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1.0 INTRODUCTION

The Intel386 CPU Architecture Family represents a se-
ries of compatible processors including the Intel386,
Intel486, and the Pentium processors. The newer mem-
bers of the family are capable of executing any binaries
created for members of previous generations. For ex-
ample, any existing 8086/8088, 80286, Intel386 CPU
(DX or SX), and Intel486 CPU applications will be
able to execute on the Pentium processor without any
modification or recompilation. However, there are cer-
tain code optimization techniques which will make ap-
plications execute faster on a specific member of the
family with little or no impact on the performance of
other members. Most of these optimizations deal with
instruction sequence selection and instruction reorder-
ing to complement the processor micro architecture.

The intent of this document is to describe the imple-
mentation differences of the processor members and the
optimization strategy that gives the best performance
for all members of the family.

2.0 OVERVIEW OF Intel386TM,
Intel486TM, AND PentiumTM

PROCESSORS

2.1 The Intel386TM Processor

The Intel386 processor is the first implementation of
the 32-bit Intel386 architecture. It includes full 32-bit
data paths, rich 32-bit addressing modes and on-chip
memory management.

2.1.1 INSTRUCTION PREFETCHER

The instruction prefetcher prefetches the instruction
stream from external memory and the prefetched in-
structions are kept in its four-deep, four-byte-wide pre-
fetch buffers. The instruction decoder operates on the
code stream fed to it through the prefetch buffers.

2.1.2 INSTRUCTION DECODER

The instruction decoder places the decoded information
in a three-deep FIFO. It is decoupled from both the
prefetcher and the execution core and has separate pro-
tocols with each.

2.1.3 EXECUTION CORE

The core engine executes the incoming instructions one
at a time, but for certain cases, it allows overlapping the
last execution cycle of the current instruction with the
effective address calculation of the next instruction’s
memory reference.

From the compiler writer’s point of view, the decoupled
prefetch/decode/execution stages and the sequential
nature of the core engine has placed few requirements
for instruction scheduling. Avoiding the use of an index
in the effective address will save one extra clock. A
careful choice of instructions to minimize the execution
clock counts is the best optimization approach.

2.2 The Intel486TM Processor

The Intel486 processor has a full blown integer pipeline
delivering a peak throughput of one instruction per
clock. It has integrated the first level cache and the
floating-point unit on chip, and it has the same on-chip
memory management capabilities as the Intel386
processor.

2.2.1 INTEGER PIPELINE

The Intel486 CPU has a five-stage integer pipeline ca-
pable of processing one instruction per clock. The five
pipeline stages are:

1. Prefetch (PF)Ðwhere instructions are fetched from
the cache and placed in one of two 16-byte buffers.

2. Decode (D1)Ðwhere incoming code stream is being
decoded. Prefixed instructions stay in D1 for two
clocks.

3. Address Generation (D2)Ðwhere effective address
and linear address are calculated in parallel. The
address generation can usually be completed in one
cycle except in cases where the indexed addressing
mode is used. If the index is used, the instruction
stays in D2 for two clocks.

4. Execution (E)Ðwhere the machine operations are
performed. Simple instructions (those with one ma-
chine operation) take one cycle to execute giving a
maximum throughput of one instruction per clock.
The more complex instructions take multiple execu-
tion cycles.

5. Writeback (WB)Ðwhere the needed register update
occurs.

A taken branch breaks the pipeline stream and causes a
two clock penalty whereas the pipeline stream is unaf-
fected by a not-taken branch.

2.2.2 ON-CHIP CACHE

The on-chip cache is a combined instruction and data
cache. It is 8 Kbytes in size, four-way set associative
with a 16-byte line size and pseudo-LRU replacement
algorithm. All data references have priority access to
the cache over instruction prefetch cycles.
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2.2.3 ON-CHIP FLOATING-POINT UNIT

The on-chip floating-point unit utilizes the integer pipe-
line for early data access. The bus structure allows
64-bit data to be transferred between the cache and the
floating-point hardware in one clock. The floating-
point design also allows overlapping the floating-point
operations with integer operations.

The execution core of the Intel486 processor has been
engineered to maximize the throughput of a class of
‘‘frequently used’’ instructions. Hence, careful selection
of an instruction sequence to perform a given task re-
sults in faster execution time. Also, code scheduling to
avoid pipeline stalls helps to boost application perform-
ance. Most of the optimizations targeted to the Intel486
processor do not have negative effects on the Intel386
processor.

2.3 The PentiumTM Processor

The Pentium processor is an advanced superscalar
processor. It is built around two general purpose inte-
ger pipelines and a pipelined floating-point unit. The
Pentium processor can execute two integer instructions
simultaneously. A software-transparent dynamic
branch-prediction mechanism minimizes pipeline stalls
due to branches.

2.3.1 INTEGER PIPELINES

The Pentium processor has two parallel integer pipe-
lines, the main pipe (U) which is an enhanced Intel486
processor pipe and the secondary pipe (V) which is sim-
ilar to the main one but has some limitations on the
instructions it can execute. The limitations will be de-
scribed in more detail in later sections.

The Pentium processor can issue two instructions every
cycle. During execution, the next two instructions are
checked, and if possible, they are issued such that the
first one executes in the U pipe, and the second in the V
pipe. (If it is not possible to issue two instructions, then
the next instruction is issued to the U pipe and no in-
struction is issued to the V pipe.)

When instructions execute in the two pipes, their be-
havior is exactly the same as if they were executed se-
quentially. When a stall occurs successive instructions
are not allowed to pass the stalled instruction in either
pipe. In the Pentium processor’s pipelines, the D2 stage
can perform a multiway add, so there is not a one clock
index penalty as with the Intel486 CPU pipeline.

2.3.2 CACHES

The on-chip cache subsystem consists of two (instruc-
tion and data) 8-Kbyte two-way set associative caches

with a cache line length of 32 bytes. There is a 64-bit
wide external data bus interface. The caches employ a
write back mechanism and an LRU replacement algo-
rithm. The data cache consists of eight banks inter-
leaved on four byte boundaries. The data cache can be
accessed simultaneously from both pipes, as long as the
references are to different banks. The minimum delay
for a cache miss is 3 clocks.

2.3.3 INSTRUCTION PREFETCHER

The instruction prefetcher has four buffers, each of
which is 32 bytes long. It can fetch an instruction
which is split among two cache lines with no penalty.
Because the instruction and data caches are separate,
instruction prefetches no longer conflict with data ref-
erences for access to the cache (as in the case of the
Intel486 processor).

2.3.4 BRANCH TARGET BUFFER

The Pentium processor employs a dynamic branch pre-
diction scheme with a 256 entry BTB. If the prediction
is correct, there is no penalty when executing a branch
instruction. There is a 3 cycle penalty if the conditional
branch was executed in the U pipe or a 4 cycle penalty
if it was executed in the V pipe. Mispredicted calls and
unconditional jump instructions have a 3 clock penalty
in either pipe. On the Intel486 processor, taken branch-
es have a two clock penalty.

2.3.5 PIPELINED FLOATING-POINT UNIT

The majority of the frequently used instructions are
pipelined so that the pipelines can accept a new pair of
operands every cycle. Therefore a good code generator
can achieve a throughput of almost 1 instruction per
cycle (of course this assumes a program with a modest
amount of natural parallelism!). The fxch instruction
can be executed in parallel with the commonly used FP
instructions, which lets the code generator or program-
mer treat the floating-point stack as a regular register
set without any performance degradation.

With the superscalar implementation, it is important to
schedule the instruction stream to maximize the usage
of the two integer pipelines. Since each of the Pentium
processor’s integer pipelines is enhanced from the pipe-
line of the Intel486 processor, the instruction schedul-
ing criteria for the Pentium processor is a superset of
the Intel486 processor requirements.

3.0 INTEGER EXAMPLES

With the overview of the Intel386, Intel486 and
Pentium processors in the previous section, the exam-
ples given in this section further illustrate the execution
clock cycles among various instruction sequences.
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All examples assume a 100% cache hit rate and non-conflicting memory accesses. A 32-bit flat address model is also
assumed.

There is a cycle count next to each instruction. A cycle count appears without an instruction when there is a pipe
stall. These examples also assume that the branch prediction is correct.

Going through these examples should give you an intuitive feel for how pairing works on the Pentium processor and
additional insight about some of the common delays on both the Intel486 and Pentium processors.

C source:

static int a[10], b[10];
int i;
for (i40; ik10; i00) À

a[i] 4 a[i] 0 1;
b[i] 4 b[i] 0 1;

Ó

There are various instruction sequences which will produce a correct program. Their individual performance,
however, may vary considerably.

