


Intel the Microcomputer Company: 
When Intel invented the microprocessor in 1971, it created the era of 

microcomputers. Whether used in embedded applications such as automobiles 
or microwave ovens, or as the CPU in personal computers or supercomputers, 

Intel's microcomputers have always offered leading-edge technology. Intel continues 
to strive for the highest standards in memory, microcomputer components, modules 

and systems to give its customers the best possible competitive advantages. 

MICROPROCESSORS 

1990 



inter 

Intel Corporation makes no warranty for the use of its products and assumes no respoRsibility for any errors 
which may appear in this document nor does it make a commitment to update the information contained 
herein. 

Intel retains th~ right to make changes to these specifications at any time, without notice. 

Contact your local sales office to obtain the latest specifications before placing your order. 

The following are trademarks of Intel Corporation and may only be used to identify Intel Products: 

376,386,387,486, 4-SITE, Above, ACE51, ACE96, ACE186, ACE196, 
ACE960, BITBUS, COMMputer, CREDIT, Data Pipeline, ETOX, Genius, 
1. i486, i860, ICE, iCEL, ICEVIEW, iCS, iDBP, iDIS, 121CE, iLBX, iMDDX, 
iMMX, Inboard, Insite, Intel, intel, Inte1386, inteiBOS, Intel Certified, 
Intelevision, inteligent Identifier, inteligent Programming, Intellec, 
Intellink, iOSP, iPDS, iPSC, iRMK, iRMX, iSBC, iSBX, iSDM, iSXM, 
Library Manager, MAPNET, MCS, Megachassis, MICROMAINFRAME, 
MUL TIBUS, MULTICHANNEL, MUL TIMODULE,· MultiSERVER, ONCE, 
OpenNET, OTP, PROMPT, Promware, QUEST, QueX, Quick-Erase, 
Quick-Pulse Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD, 
SugarCube, UPI, and VLSiCEL, and the combination of ICE, iCS, iRMX, 
iSBC, iSBX, iSXM, MCS, or UPI and a numerical suffix. 

MDS is an ordering code only and is not used as a product name or trademark. MDS@ is a registered 
trademark of ~ohawk Data Sciences Corporation. . 

*MUL TIBUS is a patented Intel bus. 

CHMOS and HMOS are patented processes of Intel Corp. 

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, h1C. or its 
FASTPATH trademark or products. 

Additional copies of this manual or other Intel literature may be obtained from: 

Intel Corporation 
Literature Sales 
P.O. Box 7641 
Mt. Prospect, IL 60056-7641 

@INTEL CORPORATION 1989 



CUSTOMER SUPPORT 

INTEL'S COMPLETE SUPPORT SOLUTION WORLDWIDE 

Customer Support is Intel's complete support service that provides Intel customers with hardware support, 
software support, customer trainin!l", consulting services and network management services. For detailed infor­
mation contact your local sales offIces. 

After a customer purchases any system hardware or software product, service and support become major 
factors in determining whether that product will continue to meet a customer's expectations. Such support 
requires an international support organization and a breadth of programs to meet a variety of customer needs. 
As you might expect, Intel's customer support is quite extensive. It can start with assistance during your 
development effort to network management. 100 Intel sales and service offices are located worldwide-in the 
U.S., Canada, Europe and the Far East. So wherever you're using Intel technology, our professional staff is 
within close reach. 

HARDWARE SUPPORT SERVICES 

Intel's hardware maintenance service, starting with complete on-site installation will boost your productivity 
from the start and keep you running at maximum efficiency. Support for system or board level products can be 
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or 
mail-in factory service. 

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in 
your development lab or provide service on your product to your end-user/customer. 

SOFfWARE SUPPORT SERVICES 

Software products are supported by our Technical Information Service (TIPS) that has a special toll free 
number to provide you with direct, ready information on known, documented problems and deficiencies, as 
well as work-arounds, patches and other solutions. 

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor­
mation Phone Service), updates and subscription service (product-specific troubleshootmg guides and; 
COMMENTS Magazine). Basic support consists of updates and the subscription service. Contracts are sold in 
environments which represent product groupings (e.g., iRMX® environment). 

CONSULTING SERVICES 

Intel provides field system engineering consulting services for any phase of your development or application 
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product, 
developing an application, personalizing training and customizing an Intel product to providing technical and 
management conSUlting. Systems Engineers are well versed in technical areas such as microcommunications, 
real-time applications, embedded microcontrollers, and network services. You know your application needs; 
we know our products. Working together we can help you get a successful product to market in the least 
possible time. " 

CUSTOMER TRAINING 

Intel offers a wide range of instructional programs covering various aspects of system design and implementa­
tion. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of 
self-study. For optimum convenience, workshops are "scheduled regularly at Training Centers worldwide or we 
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course 
categories include: architecture and assembly language, programming and operating systems, BITBUS'" and 
LAN applications. 

NETWORK MANAGEMENT SERVICES 

Today's networking products are powerful and extremely flexible. The return they can provide on your invest­
ment via increased productivity and reduced costs can be very substantial. 

Intel offers complete network support, from definition of your network's physical and functional design, to 
implementation, installation and maintenance. Whether installing your first network or adding to an existing 
one, Intel's Networking Specialists can optimize network performance for you. 
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OVERVIEW 

INTRODUCTION 

Intel microprocessors and peripherals provide a complete so­
lution in increasingly complex application environments. Quite 
often, a single peripheral device will replace anywhere from 
20 ·to 100 TTL devices (and the associated design time that 
goes with them). 

Built-in functions and standard Intel microprocessor/periph­
eral interface deliver very real time and performance advan­
tages to the designe~ of microprocessor-based systems. 

REDUCED TIME TO MARKET 

When you can purchase an off-the-shelf solution that replaces 
a number of discrete devices, you're also replacing all the de­
sign, testing, and debug time that goes with them. 

INCREASED RELIABILITY 

At Intel, the rate of failure for devices is carefully tracked. 
Highest reliability is a tangible goal that translates to higher 
reliability for your product, reduced downtime, and reduced 

repair costs. And as more and more functions are integrated 
on a single VLSI device, the resulting system requires less 
power, produces less heat, and requires fewer mechanical con­
nections - again resulting in greater system reliability. 

LOWER PRODUCTION COST 

By minimizing design time, increasing reliability, and replac­
ing numerous parts, microprocessor and peripheral solutions 
can contribute dramatically to lower product costs. 

HIGHER SYSTEM PERFORMANCE 

Intel microprocessors and peripherals provide the highest sys­
. tern performance for the demands of today's (and tomorrow's) 
microprocessor-based applications. For example, the 
Intel386 ,. Microprocessor Family offers 32-bit performance 
for multitasking, multiuser systems. Intel's peripheral products 
have been designed with the future in mind. They support all 
of Intel's 8, 16 and 32 bit processors. 

The Intel microprocessor and peripherals family provides 
a broad range of time-saving, high performance solutions. 

ausSUPPOAT 
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intel® Get Your Kit Together! 
Intel's Microsystem Components Kit Solution 

MICRO-

8 PROCESSORS - HARDCOPY - . . 
8088/80C88 'CONTROL 
8086/80C86 - UPI'" 8042/8742 
80186 
80188 
80286 

KEYBOARD 386'"J!. - _ / zmIIIl] ~\ 386'"OX/SXJ!. CONTROL 
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8086 
16-BIT HMOS MICROPROCESSOR 

8086/8.086-2/8086-1 * 
• Direct Addressing Capability 1 MByte 

of Memory 

• Architecture Designed for Powerful 
Assembly Language and Efficient High 
Level Languages 

• 14 Word, by 16-Bit Register Set with 
Symmetrical Operations 

• 24 Operand Addressing Modes 

• Bit, Byte, Word, and Block Operations 

• 8 and 16-Bit Signed and Unsigned 
Arithmetic in Binary or Decimal 
Including Multiply and Divide 

.• Range of Clock Rates: 
5 MHz for 8086, 
8 MHz for 8086-2, 

10 MHz for 8086-1 

• MUL TIBUS® System Compatible 
Interface 

• Available in EXPRESS 
- Standard Temperature Range 
- Extended Temperature Range 

•. Available in 40-Lead Cerdip and Plastic 
Package 
(See Packaging Spec. Order .. 231369) 

The Intel 8086 high performance 16-bit CPU is available in three clock rates: 5, 8 and 10 MHz. The CPU is 
implemented in N-Channel, depletion load, silicon gate technology (HMOS), and packaged in a 40-pin CERDIP 
or plastic package. The 8086 operates in both single processor and multiple processor configurations to 
achieve high performance levels. 
'Changes from the 1985 handbook specification have been made for the 8086·1. See A.C. Characteristics TGVCH and TCLGL. 
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Figure 1. 8086 CPU Block Diagram 
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inter 8086 

Table 1. Pin Description 

The following pin function descriptions are for 8086 systems in either minimum or maximum mode. The "Local 
Bus" in these descriptions is the direct multiplexed bus interface connection to the 8086 (without regard to 
additional bus buffers). 

Symbol Pin No. Type Name and Function 

AD15-ADo 2-16,39 I/O ADDRESS DATA BUS: These lines constitute the time multiplexed 
memory/IO address (T1), and data (T2, Ta, Tw, T4) bus. An is 
analogous to SHE for the lower byte of the data bus, pins 07-00. It is 
LOW during T 1 when a byte is to be tran~ferred on the lower portion 
of the bus in memory or 1/0 operations. Eight·bit oriented devices tied 
to the lower half would normally use An to condition chip select 
functions. (See SHE.) These lines are active HIGH and float to 3·state 
OFF during interrupt acknowledge and local bus "hold acknowledge". 

A19/5 6, 35-38 0 ADDRESS/STATUS: During T1 these are the four most significant 
A1B/55, address lines for memory operations. During I/O operations these 

A17/54' lines are LOW. During memory al')d I/O operations, status information 

A16/5a is available on these lines during T 2, T 3, T w' T 4. The status of the 
interrupt enable FLAG bit (55) is updated at the'beginning of each 
CLK cycle. A17/54 and A16/5a are encoded as shown. 
This information indicates which relocation register is presently being, 
used for data accessing. 
These lines float to 3·state OFF during local bus "hold acknowledge." 

A17/S4 A16/S3 Characteristics 

o (LOW) 0 Alternate Data 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 1 Data 
56 isO 
(LOW) 

SHE/57', 34 O· BUS HIGH ENABLE/STATUS: During T1 the bus high enable signal 
(SHE) should be used to enable data onto the most significant half of 
the data bus,pins 015-08. Eight·bit oriented devices tied to the upper 
half of the bus would normally use SHE to condition chip select 
functions. SHE is LOW during T1 for read, write, and interrupt 
acknowledge cycles when a byte is to be transferred on the high 
portion of the bus. The 57 status information is available during T 2, 
T a, and T 4. The Signal is active LOW, and floats to 3-state OFF in 
"hold". It is LOW during T 1 for the first interrupt acknowledge cycle. 

BHE Ao Characteristics 

0 0 Whole word 
0 1 Upper byte from/to odd address 
1 0 Lower byte from/to even address 
1 1 None 

RD 32 0 READ: Read strobe indicates that the processor is performing a 
memory of I/O read cycle, depending on the state of the 52 pin. This 
signal is used to read devices which reside on the 8086 local bus. RD 
is active LOW during T 2, T a and T w of any read cycle, and is , 
guaranteed to remain HIGH in T 2 until the 8086 local bus has floated. 
This signal floats to 3·state OFF in "hold acknowledge". 
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Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

READY 22 I READY: is the acknowledgement from the addressed memory or I/O 
device that it will complete the data transfer. The READY signal from 
memoryllO is synchronized by the 8284A Clock Generator to form 
READY. This signal is active HIGH. The 8086 READY input is not 
synchronized. Correct operation is not guaranteed if the setup and hold 
times are not met. 

INTR 18 I INTERRUPT REQUEST: is a level triggered input which is sampled 
during the last clock cycle of each instruction to determine if the 
processor should enter into an interrupt acknowledge operation. A 
subroutine is vectored to via an interrupt vector lookup table located in 
system memory. It can be internally masked by software resetting the 
interrupt enable bit. INTR is internally synchronized. This signal is 
active HIGH. 

TEST 23 I TEST: input is examined by the "Wait" instruction. If the TEST input is 
lOW execution continues, otherwise the processor waits in an "Idle" 
state. This input is synchronized internally during each clock cycle on 
the leading edge of ClK. 

NMI 17 I NON-MASKABLE INTERRUPT: an edge triggered input which causes 
a type 2 interrupt. A subroutine is vectored to via an interrupt vector 
lookup table located in system memory. NMI is not maskable internally 
by software. A transition from lOW to HIGH initiates the interrupt at the 
end of the current instruction. This input is internally synchronized. 

RESET 21 I RESET: causes the processor to immediately terminate its present 
activity. The signal must be active HIGH for at least four clock cycles. It 
restarts execution, as described in the Instruction Set description, when 
RESET returns lOW. RESET is internally synchronized. 

ClK 19 I CLOCK: provides the basic timing for the processor and bus controller. 
It is asymmetric with a 33% duty cycle to provide optimized internal 
timing. 

. Vee 40 Vee: + 5V power supply pin . 

GND 1,20 GROUND 

MN/MX 33 I MINIMUM/MAXIMUM: indicates what mode the processor is to 
operate in. The two modes are discussed in the following sections. 

The following pin function descriptions are for the 8086/8288 system in maximum mode (i.e., MN/MX = V SsJ. 
Only the pin functions which are unique to maximum mode are described; all other pin functions are as 
described above. 

52,51, So 26-28 0 STATUS: active during T 4, T 1, and T 2 and is returned to the passive state 
(1,1,1) during T3 or during Tw when READY is HIGH. This status is used 
by the 8288 Bus Controller to generate all memory and 1/0 access control 
signals. Any change by 52, 81, or 80 during T 4 is used to indicate the 
beginning of a bus cycle, and the return to the passive state in T 3 or T w is 
used to indicate the end of a bus cycle. 
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Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

82,81,80 26-28 a These signals float to 3·state OFF in "hold acknowledge". These status 
(Continued) lines are encoded as shown. 

52 51 50 Characteristics 

o (LOW) 0 0 Interrupt Acknowledge 
0 0 1 Read I/O Port 
0 1 0 Write I/O Port 
0 1 1 Halt 
1 (HIGH) 0 0 Code Access 
1 0 1 Read Memory 
1 1 0 Write Memory 
1 1 1 Passive 

RQ/GTo, 30,31 I/O REQUEST IGRANT: pins are used by other local bus masters to force 
RQ/GT1 the processor to release the local bus at the end of the processor's 

current bus ~e~ach pin~ bidirectional with RQ/GTo having higher 
priority than RQ/GT 1. RQ/GT pins have internal pull-up resistors and 
may be left unconnected. The request/grant sequence is as follows 
(see Figure 9): 
1. A pulse of 1 ClK wide from another local bus master indicates a local 
bus request ("hold") to the 8086 (pulse 1). 
2. During a T 4 or T 1 clock cycle, a pulse 1 ClK wide from the 8086 to 
the requesting master (pulse 2), indicates that the 8086 has allowed the 
local bus to float and that it will enter the "hold acknowledge" state at 
the next ClK. The CPU's bus interface unit is disconnected logically 
from the local bus during "hold acknowledge". 
3. A pulse 1 ClK wide from the requesting master indicates to the 8086 
(pulse 3) that the "hold" request is about to end and that the 8086 can 
reclaim the local bus at the next ClK. 
Each master-master exchange of the local bus is a sequence of 3 
pulses. There must be one dead ClK cycle after each bus exchange. 
Pulses are active lOW. 
If the request is made while the CPU is performing a memory cycle, it 
will release the local bus during T 4 of the cycle when all the following 
conditions are met: 
1. Request occurs on or before T 2. 
2. Current cycle is not the low byte of a word (on an odd address). 
3. Current cycle is not the first acknowledge of an interrupt acknowledge 
sequence. 
4. A locked instruction is not currently executing. 

If the local bus is idle when the request is made the two possible events 
will follow: 
1. local bus will be released during the next clock. 
2. A memory cycle will start within 3 clocks. Now the four rules for a 
currently active memory cycle apply with condition number 1 already 
satisfied. 

lOCK 29 a LOCK: output indicates that other system bus masters are not to gain 
control of the system bus while lOCK is active lOW. The lOCK signal 
is activated by the "lOCK" prefix instruction and remains active until the 
completion of the next instruction. This signal is active lOW, and floats 
to 3-state OFF in "hold acknowledge". 
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Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

QS1, QSo 24,25 0 QUEUE STATUS: The queue status is valid during the CLK cycle after 
which the queue operation is performed. 
QS1 and QSo provide status to allow external tracking of the internal 
8086 instruction queue. 

QS1 QSo Characteristics 

o (LOW) 0 No Operation 
0 1 First Byte of Op Code from Queue 
1 (HIGH) 0 Empty the Queue 
1 1 Subsequent Byte from Queue 

The following pin function descriptions are for the 8086 in minimum mode (i.e., MNIMX = Ved Only the pin 
functions which are unique to minimum mode are described; all other pin functions are as described above. 

MilO 28 0 STATUS LINE: logically equivalent to S2 in the maximum mode. It is used to 
distinguish a memory access from an 1/0 access. MilO becomes valid in 
the T 4 preceding a bus cycle and remains valid until the final T 4 of the cycle 
(M = HIGH, 10 = LOW). MilO floats to 3-state OFF in local bus "hold 
acknowledge'~. 

WR 29 0 WRITE: indicates that the processor is performing a write memory or write 
1/0 cycle, depending on the state of the MilO signal. WR is active for T 2, T 3 
and T w of any write cycle. It is active LOW, and floats to 3-state OFF in 
local bus "hold acknowledge". 

INTA 24 0 INTA: is used as a read strobe for interrupt acknowledge cycles. It is active 
LOW during T 2, T 3 and T w of each interrupt acknowledge cycle. 

ALE 25 0 ADDRESS LATCH ENABLE: provided by the processor to latch the' 
address into the 8282/8283 address latch. It is a HIGH pulse active during 
T1 of any bus cycle. Note that ALE is never floated. 

DT/R 27 0 DATA TRANSMIT/RECEIVE::needed in minimum system that desires to 
use an 8286/8287 data bus transceiver. It is used to control the direction of 
data flow through the transceiver. Logically DT iF! is equivalent to S1 in the 
maximum mode, and its timing is the same as for MilO. (T = HIGH, R = 
LOW.) This signal floats to 3-state OFF in local bus "hold acknowledge". 

DEN 26 0 DATA ENABLE: provided as an output enable for the 8286/8287 in a 
minimum system which uses the transceiver. DEN is active LOW during 
each memory and 1/0 access and for INTA cycles. For a read or INTA cycle 
it is active from the middle of T 2 until the middle of T 4, while for a write cycle 
it is active from the beginning of T 2 until the middle of T 4. DEN floats to 3-
state OFF in local bus "hold acknowledge". 

HOLD, 31,30 1/0 HOLD: indicates that another master is requesting a local bus "hold." To be 
HLDA acknowledged, HOLD must be active HIGH. The processor receiving the 

"hold" request will issue HLDA (HIGH) as an acknowledgement in the 
middle of a T4 or Tj clock cycle. Simultaneous with the issuance of HLDA 
the processor will float the local bus and control lines. After HOLD is 
detected as being LOW, the processor will LOWer the HLDA, and when the 
processor needs to run another cycle, it will again drive the local bus and 
control lines. Hold acknowledge (HLDA) and HOLD have internal pull-up 
resistors. 
The same rules as for RQ/GT apply regarding when the local bus will be 
released. 
HOLD is not an asynchronous input. External synchronization should be 
provided if the system cannot otherwise guarantee the setup time. 

2-5 



8086 

FUNCTIONAL DESCRIPTION 

General Operation 

The internal functions of the 8086 processor are 
partitioned logically into two processing units. The 
first is the Bus Interface Unit (BIU) and the second is 
the Execution Unit (EU) as shown in the block dia­
gram of Figure 1. 

These units can interact directly but for the most 
part perform as separate asynchronous operational 
processors. The bus interface unit provides the func­
tions related to instruction fetching and queuing, op­
erand fetch and store, and address relocation. This 
unit aiso provides the basic bus control. The overlap 
of instruction pre-fetching provided by this unit 
serves to increase processor performance through 
improved bus bandwidth utilization. Up to 6 bytes of 
the instruction stream can be queued while waiting 
for decoding and execution. 

The instruction stream queuing mechanism allows 
the BIU to keep the memory utilized very efficiently. 
Whenever there is space for at least 2 bytes in the 
queue, the BIU will attempt a word fetch memory 
cycle. This greatly reduces "dead time" on the 
memory bus. The queue acts as a First-In-First-Out 
(FIFO) buffer, from which the EU extracts instruction 
bytes as required. If the queue is empty (following a 
branch instruction, for example), -the first byte into 
the queue immediately becomes available to the EU. 

The execution unit receives pre-fetched instructions 
from the BIU queue and provides un-relocated oper­
and addresses to the BIU. Memory operands are 
passed through 'the BIU for processing by the EU, 
which passes results to the BIU for storage. See the 
Instruction Set description for further register set 
and architectural descriptions. 

MEMORY ORGANIZATION 

The processor provides a 20-bit address to memory 
which locates the byte being referenced. The memo­
ry is organized as a linear array of up to 1 million 

Memory Segment Register 
Reference Need Used 

bytes, addressed as OOOOO(H) to FFFFF(H). The 
memory is logically divided into code, data, extra 
data, and stack segments of up to 64K bytes each, 
with each segment falling on 16-byte boundaries. 
(See Figure 3a.) 

All memory references are made relative to base ad­
dresses contained in high speed segment registers. 
The segment types were chosen based on the ad­
dressing needs of programs. The segment register 
to be selected is automatically chosen according to 
the rules of the following table. All information in one 
segment type share the same logical attributes (e.g. 
code or data). By structuring memory into relocat­
able areas of similar characteristics and by automati­
cally selecting segment registers, programs are 
shorter, faster, and more structured: 

Word (16-bit) operands can be located on even or 
odd address boundaries and are thus not con­
strained to even boundaries as is the case in many 
16-bit computers. For address and data operands, 
the least significant byte of the word is stored in the 
lower valued address location and the most signifi­
cant byte in the next higher address location. The 
BIU . automatically performs the proper number of 
memory accesses, one if the word operand is on an 
even byte boundary and two if it is on an odd byte 
boundary. Except for the performance penalty, this 
double access is transparent to the software. This 
performance penalty does not occur for instruction 
fetches, only word operands. 

PhYSically, the memory is organized as a high bank 
(015-08) and a low bank (07-00) of 512K 8-bit 
bytes addressed in parallel by the processor's ad­
dress lines A19-A1. Byte data with even addresses 
is transferred on the 07-00 bus lines while odd ad­
dressed byte data (Ao HIGH) is transferred on the 
015-08 bus lines. The processor provides two en­
able signals, BHE and Ao, to selectively allow read­
ing from or writing into either an odd byte location, 
even byte location, or both. The instruction stream is 
fetched from memory as words and is addressed 
internally by the processor to the byte level as nec­
essary. 

Segment 
Sel.ection Rule 

Instructions COOE(CS) Automatic with all instruction prefetch. 

Stack STACK (SS) All stack pushes and pops. Memory references relative to BP 
base register except data references. 

Local Data DA-r:A(DS) Data references when: relative to stack, destination of string 
operation, or explicitly overridden. 

External (Global) Data EXTRA (ES) Destination of string operations: explicitly selected using a 
segment override. 
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Figure 3a. Memory Organization 

In referencing word data the BIU requires one or two 
memory cycles depending on whether or not the 
starting byte of the word is on an even or odd ad­
dress, respectively. Consequently, in referencing 
word operands performance can be optimized by lo­
cating data on even address boundaries. This is an 
especially useful technique for using the stack, since 
odd address references to the stack may adversely 
affect the context switching time for interrupt pro­
cessing or task multiplexing. 

r--------, FFFFFH 
RESET BOOTSTRAP 

PROGRAM JUMP 1-_____ -1 FFFFOH 

1-------I3FFH 
INTERRUPT POINTE A 

FOR TYPE 255 
~-------l3FCH 

~------------~7H 
INTE'RAUPT POINTER 

fOR TYPE t 

I--'N-T-ER-R-UP-T-PO-'-NT-E-R --I ;~ 
FOR TYPE 0 

~ _____ ~OH 

231455-4 

Figure 3b. Reserved Memory Locations 

Certain locations in memory are reserved for specific 
CPU operations (see Figure 3b). locations from 
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address FFFFOH through FFFFFH are reserved for 
operations including a jump to the initial program 
loading routine. Following RESET, the CPU will al­
ways begin execution at location FFFFOH where the 
jump must be. locations OOOOOH through 003FFH 
are reserved for interrupt operations. Each of the 
256 possible interrupt types has its service routine 
pointed to by a 4-byte pointer element consisting of 
a 16-bit segment address and a 16-bit offset ad­
dress. The pointer elements are assumed to have 
been stored at the respective places in reserved 
memory prior to occurrence of interrupts. 

MINIMUM AND MAXIMUM MODES 

The requirements for supporting minimum and maxi­
mum 8086 systems are sufficiently different that 
they cannot be done efficiently with 40 uniquely de­
fined pins. Consequently, the 8086 is equipped with 
a strap pin (MN/MX) which defines the system con­
figuration. The definition of a certain subset of the 
pins changes dependent on the condition of the 
strap pin. When MN/MX pin is strapped to GND, the 
8086 treats pins 24 through 31 in maximum mode. 
An 8288 bus controller interprets status information 
coded into So, S2, S2 to generate bus timing and 
control signals compatible with the MUl TIBUS® ar­
chitecture. When the MN/MX pin is strapped to Vee, 
the 8086 generates bus control signals itself on pins 
24 through 31, as shown in parentheses in Figure 2. 
Examples of minimum mode and maximum mode 
systems are shown in Figure 4. 

BUS OPERATION 

The 8086 has a combined address and data bus 
commonly referred to as a time multiplexed bus. 
This technique provides the most efficient use of 
pins on the processor while permitting the use of a 
standard 40-lead package. This "local bus" can be 
buffered directly and used throughout the system 
with address latching provided on memory and 1/0 
modules. In addition, the bus can also be demulti­
plexed at the processor with a single set of address 
latches if a standard non-multiplexed bus is desired 
for the system. 

Each processor bus cycle consists of at least four 
ClK cycles. These are referred to as T 1, T 2, T 3 and 
T 4 (see Figure 5). The address is emitted from the 
processor during T 1 and data transfer occurs on the 
bus during T 3 and T 4. T 2 is used primarily for chang­
ingthe direction of the bus during read operations. In 
the event that a "NOT READY" indication is given 
by the addressed device, "Wait" states (T w) are in­
serted between T 3 and T 4. Each inserted "Wait" 
state is of the same duration as a ClK cycle. Periods 
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can occur between 8086 bus cycles. These are re­
ferred to as "Idle" states (Ti) or inactive elK cycles. 
The processor uses these cycles for internal house­
keeping. 

During T 1 of any bus cycle the ALE (Address latch 
Enable) signal is emitted (by either the processor or 
the 8288 bus controller, depending on the MN/MX 
strap). At the trailing edge of this pulse, a valid ad­
dress and certain status information for the cycle 
may be latched. 

Status bits So, Sl, and S2 are used, in maximum 
mode, by the bus controller to identify the type of 
bus transaction according to the following table: 

52 

o (lOW) 

0 

0 

0 

1 (HIGH) 

1 

1 

1 

51 

0 

0 

1 

1 

0 

0 

1 

1 

50 Characteristics 

0 Interrupt Acknowledge 

1 Read ilO 

0 Write I/O 

1 Hait 

0 Instruction Fetch 

1 Read Data from Memory 

0 Write Data to Memory 

1 Passive (no bus cycle) 

1-.----- !4+NwAlTI~ Tey ------..11j.·-----14 tNWNf'=Tcr -----·~I 
TI T, TJ TWAIT I T" TI 12 T3 TWAIT I T. 

CLK 

ADDRI 
STATUS 

ADDRIDATA 

RD,i'Nii 

READy 

DTIA 

\ 

-----8 __ D_AT_"_O_UT_'D_,,_-D_~ _ _J~-a= 
READY READY 

WAIT WAIT 

+--IIEMORY ACCE •• nllE-" 

''-------J/ 
231455-8 

Figure 5. Basic System Timing 
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Status bits S3 through S7 are multiplexed with high­
order address bits and the SHE signal" and are 
therefore valid ,during 12 through T 4. S3 and S4 indi­
cate which segment register (see Instruction Set de­
scription) was used for this bus cycle in forming the 
address, according to the following t!ible: ' 

S4 S3 Characteristics 

o (lOW) 0 Alternate Data (extra segment) 

0 1 Stack 

1 (HIGH) 0 Code or None 

1 1 Data' 

85 is a reflection of the PSW interrupt enable bit. 
86 = 0 and S7 is a spine status bit. 

I/O ADDRESSING 

In the 8086, liD operations can address up to a 
maximuni of 64K liD byte registers or 32K liD word 

, registers.'The liD address appears in the same for­
mat as the memory address on bus lines A15-AO. 
The address lines A19-A16 are zero in liD opera­
tions. The variable liD instructions which use regis­
ter DX as a pOinter have full address capability while 
the direct 110 instructions directly address one or 
two of the 256 liD byte locations in page 0 of the 
liD address space. ' 

110 ports are addressed in the same manner as 
memory locations. Even addressed bytes are trans­
ferred on the DrDo bus lines and odd addressed 
bytes on D15-D8. Care must be taken to assure that 
each register within an 8-bit peripheral located on 
the lower portion of the bus be addressed as even. 

External Interface 

PROCESSOR RESET AND INITIALIZATION 

Processor initialization or start up is accomplished 
with activation (HIGH) of the. RESET pin. The 8086 
RESET is required to be HIGH for greater than 4 
ClK cycles. The 8086 will terminate operations on 
the high-going edge of RESET and will remain dor­
mant as long as RESET is HIGH. The low-going 
transition of RESET triggers an internal reset se­
quence for approximately 10 ClK cycles. After this 
interval the 8086 operates normally beginning with 
the instruction in absolute location FFFFOH (see Fig­
ure 3b). The details of this operation are specified in 
the Instruction Set descriptiofl of the MCS-86 Family 
User's Manual. The RESET input is internally syn­
chronized to the processor clock. At initialization the 
HIGH-to-lOW transition of RESET must occur no 
sooner than 50 J.Ls after power-up, to allow complete 
initialization of the 8086. 

NMI asserted prior to the 2nd clock after the end of 
RESET will not be, honored. If NMI is asserted after 
that' point, and, during the internal reset sequence, 
the processor may execute one instruction befOre 
responding to the interrupt. A hold request active 
immedia,tely after RESET will be honored before the, 
first instruction fetch. 

All 3-state outputs float to 3-state OFF during 
RESET. Status is active in the idle state for the first 
clock after RESET becomes active and then floats 
to 3-state OFF. ALE and HlDA are driven low. 

INTERRUPT OPERATIONS 

Interrupt operations fall into two classes; software or 
hardware initiated. The software initiated interrupts 
and software aspects of hardware interrupts are 
specified in the Instruction Set description. Hard­
ware interrupts can be classified as non-maskable or 
maskable. 

Interrupts result in a transfer of control to a new pro­
gram location. A 256-element table containing ad­
dress pointers to the interrupt service program loca­
tions resides in absolute locations 0 through 3FFH 
(see Figure 3b), which are reserved for this purpose. 
Each element in the table is 4 bytes in size and 
corresponds to an interrupt "type". An interrupting 
device supplies an 8-bit type number, during the in­
terrupt acknowledge sequence, which is used to 
"vector" through the appropriate element to the new 
interrupt service program location. 
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NON-MASKABLE INTERRUPT (NMI) 

The processor provides a single non-maskable inter­
rupt pin (NMI) which has higher priority than the 
maskable interrupt request pin (INTR). A typical use 
would be to activate a power failure routine. The 
NMI is edge-triggered on a lOW-to-HIGH transition. 
The activation of this pin. causes a type 2 interrupt. 
(See Instruction Set description.) 

NMI is required to have a duration in the HIGH state 
of greater than two ClK cycles, but is not required to 
be synchronized to the clock. Any high-going tran~ 
sition of NMI is latched on-chip and will be serviced 
at the end of the current instruction or between 
whole moves of a block-type instruction. Worst case 
response to NMI would be for multiply, divide, and 
variable shift instructions. There is no specification 
on the occurrence of the low-going edge; it may oc­
cur before, during, or after the servicing of NMI. An­
other high-going edge triggers another response if it 
occurs after the start of the NMI procedure. The sig­
nal must be free of logical spikes in general and be 
free of bounces on the low-going edge to avoid trig­
gering extraneous responses. 
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MASKABLE INTERRUPT (INTR) 

The' 8086 provides a Single interrupt request input 
(INTR) which can be masked internally by software 
with the resetting of the interrupt enable FLAG 
status bit. The interrupt request signal is level trig­
gered. It is internally synchronized during each clock 

. cycle on the high-going edge of CLK. To be re-
sponded to, INTR must be present (HIGH) during 
the clock period preceding the end of the current 
il')struction or the end of a whole move for a block­
type instruction. During the interrupt response se­
quence further interrupts are disabled. The enable 
bit is reset as part of the response to any interrupt 
(INTR, NMI, software interrupt or single-step), al­
though the FLAGS register which is automatically 
pushed onto the stack reflects the state of the proc­
essor prior to the interrupt. Until the old FLAGS reg­
ister is restored the enable bit will be zero unless 
specifically set by an instruction. 

During the response sequence (Figure 6) the proc­
essor executes two successive (back-to-back) inter­
rupt acknowledge cycles. The 8086 emits the LOCK 
signal from T 2 of the first bus cycle until T 2 of the 
second. A local bus "hold" request will not be hon­
ored until the end of the second bus cycle. In the 
second bus cycle a byte is fetched from the external 
interrupt system (e.g., 8259A PIC) which identifies 
the source (type) of the interrupt. This byte is multi­
plied by four and used as a pointer into the interrupt 
vector lookup table. An INTR signal left HIGH will be 
continually responded to within the limitations of the 
enable bit and sample period. The INTERRUPT RE­
TURN instruction includes a FLAGS pop which re­
turns the status of the original interrupt enable bit ' 
when it restores the FLAGS. 

HALT 

When a software "HALT" instruction is executed the 
processor indicates that it is entering the "HALT" 
state in one of two ways depending upon which 
mode·is strapped. In minimum mode, the processor 
issues one ALE with no qualifying bus control sig­
nals. In maximum mode, the processor issues ap­
propriate HALT status on S2, S1, and So; and the 
8288 bus controller issues one ALE. The 8086 will 
not leave the "HALT" state when a local bus "hold" 
is entered while in "HALT". In this case, the proces­
sor reissues the HALT indicator. An interrupt request 
or RESET will force the 8086 out of the "HALT" 
state. 

READ/MODIFY/WRITE (SEMAPHORE) 
OPERATIONS VIA LOCK 

The LOCK status information is provided by the 
processor when directly consecutive bus cycles are 
required during the execution of an instruc­
tion. This provides the processor with the capability 
of performing read/modify/write operations on 
memory (via the Exchange Register With Memory 
instruction, for example) without the possibility of an­
other system bus master receiving intervening mem­
ory cycles. This is useful in multi-processor system 
configurations to accomplish "test and set lock" op­
erations. The LOCK signal is activated (forced LOW) 
in the clock cycle following the one in which the soft­
ware "LOCK" prefix instruction is decoded by the 
EU. It is deactivated at the end of the last bus cycle 
of the instruction following the "LOCK" prefix in­
struction. While LOCK is active a request on a RO/ 
GT pin will be recorded and then honored at the end 
of the LOCK. 

I T, 12 T3 I T.. I TilT, T2 T, T, . 

ALE~~---{!n~_ 

\ J! / 
( ( 

LOCK 

, INTA \ r l ~ 

\ I' I I 
\ FLOAT 

ADo-AD, .. ----./>-------------i 

Figure 6. Interrupt Acknowledge Sequence 
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E~TERNAL SYNCHRONIZATION VIA TEST 

As an alternative to the interrupts and general liD 
capabilities, the 8086 provides a single software­
testable input known as the TEST signal. At any time 
the program may execute a WAIT instruction. If at 
that time' the TEST signal is inactive (HIGH), pro­
gram execution becomes suspended while the proc­
essor waits for TEST to become active. It must 
remain active for at least 5 elK cycles. The WAIT 
instruction is re-executed repeatedly until that time. 
This activity does not consume bus cycles. The 
processor remains in an idle state while waiting. All 
8086 drivers go to 3-state OFF if bus "Hold" is en­
tered. If interrupts are enabled, they may occur while 
the processor is waiting. When this occurs the proc­
essor fetches the WAIT instruction one extra time, 
processes the interrupt, and then re-fetches and re­
executes the WAIT instruction upon returning from 
the interrupt.' 

Basic System Timing 

Typical system configurations for the processor op­
erating in minimum mode and in maximum mode are 
shown in Figures 4a and 4b, respectively. In mini­
mum mode, the MN/MX pin is strapped to Vee and 
the processor emits bus control signals in a manner 
similar to the 8085. In maximum mode, the MN/MX 
pin is strapped to Vss and the 'processor emits cod­
ed status information which the 8288 bus controller 
uses to generate MUl TISUS compatible bus control 
signals. Figure 5 illustrates the signal timing relation-
ships. -

AX AH AL ACCUMULATOR 

BX BH BL BASE 

CX CH CL COUNT 

OX DH DL DATA 

"m STACK POINTER 

BP BASE POINTER 

SI SOURCE INDEX 

. 01 , DESTINATION INDEX 

I IP I INSTRUCTION POINTER 

FLAGSH I FLAGSL STATUS FLAGS 

• CS CODE SEGMENT 

OS DATA SEGMENT 

'---- SS STACK SEGMENT 

ES EXTRA SEGMENT 

231455-10 

Figure 7. 8086 Register Model 

SYSTEM TIMING-MINIMUM SYSTEM 

The read cycle begins in T1 with the assertion of the 
Address latch Enable (ALE) signal. The trailing (Iow­
going) edge of this signal is used to latch the ad­
dress information, which is valid on the local bus at . 
this time, into the address latch. The SHE and Ao 
signals address the low, high, or both bytes. From T 1 
to T 4 the MilO signal indicates a memory or liD 
operation. At T 2 the address is removed from the 
local bus and the bus goes to a high impedance 
state. The read control signal is also asserted at T 2. 
The read (RD) signal causes the addressed device 
to enable its data bus drivers to the local bus. Some 
time later valid data will be available on the bus and 
the addressed device will drive the READY line 
HIGH. When the processor returns the read signal to 
a HIGH level, the addressed device will again 3-
state its bus drivers. If a transceiver is required to 
buffer the 8086 local bus, signals DT /Fi and DEN 
are provided by the 8086. . 

A write cycle also begins with the assertion of ALE 
and the emission of the address. The MilO signal is 
again asserted to indicate a memory or liD write 

. operation. In the T 2 immediately following the ad­
dress emission the processor emits the data to be 
written into the addressed location. This data re­
mains valid until the middle of T 4. During T 2, T 3, and 
T w the processor asserts the write control Signal. 
The write (WR) signal becomes active at the begin­
ning of T 2 as. opposed to the read which is delayed 
somewhat into T 2 to provide time for the bus to float. 

The SHE and Ao signals are used to seleqt the prop­
er byte(s) of the memory/lO word to be read or writ­
ten according to the following table: 

BHE AO Characteristics 

0 0 . Whole word 
0 1 Upper byte fromlto 

odd address 
1 0 lower byte from Ito 

even address 
1 1 None 

liD ports are addressed in the same manner as 
memory location. Even addressed bytes are trans­
ferred on the 07-00 bus 'lines and odd addressed 
bytes on 015-08. 

The basic difference between the interrupt acknowl­
edge cycle and a read cycle is that the interrupt ac­
knowl~e Signal (INTA) is asserted in place of the 
read (RD) signal and the address bus is floated. 
(See Figure 6.) In the second of two successive 
.INTA cycles, a byte of information is read from bus 

2-12 . 



8086 

lines DrDo as supplied by the inerrupt system logic 
(i.e., 8259A Priority Interrupt Controller). This byte 
identifies the source (type) of the interrupt. It is mUlti­
plied by four and used as a pointer into an interrupt 
vector lookup table, as described earlier. 

BUS TIMING-MEDIUM SIZE SYSTEMS 

For medium size systems the MN/MX pin is con­
nected to Vss and the 8288 Bus Controller is added 
to the system as well as a latch for latching the sys­
tem address, and a transceiver to allow for bus load­
ing greater than the 8086 is capable of handling. 
Signals ALE, DEN, and DT /Fi are generated by the 
8288 instead of the processor in this configuration 
although their timing remains relatively the same. 
The 8086 status outputs (52, 51, and So) provide 
type-of-cycle information and become 828B inputs. 
This bus cycle information specifies read (code, 
data, or 110), write (data or 110), interrupt 

2-13 

acknowledge, or software halt. The B2BB thus issues 
control signals specifying memory read or write, liD 
read or write, or interrupt acknowledge. The B2BB 
provides two types of write strobes, normal and ad­
vanced, to be applied as required. The normal write 
strobes have data valid at the leading edge of write. 
The advanced write strobes have the same timing 
as read strobes, and hence data isn't valid at the 
leading edge of write. The transceiver receives the 
usual DIR and G inputs from the B2BB's DT IA and 
DEN. 

The pointer into the interrupt vector table, which is 
passed during the second INTA cycle, can derive 
from an B259A located on either the local bus or the 
system bus. If the master B259A Priority Interrupt 
Controller is positioned on the local bus, a TTL gate 
is required to disable the transceiver when reading 
from the master B259A during the interrupt acknpwl­
edge sequence and software '_'poll". 



inter 8086 

ABSOLUTE MAXIMUM RATINGS* 

AmbientTemperature Under Bias ...... O°C to 70°C 

Storage Temperature .......... -65°C to + 150°C 

Voltage on Any Pin with 
Respect to Ground .......•...... -J.OV to + 7V 

Power Dissipation ............................ 2.5W 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS (8086: TA = O°C to 70°C, Vee = 5V ± 10%) 
(8086-1:TA = O°C to 70°C, Vee = 5V ±5%) 
(8086-2: T A = O°C to 70°C, Vee = 5V ± 5 %) 

Symbol Parameter Min Max Units Test Conditions 

Vil Input Low Voltage -0.5 +0.8 V (Note 1) 

VIH Input High Voltage 2.0 Vee + 0.5 V (Notes 1, 2) 

VOL Output Low Voltage 0.45 V IOl = 2.5mA 

VOH Output High Voltage 2.4 V IOH = - 400 p.A 

lee Power Supply Current: 8086 340 
8086-1 360 mA TA = 25°C 
8086-2 350 

III Input Leakage Current ±10 p.A OV s VIN s Vee (Note 3) 

IlO Output Leakage Current ±10 p.A 0.45V s VOUT ::;: Vee 

Vel Clock Input Low Voltage -0.5 +0.6 V 

VeH Clock Input High Voltage 3.9 Vee + 1.0 V 

CIN Capacitance of Input Buffer 15 pF fc = 1 MHz 
(All input except 
ADo-ADI5, RQ/GT) 

CIO Capacitance of 1/0 Buffer 15 pF fc = 1 MHz 
(ADo-ADI5, RQ/GT) 

NOTES: 
1. VIL tested with MN/MX Pin = OV. VIH tested with MN/MX Pin = 5V. MN/MX Pin is a Strap Pin. 
2. Not applicable to RQ/GTO and RQ/GTI (Pins 30 and 31). 
3. HOLD and HlDA III min = 30 /LA, max = 500 /LA. 
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A.C. CHARACTERISTICS (8086: TA = 0·Cto70·C, Vee = 5V ± 10%) 
(8086-1:TA = 0·Ct.o70·C, Vee = 5V ± 5%) 
(8086-2: T A = O·C to 70·C, Vee = 5V ± 5%) 

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS 

Symbol Parameter 
8086 8086·1 8086·2 

Min Max Min Max Min Max 

TClCl ClK Cycle Period 200 500 100 500 125 500 

TClCH ClKlowTime 118 53 68 

TCHCl ClK High Time 69 39 44 

TCH1CH2 ClK Rise Time 10 10 10 

TCl2Cl1 ClK Fall Time 10 10 10 

TDVCl Data in Setup Time 30 5 20 

TClDX Data in Hold Time 10 10 10 

TR1VCl RDY Setup Time 35 35 35 
into 8284A (See 
Notes 1, 2) 

TClR1X RDY Hold Time 0 0 0 
into 8284A (See 
Notes 1, 2) 

TRYHCH READY Setup 118 53 68 
Time into 8086 

TCHRYX READY Hold Time 30 20 20 
into 8086 

TRYlCl READY Inactive to -8 -10 -8 
ClK (See Note 3) 

THVCH HOLD Setup Time 35 20 20 

TINVCH INTR, NMI, TEST 30 15 15 
Setup Time (See 
Note 2) 

TILIH Input Rise Time 20 20 20 
(Except ClK) 

TIHll Input Fall Time 12 12 12 
(Except ClK) 

2-15 

Units Test Conditions 

ns 

ns 

ns 

ns From 1.0V to 3.5V 

ns From 3.5V to 1.0V 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns From 0.8V to 2.0V 

ns From 2.0V to 0.8V 
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A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

Symbol Parameter 
8086 8086·1 8086·2 

Units Test 

Min Max Min Max Min Max Conditions 

TCLAV Address Valid Delay 10 1"10 10 50 10 60 ns .' 

