
1

Special Environment Intel386TM EX Embedded Processor B-Stepping
Device Errata and Feature Enhancements

Presented in this document are known errata for the B-1 step production version of the
Special Environment 80386EX embedded processor. (Any processor marked with the
DESC number, 5962-9557001xxx, is a B-1 step production part.) A workaround, if
known, is also presented. This document will be updated as time progresses to either
indicate new errata or to indicate additional workarounds.

The table below summarizes the errata and identifies which errata applies to the B-1
stepping version.

Errata
#

 Description Stepping
Fix

3 WDT lockout sequence may not properly reload down counter C
5 Timer generated DMA requests may not initiate properly after reset C
6 DMA temporary register not flushed when software aborts transfer C
8 Write sequence to enable expanded I/O space does not need to be

sequential
C

9 32-bit WDT register is oriented as High word, Low word in I/O
space

No
Change

10 Remap configuration register at 22H and 23H have 10-bit address
decode

C

11 CAS lines do not remain active during idle states between INTA
cycles

No
Change

12 Cannot pipeline DMA bus cycles C
13 DSR1#/STXCLK pin has a permanent weak pull-up C
14 READY# floats in T1 after internal bus cycle C
17 TDO pin may float in user mode causing excessive current

consumption
C

18 Overflow enable bits (TOV0, TOV1, ROV0, ROV1) in DMAOVFE
register do not function as specified

C

19 Upper DMA byte count registers (DMA0BYC1, DMA1BYC1)
change to 0F0H when the lower byte count registers underflow

No
Change

20 At high baud rates, there is not enough time to turn the transmitter
off by resetting the TEN bit

C

21 Write sequence for WDTCLR lockout does not need to be
sequential

C

24 TEN bit in SSIOCON1 register turns off transmit channel too soon C
27 Internal HOLD request synchronization may cause data/code

fetches to be corrupted
C

29 Insufficient Address Hold Time after WR# goes high C

2

The format of the document is as follows:

Errata Number, Module Affected
new errata will be added in sequence

Introduction
brief description of the errata

Report Date
First time errata was reported

Stepping Fix:
Indicates which stepping of the device the errata has been or will be fixed (if

known)
Description:
Detailed description of the errata, how it occurs and the effects it has on device/system
operation.
Application:

Indicates which applications are most likely to be affected by the errata.
Workaround:
Hardware and/or software steps to restore the system to proper operation.

Errata #3, WDT
WDT lockout sequence may not properly reload down counter
Reported 2.9.94
Stepping Fix: C
Description:
If the WDT is in general timer mode or bus monitor mode, and the CLKDIS bit is set (i.e.,
counter is stopped), enabling the system watchdog mode by executing the lockout
sequence does not reload the down counter. This means the counter will start counting
down from whatever the previous value was in the counter (rather than starting from the
value in the reload counter).
Application:
Since the WDT is reset to general timer mode with the CLKDIS bit cleared, this errata
applies to an application that disables the WDT before it enables the system watchdog
mode.
Workaround:
There are two possible workarounds. Executing two lockout sequences will reload the
counter correctly. Essentially the first lockout sequence enables the WDT, while the
second sequence reloads the counter. Another workaround that requires less code is to
enable the counter first by clearing the CLKDIS bit, and then execute the lockout
sequence (see code example below).

3

MOV DX, WDTSTATUS
IN AL, DX ; Read WDT status register
AND AX, 0FCH ; Clear clock dis/bus mon bits
OUT DX, AL ; Update register
MOV DX, WDTCLR
MOV AX, 0F01EH
OUT DX, AX
MOV AX, 0FE1H
OUT DX, AX ; Lockout Sequence

Errata #5, DMA
Timer generated DMA requests may not initiate properly after reset
Reported 2.9.94
Stepping Fix: C
Description:
The internal signal paths between the Timer Control Unit (TCU) outputs and the DMA
Control Unit request inputs contain a flip-flop that may not be properly initialized after a
device reset (i.e., the output of the flip-flop may be high or low). This means that a TCU
DMA request may be present prior to the timer actually generating the request. The errata
applies to both DMA timer requests.
Application:
This errata only affects DMA requests generated by the TCU. If the TCU is configured to
generated DMA requests, the initialization software must ensure the TCU DMA request
bit is cleared.
Workaround:
Before programming the TCU, and after programming the DMA configuration register,
the DMA status register can be read to determine if a timer request is already pending
(errata condition). If the request is pending, a dummy Timer DMA operation must be
initiated prior to using the TCU for DMA requests (after one DMA cycle, the flip-flop will
be properly initialized). If the request is not pending, the errata condition does not apply
and the dummy DMA cycle does not need to be run.

