1. Bus-to-Core Frequency Ratios for the Embedded Pentium®
Processor (at 100/133/166 MHz)

INlgl.

Embedded Pentium ® .
Max Bus/Core Min Bus/Core
BF1 BFO Process;artil?)us/COre Frequency (MHz) Frequency (MHz)
0 2/5 66/166 33/83
1 1/2 66/133 33/66
1 1 2/3" 66/100 33/50

T This is the default bus fraction for the embedded Pentium processor (at 100/133/166 MHz). If the BF pins
are left floating, the processor will be configured for the 2/3 bus to core frequency ratio.

Table 5-2. Bus-to-Core Frequency Ratios for the Embedded Pentium®

Processor with MMX™ Technology

BE1 BEO Embedded Pentium Processor vyith Max Bus/Core Min Bus/Core
MMX™ Technology Bus/Core Ratio Frequency (MHz) Frequency (MHz)
1 1 2/7 66/233 33/117
0 1 1/3 66/200 33/100
1 0 127 N/A N/A

Tt This is the default bus-to-core ratio for the Pentium processor with MMX technology. If the BF pins are left
floating, the processor will be configured for the 1/2 bus-to-core frequency ratio, which is unsupported. Do
not float the BFn pins at RESET.

Table 5-3. Bus-to-Core Frequency Ratios for the Low-Power Embedded

Pentium® Processor with MMX™ Technology

Low-Power Embedded Pentium Max Bus/Core Min Bus/Core
BF2 BF1 BFO Processor with MMX™ Technology Frequency (MHz) Frequency (MH2)
Bus/Core Ratio a Yy q y
0 0 0 2/5 66/166
1/4 66/266

If BF1-BFO are left unconnected on the embedded Pentium processor with MMX technology, the
bus-to-core ratio defaults to 1/2. If BF1-BFO are left unconnected on the embedded Pentium
processor the bus-to-core ratio defaults to 2/3. If BF2—-BFO0 are left unconnected on the low-power
embedded Pentium processor with MMX technology, the bus-to-core ratio defaults to 2/5. This
ratio is not supported by the low-power embedded Pentium processor with MMX technology; do
not float the B pins when using the low-power embedded Pentium processor with MMX
technology.

When Sampled/Driven

The B pins are sampled at RESET and cannot be changed until another non-warm (1 ms)
assertion of RESET. BFmust not change values while RESET is active.

Relation to Other Signals

Pin Symbol Relation to Other Signals

RESET BF2-BFO are sampled at the falling edge of RESET.
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5.1.11 BOFF#

BOFF# Backoff

The back off input is used to force the processor off the bus in the next clock.

Synchronous Input

Signal Description

In response to BOFF#, the processor aborts all outstanding bus cycles that have not yet completed
and floats the processor bus in the next clock. The processor floats all pins normally floated during
bus hold. Note that since the busis floated in the clock after BOFF# is asserted, an acknowledgeis
not necessary (HLDA is not asserted in response to BOFF#).

The processor remainsin bus hold until BOFF# is negated, at which time the processor restarts any
aborted bus cycle(s) in their entirety by driving out the address and status and asserting ADSH.

This pin can be used to resolve a deadlock situation between two bus masters.
Any datawith BRDY # returned to the processor while BOFF# is asserted is ignored.

BOFF# has higher priority than BRDY#. If both BOFF# and BRDY# occur in the same clock,
BOFF# takes effect.

BOFF# a so has precedence over BUSCHK#. When BOFF# and BUSCHK# are both asserted
during a bus cycle, BUSCHK# isignored.

When Sampled
BOFF# is sampled on every rising clock edge, including when RESET and INIT are asserted.

When aread cycleis running on the bus and an internal snoop of that read cycle hits a modified
linein the data cache, causing the system to assert BOFF#, the sequence of bus cyclesis asfollows:
Upon negation of BOFF#, the processor drives out a writeback resulting from the internal snoop
hit. After completion of the writeback, the processor then restarts the original read cycle. Thus, like
external snoop writebacks, internal snoop writebacks may also be reordered in front of cycles that
encounter a BOFF#. Also note that, although the original read encountered both an external
BOFF# and an internal snoop hit to an M-state line, it is restarted only once.

This circumstance can occur during accesses to the page tables/directories and during prefetch

cycles (these accesses cause a bus cycle to be generated before the internal snoop to the data cache
is performed).
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Relation to Other Signals

Pin Symbol Relation to Other Signals
A3-A31
ADS#
AP
BE7#-BE3#
CACHE#
D/C#
D63-D0 . .
DP7-DPO These signals float in response to BOFF#.
LOCK#
M/10#
PCD
PWT
Scyc
WIR#
BRDY# If BRDY# and BOFF# are asserted simultaneously, BOFF# takes priority and
BRDY# is ignored.
EADS# EADS# is recognized when BOFF# is asserted.
HLDA The same pins are floated when HLDA or BOFF# is asserted.
BUSCHK# If BUSCHK# and BOFF# are both asserted during a bus cycle, BOFF# takes
priority and BUSCHK# is forgotten.
NA# If NA# and BOFF# are asserted simultaneously, BOFF# takes priority and
NA# is ignored.
5.1.12 BP3-BPO
BP3-BPO Breakpoint signals
BP3-BPO externally indicate a breakpoint match.
Synchronous Output
Signal Description
The Breakpoint pins (BP3-BPO0) correspond to the debug registers, DR3—-DRO0. These pins
externally indicate a breakpoint match when the debug registers are programmed to test for
breakpoint matches. BP1 and BPO are multiplexed with the performance monitoring pins (PM1 and
PMO0). The PB1 and PBO bits in the debug mode control register determine if the pins are
configured as breakpoint or performance monitoring pins. The pins come out of RESET configured
for performance monitoring.
Because of the fractional-speed bus, each assertion of a processor BP pin indicates that one or more
BP matches occurred. The maximum number of matches per assertion is two when using the 2/3 or
1/2 bus-to-core ratios. Similarly, the maximum number of matches per assertion is three when
using the 2/5 or 1/3 bus-to-core ratios.
When Sampled/Driven
The BP3-BPO pins are driven in every clock and are not floated during bus HOLD of BOFF#.
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Relation to Other Signals

Pin Symbol Relation to Other Signals
PM1-PMO BP1 and BPO share pins with PM1 and PMO, respectively.

BRDY#

Burst Ready

Transfer complete indication.

Synchronous Input

Signal Description

The Burst Ready input indicates that the external system has presented valid data on the data pins
in response to aread, or that the external system has accepted the processor datain responseto a

write request.

Each cycle generated by the processor is either asingle transfer read (or write) or aburst cache line
fill (or writeback). For single data transfer cycles, one BRDY# is expected to be returned to the
processor. When this BRDY# is returned, the cycle is complete. For burst transfers, four data
transfers are expected by the processor. The cycle is ended when the fourth BRDY # is returned.

When Sampled

Thissignal issampled inthe T2, T12 and T2P bus states.

Relation to Other Signals

Pin Symbol Relation to Other Signals
If BOFF# and BRDY# are asserted simultaneously, BOFF# takes priority and
BOFF# S
BRDY# is ignored.
BUSCHK# BUSCHK# is sampled with BRDY#.
In conjunction with the KEN# input, CACHE# determines whether the bus cycle
CACHE# .
consists of 1 or 4 transfers.
D63-D0 During reads, the D63-D0 pins are sampled by the processor with BRDY#.
During writes, BRDY# indicates that the system has accepted D63-DO.
DP7-DPO During reads, the DP7-DPO pins are sampled by the processor with BRDY#.
During writes, BRDY# indicates that the system has accepted DP7-DPO.
EWBE# EWBE# is sampled with each BRDY# of a write cycle.
KEN# is sampled and latched by the processor with the earlier of the first BRDY#
KEN# or NA#. Also, in conjunction with the CACHE# input, KEN# determines whether
the bus cycle will consist of 1 or 4 transfers (assertions of BRDY#).
LOCK# LOCK# is deasserted after the last BRDY# of the locked sequence.
PCHK# indicates the results of the parity check two clocks after BRDY# is
PCHK#
returned for reads.
PEN# PEN# is sampled with BRDY# for read cycles.
WB/WT# WB/WT# is sampled and latched by the processor with the earlier of the first
BRDY# or NA#.
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5.1.15
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BRDYC#

BRDYC# Burst Ready

Transfer complete indication.

Synchronous Input

Signal Description

Thissignal isidentical to the BRDY# input. This signal can be used to relieve tight board timings
by easing the load on the Burst Ready signal.

In addition to its normal functionality, BRDY C# is sampled with BUSCHK# at RESET to select
the buffer strength for some pins. BRDY C# has an internal pullup resistor. To override the default
settings for the buffer strengths, this pin should be driven and not permanently strapped to ground
because this would interfere with the normal operation of this pin. The driver should have an
internal resistance of 1 KOhms or less. Thisis afunction only of BRDY C#. The BRDY# signal is
not sampled to select buffer sizes.

When Sampled/Driven
Refer to the BRDY# signal description.

Relation to Other Signals

Pin Symbol Relation to Other Signals
BRDY# BRDYC# is identical to the BRDY# input.
RESET BRDYC# and BUSCHK# are sampled at RESET to select the buffer strength for some pins.
BREQ
BREQ Bus Request
Indicates externally when a bus cycle is pending internally.
Output

Signal Description

The processor asserts the BREQ output whenever abus cycleis pending internally. BREQ is
always asserted in the first clock of abus cycle with ADS#. Furthermore, if the processor is not
currently driving the bus (dueto AHOLD, HOLD, or BOFF#), BREQ is asserted in the same clock
that ADS# would have been asserted if the processor were driving the bus. After the first clock of
the bus cycle, BREQ may change state. Every assertion of BREQ is not guaranteed to have a
corresponding assertion of ADS#.

External logic can use the BREQ signal to arbitrate between multiple processors. Thissignal is
always driven regardless of the state of AHOLD, HOLD or BOFF#.
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When Driven

BREQ is always driven by the processor, and is not floated during bus HOLD or BOFF#.

Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# BREQ is always asserted in the clock in which ADS# is asserted.

5.1.16 BUSCHK#

BUSCHK# Bus Check

Allows the system to signal an unsuccessful completion of a bus cycle.

Synchronous Input

Signal Description

The Bus Check input pin allows the system to signal an unsuccessful completion of a bus cycle.
When this pin is sampled active, the processor | atches the address and control signals of the failing
cycle in the machine check registers. When the MCE bit in CR4 is a so set, the processor vectorsto
the machine check exception upon completion of the current instruction.

If BUSCHK# is asserted in the middle of acycle, the system must return all expected BRDY #
signals to the processor. BUSCHK# is remembered by the processor if asserted during a bus cycle.
The processor decides after the last BRDY # whether to take the machine check exception or not.

BOFF# has precedence over BUSCHK#. When BOFF# and BUSCHK# are both asserted during a
bus cycle, BUSCHK# is ignored.

In addition to its normal functionality, BUSCHK# is sampled with BRDY C# at RESET to select
the buffer strength for some pins. BUSCHK# hasan internal pullup resistor. To override the default
settings for the buffer strengths, this pin should be driven and not permanently strapped to ground,
because this interferes with the normal operation of this pin. The driver should have an internal
resistance of 1 KOhmsor less.

When Sampled

BUSCHK# is sampled when BRDY # is returned to the processor.

Note: The embedded Pentium processor can remember only one machine check exception at atime. This
exception is recognized on an instruction boundary. If BUSCHK# is sampled active while
servicing the machine check exception for aprevious BUSCHK#, it is remembered by the
processor until the original machine check exception is completed. Then, the processor servicesthe
machine check exception for the second BUSCHK#. Note that only one BUSCHK# isremembered
by the processor while the machine exception for the previous one is being serviced.

When the BUSCHK# is sampled active by the processor, the cycle address and cycle type
information for the failing bus cycleis latched upon assertion of the last BRDY# of the bus cycle.
Theinformation is latched into the Machine Check Address (MCA) and Machine Check Type
(MCT) registers respectively. However, if the BUSCHK# input is not deasserted before the first
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BRDY# of the next bus cycle, and the machine check exception for the first bus cycle has not
occurred, then new information is latched into the MCA and MCT registers, over-writing the
previous information at the completion of this new bus cycle. Therefore, in order for the MCA and
MCT registers to report the correct information for the failing bus cycle when the machine check
exception for this cycle istaken at the next instruction boundary, the system must deassert the
BUSCHK# input immediately after the completion of the failing bus cycle (i.e., before the first
BRDY# of the next bus cycleis returned).

Relation to Other Signals

Pin Symbol Relation to Other Signals
BOFF# If BOFF# and BUSCHK# are both asserted during a bus cycle, the BOFF# signal causes
the BUSCHK# to be forgotten.
BRDY# BUSCHKH# is sampled with BRDY#.
BRDYC# BUSCHK# is sampled with BRDYC# at RESET to select the buffer strength for some pins.
RESET BUSCHK# and BRDYC# are sampled at RESET to select the buffer strength for some pins.
CACHE#
CACHE# Cacheability

External indication of internal cacheability.

Synchronous Input/Output

Signal Description

The Cacheability output is a cycle definition pin. For processor initiated cycles, this pin indicates
internal cacheability of the cycle (if aread), and indicates a burst writeback (if awrite). CACHE#
isasserted for cycles coming from the cache (writebacks) and for cyclesthat will go into the cache
if KEN# isasserted (lin€fills). More specifically, CACHE# is asserted for cacheable reads,
cachesble code fetches, and writebacks. It is driven inactive for non-cacheable reads, TLB
replacements, locked cycles (except writeback cycles from an external snoop that interrupt a
locked read/modify/write sequence), 1/O cycles, special cycles and writethroughs.

For read cycles, the CACHE# pin indicates whether the processor allows the cycle to be cached.
When CACHE# is asserted for aread cycle, the cycle isturned into a cache linefill if KEN# is
returned active to the processor. When this pinis driven inactive during a read cycle, processor
does not cache the returned data, regardless of the state of the KEN#.

If this pinis asserted for awrite cycle, it indicates that the cycleis aburst writeback cycle.
Writethroughs cause a non-burst write cycle to be driven to the bus. The processor does not support
write allocations (cache line fills as aresult of awrite miss).

When operating in dual processing mode, the embedded Pentium processors use this signal for
private snooping.

When Sampled/Driven

CACHE#isdriventoitsvalid level in the same clock as the assertion of ADS# and remains valid
until the earlier of the last BRDY# or the clock after NA#.

Embedded Pentium® Processor Family Developer’s Manual




intel.

5.1.18

Note:

Hardware Interface

This signal becomes an Input/Output when two embedded Pentium processors are operating
together in dual processing mode.

Relation to Other Signals

Pin Symbol Relation to Other Signals
ADS# CACHE# is driven to its valid level with ADS#.
BOFF# CACHE# floats one clock after BOFF# is asserted.
BRDY# In_ conjun_ction with the KEN# input, C_ACHE# determines whether the bus cycle
will consist of 1 or 4 transfers (assertions of BRDY#).
HLDA CACHE# floats when HLDA is asserted.
KEN# I||<nEe';l|ﬁ and CACHE# are used together to determine if a read will be turned into a
CLK
CLK Clock

Fundamental timing source for the embedded Pentium processor.

Input

Signal Description

The Clock input provides the fundamental timing source for the embedded Pentium processor. Its
frequency is proportional to the internal operating frequency of the processor (as selected by the
BF1-BFO pins) and requires a TTL level signal. All external timing parameters except TDI, TDO,
TMS, and TRST# are specified with respect to the rising edge of CLK.

The CLK signal on the embedded Pentium processor with MMX technology is 3.3 V tolerant. On
the embedded Pentium processor, the CLK input is 5.0 V tolerant.

When Sampled

CLK is used as a reference for sampling other signals. It is recommended that CLK begin toggling
within 150 ms after ¥ reaches its proper operating level. This recommendation is made to ensure
long term reliability of the device. A& specifications and clock duty cycle, stability, and frequency
specifications must be met for 1 ms before the negation of RESET. If at any time during normal
operation one of these specifications is violated, the power on RESET sequence must be repeated.
This requirement is made to ensure proper operation of the phase locked loop circuitry on the clock
input within the processor.
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Relation to Other Signals

Pin Symbol

Relation to Other Signals

All except TCK
TDI

TDO

TMS

TRST#

External timing parameters are measured from the rising edge of CLK for all
signals except TDI, TDO, TMS, TCK, and TRST#.

5.1.19 CPUTYP

CPUTYP

Processor Type Definition Pin

Used to configure the embedded Pentium processor as a Dual processor.

Asynchronous Input

Signal Description

The CPUTYP pin is used to determine whether the embedded Pentium processor functions as a
Primary or Dual processor. CPUTY P must be strapped to either V¢ or Vgg. When CPUTYPis
strapped to V ¢, the embedded Pentium processor functions as a Dual processor. When CPUTY P
is strapped to V g (or left unconnected), the embedded Pentium processor functions as a Primary
processor. In asingle socket system design, CPUTY P pin must be strapped to V&g,

When Sampled/Driven

CPUTYPissampled at RESET and cannot be changed until another non-warm (1 ms) assertion of
RESET. CPUTY P must meet a1 ms setup time to the falling edge of RESET. It is recommended
that CPUTY P be strapped to V ¢ of Vs

Relation to Other Signals

Pin Symbol Relation to Other Signals

A20M# When CPUTYP is strapped to V¢, the processor ignores the A20M# input.
The BE3#-BEO# input values are sampled during RESET to determine the APIC ID. The

BE4#—BEO# Dual processor uses BE4# to indicate to the Primary processor that it has completed its
cache flush operation. Refer to the BE4#-BEO# pin description.

D/P# D/P# is driven by the processor only when the CPUTYP signal is strapped to Vgs.

DPEN# When CPUTYP is strapped to Vo, DPEN# is driven active to indicate that the second
socket is occupied.

FERR# When CPUTYP is strapped to V¢, the FERR# output is undefined.

FLUSH# When operating in dual processing mode, the FLUSH# inputs become Synchronous to
the processor clock.

IGNNE# When CPUTYP is strapped to V¢, the processor ignores the IGNNE# input.

RESET CPUTYP is sampled at the falling edge of RESET. When operating in dual processing
mode, the RESET inputs become synchronous to the processor clock.

5-20

Embedded Pentium® Processor Family Developer’s Manual




[ ]
I nt9| o Hardware Interface

Note: It iscommon practice to put either a pullup or pulldown resistor on anet. If apullup resistor is
connected to the CPUTY P pin in order to operate in a Dual Processing mode, the value of this
resistor must be 100 Ohms or less to override the internal pulldown. In the absence of an external
pullup, theinterna pulldown sufficiently pulls down the CPUTY P pin; therefore the pin can be left
floating.

5.1.20 D/C#

D/C# Data/Code

Distinguishes a data access from a code access.

Synchronous Input/Output

Signal Description

The Data/Code signal is one of the primary bus cycle definition pins. D/C# distinguishes between
data (D/C# = 1) and code/specia cycles (D/C# = 0).

When operating in dual processing mode, the embedded Pentium processor uses this signal for
private snooping.

When Sampled/Driven

The D/C# pinisdriven valid in the same clock as ADS# and the cycle address. It remains valid
from the clock in which ADS# is asserted until the earlier of the last BRDY # or the clock after
NA#.

This signal becomes an Input/Output when two embedded Pentium processors are operating
together in Dual Processing Mode.

Relation to Other Signals

Pin Symbol Relation to Other Signals
ADS# D/C# is driven with ADS#.
BOFF# D/C# floats one clock after BOFF# is asserted.
HLDA D/C# floats when HLDA is asserted.

5.1.21 D63-DO0

D63-D0 Data Lines

Forms the 64-bit data bus.

Input/Output

Signal Description

The bidirectional lines D63-D0 form the 64 data bus lines for the embedded Pentium processor.
Lines D7-D0 define the least significant byte of the data bus; lines D63-D56 define the most
significant byte of the data bus.

Embedded Pentium® Processor Family Developer’s Manual 5-21



Hardware Interface

INlgl.

When Sampled/Driven

When the processor is driving the data lines (during writes), they are driven during the T2, T12, or
T2P clocks for that cycle.

During reads, the processor samples the data bus when BRDY # is returned.

D63-DO0 are floated during T1, TD, and Ti states.

Relation to Other Signals

Pin Symbol Relation to Other Signals

BE7#-BEO# BE7#-BEO# indicate which data bytes are being requested or driven by the processor.

BOFF# D63-DO float one clock after BOFF# is asserted.

BRDY# BRDY# indicates that the data bus transfer is complete.

DP7-DPO Even data parity is driven/sampled with the data bus on DP7-DPO.

HLDA D63-DO float when HLDA is asserted.

PCHK# The status of the data bus parity check is driven on PCHK#.
Even data parity with D63-DO0 should be returned to the processor on the DP pin. If a

PEN# data parity error occurs, and PEN# is enabled, the cycle is latched and a machine check
exception is taken if CR4.MCE = 1.

5.1.22 D/P#
D/IP# Dual Processor / Primary Processor

Indicates whether the Dual processor or the Primary processor is driving the bus.

Synchronous Output

Signal Description

The D/P# pin is driven low when the Primary processor is driving the bus. Otherwise, the Primary
processor drives this pin high to indicate that the Dual processor owns the bus. The D/P# pin can be
sampled for the current cycle with ADS#. This pin is defined only on the Primary processor. In a
single socket system design, D/P# pin should be left NC.

When Sampled/Driven

The D/P# pin is always driven by the Primary processor and should be sampled with ADS# of the

current cycle.
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Relation to Other Signals

Pin Symbol Relation to Other Signals
ADS# D/P# is valid for the current cycle with ADS# (like a status pin).
D/P# is driven by the processor when the CPUTYP signal is strapped to Vgg (or left
CPUTYP
unconnected).
SMIACT# When operating in dual processing mode, D/P# qualifies the SMIACT# SMM indicator.
DP7-DPO Data Parity

Bidirectional data parity pins for the data bus.

Input/Output

Signal Description

These are the bidirectional Data Parity pinsfor the processor. There is one parity pin for each byte
of the data bus. For example, DP7 applies to D63—-D56 and DPO applies to D7-DO.

As outputs, the data parity pins are driven by the processor with even parity information for writes
in the same clock as write data. Even parity means that there are an even number of HIGH logic
values on the eight corresponding data bus pins and the parity pin.

As inputs, even parity information must be driven back to the processor on these pins in the same
clock as the data to ensure that the correct parity check status is indicated by the processor.

The value read on the data parity pins does not affect program execution unless PEN# is also
asserted. If PEN# is not asserted, the value returned on the DP pins is used only to determine even
parity and drive the PCHK# output with the proper value. If PEN# is asserted when a parity error
occurs, the cycle address and type are latched in the MCA and MCT registers. If in addition, the
MCE bit in CR4 is set, a machine check exception is taken.

It is the responsibility of the system to take appropriate actions if a parity error occurs. If parity
checks are not implemented in the system, the DP7—DPO0 and PEN# pins should bedied to V
through a pullup resistor and the PCHK# pin may be ignored.

When Sampled/Driven

As outputs, the data parity pins are driven by the processor with even parity information in the
same clock as write data. The parity remains valid until sampled by the assertion of BRDY# by the
system.

As inputs, even parity information must be driven back to the processor on these pins in the same

clock as the data to ensure that the correct parity check status is indicated by the processor. The
data parity pins must be at a valid logic level and meet setup and hold times when sampled.
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Relation to Other Signals

Pin Symbol Relation to Other Signals
BE7#-BEO# Even data parity is checked/driven only on the data bytes enabled by BE7#—BEO#.
BOFF# DP7-DPO are floated one clock after BOFF# is asserted.
BRDY# DP7-DPO are sampled with BRDY# for reads.
D63-D0 The_ DP7-DPO pins are used to create even parity with D63-DO0 on a byte by byte
basis. DP7-DPO are driven with D63—-DO for writes.
HLDA DP7-DPO are floated when HLDA is asserted.
PCHK# The status of the data parity check is driven on the PCHK# output.

The DP7-DPO pins are used to create even parity with D63-DO0. If even parity is not
PEN# detected, and PEN# is enabled, the cycle address and type are latched. If in

addition CR4.MCE = 1, the machine check exception is taken.

DPEN#

DPEN# Second Socket Occupied

Configuration signal which indicates that the second socket in a dual socket system
is occupied.

Synchronous Input (to the processor)

Synchronous Output (from the processor, when configured as a Dual processor)

Signal Description

DPEN# isdriven during RESET by the processor when configured as a Dual processor to indicate
to the Primary processor in the first socket that there is a Dual processor present in the system.

Thispin hasaninterna pullup resistor and is sampled at the falling edge of RESET. When using an
active circuit to override the internal pullup resistor, the driver should have an internal effective
pulldown resistance of 1 KOhms or less.

When Sampled/Driven

DPEN# isdriven during RESET by the Dual processor, and sampled at the falling edge of RESET
by the Primary processor. This pin becomes PICDO following the falling edge of RESET. This pin
should be valid and stable two clocks before and after the falling edge of RESET.

Relation to Other Signals

Pin Symbol Relation to Other Signals

When CPUTYP is strapped to V¢, DPEN# is driven active to indicate that the second

CPUTYP socket is occupied.
RESET DPEN# is valid during the falling edge of RESET.
PICDO DPEN# shares a pin with PICDO.
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EADS#

EADS# External Address Strobe

Signals the processor to run an inquire cycle with the address on the bus.

Synchronous Input

Signal Description

The EADS# input indicates that a valid external address has been driven onto the processor address
pinsto be used for an inquire cycle. The address driven to the processor when EADS# is sampled
asserted is checked with the current cache contents. The HIT# and HITM# signals are driven to
indicate the result of the comparison. When the INV pin is returned active (high) to the processor in
the same clock as EADS# is sampled asserted, an inquire hit will result in that line being
invalidated. When the INV pinisreturned inactive (low), an inquire hit will result in that line being
marked Shared (S).

When Sampled

To guarantee recognition, EADS# should be asserted two clocks after an assertion of AHOLD or
BOFF#, or one clock after an assertion of HLDA. In addition, the processor ignores an assertion of
EADSH if the processor is driving the address bus, or if HITM#is active, or in the clock after
ADSH# or EADSH is asserted.

Relation to Other Signals

Pin Symbol Relation to Other Signals
A31-A5 The inquire cycle address must be valid on A31-A5 when EADS# is sampled asserted.
A4-A3 These signals must be at a valid logic level when EADS# is sampled asserted.
AHOLD EADS# is recognized while AHOLD is asserted.
AP AP is sampled when EADS# is sampled asserted.
APCHK# APCHK# is driven to its valid level two clocks after EADS# is sampled asserted.
BOFF# EADS# is recognized while BOFF# is asserted.
HIT# HIT# is driven to its valid level two clocks after EADS# is sampled asserted.
HITM# HITM# is driven to its valid level two clocks after EADS# is sampled asserted.
HLDA EADS# is recognized while HLDA is asserted.
INV ilr’:lc:{)iirsesl'?i?]pled with EADS# to determine the final state of the cache line in the case of an
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EWBE#

EWBE# External Write Buffer Empty

Provides the option of strong write ordering to the memory system.

Synchronous Input

Signal Description

The External write Buffer Empty input, when inactive (high), indicates that a writethrough cycleis
pending in the external system. When the processor generates awrite (memory or 1/O), and
EWBEH# is sampled inactive, the processor holds off al subsequent writesto all E or M-state lines
until all writethrough cycles have completed, asindicated by EWBE# being active. In addition, if
the processor has awrite pending in awrite buffer, the processor also holds off all subsequent
writesto E- or M-state lines. Thisinsures that writes are visible from outside the processor in the
same order as they were generated by software.

When the processor serializes instruction execution through the use of a serializing instruction, it
waits for the EWBE# pin to go active before fetching and executing the next instruction.

After the OUT or OUTS instructions are executed, the processor ensures that EWBE# has been
sampled active before beginning to execute the next instruction. Note that the instruction may be
prefetched if EWBE# is not active, but it does not execute until EWBE# is sampled active.

When Sampled

EWBE# is sampled with each BRDY# of awrite cycle. If sampled deasserted, the processor
repeatedly samples EWBE# in each clock until it is asserted. Once sampled asserted, the processor
ignores EWBE# until the next BRDY # of awrite cycle.

Relation to Other Signals

Pin Symbol Relation to Other Signals
BRDY# EWBE# is sampled with each BRDY# of a write cycle.
SMIACT# SMIACT# is not asserted until EWBE# is asserted.
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FERR#

FERR# Floating-Point Error

The floating-point error output is driven active when an unmasked floating-point error occurs.

Synchronous Output

Signal Description

The Floating-Point Error output is driven active when an unmasked floating-point error occurs.
FERR# is similar to the ERROR# pin on the Intel 387 math coprocessor. FERR# isincluded for
compatibility with systems using DOS type floating-point error reporting.

In some cases, FERR# is asserted when the next fl oating-point instruction is encountered and in
other casesit is asserted before the next fl oating-point instruction is encountered depending upon
the execution state of the instruction causing the exception.

Thefollowing class of floating-point exceptions drive FERR# at the time the exception occurs (i.e.,
before encountering the next floating-point instruction):

1. Stack fault, all invalid operation exceptions and denormal exceptions on: all transcendental
instructions, FSCALE, FXTRACT, FPREM, FPREM(1), FBLD, FLD_extended, FRNDINT,
and stack fault and invalid operation exceptions on Floating-Point arithmetic instructions with
an integer operand (FIADD/FIMUL/FISUB/FIDIV, etc.).

2. All real stores (FST/FSTP), Floating-Point integer stores (FIST/FISTP) and BCD store
(FBSTP) (true for al exception on stores except Precision Exception).

The following class of floating-point exceptions drive FERR# only after encountering the next
floating-point instruction. Note that the embedded Pentium processor with MM X technology
reports a pending floating-point exception (assert FERR#) upon encountering the next floating-
point or MM X instruction.

1. Numeric underflow, overflow and precision exception on: Transcendental instructions,
FSCALE, FXTRACT, FPREM, FPREM(1), FRNDINT, and Precision Exception on all types
of storesto memory.

2. All exceptions on basic arithmetic instructions (FADD/FSUB/FMUL/FDIV/
FSQRT/FCOM/FUCOM...)

FERR# is deasserted when the FCLEX, FINIT, FSTENV, or FSAVE instructions are executed. In
the event of a pending unmasked floating-point exception the FNINIT, FNCLEX, FNSTENYV,
FNSAVE, FNSTSW, FNSTCW, FNENI, FNDISI, and FNSETPM instructions assert the FERR#
pin. Shortly after the assertion of the pin, an interrupt window is opened during which the
processor samples and services interrupts, if any. If no interrupts are sampled within this window,
the processor then executes these instructions with the pending unmasked exception. However, for
the FNCLEX, FNINIT, FNSTENV, and FNSAVE instructions, the FERR# pin is deasserted to
enabl e the execution of these instructions. For details please refer to the Intel Architecture Software
Developer's ManualVolume 1 (Chapter 7 and Appendix D).

This signal is undefined when the embedded Pentium processor is configured as a Dual processor.
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When Sampled/Driven

FERR# isdriven in every clock and is not floated during bus HOLD or BOFF#. The FERR# signal
isglitch free.

The embedded Pentium processor, when configured as a Dual processor, does not drive this signal
tovadid levels.

Relation to Other Signals

Pin Symbol Relation to Other Signals
CPUTYP When CPUTYP is strapped to V¢, the FERR# output is undefined.
FLUSH# Cache Flush

Writes all modified lines in the data cache back and flushes the code and data caches.

Asynchronous Input (Normal, Uni-processor mode)

Synchronous Input (Dual processor mode)

Signal Description

When asserted, the Cache Flush input forces the processor to writeback all modified linesin the
data cache and invalidate both internal caches. A Flush Acknowledge specia cycleis generated by
the processor, indicating completion of the invalidation and writeback.

FLUSH# isimplemented in the processor as an interrupt, so it is recognized on instruction
boundaries. External interrupts are ignored while FLUSH# is being serviced. Once FLUSH# is
sampled active, it isignored until the flush acknowledge special cycleisdriven.

If FLUSH# is sampled low when RESET transitions from high to low, three-state test mode is
entered.

The processor, when operating with a second processor in dual processing mode, incorporates a
mechanism to present an atomic cache flush operation to the system. The Dual processor performs
the cache flush operation first, then grants the bus to the Primary processor. The Primary processor
flushesitsinternal caches, and then runs the cache flush special cycle. This could cause the total
flush latency of two embedded Pentium processors in dual processor mode to be up to twice that of
the embedded Pentium processor in uni-processor mode.

The flush latency of the embedded Pentium processor with MM X technology may be up to twice
that of the embedded Pentium processor due to the implementation of larger on-chip caches.

When Sampled/Driven

FLUSH# is sampled on every rising clock edge. FLUSH# isfalling edge sensitive and is
recognized on instruction boundaries. Recognition of FLUSH# is guaranteed in a specific clock if
it is asserted synchronously and meets the setup and hold times. If it meets setup and hold times,
FLUSH# need only be asserted for one clock. To guarantee recognition if FLUSH# is asserted
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asynchronously, it must have been deasserted for a minimum of two clocks before being returned
active to the embedded Pentium processor and remain asserted for a minimum pulse width of two
clocks.

If the processor isin the HALT or Shutdown state, FLUSH# is still recognized. The processor
returns to the HALT or Shutdown state after servicing the FLUSH#.

If FLUSH# is sampled low when RESET transitions from high to low, three-state test modeis
entered. If RESET isnegated synchronously, FLUSH# must be at itsvalid level and meet setup and
hold times on the clock before the falling edge of RESET. If RESET is negated asynchronoudly,
FLUSH# must be at its valid level two clocks before and after RESET transitions from high to low.

When operating in a dual processing system, FLUSH# must be sampled synchronously to the
rising CLK edge to ensure both processors recognize an active FLUSH# signal in the same clock.

Relation to Other Signals

Pin Symbol Relation to Other Signals
ADS# and cycle definition Writeback cycles are driven as a result of FLUSH# assertion.
pins. The Flush Special Cycle is driven as a result of FLUSH# assertion.

If FLUSH# is sampled low when RESET transitions from high to low,

RESET three-state test mode is entered.

When operating in dual processing mode, the FLUSH# inputs become
CPUTYP
synchronous to the processor clock.

5.1.29 FRCMC#

FRCMC# Functional Redundancy Checking Master/Checker Configuration

Determines whether the processor is configured as a Master or Checker.

Asynchronous Input

Note:  Functional Redundancy Checking is not supported on the embedded Pentium processor with MM X
technology. The FRCMC# pin is defined only for the embedded Pentium processor. This pin
should be left as a “NC” or tied tod¢ via an external pullup resistor on the embedded Pentium
processor with MMX technology.

Signal Description

The Functional Redundancy Checking Master/Checker Configuration input is sampled in every
clock that RESET is asserted to determine whether the processor is configured in master mode
(FRCMC# high) or checker mode (FRCMC# low). When configured as a master, the processor
drives its output pins as required by the bus protocol. When configured as a checker, the processor
three-states all outputs (except IERR# and TDO) and samples the output pins that would normally
be driven in master mode. If the sampled value differs from the value computed internally, the
Checker processor asserts IERR# to indicate an error.

Note that the final configuration as a master or checker is set after RESET and may not be changed

other than by a subsequent RESET. FRCMC# is sampled in every clock that RESET is asserted to
prevent bus contention before the final mode of the processor is determined.
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When Sampled

Thispinissampled in any clock in which RESET is asserted. FRCM C# is sampled in the clock
before RESET transitions from high to low to determine the final mode of the processor. If RESET
is negated synchronously, FRCM C# must be at its valid level and meet setup and hold times on the
clock beforethefalling edge of RESET. If RESET is negated asynchronously, FRCM C# must be at
itsvalid level two clocks before and after RESET transitions from high to low.

Relation to Other Signals

Pin Symbol Relation to Other Signals

IERR# IERR# is asserted by the Checker processor in the event of an FRC error.

FRCMC# is sampled when RESET is asserted to determine if the processor is in

RESET Master or Checker mode.
5.1.30 HIT#
HIT# Inquire Cycle Hit/Miss

Externally indicates whether an inquire cycle resulted in a hit or miss.

Synchronous Input/Output

Signal Description

The HIT# output is driven to reflect the outcome of an inquire cycle. If aninquire cycle hitsavalid
line (M, E, or S) in either the processor data or instruction cache, HIT# is asserted two clocks after
EADSH# has been sampled asserted by the processor. If the inquire cycle misses the processor
cache, HIT# is negated two clocks after EADSH# is sampled asserted. This pin changesits value
only as aresult of an inquire cycle and retains its value between cycles.

When operating in dual processing mode, the embedded Pentium processor uses this signal for
private snooping.

When Sampled/Driven

HIT# reflects the hit or miss outcome of the inquire cycle two clocks after EADS# is sampled
asserted. After RESET, this pin isdriven high. It changesit value only as aresult of an inquire
cycle. Thispinisawaysdriven. It is not floated during bus HOLD or BOFF#.

This signal becomes an Input/Output when two embedded Pentium processors are operating
together in dual processing mode.
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Relation to Other Signals

Pin Symbol Relative to Other Signals
A31-A5 HIT# is driven to indicate whether the inquire address driven on
A31-A5 is valid in an internal cache.
EADS# HIT# is driven two clocks after EADS# is sampled asserted to indicate the outcome of
the inquire cycle.
HITM# HITM# is never asserted without HIT# also being asserted.
HITM# Inquire Cycle Hit/Miss to a Modified Line

Externally indicates whether an inquire cycle hit a modified line in the data cache.

Synchronous Input/Output

Signal Description

The HITM# output is driven to reflect the outcome of an inquire cycle. If an inquire cycle hitsa
modified linein the embedded Pentium processor data cache, HITM# is asserted two clocks after
EADSH# has been sampled asserted by the processor and awriteback cycleis scheduled to be driven
to the bus. If the inquire cycle misses the processor cache, HITM# is negated two clocks after
EADSH# is sampled asserted.

HITM# can be used to inhibit another bus master from accessing the data until the lineis
completely written back.

HITM# is asserted two clocks after an inquire cycle hits amodified line in the processor cache.
ADSH# for the writeback cycleis asserted no earlier than two clocks after the assertion of HITM#.
ADSH# for the writeback cycle is driven even if AHOLD for the inquire cycle is not yet deasserted.
ADSH# for awriteback of an external snoop cycleisthe only ADS# that is driven while AHOLD is
asserted.

When operating in dual processing mode, the embedded Pentium processor uses this signal for
private snooping.

When Sampled/Driven

HITM# is driven two clocks after EADS# is sampled asserted to reflect the outcome of the inquire
cycle. HITM# remains asserted until two clocks after the last BRDY # of writeback is returned.
Thispinisawaysdriven. It is not floated during bus HOLD or BOFF#.

Thissignal becomes an input/output when two embedded Pentium processors are operating
together in dual processing mode.
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Relation to Other Signals

Pin Symbol Relation to Other Signals
HITM# is driven to indicate whether the inquire address driven on A31-A5 is in the
A31-A5 o .
modified state in the data cache.
EADS# HITM# is driven two clocks after EADS# is sampled asserted.
HIT# HITM# is never asserted without HIT# also being asserted.
HLDA Bus Hold Acknowledge

External indication that the processor outputs are floated.

Synchronous Input/Output

Signal Description

The Bus Hold Acknowledge output goes active in response to a hold reguest presented on the
HOLD pin. HLDA indicates that the processor has given the bus to another local bus master.
Internal instruction execution continues from the internal caches during bus HOLD/HLDA.

When leaving bus hold, HLDA is driven inactive and the processor resumes driving the bus. A
pending bus cycle is driven in the same clock in which HLDA is deasserted by the processor and
one clock after HLDA is deasserted by the processor.

The operation of HLDA is not affected by the assertion of BOFF#. If HOLD is asserted while
BOFF# is asserted, HLDA is asserted two clocks later. If HOLD goes inactive while BOFF# is
asserted, HLDA is deasserted two clocks | ater.

When operating in dual processing mode, the embedded Pentium processor uses this signal for
private snooping.

When Sampled/Driven

When the embedded Pentium processor busisidle, HLDA isdriven high two clocks after HOLD is
asserted, otherwise, HLDA is driven high two clocks after the last BRDY # of the current cycleis
returned. It is driven active in the same clock that the embedded Pentium processor floats its bus.
When leaving bus hold, HLDA is driven inactive two clocks after HOLD is deasserted and the
embedded Pentium processor resumes driving the bus. The HLDA signal is glitch free.

This signal becomes an input/output when two embedded Pentium processors are operating
together in dual processing mode.
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Pin Symbol

Relation to Other Signals

A31-A3
ADS#

AP
BE7#-BE3#
CACHE#
D/C#
D63-D0
DP7-DPO
LOCK#
M/10#
PCD
PWT
SCYC
WIR#

These signals float in response to HLDA.

BOFF#

The same pins are floated when HLDA or BOFF# is asserted.

EADS#

EADS# is recognized while HLDA is asserted.

HOLD

are complete.

The assertion of HOLD causes HLDA to be asserted when all outstanding cycles

HOLD

HOLD

Bus Hold

The bus hold request input allows another bus master complete control of the

processor bus.

Synchronous Input

Signal Description

The Bus Hold request input allows another bus master complete control of the embedded Pentium
processor bus. In response to HOLD, after completing all outstanding bus cycles the embedded
Pentium processor floats most of its output and input/output pins and asserts HLDA. The
embedded Pentium processor maintains its bus in this state until HOLD is deasserted. Cycles that
are locked together are not interrupted by bus HOLD. HOLD is recognized during RESET.

When Sampled

HOLD is sampled on every rising clock edge including during RESET and INIT.
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Relation to Other Signals

Pin Symbol

Relation to Other Signals

A31-A3
ADS#

AP
BE7#-BE3#
CACHE#
D/IC#
D63-D0
DP7-DPO
LOCK#
M/10#
PCD
PWT
SCYC
WIR#

These are the signals floated in response to HOLD.

HLDA

HLDA is asserted when the processor relinquishes the bus in
response to the HOLD request.

IERR#

IERR#

Internal or Functional Redundancy Check Error.
(Functional Redundancy Checking is not supported on the embedded Pentium®
processor with MMX™ technology or the low-power embedded Pentium
processor with MMX technology).

Alerts the system of internal parity errors and functional redundancy errors.

Output

Signal Description

Thelnternal Error output is used to alert the system of two types of errors, internal parity errorsand

functional redundancy errors.

If aparity error occurs on aread from an internal array (reads during normal instruction execution,
reads during a flush operation, reads during BIST and testability cycles, and reads during inquire

cycles), the embedded Pentium processor assertsthe IERR# pin for one clock and then shuts down.
Shutdown occurs provided the processor is not prevented from doing so by the error.

If the embedded Pentium processor is configured as a checker (by FRCM C# being sampled low
while RESET is asserted) and a mismatch occurs between the value sampled on the pins and the
value computed internally, the embedded Pentium processor asserts |ERR# two clocks after the
mismatched value is returned. Shutdown is not entered as a result of a function redundancy error.

It isthe responsibility of the system to take appropriate action if an internal parity or FRC error

OcCcurs.
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When Driven

IERR# is drivenin every clock. While RESET is active IERR# is driven high. After RESET is
deasserted, IERR# is not asserted due to an FRC mismatch until after the first clock of the first bus
cycle. Note however that IERR# may be asserted due to an internal parity error before the first bus
cycle. IERR# is asserted for one clock for each detected FRC or internal parity error, two clocks
after the error is detected. IERR# is asserted for each detected mismatch, so IERR# may be
asserted for more than one consecutive clock.

IERR# is not floated with HOLD or BOFF#. IERR# is aglitch free signal.

When paging isturned on, an additional parity check occursto page O for all TLB misses. If this
accessisavalid entry in the cache and this entry also has a parity error, then IERR# is asserted and
shutdown occurs even though the pipeline is frozen to service the TLB miss.

During a TLB miss, a cache lookup occurs (to the data cache for a data TLB miss, or the code
cache for acode TLB miss) to adefault page 0 physical address until the correct page translation
becomes available. At thistime, if avalid cache entry isfound at the page O address, then parity is
checked on the dataread out of the cache. However, the datais not used until after the correct page
address becomes available. If thisvalid line contains a true parity error, then the error is reported.
This does not cause an unexpected parity error. It can cause a parity error and shutdown at atime
when the dataiis not being used because the pipeline isfrozen to service the TLB miss. However, it
still remains that atrue parity error must exist within the cache in order for IERR# assertion and
shutdown to occur. For more details on TLB, refer to Section 3.7 of the Intel Architecture Software
Developer’s ManualVolume 1.

Relation to Other Signals

Pin Symbol Relative to Other Signals

FRCMC# If the processor is configured as a Checker, IERR# is asserted in the event of an FRC error.
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5.1.35 IGNNE#

IGNNE# Ignore Numeric Exception

Determines whether or not numeric exceptions should be ignored.

Asynchronous Input

Signal Description

Thisisthe Ignore Numeric Exception input. This pin has no effect when the NE bit in CRO is set to
1. When the CRO.NE bit is 0, this pin functions as follows:

When the IGNNE# pin is asserted, the embedded Pentium processor ignores any pending
unmasked numeric exception and continues executing floating-point instructions for the entire
duration that this pin is asserted.

When IGNNE# is not asserted and a pending unmasked numeric exception exists, (SW.ES = 1), the
embedded Pentium processor behaves as follows:

On encountering a floating-point instruction that is one of FNINIT, FNCLEX, FNSTENV,
FNSAVE, FNSTSW, FNSTCW, FNENI, FNDISI, or FNSETPM, the embedded Pentium processor
asserts the FERR# pin. Subsequently, the processor opens an interrupt sampling window. The
interrupts are checked and serviced during this window. If no interrupts are sampled within this
window, the processor then executes these instructionsin spite of the pending unmasked exception.
For further details please refer to the Intel Architecture s Software Developer’s Manédlumel
(Chapter 7 and Appendix D).