TCLAX Address Hold Time 10 10 10 ns 

TCLAZ Address Float TCLAX 80 10 40 TCLAX 50 ns 
Delay 

TLHLL ALE Width TCLCH-20 TCLCH-10 TCLCH-10 ns 

TCLLH ALE Active Delay 80 40 50 ns 

TCHLL ALE Inactive Delay 85 45 55 ns 

TLLAX Address Hold Time TCHCL-10 TCHCL-10 TCHCL-10 ns 

TCLDV Data Valid Delay 10 110 10 50 10 60 ns 'Cl = 20:-1 PO pF 

TCHDX Data Hold Time 10 10 10 ns 
for all 8086 
Outputs (In 

TWHDX Data Hold Time TCLCH-30 TCLCH-25 TCLCH-30 ns addition to 8086 
AfterWR selfload) 

TCVCTV Control Active 10 110 10 50 10 70 ns 
Delay 1 

TCHCTV Control Active 10 110 10 45 10 60 ns 
Delay 2 

TCVCTX Control Inactive 10 110 10 50 10 70 ns 
Delay 

TAZRL Address Float to 0 0 0 ns 
READ Active 

TCLRL RD Active Delay 10 165 10 70 10 100 ns 

TCLRH RD Inactive Delay 10 150 10 60 10 BO ns 

TRHAV RD Inactive to Next TCLCL-45 TCLCL-35 TCLCL-40 ns 
Address Active 

TCLHAV HLDA Valid Delay 10 160 10 60 10 100 ns 

TRLRH· RDWidth 2TCLCL-75 2TCLCL-40 2TCLCL-50 ns 

TWLWH WRWidth 2TCLCL-60 2TCLCL-35 2TCLCL-40 ns 

TAVAL Address Valid to TCLCH-60 TCLCH-35 TCLCH-40 ns 
ALE Low 

TOLOH Output Rise Time 20 20 20 ns From 0.8V to 2.0V 

TOHOL Output Fall Time 12 12 12 ns From 2.0V to O.BV 

NOTES: 
1. Signal at B2B4A shown for reference only. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next elK. 
3. Applies only to T2 state. (B ns into T3). , 
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A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER l CL ='OOPF 
TEST 

231455-11 
-::-

A.C. Testing: Inputs are driven at 2,4V for a Logic "1" and 0,45V 
for a Logic "0". Timing measurements are made at 1.5V for both 
a Logie "1" and "0". Cl Includes Jig Capacitance 

231455-12 

WAVEFORMS 

MINIMUM MODE 

TI T2 T3 Tw T4 

VeH r-\I--TClC~TCH'CH2-1 HCCl2Cl'r'---. r-'L-' 
ClK (I284A OulpuQ j 

vc{ - - "---' 

MIlO 

ALE 

RDY (1284A InpuQ 
SEE NOTE 4 

.::; TCHCTV f +--- TCHCl - TCLCH - . 

TClAII- _ - TCLDVI- TCHDX. I-
__ ~ __ ~~ TC~X- ~ ,I~ 

'V�r----
iiilE.A,,-A,. J A 

~----r---~----r---~-J 
TClLH- y TLH1L-::::: 

r--
.J. /. 

-t--.,.JTCHlL!!YAL ~~±---+l:j---:-,--+_-TR-'-YC-l-+---+---+--...J'- - --

VIH-~ '\ 
V,L - _t>-l-f'=IC:::L-=Rt.'X-:---+---+------

_TLLAX 

TRVLCL- -

-" 
READY 1I0Il Inpull' I 

I 
1 

READ CYCLE 

(NOTE'. 
tWli, INfA = VOH) 