Errata #6, DMA
DMA temporary register not flushed when software aborts transfer
Reported 2.9.94
Stepping Fix: C
Description:
During two-cycle DMA operation, should the channel’s transfer be aborted before terminal
count is reached or EOP# is generated, the data in the temporary register is not flushed.
When the channel is reprogrammed, the old data in the temporary register will be
transferred to the new destination address.
Application:

4

This errata applies to two-cycle transfers only, and not fly-by transfers (since the
temporary buffer is not used in fly-by transfers). If the application terminates a DMA
transfer by disabling the DMA channel, it is possible that not all of the data has been
transferred from the temporary buffer and will be unexpectedly inserted into the next
DMA transfer.
Workaround:
DMA transfers must terminate using TC or EOP# only. It is not possible to flush the
temporary registers in software.

Errata #8, CPU
Write sequence to enable expanded I/O space does not need to be sequential.
Reported 2.9.94
Stepping Fix: C
Description:
The I/O write sequence to enable expanded I/O space does not have to be executed back-
to-back. Any other I/O address or I/O address sequence can occur during the sequence
and will not affect the enabling of expanded I/O space. This departs from the original
intent that if the sequence is not followed, it must be repeated from the beginning.

Consider the sequence to enable expanded I/O space as a sequence of states shown below:

; Start at State A (expanded I/O space Disabled)

MOV AX, 8000H ;Writing 00 to byte I/O
OUT 23, AL ;address 23H gets to state B

XCHG AL, AH ;Writing 80H to byte I/O
OUT 22H, AL ;address 22H gets to state C

OUT 22H, AX ;Writing 0080H to word I/O
 ;address 22H gets to state D,
 ;which enables Expanded I/O space.

Each write to I/O space with the appropriate data value in AL moves the internal state
machine from one state to the next. Thus the sequence of going from State A to State B,
State B to State C, and State C to State D enables expanded I/O space. Anything can
happen between the states shown above, and the sequence is not interrupted (i.e., reset
back to State A).
Application:
This errata should not be a concern for most system software designs.
Workaround:
None, the application software must be aware that the I/O write sequence is not reset if
any other I/O writes occur during the sequence. Note however, that code should be
written assuming the sequence does need to be back-to-back. This will assure proper
operation if the errata is fixed in a future stepping.

5

Errata #9, WDT
32-bit WDT register is oriented as High word, Low word in I/O space
Reported 4.27.94
Stepping Fix: no change
Description:
The 32-bit counter register and reload register are located with the high word located at a
lower I/O address space than low word. As a result, 32-bit I/O accesses to these registers
will have high and low words swapped, making it impossible to write a 32-bit value
directly to the counter and reload registers.
Application:
This errata only applies to system software that maintains a 32-bit image of the WDTRLD
and WDTCNT registers in memory and wishes to perform a 32-bit register move to I/O
address space.
Workaround:
The memory or register image must swap the low-word and high-word values to perform
a 32-bit register move to the I/O registers.

Errata #10, CPU
Remap configuration register at 22H and 23H have 10-bit address decode
Reported 4.27.94
Stepping Fix: C
Description:
When expanded I/O space is not enabled, only the lower 10-bits of I/O addresses are used
to decode the internal peripherals and the configuration registers at 22H and 23H. This
means that the configuration registers will appear in I/O space at every 1K address
boundary (ex., 22H, 1022H, 2022H, etc.).
Application:
This errata affects those applications which may place system peripherals in I/O address
space that didn’t expect registers 22H and 23H to repeat every 1K block. The access to
I/O locations such as 1022H will be decoded internally and generate a 1 wait internal
access. Depending on the value written, it could possibly enable expanded I/O address
space (see errata #8).
Workaround:
Enable expanded I/O space to turn on 16-bit decode when communicating with I/O
devices that overlap 22H and 23H at I/O addresses above 1K. This means that the internal
peripherals are decoded using all 16-bit of the I/O address.