Here are three examples:

Sequence 1 Sequence 2 Sequence 3

xor eax, eax xor eax, eax mov eax, 140

TopOfLoop: TopOfLoop: TopOfLoop:
mov edx, eax inc dword ptr [eax*40a] mov edx, [eax0400a]
shl edx, 2 inc dword ptr [eax*40b] mov ecx, [eax0400b]
inc dword ptr [edx0a] inc eax inc edx
mov edx, eax cmp eax, 10 inc ecx
shl edx, 2 jl TopOfLoop mov [eax0400a], edx
inc dword ptr [edx0b] mov [eax0400b], ecx
inc eax add eax, 4
cmp eax, 10 jnz TopOfLoop
j1 TopOfLoop

Code Sequence 1 could benefit from common subexpression elimination. It is not unoptimized code, it is just not
thoroughly optimized. Code that is unoptimized would not keep ‘‘i’’ in a register.

Code Sequence 2 is the most straightforward style code.

Code Sequence 3 uses a load/store model. It also incorporates some induction variable elimination optimizations
with test replacement. The loop counter in eax counts up to zero. When it becomes zero, the jnz is not taken. This
code avoids the compare instruction.

The performance of each of these code sequences is examined on both the Intel486 and Pentium processors.

3
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3.1 Code Sequence 1, Intel486TM Processor

The shl instruction takes two cycles on an Intel486 processor. ALU operations (e.g. add) with mem-
ory results take 3 clocks: 1 to load, 1 to add, and 1 to store.

mov edx, eax ; 1
shl edx, 2 ; 2 2 clock instruction

(sh1) ; 3
inc dword ptr [edxaa] ; 4 3 clocks with memory operand

(inc) ; 5 plus 1 clock for edx AGI
(inc) ; 6
(inc) ; 7

mov edx, eax ; 8
shl edx, 2 ; 9 2 clock instruction

(shl) ; 10
inc dword ptr [edxab] ; 11 3 clocks with memory operand

(inc) ; 12 plus 1 clock for edx AGI
(inc) ; 13
(inc) ; 14

inc eax ; 15
cmp eax, 10 ; 16
jl TopOfLoop ; 17 2 clocks because jl is prefixed

; 18
; 19 branch taken penalty
; 20

mov edx, eax ; 21 next iteration

Total: 20 cycles

Cycles 4 and 11 had an Address Generation Interlock (AGI) Delay. Register edx was written in cycle 3 and used as a
base register in cycle 5. When a register is used in an effective address calculation in the cycle after the register is
written, there is a one clock penalty. This happens because the effective address calculation is performed in the D2
stage of the pipeline.

With the assembler used for this code sequence, the jl instruction was a ‘‘jump near,’’ not a ‘‘jump short.’’
‘‘Jump near’’ is a 0f prefixed instruction. Prefixed instructions take an extra cycle on the Intel486
processor in the D1 stage.

The Intel486 processor does not have any branch prediction mechanism. Whenever jumps are taken, there is a 2
clock penalty (cycles 19 and 20).

4
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3.2 Code Sequence 1, PentiumTM Processor

U pipe V pipe
mov edx, eax ; 1
shl edx, 2 ; 2
inc dword ptr [edx0a] ; 3 3 clocks with mem. op

(inc) ; 4 plus 1 for edx AGI
(inc) ; 5
(inc) mov edx, eax ; 6 Pairs with last U cycle

shl edx, 2 ; 7
inc dword ptr [edx0b] ; 8 3 clocks with mem. op

(inc) ; 9 plus l for edx AGI
(inc) ; 10
(inc) inc eax ; 11 Pairs with last U cycle

cmp eax, 10 jl TopOfLoop ; 12
mov edx, eax ; 13 Next iteration

Total: 12 cycles

Note that the ‘‘shift’’ instruction takes two clocks on the Intel486 processor and only one on the Pentium processor.
The Pentium processor has special hardware to avoid the 0f prefix delay on jcc ‘‘near’’ instructions. It also
can pair the compare and jump, even though cmp writes a condition flag and jl reads it. The
branch prediction hardware, when it predicts the branch to be taken, can execute the target instruc-
tion in the cycle following the jump. When a multiple cycle instruction in the U pipe pairs with an-
other instruction, the last memory operation of the U pipe instruction pairs with the first operation
of the V pipe instruction (cycles 6 and 11).

3.3 Code Sequence 2, Intel486TM Processor

inc dword ptr [eax*4aa] ; 1 3 clocks with memory operand
(inc) ; 2 plus 1 for indexing
(inc) ; 3
(inc) ; 4

inc dword ptr [eax*4ab] ; 5 3 clocks with memory operand
(inc) ; 6 plus 1 for indexing
(inc) ; 7
(inc) ; 8

inc eax ; 9
cmp eax, 10 ; 10
jl TopOfLoop ; 11 2 clocks because jl is prefixed

; 12
; 13 Branch taken penalty
; 14

inc dword ptr [eax*4aa] ; 15 Next iteration

Total: 14 cycles

On the Intel486 processor, whenever an index register is used in an effective address calculation, there is a one clock
penalty in the D2 stage (cycles 1 and 5). This does not apply to base registers.

5
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3.4 Code Sequence 2, PentiumTM Processor

U pipe V pipe

inc dword ptr [eax*40a] ; 1 3 clocks with mem. op.
(inc) ; 2
(inc) inc dword ptr [eax*40b] ; 3 1st V pairs with last U

(inc) ; 4
(inc) ; 5

inc eax ; 6
cmp eax, 10 jl TopOfLoop ; 7
inc dword ptr [eax*40a] ; 8 Next iteration

Total: 7 cycles

The inc eax instruction at cycle 6 did not pair with the cmp instruction because of a register de-
pendence. Other than in a few special cases (such as cmp-jmp), a register cannot be accessed until
the cycle after it is written.

3.5 Code Sequence 3, Intel486TM Processor

mov edx, [eax0400a] ; 1
; 2 Fill prefetch buffer

mov ecx, [eax0400b] ; 3
inc edx ; 4
inc ecx ; 5
mov [eax0400a], edx ; 6
mov [eax0400b], ecx ; 7
add eax, 4 ; 8
jnz TopOfLoop ; 9 Prefix on jnz

; 10
; 11 Branch penalty
; 12

mov edx, [eax0400a] ; 13 Next iteration

Total: 12 cycles

The delay at clock 2 is caused by a miss in the Intel486 processor’s prefetch buffer. The previous two examples had a
similar penalty, but it was hidden by the 2 clocks used for the shl instruction in code sequence 1, and by the index
penalty in code sequence 2.

3.6 Code Sequence 3, PentiumTM Processor

U pipe V pipe

mov edx, [eax0400a] mov ecx, [eax0400b] ; 1
inc edx inc ecx ; 2
mov [eax0400a], edx mov [eax0400b], ecx ; 3
add eax, 4 jnz TopOfLoop ; 4
mov edx, [eax0400a] mov ecx, [eax0400b] ; 5 AGI on eax with

(mov) (mov) ; 6 next iteration

Total: 5 cycles

6
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The prefetch buffer delay on the Intel486 processor is
no longer relevant. The Pentium processor has more
prefetch buffers and different alignment capabilities. In
the example above the loop control is determined by
the add eax, 4 instruction setting the zero con-
dition code as it counts up to zero.

There is an AGI on eax because the add in cycle
4 writes to eax and both mov’s in cycle 5 ref-
erence it, even though there is a branch in be-
tween. On the Intel486 processor, AGI’s only
happen between adjacent instructions. On the
Pentium processor, there can be two instructions
in between and still be an AGI; for example,
between a U pipe add in cycle n and a V
pipe mov that uses the result of the add as a
base in cycle na1. The general rule is than an
AGI will occur when any instruction in cycle n
writes to a register that is used in an effective
address calculation in any instruction in cycle
na1. This is because the effective address cal-
culation is performed in D2.

In a compiler’s intermediate representation of the pro-
gram before instruction scheduling (reordering), one
might expect the order for sequence 3 to be:

241799–1

Reordering this intermediate code to obtain the assem-
bly code shown earlier involves moving the load from
‘‘b’’ in front of the store into ‘‘a.’’ Instruction reorder-
ing requires knowing that memory operands are inde-
pendent. In this case, it can be easily proven that ele-
ments of ‘‘a’’ do not overlap in memory with elements
of ‘‘b.’’

Comments

Using a load/store paradigm works well on the
Pentium processor because it exposes more opportuni-
ties for pairing instructions when the instructions are
scheduled. It does not, however, increase the number of
clocks, even without scheduling, though this ignores
possible secondary effects such as larger code size. This
can lead to instruction cache misses. Another second-
ary effect is the use of more registers which are a limit-
ed resource on these on these processors. Compiler
writers may want to pay more attention to register allo-
cation.