TC~V-

_ TAVAL I­
TLLAX-

I- -

--+-----'-1 
:!~LAZ 
~.CLAX 

-TRYHCH 

TDVCL---..~TCLDX-

AI!I-ADo DATA IN 

_+ ________ ~~-~I~::rLOAT __ r~~F-L-O-A-TT--~ __ TAZRL~ ~ TCLRH- ~ r-TRHAV---l 

~~~ ______ -+-JI~ 
.=L r-TCHCTY TCLRLI----I-O+--J'---TRLRH-----~ C. 

ri I \ I 
~-----------------+--+-------------+---_r-J 

TCYCTV- { TCYCTX- j(Jlr+-I-----------
'--______ J 

-TCHCTY 

231455-13 
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WAVEFORMS (Continued) 

MINIMUM MODE (Continued) 

CLK (8284A Oulpu~ 

M/ili 

ALE 

WRITE CYCLE I AD15-ADo -+---t----"'" 
(NOTE 1) DEN 

DTIR= VOHI (~"'iNTA'l 

INTA CYCLE 

(NOTESl & 31 

iili. WR-VOH 
IIRE=VoLl 

AD15-ADo 

DT/ii 

SOFTWARE HALT-
RD. WR.INTA = VOH 
DT/R = INDETERMINATE 

NOTES: 

TCVCTV-

INVALID ADDRESS 

TClAV 

1. All signals switch between VOH and VOL unless otherwise specified. 

TCVCTX-

SOFTWARE HALT 

2. RDY is sampled near the end of T 2. T 3. T w to determine if T w machines states are to be inserted. 

231455-14 

3. Two INTA cycles run back-to-back. The 8086 LOCAL ADDR/DATA BUS is floating during both INTA cycles. Control 
signals !ihown for second INTA cycle. 
4. Signals at 8284A are shown for reference only. 
5. All timing measurements are made at 1.5V unless otherwise noted. 
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A.C. CHARACTERISTICS 

MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) 
TIMING REQUIREMENTS 

Symbol Parameter 
8086 8086·1 

Min Max Min Max 

TClCl ClK Cycle Period 200 500 100 500 

TClCH ClK low Time 118 53 

TCHCl ClK High Time 69 39 

TCH1CH2 ClK Rise Time 10 10 

TCl2Cl1 ClKFaliTime 10 10 

TDVCl Data in Setup Time 30 5 

TClDX Data in Hold Time 10 10 

TR1VCl RDY Setup Time 35 35 
into 8284A 
(Notes 1, 2) 

TClR1X RDY Hold Time 0 0 
into 8284A 
(Notes 1, 2) 

TRYHCH READY Setup 118 53 
Time into 8086 

TCHRYX READY Hold Time 30 20 
into 8086 

TRYlCl READY Inactive to -8 -10 
ClK (Note 4) 

TINVCH Setup Time for 30 15 
Recognition (INTR, 
NMI, TEST) 
(Note 2) 

TGVCH RO/GT Setup Time 30 15 
(Note 5) 

TCHGX RO Hold Time into 40 20 
8086 

TILIH Input Rise Time 20 20 
(Except ClK) 

TIHll Input Fall Time 12 12 
(Except ClK) 
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8086·2 
Units Test 

Min Max Conditions 

125 500 ns 

68 ns 

44 ns 

10 ns From 1.0V to 3.5V 

10 ns From 3.5V to 1.OV 

20 ns 

10 ns 

35 ns 

0 ns 

68 ns 

20 ns 

-8 ns 

15 ns 

15 ns 

30 ns 

20 ns From 0.8V to 2.0V 

12 ns From 2.0V to 0.8V 



8086 

A.C. CHARACTERISTICS (Contin~ed) 

TIMING RESPONSES 

Symbol Parameter 
8086 8086-1 8086-2 

Units Test 

Min Max Min Max Min Max Conditions 

TClMl Command Active 10 35 10 35. 10 35 ns 
D~lay (See Note 1) 

TClMH Command Inactive 10 35 10 35 10 35 ns 
Delay (See Note 1) 

TRYHSH READY Active to 110 45 65 ns 
Status Passive (See 
Note 3) 

TCHSV Status Active Delay 10 110 10 45 10 60 ns-

TClSH Status Inactive 10 130 10 55 10 70 ns 
Delay 

TClAV Address Valid Delay 10 110 10 50 10 60 ns 

TCLAX Address Hold Time 10 10 10 ns 

TClAZ Address Float Delay TCLAX 80· 10 40 TCLAX 50 ns 

TSVlH Status Valid to ALE 15 15 15 ns 
High (See Note 1) 

TSVMCH Status Valid to 15 15 15 ns 
MCE High (See 
Note 1) 

TCllH ClK low to ALE 15 15 15 ns CL = 20-100 pF 
Valid (See Note 1) for all 8086 

TClMCH ClK low to MCE 15 15 15 ns 
Outputs (In 
addition to 8086 

High (See Note 1) self-load) 

TCHll ALE Inactive Delay 15 15 15 ns 
(See Note 1) 

TClMCl MCE Inactive Delay 15 15 15 ns 
(See Note 1) 

TClDV Data Valid Delay 10 110 10 50 10 60 ns 

TCHDX Data Hold Time 10 10 10 ns 

TCVNV Control Active 5 45 5 45 5 45 ns 
Delay (See Note 1) 

TCVNX Control Inactive 10 45 10 45 10 . 45 ns 
Delay (See Note 1) 

TAZRl Address Float to 0 0 0 ns 
READ Active 

TClRl RD Active Delay 10 165 10 70 10 100 ns 

TClRH RD Inactive Delay 10 150 10 60 10 80 ns 
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A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES (Continued) 

Symbol Parameter 
8086 8086-1 8086-2 

Units Test 

Min Max Min Max Min Max Conditions 

TRHAV RD Inactive to Next TCLCL-45 TCLCL-35 TCLCL-40 ns 
Address Active 

TCHDTL Direction Control 50 50 50 ns Cl = 20-100 pF 
Active Delay for all 8086 
(Note 1) Outputs (In 

addition to 8086 
TCHDTH Direction Control 30 30 30 ns self-load) 

Inactive Delay 
(Note 1) 

TCLGL GT Active Delay 0 85 0 38 0 50 ns 
(Note 5) 

TCLGH GT Inactive Delay 0 85 0 45 0 50 ns 

TRLRH RDWidth 2TCLCL-75 2TCLCL-40 2TCLCL-50 ns 

TOLOH Output Rise Time 20 20 20 ns From 0.8V to 2.0V 

TOHOL Output Fall Time 12 12 12 ns From 2.0V to 0.8V 

NOTES: 
1. Signal at 8284A or 8288 shown for reference only. 
2. Setup requirement for asynchronous Signal only to guarantee recognition at next ClK. 
3. Applies only to T3 and wait states. 
4. Applies only to T2 state (8 ns into T3l. 
5. Change from 1985 Handbook. 
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WAVEFORMS 

MAXIMUM MODE 

ClK VCHr--\ 

. ...1 VCl 
TCLAV-

OBo,OS, 

I---

-
TSVLH 
TCllH-

1 
ALE C8281 OUTPUT) 

SEE NOTE 5 

RDY C_INPUT) 

READ CYCLE 

1288 OUTPUTS 
SEE NOTES 5,8 

TClAV-

AD,,-ADo 

RD 

DTlli 

DEN 

8086 

T. T, 

. +CH'CH2--! H ,TCL2Cl' Tw 
I----TClC.>==\ 1'"",", 

,-f.\-~ - ,-, I::. r---r TCHCl !-TClCH-

.x 
TCHSV ~ TClSH 

------
W;0, WCSEE NOTE II \ 

.i=.TCLAV ~ClOV TCHDX- t-----TCLAX-.x iRE. A"-A,, )I( 87"53 

~- .r- TCHll I 

r--

-' \ I 
----

~~ 
I-TR1VCl , 

~,~ ~ ~ 
TRYLCl -

TRYHSH~I 
t-TCHRVX -

.... TClAXI-- I -l-
rVHCH-1 -

£: -TClAZ I- !::::.TDVCl- r-TClDX-

... - [f' DATA IN 

FL:~'--TAZRl- r-- TClRH TRHAV 

V 
TCHDTl- -I-- TClRl 

TRlAH 
TCHDTH 

TCLML-

~ 
TCLMH-+ 

h 
TCYNV- ~-, 

TCVNx-

231455-15 
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WAVEFORMS (Continued) 

MAXIMUM MODE (Continued) 

elK 

!i.I1.SO (EXCEPT HAL n 
WRITE CYCLE 

ADlI-ADo 

DEN 

8 ... OUTPUTS 

-~"Ul 
iMWc OR AIOWC 

MW1'C OR lowe 

INTACYCLE 

ADt5-ADo 
(SEE NOTES 3 & 4) 

ADu-ADo 

82'" OUJPUTS 
seE NOTES 5,6 

MeE! 
I'l!ER 

DT'~ 

IMTA 

DEN 

8086 

T. T. 

Tw 

DATA 

TCLMH-

TOVCL-

POINTER 

INVALID ADDRESS 

TCLAV 

T. 

TCVNX-

-TtLMH 

FLOAT 

TC DX 

FLOAT 

~ /r---------""T\ -------
'---_-----J ',-_____ _ 

'~----

TCHDTH 

231455-16 

NOTES: 
1. All signals switch between VOH and VOL unless otherwise specified. 
2. ROY is sampled near the end of T 2, T 3, T w to determine if T w machines states are to be inserted. 
3. Cascade address is valid between first and second INTA cycle. 
4. Two INTA cycles run back-to-back. The 8086 LOCAL ADDR/DATA BUS is floating during both INTA cycles. Control for 
pOinter address is shown for second INTA cycle . 

. 5. Signals at 8284A or 8288 are shown for reference only. 
6. The issuance of the 8288 command and control signals (MRDC, MWTC, AMWC, IORC, IOWC, AIOWC, INTA and DEN) 
lags the active high 8288 CEN. 
7. All timing measurements are made at 1.5V unless otherwise noted. 
8. Status inactive in state just prior to T 4. 
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WAVEFORMS (Continued) 

ASYNCHRONOUS SIGNAL RECOGNITION 

elK 

NMI 

1-: INTR 

iEsi 
" 231455-17 

NOTE: 
1. Setup requirements for asynchronous signals only to guarantee recognition at next elK. 

BUS LOCK SIGNAL TIMING (MAXIMUM MODE 
ONLY) 

Any cue CYCle-l Any eLK CYCle_I 

eLk 

-Loe-' ~,-____ -,-_T_el.J'P 

231455-18 

RESET TIMING 

Vce 

CLK 

RESET 

REQUEST IGRANT SEQUENCE TIMI.NG (MAXIMUM MODE ONLY) 

NOTE: 
The coprocessor may not drive the buses outside the region shown without risking contention. 
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WAVEFORMS.(Continued) 

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY) 

__ ~ , eLK CYClE-

CLk 

·-I~ 
HOlOJ 

HLOA 

AD..-ADo, 
A,tlSe-A,&lS" 
AD 
IR\ISL..M~ 
DT/A, WR, DeN 

-TCLHAV TCLHAV 

COPRO~I-ES_S_OR _____ -" 
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Mnemonic and 
Description 

DATA TRANSFER 

MOV = Move: 

Register/Memory to/from Register 

Immediate to Register/Memory 

Immediate to Register 

Memory to Accumulator 

Accumulator to Memory 

Register/Memory to Segment Register 

Segment Register to Register/Memory 

PUSH = Push: 

Register/Memory 

Register 

Segment Register 

POP = Pop: 

Register/Memory 

Register 

Segment Register 

XCHG = Exchange: 

Register/Memory with Register 

Register with Accumulator 

IN = Inputfrom: 

Fixed Port 

Variable Port 

OUT = Output to: 

Fixed Port 

Variable Port 

XLAT = Translate Byte to AL 

LEA = Load EA to Register 

LOS = Load Pointer to DS 

LES = Load Pointer to ES 

LAHF = Load AH with Flags 

SAHF = Store AH into Flags 

PUSHF = Push Flags 

POPF = Pop Flags . 

Mnemonics ® Intel, 1978 

8086 

Table 2. Instruction Set Summary 

I Instruction Code 

76543210 76543210 76543210 76543210 

1 100010dw mod reg rIm 

1 1100011w modOOOr/m data 1 dataifw= 1 

1 1011 wreg data dataifw = 1 I. 
1 1010000w addr-Iow addr-high I 

.1 1010001w addr-Iow addr-high I 
1 10001110 mod o reg rIm 

1 10001100 mod o reg rIm 

11111111 modl10r/m 

01010reg 

000regl10 

10001111 modOOOr/m 

01011 reg 

OOOreglll 

1000011w modregr/m 

10010reg 

1110010w port 

1110110w 

1110011w port 

1110111 w 

11010111 

10001101 mod reg r/m 

11000101 modregr/m 

11000100 mod regr/m 

) 00 11111 

10011110 

10011100 

10011101 

2-26 



intJ 

ARITHMETIC 

ADD = Add: 

Mnemonic and 
Description 

Reg.lMemory with Register to Either 

Immediate to Register/Memory 

Immediate to Accumulator 

ADC = Add with Carry: 

Reg.lMemory with Register to Either 

Immediate to Register/Memory 

Immediate to Accumulator 

INC = Increment: 

Register/Memory 

Register 

AAA = ASCII Adjust for Add 

BAA = Decimal Adjust for Add 

SUB = Subtract: 

Reg.lMemory and Register to Either 

Immediate from Register/Memory 

Immediate from Accumulator 

SSB = Subtract with Borrow 

Reg.lMemory and Register to Either 

Immediate from Register/Memory 

Immediate from Accumulator 

DEC = Decrement: 

Register/memory 

Register 

NEG = Change sign 

CMP = Compare: 

Register/Memory and Register 

Immediate with Register IMemory 

Immediate with Accumulator 

AAS = ASCII Adjust for Subtract 

DAS = Decimal Adjust for Subtract 

MUL = Multiply (Unsigned) 

IMUL = Integer Multiply (Signed) 

AAM = ASCII Adjustfor Multiply 

DIV = Divide (Unsigned) 

IDIV = Integer Divide (Signed) 

AAD = ASCII Adjust for Divide 

CBW = Convert Byte to Word 

CWO = Convert Word to Double Word 

Mnemonics © Intel, 1978 

8086 

Table 2. Instruction Set Summary (Continued) 

I Instruction Code 

76543210 76543210 76543210 76543210 

OOOOOOdw mod reg rIm 

100000sw modOOOr/m data dataifs:w = 01 

0000010w data dataifw = 1 

000100dw mod reg rIm 

100000sw mod 0 10 rIm data dataifs:w = 01 

0001010w data dataifw = 1 

l111111w modOOOr/m 

01000reg 

00110111 

00100111 

001010dw mod reg rIm 

100000sw mod 101 rIm data dataifsw = 01 

0010110w data dataifw = 1 

000110dw mod reg rIm 

100000sw modOl1 rIm data dataifsw = 01 

000111w data' dataifw = 1 

lllllllw ·mod 00 l·r/m 

01001 reg 

1111011 w modO 11 rIm 

001110dw mod reg rIm 

100000sw mod 111 rIm data dataifsw = 01 

0011110w data' dataifw = 1 

00111111 

00101111 

1111011 w mod 1 OOr/m 

11110'llw mod 1 01 rIm 

11010100 00001010 

1111011w mod 11 o rIm 

1111011w mod 111 rIm 

11010101 00001010 

10011000 

10011001 ' 
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Table 2. Instruction Set Summary (Continued) 

Mnemonic and I Instruction Code Description 

LOGIC 76543210 76543210 76543210 76543210 

NOT = Invert .I 1111011 w modOl0r/m 

SHL/SAL = Shift Logicall Arithmetic Left I 110100vw modl00r/m 

SHR = Shift Logical Right I 11011l0vw mod 101 rim 

SAR = Shift Arithmetic Right I 110100vw mod 111 rim 

ROL = Rotate Left I 110100vw modOOOr/m, 

ROR = Rotate Right I 110100vw modOOlr/m 

RCL = Rotate Through Carry Flag Left I 1101'OOvw modOl0r/m 

RCR = Rotate Through Carry Right I 110100vw modOllr/m 

AND = And: 

Reg.lMemory and Reglster'to Either I 001000dw mod reg rim 

Immediate to Register/Memory I 1000000w mod 1 OOr/m data dataifw = 1 

Immediate to Accumulator I 0010010w data dataifw=1 

TEST = And Function to Flags, No Result: 

Register/Memory and Register 1000010w mod reg rim 

Immediate Data and Register/Memory 1111011w modOO 0 rim data dataifw= 1 

Immediate Data and Accumulator 1010100w data dataifw = 1 

OR = Or: 

Reg.lMemory and Register to Either 0OOO10dw mod reg rim 

Immediate to Register/Memory 1000000w modOOlr/m data data ifw = 1 

Immediate to Accumulator 0OOO110w data dataifw = 1 

XOR = Exclusive or: 

Reg.lMemory and Register to Either 001100dw mod reg rim 

Ir:nmediate to Register/Memory 1000000w mod 11 Or/m data data ifw = 1 I 
Immediate to Accumulator 0011010w data data ifw = 1 

STRING MANIPULATION 

REP = Repeat 1111001 z 

MOYS = Move Byte/Word 1010010w 

CMPS = Compare Byte/Word 1010011 w 

SCAS = Scan Byte/Word 1010111 w 

LODS = Load Byte/Wd to ALI AX 1010110w 

STOS = Stor Byte/Wd from ALIA 1010101 w 

CONTROL TRANSFER 

CALL = Cajl: 

Direct within Segment 11101000. disp-Iow disp-high 

Indirect within Segment 11111111 modO 1 o rim 

Direct Intersegment 10011010 offset-low offset-high 

seg-Iow seg-high 

Indirect Intersegment 11.111111 modO 11 rim 

Mnemonics @ Intel, 1978 
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Table 2. Instruction Set Summary (Continued) 

Mnemonic and 
Description 

JMP = Unconditional Jump: 

Direct within Segment 

Direct within Segment·Short 

Indirect within Segment 

Direct In!ersegmen! 

Indirect Intersegment 

RET = Return from CALL: 

Within Segment 

Within Seg Adding Immed to SP 

Intersegment 

Intersegment Adding Immediate to SP 

JE/JZ = Jump on Equal/Zero 

JUJNGE = Jump on Less/Not Greater 
or Equal 

JLEI JNG = Jump on Less or Equal! 
Not Greater 

JB/JNAE = Jump on Below/Not Above 
or Equal 

JBEI JNA = Jump on Below or Equal/ 
Not Above 

JP/JPE = Jump on Parity/Parity Even 

JO = Jump on Overflow 

JS = Jump on Sign 

JNE/JNZ = Jump on Not Equal/Not Zero 

JNL/JGE = Jump on Not Less/Greater 
or Equal 

JNLE/JG = Jump on Not Less or Equall 
Greater 

JNB/JAE = Jump on Not Below/Above 
or Equal 

JNBE/JA, = Jump on Not Below or 
Equal/Above 

JNP/JPO = Jump on Not Par/Par Odd 

JNO = Ju.mp on Not Overflow 

JNS = Jump on Not Sign 

LOOP = Loop ex Times 

LOOPZlLOOPE = Loop While Zero/Equal 

LOOPNZ/LOOPNE = Loop While Not 
Zero/Equal 

JCXZ = Jump on ex Zero 

INT = Interrupt 

Type Specified 

Type 3 

INTO = Interrupt on Overflow 

IRET = Interrupt Return 

I Instruction Code 

76543210 76543210 76543210 

1110100 1 disp-Iow disp-high 

11101011 disp 

11111111 mod100r/m 

11101010 offset-low offset-high 

seg-Iow seg-high 

11111111 mod 10 1 rim 

110000 11 

11000010 data-low data-high 

1100 1 a 11 

11001010 data-low data-high 

01110100 disp 

01111100 disp 

01111110 disp 

01110010 disp 

a 111 a 110 disp 

a 11110 10 disp 

01110000 disp 

01111000 disp 

01110101 disp 

01111101 disp 

01111111 disp 

01110011 disp 

01110111 disp 

01111011 disp 

01110001 disp 

01111001 disp 

11100010 disp 

11100001 disp 

11100000 disp 

111000 11 disp 

11001101 type 

11001100 

11001110 

11001111 
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Table 2. Instruction Set Summary (Continued) 

Mnemonic and 
Description 

.PROCESSOR CONTROL 

CLC = Clear Carry· 

CMC = Complement Carry 

STC = Set Carry 

CLD = Clear Direction 

STD = Set Direction 

CLI = Clear Interrupt 

STI = Set Interrupt 

HLT = Halt 

WAIT = Wait 

ESC = Escape (to External Device) 

LOCK = Bus Lock Prefix 

NOTES: 
AL = 8-bit accumulator 
AX = 16-bit accumulator 
CX = Count register 
OS = Data segment 
ES = Extra segment 

. I 

Above/below refers to unsigned value 
Greater = more positive; 

76543210 

11111000 . 

11110101 

1111100" 

11111100 

11111101 

·11111010 

11111011 

1111·0100 

10011011 

11011 xxx 

11110000 

Less = less positive (more negative) signed values 
if d = 1 then "to" reg; if d = 0 then "from" reg 
if w = 1 then word instruction; if w = 0 then byte instruc­

tion 
if mod = 11 then rim is treated as a REG field 
if mod = 00 then OISP = 0·, disp-Iow and disp-high are 

absent 
if mod = 01 then OISP = disp-Iow sign-extended to 

16 bits, disp-high is absent 
if mod = 10 then OISP = disp-high; disp-Iow 
if rim = 000 then EA = (BX) + (SI) + OISP 
if rim = 001 then EA = (BX) + (01) + OISP 
if rim = 010 then EA = (BP) + (SI) + OISP 
if rim = 011 then EA = (BP) + (01) + OISP 
if rim = .100 then EA = (SI) + OISP 
if rim = 101 then EA = (01) + OISP 
if rim = 110 then EA = (BP) + DISp· 
if rim = 111 then EA = (BX) + DISP 
OISP follows 2nd byte of instruction (before data if re­

quired) 
·except if mod = 00 and rim = 110 then EA = disp-high; 

disp-Iow. 

Mnemonics @ Intel, 1978 

DATA SHEET REVISION REVIEW 

Instruction Code 

76543210 

modxxxr/m 

if s w = 01 then 16 bits of immediate data form the oper-
and .. 

if s w = 11 then an immediate data byte is sign extended 
to form the 16-bit operand 

if v = 0 then "count" = 1; if v = 1 then "count" in (eL) 
x = don't care 
z is used for. string primitives for comparison with ZF FLAG 

SEGMENT OVERRIDE PREFIX. 

001reg110 

REG is assigned according to the following table: 

16-Blt (w= 1) a-Bit(w = 0) Segment 

000 AX 000 AL 00 ES 
001 CX 001 CL 01 CS 
010 OX 010 DL 10 SS 
011 BX 011 BL 11 05 
100 5P 100 AH. 
101 BP 101 CH 
110 SI 110 DH 
111 01 111 BH 

Instructions which reference the flag register file as a 16-blt 
object use the symbol FLAGS to represent the file: 
FLAGS = x:x:x:x:(OF):(DF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF) 

The following list represents key differences between this and the -003 data sheet. Please review this summa­
ry carefully. 

1. The Pin Description Table has been modified to indicate that the HOLD and HLDA pins both have internal 
pull-up resistors. The input leakage current (Ill) in the D.C. CHARACTERISTICS section has been modified 
for these pins. . 
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80C86A 
16-BIT CHMOS MICROPROCESSOR 

• Pin-for-Pin and Functionally Compatible • Architecture Designed for Powerful 
to Industry Standard HMOS 8086 . Assembly Language and Efficient High 

• Fully Static Design with Frequency Level Languages 

Range from D.C. to: • 24 Operand Addressing Modes 
- 8 MHz for 80C86A-2 • Byte, Word and Block Operations 

• Low Power Operation • 8 and 16-Bit Signed and Unsigned 
- Operating Icc = 10 mAlMHz Arithmetic 
- Standby ·Iccs = 500 /LA max - Binary or Decimal 

• Bus-Hold Circuitry Eliminates Pull-Up - Multiply and Divide 
Resistors • Available in 40-Lead Plastic DIP 

• Direct Addressing Capability of 
1 MByte of Memory 

The Intel 80C86A is a high performance, CHMOS version of the industry standard HMOS 8086 16·bit CPU. 
The 80C86A available in 8 MHz clock rates, offers two modes of operation: MINimum for small systems and 
MAXimum for larger applications such as mUltiprocessing. It is available in 40-pin DIP package. 

EXECUTION UNIT BUS INTERfAC£ UNIT 

,--.:::.:::'--'---- BHElSr 
A.e'S. 

"1-", 

DTtFi.~.ALE 

'--n--'-Y 

ftfi--~------':::':::'-------, 
I~T 

N~' 

HOUl 
HUl'--~'-~'---r __ ~~~ 

eLK RESET READY MNlAlX GND 
Voc 

Figure 1. 80e86A 
CPU Block Diagram 
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Figure 2. 80C86A 
40-Lead DIP Configuration 
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Table 1. Pin Description 

The following pin function descriptions are for 80CB6AA systems in either minimum or maximum mode. The 
':Local Bus" in these descriptions is the direct multiplexed bus interface connection to the 80CB6A (without 
regard to additional bus buffers). 

Symbol Pin No. Type Name and Function 

AD1S-ADo 2-16,39 110 ADDRESS DATA BUS: These lines constitute the time multiplexed 
memory/IO address (T1) and data (T2,T3, Tw, T4) bus. Ao is 
analogous to SHE for the lower byte of the data bus, pins D7-DO. It 
is lOW during T 1 when a byte is to be transferred on the lower 
portion of the bus in memory or I/O operations. Eight-bit oriented 
devices tied to the lower half would normally use Ao to condition 
chip select functions. (See SHE.) These lines are active HIGH and 
float to 3-state OFF(1) during interrupt acknowledge and local bus 
"hold acknowledge." 

A19/S6, 35-38 0 ADDRESS/STATUS: During T1 these are the four most significant 
A18/SS, address lines for memory operations. During I/O operations 
A17/S4, these lines are lOW. During memory and I/O operations, 
A16/S3 status information is available on these lines during T 2, T 3, T W, 

and T 4. The status of the interrupt enable FLAG bit (Ss) is updated 
at the beginning of each ClK cycle. A17/S4 and A16/S3 are 
encoded as shown. 

This information indicates which relocation register is presently 
being used for data accessing. 

These lines float to 3-state OFF(1) during local bus "hold 
acknowledge. " 

A 17/S4 A 16/S3 Characteristics 

o (lOW) 0 Alternate Data 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 1 Data 
S6 isO 
(lOW) 

SHE/57 34 0 BUS HIGH ENABLE/STATUS: During T 1 the bus high enable signal 
(SHE) should be used to enable data onto the most significant half 
of the data bus, pins D1S-D8. Eight-bit oriented devices tied to the 
upper half of the bus would normally use SHE to condition chip 
select functions. BHE is lOW during T1 for read, write, and interrupt 
acknowledge cycles when a byte is to be transferred on the high 
portion of the bus. The 57 status information is available during T 2, 
T 3, and T 4. The signal is active lOW, and floats to 3-state OFF(1) in 
"hold." It is LOW during T1 for the first interrupt acknowledge cycle. 

BHE Ao Characteristics 

0 0 Whole word 
0 1 Upper byte from/ 

to odd address 
1 0 lower byte from/ 

to even address 
1 1 None 
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Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

RD 32 0 READ: Read strobe indicates that the processor is performing a 
memory of 110 read cycle, depending on the state of the S2 pin. 
This signal is used to read devices which reside on the 80C86A 
local bus. RD is active lOW during T 2, T 3 and T w of any read cycle, 
and is guaranteed to remain HIGH in T 2 until the 80C86A local bus 
has floated. 

This floats to 3-state OFF in "hold acknowledge." 

READY 22 I READY: is the acknowledgement from the addressed memory or 
1/0 device that it will complete the data transfer. The READY signal 
from memory/lO is synchronized by the 82C84A Clock Generator 
to form READY. This signal is active HIGH. The 80C86A READY 
input is not synchronized. Correct operation is not guaranteed if the 
setup and hold times are not met. 

INTR 18 I INTERRUPT REQUEST: is a level triggered input which is sampled 
during the last clock cycle of each instruction to determine if the 
processor should enter into an interrupt acknowledge operation. A 
subroutine is vectored to via an interrupt vector lookup table 
located in system memory. It can be internally masked by software 
resetting the interrupt enable bit. INTR is internally synchronized. 
This signal is active HIGH. 

TEST 23 I TEST: input is examined by the "Wait" instruction. If the TEST input 
is lOW execution continues, otherwise the processor waits in an 
"Idle" state. This input is synchronized internally during each clock 
cycle on the leading edge of ClK. 

NMI 17 I NON-MASKABLE INTERRUPT: an edge triggered input which 
causes a type 2 interrupt. A subroutine is vectored to via an 
interrupt vector lookup table located in system memory. NMI is not 
maskable internally by software. A transition from a lOW to HIGH 
initiates the interrupt at the end of the current instruction. This input 
is internally synchronized. 

RESET 21 I RESET: causes the processor to immediately terminate its present 
activity. The signal must be active HIGH for at least four clock 
cycles. It restarts execution, as described in the Instruction Set 
description, when RESET returns lOW. RESET is internally 
synchronized. 

ClK 19 I CLOCK: provides the basic timing for the processor and bus 
controller. It is asymmetric with a 33% duty cycle to provide 
optimized internal timing. 

Vee 40 Vee: + 5V power supply pin. 

GND 1,20 GROUND: Both must be connected. 

MN/MX 33 I MINIMUM/MAXIMUM: indicates what mode the processor is to 
operate in. The two modes are discussed in the following sections. 
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Table 1. Pin Description (Continued) 

The fol/owing pin function descriptions are for the 80C86AI82C88 system in maximum mode (ie., 
MNIMX= VssJ. Only the pin functions which are unique to maximum mode are described; aI/ other pin func· 
tions are as described above. _ 

Symbol Pin No. Type Name and Function 

52,51,50 26-28 0 STATUS: active during T 4, T 1, and T 2 and is returned to the passive 
state (1,1,1) during T 3 or during T w when READY is HIGH. This 
status is used by the 82C88 Bus Controller to ge'nerate all memory 
and 1/0 access control signals. Any change by 52, 51, 50 during T 4 
is used to indicate the beginning of a bus cycle, and the return to the 
passive state in T 3 or T w is used to indicate the end of a bus cycle. 

These signals float to 3-state OFF(1) in "hold acknowledge." These 
status lines are encoded as shown. 

52 51 50 Characteristics 

o (lOW) 0 0 Interrupt 
Acknowledge 

0 0 1 Read 1/0 Port 
0 1 0 Write 1/0 Port 
0 1 1 Halt 
1 (HIGH) 0 0 Code Access 
1 0 1 Read Memory 
1 1 0 Write Memory 
1 1 1 Passive 

RQ/GTo, 30,31 1/0 REQUEST/GRANT: pins are used by other local bus masters to 
RQ/GT1 force the processor to release the local bus at the end of the 

processor's current bus cycle. Each pin is bidirectional with RQ/GT 0 
having higher priority than RQ/GT1. RQ/GT has an internal pull-up 
resistor so may be left unconnected. The request/grant sequence is 
as follows (see timing diagram): 

1. A pulse of 1 ClK wide from another local bus master indicates a 
local bus request ("hold") to the 80C86A (pulse 1). 
2. During a T 4 or T 1 clock cycle, a pulse 1 ClK wide from the 
80C86A to the requesting master (pulse 2), indicates that the 
80C86A has allowed the local bus to float and that it will enter the 
"hold acknowledge" state at the next ClK. The CPU's bus interface 
unit is disconnected logically from the local bus during "hold 
acknowledge. " 
3. A pulse 1 ClK wide from the requesting master indicates to the 
80C86A (pulse 3) that the "hold" request is about to end and that 
80C86A can reclaim the Iqcal bus at the next ClK. 

Each master-master exchange of the local bus is a sequence of 3 
pulses. There must be one dead ClK cycle after each bus exchange. 
Pulses are active lOW. 

If the request is made while the CPU is performing a memory cycle, it 
will release the local bus during T 4 of the cycle when all the following 
conditions are met: 

1. Request occurs on or before T 2. 
2. Current cycle is not the low byte of a word (on an odd address). 
3. Current cycle is not the first acknowledge of an interrupt 
acknowledge sequence. 
4. A locked instruction is not currently executing. 
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Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

If the local bus is idle when the request is made the two possible 
events will follow: 

1. Local bus will be released during the next clock. 
2. A memory cycle will start within 3 clocks. Now the four rules for a 
currently active memory cycle apply with condition number 1 already 
satisfied. 

LOCK 29 a LOCK: output indicates that other system bus masters are not to gain 
control of the system bus while LOCK is active LOW. The LOCK 
signal is activated by the "LOCK" prefix instru~tion and remains 
active until the completion of the next instruction. This signal is active 
LOW, and floats to 3-state OFF(1) in "hold acknowledge." 

QS1,QSO 24,25 a QUEUE STATUS: The queue status is valid during the CLK cycle 
after which the queue operation is performed. 
QS1 and QSo provide status to allow external tracking of the internal 
80C86A instruction queue. 

QS1 QSo Characteristics 

o (LOW) 0 No Operation 
0 1 First Byte of Op Code from Queue 
1 (HIGH) 0 Empty the Queue 
1 1 Subsequent Byte from Queue 

The following pin function descriptions are for the BOCB6A in minimum mode (i.e., MNIMX= Vee). Only the 
pin functions which are unique to minimum mode are described; all other pin functions are described above. 

MilO 28 a ST~TUS LINE: logically equivalent to S2 in the maximum mode .. lt 
is used to distinguish a memory access from an 1/0 access. MIlO 
becomes valid in the T 4 preceding a bus cycle and remains valid 
until the final T4 of the cycle (M=HIGH, 10= LOW). MIlO floats to 
3-state OFF(1) in local bus "hold acknowledge." 

WR 29 a WRITE: indicates that the processor is performing a write memory 
or write 1/0 cycle, depending on the state of the MIlO signal. WR is 
active for T 2, T 3 and T w of any write cycle. It is active LOW, and 
floats to 3-state OFF(1) in local bus "hold acknowledge." 

INTA 24 a INTA is used as a read strobe for interrupt acknowledge cycles. It is· 
active LOW during T 2, T 3 and T w of each interrupt acknowledge 
cycle. 

ALE 25 a ADDRESS LATCH ENABLE: provided by the processor to latch 
the address into an address latch. It is a HIGH pulse active during 
T 1 of any bus cycle. Note ·that ALE is never floated. 

DT/R 27 a DATA TRANSMIT/RECEIVE: needed in minimum system that 
desires to use a data bus transceiver. It is used to control the 
direction of data flow through the transceiver. Logically DT /Fi is 
equivalent to 51 in the maximum mode, and its timing is the same 
as for MIlO. (T = HIGH, R = LOW.) This signal floats to 3-state. 
OFF(1) in local bus "hold acknowledge." 
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Table 1 Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

DEN 26 0 DATA ENABLE: provided as an output enable for the transceiver in 
a minimum system which uses the transceiver. DEN is active LOW 
during each memory and I/O access and for INTA cycles. For a 
read or I NT A cycle it is active from the middle of T 2 until the middle 
of T 4, while for a write cycle it is active from the beginning of T 2 
until the middle of T 4. DEN floats to 3-state OFF(1) in local bus 
"hold acknowledge." 

HOLD, 31,30 I/O HOLD: indicates that another master is requesting a local bus 
HLDA "hold." To be acknowledged, HOLD must be active HIGH. The 

processor receiving the "hold" request will issue HLDA (HIGH) as 
an acknowledgement in the middle of a T 4 or"Ti clock cycle. 
Simultaneous with the issuance of HLDA the processor will float the 
local bus and control lines. After HOLD is detected as being LOW, 
the processor will LOWer the HLDA, and when the processor 
needs to run another cycle, it will again drive the local. bus and' 
control lines. 
The same rules as for RQ/GT apply regarding when the local bus 
will be released. 
HOLD is not an asynchronous input. External synchronization 
should be provided if the system cannot otherwise guarantee the 
setup time. 

NOTE: 
1. See the section on Bus Hold Circuitry. 

FUNCTIONAL DESCRIPTION 

STATIC OPERATION 

All BOCB6A circuitry is of static design. Internal regis­
ters, counters and latches are static and require no 
refresh as with dynamic circuit design. This elimi­
nates the minimum operating frequency restriction 
placed on other microprocessors. The CMOS 
BOCB6A can operate from DC to the appropriate up­
per frequency limit. The processor clock may ?e 
stopped in either state (high/low) and held there In­
definitely. This type of operation is especially useful 
for system debug or power critical· applications. 

The BOCB6A can be single stepped using only the 
CPU clock. This state can be maintained as long as 
is necessary. Single step clock operation allows sim­
ple interface circuitry to provide critical information 
for bringing up your system. 

Static design also allows very low frequency opera­
tion. In a power critical situation, this can provide 
extremely low power operation since BOCB6A power 
dissipation is directly related to operating frequency. 
As the system frequency is reduced, so is the oper­
ating power until, ultimately, at a DC input frequency, 
the BOCB6A power requirement is the standby cur­
rent. 

2-36 

INTERNAL ARCHITECTURE 

The internal functions of the BOCB6A processor are 
partitioned logically into two processing units. The 
first is the Bus Interface Unit (BIU) and the second is 
the Execution Unit (EU) as shown in the block dia­
gram of Figure 1. 

These units can interact directly but for the most 
part perform as separate asynchronous operational 
processors. The bus interface unit provides the func­
tions related to instruction fetching and queuing, op­
erand fetch and store, and address relocation. This 
unit also provides the basic bus control. The overlap 
of instruction pre-fetching provided by this unit 
serves to increase processor performance through 
improved bus bandwidth utilization. Up to 6 bytes of 
the instruction stream can be queued while waiting 
for decoding and execution. 

The instruction stream queuing mechanism allows 
the BIU to keep the memory utilized very efficiently. 
Whenever there is space for at least 2 bytes in the 
queue, the BIU will attempt a word fetch memory 
cycle. This greatly reduces "dead time" on the 
memory bus. The queue acts as a First-In-First Out 
(FIFO) buffer, from which the EU extracts instruction 
bytes as required. If the queue is empty (following a 
branch instruction, for example), the first byte into 
the queue immediately becomes available to the EU. 
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Memory Segment Register Segment 
Reference Need Used Selection Rule 

Instructions CODE (CS) Automatic with all instruction prefetch. 

Stack STACK (SS) All stack pushes and pops. Memory references relative to BP 
base register except data references. 

Local Data DATA (OS) . Data references when: relative to stack, destination of string 
operation, or explicitly overridden. 

External (Global) Data EXTRA (ES) Destination of string operations: Explicitly selected using a 
segment override. 

The execution units receives pre-fetched instruc­
tions from the BIU queue and provides un-relocated 
operand addresses to the BIU. Memory operands 
are passed through the BIU for processing by the 
EU, which passes results to the BIU for storage. See 
the Instruction Set description for further register set 
and architectural descriptions. 

MEMORY ORGANIZATION 

The processor provides a 20-bit address to memory 
which locates the byte being referenced. The memo­
ry is organized as a linear array of up to 1 million 
bytes, addressed as OOOOO(H) to FFFFF(H). The 
memory is logically divided into code, data, extra 
data, and stack segments of up to 64k bytes each, 
with each segment falling on 16-byte boundaries. 
(See Figure 3a.) 

T 64t8 

+ OJrSET 

SEGMENT 
REGISTER FILE 

r---"1. FFFFFH 

----
r---

-

} COOE SEGMENT 

XXXXOH 

} STACK SEGMENT 

} DATA SEGMENT 

r---
} EXTRA DATA SEGMENT 

~OOOOOH 
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Figure 3a. Memory Organization 

, All memory references are made relative to base ad­
dresses contained in high speed segment registers. 
The segment types were chosen based on the ad­
dressing needs of programs. The segment register 
to be selected is automatically chosen according to 
the rules of the following table. All information in one 
segment type share the same logical attributes (e.g. 
code or data). By structuring memory into relocat­
able areas of similar characteristics and byautomati­
cally selecting segment registers, programs are 
shorter, faster, and more structured. 
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Word (16-bit) operands can be located on even or 
odd address boundaries and are thus not con­
strained to even boundaries as is the case in many 
16-bit computers. For address and data operands, 
the least significant byte of the word is stored in the 
lower valued address location and the most signifi­
cant byte in the next higher address location. The 
BIU automatically performs the proper number of 
memory accesses, one if the word operand is on an 
even byte boundary and two if it is on an odd byte 
boundary. Except for the performance penalty, this 
double access is transparent to the software. This 
performance penalty does not occur for instruction 
fetches, only word operands. 

Physically, the memory is organized as a high bank 
(015-08) and a low bank (07-00) of 512k S-bit 
bytes addressed in parallel by the processor's ad­
dress lines. 

A19-A1. Byte data with even addresses is trans­
ferred on the 07-00 bus lines while odd addressed 
byte data (Ao HIGH) is transferred on the 015-08 
bus lines. The processor provides two enable sig­
nals, BHE and Ao, to selectively allow reading from 
or writing into either an odd byte location, even byte 
location, or both. The instruction stream is fetched 
from memory as words and is addressed internally 
by the processor to the byte level as necessary. 

In referencing word data the BIU requires one or two 
memory cycles depending on whether or not the 
starting byte of the word is on an even or odd ad­
dress, respectively. Consequently, in referencing 
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word operands performance can be optimized by lo­
cating data on even address boundaries. This is an . 
especially useful technique for using the stack, since 
odd address references to the stack may adversely 
affect the context switching time for interrupt pro­
cessing or task multiplexing. 

Certain locations in memory are reserved for specific 
CPU operations (see Figure 3b.) locations from ad­
dress FFFFOH through FFFFFH are reserved for op­
erations including a jump to the initial program load­
ing routine. Following RESET, the CPU will always 
begin execution at location FFFFOH where the jump 
must be. locations OOOOOH through 003FFH are re­
served for interrupt operations. Each of the 256 pos­
sible interrupt types has its service routine pointed to 
by a 4-byte pOinter element consisting of a 16-bit 
segment address and a 16-bit offset address. The 
pOinter elements are assumed to have been stored 
at the respective places in reserved memory prior to 
occurrence of interrupts. 

~--------------~FFFFFH 

RESET BOOTSTRAP 
PROGRAM JUMP 

~ ______________ ~FFFFOH 

~--------------~3FFH 
INTERRUPT POINTER 

FOR TYPE 255 
~ ______________ ~3FCH 

~--------------~7H 
INTERRUPT POINTER 

FOR TYPE 1 

~-I-N-TE-R-R-U-PT--PO-I-N-T-ER----i~~ 
FOR TYPE 0 ~ ______________ ~OH 
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Figure 3b. Reserved Memory locations 

MINIMUM AND MAXIMUM MODES 

The requirements for supporting minimum and maxi­
mum 80C86A systems are sufficiently different that 

they cannot be done efficiently with 40 uniquely de­
fined pins. Conseque'!!!!y, the 80C86A is equipped 
with a strap pin (MN/MX) which defines the system 
configuration. The definition of a certain subset of 
the pins changes dependent on the condition of the 
strap pin. When MN/MX pin is strapped to GND, the 
80C86A treats pins 24 through 31 in maximum 
mode. An 82C88 bus controller interprets status in- . 
formation coded into 50, 51, 52 to generate bus tim­
ing and control signals compatible with the MUl TI­
BUS® architecture. When the MN/MX pin is 
strapped to Vee, the 80C86A generates bus control 
signals itself on pins 24 through 31, as shown in 
parentheses in Figure 2. Examples of minimum 
mode and maximum mode systems are shown in 
Figure 4. 

BUS OPERATION 

The 80C86A has a combined address and data bus 
commonly referred to as a time multiplexed· bus. 
This technique provides the most efficient use of 
pins on the processor. This "local bus" can be buff­
ered directly and used throughout the system with 
address latching provided on memory and 1/0 mod­
ules. In addition, the bus can also be demultiplexed 
at the processor with a single set of address latches 
if a standard non-multiplexed bus is desired for the 
system. 

Each processor bus cycle consists of at least four 
ClK cycles. These are referred to as T 1, T 2, T 3 and 
T 4 (see Figure 5). The address is emitted from the 
processor during T 1 and data transfer occurs on the 
bus during T 3 and T 4. T 2 is used primarily for chang­
ing the direction of the bus during read operations. In 
the event that a "NOT READY" indication is given 
by the addressed device, "Wait" states (T w) are in­
serted between T 3 and T 4. Each inserted "Wait" 

. state is of the same duration as a ClK cycle. Periods 
can occur between 80C86A bus cycles. These are 
referred to as "Idle" states (Ti) or inactive ClK cy­
cles. The processor uses these cycles for internal 
housekeeping. 

During T 1 of any bus cycle the ALE (Address latch 
Enable) signal is emitted (by either the processor or 
the 82C88 bus controller, depending on the MN/MX 
strap). At the trailing edge of this pulse, a valid ad­
dress and certain status information for the cycle 
may be latched. 
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Figure 4b. Maximum Mode 80C86A Typical Configuration 

2-39 



80C86A 
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Figure 5. Basic System Timing 

Status bits 50, 51, and 52 are used, in maximum 
mode, by the bus controller to identify the type of 
bus transaction according to the following table: 

S2 S1 So Characteristics 

o (LOW) 0 0 Interrupt Acknowledge 
0 0 1 Read liD 
0 1 0 Write 110 
0 1 1 Halt 
1 (HIGH) 0 0 Instruction Fetch 
1 O· 1 Read Data from Memory 
1 1 0 Write data to Memory 
1 1 1 Passive (no bus cycle) 

Status bits S3 through S7 are multiplexed with high· 
order address bits and the SHE signal, and are 
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therefore valid during T 2 through T 4. S3 and S4 indio 
cate which segment register (see Instruction Set de­
scription) was used for this bus cycle in forming the 
address, according to the following table: 

S4 S3 Characteristics 

o (LOW) 0 Alternate Data (extra segment) 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 1 Data 

S5 is a reflection of the PSW interrupt enable bit. 
S6 = 0 and S7 is a spare status pin. 
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I/O ADDRESSING 

In the 80C86A, 110 operations can address up to a 
maximum of 64k 110 byte registers or 32k 110 word 
registers. The 110 address appears in the same for­
mat as the memory address on bus lines A15-AO. 
The address lines A19-A16 are zero in 110 opera­
tions. The variable 110 instructions which use regis­
ter OX as a pointer have full address capability while 
the direct 110 instructions directly address one or 
two of the 256 110 byte locations in'page 0 of the 
110 address space. 

110 ports are addressed in the same manner as 
memory locations. Even addressed bytes are trans­
ferred on the OrOo bus lines and odd addressed 
bytes on 015-08. Care must be taken to assure that 
each register within an 8-bit peripheral located on 
the lower portion of the bus be addressed as even. 

EXTERNAL INTERFACE 

PROCESSOR RESET AND INITIALIZATION 

Processor initialization or start up is accomplished 
"Vith activation (HIGH) of the RESET pin. The 
80C86A RESET is required to be HIGH for four or 
more ClK cycles. The 80C86A will terminate opera­
tions on the high-going edge of RESET and will re­
main dormant as long as RESET is HIGH. The low­
going transition of RESET triggers an internal reset 
sequence for approximately 7 ClK cycleS. After this 
interval the 80C86A operates normally beginning 
with the instruction in absolute location FFFFOH 
(see Figure 3b). The details of this operation are 
specified in the Instruction Set description of the 
MCS®-86 Family User's Manual. The RESET input is 
internally synchronized to the processor clock. At 

"PULL-UP/PULL-DOWN" 

Input Buffer exists only on 1/0 pins 

EXlERNAL 
PIN 

Figure 6a. Bus hold circuitry pin 2-16, 34-39. 
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initialization the HIGH-to-LOW transition of RESET 
must occur no sooner than 50 p.s after power-up, to 
allow complete initialization of the 80C86A. 

NMI asserted prior to the 2nd clock after the end of 
RESET will not be honored. If NMI is asserted after 
that point and during the internal reset sequence, 
the processor may execute one instruction before 
responding to the interrupt. A hold request active 
immediately after RESET will be honored before the 
first instruction fetch. 

All 3-state outputs float to 3-state OFF(l I during RE­
SET. Status is active in the idle state for the first 
clock after RESET becomes active and then'floats 
to 3-state OFF(ll. ALE and HlOA are driven low. 

NOTE: , 
1. See the section on Bus Hold Circuitry. 

BUS HOLD CIRCUITRY 

To avoid high current conditions caused by floating 
inputs to CMOS devices and eliminate the need for 
pull-up/down resistors, "bus-hold" circuitry has 
been used on the 80CB6A pins 2-16, 26-32, and 
34-39 (Figures 6a, 6b). These circuits will maintain 
the last valid logic state if no driving source is pres­
ent (i.e. an 'unconnected pin or a driving source 
which goes to a high impedance state). To overdrive 
the "bus hold" circuits, an external driver must be 
capable of supplying 350 p.A minimum sink or 
source qurrent at valid input voltage levels. Since 
this "bus hold" circuitry is active and not a "resis­
tive" type element, the associated power supply cur­
rent is negligible and power dissipation is significant­
ly reduced when compared to the use of passive 
pull-up resistors. 

"PULL-UP" 

Input Buffer exists only on 1/0 pins 

EXTERNAL 
PIN 

Figure 6b. Bus hold Circuitry pin 26-32. 
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INTERRUPT OPERATIONS 

Interrupt operations fall into two classes; software or 
hardware initiated. The software initiated interrupts 
and software aspects of hardware interrupts· are 
specified in the Instruction Set description. Hard-

. ware interrupts can be classified as non-maskable or 
maskable. . 

Interrupts result in a transfer of control to a new pro­
gram location. A 256-element table' containing ad-

. dress pointers to the interrupt service program loca­
tions resides in absolute locations 0 through 3FFH 
(see Figure 3b), which are reserved for this purpose. 
Each element in the table is 4 bytes in size and cor­
responds to an interrupt "type". An interrupting de­
vice supplies an 8-bit type number, during the inter­
rupt acknowledge sequence, which is used to "vec­
tor" through the appropriate element to the new in­
terrupt service program location. 

NON-MASKABLE INTERRUPT (NMI) 

The processor provides a single non-maskable inter­
rupt pin (NMI) which has higher priority than the 
maskable interrupt request pin (INTR). A typical use 
would be to activate a power failure routine. The 
NMI is edge-triggered on a,LOW-to-HIGH transition. 
The activation of this pin causes a type 2 interrupt. 
(See Instruction Set description.) NMI is required to 
have a duration in the HIGH state of greater than 
tWo CLK cycles, but is not required to be synchroniz­
ed tathe clock. Any high-going transition of NMI is 
latched on-chip and will be serviced at the end of the 
current instruction' or between whole moves of a 
block-type instruction. Worst case response to NMI 
would be for multiply, divide and variable shift in­
structions. There is no specification on the occur­
rence of the low-going edge; it may occur before, 
during, or after, the servicing of NMI. Another high­
going edge triggers another response if it occurs af­
ter the start of the NMI procedure. The signal must 
be free of logical spikes in general and be free of 
bounces on the low-going edge to avoid triggering 
extraneous responses. 

MASKABLE INTERRUPT (INTR) 

The 80C86A provides a single interrupt request input 
(INTR) which can be masked internally by software 

with the resetting of the interrupt enable FLAG 
status bit. The interrupt request signal is level trig­
gered. It is internally synchronized during each clock 
cycle on' the high-going edge of CLK. To be re­
sponded to, INTR must be present (HIGH) during 
the clock period preceding the end of the current 
instruction or the end of a whole move for a block­
type instruction. During the interrupt response se­
quence further interrupts are disabled. The enable 
bit is reset as part of the response to any interrupt 
(INTR, NMI, software interrupt or single-step), al­
though the FLAGS register which is automatically 
pushed onto the stack reflects the state of the proc­
essor prior to the interrupt. Until the old FLAGS reg­
ister is restored the enable bit will be zero unless 
specifically set by an instruction. 
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During the response sequence (Figure 7) the proc­
essor executes two successive (back-to-back) inter­
rupt acknowledge cycles. The 80C86A emits the 
LOCK signal from T 2 of the first bus cycle until T 2 of 
the second. A local bus "hold" request will not be 
honored until the end of the second bus cycle. In the 
second bus cycle a byte is fetched from the external 
interrupt system (e.g., 82C59 PIC) which identifies 
the source (type) of the interrupt. This byte is multi­
plied by four and used as a pointer into the interrupt 
vector lookup table. An INTR signal left HIGH will be 
continually responded to within the limitations of the 
enable bit and sample period. The INTERRUPT RE­
TURN instruction includes a FLAGS pop which re­
turns the status of the ,original interrupt enable bit 
when it restores the FLAGS. 

HALT 

When a software "HALT" instruction is executed the 
processor indicates that it is entering the "HALT" 
state in one of two ways depending upon which 
mode is strapped. In minimum mode, the processor 
issues one ALE with no qualifying bus control sig­
nals. In Maximum Mode, the processor issues ap­
propriate HALT status on S2, S1 and So and the 
82C88 bus controller issues one ALE. The 80C86A 
will not leave the "HALT" state when a local bus 
"hold" is entered while in "HALT". In this case, the 
processor reissues the HALT indicator. An interrupt 
request or RESET will force the 80C86A out of the 
"HALT" state. 
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T 1 T 2 T 3 I T 4 lTd T 1 I T 2 

ALE J\ _______ .......jl J\'----------
LOCK \ I 

\.. _______ "" ... , ___ oJ 

'-____ .Jr l 
INTA \ • ~ '\ 

ADO - AD15 J)o_FL_O;..A_T _________ """'1 1-1 -----C( TYPE VECTOR >--
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Figure 7. Interrupt Acknowledge Sequence 

READ/MODIFY/WRITE (SEMAPHORE) 
OPERATIONS VIA LOCK 

The lOCK status information is provided by the 
processor when directly consecutive bus cycles are 
required during the execution of an i!,)struction. This 
. provides the processor with the capability of per­
forming read/modify/write operations on memory 
(via the Exchange Register With Memory instruction, 
for example) without the possibility of another sys­
tem bus master receiving intervening memory cy­
cles. This is useful in mutliprocessor system configu· 
rations to accomplish "test and set lock" operations. 
The lOCK signal is activated (forced lOW) in the 
clock cycle following the one in which the software 
"lOCK" prefix instruction is decoded by the EU. It is 
deactivated at the end of the last bus cycle of the 
instruction following the "lOCK" prefix instruction. 
While lOCK is active a request on a RQ/GT pin will 
be recorded and then honored at the end of the 
lOCK. 

EXTERNAL SYNCHRONIZATION VIA TEST. 

As an alternative to the interrupts and general I/O 
capabilities; the 80C86A provides a single software­
testable input known as the TEST signal. At any time 
the program may execute a WAIT instruction. If at 
that time the TEST signal is inactive (HIGH), pro-
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gram execution becomes suspended while the proc­
essor waits for TEST to become active. It must re­
main active for at least 5 ClK cycles. The WAIT in­
struction is re·executed repeatedly until that time: 
This activity does not consume bus cycles. The 
processor remains in an idle state while waiting. All 
80C86A drivers go to 3·state OFF if bus "Hold" is 
entered. If interrupts are enabled, they may occur 
while the processor is waiting. When this occurs the 
processor fetches the WAIT instruction one extra 
time, processes the interrupt, and then re·fetches 
and re·executes the WAIT instruction upon returning 
from the interrupt. 

BASIC SYSTEM TIMING 

Typical system configurations for the processor op· 
erating in minimum mode and in maximum mode are 
shown in Figures 4a and 4b, respectively. In mini­
mum mode, the MN/MX pin is strapped to Vee and 
the processor emits bus control signals in a manner 
similar to the 8085. In maximum mode, the MN/MX 
pin is strapped to Vss and the processor emits·cod­
ed status information which the 82C88 bus control· 
ler uses to generate MUl TIBUS compatible bus 
control signals. Figure 5 illustrates the signal timing. 
relationships. 
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Figure S. SOCS6A Register Model 

SYSTEM TIMING-MINIMUM SYSTEM 

The read cycle begins in T 1 with the assertion of the 
Address Latch Enable (ALE) signal. The trailing (Iow­
going) edge of this signal is used to latch the ad­
dress information, which is valid on the lo?al bus at 
this time, into a latch. The BHE and Ao signals ad­
dress the low, high, or both bytes. From T 1 to T 4 the 
MilO signal indicates a memory or I/O operation. At 
T 2 the address is removed from the local bus and 
the bus goes to a high impedance state. The read 
control signal is also asserted at T 2. The read (RO) 
'signal causes the addressed device to e.nable its 
data bus drivers to the local bus. Some time later 
valid data will be available on the bus and the ad­
dressed device will drive the READY line HIGH. 
When the processor returns the read signal to a 
HIGH level, the addressed device will again 3-state 
its bus drivers. If a transceiver is re..9uired to buffer 
the BOCB6A local bus, signals OT /R and DEN are 
provided by the BOC86A. 

A write cycle also begins with the assertion of ALE 
and the emission of the address. The MilO signal IS 
again asserted to indicate a memory or I/O write 
operation. In the T 2 immediately following the ad­
dress emission the processor emits the data to be 
written, into the addressed location. This data re­
mains valid until the middle of T 4. During T 2, T 3, and 
T w the processor asserts the write control sign~1. 
The write (WR) signal becomes active at the begin­
ning of T 2 as opposed to the read which is delayed 
somewhat into T 2 to provide time for the bus to float. 

The BHE and Ao signals are used to select the prop­
er byte(s) of the memory/IO word to be read or writ­
ten according to the following table: 

BHE AO Characteristics 
0 0 Whole word 
0 1 Upper byte from/ 

to odd address 
1 0 Lower byte from/ 

to even address 
1 1 None 

I/O ports are addressed in the same manner as 
memory location. Even addressed bytes are trans­
ferred on the Oy-Oo bus lines and odd addressed 
bytes on 015-08' 

The basic difference between the interrupt acknowl­
edge cycle and a read cycle is that the interrupt ac­
knowledge signal (INTA) is asserted in place of the 
read (RO) signal and the address bus is float~d. 
(See Figure 7.) In the second of two successive 
INTA cycles, a byte of information is read from bus 
lines 07-00 as supplied by the interrupt systemlo~­
ic (i.e., 82C59A Priority Interrupt Controller). ThiS 
byte identifies the source (type) of the interrupt. It is 
multiplied by four and used as a pointer into an inter­
rupt vector lookup table, as described earlier. 
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BUS TIMING-MEDIUM SIZE SYSTEMS 

For medium size systems the MN/MX pin is con­
nected to V ss and the B2C88 Bus Controller is add­
ed to the system as well as a latch for latching the 
system address, and a transceiver to allow for bus 
loading greater than the 80C86A is...s:apable of han­
dling. Signals ALE, DEN, and OT /R a.re g~nerat~d 
by the 82C88 instead of the processor In thl.s config­
uration although their timing remain~ r~atlvely !tie 
same. The 80C86A status outputs (S2, S1, and So) 
provide type-of-cycle information a~d bec~~e 
82C88 inputs. This bus cycle information specifies 
read (code, data, or I/O), write (data or I/O), inter­
rupt acknowledge, or software halt. The 82CB8 thus 
issues control signals specifying memory read or 
write, ,I/O read or write, or interrupt acknowledge. 
The 82C88 provides two types of write strobes, nor­
mal and advanced, to be applied as required. The 
normal write strobes have data valid at the leading 
edge of write. The advanced write strobes have. th~ 
same timing as read strobes, and hence data Isn t 
valid at the leading edge of write. The transceiver 
receives the usual T and OE inputs from the 82C88 
OT IR and DEN. 

The pointer into the interrupt vector table, whic~ is 
passed during the second INTA cycle, can denve 
from an 82C59A located on either the local bus or 
the system bus. If the master 82C59A Priority Inter­
rupt Controller is positioned on the local ~us, a TTL 
gate is required to disable the tr~nscelv~r when 
reading from the master B2C59A dunng the Interrupt 
acknowledge sequence and software "poll". 
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ABSOLUTE MAXIMUM RATINGS* 

Supply Voltage 
(With respect to ground) ........... -0.5 to 7.0V 

Input Voltage Applied 
(w.r.t. ground) ............. -0.5 to VCC + 0.5V 

Output Voltage Applied 
(w.r.t. ground) ............. -0.5 to VCC + O.5V 

Power Dissipation .......................... 1.0W 

. Storage Temperature ............. - 65·e to 150·e 

Ambient Temperature Under Bias ...... o·e to 70·e 

. D.C. CHARACTERISTICS 
(TA = o·et07o·e. Vcc = 5V ±5%) 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

Symbol Parameter 80C8SA-2 
Units Test Conditions 

Min Max 

VIl: Input Low Voltage -0.5 +0.8 V 

VIH Input High Voltage 2.0 V 
(All inputs except clock) 

VeH Clock Input High Voltage Vee- 0.8 V 

VOL Output Low Voltage. 0.45 V IOL = 2.S mA 

VOH Output High Voltage 3.0 V IOH = -2.5mA 
Vee- O.4 IOH = -100 IJ-A 

Icc Power Supply Current 10 mAIM Hz VIL = GND. VIH = Vee 

Ices Standby Supply Current SOO IJ-A VIN = Vee or GND 
Outputs Unloaded 
CLK = GND or Vee 

III Input Leakage Current ±1.0 IJ-A OV,;; VIN';; Vee 

IBHL Input Leakage Current SO 400 IJ-A VIN = O.BV 
(Bus Hold Low) (Note 4) 

IBHH Input Leakage Current -50 -400 IJ-A VIN = 3.0V 
(Bus Hold High) (Note S) 

IBHLO Bus Hold Low Overdrive SOO IJ-A (Note 2) 

IBHHO Bus Hold High Overdrive -600 IJ-A (Note 3) 

ILO Output Leakage Current ±10 IJ-A VOUT = GND or Vee 

CIN Capacitance of Input Buffer 5 pF (Note 1) 
(All inputs except 
ADo-AD15. RQ/GT) 

CIO Capacitance of I/O Buffer 20 pF (Note 1) 
(ADo-AD15. RQ/GT) 

COUT Output Capacitance 15 pF (Note 1) 

NOTES: 
1. Characterization conditions are a) Frequency = 1 MHz; b) Unmeasured pins at GND; c) VIN at + 5.0V or GND. 
2. An external driver must source at least IBHLO to switch this node from LOW to HIGH. 
3. An external driver must sink at least IBHHO to switch this node from HIGH to LOW. 
4. Test Condition is to lower VIN to GND and then raise VIN to 0.8V on pins 2-16 & 34-39. 
5. Test Condition is to raise VIN to Vee and then lower VIN to 3.0V on pins 2-16. 26-32 & 34-39. 
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A.C. CHARACTERISTICS 
(TA = O~C to 70°C. Vee = 5V ±5%) 

80C86A 

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS 

. Symbol Parameter 80C86A-2 

Min Max 

TCLCL CLK Cycle Period 125 D.C. 

TCLCH CLK Low Time 68 

TCHCL CLK High Time 44 

TCH1CH2 CLK Rise Time 10 

TCL2CL1 CLK Fall Time 10 

mVCL Data in Setup Time 20 

TCLDX Data in Hold Time 10 

TR1VCL RDY Setup Time 35 
into 82C84A 
(Notes 1. 2) 

TCLR1X RDY Hold Time 0 
into 82C84A 
(Notes 1. 2) 

TRYHCH READY Setup 68 
Time into 80C86A 

TCHRYX READY Hold.Time 20 
into80C86A 

TRYLCL READY Inactive to -8 
CLK (Note 3) 

THVCH HOLD Setup Time 20 

TINVCH INTR. NMI. TEST 15 
Setup Time 
(Note 2) 

TILIH Input Rise Time 15 
(Except CLK) 

TIHIL Input Fall Time 15 
(Except CLK) . 
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Units Test· 
Conditions 

ns 

ns 

ns 

ns From 1.0V to 3.5V 

ns From 3.5V to 1.0V 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns From 0.8V to 2.0V 

ns From 2.0V to 0.8V 



80C86A 

A.C. CHARACTERISTICS (Continued) 
(TA = O·C to 70·C, VCC = 5V ± 5%) 

Timing Responses 

Symbol Parameter 80C86A-2 

Min 

TCLAV Address Valid Delay 10 

TCLAX Address Hold Time 10 

TCLAZ Address Float TCLAX 
Delay 

TLHLL ALE Width TCLCH-10 

TCLLH ALE Active Delay 

TCHLL ALE Inactive Delay 

TLLAX Address Hold Time TCHCL-10 
to ALE Inactive 

TCLDV Data Valid Delay 10 

TCHDX Data Hold Time 10 

TWHDX Data Hold Time TCLCH-30 
AfterWR 

TCVCTV Control Active 10 
Delay 1 

TCHCTV Control Active 10 
pelay2 

TCVCTX Control Inactive 10 
Delay 

TAZRL Address Float to 0 
READ Active 

TCLRL RD Active Delay 10 

TCLRH RD Inactive Delay 10 

TRHAV RD Inactive to Next TCLCL-40 
Address Active 

TCLHAV HLDA Valid Delay 10 

TRLRH RDWidth 2TCLCL-50 

TWLWH WRWidth 2TCLCL-40 

TAVAL Address Valid to TCLCH-40 
ALE Low 

TOLOH Output Rise Time 

TOHOL Output Fall Time 

NOTES: 

Units Test 

Max Conditions 

60 ns 

ns 

50 ns 

ns 

50 ns 

55 ns 

ns 

60 ns 

ns 

ns 

70 ns 

60 ns 

70 ns 

ns 

100 ns .. 

80 ns 

ns 

100 ns 

ns 

ns 

ns 

15 ns From 0.8V to 2.0V 

15 ns From 2.0V to 0.8V 

1. Signal at 82CB4A shown for reference only. See B2CB4A data sheet for the most recent specifications. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next ClK. 
S. Applies only to T2 state. (B ns into TS). 
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inter 80C86A 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT I OUTPUT 

2.4==X.5 I.e 

0.45 -----------' 

240029-14 
240029-12 

A.C. Testing inputs are driven at 2.4V for a logic "I" and 0.45V 
for a logic "0". Timing measurements are made at I.SV. 

CL Includes Jig Cspacitance 

WAVEFORMS 

MINIMUM MODE 

T, T, T, Tw T, 

CUI_OUtputI 

VeH" 

~ 
=C~~CHICH]HCr'~ '--.Jr-'L-

ALE 

ROY IQCI4A Input) 
SEE NOTE 4 

..:; TCHCTV 

TCLAY-

TCLLH~ 

. t:. I------ TCHCL 

[:( 
- TCLD -- TCLAX~ -

IJi/E,A .. -AlI 

Y 
TLHLl-:::: _TLLAX 

TJAL 're LL-I - 1: V'H-

VIL-

TAYLCL-

- "' 

i-TCLCH-

TCHDX-

51-53 

-TRIVCl 

\ 
I-lCLRIX --

READY (!1088 Input) I - -TCHRYX 

READ CYCLE 

(NOTE I) 

RD 

rWli. IIffii - VOH) DT/R 

, I. 

TRYHCH 1 - TAVAL ,... 

TCLAV-
TLLAX_ 

'=!ClAZ I- --- :o-TCLAX " 

A15""ADo -rr TAZRL-

'::~TCHCTV TCLRL L 

, TCVCTV- f' 

2-48 

-
TDVCL-!-TCLDX-

DATA" IN 

TCLRH- 1-

r--.. 
TRLRH 

L 
TCVCTX- tJ 

}J 

X 
'r--
I 
----

FLO:~ 
TRHAV 

~CHCTV 

! 

240029-13 



WAVEFORMS (Continued) 

MINIMUM MODE (Continued) 

cue (1_0Utput1 

WRITE CYCLE 
(NOTE 1) 

(iii!.iim. I DTiR.VOH) 

MRO 

INTA CYCLE DT/A 
(NOTES'.') 
D. WJI.VOH 
IRI!.VoLl 