On encountering any floating-point instruction other than FINIT, FCLEX, FSTENV, FSAVE,
FSTSW, FSTCW, FENI, FDISI, or FSETPM, the embedded Pentium processor stops execution
and waits for an externa interrupt.

The embedded Pentium processor, when configured as a Dual processor, ignores the IGNNE#
input.

When Sampled/Driven

IGNNE# is sampled on every rising clock edge. Recognition of IGNNE# is guaranteed in a specific
clock if it is asserted synchronously and meets setup and hold times. To guarantee recognition if
IGNNE# is asserted asynchronoudly, it must have been deasserted for a minimum of two clocks
before being returned active to the embedded Pentium processor and remain asserted for a
minimum pulse width of two clocks.

Relation to Other Signals

Pin Symbol Relation to Other Signals

CPUTYP When strapped to V¢, the processor ignores the IGNNE# input.
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INIT

INIT Initialization

Forces the processor to begin execution in a known state without flushing the caches or
affecting the floating-point state.

Asynchronous Input

Signal Description

The Initialization input forces the embedded Pentium processor to begin execution in aknown
state. The processor state after INIT is the same as the state after RESET except that the internal
caches, write buffers, model specific registers, and floating-point registers retain the values they
had prior to INIT. The embedded Pentium processor starts execution at physical address
FFFFFFFOH.

INIT can be used to help performance for DOS extenders written for the 80286. INIT provides a
method to switch from protected to real mode while maintaining the contents of the internal caches
and floating-point state. INIT may not be used instead of RESET after power-up.

Once INIT issampled active, the INIT sequence begins on the next instruction boundary (unless a
higher priority interrupt is requested before the next instruction boundary). The INIT sequence
continues to completion and then normal processor execution resumes, independent of the
deassertion of INIT. ADS# is asserted to drive bus cycles even if INIT is not deasserted.

If INIT is sampled high when RESET transitions from high to low, the embedded Pentium
processor performs built-in self test (BIST) prior to the start of program execution.

When Sampled

INIT is sampled on every rising clock edge. INIT is an edge sensitive interrupt. Recognition of
INIT is guaranteed in aspecific clock if it is asserted synchronously and meets the setup and hold
times. To guarantee recognition if INIT is asserted asynchronously, it must have been deasserted
for aminimum of two clocks before being returned active to the embedded Pentium processor and
remain asserted for aminimum pulse width of two clocks. INIT must remain active for three clocks
prior to the BRDY# of an I/O write cycle to guarantee that the embedded Pentium processor
recognizes and processes INIT right after an 1/0O write instruction.

If INIT issampled high when RESET transitions from high to low the embedded Pentium
processor performs built-in self test. If RESET is driven synchronously, INIT must be at its valid
level the clock before the falling edge of RESET. If RESET is driven asynchronously, INIT must
be at itsvalid level two clocks before and after RESET transitions from high to low.

Relation to Other Signals

Pin Symbol Relation to Other Signals

RESET If INIT is sampled high when RESET transitions from high to low, BIST will be

performed.
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5.1.37 INTR

INTR External Interrupt

Indicates that an external interrupt has been generated.

Asynchronous Input

Signal Description

The INTR input indicates that an external interrupt has been generated. The interrupt is maskable
by the IF bit in the EFLAGS register. If the IF bit is set, the embedded Pentium processor will
vector to an interrupt handler after the current instruction execution is completed. Upon
recognizing the interrupt request, the embedded Pentium processor will generate two locked
interrupt acknowledge bus cyclesin response to the INTR pin going active. INTR must remain
active until thefirst interrupt acknowledge cycle is completed to assure that the interrupt is
recognized.

When the local APIC ishardware disabled, thispin isthe INTR input for the processor. It bypasses
thelocal APIC in that case.

When the local APIC is hardware enabled, this pin becomes the programmable interrupt LINTO. It
can be programmed in software in any of the interrupt modes. Since this pin isthe INTR input
when the APIC isdisabled, it islogical to program the vector table entry for this pin as ExtINT
(i.e., through local mode). In this mode, the interrupt signal is passed on to the processor through
thelocal APIC. The processor generates the interrupt acknowledge, INTA, cyclein responseto this
interrupt and receives the vector on the processor data bus.

When Sampled/Driven

INTR is sampled on every rising clock edge. INTR is an asynchronous input, but recognition of
INTR is guaranteed in a specific clock if it is asserted synchronously and meets the setup and hold
times. To guarantee recognition if INTR is asserted asynchronously it must have been deasserted
for aminimum of two clocks before being returned active to the embedded Pentium processor.

Note: This applies only when using the APIC in the through local (virtual wire) mode. Once INTR has
been asserted (by arising edge), it must not be asserted again until after the end of thefirst resulting
interrupt acknowledge cycle. Otherwise, the new interrupt may not be recognized. The end of an
interrupt acknowledge cycle is defined by the end of the system’s BRDY# response to the
processor cycle. Note that the APIC through local mode was designed to match the protocol of an
8259A PIC, and an 8259A will always satisfy this requirement.

To ensure INTR is not recognized inadvertantly a second time, deassert INTR no later than the
BRDY# of the second INTA cycle and no earlier than the BRDY# of the first INTA cycle.
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Relation to Other Signals

Pin Symbol Relation to Other Signals

ADS# and cycle definition pins | An interrupt acknowledge cycle is driven as a result of the INTR pin assertion.

When the APICEN configuration input is sampled inactive, this input becomes
APICEN .
the INTR interrupt.
LINTO INTR shares a pin with LINTO.
LOCK# LOCK# is asserted for interrupt acknowledge cycles.
INV Invalidation Request

Determines final state of a cache line as a result of an inquire hit.

Synchronous Input

Signal Description

The NV input is driven to the embedded Pentium processor during an inquire cycle to determine
the final cache line state (S or 1) in case of an inquire cycle hit. If INV isreturned active (high) to
the embedded Pentium processor in the same clock as EADS# is sampled asserted, an inquire hit
will result in that line being invalidated. If the INV pinisreturned inactive (low), an inquire hit will
result in that line being marked Shared (S). If theinquire cycleisamissin the cache, the INV input
has no effect.

If an inquire cycle hits a modified line in the data cache, the line will be written back regardless of
the state of INV.

When Sampled
The INV input is sampled with the EADS# of the inquire cycle.

Relation to Other Signals

Pin Symbol Relative to Other Signals
INV determines if the inquire address driven to the processor on A31-A5 should be
A31-A5 . : s . ;
invalidated or marked as shared if it is valid in an internal cache.
EADS# INV is sampled with EADS#.
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KEN#

KEN# Cache Enable

Indicates to the processor whether or not the system can support a cache line fill for
the current cycle.

Synchronous Input

Signal Description

KEN# is the cache enable input. It is used to determine whether the current cycle is cacheable or
not and consequently is used to determine cycle length.

When the embedded Pentium processor generates aread cycle that can be cached (CACHE#
asserted) and KEN# is active, the cycle will be transformed into a burst cache linefill. During a
cache line fill the byte enable outputs should be ignored and valid data must be returned on all 64
data lines. The embedded Pentium processor will expect 32 bytes of valid data to be returned in
four BRDY # transfers.

If KEN# is not sampled active, alinefill will not be performed (regardless of the state of CACHE#)
and the cycle will be asingle transfer read.

Once KEN#is sampled active for acycle, the cacheability cannot be changed. If acycleisrestarted
for any reason after the cacheability of the cycle has been determined, the same cacheability
attribute on KEN# must be returned to the processor when the cycle is redriven.

When Sampled

KEN# is sampled once in a cycle to determine cacheability. It is sampled and latched with the
earlier of the first BRDY# or NA# of a cycle, however it must meet setup and hold times on every
clock edge.

Relation to Other Signals

Pin Symbol Relative to Other Signals

KEN# is sampled with the earlier of the first BRDY# or NA# for that cycle. Also, in
BRDY# conjunction with the CACHE# input, KEN# determines whether the bus cycle will
consist of 1 or 4 transfers (assertions of BRDY#).

CACHE# KEN# determines cacheability only if the CACHE# pin is asserted.
NA# KEN# is sampled with the earlier of the first BRDY# or NA# for that cycle.
W/R# KEN# determines cacheability only if W/R# indicates a read.
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5.1.40 LINT1-LINTO

LINT1-LINTO Local Interrupts 1 and 0

APIC Programmable Interrupts.

Asynchronous Inputs

Signal Description

When the local APIC is hardware enabled, these pins become the programmable interrupts
(LINT1-LINTO). They can be programmed in software in any of the interrupt modes. Since these
pins are the INTR and NMI inputs when the APIC is disabled, it is logical to program the vector
table entry for them as ExtINT (i.e. through local mode) and NMlI, respectively. In this mode, the
interrupt signals are passed on to the processor through the local APIC.

When the local APIC is hardware disabled, these pins are the INTR and NMI inputs for the
processor. They bypass the APIC in that case.

When Sampled

LINT1-LINTO are sampled on every rising clock edge. LINT1-LINTO are asynchronous inputs,

but recognition of LINT1-LINTO are guaranteed in a specific clock if they are asserted
synchronously and meets the setup and hold times. To guarantee recognition if LINT1-LINTO are
asserted asynchronously they must have been deasserted for a minimum of two clocks before being
returned active to the embedded Pentium processor.

Relation to Other Signals

Pin Symbol Relation to Other Signals
When the APICEN configuration input is sampled inactive, these inputs become the
APICEN .
INTR and NMI interrupts.
INTR INTR shares a pin with LINTO.
NMI NMI shares a pin with LINT1.

5.1.41 LOCK#

LOCK# Bus Lock

Indicates to the system that the current sequence of bus cycles should not be
interrupted.

Synchronous Input/Output

Signal Description

The bus lock output indicates that the embedded Pentium processor is running a read-modify-write
cycle where the external bus must not be relinquished between the read and write cycles. Read-
modify-write cycles of this type are used to implement memory based semaphores. Interrupt
Acknowledge cycles are also locked.
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If acycleis split dueto amisaligned memory operand, two reads followed by two writes may be
locked together. When LOCK# is asserted, the current bus master should be allowed exclusive
access to the system bus.

The embedded Pentium processor will not allow a bus hold when LOCK# is asserted, but address
holds (AHOLD) and BOFF# are allowed. LOCK# is floated during bus hold.

All locked cycles will be driven to the external bus. If alocked address hits avalid location in one
of the internal caches, the cache locationisinvalidated (if the lineisin the modified state, it is
written back beforeit isinvalidated). Locked read cycleswill not be transformed into cache linefill
cyclesregardless of the state of KEN#.

LOCK# is guaranteed to be deasserted for at least one clock between back to back locked cycles.

When operating in dual processing mode, the embedded Pentium processor uses this signal for
private snooping.

When Sampled/Driven

L OCK# goes active with the ADS# of the first locked bus cycle and goesinactive after the BRDY #
isreturned for the last locked bus cycle. The LOCK# signa is glitch free.

This signal becomes an input/output when two embedded Pentium processors are operating
together in dual processing mode.

Relation to Other Signals

Pin Symbol Relation to Other Signals
ADS# LOCKH# is driven with the ADS# of the first locked cycle.
BOFF# LOCKH# floats one clock after BOFF# is asserted.
BRDY# LOCKH# is deasserted after the last BRDY# of the locked sequence.
HLDA LOCK# floats when HLDA is asserted.

ADS# is not asserted to pipeline an additional cycle if LOCK# is asserted, regardless of

NA# the state of NA#.

INTR LOCK# is asserted for interrupt acknowledge cycles.
SCYC SCYC is driven active if the locked cycle is misaligned.
M/IO# Memory Input/Output

Distinguishes a memory access from an 1/O access.

Synchronous Input/Output

Signal Description

The Memory/Input-Output signal is one of the primary bus cycle definition pins. M/IO#
distinguishes between memory (M/IO# =1) and I/O (M/I1O# =0) cycles.
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When operating in dual processing mode, the embedded Pentium processor uses this signal for
private snooping.

When Sampled/Driven

M/IO# isdriven valid in the same clock as ADS# and the cycle address. It remains valid from the
clock in which ADS# is asserted until the earlier of the last BRDY# or the clock after NA#.

This signal becomes an input/output when two embedded Pentium processors are operating
together in dual processing mode.

Relation to Other Signals

Pin Symbol Relation to Other Signals
ADS# M/1O# is driven to its valid state with ADS#.
BOFF# M/IO# floats one clock after BOFF# is asserted.
HLDA M/10# floats when HLDA is asserted.
NA# Next Address

Indicates that external memory is prepared for a pipelined cycle.

Synchronous Input

Signal Description

The Next Address input, when active, indicates that external memory is ready to accept a new bus
cycle although all data transfers for the current cycle have not yet completed. Thisisreferred to as
bus cycle pipelining.

The embedded Pentium processor will drive out a pending cyclein response to NA# no sooner than
two clocks after NA# is asserted. The embedded Pentium processor supports up to 2 outstanding
bus cycles. ADS# is not asserted to pipeline an additional cycle if LOCK# is asserted, or during a
writeback cycle. In addition, ADS# will not be asserted to pipeline alocked cycle or awriteback
cycleinto the current cycle.

NA# islatched internally, so onceit is sampled active during acycle, it need not be held active to

be recognized. The KEN#, and WB/WT# inputs for the current cycle are sampled with the first
NA#, if NA# is asserted before the first BRDY # of the current cycle.

When Sampled
NA#issampled inall T2, TD and T2P clocks.
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Relation to Other Signals

Pin Symbol Relation to Other Signals
ADSH# If NA# is sampled asserted and an internal bus request is pending, the processor drives
out the next bus cycle and asserts ADS#.
KEN# KEN# is sampled with the earlier of the first BRDY# or NA# for that cycle.
WB/WT# WB/WT# is sampled with the earlier of the first BRDY# or NA# for that cycle.
ADS# is not asserted to pipeline an additional cycle if LOCK# is asserted, regardless of
LOCK#
the state of NA#.
BOFF# If NA# and BOFF# are asserted simultaneously, BOFF# takes priority and NA# is ignored.
NMI Non-Maskable Interrupt

Indicates that an external non-maskable interrupt has been generated.

Asynchronous Input

Signal Description

The Non-Maskable interrupt request input indicates that an external non-maskable interrupt has
been generated. Asserting NMI causes an interrupt with an internally supplied vector value of 2.
External interrupt acknowledge cycles are not generated.

When a second NMI is asserted during the execution of the NM1 service routine, the second NMI
will remain pending and will be recognized after IRET is executed by the NMI service routine. At
most, one assertion of NMI will be held pending. If NMI is reasserted prior to the NMI service
routine entry, the reassertion will be ignored.

When the local APIC is hardware enabled, this pin becomes the programmable interrupt LINT1. It
can be programmed in software in any of the interrupt modes. Since this pin isthe NMI input when
the APIC isdisabled, it islogical to program the vector table entry for this pin as NMI. In this
mode, the interrupt signal is passed on to the processor through the local APIC.

When the local APIC is hardware disabled, this pinisthe NMI input for the processor. It bypasses
the APIC in that case.

When Sampled

NMI is sampled on every rising clock edge. NMI isrising edge sensitive. Recognition of NMI is
guaranteed in aspecific clock if it isasserted synchronously and meets the setup and hold times. To
guarantee recognition if NMI is asserted asynchronoudly, it must have been deasserted for a
minimum of two clocks before being returned active to the embedded Pentium processor and
remain asserted for aminimum pulse width of two clocks.
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Relation to Other Signals

Pin Symbol Relation to Other Signals
When the APICEN configuration input is sampled inactive, this input becomes the
APICEN .
NMI interrupt.
LINT1 NMI shares a pin with LINT1.
PBGNT# Dual Processor Bus Grant

Indicates to the LRM processor that it will become the MRM in the next clock.

Synchronous Input (to the Least Recent Master, LRM, processor)

Synchronous Output (of the Most Recent Master, MRM, processor)

Signal Description

Two embedded Pentium processors, when configured as dual processors, will arbitrate for the
system bus viatwo private arbitration pins (PBREQ# and PBGNT#). The processor that currently
owns the system busis referred to as the MRM processor. The processor that does not own the bus
isreferred to as the LRM processor.

PBGNT# is used by the dua processing private arbitration mechanism to indicate that bus
ownership will change in the next clock. The LRM processor will request ownership of the
processor bus by asserting the private arbitration request pin, PBREQ#. The processor that is
currently the MRM and owns the bus, will grant the bus to the LRM as soon as any pending bus
transactions have completed. The MRM will notify that the LRM can assume ownership by
asserting the private arbitration grant pin, PBGNT#. The PBGNT# pin is always the output of the
MRM and an input to the LRM.

In asingle socket system design, PBGNT# pin should be left NC. For proper operation, PBGNT#
must not be loaded by the system.

When Sampled/Driven

PBGNT# isdriven by the MRM processor in response to the PBREQ# signal from the LRM
processor. It is asserted following the completion of the current cycle on the processor bus, or in the
clock following the request if the busisidle.

Relation to Other Signals

Pin Symbol Relation to Other Signals

PBGNT# is asserted in response to a bus request, PBREQ#, from the LRM

PBREQ#
processor.

A31-A3, AP, BE7#-BEO#,
CACHEH#, D/C#, M/IO#, PCD,
PWT, SCYC, W/R#

These signals are three-stated for one CLK in response to PBGNT# (when the
MRM becomes the LRM).
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PBREQ#

PBREQ# Dual Processor Bus Request

Indicates to the MRM processor that the LRM processor requires ownership of the bus.

Synchronous Input (to the Most Recent Master, MRM, processor)

Synchronous Output (of the Least Recent Master, LRM, processor)

Signal Description

Two embedded Pentium processors, when configured as dual processors, will arbitrate for the
system bus viatwo private arbitration pins (PBREQ# and PBGNT#). The processor that currently
ownsthe system busisreferred to asthe MRM processor. The processor that does not own the bus
isreferred to asthe LRM processor.

PBREQ# is used by the dual processing private arbitration mechanism to indicate that the LRM
processor requests bus ownership. The processor that is currently the MRM and owns the bus, will
grant the busto the LRM as soon as any pending bus transactions have completed. The MRM will
notify that the LRM can assume ownership by asserting the private arbitration grant pin, PBGNT#.
The PBREQ# pin is always the output of the LRM and an input to the MRM.

In asingle socket system design, PBREQ# pin should be left NC. For proper operation, PBREQ#
must not be loaded by the system.

When Sampled/Driven
PBREQ# is driven by the LRM processor, and sampled by the MRM processor.

Relation to Other Signals

Pin Symbol Relation to Other Signals
PBGNT# PBGNT# is asserted in response to a bus request, PBREQ#, from the LRM processor.
PCD Page Cacheability Disable

Externally reflects the cacheability paging attribute bit in CR3, PDE, or PTE.

Output

Signal Description

PCD isdriven to externaly reflect the cache disable paging attribute bit for the current cycle. PCD
corresponds to bit 4 of CR3, the Page Directory Entry, or the Page Table Entry. For cyclesthat are
not paged when paging is enabled (for example I/O cycles), PCD corresponds to bit 4 in CR3. In
real mode or when paging is disabled, the PCD pin reflects the cache disable bit in control register
0 (CRO.CD).
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PCD is masked by the CD (cache disable) bit in CRO. When CD=1, the embedded Pentium
processor forces PCD high. When CD=0, PCD is driven with the value of the Page Table
Entry/Directory.

The purpose of PCD isto provide an external cacheability indication on a page by page basis.
When Driven
The PCD pinisdriven valid in the same clock as ADS# and the cycle address. It remains valid

from the clock in which ADS# is asserted until the earlier of the last BRDY # or the clock after
NA#.

Relation to Other Signals

Pin Symbol Relation to Other Signals
ADS# PCD is driven valid with ADS#.
BOFF# PCD floats one clock after BOFF# is asserted.
HLDA PCD floats when HLDA is asserted.
PCHK# Data Parity Check

Indicates the result of a parity check on a data read.

Synchronous Output

Signal Description

The data parity check pin indicates the result of a parity check on a data read. Data parity is
checked during code reads, memory reads, and I/O reads. Data parity is not checked during the first
Interrupt Acknowledge cycle. PCHK# indicates the parity status only for the bytes on which valid
dataisexpected. Parity ischecked for all data bytes for which abyte enableis asserted. In addition,
during a cache linefill, parity is checked on the entire data bus regardless of the state of the byte
enables.

PCHK# isdriven low two clocks after BRDY# is returned if incorrect parity was returned.

Driving PCHK# is the only effect that bad data parity has on the embedded Pentium processor
unless PEN# is also asserted. The data returned to the processor is not discarded.

If PEN# is asserted when a parity error occurs, the cycle address and type will be latched in the
MCA and MCT registers. If in addition, the MCE bit in CR4 is set, a machine check exception will
be taken.

It isthe responsibility of the system to take appropriate actions if a parity error occurs. If parity
checks are not implemented in the system, the PCHK# pin may be ignored, and PEN# pulled high
(or CR4.MCE cleared).

When operating in dual processing mode, the PCHK# signal can be asserted either 2 OR 3 CLKs
following incorrect parity being detected on the data bus. When operating in Dual Processing
mode, the PCHK# pin circuit isimplemented as aweak driving high output that operates similar to
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an open drain output. This implementation allows connection of the two processor PCHK# pins
together in adual processing system with noill effects. Nominally, this circuit acts like a 360 Ohm
resistor tied to Vcc.

When Sampled/Driven

PCHK# isdriven low two clocks after BRDY # isreturned if incorrect parity was returned. PCHK#
remains low one clock for each clock in which a parity error was detected. At all other times
PCHK# isinactive (high). PCHK# is not floated during bus HOLD or BOFF#. PCHK# isaglitch
freesignal.

Relation to Other Signals

Pin Symbol Relation to Other Signals

BRDY# PCHK# is driven to its valid level two clocks after the assertion of BRDY#.

The DP7-DPO pins are used to create even parity with D63-DO0. If even parity is not

D63-DO0 returned, the PCHK# pin is asserted.

DP7-DPO Even data parity with D63-DO0 should be returned on to the processor on the dual
processor pin. If even parity is not returned, the PCHK# pin is asserted.

PHIT# Private Inquire Cycle Hit/Miss Indication

Indicates whether a private, dual processor, inquire cycle resulted in a hit or miss.

Synchronous Input (to the Most Recent Master, MRM, processor)

Synchronous Output (of the Least Recent Master, LRM, processor)

Signal Description

A private snoop interface has been added to the embedded Pentium processor for use in dual
processing. The interface consists of two pins (PHIT# and PHITM#).

The LRM processor will initiate a snoop sequence for all ADS# cycles that are initiated by the
MRM. The LRM processor will assert the private hit indication (PHIT#) if the data requested by
the MRM matches avalid cache linein the LRM. In addition, if the data requested by the MRM
matches avalid cache linein the LRM that isin the modified state, the LRM will also assert the
PHITM# signal. The system snooping indication signals (HIT#, HITM#) will not change state asa
result of a private snoop.

The MRM will use an assertion of the PHIT# signal as an indication that the requested dataisbeing
shared with the LRM. Independent of the WB/WT# pin, a cache line will be placed in the shared
state if PHIT# is asserted. Thiswill make all subsequent writesto that line externally visible until
the state of the line becomes exclusive (E or M states). In auni-processor system, the line may have
been placed in the cache in the E state. In this situation, al subsequent writesto that line will not be
visible on the bus until the stateis changed to I.

PHIT# will also be driven by the LRM during external snoop operations (e.g., following EADSH)
to indicate the private snoop results.
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Note: Inasingle socket system, PHIT# pin should be left NC. For proper operation, PHIT# must not be
loaded by the system.

When Sampled/Driven

PHIT# is driven by the LRM processor, and sampled by the MRM processor. It is asserted within
two clocks following an assertion of ADS# or EADSH.

Relation to Other Signals

Pin Symbol Relation to Other Signals

PHIT# is driven to indicate whether the private inquire address driven on A31-A5 is

ASI-AS valid in the LRM’s on-chip cache.

PHIT# is driven within two clocks after ADS# is sampled asserted to indicate the

ADSH# outcome of the private inquire cycle.
PHIT# is driven within two clocks after EADS# is sampled asserted to indicate the
EADS# L
outcome of the external inquire cycle.
PHITM# PHITM# is never asserted without PHIT# also being asserted.
WB/WT# The state of the WB/WT# pin will be ignored by the MRM if the PHIT# pin is sampled

active, and the cache line placed in the shared state.

5.1.50 PHITM#

PHITM# Private Inquire Cycle Hit/Miss to a Modified Line Indication

Indicates whether a private, dual processor, inquire cycle resulted in a hit or miss to a
Modified line.

Synchronous Input (to the Most Recent Master, MRM, processor)

Synchronous Output (of the Least Recent Master, LRM, processor)

Signal Description

A private snoop interface has been added to the embedded Pentium processor for use in dual
processing. The interface consists of two pins (PHIT# and PHITM#).

The LRM processor will initiate a snoop sequence for all ADS# cycles that are initiated by the
MRM. The LRM processor will assert the private hit indication (PHIT#) if the data requested by
the MRM matches avalid cache linein the LRM. In addition, if the data requested by the MRM
matches avalid cache line in the LRM that isin the modified state, the LRM will aso assert the
PHITM# signal. The system snooping indication signals (HIT#, HITM#) will not change state asa
result of a private snoop.

PHITM# will also be driven by the LRM during external snoop operations (e.g. following EADS#)
to indicate the private snoop results.

Note: Inasingle socket system, PHITM# pin should be left NC. For proper operation, PHITM# must not
be loaded by the system.

Embedded Pentium® Processor Family Developer’s Manual 5-49




[ ]
Hardware Interface I nt9| o

When Sampled/Driven

PHITM# isdriven by the LRM processor, and sampled by the MRM processor. It is asserted within
two clocks following an assertion of ADS# or EADSH#.

Relation to Other Signals

Pin Symbol Relation to Other Signals
PHITM# is driven to indicate whether the private inquire address driven on A31-A5 is
A31-A5 e , .
modified in the LRM’s on-chip cache.
ADSH# PHITM# is driven within two clocks after ADS# is sampled asserted to indicate the
outcome of the private inquire cycle.
PHITM# is driven within two clocks after EADS# is sampled asserted to indicate the
EADS# S
outcome of the external inquire cycle.
PHIT# PHITM# is never asserted without PHIT# also being asserted.

5.1.51 PICCLK

PICCLK Processor Interrupt Controller Clock

This pin drives the clock for the APIC serial data bus operation.

Input

Signal Description

This pin provides the clock timings for the on-chip APIC unit of the processor. This clock input
controlsthe frequency for the APIC operation and data transmission on the 2-wire APIC serial data
bus. All the timings on APIC bus are referenced to this clock.

When hardware disabled, PICCLK must be tied high.

Note that the PICCLK signal on the embedded Pentium processor with MM X technology is 3.3V
tolerant, while on the embedded Pentium processor the PICCLK input is 5.0V tolerant.

When Sampled
PICCLK isaclock signa and is used as areference for sampling the APIC data signals.

Relation to Other Signals

Pin Symbol Relation to Other Signals

PICCLK must be tied or driven high when APICEN is sampled low at the falling edge of

APICEN RESET.

External timing parameters for the PICDO-PICDL1 pins are measured with respect to

PICDO-PICD1 this clock.
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PICD1-PICDO

PICD1-PICDO Processor Interrupt Controller Data

These are the data pins for the 3-wire APIC bus.

Synchronous Input/Output to PICCLK

Needs external pull-up resistors.

Signal Description

The PICD1-PICDO are bidirectional pins which comprise the data portion of the 3-wire APIC bus.

When Sampled/Driven

These signals are sampled with the rising edge of PICCLK.

Relation to Other Signals

Pin Symbol Relation to Other Signals
APICEN PICD1 shares a pin with APICEN.
DPEN# PICDO shares a pin with DPEN#.
PEN# Parity Enable

Indicates to the processor that the correct data parity is being returned by the system.
Determines if a Machine Check Exception should be taken if a data parity error is
detected.

Synchronous Input

Signal Description

The PEN# input (along with CR4.MCE) determines whether a machine check exception will be
taken as a result of a data parity error on a read cycle. If this pin is sampled active in the clock a
data parity error is detected, the embedded Pentium processor will latch the address and control
signals of the cycle with the parity error in the machine check registers. If, in addition, the machine
check enable bit in CR4 is set to “1,” the embedded Pentium processor will vector to the machine
check exception before the beginning of the next instruction. If this pin is sampled inactive, it does
not prevent PCHK# from being asserted in response to a bus parity error. If systems are using
PCHK#, they should be aware of this usage of PEN#.

This pin may be tied to &&.
When Sampled

This signal is sampled when BRDY# is asserted for memory and I/O read cycles and the second
interrupt acknowledge cycle.
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Relation to Other Signals

Pin Symbol Relation to Other Signals
BRDY# PEN# is sampled with BRDY# for read cycles.
The DP7-DPO0 pins are used to create even parity with D63-DO0. If even parity is not
D63-D0 returned, and PEN# is enabled, the cycle will be latched and an MCE will be taken if
CR4.MCE =1.

Even data parity with D63—DO should be returned to the processor on the dual-processor
DP7-DPO pins. If even parity is not returned, and PEN# is enabled, the cycle will be latched and a
MCE will be taken if CR4.MCE = 1.

5.1.54 PM1-PMO

PM1/BP1-

PMO/BPO Performance Monitoring

PM1-PMO externally indicate the status of the performance monitor counter.

Output pins

Signal Description

The performance monitoring pins can be individually configured to externally indicate either that
the associated performance monitoring counter has incremented or that it has overflowed. PM1
indicates the status of CTR1; PMO indicates the status of CTRO.

BP1 and BPO are multiplexed with the Performance Monitoring pins (PM1 and PMO). The PB1
and PBO bits in the Debug Mode Control Register determine if the pins are configured as
breakpoint or performance monitoring pins. The pins come out of reset configured for performance
monitoring.

When Driven

The BP3-BP2, PM1/BP1-PMO/BPO pins are driven in every clock and are not floated during bus
HOLD or BOFF#.

The PM1/PMO pins externally indicate the status of the performance monitoring counters on the
embedded Pentium processor. These counters are undefined after RESET, and must be cleared or
pre-set (using the WRMSR instruction) before they are assigned to specific events.

However, it is possible for these pins to toggle even during RESET. This may occur ONLY if the
RESET pin was asserted while the embedded Pentium processor was in the process of counting a
particular performance monitoring event. Since the event counters continue functioning until the
CESR (Control and Event Select Register) is cleared by RESET, it is possible for the event
counters to increment even during RESET. Externally, the state of the event counters would also be
reflected on the PM1/PMO pins. Any assertion of the PM1/PMO pins during RESET should be
ignored until after the start of the first bus cycle.
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Relation to Other Signals

Pin Symbol

Relation to Other Signals

BP1-BPO

PM1 and PMO are share pins with BP1 and BPO.

5.1.55 PRDY

PRDY

Probe Ready

For use with the Intel debug port.

Output

Signal Description

The PRDY pinis provided for use with the Intel debug port described in the Chapter 13,

“Debugging.”

When Driven

This output is always driven by the embedded Pentium processor. It is not floated during bus

HOLD or BOFF#.

Relation to Other Signals

Pin Symbol Relation to Other Signals
R/S# R/S# is also used with the Intel debug port.
PWT Page Writethrough

Externally reflects the writethrough paging attribute bit in CR3, PDE, or PTE.

Output

Signal Description

PWT is driven to externally reflect the cache writethrough paging attribute bit for the current cycle.
PWT corresponds to bit 3 of CR3, the Page Directory Entry, or the Page Table Entry. For cycles
that are not paged when paging is enabled (for example 1/O cycles), PWT corresponds to bit 3 in
CR3. In real mode or when paging is disabled, the embedded Pentium processor drives PWT low.

PWT can override the effect of the WB/WT# pin. If PWT is asserted for either reads or writes, the
line is saved in, or remains in, the Shared (S) state.
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When Driven
The PWT pinisdriven valid in the same clock as ADS# and the cycle address. It remains valid

from the clock in which ADS# is asserted until the earlier of the last BRDY # or the clock after
NA#.

Relation to Other Signals

Pin Symbol Relation to Other Signals
ADS# PWT is driven valid with ADS#.
BOFF# PWT floats one clock after BOFF# is asserted.
HLDA PWT floats when HLDA is asserted.
PWT is used in conjunction with the WB/WT# pin to determine the MESI state of
WB/WT# cache lines.
R/S# Run/Stop

For use with the Intel debug port.

Asynchronous Input

Signal Description

The R/S# pinis provided for use with the Intel debug port described in Chapter 13, “Debugging.”

When Sampled

This pin should not be driven except in conjunction with the Intel debug port.

Relation to Other Signals

Pin Symbol Relation to Other Signals

PRDY PRDY is also used with the Intel debug port.

5.1.58 RESET

RESET Reset

Forces the processor to begin execution at a known state.

Asynchronous Input (Normal, Uni-processor, mode)

Synchronous Input (Dual processor mode)

5-54 Embedded Pentium® Processor Family Developer’s Manual



tel.

Hardware Interface

Signal Description

The RESET input forces the embedded Pentium processor to begin execution at aknown state. All
the embedded Pentium processor internal caches (code and data caches, the translation lookaside
buffers, branch target buffer and segment descriptor cache) will be invalidated upon the RESET.
Modified lines in the data cache are not written back. When RESET is asserted, the embedded
Pentium processor will immediately abort all bus activity and perform the RESET sequence. The
embedded Pentium processor starts execution at FFFFFFFOH.

When RESET transitions from high to low, FLUSH# is sampled to determine if three-state test
mode is to be entered, FRCMC# is sampled to determine if the embedded Pentium processor will
be configured as a master or a checker (only on the embedded Pentium processor), and INIT is
sampled to determine if BIST will be run.

When Sampled/Driven

RESET is sampled on every rising clock edge. RESET must remain asserted for aminimum of 1
millisecond after V¢ and CLK have reached their AC/DC specifications for the “cold” or “power

on” reset. During power up, RESET should be asserted whgeid/approaching nominal

operating voltage (the simplest way to insure this is to place a pullup resistor on RESET). RESET
must remain active for at least 15 clocks whilg-\and CLK are within their operating limits for a
“warm reset.” Recognition of RESET is guaranteed in a specific clock if it is asserted
synchronously and meets the setup and hold times. To guarantee recognition if RESET is asserted
asynchronously, it must have been deasserted for a minimum of two clocks before being returned
active to the embedded Pentium processor.

FLUSH#, FRCMC# and INIT are sampled when RESET transitions from high to low to determine

if three-state test mode or checker mode will be entered, or if BIST will be run. If RESET is driven
synchronously, these signals must be at their valid level and meet setup and hold times on the clock
before the falling edge of RESET. If RESET is driven asynchronously, these signals must be at
their valid level two clocks before and after RESET transitions from high to low.

When operating in a dual processing system, RESET is sampled synchronously to the rising CLK
edge to ensure both processors recognize the falling edge in the same clock.

Relation to Other Signals

Pin Symbol Relation to Other Signals

APICEN APICEN is sampled at the falling edge of RESET.

BE3#_BEO# During reset the BE3#-BEO# pins are sampled to determine the APIC ID. Following
RESET, they function as Byte Enable outputs.

BF1-BFO BF1-BFO are sampled at the falling edge of RESET.

CPUTYP CPUTYP is sampled at the falling edge of RESET.

DPEN# DPEN# is valid during RESET.
If FLUSH# is sampled low when RESET transitions from high to low, three-state test

FLUSH# ]
mode will be entered.

FRCMC# FRCMC# is sampled when RESET transitions from high to low to determine if the
embedded Pentium processor is in Master or Checker mode.

INIT If INIT is sampled high when RESET transitions from high to low, BIST will be
performed.
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SCYC

SCYC Split Cycle Indication

Indicates that a misaligned locked transfer is on the bus.

Synchronous Input/Output

Signal Description

The Split Cycle output is activated during misaligned locked transfers. It is asserted to indicate that
more than two cycles will be locked together. This signal is defined for locked cycles only. Itis
undefined for cycles which are not locked.

The embedded Pentium processor defines misaligned transfers as a 16-bit or 32-bit transfer which
crosses a 4-byte boundary, or a 64-bit transfer which crosses an 8-byte boundary.

When operating in dual processing mode, the embedded Pentium processor uses this signal for
private snooping.

When Sampled/Driven

SCY C isonly driven during the length of the locked cycle that is split. SCY C is asserted with the
first ADS# of amisaligned split cycle and remains valid until the earlier of the last BRDY # of the
last split cycle or the clock after NA# of the last split cycle.

This signal becomes an input/output when two embedded Pentium processors are operating
together in dual processing mode.

Relation to Other Signals

Pin Symbol Relation to Other Signals
ADSH# SCYC is driven valid in the same clock as ADS#.
BOFF# SCYC is floated one clock after BOFF# is asserted.
HLDA SCYC is floated when HLDA is asserted.

LOCK# SCYC is defined for locked cycles only.
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SMI#

SMI# System Management Interrupt

Latches a System Management Interrupt request.

Asynchronous Input

Internal Pullup Resistor

Signal Description

The System Management Interrupt input latches a System Management Interrupt request. After
SMI# is recognized on an instruction boundary, the embedded Pentium processor waits for all
writes to complete and EWBE# to be asserted, then asserts the SMIACT# output. The processor
will then saveits register state to SMRAM space and begin to execute the SMM handler. The RSM
instruction restores the registers and returns to the user program.

SMI# has greater priority than debug exceptions and external interrupts. This means that if more
than one of these conditions occur at an instruction boundary, only the SM1# processing occurs, not
adebug exception or external interrupt. Subsequent SMI# requests are not acknowledged while the
processor is in system management mode (SMM). The first SMI# interrupt request that occurs
while the processor isin SMM is latched, and serviced when the processor exits SMM with the
RSM instruction. Only one SMI# will be latched by the processor whileit isin SMM.

When Sampled

SMI# issampled on every rising clock edge. SM1# isafalling edge sensitive input. Recognition of
SMI# is guaranteed in a specific clock if it is asserted synchronously and meets the setup and hold
times. To guarantee recognition if SMI# is asserted asynchronously, it must have been deasserted
for aminimum of two clocks before being returned active to the embedded Pentium processor and
remain asserted for aminimum pulse width of two clocks.

Relation to Other Signals

Pin Symbol Relation to Other Signals

SMIACT# When the SMI# input is recognized, the processor asserts SMIACT#.
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Caution:

SMIACT#

SMIACT# System Management Interrupt Active

Indicates that the processor is operating in SMM.

Synchronous Output

Signal Description

The System Management Interrupt Active output is asserted in response to the assertion of SMI#. It
indicates that the processor is operating in System Management Mode (SMM). It will remain
active (low) until the processor executes the RSM instruction to leave SMM.

When the system is operating in dual processing mode, the D/P# signal aternates between asserted
and deasserted based on whether the Primary or Dual processor owns the bus (MRM). The
SMIACT# pins may be tied together or be used separately to insure SMRAM access by the correct
processor.

If SMIACT# is used separately, note that the SMIACT# signal is only driven by the processor
when it isthe MRM (so this signal must be qualified with the D/P# signal).

Connecting the SMIACT# signals on the Primary and Dua processors together is strongly
recommended for operation with the Dual processor and upgradability with the Pentium
OverDrive® processor.

In dual processing systems, SMIACT# may not remain low (e.g., may toggle) if both processors
arenot in SMM mode. The SMIACT# signal is asserted by either the Primary or Dual processor
based on two conditions: the processor isin SMM mode and is the bus master (MRM). If one
processor is executing in normal address space, the SMIACT# signal will go inactive when that
processor isMRM. The LRM processor, even if in SMM mode, will not drive the SMIACT# signal
low.

When Sampled/Driven

SMIACT# isdriven active in response to the assertion of SMI# after al internally pending writes
are complete and the EWBE# pin is active (low). It will remain active (low) until the processor
executes the RSM instruction to leave SMM. This signal is always driven. It does not float during
bus HOLD or BOFF#.

When operating in dual processing mode, the SMIACT# output must be sampled with an active
ADS# and qualified with the D/P# signal to determine which embedded Pentium processor (i.e.,
the Primary or Dual) is driving the SMM cycle.

Relation to Other Signals

Pin Symbol Relation to Other Signals
ADS# SMIACT# should be sampled with an active ADS# during dual processing operation.
D/P# Wh_en operating in dual processing mode, D/P# qualifies the SMIACT# SMM
indicator.
EWBE# SMIACT# is not asserted until EWBE# is active.
SMI# SMIACT# is asserted when the SMI# is recognized.

Embedded Pentium® Processor Family Developer’s Manual



[ ]
I nt9| o Hardware Interface

5.1.62 STPCLK#

STPCLK# Stop Clock

Used to stop the internal processor clock and consume less power.

Asynchronous Input

Signal Description

Assertion of STPCLK# causes the embedded Pentium processor to stop itsinternal clock and
consume less power while still responding to interprocessor and external snoop requests. This low-
power state is called the stop grant state. When the processor recognizes a STPCLK# interrupt, the
processor will do the following:

1. Wait for all instructions being executed to complete.

2. Flush the instruction pipeline of any instructions waiting to be executed.

3. Wait for all pending bus cycles to complete and EWBE# to go active.

4. Drive aspecial bus cycle (stop grant bus cycle) to indicate that the clock is being stopped.
5. Enter low power mode.

The stop grant bus cycle consists of the following signal states: M/IO# = 0, D/C# = 0, W/R# = 1,
Address Bus = 0000 0010H (A4 = 1), BE7T#-BEO# = 1111 1011, Data bus = undefined.

STPCLK# must be driven high (not floated) to exit the stop grant state. The rising edge of
STPCLK# will tell the processor that it can return to program execution at the instruction following
the interrupted instruction.

When Sampled/Driven

STPCLK# is treated as a level triggered interrupt to the embedded Pentium processor and is
prioritized below all of the external interrupts. When the embedded Pentium processor recognizes
the STPCLK# interrupt, the processor will stop execution on the instruction boundary following
the STPCLK# assertion.

Relation to Other Signals

Pin Symbol Relation to Other Signals
A4, Cycle Control signals The Stop Grant Special Bus Cycle is driven on these pins in response to an
(M/10#, DIC#, WIR#, BE7#— | assertion of the STPCLK# signal. M/IO# = 0, D/C# = 0, W/R# = 1. Address
BEO#, D/P#) Bus = 0000 0010H (A4 = 1), BE7#-BEO# = 1111 1011.
EWBE# After STPCLK# has been recognized, all pending cycles must be completed

and EWBE# must go active before the internal clock will be disabled.

While in the Stop Grant state, the processor will latch transitions on the

External Interrupt signals external interrupt signals. All of these interrupts are taken after the
(FLUSH#, INIT, INTR, NMI, deassertion of STPCLK#. The processor requires that INTR be held active
R/S#, SMI#) until the processor issues an interrupt acknowledge cycle in order to

guarantee recognition.

The processor will not respond to a STPCLK# request from a HLDA state

HLDA because it cannot generate a Stop Grant cycle.
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5.1.64
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TCK

TCK Test Clock Input

Provides Boundary Scan clocking function.

Input

Signal Description

Thisisthe Testability Clock input that provides the clocking function for the embedded Pentium
processor boundary scan in accordance with the boundary scan interface (IEEE Std 1149.1). Itis
used to clock state information and datainto and out of the embedded Pentium processor during
boundary scan. State select information and data are clocked into the embedded Pentium processor
on the rising edge of TCK on TMS and TDI inputs respectively. Datais clocked out of the
embedded Pentium processor on the falling edge of TCK on TDO.

When TCK isstopped in alow state, the boundary scan latchesretain their state indefinitely. When
boundary scan is not used, TCK should betied high or left as a no-connect.

When Sampled

TCK isaclock signal and is used as a reference for sampling other boundary scan signals.

Relation to Other Signals

Pin Symbol Relation to Other Signals
TDI Serial data is clocked into the processor on the rising edge of TCK.
TDO Serial data is clocked out of the processor on the falling edge of TCK.
T™MS TAP controller state transitions occur on the rising edge of TCK.
TDI Test Data Input

Input to receive serial test data and instructions.

Synchronous Input to TCK

Signal Description

Thisisthe serial input for the Boundary Scan test logic. TAP instructions and data are shifted into
the embedded Pentium processor on the TDI pin on the rising edge of TCK when the TAP

controller is in the SHIFT-IR and SHIFT-DR states. During all other states, TDI is a “don’t care.”

An internal pull-up resistor is provided on TDI to ensure a known logic state if an open circuit
occurs on the TDI path. Note that when “1” is continuously shifted into the instruction register, the

BYPASS instruction is selected.
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When Sampled

TDI issampled on the rising edge of TCK during the SHIFT-IR and SHIFT-DR states. During all
other states, TDl is a “don’t care.”

Relation to Other Signals

Pin Symbol Relation to Other Signals

TCK TDI is sampled on the rising edge of TCK.

In the SHIFT-IR and SHIFT-DR TAP controller states, TDO contains the output

DO data of the register being shifted, and TDI provides the input.
T™MS TDI is sampled only in the SHIFT-IR and SHIFT DR states (controlled by TMS).
TDO Test Data Output

Outputs serial test data and instructions.

Output

Signal Description

This is the serial output of the Boundary Scan test logic. TAP instructions and data are shifted out
of the embedded Pentium processor on the TDO pin on the falling edge of TCK when the TAP
controller is in the SHIFT-IR and SHIFT-DR states. During all other states, the TDO pin is driven to
the high impedance state to allow connecting TDO of different devices in parallel.