In this document, we will refer to this as ‘‘load/store’’
style code generation.

4.0 CODE GENERATION STRATEGY

Even though each member of the Intel386 processor
family has a different micro architecture due to tech-
nology versus implementation tradeoffs, the differences
induced few conflicts in the overall code optimization
strategy. In fact, there is a set of ‘‘blended’’ optimiza-
tions that will create an optimal binary across the entire
family. The ‘‘blended’’ optimizations include:

1. Optimizations that benefit all members.

2. Optimizations that benefit one or more members but
do not hurt the remaining members.

3. Optimizations that benefit one or more members a
lot but only hurt the remaining members a little.

For those optimizations that benefit only certain mem-
bers but cause noticeable degradation to others, it is
recommended that they be implemented under switches
and left to the user to decide whether maximizing the
performance of a specific processor is desirable.

5.0 BLENDED CODE GENERATION
CONSIDERATION

5.1 Choice of Index Versus Base
Register

The Intel386 and the Intel486 processors need an addi-
tional clock cycle to generate an effective address when
an index register is used. Therefore, if only one index-
ing component is used (i.e., not both a base register and
an index register) and scaling is not necessary, then it is
faster to use the register as a base rather than an index.
For example:

mov eax, [esi] ; use esi as base
mov eax, [esi*] ; use esi as index, 1

; clock penalty
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It takes the Pentium processor one clock to calculate the effective address even when an index register is used.
Hence, Pentium processor is neutral to the choice of index versus base register.

5.2 Addressing Modes and Register Usage

1. For the Intel486 processor, when a register is used as the base component, an additional clock cycle is used if that
register is the destination of the immediately preceding instruction (assuming all instructions are already in the
prefetch queue). For example:

add esi, eax ; esi is a destination register
mov eax, [esi] ; esi is a base, 1 clock penalty

Since the Pentium processor has two integer pipelines and each pipeline has an organization similar to
the Intel486 processor’s integer pipeline, a register used as the base or index component of an effec-
tive address calculation (in either pipe) causes an additional clock cycle if that register is the destina-
tion of either instruction from the immediately preceding cycle (Address Generation Interlock, (AGI)).
To avoid the AGI, the instructions should be separated by at least one cycle by placing other in-
structions between them.

2. Note that some instructions have implicit reads/writes to registers. Instructions that generate addresses implicitly
through esp (push,pop/ret/call) also suffer from the AGI penalty.

Examples:

sub esp, 24
; 1 cycle stall

push ebx

mov esp, ebp
; 1 cycle stall

pop ebp

Push and pop also implicitly write to esp. This, however, does not cause an AGI when the next
instruction addresses through esp.

Example:

push edi ; no stall
mov ebx, [esp]

3. On the Intel486 processor there is a 1 clock penalty for decoding an instruction with either an index or an
immediate-displacement combination. On the Pentium processor, the immediate-displacement combination is not
pairable. When it is necessary to use constants, it would still be more efficient to use immediate data instead of
loading the constant into a register first, but if the same immediate data is used more than once, it would be faster
to load the constant in a register and then use the register multiple times.
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mov result, 555 ; 555 is immediate, result is displacement

mov dword ptr [esp04], 1 ; 1 is immediate, 4 is displacement

4. The Intel486 processor has a 1 clock penalty when using a register immediately after its sub-register was written.
The Pentium processor is neutral in this respect.

Example (Pentium Processor):

mov al, 0 ; 1
mov [ebp], eax ; 2 - No delay on the Pentium processor

Example (Intel486 processor):

mov al, 0 ; 1
; 2

mov [ebp], eax ; 3

5.3 Prefetch Bandwidth

The Intel486 processor prefetch unit will access the on-chip cache to fill the prefetch queue whenever the cache is
idle, and there is enough room in the queue for another cache line (16 bytes). If the prefetch queue becomes empty, it
can take up to three additional clocks to start the next instruction. The prefetch queue is 32 bytes in size (2 cache
lines).
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Because data accesses always have priority over pre-
fetch requests, keeping the cache busy with data access-
es can lock out the prefetch unit. As a result, optimized
code should avoid four consecutive memory instruc-
tions.

It is important to arrange instructions so that the mem-
ory bus is not used continuously by a series of memory-
reference instructions. The instructions should be rear-
ranged so that there is a non-memory referencing in-
struction (such as a register instruction) at least two
clocks before the prefetch queue becomes exhausted.
This will allow the prefetch unit to transfer a cache line
into the queue.

Such arrangement of the instructions will not affect the
performance of the Intel386 and Pentium processors.

In general, it is difficult for a compiler to model the
Intel486 CPU prefetch buffer behavior. A sequence of
four consecutive memory instructions without stalls
(i.e., index penalty) will probably stall because of the
prefetch buffers being exhausted.

5.4 Alignment

5.4.1 CODE

The Intel486 processor has a cache line size of 16 bytes
and the Pentium processor has a cache line size of
32 bytes. Since the Intel486 processor has only two pre-
fetch buffers (16 bytes each), code alignment has a
direct impact on Intel486 processor performance as a
result of the prefetch buffer efficiency. Code alignment
has little effect on the Pentium processor performance
because of its ability to prefetch across a cache line
boundary with no penalty. The Intel386 processor with
no on-chip cache and a decoupled prefetch unit is not
sensitive to code alignment. For optimal performance
across the family, it is recommended that labels be
aligned to the next 0MOD16 when it is less than 8 bytes
away from that boundary.

5.4.2 DATA

A misaligned access in the data cache costs at least
an extra 2 cycles on both the Intel486 and Pentium
processor.

5.4.3 2-BYTE DATA

A 2-byte object should be fully contained within an
aligned 4-byte word (i.e., its binary address should be
xxxx00, xxxx01, xxxx10, but not xxxx11).

5.4.4 4-BYTE DATA

The alignment of a 4-byte object should be on a 4-byte
boundary.

5.4.5 8-BYTE DATA

An 8-byte datum (64-bit, e.g., double precision reals)
should be aligned on an 8-byte boundary.

5.5 Prefixed Opcodes

On the Intel386 processor and the Intel486 processor,
all prefix opcodes require an additional clock to decode.
On the Pentium processor, an instruction with a prefix
is pairable in the U pipe (PU) if the instruction (with-
out the prefix) is pairable in both pipes (UV) or in the
U pipe (PU). This is a special case of pairing. The pre-
fixes are issued to the U pipe and get decoded in one
cycle for each prefix and then the instruction is issued
to the U pipe and may be paired.

All these prefixes: lock, segment override, address size,
second opcode map (0f), and operand size belong to
this group. Note that this includes all the 16-bit instruc-
tions when executing in 32-bit mode because an oper-
and size prefix is required (e.g., mov word ptr
[..], add word ptr [..], ...)

The near jcc prefix behaves differently; it does not take
an extra cycle to decode and belongs to PV group. Oth-
er 0f opcodes behave as normal prefixed in-
structions. For optimized code prefixed opcodes
should be avoided.

When prefixed opcodes have to be used, there are two
cases in which overlap can be achieved between the
extra clock it takes to decode a prefix and a cycle used
by the previous instruction executing in the same pipe:

1. The one cycle penalty from using the result register
of a previous instruction as a base or index (AGI).

2. The last cycle of a preceding multi-cycle instruction.

5.6 Integer Instruction Scheduling

Instruction scheduling is the process of reordering the
instructions in a program to avoid stalls and delays
while maintaining the semantics of the generated code.

Scheduling of integer instructions has two purposes:

1. Eliminate stalls in the Intel486 CPU pipeline and
each pipe of the Pentium processor.
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There are some conditions where pipe stalls are en-
countered. The general guideline is to find instruc-
tions that can be inserted between the instructions
that cause a stall. Since most of the commonly used
integer instructions take only one clock, there is not
much need to hide latencies. The most common de-
lays which can be avoided through scheduling are
AGI’s.

2. Create pairs for maximum throughput from the
Pentium processor’s dual pipe architecture:

The Pentium processor can issue two instructions
for execution simultaneously. This is called pairing.
There are limitations on which two instructions can
be paired and some pairs, even when issued, will not
execute in parallel. Pairing details are described in
following sections. More information about instruc-
tion pairability can be found in Appendix A.

Reordering instructions should be done in order to
increase the possibility of issuing two instructions
simultaneously. Dependent instructions should be
separated by at least one other instruction. Schedul-
ing for the Pentium processor’s dual pipe is overkill
for the Intel486 processor but has otherwise little
effect on its performance.