SOFlWARE HALT-

AD. WR. INTA - YoH 
DTIA ~ INDElERMINATE 

NOTES: 

BOCB6A 

INVALID ADDRESS 

reLAY 

1. All output timing measurements are made at 1.5V unless otherwise noted. 

TCVCTX-

SOFTWARE HALT 

2. ROY is sampled near the end of T 2. T 3. T w to determine if T W machines states are to be inserted. 

240029-15 

3. Two INTA cycles run back-to-back. The 80C86A local ADOR/OATA BUS is floating during both INTA cycles. Control 
signals shown for second INTA cycle. 
4. Signals at 82C84A are shown for reference only. 
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80C86A 

A.C. CHARACTERISTICS 

MAX MODE SYSTEM (USING 82C88 BUS CONTROLLER) 
TIMING REQUIREMENTS 

Symbol Parameter 
80C86A-2 

Min Max 

TClCl ClK Cycle Period 125 D.C. 

TClCH ClK low Time 68 

TCHCl ClK Htgh Time 44 

TCH1CH2 ClK Rise Time 10 

TCl2Cl1 ClKFaliTime 10 

TDVCl Data in Setup Time 20 

TClDX Data in Hold Time 10 

TR1VCl RDY Setup Time into 82C84A 35 
(Notes 1, 2) 

TClR1X RDY Hold Time into 82C84A 0 
(Notes 1, 2) 

TRYHCH READY Setup Time into 80C86A 68 

TCHRYX READY Hold Time into 80C86A 20 

TRYlCl READY Inactive to -8 
ClK (Note 4) 

TINVCH Setup Time for Recognition 15 
(INTR, NMI, TEST) 
(Note 2) 

TGVCH RQ/GT Setup Time 15 

TCHGX RQ Hold Time into 80C86A 30 

TILIH Input Rise Time 15 
(Except ClK) (Note 5) 

TIHll Input Fall Time 15 
(Except ClK) (Note 5) 

2-50 

Units 
Test 

Conditions 

ns 

ns 

ns 

ns From 1.0V to 3.5V 

ns From 3.5V to 1.0V 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns From O.SV to 2.0V 

ns From 2.0V to O.SV 



inter 80C86A 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

Symbol Parameter 
80C86A-2 

Units 
Test 

Min Max Conditions 

TCLML Command Active 5 35 ns 
Delay (Note 1) 

TCLMH Command Inactive 5 35 ns 
Delay (Note 1) 

TRYHSH READY Active to 65 ns 
Status Passive (Note 3) 

TCHSV Status Active Delay 10 60 ns 

TCLSH Status Inactive Delay 10 70 ns 

TCLAV Address Valid Delay 10 60 ns 

TCLAX Address Hold Time 10 ns 

TCLAZ Address Float Delay TClAX 50 ns 

TSVLH Status Valid to ALE High (Note 1) 20 ns 

TSVMCH Status Valid to 30 ns 
MCE High (Note 1) 

TCLLH CLK Low to ALE Valid (Note 1) 20 ns 

TCLMCH CLK Low to MCE High (Note 1) 25 ns 

TCHLL ALE Inactive Delay (Note 1) 4 18 ns 

TCLDV Data Valid Delay 10 60 ns 

TCHDX Data Hold Time 10 ns 

TCVNV Control Active Delay (Note 1) 5 45 ns 

TCVNX Control Inactive Delay (Note 1) 10 45 ns 

TAZRL Address Float to Read Active 0 ns 

TCLRL RD Active Delay 10 100 ns 

TCLRH RD Inactive Delay 10 80 ns 

TRHAV RD Inactive to TCLCL-40 ns 
Next Address Active 

TCHDTL Direction Control 50 ns 
Active Delay (Note 1) 

TCHDTH Direction Control 30 ns 
Inactive Delay (Note 1) 

TCLGL GT Active Delay 0 50 ns 

TCLGH GT Inactive Delay 0 50 ns 

TRLRH RD Width 2TCLCL-50 ns 

TOLOH Output Rise Time 15 ns From 0.8V to 2.0V 

TOHOL Output Fall Time 15 ns From 2.0V to 0.8V 

NOTES: 
1. Signal at 82C84A or 82C88 shown for reference only. See 82C84A and 82C88 for the most recent specifications. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next ClK .. 
S. Applies only to TS and wait states. 
4. Applies only to T2 state (8 ns into TS). 
5. These parameters are characterized and not 100% tested. 
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inter 80C86A 

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

INPUT / OUTPUT 

2.4--v V-
--f\.5 1.~ 

0.45 --..,.------..... 
240029-16 240029-17 

A.C. Testing inputs are 'drlven at2.4V for a logic "I" and 0.45V for 
a 10919 "0". Timing measurements are made at 1.5V 

CL Includes Jig Capacitance 

WAVEFORMS. 

MAXIMUM MODE 

Tt 12 'I Tot 

CLK VCH r-\'--TCLC~ r-i r"" r-\. 
L--,' :L=icH1CH2-i I-- -lCCLaCLI Tw 

VCL.....I 1'----1 ~ . '----J. '--

050.05, 

12.I;.~ (EXCEPT HAI.TI 

SEE NOTE .1 ALE (UCII OIITPUT) 

ROV(_,N'1Il) 

IIICII OUTPUTI 
SEE NOTU 5,. 

ADti-ADo 

DTIN 

_OAimIll 

DEN 

TCLAV4 , I:=. I---- TCHCL - TCLCH_ 

X ~--~ 
-t--+-J 

- TCHBV _ ~ TCLIH 

----*--r-~--+--~~~nr+_-_+~------
1I'-:_+--+---:--:±~~f"'Wj,"""~"'IIW;uf' l1li NOlI" , 
II - I...--TelAY r----f reLDv C -----

- .1_ TCLAX -~ ~ TCHDX- .1-
X 11m. A"-A,, X'--t---t--t __ s,.,·s:-' __ +-__ --t_'X ........ ___ _ 

--T""'SV-L-H-II-J I- ~ I- TCHLL 

TCLL1f4 r,::..' .1 r--
_---+"J \'+-_+----+-+---+_+-_+--__ .~ __ _ 

__ TC_LA_V--,---,.f 

TCHDTL-

1-1 -TRIVCL 

-""I 

TAYHSH -Irf~;;;;"'-+-""I 
-TCLAX~ L---!-

- - TAYHCH-

-TCLAZ - I,::::.TDVCL-

AWADo 

~~ 
DATA IN 

TAZRL- TClAH 

.1-- TCLRL 
TALRH 

\ 
TCLML- { TCLMH--· 

TCYNV- I~-

I{ 

TCYNX-

2-52 

TCHJlYX 

TCLDX-

I. 
FL::J-

TRHAV 

J. 

'\' I:TCHDTH 

I 

FS 
( 
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inter 
WAVEFORMS (Continued) 

MAXIMUM MODE (Continued) 

WRITE CYCLE 

AD,.·AD. 

DEN 

82C88 OUTPUTS 
NOTES 5.6 AMWC OR AIOWC 

INTA CYCLE 

AD,S·ADO 
NOTES 3.4 

AD,.·AD. 

MCE/ 
PDEN 
DT/R 

82C88 OUTPUTS 
NOTES 5.6 INTA 

DEN 

SOFTWARE HALT-

80C86A 

T, T, 

(DEN = YoL;RD,MRDC,IORC,MWTC,AMWC, 
iOWC,AIOWC,lNTA, = YOH) -...;...-+-,..1,.--------

NOTES: 
1. All timing measurements are made at 1.5V unless otherwise noted. 

T, 
Tw 

\ ----

2. RDY is sampled near the end of T 2, T 3, T W to determine if T W machines states are to be inserted. 
3. Cascade address is valid between first and second INTA cycle. 

240029-19 

4. Two INTA cycles run back·to·back. The 80C86A local ADDR/DATA BUS is floating during both INTA cycles. Control for 
pOinter address is shown for second INTA cycle. , 
5. Signals at 82C84A or 82C88 are shown for reference only. 
6. The issuance of the 82C88 command and control Signals (MRDC, MWTC, AMWC, IORC, IOWC, AIOWC, INTA and DEN) 
lags the active high 82C88 CEN. 
7. Status inactive in state just prior to T 4. 
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inter 80C86A 

WAVEFORMS (Continued) 

ASYNCHRONOUS SIGNAL RECOGNITION 

CLK' r\ 
NMI} =t . .:.;;;::-

INTR SIGNAL : 

TEST 
240029-20 

NOTE:' Setup requirements for asynchronous Signals only to guarantee 'recognition at next elK. 

BUS LOCK SIGNAL TIMING 
(MAXIMUM MODE ONLY) 

240029-21 

RESET TIMING 

Vee 

CI.. 

RESET 

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY) 

CLK 

RQ/GT 

PREVIOUS 
GRANT 

COPROCESSOR 
iiO 

~ CLKCYCLE& 

240029-22 

COPROCESSOR 
RELEASE 

COPROCESSOR 

(SEE NOTE) 

240029-23 

NOTE: The coprocessor may not drive the buses outside the region shown without risking contention. 
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inter 80C86A 

WAVEFORMS (Continued) 

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY) 

>1 eLK CYCLE 

CLK'"\. rt 
HOLor 
HLDA ----..... 

COPROCESSOR 

Table 2. Instruction Set Summary 
Mnemonic and 

Description I Instruction Code 

DATA TRANSFER 

MOV ~ Move: 

Register/Memory to/from Register·· 

Immediate to Register/Memory 

Immediate to Register 

Memory to Accumulator 

Accumulator to Memory 

Register/Memory to Segment Register·· 

Segment Register to Register/Memory 

PUSH ~ Push: 

Register/Memory 

Register 

Segment Register 

POP ~ Pap: 

Register/Memory 

Register 

Segment Register 

XCHG ~ Exchange: 

Register/Memory with Register 

Register with Accumulator 

IN ~ Inpullrom: 

Fixed Port 

Variable Port 

OUT ~ Output to: 

Fixed Port 

Variable Port 

XLAT ~ Translate Byte to AL 

LEA ~ Load EA to Register 

LOS ~ Load Pointer to OS 

LES ~ Load Pointer to ES 

LAHF ~ Load AH with Flags 

SAHF ~ Store AH into Flags 

PUSHF ~ Push Flags 

POPF ~ Pop Flags 

76543210 

100010dw 

1100011 w 

1011 wreg 

1010000w 

1010001w 

10001110 

10001100 

11111111 

01010reg 

000regll0 

10001111 

01011 reg 

OOOreglll 

1000011w 

10010reg 

1110010'w 

1110110w 

1110011 w 

1110111w 

11010111 

10001101 

11000101 

11000100 

10011111 

10011110 

10011100 

10011101 

76543210 76543210 

mod reg rIm 

modO 0 0 rIm data 

data dataifw - 1 

addr-Iow add,-high 

addr-Iow add,-high 

modOregr/m 

modO regr/m 

mod 11 Or/m 

modOOOr/m 

mod reg ,/m 

port 

port 

mod reg rIm 

mod reg rIm 

modregr/m 
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intJ 

ARITHMETIC 

ADD = Add: 

Mnemonic and 
Description 

Reg.lMemory with Register to Either 

Immediate to Register/Memory 

Immediate to Accumulator 

ADC = Add with Carry: 

Reg.lMemory with Register, to Either 

Immediate to Register/Memory 

Immediate to Accumulator 

INC = Increment: 

Register/Memory 

Register 

AAA = ASCII Adjust lor Add 

DAA = Decimal Adjust lor Add 

SUB = Subtract: 

Reg.lMemory and Register to Either 

Immediate Irom Register/Memory 

Immediate Irom Accumulator 

SBB = Subtract with Borrow' 

Reg.lMemory and Register to E~her 

Immediate from Register/Memory 

Immediate Irom Accumulator 

DEC = Decrement: 

Register/Memory 

Register 

NEG = Change Sign 

CMP = Compare: 

Register/Memory and Register 

Immediate with Register/Memory 

Immediate with Accumulator 

AAS = ASCII Adjustlor Subtract 

DAS = Decimal Adjust lor Subtract 

MUL = Multiply (Unsigned) 

IMUL = Integer Multiply (Signed) 

AAM = ASCII Adjust lor Multiply 

DIY = Divide (Unsigned) 

IDlY = Integer Divide (Signed) 

AAD = ASCII Adjust lor Divide 

CBW = Convert Byte to Word 

CWD = Convert Word to Double Word 

80C86A 

Table 2. Instruction Set Summary (Continued) 

I Instruction Code 

76543210 76543210 76543210 76543210 

OOOOOOdw mod reg r/m 

100000sw modOOOr/m data data ils w = 01 

0000010w data datailw = 1 

000100dw mod reg r/m 

100000sw mod 0 1 o rIm data ' datailsw = 01 

0001010w data datailw = 1 

lllllllw modOOOr/m 

01000reg 

00110111 

00100111 

001010dw mod reg r/m 

100000sw mod 1 0 1 rIm data datailsw= 01 

0010110w data datailw=1 

000110dw mod reg r/m 

100000sw modO 11 rIm data datailsw= 01 

0001110w data datailw = 1 

l111111w modOOlr/m I' 
01001 reg 

1111011w modOll rIm 

001110dw mod reg r/m 

100000sw mod 111 rIm data dataHsw = 01 

0011110w data datailw = 1 

00111111 

00101111 

1111011w modl00r/m 

1111011w mod 1 a 1 rIm 

11010100 00001010 

1111011 w modll0r/m 

1111011 w modlll rIm 

11010101 00001010 

10011000 

10011001 
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intJ SDeS6A 

8086/8088 Instruction Set Summary (Continued) 

Mnemonic and I Instruction Code 
Description 

LOGIC 76543210 76543210 76543210 76543210 

NOT = Invert 1111011 w modO 1 o rIm 

SHLISAL = Shift Logicall Arithmetic Left ·110100vw modl00r/m 

SHR = Shift Logical Right 110100vw mod 1 0 1 rIm 

SAR = Shift Arithmetic Right 110100vw mod 111 rIm 

ROL = Rotate Left 110100vw modOOOr/m 

ROR = Rolate Right 110100vw modOOlr/m 

RCL = Rotate Through Carry Flag Left 110100vw modO 1 o rIm 

RCR = Rotate Through Carry Right . 110100vw modOl1 rIm 

AND = And: 

Reg.lMemory and Register to Either 001000dw mod reg rIm 

Immediate to Register/Memory 1000000w modl00r/m data dataifw = 1 

Immediale to Accumulator 0010010w data datailw = 1 

TEST = And Function to Flags, No Result: 

Register/Memory and Register 1000010w mod reg rIm 

Immediate Data and Register IMemory 1111011 w modOOOr/m data dataifw = l' 

Immediate Data and Accumulator 1010100w data dataifw = 1 

OR = Or: 

Reg.lMemory and Register to Either 000010dw mod reg rIm 

Immediate to Register/Memory 1000000w modOO 1 rIm data dataifw = 1 

Immediate to Accumulator 0000110w data dataifw = 1 

XOR = Exclusive OR: 

Reg.lMemory and Register to Either 001100dw mod reg rIm 

Immediate to Register/Memory 1000000w mod 11 o rIm data data ifw = 1 

Immediate to Accumulator 0011010w data dataifw = 1 

STRING MANIPULATION 

REP = Repeat 1111001 z 

MOVS = Move Byte/Word 1010010w 

CMPS = Compare Byte/Word 1010011w 

SCAS = Scan Byte/Word 1010111 w 

LODS = Load Byte/Wd to ALI AX 1010110w 

STOS = ~or Byte/Wd from ALIA 1010101w 

CONTROL TRANSFER 

CALL = Call: 

Direct Within Segment 11101000 disp-Iow disp-high 

Indirecl Within Segment 11111111 modOl0r/m 

Direct Intersegment 10011010 offset-low olfset-high 

seg-Iow seg-high 

Indirect Intersegment 11111111 modOl1 rIm 
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inter 80C86A 

Table 2. Instruction Set Summary (Continued) 

Mnemonic and I Description Instruction Code 

CONTROL TRANSFER (Continued) 
JMP = Unconditional Jump:, 76543210 76543210 76543210 

Direct Within Segment 11101,001 disp-Iow disp-high 

Direct Within Segment-Short 11101011 disp 

Indirect Within Segment 11111111 mod 1 OOr/m 

Direct Intersegment 11101010 offset-low offset-high 

seg-Iow seg-high 

Indirect I ntersegmlmt 11111111 mod 1 0 1 rIm 

RET = Return from CALL: 

Within Segment 11000011 

Within Seg. Adding Immed to SP 11000010 data-low data-high 

Intersegment 11001011 

Intersegment Adding Immediate to SP 11001010 data-low data-high 

JE/JZ = Jump on Equal/Zero 01110100 disp 

JL/JNGE = ~ump on Less/Not Greater 01'111100 
or Equal 

disp 

JLEI JNG = JUI)1P on Less or Equal/ 01111110 
Not Greater 

disp 

JB/JNAE = Jump on Below/Not Above 01110010 
or Equal 

disp 

JBE/JNA = Jump on Below or Equal/ I 01110110 
Not Above 

disp 

JP/JPE = Jump on Parity/Parity Even I 01111010 disp 

JO = Jump on Overflow I 01110000 disp 

JS = Jump on Sign I 01111000 disp 

JNEI JNZ = Jump on Not Equal/Not Zero I 01110101 disp 

JNL/JGE = Jump on Not Less/Greater 01111101 
or Equal 

disp 

JNLE/JG = Jump on Not Less or Equal/ 01111111 
Greater 

disp 

JNB/JAE = Jump on Not Below/Above 
or Equal 

01110011 disp 

JNBE/JA = Jump on Not Below or 01110111 
Equal/Above 

disp 

JNP/JPO = Jump on Not Par/Par Odd 01111011 disp 

JNO = Jump on Not Overflow 01110001 disp 

JNS = Jump on Not Sign 01111001 disp 

LOOP = Loop CX Times 11100010 disp 

LOOPZ/LOOPE = Loop While Zero/Equal 11100001 disp 

LOOPNZ/LOOPNE = Loop While Not 11100000 
Zero/Equal 

disp 

JCXZ = Jump on ex Zero 11100011 disp 

INT = Interrupt 

Type Specified 11001101 type 

Type 3 11001100 

INTO = Interrupt on Overflow 11001110 

IRET = Interrupt Return 11001111 
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inter 80C86A 

Table 2. Instruction Set Summary (Continued) 

Mnemonic and 
Description 

PROCESSOR CONTROL 

CLC ~ Clear Carry 

CMC ~ Complement Carry 

STC = Set Carry 

CLD = Clear Direction 

STD = Set Direction 

CLI = Clear Interrupt 

STI = Set Interrupt 

HLT = Halt 

WAIT = Wait 

ESC = Escape (to External Device) 

LOCK = Bus Lock Prefix 

NOTES: 
AL = 8-bit accumulator 
AX = 16-bit accumulator 
ex = Count register 
OS = Data segment 
ES = Extra segment 
Above/below refers to unsigned value. 
Greater = more positive: 

I 
76543210 

11111000 

11110101 

11111001 

11111100 

11111101 

11111010 

11111011 

11110100 

10011011 

11011 xxx 

11110000 

Less = less positive (more negative) signed values 
if d = 1 then "to" reg; if d = 0 then "from" reg 
if w = 1 then word instruction; if w = 0 then byte instruc-

tion ' 
if mod = 11 then rim is treated as a REG field 
if mod = 00 then OISP = 0', disp-Iow and disp-high are 

absent 
if mod = 01 then OISP = disp-Iow sign-extended to 

16 bits, disp-high is absent 
if mod = 10 then OISP = disp-high: disp-Iow 
if rIm = 000 then EA = (BX) + (SI) + OISP 
if rIm = 001 then EA = (BX) + (01) + OISP 
if rIm = 010 then EA = (BP) + (SI) + OISP 
if rIm = 011 then EA = (BP) + (01) + OISP 
if rIm = 100 then EA = (SI) + OISP 
if rIm = 101 then EA = (01) + DISP 
if rIm = 110 then EA = (BP) + OISP' 
if rIm = 111 then EA = (BX) + OISP 
OISP follows 2nd byle of instruction (before data if re­
quired) 
'except if mod = 00 and rIm = 110 then EA = disp-high: 
disp-Iow. 

"MOV CS, REG/MEMORY not allowed. 

DATA SHEET REVISION REVIEW 

Instruction Code 

76543210 

modxxx rIm 

if s w = 01 then 16 bits of immediate data form the oper­
and 

if s w = 11 then an immediate data byle is Sign extended 
to form the 16-bil operand 

if v = 0 then "count" = 1; if v = I then "count" in (CL) 
register 

x = don't care 
z is used for Siring primitives for comparison with ZF FLAG 
SEGMENT OVERRIDE PREFIX 

001reg110 I 
REG is assigned according to the following table: 

16-Blt (w = 1) 8-Blt (w = 0) Segment 

000 AX 000 AL 00 E5 
001 CX 001 CL 01 C5 
010 DX 010 DL 10 55 
011 BX 011 BL 11 D5 
100 5P 100 AH 
101 BP 101 CH 
110 51 110 DH 
111 DI 111 BH 

Instructions which reference the flag register file as a'l6-bit 
object use the symbol FLAGS to represent the file: 
FLAGS = 
X:X:X:X:(OF):(OFj:(lF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF) 

Mnemonics ® Intel, 1978 

The following list represents key differences between this and the -001 data sheet. Please review this summa­
ry carefully. 

1. In the Pin Description Table (Table 1). the description of the HLDA signal being issued has been corrected. 
HLDA will be issued in the middle.of either the T 4 or Ti state . 
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• 
• 
• 
• 
• 
• 

8088 
8-BIT HMOS MICROPROCESSOR 

8088/8088-2 
8-Bit Data Bus Interface • Byte, Word, and Block Operations 

16-Blt Internal Architecture • 8-Bit and 16-Bit Signed and Unsigned 

Direct Addressing Capability to 1 Mbyte Arithmetic in Binary or Decimal, 

of Memory Including Multiply and Divide 

Direct Software Compatibility with 8086 • Two Clock Rates: 

CPU - 5 MHz for 8088 
- 8 MHz for 8088-2 

14-Word by 16-Bit Register Set with 
Available in EXPRESS Symmetrical Operations • - Standard Temperature Range 

24 Operand Addressing Modes - Extended Temperature Range 

The Intel® 8088 is a high performance microprocessor implemented in N-channel, depletion load, silicon gate 
technology (HMOS), and packaged in a 40-pin CERDIP package. The processor has attributes of both 8- and 
16-bit microprocessors. It is directly compatible with 8086 software and 8080/8085 hardware and peripherals. 
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Table 1. Pin Description 

The following pin function descriptions are for 8088 systems in either minimum or maximum mode. The "local 
bus" in these descriptions is the direct multiplexed bus interface connection to the 8088 (without regard to 
addftionalbusbuffers) 

Symbol Pin No. Type Name and Function 

AD7-ADO 9-16 I/O ADDRESS DATA BUS: These lines constitute the time multiplexed 
memoryllO address (T1) and data (T2, T3, Tw, T4) bus. These lines are 
active HIGH and float to 3-state OFF during interrupt acknowledge and 
local bus "hold acknowledge". 

A15-A8 2-8,39 0 ADDRESS BUS: These lines provide address bits 8 through 15 for the 
entire bus cycle (T1-T 4). These lines do not have to be latched by ALE 
to remain valid. A 15-A8 are active HIGH and float to 3-state OFF 
during interrupt acknowledge and local bus "hold acknowledge". 

A19/S6, A18/S5, 35-38 0 ADDRESS/STATUS: During T1, these are- the four most significant 
A17/S4,A16/S3 address lines for memory operations. During I/O operations, these lines 

are LOW. During memory and I/O operations, status information is 
available on these lines during T2, T3, Tw, and T4. S6 is always low. 
The status of the interrupt enable flag bit (S5) is updated at the 
beginning of each clock cycle. S4 and S3 are encoded as shown. 
This information indicates which segment register is presently being 
used for data accessing. 
These lines float to 3-state OFF during local bus "hold acknowledge" . 

S4 S3 Characteristics 

o (LOW) 0 Alternate Data 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 1 Data 
S6isO (LOW) 

RD 32 0 READ: Read strobe indicates that the processor is performin..9.. a 
memory or I/O read cycle, depending on the state of the 101M pin or 
52. This signal is used to read devices which reside on the 8088 local 
bus. RD is active LOW during T2, T3 and Tw of any read cycle, and is 
guaranteed to remain HIGH in T2 until the 8088 local bus has floated. 
This signal floats to 3-state OFF in "hold acknowledge". 

READY 22 I READY: is the acknowledgement from the addressed memory or 1/0 
device that it will complete the data transfer. The RDY signal from 
memory or I/O is synchronized by the 8284 clock generator to form 
READY. This signal is active HIGH. The 8088 READY input is not 
synchronized. Correct operation is not guaranteed if the set up and hold 
times are not met. 

INTR 18 I INTERRUPT REQUEST: is a level triggered input which is sampled 
during the last clock cycle of each instruction to determine if the _ 
processor should enter into an interrupt acknowledge operation. A 
subroutine is vectored to via an interrupt vector lookup table located in 
system memory. It can be internally masked by software resetting the 
interrupt enable bit. INTR is internally synchronized. This signal is active 
HIGH. 

TEST 23 I TEST: input is examined by the "wait for test" instruction. If the TEST 
input is LOW, execution continues, otherwise the processor waits in an 
"idle" state. This input is synchronized internally during each clock 
cycle on the leading edge of CLK. 
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Table 1 Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

NMI 17 I NON-MASKABLE INTERRUPT: is an edge triggered input which causes a 
type 2 interrupt. A subroutine is vectored to via an interrupt vector lookup 
table located hi system memory. NMI is not maskable internally by 
software. A transition from a LOW to HIGH initiates the interrupt at the end 
of the current instruction. This input is internally synchronized. 

RESET 21 I RESET: causes the processor to immediately terminate its present activity. 
The signal must be active HIGH for at least four clock cycles. It restarts 
execution, as described in the instructio!1 set description, when RESET 
returns lOW. RESET is internally synchronized. 

elK 19 I CLOCK: provides the basic tiniing for the processor and bus controller. It is 
asymmetric with a 33% duty cycle to provide optimized internal timing. 

Vee 40 Vee: is the +5V ±10% power supply pin. 

GND 1,20 GND: are the ground pins. 

MN/MX 33 I MINIMUM/MAXIMUM: indicates what mode the processor is to operate in. 
The two modes are discussed in the following sections. 

The fol/owing pin function descriptions are for the 8088 minimum mode(ie., MNIMX = VccJ. Only the pin 
functions which are unique to minimum mode are described; aI/ other pin functions are as described above. 

Symbol Pin No. Type Name and Function 

101M 28 0 STATUS LINE: is an inverted maximum I!!.ode 52. It is used to distinguish a 
memory access from an 1/0 access. 101M becomes valid in the T4 preceding a 
bus cycle ~d remains valid until the final T 4 of the cycle (I/O = HIGH, M = 
lOW). 101M floats to 3-state OFF in local bus "hold acknowledge". 

WR 29 0 WRITE: strobe indicates that the processor !!performing a write memory or write 
1/0 cycle, depending on the state of the 101M ,signal. WR is active for T2, T3. and 
Tw of any write cycle. It is active lOW, and floats to 3-state OFF in local bus ' 
"hold acknowledge". 

INTA 24 0 INT A: is used as a read strobe for interrupt acknowledge cycles. It is active lOW 
during T2, T3, and Tw of each interrupt acknowledge cycle. 

ALE 25 0 ADDRESS LATCH ENABLE: is provided by the processor to latch the address 
into an address latch. It is a HIGH pulse active during clock low of T1 of any bus 
cycle. Note that ALE is never floated. 

DT/R 27 0 DATA TRANSMIT/RECEIVE: is needed in a minimum system that desires to use 
a data bus transceiver. It is used to control the direction of data flow through the 
transceiver. logically, DT /Fi ~ equivalent to 51 in the maximum mode, and its 
timing is the same as for 101M (T = HIGH, R = lOW). This signal floats to 
3-state OFF in local "hold acknowledge". 

DEN 26 0 DATA ENABLE: is provided as an output enable for the data bus transceiver in a 
minimum system which uses the transceiver. DEN is active lOW during each 
memory and 1/0 access, and for INTA cycles. For a read or INTA cycle, it is 
active from the middle of T2 until the middle of T 4, while for' a write cycle, it is 
active from the beginning of T2 until the middle of T 4. DEN floats to 3-state OFF 
during local bus "hold acknowledge". 
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Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

HOLD, 31,30 1,0 HOLD: indicates that another master is requesting a local bus "hold". To be 
HLDA acknowledged, HOLD must be active HIGH. The processor receiving the "hold" 

request will issue HLDA (HIGH) as an acknowledgement,. in the middle of aT 4 or 
Ti clock cycle. Simultaneous with the issuarce of HLDA the processor will float 
the local bus and control lines. After HOLD is detected as being LOW, the 
processor lowers HLDA, and when the processor needs to run another cycle, it 
will again drive the local bus and control lines. HOLD and HLDA have internal 
pull-up resistors. 

Hold is not an asynchronous input. External synchronization should be provided if 
the system cannot otherwise guarantee the set up time. 

SSO 34 a STATUS LINE: is logical!y' equivale~ to SO in the maximum mode. The 
combination of SSO, 10/M and DT/R allows the system to completely decode the 
current bus cycle status. 

101M DT/R SSO Characteristics 

1 (HIGH) 0 0 Interrupt Acknowledge 
1 0 1 Read I/O Port 
1 1 0 Write I/O Port 
1 1 1 Halt 
O(LOW) 0 0 Code Access 
0 0 1 Read Memory 
0 1 0 Write Memory 
0 1 1 Passive 

The following pin function descriptions are for the 8088/8288 system in maximum mode (i.e., MN/MX = 
GND). Only the pin functions which are unique to maximum mode are described; all other pin functions are as 
described above. 

Symbol Pin No. Type Name and Function 

S2, S1, SO 26-28 a STATUS: is active during clock high of T 4, T1, and T2, and is returned to the 
passive state (1,1,1) during T3 or during Tw when READY is HIGH. This status is 
used by the 8288 bus controller to ~nerate all memory and I/O access control 
Signals. Any change by S2, S 1 , or SO during T 4 is used to indicate the beginning 
of a bus cycle, and the return to the passive state in T3 and Tw is used to 
indicate the end of a bus cycle. 
These signals float to 3-state OFF during "hold acknowledge". During the first 
clock cycle after RESET becomes active, these signals are active HIGH. After 
this first clock, they float to 3-state OFF. 

S2 S1 SO Characteristics 

O(LOW) 0 0 Interrupt Acknowledge 
0 0 1 Read I/O Port 
0 1 0 Write I/O Port 
0 1 1 Halt 
1(HIGH) 0 0 Code Access 
1 0 1 Read Memory 
1 1 0 Write Memory 
1 1 1 Passive 
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Table 1 Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

RQ/GTO, 30,31 I/O REQUEST/GRANT: pins are used by other local bus masters to force the 
RQ/GT1 processor to release the local bus at the end of the processor's current bus 

cycle. Each pin is bidirectional with RQ/GTO having higher priority than RQ/ 
GT1. RQ/ GT has an internal pull-up resistor, so may be left unconnected. 
The request! grant sequence is as follows (See Figure 8): 
1. A pulse of one ClK wide from another local bus master indicates a local 
bus request ("hold") to the 8088 (pulse 1). 
2. During a T 4 or TI clock cycle, a pulse one clock wide from the 8088 to the 
requesting master (pulse 2), indicates that the 8088 has allowed the local 
bus to float and that it will enter the "hold acknowledge" state at the next 
ClK. The CPU's bus interface unit is disconnected logically from the local 
bus during "hold acknowledge". The same rules as for HOLD/HOLDA apply 
as for when the bus is released. 
3. A pulse one GlK wide from the requesting master indicates to the 8088 
(pulse 3) that the "hold" request is about to end and that the 8088 can 
reclaim the local bus at the next ClK. The CPU then enters T 4. 
Each master-master exchange of the local bus is a sequence of three 
pulses. There must be one idle ClK cycle after each bus exchange. Pulses 
are active lOW. 
If the request is made while the CPU is performing a memory cycle, it will 
release the local bus during T 4 of the cycle when all the following conditions 
are met: 
1. Request occurs on or before T2. 
2. Current cycle is not the low bit of a word. 

, 3. Current cycle is not the first acknowledge of an interrupt acknowledge 
sequence. 
4. A locked instruction is not currently executing. 
If the local bus is idle when the request is made the two possible events will 
follow: 
1. local bus will be released during the next clock. 
2. A memory cycle will start within 3 clocks. Now the four rules for a currently 
active memory cycle apply with condition number 1 already satisfied. 

lOCK 29 0 LOCK: indicates that other system bus masters are not to gain control of the 
system bus while lOCK is active (lOW). The lOCK signal is activated by 
the "lOCK" prefix instruction and remains active until the completion of the 
next instruction. This signal is active lOW, and floats to 3-state off in "hold 
acknowledge" . 

QS1,QSO 24,25 0 QUEUE STATUS: provide status to allow external tracking of the internal 
8088 instruction queue. 
The queue status is valid during the ClK cycle after which the queue 
operation is performed. 

QS1 QSO Characteristics 

O(lOW) 0 No Operation 
0 1 First Byte of Opcode from Queue 
1(HIGH) 0 Empty the Queue . 
1 1 Subsequent Byte from Queue 

- 34 a Pin 34 is always high in the maximum mode. 
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Figure 3. Memory Organization 

FUNCTIONAL DESCRIPTION 

Memory Organization 

The processor provides a 20-bit address to memory 
which locates the byte being referenced. The memo­
ry is organized as a linear array of up to 1 million 
bytes, addressed as OOOOO(H) to FFFFF(H). The 
memory is logically divided into code, data, extra 
data, and stack segments of up to 64K bytes each, 
with each segment falling on 16-byte boundaries 
(See Figure 3). 

All memory references are made relative to base ad­
dresses contained in high speed segment registers. 
The segment types were chosen based on the ad-

Memory Segment 
Reference Used Register Used 

Instructions CODE (CS) 

Stack STACK (SS) 

Local Data DATA (OS) 

External (Global) Data EXTRA (ES) 

dressing needs of programs. The segment register 
to be selected is automatically chosen according to 
the rules of the following table. All information in one 
segment type share the same logical attributes (e.g. 
code or data). By structuring memory into relocat­
able areas of similar characteristics and by automati­
cally selecting segment registers, programs are 
shorter, faster, and more structured. 

Word (16-bit) operands can be located on even or 
odd address boundaries. For address and data oper­
ands, the least significant byte of the word is stored 
in the lower valued address location and the most 
significant byte in the next higher address location. 
The BIU will automatically execute two fetch or write 
cycles for 16-bit operands. 

Segment Selection Rule 

Automatic with all instruction prefetch. 

All stack pushes and pops. Memory references 
relative to BP base register except data references. 

Data references when: relative to stack, destination 
of string operation, or explicity overridden. 

Destination of string operations: Explicitly selected 
using a segment override. 
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Certain locatioris in memory are r!,!served for specific 
CPU operations (See Figure 4). Locations from ad­
dresses FFFFOH through FFFFFH are reserved for 
operations including a jump to the initial system ini­
tialization routine. Following RESET, the CPU will al­
ways begin execution at location FFFFOH where the . 
jump must be located. Locations OOOOOH through 
003FFH are reserved for interrupt operations. Four­
byte pointers consisting of a 16-bit segment address 
and a 16-bit offset address direct program flow to 
one of the 256 possible interrupt service routines. 
The pointer elements are assumed to have been 
stored at their respective places in reserved memory 
prior to the occurrence of interrupts. 

Minimum and Maximum Modes 

The requirements for supporting minimum and maxi­
mum 8088 systems are sufficiently different that 
they cannot be done efficiently with 40 uniquely de­
fined pins. Consequently, the 8088 is equipped with 
a strap pin (MN/MX) which defines the system con-

FFFFFH 
RESET BOOTSTRAP 

PROGRAM JUMP 
FFFFOH 

• • 
• 

INTERRUPT POINTER 
3FFH 

FOR TYPE 255 
3FOH 

• 
• 
• 

7H 
INTERRUPT POINTER 

FOR TYPE 1 4H 

INTERRUPT POINTER 3H 

FOR TYPE 0 
OH 

231456-4 

Figure 4. Reserved Memory Locations 

figuration; The definition of a certain subset of the 
pins changes, dependent on the condition of the 
strap pin. When the MN/MX pin is strapped to GND, 
the 8088 defines pins 24 thro~ 31 and 34 in maxi­
mum mode. When the MN/MX pin is strapped to 

. Vee, the 8088 generates bus control signals itself on 
pins 24 through 31 and 34. 

The minimum mode 8088 can be used with either a 
multiplexed or demultiplexed bus. The multiplexed 
bus configuration is compatible with the MCS-85TM 
multiplexed bus peripherals. This configuration (See 
Figure 5) provides the user with a minimum chip 
count system. This architecture provides the 8088 
processing power in a highly integrated form. 

The demultiplexed mode requires one latch (for 64K 
addressability) or two latches (for a full megabyte of 
addressing). A third latch can be used for buffering if 
the address bus loading requires it. A transceiver 
can also be used if data bus buffering is required 
(See Figure 6). The 8088 provides DEN and DT IR to 
control the transceiver, and ALE to latch the ad­
dresses. This configuration of the minimum mode 
provides the standard demultiplexed bus structure 
with heavy bus buffering and relaxed bus timing re­
quirements. 

The maximum mode employs the 8;288 bus control­
ler ~e Figure 7). The 8288 decodes status lines 
SO, 51, and 52, and provides the system with all bus 
control signals. Moving the bus control to the 8288 
provides better source and sink current capability to 
the control lines, and frees the 8088 pins for extend­
ed large system features. Hardware lock, queue 
status, and two request/grant interfaces are provid­
ed by the 8088 in maximum mode. These features 
allow co-processors in local bus and remote bus 
configurations. 
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Bus Operation 

The BOBB address/data bus is broken into three 
parts-the lower eight address/data bits (ADO­
AD?), the middle eight address bits (AB-A 15), and 
the upper four address bits (A 16-A 19). The ad­
dress/data bits and the highest four address bits are 
time multiplexed. This technique provides the most 
efficient use of pins on the processor, permitting the 
use of a standard 40 lead package. The middle eight 
address bits are not multiplexed, i.e. they remain val-

id throughout each bus cycle. In addition, the bus 
can be demultiplexed at the processor with a single 
address latch if a standard, non-multiplexed bus is 
desired for the system. 

Each processor bus cycle consists of at least four 
elK cycles. These are referred to as T1, T2, T3, and 
T4 (See Figure B). The address is emitted from the 
processor during T1 and data transfer occurs on the 
bus during T3 and T4. T2 is used primarily for chang-

1------14+NwAnl=Tcv------------C4• Nw ... "' .. Tey------i 

T, 1;2 I T) TWA" I T4 Tl TJ TJ T, 

elK 

\ 
"DDRISTATUS 
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MEMORY ACCESS TIME 
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Figure 8. Basic System Timing 
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ing the direction of the bus during read operations. In 
the event that a "NOT READY" indiclition is given 
by the addressed device, "wait" states (Tw) are in­
serted between T3 and T 4. Each inserted "wait" 
state is of the same duration as a ClK cycle. Periods 
can occur between 8088 driven bus, cycles. These 
are referred to as "idle" states (Ti), or inactive ClK 
cycles. The processor uses these cycles for internal 
housekeeping. 

During T1 of any bus cycle, the ALE (address latch 
enable) signal is emitted (by either the processor or 
the 8288 bus controller, depending on the MN/MX 
strap). At the trailing edge of this pulse, a valid ad­
dress and certain status information for the cycle 
may be latched. 

Status bits SO, '51, and 52 are used by the bus con­
troller"in maximum mode, to identify the type of bus 
transaction' according to the following table:' 

S2 S1 SO Characteristics 

O(lOW) 0 0 Interrupt Acknowledge 
0 0 1 Read 1/0 
0 1 0 Write 1/0 
0 1 1 Halt 
1(HIGH) 0 0 Instruction Fetch 
1 0 1 Read Data from Memory 
1 1 0 Write Data to Memory 
1 1 1 Passive (No Bus Cycle) 

Status bits 53 through 56 are multiplexed with high 
order address bits and are therefore valid during T2 
through T 4. 53 and 54 indicate which segment reg­
ister was used for this bus cycle in forming the ad­
dress according to the following table: 

S4 S3 Characteristics 

O(lOW) 0 Alternate Data (Extra Segment) 
0 1 Stack 
1(HIGH) 0 Code or None 
1 1 Data 

55 is a reflection of the PSW interrupt enable bit. 56 ' 
is always equal to O. 

1/0 Addressing 

In the 8088, 1/0 operations can address up to a 
maximum of 64K 1/0 registers. The 1/0 address ap­
pears in the same format as the memory address on 
bus lines A15-AO. The address lines A19-A16 are 
zero in 1/0 operations. The variable 1/0 instructions, 

which use register OX as a pointer, have full address 
capability, while the direct 1/0 instructions directly 
address one or two of the 256 1/0 byte locations in 
page 0 of the 1/0 address space. 1/0 ports are ad­
dressed in the same manner as memory locations. 

Designers familiar with the 8085 or upgrading an 
8085 deSign should note, that the 8085 ~ddress~s 
1/0 with an 8-bit address on both halves of the 16-
bit address bus. The 8088 uses a full 16~bit address 
on its lower 16 address lines. ," 

EXTERNAL INTERFACE 

Processor Reset and Initialization 

Processor initialization or start up is accomplished 
with activation (HIGH) of the RESET pin. The 8088 
RESET is required to be HIGH for greater than four 
clock cycles. The 8088 will terminate operations on 
the high-going edge of RESET and will remain dor­
mant as long as RESET is HIGH. The low-going 
transition of RESET triggers an internal reset se­
quence for approximately 7 clock cycles. After this 
interval the 8088 operates normally, beginning with 
'the instruction in absolute locations FFFFOH (See 
Figure 4). The RESET input is internally synchroniz­
ed to the processor clock. At initialization, the HIGH 
to lOW transition of RESET must occur no sooner 
than 50 JLs after power up, to allow complete initiali­
zation of the 8088. 

NMI asserted prior to the 2nd clock after the end of 
RESET will not be honored. If NMI is asserted after 
that point and duririgthe internal reset sequence, 
the processor may execute one instruction before 
responding to the interrupt. A hold request active 
immediately after RESET will be honored before the 
first instruction fetch. 

All 3-state outputs float to 3-state OFF during 
RESET. Status is active in the idle state for the first 
clock after RESET becomes active and then floats 
to 3-state OFF. ALE and HlDA are driven low. 

Interrupt Operations 

Interrupt operations fall into two classes: software or 
hardware initiated. The software initiated interrupts 
and software aspects of hardware interrupts are 
specified in the instruction set description in the 
iAPX 88 book or the iAPX 86,88 User's Manual. 
Hardware interrupts can be classified as nonmaska­
ble or maskable. 
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Interrupts result in a transfer of control to a new pro­
gram location. A 256 element table containing ad­
dress pointers to the interrupt service program loca­
tions resides in absolute locations a through 3FFH 
(See Figure 4), which are reserved for this purpose. 
Each element in the table is 4 bytes in size and cor­
responds to an interrupt "type." An interrupting de­
vice supplies an 8-bit type number, during the inter­
rupt acknowledge sequence, which is used to vector 
through the appropriate element to the new interrupt 
service program location. 

Non-Maskable Interrupt (NMI) 

The processor provides a single non-maskable inter­
rupt (NMI) pin which has higher priority than the 
maskable interrupt request (INTR) pin. A typical use 
would be to activate a power failure routine. The 
NMI is edge-triggered on a LOW to HIGH transition. 
The activation of this pin causes a type 2 interrupt. 

NMI is required to have a duration in the HIGH state 
of greater than two clock cycles, but is not required 
to be synchronized to the clock. Any higher going 
transition of NMI is latched on-chip and will be serv­
iced at the end of the current instruction or between 
whole moves (2 bytes in the case of word moves) of 
a block type instruction. Worst case response to 
NMI would be for multiply, divide, and variable shift 
instructions. There is no specification on the occur­
rence of the low-going edge; it may occur before, 
during, or after the servicing'of NMI. Another high­
going edge triggers another response if it occurs af­
ter the start of the NMI procedure. The signal must 
be free of logical spikes in general and be free of 
bounces on the low-going edge to avoid triggering 
extraneous responses. 

Maskable Interrupt (INTR) 

The 8088 provides a single interrupt request input 
(INTR) which can be masked internally by software 
with the'resetting of the interrupt enable (IF) flag bit. 
The interrupt request signal is level triggered. It is 
internally synchronized during each clock cycle on 
the high-going edge of CLK. To be responded to, 
INTR must be present (HIGH) during the clock peri­
od preceding the end of the current instruction or the 
end of a whole move for a. block type instruction. 
During interrupt response sequence, further inter­
rupts are disabled. The enable bit is reset as part of 
the response to any interrupt (INTR, NMI, software 
interrupt, or single step), although the FLAGS regis­
ter which is automatically pushed onto the stack re­
flects the state of the processor prior to the inter­
rupt. Until the old FLAGS register is restored, the 
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enable bit will be zero unless specifically set by an 
instruction. 

During the response sequence (See Figure 9), the 
processor executes two successive (back to back) 
interrupt acknowledge cycles. The 8088 emits the 
LOCK signal (maximum mode only) from T2 of the 
first bus cycle until T2 of the second. A local bus 
"hold" request will not be honored until the end of 
the second bus cycle. In the second bus cycle, a 
byte is fetched from the external interrupt system 
(e.g., 8259A PIC) which identifies the source (type) 
of the interrupt. This byte is multiplied by four and 
used as a pointer into the interrupt vector lookup 
table. An INTR signal left HIGH will be continually 
responded to within the limitations of the enable bit 
and sample period. The interrupt return instruction 
includes a flags pop which returns the status of the 
original interrupt enable bit when it restores the 
flags. 

HALT 

When a software HALT instruction is executed, the 
processor indicates that it is entering the HALT state 
in one of two ways, depending upon which mode is 
strapped. In minimum mode,. the processor issues 
ALE, delayed by one clock cycle, to allow the sys­
tem to latch the halt status. H.alt status is available 
on 10/M, DT /R, and 550. In maximum mode, the 
P.!9ce.ss~issues appropriate HALT status on 52, 
51, and SO, and the 8288 bus controller issues one 
ALE. The 8088 will not leave the HALT state when a 
local bus hold is entered while in HALT. In this case, 
the processor reissues the HALT indicator at the 
end of the local bus hold. An interrupt request or 
RESET will force the 8088 out of the HALT state. 

Read/Modify/Write (Semaphore) 
Operations via LOCK 

The LOCK status information is provided by the 
processor when consecutive bus cycles are required· 
during the execution· of an instruction. This allows 
the processor to perform read/modify/write opera­
tions on memory (via the "exchange register with 
memory:' instruction), without . another system bus 
master receiving intervening memory cycles. This is 
useful in multiprocessor system configurations to ac­
complish "test and set lock" operations. The LOCK 
signal is activated (LOW) in the clock cycle following 
decoding of the LOCK prefix instruction. It is deacti­
vated at the end of the last bus cycle of the instruc­
tion following the LOCK prefix. While LOCK is active, 
a request on a RQ/GT pin will be recorded, and then 
honored at the end of the LOCK. 
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I ~ I ~ ~ ~ ~ I T3 

ALE J\'----_----'n'----__ 
\,---' __ ----J/ 

FLOAT 
ADo-AD? 

231456-9 

Figure 9. Interrupt Acknowledge Sequence 

External Synchronization via TEST 

As an alternative to interrupts, the 8088 provides a 
single software-testable input pin (rESn. This input 
is utilized by executing a WAIT instruction. The sin­
gle WAIT instruction is repeatedly executed until the· 
TEST input goes active (LOW). The execution of 
WAIT does -not consume bus cycles once the queue 
is full. 

If a local bus request occurs during WAIT execution, 
the ,8088 3-states all output drivers. If interrupts are . 
enabled, the 8088 will recognize interrupts and pro­
cess them. The WAIT instruction is then refetched, 
and reexecuted. 

Basic System Timing 

In minimum mode, the MN/MX pin is strapped to 
Vee and the processor emits bus control signals 
compatible with the 8085 bus structure. In maximum 
mode, the MN/MX pin ·is strapped to GND and the 
processor emits coded status information which the 
8288 bus controller uses to generate MUL TIBUS 
compatible bus control signals. 

System Timing--Minimum System 

(See Figure 8) 

The read cycle begins in T1 with the assertion of the 
address latch enable (ALE) signal. The trailing (low 

2-72 

going) edge of this signal is used to latch the ad­
dress information, which is valid on the addressl 
data .bus· (ADO-AD?) at this time, into the 
8282/8283 latch. Address lines A8 through A15 do 
not need to be latched because they remain valid 
throughout the bus cycle. From T1 to T4 the 101M 
signal indicates a memory or I/O operation. At T2 
the address is removed from the address/data bus 
and the bus goes to a high impedance state. The 
read control signal is also asserted at T2. The read 
(RD) signal causes the addressed device to enable 
its data bus drivers to the local bus. Some time later, 
valid data will be available on the bus and the ad­
dressed device will drive the READY line HIGH. 
When the processor returns the read signal to a 
HIGH level, the addressed device will again 3-state 
its bus drivers. If a transceiver is required to buffer 
the 8088 local bus, signals DT IA and DEN are pro­
vided by the 8088. 

A write cycle also begins with the assertion of ALE 
and the emission of the address. The 101M signal is 
again asserted to indicate a memory or I/O write 
operation. In T2, immediately following the address 
emission, the processor emits the data to be written 
into the addressed location. This' data remains valid 
until at least the middle of T4. During T2, T3, and 
Tw, the processor asserts the write control signal. 
The write (WR) signal becomes active at the begin­
ning of T2, as opposed to the read, which is delayed 
somewhat into T2 to provide time for the bus to 
float. 
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The basic difference between the interrupt acknowl­
edge cycle and a read cycle is that the interrupt ac­
knowl~e (INT A) signal is asserted in place of the 
read (RD) signal and the address bus is floated. 
(See Figure 9) In the second of two successive INTA 
cycles, a byte of information is read from the data. 
bus, as . supplied by the interrupt system logic (i.e. 
8259A priority interrupt controller). This byte identi­
fies the source (type) of the interrupt. It is multiplied 
by four and used as a pointer into the interrupt vec­
tor lookup table, as described earlier. 

Bus Timing-Medium Complexity 
Systems 

(See F,igure 10) 

For medium complexity systems, the MN/MX pin is 
connected to GND and the 8288 bus controller is 
added to the system, as well as a latch for latching 
the system address, and a transceiver to allow for 
bus loading greater than the 8088 is capable of han­
dling. Signals ALE, DEN, and DT /R' are generated 
by the 8288 instead of the processor in this configu­
ration, although their timing remains relatively the 
same. The 8088 status outputs (S2, S1, and SO) pro­
vide type of cycle information and become 8288 in­
puts. This bus cycle information specifies read 
(code, data, or 1/0), write (data 'or 1/0), interrupt ac­
knowledge, or software halt. The 8288 thus issues 
control signals specifying memory read or write, 1/0 
read or write, or interrupt acknowledge. The 8288 
provides two types of write strobes, normal and ad­
vanced, to be applied as required. The normal write 
strobes have data valid at the leading edge of write. 
The advanced write strobes have the same timing 
as read strobes, and hence, data is not valid at the 
leading edge of write. The transceiver receives the 
usual T and OE inputs from the 8288's DT lR and 
DEN outputs. 

The pointer into the interrupt vector table, which is 
passed during the second INTA cycle, can derive 
from an 8259A located on either the local bus or the 
system bus. If the master 8289A priority interrupt 
controller is positioned on the local bus, a TTL gate 
is required to disable the transceiver when reading 
from the master 8259A during the interrupt acknowl­
edge sequence and software "poll". 

The 8088 Compared to the 8086 

The 8088' CPU is an 8-bit processor designed 
around the 8086 internal structure. Most internal 
functions of the 8088 are identical to the equivalent 
8086 functions. The 8088 handles the external bus 

2-73 

the same way the 8086 does with the distinction of 
handling only 8 bits at a time. Sixteen-bit operands 
are fetched or written in two consecutive bus cycles. 
Both processors will appear identical to the software 
engineer, with the exception of execution time. The 
internal register structure is identical and all instruc­
tions have the same end result. The differences be­
tween the 8088 and 8086 are outlined below. The 
engineer who is unfamiliar with the B086 is referred 
to the iAPX 86, B8 User's Manual, Chapters 2 and 4, 
for function description and instruction set informa­
tion. Internally, there are three differences between 
the 8'088 and the 8086. All changes are related to 
the 8-bit bus interface. 

• The queue length is 4 bytes in the 80BB, whereas 
the SOS6 queue contains 6 bytes, or three words. 
The queue was shortened to prevent overuse of 
the bus by the BIU when prefetching instructions. 
This was required because of the additional time 
necessary to fetch instructions S bits at a time. 

• To further optimize the queue, the prefetching al­
gorithm was changed. The BOBB BIU will fetch a ' 
new instruction to load into the queue each time 
there is a 1 byte hole (space available) in the 
queue. The 80B6 waits until a 2-byte space is 
available. 

• The internal execution time of the instruction set 
is affected by the 8-bit interface. All 16-bit fetches 
and writes fromlto memory take an additional 
four clock cycles. The CPU is also limited by the 
speed of instruction fetches. This latter problem 
only occurs when a series of simple operations 
occur. When the more sophisticated instructions 
of the SOBB are being used, the queue has time to 
fill and the execution proceeds as fast as the exe­
cution unit will allow. 

The B08B and BOB6 are completely software com­
patible by virtue of their identical execution units. 
Software that is system dependent may not be com­
pletely transferable, but software that is not system 
dependent will operate equally as well on an 8088 
and an BOB6. 

The hardware interface of the BOSB contains the ma­
jor differences between the two CPUs. The pin as­
signments are nearly identical, however, with the fol­
lowing functional changes: 

• AS-A 15-These pins are only address outputs 
on the 80SB. These address lines are latched in­
ternally and remain valid throughout a bus cycle 
in a manner similar to the 80B5 upper address 
lines. 

• BHE has no meaning on the 80BB and has been 
eliminated. 
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• SSO provides the SO status information in the 
, minimum mode. This output occurs on pin 34 in 

minimum mode only. DT lA, 101M, and SSO pro­
vide the comple,te bus status in minimum mode. 

T, 

elK ~ r 
aSl,aso 

8088 

52,51.SO 

A19/SS-A1S/S3 A19-AIS 

ALE "-

8288 ROY 8284 

READY 8088 

AD7-ADO 'A7 - AO 
./ 

8088 A15-A8 

RD 

DT/A 

8288 MRilC \ 

DEN 

T. 

• 101M has been inverted to be compatible with the 
MCS-85 bus structure. 

• ALE is delayed by one clock cycle in the mini­
mum mode when entering HALT, to allow the 
status to be latched with ALE. 

T, T. 

J"""' It--. 
~ 

------
flU! '--- ---

5S- 53 

,-
/' --

DATA IN 

A15-A8 

/ 

231456-10 

Figure 10. Medium Complexity System Timing 
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ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias .... O·C to + 70·C 

Case Temperature (Plastic) ......... O·C to + 95·C 

Case Temperature (CERDIP) ........ O·C to + 75·C 

Storage Temperature .......... - 65·C to + 150·C 

Voltage on Any Pin with 
Respect to Ground ............... -1.0 to + 7V 

Power Dissipation ....................... 2.5 Watt 

D.C. CHARACTERISTICS 

• Notice: Stresses above those listed under ':4bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

(T A = O·C to 70·C, T CASE (Plastic) = O·C to 95·C, T CASE (CERDIP) = O·C to 75·C, 
T A = O·C to 55·C and T CASE = O·C to 75·C for P8088-2 only 
T A is guaranteed as long as T CASE is not exceeded) 

(Vcc = 5V ± 10% for 8088, VCC = 5V ±5% for 8088-2 and Extended Temperature EXPRESS) 

Symbol Parameter 

Vil Input Low Voltage 

VIH Input High Voltage 

Val Output Low Voltage 

VOH Output High Voltage 

Icc 8088 
Power Supply Current: 8088-2 

P8088 

III Input Leakage Current 

ILO Output and I/O Leakage Current 

VCl Clock Input Low Voltage 

VCH Clock Input High Voltage 

CIN Capacitance If Input Buffer 
(All Input Except 
ADo-AD7' RQ/GT) 

Cia Capacitance of I/O Buffer 
ADo-AD7' RQ/GT) 

NOTES: 
1. VIL lested with MN/MX Pin = OV 

VIH tested with MN/MX Pin = 5V 
MN/MX Pin is a strap Pin 

Min 

-0.5 

2.0 

2.4 

-0.5 

3.9 

2. Not applicable to RQ/GTO and RQ/GT1 Pins (Pins 30 and 31) 
3. HOLD and HlDA III Min = 30 ",A, Max = 500 ",A 
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Max Units Test Conditions 

+0.8 V (Note 1) 

VCC + 0.5 V (Notes 1, 2) 

0.45 V IOl = 2.0 inA 

V IOH = - 400 /LA 

340 rnA TA= 25·C 
350 
250 

±10 /LA OV ~ VIN ~ VCC (Note 3) 

±10 /LA 0.45V ~ VOUT ~ VCC 

+0.6 V 

VCC + 1.0 V 

15 pF fc = 1 MHz 

15 pF fc = 1 MHz 
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A.C. CHARACTERISTICS 

(T A = O·C to 70·C, T CASE (Plastic) = O·C to 9S·C, T CASE (CERDIP) = O·C to 7S·C, 
T A = O°C to SS·C and T CASE = O·C to 80·C for P8088-2 only 
T A is guaranteed as long as T CASE is not exceeded) 

(V CC = SV ± 10% for 8088, V CC = SV ± S % for 8088-2 and Extended Temperature EXPRESS) 

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS 

8088 8088-2 rest Symbol Parameter Units 
Min Max Min Max Conditions 

TClCl ClK Cycle Period 200 SOO 12S SOO ns 

TClCH ClKlowTime 118 68 . ns 

TCHCl ClK High Time 69 44 ns 

TCH1CH2 ClK Rise Time 10 10 ns From 1.0V to 3.SV 

TCl2Cl2 ClK Fall Time 10 10 ns From 3.SV to 1.0V 

TDVCl Data in Setup Time 30 20 ns 

TClDX Data in Hold Time 10 10 ns 

TR1VCl ROY Setup Time into 8284 3S 3S ns 
(No!es 1, 2) 

TClR1X ROY Hold Time into 8284 0 0 ns 
(Notes 1, 2) 

TRYHCH READY Setup Time 118 68 ns 
int080B8 

TCHRYX READY Hold Time 30 20 ns 
into 8088 

TRYlCl READY Inactive to ClK -8 -8 ns 
(Note 3) 

THVCH HOLD Setup Time 3S 20 ns 

TINVCH INTR, NMI, TEST Setup Time 30 1S ns 
(Note 2) 

TILIH Input Rise Time (Except ClK) 20 20 ns From 0.8V to 2.0V 

TIHll Input Fall Time (Except ClK) 12 12 ns From 2.0V to 0.8V 
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A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

8088 8088·2 Test 
Symbol Parameter Units 

Conditions Min Max Min Max 

TCLAV Address Valid Delay 10 110 10 60 ns 

TCLAX Address Hold Time 10 10 ns 

TCLAZ Address Float Delay TCLAX 80 TCLAX 50 ns 

TLHLL ALE Width TCLCH-20 TCLCH-10 ns 

TCLLH ALE Active Delay 80 50 ns 

TCHLL ALE Inactive Delay 85 55 ns 

TLLAX Address Hold Time to TCHCL-10 . TCHCL-10 ns 
ALE Inactive 

TCLDV Data Valid Delay 10 110 10 60 ns 

TCHDX Data Hold Time 10 10 ns 

TWHDX Data Hold Time after WR TCLCH-30 TCLCH-30 ns 

TCVCTV Control Active Delay 1 10 110 10 70 ns 

TCHCTV Control Active Delay 2 10 110 10 60 ns 

TCVCTX Control Inactive Delay 10 110 10 70 ns 

TAZRL Address Float to READ 0 0 ns 
Active 

TCLRL RD Active Delay 10 165 10 100 ns 

TCLRH RD Inactive Delay 10 150 10 80 ns 

TRHAV RD Inactive to Next TCLCL-45 TCLCL-40 ns 
Address Active 

TCLHAV HLDA Valid Delay 10 160 10 100 ns 

TRLRH RDWidth 2TCLCL-75 2TCLCL-50 ns 

TWLWH WRWidth 2TCLCL-60 2TCLCL-40 ns 

TAVAL Address Valid to ALE Low TCLCH-60 TCLCH-40 ns 

TOLOH Output Rise Time 20 20 ns From 0.8V to 2.0V 

TOHOL Output Fall Time 12 12 ns From 2.0V to 0.8V 

NOTES: 
1. Signal at 8284A shown for reference only. See 8284A data sheet for the most recent specifications. 
2. Set up requirement for asynchronous signal only to guarantee recognition at next elK. 
3. Applies only to T2 state (8 ns into T3 state). 
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A.C. TESTING INPUT; OUTPUT WAVEFORM 

231456-11 

A.C. Testing; Inputs are driven at 2.4V for a logic "I" and 0.45V 
for a logic "0". Timing measurements are made at 1.5V for both a 
logic "I" and logic "0". 

WAVEFORMS 

BUS TIMING-MINIMUM MODE SYSTEM 

T, 

Ve, -TCLCL 

8088 

, A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

TEST 

CL Includes Jig Capacitance 

T. 

231456-12 

CLK 18284 Outputl r,--~~ 
~ TCHCTV I-- I" '~n~. 

H t-TCL2C:~r~ 
L-.J ~f\..--

IO/M.SSo 

ALE 

RDY (8284 Input) 

SEE NOTE 5 

READY (B088 Input) 

READ CYCLE 

INOTE tl 
1\VIi, IIIT1.=VoHI 

RD 

DT'A 

I TCLAV- i-

ITCLL~ } f-TLH 

TC ILL-

I 
I 

=~TCHCTV 

TCLA;': 

All-A,. 

.L~ 

~ 

-
AD.-AD. 

y, 

IAI 

,"'-110 IFI, i"l during IN' 'I 
=T ?LDV TCHDX- I-

s,-&.! 

-T~LAX 

/r== 
V :~l 

I-TR1VCL 

V m -~ ~~ - a-TCLF 1X 

'RyL( iL- l-
- h .., 

-I 

.f ,... 

i-.n .. " "l 

-TC :AZ 

~ 
_T~" 

liN 

~ ~:~:::~ !RL- I- , TCLRH- -' 

...... 
• TAl 

I 
TCVCTV- t TCVCTX- .E-

231456-13 
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WAVEFORMS (Continued) 

BUS TIMING-MINIMUM MODE SYSTEM (Continued) 

eLK 18284 Output) 

WRITE CYCLE 
NOTE t 

INTA CYCLE 

NOTES 1.3 

(RD. WR = YOH) 

SOFTWARE HALT -

DEN,RD,WA.iN'fA VOH 

DTIR INDElERMINATE 

NOTES: 

ADT-ADo 

DE~ 

AO, - ADO 

ol/R 

AC7-ADo INVALID ADDRESS 

relAY 

1. All signals switch between VOH and VOL unless otherwise specified. 

TCYCTX 

TCVC1X 

SOFTWARE HALT 

_TCLDX 

,FlOAT 

TCHCTV 

231456-14 

2. ROY is sampled near the end of T 2. T 3. T w to determine if T w machines states are to be inserted. 
3. Two INTA cycles run back-to-back. The 8088 local AOOR/OATA bus is floating during both INTA cycles. Control 
signals are shown for the second INTA cycle. 
4. Signals at 8284 are shown for reference only. 
5. All timing measurements are made at 1.5V unless otherwise noted. 
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A.C. CHARACTERISTICS 

MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) 

TIMING REQUIREMENTS 

8088 8088-2 Test 
Symbol Parameter 

Min 
Units 

Conditions Max Min Max 

TClCl ClK Cycle Period 200 500 125 500 ns 

TClCH ClKlowTime 118 68 ns 

TCHCl ClK High Time 69 44 ns 

TCH1CH2 ClK Rise Time 10 10 ns From 1.0V to 3.5V 

TCl2Cl1 ClK Fall Time 10 10 ns From 3.5V to 1.0V 

TDVCl Data in Setup Time 30 20 ns 

TClDX Data in Hold Time 10 10 ns 

TR1VCl ROY Setup Time into 8284 35 35 ns 
(Notes 1, 2) 

TClF\1X ROY Hold Time into 8284 0 0 ns 
(Notes 1; 2) 

TRYHCH READY Setup Time into 8088 118 68 ns 

TCHRYX READY Hold Time into 8088 30 20 ns 

TRYlCl READY Inactive-to ClK -8 -8 ns 
(Note 4) 

TINVCH Setup Time for Recognition 30 15 ns 
(INTR, NMI,TEST) (Note 2) 

TGVCH RQ/GT Setup Time 30 15 ns 

TCHGX RQ Hold Time into 8088 40 30 ns 

TILIH Input Rise Time (Except ClK) 20 20 ns From 0.8V to 2.0V 

TIHll Input Fall Time (Except ClK) 12 12 ns From 2.0V to 0.8V 
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A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

8088 8088·2 Test 
Symbol Parameter Min Max Min Max Units Conditions 

TCLML Command Active Delay 10 35 10 35 ns 
(Note 1) 

TCLMH Command Inactive Delay 10 35 10 35 ns 
(Note 1) 

TRYHSH READY Active to 110 65 ns 
Status Passive (Note 3) 

TCHSV Status Active Delay 10 110 10 60 ns 

TCLSH Status Inactive Delay 10 130 10 70 ns 
TCLAV Address Valid Delay 10 110 10 60 ns 

TCLAX Address Hold Time 10 10 ns 

TCLAZ Address Float Delay TCLAX 80 TCLAX 50 ns 

TSVLH Status Valid to ALE High 15 15 ns 
(Note 1) 

TSVMCH Status Valid to MCE High 15 15 ns 
(Note 1) 

TCLLH CLK Low to ALE Valid 15 15 ns 
(Note 1) 

TCLMCH ClK Low to MCE (Note 1) 15 15 ns 

TCHlL ALE Inactive Delay (Note 1) 15 15 ns 

TCLMCl MCE Inactive Delay (Note 1) 15 15 ns 

TCLDV Data Valid Delay 10 110 10 60 ns 

TCHDX Data Hold Time 10 10 ns 

TCVNV Control Active Delay 5 45 5 45 ns 
Cl = 20-100 pF for 
All 8088 Outputs (Note 1) in Addition to 

TCVNX Control Inactive Delay 10 45 
(Note 1) 

10 45 ns Internal Loads 

TAZRl Address Float to 0 0 ns 
Read Active 

TCLRL RD Active Delay 10 165 10 100 ns 
TCLRH RD Inactive Delay 10 150 10 80 ns 

TRHAV RD Inactive to Next TCLCL-45 TCLCL-40 ns 
Address Active 

TCHDTL Direction Control 50 50 ns 
Active Delay (Note 1) 

TCHDTH Direction Control 30 30 ns 
- Inactive Delay (Note 1) 

TCLGL GT Active Delay 85 50 ns 

TCLGH GT Inactive Delay 85 50 ns 

TRLRH RDWidth 2TCLCl-75 2TClCl-50 ns 

TOLOH Output Rise Time 20 20 ns From 0.8V to 2.0V 

TOHOL Output Fall Time 12 12 ns From 2.0V to 0.8V 

NOTES: 
1. Signal at 8284 or 8288 shown for reference only. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next elK. 
3. Applies only to T3 and wait states. 
4. Applies only to T2 state (8 ns into T3 state). 
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A.C. TESTING INPUT, OUTPUT WAVEFORM 

231456-11 

A.C. Testing; Inputs are driven at 2.4V for a logic "1" and 0.45V 
for a logic "0". Timing measurements are made at 1.5V for both a 
logic "1" and logic "0". 

WAVEFORMS (Continued) 

BUS TIMING-MAXIMUM MODE SYSTEM 

T, 

_TO' 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

TEST 

CL Includes Jig Capacitance 

T! T. T. 

231456-12 

eLK 

ri \-TCL2el1 Tw 
veH (""") 

v--\ r" r\-
veL-' ~.~ ~ ~ ~TCLCH~ 

QScI,OS, 

§i,~,SO (EXCEPT HALT) 

Ats-A, 

I ALE (8'" OUTPUT) 

SEe NOTES \ 

RDY (8284 INPUT) 

READY (aoaa INPUT) 

READ CYCLE 

ADr-ADo 

RD 

DT/R 

m. OUTPUTS I "'ROC OR ilIAC 
see NOTES 5.6 \ 

DEN 

I 
I 

TeLAV-

):. 
- I TCHSV 

- I-T 