When Driven

TDO is driven on the falling edge of TCK during the SHIFT-IR and SHIFT-DR TAP controller
states. At all other times, TDO is driven to the high impedance state. TDO does not float during bus
HOLD or BOFF#.

Relation to Other Signals

Pin Symbol Relation to Other Signals
TCK TDO is driven on the falling edge of TCK.
oI In the SHI_I——F-IR a_nd SH_II—T-DR TAP controll_er states, TDI provides the input data
to the register being shifted, and TDO provides the output.
T™MS TDO is driven only in the SHIFT-IR and SHIFT DR states (controlled by TMS).
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T™MS

TMS Test Mode Select
Controls TAP controller state transitions.

Synchronous Input to TCK

Signal Description

This aBoundary Scan test logic control input. The value of thisinput signal sampled at the rising
edge of TCK controls the sequence of TAP controller state changes.

To ensure deterministic behavior of the TAP controller, TMSis provided with an internal pullup
resistor. If boundary scan is not used, TMS may be tied to V ¢ or left unconnected.

When Sampled
TMSissampled on every rising edge of TCK.

Relation to Other Signals

Pin Symbol Relation to Other Signals
TCK TMS is sampled on every rising edge of TCK.
TDI TDI is sampled only in the SHIFT-IR and SHIFT DR states (controlled by TMS).
TDO TDO is driven only in the SHIFT-IR and SHIFT DR states (controlled by TMS).
TRST# Test Reset

Allows the TAP controller to be asynchronously initialized.

Asynchronous Input

Signal Description

ThisisaBoundary Scan test logic reset or initialization pin. When asserted, it allows the TAP
controller to be asynchronoudly initialized. When asserted, TRST# will force the TAP controller
into the Test Logic Reset State. When in this state, the test logic is disabled so that normal
operation of the device can continue unhindered. During initialization, the embedded Pentium
processor initializes the instruction register with the IDCODE instruction.

An alternate method of initializing the TAP controller isto Drive TM S high for at least 5 TCK
cycles. In addition, the embedded Pentium processor implements a power on TAP controller reset
function. When the embedded Pentium processor is put through its normal power on/RESET
function, the TAP controller is automatically reset by the processor. The user does not have to
assert the TRST# pin or drive TMS high after the falling edge of RESET.

When Sampled
TRST# is an asynchronous input.
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Relation to Other Signals

None

Vee

Vee Supply Voltage for the processor

Vcc is used to supply power to the embedded Pentium processor.

Power Input

Signal Description

The embedded Pentium processor requires 3.3V V¢ inputs.

Vee?

Veez Core Supply Voltage

Vo is used to supply the core of the embedded Pentium processor with MMX technology
and the low-power embedded Pentium processor with MMX technology.

Power Input

Signal Description
The embedded Pentium processor with MM X technology requiresa 2.8 V V¢, (core) voltage.

The low-power embedded Pentium processor with MM X technology core voltage Ve is1.9V
for the PPGA package. The core voltage V ¢, for the HL-PBGA package is 1.8 V (166 MHz) or
2.0V (266 MHz).

Vces

Vees 1/0 Supply Voltage

V3 is used to supply the I/O of the embedded Pentium processor with MMX technology and
the low-power embedded Pentium processor with MMX technology.

Power Input

Signal Description

The embedded Pentium processor with MM X technology requiresa3.3V V3 (1/0) voltage. This
enables compatibility with embedded Pentium processor system components.

The low-power embedded Pentium processor with MM X technology requiresa2.5V Vcc3 (1/0)
voltage.
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5.1.72

5-64

VCC2DET#

VCC2DET# VCCZ Detect

VCC2DET# can be used in flexible motherboard implementations to configure the
voltage regulator output set-point appropriately for the V¢, inputs of the embedded
Pentium® processor with MMX™ technology. This pin can also be used to differentiate
between the Pentium Processor with MMX technology and the low-power embedded
Pentium processor with MMX technology

Output

NOTE: This pin is an INC on the embedded Pentium processor.

Signal Description

The embedded Pentium processor with MM X technology requires 2.8 V on the V ¢, pins and
3.3V onthe V3 pins. By using the VCC2DET# signal the system can adjust the core voltage to
the processor when a embedded Pentium processor with MM X technology isinserted into

Socket 7.

V CC2DET# isdriven active (Ilow) to indicate that a embedded Pentium processor with MM X
technology isinstalled in the system and can be used in flexible motherboard designs to configure
the voltage regulator output set-point appropriately for the V o, inputs of the embedded Pentium
processor with MM X technology.

This pin can be used to differentiate between the Pentium Processor with MM X technology and the
low-power embedded Pentium processor with MM X technology. Thisis an Internal No Connect
(INC) pin on the low-power embedded Pentium processor with MM X technology. This pin is not
defined on the HL-PBGA package.

When Sampled/Driven
Thispinisinternaly strapped to Vg,

W/R#

W/R# Write/Read

Distinguishes a Write cycle from a Read cycle.

Synchronous Input/Output

Signal Description

The Write/Read signal is one of the primary bus cycle definition pins. W/R# distinguishes between
write (W/R# = 1) and read cycles (W/R# = Q).

When operating in dual processing mode, the embedded Pentium processor uses this signal for
private snooping.

When Sampled/Driven

W/R# is driven valid in the same clock as ADS# and the cycle address. It remains valid from the
clock in which ADS# is asserted until the earlier of the last BRDY# or the clock after NA#.
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Thissignal becomes an input/output when two embedded Pentium processors are operating
together in dual processing mode.

Relation to Other Signals

Pin Symbol Relation to Other Signals
ADSH# WIR# is driven to its valid state with ADS#.
BOFF# W/R# floats one clock after BOFF# is asserted.
HLDA WI/R# floats when HLDA is asserted.
KEN# KEN# determines cacheability only if W/R# indicates a read.

5.1.73 WB/WT#

WB/WT# Writeback/Writethrough

This pin allows a cache line to be defined as writeback or writethrough on a line
by line basis.

Synchronous Input

Signal Description

This pin allows a cache line to be defined as writeback or writethrough on aline by line basis. Asa
result, in conjunction with the PWT pin, it controls the MESI state in which the line is saved.

If WB/WT# is sampled high during a memory read cycle and the PWT pinislow, thelineis saved
in the Exclusive (E) state in the cache. If WB/WT# is sampled low during amemory read cycle, the
lineis saved in the Shared (S) state in the cache.

If WB/WT#issampled high during awrite to ashared linein the cache and the PWT pinislow, the
line transitions to the E state. If WB/WT# is sampled low during awrite to a shared linein the
cache, the lineremainsin the S state.

If for either reads or writesthe PWT pinishigh, thelineis saved in, or remainsin, the Shared (S)
state.

When Sampled

This pin is sampled with KEN# on the clock in which NA# or the first BRDY # is returned,
however it must meet setup and hold times on every clock edge.

Relation to Other Signals

Pin Symbol Relation to Other Signals
BRDY# . . . )
NA# WB/WT# is sampled with the earlier of the first BRDY# or NA# for that cycle.
PWT If PWT is high, WB/WT# is a “don’t care.”
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Bus Functional Description 6

6.1

Embedded Pentium® fami ly processors support the same bus functionality. The processor bus
supports a 528-Mbyte/s data transfer rate at 66 MHz. All data transfers occur as aresult of one or
more bus cycles. This chapter describes the processor bus cycles and the processor data transfer
mechanism.

Physical Memory and 1I/O Interface

Processor memory is accessiblein 8-, 16-, 32-, and 64-bit quantities. Processor 1/0 is accessible in
8-, 16-, and 32-bit quantities. The processor can directly address up to 4 Gbytes of physical
memory, and up to 64 Kbytes of 1/0.

In hardware, memory space is organized as a sequence of 64-bit quantities. Each 64-bit location
has eight individually addressable bytes at consecutive memory addresses (see Figure 6-1).

Figure 6-1. Memory Organization

FFFFFFFFH FFFFFFF8H
Physical
Memory FFFFFFFFH FFFFFFF8H
4 Gbytes
00000007H 00000000H
BE7# BE6# BES# BE4# BE3# BE2# BE1# BEO#
64-Bit Wide Memory Organization
00000007H 00000000H
Physical Memory
Space
A6159-01

The /O space is organized as a sequence of 32-hit quantities. Each 32-bit quantity has four
individually addressable bytes at consecutive memory addresses. See Figure 6-2 for a conceptual
diagram of the 1/O space.
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Figure 6-2. I/O Space Organization

6.2

6-2

Not
Accessible
0000FFFFH 0000FFFCH
64 Kbyte
00000003H 00000000H
A6160-01

Sixty-four-bit memories are organized as arrays of physical quadwords (8-byte words). Physical
quadwords begin at addresses evenly divisible by 8. The quadwords are addressable by physical
address lines A31-A3.

Thirty-two-bit memories are organized as arrays of physical dwords (4-byte words). Physical
dwords begin at addresses evenly divisible by 4. The dwords are addressable by physical address
lines A31-A3 and A2. A2 can be decoded from the byte enables according to Table 6-2.

Sixteen-bit memories are organized as arrays of physical words (2-byte words). Physical words
begin at addresses evenly divisible by two. The words are addressable by physical address lines
A31-A3, A2-Al, BHE#, and BLE#. A2 and Al can be decoded from the byte enables according to
Table 6-2, BHE# and BLE# can be decoded from the byte enables according to Table 6-3 and
Table 6-4.

To address 8-bit memories, the lower three address lines (A2—A0) must be decoded from the byte
enables as indicated in Table 6-2.

Data Transfer Mechanism

All data transfers occur as a result of one or more bus cycles. Logical data operands of byte, word,
dword, and quadword lengths may be transferred. Data may be accessed at any byte boundary, but
two cycles may be required for misaligned data transfers. The processor considers a 2-byte or 4-
byte operand that crosses a 4-byte boundary to be misaligned. In addition, an 8-byte operand that
crosses an 8-byte boundary is misaligned.

Like the Intel486™ processor, the processor address signals are split into two components. High-
order address bits are provided by the address lines A31-A3. The byte enables BE7#-BEO0# form
the low-order address and select the appropriate byte of the 8-byte data bus.

The byte enable outputs are asserted when their associated data bus bytes are involved with the
present bus cycle as shown in Table 6-1. For both memory and I/O accesses, the byte enable
outputs indicate which of the associated data bus bytes are driven valid for write cycles and on
which bytes data is expected back for read cycles. Non-contiguous byte enable patterns never
occur.
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Address bits A2—AQ of the physical address can be decoded from the byte enables according to
Table 6-2. The byte enables can also be decoded to generate BLE# (byte low enable) and BHE#

Bus Functional Description

(byte high enable) to address 16-bit memory systems (see Table 6-3 and Table 6-4).

Table 6-1. Embedded Pentium® Processor Byte Enables and Associated Data Bytes

Byte Enable Signal Associated Data Bus Signals

BEO# D0-D7 (byte 0 — least significant)
BE1# D8-D15 (byte 1)

BE2# D16-D23 (byte 2)

BE3# D24-D31 (byte 3)

BE4# D32-D39 (byte 4)

BE5# D40-D47 (byte 5)

BE6# D48-D55 (byte 6)

BE7# D56-D63 (byte 7 — most significant)

Address bits A2—A0 of the physical address can be decoded from the byte enables according to
Table 6-2. The byte enables can also be decoded to generate BLE# (byte low enable) and BHE#

(byte high enable) to address 16-bit memory systems (see Table 6-3 and Table 6-4).

Table 6-2. Generating A2—A0 from BE7#-BEO#

A2 Al A0 BE7# BEG# BES# BEA4# BE3# BE2# BE1# BEO#
0 0 0 X X X X X X X Low
0 0 1 X X X X X X Low High
0 1 0 X X X X X Low High High
0 1 1 X X X X Low High High High
1 0 0 X X X Low High High High High
1 0 1 X X Low High High High High High
1 1 0 X Low High High High High High High
1 1 1 Low High High High High High High High
Table 6-3. When BLE# is Active
BET7# BEG# BES# BEA4# BE3# BE2# BE1# BEO# BLE#
X X X X X X Low Low
X X X X X Low High High Low
X X X Low High High High High Low
X Low High High High High High High Low
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Table 6-4. When BHE# is Active

BET7# BEG6# BES# BE4# BE3# BE2# BE1# BEO# BHE#
X X X X X X Low X Low
X X X X Low X High High Low
X X Low X High High High High Low

Low X High High High High High High Low

Table 6-5. When BE3'# is Active

BE7# BEG# BES# BE4# BE3# BE2# BE1# BEO# BE3'#

Low X X X Low X X X Low

Table 6-6. When BE2'# is Active

BE7# BE6# BES# BE4# BE3# BE2# BE1# BEO# BE2'#

X Low X X X Low X X Low

Table 6-7. When BE1'# is Active

BE7# BEG6# BES# BE4# BE3# BE2# BE1# BEO# BE1'#

X X Low X X X Low X Low

Table 6-8. When BEO'# is Active

BE7# BEG6# BES# BE4# BE3# BE2# BE1# BEO# BEO'#
X X X Low X X X Low Low
6.2.1 Interfacing With 8-, 16-, 32-, and 64-Bit Memories

In 64-bit physical memories such as Figure 6-3, each 8-byte quadword begins at abyte address that
is a multiple of eight. A31-A3 are used as an 8-byte quadword select and BE7#-BEO# select
individual bytes within the word.

Figure 6-3. Embedded Pentium® Processor with 64-Bit Memory

D63-DO

A
Y

Pentium® Processor 64-Bit Memory

A31-A3, BE7#-BEO#

[
\

A6161-01
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Memories that are 32 bits wide require external logic for generating A2 and BE3'#-BEQ'#.
Memories that are 16 bits wide require external logic for generating A2, A1, BHE# and BLE#.
Memories that are 8 bits wide require external logic for generating A2, A1, and AO. All memory
systems that are less than 64 bits wide require external byte swapping logic for routing data to the
appropriate data lines.

The processor expects all the data requested by the byte enables to be returned as one transfer (with
one BRDY#), so byte assembly logic is required to return all requested bytes to the processor at
one time. Note that the processor does not support BS8#, BS16# or BS32#, so this logic must be
implemented externally if necessary.

Figure 6-4 shows the processor address bus interface to 64, 32, 16 and 8-bit memories. Address
bits A2, A1, and AO and BHE#, BLE#, and BE3'#-BEOQ'# are decoded as shown in Table 6-2
through Table 6-8.

Figure 6-4. Addressing 32-, 16- and 8-Bit Memories

] A31-A3 _
Pentium® > 64-Bit
Processor

BE7#-BEO# _| Memory
1 32-Bit
A2, BE3'# - BEO'# - Memory
Byte
o Select BHE#, BLE#, A2, Al
Logic
A2, Al, AO
“1 16-Bit
Memory
1 Bt
Memory
A6162-01
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Figure 6-5 shows the processor data bus interface to 32-, 16- and 8-bit wide memories. External
byte swapping logic is needed on the data lines so that datais supplied to and received from the
processor on the correct data pins (see Table 6-1). For memory widths smaller than 64 bits, byte
assembly logic is needed to return all bytes of data requested by the processor in one cycle.

Figure 6-5. Data Bus Interface to 32-, 16- and 8-Bit Memories

__ D7-D0 -
_ DI15-D8 i
Pentium®  |e—223218 > -
Processor |e—23kD24 >| 64-Bit
__ D39-D32 | Memory
_ D47-D40 _
_ D55-D48 i
_ D63-D56 o
64-Bit
Data Assembly
b Logic
@
>
w
os}
m
*
m
® S*Bx;ep 2, | 328t
Logic Memory
A
Y
Byte .
sxap 16, | 16-Bit
Logic Memory
A
Y
D7-DO
D15D8
3016
D31.D24 Byte 8 8-Bit
;?_ = Swap <=5 Memory
D55.D48 Logic
63-D56
A6163-01

Operand alignment and size dictate when two cycles are required for a data transfer. Table 6-9
shows the transfer cycles generated by the processor for all combinations of logical operand
lengths and alignment and applies to both locked and unlocked transfers. When multiple cyclesare
required to transfer a multi-byte logical operand, the highest order bytes are transferred first.
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Table 6-9. Transfer Bus Cycles for Bytes, Words, Dwords and Quadwords

Length of Transfer | 1 Byte 2 Bytes

Low Order Address XXX 000 001 010 011 100 101 110 111

1st transfer b w w w hb w w w hb

Byte enables driven 0 BEO-1# | BE1-2# | BE2-3# | BE4# | BE4-5# | BE5-6# | BE6-7# | BEO#

Value driven on A3 0 0 0 0 0 0 0 1

ﬁggé;%r)\sfer (if b b

Byte enables driven BE3# BE7#

Value driven on A3 0 0

Length of Transfer 4 Bytes

Low Order Address 000 001 010 011 100 101 110 111

1st transfer d hb hw h3 d hb hw h3

Byte enables driven | BEO-3# BE4# BE4-5# | BE4-6# | BE4-7# BEO# BEO-1# | BEO-2#

Low order address 0 0 0 0 0 1 1 1

2nd ;;%';Sfer (if I3 Iw Ib 13 Iw Ib

Byte enables driven BE1-3# BE2-3# BE3# BES-7# BE6-7# BE7#

Value driven on A3 0 0 0 0 0 0

Length of Transfer 8 Bytes

Low Order Address 000 001 010 011 100 101 110 111

1st transfer q hb hw h3 hd h5 h6 h7

Byte enables driven | BEO-7# BEO# BEO-1# | BEO-2# | BEO-3# BEO-4# BEO-5# | BEO-6#

Value driven on A3 0 1 1 1 1 1 1 1

ﬁggére%r)‘smr (if 7 I6 I5 Id 13 Iw Ib

Byte enables driven BE1-7# BE2-7# | BE3-7# | BE4-7# BES5-7# BE6-7# BE7#

Value driven on A3 0 0 0 0 0 0 0

Key:

b = byte transfer w = 2-byte transfer 3 = 3-byte transfer  d = 4-byte transfer

5 = 5-byte transfer 6 = 6-byte transfer 7 = 7-byte transfer g = 8-byte transfer

h = high order Il = low order

8-byte operand:

E'}?tg order byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 It:))\//;/eorder

1 1
byte with highest address byte with lowest address
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6.3

Bus State Definition

This section describes the processor bus states in detail. See Figure 6-6 for the bus state diagram.

Ti: Thisisthebusidle state. In this state, no bus cycles are being run. The processor may or may
not be driving the address and status pins, depending on the state of the HLDA, AHOLD, and
BOFF# inputs. An asserted BOFF# or RESET always forces the state machine back to this state.
HLDA isonly driven in this state.

T1: Thisisthefirst clock of abus cycle. Valid address and status are driven out and ADS# is
asserted. There is one outstanding bus cycle.

T2: Thisisthe second and subsequent clock of the first outstanding bus cycle. In state T2, datais
driven out (if the cycleisawrite), or datais expected (if the cycleisaread), and the BRDY# pinis
sampled. There is one outstanding bus cycle.

T12: This state indicates there are two outstanding bus cycles, and that the processor is starting the
second bus cycle at the same time that datais being transferred for the first. In T12, the processor
drives the address and status and asserts ADS# for the second outstanding bus cycle, while datais
transferred and BRDY # is sampled for the first outstanding cycle.

T2P: This state indicates there are two outstanding bus cycles, and that both arein their second and
subsequent clocks. In T2P, datais being transferred and BRDY # is sampled for the first
outstanding cycle. The address, status and ADS# for the second outstanding cycle were driven
sometime in the past (in state T12).

TD: This state indicates there is one outstanding bus cycle, that its address, status and ADS# have
already been driven sometime in the past (in state T12), and that the data and BRDY # pins are not
being sampled because the data bus requires one dead clock to turn around between consecutive
reads and writes, or writes and reads. The processor enters TD if in the previous clock there were
two outstanding cycles, the last BRDY # was returned, and a dead clock is needed. Thetiming
diagrams in the next section give examples when a dead clock is needed.

Table 6-10 gives a brief summary of bus activity during each bus state. Figure 6-6 shows the
processor bus state diagram.

Table 6-10. Processor Bus Activity

6-8

Bus State Cycles OUISIANTNG | N iaross Driven | Data Transforred
Ti 0 No No
T1 1 Yes No
T2 1 No Yes
T12 2 Yes Yes
T2P 2 No Yes
D 1 No No
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Figure 6-6. Processor Bus Control State Machine

[4]

[11]

NOTES:
ADS# asserted
If BOFF# is asserted during any state, a state transition to Ti occurs in the next clock (not shown)
If RESET is sampled asserted in any state, a state transition to Ti will occur (not shown

A6164-01

6.3.1 State Transitions

The state transition equations with descriptions are listed below. In the equations, “&” means
logical AND, “+” means logical OR, and “#" placed after label means active low. The NA# used
here is actually a delayed version of the external NA# pin (delayed by one clock). The definition of
request pending is:

* The processor has generated a new bus cycleinternally & HOLD (delayed by one clock)
negated & BOFF# negated & (AHOLD negated + HITM# asserted).

Note that once NA# is sampled asserted, the processor latches NA#. The processor pipelinesa
cycle when one becomes pending even if NA# is subsequently deasserted.
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In

0) No Request Pending
— The processor starts a new bus cycle & ADS# is
@ Request Pending: asserted in the T1 state.
With BOFF# negated, and a cycle outstanding the
2) Always: processor always moves to T2 to process the data
transfer.
ot Last o Request Pending e processor stays in T2 until the transfer is over if no
3) Not Last BRDY# & (No R Pendi Th in T2 until th fer i if
+ NA# Negated): new request becomes pending or if NA# is not asserted.
. If there is a new request pending when the current cycle
4) ;aa“':’; I?:IeR(IfxgsirtRe%quest Pending & NAZ is complete, and if NA# was sampled asserted, the
P ' processor begins from T1.
. If no cycle is pending when the processor finishes the
(5) k,is; EIED;Z;‘ (No RequestPending + ¢ o cycle or NA# is not asserted, the processor goes
9 ' back to the idle state.
While the processor is processing the current cycle (one
. outstanding cycle), if another cycle becomes pending
(6) Not Last BRDY# & RequSt Pending & and NA# is asserted, the processor moves to T12
NA# Sampled Asserted: S .
indicating that the processor now has two outstanding
cycles. ADS# is asserted for the second cycle.
. When the processor finishes the current cycle, and no
™ Last BRDY# & No dead clock: dead clock is needed, it goes to the T2 state.
. When the processor finishes the current cycle and a
®) Last BRDY# & Need a dead clock: dead clock is needed, it goes to the TD state.
With BOFF# negated, and the current cycle not
9) Not Last BRDY#: complete, the processor always moves to T2P to process
the data transfer.
(10) Not Last BRDY#: Zceerprocessor stays in T2P until the first cycle transfer is
(11) Last BRDY# & No dead clock: When_the processor finishes the first cycle and no dead
clock is needed, it goes to T2 state.
(12) Last BRDY# & Need a dead clock: When th(_a first cycle is complete, and a dead clock is
needed, it goes to TD state.
Request Pending & NA# sampled If NA# was sampled asserted and there is a new request
13)
asserted: pending, it goes to T12 state.
. . If there is no new request pending, or NA# was not
(14) No Request Pending + NA# Negated: asserted, it goes to T2 state.
6.4 Bus Cycles

The following terminology is used in this document to describe the processor bus functions. The

processor requests datatransfer cycles, bus cycles, and bus operations. A data transfer cycleisone
dataitem, up to 8 bytes in width, being returned to the processor or accepted from the processor
with BRDY # asserted. A bus cycle begins with the embedded Pentium processor driving an
address and status and asserting ADS#, and ends when the last BRDY # is returned. A bus cycle
may have 1 or 4 datatransfers. A burst cycleisabus cycle with 4 datatransfers. A busoperationis
a sequence of bus cyclesto carry out a specific function, such as alocked read-modify-write or an
interrupt acknowledge.

“Bus State Definition” on page 6-8 describes each of the bus states, and shows the bus state
diagram.
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Table 6-11 lists al of the bus cycles that are generated by the processor. Note that inquire cycles
(initiated by EADS#) may be generated from the system to the processor.

Table 6-11. Processor Initiated Bus Cycles

6.4.1

M/IO# D/C# W/R# CACHE#" KEN# Cycle Description # of Transfers

Interrupt Acknowledge

0 0 0 1 X (2 locked cycles) 1 transfer each cycle

0 0 1 1 X Special Cycle (Table 6-13) 1

0 1 0 1 X 1/0 Read, 32-bits or less, 1
non-cacheable

0 1 1 1 X 1/0 Write, 32-bits or less, 1
non-cacheable

1 0 0 1 X Code Read, 64-bits, 1
non-cacheable

1 0 0 X 1 Code Read, 64-bits, 1
non-cacheable

1 0 0 0 0 _Code_ Read, 256-bit burst 4
line fill

1 0 1 X X Intel Reserved (is not driven nia
by the processor)

1 1 0 1 X Memory Read, 64 bits or 1
less, non-cacheable

1 1 0 X 1 Memory Read, 64 bits or 1
less, non-cacheable

1 1 0 0 0 l\_/lem_ory Read, 256-bit burst 4
line fill

1 1 1 1 X Memory Write, 64 bits or 1
less, non-cacheable

1 1 1 0 X 256-bit Burst Writeback 4

t CACHE# is not asserted for any cycle in which M/IO# is driven low or for any cycle in which PCD is driven
high.

Note that all burst reads are cacheable, and all cacheable read cycles are bursted. There are no non-
cacheable burst reads or non-burst cacheable reads.

The remainder of this chapter describes all of the above bus cyclesin detail. In addition, locked
operations and bus cycle pipelining is discussed.

Single-Transfer Cycle

The processor supports a number of different types of bus cycles. The simplest type of bus cycleis
asingle-transfer non-cacheable 64-bit cycle, either with or without wait states. Non-pipelined read
and write cycles with O wait states are shown in Figure 6-7.

The processor initiates a cycle by asserting the address status signal (ADS#) in the first clock. The
clock in which ADS# is asserted is by definition the first clock in the bus cycle. The ADS# output
indicates that a valid bus cycle definition and address is avail able on the cycle definition pins and
the address bus. The CACHE# output is deasserted (high) to indicate that the cycleisasingle
transfer cycle.
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For azero wait state transfer, BRDY # is returned by the external system in the second clock of the
bus cycle. BRDY # indicates that the external system has presented valid data on the data pinsin
response to aread or the external system has accepted data in response to awrite. The processor
samplesthe BRDY # input in the second and subsequent clocks of abuscycle (the T2, T12 and T2P
bus states; see the “Bus State Definition” on page 6-8 for more information).

The timing of the data parity input, DP, and the parity check output, PCHK#, is also shown in
Figure 6-7. DP is driven by the processor and returned to the processor in the same clock as the
data. PCHK# is driven two clocks after BRDY# is returned for reads with the results of the parity
check.

Figure 6-7. Non-Pipelined Read and Write

Tl T2 Ti T1 T2 Ti T1

| | | | | |
ADDR Valid X Invalid X Valid X Invalid X
T T

o N\ T T
| ;/!\ 7 T\ | |

A A e
N E [ S —
———L— N

BRDY#4|_\!/I I\l/_l—l

NA#

WI/R#

DATA R SR Lo V) Ay SEEE i St From CPU = -«r======-=--

I
S S |
B D B e LTI s s
|

PCHK# | | | | L

ﬂ

A6069-01

If the system is not ready to drive or accept data, wait states can be added to these cycles by not
returning BRDY# to the processor at the end of the second clock. Cycles of this type, with one and
two wait states added are shown in Figure 6-8. Note that BRDY# must be driven inactive at the end
of the second clock. Any number of wait states can be added to processor bus cycles by
maintaining BRDY# inactive.
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Figure 6-8. Non-Pipelined Read and Write with Wait States

Bus Functional Description

T1 T2 T2 Ti T1 T2 T2 T2
ok | | | | | | | |

1 1 ] 1 1 ] ] ]
| | | | | | | | |
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1 1 ] 1 1 ] ] ] ]
| | | | | | | | |
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! ! ! ! ! ! ! ! !
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] 1 ] ] ]
[ [ | | | | | | |
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| | | | | | | | |
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A6165-01

6.4.2 Burst Cycles

For bus cycles that require more than a single data transfer (cacheable cycles and writeback
cycles), the processor uses the burst data transfer. In burst transfers, a new dataitem can be
sampled or driven by the processor in consecutive clocks. In addition the addresses of the data
itemsin burst cycles al fall within the same 32-byte aligned area (corresponding to an internal

processor cache line).

Theimplementation of burst cyclesisviathe BRDY # pin. While running a bus cycle of more than
one data transfer, the processor requires that the memory system perform a burst transfer and
follow the burst order (see Table 6-12). Given the first addressin the burst sequence, the address of
subsequent transfers must be calculated by external hardware. This requirement exists because the
processor address and byte-enables are asserted for the first transfer and are not re-driven for each
transfer. The burst sequence is optimized for two bank memory subsystems and is shown in

Table 6-12.
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Table 6-12. Processor Burst Order

6.4.2.1

6-14

intel.

1st Address 2nd Address 3rd Address 4th Address
0 8 10 18
8 0 18 10
10 18 0 8
18 10 8 0

NOTE: The addresses are represented in hexadecimal format

The cycle length is driven by the processor together with cycle specification (see Table 6-11), and
the system should latch this information and terminate the cycle on time with the appropriate
number of transfers. The fastest burst cycle possible requires two clocks for thefirst dataitem to be
returned/driven with subsequent data items returned/driven every clock.

Burst Read Cycles

When initiating any read, the processor presents the address and byte enables for the data item
reguested. When the cycle is converted into a cache lin€fill, the first dataitem returned should
correspond to the address sent out by the processor; however, the byte enables should be ignored,
and valid data must be returned on all 64 datalines. In addition, the address of the subsequent
transfersin the burst sequence must be calculated by external hardware since the address and byte
enables are not re-driven for each transfer.

Figure 6-9 shows a cacheable burst read cycle. Note that in this case the initial cycle generated by
the processor might have been satisfied by a single data transfer, but was transformed into a
multiple-transfer cache fill by KEN# being returned active on the clock that the first BRDY#is
returned. In this case KEN# has such an effect because the cycleisinternally cacheable in the
processor (CACHE# pinisdriven active). KEN# is only sampled once during a cycleto determine
cacheability.

PCHK# is driven with the parity check status two clocks after each BRDY #.
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Figure 6-9. Basic Burst Read Cycle
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Datais sampled only in the clock that BRDY # is returned, which means that data need not be sent
to the processor every clock in the burst cycle. An example burst cycle where two clocks are
required for every burst item is shown in Figure 6-10.
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Figure 6-10. Slow Burst Read Cycle
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Burst Write Cycles

Figure 6-11 shows the timing diagram of basic burst write cycle. KEN# isignored in burst write
cycle. If the CACHE# pin is active (low) during awrite cycle, it indicates that the cycleis a burst
writeback cycle. Burst write cycles are always writebacks of modified lines in the data cache.
Writeback cycles have several causes:

. Writeback due to replacement of amodified line in the data cache.
. Writeback due to an inquire cycle that hits amodified line in the data cache.

. Writebacks caused by asserting the FLUSH# pin.

1
2
3. Writeback due to an internal snoop that hits a modified line in the data cache.
4
5. Writebacks caused by executing the WBINV D instruction.

Writeback cycles are described in more detail in the Inquire Cycle section of this chapter.

The only write cycles that are burstable by the processor are writeback cycles. All other write
cycles are 64 bits or less, single transfer bus cycles.
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Figure 6-11. Basic Burst Write Cycle
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For writeback cycles, the lower five bits of the first burst address aways starts at zero; therefore,
the burst order becomes 0, 8H, 10H, and 18H. Again, note that the address of the subsequent
transfersin the burst sequence must be calculated by external hardware since the processor does
not drive the address and byte enables for each transfer.

6.4.3 Locked Operations

The embedded Pentium processor family architecture provides afacility to perform atomic
accesses of memory. For example, a programmer can change the contents of a memory-based
variable and be assured that the variable was not accessed by another bus master between the read
of the variable and the update of that variable. This functionality is provided for select instructions
using aLOCK prefix, and also for instructions which implicitly perform locked read modify write
cycles such as the XCHG (exchange) instruction when one of its operands is memory based.
Locked cycles are also generated when a segment descriptor or page table entry is updated and
during interrupt acknowledge cycles.

In hardware, the LOCK functionality isimplemented through the LOCK# pin, which indicates to
the outside world that the processor is performing a read-modify-write sequence of cycles, and that
the processor should be allowed atomic access for the location that was accessed with the first
locked cycle. Locked operations begin with aread cycle and end with awrite cycle. Note that the
datawidth read is not necessarily the data width written. For example, for descriptor access bit
updates the processor fetches eight bytes and writes one byte.
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6.4.3.2
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A locked operation is a combination of one or multiple read cycles followed by one or multiple
write cycles. Programmer generated locked cycles and locked page table/directory accesses are
treated differently and are described in the following sections.

Programmer Generated Locks and Segment Descriptor Updates

For programmer generated locked operations and for segment descriptor updates, the sequence of
eventsis determined by whether or not the accessed line isin the internal cache and what state that
lineisin.

Cached Linesin the Modified (M) State

Before a programmer initiated locked cycle or a segment descriptor update is generated, the
processor first checksif the lineisin the Modified (M) state. If it is, the processor drives an
unlocked writeback first, leaving the linein the Invalid (1) state, and then runs the locked read on
the external bus. Since the operand may be misaligned, it is possible that the processor may do two
writeback cycles before starting the first locked read. In the misaligned scenario the sequence of
bus cyclesis: writeback, writeback, locked read, locked read, locked write, then the last |ocked
write. Note that although atotal of six cycles are generated, the LOCK# pin is active only during
the last four cycles. In addition, the SCY C pinis asserted during the last four cyclesto indicate that
amisaligned lock cycleis occurring. In the aligned scenario the sequence of cyclesis: writeback,
locked read, locked write. The LOCK# pin is asserted for the last two cycles (SCY C is not asserted,
indicating that the locked cycleisaligned). The cachelineisleft in the Invalid state after the locked
operation.

Non-Cached (I-State), S-State and E-State Lines

A programmer initiated locked cycle or a segment descriptor updatetoan |, S, or E -state lineis
always forced out to the bus and the line is transitioned to the Invalid state. Since the lineis not in
the M-State, no writeback is necessary. Because the line is transitioned to the Invalid state, the
locked write is forced out to the bus also. The cache lineisleft in the Invalid state after the locked
operation.

Page Table/directory Locked Cycles

In addition to programmer generated locked operations, the processor performs locked operations
to set the dirty and accessed bits in page tables/page directories. The processor runs the following
sequence of bus cycles to set the dirty/accessed bit.

Cached Linesin the Modified (M) State

If thereisa TLB miss, the processor issues an (unlocked) read cycleto determine if the dirty or
accessed bits need to be set. If thelineis modified in theinternal data cache, thelineiswritten back
to memory (lock not asserted). If the dirty or accessed bits need to be set, the processor then issues
alocked read-modify-write operation. The sequence of bus cycles to set the dirty or accessed bits
in a page table/directory when thelineisin the M-state is: unlocked read, unlocked writeback,
locked read, then locked write. The lineis|eft in the Invalid state after the locked operation. Note
that accesses to the page tables/directories will not be misaligned.
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Non-Cached (I-State), S-State and E-State Lines

If thelineisinthel, Sor E-state, the locked cycleis always forced out to the busand the lineis
transitioned to the Invalid state. The sequence of bus cycles for an internally generated locked
operation islocked read, locked write. The lineisleft in the Invalid state. Note that accessesto the
page tables/directories are not misaligned.

LOCK# Operation During AHOLD/HOLD/BOFF#
LOCK# is not deasserted if AHOLD is asserted in the middle of alocked cycle.

LOCK# isfloated during bus HOLD, but if HOLD is asserted during a sequence of locked cycles,
HLDA is not asserted until the locked sequence is complete.

LOCK# floats if BOFF# is asserted in the middle of alocked cycle, and is driven low again when
the cycleisrestarted. If BOFF# is asserted during the read cycle of alocked read-modify write, the
locked cycleis redriven from the read when BOFF# is deasserted. If BOFF# is asserted during the
write cycle of alocked read-modify-write, only the write cycleis re-driven when BOFF# is
deasserted. The system is responsible for ensuring that other bus masters do not access the operand
being locked if BOFF# is asserted during a LOCKed cycle.

Inquire Cycles During LOCK#

This section describes the processor bus cycles that occur when an inquire cycle is driven while
LOCK# is asserted. Note that inquire cycles are only recognized if AHOLD, BOFF# or HLDA is
asserted and the external system returns an external snoop address to the processor. If AHOLD,
BOFF# or HLDA is not asserted when EADS# is driven, EADS# is ignored. Note also that an
inquire cycle cannot hit the “locked line” because the LOCK cycle invalidated it.

Because HOLD is not acknowledged when LOCK# is asserted, inquire cycles run in conjunction
with the assertion of HOLD cannot be driven until LOCK# is deasserted and HLDA is asserted.

BOFF# takes priority over LOCK#. Inquire cycles are permitted while BOFF# is asserted. If an
inquire cycle hits a modified line in the data cache, the writeback due to the snoop hit is driven
before the locked cycle is re-driven. LOCK# is asserted for the writeback.

An inquire cycle with AHOLD may be run concurrently with a locked cycle. If the inquire cycle

hits a modified line in the data cache, the writeback may be driven between the locked read and the
locked write. If the writeback is driven between the locked read and write, LOCK# is asserted for
the writeback.

Only writebacks due to an external snoop hit to a modified line may be driven between the locked
read and the locked write of a LOCKed sequence. No other writebacks (due to an internal snoop hit
or data cache replacement) are allowed to invade a LOCKed sequence.

LOCK# Timing and Latency

The timing of LOCK# is shown in Figure 6-12. Note that LOCK# is asserted with the ADS# of the
read cycle and remains active until the BRDY# of the write cycle is returned. Figure 6-13 shows an
example of two consecutive locked operations. Note that the processor automatically inserts at
least one idle clock between two consecutive locked operations to allow the LOCK# pin to be
sampled inactive by external hardware. Figure 6-14 shows an example of a misaligned locked
operation with SCYC asserted.
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The maximum number of processor initiated cycles that can be locked together is four. Four cycles
are locked together when datais misaligned for programmer generated locks (read, read, write,
write). SCY C is asserted for misaligned locked cycles. Note that accesses to the page
tables/directories are not misaligned.

Figure 6-12. LOCK# Timing
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Figure 6-14. Misaligned Locked Cycles
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6.4.4 BOFF#

In amulti-master system, another bus master may require the use of the busto enable the processor
to complete its current cycle. The BOFF# pin is provided to prevent this deadlock situation. If
BOFF# is asserted, the processor immediately (in the next clock) floats the bus (see Figure 6-15).
Any bus cyclesin progress are aborted and any data returned to the processor in the clock BOFF#
is asserted isignored. In response to BOFF#, the processor floats the same pins as HOLD, but
HLDA is not asserted. BOFF# overrides BRDY#, o if both are sampled active in the same clock,
BRDY# isignored. The processor samples the BOFF# pin every clock.
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Figure 6-15. Back Off Timing
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The devicethat asserts BOFF# to the processor isfree to run any bus cycle while the processor isin
the high impedance state. If BOFF# is asserted after the processor has started a cycle, the new
master should wait for memory to return BRDY # before driving a cycle. Waiting for BRDY #
provides a handshake to insure that the memory system is ready to accept anew cycle. If thebusis
idle when BOFF# is asserted, the new master can start its cycle two clocks after issuing BOFF#.
The system must wait two clocks after the assertion of BOFF# to begin its cycle to prevent address
bus contention.

The bus remains in the high impedance state until BOFF# is negated. At that time, the processor
restarts all aborted bus cycles from the beginning by driving out the address and status and
asserting ADS#. Any data returned before BOFF# was asserted is used to continue internal
execution, however that datais not placed in aninternal cache. Any aborted bus cycles are restarted
from the beginning.

External hardware should assure that if the cycle attribute KEN# was returned to the processor
(with the first BRDY# or NA#) before the cycle was aborted, it must be returned with the same
value after the cycleisrestarted. In other words, backoff cannot be used to change the cacheability
property of the cycle. The WB/WT# attribute may be changed when the cycle is restarted.

If more than one cycle is outstanding when BOFF# is asserted, the processor restarts both
outstanding cyclesin their original order. The cycles are not pipelined unless NA# is asserted

appropriately.

A pending writeback cycle due to an external snoop hit is reordered in front of any cycles aborted
due to BOFF#. For example, if asnoop cycleisrun concurrently with alinefill, and the snoop hits
an M-state line and then BOFF# is asserted, the writeback cycle due to the snoop is driven from the
processor before the cache linefill cycleis restarted.
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The system must not rely on the original cycle, that was aborted due to BOFF#, from restarting
immediately after BOFF# is deasserted. In addition to reordering writebacks due to external snoop
hit in front of cyclesthat encounter a BOFF#, the processor may also reorder bus cyclesin the
following situations:

¢ A pending writeback cycle due to an internal snoop hit is reordered in front of any cycles
aborted due to BOFF#. If aread cycle is running on the bus, and an internal snoop of that read
cycle hitsamodified line in the data cache, and the system asserts BOFF#, the processor
drives out awriteback cycle resulting from the internal snoop hit. After completion of the
writeback cycle, the processor then restarts the original read cycle. This circumstance can
occur during accesses to the page tables/directories, and during prefetch cycles, since these
accesses cause a bus cycle to be generated before the internal snoop to the datacacheis
performed.

* |If BOFF# is asserted during a data cache replacement writeback cycle, the writeback cycleis
aborted and then restarted once BOFF# is deasserted. However, if the processor encounters a
reguest to access the page table/directory in memory during the BOFF#, this request is
reordered in front of the replacement writeback cycle that was aborted due to BOFF#. The
processor is first run the sequence of bus cycles to service the page table/directory access and
then restart the original replacement writeback cycle.

Asserting BOFF# in the same clock as ADSH may cause the processor to leave the ADS# signal
floating low. Since ADS# is floating low, a peripheral device may think that a new bus cycle has
begun even though the cycle was aborted. There are several ways to approach this situation:

* Design the system’s state machines/logic such that ADS# is not recognized the clock after
ADS# is sampled active.
* Recognize acycle as ADSH# asserted and BOFF# negated in the previous clock.

¢ Assert AHOLD one clock before asserting BOFF#.

6.4.5 Bus Hold

The embedded Pentium processor provides a bus hold, hold acknowledge protocol using the
HOLD and HLDA pins. HOLD is used to indicate to the processor that another bus master wants
control of the bus. When the processor completes all outstanding bus cycles, it releases the bus by
floating its external bus, and drives HLDA active. An example HOLD/HL DA transaction is shown
in Figure 6-16.
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Figure 6-16. HOLD/HLDA Cycles
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The processor recognizes HOLD while RESET is asserted, when BOFF# is asserted, and during
BIST (built in self test). HOLD is not recognized when LOCK# is asserted. Once HOLD is
recognized, HLDA is asserted two clocks after the later of the last BRDY # or HOLD assertion.
Because of this, it is possible that a cycle may begin after HOLD is asserted, but before HLDA is
driven. The maximum number of cyclesthat are driven after HOLD is asserted is one. BOFF# may
be used if it is necessary to force the processor to float its bus in the next clock. Figure 6-16 shows
the latest HOLD may be asserted relative to ADS# to guarantee that HLDA is asserted before
another cycleisbegun.

The operation of HLDA is not affected by the assertion of BOFF#. If HOLD is asserted while
BOFF# is asserted, HLDA is asserted two clocks later. If HOLD goes inactive while BOFF# is
asserted, HLDA is deasserted two clocks | ater.

Note that HOL D may be acknowledged between two bus cyclesin a misaligned access.

All outputs are floated when HLDA is asserted except: APCHK#, BREQ, FERR#, HIT#, HITM#,
HLDA, IERR#, PCHK#, PRDY, BP3-BP2, PM1/BP1, PMO/BPO, SMIACT# and TDO.
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6.4.6 Interrupt Acknowledge

The processor generates interrupt acknowledge cycles in response to maskabl e interrupt requests
generated on the interrupt request input (INTR) pin (if interrupts are enabled). Interrupt
acknowledge cycles have a unique cycle type generated on the cycle type pins.

An exampl e interrupt acknowledge transaction is shown in Figure 6-17. Interrupt acknowledge
cycles are generated in locked pairs. Data returned during the first cycle isignored, however the
specified data setup and hold times must be met. The interrupt vector is returned during the second
cycle on the lower 8 bits of the data bus. The processor has 256 possible interrupt vectors.

The state of address hit 2 (as decoded from the byte enables) distinguishes the first and second

interrupt acknowledge cycles. The byte address driven during the first interrupt acknowledge cycle

is 4: A31-A3 = 0, BE4# = 0, BE7T#-BES5# = 1, and BE3#-BEO# = 1. The address driven during the
second interrupt acknowledge cycle is 0: A31-A3 = 0, BEO# = 0 and BE7#-BE1# = 1H.

Interrupt acknowledge cycles are terminated when the external system returns BRDY#. Wait states
can be added by withholding BRDY#. The processor automatically generates at least one idle clock
between the first and second cycles; however the external system is responsible for interrupt
controller (8259A) recovery.

Figure 6-17. Interrupt Acknowledge Cycles
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Flush Operations

The FLUSH# input is implemented in the processor as an asynchronous interrupt, similar to NMI.
Therefore, unlike the Intel486™ microprocessor, FLUSH# is recognized on instruction boundaries
only. FLUSH# is latched internally. Once setup, hold and pulse width times have been met,
FLUSH# may be deasserted, even if a bus cycle is in progress.

To execute a flush operation, the processor first writes back all modified lines to external memory.
The lines in the internal caches are invalidated as they are written back. After the write-back and
invalidation operations are complete, a special cycle, flush acknowledge, is generated by the
processor to inform the external system.