The following subsections are Pentium processor spe-
cific optimizations. These optimizations do not adverse-
ly impact the Intel386 and Intel486 processors.

5.6.1 PAIRING

The Pentium processor can issue two instructions for
execution simultaneously. This is called pairing. The
limitations on which two instructions can be paired are
discussed in this section. Some pairs, even when issued,
will not execute in parallel.

Pairing cannot be performed when the following condi-
tions occur:

1. The next two instructions are not pairable instruc-
tions (see Appendix A for pairing characteristics of
individual instructions). In general, most simple
ALU instructions are pairable.

2. The next two instructions have some type of register
contention (implicit or explicit). There are some spe-
cial exceptions to this rule where register contention
can occur with pairing. These are described later.

3. Both instructions are not in the instruction cache.
An exception to this which permits pairing is if the
first instruction is a one-byte instruction.

5.6.2 INSTRUCTION SET PAIRABILITY

5.6.2.1 Unpairable Instructions (NP)

1. shift/rotate with the shift count in cl

2. Long-Arithmetic instructions for example, mul,
div

3. Extended instructions for example, ret, enter,
pusha, movs, rep stos, loopnz

4. Some Floating-Point Instructions for example,
fscale, fldcw, fst

5. Inter-segment instructions for example, push
sreg, call far

5.6.2.2 Pairable Instructions Issued to U or V
Pipes (UV)

1. Most 8/32-bit ALU operations for example, add,
inc, xor

2. All 8/32-bit compare instructions for example cmp,
test

3. All 8/32-bit stack operations using registers for ex-
ample, push reg, pop reg

5.6.2.3 Pairable Instructions Issued to U Pipe
(PU)

These instructions must be issued to the U pipe and can
pair with a suitable instruction in the V pipe. These
instructions never execute in the V pipe.

1. Carry and borrow instructions for example, adc,
sbb

2. Prefixed instructions (see next section)

3. Shift with immediate

4. Some Floating-Point Operations for example,
fadd, fmul, fld

5.6.2.4 Pairable Instructions Issued to V Pipe
(PV)

These instructions can execute in either the U pipe or
the V pipe but they are only paired when they are in the
V pipe. Since these instructions change the instruction
pointer (eip), they cannot pair in the U pipe since the
next instruction may not be adjacent. Even when a
branch in the U pipe is predicted ‘‘not taken’’, it will
not pair with the following instruction.

1. Simple control transfer instructions for exampleÐ
call near, jmp near, jcc. This includes
both the jcc short and the jcc near (which
has a 0f prefix) versions of the conditional
jump instructions.

2. fxch

5.6.3 UNPAIRABILITY DUE TO REGISTERS

The pairability of an instruction is also affected by its
operands. The following are the combinations that are
not pairable due to register contention. Exceptions to
these rules are given in the next section.
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1. The first instruction writes to a register that the sec-
ond one reads from (flow-dependence).

Example:

mov eax, 8

mov [ebp], eax

2. Both instructions write to the same register (output-
dependence).

Example:

mov eax, 8

mov eax, [ebp]

This limitation does not apply to a pair of instructions
which write to the eflags register (e.g. two ALU opera-
tions that change the condition codes). The condition
code after the paired instructions execute will have the
condition from the V pipe instruction.

Note that a pair of instructions in which the first reads
a register and the second writes to it (anti-dependence)
is pairable.

Example:

mov eax, ebx mov ebx, [ebp]

For purposes of determining register contention, a ref-
erence to a byte or word register is treated as a refer-
ence to the containing 32-bit register. Hence,

mov al, 1
mov ah, 0

do not pair due to apparent output dependencies on
eax.

5.6.4 SPECIAL PAIRS

There are some instructions that can be paired although
the general rule prohibits this. These special pairs over-
come register dependencies. Most of these exceptions
involve implicit reads/writes to the esp register or im-
plicit writes to the condition codes:

Stack Pointer:

1. push reg/imm; push reg/imm

2. push reg/imm; call

3. pop reg ; pop reg

Condition Codes:

1. cmp ; jcc

2. add ; jne

Note that the special pairs that consist of push/pop
instructions may have only immediate or register
operands.

5.6.5 RESTRICTIONS ON PAIR EXECUTION

There are some pairs that may be issued simultaneously
but will not execute in parallel:

1. If both instructions access the same data-cache mem-
ory bank then the second request (V pipe) must wait
for the first request to complete. A bank conflict oc-
curs when bits 2–4 are the same in the two physical
addresses. This is because the cache is organized as 8
banks of 32-bit wide data entries. A bank conflict
incurs a one clock penalty on the V pipe instruction.

2. Inter-pipe concurrency in execution preserves memo-
ry-access ordering. A multi-cycle instruction in the
U pipe will execute alone until its last memory ac-
cess.

add eax, meml add ebx, mem2 ; 1
(add) (add) ; 2 2-cycle
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The instructions above add the contents of the register
and the value at the memory location, then put the
result in the register. An add with a memory operand
takes two clocks to execute. The first clock loads the
value from cache, and the second clock performs the
addition. Since there is only one memory access in the
U pipe instruction, the add in the V pipe can start in
the same cycle.

add meml, eax ; 1
(add) ; 2
(add)add mem2, ebx ; 3

(add) ; 4
(add) ; 5

The above instructions add the contents of the register
to the memory location and store the result at the mem-
ory location. An add with a memory result takes 3
clocks to execute. The first clock loads the value, the
second performs the addition, and the third stores the
result. When paired, the last cycle of the U pipe in-
struction overlaps with the first cycle of the V pipe
instruction execution.

No other instructions may begin execution until the
instructions already executing have completed.

To expose the opportunities for scheduling and pairing,
it is better to issue a sequence of simple instructions
rather than a complex instruction that takes the same
number of cycles. The simple instruction sequence can
take advantage of more issue slots. Compiler writers/
programmers can also choose to reconstruct the com-
plex form if the pairing opportunity does not material-
ize. The load/store style code generation requires more
registers and increases code size. This impacts Intel486
processor performance, although only as a second order
effect. To compensate for the extra registers needed,
extra effort should be put into the register allocator and
instruction scheduler so that extra registers are only
used when parallelism increases.

5.7 Integer Instruction Selection

The following highlights some instruction sequences to
avoid and some sequences to use when generating opti-
mal assembly code.

The lea instruction can be advantageous:

1. Lea may be used sometimes as a three/four operand
addition instruction

(e.g., lea ecx, [eax0ebx040a]).

2. In many cases an lea instruction or a sequence
of lea, add and shift instructions may be
used to replace constant multiply instructions.

3. This can also be used to avoid copying a register
when both operands to an add are still needed after
the add, since lea need not overwrite its oper-
ands.

The disadvantage of the lea instruction is that it
increases the possibility of an AGI stall with
previous instructions. Lea is useful for shifts of
2, 4, 8 because shift takes 2 clocks on Intel486
processor whereas lea only takes one. On the
Pentium processor, lea can execute in either U
or V pipes, but shift can only execute in the U
pipe.

Complex Instructions

Avoid using complex instructions (for example, en-
ter, leave, loop). Use sequences of simple
instructions instead.

Zero-Extension of Short

The movzx instruction has a prefix and takes 3
cycles to execute, totalling 4 cycles. As with
the Intel486 processor, it is recommended the
following sequence be used instead:

xor eax, eax
mov al, mem

If this occurs within a loop, it may be possible to pull
the xor out of the loop if the only assignment
to eax is the mov al, mem. This has greater
importance for the Pentium processor since the
movzx is not pairable and the new sequence
may be paired with adjacent instructions.

Push mem

The push mem instruction takes four cycles for
the Intel486 processor. It is recommended to
use the following sequence because it takes only
two cycles for the Intel486 processor and in-
creases pairing opportunity for the Pentium
processor.

mov mem, reg
push reg

Short Opcodes

Use one byte long instructions as much as possible.
This will reduce code size and help increase instruction
density in the instruction cache. The most common ex-
ample is using inc and dec rather than adding
or subtracting the constant 1 with add or sub.
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8/16-Bit Operands

With 8-bit operands, try to use the byte opcodes, rather
than using 32-bit operations on sign and zero extended
bytes. Prefixes for operand size override apply to 16-bit
operands, not to 8-bit operands.