~~~~~ 1=-
f" 

TeLAV- .f=. 
I 

TCHDTL-

1)( 
- r-TCLSI 

~ f//.£, •• NOTE a) \_-==== 
IA,,~ .. 

~AV. ~CrDV TCHOX- -
A,~A" I .... -.r- -TeHLL 

~ ---
lj 1-. ,"veL 

~ ~ ~ ~ ~ ~ ~~ toTeLR' 
TR~ !- -

h, 

~YI.H_ 1--
-TeHRYX 

f----l ~ 
,... 

-TCLAJf I-- ITClAl l- .... ... nvo, 
I 

'AD",,,, 
LOAT. I 

DATA'N 
FLOAT 

TeLAH 

,/ 

\. i~ F-
TeLML- r TeLMH- I--

j-j 
TeVNV- t:. 

K {. 
TeYNX- I-=-

231456'-15 
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WAVEFORMS (Continued) 

BUS TIMING-MAXIMUM MODE SYSTEM (USING 8288) 

CLK 

I-TCHSV 

VCH~ 

VCL-I 

----~--_+--1_---+--+---~~+_--~-------
~( ... no ... ) 

SOFTWARE 

52. &.. so (EXCEPT HAL n 

WRITE CYCLE 

ADT-ADo 

DEN 

INTA CYCLE 

A'5- A, 
(SEE NOTES 3,4) 

.. 00 OIJTPUTS 
seE NOTES 5,6 

AD1'ADo 

MCEI 
i'li"Ul 

DTiR 

INTA 

DEN 

1~--+_--+_---4---+--~~~ 
TCLAY- 1- - TCLDVI_ - L-rClSH TCHDX-______ -+~ r--+ ____ .~Tc~LA~~I~r_4_----~--~r-~--'--+_----_+~.lr------

Y DATA 
-----1H-" '--+--+-J/I\'--t--...,------t---t-'I"-----­

TCVNV- I--

r 
-----+~--+---~ 

- !--TCL. L 

TCVNX-

TCLMH- -

-----+~--+---~I ,..--+-------
-' 

______ +~--~--_+----+_----'.-.\ r-I TCLML -
_TClMH 

FLOAT ~!~~:~~OAri~: /}---f-:::FL'-:O:-:'A':'T ------------+-----t-:F7:LO;;';A:;T---{ 

r--
I 

____ --+-j.I/c....."JTCtAZ !--TOVCL- -TCLDX 

POINTER 
fLOAT 

~ !,.~~'~ / 
-TCLMC-+"H- /1- - {TCHDTL Ii \ - yC~~--

TSVMCH-

TCLML- B'--+------t-J ~\----
-~"."' -e. 

___ +-________ J. ~ ______ _ 

TCVNX-
HALT -(DEN = YOL;filJ,'flR'iie,mJre,MWfC.AMWC.IDWC . .irnWC,INTA.DTI" = VOH 

AO,- ADo. A'5 - Aa 
INVALID ADDRESS 

TelA 

~ /r---------"<'\-- -----
~. ----~. ~------

NOTES: 231456-16 
1. All signals switch between VOH and VOL unless otherwise specified. 
2. RDY is sampled near the end of T 2, T 3, T w to determine if T w machines states are to be inserted. 
3. Cascade address is valid between first and second INTA cycles. 
4. Two INTA cycles run back-to-back. The 8088 local ADDR/DATA bus is floating during both INTA cycles. Control for 
pOinter address is shown for second INTA cycle. 
5. Signals at 8284 or 821!8 are shown for reference only. 
6. The issuance of the 8288 command and control signals (MRDC, MWTC, AMWC. IORC. IOWC. AIOWC, INTA and 
DEN) lags the active high 8288 CEN. 
7. All timing measurements are made at 1.5V unless otherwise noted. 
8. Status inactive in state just prior to T 4. 
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WAVEFORMS (Continued) 

ASYNCHRONOUS SIGNAL RECOGNITION 

ClK 

NMI 

INTR 

8088 

BUS LOCK SIGNAL TIMING 
(MAXIMUM MODE ONLY) 

elK 

_. ~=!-:~: 1-

Any eLK CYC:le_t 

TEST 

I ,,~. 
lOCK· \ 

"--_____ .J 

NOTE: 231456-17 
1. Setup requirements for asynchronous signals only to 
guarantee recognition at next eLK .. 

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY) 

eLK 

P,."ousgrln' 

"'''''A:~ 1-1 ------------~ 
AD,-ADo _ 

~g 1-1 --------------/ 

NOTE: 
1. The coprocessor may not drive the !)usses outside the region shown without risking contention. 

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY) 

Cl~ 

l~ 

231456-18 

231456-19 

HOlD~ 

HlDA 

rT~C~lH_A_V ______ ~:~~l_HArV ________ ~ 

8088 COPROCESSOR 

231456-20 
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Mnemonic and 
Description 

DATA TRANSFER 

MOV = Move: 

Register/Memory to/from Register 

Immediate 10 Register/Memory 

Immediate 10 Register 

Memory to Accumulator 

Accumulator to Memory 

Register/Memory to Segment Register 

Segment Register to Register/Memory 

PUSI1 = Push: 

Register/Memory 

Register 

Segment Register 

POP = Pop: 

Register/Memory 

Register 

Segment, Register 

XCHG = Exchange: 

Register/Memory with Register 

Register with Accumulator 

IN = Input from: 

Fixed Port 

Variable Port 

OUT = Outputto: 

Fixed Port 

Variable Port 

XLAT = Translate Byte to AL 

LEA = Load EA to Register 

LDS = Load Pointer to OS 

LES = Load Pointer to ES 

LAHF = Load AH with Flags 

SAHF = Store AH into Flags 

PUSHF = Push Fla~s 

POPF = Pop Flags 

8088 

8086/8088 Instruction Set Summary 

I Instruction Code 

76543210 76543210 76543210 76543210 

100010dw mod reg rIm 

1100011 w modOOOr/m data data ifw = 1 

10 11 wreg data dataifw = 1 

1010000¥, addr-Iow addr-high 

1010001w addr-Iow addr-high 

10001110 modOregr/m 

10001100 modO reg rIm 

11111111 mod 11 Or/m 

01010reg 

OOOreg 11 a 

10001111 modOOOr/m 

a 10 11 reg 

000regll1 

1000011w mod reg rIm 

10010reg 

1110010w port 

111 allOw 

1110011 w port 

1110111 w 

11010111 

1000 11 0 1 mod reg rIm 

11000101 modregr/m 

11000100 mod reg r/m 

100 11111 

10011110 

100 11'1 00 

10011101 
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8088 

8086/8088 Instruction Set Summary (Continued) 

ARITHMETIC 

ADD ~ Add: 

Mnemonic and 
Description 

Reg.lMemory with Register to 'Either 

Immediate to Register/Memory 

Immediate to Accumulator 

ADC ~ Add with Carry: 

Reg.lMemory with Register to Either 

Immediate to Register/Memory 

Immediate to Accumulator 

INC ~ Increment: 

Register/Memory 

Register 

AAA ~ ASCII Adjustfor Add 

BAA ~ Decimal Adjust for Add 

SUB ~ Subtract: 

Reg.lMemory and Register to Either 

_Immediate from Register/Memory 

Immediate from Accumulator 

SSB ~ Subtract with Borrow 

Reg.lMemor'y and Register to Either 

Immediate from Register/Memory 

Immediate from Accumulator 

DEC ~ Decrement: 

Register/memory 

Register 

NEG ~ Change sign 

CMP ~ Compare: 

Register I Memory and Register 

Immediate with Register/Memory 

Immediate with Accumulator 

AAS ~ ASCII Adjustfor Subtract 

DAS ~ Decimal Adjust for Subtract 

MUL ,,; Multiply (Unsigned) 

IMUL ~ Integer Multiply (Signed) 

AAM ~ ASCII Adjust for Multiply 

DIV ~ Divide (Unsigned) 

IDlY ~ Integer Divide (Signed) 

AAD ~ ASCII Adjustfor Divide 

CBW ~ Convert Byte to Word 

CWD ~ Convert Word to Double Word 

I Instruction Code 

76543210 76543210 76543210 

OOOOOOdw mod reg rIm 

100000sw modOOOr/m data 

0000010w data dataifw ~ 1 

000100dw mod reg rIm 

100000sw modO 1 o rIm data 

0001010w data dataifw ~ 1 

l111111w modOOOr/m 

01000reg 

00110111 

00100111 

001010dw mod reg rIm 

100000sw mod 1 0 1 rIm data 

0010110w data dataifw~1 

000110dw I mod reg rIm 

100000sw I modO 11 rIm data 

000111 w I data dataifw ~ 1 

l111111w modOOI rIm 

01001 reg 

1111011w modOll rIm 

001110dw mod reg rIm 

100000sw mod 111 rIm data 

0011nOw data dataifw ~ 1 

00111111 

00101111 

1111011w mod 1 OOr/m 

1111011w mod 101 rIm 

11010100 00001010 

1111011w modll0r/m 

1111011w mod 111 rIm 

11010101 00001010 

10011000 

1001100-1 

2-86 

76543210 

data if s:w ~ 01 

data if s:w ~ 01 

data if s:w ~ 01 

data if s:w ~ 01 

data if s:w ~ 01 



intJ 8088 

8086/8088 Instruction Set Summary (Continued) 

Mnemonic and 
I Instruction Code Description 

LOGIC 76543210 76543210 76543210 76543210 

NOT = Invert 1111011 w modO 1 Or/m 

SHL/SAL = Shift Logicall Arithmetic Left 110100vw mod 1 OOr/m 

SHR = Shift Logical Right 110100vw mod 101 rIm 

SAR = Shift Arithmetic Right 110100vw mod 111 rIm 

ROL = Rotate Left 110100vw modO OOr/m 

ROR = Rotate Right 110100vw modOOI rIm 

RCL = Rotate Through Carry Flag Left 110100vw modO 1 Or/m 

RCR = Rotate Through Carry Right 110100vw modOll rIm 

AND = And: 

Reg.lMemory and Register to Either 001000dw mod reg rIm 

Immediate to Register/Memory 1000000w mod 1 OOr/m data dataifw = 1 

Immediate to Accumulator 0010010", data dataifw = 1 

TEST = And Function to Flags. No Result: 

Register/Memory and Register 1000010w mod reg rIm 

Immediate Data and Register/Memory 1111011w modOOOr/m data dataifw = 1 

Immediate Data and Accumulator 1010100w data dataifw = 1 

OR = Or: 

Reg.lMemory and Register to Either 000010dw mod reg rIm 

Immediate to Register/Memory 1000000w mod 0 0 1 rIm data dataifw = 1 

Immediate to Accumulator 0000110w data dataifw = 1 

XOR = Exclusive or: 

Reg.lMemory and Register to Either 001100dw mod reg rIm 

Immediate to Register/Memory 1000000w mod 11 Or/m data dataifw = 1 

Immediate to Accumulator 0011010w data dataifw = 1 

STRING MANIPULATION 

REP = Repeat 1111001 z 

MOYS = Move Byte/Word 1010010w 

CMPS = Compare Byte/Word 1010011 w 

SCAS = Scan Byte/Word 1010111w 

LODS = Load Byte/Wd to ALI AX 1010110w 

STOS = Stor Byte/Wd from ALIA 1010101w 

CONTROL TRANSFER 

CALL = Call: 

Direct Within Segment 11101000 disp-Iow disp-high 

Indirect Within Segment 11111111 modOl0r/m 

Direct Intersegment 10011010 offset·low offset·high 

seg-Iow seg-high 

Indirect Intersegment 11111111 modO 11 rIm 
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8086/8088 Instruction Set Summary (Continued) 

Mnemonic and I Instruction Code Description 

JMP = Unconditional Jump: 76543210 76543210 76543210 

Direct Within Segment 11101001 diap-Iow disp,-high 

Direct Within Segment-Short 11101011 disp 

Indirect Within Segment 11111111 mod 1 OOr/m 

Direct Intersegment 11101010 offset-low 'offset-high 

seg-Iow seg-high 

Indirect Intersegment 11111111 mod 101 rIm 

RET = Return from CALL: 

Within Segment 11000011 

Within Seg Adding Immed to SP 11000010 data-low data-high 

Intersegment 11001011 

Intersegment Adding Immediate to SP 11001010 data-low data-high 

JE/JZ = Jump on Equal/Zero 01110100 disp 

JLlJNGE = Jump on Less/Not Greater 01111100 disp 
or Equal 

JLE/JNG = Jump on Less or Equal/ 01111110 disp 
Not Greater' 

JB/JNAE = Jump on Below/Not Above 01110010 disp 
or Equal 

JBE/JNA '= Jump on Below or Equal/ 01110110 disp 
Not Above 

JP/JPE = Jump on Parity/Parity Even 01111010 disp 

JO = Jump on Overllow 01110000 disp 

JS = Jump on Sign 01111000 disp 

JNEI JNZ = Jump on Not EqiJal/Not Zero 01110101 disp 

JNL/JGE = Jump on Not Less/Greater 
or Equal 

01111101 disp 

JNLE/JG = Jump on Not Less or Equal/ 01111111 disp 
Greater 

JNB/JAE = Jump on Not Below/Above 
or Equal 

01110011 disp 

JNBE/JA = Jump on Not Below or 
Equal/Above 

01110111 disp 

JNP/JPO = Jump on Not Par/Par Odd 01111011 disp 

JNO = Jump on Not Overllow 01110001 disp 

JNS = Jump on Not Sign 01111001 disp 

LOOP = Loop ex TImes 11100010 disp 

LOOPZ/LOOPE = Loop While Zero/Equal 11100001 disp 

LOOPNZlLOOPNE = Loop While Not 
Zero/Equal 

11100000 disp 

JCXZ = Jump on ex Zero 11100011 disp 

INT = Interrupt 

Type Specified 11001101 type 

Type 3 11001100 

INTO = Interrupt on Overllow 11001110 

IRET = Interrupt Return 11001111 
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8086/8088 Instruction Set Summary (Continued) 

Mnemonic and 
Description 

PROCESSOR CONTROL 

CLC = Clear Carry 

CMC = Complement Carry 

STC = Set Carry 

CLD = Clear Direction 

STO = Set Direction 

CLI = Clear Interrupt 

STI = Set Interrupt 

HLT = Hall 

WAIT = Wail 

ESC = Escape (to External Device) 

LOCK = Bus Lock Prefix 

NOTES: 
AL = a-bit accumulator 
AX = 16-bit accumulator 
CX = Count register 
OS = Oata segment 
ES = Ex1ra segment 
Above/below refers to unsigned value 
Greater = more positive: 

I 
76543210 

11111000 

11110101 

11111001 

11111100 

11111101 

11111010 

11111011 

11110100 

10011011 

11011 xxx 

11110000 

Less = less positive (more negative) signed values 
if d = 1 then "to" reg; if d = 0 then "from" reg 
if w = 1 then word instruction; if w = 0 then byte 

instruction 
if mod = 11 then rIm is treated as a REG field 
if mod = 00 then OISP = 0·, disp-Iow and disp-high are 

absent 
if mod = 01 then DISP = disp-Iow Sign-extended to 

16 bits, disp-high is absent 
if mod = 10 then DISP = disp-high; disp-Iow 

if rIm = 000 then EA = (aX) + (SI) + DISP 
if rIm = 001 then EA = (BX) + (DI) + DISP 
if rim = 010 then EA = (BP) + (51) + DISP 
if rIm = 011 then EA = (BP) + (DI) + OISP 
if rim = 100 then EA = (SI) + OISP 
if rim = 101 then EA = (01) + OISP 
if rim = 110 then EA = (BP) + OISp· 
if rim = 111 then EA = (BX) + DISP 
OISP follows 2nd byte of instruction (before data if re­
quired) 

·except if mod = 00 and rim = then EA = disp-high: 
disp-Iow. 

if s:w = 01 then 16 bits of immediate data form the oper­
and 

if s:w = 11 then an immediate data byte is sign ex1ended 
to form the 16-bit operand 

if v = 0 then "count" = 1; if v = 1 then "count" in (CL) 
register 

x = don't care 
z is used for string primitives for comparison with ZF FLAG 
SEGMENT OVERRIDE PREFIX 

001re9110 I . 

Instruction Code . 

76543210 

mod xxxr/m 

REG is assigned according to the following table: 

16-Bit (w = 1) 8-Bit (w = 0) Segment 

000 AX 000 AL 00 E8 
001 CX 001 CL 01 C8 
010 DX 010 DL 10 88 
011 BX 011 BL 11 D8 
100 SP 100 AH 
101 BP 101 CH 
110 81 110 DH 
111 DI 111 BH 

. Instructions which reference the flag register file as a 16-bit 
object use the symbol FLAGS to represent the file: 

2-89 

FLAGS = 
X:X:X:X:(OF):(DF):(lF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF) 

Mnemonics ® Intel, 1978 

DATA SHEET REVISION REVIEW 

The following list represents key differences be­
tween this and the -004 data sheet. Please review 
this summary carefully. 

1. The Pin Description Table has been modified to 
indicate that the HOLD and HLDA pins both have 
internal pull-up resistors. The input leakage cur­
rent (Ill) in the D.C. Characteristics section has 
been modified for these pins. 



80C88A 
8-BIT CHMOS MICROPROCESSOR 

• Pin-for-Pin and Functionally Compatible • Direct Addressing Capability of 1 
to Industry Standard HMOS SOSS MByte of Memory 

• Direct Software Compatibility with • Architecture Designed for Powerful 
80CS6,8086,S088 Assembly Language and Efficient High 

• Fully Stati~ Design with Frequency Level Languages 

Range from D.C. to: • 24 Operand Addressing Modes 
- S MHz for 80CSSA-2 • Byte, Word and Block Operations 

• Low Power Operation • Sand 16-Bit Signed and Unsigned 
-Operating Icc = 10 mA/MHz Arithmetic 
- Standby IcCs = 500 p,A max - Binary or Decimal 

• Bus-Hold Circuitry Eliminates Pull-Up - Multiply and Divide 
Resistors • Available in 40-Lead Plastic DIP 

(See Packaging Spec., Order .. 231369) 

The Intel 80C88A is a high performance, CHMOS version of the industry standard HMOS 8088 8-bit CPU. The 
processor has attributes of both 8 and 16-bit microprocessors. The 80C88A, available in 8 MHz clock rate, 
offers two modes of operation: MINimum for small systems and MAXimum for larger applications such as 
multi-processing. It is available in 40-pin DIP. 

INTERF:~:t----::=-: ------l 
UNITt----=D=-S ------l 

I. 

AH Al 

8H al 
eH CL 

EXECUll~r~ t--:::.DH,-:!S'::-. _D:::L-----l 

8. 
51 

DI 

A·BUS 

INSTRUCTION 
STREAM BYTE 

QUEUE 

Figure 1. 80C88A CPU 
Functional Block Diagram 

240028-1 
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GND 

A1' 

A13 

A12 

A11 

A10 

'AI 

A8 

ADT 

AD. 

ADS 

AD. 

AD3 

AD2 

AD1 

ADO 
NMI 

INTR 

cui 
GND 

MIN 
MODE 

Vee 
A15 

A181S3 

A171S4 

A18JS5 

A191S6 

I MAX 1 
MODE 

SSO (HIGH) 

MNJIilt 

fill 
HOLD (ii1lliTfO) 

HLDA (RlIIilT1) 

Wli (mfi) 

101M (52) 

DTift (SI) 

liEII (So) 

ALE (OSO) 

imA (OS1) 

READY 

RESET 

240028-2 

Figure 2. 80C88A 40-Lead 
DIP Configuration 

September 1988 
Order Number: 240028-002 
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Table 1. Pin Description 

The following pin function descriptions are for SOCSSA systems in either minimum or maximum mode. The 
. "local bus" in these descriptions is the direct multiplexed bus interface connection to the 80CSSA (without 

regard to additional bus buffers). 

Symbol Pin No. Type Name and Function 

AD.7-ADO 9-16 1/0 ADDRESS DATA BUS: These lines constitute the time 
multiplexed memory/iO address (T1) and data (T2, T3, Tw, and 
T4) bus. These lines are active HIGH and float to 3-state OFF(1) 

I during interrupt acknowledge and local bus "hold acknowledge". 

A15-A8 2-8,39 0 ADDRESS BUS: These lines provide address bits 8 through 15 for 
the entire bus cycle (T1-T 4). These lines do not have to be 
latched by ALE to remain valid. A 15-A8 are active HIGH and float 
to 3-state OFF(1) during interrupt acknowledge and local bus 
"hold acknowledge". 

A19/56, A18/55, 35-38 0 ADDRESS/STATUS: During T1 , these are the four most 
A17/54, A16/53 significant address lines for memory operations. During 1/0 

operations, these lines are LOW. During memory and 1/0 
operations, status information is available on these lines during 
T2, T3, Tw, and T 4. 56 is always low. The status of the interrupt 
enable flag bit (55) is updated at the beginning of each clock 
cycle. 54 and 53 are encoded as shown. 

This information indicates which segment register is presently 
being used for data accessing. 

These lines float to·3-state OFF(1) during local bus "hold 
acknowledge" . 

S4 S3 CHARACTERISTICS 

O(LOW) 0 Alternate Data 
0 1 Stack 
1(HIGH) 0 Code or None 
1 1 Data 
56 is O(LOW) 

RD 32 0 READ: Read strobe indicates that the processor is performing a 
memory or 1/0 read cycle, depending on the state of the 10lM pin 
or 52. This signal is used to read devices which reside on the 
80C88A local bus. RD is active LOW during T2, T3 and Tw of any 
read cycle, and is guaranteed to remain HIGH in T2 until the 
80C88A local bus has floated. 

This signal floats to 3-state OFF(1) in "hold acknowledge". 

READY 22 I READY: is the acknowledgement from the addressed memory or 
1/0 device that it will complete the data transfer. The RDY signal 
from memory or 1/0 is synchronized by the 82C84A clock 
generator to form READY. This signal is active HIGH. The 80C88A 
READY input is not synchronized. Correct operation is not 
guaranteed if the, set up and hold times are not met. 
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Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and Function 

INTR 18' I INTERRUPT REQUEST: is a level triggered input which is sampled 
during the last clock cycle of each instruction to determine itthe 
processor should enter into an interrupt acknowledge operation. A 
subroutine is vectored to via an interrupt vector lookup table located 
in system memory. It can be internally masked by software resetting 
the interrupt enable bit. INTR is internally synchronized. This signal is 
active HIGH. 

TEST 23 I TEST: input is examined by the "wait for test" instruction. If the 
TEST input is lOW, execution continues, otherwise the. processor 
waits in an "idle" state. This input is synchronized internally during 
each clock cycle on the leading edge of ClK. 

NMI 17 I NON-MASKABLE INTERRUPT: is an edge triggered input which 
causes a type 2 interrupt. A subroutine is vectored to via an interrupt 
vector lookup table located in system memory. NMI is not maskable 
internally by software. A transition from a lOW to HIGH initiates the 
interrupt at the end of the current instruction. This input is internally 
synchronized. 

RESET 21 I RESET: causes the processor to immediately terminate its present 
activity. The signal must be active HIGH for at least four clock cycles. 
It restarts execution, as described in the instruction set description, 
when RESET returns lOW. RESET is internally synchronized. 

ClK 19 I CLOCK: provides the basic timing for the processor and bus 
controller. It is asymmetric with a 33% duty cycle to provide 
optimized internal timing. 

Vee 40 Vee: is the +SV ±10% power supply pin. 

GND 1,20 GND: are the ground pins. Both must be connected. 

MN/MX 33 I MINIMUM/MAXIMUM: indicates what mode the processor is to 
operate in. The two modes are discussed in the following sections. 

The fol/owing pin function descriptions are for the 80C88A minimum mode (i.e., MN/MX = Vee). Only the pin 
functions which are unique to minimum mode are described; aI/ other pin functions are as described above. 

101M 28 '0 STATUS LINE: is an inverted maximum mode S2. It is used to 
distinguish a memory access from an 1/0 access. 101M becomes 
valid in the T 4 preceding a bus cycle and remains valid until the final 
T 4 of the cycle (1/0 = HIGH, M = lOW). 101M floats to 3·state 
OFF(1) in local bus "hold acknowledge". 

WR 29 0 WRITE: strobe indicates that the processor is performing a write 
memory or write 1/0 cycle, depending on the state of the 101M 
signal. WR is active for T2, T3, and Tw of any write cycle. It is active 
lOW, and floats to 3-state OFF(1) in local bus "hold acknowledge". 

INTA 24 0 INTA: is used as a read strobe for interrupt acknowledge cycles. It is 
active lOW during T2, 13, and Tw of each interrupt acknowledge 
cycle. 
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Table 1. Pin Description (Continued) 

Symbol Pin No. Type Name and ~unction 

ALE 25 0 ADDRESS LATCH ENABLE: is provided by the processor to latch 
the address into an address latch. It is a HIGH pulse active during 
clock low of T1 of any bus cycle. Note that ALE is never floated. 

DT/R 27 0 DATA TRANSMIT/RECEIVE: is needed in a minimum system that 
desires to use a data bus transceiver. It is used to control the 
direction of data flow through the transceiver. Logically, DT IR is 
equivalent to S1 in the maximum mode, and its timing is the same as 
for 101M (T = HIGH, R = LOW). This signal floats to 3-state OFF(11 
in local "hold acknowledge". 

DEN 26 0 OAT A ENABLE~ is provided as an output enable for the transceiver 
in a minimum system which uses the transceiver. DEN is active LOW 
during each memory and 110 access, and for INTA cycles. For a read 
or INTA cycle, it is active from the middle of T2 until the middle of T 4, 
while for a write cycle, it is active from the beginning of T2 until the 
middle of T 4. DEN floats to 3-state OFF(l I during local bus "hold 
acknowledge" • 

HOLD, HLDA 30,31 1,0 HOLD: indicates that another master is requesting a local bus 
"hold". To be acknowledged, HOLD must be active HIGH. The 
processor receiving the "hold" request will issue HLDA (HIGH) as an 
acknowledgement, in the middle of a T 4 or Ti clock cycle. 
Simultaneous with the issuance of HLDA the processor will float the 
local bus and control lines. After HOLD is detected as being LOW, 
the processor lowers HLDA, and when the processor needs to run 
another cycle, it will again drive the local bus and control lines. 

Hold is not an asynchronous input. External synchronization should 
be provided if the system cannot otherwise guarantee the set up 
time. 

SSO 34 0 STATUS LINE: is logically equivalent to SO in the maximum mode. 
The combination of SSO, 101M and DT IR allows the system to 
completely decode the current bus cycle status. 

101M DT/R SSO CHARACTERISTICS 

1 (HIGH) 0 0 Interrupt Acknowledge 
1 0 1 Read 1/0 port 
1 1 0 Write 1/0 port 
1 1 1 Halt 
O(LOW) 0 0 Code access 
0 0 1 Read memory 
0 1 0 Write "memory 
0 1 1 Passive 

2-93 



80C88A 

Table 1. Pin Description (Continued) 

The following pin function descriptions are for the 80C88AI82C88 system in maximum mode (ie., 
MNIMX = GND.) Only the pin functions which are unique to maximum mode .are described; al/ other pin 
functions are as described above. 

Symbol Pin No. Type Name and Function 

S2, 51, SO 26-2B 0 STATUS: is active during clock high of T 4, T1, and T2, and is 
returned to the passive state (1,1,1) during T3 or during Tw when 
READY is HIGH. This status is used by the B2C88 bus controller to 
generate all memory and I/O access control signals. Any change by 
S2, S 1, or 50 during T 4 is used to indicate the beginning of a bus 
cycle, and the return to the passive state in T3 .or Tw is used to 
indicate the end of a·bus cycle. 

These signals float to 3·state OFF(1) during "hold acknowledge". 
During the first clock cycle after RESET-becomes active, these 
signals are active HIGH. After this first clock, they float to 3·state 
OFF. 

S2 S1 SO CHARACTERISTICS 

O(lOW) 0 0 Interrupt Acknowledge 
0 0 1 Read I/O port 
0' 1 0 Write I/O port 
0 1 1 Halt 
1(HIGH) 0 0 Code access 
1 0 1 Read memory 
1 1 0 Write memory 
1 1 1 Passive 

RQ/GTO, 30,31 I/O REQUEST/GRANT: pins are used by other local bus masters to 
RQ/GT1 force the processor to release the local bus at the end of the 

processor's current bus cycle. Each pin is bidirectional with RQ/GTO 
having higher priority than RQ/GT1. RQ/GT has an internal pull-up 
resistor, so may be left unconnected. The request/grant sequence. is 
as follows (see timing diagram): 

1. A pulse of one ClK wide from another local bus master indicates a 
local bus requel!t ("hold") to the 80C88A (pulse 1). 

2. During aT 4 or T1 clock cycle, a.pulse one clock wide from the 
80C88A to the requesting master (pulse 2), indicates that the 
80C88A has allowed the local bus to float and that it will enter the 
"hold acknowledge" state at the next ClK. The CPU's bus interface 
unit is disconnected logically from the local bus during "hold 
acknowledge". The same rules as for HOLD/HOLDA apply as for 
when the bus is released. 

3. A pulse one ClK wide from the requesting master indicates to the 
80C88A (pulse 3) that the "hold" request is about to end and that the 
80C88A can reclaim the local bus at the next ClK. The CPU then 
enters T4. 
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Table 1. Pin Descriptions (Continued) 

Symbol Pin No. Type Name and Function 

RQ/GTO, 30,31 1/0 Each master-master exchange of the local bus is a sequence of 
RQ/GT1 three pulses. There must be one idle CLK cycle after each bus 

exchange. Pulses are active LOW. 

If the request is made while the CPU is performing a memory cycle, 
it will release the local bus during T 4 of the cycle when all the 
following conditions are met: 

1. Request occurs on or before T2. 
2. Current cycle is not the low bit of a word. 
3. Current cycle is not the first acknowledge of an interrupt 
acknowledge sequence. 
4. A locked instruction is not currently executing. 

If the local bus is idle when the request is made the two possible 
events will follow: 

1. Local bus will be released during the next clock. 
2. A memory cycle will start within 3 clocks. Now the four rules for a 
currently active memory cycle apply with condition number 1 
already satisfied. 

LOCK 29 0 LOCK: indicates that other system bus masters are not to gain 
control of the system bus while LOCK is active (LOW). The LOCK 
signal is activated by the "LOCK" prefix instruction and remains 
active until the completion of the next instruction. This signal is 
active LOW, and floats to 3-state OFF(1) in "hold acknowledge". 

QS1,QSO 24,25 0 QUEUE STATUS: provide status to allow external tracking of the 
internal 80C88A instruction queue. 

The queue status is valid during the CLK cycle after which the 
queue operation is performed. 

QS1 QSO CHARACTERISTICS 

O(LOW) 0 No operation 
0 1 First byte of opcode from queue 
1(HIGH) 0 Empty the queue 
1 1 Subsequent byte from queue 

- 34 0 Pin 34 is always high in the maximum mode. 

NOTE: 
1. See the section on Bus Hold Circuitry. 
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FUNCTIONAL, DESCRIPTION 

STATIC OPERATION 

All BOCB8A circuitry is of static design. Internal regis­
ters, counters and latches are static and require no 
refresh as with dynamic circuit design. This elimi­
nates the minimum operating frequency restriction 
placed on other~ microprocessors. The CMOS 
80C88A can operate from DC to the appropriate up­
per frequency limit. The processor clock may ~e 
stopped in either state (high/low) and held there In­
definitely. This type of operation is especially useful 
for system debug or power critical applications. 

The 80CBBA can be single stepped using only the 
CPU clock. This state can be maintained as long as 
is necessary. Single step clock operation allows sim­
ple interface circuitry to provide critical information 
for bringing up your system. 

Static design also allows very low frequency opera­
tion. In a power critical situation, this can provide 
extremely low power operation since BOCBBA power 
dissipation is directly related to operating frequency. 
As the system frequency is reduced, so is the oper­
ating power until ultimately, at a DC input frequency, 
the 80CBBA power requirement is the standby cur­
rent. 

SEGMENT 
REGISTER FILE 

~FFFFFH 

J: } CODE S~GMENT 
.--......... _-"":l XXXXOH 

+ OFFSET 
, } STACK SEGMENT 

WORD [ ~:: } DATA SEGMENT 

mg~BYTE 

} EXTRA DATA SEGMENT 

L....-+t--""I. 
"----S OOOOOH 

240028-3 

Figure 3. Memory Organization 

MEMORY ORGANIZATION 

The processor provides a 20-bit address to memory 
which locates the byte being referenced. The memo­
ry is organized as a linear array of up to 1 million 
bytes, addressed as OOOOO(H) to FFFFF(H). The 
memory is logically divided into code, data, extra 
data and stack segments of up to 64K bytes each, 
with' each segment falling on 16-byte boundaries. 
(See Figure 3.) 

All memory references are made relative to base ad­
dresses contained in high speed segment registers. 
The segment types were chosen based on the. ad­
dressing needs of programs. The segment re.glster 
to be selected is automatically chosen according to 
the rules of the following table. All information in one 
segment type share the same logical attributes (e.g. 
code or data). By structuring memory into relocat­
able areas of similar characteristics and by automati­
cally selecting segment registers, programs are 
shorter, faster, and more structured. 
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Word (16-bit) operands can be located on even or 
odd address boundaries. For address and data oper­
ands, the least significant byte of the word is stored 
in the lower valued address location and the most 
significant byte in the next higher address locati~n. 
The BIU will automatically execute two fetch or write 
cycles for 16-bit operands. 

Certain locations in memory are reserved for specific 
CPU operations. (See Figure 4.) Locations from ad­
dresses FFFFOH through FFFFFH are reserved for 
operations including a jump to the ,initial system 

RESET BOOTSTRAP 
PROGRAM JUMP 

I • • · 
INTERRUPT POINTER 

FOA TYPE 255 

· • 
• 

INTERRUPT POINTER 
FOR TYPE' 

INTERRUPT POINTER 
FOR TYPE 0 

FFFFFH 

FFFFOH 

3FFH 

3FOH 

7H 

4H 
3H 

OH 

240028-4 

Figure 4. Reserved Memory Locations 
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Memory Segment Register Segment 
Reference Need Used Selection Rule 

Instructions CODE (CS) Automatic with all instruction prefetch. 

Stack STACK (55) 
All stack pushes and pops. Memory references relative to BP 
base register except data references. 

Local Data DATA (OS) 
Data references when: relative to stack, destination of string 
operation, or explicitly overridden. 

External (Global) Data EXTRA (ES) 
Destination of string operations: Explicitly selected using a 
segment override. 

initialization routine. Following RESET, the CPU will 
always begin execution at location FFFFOH where 
the jump must be located. Locations OOOOOH 
through 003FFH are reserved for interrupt opera­
tions. Four-byte pointers consisting of a 16-bit seg­
ment address and a 16-bit offset address direct pro­
gram flow to one of the 256 possible interrupt serv­
ice routines. The pointer elements are assumed to 
have been stored at their respective places in re­
served memory prior to the occurrence of interrupts. 

MINIMUM AND MAXIMUM MODES 

The requirements for supporting minimum and maxi­
mum 80C88A systems are sufficiently different that 
they cannot be done efficiently with 40 uniquely de­
fined pins. Consequently, the 80C88A is equipped 
with a strap pin (MN/MX) which defines the system 
configuration. The definition of a certain subset of 
the pins changes, dependent on the condition of the 
strap pin. When the MN/MX pin is strapped to GND, 
the 80C88A defiAes pins 24 thr~h 31 and 34 in 
maximum mode. When the MN/MX pin is strapped 
to Vee, the 80CB8A generates bus control signals 
itself on pins 24 through 31 and 34. 

The minimum mode 80CB8A can be used with either 
a multiplexed or demultiplexed bus. The multiplexed 
bus configuration is compatible with the MCS®-85 
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multiplexed bus peripherals (8155, 8156, 8355, 
B755A, and 8185). This configuration (See Figure 5) 
provides the user with a minimum chip count sys­
tem. This architecture provides the 80C88A pro­
cessing power in a highly integrated form. 

The demultiplexed mode requires one latch (for 64k 
addressability) or two latches (for a full megabyte of 
addressing). A third latch can be used for buffering if 
the address bus loading requires it. A transceiver 
can also be used if data bus bufferin~ required. 
(See Figure 6.) The 80C88A provides DEN and DT I 
R to control the transceiver, and ALE to latch the 
addresses. This configuration of the minimum mode 
provides the standard demultiplexed bus structure 
with heavy bus buffering and relaxed bus timing re­
quirements. 

The maximum mode employs the B2C88 bus con­
troller. (See Figure 7.) The 82CBB decodes status 
lines SO, 51, and 52, and provides the system with 
all bus control signals. Moving the bus control to the 
82C88 provides better source and sink current capa­
bility to the control lines, and frees the 80C88A pins 
for extended large system features. Hardware lock, 
queue status, and two request/grant interlaces are 
provided by the BOC8BA in maximum mode. These 
features allow co-processors in local bus and re­
mote' bus configurations. 
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Figure 7. Fully Buffered System Using Bus Controller 
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Bus Operation 

The 80C88A address/data bus is broken into three 
parts-the lower eight address/data bits (ADO-AD?), 
the middle eight address bits (A8-A 15), and the up­
per four address bits (A16-A19). The address/data 
bits and the highest four address bits are time mUlti­
plexed. This technique provides the most efficient 
use of pins on the processor. The middle eight ad­
dress bits are not multiplexed, i.e. they remain valid 
throughout each bus cycle. In addition, the bus can 
be demultiplexed at the processor with a single ad­
dress latch if a standard, non-multiplexed bus is de-
sired for the system. -

Each processor bus cycle consists of' at least four 
ClK cycles. These are referred to as T1, T2, T3, and 
T4. (See Figure 8). The address is emitted from the 
processor during T1 and data transfer occurs on the 
bus during T3 and T4.T2 is used primarily for chang­
ing the direction of the bus during read operations. In 
the event that a "NOT READY" indication is given 
by the addressed device, "wait" states (Tw) are in­
serted between T3 and T4. Each inserted "wait" 
state is of the same duration as a ClK cycle. Periods 
can occur between' 80C88A driven, bus cycles. 
These are referred to as "idle" states (Ti); or inac­
tive ClK cycles. The processor uses these cycles 
for internal housekeeping. 