Errata #11, ICU
CAS lines do not remain active during idle states between cascaded INTA cycles
Reported 4.27.94
Stepping Fix: no change
Description:

6

The Interrupt controller CAS lines do not maintain a valid value during the four idle states
between the first INTA cycle and the second INTA cycle (assumes an externally cascaded
device is present). The three CAS lines (CAS0-CAS2) are OR’d with address lines A16-
A18. During the first INTA bus cycle, these line drive out the cascade address which is
decoded by the slave interrupt controller to determine if it must place the vector type on
the bus during the second INTA. There are four idle states automatically inserted between
the end of the first INTA bus cycle and the start of the second INTA bus cycle. During
these idle states, the CAS lines revert back to address mode and are driven high (logic 1),
which will cause problems for the external interrupt controller.
Application:
This errata only applies to those applications that expand interrupts using an external
8259A PIC device as slave interrupt controllers.
Workaround:
The CAS lines must be latched and preserved throughout both of the INTA bus cycles.

Errata #12, DMA
Cannot pipeline DMA bus cycles
Reported 4.27.94
Stepping Fix: C
Description:
During a DMA bus cycle, NA# does not function properly with the DMA unit.
Application:
This errata affects systems that make use of pipeline bus operation and the DMA
controller.
Workaround:
None. Do not use address pipelining when using the integrated DMA controller.

Errata #13, I/O Ports
DSR1#/STXCLK pin has a permanent weak pull-up
Reported 4.27.94
Stepping Fix: C
Description:
The weak pull-up device used to hold the state of the DSR1#/STXCLK pin at a high level
until device configuration is complete does not turn off. This condition results in a higher
than normal leakage current for the pin.
Application: ALL
Workaround: None. The external driver must be strong enough to pull down the pin.
The weak pullup is approximately 5K ohms.

Errata #14, BIU
READY# floats in T1 after internal bus cycle
Reported 4.27.94

7

Stepping Fix: C
Description:
During internal bus cycles, the LBA# signal does not remain active into the next T1 bus
state, causing READY# to float during T1. This is unlike bus cycles controlled by the
CSU, where READY# is driven inactive during T1 of the next bus cycle.

φ1 φ1 φ1φ2φ2

T2 internal Bus Cycle T1 Next Bus Cycle

CPU CLK

READY#

Errata #14 Condition

Application: ALL
Workaround:
Pull-up READY# if the float condition will cause system logic to operate improperly.

Errata #17, Pin Circuitry
TDO pin may float in user mode causing excessive current consumption
Reported 10.7.94
Stepping Fix: C
Description:
The TDO pin usually floats in user mode. This could turn on the unused input buffer at
the pin resulting in high leakage current.
Application:
All applications that utilize the idle or power down modes, or that are sensitive to small
increases in Icc due to leakage current.
Workaround:
Put a weak pullup resistor on the TDO pin.

Errata #18 DMA
Overflow enable bits (TOV0, TOV1, ROV0, ROV1) in DMAOVFE register do not
function as specified
Reported 10.7.94
Stepping Fix: C
Description:
The overflow enable bits in DMA register DMAOVFE do not match the definition.
TOV1 and TOV0 control Requester Address and Byte Count registers . They should
control Target Address and Byte Counter registers. ROV1 and ROV0 control Target
Address registers. They should control Requester Address registers.

8

Application:
This errata applies to all applications that utilize the DMA controller. Note that it will
only affect those applications that require the TOV bit to be set to a different value than
the ROV bit.
Workaround:
The application must be aware that the register bit functions are reversed from the
definition given and account for that in software.

Errata #19 DMA
Upper DMA byte count registers (DMA0BYC1, DMA1BYC1) change to 0F0h when
the lower byte count registers underflow
Reported 10.7.94
Stepping Fix: no change
Description:
In the DMA when the overflow enable bit is not set for the Byte counter (only 16-bits of
byte counter are being used), the upper byte count register, DMA0BYC1 or
DMA1BYC1, is changed to 0F0H whenever the lower register underflows.
Application:
This errata applies to all applications that utilize the DMA controller.
Workaround:
This errata will not impact the operation of the DMA controller. The user should be
aware, however that if the application requires the DMA to switch from 8237A mode to
it’s enhanced mode (using all 24 bits of byte count) then the high byte count registers may
not contain the reset value of 00H and should be re-initialized.