Sign Extension is usually quite expensive. Often, the
semantics can be maintained by zero extending 16-bit
operands. Specifically, the C code in the following ex-
ample does not need sign extension.

static short int a, b;
if (aeeb) À

. . .
Ó

Code for comparing these 16-bit operands might be:

xor eax, eax ; 1
mov ax, [a] ; 2 1 (prefix) 0 1
mov bx, [b] ; 4 1 (prefix) 0 1
cmp eax, ebx ; 6

The straightforward method may be slower:

movsw eax, a ; 1 1 prefix 0 3
movsw ebx, b ; 5
cmp ebx, eax ; 9

Of course, this can only be done under certain circum-
stances, but the circumstances tend to be quite com-
mon. This would not work if the compare was for
greater than, less than, greater than or equal, and so on,
or if the values in eax or ebx were to be used in another
operation where sign extension was required.

Compares

Use test when comparing a value in a register
with 0. Test essentially ‘‘ands’’ the operands to-
gether without writing to a destination register.
If you ‘‘and’’ a value with itself and the result
sets the zero condition flag, the value was zero.
Test is preferred over and because the and
writes the result register which may subsequent-
ly cause an AGI test is better than cmp ..,
0 because the instruction size is smaller.

Use test when comparing the result of a Boo-
lean ‘‘and’’ with an immediate constant for
equality or inequality if the register is eax.
(if (avar & 8) À Ó).

Test is a one cycle pairable instruction when
the form is eax, imm or reg, reg. Other
forms of test take two cycles and do not
pair.

Address Calculations

Pull address calculations into load and store instruc-
tions. Internally, memory reference instructions can
have 4 operands: a relocatable load-time constant, an
immediate constant, a base register, and a scaled index
register. (In the segmented model, a segment register
may constitute an additional operand in the linear ad-
dress calculation.) In many cases, several integer in-
structions can be eliminated by fully using the operands
of memory references.

When there is a choice to use either a base or index
register, always choose the base because there is a 1
clock penalty on the Intel486 processor for using an
index.

Clearing a Register

The preferred sequence to move zero to a register is
xor reg, reg. This saves code space but sets
the condition codes. In contexts where the con-
dition codes must be preserved, use mov reg,
0.

Integer Divide

Typically, an integer divide is preceded by a cdq in-
struction (divide instructions use edx: eax as
the dividend and cdq sets up edx). It is better
to copy eax into edx, then right shift edx 31
places to sign extend. The copy/shift takes the
same number of clocks as cdq on both the
Pentium and Intel486 processors, but the copy/
shift scheme allows two other instructions to
execute at the same time on the Pentium
processor. If you know the value is positive,
use xor edx, edx.

Prolog Sequences

Be careful to avoid AGI’s in the prolog due to register
esp. Since push can pair with other push in-
structions, saving callee-saved registers on entry
to functions should use these instructions. If
possible, load parameters before decrementing
esp.
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Avoid Compares with Immediate Zero

Often when a value is compared with zero, the opera-
tion producing the value sets condition codes which can
be tested directly by a jcc instruction. The most
notable exceptions are mov and lea. In these
cases, use test.

In routines that do not call other routines (leaf rou-
tines), use esp as the base register to free up
ebp. If you are not using the 32-bit flat model,
remember that ebp cannot be used as a general
purpose base register because it references the
stack segment.

Epilog Sequence

If only 4 bytes were allocated in the stack frame for the
current function, instead of incrementing the stack
pointer by 4, use pop instructions. This avoids
AGIs and helps both Intel486 and Pentium
processor. For Pentium processor use 2 pops
for eight bytes.

Integer Multiply by Constant

The integer multiply by an immediate can usually be
replaced by a faster series of shifts, adds, subs, and leas.

1. Binary Method

In general, if there are 8 or fewer bits set in the bina-
ry representation of the constant, it is better not to
do the integer multiply. On an Intel486 processor,
the break even point is lower: it is profitable if 6 bits
or less are in the constant. Basically, shift and add
for each bit set.

2. Factorization Method

This is done by factoring the constant by powers of
two plus or minus one, and the constant plus or mi-
nus one by powers of two. If the number can be
factored by powers of two, then the multiplication
can be performed by a series of shifts. If powers of
two plus or minus one are included a shift of the
previous result and an add or subtract of the previ-
ous result can be generated. If the given number plus
or minus one can be factored by a power of two, a
shift of the previous result and an add or subtract of
the original operand can be generated An iterative

for check posers of two from 31 to 1 can be done.
The shift amount needed, and an ordinal to specify
an add or subtract is saved for each factor. This
information can be used in reverse order to generate
the needed instructions.

For example:

imul eax, 217 ; 10 clocks, no pairing

In checking powers of two in decreasing order it is
found that 217 will divide by 31.

217/31 e 7. 31 e 25 b 1

save shift e 5 and ordinal e subÐpreviousÐresult

After a check of 217/31 or 7, it is found that 7 a 1 is
divisible by 8.

save shift e 3 and ordinal e subÐoperand

After factoring the instructions can be generated in re-
verse.

mov ecx, eax ; 1
shl eax, 3 ; 2
sub eax, ecx ; 3
mov ecx, eax ; 4
shl eax, 5 ; 5
sub eax, ecx ; 6

This code sequence allows scheduling of other instruc-
tions in the Pentium processor’s V pipe.

6.0 PROCESSOR SPECIFIC
OPTIMIZATIONS

6.1 PentiumTM Processor Floating-
Point Optimizations

The Pentium processor is the first generation of the
Intel386 CPU family that implements a pipelined float-
ing-point unit however, in order to achieve maximum
throughput from the Pentium processor floating-point
unit, specific optimizations must be done.
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6.1.1 FLOATING-POINT EXAMPLE

FORTRAN source:

subroutine da(x,y,z,n)
dimension x(n),y(n)

do 10 i4l,n
10 x(i) 4 x(i) 0 y(i) * z

return
end

Assembly code:

Pentium/Intel486 processors
TopOfLoop:

fld dword ptr [esp08] ; 1 / 1
fmul dword ptr [ebx0eax*4] ; 2 / 5
fadd dword ptr [ecx0eax*4] ; 5 / 16
fstp dword ptr [ecx0eax*4] ; 9 / 26
inc eax ; 11 / 33
cmp eax, ebp ; 12 / 34
jle TopOfLoop ; 12 / 3602 for branch

Total: 12 cycles per iteration

On the Intel486 processor, the time it takes to add and multiply varies depending on the values. In this example, 11
was used for multiply and 10 for add. The load takes 3 clocks; the store requires 7 clocks. The extra cycle before the
fmul is an index penalty for the fmul. The fadd and fstp do not show an index penalty because
the penalty overlapped with the execution of the previous floating-point instruction. These overlaps
do not occur with fld or fxch.

On the Pentium processor, the results of fadd and fmul can be used three cycles after they start, except
when the use is fst. When a fst instruction uses the result of another floating-point operation, an
extra cycle is needed. The fst instruction executes for two cycles and nothing can execute in paral-
lel.

There is an enormous improvement due to decreasing the clock counts for the common floating-point instructions;
however, this example does not overlap any floating-point instructions. A further improvement can be achieved by
overlapping the execution of the floating-point instructions as explained in the next section.

To expose more parallelism, loop unrolling can be used if the iterations are independent. Following is the assembly
code after unrolling:
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Pentium processor Intel486 CPU

TopOfLoop:

fld dword ptr [esp08] ; 1 1

fmul dword ptr [ebx0eax*4] ; 2 5

fadd dword ptr [ecx0eax*4] ; 5 16

fstp dword ptr [ecx0eas*4] ; 9 26

fld dword ptr [esp08] ; 11 33

fmul dword ptr [ebx0eax*404] ; 12 37

fadd dword ptr [ecx0eax*404] ; 15 48

fstp dword ptr [ecx0eax*404] ; 19 58

fld dword ptr [esp08] ; 21 65

fmul dword ptr [ebx0eax*408] ; 22 69

fadd dword ptr [ecx0eax*408] ; 25 80

fstp dword ptr [ecx0eax*408] ; 29 90

add eax, 3 ; 31 97

cmp eax, ebp ; 32 98

jle TopOfLoop ; 32 10002 (br taken)

Total: 32 cycles (10.7/ iteration)

The clock count improvements gained through loop unrolling was due to eliminating some of the loop control
overhead. To get more improvement, we need to get the floating-point operations overlapped in order to hide their
latencies.

Most floating-point operations require that one operand and the result use the top of stack. This makes each
instruction dependent on the previous instruction and inhibits overlapping the instructions.

One obvious way to get around this is to change the architecture and have floating-point registers, rather than a
stack. Unfortunately, upward and downward compatibility would be lost. Instead, the fxch instruction was
made ‘‘fast’’. This provides us another way to avoid the top of stack dependencies. The fxch in-
structions can be paired with the common floating-point operations, so there is no penalty on the
Pentium processor. On the Intel486 processor, each fxch takes 4 clocks.