!------14+NwAm-'ev-----+------(4+NWAld-'CY------! 
T, T, T:s TWAIT I 1. 't 12 I, TWAIT T. 

eLK 

\ 
ADDRISTATUS 

ADDA An-AI 

ADDRIDATA -----8~_'_DA_T._O;",UT_(D_,,"" __ ....J)---OC 

READY 

DTli 

_MEMORY ACCESS nME 

\'--_----J/ 
240028-8 

Figure 8. Basic System Timing 
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During T1 of any bus cycle, the ALE (address latch 
enable) signal is emitted (by either the processor or 
the 82CB8 bus controller, depending on the MN/MX 
strap). At the trailing edge of this pulse, a valid ad­
dress and certain status information for the cycle 
may be latched. 

Status bits SO, S1, and S2 are used by the bus con­
troller, in maximum mode, to identify the type of bus 
transaction according to the following table: 

S2 S1 So CHARACTERISTICS 

o (lOW) 0 0 Interrupt Acknowledge 
0 0 1 Read I/O 
0 1 0 Write I/O 
0 1 1 Halt 
1 (HIGH) 0 0 Instruction Fetch 
1 0 1 Read Data from Memory 
1 1 0 Write Data to Memory 
1 1 1 Passive (no bus cycle) 

Status bits S3 through S6 are multiplexed with high 
order address bits and are therefore valid during T2 
through T4. S3 and S4 indicate which segment reg­
ister was used for this bus cycle in forming the ad­
dress according to the following table: 

S4 S3 CHARACTERISTICS 

o (lOW) 0 Alternate Data (extra segment) 
0 1 Stack 
1 (HIGH) 0 Code or None 
1 1 Data 

S5 is a reflection of the PSW interrupt enable bit. S6 
is equal to O. 

I/O ADDRESSING 

In the BOCB8A, I/O operations can address up to a 
maximum of 64k I/O registers. The I/O address ap­
pears in the same format as the memory address on 
bus lines A15-AO. The address lines A19-A16 are 
zero in I/O operations. The variable I/O instructions, 
which use register DX as a pointer, have full address 

capability, while the direct I/O instructions directly 
address one or two of the 256 I/O byte locations in 
page 0 of the I/O address space. I/O ports are ad­
dressed in the same manner as memory locations. 

Designers familiar with the 80B5 or upgrading an 
BOBS design should note that the BOBS addresses 
I/O with an B-bit address on both halves of the 16-
bit address bus. The BOCB8A uses a full 16-bit ad­
dress on its lower 16 address lines. 

EXTERNAL INTERFACE 

PROCESSOR RESET AND INITIALIZATION 

Processor initialization or start up is accomplished 
with activation (HIGH) of the RESET pin. The 
BOCBBA RESET is required to be HIGH for four or 
more clock cycles. The 80CBBA will terminate oper­
ations on the high-going edge of RESET and will 
remain dormant as long as RESET is HIGH. The 
low-going transition of RESET triggers an internal 
reset sequence for approximately 7 clock cycles. Af-

. ter this interval the BOCBBA operates normally, be­
ginning with the instruction in absolute location 
FFFFOH. (See Figure 4.) The RESET input is inter­
nally synchronized to the processor clock. At initiali­
zation, the HIGH to lOW transition of RESET must 
occur no sooner than 50 JLs after power up, to allow 
complete initialization of the BOCB8A. 

NMI asserted prior to the 2nd clock after the end of 
RESET will not be honored. If NMI is asserted after 
that point and during the internal reset sequence, 
the processor may execute one instruction before 
responding to the interrupt. A hold request active 
immediately after RESET will be honored before the 
first instruction fetch. 

All 3-state outputs float to 3-state OFF(1) during RE­
SET. Status is active in the idle state for the first 
clock after RESET becomes active and then floats 
to 3-state OFF(1). ALE and HlDA are driven low. 

NOTE: 
1. See the section on Bus Hold Circuitry. 
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BUS HOLD CIRCUITRY 

To avoid high current conditions caused by floating 
inputs to CMOS devices and to eliminate the need 
for pull-up/down resistors, "bus-hold" circuitry has 
been used on the 80C88A pins 2-16, 2~-32, and 
34-39 (Figure 9a, 9b). These circuits will maintain 
the last valid logic state if no driving source is pres­
ent (Le. an unconnected pin or a driving source 
which goes to a high impedance state). To overdrive 
the "bus hold" circuits, an external driver must be 
capable of supplying 350 p.A minimum sin~ or 
source current at valid input voltage levels. Since 
this "bus hold" circuitry is active and not a "resis­
tive" type element, the associated power supply 

current is negligible and power dissipation is signifi­
cantly reduced when compared to the use of pas­
sive pull-up resistors. 

INTERRUPT OPERATIONS 

Interrupt operations fall into two classes: software or 
hardware initiated. The software initiated interrupts 
and software aspects of hardware interrupts are 
specified in the instruction set description in the 
iAPX 88 book or the iAPX 86,88 User's Manual. 
Hardware interrupts can be classified as nonmaska­
ble or maskable. 

"Pull-Up/Pull-Down" 

Input buffer exists only on 110 pins 

EXTERNAL 
PIN 

Figure 9a. Bus hold circuitry pin 2-16, 35-39. 

"Pull-Up" 

Input buffer exists only on 110 pins 

EXTERNAL 
PIN 

Figure 9b. Bus hold circuitry pin 26-32, 34. 
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Interrupts result in a transfer of control to a new pro­
gram location. A 256 element table containing ad­
dress pointers to the interrupt service program loca­
tions resides in absolute locations 0 through 3FFH 
(See Figure 4), which are reserved for this purpose. 
Each element in the table is 4 bytes in size and cor­
responds to an interrupt "type." An interrupting de­
vice supplies an 8-bit type number, during the inter­
rupt acknowledge sequence, which is used to vector 
through the appropriate element to the new interrupt 
service program location. 

NON-MASKABLE INTERRUPT (NMI) 

The processor provides a single non-maskable inter­
rupt (NMI) pin which has higher priority than the 
maskable interrupt request (INTR) pin. A typical use 
would be to activate a power failure routine. The 
NMI is edge-triggered on a lOW to HIGH transition. 
The activation of this pin causes a type 2 interrupt. 

NMI is required to have a duration in the HIGH state 
of greater than two clock cycles, but is not required 
to be synchronized to the clock. Any higher going 
transition of NMI is latched on-chip and will be serv­
iced at the end of the current instruction or between 
whole moves (2 bytes in the case of word moves) of 
a block type instruction. Worst case response to 
NMI would be for multiply, divide, and variable shift 
instructions. There is no specification on the occur­
rence of the low-going edge; it may occur before, 
during, or after the servicing of NMI. Another high­
going edge triggers another response if it occurs af­
ter the start of the NMI procedure. The Signal must 

I T, T2 T, T, 

be free of logical spikes in general and be free of 
bounces on the low-going edge to avoid triggering 
extraneous responses. 

MASKABLE INTERRUPT (INTR) 

The 80C88A provides a single interrupt request input 
(INTR) which can be masked internally by software 
with the resetting of the interrupt enable (IF) flag bit. 
The interrupt request signal is level triggered. It is 
internally synchronized during each clock cycle on 
the high-going edge of ClK. To be responded to, 
INTR must be present (HIGH) during the clock peri­
od preceding the end of the current instruction or the 
end of a whole move for a block type instruction. 
During interrupt response sequence, further inter­
rupts are disabled. The enable bit is reset as part of 
the response to any interrupt (INTR, NMI, software 
interrupt, or single step), although the FLAGS regis­
ter which is automatically pushed onto the stack re­
flects the state of the processor prior to the inter­
rupt. Until the old FLAGS register is restored, the 
enable bit will be zero unless specifically set by an 
instruction. 

During the response sequence (See Figure 10), the 
processor executes two successive (back to back) 
interrupt acknowledge cycles. The 80C88A emits 
the lOCK signal (maximum mode only) from T2 of 
the first bus cycle until T2 of the second. A local bus 
"hold" request will not be honored until the end of 
the second bus cycle. In the second bl,ls cycle, a 

I T\ I T, T, T, 

n ALE ~ ________ --.J 

:=:) FLOAT 
AIIo-Ao, 

/ 

/ ~ \ \ TVPEVECTOR 

Figure 10. Interrupt Acknowledge Sequence 
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byte is fetched from the external interrupt system 
(e.g., 82C59A PIC) which identifies the source (type) 

. of the interrupt. This byte is multiplied by four and 
used as a pointer into the interrupt vector lookup 
table. An INTR signal left HIGH will be continually 
responded to within the limitations ofthe enable bit 
and sample period. The interrupt return instruction 
includes a flags pop which returns the status of tlie 
original interrupt enable bit when it restores the 
flags. 

HALT 

When a software HALT instruction is executed, the 
processor indicates that it is entering the HALT state 
in one of two ways, depending upon which mode is 
strapped. In minimum mode, the procesSor issues 
ALE, delayed by one clock cycle, to allow the sys­
tem to latch the halt status. Halt status is available 
on 10/M, DT lA", and 550. In maximum mode, the 
E!Pcess~ issues appropriate HALT status on 52, 
51, and SO, and the 82C88 pus controller issues one 
ALE. The 80C88A will not leave the HALT state 
when a local bus hold is entered while in HALT. In 
this case, the processor reissues the HALT indicator 
at the end of the local bus hold. An interrupt request 
or RESET will force the 80C88A out of the HALT 
state. 

READ/MODIFY/WRITE (SEMAPHORE) 
OPERATIONS VIA LOCK 

The LOCK status information is provided. by the 
processor when consecutive bus cycles are required 
during the execution of an instruction. This allows 
the processor to perform read/modify/write opera­
tions on memory (via the "exchange register with 
memory" instruction), without another system bus 
master receiving intervening memory cycles. This is 
useful in multiprocessor system configurations to ac­
complish "test and set lock" operations. The LOCK 
signal is activated (LOW) in the clock cycle following 
decoding of the LOCK prefix instruction. It is deacti­
vated at the end of the last bus cycle of the instruc­
tion following the LOCK prefix. While LOCK is active, 
a request on a RQ/GT pin will be recorded, and then 
honored at the end of the LOCK. 

EXTERNAL SYNCHRONIZATION VIA TEST 

As an alternative to interrupts, the 80C88A provides 
a single software-testable input pin (TEST). This in­
put is utilized by executing a WAIT instruction. The 
single WAIT instruction is repeatedly executed until 
the TEST input goes active (LOW). The execution of 
WAIT does not consume bus cycles once the queue 
is full. 

If a local bus request occurs during WAIT execution, 
the 80C88A 3-states all output drivers. If interrupts 
are enabled, the 80C88A will recognize interrupts 
and process them. The WAIT instruction is then re­
fetched, and reexecuted. 

BASIC SYSTEM TIMING 

In minimum mode, the MN/MX pin is strapped to 
Vee and the processor emits bus control signals 
compatible with the 8085 bus structure. In maximum 
mode, the MN/MX pin is strapped to GND and the 
processor emits coded status information which the 
82C88 bus controller uses to generate MUL TIBUS 
compatible bus control signals. 

System Timing - Minimum System 

(See Figure 8.) 

The read cycle begins in T1 with the assertion of the 
address latch enable (ALE) signal. The trailing (low 
going) edge of this signal is used to latch the ad­
dress information, which is valid on the address/ 
data bus (ADO-AD?) at this time, into a latch. Ad­
dress lines A8 through A 15 do not need to be 
latched because they remain valid throughout the 
bus cycle. From T1 to T4 the 10lM signal indicates a 

. memory or 110 operation. At T2 the address is re­
moved from the address/data bus and the bus goes 
to a high impedance state. The read control Signal is 
also asserted at T2. The read (RD) signal causes the 
addressed device to enable its data bus drivers to 
the local bus. Some time later, valid data will be 
available on the bus and the addressed device will 
drive the READY line HIGH. When the processor 
returns the read signal to a HIGH level, the ad­
dressed device will again 3-state its bus drivers. If a 
transceiver is reCJ!:!ired to buffer the 80C88A local 
bus, signals DT /R and DEN are provided by the 
80C88A. 

A write cycle also begins with the assertion of ALE 
and the emission of the address. The 10lM signal is 
again asserted to indicate a memory or 110 write 
operation. In T2, immediately following the address 
emission, the processor emits the data to be written 
into the addressed location. This data remains valid 
until at least the middle of T 4. During T2, T3, and 
T w, the processor asserts the write control signal. 
The write (WR) signal becomes active at the begin­
ning of T2, as opposed to the read, which is delayed 
somewhat into T2 to provide time for the bus to 
float. 
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The basic difference between the interrupt acknowl­
edge cycle and a read cycle is that the interrupt ac­
knowl~e (INTA) signal is asserted in place of the 
read (AD) signal and the address bus is floated. 
(See Figure 10.) In the second of two successive 
INTA cycles, a byte of information is read from the 
data bus, as supplied by the interrupt system logic 
(Le. S2C59A priority interrupt controller). This byte 
identifies the source (type) of the interrupt. It is multi­
plied by four and used as a pointer into the interrupt 
vector lookup table, as described earlier. 

BUS TIMING - MEDIUM COMPLEXITY 
SYSTEMS 

(See Figure 11.) 

For medium complexity systems, the MN/MX pin is 
connected to GND and the S2CSS bus controller is 
added to the system, as well as a latch for latching 
the system address, and· a transceiver to allow for 
bus loading greater than the SOCSSA is capable of 
handling. Signals ALE, DEN, and DT lFf are generat­
ed by the S2CSS instead of the processor in this 
configuration, although their timing remains relatively 
the same. The SOCSSA status outputs (S2, S1, and 
SO) provide type of cycle information and become 
S2CSS inputs. This bus cycle information specifies 
read (code, data, or 1/0), write (data or 1/0), inter­
rupt acknowledge, or software halt. The S2CSS thus 
issues control signals specifying memory read or 
write, 1/0 read or write, or interrupt acknowledge. 
The S2CSS provides two types of write strobes, nor­
mal and advanced, to be applied as required. The 
normal write strobes have data valid at the leading 
edge of write. The advanced write strobes have the 
same timing as read strobes, and hence, data is not 
valid at the leading edge of write. The transceiver 
receives the usual T and OE inputs from the 
S2CSS's DT 1Ft and DEN outputs. 

The pointer into the interrupt vector table, which is 
passed during the second INTA cycle, can derive 
from an S2C59A located on either the local bus or 
the system bus. If the master S2C59A priority inter­
rupt controller is positioned on the local bus, a TTL 
gate is required to disable the transceiver when 
reading from the master S2C59A during the interrupt 
acknowledge sequence and software "poll". 

THE 80C88A COMPARED TO THE 80C86 

The SOCSSA CPU is an S-bit processor designed 
around the SOCS6 internal structure. Most internal 
functions of the SOCSSA are identical to the equiva-

lent SOCS6 functions. The SOCSSA handles the ex­
ternal bus the same way the SOCS6 does with the 
distinction of handling only S bits at a time. Sixteen­
bit operands are fetched or written in two consecu­
tive bus cycles. Both processors will appear identical 
to the sof1ware engineer, with the exception of exe­
cution time. The internal register structure is identi­
cal and all instructions have the same end result. 
The differences between the SOCSSA and SOCS6 
are outlined below. The engineer who is unfamiliar 
with the SOCS6 is referred to the iAPX S6, SS User's 
Manual, Chapters 2 and 4, for function description 
and instruction set information. Internally, there are 
three differences between the SOCSSA and the 
SOCS6. All changes are related to the S-bit bus inter­
face. 

• The queue length is 4 bytes in the SOC8SA, 
whereas the SOCS6 queue contains 6 bytes, or 
three words. The queue was shortened to pre­
vent overuse of the bus by the BIU when pre­
fetching instructions. This was required because 
of the additional time necessary to fetch instruc­
tions S bits at a time. 

• To further optimize the queue, the prefetching al­
gorithm was changed. The SOCSSA BIU will fetch 
a new instruction to load into the queue each 
time there is a 1 byte hole (space available) in the 
queue, The SOCS6 waits until a 2-byte space is 
available. 

• The internal execution time of the instruction set 
is affected by the S-bit interface. All 16-bit fetches 
and writes fromlto memory take an additional 
four clock cycles. The CPU is also limited by the 
speed of instruction fetches. This latter problem 
only occurs when a series of simple operations 
occur. When the more sophisticated instructions 
of the SOCSSA are being used, the queue has 
time to fill and the execution proceeds as fast as 
the execution unit will allow. 

The SOCSSA and SOCS6 are completely software 
compatible by virture of their identical execution 
units. Software that is system dependent may not be 
completely transferable, but software that is not sys­
tem dependent will operate equally as well on an 
SOCSSA or an SOCS6. 

The hardware interface of the SOCSSA contains the 
major differences between the two CPUs. The pin 
assignments are nearly identical, however with the 
following functional changes: 

• AS-A 15 - These pins are only address outputs 
on the 80CSSA. These address lines are latched 
internally and remain valid throughout a bus cycle 
in a manner similar to the SOS5 upper address 
lines. 
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intJ 8QC88A 

• SHE has no meaning on the 80C88A and has 
been eliminated. 

• SSO provides the SO status information in the 
'minimum mode. This out~t oc~rs on ..e!!!...34 in 
minimum mode only. DT IR, 101M, and SSO pro­
vide the complete bus status in minimum mode. 

T, 

ClK J"""" '----.J' 

051, 050 x 

8OC88A 

S2, 51, so 

A 19/56-A 16/53 x A19·Al 

~ I ALE 

82C88 RDY 82C84A 

RDY 80C88 

A7·AO 

Y 80C88A1A::-::: 

RD 

"" 
82C88!M::: 

DEN 

• 101M has been inverted to be compatible with the 
MCS-8S bus structure. 

• ALE is delayed by one clock cycle in the mini­
mum mode when entering HALT, to allow the 
status to be latched with ALE. 

T2 

~ ~~ 
T. 

~ 

x x x >-

fffff ,:::=~ 

X S6·S3 A.. 

r-... .:._-

A 

A 

DATA IN 

A15-A8 X -
"" / 

/ 

"" / 

/ "" 
240028-12 

Figure 11. Medium Complexity System Timing 
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BDeBBA 

ABSOLUTE MAXIMUM RATINGS* 

Supply Voltage 
(With respect to ground) ........... -0.5 to 7.0V 

Input Voltage Applied 
(w.r.t. ground) ............. -0.5 to Vee + 0.5V 

Output Voltage Applied 
(w.r.t. ground) •............ -0.5 to Vee + 0.5V 

Power Dissipation .......................... 1.0W 

Storage Temperature .......... - 65°C to + 150°C 

Ambient Temperature Under Bias .... O°C to + 70°C 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS TA = 0°Ct070°C, Vee = 5V ±5% 

80C88A-2 
Symbol Parameter Units Test Conditions 

Min Max 

VIL Input low Voltage -0.5 +O.S V 

VIH Input High Voltage (All inputs 2.0 V 
except clock) 

VeH Clock High Voltage Vee- O.S V 

VOL Output low Voltage 0045 V IOL = 2.5mA 

VOH Output High Voltage 3.0 V IOH = -2.5 mA 
Vee- OA IOH = -100 /A-A 

Icc Power Supply Current 10 mA/MHz VIL = GND, VIH = Vee 

Ices Standby Supply Current 500 /A-A VIN = Vee or GND 
Outputs Unloaded 
ClK = GND or Vee 

III Input leakage Current ±1.0 /A-A OV$;VIN$;Vee 

IBHL Input leakage Current 50 400 /A-A VIN = O.SV 
(Bus Hold low) (Note 4) 

IBHH Input leakage Current -50 -400 /A-A VIN = 3.0V 
(Bus Hold High) (Note 5) 

IBHLO Bus Hold low Overdrive 600 /A-A (Note 2) 

IBHHO Bus Hold High Overdrive -600 /A-A (Note 3) 

ILO Output leakage Current ±10 p.A VOUT = GND or Vee 

CIN Capacitance of Input Buffer 5 pF (Note 1) 
(All inputs except ADO-AD?, RQ/GT) 

CIO Capacitance of I/O Buffer 20 pF (Note 1) 
(ADo-AD?, RQ/GT) 

COUT Output Capacitance 15 pF (Note 1) 

NOTES; 
1. Characterization conditions are a) Frequency = 1 MHz, b) Unmeasured pins at GND 

c) VIN at + 5.0V or GND. 
2. An external driver must source at least IBHLO to switch this node from LOW to HIGH. 
3. An external driver must sink at least IBHHO to switch this node from HIGH to LOW. 
4. Test condition is to lower VIN to GND and then raise VIN to O.BV on pins 2-16 and 34-39. 
5. Test condition is to raise VIN to Vee and then lower VIN to 3.0V on pins 2-16,26-32 and 34-39. 
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intJ 80C88A 

A.C. CHARACTERISTICS Til = O·C to 70°C, Vee = 5V ±5% 

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS 

Symbol Parameter 
80C88A·2 

Units 
Test 

Min Max Conditions 

TClCl ClK Cycle Period 125 D.C. ns 

TClCH ClKlowTime 6B ns 

TCHCl ClK High Time 44 ns 

TCH1CH2 ClK Rise Time 10 ns From 1.0V to 3.5V 

TCl2Cl1 ClKFaliTime 10 ns From 3.5V to 1.0V 

TDVCl Data in Setup Time 20 ns 

TClDX Data in Hold Time 10 ns 

TR1VCl ROY Setup Time into B2CB4A 35 ns 
(Notes 1, 2) 

TClR1X ROY Hold Time into B2CB4A 0 ns 
(Notes 1, 2) 

TRYHCH READY Setup Time into BOCBBA 6B . ns 

TCHRYX READY Hold Time into BOCBBA 20 ns 

TRYlCl READY Inactive to ClK (Note 3) -B ns 

THVCH HOLD Setup Time 20 ns 

TINVCH INTR, NMI, TEST Setup Time 15 ns 
(Note 2) 

TILIH Input Rise Time (Except ClK) 15 ns From O.BV to 2.0V 
(Note 4) 

TIHll Input Fall Time (Except ClK) 15 ns From 2.0V to O.BV 
(Note 4) 
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inter 80C88A 

A.C. CHARACTERISTICS (Continued) 

TIMING RESPONSES 

Symbol Parameter 
BOCBBA-2 

Units 
Test 

Min Max Conditions 

TCLAV Address Valid Delay 10 60 ns 

TCLAX Address Hold Time 10 ns 

TCLAZ Address Float Delay TCLAX 50 ns 

TLHLL ALE Width TCLCH-10 ns 

TCLLH ALE Active Delay 50 ns 

TCHLL ALE Inactive Delay 55 ns 

TLLAX Address Hold Time to ALE Inactive TCHCL-10 ns 

TCLDV Data Valid Delay 10 60 ns 

TCHDX Data Hold Time 10 ns 

TWHDX Data Hold Time After WR TCLCH-30 ns 

TCVCTV Control Active Delay 1 10 70 ns 

TCHCTV Control Active Delay 2 10 60 ns 

TCVCTX Control Inactive Delay 10 70 ns 

TAZRL Address Float to READ Active 0 ns 

TCLRL RD Active Delay 10 100 ns 

TCLRH RD Inactive Delay 10 BO ns 

TRHAV RD Inactive to Next Address Active TCLCL-40 ns 

TCLHAV HLDA Valid Delay 10 100 ns 

TRLRH RDWidth 2TCLCL-50 ns 

TWLWH WRWidth 2TCLCL-40 ns 

TAVAL Address Valid to ALE Low TCLCH-40 ns 

TOLOH Output Rise Time (Note 4) 15 ns From O.BV to 2.0V 

TOHOL Output Fall Time (Note 4) 15 ns From2.0V to O.BV 

NOTES: 
1. Signal at 82C84A shown for reference only. See 82C84A data sheet for the most recent specifications. 
2. Setup requirement for asynchronous Signal only to guarantee recognition at next ClK. 
3. Applies only to T2 state (8 ns into T3 state). 
4. These parameters are characterized and not 100% tested. 

2-109 
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A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

Input/Output 

2.4-;)( 1'1C 
0.45 '------~-~ 

240028-13 
A.C. Testing inputs are driven at 2.4 for a logic "1" and 0.45 for a 
logic "0". Timing measurements are made at 1.5V 

WAVEFORMS 

BUS TIMING - MINIMUM MODE SYSTEM 

100pF 

CL Includes Jig Capacitance 

1, T, 1, Tw T.-

240028-14 

Y I---- TCLCL_ TCHtCH2-\ H I- TCL!lCLtr~ 
CH~ 

vi. ~ - -- ~n-::::; TCHCTY TCHCL I-TCLCH_ 

cue _Output) 

ALE 

RDY( __ 

SEE NOTE t 

RIADY (ItICI8A Input) 

READ CYCLE 

(NOTE'I 
I'RII.IIITl.YOKI 

DTIR 

): 

A" - At (Floet d..tnt INTA) 

TCLAY· - -TCLAX r:;' LDY 
TCHDX- -

A,,-At. ..-13 

TCLLH- I:: TLH L-:::: r- TLLAX r--
f ]~---

TCH1.L- tt !-TRtYCI 

-TAYAL- l:"" 't, " ~:<\\'-0~; '~~~~~ ~'\.~~~~ \\'. \\ 
Yr ...... 1'"" I '-:: !-TCLRtX 

~1-1 -I - -TCHRYX 
I 

TRYHCH ~ - I--TCW !=.'DYCL- !-TCLDX_ - 1 DATA IN 

-::{ FLOA:r 
TAZAL- TCl.AH- 1-1 f-TRHAY 

r-.... 
'::~TCHCTY TCLRL 

I 
TRLRH 

/ FCHCTY 

TCYCTY- { TCYCTX - 1::.1 
}J 

240028-15 
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WAVEFORMS (Continued) . 

BUS TIMING - MINIMUM MODE SYSTEM (Continued) 

ClK (82C84A Oulput) 

WRITE CYCLE 
, NOTE 1 

INTA CYCLE 
NOTES 1.3 

(iiD, 'WR=VOH) 

SOFTWARE HALT -

DEN.iiD.WR.iNfA = VOH 
DTIii INDETERMINATE 

NOTES: 

ADr-ADQ 

AD,-ADo 

DT/R 

Ao,-ADo INVALID ADDRESS 

TClAV 

1. All output timing measurements are made at 1.5V unless otherwise noted. 

TCVCTX-

SOFTWARE HALT 

2. ROY is sampled near the end of T 2. T 3. T w to determine if T w machines states are to be inserted. 

240026-16 

3. Two INTA Cycles run back-to-back. The 80C88A local AOOR/Oata bus is floating during both INTA Cycles. Control 
signals are shown for the second INTA cycle. . 
4. Signals at 82C84A are shown for reference only. 
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intJ 80C88A 

A.C. CHARACTERISTICS 

MAX MODE SYSTEM (USING 82C88 BUS CONTROLLER) 
TIMING REQUIREMENTS 

Symbol Parameter 
80C88A-2 

\ Min Max 

TClCl ClK Cycle Period 125 D.C. 

TClCH ClKlowTime 68 

TCHCl ClK High Time 44 

TCH1CH2 ClK Rise Time 10 

TCl2Cl1 ClKFaliTime 10 

TDVCl Data In Setup Time 20 

TClDX Data In Hold Time 10 

TR1VCl ROY Setup Time into 82C84 35 
(See Notes 1, 2) 

TClR1X ROY Hold Time into 82C84 0 
(See Notes 1 , 2) 

TRYHCH READY Setup Time into 80C88A 68 

TCHRYX READY Hold Time into 80C88A 20 

TRYlCl READY Inactive to ClK -8 
(See Note 4) 

TINVCH Setup Time for Recognition 15 
(INTR, NMI, TEST) (See Note 2) 

TGVCH -RQ/GT Setup Time 15 

TCHGX RQ Hold Time into 80C88A 30 

TILIH Input Rise Time (Except ClK) 15 
(Note 5) 

TIHll Input Fall Time (Except ClK) 15 
(Note 5) 

2-112 

Units Test Conditions 

ns 

ns 

ns 

ns From 1.0V to 3.5V 

ns From 3.5V to 1.0V 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns From 0.8V to 2.0V 

ns From 2.0V to 0.8V ' 



intJ soeSSA 

A.C. CHARACTERISTICS 

TIMING RESPONSES 

Symbol Parameter 
SOCSSA-2 

Units Test Conditions 
Min Max 

TCLML Command Active Delay (Note 1) 5 35 ns 

TCLMH Command Inactive Delay (Note 1) 5 35 ns 

TRYHSH READY Active to Status Passive (Note 3) 65 ns 

TCHSV Status Active Delay . 10 60 ns 

TCLSH Status Inactive Delay 10 70 ns 

TCLAV Address Valid Delay 10 60 ns 

TCLAX Address Hold Time 10 ns 

TCLAZ Address Float Delay TCLAX 50 ns 

TSVLH Status Valid to ALE High (Note 1) 20 ns 

TSVMCH Status Valid to MCE High (Note 1) 30 ns 

TCLLH CLK Low to ALE Valid (Note 1) 20 ns 

TCLMCH CLK Low to MCE High (Note 1) 25 ns 

TCHLL ALE Inactive Delay (Note 1) 4 18 ns 

TCLDV Data Valid Delay 10 60 ns 

TCHDX Data Hold Time 10 ns 

TCVNV Control Active Delay (Note 1) 5 45 ns 

TCVNX Control Inactive Delay (Note 1) 10 45 ns 

TAZRL Address Float to Read Active 0 ns 

TCLRL RD Active Delay 10 100 ns 

TCLRH RD Inactive Delay 10 80 ns 

TRHAV RD Inactive to Next Address Active TCLCL-40 ns 

TCHDTL Direction Control Active Delay (Note 1) 50 ns 

TCHDTH Direction Control Inactive Delay (Note 1) 30 ns 

TCLGL GT Active Delay 0 50 ns 

TCLGH GT Inactive Delay 0 50 ns 

TRLRH RDWidth 2TCLCL-50 ns 

TOLOH Output Rise Time (Note 5) 15 ns From 0.8V to 2.0V 

TOHOL Output Fall Time (Note 5) 15 ns From 2.0V to 0.8V 

NOTES: 
1. Signal at 82C84A or 82C88 shown for reference only. See 82C84A and 82C88 data sheets for the most recent 
specifications. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next ClK. 
3. Applies only to T3 and wait states (8 ns into T3 state). 
4. Applies only to T2 state (8 ns into T3 state). 
5. These parameters are characterized and not 100% tested. 
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A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

Input/Output 

Z.4=>( 1.1C 
0.45 ~------~ 

240028-17 
A.C. Testing inputs are driven at 2.4V for a logic "1" and 0.45V 
for a logic "0". Timing measurements are made.at1.5V. 

WAVEFORMS 

BUS TIMING-MAXIMUM MODE 

, .. 
CLK VCHr-'I ,...-.. 

VCL~ ~ ,I;::.' I TCLAV· 

I 050,Q5, 

I----- I TCHOV 

S;:S,:SO IEXCEPT HALT) 

- r--- T' ~~~:t-
A,,·A .. 

lacE (12CtI OUTPUT) 