Special Bus Cycles

The processor provides six special bus cycles to indicate that certain instructions have been
executed, or certain conditions have occurred internally. The special bus cycles in Table 6-13 are
defined when the bus cycle definition pins are in the following state: M/IO# = 0, D/C# = 0 and
W/R# = 1. During most special cycles the data bus is undefined and the address lines A31-A3 are
driven to “0.” The external hardware must acknowledge all special bus cycles by returning
BRDY#.

Table 6-13. Special Bus Cycles Encoding

6-26

BE7# BE6# BES# BE4# BE3# BE2# BE1# BEO# Special Bus Cycle
1 1 1 1 1 1 1 0 Shutdown
Flush
1 1 1 1 1 1 0 1 (INVD,WBINVD instr)
1 1 1 1 1 0 1 1 Halt/Stop Grant®
1 1 1 1 0 1 1 1 Writeback

(WBINVD instruction)

Flush Acknowledge

1 1 1 0 1 1 1 L | (FLUSH# assertion)

1 1 0 1 1 1 1 1 Branch Trace Message

T The definition of the Stop Grant bus cycle is the same as the HALT cycle definition, with the exception that
the address bus is driven with the value 0000 0010H during the Stop Grant bus cycle.

Shutdown can be generated due to the following reasons:

* If any other exception occurs while the processor is attempting to invoke the double-fault
handler.

¢ Aninternal parity error is detected.

Prior to going into shutdown, the processor does not writeback the M-state lines. Upon entering
shutdown, the state of the processor is unpredictable and may or may not be recoverable. RESET
or INIT should be asserted to return the system to aknown state. Although some system operations
(i.e., FLUSH# and R/S#) are generally recognized during shutdown, these operations may not
complete successfully in some cases once shutdown is entered. During shutdown, the internal
caches remain in the same state unless an inquire cycleis run or the cache is flushed.
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The processor remainsin shutdown until NMI, INIT, or RESET is asserted. Furthermore, upon exit
from shutdown with NMI (to the NMI handler), the SS, ESP and EIP of the task that was executing
when shutdown occurred can no longer be relied upon to be vaid. Therefore, using NMI to exit
shutdown should be used only for debugging purposes and not to resume execution from where
shutdown occurred.

If invoking NMI to exit shutdown, use atask gate rather than an interrupt or trap gate in slot 2 of
the IDT. One of the conditions that may lead to shutdown is an attempt to use an invalid stack
segment selector (SS). In this case, if the NMI successfully exits shutdown, it immediately re-
enters shutdown because it has no valid stack on which to push the return address. It is more robust
to vector NMI through atask gate rather than an interrupt gate in the IDT, since the task descriptor
allocates a new stack for the NMI handler context.

The Flush Special Cycleisdriven after the INVD (invalidate cache) or WBINVD (writeback
invalidate cache) instructions are executed. The Flush Special Cycleisdriven toindicate to the
external system that theinternal caches were invalidated and that external caches should also be
invalidated.

INVD should be used with care. This instruction does not write back modified cache lines.

The Halt Specia Cycle isdriven when a Halt instruction is executed. Externally, halt differs from
shutdown in only two ways:

* |nthe resulting byte enables that are asserted.

* The processor exits the Halt state if INTR is asserted and maskable interrupts are enabled in
addition to the assertion of NMI, INIT or RESET.

A specia Stop Grant bus cycleis driven after the processor recognizes the STPCLK# interrupt.
The definition of the Stop Grant bus cycle is the same asthe HALT cycle definition, with the
exception that the address bus is driven with the value 0000 0010H during the Stop Grant bus
cycle.

The Writeback Special Cycleisdriven after the WBINVD instruction is executed and it indicates
that modified lines in the processor data cache were written back to memory or a second level
cache. The Writeback Special Cycle also indicates that modified linesin external caches should be
written back. After the WBINV D instruction is executed, the Writeback Special cycleis generated,
followed by the Flush Special Cycle. Notethat INTR is not recognized while the WBINVD
instruction is being executed.

When the FLUSH# pin is asserted to the processor, all modified lines in the data cache are written
back and all lines in the code and data caches are invalidated. The Flush Acknowledge Special
Cycleisdriven after the writeback and invalidations are complete. The Flush Acknowledge Special
Cycleisdriven only in response to the FLUSH# pin being activated. Note that the Flush
Acknowledge Special Cycleindicates that all modified lines were written back and all cache lines
were invalidated while the Flush special cycle only indicates that all cache lines were invalidated.

The Branch Trace Message Special Cycle is part of the processor’s execution tracing protocol. The
Branch Trace Message Special Cycle is the only special cycle that does not drive 0's on the address
bus, however like the other special cycles, the data bus is undefined. When the branch trace
message is driven, bits 31-3 of the branch target linear address are driven on A31-A3.
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Bus Error Support

The processor provides basic support for bus error handling through data and address parity check.
Even data parity is generated by the processor for every enabled byte in write cycles and is checked
for all valid bytesin read cycles. The PCHK# output signalsif adata parity error isencountered for
reads.

Even address parity is generated for A31-A5 during write and read cycles, and checked during
inquire cycles. The APCHK# output signals if an address parity error is encountered during inquire
cycles.

External hardware is free to take whatever actions are appropriate after a parity error. For example,
external hardware may signal an interrupt if PCHK# or APCHK# is asserted. See Chapter 10,
“Error Detection” for details.

Pipelined Cycles

The NA# input indicates to the processor that it may drive another cycle before the current one is
completed. Cacheability (KEN#) and cache policy (WB/WT#) indicators for the current cycle are
sampled in the same clock NA# is sampled active (or the first BRDY# for that cycle, whichever
comes first). Note that the WB/WT# and KEN# inputs are sampled with the first of BRDY# or

NA# even if NA# does not cause a pipelined cycle to be driven because there was no pending cycle
internally or two cycles are already outstanding.

The NA# input is latched internally, so even if a cycle is not pending internally in the clock that
NA# is sampled active, but becomes pending before the current cycle is complete, the pending
cycle is driven to the bus even if NA# is subsequently deasserted.

LOCK# and writeback cycles are not pipelined into other cycles and other cycles are not pipelined
into them (regardless of the state of NA#). Special cycles and 1/0O cycles may be pipelined.

An example of burst pipelined back to back reads is shown in Figure 6-18. The assertion of NA#
causes a pending cycle to be driven two clocks later. Note KEN# timing.
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Figure 6-18. Two Pipelined Cache Linefills
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Write cycles can be pipelined into read cycles and read cycles can be pipelined into write cycles,

but one dead clock isinserted between read and write cyclesto allow bus turnover (see Figure 6-6,
“Processor Bus Control State Machine” on page 6-9). Pipelined back-to-back read/write cycles are
shown in Figure 6-19.
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Figure 6-19. Pipelined Back-to-Back Read/Write Cycles
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KEN# and WB/WT# Sampling for Pipelined Cycles

KEN# and WB/WT# are sampled with NA# or BRDY # for that cycle, whichever comes first.
Figure 6-20 and Figure 6-21 clarify this specification.

Figure 6-20 shows that even though two cycles have been driven, the NA# for the second cycle still
causes KEN# and WB/WT# to be sampled for the second cycle. A third ADS# is not driven until
all the BRDY#sfor cycle 1 are returned to the processor.

Figure 6-20. KEN# and WB/WT# Sampling with NA#
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Figure 6-21 shows that two cycles are outstanding on the processor bus. The assertion of NA#
caused the sampling of KEN# and WB/WT# for the first cycle. The assertion of the four BRDY #s
for thefirst cycle DO NOT cause the KEN# and WB/WT# for the second cycle to be sampled. In
this example, KEN# and WB/WT# for the second cycle are sampled with the first BRDY # for the
second cycle.
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Figure 6-21. KEN# and WB/WT# Sampling with BRDY#
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6.4.11 Dead Clock Timing Diagrams

Thetiming diagramsin Figure 6-22 and Figure 6-23 show bus cycles with and without a dead
clock.

In Figure 6-22, cycles 1 and 2 can be either read or write cycles and no dead clock would be needed

because only one cycle is outstanding when those cycles are driven. To prevent a dead clock from

being necessary after cycle 3 is driven, it must be of the “same type” as cycle 2. That is if cycle 2 is
a read cycle, cycle 3 must also be a read cycle in order to prevent a dead clock. If cycle 2 is a write
cycle, cycle 3 must also be a write cycle to prevent a dead clock.

Figure 6-22. Bus Cycles without Dead Clock
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Although the processor ignhores BRDY # during this dead clock when configured in uni-processor
mode, BRDY # may be falsely recognized in an inter-processor pipelined cycle. As such, dual
processing system designs must not drive BRDY # low during this dead clock.

Figure 6-23. Bus Cycles with TD Dead Clock

6.5

T2 T2

ADS | \rd /
|

wre TN /T ey
NAd L | i / | \ | \ / | | \ i/ | \ I\ i

A6187-01

Cache Consistency Cycles (Inquire Cycles)

The purpose of an inquire cycle isto check whether a particular address is cached in a processor
internal cache and optionally invalidate it. After an inquire cycle is complete, the system has
information on whether or not a particular address location is cached and what state it isin.

Aninquire cycleistypically performed by first asserting AHOLD to force the processor to float its
address bus, waiting two clocks, and then driving the inquire address and INV and asserting

EADSH. Inquire cycles may al so be executed while the processor is forced off the bus due to

HLDA, or BOFF#. Because the entire cache line is affected by an inquire cycle, only A31-A5 need
to be driven with the valid inquire address. Although the value of A4—A3 is ignored, these inputs
should be driven to a valid logic level during inquire cycles for circuit reasons. The INV pin is
driven along with the inquire address to indicate whether the line should be invalidated (INV high)
or marked as shared (INV low) in the event of an inquire hit.

After the processor determines if the inquire cycle hit a line in either internal cache, it drives the
HIT# pin. HIT# is asserted (low) two clocks after EADS# is sampled asdéfrtad inquire cycle

hit a line in the code or data cache. HIT# is deasserted (high) two clocks after EADS# is sampled
asserted if the inquire cycle missed in both internal caches. The HIT# output changes its value only
as a result of an inquire cycle. It retains its value between inquire cycles. In addition, the HITM#
pin is asserted two clocks after EADS# if the inquire cycle hit a modified line in the data cache.
HITM# is asserted to indicate to the external system that the processor contains the most current
copy of the data and any device needing to read that data should wait for the processor to write it
back. The HITM# output remains asserted until two clocks after the last BRDY# of the writeback
cycle is asserted.

The external system must inhibit inquire cycles during BIST (initiated by INIT being sampled high
on the falling edge of RESET), and during the Boundary Scan Instruction RUNBIST. When the
model specific registers (test registers) are used to read or write lines directly to or from the cache

1. Sincethe EADS#input isignored by the processor in certain clocks, the two clocks referenceis from the clock in which EADSH# is asserted
and actually sampled by the processor at the end of this clock (i.e., rising edge of next clock) as shown in Figure 6-25.
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it isimportant that external snoops (inquire cycles) are inhibited to guarantee predictable results
when testing. This can be accomplished by inhibiting the snoops externally or by putting the
processor in SRAM mode (CR0.CD=CR0O.NW=1).

The EADS# input isignored during external snoop writeback cycles (HITM# asserted), or during
the clock after ADS# or EADS# is active. EADS# is also ignored when the processor isin SRAM
mode, or when the processor is driving the address bus.

Note that the processor may drive the address bus in the clock after AHOLD is deasserted. It isthe
responsibility of the system designer to ensure that address bus contention does not occur. This can
be accomplished by not deasserting AHOLD to the processor until all other bus masters have
stopped driving the address bus.

Figure 6-24 shows an inquire cycle that misses both internal caches. Note that both the HIT# and
HITM# signals are deasserted two clocks after EADSH# is sampled asserted.

Figure 6-25 shows an inquire cycle that invalidates a non-modified line. Note that INV is asserted
(high) in the clock that EADS# is returned. Note that two clocks after EADSH# is sampled asserted,
HIT# is asserted and HITM# is deasserted.

Figure 6-24 and Figure 6-25 both show that the AP pin is sampled/driven along with the address
bus, and that the APCHK# pin is driven with the address parity status two clocks after EADS# is
sampled asserted.

Aninquire cyclethat hits a M-state line is shown in Figure 6-26. Both the HIT# and HITM#
outputs are asserted two clocks after EADS# is sampled asserted. ADS# for the writeback cycle
occurs no earlier than two clocks after the assertion of HITM#.
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Figure 6-24. Inquire Cycle that Misses the Processor Cache
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Figure 6-25. Inquire Cycle that Invalidates a Non-M-State Line
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HITM# is asserted only if an inquire cycle (external snoop) hits a modified line in the processor
data cache. HITM# is not asserted for internal snoop writeback cycles or cache replacement
writeback cycles. HITM# informs the external system that the inquire cycle hit amodified linein
the data cache and that line is written back. Any ADS# driven by the processor while HITM# is
asserted will be the ADS# of the writeback cycle. The HITM# signal stays active until the last
BRDY#is returned for the corresponding inquire cycle. Writeback cycles start at burst address 0.

Note that ADS# is asserted despite the AHOLD signal being active. This ADS# initiates a
writeback cycle corresponding to the inquire hit. Such a cycle can be initiated while address lines
are floating to support multiple inquires within asingle AHOLD session. This functionality can be
used during secondary cache replacement processing if itslineislarger than the processor cache
line (32 bytes). Although the cycle specification is driven properly by the processor, address pins
are not driven because AHOL D forces the processor off the address bus. If AHOLD iscleared
before the processor drives out theinquire writeback cycle, the processor drives the correct address
for inquire writeback in the next clock. The ADS# to initiate a writeback cycle as aresult of an
inquire hitisthe only time ADS# is asserted while AHOLD is also asserted.
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Note that in the event of an address parity error during inquire cycles, the snoop cycleis not
inhibited. If the inquire hits a modified line in this situation and an active AHOLD prevents the
processor from driving the address bus, the processor potentially writes back aline at an address
other than the one intended. If the processor is not driving the address bus during the writeback
cycle, it is possible that memory will corrupted.

If BOFF# or HLDA were asserted to perform the inquire cycle, the writeback cycle would wait
until BOFF# or HLDA was deasserted.

State machines should not depend on awriteback cycle to follow an assertion of HITM#. HITM#
may be negated without a corresponding writeback cycle being run. This may occur as a result of
the internal caches being invalidated due to the INVD instruction or by testability accesses. Note
that inquire cycles occurring during testability accesses generate unpredictable results. In addition,
a second writeback cycleis not generated for an inquire cycle that hits aline already being written
back (see Figure 6-28). This can happen if an inquire cycle hits alinein one of the processor
writeback buffers.

Restrictions on Deassertion of AHOLD

To prevent the address and data buses from switching simultaneously, the following restrictions are
placed on the negation of AHOLD: (i) AHOLD must not be negated in the same clock as the
assertion of BRDY # during awrite cycle; (ii)) AHOLD must not be negated in the dead clock
between write cycles pipelined into read cycles; and (iii) AHOLD must not be negated in the same
clock as the assertion of ADS# while HITM# is asserted. Note that there are two clocks between
EADS# being sampled asserted and HITM# being asserted, and a further minimum of two clocks
between an assertion of HITM# and ADSH.

These restrictions on the deassertion of AHOLD are the only considerations the system designer
needs to make to prevent the simultaneous switching of the address and data buses. All other
considerations are handled internally.

Figure 6-26 can be used to illustrate restrictions (i) and (iii). AHOLD may be deasserted in Clock
2,3,0r4,butnotinClock 5, 6, 7,8 or 9.

Figure 6-27 and Figure 6-28 depict restrictions (i) and (ii) respectively. Note that there are no
restrictions on the assertion of AHOLD.
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Figure 6-26. Inquire Cycle that Invalidates M-State Line
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Figure 6-27 shows awriteback (due to a previous snoop that is not shown). ADS# for the writeback
is asserted even though AHOLD is asserted. Note that AHOLD can be deasserted in Clock 2, 4, 7,

or 9. AHOLD cannot be deasserted in Clock 1, 3, 5, 6, or 8.
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Figure 6-27. AHOLD Restriction during Write Cycles
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Figure 6-28 shows awrite cycle being pipelined into aread cycle. Note that if AHOLD is asserted
in Clock 5, it can be deasserted in Clock 7 before the TD, or in Clock 10 after the TD, but it cannot
be deasserted in Clock 8 (the TD clock). AHOLD cannot be deasserted in Clock 9 because BRDY #
for the write cycle is being returned.

Figure 6-28. AHOLD Restriction During TD
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6.5.4
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Rate of Inquire Cycles

The processor can accept inquire cycles at a maximum rate of one every other clock. However, if
an inquire cycle hits an M-state line of the processor, subsequent inquire cycles will be ignored
until thelineiswritten back and HITM# is deasserted. EADS# is also ignored the clock after ADS#
is asserted.

Internal Snooping

“Internal snoop” is the term used to describe the snooping of the internal code or data caches that is
not initiated by the assertion of EADS# by the external system. Internal snooping occurs in the
three cases described below. Note that neither HIT# nor HITM# are asserted as a result of an
internal snoop.

1. Aninternal snoop occurs if an access is made to the code cache, and that access is a miss. In
this case, if the accessed line is in the S or E state in the data cache, the line is invalidated. If
the accessed line is in the M state in the data cache, the line is written back then invalidated.

2. Aninternal snoop occurs if an access is made to the data cache, and that access is a miss or a
writethrough. In this case, if the accessed line is valid in the code cache, the line is invalidated.

3. Aninternal snoop occurs if there is a write to the accessed and/or dirty bits in the page
table/directory entries. In this case, if the accessed line is valid in either the code or data cache,
the line is invalidated. If the accessed line is in the M state in the data cache, the line is written
back then invalidated.

Snooping Responsibility

In systems with external second level caches allowing concurrent activity of the memory bus and
processor bus, it is desirable to run invalidate cycles concurrently with other processor bus activity.
Writes on the memory bus can cause invalidations in the secondary cache at the same time that the
processor fetches data from the secondary cache. Such cases can occur at any time relative to each
other, and therefore the order in which the invalidation is requested, and data is returned to the
processor becomes important.

The processor always snoops the instruction and data caches when it accepts an inquire cycle. If a
shoop comes in during a linefill, the processor also snoops the line currently being filled. If more
than one cacheable cycle is outstanding (through pipelining), the addresses of both outstanding
cycles are snooped.

For example, during linefills, the processor starts snooping the address(es) associated with the
line(s) being filled after KEN# has been sampled active for the line(s). Each line is snooped until it
is put in the cache. If a snoop hits a line being currently filled, the processor asserts HIT# and the
line ends up in the cache in the S or | state, depending on the value of the INV pin sampled during
the inquire cycle. However, the processor uses the data returned for that line as a memory operand
for the instruction that caused the data cache miss/line fill or execute an instruction contained in a
code cache miss/line fill.

Figure 6-29 and Figure 6-30 illustrate the snoop responsibility pickup. Figure 6-29 shows a non-

pipelined cycle, while Figure 6-30 illustrates a pipelined cycle. The figures show the earliest
EADS# assertion that causes snooping of the line being cached relative to the first BRDY# or NA#.
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Non-Pipelined Cycles

Figure 6-29. Snoop Responsibility Pickup
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Figure 6-30. Snoop Responsibility Pickup — Pipelined Cycle
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The processor also snoops M state lines in the writeback buffers until the writeback of the M state

lines are complete. If asnoop hits an M state line in awriteback buffer, both HIT# and HITM# are

asserted. Figure 6-31 illustrates snooping (snoop responsibility drop) of an M state line that is

being written back because it has been replaced with a “new” line in the data cache. It shows the
latest EADS# assertion, relative to the last BRDY# of the writeback cycle that results in a snoop hit
to the line being written back. HITM# stays asserted until the writeback is complete. Note that an
additional ADS# is not asserted during the writeback cycle.

The HIT# signal is a super set of the HITM# signal; it is always asserted with HITM#.

6-42 Embedded Pentium® Processor Family Developer’s Manual



u
I nt9| o Bus Functional Description

Figure 6-31. Latest Snooping of Writeback Buffer
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6.6 Summary of Dual Processing Bus Cycles

Thefollowingisalist of bus cycles or bus cycle sequences which would not occur in embedded
Pentium processor uni-processor systems, but may be seen in Dual processor systems.

* | ocked Cycle Sequences

* CyclePipelining

* Cycle Ordering Dueto BOFF#

* Cacheline State

¢ Back-to-Back Cycles

* Address Parity Checking

¢ Synchronous FLUSH# and RESET
* PCHK# Assertion

* Fush Cycles

* Foating-Point Error Handling
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6.6.1 Locked Cycle Sequences

1. Locked read to address X

2. Locked write back to address X
3. Locked read to address X

4. Locked write to address X

May occur due to the inter-processor cache consistency mechanism. Refer to Chapter 4,
“Microprocessor Initialization and Configuration.”

Implications

Processor bus hardware needs to handle this locked sequence. The only other time the system sees
a locked write back is when an external snoop hits a modified line while a locked cycle is in
progress (this can occur in a uni-processor or a dual-processor system).

6.6.2 Cycle Pipelining

Inter-processor (Primary/Dual processor) back-to-back write cycles are not pipelined even if NA#
has been asserted. The purpose of this rule is to prevent data bus contention during bus arbitration
from one processor to the other. In dual processor mode, the Primary processor may pipeline /0
cycles into I/0 cycles from the Dual processor (and vice versa) for any 1/O instruction combination
(i.e., except I/O writes into writes).

Implications

System hardware designers should be aware of these bus changes.

6.6.3 Cycle Ordering Due to BOFF#

Cycle ordering following an assertion of BOFF# may be different between uni-processor and dual
processor modes. This occurs when there are pipelined cycles from both processors, a BOFF#
stalls both cycles, and an external snoop hits a modified line in the LRMs cache.

Implications

System hardware designers should be aware of these bus changes.

6.6.4 Cache Line State

In embedded Pentium processor family uni-processor systems, if a line is put into the E state by the
system hardware using the WB/WT# signal during the line fill, then all subsequent writes to that
line are handled internally via the on-chip cache. In dual-processor systems, under certain
circumstances, even if the system puts a line into the E state using WB/WT#, the dual-processor
protocol may force the line to be stored in the S state. Private snooping in dual processor systems
can also cause a line to be placed into the S or | state.
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Implications

There are no system implications. The system may be required to handle writesto aline which
would not otherwise have been seen.

In adual processing system where NW=1 and CD=1 are set, (i.e., SRAM mode), an inquire cycle
invalidates a cache line with INV on aHIT#.

Back-to-Back Cycles

Dueto the dual -processor cache consistency protocol, the Primary and Dual processors may follow
awrite to address X with awrite back to a 32-byte area which contains X. This does not occur in
uni-processor systems. Also, aread to address X may be followed by awrite back to a 32-byte area
which contains X.

Implications

There are no system implications.

Address Parity Checking

Address parity is checked during every private snoop between the Primary and Dual processors.
Therefore, APCHK# may be asserted due to an address parity error during this private snoop. If an
error is detected, APCHK# is asserted two clocks after ADS# for one processor clock period. The
system can choose to acknowledge this parity error indication at this time or do nothing.

Implications

There are no system implications. The system designers get extra address parity checking with dual
processors due to the automatic private snooping.

Synchronous FLUSH# and RESET

When the Dual processor is present, the FLUSH# and RESET signals must be recognized by both
processors at the same time.

Implications

FLUSH# and RESET must be asserted on the same clock to both the Primary and Dual processors.

PCHK# Assertion

In a dual-processor configuration, there is the possibility that the PCHK# signal can be asserted
either two or three CLK s following incorrect parity being detected on the data bus (depending on
the bus-to-core ratio).

Implications

Chip sets must account for this difference from the embedded Pentium processor in their logic or
state machines.
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Flush Cycles

The Primary and Dual processors incorporate a mechanism to present a unified view of the cache
flush operation to the system when in dual processing mode. The Dual processor performsthe
cache flush operation first, then grants the bus to the Primary processor. The Primary processor
flushesitsinternal caches, and then runs the cache flush special cycle.

Implications

The system hardware must not assert a subsequent FLUSH# to the processors until the flush
acknowledge special cycle has completed on the processor bus. The assertion of FLUSH# to the
processors prior to this point would result in a corruption of the dual processing bus arbitration
state machines.

Floating-Point Error Handling

The embedded Pentium processor, when configured as a Dual processor, ignores the IGNNE#
input. The FERR# output is also undefined in the Dual processor.

Implications

None.
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This section describes the el ectrical differences between the embedded Pentium® processor family
members.

7.1 Differences Between Processors

When designing an embedded Pentium® processor with MMX™ technology system from an

existing embedded Pentium processor (at 100/133/166 MHz) system, there are a number of
electrical differences that require attention. Designing a single motherboard that supports various
members of the embedded Pentium processor family can be accomplished easily.

Refer to theEmbedded Pentium® Processor Flexible Motherboard Desi gn Guidelines (order
number 273206) for more information and specific implementation examples.

The following sections highlight key electrical issues pertaining to power supplies, connection
specifications, and buffer models.

7.1.1 Power Supplies

One key electrical difference between family processors is the operating voltage.

¢ The embedded Pentium processor (at 100/133/166 MHz) requires a single voltage supply for
all V¢ pins. This single supply powers both the core and 1/0 pins.

* The embedded Pentium processor with Voltage Reduction Technology, the embedded Pentium
processor with MM X technology, and the low-power embedded Pentium processor with
MMX technology require two separate voltage inputs, Vo and V ces. TheV o pins supply
power to the core, while the V ¢3 pins supply power to the processor 1/0O pins.

By connecting all of the V o, pinstogether and all the V -3 pins together on separate power
islands, embedded Pentium processor (at 100/133/166 MHZz) designs can easily be converted to
support the embedded Pentium processor with MM X technology. In order to maintain
compatibility with embedded Pentium processor-based platforms, embedded Pentium processors
with MMX technology supports the standard 3.3 V specification on its V qc3 pins.

Refer to each processor’s datasheet for complete electrical specifications.

7.1.1.1 Power Supply Sequencing
There is no specific power sequence required for powering up or powering down the segarate V

and V3 supplies of the embedded Pentium processor with MMX technology. It is recommended
that the \co and V3 supplies be either both ON or both OFF within 1 second of each other.
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7.1.2

7.1.2.1

7.1.2.2
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Connection Specifications

Connection specifications for the power and ground inputs, 3.3 V inputs and outputs, and the
NC/INC and unused inputs are discussed in the following sections.

Power and Ground Connections

For clean on-chip power distribution, the embedded Pentium processor has 53 V ¢ (power) and 53
V g5 (ground) inputs.

Power and ground connections must be madeto al V¢ and V g5 pins of the embedded Pentium
processor. On the circuit board, al V¢ pins must be connected to aV ¢ plane. All V g5 pins must
be connected to a V g5 plane.

It isimperative that the system decoupling be sufficient to maintain ALL V¢ pins of the processor
within their specified operating range regardless of whether aunified-plane or split-plane processor
isinstalled.

The unified-plane embedded Pentium processor packages have asingle internal V¢ plane. This
plane may be used as the means of conduction between the V o, and V o3 motherboard power
planes when a unified-plane processor isinstalled in the system. Should such an implementation be
used, it must be ensured that the maximum current flowing through the processor package does not
exceed 8 Amps, including the power required by the processor. (The embedded Pentium processor
(100/133/166) is a unified plane processor.)

Given the above specifications, many different implementations of power distribution are possible
for embedded Pentium processor-based motherboard designs. These can be broadly categorized
into two groups.

1. Unified-plane processors receive power externally to all Voo and V 3 pins, while split-
plane processors receive power from independent sources for Veco and Vs

2. Unified-plane processors receive power externally to either the V¢, or V3 pins, while
split-plane processors receive power from independent sourcesfor Vo and Vs

The second implementation discussed above implies that when a unified-plane processor is
installed, either the V o5 or V o3 voltage regulator will shut down if the voltage from the other
regulator is higher than its own output setpoint. Thiswill leave one voltage regulator powering
either the V o or V 3 pins directly. The remaining functioning voltage regulator must be capable
of providing the total required current independently. In the case when a split-plane processor is
installed, both voltage regulators must continue to function at the proper voltage levels.

Vcc Measurement Specification

The values of V ¢ should be measured at the bottom side of the processor pins using an
oscilloscope with a 3 dB bandwidth of at least 20 MHz (100 MS/s digital sampling rate). There
should be a short isolation ground lead attached to a processor pin on the bottom side of the board.

The measurement should be taken at the following V c/V g5 pairs: AN13/AM10, AN21/AM 18,
AN29/AM26, AC37/236, U37/R36, L37/H36, A25/B28, A17/B20, A7/B10, GI/K2, SI/V2,
AC1/Z2. Note that on the embedded Pentium processor with MM X technology, one-half of these
pinsare V¢, While the others are V o3; the operating ranges for the V oo and V3 pinsare
specified at different voltages.
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The display should show continuous sampling of the V ¢ line, at 20 mV/div, and 500 ns/div with
the trigger point set to the center point of the range. Slowly move the trigger to the high and low
ends of the specification, and verify that excursions beyond these limits are not observed. There are
no allowances for crossing the high and low limits of the voltage specification. For more
information on measurement techniques, see the Implementation Guidelines for 3.3 V Penti um®
Processors with VR/VRE Specifications (order number 242687) and Voltage Guidelines for
Pentium® Processors with MMX™ Technolo@yrder number 243186) application notes.

Decoupling Recommendations

Liberal decoupling capacitance should be placed near the embedded Pentium processor. The
embedded Pentium processor driving its large address and data buses at high frequencies can cause
transient power surges, particularly when driving large capacitive loads.

Low inductance capacitors and interconnects are recommended for best high frequency electrical
performance. Inductance can be reduced by shortening circuit board traces between the embedded
Pentium processor and decoupling capacitors as much as possible. These capacitors should be
evenly distributed around each component on the power plane. Capacitor values should be chosen
to ensure they eliminate both low and high frequency noise components.

For the embedded Pentium processor, the power consumption can transition from alow level of
power to a much higher level (or high to low power) very rapidly. A typical example would be
entering or exiting the Stop Grant State. Another example would be executing aHALT instruction,
causing the embedded Pentium processor to enter the AutoHALT Power Down State, or
transitioning from HALT to the Normal State. All of these examples may cause abrupt changesin
the power being consumed by the embedded Pentium processor. Note that the AutoHALT Power
Down feature is always enabled even when other power management features are not
implemented.

Bulk storage capacitors with alow ESR (Effective Series Resistance) in the 10 Q to 100 Q range
arerequired to maintain aregulated supply voltage during the interval between the time the current
load changes and the point that the regulated power supply output can react to the changein load.
In order to reduce the ESR, it may be necessary to place several bulk storage capacitorsin parallel.

These capacitors should be placed near the embedded Pentium processor on the power plane(s) to
ensure that the supply voltage stays within specified limits during changes in the supply current
during operation.

Detailed decoupling recommendations are provided in the Embedded PentiufiProcessor Flexible
Motherboard Design Guidelines (order number 273206).

3.3 V Inputs and Outputs

Theinputs and outputs of the embedded Pentium processor comply with the 3.3 V JEDEC standard
levels. Both inputs and outputs are also TTL-compatible, although the inputs cannot tolerate
voltage swings above the VN3 (max.) specification.

System support components which use TTL-compatible inputs will interface to the embedded
Pentium processor without extralogic. Thisis because the embedded Pentium processor drives
according tothe 5V TTL specification (but not beyond 3.3 V).

For embedded Pentium processor inputs, the voltage must not exceed the 3.3 V V3 (max.)
specification. System support components can consist of 3.3 V devices or open-collector devices.
In an open-collector configuration, the external resistor should be biased to V3.
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All pins, other than the CLK and PICCLK of the embedded Pentium processor (100/133/166), are
3.3 V-only. If an 8259A interrupt controller is used, for example, the system must provide level
converters between the 8259A and the embedded Pentium processor.

The CLK and PICCLK inputs of the embedded Pentium processor (100/133/166) are 5 V tolerant.
Thisallows a5 V clock driver to be used for the embedded Pentium processor (100/133/166).
These inputs, however, are not 5V tolerant on the embedded Pentium processor with MM X
technology. The embedded Pentium processor with MM X technology CLK and PICCLK inputs
are3.3V tolerant only. A 3.3V clock driver should be used in systems designed to support both the
embedded Pentium processor with MM X technol ogy and embedded Pentium processor
(100/133/166).

NC/INC and Unused Inputs

All NC and INC pins must remain unconnected.

For reliable operation, always connect unused inputs to an appropriate signal level. Unused active
low inputs of the embedded Pentium processor with MM X technology should be connected to

V o3, and unused active low inputs of the embedded Pentium processor (100/133/166) should be
connected to Vc. Unused active high inputs should be connected to V g (ground).

Buffer Models

The structure of the buffer models for the embedded Pentium processor with MM X technology and
the embedded Pentium processor (100/133/166) are identical. Some of the values of the
components have changed to reflect the minor manufacturing process and package differences
between the processors. The system should seeinsignificant differences between the AC behavior
of the Pentium Processor with MM X Technology and the embedded Pentium processor
(100/133/166).

Simulation of AC timings using the embedded Pentium processor buffer models is recommended

to ensure robust system designs. Pay specific attention to the signal quality restrictionsimposed by
3.3V buffers.
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This chapter describes the 3.3 V 1/0 buffer models of the embedded Penti um® processor.

Thefirst order 1/0 buffer model isa simplified representation of the complex input and output
buffers used in the Pentium processor family. Figure 8-1 and Figure 8-2 show the structure of the
input buffer model and Figure 8-3 shows the output buffer model. Table 8-1 and Table 8-2 show
the parameters used to specify these models.

Although simplified, these buffer models will accurately model flight time and signal quality. For
these parameters, there is very little added accuracy in a complete transistor model.

The following two model s represent the input buffer models. The first model, Figure 8-1,
represents al of the input buffers of the Pentium processor except for a special group of input
buffers. The second model, Figure 8-2, represents these specia buffers. These buffers are:
AHOLD, EADSH#, KEN#, WB/WT#, INV, NA#, EWBE#, BOFF#, CLK, and PICCLK.

The embedded Pentium processor supports 5V tolerant buffers on the CLK and PICCLK pins. Itis
important to note that all inputs of the embedded Pentium processor with MMX™ technology are
3.3 V tolerant only. The CLK and PICCLK pins are not 5 V tolerant on the embedded Pentium
processor with MMX technology.

Figure 8-1. Input Buffer Model, Except Special Group
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Figure 8-2. Input Buffer Model for Special Group
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Table 8-1. Parameters Used in the Specification of the First Order Input Buffer Mode

Parameter Description
c Minimum and Maximum value of the capacitance of the input buffer
in model.
Lp Minimum and Maximum value of the package inductance.
Cp Minimum and Maximum value of the package capacitance.
Rs Diode Series Resistance
D1, D2 Ideal Diodes

Figure 8-3 shows the structure of the output buffer model. This model is used for al of the output
buffers of the Pentium processor.
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Figure 8-3. First Order Output Buffer Model
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Table 8-2. Parameters Used in the Specification of the First Order Output Buffer Mode

8.1

Parameter Description
dv/dt Minimum and maximum value of the rate of change of the open circuit
voltage source used in the output buffer model.
R Minimum and maximum value of the output impedance of the output buffer
o model.
c Minimum and Maximum value of the capacitance of the output buffer
0
model.
Lp Minimum and Maximum value of the package inductance.
Cp Minimum and Maximum value of the package capacitance.

In addition to the input and output buffer parameters, input protection diode models are provided
for added accuracy. These diodes have been optimized to provide ESD protection and provide
some level of clamping. Although the diodes are not required for simulation, it may be more
difficult to meet specifications without them.

Note however, that some signal quality specifications require that the diodes be removed from the
input model. The series resistors (Rs) are a part of the diode model. Remove these when removing
the diodes from the input model.

Buffer Model Parameters

This section gives the parameters for each Pentium processor input, output, and bidirectional
signals, and the settings for the configurable buffers.

In dual processor mode, afew signals change from output signalsto I/O signals. These signals are:
ADSH#, M/10#, DIC#, WIR#, LOCK#, CACHE#, SCYC, HLDA, HIT#, and HITM#. When
simulating these signals use the correct operation of the buffer whilein DP mode.

Some pins on the processor have sel ectable buffer sizes to allow for faster switching of the buffer
in heavily loaded environments. The buffer selection is done through the setting of configuration
pins at power on RESET. Once selected, these cannot be changed without a power on RESET. The
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BUSCHK# and BRDY C# pins are used to select the different buffer size. All configurable pins get
set to the selected buffer size. Thereis no selection for specific signal groupsto get specific buffers.
Keep in mind that the largest buffer size is not always the best selection especialy in alightly
loaded environment. AC timing and signal quality simulations should be done to ensure that the
buffers used meet required timing and signal quality specifications for the components that will be
used in the specific board design.

The pins with selectable buffer sizes use the configurable output buffer EB2. Table 8-3 shows the
drivelevel required at falling edge of RESET, to select the buffer strength. Once selected, the
buffer size cannot be changed without a power on RESET. The buffer sizes selected should be the
appropriate size required, otherwise AC timings might not be met, or too much overshoot and
ringback may occur. There are no other selection choices, al the configurable buffers get set to the
same size at the sametime.

Table 8-3 shows the proper settings on BRDY C# and BUSCHK# for proper buffer size selection.

Table 8-3. Buffer Selection Chart

Environment BRDYC# BUSCHK# Buffer Selection
Typical Stand Alone Component 1 X EB2
Loaded Component 0 1 EB2A
Heavily Loaded Component 0 0 EB2B

NOTE: Xis a“don't care” (0 or 1). Please refer to Table 8-4 for the groupings of the buffers

Table 8-4. Signal to Buffer Type

Signals Type Driver Buffer Receiver
Type Buffer Type

CLK | ERO
A20M#, AHOLD, BF1-BFO, BOFF#, BRDY#, BRDYCH#,
BUSCHK#, EADS#, EWBE#, FLUSH#, FRCMC#2, HOLD,
IGNNE#, INIT, INTR, INV, KEN#, NA#, NMI, PEN#, PICCLK, | ER1
R/S#, RESET, SMI#, STPCLK#, TCK, TDI, TMS, TRST#,
WB/WT#
ADSC#, APCHK#, BE7#-BE5#, BP3-BP2, BREQ, FERR#,
IERR#, PCD, PCHK#, PM0/BP0O, PM1/BP1, PRDY, PWT, O ED1
SMIACT#, TDO, D/P#
A31-A21, AP, BE4#-BEO#, CACHE#, D/C#, D63-D0, DP7—
DPO, HLDA, LOCK#, M/IO#, PBGNT#, PBREQ#, PHIT#, 1/0 EB1 EB1
PHITM#, SCYC
A20-A3, ADS#, HITM#, W/R# 110 EB2/A/B EB2
HIT# 110 EB3 EB3
PICDO, PICD1 1/0 EB4 EB4
NOTES:

1. VCC2DET# has no buffer model — it is simply a short to Vgg on the embedded Pentium® processor with
MMX™ technology . This pin is an INC on the embedded Pentium processor.

2. FRCMC# is defined only for the embedded Pentium processor.

Theinput, output and bidirectional buffersvaluesarelisted in Table 8-5. Table 8-5 containslistings
for al three types; do not get them confused during simulation. When a bidirectional pinis
operating as an input, just use the C;,, C, and L, values, if it is operating as adriver use al the data
parameters.
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Table 8-5. Input, Output and Bidirectional Buffer Model Parameters
Buffer Transition dv/dt Ro Cp Lp Co/Cin
Type (VInsec) (Ohms) (pF) (nH) (pF)
min max min max min | max | min max | min | max
ERO Rising 3.0 5.0 4.0 7.2 0.8 1.2
(input) Falling 3.0 5.0 4.0 7.2 0.8 1.2
ER1 Rising 11 6.1 4.7 15.3 0.8 1.2
(input) Falling 11 6.1 4.7 15.3 0.8 1.2
ED1 Rising 3/3.0 3.7/0.9 216 53.1 11 8.2 4.0 17.7 2.0 2.6
(output) Falling 3/2.8 3.7/0.8 175 50.7 1.1 8.2 4.0 17.7 2.0 2.6
EB1 Rising 3/3.0 3.7/0.9 216 53.1 1.3 8.7 4.0 18.7 2.0 2.6
(bidir) Falling 3/2.8 3.7/0.8 175 50.7 1.3 8.7 4.0 18.7 2.0 2.6
EB2 Rising 3/3.0 3.7/0.9 216 53.1 1.3 8.3 4.4 16.7 9.1 9.7
(bidir) Falling 3/2.8 3.7/0.8 175 50.7 1.3 8.3 4.4 16.7 9.1 9.7
EB2A Rising 3/2.4 3.7/0.9 10.1 22.4 1.3 8.3 4.4 16.7 9.1 9.7
(bidir) Falling 3/2.4 3.7/0.9 9.0 21.2 1.3 8.3 4.4 16.7 9.1 9.7
EB2B Rising 3/1.8 3.7/0.7 55 12.9 1.3 8.3 4.4 16.7 9.1 9.7
(bidir) Falling 3/1.8 3.7/0.7 4.6 12.3 1.3 8.3 4.4 16.7 9.1 9.7
EB3 Rising 3/3.0 3.7/0.9 216 53.1 1.9 7.5 9.9 14.3 3.3 3.9
(bidir) Falling 3/2.8 3.7/0.8 175 50.7 1.9 7.5 9.9 14.3 3.3 3.9
EB4 Rising 3/3.0 | 3.7/0.9 | 100" | 100k" | 20 | 69 | 58 | 146 | 50 | 7.0
(bidir) Falling 3/2.8 3.7/0.8 175 50.7 2.0 6.9 5.8 14.6 5.0 7.0

Table 8-6.

1t The buffer is an open drain. For simulation purposes it should be modeled by a very large internal resistor
with an additional external pull-up.

Input Buffer Model Parameters: D (Diodes)

Symbol Parameter D1 D2
IS Saturation Current l4e-14 A 2.78e-16 A
N Emission Coefficient 1.19 1.00
RS Series Resistance 6.5 ohms 6.5 ohms
TT Transit Time 3ns 6 ns
VJ PN Potential 0.983V 0.967 V
CJO Zero Bias PN Capacitance 0.281 pF 0.365 pF
M PN Grading Coefficient 0.385 0.376
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8.2 Signal Quality Specifications

Signals driven by the system into the Pentium processor must meet signal quality specificationsto
guarantee that the components read data properly and to ensure that incoming signals do not affect
the reliability of the component. There are two signal quality parameters: Ringback and Settling
Time. For more information, see “CLK/PICCLK Signal Quality Specification for the Pentium®
Processor with MMX™ Technology” on page 8-8.

8.2.1 Ringback

Excessive ringback can contribute to long-term reliability degradation of the Pentium processor,
and can cause false signal detection. Ringback is simulated at the input pin of a component using
the input buffer model. Ringback can be simulated with or without the diodes that are in the input
buffer model.

Ringback is the absolute value of the maximum voltage at the receiving pin bg{o(@nabove
Vgg) relative to ¢ (or V) level after the signal has reached its maximum voltage level. The
input diodes are assumed present.

¢ Maximum Ringtrack on Inputs = 0.8 V (with diodes)

If simulated without the input diodes, follow the Maximum Overshoot/Undershoot specification.
By meeting the overshoot/undershoot specification, the signal is guaranteed not to ringback
excessively.

If simulated with the diodes present in the input model, follow the maximum ringback
specification.

Overshoot (Undershoot) is the absolute value of the maximum voltage above V¢ (below Vg).
The guideline assumes the absence of diodes on the input.

¢ Maximum Overshoot/Undershoot on 3.3 V Pentium processor Inputs (including CLK and
PICCLK) = 1.4V aboveV 3 (without diodes)

Figure 8-4. Overshoot/Undershoot and Ringback Guidelines
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Settling Time

The settling timeis defined as the time asignal requires at the receiver to settle within 10% of Ve
or Vg Settling time is the maximum time allowed for asignal to reach within 10% of its final

value.

Most available simulation tools are unable to simulate settling time so that it accurately reflects
silicon measurements. On aphysical board, second-order effects and other effects serve to dampen
the signal at the receiver. Because of all these concerns, settling timeis arecommendation or atool
for layout tuning and not a specification.

Settling timeis simulated at the slow corner, to make sure that there is no impact on the flight times
of the signalsif the waveform has not settled. Settling time may be simulated with the diodes
included or excluded from the input buffer model. If diodes are included, settling time
recommendation will be easier to meet.

Although simulated settling time has not shown good correlation with physical, measured settling
time, settling time simulations can still be used as atool to tune layouts.

Use the following procedure to verify board simulation and tuning with concerns for settling time.

1. Simulate settling time at the slow corner for a particular signal.

2. If settling time violations occur, simulate signal trace with DC diodes in place at the receiver
pin. The DC diode behaves almost identically to the actual (non-linear) diode on the part as
long as excessive overshoot does not occur.

3. If settling time violations till occur, simulate flight times for five consecutive cycles for that
particular signal.

4. If flight time values are consistent over the five simulations, settling time should not be a
concern. If however, flight times are not consistent over the five simulations, tuning of the
layout is required.

Notethat, for signalsthat are allocated two cycles for flight time, the recommended settling timeis
doubled.

Maximum Settling Time to within 10% of V¢ is: 12.5 ns @66 MHz.
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Figure 8-5. Settling Time
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CLK/PICCLK Signal Quality Specification for the Pentium®
Processor with MMX™ Technology

The maximum overshoot, maximum undershoot, overshoot threshold duration, undershoot
threshold duration, and maximum ringback specifications for CLK/PICCLK are described below:

Maximum Overshoot And Maximum Under shoot Specification: The maximum overshoot of
the CLK/PICCLK signals should not exceed V 3, nominal +0.9 V. The maximum undershoot of
the CLK/PICCLK signals must not drop below —0.9 V.