To take advantage of the exposed parallelism from loop unrolling, the instructions should be scheduled.
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Assembly code after unrolling and scheduling:

After Instruction

Intel486 Pentium ST(0) ST(1) ST(2)

CPU CPU ÐÐÐ ÐÐÐ ÐÐÐ

Top0fLoop:

fld dword ptr [espa8] 1 1 z

fmul dword ptr [ebxaeax*4] 5 2 y0*z

fld dword ptr [espa8] 16 3 z y0*z

fmul dword ptr [ebxaeax*4a4] 20 4 y1*z y0*z

fxch st(1) 31 4 y0*z y1*z

fadd dword ptr [ecxaeax*4] 36 5 x0ay0*z y1*z

fld dword ptr [espa8] 46 6 z x0ay0*z y1*z

fmul dword ptr [ebxaeax*4a8] 50 7 y2*z x0ay0*z y1*z

fxch st(2) 61 7 y1*z x0ay0*z y2*z

fadd dword ptr [ecxaeax*4a4] 66 8 x1ay1*z x0ay0*z y2*z

fxch st(1) 76 8 x0ay0*z x1ay1*z y2*z

fstp dword ptr [ecxaeax*4] 81 9 x1ay1*z y2*z

fxch st(1) 88 11 y2*z x1ay1*z

fadd dword ptr [ecxaeax*4a8] 93 12 x2ay2*z x1ay1*z

fxch st(1) 103 12 x1ay1*z x2ay2*z

fstp dword ptr [ecxaeax*4a4] 108 13 x2ay2*z

fstp dword ptr [ecxaeax*4a8] 116 16

add eax, 3 123 18

cmp eax, ebp 124 19

jle TopOfLoop 126a2 19

l
(jle taken)

Total: 19 cycles (6.3/iteration)

On the Intel486 processor, the index penalty and the added cost of fxch are apparent. The index penalty does
not overlap with the fxch instruction.

On the Pentium processor, the fxch instructions pair with preceding fadd and fmul instructions and exe-
cute in parallel with them (cycles 7, 8, 12). The fxch instructions move an operand into position
for the next floating-point instruction. There is a cycle lost at clock 15 due to the store waiting 3
clocks after the instruction defining its operand. The fxch instruction does not pair with fst and
takes one clock as a separate instruction (cycles 9–11).

6.1.2 FXCH RULES AND REGULATIONS

The fxch instruction can be executed for ‘‘free’’ when all of the following conditions occur:

An FP instruction follows the fxch instruction.

An FP instruction belonging to the following list immediately precedes the fxch instruction: fadd, fsub, fmul,
fld, fcom, fucom, fchs, ftst, fabs, fdiv.

This fxch instruction has already been executed. This is because the instruction boundaries in the
cache are marked the first time the instruction is executed, so pairing only happens the second time
this instruction is executed from the cache.
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This means that this instruction is almost ‘‘free’’ and can be used to access elements in the deeper levels of the FP
stack instead of storing them and then loading them again.

6.1.3 MEMORY OPERANDS

Performing a floating-point operation on a memory operand instead of on a stack register costs no cycles. In the
integer part of the Pentium processor, it was better to avoid memory operands. In the floating-point part, you are
encouraged to use memory operands.

6.1.4 FLOATING-POINT STALLS

There are cases where a delay occurs between two operations. Instructions should be inserted between the pair that
cause the pipe stall. These instructions could be integer instructions or floating-point instructions that will not cause
a new stall themselves. The number of instructions that should be inserted depends on the delay length.

One example of this is when a floating-point instruction depends on the result of the immediately preceding instruc-
tion which is also a floating-point instruction. In this case, it would be advantageous to move integer instructions
between the two fp instructions, even if the integer instructions perform loop control. The following example
restructures a loop in this manner:

for (i40; ikSize; i0a)
array1 [i] 04 array2 [i];

Pentium Processor Intel486 Processor

Clocks Clocks

TopOfLoop:

flds [eax a array2] 2 - AGI 3

fadds [eax a array1] 1 3

fstps [eax a array1] 5 - Wait for fadds 14 - Wait for fadds

add eax, 4 1 1

jnz TopOfLoop 0 - Pairs with add 3

9 24

Pentium Processor Intel486 Processor

Clocks Clocks

TopOfLoop:

fstps [eax a array1] 4 - Wait for fadds, AGI 10 - Wait for fadds

LoopEntryPoint:

flds [eax a array2] 1 3

fadds [eax a array1] 1 3

add eax, 4 1 1

jnz TopOfLoop 0 - Pairs with add 3

7 20
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By moving the integer instructions between the fadds and fstps, both processors can execute the integer instructions
while the fadds is completing in the floating-point unit and before the fstps begins execution. Note that this new loop
structure requires a separate entry point for the first iteration because the loop needs to begin with the flds. Also,
there needs to be an additional fstps after the conditional jump to finish the final loop iteration.

1. Floating-Point Stores

A floating-point store must wait an extra cycle for its floating- point operand. After an fld, an fst must wait
one clock. After the common arithmetic operations, fmul and fadd, which normally have a laten-
cy of two, fst waits an extra cycle for a total of three(1).

NOTE:

1. This set includes also the faddp, fsubrp, ... instructions

fld mem1 ; 1 fld takes 1 clock
; 2 fst waits, schedule something here

fst mem2 ; 3,4 fst takes 2 clocks

fadd mem1 ; 1 add takes 3 clocks
; 2 add, schedule something here
; 3 add, schedule something here
; 4 fst waits, schedule something here

fst mem2 ; 5,2 fst takes 2 clocks

In the next example, the store is not dependent on the previous load:

fld mem1 ; 1
fld mem2 ; 2
fxch st(1) ; 2
fst mem3 ; 3 stores values loaded from mem1

2. A register may be used immediately after it has been loaded (with fld).

fld mem1 ; 1
fadd mem2 ; 2,3,4

3. Use of a register by a floating-point operation immediately after it has been written by another fadd, fsub, or
fmul causes a 2 cycle delay. If instructions are inserted between these two, then latency and a
potential stall can be hidden.

4. There are multi-cycle floating-point instructions (fdiv and fsqrt) that execute in the floating-point
unit pipe. While executing these instructions in the floating-point unit pipe, integer instructions can
be executed in parallel. Emitting a number of integer instructions after such an instruction will
keep the integer execution units busy (the exact number of instructions depends on the floating-
point instruction’s cycle count).
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5. The integer multiply operations, mul and imul, are executed in the floating-point unit so these in-
structions cannot be executed in parallel with a floating-point instruction.

6. A floating-point multiply instruction (fmul) delays for one cycle if the immediately preceding cycle
executed an fmul or an fmul/fxch pair. The multiplier can only accept a new pair of operands
every other cycle.

7. Transcendental operations execute in the U pipe and nothing can be overlapped with them, so an integer instruc-
tion following such an instruction will wait until that instruction completes.

8. Floating-point operations that take integer operands (fiadd or fisub ..) should be avoided. These in-
structions should be split into two instructions: fild and a floating-point operation. The number of
cycles before another instruction can be issued (throughput) for fiadd is 4, while for fild and sim-
ple floating-point op it is 1.

Example:

Complex Instructions Better for Potential Overlap

fiadd [ebp] ; 4 fild [ebp] ; 1
faddp st(1) ; 2

Using the fild–faddp instructions yields 2 free cycles for executing other instructions.

9. The fstsw instruction that usually appears after a floating-point comparison instruction (fcom,
fcomp, fcompp) delays for 3 cycles. Other instructions may be inserted after the comparison in-
struction in order to hide the latency.

10. Moving a floating-point memory/immediate to memory should be done by integer moves (if precision conversion
is not needed) instead of doing fld–fstp.

Examples for floating-point moves:

double precision: 4 vs. 2 cycles

fld [ebp] ; 1 mov eax, [ebp] ; 1
; 2 mov edx, [ebpa4] ; 1

fstp [edi] ; 3, 4 mov [edi], eax ; 2
mov [edia4], edx ; 2

single precision: 4 vs. 2 cycles

fld [ebp] ; 1 mov eax, [ebp] ; 1
; 2 mov [edi], eax ; 2

fstp [edi] ; 3, 4

This optimization also applies to the Intel486 processor.

11. Transcendental operations execute on the Pentium processor much faster than on the Intel486 processor. It may
be worthwhile in-lining some of these math library calls because of the fact that the call and prologue/epi-
logue overhead involved with the library calls is no longer negligible. Emulating these operations in
software will not be faster than the hardware unless accuracy is sacrificed.

12. Integer instructions generally overlap with the floating-point operations except when the last floating-point
operation was fxch. In this case there is a one cycle delay.