seE NOTE 5 I ROY (I"'" INPUT) 

~~~~~: ~- { J 

1DOpF 

240028-18 

CL Includes Jig Capacitance 

T, T, 

-IH ~TCl2CL1 Tw 

r ......... 
~TCLCH~r-L-'---J L-..-I 

- • TeLSI ------
~ WIS' ENOTE?) ----

,.----
I A,,-A, 

t::J;c fDV TCHDX- ~ 

I ..;s:, 'r-
-

~TCHLL 

---

~~ 
I-T~'vCL -~~ ~U ~ 

I .TeLA' -
READY (BOC88A INPUT) 

TA~I1-
I I-TeHA.x 

I .'H~H_ 1-= -

READ CYCLE, 

IICII OUTPUTS 

SEE NOTES 5,1 

TeLAV-

"'D1-A~ 

DTiR 

DEN 

-TC .... [.::" ~TA'fHCH 1-

.L - ITCLAZ l-
I 

X AD,-AOo 

,/~//I' 
DATA IN 

TeLFlH 

TCHDTL- -{ 

TCLML· TCLMH 

\ 
TCVNV- Ir-

If 
TCVNX-
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' ..... 
FLOAT 

1\1 . fTCHDTH 

7 
I-=-
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WAVEFORMS (Continued) 

BUS TIMING - MAXIMUM MODE SYSTEM (USING 82C88) 

TCHSV T, T2 T, T 

VC~ ~~~"u;~ ClK 
VCl 

52' 5,. So (EXCEPT HALT) 

WRITE CYCLE 

82C88 
OUTPUTS 

SEE 
NOTES 5.6 

INTA CYCLE 

AD7-ADo 

DEN 

AMWC 
OR AIOWC 

MWTC 
OR IOWC 

MCEI 

iIIIIII (SEE NOTE 7) - -

TClAV _ ~-f.-+-c::-+.T .. C~'r!'.D.,..,V+----+-_iiTC-l-S .... Hif"'~OJI "I. ~ :;:C;D; 
;-~~~~L~+_--+-~+_--_+----~I~ 

TClAX)( DATA 

TCVNV + 

.i 

I'-+_--~------~~--_+_-'r~~------­
~~--~--~~----~TCrV-N-X-_+-~II-

----I-+--I-----l-..... I-TClMl TClMH-· ~-_+-__ __ 
J-

----I-+--I-----l"---+--~"\.{ TClMl ~ J - TClMH 

FLOAT 

TClAZ-

TSVMCH 

RESERVED FOR 
CASCADE ADDR 

'\. J FLOAT 
/ t-- I:..TDVCl-

'\1 , POINTER 
~" FlOA~ 
TCVNX - / 

FLOAT 
r-TClDX 

FLOAT 

r-

PDEN TClMCH_ 
DT/R 

'l J 1[ 'C""H-D-T+-l /-.,-.---+--1-\,-+ ~-1--~-T'~HDTH 
82C88 OUTPUTS INTA 

SEE NOTES 5.6 

DEN 

SOFTWARE 

TClMl_ 0 .r--1\r----­
'I.-..i _~\-C,T-C-VN-V----+-,A-"I-""l TClMH 

~ 
TCVNX~ -

HALT - (DEN = VOL: RD. MRDC. iORC.'MWTC. AMWc. iOWC. AiOWc.INTA,DT/R = VOH' 
AD7-ADo• A,s-As J r INVALID ADDRESS 

TClAV=! '\= 
~ ,r------'T,'-__ _ 

240028-20 

NOTES: 
1. All output timing measurements are made at 1.SV unless otherwise noted. 
2. ROY is sampled near the end of T 2. T 3, T w 10 determine if T W machines slales are to be inserted. 
3. Cascade address is valid between first and second INTA cycles. 
4. Two INTA cycles run back-la-back. The 80C88A local ADDR/Data bus is floating during both INTA cycles. Control for 
painter address is shown for second INTA cycle. 
5. Signals at 82C84A or 82C88 are shown for reference only. 
6. The issuance of the 82C88 command and control signals (MRDC, MWTC, AMWC, IORC, IOWC, AIOWC, INTA and 
DEN) lags the active high 82C88 CEN. 
7. Status inactive in state just prior 10 T 4. 
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WAVEFORMS (Continued) 

ASYNCHRONOUS SIGNAL RECOGNITION 

80C88A 

BUS LOCK SIGNAL TIMING 
(MAXIMUM MODE ONLY) 

NMI 

ANY elK CYCl~ __ ~NY ClK CY;::t 

:¥ T" "INTR 

240028-21 

NOTE: Setup requirements for asynchronous signals 
only to guarantee recognition at next elK. 

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY) 

;>o-ClK CYCLE 

ClK 

A,r/S •• AlI/S, PREVIOUS 
A15-A. 1-1 -----------

AD AD ' BOC8IA 

~EE 1-1 --------

AD. lOCK 

COPROCESSOR 

(lee note) 

NOTE: The coprocessor may not drive the busses outside the region shown without risking contention. 

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY) 

240028-22 

240028-23 

'" ~,------,----,' CLKCYCLE- \"~ __ '"<~ ,M',,"" r= 
~

_-THVCH ,..-------,-, 

HOLD 

\ 

,~~LH+~ ______ ~ 
.. TClHAV 

HLDA 

COPROCESSOR 

240028-24 
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80C86A/80C88A INSTRUCTION SET SUMMARY 
Mnemonic and 

Description 

DATA TRANSFER 

MOV = Move: 

Register/Memory tolfrom Register 

Immediate to Register/Memory 

Immediate to Register 

Memory to Accumulator 

Accumulator to Memory 

Register/Memory to Segment Register" 

Segment Register to Register/Memory 

PUSH = Push: 

Register/Memory 

Register 

Segment Register 

POP = Pop: 

Register/Memory 

Register 

Segment Register 

XCHG = Exchange: 

Register/Memory with Register 

Register with Accumulator 

IN = Input from: 

Fixed Port 

Variable Port 

OUT = Output to: 

Fixed Port 

Variable Port 

XLAT = Translate Byte to AL 

LEA = Load EA to Register 

LOS = Load Pointer to DS 

LES = Load Pointer to ES 

LAHF = Load AH with Flags 

SAHF = Store AH into Flags 

PUSHF = Push Flags 

POPF = Pop Flags 

I 
76543210 

100010dw 

1100011 w 

1011 wreg 

1010000w 

1010001w 

10001110 

10001100 

11111111 

01010reg 

000regll0 

10001111 

01011 reg 

OOOreg 111 

1000011w 

10010reg 

1110010w 

1110110w 

1110011 w 

1110111w 

11010111 

10001101 

11000101 

11000100 

100 11111 

10011110 

10011100 

10011101 

Instruction Code 

76543210 76543210 

mod reg rIm 

modOOOr/m data 

data dataifw 1 

add-low addr-high 

addr-Iow addr-high 

modO reg rIm 

mod 0 regr/m 

modl10r/m 

modOOOr/m 

mod reg rIm 

port 

port 

mod reg r/m 

mod reg r/m 

mod reg rIm 
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80C88A 

8DC86A/8DC88A INSTRUCTION SET SUMMARY (Continued) 

ARITHMETIC 

ADD = Add: 

Mnemonic and 
Description 

Reg.lMemory with Register to Either 

Immediate to Register/Memory 

Immediate to Accumulator 

ADC = Add with Carry: 

Reg.lMemory with Register to Either 

Immediate to Register/Memory 

Immediate to Accumulator 

INC = Increment: 

Register/Memory 

Register 

AAA = ASCII Adjust/or Add 

DAA = Decimal Adjust lor Add 

SUB = Subtract: 

Reg.lMemory and Register to Either 

Immediate Irom Register/Memory 

Immediate Irom Accumulator 

SBB = Subtract with Borrow 

Reg.lMemory and Register to Either 

Immediate Irom Register/Memory 

Immediate Irom Accumulator 

DEC = Decrement: 

Register/Memory 

Register 

NEG = Change Sign 

CMP = Compare: 

Register/Memory and Register 

Immediate with Register/Memory 

Immediate with Accumulator 

AAS = ASCII Adjust lor Subtract 

DAS = Decimal Adjust lor Subtract 

MUL = Multiply (Unsigned) 

IMUL = Integer Multiply (Signed) 

AAM = ASCII Adjust lor Multiply 

DIY = Divide (Unsigned) 

IDlY = Integer Divide (Signed) 

AAD = ASCII Adjust lor Divide 

CBW = Convert Byte to Word 

CWO = Convert Word to Double Word 

76543210 

OOOOOOdw 

100000sw 

0000010w 

000100dw 

100000sw 

0001010w 

l111111w 

01000reg 

00110111 

00100111 

001010dw 

100000sw 

0010110w 

000110dw 

100000sw 

0001110w 

l111111w 

01001 reg 

1111011w 

001110dw 

100000sw 

0011110w 

00111111 

00101111 

111'1011 w 

1111011 w 

11010100 

1111011w 

1111011w 

11010101 

10011000 

10011001 

Instruction Code 

76543210 76543210 

mod reg r/m 

modOOOr/m data 

data dataifw= 1 

mod reg r/m 

modOl0r/m data 

data data ifw = 1 

modOOOr/m 

mod reg r/m 

mod 1 01 rim data 

data dataifw = 1 

modregr/m 

modOl1 rim data 

data dataifw = 1 

modOOlr/m 

modO 11 rim 

mod reg r/m 

mod 111 rim data 

data datailw = 1 

mod 1 OOr/m 

mod 101 rim 

00001010 

mod 11 Or/m 

mod 111 rim 

00001010 
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data if sow = 01 

data if sow = 01 

data il sow = 01 

data if sow = 01 

data if sow = 01 



intJ 80C88A 

80C86A/80C88A INSTRUCTION SET SUMMARY (Continued) 
Mnemonic and I Instruction Code Description 

LOGIC 76543210 76543210 76543210 76543210 

NOT ~ Invert 1111011 w mod 0 1 o rIm 

sHL/sAL ~ Shift Logicall Arithmetic Lelt 110100vw mod 1 00 rIm 

sHR ~ Shift Logical Right 110100vw mod 1 01 rIm 

sAR ~ Shift Arithmetic Right 110100vw mod 111 rIm 

ROL ~ Rotate Left 110100vw mod OOOr/m 

ROR ~ Rotate Right 110100vw mod 0 0 1 rIm 

RCL ~ Rotale Through Carry Flag Left 110100vw mod 0 1 Or/m 

RCR ~ Rotate Through Carry Right 110100vw modOll rIm 

AND ~ And: 

Reg.lMemory and Register to Either 001000dw mod reg rIm 

Immediate to Register/Memory 1000000w mod 1 OOr/m data dataifw ~ 1 
\ 

Immediate to Accumulator 0010010w data dataifw ~ 1 

TEST ~ And Function to Flags, No Result: 

Register/Memory and Register 1000010w mod reg rIm 

Immediate Data and Register/Memory 1111011 w modOOOr/m data dataifw ~ 1 

Immediate Data and Accumulator 1010100w data dataifw ~ 1 

OR ~ Or: 

Reg.lMemory and Register to Either 000010dw mod reg rIm 

Immediate to Register/Memory 1000000w modOOl rIm data data ifw ~ 1 

Immediate to Accumulator 0000110w data dataifw ~ 1 

XOR ~ Exclusive Or: 

Reg.lMemory and Register to Either 001100dw mod reg rIm 

Immediate to Register/Memory 1000000w mod 11 Or/m data dataifw ~ 1 

Immediate to Accumulator 0011010w data dataifw ~ 1 

STRING MANIPULATION 

REP ~ Repeat 1111001 z 

MOYS ~ Move Byte/Word 1010010w 

CMPS ~ Compare Byte/Word 1010011 w 

sCAs ~ Scan Byte/Word 1010111 w 

LODS ~ Load Byte/Wd to ALI AX 1010110w 

sTOS ~ Star Byte/Wd from ALIA 1010101w 

CONTROL TRANSFER 

CALL ~ Call: 

Direct Within Segment 11101000 disp-Iow disp-high 

Indirect Within Segment 11111111 mod 0 1 o rIm 

Direct Intersegment 10011010 offset-low offset-high 

seg-Iow seg-high 

Indirect Intersegment 11111111 modOll rIm 
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80C86A/80C88A INSTRUCTION SET SUMMARY (Continued) 
Mnemonic and 

Description 

JMP = Unconditional Jump: 

Direct Within Segment 

Direct Within Segment-Short 

Indirect Within Segment 

Direct Intersegment 

Indirect Intersegment 

RET = Return from CALL: 

Within Segment 

Within Seg Adding Immed to SP 

Intersegment 

Intersegment Adding Immediate to SP 

JE/JZ = Jump on Equal/Zero 

JUJNGE = Jump on Less/Not Greater 
or Equal 

JLE/JNG = Jump on Less or Equal/ 
Not Greater 

JB/JNAE = Jump on Below/Not Above 
or Equal 

JBE/JNA = Jump on Below or Equal/ 
Not Above 

JP/JPE = Jump on Parity/Parity Even 

JO = Jump on Overflow 

JS = Jump on Sign 

JNE/JNZ = Jump on Not Equal/Not Zero 

JNUJGE = Jump on Not Less/Greater 
or Equal 

JNLE/ JG = Jump on Not Less or Equal/ 
Greater 

JNB/JAE = Jump on Not Below/Above 
or Equal 

JNBE/JA = Jump on Not Below or 
Equal/Above 

JNP/JPO = Jump on Not Par/Par Odd 

JNO = Jump on Not Overflow 

JNS = Jump on Not Sign 

LOOP = Loop ex Times 

LOOPZ/LOOPE = Loop While Zero/Equal 

LOOPNZ/LOOPNE = Loop While Not 
Zero/Equal 

JCXZ = Jump on ex Zero 

INT = Interrupt 

Type Specified 

Type 3 

INTO = Interrupt on Overflow 

IRET = Interrupt Return 

Instruction Code 

76543210 76543210 76543210 

11101001 disp-Iow disp-high 

11101011 disp 

11111111 mod 1 OOr/m 

11101010 offset-low offset-high 

seg-Iow seg-high 

11111111 mod 101 rIm 

11000011 

11000010 data-low data-high 

11001011 

110010'10 data-low data-high 

01110100 disp 

01111100 disp 

01111110 disp 

01110010 disp 

01110110 disp 

01111010 disp 

01110000 disp 

01 t 11 000 disp 

01110101 disp 

01111101 disp 

01111111 disp 

01110011 disp 

01110111 disp 

01111011 disp 

01110001 disp 

01111001 disp 

11100010 disp 

11100001 disp 

11100000 disp 

11100011 disp 

11001101 type 

11001100 

11001110 

1100'1111 
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80C86A/80C88A INSTRUCTION SET SUMMARY (Continued) 
Mnemonic and 

Description 

PROCESSOR CONTROL 

CLC = Clear Carry 

CMC = Ccmplement Carry 

STC = Set Carry 

CLD = Clear Direction 

STD = Set Direction 

CLI = Clear Interrupt 

STI = Set Interrupt 

HLT = Halt 

WAIT = Wait 

ESC = Escape (to External Device) 

LOCK = Bus Lock Prefix 

NOTES: 
AL = 8-bit accumulator 
AX = 16-bit accumulator 
CX = Count register 
OS = Oata segment 
ES = Extra segment 

. Above/below refers to unsigned value. 
Greater = more positive; 

I 
76543210 

11111000 

11110101 

11111001 

11111100 

11111101 

11111010 

11111011 

11110100 

10011011 

11011 xxx 

11110000 

Less = less positive (more negative) signed values 
if d = 1 then "to" reg; if d = 0 then "from" reg 
if w = 1 then word instruction; if w = 0 then byte instruc­

tion 
if mod = 11 then rIm is treated as a REG field 
if mod = 00 then OISP = 0', disp·low and disp-high are 

absent 
if mod = 01 then OISP = disp·low sign-extended to 

16 bits, disp-high is absent 
if mod = 10 then OISP = disp-high: disp-Iow 
if rIm = 000 then EA = (BX) + (SI) + OISP 
if rIm = 001 then EA = (BX) + (01) + OISP 
if rIm = 010 then EA = (BP) + (SI) + OISP 
if rIm = 011 then EA = (BP) + (01) + OISP 
if rim = 100 then EA = (SI) + OISP 
if rim = 101 then EA = (01) + OISP 
if rIm = 110 then EA = (BP) + OISP' 
if rIm = 111 then EA = (BX) + OISP 
OISP follows 2nd byte of instruction (before data if re­
quired) 
'except if mod = 00 and rIm = 110 then EA = disp­
high: disp·low. 

"MOV CS, REG/MEMORY not allowed. 

DATA SHEET REVISION REVIEW 

Instruction Code 

76543210 

modxxxr/m 

if s:w = 01 then 16 bits of immediate data form the oper­
and. 

if s:w = 11 then an immediate data byte is sign extended 
to form the 16-bit operand. 

if v = 0 then "count" = 1; if v = 1 then "count" in (CL) 
x = don't care 
z is used for string primitives for comparison with ZF FLAG. 
SEGMENT OVERRIDE PREFIX 

001reg110 

REG is assigned according to the following table: 

16-Bit (w = 1) 8-Bit (w = 0) Segment 

000 AX 000 AL 00 E5 
001 CX 001 CL 01 C5 
010 DX 010 DL 10 55 
011 BX 011 BL 11 D5 
100 5P 100 AH 
101 BP 101 CH 
110 51 110 DH 
111 DI 111 BH 

Instructions which reference the flag register file as a 16-bit 
object use the symbol FLAGS to represent the file: 
FLAGS = 
X:X:X:X:(OF):(OF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF) 

Mnemonics © Intel, 1978 

The following list represents key differences between this and the -001 data sheet. Please review this summa­
ry carefully. 

1. In the Pin Description Table (Table 1), the description of the HLDA signal being issued has been corrected. 
HLDA will be issued in the middle of either the T4 or Ti state. 
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MATH COPROCESSOR 

• Adds Arithmetic, Trigonometric, • Available in 5 MHz (8087), 8 MHz (8087-
Exponential, and Logarithmic 2) and 10 MHz (8087-1): 8 MHz 80186/ 
Instructions to the Standard 8086/8088 80188 System Operation Sl:'pported 
and 80186/80188 Instruction Set for All .with the 8087-1 
Data Types, • Adds 8 x 80-Bit Individually 

• CPU/8087 Supports 7 Data Types: 16-, Addressable Register Stack to the 
32-, 64-Bit Integers, 32-, 64-,'80-Bit 8086/8088 and 80186/80188 
Floating POint, and 18-Digit BCD Archite.cture 
Operands • 7 Built-In Exception Handling Functions 

• Compatible with IEEE Floating Point • MUL TIBUS® System Compatible 
Standard 754 Interface 

The Intel 8087 Math CoProcessor is an extension to the Intel 8086/8088 microprocessor architecture. When 
combined with the 8086/8088 microprocessor, the 8087 dramatically increases the processing speed of 
computer applications which utilize mathematical operations such as CAM, numeric controllers, CAD or graph­
ics. 

The 8087 Math CoProcessor adds 68 mnemonics .to the 8086 microprocessor instruction set. Specific 8087 
math operations include logarithmic, arithmetic, exponential, and trigonometric functions. The 8087 supports 
integer, floating point and BCD data formats, and fully conforms to the ANSI/IEEE floating point standard. 

The 8087 is fabricated with HMOS III technology and packaged in a 40-pin cerdip package. 

CONTROL WORD 

DATA 

STATUS 

ADDRESS 

OPERANDS 
QUEUE 

MICROCODE 
CONTROL 

UNIT 

w 
o • D 

~===~'" 1------1::: 
REOISTERSTACK '" \------1::: 

t;::=~;=:::j'" 

Figure 1.8087 Block Diagram 
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Symbol 

AD15-ADO 

A19/86, 
A18/85, 
A17/84, 
A16/83 

BHE/87 

82,81,80 

RQ/GTO 

Type 

1/0 

I/O 

I/O 

1/0 

I/O 

8087 

Table 1.8087 Pin Description 

Name and Function 

ADDRESS DATA: These lines constitute the time multiplexed memory address (T1) 
and data (T 2, T 3, T w, T 4) bus. AO is analogous to the BHE for the lower byte of the data 
bus, pins 07-00. It is LOW during T1 when a byte is to be transferred on the lower 
portion of the bus in memory operations. Eight-bit oriented devices tied to the lower half 
of the bus would normally use AO to condition chip select functions. These lines are 
active HIGH. They are input/output lines for 8087-driven bus cycles and are inputs 
which the 8087 monitors when the CPU is in control of the bus. A 15-A8 do not require 
an address latch in an 8088/8087 or 80188/8087. The 8087 will supply an address for 
the T1-T 4 period. 

ADDRESS MEMORY: During T1 these are the four most significant address lines for 
memory operations. During memory operations, status information is available on these 
lines during T 2, T 3, T w, and T 4. For 8087 -controlled bus cycles, S6, 84, and S3 are 
reserved and currently one (HIGH), while 85 is always LOW. These lines are inputs 
which the 8087 monitors when the CPU is in control of the bus. 

BUS HIGH ENABLE: During T 1 the bus high enable signed (SHE) should be used to 
enable data onto the most significant half of the data bus, pins 015-08. Eight-bit­
oriented devices tied to the upper half of the bus would normally use SHE to condition 
chip select functions. SHE is LOW during T 1 for read and write cycles when a byte is to 
be transferred on the high portion of the bus. The 87 status information is available 
during T 2, T 3, T w, and T 4. The Signal is active LOW. 87 is an input which the 8087 
monitors during the CPU-controlled bus cycles. 

STATUS: For 8087-driven, these status lines are encoded as follows: 
S2 S1 SO 

o (LOW) X X Unused 
1 (HIGH) 0 0 Unused 
1 0 1 Read Memory 
1 1 0 Write Memory 
1 1 1 Passive 
8tatus is driven active during T 4, remains valid during T 1 and T 2, and is returned to the 
passive state (1, 1, 1) during T 3 or during T w when READY is HIGH. This status is used 
by the 8288 Bus Controller (or the 82188 Integrated Bus Controller with an 801861 
80188 CPU) to generate all memory access control signals. Any change in 82, 81, or 
SO during T 4 is used to indicate the beginning of a bus cycle, and the return to the 
passive state in T 3 or T w is used to indicate the end of a bus cycle. These Signals are 
monitored by the 8087 when the CPU is in control of the bus. 

REQUEST IGRANT: This request/grant pin is used by the 8087 to gain control of the 
local bus from the CPU for operand transfers or on behalf of another bus master. It 
must be connected to one of the two processor request/grant pins. The request/grant 
sequence on this pin is as follows: 
1. A pulse one clock wide is passed to the CPU to indicate a local bus request by either 

the 8087 or the master connected to the 8087 RQ/GT1 pin. 
2. The 8087 waits for the grant pulse and when it is received will either initiate bus 

transfer activity in the clock cycle following the grant or pass the grant out on the _ 
RQ/GT1 pin in this clock if the initial request was for another bus master. 

3. The 8087 will generate a release pulse to the CPU one clock cycle after the 
, completion of the last 8087 bus cycle or on receipt of the release pulse from the bus 

master on RQ/GT1. 
For 80186/80188 systems the same sequence applies except RQ/GT signals are 
converted to appropriate HOLD, HLDA signals by the 82188 Integrated Sus Controller. 
This is to conform with 80186/80188's HOLD, HLDA bus exchange protocol. Refer to 
the 82188 data sheet for further information. 
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Table 1. 8087 Pin Description (Continued) 

Symbol Type Name and Function 

RQ/GT1 1/0 REQUEST IGRANT: This request! grant pin is used by another local bus master to 
force the 8087 to request the local bus. If the 8087 is not in control of the bus when the 
~uest is made the request/grant sequence is passed through the 8087 on the RQI 
GTO pin one cycle later. Subsequent grant and release pulses are also passed through 
the 8087 with a two and one clock delay, respectively, for resynchronization. RQ/GT1 
has an internal.pullup resistor, and so may be left unconnected. If the 8087 has control 
of the bus the request/grant sequence is as follows: 
1. A pulse 1 ClK wide from another local bus master indicates a local bus request to 

the 8087 (pulse 1). 
2. During the 8087's next T 4 or T 1 a pulse 1 ClK wide from the 8087 to the requesting 

master (pulse 2) indicates that the 8087 has allowed the local bus to float and that it 
will enter the "RQ/GT acknowledge" state at the next ClK. The 8087's control unit 
is disconnected logically from the local bus during "RQ/GT acknowledge." 

3. A pulse 1 ClK wide from the requesting master indicates to the 8087.(pulse 3) that 
the "RQ/GT" request is about to end and that the 8087 can reclaim the local bus at 
the next ClK. 

Each master-master exchange of the local bus is a sequence of 3 pulses. There must 
be one dead ClK cycle after each bus exchange. Pulses are active lOW. 
For 80186/80188 system, the RQ/GT1 line may be connected to the 82188 Integrated 
Bus Controller. In this case, a third processor with a HOLD, HlDA bus exchange 

. system may acquire the bus from the 8087. For this configuration, RQ/GT1 will only be 
used if the 8087 is the bus master. Refer to 82188 data sheet for further information. 

QS1,QSO I QS1, QSO: QS1 and QSO provide the 8087 with status to allow tracking of the CPU 
instruction queue. 

QS1 QSO 
o (lOW) 0 No Operation 
0 1 First Byte of Op Code from Queue 
1 (HIGH) 0 Empty the Queue 
1 1 Subsequent Byte from Queue 

INT 0 INTERRUPT: This line is used to indicate that an unmasked exception has occurred 
during numeric instruction execution when 8087 interrupts are enabled. This signal is 
typically routed to an 8259A for 8086/8088 systems and to INTO for 80186/80188 
systems. INT is active HIGH. 

BUSY 0 BUSY: This signal indicates that the 8087 NEU is executing a numeric instruction. It is 
connected to the CPU's TEST pin to provide synchronization. In the case of an 
unmasked exception BUSY remains active until the exception is cleared. BUSY is 
active HIGH. 

READY I READY: READY is the acknowledgement from the addressed memory device that it 
will complete the data transfer. The ROY signal from memory is synchronized by the 
8284A Clock Generator to form READY for 8086 systems. For 80186/80188 systems, 
ROY is synchronized by the 82188 Integrated Bus Controller to form READY. This 
signal is active HIGH. 

RESET I RESET: RESET causes the processor to immediately terminate its present activity. 
The signal must be active HIGH for at least four clock cycles. RESET is internally 
synchronized. 

ClK I CLOCK: The clock provides the basic timing for the processor and bus controller. It is 
asymmetric with a 33% duty cycle to provide optimized internal timing. 

Vee POWER: Vee is the + 5V power supply pin. 

GND GROUND: GND are the ground pins. 
-

NOTE: 
For the pin descriptions of the 8086, 8088, 80186 and 80188 CPUs, reference the respective data sheets (8086, 8088, 
80186,80188). . 
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APPLICATION AREAS 

The 8087 provides functions meant specifically for 
high performance numeric processing requirements. 
Trigonometric, logarithmic, and exponential func­
tions are built into the coprocessor hardware. These 
functions are essential in scientific, engineering, 
navigational, or military applications. 

The 8087 also has capabilities meant for business or 
commercial computing. An 8087 can process Binary 
Coded Decimal (BCD) numbers up to 18 digits with­
out roundoff errors. It can also perform arithmetic on 
integers as large as 64 bits ± 1018). 

PROGRAMMING LANGUAGE 
SUPPORT 

Programs for the 8087 can be written in Intel's high­
level languages for 8086/8088 and 80186/80188 
Systems; ASM-86 (the 8086, 8088 assembly lan­
guage), PLlM-86, FORTRAN-86, and PASCAL-86. 

RELATED INFORMATION 

For 8086, 8088, 80186 or 80188 details, refer to the 
respective data sheets. For 80186 or 80188 sys­
tems, also refer to the 82188 Integrated Bus Con­
troller data sheet. 

FUNCTIONAL DESCRIPTION 

The 8087 Math CoProcessor's architecture is de­
signed for high performance numeric computing in 
conjunction with general purpose processing. 

CPU 

AX ~'. FILE 0 : ., 

BX I ." 
ex .' I ." 
DX I ., 
SI I ." 
DI I .1 

BP : ., 

SP I .1 

19 11 

SIGN EXPONENT 

L __ , 

IP 
FLAGS 

I 
I 
I L ____ -, 

gl-I------II i 

The 8087 is a numeric processor extension that pro­
vides arithmetic and logical instruction support for a 
variety of numeric' data types. It also executes nu­
merous built-in transcendental functions (e.g., tan­
gent and log functions). The 8087 executes instruc­
tions as a coprocessor to a maximum mode CPU. It 
effectively extends the register and instruction set of 
the system and adds several new data types as well. 
Figure 3 presents the registers of the CPU + 8087. 
Table 2 shows the range of data types supported by 
the 8087. The 8087 is treated as an extension to the 
CPU, providing register, data types, control, and in­
struction capabilities at the hardware level. At the 
programmer's level the CPU and the 8087 are 
viewed as a single unified processor. 

System Configuration 

As a coprocessor to an 8086 or 8088, the 8087 is 
wired in parallel with the CPU as shown in Figure'4. 
Figure 5 shows the 80186/80188 system configura­
tion. The CPU's status (SO-52) and queue status 
lines (050-051) enable the 8087 to monitor and 
decode instructions in synchronization with the CPU 
and without any CPU overhead. For 80186/80188 
'systems, the queue status signals of the 801861 
80188 are synchronized to 8087 requirements by 
the 8288 Integrated Bus Controller. Once started, 
the 8087 can process in parallel with, and indepen­
dent of, the host CPU. For resynchronization, the 
8087's BUSY signal informs the CPU that the 8087 
is executing an instruction and the CPU WAIT in­
struction tests this signal to insure that the 8087 is 
ready to execute subsequent instructions. The 8087 
can interrupt the CPU when it detects an error or 
exception. The 8087's interrupt request line is typi­
cally routed to the CPU through an 8259A Program­
mable Interrupt Controller for 8086, 8088 systems 
and INTO for 80186/80188. 

8081 
DATA FIELD 
64 63 

SIGNIFICAND 

15 

CONTROL REGISTER 

STATUSAEGISTEA 

TAG WOAD 

t-INSTAUCTION POINTER_ 

r- DATA POINTER -

TAG FIELD 
0 

205835-3 

Figure 3. CPU + 8087 Architecture 
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The BOB7 uses one of the request/~nt lines of the 
BOB6/BOBB architecture (typically RQ/GTO) to ob­
tain control of the local bus for data transfers. The 
other request/grant line is available for general sys­
tem use (for instance by an I/O processor in LOCAL 
mode). A bus master can also be connected to the 
BOB7's RQ/GT1 line. In this configuration the BOB7 
will pass the request/grant handshake Signals be­
tween the CPU and the attached master when the 
BOB7 is not in control of the bus and will relinquish 
the bus to the master directly when the BOB7 is in 
control. In this way two additional masters can be 
configured in an BOB6/BOBB system; one will share 
the BOB6/BOBB bus with the BOB7 on a first-come 
first-served basis, and the second will be guaranteed 
to be higher in priority than the BOB7. 

For B01B6/B01BB systems, RQ/GTO and RQ/GT1 
are connected to the corresponding inputs of the 
B21 BB Integrated Bus Controller. Because the 
B01 B6/B01 BB has a HOLD, HLDA bus exchange 
protocol, an interface is needed which will translate 
RQ/GT signals to corresponding HOLD, HLDA sig­
nals and vice versa. One of the functions of the 
B21BB IBC is to provide this translation. RQ/GTO is 
translated to HOLD, HLDA signals which are then 
directly connected to the B01 B6/B01 BB. The -RQ/ 
GT1 line is also translated into HOLD, HLDA signals 
(referred to as SYSHOLD, 8Y8HLDA signals) by the 
B21 BB IBC. This allows a third processor (using a 
HOLD, HLDA bus exchange protocol) to gain control 
of the bus. 

Unlike an BOB6/BOB7 system, RQ/GT is only used 
when the BOB7 has bus control. If the third processor 
requests the bus when the current bus master is the 
B01B6/B01BB, the B21BB IBC will directly pass the 
request onto the- B01B6/B01BB without going 
through the BOB7. The third processor has the high­
est bus priority in the system. If the BOB7 requests 
the bus while the third processor has bus control, 
the grant pulse will not be issued until the third proc­
essor releases the bus (using 8Y8HOLD). In this 
configuration, the third processor has the highest . 
priority, the BOB7 has the next highest, and the 
B01B6/B01BB has the lowest bus priority. 

Bus Operation 

The BOB7 bus structure, operation and timing are 
identical to all other processors in the BOB6/BOBB 
series (maximum mode configuration). The address 
is time multiplexed with the data on the first 16/B 
lines of the address/data bus. A16 through A19 are 
time multiplexed with four status lines 83-S6. 83, 
84 and 86 are always one (HIGH) for BOB7-driven 
bus cycles while S5 is always zero (LOW). When the 
BOB7 is monitoring CPU bus cycles (passive mode) 
86 is also monitored by the BOB7 to differentiate 
BOB6/BOBB activity from that of a local I/O proces­
sor or any other local bus master. (The BOB6/BOBB 
must be the only processor on the local bus to drive 
86 LOW). 87 is multiplexed with and has the same 
value as BHE for all BOB7 bus cycles. 

Table 2_ 8087 Data Types 

Data 
Range Precision 

Formats 

Word Integer 104 16 Bits 

Short Integer 109 32 Bits 

Long Integer 1016 64 Bits 

Packed BCD 1016 1B Digits 

Short Real 10±36 24 Bits 

Long Real 10±306 53 Bits 

Temporary Real 10±4932 64 Bits 

Integer: I 
Packed BCD: (-1)5(017 ... 00) 

. Real: (-1)S(2E-Bias)(Fo.F1 ... ) 
bias = 127 for Short Real 

1023 for Long Real 
16363 for Temp Real 

7 

115 

131 

163 

81-

SI E7 

SIE10 

SIE14 

Most Significant Byte 

017 017 017 017 017 017 017 017 017 01 
10IT~0'S Complement 

. 10lTwo's Complement 

1)1 Two's 
o Complement 

0170 161 10 1 Dol 

EoIF1 F231Fo Implicit 

EoIF1 F521Fo Implicit 

EolFo F631 
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The first three status lines, SO-52, are used with an 
B2BB bus controller or B21 BB Integrated Bus Con­
troller to determine the type of bus cycle being run: 

S2 S1 SO 

0 X X Unused 
1 0 0 Unused 
1 0 1 Memory Data Read 
1 1 0 Memory Data Write 
1 1 1 Passive (no bus cycle) 

Programming Interface 

The BOB7 includes the standard BOB6, BOBB instruc­
tion set for general data manipulation and program 
control. It also includes 6B numeric instructions for 
extended precision integer, floating point, trigono­
metric, logarithmic, and exponential functions. Sam­
ple execution times for several BOB7 functions are 
shown in Table 3. Overall performance is up to 100 
times that of an BOB6 processor for numeric instruc­
tions. 

Any instruction executed by the BOB7 is the com­
bined result of the CPU and BOB7 activity. The CPU 
and the BOB7 have specialized functions and regis­
ters providing fast concurrent operation. The CPU 
controls overall program execution while the BOB7 
uses the coprocessor interface to recognize and 
perform numeric operations. 

Table 2 lists the seven data types the BOB7 supports 
and presents the format for each type. Internally, the 
BOB7 holds all numbers in the temporary real format. 
Load and store instructions automatically convert 
operands represented in memory as 16-, 32-, or 64-
bit integers, 32- or 64-bit floating point numbers or 
1 B-digit packed BCD numbers into temporary real 
format and vice versa. The BOB7 also provides the 
capability to control round off, underflow, and over­
flow errors in each calculation. 

Computations in the B087 use the processor's regis­
ter stack. These eight BO-bit registers provide the 
equivalent capacity of 20 32-bit registers. The BOB7 
register set can be accessed as a stack, with in­
structions operating on the top one or two stack ele­
ments, or as a fixed register set, with instructions 
operating on explicitly designated registers. 

Table 5 lists the 8087's instructions by class. All ap­
pear as ESCAPE instructions to the host. Assembly 
language programs are written in ASM-86, the B086, 
B08B assembly language. 

Table 3. Execution Times for Selected 
8086/8087 Numeric Instructions and 

Corresponding 8086 Emulation 

Approximate Execution 

Floating Point 
Time (l1s) 

Instruction 8086/8087 
8086 

(8 MHz 
Emulation 

Clock) 

Add/Subtract 10.6 1000 
Multiply (Single 

Precision) 11.9 1000 
Multiply (Extended 

Precision) 16.9 1312 
Divide 24.4 2000 
Compare -5.6 812 
Load (Double Precision) -6.3 1062 
Store (Double Precision) 13.1 750 
Square Root 22.5 12250 
Tangent 56.3 B125 
Exponentiation 62.5 106B7 

NUMERIC PROCESSOR 
EXTENSION ARCHITECTURE 

As shown in Figure 1, the BOB7 is internally divided 
into two processing elements, the control unit (CU) 
and the numeric execution unit (NEU). The NEU ex­
ecutes all numeric instructions, while the CU re­
ceives and decodes instructions, reads and writes 
memory operands and executes BOB7 control in­
structions. The two elements are able to operate in­
dependently of one another, allowing the CU to 
maintain synchronization with the CPU while the 
NEU is busy processing a numeric instruction. 

Control Unit 

The CU keeps the BOB7 operating in synchronization 
with its host CPU. BOB7 instructions are intermixed 
with CPU instructions in a single instruction stream. 
The CPU fetches all instructions from memory; by 
monitoring the status (50-52, 56) emitted by the 
CPU, the control unit determines when an instruction 
is being fetched. The CPU monitors the data bus in 
parallel with the CPU to obtain instructions that per­
tain to the BOB7. 
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- - - - -..ISVSHLDA ~ \ 

I I'," 
I 3RD I\t-'.,/ 
I ... acESSOII I L __________ ...l 

\ 
v 

8"18. 
BUS 

INTERFACE 
COMPONENTS 

Figure 5. 80186/8087, 80188/8087 System Configuration 
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The CU maintains an instruction queue that is identi­
cal to the queue in the host CPU. The CU automati­
cally determines if the CPU is an 8086/80186 or an 
8088/80188 immediately after reset (by monitoring 
the BHE/S7 line) and matches its queue length ac­
cordingly. By monitoring the CPU's queue status 
lines (OSO, OS1), the CU obtains and decodes in­
structions from the queue in synchronization with the 
CPU. 

A numeric instruction appears as an ESCAPE in­
struction to the CPU. Both the CPU and 8087 de­
code and execute the ESCAPE instruction together. 
The 8087 only recognizes the numeric instructions 
shown in Table 5. The start of a numeric operation is 
accomplished when the CPU executes the ESCAPE 
instruction. The instruction mayor may not identify a 
memory operand. 

The CPU does, however, distinguish between ESC 
instructions that reference memory and those that 
do not. If the instruction refers to a memory operand, 

. the CPU calculates the operand's address using any 
one of its available addressing modes, and then per­
forms a "dummy read" of the word at that location. 
(Any location within the 1 M byte address space is 
allowed.) This is a normal read cycle except that the 
CPU ignores the data it receives. If the ESC instruc­
tion does not contain a memory reference (e.g. an 
8087 stack operation), the CPU simply proceeds to 
the next instruction. 

An 8087 instruction can have one of three memory 
reference options: (1) not reference memory; (2) 
load an operand word from memory into the 8087; or 
(3) store an operand word from the 8087 into memo-

. ry. If no memory reference is required, the 8087 sim­
ply executes its instruction. If a memory reference is 
required, the CU uses a "dummy read" cycle initiat­
ed by the CPU to capture and save the address that 
the CPU places on the bus. If the instruction is a 
load, the CU additionally captures the data word 
when it becomes available on the local data bus. If 
data required is longer than one word, the CU imme­
diately obtains the bus from the CPU using the 
request/grant protocol and reads the rest of the in­
formation in consecutive bus cycles. In a store oper­
ation, the CU captures and saves the store address 
as in a load, and ignores the data word that follows 
in the "dummy read" cycle. When the 8087 is ready 
to perform the store, the CU obtains the bus from 
the CPU and writes the operand starting at the spec­
ified address. 

Numeric Execution Unit 

The NEU executes all instructions that involve the 
register stack; these include arithmetic, logical, tran­
scendental, constant and data transfer instructions. 
The data path in the NEU is 84 bits wide (68 frac­
tions bits, 15 exponent bits and a sign bit) which 
allows internal operand transfers to be performed at 
very high speeds. 

When the NEU begins executing an instruction, it 
activates the 8087 BUSY signal. This signal can be 
used in conjunction with the CPU WAIT instruction to 
resynchronize both processors when the NEU has 
completed its current instruction. 

Register Set 

The CPU + 8087 register set is shown in Figure 3. 
Each of the eight data registers in the 8087's regis­
ter stack is 80 bits and is divided into "fields" corre­
sponding to the 8087's temporary real data type. 

At a given point in time the TOP field in the control 
word identifies the current top-of-stack register. A 
"push" operation decrements TOP by 1 and loads a 
value into the new top register. A "pop" operation 
stores the value from the current top register and 
then increments TOP by 1. Like CPU stacks in mem­
ory, the 8087 register stack grows "down" toward 
lower-addressed registers. 

Instructions may address the data registers either 
implicitly or explicitly. Many instructions operate on 
the register at the top of the stack. These instruc­
tions implicitly address the register pointed to by the 
TOP. Other instructions allow the programmer to ex­
plicitly specify the register which is to be used. Ex­
plicit register addreSSing is "top-relative." , 

Status Word 

The status word shown in Figure 6 reflects the over­
all state of the 8087; it may be stored in memory and 
then inspected by CPU code. The status word is a 
16-bit register divided into fields as shown in Figure 
6. The busy bit (bit 15) indicates whether the NEU is 
either executing an instruction or has an interrupt 
request pending (B=1), or is idle (B=O). Several 
instructions which store and manipulate the status 
word are executed exclusively by the CU, and these 
do not set the busy bit themselves. 
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15 

I B I c, ITO piC, I c, I C, IIR I X I PE I UE IOE I ZEI DE liE I 

I 

NOTES: 

EXCEPTION FLAGS (1 • EXCEPTION HAS OCCURREDI 

INVALID OPERATION 

DENORMALIZED OPERANO 

ZERO DIVIOE 

OVERFLOW 

UNOERFLOW 

PRECISION 

(RESERVEOI 

INTERRUPT REQUESTI11 

CONDITION CODEltI 

TOP OF STACK POINTEA(:J) 

NEU BUSY 

205835-6 

1. IR is set if any unmasked exception bit is set, cleared otherwise. 
2. See Table 3 for condition code interpretation. . 
3. Top Values: 
. 000 = Register 0 is Top of Stack. 

001 = Register 1 is Top of Stack. 
• 
• 
• 

111 = Register 7 is Top of Stack. 

Figure 6. 8087 Status Word 

The four numeric condition code bits (CO-C3) are 
similar to flags in a CPU: various instructions update 
these bits to reflect the outcome of the 8087 opera­
tions. The effect of these instructions on the condi­
tion code bits is summarized in Table 4. 

Bits 14-12 of the status word point to the 8087 reg­
ister that is the current top-of-stack (TOP) as de­
scribed above. 

Bit 7 is the interrupt request bit. This bit is set if any 
unmasked exception bit is set and cleared other­
wise. 

Bits 5-0 are set to indicate that the NEU has detect­
ed an exception while executing an instruction. 

15 

Tag Word 

The tag word marks the content of each register as 
shown in Figure 7. The principal function of the tag 
word is to optimize the 8087's performance. The tag 
word can be used, however, to interpret the con­
tents of 8087 registers. 

Instruction and Data Pointers 

The instruction and data pointers (see Figure 8) are 
provided for user-written error handlers. Whenever 
the 8087 executes a math instruction, the CU saves 
the instruction address, the operand address (if 
present) and the instruction opcode. 8087 instruc­
tions can store this data into memory. 

o 

TAG,(7) I TAG,(6) I TAG,(5) I TAG,(4) I TAG,(3) I TAG,(2) I TAG,(1) I TAG,(O) 

TAG VALUES: 
00 = VALID 
01 = ZERO 
10 = SPECIAL 
11 = EMPTY 

Figure 7. 8087 Tag Word 
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Table 4a. Condition Code Interpretation 

Instruction 
Ca C2 Type 

Compare, Test 0 0 
0 0 
1 0 
1 1 

Remainder 01 0 

U 1 

Examine 0 0 
0 0 
0 0 
0 0 
0' 1 
0 1 
0 1 
0 1 
1 0 
1 0 
1 0 
1 0 
1 1 
1 1 
1 1 
1 1 

NOTES: . 
1. ST = Top of stack 
2. X = value is not affected by instruction 
3. U = value is undefined following instruction 
4. Qn = Quotient bit n 

Table 4b. Condition Code Interpretation 
after FPREM Instruction As a 

Function of Divided Value 

Dividend Range Q2 Q1 

Dividend < 2 * Modulus Cal C1l 
Dividend < 4 • Modulus Cal 01 
Dividend :?: 4 * Modulus 02 01 

NOTE: 

C1 

X 
X 
X 
X 

00 

U 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

Qo 

00 
00 
00 

1. Previous value of indicated bit, not affected by FPREM 
instruction execution. 
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Co 

0 
1 
0 
1 

02 

U 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

15 

Interpretation 

ST > Source or 0 (FTST) 
ST < Source or 0 (FTST) 
ST = Source or 0 (FTST) 
ST is not comparable 

Complete reduction with 
three low bits of quotient 
(See Table 4b) 
Incomplete Reduction 

Valid, positive unnormalized 
Invalid, positive, exponent = 0 
Valid, negative, un normalized 
Invalid, negative, exponent = 0 
Valid, positive, normalized 
Infinity, positive 
Valid, negative, normalized 
Infinity, negative 
Zero, positive 
Empty 
Zero, negative 
Empty' 
Invalid, positiv~, exponent = 0 
Empty 
Invalid, negative, exponent = 0 
Empty 

CONTROL WORD 

STATUS WORD 

TAG WORD 

o 

MEMORY 
OFFSET 

INSTRUCTION POINTER (15-0) 

+0 

+2 

+4 

+6 

INSTRUCTION I IINSTRUCTION 
POINTER (19-16) 0 OPCODE (10-0) 

+8 

DATA POINTER (15-0) +10 

DATA POINTER I 
(19-16) 

0 +12 

15 12 11 o 

Figure 8. 8087 Instruction and Data Pointer 
Image in Memory 
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Control Word 

The 8087 provides several processing options which 
are selected by loading a word from memory into the 
control word. Figure 9 shows the format and encod­
ing of the fields in the control word. 

The low order byte of this control word configures 
8087 interrupts and exception masking. Bits 5-0 of 
the control word contain individual masks for each of 
the six exceptions that the 8087 recognizes and bit 7 
contains a general mask bit for all 8087 interrupts. 
The high order byte of the control word configures 
the 8087 operating mode including precision, round­
ing, and infinity controls. The precision control bits 
(bits 9-8) can be used to set the 8087 internal oper­
ating precision at less than the default of temporary 
real precision. This can be useful in providing com­
patibility with earlier generation arithmetic proces­
sors of smaller precision than the 8087. The round­
ing control bits (bits 11-10) provide for directed· 
rounding and true chop as well as the unbiased 
round to nearest mode specified in the proposed 
IEEE standard. Control over closure of the number 
space at infinity is also provided (either affine clo­
sure, ± 00, or projective closure, 00, is treated as 
unsigned, may be specified). 

15 

Exception Handling 

The 8087 detects six different exception conditions 
that can occur during instruction execution. Any or 
all exceptions will cause an interrupt if unmasked 
and interrupts are enabled. 

If interrupts are disabled the 8087 will simply contin­
ue execution regardless of whether the host clears 
the exception. If a specific exception class is 
masked and that exception occurs, however, the 
8087 will post the exception in the status register 
and perform an on-chip default exception handling 
procedure, thereby allowing processing to continue. 
The exceptions that the 8087 detects are the follow­
ing: 

1. INVALID OPERATION: Stack overflow, stack un­
derflow, indeterminate form (0/0, 00 - 00, etc.) 
or the use of a Non-Number (NAN) as an oper­
and. An exponent value is reserved and any bit 
pattern with this value in the exponent field is 
termed a Non-Number and causes this exception. 
If this exception is masked, the 8087's default re­
sponse is to generate a specific NAN called IN­
DEFINITE, or to propagate already existing NAN.s 
as the calculation result. 

EXCEPTION MASKS (1 = EXCEPTION IS ".ASKED) 

INVALID OPERATION 

OENORMALIZED OPERAND 

ZERO OIVIDE 

OVERFLOW 

UNDERFLOW 

PRECISION 

'--------------- (RESERVEO) 

'----------------- INTERRUPT MASK (1 = INTERRUPTS ARE MASKED) 
L...J. _________________ PRECISION CONTROL'" 

L.JI.-___________________ ROUNDING CONTROL'" 

'----------------------- INFINITY CONTROL (0 = PROJECTIVE, 1 = AFFINE) 
L...I--1.. _______________________ (RESERVED) 

NOTES: 
1. Precision Control 

00 = 24 bits 
01 = Reserved 
10 = 53 bits 
11 = 64 bits 

2. Rounding Control 
00 = Round to Nearest or Even 
01 = Round Down (toward - 00) 
10 = Round Up (toward + 00) 
11 = Chop (truncate toward zero) 

Figure 9. 8087 Control Word 
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2. OVERFLOW: The result is too large in magnitude 
to fit the specified format. The 8087 will generate 
an encoding for infinity if this exception is 
masked. 

3. ZERO DIVISOR: The divisor is zero while the divi­
dend is a non-infinite, non-zero number. Again, 
the 8087 will generate an encoding for infinity if 
this exception is masked. 

4. UNDERFLOW: The result is non-zero but too 
small in magnitude to fit in the specified format. If 
this exception is masked the 8087 will denormal-

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias ...... O°C to 70°C 

Storage Temperature .......... - 65°C to + 150°C 

Voltage on Any Pin with 
Respect to Ground .............. - 1.0V to + 7V 

Power Dissipation ....................... 3.0 Watt 

ize (shift right) the fraction until the exponent is in 
range. This process is called gradual underflow. 

5. DENORMALIZED OPERAND: At least one of the 
operands or the result is denormalized; it has the 
smallest exponent but a non-zero significand. 
Normal processing continues if this exception is 
masked off. 

6. INEXACT RESULT: If the true result is not exactly 
representable in the specified format, the result is 
rounded according to the rounding mode, and this 
flag is set. If this exception is masked, processing 
will simply continue. 

* Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS T A = O°C to 70°C, Vee = 5V ± 5% 

Symbol Parameter Min Max Units Test Conditions 

Vil Input low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.0 Vee + 0.5 V 

Val Output low Voltage (Note 8) 0.45 V IOL = 2.5 mA 

VOH Output High Voltage 2.4 V IOH = -400 p.A 

Icc Power Supply Current 475 rnA TA = 25°C 

III Input leakage Current ±10 p.A OV";: VIN s Vee 

ILO Output leakage Current ±10 p.A TA = 25°C 

Vel Clock Input low Voltage -0.5 0.6 V 

VeH Clock Input High Voltage 3.9 Vee + 1.0 V 

CIN Capacitance of Inputs 10 pF fc = 1 MHz 

Cia Capacitance of I/O Buffer 15 pF fc = 1 MHz . (ADO-15, A16-A19, BHE, 52-SO, 
RQ/GT) and ClK 

COUT Capacitance of Outputs 10 pF fc = 1 MHz 
BUSYINT 
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A.C. CHARACTERISTICS T A = O·C to 70·C, Vee = 5V ± 5% 

TIMING REQUIREMENTS 

8087 8087-2 
8087-1 

Symbol Parameter (See Note 7) Units Test Conditions 

Min Max Min Max MilT Max 

TClCl ClK Cycle Period 200 500 125 500 100 500 ns 

TClCH ClKlowTime 118 68 53 ns 

TCHCl ClK High Time 69 44 39 ns 

TCH1CH2 ClK Rise Time 10 10 15 ns From 1.0V to 3.5V 

TCL2Cl2 ClK Fall Time 10 10 15 ns From 3.5V to 1.0V 

TDVCl Data In Setup Time 30 20 15 ns 

TClDX Data In Hold Time 10 10 10 ns 

TRYHCH READY Setup Time 118 68 53 ns 

TCHRYX READY Hold Time 30 20 5 ns 

TRYlCl READY Inactive to ClK (Note 6) -8 -8 -10 ns 

TGVCH RO/GT Setup Time (Note 8) 30 15 15 ns 

TCHGX RO/GT Hold Time 40 30 20 ns 

TaVCl OSO-1 Setup Time (Note 8) 30 30 30 ns 

TClOX OSO-1 Hold Time 10 10 5 ns 

TSACH Status Active Setup Time 30 30 30 ns 

TSNCl Status Inactive Setup Time 30 30 30 ns 

TILIH Input Rise Time (Except ClK) 20 20 20 ns From 0.8V to 2.0V 

TIHll Input Fall Time (Except ClK) 12 12 15 ns From 2.0V to 0.8V 

TIMING RESPONSES 

8087 8087-2 
8087-1 

Symbol Parameter (See Note 7) Units Test Conditions 

Min Max Min Max Min Max 

TClMl Command Active Delay 10/0 35/70 10/0 35170 10/0 35/70 ns CL = .20-100 pF 
(Notes 1,2) for a/l 8087 Outputs 

TClMH Command Inactive Delay 10/0 35/55 10/0 35/55 10/0 35/70 ns (in addition to 8087 

(Notes 1,2) self-load) 

TRYHSH Ready Active to Status 110 65 45 ns 
Passive (Note 5) 

TCHSV Status Active Delay 10 110 10 60 10 45 ns 

TCLSH Status Inactive Delay 10 130 10 70 10 55 ns 

TCLAV Address Valid Delay 10 110 10 60 10 55 ns 

TCLAX Address Hold Time 10 10 10 ns 
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A.C. CHARACTERISTICS T A = D·C to 7D·C, Vee = 5V ± 5% (Continued) 

TIMING RESPONSES (Continued) 

8087 8087·2 
8087-1 

Symbol Parameter (See Note 7) Units Test Conditions 

Min Max Min Max Min Max 

TCLAZ Address Float Delay TCLAX 80. TCLAX 50. TCLAX 45 ns CL = 20.-10.0. pF 

TSVLH Status Valid to ALE High 15/30. 15/30. 15/30. ns for all 80.87 Outputs 

(Notes 1, 2) (in addition to 80.87 

TCLLH CLK Low to ALE Valid 15/30. 15/30. 15/30. 
self-load) 

ns 
(Notes 1, 2) 

TCHLL ALE Inactive Delay 15/30. 15/30. 15/30. ns 
(Notes 1, 2) 

TCLDV Data Valid Delay 10. 110. 10. 60. 10. 50. ns 

TCHDX Status Hold Time 10. 10. 10. 45 ns 

TCLDOX Data Hold Time 10. 10. 10. ns 

TCVNV Control Active Delay 5 45 5 45 5 45 ns 
(Notes 1,3) 

TCVNX Control Inactive Delay 10. 45 10. 45 10. 45 ns 
(Notes 1, 3) 

TCHBV BUSY and INT Valid Delay 10. 150. 10. 85 10. 65 ns 

TCHDTL Direction Control Active 50. 50. 50. ns 
Delay (Notes 1 , 3) 

TCHDTH Direction Control Inactive 3D 3D 3D ns 
Delay (Notes 1, 3) 

TSVDTV STATUS to DT IR Delay 0. 3D 0. 3D 0. 3D ns 
(Notes 1,4) 

TCLDTV DT IR Active Delay 0. 55 0. 55 0. 55 ns 
(Notes 1, 4) 

TCHDNV DEN Active Delay 0. 55 0. 55 0. 55 ns 
(Notes 1,4) 

TCHDNX DEN Inactive Delay 5 55 5 55 5 55 ns 
(Notes 1, 4) 

TCLGL RQ/GT Active Delay 0. 85 0. 50. 0. 38 ns CL =40. pF (in 
(Note 8) addition to 80.87 

TCLGH RQ/GT Inactive Delay 0. 85 0. 50. 0. 45 ns self-load) 

TOLOH Output Rise Time 20. 20. 15 ns From D.8V to 2.DV 

TOHOL Output Fall Time 12 12 12 ns From 2.DV to D.8V 

NOTES: 
1. Signal at 8284A, 8288, or 82188 shown for reference only. 
2. 8288 timing/82188 timing. 
3. 8288 timing. 
4. 82188 timing. 
5. Applies only to T 3 and wait states. 
6. Applies only to T 2 state (8 ns into T 3)' 
7. IMPORTANT SYSTEM CONSIDERATION: Some 8087-1 timing parameters are constrained relative to the corresponding 
8086-1 specifications. Therefore, 8086-1 systems incorporating the 8087-1 should be designed with the 8087-1 specifica­
tions. 
8. Changes since last revision. 
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A.C. TE;STING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT 

DEVICE 

~Cl~I00PF' 
UNDER 

TEST 

205835-8 
A.C. Testing: Inpuls are driven'at 2.4V for a Logic "1" and 0.45V 
for a Logic "0". 

WAVEFORMS 

MASTER MODE (with 8288 references) 

T, 

iiiiEts,.A,-".-A,.ISa 

..... y_I.PUT) { 
(SEE NOTE I) 

READ CYCLE 

{ 

UTIii 

.... 0U11'UTS -
(SEE NOTU"~ MADe 

,OI!N 

WRITE CYCLE 

{ ..; . 
.... OUTPUTS 

(SEE NOTES" 1) AllWTC 

MWTC 

-= 
205835-9 

CL Includes Jig Capacitance 

T. T. T. 

NOTES: 205835-10 
1. All signals switch between VOL and VOH unless otherwise specified. 
2. READY is sampled near the end of T 2, T 3 and T w to determine if T w machine states are to be inserted. 
3. The local bus floats only if the 8087 is returning control to the 8086/8088. 
4. ALE rises at later of (TSVLH, TCLLH). 
5. Status inactive in state just prior to T 4. 
6. Signals at 8284A or 8288 are shown for reference only. 
7. The issuance of 8288 command and control signals (MRDC, (MWTC, AMWC, and DEN) lags the active high 8288 
CEN. 
8. All timing measurements are made at 1.5V unless otherwise noted. 
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WAVEFORMS (Continued) 

MASTER MODE (with 82188 references) 

CLK 

s,.s,,~ 

ALE (82188 OUTPUT) 
(SEE NOTES 4.6) 

READY {8oa7 INPUll { 
(SEE NOTE 2) 

READ CYCLE 

82188 OUTPUTS RO 
(SEE NOTES 8.7) 

YC :~ 
TCLAY 

TSYLH-o 
TCLLH .... 

TCLAV-

TS 
TC rg~~.=; 

T, T, 

TdnCH2 __ 

!--TCLCL_ 1++1 

0£"""' r--i 
~I+-~ 

I:::::i TCLAX ..... t:J;.LDY 

I BHE, A1I-A,• X 

f I:::iTCHLL 

\ 
TRYLCL 

~ -
TTsH-O 

f -- {JLAZ 

Au-A, 
FLOAT 

I:: 
--* .... 

T, T. 

__ TCL2CLI 

T. 

d~~~ 
Ijj 1/(1/ (SEE NOTE 5) .. 

.I~ -- ---
--- TCHDX 

51-53 'II 
FLOAT 

(SEE NOTE 3) 

,.--, 
I 
------

--- !o--TCHRYX 

1 
TRYHCH I.-
~TDVCL TCLDX 
y 

DATA IN '\I 
FLOAT 

\ 
I -{(SE~J~~E 9) 

DEN 

-t TLML ~MH 
I _ ~TCHDNV -- 1-+ TCHDNX 

JC=~ 

WRITE CYCLE 

82188 OUTPUTS 
(SEE NOTES 6.7) { D: 

WR 

TCLAV~ 

X 
TCHDNV --l 

, 
TCLDV=! - \_TC 
Au-I\. X DATA OUT IFLOAT 

.rL 
(SEE NOTE 

I 

-- I-TCHDNX 

~ J - -4-- TCLML -~ __ r TCLMH 

LDOX 

3) 

NOTES: 205835-11 
1. All signals switch between VOL and VOH unless otherwise specified. 
2. READY is sampled near the end of T 2, T 3 and T w to determine if T w machine states are to be inserted. 
3. The local bus floats only if the 8087 is returning control to the 80186/80188. 
4. ALE rises at later of (TSVLH, TCLLH). 
5. Status inactive in state just prior to T 4. 
6. Signals at 8284A or 82188 are shown for reference only. 
7. The issuance of 8288 command and control signals (MRDC, (MWTC, AMWC, and DEN) lags the active high 8288 
CEN. 
8. All timing measurements are made at 1.5V unless otherwise noted. 
9. DT /R becomes valid at the later of (TSVDTV, TCLDTV). 
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WAVEFORMS (Continued) 

PASSIVE MODE 

elK 

OS"OS. 

i"i"s. 

BHE/S"A"/S.-A,./S. 

READY { 
IN~ 

205835-12 

RESET TIMING 

'"141---->50pl8C:----~ 
Vee 

ClK 

RESET 

,,4 eLK CYCLES 

1_---- ,,20 elKeyelES---~ 

2-138 

8087 TRACKS 
CPU ACTIVITY. 

8087 READY TO 
EXECUTE INSTRUCTIONS 
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WAVEFORMS (Continued) 

REQUEST IGRANT 0 TIMING 

ClK 

AD,i-ADo 

A"/S.-A,.fS, 
Sa. i ,,50 

BHE/57 

NOTE: 

_r-~~g:~ ---0-

8087 

CPU 

The CPU provides active pullup of RQ/GTO, see TCLGH spec. 

REQUEST/GRANT1 TIMING 

ClK 

~_ TCl~l TGVCH TClGl 
TCHGX 

iiQ 

AD,,-ADo 
A"/S.-A,./S3 

S2'S" SO 
BHE/57 

NOTE: 

8087 ALTERNATE MASTER 

(SEE NOTEI 

Alternate master may not drive the buses outside of the region shown without risking bus contention. 

BUSY AND INTERRUPT TIMING 

ClK ~~------------tf 
BUSY,INT ---------

TCHBV ...... ------

205835-14 

205835-15 

205835-16 
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Table 5. 8087 Extensions to the 86/186 Instructions Sets 

Data Transfer 

I Optional 
8,1SBII 

Displacement 

FLO = LOAD I MF ~ 

IntegerlReal Memory to ST(O) I ESCAPE MF 
----_._-

Long Integer Memory to ST(O) 

Temporary Real Memory to 
ST(O) 

BCD Memory to ST(O) 

ST(,) to ST(O) 

FST ~ STORE 

ST(O) to IntegerlReal Memory 

ST(O) to ST(i) 

FSTP ~ STORE AND POP 

ST(O) to IntegerlReal Memory 

ST(O) to Long Integer Memory 

ST(O) to Temporary Rcal 
Memory 

ST(O) 10 BCI) Mt!mory 

ST(O) 10 ST(i) 

FXCH ~ Exchange ST(,) and 
ST(O) 

Comparison 
FCOM ~ Compare 

IntegerlReal Memory to ST(O) 

ST(i) to ST (0) 

FCOMP ~ Compare and Pop 

IntegerlReal Memory to ST(O) 

ST(i) to ST(O) 

FCOMPP ~ Compare ST(I) to 
ST(O) and Pop Twice 

FTST ~ Test ST(O) 

FXAM ~ Examine ST(O) 

I ESCAPE 1 1 MOD 0 1 RIM [ - DISP 
-, 
-' 

I ESCAPE 0 1 MOD 1 0 1 RIM [ - - DISP 
-, 
, -

1 ESCAPE MOD 0 0 RIM I DlSP 
, 

- - -
_ _ _ .1 

1 ESCAPE 0 0 1 1 1 0 0 0 ST(,) I 

I ESCAPE MF 1 I MOD 0 1 0 RIM [ - DISP 

I ESCAPE 1 0 , I 1 1 0 , 0 ST(i) I 

~IE=S=C=A=P=E==M=F====*=M=O==D==O====I==R=/M~I:'-
LI_ES_C_A_P_E ___ '_'-L_M_O_D __ '--,-'_I_R_I_M....J1 __ :'I~P _ ~ 

DISP 

LI E_S_C_A_P_E_O __ l_-L_M_O_D __ l __ l_R_I_M....JI_ - - ~ISP - ~ 

·1 ~:ES:C:A:P:E====~M:O:D=:I==O=R:/:M~I_: - '~ISP - : 

1 ESCAPE 0 , 1 0 ST(i) I 

I ESCAPE 0 0 1 1 1 0 0 1 ST(,) I 

I ESCAPE MF MOD 0 , 0 RIM 1- - DISP 

I ESCAPE 0 0 1 , 0 ST(i) I 

ESCAPE MF L MOD 0 RIM [ 'DISP . =: 
~=====4I========~1 ESCAPE 0 0 0 0 ST(i) _ 

ESCAPE 0110 00 I 
ESCAPE 0 0 , 0 0 o 0 

ESCAPE 0 0 o 0 o 1 

2-140 

Clock Count Range 
32BII 32BII .S4Blt 
Real Intege, Re.1 

00 01 10 

38-56 52-60 40-60 
+E~ +EA +EA 

60-68 +EA 

53-65 +EA 

290-3'0 + EA 

'7-22 

84-90 . 82-92 96-'04 
+EA +EA +EA 

'5-22 

86-92 84-94 98-106 
+EA +EA +EA 

94-105 + EA 

52-58 +EA 

520-540 +EA 

17-24 

'0-15 

60-70 
+EA 

78-91 
+EA 

40--50 

63-73 80-93 
+EA +EA 

45-52 

45-55 

38-48 

12-23 

65-75 
+EA 

67-77 
+EA 

Ie Bit 
Intege, 

11 

46-54 
+EA 

80-90 
+EA 

82-92 
+EA 

72-86 
+EA 

74-88 
+EA 

205835-17 
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Table 5. 8087 Extensions to the 86/186 Instructions Sets (Continued) 

Constants 

I Optional Clock Count Range 
B,16BII 32 BII 32BII 64BII 16 BII 

Displacement Real Integer Real Inleger 

~. 
~ 00 01 10 11 

FLOZ ~ LOAD + 0.0 Into ST(O) I ESCAPE 0 0 1 It t t 0 1 1 1 0 11-17 

FLOI ~ LOAD + 1.0 Into Sr(O) ESCAPE 0 o 1 I t 1 t 0 1 0 0 0 15-21 

FLOPI ~ LOAD" into ST(O) ESCAPE 0 1 1 1 1 0 1 0 1 1 16-22 

FLOL2T ~ LOAD log2 10 Into ESCAPE 0 1 1 1 1 0 0 0 16-22 
ST(O) 

FLOL2E ~ LOAD IOg2 e Into ESCAPE 0 0 1 1 1 1 0 1 0 1 0 15-21 
ST(O) 

FLOLG2 ~ LOAD log,o 2 Into 
ST(O) ESCAPE 0 1 1 1 1 0 1 1 0 0 18-24 

FLOLN2 ~ LOAD log.2 into ESCAPE 0 l' 1 0 1 0 1 17-23 
ST(O) 

Arithmetic 

FAOO ~ Addition 

Integer/Real Memory with ST(O) ESCAPE MF 0 MOD 0 0 R/M [ DISP 
-, 

90-120 108-143 95-125 102-137 ..! +EA +EA +EA +EA 

ST(I) and ST(O) ESCAPE d P 0 1 1 0 0 0 ST(i) 70-100 (Note 1) 

FSUB ~ Subtraction 

Integer/Real Memory with ST(O) ESCAPE MF 0 MOD 0 R R/M [ DISP 
-, 

90-120 108-143 95-125 102-137 
.J +EA +EA +EA +EA 

ST(i) and ST(O) ESCAPE d P 1 1 0 R R/M I 70-100 (Nole 1) 

FMUL ~ Multiplication 

Inleger/Real Memory with ST(O) ESCAPE MF MOD 0 1 R/M [ DISP 
, 

110-125 130-144 112-168 124-138 
..! +EA +EA +EA +EA 

ST(I) and ST(O) ESCAPE d P 0 0 R/M 90-145 (Note 1) 

FDIV = Division -
Integer/Real Memory with ST(O) ESCAPE MF MOD 1 R R/M I DISP 

-, 
215-225 230-243 220-230 224-238 

- .! +EA +EA +EA +EA 

ST(i) and ST(O) ESCAPE d P 0 1 1 1 1 R R/M I 193-203 (Note 1) 

FSQRT ~ Square Root 01 ST(O) ESCAPE 0 0 1 1 1 1 1 0 0 180-186 

FSCALE ~ Scale ST(O) by ST(I) I ESCAPE 0 0 0 32-38 

FPREM = Partial Remainder of ESCAPE 0 0 1 1 1 1 1 1 0 0 0 15-190 
ST(O) +ST(l) 

FRNOINT = Round ST(O) to ESCAPE 0 0 1 1 1 1 1 1 1 0 0 16-50 
Integer 

205835-18 

NOTE: 
1. If P = 1 then add 5 clocks. 
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Table 5. 8087 Extensions to the 86/186 Instructions Sets (Continued) 

FXTRACT - Extract 
Components oi St(O) 

FABS ~ Absolute Value of 
ST(O) 

FCHS ~ Change Sign of ST(O) 

Transcendental 

ESCAPE 0 0 1 

ESCAPE 0 

ESCAPE 0 0 

l' 1 

Optional 
8,16BII 

Displacement 

1 lOt 0 0 I 

1 0 0 0 0 I· 
o 000 

FPTAN ~ Partial Tangent of ~~ 0 1 
ST(O) ---'------------' 

1 1 1 1 0 0 1 ° 
FPATAN = Partial Arctangent ESCAPE ° 0 1 1 0 0 I 
of ST(O) ~ST(1) '----------'------------' 

F2XMl = 25T(0) -1 L-E_S_C_A_PE __ o_o_---'-_____ o_o_o __ o--'1 

FYL2X = ST(1)· L092 ESCAPE ° ° 1 1 1 ° 0 ° 
[ST(O)l '---------'----------' 

FYL2XPI = ST(I)· Log2 
(ST(O) +IJ 

Processor Control 

FINIT = Iniliallzed 8087 

FENI = Enable Interrupts 

FDISI = Disable Interrupts 

FLDCW = Load Control Word 

FSTCW = Store Control Word 

FSTSW = Store Status Word 

FCLEX = Clear Exceptions 

ESCAPE 0 ° 
1 ° ° 

ESCAPE ° 1 l' 1 000 

ESCAPE ° o 0 000 

ESCAPE ° ° ° ° ° 

L-E_S_C_AP_E __ O_---''--M_O_D ____ R_'M __ .... I ~ ~ ~I~~ ~ ~ 
ESCAPE ° 

FLDENV = Load Environment L.I _E_S_C_A_PE __ O_O_-1_M_O_D __ O_O._R_'_M_--,[ ~ ?~~ ~~ 

FSAVE = Save State 

FRSTOR = Restore State 

FINCSTP = Incremenl Stack 
Pointer 

FDECSTP = Decrement Stack 
Pointer 

@CAPE ° MOD 

I ESCAPE _~~:iJi1.?D 

ESCAPE ° ° 1 1 

° RIM L_?~~_~ 

_O_O_R_,_M_---'I_~ ?~~ ~ ~ 

o 1 1 1 

ESCAPE ° 0 ,Jj_~ __ ,_,_~ 1~ 

2-142 

'::Iock Count Range 

27-55 

10-17 

10-17 

30-540 

250-800 

310-630 

900-1100 

700-1000 

2-8 

2-8 

2-8 

7-14 + EA 

12-18 +EA 

12-18 +EA 

2-8 

40-50 +EA 

35-45 +EA 

197-207+EA 

197-207+EA 

6-12 

6-12 

205835-19 
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Table 5, 8087 Extensions to the 86/186 Instructions Sets (Continued) 

FFREE ~ Free ST(i) ESCAPE 1 0 1 1 1 0 0 0 ST(i) 

FNOP = No Operation ESCAPE 0 0::::i:I:ii 0 1 0 0 O~ 

FWAIT ~ CPU Wait lor 8087 1 0 0 1 1 0 1 1 I 

"n = number of times CPU examines TEST line before 8087 lowers BUSY. 

NOTES: 
1. if mod = 00 then DISP = 0", disp-Iow and disp-high are absent 

if mod = 01 then DISP = disp-Iow sign-extended to 16-bits, disp-high is absent 
if mod = 10 then DISP = disp-high; disp-Iow 
if mod = 11 then rim is treated as an ST(i) field 

2. if rim = 000 then EA = (BX) + (SI) + DISP 
if rim = 001 then EA = (BX) + (01) + DISP 
if rim = 010 then EA = (BP) + (SI) + DISP 
if rim = 011 then EA = (BP) + (DI) + DISP 
if rim = 100 then EA = (SI) + DISP 
if rim = 101 then EA = (01) + DISP 
ifr/m = 110 then EA = (BP) + DISP 
if rim = 111 then EA = (BX) + DISP 
'except if mod = 000 and rim = 110 then EA = disp-high; disp-Iow. 

3. MF = Memory Format 
00-32-bit Real 
01-32-bit Integer 
10-64-bit Real 
11 -16-bit Integer 

4. ST(O) = Current stack top 
ST(i) = ith register below stack top 

5. d = Destination 
O-Destination is ST(O) 
1-Destination is ST(i) 

6. P = Pop 
O-Nopop 
1-Pop ST(O) 

7. R = Reverse: When d = 1 reverse the sense of R 
O-Destination (op) Source 
1-Source (op) Destination 

8. For FSQRT: -0 ,;: ST(O) ,;: + 00 
For FSCALE: -215 ,;: ST(1) < +215 and ST(1) integer 
For F2XM1: 0 ,;: ST(O) ,;: 2-1 
For FYL2X: 0 < ST(O) < 00 

-00 < ST(1) < +00 
For FYL2XP1: 0 :s: IST(O)I < (2 - \1'2)/2 

-00 < ST(1) < 00 
For FPTAN: 0,;: ST(O) :s: .. /4 
For FPATAN: O:S: ST(O) < ST(1) < + 00 

2-143 

Clack CQunt Range 

9-16 

10-16 

3+5n' 
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80C286 
HIGH PERFORMANCE CHMOS MICROPROCESSOR 
WITH MEMORY MANAGEMENT AND PROTECTION 

• High Speed CHMOS III Technology 

• Pin for Pin, Clock for Clock, and 
Functionally Compatible with the HMOS 
80286 
(See 80286 Data Sheet, Order # 21 0253) 

• Stop Clock Capability 
-- Uses Less Power (see Iccs 

Specification) , 

INTRODUCTION' 

• 12.5 MHz Clock Rate 

• Available in a Variety of Packages: 
-- 68 Pin PLCC (Plastic Leaded Chip 

Carrier) 
-- 68 Pin PGA (Pin Grid Array) 
(See Pack!\ging Spec" Order #231369) 

The 80C286 is an advanced 16 bit CHMOS III microprocessor designed for multi-user and multi-tasking 
applications that require low power and high performance. The 80C286 is fully compatible with its predecessor 
the HMOS 80286 and object-code compatible with the 8086 and 80386 family of products. In addition, the 
80C286 has a power down mode which uses less power, making it ideal for mobile applications. The 80C286 
has built-in memory protection that maintains a four level protection mechanism for task isolation, a hardware 
task switching facility and memory management capabilities that map 230 bytes (one gigabyte) of virtual 
address space per task (per user) into 224 bytes (16 megabytes) of physical memory. 

The 80C286 is upward compatible with 8086 and 8088 software. Using 8086 real address mode, the 80C286 
is object code compatible with existing 8086, 8088 software. In protected virtual address mode, the 80C286 is 
source code compatible with 8086, 8088 software which may require upgrading to use virtual addresses 
supported by the 80C286's integrated memory management and protection mechanism. Both modes operate 
at full 80C286 performance and execute a superset of the 8086 and 8088 instructions. 

The 80C286 provides special operations to support the efficient implementation and execution of operating 
systems. For example, one instruction can end execution of one task, save its state, switch to a new task, load 
its state, and start execution of the new task. The 80C286 also supports virtual memory systems by providing a 
segment-not-present exception and restartable instructions. 

r ADDREsSUNITtAU)- - - - - - - - - - - - - - - - - - - -, 
I 
I 
I 

,­,-
I 
I 
I 

I 
I 
I 
I L __ 

~ 
PEREa 

FfEAD"V. HOLD 
!1.m,COD/llffiii 

1----------r:T""V ~HLD. 
DIS - Do 

I RESET 
I elK I _ 