Errata #20 SSIO
At high baud rates, there is not enough time to turn the transmitter off by resetting
the TEN bit
Reported 10.7.94
Stepping Fix: C
Description:
The SSIO transmitter is turned off by clearing the TEN bit in the SSIOCON1 control
register. In the case where the SSIO is transmitting at high baud rates (i.e. the DMA is
being used to service the transmitter) it is possible that there is not enough time between
when a THBE (transmit holding buffer empty) interrupt occurs and the previous word is
completely shifted out of the shift register for the processor to clear the TEN bit. This is
due to interrupt latency time. The result is that it is possible for the last word of a
transmission to be shifted out of the shift register more than one time. The baud rate at
which this starts to become a problem depends on the frequency the processor is running
at, the mode (real or protected) it is running at, and any other factors which may affect
interrupt latency.
Application:
Applications that require non-continuous high speed synchronous serial transfers.

9

Workaround:
This errata will simply limit how fast the SSIO transmitter can operate. Since the baud
rate will be limited by interrupt latency this can be calculated using the instruction
execution/interrupt latency information given in the Intel386 SX Programmers Reference
Manual or Hardware Reference Manual.

Errata #21 WDT
Write sequence for WDTCLR lockout does not need to be sequential
Reported 10.7.94
Stepping Fix: C
Description:
The I/O write sequence to WDTCLR to do the lockout does not have to be executed
back-to-back. An access to any I/O address or I/O address sequence except for another
WDT register can occur during the sequence and will not affect the lockout of the
watchdog timer. This departs from the original intent that if the sequence is not followed,
it must be repeated from the beginning. The sequence will abort only if a write to another
WDT register is made before the second write to WDTCLR.
Application:
This errata should not be a concern for most system software designs.
Workaround:
None, the application software must be aware that the I/O write sequence is not reset if
any other I/O writes occur during the sequence. Note however, that code should be
written assuming the sequence does need to be back-to-back. This will assure proper
operation if the errata is fixed in a future stepping.

Errata #24, SSIO
TEN bit in SSIOCON1 register turns off transmit channel too soon
Reported 10.7.94
Stepping Fix: C
Description:
When the SSIO is transmitting data (master or slave mode) the transmitter is turned off by
clearing the TEN bit of the SSIOCON1 register. One way of indicating to the software to
clear this bit is by waiting for the Transmit Holding Buffer Empty (THBE) signal to go
active, indicating that the word written to the holding register is ready for transmission
from the shift register. Even if the software waits for this signal and then writes to
SSIOCON1 to disable TEN, depending on when TEN is cleared, the last word transmit
may or may not take place.

If the TXCLK is significantly slower than the CPUCLK, then it is possible for the THBE
bit to be set and the TEN bit to be cleared all during the low time of the TXCLK (see
diagram). In this case, even though the last word to be transmitted has been loaded into
the shift register, it will not be shifted out.

10

TXCLK

CPUCLK

THBE TEN Cleared

16th bit of
previous word

1st bit of last word

Failure Condition

(not to scale)

Application:
All applications that require non-continuous low speed synchronous serial transfers.
Workaround:
In order to assure that the last word is transmitted, the TEN bit must not be cleared until
after the TXCLK transitions from low to high when the 1st bit of the last word is being
transmitted. Consequently, the way to assure that this happens is to either: 1) utilize a
timer to assure that enough time elapses from when the THBE bit goes high until the
TXCLK goes high, or 2) execute a fixed number of NOPs after THBE goes high before
clearing TEN. In either case, the length of the delay is dependent upon the frequency of
TXCLK and the CPUCLK.

Errata #27, DMA
Internal HOLD request synchronization may cause data/code fetches to be
corrupted.
Reported 2.1.95
Stepping Fix: C
Description:
Any operation that asserts the internal hold request signal (iHOLD) may cause bus
contention if that request is removed before the iHLDA is returned valid. The requests
that may cause this problem are DREQ0, DREQ1, HOLD, and the internal refresh
request. The issue is that when the request is asserted the bus arbitration sequence starts
in order to transfer control of the bus. If the request is pulled away at just the wrong time,
then the bus arbiter will continue to give the bus to the requestor, but the core will
recognize that the request has been removed and attempt to take control of the bus also.
This will result in contention on the bus and corrupted data/code.
Application:
All applications that use multiple bus masters.
Workaround:
Make certain in the application that the DREQs or HOLD requests are not removed until
either DACK or HLDA respectively are returned by the processor. Note that for a two
cycle DMA transfer only the requestor cycle generates DACK, the target cycle doesn’t.

11

Consequently, the logic must be able to ensure that DREQ is left active until the channel is
serviced.