Overshoot Threshold Duration Specification: The overshoot threshold duration is defined as the
sum of all time during which the CLK/PICCLK signal is abovgdd, nominal +0.5 V within a
single clock period. The overshoot threshold duration must not exceed 20% of the period.

Undershoot Threshold Duration Specification: The undershoot threshold duration is defined as
the sum of all time during which the CLK/PICCLK signal is beldwb V within asingle clock
period. The undershoot threshold duration must not exceed 20% of the period.

Maximum Ringback Specification: The maximum ringback of CLK/PICCLK associated with
their high states (overshoot) must not drop below V-3 -0.8 V as shown in Figure 8-7. Similarly,
the maximum ringback of CLK/PICCLK associated with their low states (undershoot) must not
exceed 0.8V as shown in Figure 8-9.

Refer to Table 8-7 and Table 8-8 for a summary of the clock overshoot and undershoot
specifications for the embedded Pentium processor with MM X technology.
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Table 8-7. Overshoot Specification Summary
Specification Name Value Units Notes
Threshold Level Vces, nominal +0.5 \% Q) (2
Maximum Overshoot Level Vces: nominal +0.9 \% 1) (2)
p -
Maximum Threshold Duration 20% of clock period above threshold ns @)
voltage
Maximum Ringback Vcea, nominal —0.8 \% Q) (2)
NOTES:
1. V3, nominal refers to the voltage measured at the bottom side of the V3 pins.
2. See Figure 8-6 and Figure 8-7.
Table 8-8. Undershoot Specification Summary
Specification Name Value Units Notes
Threshold Level -0.5 \% (2)
Minimum Undershoot Level -0.9 \% Q)
. . 20% of clock period below threshold
Maximum Threshold Duration voltage ns (1)
Maximum Ringback 0.8 \% (1)

8.23.1

NOTE:
1. See Figure 8-8 and Figure 8-9.

Clock Signal Measurement Methodology

The waveform of the clock signals should be measured at the bottom side of the processor pins
using an oscilloscope with a 3 dB bandwidth of at least 20 MHz (100 ms/s digital sampling rate).
There should be a short isolation ground |ead attached to a processor pin on the bottom side of the
board. A 1 MOhm probe with loading of lessthan 1 pF (e.g., Tektronics 6243 or Tektronics 6245)
is recommended. The measurement should be taken at the CLK (AK18) and PICCLK (H34) pins
and their nearest V g5 pins (AM 18 and H36, respectively).

Maximum Over shoot, Maximum Under shoot And Maximum Ringback Specifications. The
display should show continuous sampling (e.g., infinite persistence) of the waveform at 500
mV/div and 5 ng/div (for CLK) or 20 ng/div (for PICCLK) for arecommended duration of
approximately five seconds. Adjust the vertical position to measure the maximum overshoot and
associated ringback with the largest possible granularity. Similarly, readjust the vertical position to
measure the maximum undershoot and associated ringback. Thereis no allowance for crossing the
maximum overshoot, maximum undershoot or maximum ringback specifications.

Over shoot Threshold Duration Specification: A snapshot of the clock signal should be taken at
500 mV/div and 500 pg/div (for CLK) or 2 ng/div (for PICCLK). Adjust the vertical position and
horizontal offset position to view the threshold duration. The overshoot threshold duration is
defined as the sum of all time during which the clock signal is above V ¢35, nominal +0.5 V within
asingle clock period. The overshoot threshold duration must not exceed 20% of the period.
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Undershoot Threshold Duration Specification: A snapshot of the clock signal should be taken at
500 mV/div and 500 pg/div (for CLK) or 2 ng/div (for PICCLK). Adjust the vertical position and
horizontal offset position to view the threshold duration. The undershoot threshold duration is
defined as the sum of all time during which the clock signal is below -0.5 V within asingle clock
period. The undershoot threshold duration must not exceed 20% of the period.

These overshoot and undershoot specifications are illustrated in Figures 8-6 to 8-9.

Figure 8-6. Maximum Overshoot Level, Overshoot Threshold Level, and Overshoot
Threshold Duration
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Figure 8-7. Maximum Ringback Associated with the Signal High State
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Figure 8-8. Maximum Undershoot Level, Undershoot Threshold Level, and
Undershoot Threshold Duration
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Figure 8-9. Maximum Ringback Associated with the Signal Low State
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9.1

This chapter describes the features which are included in the embedded Penti um® processor for the
purpose of enhancing testability. The capability of the Intel486™ processor test hooks are included
in the embedded Pentium processor; however, some are implemented differently. In addition, new
test features were added to assure timely testing and production of the system product.

Internal component testing through the Built-In Self-Test (BIST) feature provides 100% single
stuck at fault coverage of the microcode ROM and large PLAS. Some testing of the instruction
cache, data cache, Translation Lookaside Buffers (TLBs), and Branch Target Buffer (BTB) is also
performed. In addition, the constant ROMs are checked.

Three-State Test Mode and the IEEE 1149.1 “Test Access Port and Boundary Scan” mechanism are
included to facilitate testing of board connections.

See “Testability And Test Registers” on page 14-3 for more information regarding the testing of the
on-chip caches, translation lookaside buffers, branch target buffer, second level caches, the
superscalar architecture, and internal parity checking through the test registers.

Built-in Self-test (BIST)

Self-test is initiated by driving the INIT pin high when RESET transitions from high to low. No bus
cycles are run by the embedded Pentium processor during self-test. The duration of self-test is
approximately 29 coreclocks. Approximately 70% of the devices in the processor are tested by
BIST. The BIST consists of two parts: hardware self-test and microcode self-test.

During the hardware portion of BIST, the microcode and all large PLAs are tested. All possible
input combinations of the microcode ROM and PLAs are tested.

The constant ROMs, BTB, TLBs and all caches are tested by the microcode portion of BIST. The
array tests (caches, TLBs and BTB) have two passes. On the first pass, data patterns are written to
arrays, read back and checked for mismatches. The second pass writes the complement of the
initial data pattern, reads it back and checks for mismatches. The constant ROMs are tested by
using the microcode to add various constants and check the result against a stored value.

Upon completion of BIST, the cumulative result of all tests are stored in the EAX register. When
EAX contains OH, all checks passed; any non-zero result indicates a faulty unit. Note that if an
internal parity error is detected during BIST, the processor will assert the IERR# pin and attempt to
shutdown.
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9.2 Three-state Test Mode

When the FLUSH# pin is sampled low in the clock prior to the RESET pin going from high to low,
the processor enters three-state test mode. The processor floats all of its output pins and
bidirectional pinsincluding pinswhich are never floated during normal operation (except TDO).
Three-state test mode can be initiated in order to facilitate testing of board connections. The
processor remains in three-state test mode until the RESET pin istoggled again.

In adual-processor system, the private interface pins are not floated in Three-state Test mode.
These pins are PBREQ#, PBGNT#, PHIT#, and PHITM#.

Note: There are several pinsthat have internal pullups or pulldowns attached that show these pins going
high or low, respectively, during Three-state Test mode. There is one pin, PICD1, that has an
internal pulldown attached that shows this pin going low during Three-state Test mode. The five
pinsthat have pullups are PHIT#, PHITM#, PBREQ#, PBGNT#, and PICDO. There are two other
pins that have pullups attached during dual processor mode, HIT# and HITM#. The pullups on
these pins (except HIT#) have a value of about 30 KOhms, HIT# is about 2 KOhms.

9.3 IEEE 1149.1 Test Access Port and Boundary
Scan Mechanism

The |EEE Standard Test Access Port and Boundary Scan Architecture (Standard 1149.1) is
implemented in the embedded Pentium processor. This feature allows board manufacturers to test
board interconnects by using “boundary scan,” and to test the processor itself through BIST. All
output pins are three-stateable through the IEEE 1149.1 mechanism.

9.3.1 Test Access Port (TAP)

The processor Test Access Port (TAP) contains a TAP controller, a Boundary Scan Register, four
input pins (TDI, TCK, TMS, and TRST#) and one output pin (TDO). The TAP controller consists

of an Instruction Register, a Device ID Register, a Bypass Register, a Runbist Register and control
logic. See Figure 9-1 for the TAP Block Diagram.
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Figure 9-1. Test Access Port Block Diagram
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9.3.1.1 TAP Pins

As mentioned in the previous section, the TAP includes four input pins and one output pin. TDI
(test dataiin) is used to shift dataor instructionsinto the TAP in aserial manner. TDO (test data out)
shifts out the response data. TM S (test mode select) is used to control the state of the TAP
controller. TCK isthetest clock. The TDI and TMS inputs are sampled on the rising edge of this
TCK. Asserting TRST# will force the TAP controller into the Test Logic Reset State (see the TAP

controller state diagram, Figure 9-4). The input pins (TDI, TMS, TCK, and TRST#) have pullup
resistors.
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TAP Registers

Boundary Scan Register

The |EEE standard requires that an extra single bit shift register be inserted at each pin on the
processor. These single hit shift registers are connected into along shift register, the Boundary
Scan Register. Therefore, the Boundary Scan Register is a single shift register path containing the
boundary scan cells that are connected to all input and output pins of the processor. Figure 9-2
shows the logical structure of the Boundary Scan Register. While output cells determine the value
of the signal driven on the corresponding pin, input cells only capture data; they do not affect the
normal operation of the device (the INTEST instruction is not supported by the embedded Pentium
processor). Datais transferred without inversion from TDI to TDO through the Boundary Scan
Register during scanning. The Boundary Scan Register can be operated by the EXTEST and
SAMPLE/PREL OAD instructions. The Boundary Scan Register order is defined later in this
chapter.

Figure 9-2. Boundary Scan Register
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Bypass Register

The Bypass Register is a one-bit shift register that provides the minimal length path between TDI
and TDO. This path can be selected when no test operation is being performed by the component to
allow rapid movement of test data to and from other components on the board. While the bypass
register is selected datais transferred from TDI to TDO without inversion. The Bypass Register
loads alogic 0 at the start of a scan cycle.

Device ID Register

The Device Identification Register contains the manufacturer’s identification code, part number
code, and version code in the format shown in Figure 9-3. It is selected to be connected between

TDI and TDO by using the IDCODE instruction.
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Figure 9-3. Format of the Device ID Register

Table 9-1.

Testability

T IO 58 BT W HDLTWIETETTTETE TP 277 L7 F S fF 2 7/7

VERSION

PART NUMBER

MANUFACTURER
IDENTITY

A6219-01

The processor has divided the 16-bit part number into three fields. The upper 7 bits are used to
define the product type (examples: Cache, processor architecture). The middie 4 bits are used to
represent the generation or family (examples: Intel 486 processor, embedded Pentium processor).
Thelower 5 bits are used to represent the model (examples: SX, DX). Using this definition, the
embedded Pentium processor ID code is shown in Table 9-1.

Theversion field is used to indicate the stepping ID.

Device ID Register Values

Processor

Stepping

Part Number

Version
Product

Type

Generation

Model

Manufacturing
ID

Entire Code

Pentium
processor
(100/133/166)

xXH 01H

05H

04H

09H

x82A4013H

Pentium
processor with
MMX™
technology

xH 01H

05H

03H

09H

x82A3013H

Runbist Register

The Runbist Register is aone bit register used to report the results of the embedded Pentium
processor BIST when it is initiated by the RUNBIST instruction. This register is loaded with “0”
upon successful completion of BIST.

Instruction Register

This register is 13 bits wide. The command field (the lower 4 bits of instruction) is used to indicate
one of the following instructions: EXTEST, IDCODE, RUNBIST, SAMPLE/PRELOAD and

BYPASS. The upper 9 bits are reserved.

The most significant bit of the Instruction Register is connected to TDI, the least significant to

TDO.
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Figure 9-4 shows the 16-state TAP controller state diagram. A description of each state follows.
Note that the state machine contains two main branches to access either data or instruction
registers.

TAP Controller State Diagram

Figure 9-4. TAP Controller State Diagram
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Test-Logic-Reset State

In this state, the test logic is disabled so that normal operation of the device can continue
unhindered. During initialization, the processor initializes the instruction register such that the
IDCODE instruction isloaded.

No matter what the original state of the controller, the controller enters Test-L ogic-Reset state
when the TMS input is held high (logic 1) for at least five rising edges of TCK. The controller
remainsin this state while TMS is high. The TAP controller isforced to enter this state when the
TRST# pinisasserted (with TCK toggling or TCK at a high logic value). The processor
automatically entersthis state at power-up.
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Run-Test/ldle State

Thisisacontroller state between scan operations. Once in this state, the controller remainsin this
state aslong as TMSis held low. In devices supporting the RUNBIST instruction, the BIST is
performed during this state and the result is reported in the Runbist Register. For instructions not
causing functions to execute during this state, no activity occursin the test logic. The instruction
register and all test dataregisters retain their previous state. When TMSishigh and arising edgeis
applied to TCK, the controller moves to the Select-DR state.

Select-DR-Scan State

Thisisatemporary controller state. The test data register selected by the current instruction retains
its previous state. If TMSis held low and arising edgeis applied to TCK when in this state, the
controller moves into the Capture-DR state, and a scan sequence for the selected test dataregister is
initiated. If TMSis held high and arising edge is applied to TCK, the controller moves to the
Select-IR-Scan state.

Theinstruction does not change in this state.

Capture-DR State

In this state, the Boundary Scan Register capturesinput pin data if the current instruction is
EXTEST or SAMPLE/PRELOAD. The other test data registers, which do not have parallel input,
are not changed.

Theinstruction does not change in this state.

When the TAP controller isin this state and arising edge is applied to TCK, the controller enters
the Exit1-DR state if TMSis high or the Shift-DR state if TMSis|ow.

Shift-DR State

In this controller state, the test data register connected between TDI and TDO as aresult of the
current instruction shifts data one stage toward its serial output on each rising edge of TCK.

Theinstruction does not change in this state.

When the TAP controller isin this state and arising edge is applied to TCK, the controller enters
the Exit1-DR state if TMSis high or remains in the Shift-DR state if TMSislow.

Exit1-DR State

Thisisatemporary state. Whilein this state, if TMS s held high, arising edge applied to TCK
causes the controller to enter the Update-DR state, which terminates the scanning process. If TMS
isheld low and arising edge is applied to TCK, the controller enters the Pause-DR state.

Thetest data register selected by the current instruction retains its previous value during this state.
Theinstruction does not change in this state.

Pause-DR State

The pause state allows the test controller to temporarily halt the shifting of data through the test
dataregister in the serial path between TDI and TDO. An example use of this state could be to
allow atester to reload its pin memory from disk during application of along test sequence.
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The test data register selected by the current instruction retains its previous value during this state.
The instruction does not change in this state.

The controller remainsin this state aslong as TMSis low. When TM S goes high and arising edge
isapplied to TCK, the controller moves to the Exit2-DR state.

Exit2-DR State

Thisisatemporary state. Whilein this state, if TMS s held high, arising edge applied to TCK
causes the controller to enter the Update-DR state, which terminates the scanning process. If TMS
isheld low and arising edgeis applied to TCK, the controller enters the Shift-DR state.

The test data register selected by the current instruction retains its previous value during this state.
The instruction does not change in this state.

Update-DR State

The Boundary Scan Register is provided with alatched parallel output to prevent changes at the
parallel output while datais shifted in response to the EXTEST and SAMPLE/PRELOAD
instructions. When the TAP controller isin this state and the Boundary Scan Register is selected,
dataislatched onto the parallel output of this register from the shift-register path on thefaling
edge of TCK. The data held at the latched parallel output does not change other than in this state.

All shift-register stages in the test data register selected by the current instruction retains their
previous value during this state. The instruction does not change in this state.

Select-IR-Scan State

Thisisatemporary controller state. The test data register selected by the current instruction retains
its previous state. If TMSisheld low and arising edge is applied to TCK when in this state, the
controller movesinto the Capture-IR state, and a scan sequence for the instruction register is
initiated. If TMSisheld high and arising edge is applied to TCK, the controller moves to the Test-
Logic-Reset state. The instruction does not change in this state.

Capture-IR State

In this controller state the shift register contained in the instruction register loads a fixed value on
the rising edge of TCK.

The test data register selected by the current instruction retains its previous value during this state.
The instruction does not change in this state.

When the controller isin this state and arising edge is applied to TCK, the controller enters the
Exitl-IR state if TMSis held high, or the Shift-IR state if TMSisheld low.

Shift-IR State

In this state the shift register contained in the instruction register is connected between TDI and
TDO and shifts data one stage towards its serial output on each rising edge of TCK.

The test data register selected by the current instruction retains its previous value during this state.
The instruction does not change in this state.

When the controller isin this state and arising edge is applied to TCK, the controller enters the
Exitl-IR state if TMSis held high, or remainsin the Shift-IR state if TMSisheld low.
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Exitl-IR State

Thisisatemporary state. Whilein this state, if TMS s held high, arising edge applied to TCK
causes the controller to enter the Update-IR state, which terminates the scanning process. If TMSis
held low and arising edgeis applied to TCK, the controller enters the Pause-IR state.

Thetest data register selected by the current instruction retains its previous value during this state.
Theinstruction does not change in this state.

Pause-IR State

The pause state allows the test controller to temporarily halt the shifting of data through the
instruction register.

The test data register selected by the current instruction retains its previous value during this state.
Theinstruction does not change in this state.

The controller remainsin this state aslong as TMSislow. When TMS goes high and arising edge
isapplied to TCK, the controller moves to the Exit2-IR state.

Exit2-IR State

Thisisatemporary state. Whilein this state, if TMS s held high, arising edge applied to TCK
causes the controller to enter the Update-IR state, which terminates the scanning process. If TMSis
held low and arising edge is applied to TCK, the controller enters the Shift-IR state.

Thetest data register selected by the current instruction retains its previous value during this state.
Theinstruction does not change in this state.

Update-IR State

Theinstruction shifted into the instruction register is latched onto the parallel output from the shift-
register path on the falling edge of TCK. Once the new instruction has been latched, it becomes the
current instruction.

Test data registers selected by the current instruction retain their previous value.

Boundary Scan

The |EEE Standard 1149.1 Boundary Scan isimplemented using the Test Access Port and TAP
Controller as described above. The embedded Pentium processor implements all of the required
boundary scan features as well as some additional features. The required pins (all 3.3 V) are: TDI,
TDO, TCK and TMS. The required registers are: Boundary Scan, Bypass, and the Instruction
Register. Required instructions include: BY PASS, SAMPLE/PRELOAD and EXTEST. The
additional pin, registers, and instructions are implemented to add additional test features.

On the board level, the TAP provides a simple seria interface that makes it possible to test all
signal traces with only a few probes. The testing is controlled through the TAP Controller State
machine that can be implemented with automatic test equipment or aPPLD.

On power up the TAP controller is automatically initialized to the test logic reset state (test logic
disabled), so normal processor behavior is the default. The Test Logic Reset State is also entered
when TRST# is asserted, or when TMSiis high for five or more consecutive TCK clocks.
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To implement boundary scan, the TDO of one deviceis connected to TDI of the next in a
daisy-chain fashion. Thisallows all of the I/O of the devices on this chain to be accessed through a
long shift register. TMS and TCK are common to all devices.

The Boundary Scan Register for the embedded Pentium processor contains a cell for each pin.

The following isthe hit order of the embedded Pentium processor with MM X technology
Boundary Scan Register (left to right, top to bottom):

TDO - Disapsba, PICD1, PICDO, Reserved, PICCLK, DO, D1, D2, D3, D4, D5, D6, D7, DPO,
D8, D9, D10, D11, D12, D13, D14, D15, DP1, D16, D17, D18, D19, D20, D21, D22, D23, DP2,
D24, D25, D26, D27, D28, D29, D30, D31, DP3, D32, D33, D34, D35, D36, D37, D38, D39, DP4,
D40, D41, D42, D43, D44, D45, D46, Diswr', D47, DP5, D48, D49, D50, D51, D52, D53, D54,
D55, DP6, D56, D57, D58, D59, D60, D61, D62, D63, DP7, |IERR#, FERR#, PMOBPO, PM1BP1,
BP2, BP3, M/IO#, CACHE#, EWBE#, INV, AHOLD, KEN#, BRDY C#, BRDY#, BOFF#, NA#,
Disbus’, Dismisch!, DisbusiT, Dismisc!, Disua2bus’, Disualbus’, Dismiscal, Dismisct,
WB/WT#, HOLD, PHITM#, PHIT#, PBREQ#, PBGNT#, SMIACT#, PRDY, PCHK#, APCHK#,
BREQ, HLDA, AP, LOCK#, ADSC#, PCD, PWT, D/C#, EADS#, ADSH, HITM#, HIT#, W/R#,
BUSCHK#, FLUSH#, A20M#, BEO#, BE1#, BE2#, BE3#, BE4#, BES#, BE6#, BE7#, SCYC,
CLK, RESET, Disabus’, A20, A19, A18, A17, A16, A15 Al4, A13, A12, A1l, A10, A9, A8, A7,
AB, A5, A4, A3, A31, A30, A29, A28, A27, A26, A25, A24, A23, A22, A21, DIP# NMI, RS#,
INTR, SMI#, IGNNE#, INIT, PEN#, FRCMC#, Reserved, Reserved, Reserved, Reserved,
Reserved, STPCLK#, Reserved, Reserved, Reserved, Reserved, Reserved, Reserved, Reserved
~TDI

The following is the bit order of the embedded Pentium processor (100/133/166) Boundary Scan
Register (left to right, top to bottom):

TDI - DisapsbaT, PICD1, PICDO, Reserved, PICCLK, DO, D1, D2, D3, D4, D5, D6, D7, DPO,
D8, D9, D10, D11, D12, D13, D14, D15, DP1, D16, D17, D18, D19, D20, D21, D22, D23, DP2,
D24, D25, D26, D27, D28, D29, D30, D31, DP3, D32, D33, D34, D35, D36, D37, D38, D39, DP4,
D40, D41, D42, D43, D44, D45, D46, DiS\NI’T, D47, DP5, D48, D49, D50, D51, D52, D53, D54,
D55, DP6, D56, D57, D58, D59, D60, D61, D62, D63, DP7, |ERR#, FERR#, PM0/BPO,
PM1/BP1, BP2, BP3, M/IO#, CACHE#, EWBE#, INV, AHOLD, KEN#, BRDY C#, BRDY #,
BOFF#, NA#, Disbus, Dismisch’, Disbus1’, Dismisc!, Disua2bus', Disualbus', Dismiscal,
DismiscfaT, WB/WT#, HOLD, PHITM#, PHIT#, PBREQ#, PBGNT#, SMIACT#, PRDY, PCHK#,
APCHK#, BREQ, HLDA, AP, LOCK#, ADSC#, PCD, PWT, D/C#, EADS#, ADS#, HITM#,
HIT#, W/R#, BUSCHK#, FLUSH#, A20M#, BEC#, BE1#, BE2#, BE3#, BE4A#, BES#, BEGH,
BE7#, SCYC, CLK, RESET, DisabusT, A20, A19, A18, Al7, A16, Al5, Al4, A13, Al12, All,
A10, A9, A8, A7, A6, A5, A4, A3, A31, A30, A29, A28, A27, A26, A25, A24, A23, A22, A21,
D/P#, NMI, RISH, INTR, SMI#, IGNNE#, INIT, PEN#, FRCM C#, Reserved, Reserved, BFO, BF1,
Reserved, STPCLK#, Reserved, Reserved, Reserved, Reserved, Reserved, Reserved, CPUTYP -
TDO

“Reserved” includes the no connect “NC” signals on the embedded Pentium processor.
The cells marked with an “1” are control cells that are used to select the direction of bidirectional

pins or three-state the output pins. If “1” is loaded into the control cell, the associated pin(s) are
three-stated or selected as input. The following lists the control cells and their corresponding pins:
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For the embedded Pentium processor with MM X technology:

Disabus:
Disbus:
Disbusl:
Dismisc:
Dismiscf:
Dismisch:
Dismisca:
Disualbus:
Disua2bus:
Diswr:

Disapsba:

A31-A3, AP.

BE7-BEO#, CACHE#, SCYC, M/IO#, DIC#, W/R#, PWT, PCD.
ADS#, ADSC#, LOCK#.

APCHK#, PCHK#, PRDY, BP3, BP2, PM1/BP1, PM0O/BPO.
D/P#.

FERR#, SMIACT#, BREQ, HLDA, HIT#, HITM#.

IERR#.

PBREQ#, PHIT#, PHITM#.

PBGNTH#.

D63-D0, DP7-DPO.

PICD1-PICDO

For the embedded Pentium processor (at 100/133/166 MHZz):

Disabus:
Dismiscfa:
Dismisca:
DisualbusS:
Disua2bus:
Dismisc:
Disbus1:
Dismisch:
Disbus:
Diswr:

Disapsba:

A31-A3, AP

D/P#, FERR#

IERR#

PBREQ#, PHIT#, PHITM#

PBGNT#

APCHK#, PHCK#, PRDY#, BP3, BP2, PM1/BP1, PM0/BPO
ADS#, ADSC#, LOCK#

HIT#, HITM#, HLDA, BREQ#, SMIACT#

SCYC, BE7#-BEO#, W/R#, D/C#, PWT, PCD, CACHE#, M/IO#
DP7-DPO, D63-DO0

PICDO, PICD1

9.3.2.1 Boundary Scan TAP Instruction Set

Table 9-2 shows the Boundary Scan TAP instructions and their instruction register encoding. A
description of each instruction follows. The IDCODE and BY PASS instructions may also be
executed concurrent with processor execution. The following instructions are not affected by the
assertion of RESET: EXTEST, SAMPLE/PRELOAD, BYPASS, and IDCODE.

Theinstructions should be scanned in to the TAP port least significant bit first (bit O of the TAP
Command field is the first bit to be scanned in).
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Table 9-2. TAP Instruction Set and Instruction Register Encoding

Instruction Name Instruction Register [Bits 12:4] TAP Command Field [Bits 3:0]
EXTEST XXXXXXXXX 0000
Sample/Preload XXXXXXXXX 0001
IDCODE XXXXXXXXX 0010
Private Instruction XXXXXXXXX 0011
Private Instruction XXXXXXXXX 0100
Private Instruction XXXXXXXXX 0101
Private Instruction XXXXXXXXX 0110
RUNBIST XXXXXXXXX 0111
Private Instruction XXXXXXXXX 1000
Private Instruction XXXXXXXXX 1001
Private Instruction XXXXXXXXX 1010
HI-Z XXXXXXXXX 1011
Private Instruction XXXXXXXXX 1100
BYPASS XXXXXXXXX 1111

The TAP Command field encodings not listed in Table 9-2 (1101, 1110) are unimplemented and
will be interpreted as Bypass instructions.

EXTEST

SAMPLE/PRELOAD

The EXTEST instruction allows testing of circuitry external to the

component package, typically board interconnects. It does so by driving

the values loaded into the processor’s Boundary Scan Register out on the
output pins corresponding to each boundary scan cell and capturing the
values on the processor input pins to be loaded into their corresponding
Boundary Scan Register locations. I/O pins are selected as input or
output, depending on the value loaded into their control setting locations
in the Boundary Scan Register. Values shifted into input latches in the
Boundary Scan Register are never used by the internal logic of the
processor. Note: after using the EXTEST instruction, the processor must
be reset before normal (non-boundary scan) use.

The SAMPLE/PRELOAD performs two functions. When the TAP
controller is in the Capture-DR state, the SAMPLE/PRELOAD
instruction allows a “snap-shot” of the normal operation of the
component without interfering with that normal operation. The
instruction causes Boundary Scan Register cells associated with outputs
to sample the value being driven by the processor. It causes the cells
associated with inputs to sample the value being driven into the
processor. On both outputs and inputs the sampling occurs on the rising
edge of TCK. When the TAP controller is in the Update-DR state, the
SAMPLE/PRELOAD instruction preloads data to the device pins to be
driven to the board by executing the EXTEST instruction. Data is
preloaded to the pins from the Boundary Scan Register on the falling
edge of TCK.
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The IDCODE instruction selects the device identification register to be
connected to TDI and TDO. Thisallowsthe device identification code to
be shifted out of the device on TDO.

The RUNBIST instruction selects the one (1) bit Runbist Register, loads

a value of “1” into the Runbist Register, and connects it to TDO. It also
initiates the built-in self test (BIST) feature of the embedded Pentium
processor. After loading the RUNBIST instruction code in the
instruction register, the TAP controller must be placed in the Run-
Test/Idle state. BIST begins on the first rising edge of TCK after entering
the Run-Test/Idle state. The TAP controller must remain in the Run-
Test/Idle state until BIST is completed. It requiré$&re clock cycles

to complete BIST and report the result to the Runbist Register. After
completing BIST, the value in the Runbist Register should be shifted out
on TDO during the Shift-DR state. A value of “0” being shifted out on
TDO indicates BIST successfully completed. A value of “1” indicates a
failure occurred. The CLK clock must be running in order to execute
RUNBIST. After executing the RUNBIST instruction, the processor
must be reset prior to normal (non-boundary scan) operation.

The TAP Hi-Z instruction causes all outputs and I/Os of the embedded
Pentium processor to go to a high-impedance state (float) immediately.
The Hi-Z state is terminated by either resetting the TAP with the TRST#
pin, by issuing another TAP instruction, or by entering the
Test_Logic_Reset state. The Hi-Z state is enabled or disabled on the first
TCK clock after the TAP instruction has entered the UPDATE-IR state
of the TAP control state machine. This instruction overrides all other bus
cycles. Resetting the processor will not disable this instruction since
CPU RESET does not reset the TAP.

The BYPASS instruction selects the Bypass Register to be connected to
TDI and TDO. This effectively bypasses the test logic on the processor
by reducing the shift length of the device to one bit. Note that an open
circuit fault in the board level test data path will cause the Bypass
Register to be selected following an instruction scan cycle due to a pull-
up resistor on the TDI input. This was implemented to prevent any
unwanted interference with the proper operation of the system logic.
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The embedded Pentium processor incorporates a number of dataintegrity features that are focused
on the detection and limited recovery of errors. The data integrity features provide capabilities for
error detection of the internal devices and the external interface. The processor also provides the
capability to obtain maximum levels of error detection by incorporating Functional Redundancy
Checking (FRC) support. Error detecting circuits in the embedded Pentium processor do not limit
the operating frequency of the chip.

The data integrity features can be categorized as (1) internal error detection, (2) error detection at
the businterface, and (3) FRC support.

10.1 Internal Error Detection

Detection of errors of amajority of the devices in the processor is accomplished by employing
parity checking in the large memory arrays of the chip. The data and instruction caches (both
storage and tag arrays), translation lookaside buffers, and microcode ROM are al parity protected.
Thefollowing describes the parity checking employed in the major memory arraysin the processor
(MESI status bits are not parity protected):

* Parity bit per byte in the data cache storage array.
* Parity bit per entry in the data cache tag array.

* Four Parity bits: One for each of the even upper, even lower, odd upper, odd lower bits of an
instruction cache line.

* Parity bit per entry in the instruction cache tag array.

* Parity bit per entry in both the data and instruction TLBs storage arrays.
¢ Parity bit per entry in both the data and instruction TLBstag arrays.

* Parity bit per entry in the microcode ROM.

Parity checking as described above provides error detection coverage of 53% of the on-chip
devices. Thiserror detection coverage number aso includes the devicesin the branch target buffer
since branch predictions are always verified.

If aparity error has occurred internally, processor operation can no longer be trusted. Normally, a
parity error on aread from an internal array will cause the processor to assert the IERR# pin and
then shutdown. (Shutdown will be entered assuming it is not prevented from doing so by the
error.); however, if TR1.NSis set, IERR# will not result in processor shutdown. Execution will
continue, but operation will not be reliable. Parity errors on reads during normal instruction
execution, reads during a flush operation, reads during BIST and testability cycles, and reads
during inquire cycles will cause |ERR# to be asserted. The |IERR# pin will be asserted for one
clock for each clock a parity error is detected and may be latched by the system. The IERR# pinis
aglitch free signal, so no spurious assertions of IERR# will occur.

In general, internal timing constraints of the processor do not allow the inhibition of writeback
cycles caused by inquire cycles, FLUSH# assertion or the WBINV D instruction when a parity error
is encountered. In those cases where an internal parity error occurred during the generation of a
writeback cycle, and that cycle was not able to be inhibited, the IERR# pin can be used to
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recognize that the writeback should be ignored. If an internal parity error occurs during aflush
operation, the processor will assert the IERR# pin as stated above, and the internal caches will be
left in a partialy flushed state. The flush, flush acknowledge, or writeback special cycleswill not
be run.

Error Detection at the Processor Interface

The processor provides parity checking on the external address and data buses. Thereis one parity
bit for each byte of the data bus and one parity bit for bits A31-A5 of the address bus.

Address Parity

A separate and independent mechanism is used for parity checking on the address bus during
inquire cycles. Even address parity is driven along with the address bus during all processor
initiated bus cycles and checked during inquire cycles. When the processor is driving the address
bus, even parity is driven on the AP pin. When the address bus is being driven into the processor
during an inquire cycle, this pin is sampled in any clock in which EADS# is sampled asserted.
APCHK# is driven with the parity status two clocks after EADS# is sampled active. The APCHK#
output (when active) indicates that a parity error has occurred on the address bus during an inquire.
Figure 10-1 depicts an address parity error during an inquire cycle. For additional timing diagrams
which show address parity, see Chapter 6, “Bus Functional Description.” The APCHK# pin will be
asserted for one clock for each clock a parity error is detected and may be latched by the system.
The APCHK# pin is a glitch free signal, so no spurious assertions of APCHK# will occur.

In the event of an address parity error during inquire cycles, the internal snoop will not be
inhibited. If the inquire hits a modified line in this situation and an active AHOLD prevents the
processor from driving the address bus, the processor will potentially writeback a line at an address
other than the one intended. If the processor is not driving the address bus during the writeback
cycle, it is possible that memory will be corrupted.

Figure 10-1. Inquire Cycle Address Parity Checking
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Driving APCHK# is the only effect that bad address parity has on the processor. It isthe
responsibility of the system to take appropriate action if a parity error occurs. If parity checks are
not implemented in the system, the APCHK# pin may be ignored.

Data Parity

Even data parity is driven on the DP7-DPO pins in the same clock as the data bus is driven during
all processor initiated data write cycles. During reads, even parity information may be driven back
to the processor on the data parity pins along with the data being returned. Parity status for data
sampled is driven on the PCHK# pin two clocks after the data is returned. PCHK# is driven low if
a data parity error was detected, otherwise it is driven high. The PCHK# pin will be asserted for
one clock for each clock a parity error is detected and may be latched by the system. The PCHK#
pin is a glitch free signal, so no spurious assertions of PCHK# will occur. Figure 10-2 shows when
the data parity (DP) pins are driven/sampled and when the PCHK# pin is driven. For additional
timing diagrams that show data parity, see Chapter 6, “Bus Functional Description.”

Figure 10-2. Data Parity During a Read and Write Cycle
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Driving PCHK# is the only effect that bad data parity has on the processor. It is the responsibility
of the system to take appropriate action if a parity error occurs. If parity checks are not
implemented in the system, the PCHK# pin may be ignored.
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Machine Check Exception as a Result of a Data Parity Error

The PEN# input determines whether a machine check interrupt will be taken as aresult of adata
parity error. If adata parity error occurs on aread for which PEN# was asserted, the physical

address and cycle information of the cycle causing the parity error will be saved in the Machine
Check Address Register and the Machine Check Type Register. If in addition, the CR4.MCE is set

to 1, the machine check exception istaken. See “Machine Check Exception” on page 10-4 for more
information.

The parity check pin, PCHK#, is driven as a result of read cycles regardless of the state of the
PEN# input.

Machine Check Exception

As mentioned in the earlier section, a new exception has been added to the processor. This is the
machine check exception which resides at interrupt vector 18 (decimal). In processors previous to
the Pentium processor, interrupt vector 18 was reserved and, therefore, there should be no interrupt
routine located at vector 18. For compatibility, the MCE bit of the CR4 register will act as the
machine check enable bit. When set to “1,” this bit will enable the generation of the machine check
exception. When reset to “0,” the processor will inhibit generation of the machine check exception.
CR4.MCE will be cleared on processor reset. In the event that a system is using the machine check
interrupt vector for another purpose and the Machine Check Exception is enabled, the interrupt
routine at vector 18 must examine the state of the CHK bit in the Machine Check Type register to
determine the cause of its activation. Note that at the time the system software sets CR4.MCE to 1,
it must read the Machine Check Type register in order to clear the CHK bit.

The Machine Check Exception is an abort; that is, it is not possible to reliably restart the instruction
stream or identify the instruction causing the exception. Therefore, the exception does not allow

the restart of the program that caused the exception. The processor does not generate an error code
for this exception. Since the machine check exception is synchronous to a bus cycle and not an
instruction, the IP pushed on to the stack may not be pointing to the instruction which caused the
failing bus cycle.

The Machine Check Exception can be caused by one of two events: 1) Detection of data parity
error during a read when the PEN# input is active, or 2) The BUSHCK# input being sampled
active. When either of these events occur, the cycle address and type will be latched into the
Machine Check Address (MCA) and Machine Check Type (MCT) registers (independent of the
state of the CR4.MCE bit). If in addition, the CR4.MCE is “1,” a machine check exception will
occur. When the MCA and MCT registers are latched, the MCT.CHK bit is set to “1” indicating
that their contents are valid (Figure 10-3).

The Machine Check Address register, and the Machine Check Type register are model specific,
read only registers. The Machine Check Address register is a 64-bit register containing the physical
address for the cycle causing the error. The Machine Check Type register is a 64-bit register
containing the cycle specification information, as defined in Figure 10-3. These registers are
accessed using the RDMSR instruction. When the MCT.CHK is zero, the contents of the MCT and
MCA registers are undefined. When the MCT register is read (using the RDMSR instruction), the
CHK bit is reset to zero. Therefore, software must read the MCA register before reading the MCT
register.

Embedded Pentium® Processor Family Developer’s Manual



intel.

Error Detection

Figure 10-3. Machine Check Type Register
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The bits in the Machine Check Type Register are defined as follows:
CHK: Thisbit is set to 1 when the Machine Check Type register is latched and

isreset to O after the Machine Check Type register isread viathe

RDMSR instruction. In the event that the Machine Check Type register
islatched in the same clock in which it isread, the CHK bit will be set.

The CHK bit is reset to “0” on assertion of RESET. When the CHK bit
is “0,” the contents of the MCT and MCA registers are undefined.

M/IO#, D/C#, W/R#: These cycle definition pins can be decoded to determine if the cycle in
error was a memory or I/O cycle, a data or code fetch, and a read or a
write cycle. (See the embedded Pentium processor datasheets for
detailed pin definitions.)

LOCK: Set to “1” if LOCK# is asserted for the cycle

Bus Error

The BUSCHK# input provides the system a means to signal an unsuccessful completion of a bus
cycle. This signal is sampled on any edge in which BRDY# is sampled, for reads and writes. If this
signal is sampled active, then the cycle address and type will be latched into the Machine Check
Address and Machine Check Type registers. If in addition, the CR4.MCE bit is set to 1, the
processor will be vectored to the machine check exception.

Even if BUSCHK# is asserted in the middle of a cycle, BRDY# must be asserted the appropriate
number of clocks required to complete the bus cycle. The purpose of BUSCHK# is to act as an
indication of an error that is synchronous to bus cycles. If the machine check interrupt is not
enabled, i.e., the MCE bit in the CR4 register is zero, then an assertion of BUSCHK# will not cause
the processor to vector to the machine check exception.

The embedded Pentium processor can remember only one machine check exception at a time. This
exception is recognized on an instruction boundary. If BUSCHK# is sampled active while

servicing the machine check exception for a previous BUSCHK#, it will be remembered by the
processor until the original machine check exception is completed. It is then that the processor will
service the machine check exception for the second BUSCHK#. Note that only one BUSCHK#

will be remembered by the processor while the machine exception for the previous one is being
serviced.

When the BUSCHK# is sampled active by the processor, the cycle address and cycle type
information for the failing bus cycle is latched upon assertion of the last BRDY# of the bus cycle.
The information is latched into the Machine Check Address and Machine Check Type registers
respectively. However, if the BUSCHK# input is not deasserted before the first BRDY# of the next

Embedded Pentium® Processor Family Developer’s Manual 10-5



[ ]
Error Detection I nt9| o

10.2.5

10-6

Note:

bus cycle, and the machine check exception for the first bus cycle has not occurred, then new
information will be latched into the MCA and MCT registers, over-writing the previous
information at the completion of this new bus cycle. Therefore, in order for the MCA and MCT
registersto report the correct information for the failing bus cycle when the machine check
exception for this cycle is taken at the next instruction boundary, the system must deassert the
BUSCHK# input immediately after the completion of the failing bus cycle and before the first
BRDY# of the next bus cycleis returned.

Functional Redundancy Checking

Functional Redundancy Checking (FRC) in the embedded Pentium processor will provide

maximum error detection (>99%) of on-chip devices and the processor’s interface. A “checker”
processor that executes in lock step with the “master” processor is used to compare output signals
every clock.

The embedded Pentium processor with MMX technology does not support FRC. Also, FRC is not
supported in Dual processor designs.

Two embedded Pentium processors are required to support FRC. Both the master and checker must
be of the same stepping and same bus fraction. The processor configured as a master operates
according to bus protocol described in this document. The outputs of the checker processor are
three-stated (except IERR#, TDO, PICDO, PICD1—however, these signals are not part of FRC) so
the outputs of the master can be sampled. If the sampled value differs from the value computed
internally by the checker, the checker asserts the IERR# output to indicate an error. A master-
checker pair should have all pins except FRCMC#, IERR#, PICDO, PICD1 and TDO tied together.

The processors are configured either as a master or a checker by driving the FRCMC# input to the
appropriate level while RESET is asserted. If sampled low during reset, the processor enters
checker mode and three-states all outputs except IERR# and TDO (IERR# is driven inactive during
reset). This feature is provided to prevent bus contention before reset is completed. The final
master/checker configuration is determined when RESET transitions from high to low. The final
master/checker configuration may not be changed other than by a subsequent RESET.

The IERR# pin reflects the result of the master-checker comparison. It is asserted for one clock,
two clocks after the mismatch. It is asserted for each detected mismatch, so IERR# may be low for
more than one consecutive clock. During the assertion of RESET, IERR# will be driven inactive.
After RESET is deasserted, IERR# will not be asserted due to a mismatch until two clocks after the
ADS# of the first bus cycle (i.e., in the third clock of the first bus cycle). IERR# will reflect pin
comparisons thereafter. Note that IERR# may be asserted due to an internal parity error prior to the
first bus cycle. It is possible for FRC mismatches to occur in the event that an undefined processor
state is driven off-chip, therefore no processor state should be stored without having been
previously initialized.

In order for the master-checker pair to operate correctly, the system must be designed such that the
master and the checker sample identical input states in the same clock. All asynchronous inputs
should change state in such a manner that both the master and checker sample them in the same
state in the same clock. The simplest way to do this is to design all asynchronous inputs to be
synchronously controlled.

The TDO pin is not tested by FRC since it operates on a separate clock. Note that it is possible to
use boundary scan to verify the connection between the master and checker by scanning into one,
latching the outputs of the other and then scanning out. The Stop Clock state feature cannot be used
in dual processing or functional redundancy checking modes because there is no way to re-
synchronize the internal clocks of the two processors.

Embedded Pentium® Processor Family Developer’s Manual



[ ]
I nt9| o Error Detection

Figure 10-4 illustrates the configuration of output pins with respect to FRC. The comparators at
each output compare the value of the package pin with the value being driven from the core to that
pin, not the value driven by boundary scan to that pin. Therefore, during the use of boundary scan,
FRC mismatches (IERR# assertion) can be expected to occur.

Figure 10-4. Conceptual IERR# Implementation for FRC
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The embedded Pentium® processor family uses special bus cycles to support execution tracing.
These bus cycles, which are optional, have a significant impact on overall performance. Execution
tracing allows the external hardware to track the flow of instructions as they execute inside the
processor.

The special bus cycles generated by the processor are Branch Trace Messages (BTM). Dueto
physical limitations, the maximum number of outstanding taken branches allowed is two. Once the
second taken branch reaches the last stage of the pipeline, execution is stalled until the first branch
message is sent on the bus.

Branch trace messages may be enabled by setting the Execution Tracing bit, TR, of TR12 (bit 1) to
a 1. Once enabled, there are two forms of branch trace messages. normal and fast. Normal
messages produce two cycles, one for the branch target linear address, and one for the linear
address of the instruction causing the taken branch. Fast messages only produce the second of these
two cycles. The second message will always contain the linear address of the instruction executed
in the u pipe even if the instruction that caused the branch was executed in the v pipe. For
serializing instructions and segment descriptor loads the address field of thefirst cycle will contain
the address of the next sequential instruction after the instruction that caused the BTM. Fast
execution tracing is enabled by setting bit 8 of TR12 to 1. Note that switching between the normal
and fast formats by using the WRM SR instruction to change bit 8 of TR12, the WRM SR
instruction causes a branch trace message when they are enabled. The format for this branch trace
message will be the format that was programmed before the WRM SR instruction was executed.

Normal and fast branch trace messages may be delayed by 0 or more clocks after the cycle in
which the branch was taken depending on the bus activity. Also, higher priority cycles may be run
between the first and second cycles of anormal branch trace message. In dual-processor mode,
branch trace message cycles may be interleaved with cycles from the other processor. Branch trace
message cycles are buffered so they do not normally stall the processor.