U pipe V pipe

fadd fxch ; 1

; 2 fxch delay

mov eax, 1 inc edx ; 3
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7.0 SUMMARY

The following tables summarize the micro architecture
differences among Intel386, Intel486 and Pentium
processors and the corresponding code generation con-
sideration. It is possible to derive a set of code genera-

tion strategies that provide the optimal performance
across the various members of the Intel386 processor
family except for the use of FXCH to maximize the
Pentium processor floating-point throughput which can
be implemented under a user-directed option.

Intel386TM Processor Intel486TM Processor PentiumTM Processor

Cache None 8K Combined 8K Code, 8K Data

Prefetch 4x4b filled by external 2x6b shared bus to 4x32b private bus to

memory access cache cache

Decoder 3 deep decoded FIFO Part of core pipeline Part of core pipeline

Core Some instruction 5 stages pipeline 5 stages pipeline and

overlap superscalar

Math Co-Processor On-Chip On-Chip and pipelined

Processor
Optimizations

Intel386TM Intel486TM PentiumTM

Characteristics Processor Processor Processor

Cache Interleave mem Don’t care Interleave if 4 Don’t care

with non-mem consecutive

Prefetcher Alignment 0-MOD-4 0-MOD-16 Don’t care

Pipelined Base vs index Don’t care Use base Don’t care

Execution Core

Avoid AGI Don’t care Next instr Next 3 instr

Instruction selection 1 clk penalty Short instr Short instr

Superscalar Pairing Don’t care Don’t care Pair

Pipelined FPU More scheduling 18 clk penalty 4 clk penalty Schedule

with FXCH

Recommendations for Blended:

1. Interleave mem with non-mem: do nothing
2. Code alignment: 0-mod-16 on loop
3. Base vs index: use base
4. Avoid AGI: next 3 instructions
5. Instruction selection: short instructions sequence
6. Pairing: pair
7. FP scheduling: avoid FXCH
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APPENDIX A
INSTRUCTION PAIRING SUMMARY

The following abbreviations are used in the Pairing col-
umn of the integer table:

NPÐ Not pairable, executes in U-pipe

PUÐ Pairable if issued to U-pipe

PVÐ Pairable if issued to V-pipe

UVÐ Pairable in either pipe

In the floating-point table:

FXÐ Pairs with FXCH

NPÐ No pairing.

The I/O instructions are not pairable.
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Integer Instruction Pairing

Instruction Format Pairing

AAAÐASCII Adjust after Addition NP

AADÐASCII Adjust AX before Division NP

AAMÐASCII Adjust AX after Multiply NP

AASÐASCII Adjust AL after Subtraction NP

ADCÐADD with Carry PU

ADDÐAdd UV

ANDÐLogical AND UV

ARPLÐAdjust RPL Field of Selector NP

BOUNDÐCheck Array Against Bounds NP

BSFÐBit Scan Forward NP

BSRÐBit Scan Reverse NP

BSWAPÐByte Swap NP

BTÐBit Test NP

BTCÐBit Test and Complement NP

BTRÐBit Test and Reset NP

BTSÐBit Test and Set NP

CALLÐCall Procedure (in same segment)

direct 1110 1000 : full displacement PV

register indirect 1111 1111 : 11 010 reg NP

memory indirect 1111 1111 : mod 010 r/m NP

CALLÐCall Procedure (in other segment) NP

CBWÐConvert Byte to Word NP

CWDEÐConvert Word to Doubleword

CLCÐClear Carry Flag NP

CLDÐClear Direction Flag NP

CLIÐClear Interrupt Flag NP

CLTSÐClear Task-Switched Flag in CR0 NP

CMCÐComplement Carry Flag NP

CMPÐCompare Two Operands UV

CMPS/CMPSB/CMPSW/CMPSDÐCompare String Operands NP

CMPXCHGÐCompare and Exchange NP

CMPXCHG8BÐCompare and Exchange 8 Bytes NP

CWDÐConvert Word to Dword NP

CDQÐConvert Dword to Qword

DAAÐDecimal Adjust AL after Addition NP

DASÐDecimal Adjust AL after Subtraction NP

DECÐDecrement by 1 UV

DIVÐUnsigned Divide NP

ENTERÐMake Stack Frame for Procedure Parameters NP

HLTÐHalt
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Integer Instruction Pairing

Instruction Format Pairing

IDIVÐSigned Divide NP

IMULÐSigned Multiply NP

INCÐIncrement by 1 UV

INT nÐInterrupt Type n NP

INTÐSingle-Step Interrupt 3 NP

INTOÐInterrupt 4 on Overflow NP

INVDÐInvalidate Cache NP

INVLPGÐInvalidate TLB Entry NP

IRET/IRETDÐInterrupt Return NP

JccÐJump if Condition is Met PV

JCXZ/JECXZÐJump on CX/ECX Zero NP

JMPÐUnconditional Jump (to same segment)

short 1110 1011 : 8-bit displacement PV

direct 1110 1001 : full displacement PV

register indirect 1111 1111 : 11 100 reg NP

memory indirect 1111 1111 : mod 100 r/m NP

JMPÐUnconditional Jump (to other segment) NP

LAHFÐLoad Flags into AH Register NP

LARÐLoad Access Rights Byte NP

LDSÐLoad Pointer to DS NP

LEAÐLoad Effective Address UV

LEAVEÐHigh Level Procedure Exit NP

LESÐLoad Pointer to ES NP

LFSÐLoad Pointer to FS NP

LGDTÐLoad Global Descriptor Table Register NP

LGSÐLoad Pointer to GS NP

LIDTÐLoad Interrupt Descriptor Table Register NP

LLDTÐLoad Local Descriptor Table Register NP

LMSWÐLoad Machine Status Word NP

LOCKÐAssert LOCKÝ Signal Prefix

LODS/LODSB/LODSW/LODSDÐLoad String Operand NP

LOOPÐLoop Count NP

LOOPZ/LOOPEÐLoop Count while Zero/Equal NP

LOOPNZ/LOOPNEÐLoop Count while not Zero/Equal NP

LSLÐLoad Segment Limit NP

LSSÐLoad Pointer to SS 0000 1111 : 1011 0010 : mod reg r/m NP

LTRÐLoad Task Register NP

MOVÐMove Data UV

MOVÐMove to/from Control Registers NP

MOVÐMove to/from Debug Registers NP
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Integer Instruction Pairing

Instruction Format Pairing

MOVÐMove to/from Segment Registers NP

MOVS/MOVSB/MOVSW/MOVSDÐMove Data from String to String NP

MOVSXÐMove with Sign-Extend NP

MOVZXÐMove with Zero-Extend NP

MULÐUnsigned Multiplication of AL or AX NP

NEGÐTwo’s Complement Negation NP

NOPÐNo Operation 1001 0000 UV

NOTÐOne’s Complement Negation NP

ORÐLogical Inclusive OR UV

POPÐPop a Word from the Stack

reg 1000 1111 : 11 000 reg UV

or 0101 1 reg UV

memory 1000 1111 : mod 000 r/m NP

POPÐPop a Segment Register from the Stack NP

POPA/POPADÐPop All General Registers NP

POPF/POPFDÐPop Stack into FLAGS or EFLAGS Register NP

PUSHÐPush Operand onto the Stack

reg 1111 1111 : 11 110 reg UV

or 0101 0 reg UV

memory 1111 1111 : mod 110 r/m NP

immediate 0110 10s0 : immediate data UV

PUSHÐPush Segment Register onto the Stack NP

PUSHA/PUSHADÐPush All General Registers NP

PUSHF/PUSHFDÐPush Flags Register onto the Stack NP

RCLÐRotate thru Carry Left

reg by 1 1101 000w : 11 010 reg PU

memory by 1 1101 000w : mod 010 r/m PU

reg by CL 1101 001w : 11 010 reg NP

memory by CL 1101 001w : mod 010 r/m NP

reg by immediate count 1100 000w : 11 010 reg : imm8 data PU

memory by immediate count 1100 000w : mod 010 r/m : imm8 data PU

RCRÐRotate thru Carry Right

reg by 1 1101 000w : 11 011 reg PU

memory by 1 1101 000w : mod 011 r/m PU

reg by CL 1101 001w : 11 011 reg NP

memory by CL 1101 001w : mod 011 r/m NP

reg by immediate count 1100 000w : 11 011 reg : imm8 data PU

memory by immediate count 1100 000w : mod 011 r/m : imm8 data PU

RDMSRÐRead from Model-Specific Register NP

REP LODSÐLoad String NP
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Integer Instruction Pairing