Errata #29, BIU
Insufficient Address Hold Time after WR# goes high.
Reported 2.1.95
Stepping Fix: C
Description:
The address hold time after WR# goes high does not meet the data sheet spec of 5nS.
Application: All applications that use the WR# signal as the write strobe to memory or
I/O.
Workaround:
The circuit shown below may be used to generate a write strobe if the READY# signal is
not generated too early in the T2 cycle. Please note this circuit has not been tested in a
real design and is provided as an example only. For applications cannot use the circuit
below it is necessary to implement an external WE# signal using a simple state machine
design. An example of what that state machine could look like is available in the
EV386EX evaluation board design, or in the Point of Sales Terminal reference design
available from the BBS or through literature.

WR#

READY#

WE#

386 EX

Errata #30, BA
HLDA inactive to HOLD active arbitration could improperly float the bus.
Reported 2.1.95
Stepping Fix: C
Description:
In a HOLD/HLDA cycle the HOLD signal must not be re-asserted until after HLDA is
returned inactive. If, however, HOLD is asserted in the same T-state that HLDA goes
inactive a problem may occur where the bus arbiter relinquishes control to the core and at
the same time floats the bus by asserting the HLDA pin. The following waveform shows
the conditions that cause this error. The signals iHOLD and iHLDA are internal signals
and represent the HOLD input to the core and the HLDA output from the core
(equivalent to the HOLDand HLDA signals on a 386SX processor). In this diagram a T1
occurs because a request was pending by the core during the previous HOLD cycle. One
T-state after the arbiter releases the bus (HLDA = 0) it removes it’s iHOLD, and then the
core removes iHLDA. As soon as the iHLDA is release the T1 state starts. However,

12

because of the timing of the next HOLD request, the bus arbiter re-asserts iHOLD and
HLDA even though the core has not asserted iHLDA. The result is that the core
continues to run it’s bus cycle and, at the same time, the bus arbiter has floated the
external bus.

CPU CLK

HLDA

iHOLD

iHLDA

Ti Ti Ti Ti T1 T2

HOLD

Errata #30 Failure Condition

Application: All applications that use external bus masters with HOLD/HLDA
arbitration.
Workaround:
Synchronize the external HOLD request such that it is does not go active until at least one
T-state after HLDA is inactive. See the example waveform below.

CPU CLK

HLDA

iHOLD

iHLDA

Ti Ti Ti Ti T1 T2

HOLD

Errata #30 Workaround Condition

Errata #31 Pin Circuitry
FLT# does not float all outputs
Reported:4.1.95
Stepping Fix: C
Description:
Asserting the FLT# pin does not float any of the I/O pins that have permanent weak
pullups/pulldowns or I/O pins that have temporary weak pullups/pulldowns that are turned

13

on. In these cases, the actual pin drivers will be tri-stated, but the pullups/pulldowns will
force them to the given state.
Application:
This errata is really only a problem when an In-Circuit-Emulator is being used. Many ICE
systems utilize a clamp on header that uses the FLT# pin to float the actual processor in
order to “take over” the system. In this case, if a temporary pullup/down has been turned
off then asserting FLT# will float that pin. If, however, the target board is reset, then the
reset action takes priority over the FLT# and turns the temporary pullup/down on again.
If the application uses an external pullup/down that pulls the pin to the opposite value as
the internal pullup/pulldown, then the pin voltage will be somewhere between 0V and Vcc.
Workaround:
Make certain that external pullups/downs pull each pin to the same level as any internal
pullups/downs. See appendix A table A-4 in the Users manual for a description of which
pins have weak pullups/downs.

Errata #32 SIO
SIO Break could be missed
Reported:4.1.95
Stepping Fix: C
Description:
The SIO Break Interrupt in the LSR register indicates when a break condition has
occurred. This bit is cleared on reading the LSR. If the application is polling the line
status register to to detect a break interrupt it is possible for the read action to occur at the
same time the SIO is setting the BI bit. If this occurs, the read action will prevent the BI
bit from being set causing the program to miss the break. This occurs because the SIO
uses dufferent clock signals to set and clear the BI bit. Since these clock signals are not
synchronous they could happen at the same time, and the clearing action will take
precedence.
Application:
Any application that uses a polling routine to detect a break interrupt.
Workaround:
A possible workaround is to send multiple breaks from the transmitting end of the SIO. In
this case, the SIO may miss the first, but detect the second.