Branch trace messages, normal and fast, may be identified by the following special cycle:

M/IO# =0
D/CH# =0
WIR# =1

BE7#-BEO# = ODFH

The address and data bus fields for the two bus cycles associated with a branch trace message are
defined below:

First Cycle (Normal)

A31-A4 Bits 31 — 4 of the branch target linear address
A3 “1" if the default operand size is 32 bits
“0” if the default operand size is 16 bits
D63-D60 Bits 3 — 0 of the branch target linear address
D59 “0” - indicating the first of the two cycles
D58-D0 Reserved. Driven to a valid state, but must be ignored
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Second Cycle (Normal)

A31-A4
A3

D63-D60
D59
D58-D0

Fast Cycle

A31-A4
A3

D63-D60
D59
D58-D0

Bits 31 — 4 of the linear address of the instruction causing the taken branch
“1” if the default operand size is 32 bits

“0” if the default operand size is 16 bits

Bits 3 — 0 of the linear address of the instruction causing the taken branch
“1” - indicating the second of the two cycles

Reserved. Driven to a valid state, but must be ignored

Bits 31 — 4 of the linear address of the instruction causing the taken branch
“1” if the default operand size is 32 bits

“0” if the default operand size is 16 bits

Bits 3 — 0 of the linear address of the instruction causing the taken branch
Driven to a “1”

Reserved. Driven to a valid state, but must be ignored

In addition to conditional branches, jumps, calls, returns, software interrupts, and interrupt returns,
the processor treats the following operations as causing taken branches:

* Serializing instructions

* Some segment descriptor loads

¢ Hardware interrupts

¢ Certain floating-point exceptions (both masked and unmasked) and all other exceptions that
invoke atrap or fault handler

¢ Exiting the HALT state

With execution tracing enabled, these operations will also cause a corresponding branch trace
message cycle. The processor data busis valid during branch trace message special cycles.
Instructions which cause masked floating point exceptions may cause one or more branch trace
special cycles. Thisis because execution of an instruction may be aborted and restarted several
times due to the exception.

Also note that the WRM SR instruction to enable branch trace messages will cause aBTM to be
generated (WRM SR isa serializing instruction and serializing instructions cause BTMs). A

WRM SR to disable BTMswill not generate a BTM. Conditions which cause the VERR, VERW,
LAR and LSL instruction to clear the ZF bit in EFLAGS will also cause these instructions to be
treated as taken branches. However, if these instructions fail the protection checks, no branch trace
message will be generated.

Note that if an instruction faults, it does not complete execution but instead is flushed from the
pipeline and an exception handler isinvoked. Thisfaulting instruction effectively causes a branch;
abranch trace message is generated accordingly.
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The embedded Pentium® processor family implements Intel's System Management Mode (SMM)
architecture. This chapter describes the hardware interface to SMM and Clock Control.

12.1 Power Management Features

System Management Interrupt can be delivered through the SMI# signal or through the local
APIC using the SMI# message, which enhances the SMI interface, and provides for SMI
delivery in APIC-based Pentium processor dual processing systems.

Indual processing systems, SMIACT# from the bus master (MRM) behaves differently thanin
uniprocessor systems. |f the LRM processor isthe processor in SMM mode, SMIACT# will be
inactive and remain so until that processor becomes the MRM.

The Pentium processor is capable of supporting an SMM 1/O instruction restart. Thisfeatureis
automatically disabled following RESET. To enable the 1/O instruction restart feature, set bit 9
of the TR12 register to “1”".

The Pentium processor default SMM revision identifier has avalue of 2 when the SMM 1/O
instruction restart feature is enabled.

SMI#isNOT recognized by the processor in the shutdown state.

12.2 System Management Interrupt Processing

The system interrupts the normal program execution and invokes SMM by generating a System
Management Interrupt (SM1#) to the processor. The processor will service the SMI# by executing
the following sequence. See Figure 12-1.

1.
2.

Wait for all pending bus cyclesto complete and EWBE# to go active.

The processor asserts the SMIACT# signal while in SMM indicating to the system that it
should enable the SMRAM.

The processor saves its state (context) to SMRAM, starting at address location SMBASE +
OFFFFH, proceeding downward in a stack-like fashion.

The processor switches to the System Management Mode processor environment (a pseudo-
real mode).

The processor will then jump to the absolute address of SMBASE + 8000H in SMRAM to
execute the SMI handler. This SMI handler performs the system management activities.

The SMI handler will then execute the RSM instruction which restores the processor’s context
from SMRAM, deasserts the SMIACT# signal, and then returns control to the previously
interrupted program execution.
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Note:

The default SMBA SE value following RESET is 30000H.

Figure 12-1. Basic SMI# Interrupt Service
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Figure 12-2 describes the System Management Interrupt hardware interface which consists of the
SMI# interrupt request input and the SMIACT# output used by the system to decode the SMRAM.

Figure 12-2. Basic SMI# Hardware Interface
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System Management Interrupt (SMI#)

SMI# isafalling-edge triggered, non-maskable interrupt request signal. SMI# is an asynchronous
signal, but setup and hold times, t28 and t29, must be met in order to guarantee recognition on a
specific clock. The SMI# input need not remain active until the interrupt is actually serviced. The
SMI# input only needs to remain active for asingle clock if the required setup and hold times are
met. SMI# will also work correctly if it isheld active for an arbitrary number of clocks.

The SMI# signal is synchronized internally and must be asserted at |east three CLK periods prior to
asserting the BRDY # signal in order to guarantee recognition on a specific instruction boundary.
See Figure 12-3.

The SMI# input must be held inactive for at least four clocks after it is asserted to reset the edge
triggered logic. A subsequent SMI# might not be recognized if the SMI# input is not held inactive
for at least four clocks after being asserted.

SMI#, like NMI, is not affected by the IF bit in the EFLAGS register and is recognized on an
instruction boundary. An SMI# will not break locked bus cycles. The SMI# has a higher priority
than NMI and is not masked during an NMI.
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After the SMI# interrupt is recognized, the SMI# signal will be masked internally until the RSM
instruction is executed and the interrupt service routine is complete. Masking the SMI1# prevents
recursive SM1# calls. If another SMI# occurs while the SM1# is masked, the pending SM1# will be
recoghized and executed on the next instruction boundary after the current SM1# completes. This
instruction boundary occurs before execution of the next instruction in the interrupted application
code, resulting in back to back SMM handlers. Only one SMI# can be pending while SMI# is
masked.

Figure 12-3. SMI# Timing
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SMI# Synchronization for 1/O Instruction Restart

The SMI# signal is synchronized internally and must be asserted at |east three CLK periods prior to
asserting the BRDY # signal in order to guarantee recognition on a specific I/O instruction
boundary. Thisisimportant for servicing an 1/O trap with an SMI# handler. Due to the
asynchronous nature of SMI# delivery with the APIC, it isimpossible to synchronize the assertion
of BRDY#. Asaresult, the SMM 1/O instruction restart feature cannot be used when an SMI is
delivered viathe local APIC.

Dual Processing Considerations For SMI# Delivery

Although the SMM functions the same when the dual processor is inserted into Socket 7, the dual
processor operation of the system must be carefully considered. Table 12-1 showsthe four possible
options for SMI# delivery depending on the SMM applications (mainly power management) the
system hasto support. There are implications to system design and the SMM handler. Note that for
operation with the Dual processor and upgradability with a future upgrade processor, Option #3 is
strongly recommended.

Table 12-1. Dual Processing SMI# Delivery Options

SMI# Pins Tied Together SMI# Pins NOT Tied Together
SMI# pins Option #1 Option #2
delivering SMI Both processors enter SMM. One processor enters SMM.
APIC Option #3 Option #4
delivering SMI One or Both processors enter SMM. One or Both processors enter SMM
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Note: Thel/O Instruction Restart Power Management feature should not be used when delivering the
system management interrupt viathe local APIC. Refer to the Intel Architecture Software
Developer’s Manual, Volumef8r additional details on I/O instruction restart.

Implications

1. SMI#pindelivery of SMI with the SMI# pinstied together: Any assertion of the SMI# pin will
cause both the Primary and Dual processors to interrupt normal processing, enter SMM mode
and start executing SMM code in their respective SMRAM spaces. In this case, using the 1/0
Instruction restart feature in Dual Processor mode will require additional system hardware
(D/P# pin) and software (detection of which processor was the MRM when the SMI# pin was
asserted) considerations.

2. SMI# pin delivery of SMI with the SMI# pins NOT tied together: Only the processor whose
SMI# pinis asserted will handle SMM processing. It is possible that both the Primary and
Dual processor will be doing SMM processing at the same time, especialy if the I/O
Instruction restart feature is being used. If 1/O instruction restart is not supported, then it is
possible to dedicate only one processor for SMM handling at any time.

3. APIC SMI# delivery of SMI with the SMI# pins tied together: This option is strongly
recommended for operation with the Dual processor and upgradability with the Pentium
OverDrive® processor. System Management Interrupts should be delivered viathe APIC for
DP systems, and may be delivered either viathe APIC or the SMI# pin for turbo-upgraded
systems. Either the Primary or Dual processor can be the assigned target for SM1# delivery and
hence SMM handling. The SMM 1/O instruction restart feature may be used in a uniprocessor
system or in a system with a (with SMI# pin delivery of theinterrupt), but the system must not
use this feature when operating in dual processing mode (with APIC delivery of the interrupt).

4. APIC SMI# delivery of SMI with the SMI# pins NOT tied together: 1/O Instruction Restart
feature is not recommended when delivering SMI viathe local APIC. Either the Primary or
Dual processor can be the assigned target for SMI# delivery and hence SMM handling.

12.2.2 System Management Interrupt Via APIC

When SMI# is asserted (SM1# pin asserted low or APIC SMI1# message) it causes the processor to
invoke SMM.

12.2.3 SMI Active (SMIACT#)

SMIACT# indicates that the processor is operating in System Management Mode. The processor

asserts SMIACT# in response to an SMI interrupt request on the SMI# pin or through the APIC

message. SMIACT# is driven active for accesses only after the processor has completed all

pending write cycles (including emptying the write buffers — EWBE# returned active by the
system). SMIACT# will be asserted for all accesses in SMM beginning with the first access to
SMRAM when the processor saves (writes) its state (or context) to SMRAM. SMIACT# is driven
active for every access until the last access to SMRAM when the processor restores (reads) its state
from SMRAM. The SMIACT# signal is used by the system logic to decode SMRAM.

The number of CLKs required to complete the SMM state save and restore is very dependent on
system memory performance and the processor bus frequency.
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As shown in Figure 12-4, the approximate time required to enter an SM1 handler routine for the
Pentium processor (from the completion of the interrupted instruction) is given by:

Latency to beginning of SMI handler = A + B + C=~184 CLKs

The approximate time required to return to the interrupted application (following the final SMM
instruction before RSM) is given by:

Latency to continue interrupted application = E + F + G = ~207 CLKs
Figure 12-4. SMIACT# Timing
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A: Last BRDY# from non-SMM transfer to SMIACT# assertion: 2 CLKs minimum

B: SMIACT# assertion to first ADS# for SMM state save: 2 CLKs minimum
C: SMM state save (dependent on memory performance): Approximately 180 CLKs
D: SMM handler: User determined
E: SMM state restore (dependent on memory performance): Approximately 200 CLKs
F: Last RDY# from SMM transfer to deassertion of SMIACT#: 2 CLKs minimum
G: SMIACT# deassertion to first non-SMM ADS#: 5 CLKs minimum

A5909-01

12.2.3.1 Dual Processing Considerations for SMIACT#

When the processor is the only processor present, then it always drives the D/P# signal low.
SMIACT# is asserted when the processor enters SMM and is deasserted only when the processor
exits SMM.

When the Dual processor is also present, the D/P# signal toggles depending upon whether the
Primary or Dual processor owns the bus (MRM). The SMIACT# pins may be tied together or be
used separately to ensure SMRAM access by the correct processor.

Caution: If SMIACT# is used separately: the SMIACT# signal isonly driven by the Primary or Dual
processor when it isthe MRM, so this signal must be qualified with the D/P# signal.

In adual socket system, connecting the SMIACT# signals together on the Primary and Dual
processor socketsis strongly recommended for dual processing operation.
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In dual processing systems, SMIACT# may not remain low (e.g., may toggle) if both processors
arenot in SMM mode. he SMIACT# signal is asserted by either the Primary or Dual processor
based on two conditions: the processor isin SMM mode and is the bus master (MRM). If one
processor is executing in normal address space, the SMIACT# signal will go inactive when that

processor isMRM. The LRM processor, even if in SMM mode, will not drive the SMIACT# signal

low.

SMM — System Design Considerations

SMRAM Interface

The
1.

hardware designed to control the SMRAM space must follow these guidelines:

A provision should be made to allow for initialization of SMRAM space during system boot
up. Thisinitialization of SMRAM space must happen before the first occurrence of an SM1#
interrupt. Initializing the SMRAM space must include installation of an SMM handler, and
may include installation of related data structures necessary for particular SMM applications.
The memory controller providing the interface to the SMRAM should provide ameansfor the
initialization code to manually open the SMRAM space.

A minimum initial SMRAM address space of SMBASE + 8000H to SMBASE + OFFFFH
should be decoded by the memory controller.

Alternate bus masters (such as DMA controllers) should not be allowed to access SMRAM
space. Only the processor, either through SMI or during initialization, should be allowed
accessto SMRAM.

In order to implement a zero-volt suspend function, the system must have access to all of
normal system memory from within an SMM handler routine. If the SMRAM is going to
overlay normal system memory, there must be a method of accessing any system memory that
islocated underneath SMRAM.

. Inquire cycles are permitted during SMM, but it is the responsibility of the system to ensure

that any snoop writeback compl etes to the correct memory space, irrespective of the state of
the SMIACT# pin. Specificaly, if SMM is overlaid, and SMM space is non cacheable, then
any snoop writeback cycle occurring during SMM must complete to system memory, even
though SMIACT# will remain active.

If an inquire cycle occurs after assertion of SMI# to the processor, but before SMIACT# is
returned, note that SMIACT# could be returned at any point during the snoop writeback cycle.
Depending on the timing of SMI# and the inquire cycle, SMIACT# could change states during
the writeback cycle. Again, it isthe responsibility of the system, if it supports snooping during
SMM, to ensure that the snoop writeback cycle completes to the correct memory space,
irrespective of the state of the SMIACT# pin.

. It should also be noted that upon entering SMM, the branch target buffer (BTB) is not flushed

and thusit is possible to get a speculative prefetch to an address outside of SMRAM address
space due to branch predictions based on code executed prior to entering SMM. If this occurs,
the system must still return BRDY # for each code fetch cycle.
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Figure 12-5. SMRAM Location
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12.3.2 Cache Flushes

The processor does not unconditionally writeback and invalidate its cache before entering SMM
(this option is left to the system designer). If the SMRAM isin an areathat is cacheable and
overlaid on top of normal memory that is visible to the application or operating system (default),
then it is necessary for the system to flush both the processor cache and any second level cache
upon entering SMM. This may be accomplished by asserting flush the same time as the request to
enter SMM (i.e., cache flushing during SMM entry is accomplished by asserting the FLUSH# pin
at the same time as the request to enter SMM through SMI#). The priorities of FLUSH# and SM1#
are such that the FLUSH# will be serviced first. To guarantee this behavior, the constraints on setup
and hold timings on the interaction of FLUSH# and SMI# as specified for a processor should be
obeyed. When the default SMRAM location is used, SMRAM is overlaid on top of system main
memory (at SMBASE + 8000H to SMBASE + OFFFFH).

In asystem where FLUSH# and SMI# pins are synchronous and setup/hold times are met, then the
FLUSH# and SMI# pins may be asserted in the same clock. I n asynchronous systems, the FLUSH#
pin must be asserted at |east one clock before the SMI# pin to guarantee that the FLUSH# pinis
serviced first. Note that in systems that use the FLUSH# pin to write back and invalidate the cache
contents before entering SMM, the processor prefetches at least one cache line in between thetime
the Flush Acknowledge special cycleis run and the recognition of SMI# and the driving of
SMIACT#for SMRAM accesses. It isthe obligation of the system to ensure that these lines are not
cached by returning KEN# inactive.

If SMRAM islocated in its own distinct memory space, which can be completely decoded with

only the processor address signals, it is said to be non-overlaid. In this case, there is one new
reguirement for maintaining cache coherency. Refer to Table 12-2.
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Table 12-2. Scenarios for Cache Flushes with Writeback Caches

Is SMRAM Is Normal Flushrequired | Flushrequired
overlapped with Is SMRAM 1red req
Memory during SMM during SMM Comments
normal cacheable? cacheable? entry? exit?
memory? ’ v ’
No No No No No
No WT No No
WT No No No
TSnoop WBs
WB No Not No must always go
to normal
memory space
WT WT No No
TSnoop and
Replacement
WB WT No' No WBs must go to
normal memory
space.
Yes No No No No
No WT No Yes
WT No Yes No
WB No Yes No
WT WT Yes Yes
WB WT Yes Yes

Note:  Writeback cacheable SMRAM is not recommended. When flushing upon SMM exit, SMIACT#
will be deasserted and may cause regular memory to be overwritten.

The processor implements writeback caches. Hence the performance hit due to flushing the cache
for SMM execution can be more significant. Due to the writeback nature of the cache, flushing the
cache has the following penalties:

1. Before entry into SMM (when SMRAM is cacheable), the cache hasto be flushed. Hence, all
dirty lines need to be written back. This may cause alarge number of bus cycles and increase
SMM entry latency.

2. If the cache had to be flushed upon SMM exit, execution starts with cache miss 100%. The
cachefill cycles reduce performance.
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Figure 12-6. FLUSH# Mechanism During SMM with Overlay
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The method suggested is shown in Figure 12-7.
Figure 12-7. Flush with Non-Cached SMM with Overlay
State SMM State Normal
Slave Handler Resume Cycle

SMI# —\_/ i
SMIACT# —\

KEN# —,-/

FLUSH#
L

A6231-01

12.3.2.1

Dual Processing Considerations for Cache Flushes

Cache flushing during SMM exit is not possible while both the Primary and Dual processors are
present due to the fact that it is not possible to clearly predict when the processor in SMM has
exited. Thisis because the SMIACT# is not a static statusindicator but only abus cycleindicator

for SMRAM accesses.

12.3.3 A20M# Signal

Systems based on the MS-DOS* operating system contain a feature that enabl es the processor
address bit A20 to be forced to 0. This limits physical memory to a maximum of 1 Mbyte, and is
provided to ensure compatibility with those programs that relied on the physical address wrap
around functionality of the original IBM PC. The A20M# pin on the processor provides this
function. When A20M# is active, all external bus cycleswill drive A20 low, and all internal cache

accesses will be performed with A20 low.
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The A20M# pin is recognized while the processor isin SMM. The functionality of the A20M#
input must be recognized in two instances:

1. If the SMM handler needs to access system memory space above 1 Mbyte (for example, when
saving memory to disk for azero-volt suspend), the A20M# pin must be deasserted before the
memory above 1 Mbyteis addressed.

2. If SMRAM has been relocated to address space above 1 Mbyte, and A20M# is active upon
entering SMM, the processor will attempt to access SMRAM at the rel ocated address, but with
A20 low. This could cause the system to crash, since there would be no valid SMM interrupt
handler at the accessed location.

In order to account for the above two situations, the system designer must ensure that A20M# is
deasserted on entry to SMM. A20M# must be driven inactive before the first cycle of the SMM
state save, and must be returned to its original level after the last cycle of the SMM state restore.
This can be done by blocking the assertion of A20M# whenever SMIACT# is active.

In addition to blocking the assertion of A20M# whenever SMIACT# is active, the system must also
guarantee that A20M# is de-asserted at least one 1/0 clock prior to the assertion of SMIACT#. The
processor may start the SMM state save as soon as SMIACT# is asserted. Processors faster than
200 MHz may not have enough time to recognize the de-assertion of A20M# before starting the
SMM state save. As aresult, this may cause the processor to start the first few cycles of the SMM
state save with A20M# asserted. To avoid this, the system designer can use either of the following:

* When relocating the SMRAM above 1 Megabyte, ensure that the SMRAM does not coincide
with any odd megabyte addresses. (Note that systems which use A20M# and SMM but do not
relocate SMRAM above 1 Megabyte are not affected.)

¢ Useexternal logic to prevent the assertion of SMI to the processor until A20M# is de-asserted
(and guarantee that A20M# remains de-asserted while in SMM). Note that the A20M# input
must also meet setup and hold times in order to be recognized in a specific clock.

SMM and Second Level Write Buffers

Before the processor enters SMM, it emptiesitsinternal write buffers. Thisis necessary so that the
datain the write buffersiswritten to normal memory space, not SMM space. Once the processor is
ready to begin writing an SMM state saveto SMRAM, it assertsthe SMIACT# signal for SMRAM
references. SMIACT# may be driven active by the processor before the system memory controller
has had an opportunity to empty the second level write buffers.

To prevent the data from these second level write buffers from being written to the wrong location,
the system memory controller needs to direct the memory write cycles to either SMM space or
normal memory space. This can be accomplished by saving the status of SMIACT# a ong with the
address for each word in the write buffers.

EWBE# can also be used to prevent the processor from asserting SMIACT# before write buffers
are empty. The processor will wait for an active EWBE# before asserting SMIACT#.
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Clock Control

Clock Generation

To understand the additional power management fears of the Pentium processor and how it

mani pul ates the clock to conserve power, it is necessary to understand how the clock operates. The
processor is capable of running internally at frequencies much higher than the bus speed viathe

various bus frequency settings. This allows simpler system design by lowering the clock speeds

required in the external system. The high frequency internal clock relies on an internal Phase Lock

Loop (PLL) to generate the two internal clock phases, “phase one” and “phase two.” Most external
timing parameters are specified with respect to the rising edge of CLK. The PLL requires a
constant frequency CLK input, and therefore the CLK input cannot be changed dynamically.

On the embedded Pentium processor, CLK provides the fundamental timing reference for the bus
interface unit. The internal clock converter enhances all operations functioning out of the internal
cache and/or operations not blocked by external bus accesses.

Stop Clock

The processor provides an interrupt mechanism, STPCLK#, that allows system hardware to control
the power consumption of the processor by stopping the internal clock (output of the PLL) to the
processor core in a controlled manner. This low-power state is called the Stop Grant state. The
target for low-power mode supply current in the Stop Grant state is ~15% of nggmnal |

When the processor recognizes a STPCLK# interrupt, the processor will stop execution on the next
instruction boundary (unless superseded by a higher priority interrupt), stop the pre-fetch unit,
complete all outstanding writes, generate a Stop Grant bus cycle, and then stop the internal clock.
At this point, the processor is in the Stop Grant state.

If STPCLK# is asserted during RESET and continues to be held active after RESET is deasserted,
the processor will execute one instruction before the STPCLK# interrupt is recognized. Execution
of instructions will therefore stop on the second instruction boundary after the falling edge of
RESET.

The processor cannot respond to a STPCLK# request from a HLDA state because it cannot
generate a Stop Grant cycle.

The rising edge of STPCLK# will tell the processor that it can return to program execution at the
instruction following the interrupted instruction.

Unlike the normal interrupts, INTR and NMI, the STPCLK# interrupt does not initiate interrupt
table reads. Among external interrupts, STPCLK# is the lowest priority.

STPCLK# Signal

STPCLK# is treated as a level triggered interrupt to the processor. This interrupt may be asserted
asynchronously and is prioritized below all of the external interrupts. If asserted, the processor will
recognize STPCLK# on the next instruction boundary, and then do the following:

1. Flush the instruction pipeline of any instructions waiting to be executed.

2. Wait for all pending bus cycles to complete and EWBE# to go active.
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3. Driveaspecia bus cycle (Stop Grant bus cycle) to indicate that the clock is being stopped.

4. Enter low power mode.

STPCLK# isactive low. To ensure STPCLK# recognition, the system must keep this signal active
until the appropriate special cycle has been issued by the processor. To guarantee that every
STPCLK# assertion, and subseguent deassertion and re-assertion, is recognized and thuswill get a
Stop Grant bus cycle response (which will also ensure that each deassertion of STPCLK# allows
execution of at least one instruction), the system must meet the following requirements:

1. Hold STPCLK# active at least until the processor’s Stop Grant cycle response has been
completed by the system’s BRDY# response.

2. STPCLK# must not be re-asserted until five clocks afteratt@f the following events:
a. The processor’s Stop Grant cycle has been completed by the system’s BRDY# response.

b. HITM# is deasserted. (This applies only if HITM# was asserted while waiting for one of
the other two events listed heoe,within two bus clocks of their completion.)

c. EWBE# becomes active after it was sampled inactive at the last relevant BRDY#. A
relevant BRDY# is one which endgher a stop-grant cycler an external snoop
writeback caused by HITM# being asserted as in case b) above.

Events b) and c) can in principle alternate indefinitely, continuing to delay STPCLK# deassertion
recognition, if the system design allows that to happen.

Note that if a system is not relying on either a Stop Grant bus cycle response for every STPCLK#
assertion, or for each deassertion of STPCLK# to allow execution of at least one instruction, these
detailed requirements can be ignored. Though STPCLK# is asynchronous, setup and hold times
may be met to ensure recognition on a specific clock.

The STPCLK# input must be driven high (not floated) in order to exit the Stop Grant state. Once
STPCLK# is deasserted and the processor resumes execution, the processor is guaranteed to
execute at least one instruction before STPCLK# is recognized again. To return to normal state,
external hardware must deassert STPCLK#.

Dual Processing Considerations

The Primary and Dual processors may or may not tie their STPCLK# signals together. The decision
is dependent on system specific processor power conservation needs. Connecting the STPCLK#
signals on the Primary and Dual processors together is strongly recommended for operation with
the Dual processor.

Tying the STPCLK# signals together causes both the Primary and Dual processors to eventually
enter the Stop Grant state on assertion of STPCLK#. The system ceases processing until the
STPCLK# signal is deasserted. In Dual Processor mode with the STPCLK# pins tied together,
independent STPCLK# control of each processor is not possible. Both the Primary processor and
Dual processor will go into the Stop Grant state independently, and will each generate a Stop Grant
special bus cycle.

In a dual processing system where STPCLK# is tied to both the primary and dual processors, the
system expects to see two Stop Grant Bus Cycles after STPCLK# is asserted. FLUSH# should not
be asserted between the time STPCLK# is asserted and the completion of the second Stop Grant
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Bus Cycle. If FLUSH# is asserted during thisinterval, the system may not see the second Stop
Grant Bus Cycle until after STPCLK# is deasserted.

Not tying the STPCLK# signals together gives the flexibility to control either or both the
processors’ power consumption based on the system performance required. External logic would
be required to control this signal to each processor in a DP system.

Stop Grant Bus Cycle

A special Stop Grant bus cycle will be driven to the bus after the processor recognizes the
STPCLK# interrupt. The definition of this bus cycle is the same as the HALT cycle definition for

the standard Intel486 microprocessor architecture, with the exception that the Stop Grant bus cycle
drives the value 0000 0010H on the address pins. In a Dual Processor system, with both STPCLK#
signals tied together, two stop grant cycles will occur in a row. The system hardware must
acknowledge the Stop Grant cycle by returning BRDY#. The processor will not enter the Stop
Grant state until BRDY# has been returned.

The Stop Grant Bus cycle consists of the following signal states: M/IO# = 0, D/C# = 0, W/R# = 1,
Address Bus = 0000 0010H (A4 = 1), BE7#-BEO# = 1111 1011, Data bus = undefined.

When operating in dual processing mode, and the STPCLK# signals are tied together, both the
Primary processor and Dual processor will go into the Stop Grant state independently, and will
each generate a Stop Grant special bus cycle. The system must return BRDY# for both of the

special bus cycles.

The latency between a STPCLK# request and the Stop Grant bus cycle is dependent on the current
instruction, the amount of data in the processor write buffers, and the system memory performance.
Refer to Figure 12-8.

Figure 12-8. Entering Stop Grant State
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12.4.4 Pin State During Stop Grant

During the Stop Grant state, most output and input/output signals of the microprocessor will be
held at their previous states (the level they held when entering the Stop Grant state). See

Table 12-3. However, the data bus and data parity pins will be floated. In responseto HOLD being
driven active during the Stop Grant state (when the CLK input is running), the processor will
generate HLDA and three-state all output and input/output signals that are three-stated during the
HOLD/HLDA state. After HOLD is deasserted, all signalswill return to their states prior to the

HOLD/HLDA sequence.
Table 12-3. Pin State During Stop Grant Bus State
Signal Type State
A31-A3 110 Previous State
D63-D0 lfe} Floated
BE7#-BEO# o Previous State
DP7-DPO 110 Floated
WIR#, DIC#, M/IO# (0] Previous State
ADS#, ADSC# (6] Inactive
LOCK# (0] Inactive
BREQ O Previous State
HLDA O As per HOLD
FERR# (6] Previous State
PCHK# O Previous State
PWT, PCD (6] Previous State
SMIACT# (0] Previous State

In order to achieve the lowest possible power consumption during the Stop Grant state, the system
designer must ensure the input signals with pull-up resistors are not driven low and the input
signals with pull-down resistors are not driven high.

All inputs, except data bus pins, must be driven to the power supply rails to ensure the lowest
possible current consumption during Stop Grant or Stop Clock modes. Data pins should be driven
low to achieve the lowest power consumption. Pull down resistors or bus keepers are needed to
minimize the leakage current.
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Clock Control State Diagram

Figure 12-9 shows the state descriptions and the state transitions for the clock control architecture.

Figure 12-9. Stop Clock State Machine
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A Flush State can be entered from states 1, 2 and 3 by asserting the FLUSH# input signal. The
flush stateis exited (e.g., the processor returns to the state from which it came) when the Flush
Acknowledge Specia Bus Cycleisissued by the processor.

12.4.5.1  Normal State — State 1
This isthe normal operating state of the processor.
12.45.2 Stop Grant State — State 2

The Stop Grant state (~15% of normal state I¢) provides afast wake-up state that can be entered
by simply asserting the external STPCLK# interrupt pin. Once the Stop Grant bus cycle has been
placed on the bus, and BRDY # is returned, the processor isin this state. The processor returns to
the normal execution state in approximately 10 clock periods after STPCLK# has been deasserted.
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For minimum processor power consumption, all other input pins should be driven to their inactive
level while the processor isin the Stop Grant state. A RESET will bring the processor from the
Stop Grant state to the normal state (note: unless STPCLK# is also deasserted, an active RESET
will only bring the processor out of the Stop Grant state for afew cycles). The processor will
recoghize the inputs required for maintaining cache coherency (e.g., HOLD, AHOLD, BOFF#, and
EADSH for cache invalidations and snoops) as explained later in this section. The processor will
not recognize any other inputs while in the Stop Grant state. Input signals to the processor will not
be recognized until 1 CLK after STPCLK# is deasserted.

While in the Stop Grant state, the processor will latch transitions on the external interrupt signals
(SMI#, NMI, INTR, FLUSH#, R/S#, and INIT). All of these interrupts are taken after the
deassertion of STPCLK# (e.g., upon re-entering the normal state). The Pentium processor requires
INTR to be held active until the processor issues an interrupt acknowledge cycle in order to
guarantee recognition.

The processor will generate a Stop Grant bus cycle only when entering that state from the normal
state. When the processor enters the Stop Grant state from the Stop Clock Snoop state, the
processor will not generate a Stop Grant bus cycle.

Auto Halt Powerdown State — State 3

The execution of aHLT instruction will aso cause the Pentium processor to automatically enter the
Auto HALT Power Down state where Icc will be ~15% of |cc in the Normal state. The processor
will issue anorma HALT bus cycle when entering this state. The processor will transition to the
normal state upon the occurrence of INTR, NMI, SMI#, RESET, or INIT.

A FLUSH# event during the Auto HALT power down state will be latched and acted upon whilein
this state.

STPCLK# is not recognized by the processor whilein the Auto HALT Powerdown state. The
system can generate a STPCLK# while the processor isin the Auto HALT Powerdown state, but
the processor will only servicethisinterrupt if the STPCLK# pin is still asserted when the Pentium
returns to the normal state.

Whilein Auto HALT Powerdown state, the processor will only recognize the inputs required for
maintaining cache coherency (e.g., HOLD, AHOLD, BOFF#, and EADS# for cache invalidations
and snoops) as explained later in this section.

Stop Clock Snoop State (Cache Invalidations) — State 4

When the processor isin the Stop Grant state or the Auto HALT Powerdown state, the processor
will recognize HOLD, AHOLD, BOFF# and EADS# for cache invalidation/writebacks. When the
system asserts HOLD, AHOL D, or BOFF#, the processor will float the bus accordingly. When the
system then asserts EADS#, the processor will transparently enter the Stop Clock Snoop state and
perform the required cache snoop cycle. It will then re-freeze the clock to the processor core and
return to the previous state. The processor does not generate the Stop Grant bus cycle or HALT
special cycle when it returns to the previous state.

Stop Clock State — State 5

Stop Clock state (~ 1% of normal state Icc) is entered from the Stop Grant state by stopping the
CLK input. Note: the CLK must be held at alogic low while stopped. None of the processor input
signals should change state while the CLK input is stopped. Any transition on an input signal (with
the exception of INTR) before the processor has returned to the Stop Grant state will result in
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unpredictable behavior. If INTR is driven active while the CLK input is stopped, and held active
until the processor issues an interrupt acknowledge bus cycle, it will be serviced in the normal
manner once the clock has been restarted. The system design must ensure the processor isin the
correct state prior to asserting cache invalidation or interrupt signals to the processor.

While the processor isin the Stop Clock state, all pins with static pullups or pulldowns must be
driven to their appropriate values as specified in the datasheet.

During the Stop Clock state the processor input frequency may be changed to any frequency
between the minimum and maximum frequency listed in the AC timing specifications found in the
datasheet. To exit out of the Stop Clock state, the CLK input must be restarted and remain at a
constant frequency for aminimum of 1 ms. The PLL requires this amount of time to properly
stabilize. After the PLL stabilizes, the processor will return to Stop Grant state and the STPCLK#
signal may be deasserted to take the processor out of Stop Grant state and back to the Normal state.

In order to realize the maximum power reduction whilein the Stop Clock state, PICCLK and TCK
should also be stopped. These clock inputs have the same restarting restrictions as CLK. The local
APIC cannot be used whilein the Stop Clock state since it also uses the system clock, CLK.

The Stop Clock state feature cannot be used in dual processing or functional redundancy checking
modes because there is no way to re-synchronize the internal clocks of the two processors.
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13.1

13.2

13.2.1

13.2.2

13.3

Introduction

Embedded Pentium® processor-based system designers intending to use integration tools to debug
their prototype systems can interface to the processor using two methods:

* Insert an emulator probe into the processor socket.

* Include simple logic on their board that implements a debug port connection.

Inserting an emulator probe into the processor socket allows access to all bus signal's, but

capacitive loading issues may affect high speed operation. In contrast, the debug port connection

allows debugger access to the processor’s registers and signals without affecting high speed
operation. This allows the system to operate at full speed with the debugger attached. Therefore,
Intel recommends that all embedded Pentium processor-based system designs include a debug port.

Two Levels of Support

Two levels of support are defined for the debug port, the second level being a superset of first. The
system designer should choose the level of support that is appropriate for the particular system
design and implement that level. Samples of each level of implementation are given in
“Implementation Examples” on page 13-4.

Level 1 Debug Port (L1)

The Level 1 debug port supports systems with a single processor. L1 uses a 20-pin connector to
allow a debugger access to the processor’s registers and signals.

Level 2 Debug Port (L2)

L2 extends the 20-pin debug port connector to 30 pins. The extra ten pins include a second set of
boundary scan signals as well as additional R/S# and PRDY signals. The additional R/S# and
PRDY signals are added to support the a dual-processor configuration. This enables a debugger to
provide separate control over the two processors during debug.

Signals on pins 1 through 20 of the L2 debug port are identical to the signals on the L1 debug port.

Debug Port Connector Descriptions

A debugger can have a 30-pin connector on its probe that supports both levels of the debug port (as
described previously, L1 or L2). Two cables can be provided, each cable having a 30-pin connector
at one end (to mate with the debugger’s probe connector) and the appropriate size connector at the
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other end to mate with the debug port in the system under debug. (For example, the L1 debug port
Cable can be a 20-conductor cable with a 20-pin connector at one end and a 30-pin connector at the
other end, leaving pins 21 to 30 unconnected.)

Intel-recommended connectors for mating with debug port cables are available in either a vertical
or right-angle configuration. Use the one that fits best in your design. The connectors are
manufactured by AMP Incorporated and are in their AMPMODU System 50 line. Table 13-1
shows the AMP part numbers for the various connectors:

Table 13-1. Recommended Connectors

Note:

Connector Vertical Right-Angle
20-pin shrouded header 104068-1 104069-1
30-pin shrouded header 104068-3 104069-5

These are high density through hole connectors with pins on 0.050” by 0.100” centers. Do not
confuse these with the more common 0.100” by 0.100” center headers.

Figure 13-1 is an example of the pinout of the connector footprint as viewed from the connector
side of the circuit board. This is just an example. Contact your third-party tools vendor to
determine the correct implementation for the tool you will use. Note that the 30-pin connector is a
logical extension of the 20-pin connector with the key aligned with pin 15.

Figure 13-1. Debug Port Connector

13.4

13-2

Note:

A5913-01

Signal Descriptions

Table 13-2 shows the debug port signals. Direction is given as follows: O = output from the

Pentium processor-based board to a debugger; | = input to the Pentium processor-based board from
a debugger. These are either 2.5V or 3.3 V signals, depending on the Pentium processor used in the
system. For the L1 debug port, ignore signals on pins 21 through 30.

Target systems should be sure to provide a way for debugging tools like emulators, in-target probes
and logic analyzers to reset the entire system, including upgrade processor, chip sets, etc. For
example, if you follow the debug port implementation described below, the DBRESET signal
provides this functionality. If you are not implementing the debug port, make sure that your system
has a test point connected into the system reset logic to which a debug tool can connect.
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Table 13-2. Debug Port Signals (Sheet 1 of 2)

Signal Name Dir Pin Description
(Pentium® processor signal). A debugger may use INIT to support
INIT O 1 emulating through the processor INIT sequence while maintaining
breakpoints or breaking on INIT.
Debugger Reset output. A debugger may assert DBRESET (high)
while performing the “RESET ALL” and “RESET TARGET"
debugger commands. DBRESET should be connected to the
DBRESET | 2 A
system reset circuitry such that the system and processor(s) are
reset when DBRESET is asserted. This is useful for recovering from
conditions like a “ready hang.” This signal is asynchronous.
RESET o 3 (Pentium processor signal). A debugger may use RESET to support
emulating through the reset while maintaining breaking on RESET.
GND 4 Signal ground.
SMIACT# 0 5 (Pe_ntlum processor signal) System Management mode interrupt
active.
Vcc from the system. A debugger uses this signal to sense that
Vce 6 system power is on and to determine signal I/O voltage levels.
Connect this signal to V3 through a 1 KOhm (or smaller) resistor.
R/S# | 7 Connect to the R/S# pin of the.
GND 8 Signal ground.
NC 9 No connect. Leave this pin unconnected.
GND 10 Signal ground.
PRDY O 11 From the PRDY pin of the.
Boundary scan data input (signal). This signal connects to TDI of
TDI | 12 the. For dual processor operation, TDI of the Dual would connect to
TDO of the.
Boundary scan data output (signal). This signal connects to TDO
TDO O 13 from the for a single processor design, or to TDO from the Dual
Pentium for dual processor operation.
TMS | 14 Boundary scan mode select (signal).
GND 15 Signal ground.
TCK | 16 Boundary scan clock (signal).
GND 17 Signal ground.
TRST# | 18 Boundary scan reset (signal).
DBINST# is asserted (connected to GND) while the debugger is
DBINST# | 19 connected to the debug port. DBINST# can be used to control the
isolation of signals while the debugger is installed.
Boundary scan enable. This signal can be used by the system to
control multiplexing of the boundary scan input pins (TDI, TMS,
TCK, and TRST# signals) between the debugger and other
boundary scan circuitry in the system. The debugger asserts (low)
BSEN# | 20 BSEN# when it is driving the boundary scan input pins. Otherwise,
the debugger drivers are high impedance. If the boundary scan pins
are actively driven by the system, then BSEN# should control the
system drivers/multiplexers on the boundary scan input pins. See
“Example 2: Single Processor, Boundary Scan Used by System” on
page 13-6.
PRDY2 O 21 From the PRDY pin of the Dual (for dual processor operation).
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Table 13-2. Debug Port Signals (Sheet 2 of 2)

13.5

13.6

13.6.1

13-4

Signal Name Dir Pin Description

GND 22 Signal ground.

R/S#2 | 23 Connect to the R/S# pin of the Dual (for dual processor operation).
NC 24
NC 25
NC 26
NC 27
NC 28

GND 29 Signal ground.
NC 30

Signal Quality Notes

Since debuggers can connect to the system via cables of significant length (e.g., 18 inches), care
must be taken in Pentium processor-based system design with regard to the signals going to the
debug port. If system outputs to the debug port (i.e., TDO, PRDY, INIT and RESET) are used
elsewhere in the system they should have dedicated driversto the debug port. Thiswill isolate them
from the reflections from the end of the debugger cable. Series termination is recommended at the
driver output. If the boundary scan signals are used el sewhere in the system, then the TDI, TMS,
TCK, and TRST# signals from the debug port should be isolated from the system signals with
multiplexers.

Implementation Examples
Example 1: Single Processor, Boundary Scan Not
Used by System

Figure 13-2 shows a schematic of aminimal Level 1 debug port implementation for a Pentium
processor, single-processor system in which the boundary scan pins of the are not used in the
system.
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Figure 13-2. Single Processor — Boundary Scan Not Used
TO/FROM SYSTEM
RESET CIRCUIT Vees
o DEBUG PORT
S
— 6
cPU 2 .
33
RESET > AW 3 ResET
N 33 1
INIT > W INIT
R/SH# RSt
Snie
191 DBINST#
33 1
PRDY AWV PRDY
DI 124 i
T™S 4 rms
TCK 161rck
TRST# Bl rrsts
= BSEN#
33
SMIACT# l'> AV S smiacT#
33
TDO wv—=21TDo
4 GND
13 GND
SMIACT# 15| GNP
TO SYSTEM 2 GND
GND
A6253-01
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6.2 Example 2: Single Processor, Boundary Scan

Used by System

Figure 13-3 shows a schematic of a Level 1 debug port implementation for a single-processor

In

system in which the boundary scan pins are used. Note that the BSEN# signal controlsthe

multiplexing of the boundary scan signals. With this implementation, the system could use the
boundary scan (through the) while the debugger is “emulating,” but could not while the debugger is

“halted” (because the chain is broken).

Figure 13-3. Single Processor — Boundary Scan Used

CC  DEBUG PORT

TO/FROM SYSTEM v
RESET CIRCUIT N vV
\ 9\
S3 X
< 6
CPU 2
33
RESET — > oy 2
33
INIT > L
.
RIS#
9
19
33
PRDY AWV 1L
33 5
SMIACT# D_'WN_
1 18
TRST#
TCK h 1 16
™S "Jl 14
"4 12
DI <}
‘;J 33 13
PO MWW
20
4
PY Py Py oq 8
L9 17 N e -
15
17
TO/FROM SYSTEM SMIACT#
BOUNDARY SCAN TO SYSTEM

VCC
DBRESET

RESET
INIT
R/S#

N/C
DBINST#

PRDY

SMIACT#
TRST#1
TCK
T™S

TDI

TDO

BSEN#

GND
GND
GND
GND
GND
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13.6.3 Example 3: Dual Processors, Boundary Scan
Not Used by System

Figure 13-4 shows a schematic of atypical Level 2 debug port implementation for a Pentium
processor, dual-processor system in which the boundary scan pins are not used. The multiplexer
circuit for use with the “upgrade socket” concept is shown, but could be replaced with a jumper.

Note: Contact your third-party tools vendor for information on implementing SMIACT# in a dual
processor system.

Figure 13-4. Dual Processor — Boundary Scan Not Used

TO/FROM SYSTEM
RESET CIRCUIT Vee
v L2 DEBUG PORT
o
- 6 v
PROCESSOR = Vec
DBRESET
33 3
RESET AW RESET
33 1
INIT ® >—w. INIT
7
RIS# = RIS#
PRDY AW 1; PRDY
—<{ e
—{DBINST#
TRST# s H TRST#
TCK ® ] TcK
T™S s =] ™vs
TDI TDI
TDO |— N B 11po
33 20 I BSEN#
5 t
AWV —— sMiACT#
R/S#2
PROCESSOR
2Ll prpY2
RESET —21IN/iC
INIT 24 N/C
SMIACT# _zg N/C
RIS# =1NC
33 N/C
PRDY ANN— 21 N/C
TRST# 3 G“B
TCK 1€
T™S 15| GNP
TDI |—e N ) GND
TDO | J | GND
UPGRADE 25 | GNP
PRESENT GND
SMIACT#
TO SYSTEM
T Contact third party tools provider for implementing SMIACT# in dual CPU systems.
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Example 4: Dual Processors, Boundary Scan Used by
System

Figure 13-5 shows a schematic of aLevel 2 debug port implementation for a dual-processor system

that uses boundary scan. Note that the BSEN# signal controls the multiplexing of the boundary

scan signals. With thisimplementation, the system could use the boundary scan (through the) while

the debugger is “emulating,” but could not while the debugger is “halted” (because the chain is
broken).

Contact your third-party tools vendor for information on implementing SMIACT# in a dual
processor system.