Instruction Format Pairing

REP MOVSÐMove String NP

REP STOSÐStore String NP

REPE CMPSÐCompare String (Find Non-Match) NP

REPE SCASÐScan String (Find Non-AL/AX/EAX) NP

REPNE CMPSÐCompare String (Find Match) NP

REPNE SCASÐScan String (Find AL/AX/EAX) NP

RETÐReturn from Procedure (to same segment) NP

RETÐReturn from Procedure (to other segment) NP

ROLÐRotate (not thru Carry) Left

reg by 1 1101 000w : 11 000 reg PU

memory by 1 1101 000w : mod 000 r/m PU

reg by CL 1101 001w : 11 000 reg NP

memory by CL 1101 001w : mod 000 r/m NP

reg by immediate count 1100 000w : 11 000 reg : imm8 data PU

memory by immediate count 1100 000w : mod 000 r/m : imm8 data PU

RORÐRotate (not thru Carry) Right

reg by 1 1101 000w : 11 001 reg PU

memory by 1 1101 000w : mod 001 r/m PU

reg by CL 1101 001w : 11 001 reg NP

memory by CL 1101 001w : mod 001 r/m NP

reg by immediate count 1100 000w : 11 001 reg : imm8 data PU

memory by immediate count 1100 000w : mod 001 r/m : imm8 data PU

RSMÐResume from System Management Mode NP

SAHFÐStore AH into Flags NP

SALÐShift Arithmetic Left same instruction as SHL

SARÐShift Arithmetic Right

reg by 1 1101 000w : 11 111 reg PU

memory by 1 1101 000w : mod 111 r/m PU

reg by CL 1101 001w : 11 111 reg NP

memory by CL 1101 001w : mod 111 r/m NP

reg by immediate count 1100 000w : 11 111 reg : imm8 data PU

memory by immediate count 1100 000w : mod 111 r/m : imm8 data PU

SBBÐInteger Subtraction with Borrow PU

SCAS/SCASB/SCASW/SCASDÐScan String NP

SETccÐByte Set on Condition NP

SGDTÐStore Global Descriptor Table Register NP
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Integer Instruction Pairing

Instruction Format Pairing

SHLÐShift Left

reg by 1 1101 000w : 11 100 reg PU

memory by 1 1101 000w : mod 100 r/m PU

reg by CL 1101 001w : 11 100 reg NP

memory by CL 1101 001w : mod 100 r/m NP

reg by immediate count 1100 000w : 11 100 reg : imm8 data PU

memory by immediate count 1100 000w : mod 100 r/m : imm8 data PU

SHLDÐDouble Precision Shift Left

register by immediate count 0000 1111 : 1010 0100 : 11 reg2 reg1 : imm8 NP

memory by immediate count 0000 1111 : 1010 0100 : mod reg r/m : imm8 NP

register by CL 0000 1111 : 1010 0101 : 11 reg2 reg1 NP

memory by CL 0000 1111 : 1010 0101 : mod reg r/m NP

SHRÐShift Right

reg by 1 1101 000w : 11 101 reg PU

memory by 1 1101 000w : mod 101 r/m PU

reg by CL 1101 001w : 11 101 reg NP

memory by CL 1101 001w : mod 101 r/m NP

reg by immediate count 1100 000w : 11 101 reg : imm8 data PU

memory by immediate count 1100 000w : mod 101 r/m : imm8 data PU

SHRDÐDouble Precision Shift Right

register by immediate count 0000 1111 : 1010 1100 : 11 reg2 reg1 : imm8 NP

memory by immediate count 0000 1111 : 1010 1100 : mod reg r/m : imm8 NP

register by CL 0000 1111 : 1010 1101 : 11 reg2 reg1 NP

memory by CL 0000 1111 : 1010 1101 : mod reg r/m NP

SIDTÐStore Interrupt Descriptor Table Register NP

SLDTÐStore Local Descriptor Table Register NP

SMSWÐStore Machine Status Word NP

STCÐSet Carry Flag NP

STDÐSet Direction Flag NP

STIÐSet Interrupt Flag

STOS/STOSB/STOSW/STOSDÐStore String Data NP

STRÐStore Task Register NP

SUBÐInteger Subtraction UV

TESTÐLogical Compare

reg1 and reg2 1000 010w : 11 reg1 reg2 UV

memory and register 1000 010w : mod reg r/m UV

immediate and register 1111 011w : 11 000 reg : immediate data NP

immediate and accumulator 1010 100w : immediate data UV

immediate and memory 1111 011w : mod 000 r/m : immediate data NP
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Integer Instruction Pairing

Instruction Format Pairing

VERRÐVerify a Segment for Reading NP

VERWÐVerify a Segment for Writing NP

WAITÐWait 1001 1011 NP

WBINVDÐWrite-Back and Invalidate Data Cache NP

WRMSRÐWrite to Model-Specific Register NP

XADDÐExchange and Add NP

XCHGÐExchange Register/Memory with Register NP

XLAT/XLATBÐTable Look-up Translation NP

XORÐLogical Exclusive OR UV
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Floating-Point Instruction Pairing

Instruction Format Pairing

F2XM1ÐCompute 2ST(0) b 1 NP

FABSÐAbsolute Value FX

FADDÐAdd FX

FADDPÐAdd and Pop FX

FBLDÐLoad Binary Coded Decimal NP

FBSTPÐStore Binary Coded Decimal and Pop NP

FCHSÐChange Sign FX

FCLEXÐClear Exceptions NP

FCOMÐCompare Real FX

FCOMPÐCompare Real and Pop FX

FCOMPPÐCompare Real and Pop Twice

FCOSÐCosine of ST(0) NP

FDECSTPÐDecrement Stack-Top Pointer NP

FDIVÐDivide FX

FDIVPÐDivide and Pop FX

FDIVRÐReverse Divide FX

FDIVRPÐReverse Divide and Pop FX

FFREEÐFree ST(i) Register NP

FIADDÐAdd Integer NP

FICOMÐCompare Integer NP

FICOMPÐCompare Integer and Pop NP

FIDIV NP

FIDIVR NP

FILDÐLoad Integer NP

FIMUL NP

FINCSTPÐIncrement Stack Pointer NP

FINITÐInitialize Floating-Point Unit NP

FISTÐStore Integer NP

FISTPÐStore Integer and Pop NP

FISUB NP

FISUBR NP

FLDÐLoad Real

32-bit memory 11011 001 : mod 000 r/m FX

64-bit memory 11011 101 : mod 000 r/m FX

80-bit memory 11011 011 : mod 101 r/m NP

ST(i) 11011 001 : 11 000 ST(i) FX

FLD1ÐLoad a1.0 into ST(0) NP

FLDCWÐLoad Control Word NP

FLDENVÐLoad FPU Environment NP

FLDL2EÐLoad log2(e) into ST(0) NP

FLDL2TÐLoad log2(10) into ST(0) NP
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Floating-Point Instruction Pairing (Continued)

Instruction Format Pairing

FLDLG2ÐLoad log10(2) into ST(0) NP

FLDLN2ÐLoad loge(2) into ST(0) NP

FLDPIÐLoad q into ST(0) NP

FLDZÐLoad a0.0 into ST(0) NP

FMULÐMultiply FX

FMULPÐMultiply FX

FNOPÐNo Operation NP

FPATANÐPartial Arctangent NP

FPREMÐPartial Remainder NP

FPREM1ÐPartial Remainder (IEEE) NP

FPTANÐPartial Tangent NP

FRNDINTÐRound to Integer

FRSTORÐRestore FPU State NP

FSAVEÐStore FPU State NP

FSCALEÐScale NP

FSINÐSine NP

FSINCOSÐSine and Cosine NP

FSQRTÐSquare Root NP

FSTÐStore Real NP

FSTCWÐStore Control Word NP

FSTENVÐStore FPU Environment NP

FSTPÐStore Real and Pop NP

FSTSWÐStore Status Word into AX NP

FSTSWÐStore Status Word into Memory NP

FSUBÐSubtract FX

FSUBPÐSubtract and Pop FX

FSUBRÐReverse Subtract FX

FSUBRPÐReverse Subtract and Pop FX

FTSTÐTest FX

FUCOMÐUnordered Compare Real FX

FUCOMPÐUnordered Compare and Pop FX

FUCOMPPÐUnordered Compare and Pop Twice FX

FXAMÐExamine NP

FXCHÐExchange ST(0) and ST(i)

FXTRACTÐExtract Exponent and Significand NP

FYL2XÐST(1) c log2(ST(0)) NP

FYL2XP1ÐST(1) c log2(ST(0) a 1.0) NP

FWAITÐWait until FPU Ready
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