Errata #33 Bus Arbiter
Arbitration between Powerdown and Refresh cycles may leave control signals in
wrong state.
Reported:7.12.95
Stepping Fix: C
Description:
Entering powerdown mode requires a HALT cycle to be executed after the powerdown
bit in the PCON register has been set. If a refresh request occurs at about the same time a
condition may occur where the bus arbiter grants the bus to the RCU, and at the same
time puts the device into powerdown mode. The symptom of this problem is that the

14

ADS# and REFRESH# signals will latch in their active states, and power consumption is
higher than it should be.
Application:
Any application that uses powerdown mode and the refresh control unit.
Workaround:
Prior to executing the HALT instruction that puts the device into powerdown the RCU
should be disabled by clearing bit 15 of the RFSCON register. This refresh is not
supported in powerdown mode this should not create a problem.

Feature Enhancements

The following features have been added to the B-1 stepping:

Enhancement:
New configuration Mux to route Slave IR4 and IR5 interrupts to either INT6 or
DMAINT
Description:
Multiplexors are being added to the slave IR4 and slave IR5 interrupt inputs. This will
allow the DMAINT and INT6 interrupts to be routed to either the slave IR4 input or the
slave IR5 input.
Impact to System:
The slave IR4 interrupt input is traditionally used to support mouse interrupts. Adding this
mux allows the EX to take full advantage of existing mouse drivers.

Enhancement:
BS8# is don’t care for internal bus cycles.
Description:
Bus cycles that access the internal registers of the integrated peripherals will ignore the
state of the BS8# pin.
Impact to System:
It is now possible to logically tie BS8# to ground for system designs that implement a total
8-bit system design. Previously, BS8# could not be driven low during bus cycles that
accessed internal peripheral registers.

Enhancement:

15

Independent DMA/Interrupt control for SIO unit.
Description:
The transmit buffer empty interrupt enable (TBE) and receive buffer full interrupt enable
(RBF) bits in both SIO channel Interrupt Enable registers will only control the enabling
and disabling of interrupts. DMA requests are now always connected to the DMA input
mux and will not be disabled if interrupts are disabled.
Impact to System:
It is now possible to disable the receive and/or transmit interrupts and still allow the
generation of DMA requests. Previously, DMA requests were also controlled by the TBE
and RBF bits, meaning that you potentially had to respond to an interrupt for every DMA
transfer.

 End 

	Title Page
	Errata #3, WDT WDT lockout sequence may not properly reload down counter
	Errata #5, DMA Timer generated DMA requests may not initiate properly after reset
	Errata #6, DMA DMA temporary register not flushed when software aborts transfer
	Errata #8, CPU Write sequence to enable expanded I/O space does not need to be sequential.
	Errata #9, WDT 32-bit WDT register is oriented as High word, Low word in I/O space
	Errata #10, CPU Remap configuration register at 22H and 23H have 10-bit address decode
	Errata #11, ICU CAS lines do not remain active during idle states between cascaded INTA cycles
	Errata #12, DMA Cannot pipeline DMA bus cycles
	Errata #13, I/O Ports DSR1#/STXCLK pin has a permanent weak pull-up
	Errata #14, BIU READY# floats in T1 after internal bus cycle
	Errata #17, Pin Circuitry TDO pin may float in user mode causing excessive current consumption
	Errata #18 DMA Overflow enable bits (TOV0, TOV1, ROV0, ROV1) in DMAOVFE register do not function as specified
	Errata #19 DMA Upper DMA byte count registers (DMA0BYC1, DMA1BYC1) change to 0F0h when the lower byte count registers underflow
	Errata #20 SSIO At high baud rates, there is not enough time to turn the transmitter off by resetting the TEN bit
	Errata #21 WDT Write sequence for WDTCLR lockout does not need to be sequential
	Errata #24, SSIO TEN bit in SSIOCON1 register turns off transmit channel too soon
	Errata #27, DMA Internal HOLD request synchronization may cause data/code fetches to be corrupted.
	Errata #29, BIU Insufficient Address Hold Time after WR# goes high.
	Errata #30, BA HLDA inactive to HOLD active arbitration could improperly float the bus.
	Errata #31 Pin Circuitry FLT# does not float all outputs
	Errata #32 SIO SIO Break could be missed
	Errata #33 Bus Arbiter Arbitration between Powerdown and Refresh cycles may leave control signals in wrong state.