Figure 13-5. Dual Processor — Boundary Scan Used

13-8

TO/FROM SYSTEM Vee  Vee
RESET CIRCUIT L
V. ¥ L2 DEBUG PORT
53 x
o 6 VCC
PROCESSOR 2
13 5 | DBRESET
RESET * D>— W RESET
33
INIT DWW i INIT
RIS# = - R/S#
PRDY AW PRDY
9 In/c
12 DBINST#
TRST# | TRST#
———<——] TCK
TCK r 14
T™S o1, |TMS
TDI
TDI = _?T
TDO |— AW TDO
23 | R/S#2
o 21 { prDY2
33
PROCESSOR T>AW 2 |smiacT#
20
RESET >a | BSEN#
INIT oo o<H 50 1\V/C
R/S# p| KJKJ S] en WS
PRDY 19 /09/9/ e
N/C
SMIACT# 27| \/C
2 In/c
TRST# 4
GND
TCK 8
T™S o GND
TDI N 5 |GND
00 - 15 1GND
GND
PRESENT INAIN Y 2o
TO/FROM SYSTEM 29 | GND
BOUNDARY SCAN v
SMIACT#
TO SYSTEM
T Contact third party tools provider for implementing SMIACT# in dual CPU systems.
A6255-01
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Implementation Details

Signal Routing Note

The debugger software communicates with the processor through the debug port using the
boundary scan signalslisted above. Typically, the debugger expectsthe processor to be the first and
only component in the scan chain (from the perspective of the debug port). That is, it expects TDI
to go directly from the debug port to the TDI pin of the processor, and the TDO pin to go directly
from the processor to the debug port (see Figure 13-6). If you have designed your system so that
thisis not the case (for instance, see Figure 13-7), you will need to provide the debugger software
with the following information: (1) position of the processor in the scan chain, (2) the length of the
scan chain, (3) instruction register length of each devicein the scan chain. Without thisinformation
the debugger will not be able to establish communication with the processor.

Figure 13-6. Example of Processor Only in Scan Chain

1Dl DI

Y

82492 82492 LI 82492 82492

Debug Port

A

Processor 82492 |e2492| w w w |e2402| |82492

82497

A6235-01
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Figure 13-7. Example of Multiple Components in Scan Chain

13.7.2

13.7.2.1

13-10

Note:

Dl 82492 82492 82492 82492
TDO >»| TDI TDO TDI TDO (‘ (l—> TDI TDO 3| TDI TDO
Processor :I
—]TDO TDI TDO TDI (—SS— TDO TDI [«€&—|TDO TDI
82492 82492 82492 82492
TDO
5(_m_y
5 | 82497
§ < TDO

A6236-01

Special Adapter Descriptions

For those designs where board real estate is a concern or where the design is finished and it istoo

late to implement the debug port, it may be possible to use a special “debug port adapter” to replace
the on-board debug port described in the previous sections. The purpose of the adapter is to provide
easy access to the boundary scan signals of the processor(s). For simplicity, the adapter should
make the boundary scan signals accessible to the debug tool while at the same time preventing the
target system from accessing them. Two debug port adapters are described: (1) for uniprocessor
debug, (2) for dual-processor debug.

Standard PPGA adapters are available from many third-party tools vendors.

Uniprocessor Debug

A debug port adapter for use in uniprocessor systems, or dual-processor systems where only one
processor will be debugged at a time, can be built by reworking two Pentium processor SPGA
sockets (see Figure 13-8).

This adapter can be used only when the processot included in the target system boundary
scan string. In addition, when used in dual-processor systems you will only be able to debug the
processor to which the adapter is connected.

Table 13-3 show which pins to connect lines of appropriate 20- or 30- wire cable to on the top
socket.
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Table 13-3. SPGA Socket

Cable Wire Number SPGA Pin Number Signal
1 AA33 INIT
2 NC DRESET
3 AK20 RESET
4 AD36 (Vgg) GND
5 AGO3 SMIACT#
6 U37 (Veea) Vee
7 AC35 R/S#
8 AB36 (Vsg) GND
9 NC NC
10 736 (Vss) GND
11 ACO05 PRDY
12 N35 TDI
13 N33 TDO
14 P34 TMS
15 X36 (Vsg) GND
16 M34 TCK
17 R36 (Vgs) GND
18 Q33 TRST#
19 NC DBINST#
20 NC BSEN#

Note:  You may connect the GND pinsto any pin marked V g5 on the SPGA pinout diagram. The NC pins
are no connects. You may simply cut those wires.
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Figure 13-8. Uni-Processor Debug

13.7.2.2

13-12

Note:

Mount processor here

[~
[
'i"i'??'i"i"iﬁ

[
TYrrvyeYy
Plug into processor
socket on system board

Debug Port Connector
(AMP#111196-7)

Connect to socket
mounted on debugger board

A5918-01

Connect a double-row receptacle (AMP# 111196-7) to the debug port connector end of the cable.
Thisisa30-pin connector, so that it fits into the socket on the debugger buffer board.

Remove the following pins from the bottom socket:

R/SH AC35
PRDY ACO05
TDI N35
TDO N33
TMS P34
TCK M34

TRST# Q33

Connect the two sockets together. Make sure not to crush the wires between the pins.

Dual-Processor Debug

A debug port adapter for use in dual processor debugging can be built by reworking four Pentium
processor-based SPGA sockets. (See Figure 13-9).

This adapter can be used only when the processors are not included in the target system boundary

scan string.

You will need to usetwo SPGA sockets per processor location. For this discussion, assume that the
startup processor is called processor 1 and that the upgrade processor is called processor 2. Thus,
you will use two SPGA sockets to connect to processor 1 and two SPGA sockets to connect to
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processor 2. Certain debug port signals must be shared by Processor 1 and Processor 2. These
signals must be connected from the debug port connector end of the cable (on which you will place
adouble-row receptacle: AMP# 111196-7) to both double SPGA sockets.

Figure 13-9. Dual-Processor Debug Port Adapter

[
TYovvyyYy TIrTey
Plug into processor 1
socket on system board

Debug Port Connector
(AMP#111196-7)

Connect to socket
mounted on debugger board

[
'i'?'i"i"i'WZ/

Mount processor 1 here Mount processor 2 here
[ 7 [ 7
[ ﬁ [ ﬁ
TYOvYYY

Plug into processor 2
socket on system board

A5919-01

Connect lines of 30-wire cable to the pins on the top SPGA sockets for both processor 1 and 2.
Following are the signal s which should be connected to each processor socket. Make sure to

connect the shared lines to both top sockets.

Figure 13-10. Shared Pins for Dual-Processor Adapter

Upgrade
Processor

PRDY2#

RIS2#
TDO

TDO >1TDI
Processor
TMS |- >1 TMS
TCK |- > TCK
PRDY1# TRST# | >1 TRST#
> rRis1# RESET RESET
I—) TDI INIT INIT
Y YY Y|Y
30-Pin Debug Port

A6237-01
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Table 13-4. Debug Port Connector Pinout

13-14

INlgl.

Cable Wire Number SPGA Pin Number Processor Socket Signal
1 AA33 1,2 INIT
2 NC DBRESET
3 AK20 1,2 RESET
4 Vss 1 GND
5 AGO3 SMIACT#'
6 Vee 1 Vee
7 AC35 1 R/S1#
8 Vss 1 GND
9 NC NC
10 Vss 1 GND
11 ACO05 1 PRDY1
12 N35 1 TDI
13 N33 2 TDO
14 P34 1,2 TMS
15 Vss 1 GND
16 M34 1,2 TCK
17 Vss 1 GND
18 Q33 1,2 TRST#
19 NC DBINST#
20 NC BSEN#
21 ACO05 2 PRDY2
22 Vsg 2 GND
23 AC35 2 R/S2#
24 NC NC
25 NC NC
26 NC NC
27 NC NC
28 NC NC
29 Vss 2 GND
30 NC NC

T Contact your third-party tools vendor for information on implementing SMIACT# in a dual processor

system.

Note:  You can connect the V ¢ and GND pins to any convenient power or ground pin.

Connect a double-row receptacle (AMP# 111196-7) to the debug port end of the cable. Thisisa 30-

pin connector, so that it fitsinto the socket on the debugger buffer board.
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Remove the following pins from the bottom of both double sockets:

R/SH# AC35
PRDY ACO05
TDI N35
TDO N33
TMS P34
TCK M34
TRST# Q33

Connect each set of two sockets together. Make sure not to crush the wires between the pins.
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Model Specific Registers
and Functions 14

This chapter introduces the model specific registers (MSRs) as they are implemented on the
embedded Pentium® processor family. Model specific registers are used to provide access to
features that are generally tied to implementation dependent aspects of a particular processor. For
example, testability features that provide test access to physical structures such as caches, and
branch target buffers are inherently model specific. Features to measure the performance of the
processor or particular components within the processor are also model specific.

The features provided by the model specific registers are expected to change from processor
generation to processor generation and may even change from model to model within the same
generation. Because these features are implementation dependent, they are not recommended for
use in portable software. Specifically, software devel opers should not expect that the features
implemented within the MSRs will be supported in an upward or downward compatible manner
across generations or even across different models within the same generation.

The embedded Pentium processor with MMX™ technology MSRs are different than the embedded
Pentium processor MSRs. When possible, fields were preserved between the two processors.
Differences between the MSRs are noted throughout this chapter.

14.1 Model Specific Registers

The embedded Pentium processor processor family implements the RDMSR and WRMSR
instructions to read and write the MSR’s respectively. A feature bit in EDX (bit 5), reported by the
CPUID instruction, indicates whether the processor supports the RDMSR and WRMSR
instructions. The Pentium processor with MMX technology implements a new instruction called
RDPMC (Read Performance Monitoring Counter). This instruction enables the user to read the
performance monitoring counters in “Current Privilege Level = 3” given bit 8 is set in CR4
(CR4.PCE).

14.1.1 Model Specific Register Usage Restrictions

Proper use of the MSR features described in this chapter requires that the CPUID instruction be
used not only to validate that the FAMILY reported in the EAX register is equal to “5”, but also to
validate the specific MODEL number within that FAMILY. Note that this requirement is
significantly more restrictive than is required for new architectural features where it is sufficient to
validate that the FAMILY is equal to or greater than that of the first family to implement the new
feature. For more information regarding the use of the CPUID instruction, referltidethe
Architecture Software Developer's Manual
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1.2 Model Specific Register Access

In

Access to the model specific registersis provided through the RDM SR and WRM SR instructions.
Access to a particular MSR is achieved by loading the ECX register with the appropriate ECX
value from Table 14-1 below, and then executing either RDM SR or WRM SR. For more
information regarding the use of these instructions, refer to the Intel Architecture Software
Developer’s Manual

Table 14-1. Model Specific Register Descriptions

ECX Value (in Hex) Register Name Description
00 Machine Check Address(1) ;tgffczzggiss of cycle causing
01 Machine Check Type(1) ﬁ}tgffcceﬁi'gn‘ype of cycle causing
02 Test Register 1 Parity Reversal Register
03 RESERVED
04 Test Register 2(2) Instruction Cache End Bit
05 Test Register 3 Cache Test Data
06 Test Register 4 Cache Test Tag
07 Test Register 5 Cache Test Control
08 Test Register 6 TLB Test Linear Address
09 Test Register 7 Xlagr-erizt:ﬁgqtzml & Physical
0A RESERVED
0B Test Register 9 BTB Test Tag
oc Test Register 10 BTB Test Target
oD Test Register 11 BTB Test Control
OE Test Register 12 New Feature Control
OF RESERVED
10 Time Stamp Counter Performance Monitor
11 Control and Event Select Performance Monitor
12 Counter 0 Performance Monitor
13 Counter 1 Performance Monitor
14+ RESERVED
NOTES:

1. CR4.MCE must be 1 in order to utilize the machine check exception feature.
2. Reserved on the embedded Pentium® processor with MMX™ technology.
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14.2.1

Caution:

Model Specific Registers and Functions

Testability And Test Registers

The processor provides testability access to the on-chip caches, TLBs, BTB and internal parity
checking features through model specific test registers. The RDM SR/WRM SR instructions may be
utilized by the processor to access the test registers.

Cache, TLB and BTB Test Registers

The processor contains several test registers. The purpose of these test registersisto provide direct

access to the processor’s caches, Translation Look-aside Buffers (TLB), and Branch Target Buffer
(BTB) so test programs can easily exercise these structures. Because the architecture of the caches,
TLBs, and BTB is different, a different set of test registers (along with a different test mechanism)

is required for each processor family member. Most test registers are shared between the code and
data caches.

The test registers should be written to for testability purposes only. Writing to the test registers
during normal operation causes unpredictable behavior. Note that when the test registers are used
to read or write lines directly to or from the cache, external inquire cycles must be inhibited to
guarantee predictable results when testing. This is done by setting both CR0.CD and CR0O.NW to
“1". In addition, the INVD, WBINVD and INVLPG instructions may be executed before and after
but not during testing.

Writing to the test registers during normal operation causes unpredictable behavior.

Since the on-board caches, TLBs, and BTB implemented in embedded Pentium processor with
MMX technology differ than those in embedded Pentium processor, the test register interface
differs.

If a memory data access occurs during a code cache testability operation using the test registers, the
data cache is checked before the external memory operation in initiated. If the access is a miss in
the data cache, then if the accessed line is valid in the code cache, it is invalidated through the
internal snooping mechanism. In addition, the same cache line fill buffer is used for cache

testability writes and to temporarily store data from memory data reads. For this reason, memory
data reads should be done with care or avoided to ensure data from the memory read does not
overwrite data from the testability write in the cache line fill buffer.

Similarly, if a code access occurs during a data cache testability operation using the test registers,
the code cache is checked before the external memory operation is initiated. If the access is a miss
in the code cache, then the accessed line if valid in the data cache is invalidated (or written back
and then invalidated if in the M state) through the internal snooping mechanism.
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14.2.1.1 Cache Test Registers

Theregistersin Figure 14-1 provide direct access to the Pentium processor’s code and data caches.

Figure 14-1. Cache Test Registers

6 33322222222221111111111
3 2109876543210098765432109876543210
TR2 End
End Bit Reserved Bi?sl
Test Register
6 33322222222221111111111
3 2109876543210098765432109876543210
TR3
Cache Data Data
Test Register
6 33322222222221111111111
3 210987654321098765432109876543210
TR4 2
Cache Status Tag [31:12] LRU
Test Register
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On the embedded Pentium processor, TR2 is the End Bit Test Register for the code cache. It
contains four end bits. Each end bit corresponds to one byte of instruction in TR3 during code

cache testability access. Since a cache line has 32 bytes, eight accesses are needed to read or write
the end bits for the entire cache line. TR2 is used for accesses to the code cache only. TR2 is
reserved on the embedded Pentium processor with MMX technology.

End bits are used to indicate instruction boundaries on the embedded Pentium processor. The end
bit mechanism aids the decode of two variable length instructions per clock by providing
information on where the boundary between instruction is. If a given byte is the last byte in an
instruction, the corresponding end bit is set to one. When a line is written into the code cache after
a miss, all end bits corresponding to the line are initialized to one. As instructions are decoded, the
end bits are checked for correctness and modified if incorrect. In order for two instructions to be
issued in a single clock, the end bits of the u-pipe instruction must have the correct values,
otherwise only one instruction will be issued. This does have the effect that instructions are usually
not paired the first time that they are put in the code cache.
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TR3 isthe Cache Data Test Register. Thisis where the datais held on its way into or out of the

cache. Prior to a cache testability write, software must load an entire cache line into the 32-byte fill
buffer using TR3, 4 bytes at atime. Similarly, during a cache testability read, the processor extracts
a specified 4-byte data quantity from a cache line and places the datain TR3. A 32-byte cache line
may be written to or read from TR3 as eight 4-byte accesses.

TR4 isthe Cache Status Test Register. It contains the tag, LRU and valid bits to be written to or
read from the cache. Like TR3, TR4 must be loaded with the tag/L RU/valid bits prior to a
testability write, and gets updated with the tag/L RU/valid bits as aresult of atestability read. Note
that TR4[31:28] are reserved and always return azero as aresult of atestability read. The two valid
bits are interpreted differently by the code and data caches, depending upon the setting of TR5.CD

bit. The encodings for TR4.valid are shown in Table 14-2. The encodings for the LRU bits are

shown in Table 14-3 for the embedded Pentium processor and the embedded Pentium processor
with MM X technology.

Table 14-2. Encoding for Valid Bits in TR4

TR5.CD=1 (Data Cache) valid[1] valid[0] Meaning
0 0 Cache line in | state
0 1 Cache line in S state
1 0 Cache line in E state
1 1 Cache line in M state
TR5.CD=0 (Code Cache) valid[1] valid[0] Meaning
X 0 Cache line invalid
X 1 Cache line valid

Table 14-3. Encoding of the LRU Bit in TR4

Pentium® Processor (100/133/166)

LRUIO]

Points to WAY

0

0

1

1

Pentium Processor with MMX™ Technology

LRU[2] LRU[1] LRU[O] Points to WAY
X 0 0 0
X 1 0 1
0 X 1 2
1 X 1 3

Note: TheLRU bitsfor the instruction cache change state when an entry is read using the test registers,
with CRO.CD=1. The LRU bits for the data cache, however, do not change their state during
testability reads with CR0.CD=1.

TR5 isthe Cache Control Test Register. It contains the writeback bit, the CD hit, the cache entry,
the set address, the buffer select, and a two-bit control field, cntl.
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The writeback bit determines whether that particular line is configured for writethrough or allows
the possibility of writeback. It is used by the data cache only (i.e., if the writeback bit is set and a
flush occurs (TR5.cntl=11), then if the addressed line in the data cache is modified, it will be
invalidated and written back to the bus). The CD bit distinguishes between the code and data cache.
The entry field selects one of the four ways in the embedded Pentium processor with MM X
technology (two ways in the embedded Pentium processor) in the cache. The set address field
selects one of 128 sets within the cache to be accessed. The buffer field selects one of the eight
portions of acache lineto be visible through TR3. The control field selects one of the four possible
operation modes. The encodings for the TR5 fields are shown in Table 14-4, Table 14-5,

Table 14-6 and Table 14-7.

Table 14-4. Encoding of the WB Bitin TR5

WB Writeback or Writethrough
0 Writethrough
1 Writeback

Table 14-5. Encoding of the Code/Data Cache Bit in TR5

CD Cache
0 Code cache
1 Data cache

Table 14-6. Encoding of the Entry Bit in TR5

Entry[1] Entry[0] Way
0 0 0
0 1 1
1 0 2
1 1 3

Note: The Entry[1] bit, Way 2 and Way 3 are specific to the embedded Pentium processor with MM X
technology.

Table 14-7. Encoding of the Control Bits in TR5

Cntll CntlO Command
0 0 Normal operation
0 1 Testability write
1 0 Testability read
1 1 Flush

Direct Cache Access

To access the cache for testing, the programmer specifies a set address and entry and requests a
testability read or write. No tag comparison is done; the programmer can directly read/write a
particular entry in a particular set. Note that since TR2 isreserved for the embedded Pentium
processor with MM X technology, there is no TR2 access when reading an entry from the cache.
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To write down an entry into the cache:
¢ Disable replacements by setting CR0.CD=1.
* For each 4-byte access:
— Write address into TR5.buffer. Here, TR5.cntl=00.
— Write data into TR3.
— Write end bits into TR2 (for instruction cache only).

* Writethe desired tag, LRU and valid bitsinto TR4. Note that the contents of TR4 completely
overwrites the previous tag, LRU and valid bitsin the cache.

* Perform atestability write by loading TR5 with the appropriate CD, entry, set address, and cntl
fields. Here, TR5.cntl=01.

To read an entry from the cache:
* For each 4-byte access:

— Write the appropriate CD, entry, set address, buffer and cntl fields into TR5. Here,
TR5.cntl=10.

— Read data from TR3.
— Read end bits from TR2[3:0] (for instruction cache only).

— Read the tag, LRU, and valid bits from TR4. No hit/comparison is performed. Whatever
was in that entry in that set is read into TR4, TR3, and TR2.

To invalidate the cache or invalidate an entry:

* When TR5.cntl=11 (flush), and CD=0 (code cache), the entire code cache is invalidated.
However, if TR5.cntl=11 and CD=1 (data cache), the user can specify through the TR5.WB bit
whether to invalidate the entire data cache, or invalidate and writeback only the cache line
specified by TR5 (see Figure 14-8).

Table 14-8. Definition of the WB Bit in TR5

Note:

TR5.cntl=11 TR5.WB Meaning
CD=0 X Invalidate the entire code cache.
CD=1 0 Invalidate entire data cache. Modified lines are not written back.
CDh=1 1 Invalidate line. Writeback if modified.

Note that TR2, TR3, and TR4 permit both reads and writes, whereas TR5 is awrite-only register.
The test registers should be written to for testability accesses only. Writing to the test registers
during normal operation may cause unpredictable behavior. For example, inadvertent cache hits
can be created.

During cache testability operations, the internal snooping mechanism functions similar to that

described in “Internal Snooping” on page 6-40. If a memory data access occurs during a code
cache testability operation using the test registers, the date cache is checked before the external
memory operation is initiated. If the access is a miss in the data cache, then the accessed line if
valid in the code cache is invalidated through the internal snooping mechanism. In addition, the
same cache line fill buffer is used for cache testability writes and to temporarily store data from
memory data reads. For this reason, memory data reads should be done with care or avoided to
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14.2.1.2

ensure data from the memory read does not overwrite data from the testability write in the cache
linefill buffer.

Similarly, if acode access occurs during a data cache testability operation using the test registers,
the code cache is checked before the external memory operation isinitiated. If the accessis amiss
in the code cache, then the accessed lineif valid in the data cache isinvalidated (or written back
and then invalidated if in the M-state) through the internal snooping mechanism.

When the FLUSH# pin is asserted, it is treated as an interrupt, and when serviced at the next
instruction boundary, it causes awriteback of the data cache and then invalidation of the internal
caches. The cache test registers TR2, TR3, TR4 and TR5 are used in this process, and thus their
values after FLUSH# has been serviced are unpredictable. Therefore FLUSH# should not be
asserted while code is being executed which uses these test registers.

TLB Test Registers

Theregistersin Figure 14-2 provide access to the Pentium processor’s code and data cache

translation lookaside buffers (TLBs). Note that the data cache has two TLBs: a 64-entry TLB for 4-
Kbyte data pages and an 8-entry TLB for 4-Mbyte data pages. The code cache contains only one
32-entry TLB for both 4-Kbyte code pages and 4-Mbyte code pages. The 4-Mbyte code pages are
cached in 4-Kbyte increments (the PS bit in TR6 is ignored). The code cache contains one fully
associative 32-entry TLB which is also integrated for both 4-Kbyte and 4-Mbyte pages. Note that,
unlike the embedded Pentium processor, the embedded Pentium processor with MMX technology
data cache contains one fully associative 64-entry TLB which is integrated for both 4-Kbyte and 4-

Mbyte pages.

Figure 14-2. TLB Test Registers
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TR6 isthe TLB Command Test Register. It contains the linear address, code/data TLB select (CD),
operation (Op) bits and the following status bits: valid (V), dirty (D), user (U), writeable (W), and
page size (PS) bits.

The status bits are inputs to the TLB entry during testability writes, and outputs from the TLB entry
during testability reads. The V bit indicates whether a TLB entry isvalid or invalid during
testability writes. The D bit indicates whether or not a write access was made to the page. The U bit
indicates the privilege level that the processor must be in to access the page. The W hit is one of the
factors in determining the read/write protection of the page. The PS (page size) bit specifies the
page size for the TLB entry. The CD bit determinesif the code or data TLB is being accessed. The
Op bit distinguished between aread and write cycle.

The W-hit, D-bit, and PS-bit are defined only for the data TLB.

Tables 14-9 through 14-16 list the encodings for the fields in the TR6 register.

Table 14-9. Encoding for the Valid Bit in TR6

Valid Valid/Invalid TLB Entry
0 Invalid
1 Valid

Table 14-10. Encoding for the Dirty Bit in TR6

D-bit

Write access made to page?

0

Write access was not made

1

Write access was made

Table 14-11. Encoding for the User Bit in TR6

U-bit Privilege Level Access Allowed
0 PL=0,1,2,3
1 PL=0

Table 14-12. Encoding for the Writeable Bit in TR6

W-bit

Writes Allowed?

0

No writes, read only

1

Allows writes

Table 14-13. Encoding for the Page Size Bit in TR6

Embedded Pentium® Processor Family Developer’s Manual

Note:

PS-bit

Page Size

0

4 KByte

1

4 MByte

Normally the user should not allocate a page entry in both the TL Bs; during testability however if a
match is found in both, then the processor reports that it found it for the 4-Mbyte page size (PS=1).
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Table 14-14. Encoding for the Operation Bit TR6

Op Command
0 TLB write
1 TLB read

Table 14-15. Encoding for the Code/Data TLB in TR6

CD Cache
0 Code TLB
1 Data TLB

TR7isthe TLB Data Test Register. In the embedded Pentium processor it contains bits 31:12 of the
physical address, the hit indicator H, a two-bit entry pointer, and the status bits. The status bits of
the Pentium processor include the two paging attribute bits PCD and PWT, and three LRU bits (L0,
L1, and L2). PCD isthe page level cache disable bit. PWT is the page level write through bit. The
LRU bits determine which entry is to be replaced according to the pseudo-L RU algorithm. TLB
readswhich result in hitsand TLB writes can change the LRU bits. The LRU bits reported for atest
read are the value before the TLB read. The LRU bits are then changed according to the pseudo-
LRU replacement algorithm. The two entry bits determine which one of the four waysto writetoin
the code or data TLB during testability writes.

In the embedded Pentium processor with MM X technology, the entry pointer has been extended
from two bitsto six bits. The six entry bits determine which one of the 64 entriesto writeto in the
data TLB during testability writes. The lower five entry bits determine which one of the 32 entries
to write to in the code TLB during testability writes. Also, the LO, L1 and L2 bits are reserved in
the Pentium processor with MM X technology.

The H isthe hit indicator. This bit needs to be set to 1 during testability writes. During testability
reads, if the input linear address matches avalid entry in the TLB, the H bit is set to 1. The two
entry bits determine in which one of the four waysto write to the TLB during testability writes.
During testability reads, they indicate the way that resulted in aread bit.

TR6, and TR7 are read/write registers. The test registers should be written to for testability
accesses only. Writing to the test registers during normal operation causes unpredictable behavior.

When reading from the code cache TLB (TR5.CD = 0), the TR6 register zeros out bits [31:12]
(corresponding to the linear address) at the end of the TLB testability read cycle. This does not
mean that an incorrect linear address was used. All operations happen normally (with whatever
linear address was written into TR6 before the testability read operation).
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TLB Access

Unlike the caches, the TLB is structured asa CAM cell and, thus, can only be searched (rather than
directly read). In other words, the programmer can directly read/write a particular entry in a
particular set of the code or data caches, however the TLB only reports ahit or amissin the Hit bit
in TR7. Dumping the TLB requires the programmer to step through the entire linear address space
one page at atime. Also, please note the following changes which apply to the Pentium processor
with MM X technology:

* LRU bitsof TR7 (bits 9:7) are reserved on the embedded Pentium processor with MM X
technology.

* Theentry pointer in TR7 has been extended from two bits to six bitsin the embedded Pentium
processor with MM X technology.

* To assure correct functioning, software MUST flush the TLB after testability writes and prior
to return to normal operation mode by writing to CR3.

* |tisrecommended that users do not use testability reads to load the TL B with overlapping
4 Kbyte and 4 Mbyte pages.

To write an entry into the TLB:

* Write the physical address bits[31:12], attribute bits, LRU bits and replacement entry into
TR7, setting TR7.H=1.

* Write the linear address, protection bits, and page size bit into TR6, setting TR6.0p=0.

To read an entry from the TLB:
¢ Write the linear address, CD, and OP bitsinto TR6, setting TR6.0p=1.

¢ |f TR7.Hissetto 1, the read resulted in a hit. Read the translated physical address, attribute
bits, and entry from TR7. Read the V, D, U, and W bitsfrom TR6. If TR7.H iscleared to O, the
read was a miss and the physical address is undefined.

Note that when reading from the TLB, the PS hit in the TR6 register does not have to be set; the PS
bit is actually written by the processor at the end of the TLB (testability) lookup. Based on the PS

bit the user is supposed to infer whether the linear address found in the TLB corresponds to the 4-

Kbyte or 4-Mbbyte page size. Normally the user should not allocate a page entry in both the TLBsS;
during testability however if amatch isfound in both, then the processor reports that it found it for
the 4-Mbyte page size (PS=1).

Also note that when reading from the code cache TLB (TR5.CD=0), the TR6 register zeros out bits

12-31 (corresponding to the linear address) at the end of the TLB testability read cycle. This does
not mean that an incorrect linear address was used. All operations happen normally (with whatever
linear address was written into TR6 before the testability read operation).
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14.2.1.3

Branch Target Buffer (BTB) Test Registers

The test registersin Figure 14-3 provide direct access to the branch target buffer. Note that the
branch prediction mechanism should be disabled through test register 12 before doing any BTB
testability access.

TR9isthe BTB Tag Test Register. Before writing any entry into the BTB, software must first load
TR9 with the appropriate information. After reading any entry inthe BTB, the processor places the
retrieved information in TRO.

Figure 14-3. BTB Test Registers
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Table 14-16. TR9 Register Description (BTB Test Register)

Bits in the Bits in the
Embedded Embedded Pentium ) - )
Pentium® Processor with TR9 Register Description (BTB Test Register)
Processor MMX™ Technology
63:32 63:32 Reserved
316 31:8 Tag Address: Bits 31:6 or 31:8 of the address of the last byte
’ ’ of the branch
N/A 7:6 Offset: Bits 1:0 of the address of the last byte of the branch
N/A 5 Valid bit: If set, the entry is allocated in the BTB
N/A 4 Prediction bit: Defines if this branch is predicted taken or not
taken by the BTB
1:0 3.0 History: Contains the previous history for this branch

Table 14-17. TR10 Register Description (BTB Test Register)

Bits TR10 Register Description (BTB Target Test Register)
63:32 Reserved
31:0 BTB Target Address: Linear address of the branch’s target

Table 14-18. TR11 Register Description (BTB Command Test Register)

Bits in the Bits in the
Embedded Embedded Pentium TR11 Register Description
Pentium® Processor with (BTB Command Test Register)
Processor MMX™ Technology
63:32 63:32 Reserved
31:12 31:26 Reserved
N/A 2524 Branch type: QO JCC (Jump if condition is met), 01
unconditional jump, 10 call, 11 return
N/A 23:13 Reserved
N/A 12 Control: Selects either Normal operation, or Testability
Read/Write, Flush and Testability Read Tag
Set: Selects one of 64 sets to access in the embedded
11:6 11:8 Pentium processor or 16 sets in the embedded Pentium
processor with MMX technology
N/A 76 Bank: Selects one of the 4 banks per BTB cache line. The
’ bank number corresponds to bits 3:2 of the branch address
5:4 5:4 Reserved
3:2 3:2 Way: Selects one of four ways within the Set (i.e., 00 = Way1,
' ’ 01 = Way2, 10 = Way3 and 11 = Way4)
1:0 1:0 Control: Selects either Normal operation, or Testability
' ’ Read/Write, Flush and Testability Read Tag

Note: Theformat for the control field is shown in Table 14-19.
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TR10isthe BTB Target Test Register. Like TR9, TR10 must be loaded with the target address
before atestability write. After aBTB testability read, the target address is placed in this register.

TR11 isthe BTB Command Test Register. This register is used to issue read and write commands
tothe BTB. The set address field selects one of 16 sets (64 setsin the embedded Pentium
processor) to access. The entry field selects one of four ways within the set on the embedded
Pentium processor. A BTB testability cycleisinitiated by loading TR11 controls bits with the
appropriate values. The format for the control field is shown in Table 14-19.

Table 14-19. Format for TR11 Control Field

14-14

cntl2® Cntl1 cntlo Command
0 0 0 Normal operation
0 0 1 Testability write data
0 1 0 Testability read data
0 1 1 Testability BTB flush
1 0 1 Testability read TAG®

NOTES:
1. Applies to the embedded Pentium processor with MMX technology only.
2. Other combinations are reserved.

TR9, TR10 and TR11 are al read/write registers. The test registers should be written to for

testability accesses only. Writing to the test registers during normal operation causes unpredictable
behavior.

The following BTB testability cycles exist:

1. Testability read data. Reads the Target, branch type, offset, history-prediction (according to
spec bit)., and prediction bit of aBTB line defined by a set, way and bank into the
corresponding testability register field.

2. Testability read TAG and valid hit (Pentium processor with MM X technology only). Readsthe
Tag defined by the testability registers set, way and bank into the corresponding testability
register field.

3. Testahility BTB flush. Clear al BTB valid bits.

4. Testability Write Data. Writes all the BTB fields from the corresponding test registers. If there
is an entry on the same bank and set, with the same TAG, the write overwrites this entry even
if the way chosen in TR11 is different from the existing entry’s way. (This is done to avoid
having two entries in the same bank and same set, but different ways, with the same TAG.)

TR9, TR10, TR11 are all read/write registers. The test registers should be written to for testability
accesses only. Writing to the test registers during normal operation causes unpredictable behavior.

Direct BTB Access

The BTB contents are directly accessible, in a manner similar to the code/data caches. Note that the
branch prediction mechanism should be disabled before doing any BTB testability access.

To write an entry into the BTB for the embedded Pentium processor:
1. Disable BTB entry allocation by setting TR12.NBP=1 (see Feature Control section)
2. Write the tag address and history information in TR9
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3. Write the target addressin TR10
4. Write the appropriate set address, entry fields and control bitsin TR11.

To write an entry into the BTB for the embedded Pentium processor with MM X technology:
1. Disable BTB entry allocation by setting TR12.NBP=1 (see Feature Control section)
2. Write the tag address and history, offset, valid and prediction information in TR9
3. Write the target addressin TR10
4

. Write the appropriate set address and entry fields, way, bank, branch type and control bitsin
TR11.

To read an entry from the BTB for the embedded Pentium processor:
1. Perform atestability read by writing to TR11 with the appropriate set address entry fields.
2. Read the tag address and history information from TR9.
3. Read the target address from TR10.

To read an entry from the BTB for the embedded Pentium processor with MM X technology:
1. Disable BTB entry allocation by setting TR12.NBP=1 (see Feature Control section)

2. Perform atestability read by writing to TR11 with the appropriate set address and entry fields,
way, bank and control bits.

Read the tag address, history information, offset, prediction and valid bits from TR9.
Read the target address from TR10.
Read the branch type from TR11.

Perform atestability read tag by writing to TR11 with the appropriate set address, way, bank
and control bits.

7. Read the branch tag from TR9

o o~ ®w

Note: Read Tag and Read data does not destroy the other’s cycle fields in TR9. This means that the read
from TR9 can be done only once after both cycles were executed.

14.2.1.4 Parity Reversal Register (TR1)

A model specific register, TR1, the Parity Reversal Register (PRR), allows the parity check
mechanism to be tested. Figure 14-4 shows the format of the PRR.

Figure 14-4. Parity Reversal Register
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Table 14-20 lists each of the bitsin the parity reversal register and their function.

Table 14-20. Parity Reversal Register Bit Definition

Bit Name Description
PES Parity Error Summary, set on any parity error
NS 0 = set PRR.PES, assert IERR#, and shutdown on parity error
1 = set PRR.PES, and assert IERR# on parity error
IT code (instruction) cache tag
IDO code cache data even bits 126, 124... 2,0
ID1 code cache data odd bits 127, 125... 3,1
ID2 code cache data even bits 254, 252... 130,128
ID3 code cache data odd bits 255, 253... 131, 129
ITT code TLB tag
ITD code TLB data
DT data cache tag
DD data cache data, use byte writes for individual access
DTT data TLB tag
DTD data TLB data
MC microcode, reverse parity on read

Writing a one into bits 2-12 reverses the sense of the parity generation for any write into the
corresponding array. Thisincludes both normal cache replacements as well as testability writes and
data writes. Parity is checked during both normal reads and testability reads.

To test parity error detection, software should write a one into the appropriate bit of the parity
reversal register (PRR), perform atestability writeinto the array, and then perform atestability
read. Upon successful detection of the parity error, the Pentium processor asserts the IERR# pin
and may shutdown. Alternatively, after writing a one into the appropriate bit of the PRR, software
may perform a normal write and read of the array by creating a cache miss and doing a read.

As an option, software may mask the shutdown by setting PRR.NSto 1 if the system is unable to
recover from a shutdown. To determine if a parity error has occurred, software may read the parity
error summary bit, PRR.PES. Hardware sets this bit on any parity error, and it remains set until
cleared by software.

For the microcode, bad parity may be forced on aread by atransition of the PRR.MC bit from 0 to
1. No bad parity will be forced by setting the PRR.MC bit if the bit was aready set.

Bit 0 of TR1 isread/write. The remaining bits are write only. The test registers should be written to

for testability accesses only. Writing to the test registers during normal operation causes
unpredictable behavior.
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14.3 New Feature Control (TR12)
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The new features of branch prediction, execution tracing, and instruction pairing in the Pentium
processor can be selectively enabled or disabled through individual bitsin test register TR12
(Figure 14-5). The branch prediction, execution tracing, and instruction pairing features of the
Pentium processor family can be selectively enabled or disabled through individual bitsin test
register TR12. In addition, level 1 caching can be disabled without affecting the PCD output to

allow testing of a second level cache.

Figure 14-5. Test Register (TR12)

Test Register 12

6 33322222222221111111111
3 210987654321098765432109876543210
D|C
TR2 clc Tlr A B
L R |R EIR|p
:IReserved
NOTE: Bits TR12.19 and TR12.20 are reserved on the Pentium® processor (100/133/166 MHz)
A6242-01
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Table 14-21. New Feature Controls

Name Position Function

No Branch Prediction controls the allocation of new entries in the BTB.
When TR12.NBP is clear, the code cache allocates entries in the BTB.
When TR12.NBP is set, no new entry is allocated in the BTB, however,
NBP 0 entries already in the BTB may continue to cause a BTB hit and result in the
pipeline being reloaded from the predicted branch target. To completely
disable branch prediction, first set TR12.NBP to 1 and then flush the entire
BTB by loading CR3.

Execution Tracing controls the Branch Trace message Special Cycle. When
the TR12.TR bit is set to 1, a branch trace message special cycle is

TR 1 generated whenever a taken branch is executed. Two cycles are produced:
one for the linear address of the instruction causing the taken branch, and
one for the branch target linear address.

Single Pipe Execution controls instruction pairing. When TR12.SE is cleared
to zero, instructions are issued to both the u and v pipes contingent on
pairing restrictions. When TR12.SE is set to one, the v pipe is disabled and
instructions are issued only to the u pipe. Microcoded instructions are
designed to utilize both pipes concurrently, independent of the state of
TR12.SE. Note that all instructions requiring microcode are not pairable.

SE 2

Cache Inhibit controls line fill behavior. When TR12.Cl is reset to 0, the on-
chip data and instruction caches operate normally. When TR12.Cl is set to
1, all cache line fills are inhibited and all bus cycles due to cache misses are
run as single transfer cycles (CACHE# is not asserted). Unlike CR0.CD,
TR12.Cl does not affect the state of the PCD output pin. This allows the first
level cache to be disabled while the second level cache is still active and
can be tested. Note that the contents of the instruction and data caches are
not affected by the state of TR12.Cl, e.g., they are not flushed. The second
level cache test sequence should be: set TR12.Cl to 1, flush the internal
caches, run the second level cache tests.

Cl 3

4-7 Reserved

Fast Execution Tracing is similar to Execution Tracing (TR12.TR). If
TR12.FTR is set to 1 while execution tracing is enabled (TR12.TR = 1), only
one branch trace message special cycle is produced containing the linear
address of the instruction causing the taken branch.

FTR 8

TR 9 10 Trap Restart enables proper interrupt prioritization to support restarting
10 accesses trapped by System Management Mode.

10-18 Reserved

cal 19t Code Cache Inhibit is the same instruction as Cache Inhibit (Cl), but only
applies to the code cache.
DCI 20t Data Cache Inhibit is the same instruction as Cache Inhibit (ClI), but only

applies to the data cache.

21-63 Reserved

T These bits are reserved on the Pentium processor (100/133/166).

TR12.NBPR, TR12.TR, TR12.SE, and TR12.Cl areinitialized to zero on reset. Thisregister iswrite
only and the reserved bits should be written with zeros.
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14.4 Performance Monitoring

The processor includes features to measure and monitor various parameters that contribute to the
performance of the processor. This information can be then used for compiler and memory system
tuning. For memory system tuning, it is possible to measure data and instruction cache hit rates,
and time spent waiting for the external bus. The performance monitor allows compiler writers to
gauge the effectiveness of instruction scheduling algorithms by measuring address generation
interlocks and parallelism.

While the performance monitoring features that are provided by the Pentium processor are
generally model specific and available only to privileged software, the Pentium processor also
provides an architectural Time Stamp Counter that is available to the user. With this notable
exception, the performance monitor features and the events they monitor are otherwise
implementation dependent, and consequently, they are not considered part of the Pentium
processor architecture. The performance monitor features are expected to change in future
implementations.

Note: Itisessential that software abide by the usage restrictions for accessing model specific registers as
discussed in section “Model Specific Register Usage Restrictions” on page 14-1.
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14.4.1

Performance Monitoring Feature Overview

Processor performance monitoring features include:

Table 14-22. Architectural Performance Monitoring Features

Table 14-23. Model Specific Performance Monitoring Features

14.4.2

14-20

Read Time Stamp Counter - a user level instruction to provide read access to a 64-bit

RDTSC free-running counter
Read Performance Monitoring Counter - this instruction enables reading of the
performance monitoring counters (in CPL = 3) provided bit 8 of CR4 (CR4.PCE) is set.
RDPMC Note: The RDPMC instruction is only defined on the embedded Pentium processor with
MMX technology. Execution of the RDPMC instruction in a embedded Pentium
processor will result in an invalid opcode exception.
CPUID Time Stamp Counter Feature Bit - Bit 4 of EDX is set to 1 to indicate that the processor
(EDX.TSC) implements the TSC and RDTSC instruction

Time Stamp Disable - A method for a supervisor program to disable user access to the
CR4.TSD time stamp counter in secure systems. When bit 2 of CR4 is set to 1, an attempt to
execute the RDTSC instruction generates an general protection exception (#GP).

CTRO, CTR1 Counter 0, Counter 1 - two programmable counters

CESR Control and Event Select Register - programs CTRO, CTR1

Tsc Time Stamp Counter - provides read and write access to the architectural 64-bit counter
in a manner that is model specific.

PMO0/BPO, Event Monitoring Pins - These pins allow external hardware to monitor the activity in

PM1/BP1 CTRO and CTR1.

Time Stamp Counter (TSC)

A dedicated, free-running, 64-bit time stamp counter is provided on chip. Note that on the Pentium
processor, this counter increments on every clock cycle, although it is not guaranteed that this will
be true on future processors. As atime stamp counter, the RDTSC instruction reports values that
are guaranteed to be unique and monotonically increasing. Portable software should not expect that
the counter reports absol ute time or clock counts. The user level RDTSC (Read Time Stamp
Counter) instruction is provided to allow a program of any privilege level to sampleitsvalue. A bit
in CR4, TSD (Time Stamp Disable) is provided to disable this instruction in secure environments.
Supervisor mode programs may sampl e this counter using the RDM SR instruction or reset/preset
this counter with a WRM SR instruction. The counter is cleared after reset.

While the user level RDTSC instruction and a corresponding 64-bit time stamp counter will be

provided in all future Pentium processor compatible processors, access to this counter viathe
RDMSR/WRM SR instructions is dependent upon the particular implementation.
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14.4.4
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Model Specific Registers and Functions

Programmable Event Counters (CTRO, CTR1)

Two programmabl e 40-bit counters CTRO and CTRL1 are provided. The implementation of these
two countersis glightly different between the embedded Pentium processor with MM X technol ogy
and the embedded Pentium processor. In the embedded Pentium processor each counter may be
programmed to count any event from a pre-determined list of events. These events, which are
described in the Events section of this chapter, are selected by programming the Control and Event
Select Register (CESR). In the embedded Pentium processor with MM X technology some
additional events were added and cannot be assigned to either of the two counters independently.
These new events are paired, so when one event is assigned to counter 0, a second related event is
automatically assigned to counter 1. The counters are not affected by writes to CESR and must be
cleared or pre-set when switching to a new event. The counters are undefined after RESET.

Associated with each counter is an event pin (PM 1/BP1, PM0/BPO) which externally signals the
occurrence of the selected event.

Note that neither the CTRO/CTR1 nor CESR are part of the processor state that is automatically

saved and restored during a context switch. If it is desired to coordinate the use of the

programmable counters in a multiprocessing system, it is the software’s responsibility to share or
restrict the use of these counters through a semaphore or other appropriate mechanism.

Control and Event Select Register (CESR)

A 32-bit Control and Event Select Register (CESR) is used to control operation of the
programmable counters and their associated pins. Figure 14-6 depicts the CESR. For each counter,
the CESR contains a 6-bit Event Select field (ES), a Pin Control bit (PC), and a three bit control
field (CC). It is not possible to selectively write a subset of the CESR. If only one event needs to be
changed, the CESR must first be read, the appropriate bits modified, and all bits must be written
back. At reset, all bits in the Control and Event Select Register are cleared.

Figure 14-6. Control and Event Select Register

14.44.1
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Event Select (ESO, ES1)

Up to two events may be monitored by placing the appropriate event code in the Event Select field.
The events and codes are listed in the Events section of this chapter.
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14.4.4.2 Counter Control (CCO, CC1)

A three bit field is used to control the operation of the counter. the highest order bit selects between
counting events and counting clocks. The middle bit enables counting when the CPL=3. The low
order bit enables counting when the CPL=0, 1 or 2.

CcC Meaning

000 Count Nothing (Disable Counter)

001 Count the selected Event while the CPL=0, 1 or 2
010 Count the selected Event while the CPL=3

011 Count the selected Event regardless of the CPL
100 Count Nothing (Disable Counter)

101 Count Clocks while the CPL=0, 1 or 2

110 Count Clocks while the CPL=3

111 Count Clocks regardless of the CPL

While a counter need not be stopped to sample its contents, it must be stopped and cleared or pre-
set before switching to anew event.

14.4.4.3 Pin Control (PCO, PC1)

Associated with CTRO and CTR1 are two pins, PM0 and PM 1 (PM0/BPO, PM 1/BP1), and two bits
which control their operation, PCO and PC1. These pins may be programmed by the PCO/PC1 bits
inthe CESR to indicate either that the associated counter hasincremented or that it has overflowed.
Note that the external signalling of the event on the pins will lag the internal event by a “few”
clocks as the signals are latched and buffered.

PC PM pin signals when the corresponding counter:
0 has incremented
1 has overflowed

When the pins are configured to signal that a counter has incremented, it should be noted that
although the counters may increment by 1 or 2 in a single clock, the pins can only indicate that the
event occurred. Moreover, since the internal clock frequency may be higher than the external clock
frequency, a single external clock may correspond to multiple internal clocks.

A “count up to” function may be provided when the event pin is programmed to signal an overflow
of the counter. Because the counters are 40 bits, a carry out of bit 39 indicates an overflow. A
counter may be preset to a specific value less tHan12 After the counter has been enabled and
the prescribed number of events has transpired, the counter will overflow. Approximately 5 clocks
later, the overflow is indicated externally and appropriate action, such as signaling an interrupt,
may then be taken.

When the performance monitor pins are configured to indicate when the performance monitor
counter has incremented and an “occurrence event” is being counted, the associated PM pin is
asserted (high) each time the event occurs. When a “duration event” is being counted the associated
PM pin is asserted for the entire duration of the event. When the performance monitor pins are
configured to indicate when the counter has overflowed, the associated PM pin is not asserted until
the counter has overflowed.
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The PM0O/BPO, PM1/BP1 pins also serve to indicate breakpoint matches during in Circuit
Emulation, during which time the counter increment or overflow function of these pinsis not
available. After RESET, the PMO/BP0O, PM 1/BP1 pins are configured for performance monitoring,
however a hardware debugger may re-configure these pins to indicate breakpoint matches.

Performance Monitoring Events

Events may be considered to be of two types: those that count OCCURRENCES, and those that
count DURATION. Each of the events listed below is classified accordingly.

Occurrences events are counted each time the event takes place. If the PMO or PM1 pins are
configured to indicate when a counter increments, they are asserted each clock the counter
increments. Note that if an event can happen twice in one clock the counter increments by 2,
however the PM0/1 pins are asserted only once.

For Duration events, the counter counts the total number of clocks that the condition is true. When
configured to indicate when a counter increments, the PMO and PM 1 pins are asserted for the
duration of the event.

Table 14-24 lists the events that can be counted, and their encodings for the Control and Event
Select Register.

The performance monitoring features present in the embedded Pentium processor have been
extended in the embedded Pentium processor with MM X technology. The event list islonger, and
thereis a new instruction defined to facilitate use of the instruction monitoring. To leave room for
future additions all new embedded Pentium processor with MM X technology events are assigned
to just one of the two events counters (CTRO, CTR1). It is not possible to assign these eventsto any
of the two counters at will. “Twin events” (such as “D1 starvation and FIFO is empty”) are
assigned to different counters to allow their concurrent measurement.

The Read Performance Monitoring Counter (RDPMC) is implemented in the embedded Pentium
processor with MMX technology. See timtel Architecture Software Developer’s Mandiai
more information about the RDPM C instruction.

Table 14-24. Performance Monitoring Events (Sheet 1 of 4)

E?'n?:i)ig}ﬁlg Er?(i:rtl?iri)rl\g CouOnter Coulnter Performance Monitoring Event OCSS:;EZ%%N
0 000000 Yes Yes Data Read Occurrence
1 000001 Yes Yes Data Write Occurrence
2 000010 Yes Yes Data TLB Miss Occurrence
3 000011 Yes Yes Data Read Miss Occurrence
4 000100 Yes Yes Data Write Miss Occurrence
5 000101 Yes Yes Write (hit) to M- or E-state lines Occurrence
6 000110 Yes Yes Data Cache Lines Written Back Occurrence
7 000111 Yes Yes External Snoops Occurrence
8 001000 Yes Yes External Data Cache Snoop Hits Occurrence
9 001001 Yes Yes Memory Accesses in Both Pipes Occurrence
10 001010 Yes Yes Bank Conflicts Occurrence

NOTE: Shaded areas only apply to the embedded Pentium® processor with MMX™ technology.

Embedded Pentium® Processor Family Developer’s Manual 14-23



Model Specific Registers and Functions In

Table 14-24. Performance Monitoring Events (Sheet 2 of 4)

Decimal Binary Counter Counter Performance Monitoring Event Occurrence or
Encoding | Encoding 0 1 9 Duration?
11 001011 Yes Yes Misaligned Data memory or /O Occurrence
References

12 001100 Yes Yes Code Read Occurrence

13 001101 Yes Yes Code TLB Miss Occurrence

14 001110 Yes Yes Code Cache Miss Occurrence

15 001111 Yes Yes Any Segment Register Loaded Occurrence

16 010000 Yes Yes Reserved

17 010001 Yes Yes Reserved

18 010010 Yes Yes Branches Occurrence

19 010011 Yes Yes BTB Hits Occurrence

20 010100 Yes Yes Taken Branch or BTB hit Occurrence

21 010101 Yes Yes Pipeline Flushes Occurrence

22 010110 Yes Yes Instructions Executed Occurrence
Instructions Executed in the v pipe

23 010111 Yes Yes e.g. parallelism/pairing Occurrence
Clocks while a bus cycle is in .

24 011000 Yes Yes progress (bus utilization) Duration
Number of clocks stalled due to full .

25 011001 Yes Yes write buffers Duration
Pipeline stalled waiting for data .

26 011010 Yes Yes memory read Duration

27 011011 Yes Yes Eri” on write to an E- or M-state Duration

28 011100 Yes Yes Locked Bus Cycle Occurrence

29 011101 Yes Yes 1/0 Read or Write Cycle Occurrence

30 011110 Yes Yes Non-Cacheable memory reads Occurrence

31 011111 Yes Yes Pipeline stalled l:_)ecguse of an Duration
address generation interlock

32 100000 Yes Yes Reserved

33 100001 Yes Yes Reserved

34 100010 Yes Yes FLOPs Occurrence
Breakpoint match on DR10

35 100011 Yes Yes Register Occurrence

36 100100 Yes Yes Breakpoint match on DR1 Register | Occurrence

37 100101 Yes Yes Breakpoint match on DR2 Register | Occurrence

38 100110 Yes Yes Breakpoint match on DR3 Register | Occurrence

39 100111 Yes Yes Hardware Interrupts Occurrence

40 101000 Yes Yes Data Read or Data Write Occurrence

41 101001 Yes Yes Data Read Miss or Data Write Miss | Occurrence

NOTE: Shaded areas only apply to the embedded Pentium® processor with MMX™ technology.
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Table 14-24. Performance Monitoring Events (Sheet 3 of 4)

Decimal Binary Counter Counter Performance Monitoring Event Occurrence or
Encoding | Encoding 0 1 9 Duration?

42 101010 Yes No Bus Ownership Latency Duration

42 101010 No Yes Bus Ownership Transfers Occurrence

43 101011 Ves No ;';/il:;/lex instructions executed in u .

43 101011 No Yes MMX instructions executed in v pipe | Occurrence

44 101100 Yes No Cache M-Sate line Sharing Occurrence

44 101100 No Yes Cache Line Sharing Occurrence

45 101101 Yes No EMMS instructions executed Occurrence

45 101101 No yes Tran5|t|pn HEEET] MMXD ] Occurrence
instructions and FP instructions

46 101110 Ves No Bus_ L_Jtlllzatlon Due to processor BB
Activity

46 101110 No Yes Writes to Non-Cacheable Memory Occurrence
Saturating MMX instructions

47 101111 Yes No —— Occurrence

a7 101111 No Yes Saturations performed Occurrence

48 110000 Yes No Number of Cycles Not in HLT State | Duration

48 110000 No Yes Number of Cycles Not in HLT State | Duration

49 110001 Yes No MMX instruction data reads Occurrence

49 110001 No Yes MMX instructions data read misses | Occurrence

50 110010 Yes No Floating Point Stalls Duration

50 110010 No Yes Taken Branches Occurrence

51 110011 Yes No D 1 Starvation and FIFO is empty Occurrence
D1 Starvation and only one

51 110011 No Yes instruction in EIFO Occurrence

52 110100 Yes No MMX instruction data writes Occurrence

52 110100 No Yes MMX instruction data write misses | Occurrence
Pipeline flushed due to wrong

53 110101 Yes No branch prediction Occurrence
Pipeline flushes due to wrong

53] 110101 No Yes branch predictions resolved in WB- | Occurrence
stage

54 110110 Yes No Mlsallgngd data memory references e -
on MMX instruction

54 110110 No Yes _Plpellng stalled waiting for MMX BT
instruction data memory read

55 110111 Yes No Retu_rns Predicted Incorrectly or not e -
predicted at all

55 110111 No Yes Returns Predicted (Correctly and e -
Incorrectly)

56 111000 Yes No MMX multiply unit interlock Duration

NOTE: Shaded areas only apply to the embedded Pentium® processor with MMX™ technology.
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Table 14-24. Performance Monitoring Events (Sheet 4 of 4)

14.4.6

14-26

Decimal Binary Counter Counter Performance Monitoring Event Occurrence or
Encoding | Encoding 0 1 9 Duration?
56 111000 No V| SR S ELC U Duration
previous operation
57 111001 Yes No Returns Occurrence
57 111001 No Yes Reserved
58 111010 Yes No BTB false entries Occurrence
58 111010 No Yes BTB miss prediction on a Not-Taken Occurrence
branch
Number of clocks stalled due to full
59 111011 Yes No write buffers while executing MMX | Duration
instructions
59 111011 No Yes Stall on MMX instruction write to E- BUTE
or M-state line

NOTE: Shaded areas only apply to the embedded Pentium® processor with MMX™ technology.

Description of Events
The following descriptions clarify the events. The event codes are provided in parenthesis.

Data Read (0, 000000), Data Write (1, 000001), Data Read or Data Write (40, 101000):

These are memory data reads and/or writes (internal data cache hit and miss combined), 1/0 is not
included. Theindividual component reads and writesfor split cycles are counted individualy. Data
Memory Reads that are part of TLB miss processing are not included. These events may occur at a
maximum of two per clock.

Data TLB Miss (2, 000010):

This event counts the number of misses to the data cache trandlation |ook-aside buffer.

Data Read Miss (3, 000011), Data Write Miss (4, 000100), Data Read Miss or Data
Write Miss (41, 101001):

These are memory read and/or write accesses that miss the internal data cache whether or not the
access is cacheable or non-cacheable. Additional reads to the same cache line after the first
BRDY# of the burst lin€fill is returned but before the final (fourth) BRDY # has been returned, will
not cause the Data Read Miss counter to be incremented additional times. Data accesses that are
part of TLB miss processing are not included. Accesses directed to 1/0O space are not included.

Write (hit) to M- or E-state lines (5, 000101):

This measures the number of write hits to exclusive or modified lines in the data cache. (These are
the writes which may be held up if EWBE# isinactive.) This event may occur at a maximum of
two per clock.

Data Cache Lines Written Back (6, 000110):

Thiscounts ALL Dirty lines that are written back, regardless of the cause. Replacements and
internal and external snoops can all cause writeback and are counted.
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External Snoops (7, 000111), Data Cache Snoop Hits (8, 001000):

Thefirst event counts accepted external snoops whether they hit in the code cache or data cache or
neither. Assertions of EADS# outside of the sampling interval are not counted. No internal snoops
are counted. The second event applies to the data cache only. Snoop hitsto avalid linein either the
data cache, the data line fill buffer, or one of the write back buffers are all counted as hits.

Memory Accesses in Both Pipes (9, 001001):

Data memory reads or writes which are paired in the pipeline. Note that these accesses are not
necessarily runin parallel due to cache misses, bank conflicts, etc.

Bank Conflicts (10, 001010):

These are the number of actual bank conflicts.

Misaligned Data Memory or I/O References (11, 001011):

Memory or 1/O reads or writes that are misaligned. A two or four byte accessis misaligned when it
crosses a four byte boundary; an eight byte access is misaligned when it crosses an eight byte
boundary. Ten byte accesses are treated as two separate accesses of eight and two bytes each.

Code Read (12, 001100), Code TLB Miss (13, 001101), Code Cache Miss (14, 001110):

Total instruction reads and reads that miss the code TLB or misstheinternal code cache whether or
not the read is cacheable or non-cacheable. Individual eight byte non-cacheable instruction reads
are counted.

Any Segment Register Loaded (15, 001111):

Writes into any segment register in real or protected modeincluding the LDTR, GDTR, IDTR, and
TR. Segment loads are caused by explicit segment register load instructions, far control transfers,
and task switches. Far control transfers and task switches causing a privilege level change will
signal this event twice. Note that interrupts and exceptions may initiate afar control transfer.

Branches (18, 010010):

In addition to taken conditional branches, jumps, calls, returns, software interrupts, and interrupt
returns, the Pentium processor treats the following operations as causing taken branches:
serializing instructions, VERR and VERW instructions, some segment descriptor loads, hardware
interrupts (including FLUSH#), and programmatic exceptions that invoke a trap or fault handler.
Both Taken and Not Taken Branches are counted. The pipe is not necessarily flushed. The number
of branches actually executed is measured, not the number of predicted branches.

BTB Hits (19, 010011):

Hits are counted only for those instructions that are actually executed.

Taken Branch or BTB Hit (20, 010100):

Thisisalogical OR of taken branches and BTB hits (defined above). It represents an event that
may cause a hit in the BTB. Specifically, it is either a candidate for aspacein the BTB, or itis
already in the BTB.
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14-28

Pipeline Flushes (21, 010101):

BTB Misses on taken branches, mis-predictions, exceptions, interrupts, and some segment
descriptor loads all cause pipeline flushes. This event counter will not be incremented for
serializing instructions (serializing instructions cause the prefetch queue to be flushed but will not
trigger the Pipeline Flushed event counter) and software interrups (software interrupts do not flush
the pipeline).

Instructions Executed (22, 010110):

Up to two per clock. Invocations of afault handler are considered instructions. All hardware and
software interrupts and exceptions will also cause the count to be incremented. Repeat prefixed
string instructions will only increment this counter once despite the fact that the repeat |oop
executes the same instruction multiple times until the loop criteriais satisfied. This appliesto all
the Repeat string instruction prefixes (i.e., REP, REPE, REPZ, REPNE, and REPNZ). This counter
will also only increment once per each HLT instruction executed regardless of how many cycles
the processor remains in the HALT state.

Instructions Executed in the v pipe e.g. parallelism/pairing (23, 010111):

Same as the I nstructions executed counter except it only counts the number of instructions actually
executed in the v pipe. It indicates the number of instructions that were paired.

Clocks while a bus is in progress (bus utilization) (24, 011000):
Including HLDA, AHOLD, BOFF# clocks.

Number of clocks stalled due to full write buffers (25, 011001):

This event counts the number of clocksthat theinternal pipelineis stalled due to full write buffers.
Full write buffers stall data memory read misses, data memory write misses, and data memory
write hits to S state lines. Stalls on 1/0 accesses are not included.

Pipeline stalled waiting for data memory read (26, 011010):

Data TLB Miss processing is also included. The pipeline stalls while a data memory read isin
progress including attempts to read that are not bypassed while alineis being filled.

Locked Bus Cycle (28, 011100):

LOCK prefix or LOCK instruction, Page Table Updates, and Descriptor Table Updates. Only the
Read portion of the Locked Read-Modify-Write is counted. Split Locked cycles (SCY C active)
count as two separate accesses. Cycles restarted due to BOFF# are not recounted.

I/0 Read or Write Cycle (29, 011101):

Bus cycles directed to I/O space. Misaligned /O accesses will generate two bus cycles. Bus cycles
restarted due to BOFF# are not re-counted.

Non-cacheable memory reads (30, 011110):

Non-cacheable instruction or data memory read bus cycles. Includes read cycles caused by TLB
misses; does not include read cyclesto 1/0O space. Cycles restarted due to BOFF# are not re-
counted.
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Pipeline stalled because of an address generation interlock (31, 011111):

Number of address generation interlocks (AGIs). An AGI occurring in both the u- and v- pipelines
in the same clock signalsthis event twice. An AGI occurs when the instruction in the execute stage
of either of u- or v-pipelinesiswriting to either the index or base address register of an instruction
in the D2 (address generation) stage of either the u- or v- pipelines.

FLOPs (34, 100010);

Number of floating point adds, subtracts, multiplies, divides, remainders, and square roots. The
transcendental instructions consist of multiple adds and multiplies and will signal this event
multiple times. Instructions generating the divide by zero, negative square root, specia operand, or
stack exceptionswill not be counted. Instructions generating all other floating point exceptionswill
be counted. The integer multiply instructions and other instructions which use the floating-point
arithmetic circuitry will be counted.

Breakpoint match on DRO Register (35, 100011),
Breakpoint match on DR1 Register (36, 100100),
Breakpoint match on DR2 Register (37, 100101),

Breakpoint match on DR3 Register (38, 100110):

If programmed for one of these breakpoint match events, the performance monitor counterswill be
incremented in the event of a breakpoint match whether or not breakpoints are enabled. However,
if breakpoints are not enabled, code breakpoint matches will not be checked for instructions
executed in the v-pipe and will not cause this counter to be incremented (they are checked on
instruction executed in the u-pipe only when breakpoints are not enabled). These events correspond
to the signals driven on the BP[3:0] pins. Please refer to the Debugging chapter of this volume for
more information.

Hardware Interrupts (39, 100111):

Number of taken INTR and NMI only.

Bus ownership latency (42, 101010/0), Bus ownership transfers (42, 101010/1):
Thefirst event measures the time from LRM bus ownership regquest to bus ownership granted, the
time from the earlier of PBREQ (0), PHITM# or HITM# to PBGNT. The second event is count of

the number of PBREQ (0). The ratio of these two events is the average stall time due to bus
ownership conflict.

MMX instructions executed in U pipe (43, 101011/0):

Total number of MM X instructions executed in U-pipe.

MMX instructions executed in V pipe (43, 101011/1):

Total number of MM X instructions executed in V-pipe.
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Cache M-state line sharing (44, 101100/0):

Counts the number of times a processor identified a hit to a modified line due to a memory access
in the other processor (PHITM (O)). If the average memory latencies of the system are known, this
event enables the user to count the Write Backs on PHITM (O) penalty and the L atency on Hit
Modified(l) penalty.

Cache line sharing (44, 101100/1):
Counts the number of shared datalinesin the L1 cache (PHIT (O)).

EMMS instructions executed (45, 101101/0):

Counts number of EMMS instructions executed.

Transition between MMX instructions and FP instructions (45, 101101/1):

Countsfirst floating point instruction following any MM X instruction or first MM X instruction
following afloating point instruction. May be used to estimate the penalty in transitions between
FP state and MM X state. An even count indicates the processor isin MM X state. an odd count
indicatesitisin FP state.

Bus utilization due to processor activity (46, 101110/0):

Counts the number of clocks the bus is busy due to the processor’s own activity, i.e., the bus
activity which is caused by the processor.

Writes to non-cacheable memory (46, 101110/1):

Counts the number of write accesses to non-cacheable memory. It includes write cycles caused by
TLB misses and 1/O write cycles. Cycles restarted due to BOFF# are not recounted.

Saturating MMX instructions executed (47, 101111/0):

Counts saturating MMX instructions executed, independently of whether or not they actually
saturated. Saturating MMX instructions may perform either add, subtract or pack operations.

Saturations performed (47, 101111/1):

Counts number of MMX instructions that used saturating arithmetic and that at least one of its
results actually saturated; i.e., if an MMX instruction operating on four dwords saturated in three
out of the four results, the counter will be incremented by one only.

Number of cycles not in HLT state (48, 110000/0):

This event counts the number of cycles the processor is not idle due to HLT instruction. This event
will enable the user to calculate “net CPI”. Note that during the time that the processor is executing
the HLT instruction, the Time Stamp Counter is not disabled. Since this event is controlled by the
Counter Controls CCO, CC1 it can be used to calculate the CPI at CPL=3 which the TSC cannot
provide.

Clocks stalled on Data cache TLB miss (48, 110000/1):
Counts the number of clocks the pipeline is stalled due to a data cache translation look-aside buffer

(TLB) miss. This is the same as the event with encoding 011010 (pipeline stalled waiting for data
memory read), but only for TLB miss.
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Model Specific Registers and Functions

MMX instruction data reads (49, 110001/0):

Analogous to “Data reads,” counting only MMX instruction accesses.

MMX instruction data read misses (49, 110001/1):

Analogous to “Data read misses,” counting only MMX instruction accesses.

Floating Point stalls (50, 110010/0):

This event counts the number of clocks while pipe is stalled due to a floating-point freeze.

Taken Branches (50, 110010/1):

This event counts the number of taken branches.

D1 starvation and FIFO is empty (51, 110011/0), D1 starvation and only one
instruction in FIFO (51, 110011/1):

The D1 stage can issue 0, 1, or 2 instructions per clock if those are available in an instructions
FIFO buffer. The first event counts how many times D1 cannot issue ANY instructions since the
FIFO buffer is empty. The second event counts how many times the D1-stage issues just a single
instruction since the FIFO buffer had just one instruction ready. Combined with previously defined
events, Instruction Executed (010110) and Instruction Executed in the V-pipe (010110), the second
event enables the user to calculate the numbers of time pairing rules prevented issuing of two
instructions.

MMX instruction data writes (52, 110001/1):

Analogous to “Data writes,” counting only MMX instruction accesses.

MMX instruction data write misses (52, 110100/1):

Analogous to “Data write misses,” counting only MMX instruction accesses.

Pipeline flushes due to wrong branch prediction (53, 110101/0), Pipeline flushes
due to wrong branch prediction resolved in WB-stage(53, 110101/1):

Counts any pipeline flush due to a branch which the pipeline did not follow correctly. It includes
cases where a branch was not in the BTB, cases where a branch was in the BTB but was
mispredicted, and cases where a branch was correctly predicted but to the wrong address. Branches
are resolved in either the Execute stage (E-stage) or the Writeback stage (WB-stage). In the later
case, the misprediction penalty is larger by one clock. The two events count the number of pipeline
flushes due to wrong branch predictions. The first event counts the number of wrong branch
predictions resolved in either the E-stage or the WB-stage. The second event counts the number of
wrong branch prediction resolved in the WB-stage. The difference between these two counts is the
number of E-stage resolved branches.

Misaligned data memory reference on MMX instruction (54, 110110/0):

Analogous to “Misaligned data memory reference,” counting only MMX instruction accesses.

Pipeline stalled waiting for MMX instruction data memory read (54, 110110/1):

Analogous to “Pipeline stalled waiting for data memory read,” counting only MMX instruction
accesses.
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Returns predicted incorrectly or not predicted at all (55, 110111/0):

These are the actual number of Returns that were either incorrectly predicted or were not predicted
at all. It isthe difference between the total number of executed returns and the number of returns
that were correctly predicted. Only RET instructions are counted (e.g., IRET instructions are not
counted.).

Returns predicted (correctly and incorrectly) (55, 110111/1):

Thisisthe actual number of Returns for which a prediction was made. Only RET instructions are
counted (e.g. IRET instructions are not counted).

MMX multiply unit interlock (56, 111000/0):

Thisisthe number of clocksthe pipeis stalled since the destination of previous MM X multiply
instruction is not ready yet. The counter will not be incremented if thereis another cause for astall.
For each occurrence of amultiply interlock this event will be counted twice (if the stalled
instruction comes on the next clock after the multiply) or by one (if the stalled instruction comes
two clocks after the multiply).

MOVD/MOVQ store stall due to previous operation (56, 111000/1):

Number of clocksaMOVD/MOVQ storeis staled in D2 stage due to a previous MM X operation
with a destination to be used in the store instruction.

Returns (57, 111001/0):

Thisisthe actual number of Returns executed. Only RET instructions are counted (e.g., IRET
instructions are not counted). Any exception taken on a RET instruction and any interrupt
recognized by the processor on the instruction boundary prior to the execution of the RET
instruction will also cause this counter to be incremented.

BTB false entries (58, 111010/0):

Counts the number of false entries in the Branch Target Buffer. False entries are causes for
misprediction other than awrong prediction.

BTB miss prediction on a Not-Taken Branch (58, 111010/1):
Counts the number of times the BTB predicted a Not-Taken branch as Taken.

Number of clocks stalled due to full write buffers while executing MMX instructions
(59, 111011/0):

Analogous to “Number of clocks stalled due to full write buffers,” counting only MMX instruction
accesses.

Stall on MMX instruction write to an E- or M-state line (59, 111011/1):

Analogous to “Stall on write to an E- or M-state line,” counting only MMX instruction accesses.
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#, defined 1-2

16-bit memories 6-2

3.3V inputs and outputs 7-3

32-bit memories 6-2

64-bit memories 6-2
interfacing 6-4

8259A 7-4

A

A20M# 12-9
Address 20 Mask signal 5-1
A31-A3
Address signals 5-2
Additional Address Strobe signal 5-4
Address Hold signal 5-5
Address Parity Check signal 5-7
Address parity checking cycles 6-45
Address Parity signal 5-6
Address signals 5-2
Address Strobe signal 5-3
Addressing, segments 1-5
ADS#5-3
ADSC#5-4
Advanced Programmable Interrupt Controller 2-4, 3-35
seealso APIC
AHOLD 5-5
deassertion restrictions 6-37
ALU operations 3-3
AP5-6
APCHK# 5-7, 6-28
APIC 2-2, 3-32, 3-35
bus 3-37
configuration modes 3-37
Bypass mode 3-38
Masked mode 3-38
Normal mode 3-37
Through Loca mode 3-38
data memory accesses 3-37
dual processing 3-39
dual processors 4-7
ID 3-39
interface 3-37
Lock Step operation 4-2
response to HOLD 3-39
software disabling 3-38
APIC Enable signal 5-8
APICEN 5-8
Architectural features 3-1
Assert, defined 1-6
Auto Halt Powerdown state 3-43, 12-16

B

Backoff signal 5-13
Back-off timing 6-22
Back-to-back cycles 6-45
BE7#-BEO# 5-9

generating address signals 6-3

Index

BF2-BFO0 5-11
BHE# 6-3
when active 6-4
Binary numbers 1-4
BIST 9-1
register states 4-4
Bit order 1-3
BLE# 6-3
when active 6-3
BOFF# 5-13, 6-21
timing 6-22
Boundary scan 2-2, 9-9
architecture 9-2
dual processors 4-26
Boundary Scan register 9-4
bit order for Pentium® processor 9-10
bit order for Pentium® processor with MMX™ technol-
ogy 9-10
BP3-BPO0 5-14
Branch prediction 2-1, 2-3, 3-3, 3-5
algorithm 3-4
BRDY# 3-6
changes with MMX technology processors 3-7
segmentation 3-6
SMM 3-6
Branch Target Buffer 2-3, 3-3, 3-5
Command Test register 14-14
direct access 14-14
test registers 14-12
testability cycles 14-14
Branch Trace message 11-1
special cycle 6-27
Branching upon numeric condition codes 3-10
BRDY# 5-15, 6-13
BRDYC# 5-16
Breakpoint signals 5-14
BREQ 5-16
BTB 3-3
BTB Target Test register 14-14
Buffer models 7-4
parameters 8-5
Buffer size selection 8-4
Buffers
linefill 3-29
writeback 3-29
Built in Self-Test (BIST) 4-2
Burst cycles 6-13
read 6-14
write 6-16
Burst order 6-14
Burst Ready signal 5-15, 5-16
Burst writeback bus cycle 6-11
Bus Check signal 5-17
Bus cycles
address parity checking 6-45
back-to-back 6-45
branch trace message 6-27
burst 6-13
burst order 6-14
burst read 6-14
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burst write 6-16
cache consistency 6-33
cache line state 6-44
cycle ordering due to BOFF 6-44
cycle pipelining 6-44
dua processing 6-43—6-46
floating-point error handling 6-46
flush 6-26, 6-46
halt 6-27
HOLD/HLDA 6-24
inquire 6-19, 6-33
interrupt acknowledge 6-25
non-pipelined read and write 6-12
PCHK# assertion 6-45
pipelined 2-3, 6-28
shutdown 6-26
single-transfer 6-11
slow burst read 6-16
special 6-26
special flush 6-27
Stop Grant 6-27, 12-13, 12-14
synchronous FLUSH# and RESET 6-45
terminology 6-10
writeback 6-16
writeback special cycle 6-27
Bus error handling 6-28
Bus Hold 6-23
dual processors 4-24
signal 5-33
Bus Hold Acknowledge signal 5-32
Bus Lock signal 5-41
Bus operation 2-2
Bus Request signal 5-16
Bus snarfing 4-25
Bus states 6-8
T16-10
T12 6-10
T2 6-10
T2P 6-10
TD 6-10
BUSCHK# 5-17, 10-5
Bus-to-Core Frequency Ratio signals 5-11
Bus-to-core ratio 3-40
BYPASS instruction 9-9
Bypass register 9-4
Byte Enable Output signals 5-9, 6-2
Byte order 1-3
Byte swapping logic
external 6-6

C

Cache 3-17
accessing for testing 14-6
code 2-1, 2-3, 3-26
data 2-1, 2-3
disabling 3-20
flushing 3-23
generating PWT and PCD 3-21
inquire cycle 3-26

Index-2

line fill 3-24

MESI protocol 3-23

operating modes 3-19

organization 3-17

page cacheability 3-21

parity bits 3-19

read cycle 3-24

replacement strategy 3-18

snooping 3-19, 3-26

state transitions 3-24

structure 3-19

write cycle 3-25
Cache consistency

dual processors 4-13
Cache consistency cycles 6-33
Cache Control Test register 14-5
Cache Data Test register 14-5
Cache Enable signal 5-40
Cache Flush signal 5-28
Cache flushing

scenarios 12-8

System Management Mode 12-7
Cache line state cycle 6-44
Cache Status Test register 14-5
Cache test registers 14-4
CACHE# 5-18
Cacheability signal 5-18
Cached lines

pipelined 6-29
Checker mode 4-2
Checker processor 2-4
Clear, defined 1-6
CLK 5-19
Clock control 12-11
Clock control state machine 12-15
Clock signal 5-19

measurement 8-9
Code cache 2-1, 2-3, 3-26
Code read bus cycle 6-11
Compatibility

software 1-3
Configuration features 4-1
Configuration modes

Checker 4-2

Master 4-2
Connection specifications 7-2
Connectors for debug port 13-2
Control and Event Select register 14-21
Core Supply Voltage 5-63
Counters

programmable event 14-21

time stamp 14-20
CPU Data/Code signal 5-21
CPU Type Definition signal 5-20
CPUID instruction 3-44

dual processors 4-7
CPUTYP 5-20
Cycle ordering due to BOFF# 6-44
Cycle pipelining 6-44
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D/C#5-21
D/P#5-22
D63-D0 5-21
Data bus 2-1
Datacache 2-1, 2-3
access 3-3
Data formats
memory 3-14
DataLine signals5-21
Data Parity Check signal 5-47
Data Parity signals 5-23
Datatransfers 6-2
Dead clock timings 6-32
Deassert, defined 1-6
Debug port
implementation examples 13-4—13-8
signal quality 13-4
signals 13-2-13-4
Debug port adapter
dual processor systems 13-12
uniprocessor systems 13-10
Debug port connector 13-1
pinout 13-14
Decode unit 2-4
Decodel stage 3-3
Decode? stage 3-3
Decoupling 7-2
recommendations 7-3
Device ID register 9-4
values 9-5
Diodes 8-5
Direct cache access 14-6
Documents online 1-6
DOS address, defined 1-6
DP7-DPO 5-23
DPEN# 5-24
Dual Processor Bus Grant signal 5-45
Dual Processor Bus Request signal 5-46
Dual Processor Enable signal 5-24
Dual Processor/Primary Processor signal 5-22
Dual processors 2-2, 2-6, 3-30, 3-31
and Stop Grant cycles 12-13
arbitration 3-31, 3-32, 4-10-4-12
BOFF# signal 4-24
bootup protocol 4-7
boundary scan 4-26
bus arbitration 4-23
bus hold 4-24
bus interface 4-21
bus snarfing 4-25
cache coherency 3-31, 3-33
cache consistency 4-13
cache flushes 12-9
configuration 2-5
CPUID 4-7
debug port adapter 13-12
designing with 4-7, 4-21
detecting presence 4-8

Index

determining the MRM 4-26

flush cycles 4-22

INIT sequences 4-26

interrupts 4-25

locked cycles 4-14

pin functions 4-27

pin modification 4-14

pipelining 4-22

power management 4-25

signal differences 5-1

SMI# delivery options 12-3

Socket 7 processor detection 4-26

start-up 4-8

state transitions 4-19—4-20

STPCLK# considerations 12-12

strong write ordering 4-25

System Management Mode (SMM) 4-25

using SMIACT# 12-5
Dual-processor systems

Three-State Test Mode 9-2

E

EADS# 5-25
EAX register 4-2
Electrical differences between processors 7-1
Emulator probe 13-1
ERR# 5-34
EWBE# 5-26
Exceptions
machine check 10-4
notation 1-5
Exclusive state 3-24
Execution tracing 2-2, 11-1
Expanded address, defined 1-6
External Address Strobe signal 5-25
External bus frequency 3-40
External byte swapping logic 6-6
External Interrupt signal 5-38
External interrupts 3-29
External Write Buffer Empty signal 5-26
EXTEST instruction 9-4, 9-9

F

Feature flags
APIC 3-45
CX8 3-45
DE 3-45
FPU 3-45
MCA 3-45
MCE 3-45
MMX technology 3-45
MSR 3-45
MTRR 3-45
PAE 3-45
PGE 3-45
PSE 3-45
TSC 3-45
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VME 3-45
Features of embedded Pentium® processor 2-1
FERR# 5-27
Fetch pipeline stage 2-2, 2-3
First order output buffer mode
parameters 8-3
Floating-point error handling cycles 6-46
Floating-point Error signal 5-27
Floating-point instructions
issuing 3-8
pairing 3-8
Floating-point pipeline stages 3-8
Floating-point unit 2-1, 2-4, 3-1, 3-7
bypasses 3-10
Flush cycles 6-26, 6-46
dual processors 4-22
special 6-27
FLUSH# 5-28, 6-26
System Management Mode 12-7
Three-state Test Mode 4-2
FPU
see Floating-point unit
Fractional bus operation 2-6
Fractional bus speed 3-40
FRC
<italic>see Functional redundancy checking
FRCMC# 5-29
Frequency
bus-to-core ratio 3-40
Functional Redundancy Check Error signal 5-34
Functional redundancy checking 2-4, 4-2, 10-6
Functional Redundancy Checking Master signal 5-29
FXCH 2-4

H

Halt special cycle 6-27
Hexadecimal numbers 1-4
HIT# 5-30
HITM# 5-31
HLDA 5-32

example 6-23
HOLD 5-33

example 6-23

I/O instruction restart 3-43, 12-1
I/O read bus cycle 6-11
I/O space 6-1
I/O Supply Voltage signal 5-63
I/O write bus cycle 6-11
IDCODE instruction 9-4
IEEE 1149.1 Test Access Port 9-2
IERR# 10-7
BIST 4-2
IGNNE# 5-36
Ignore Numeric Exception signal 5-36
INC pins 7-4

INIT 5-37
BIST 4-2
initiating self-test 9-1
register states 4-4
INIT IPI 4-8
INIT sequences
dual processors 4-26
Initialization 4-3
Initialization signal 5-37
Input buffer model parameters 8-5
Inquire Cycle Hit/Miss signal 5-30
Inquire Cycle Hit/Miss to a Modified Line signal 5-31
Inquire cycles 6-19, 6-33
rate of 6-40
Instruction execution through pipeline 3-2
Instruction FIFO 3-2, 3-15
Instruction operands 1-4
Instruction pairing 3-4, 3-5
Instruction pipelines 2-4
Instruction prefetch 3-3
Instruction register 9-5
Instruction set 2-3
MMX™ technology 3-14
Instruction stack 3-8
Instructions
BYPASS 9-9
EXTEST 9-9
IDCODE 9-4
mixing instruction types 3-17
pairable 3-4
PRELOAD 9-9
RUNBIST 9-5, 9-7
SAMPLE 9-9
serializing 3-28
Instructions, notational conventions 1-2
Integer instruction pairing 3-4
Integer instructions flow 3-1
Integer pipeline 3-2
Intel reserved bus cycle 6-11
Intel386™ microprocessor
application software compatibility 2-3
Intel486™ microprocessor
address signals 6-2
application software compatibility 2-3
flush cycles 6-26
testability 9-1
Interfacing to the processor 13-1
Internal cache 3-17
Internal snooping 6-40
Interrupt acknowledge bus cycle 6-11, 6-25
Interrupts
dual processors 4-25
external 3-29
priority 3-29
System Management Mode 12-1
INTR 5-38
INV 5-39
Invalid state 3-24
Invalidate Cache signal 6-27
Invalidation Request signal 5-39
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INVD 6-27
IPI, start-up for dual processors 4-8

K

KEN# 5-40
sampling for pipelined cycles 6-31

L

Least recent master 3-31, 4-9
Level 1 debug port 13-1
Level 2 debug port 13-1
Linefill buffers 3-29
LINT1-LINTO5-41
Local Interrupt 1 and 0 signals 5-41
Lock Step operation 4-2
LOCK#5-41, 6-17
Locked cycle sequences 6-44
Locked cycles

bus arbitration 4-9

dual processors 4-14

misaligned 6-21

timing 6-20

two consecutive 6-20
Locked operations 6-17
Low inductance capacitors 7-3
LRU 3-17

M

M/10O# 5-42
Machine Check Address register 10-4
Machine check exception 10-4
Machine Check Type register 10-4
Master mode 4-2
Master processor 2-4
M easurements, defined 1-2
Memory
interfacing to 16-bit 6-2
interfacing to 32-bit 6-2
interfacing to 64-bit 6-2, 6-4
organization 6-1
Memory data formats 3-14
Memory |nput/Output signal 5-42
Memory Management Unit 2-3
Memory read bus cycle 6-11
Memory write bus cycle 6-11
MESI protocol 2-1, 3-17, 3-23
exclusive state 3-24
invalid state 3-24
modified state 3-24
shared state 3-24
MMX instruction operands 3-12
MMX instructions
pairing 3-16
MMX™ technology 2-2, 2-3, 3-11
data formats 3-14
data types 3-11, 3-12
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instruction set 3-11, 3-14
pipeline stage summary 3-16
programming environment 3-11
register data formats 3-14
registers 3-11
Model specific registers 3-46
defined 14-1
descriptions 14-2
Modified (M) state 3-24, 6-18
Most recent master 3-31, 4-9
determining which processor 4-26
MSR
see Model specific registers
M-state 6-18

N

NA# 5-43, 6-9, 6-28
NC pins 7-4
Next Address signal 5-43
NMI 5-44
invoking to exit shutdown 6-27
Non-Maskable Interrupt signal 5-44
Notation
bit and byte order 1-3
exceptions 1-5
hexadecimal and binary numbers 1-4
instruction operands 1-4
reserved bits 1-3
segmented addressing 1-5

O

On-chip cache 3-17
Online help 1-6
Operand
instruction 1-4
Operands 3-8
Operations
serializing 3-28
Overshoot 8-10
Pentium® processor 8-6
Pentium® processor with MMX™ technology 8-8

P

Packed data types 3-12
Page cacheability 3-21
Page Cacheability Disable signal 5-46
Page Writethrough signal 5-53
Pairable instructions 3-4
Pairing 3-4

exceptions 3-5
Parity 2-1
Parity Enable signal 5-51
Parity Reversal register 14-15
Part number 9-5
PBGNT# 5-45
PBREQ# 5-46
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PC/AT address, defined 1-6
PCD 3-21, 5-46
PCHIT# 5-48
PCHITM# 5-49
PCHK# 5-47, 6-28
PCHK# assertion cycles 6-45
PEN# 5-51
Performance monitoring 2-2, 14-19
architectural features 14-20
events 14-23
model specific features 14-20
signals 5-52
PICCLK 5-50
PICD1-PICDO 5-51
Pins
see signal name
Pipeline
integer 3-2
Pipeline stage 3-1
floating-point 3-8
MMX™ technology 3-15
summary for MMX™ technology 3-16
Pipelining 2-1
bus cycles 6-28
dual processors 4-22
PM1-PMO 5-52
Power management 3-43
dual processors 4-25
features 12-1
Power supplies
differences between the processors 7-1
Power up specifications 4-1
PRDY 5-53
Prefetch buffer 3-4
Prefetch stage 3-2
PRELOAD instruction 9-4, 9-9
Primary processor 2-6, 3-30, 3-31
Private bus 3-30
Private Inquire Cycle/Hit Miss signal 5-48

Boundary Scan 9-4
BTB 14-12
Bypass 9-4
Cache Test 14-4
Control and Event Select 14-21
Device ID 9-4
EAX 4-2
Instruction 9-5
Machine Check Address 10-4
Machine Check Type 10-4
model specific 14-2
notational conventions 1-3
Parity Reversal 14-15
Runbist 9-5
Test 14-3, 14-17
test
see also Test registers
Test Access Port 9-4
TLB 14-8
Request pending 6-9
Reserved bits 1-3
RESET 5-54
cold 4-3
interrupts 4-5
pin states 4-5
power on 4-3
register states 4-4
warm 4-3
Reset modes 4-3
RESET pin
and processor initialization 4-1
Ringback 8-10, 8-11
Pentium® processor 8-6
Pentium® processor with MMX™ technology 8-8
Run/Stop signal 5-54
RUNBIST instruction 9-5, 9-7
Runbist register 9-5

Private Inquire Cycle/Hit Miss to a Modified Line signal 5-49 S

Probe Ready signal 5-53

Processor features 2-1

Processor Interrupt Controller Clock signal 5-50
Processor Interrupt Controller Data signals 5-51
Product literature, ordering 1-7

Programmable counters 14-21

Programmer generated locked operations 6-18
PWT 3-21, 5-53

R

R/S# 5-54
Read cycles

burst 6-14

pipelined, back-to-back 6-30

slow burst 6-16
Redundancy checking 2-2
Register data formats

MMX™ technology 3-14
Registers

Index-6

Safe instruction recognition 3-9
SAMPLE instruction 9-4, 9-9
SCYC 5-56
Second level write buffers 12-10
Segment descriptor updates 6-18
Segmentation
branch prediction 3-6
Segmented addressing 1-5
Set, defined 1-6
Settling time 8-7
Shared state 3-24
Shutdown 6-26
Signal quality
Pentium® processor 8-6
Pentium® processor with MMX™ technology 8-8
Signals
debug port 13-2-13-4
notational conventions 1-3
see signal name
SIMD 2-3, 3-13
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Single-transfer bus cycle 6-11
SL power management 2-2, 2-6
Slow burst cycles
read 6-16
SMI#5-57, 12-2
delivered viaAPIC 12-4
hardware interface 12-2
interrupt service 12-2
power management 12-1
timing 12-3
SMIACT#5-58, 12-4
dual processors 12-5
power management 12-1
timing 12-5
SMM
see System Management Mode
SMRAM 12-6
Snooping 3-19, 3-26
dual processors 4-16—4-18
Special bus cycles 6-11, 6-26, 11-1
branch trace messages 11-1
shutdown 6-26
Special cycles
branch trace message 6-27
flush 6-27
halt 6-27
Stop Grant 6-27
writeback 6-27
Split Cycle Indication signal 5-56
State machines
bus control 6-9
clock control 12-15
State transitions 6-9
Stop clock 3-43
Stop Clock signal 5-59, 12-11
Stop Clock Snoop state 12-16
Stop Clock state 12-16
Stop Grant bus cycle 12-13
pin states 12-14
Stop Grant special bus cycle 6-27
Stop Grant state 12-15
STPCLK# 5-59, 12-11
dual processing considerations 12-12
Supply Voltage signal 5-63
Symmetric multi-processing 3-31
Synchronous FLUSH# and RESET cycles 6-45
System Management Interrupt Active signal 5-58
System Management Interrupt signal 5-57
System Management Mode 2-2
cache flushes 12-7
design considerations 12-6
dual processors 4-25
hardware interface 12-2
interrupt service 12-2
interrupts 12-1
revision identifier 12-1
second level write buffers 12-10

Index

T

T1 bus state 6-8, 6-10
T12 bus state 6-8, 6-10
T2 bus state 6-8, 6-10
T2P bus state 6-8, 6-10
TAP
see Test Access Port
TCK 5-60
TD bus state 6-8, 6-10
TDI 5-60
TDO 5-61, 10-6
Technical support 1-6
Terminology 1-2
Test Access Port 9-2
block diagram 9-3
instruction set 9-11
pins 9-3
registers 9-4
Test Access Port controller 9-9
state diagram 9-6
Test Clock Input signal 5-60
Test Data Input signal 5-60
Test Data Output signal 5-61
Test features 4-1
BIST 4-2
functional redundancy checking (FRC) 4-2
Three-state Test Mode 4-2
Test Mode Select signal 5-62
Test registers 14-3, 14-17
Branch Target Buffer 14-12
Branch Target Buffer Command 14-14
BTB Target Test 14-14
Cache Control 14-5
Cache Data 14-5
Cache Status 14-5
Parity Reversal 14-15
TLB 14-8
TLB Command 14-9
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