~~~~~~~T.!.E~ __________________ ~ Vee 
~ __________________ ~~~~~----------~----~--~~~~~~~~J-~c.P 

Figure 1. 80C286 Internal Block Diagram 
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Component Pad Views-As viewed from underside of 
component when mounted on the board. 

P.C. Board Views-As viewed from the component 
side of the P.C. board. 
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Figure 2. 80C286 Pin Configuration 

Table 1. Pin Description 
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231923-3 

The following pin function descriptions are for the 80C286 microprocessor: 

Symbol Type Name and Function 

CLK I SYSTEM CLOCK provides the fundamental timing for 80C286 systems. it is 
divided by two inside the 80C286 to generate the processor clock. The internal 
divide-by-two circuitry can be synchronized to an external clock generator by a 
LOW to HIGH transition on the RESET input. 

0 15-00 I/O DATA BUS inputs data during memory, I/O, and interrupt acknowledge read 
cycles; outputs data during memory and I/O write cycles. The data bus is active 
HIGH and floats to 3-state OFF' during bus hold acknowledge. 

A23-AO 0 ADDRESS BUS outputs physical memory and I/O port addresses. AO is LOW 
when data is to be transferred on pins 07-0. A23-A16 are LOW during I/O 
transfers. The address bus is active HIGH and floats to 3-state OFF' during bus 
hold acknowledge. 

BHE 0 BUS HIGH ENABLE indicates transfer or data on the upper byte of the data bus. 
015-8. Eight-bit oriented devices assigned to the upper byte of the data bus would 
normally use BHE to condition chip select functions. BHE is active LOW and floats 
to 3-state OFF' during bus hold acknowledge. 

'See bus hold circuitry section. 
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Table I. Pin Description (Continued) 

Symbol Type Name and Function 

BHE BHE and AD Encodings 
(Continued) BHE Value AD Value Function 

0 0 Word transfer 
0 1 Transfer on upper half of data bus (015-08) 
1 0 Byte transfer on [ower half of data bus (Dr Do) 
1 1 Will never occur 

SI,SO 0 BUS CYCLE STATUS indicates initiation of a bus cycle and, along with M/[O and COOl 
[NTA, defines the type of bus cycle. The bus is in a Ts state whenever one or both are LOW, 
S 1 and SO are active LOW and float to 3-state OFF' during bus hold acknowledge. 

8DC286 Bus Cycle Status Definition 

CODIINTA MilO SI SO Bus Cycle Initiated 

o (LOW) 0 0 0 Interrupt acknowledge 
0 0 0 1 Will not occur 
0 0 1 0 Will not occur 
0 0 1 1 None; not a status cycle 
0 1 0 0 [F AI = 1 then halt; else shutdown 
0 1 0 1 Memory data read 
0 1 1 0 Memory data write 
0 1 1 1 None; not a status cycle 
1 (H[GH) 0 0 0 Will not occur 
1 0 0 1 1/0 read 
1 0 1 0 110 write 
1 0 1 1 None; not a status cycle 
1 1 0 0 Will not occur 
1 1 0 1 Memory instruction read 
1 1 1 0 Will not occur 
1 1 1 1 None; not a status cycle 

M/[O 0 MEMORY 1/0 SELECT distinguishes memory access from [/0 access. [f H[GH during Ts, a 
memory cycle or a halt/shutdown cycle is in progress. [f LOW, an [/0 cycle or an interrupt 
acknowledge cycle is in progress. MIlO floats to 3-state OFF' during bus hold 
acknowledge. 

COD/[NTA 0 CODEIINTERRUPT ACKNOWLEDGE distinguishes instruction fetch cycles from memory 
data read cycles. A[so distinguishes interrupt acknowledge cycles from [/0 cycles. COOl 
[NTA floats to 3-state OFF' during bus hold acknowledge. Its timing is the same as MIlO. 

LOCK 0 BUS LOCK indicates that other system bus masters are not to gain control of the system 
bus for the current and the following bus cycle. The LOCK signal may be activated exp[icitly 
by the "LOCK" instruction prefix or automatically by 80C286 hardware during memory 
XCHG instructions, interrupt acknowledge, or descriptor table access. LOCK is active LOW 
and floats to 3-state OFF' during bus hold acknowledge. 

READY [ BUS READY terminates a bus cycle. Bus cycles are extended without limit until terminated 
by READY LOW. READY is an active LOW synchronous input requiring setup and hold 
times relative to the system clock be met for correct operation. READY is ignored during 
bus hold acknowledge. 

HOLD [ BUS HOLD REQUEST AND HOLD ACKNOWLEDGE control ownership of the 80C286 
HLDA 0 local bus. The HOLD input allows another loca[ bus master to request control of the local 

bus. When control is granted, the 80C286 will float its bus drivers to 3-state OFF' and then 
activate HLDA, thus entering the bus hold acknowledge condition. The [ocal bus will remain 
granted to the requesting master until HOLD becomes inactive which results in the 80C286 
deactivating HLDA and regaining control of the local bus. This terminates the bus hold 
acknowledge condition. HOLD may be asynchronous to the system clock. These signals 
are active H[GH. 

[NTR [ INTERRUPT REQUEST requests the 80C286 to suspend its current program .execution 
and service a pending external request. Interrupt requests are masked whenever the 
interrupt enable bit in the flag word is cleared. When the 80C286 responds to an interrupt 
request, it performs two interrupt acknowledge bus cycles to read an 8-bit interrupt vector 
that identifies the source of the interrupt. To assure program interruption, INTR must remain 
active until the first interrupt acknowledge cycle is completed. [NTR is sampled at the 
beginning of each processor cycle and must be active H[GH at [easttwo processor cycles 
before the current instruction ends in order to interrupt before the next instruction. [NTR is 
level sensitive, active H[GH, and may be asynchronous to the system clock. 

'See bus hold circuitry section. 
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Table 1. Pin Description (Continued) 

Symbol Type Name and Function 

NMI I NON·MASKABLE INTERRUPT REQUEST interrupts the 80C286 with an 
internally supplied vector value of 2. No interrupt acknowledge cycles are 
performed. The interrupt enable bit in the 80C286 flag word does not affect 
this input. The NMI input is active HIGH, may be asynchronous to the system 
clock, and is edge triggered after internal synchronization. For proper 
recognition, the input must have been previously LOW for at least four system 
clock cycles and remain HIGH for at least four system clock cycles. 

PEREa I PROCESSOR EXTENSION OPERAND REQUEST AND ACKNOWLEDGE 
PEACK 0 extend the memory management and protection capabilities of the 80C286to 

processor extensions. The PEREa input requests the 80C286 to perform a 
data operand transfer for a processor extension. The PEACK output signals 
the processor extension when the requested operand is being transferred. 
PEREa is active HIGH and floats to 3-state OFF' during bus hold 
acknowledge. PEACK may be asynchronous to the system clock. PEACK is 
active LOW. 

BUSY I PROCESSOR EXTENSION BUSY AND ERROR indicate the operating 
ERROR I condition of a processor extension to the 80C286. An active BUSY input 

stops 80C286 program execution on WAIT and some ESC instructions until 
BUSY becomes inactive (HIGH). The 80C286 may be interrupted while 
waiting for BUSY to become inactive. An active ERROR input causes the 
80C286to perform a processor extension interrupt when executing WAIT or 
some ESC instructions. These inputs are active LOW and may be 

I asynchronous to the system clock. These inputs have internal pull-up 
resistors. 

RESET I SYSTEM RESET clears the internal logic of the 80C286 and is active HIGH. 
The 80C286 may be reinitialized at any time with a LOW to HIGH transition on 
RESET which remains active for more than 16 system clock cycles. During 
RESET active, the output pins of the 80C286 enter the state shown below: 

80C286 Pin State During Reset 

Pin Value Pin Names 

1 (HIGH) SO, Sl, PEACK, A23-AO, BHE, LOCK 
o (LOW) MliD, CODIINTA, HLDA (Note 1) 
3-state OFF" D15-DO 

Operation of the 80C286 begins after a HIGH to LOW transition on RESET. 
The HIGH to LOW transition of RESET must be synchronous'to the system 
clock. Approximately 38 CLK cycles from the trailing edge of RESET are 
required by the 80C286 for internal initialization before the first bus cycle, to 
fetch code from the power-on execution address, occurs. 
A LOW to HIGH transition of RESET synchronous to the system clock will 
end a processor cycle at the second HIGH to LOW transition of the system 
clock. The LOW to HIGH transition of RESET may be asynchronous to the 
system clock; however, in this case it cannot be predetermined which phase 
of the processor clock will occur during the next system clock period. 
Synchronous LOW to HIGH transitions of RESET are required only for 
systems where the processor clock must be phase synchronous to another 
clock. 

Vss I SYSTEM GROUND: 0 Volts. 

Vee I SYSTEM POWER: + 5 Volt Power Supply. 

CAP I SUBSTRATE FILTER CAPACITOR: a 0.047 /LF ± 20% 12V capacitor can 
be connected between this pin and ground for compatibility with the HMOS 

. 80286. For systems using only an 80C286, this pin can be left floating . 

'See bus hold circuitry section. 

NOTE: 
1. HLDA is only Low if HOLD is inactive (Low). 
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FUNCTIONAL DESCRIPTION 

Introduction 

The 80C286 is an advanced, high-performance mi­
crop~ocessor with specially optimized capabilities for 
multiple user and multi-tasking systems. Depending 
on the application, a 12 MHz 80C286's performance 
is up to ten times faster than the standard 5 MHz 
8086's, while providing complete upward software 
compatibility with Intel's 8086, 88, and 186 family of 
CPU's. 

The 80C286 operates in two modes: 8086 real ad­
dress mode and protected virtual address mode. 
Both modes execute a superset of the 8086 and 88 
instruction set. 

In· 8086 real address mode programs use real ad­
dresses with up to one megabyte of address space. 
Programs use virtual addresses in protected virtual 
address mode, also called protected mode. In pro­
tected mode, the 80C286 CPU automatically maps 1 
gigabyte of virtual addresses per task into a 16 
~egabyte real address space. This mode also pro­
Vides memory protection to isolate the operating 
system and ensure privacy of each tasks' programs 
and data. Both modes provide the same base in­
struction set, registers, and addressing modes. 

The following Functional Description describes first, 
the base 80C286' architecture common to both 
modes, second, 8086 real address mode, and third, 
protected mode. 

80C286 BASE ARCHITECTURE 

The 8086, 88, 186, and 286 CPU family all contain 
. the same basic set of registers, instructions, and 

BYTE 
ADDRESSABLE 
(8-BIT 
REGISTER 
NAMES 

SHOWN) 

H)"BIT 
REGISTER 

NAME 

1
: 
cx 

BX 

BP 

I 

o I 

SP 

15 

o 7 

AH AL 

OH OL 

CH CL 

BH BL 

GENERAL 

REGISTERS 

SPECIAL 
REGISTER 

FUNCTIONS 

MULTIPLY/DIVIDE 
1/0 INSTRUCTIONS 

} LOOP/SHIFT/REPEAT/COUNT 

I 
I 
) 

BASE REGISTERS 

INDEX REGISTERS 

STACK POINTER 

addressing modes. The 80C286 processor is up­
ward compatible with the 8086, 8088, and 80186 
CPU's and fully compatible with the HMOS 80286. 

Register Set 

The 80C286 base architecture has fifteen registers 
~s shown in ~igure 3. These registers are grouped 
Into the follOWing four categories: 

Ge~eral Registers: Eight 16-bit general purpose 
registers used to contain arithmetic and logical oper­
ands. Four of these (AX, BX, CX, and OX) can be 
~sed e~ther in their entirety as 16-bit words or split 
Into pairs of separate 8-bit registers. 

Se~ment Registers: Four 16-bit special purpose 
registers select, at any given time, the segments of 
memory that are immediately addressable for code, 
stack, and data. (For usage, refer to Memory Organi­
zation.) 

Base an~ Index Registers: Four of the general pur­
pose registers may also be used to determine offset 
addresses of operands in memory. These registers 
may contain base addresses or indexes to particular 
locations within a segment. The addressing mode 
determines the specific registers used for operand 
address calculations. 

Status and Control Registers: The 3 16-bit special 
purpose registers in figure 3A record or control cer­
tain aspects of the 80C286 processor sta~e including 
the Instruction Pointer, which contains the offset ad­
dress of the next sequential instruction to be execut­
ed. 

15 

CS 

~ 
CODe SEGMENT SELECTOR 

OS DATA SEGMENT SELECTOR 

SS STACK SEGMENT SELECTOR 

ES EXTRA SEGMENT SELECTOR 

SEGMENT REGISTERS 

15 

Ip
F t-I-------ll' STATUS WORD 

. . INSTRUCTION POINTER 

STATUS AND CONTROL 

REGISTERS 

Figure 3. Register Set 
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Figure 3a. Status and Control Register Bit Functions 

Flags Word Description 

The Flags word (Flags) records specific characteris· 
tics of the result of logical and arithmetic instructions 
(bits 0, 2, 4, 6, 7, and 11) and controls the operation 
of the 80C286 within a given operating mode (bits 8 
and 9). Flags is a 16·bit register. The function of the 
flag bits is given in Table 2. 

Instruction Set 

The instruction set is divided into seven categories: 
data transfer, arithmetic, shift/rotate/logical, string 
manipulation, control transfer, high level instruc­
tions, and processor control. These categories are 
summarized in Figure 4. 

An 80C286 instruction can reference zero, one, or 
two operands; where an operand resides in a regis· 
ter, in the instruction itself, or in memory. Zero-oper­
and instructions (e.g. NOP and HL T) are usually one 
byte long. One-operand instructions (e.g. INC and 
DEC) are usually two bytes long but some are en­
coded in only one byte. One-operand instructions 
may reference a register or memory location. Two­
operand instructions permit the following six types of 
instruction operations: 

-Regi~ter to Register 

-Memory to Register 

-Immediate to Register 

-Memory to Memory 

-Register to Memory 

-Immediate to Memory 
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Table 2. Flags Word Bit Functions 

Bit Name Function 
Position 

0 CF Carry Flag-5et on high-order bit 
carry or borrow; cleared otherwise 

2 PF Parity Flag-Set if low-order 8 bits 
of result contain an even number of 
1-bits; cleared otherwise 

4 AF Set on carry from or borrow to the 
low order four bits of AL; cleared 
otherwise 

6 ZF Zero Flag-Set if result is zero; 
cleared otherwise 

7 , SF Sign Flag-5et equal to high-order 
bit of result (0 if positive, 1 if negative) 

11 OF Overflow Flag-5et if result is a too-
large positive number or a too-small 
negative number (excluding sign-bit) 
to fit in destination operand; cleared 
otherwise, 

8 TF Single Step Flag-Once set, a sin-
gle step interrupt occurs after the 
next instruction executes. TF is 
cleared by the single step interrupt. 

9 IF Interrupt-enable Flag-When set, 
maskable interrupts will cause the 
CPU to transfer control to an inter-
rupt vector specified location. 

10 DF Direction Flag-Causes string 
instructions to auto decrement 
the appropriate index registers 
when set. Clearing DF causes 
auto increment. 
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Two-operand instructions (e.g. MOV and ADD) are 
usually three to six bytes long. Memory to memory 
operations are provided by a special class of string 
instructions requiring one to three bytes. For de­
tailed instruction formats and encodings refer to the 
instruction set summary at the end of this document. 

For detailed operation and usage of each instruc­
tion, see Appendix B of the 80286/80287 Program­
mer's Reference Manual (Order No 210498) 

GENERAL PURPOSE 

MOV Move byte or word 

PUSH Push word onto stack 

POP Pop word off stack 

PUSHA Push all registers on stack 

POPA Pop all registers from stack 

XCHG Exchange byte or word 

XLAT Translate byte 

INPUT/OUTPUT 

IN Input byte or word 

OUT Output byte or word 

ADDRESS OBJECT 

LEA Load effective address 

LOS Load pointer using OS 

LES Load pointer using ES 

FLAG TRANSFER 

LAHF Load AH register from flags 

SAHF Store AH register in flags 

PUSHF Push flags onto stack 

POPF Pop flags off stack 

Figure 4a. Data Transfer Instructions 

MOVS Move byte or word string 

INS Input bytes or word string 

OUTS Output bytes or word string 

CMPS Compare byte or word string 

SCAS Scan byte or word string 

LODS Load byte or word string 

STOS Store byte or word string 

REP Repeat 

REPE/REPZ Repeat while equal/zero 

REPNE/REPNZ Repeat while not equal/not zero 

Figure 4c. String Instructions 

3-7 

ADDITION 

ADD Add byte or word 

ADC Add byte or word with carry 

INC Increment byte or word by 1 

AAA ASCII adjust for addition 

DAA Decimal adjust for addition 

SUBTRACTION 

SUB Subtract byte or word 

SBB Subtract byte or word with borrow 

DEC Decrement byte or word by 1 

NEG Negate byte or word 

CMP Compare byte or word 

AAS ASCII adjust for subtraction 

DAS Decimal adjust for subtraction 

MULTIPLICATION 

MUL Multiple byte or word unsigned 

IMUL Integer multiply byte or word 

AAM ASCII adjust for multiply 

DIVISION 

DIV Divide byte or word unsigned 

IDIV I nteger divide byte or word 

AAD ASCII adjust for division 

CBW Convert byte to word 

CWO Convert word to doubleword 

Figure 4b. Arithmetic Instructions 

LOGICALS 

NOT "Not" byte or word 

AND "And" byte or word 

OR "Inclusive or" byte or word 

XOR "Exclusive or" byte or word 

TEST "Test" byte or word 

SHIFTS 

SHLISAL Shift logical/arithmetic left byte or word 

SHR Shift logical right byte or word 

SAR Shift arithmetic right byte or word 

ROTATES 

ROL Rotate left byte or word 

ROR Rotate right byte or word 

RCL Rotate through carry left byte or word 

RCR Rotate through carry right byte or word 

Figure 4d. Shift/Rotate Logical Instructions 
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CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS 

JAlJNBE Jump if above/not beiow nor equal CALL Call procedure 

JAE/JNB Jump if above or equal/not below RET Return from procedure, 

JB/JNAE Jump if below/not above nor equal JMP Jump 

JBE/JNA Jump if below or equal/not above 

JC Jump if carry ITERATION CONTROLS 

JE/JZ Jump if equal/zero 

JG/JNLE Jump if greater Inot less nor eq'ual LOOP Loop 

JGE/JNL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero 

JLlJNGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero 

JLE/JNG Jump if less or equal/not greater JCXZ Jump if register CX = 0 

JNC Jump if not carry 

JNE/JNZ Jump if not equal/not zero INTERRUPTS 

JNO Jump if not overflow 

JNP/JPO Jump if not parity Iparity odd INT Interrupt 

JNS Jump if not sign INTO Interrupt if overflow 

JO Jump if overflow IRET Interrupt return 

JP/JPE , Jump if parity/parity even 

JS Jump if sign 

Figure 4e. Program Transfer Instructions 

FLAG OPERATIONS 

STC Set carry flag 

CLC Clear carry flag 

CMC Complement carry flag 

STD Set direction flag 

CLD Clear direction flag 

STI Set interrupt enable flag 

CLI Clear interrupt enable flag 

EXTERNAL SYNCHRONIZATION 

HLT Halt until interrupt or reset 

WAIT Wait for BUSY not active 

ESC Escape to extension processor 

LOCK Lock bus during next instruction 

NO OPERATION 

NOP No operation 

EXECUTION ENVIRONMENT CONTROL 

LMSW Load machine stiitus word 

SMSW Store machine statu's word 

Figure 4f. Processor Control Instructions 

ENTER Format stack for procedure entry 

LEAVE Restore stack for procedure exit 

BOUND Detects values outside prescribed range 

Figure 4g. High Level Instructions 
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Memory Organization 

Memory is organized as sets of variable length seg­
ments. Each segment is a linear contiguous se­
quence of up to 64K (216) B-bit bytes. Memory is 
addressed using a two component address (a point­
er) that consists of a 16-bit segment selector; and a 
16-bit offset. The segment selector indicates the de­
sired segment in memory. The offset component in­
dicates the, desired byte address within the, segment. 

I 
31 

32-BIT POINTER 
~ 

SEGMENT I OF~ET I 
1115 • 

I OPERAND 
SELECTED SELECTED 

SEGMENT 

.- L. 
"\J "\J 

MEMORY 

231923-5 

Figure 5. Two Component Address 



inter 80C286 

Table 3. Segment Register Selection Rules 

Memory Segment Register Implicit Segment 
Reference Needed Used Selection Rule 

Instructions Code (CS) Automatic with instruction prefetch 

Stack Stack (SS) All stack pushes and pops. Any memory reference which uses BP 
as a base register. 

Local Data Data (OS) All data references except when relative to stack or 
string destination 

External (Global) Data Extra (ES) Alternate data segment and destin~tion of string operation 

All instructions that address operands in memory 
must specify the segment and the offset. For speed 
and compact instruction encoding, segment selec­
tors are usually stored in the high speed segment 
registers. An instruction need specify only the de­
sired segment register and an offset in order to ad­
dress a memory operand. 

Most instructions need not explicitly specify which 
segment register is used. The correct segment reg­
ister is' automatically chosen according to the rules 
of Table 3. These rules follow the way programs are 
written (see Figure 6) as independent modules that 
require areas for code and data, a stack, and access 
to external data areas. 

Special segment override instruction prefixes allow 
the implicit segment register selection rules to be 
overridden for special cases. The stack, data, and 
extra segments may coincide for simple programs. 
To access operands not residing in one of the four 
immediately available segments, a full 32-bit pointer 
or a new segment selector must be loaded. 

Addressing Modes 

The 80C286 provides a total of eight addressing 
modes for instructions to specify operands. Two ad­
dressing modes are provided for instructions that 
operate on register or immediate operands: 

Register Operand Mode: The operand is locat­
ed in one of the 8 or 16-bit general registers. 

Immediate Operand Mode: The operand is in­
cluded in the instruction. 

Six modes are provided to specify the location of an 
operand in a memory segment. A memory operand 
address consists of two 16-bit components: seg­
ment selector and offset. The segment selector is 
supplied by a segment register either implicitly cho­
sen by the addressing mode or explicitly chosen by 
a segment override prefix. The offset is calculated 
by summing any combination of the following three 
address elements: . 

the displacement (an 8 or 16-bit immediate val­
ue contained in the instruction) 

the base (contents of 'either the BX or BP base 
registers) 
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Figure 6. Segmented Memory Helps 
Structure Software 

the index (contents of either the SI or DI index 
registers) . 

Any carry out from the 16-bit addition is ignored. 
Eight-bit, displacements are sign extended to 16-bit 
values. 

Combinations of these three address elements de­
fine the six memorY addressing modes, described 
below. 

Direct Mode: The operand's offset is contained in 
the instruction as an 8 or 16-bit displacement ele­
ment. 

Register Indirect Mode: The operand's offset is in 
one of the registers SI, DI, BX, or BP. 

Based Mode: The operand's offset is the sum of an 
8 or 16-bit displacement and the contents of a base 
register (BX or BP). 
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Indexed Mode: The operand's offset is the sum of 
an 8 or 16-bit displacement and the contents of an 
index register (SI or 01). 

Based Indexed Mode: The operand's offset is the 
sum of the contents of a base register and an index 
register. 

Based Indexed Mode with Displacement: The op­
erand's offset is the sum of a base register's con­
tents, an index register's contents, and an 8 or 16-bit 
displacement: 

Data Types 

The 80C286 directly supports the following data 
types: 

Integer: A signed binary numeric value con­
tained in an 8-bit byte or a 16-bit 
word. All operations assume a 2's 
complement representation. Signed 
32 and 64-bit integers are supported 
using the Numeric Data Processor, 
the 80287. 

Ordinal: An unsigned binary numeric value 
contained in an 8-bit byte or 16-bit 
word. 

Pointer: A 32-bit quantity, composed of a 
segment selector component and an 
offset component. Each component 
is a 16-bit word. 

String: A contiguous sequence of bytes or 
words. A string may contain from 1 
byte to 64K bytes. 

ASCII: A byte representation of alphanu­
meric and control characters using 
the ASCII standard of character rep­
resentation. 

BCD: A byte (unpacked) representation of 
the decimal digits 0-9. 

Packed BCD: A byte (packed) representation of 
two decimal digits 0-9 storing one 
digit in each nibble of the byte. 

Floating Point: A signed 32, 64, or 80-bit real num­
ber representation. (Floating point 
operands are supported using the 
80287 Numeric Processor). 

Figure 7 graphically represents the data types sup­
ported by the 80C286. 

I/O Space 

The 1/0 space consists of 64K 8-bit or 32K 16-bit 
ports. 1/0 instructions address the 110 space with 
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either an 8-bit port address, specified in the instruc­
tion, or a 16-bit port address in the OX register. 8-bit 
port addresses are zero extended such that A1s-Aa 
are LOW. 110 port addresses 00F8(H) through 
OOFF(H) are reserved. 
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Figure 7. 80C286 Supported Data Types 
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Table 4. Interrupt Vector Assignments 

Function 
Interrupt 
Number 

Divide error exception 0 

Single step interrupt 1 

NMI interrupt 2 

Breakpoint interrupt 3 

INTO detected overflow exception 4 

BOUND range exceeded exception 5 

Invalid opcode exception 6 

Processor extension not available exception 7 

Intel reserved-do not use 8·15 

Processor extension error interrupt 16 

Intel reserved-do not use 17·31 

User defined 32-255 

Interrupts 

An interrupt transfers execution to a new program 
location. The old program address (CS:IP) and ma­
chine state (Flags) are saved on the stack to allow 
resumption of the interrupted program. Interrupts fall 
into three classes: hardware initiated, INT instruc­
tions, and instruction exceptions. Hardware initiated 
interrupts occur in response to an external input and 
are classified as non-maskable or maskable. Pro­
grams may cause an interrupt with an INT instruc­
tion. Instruction exceptions occur when an unusual 
condition, which prevents further instruction pro­
cessing, iS'detected while attempting to execute an 
instruction. The return address from an exception 
will always point at the instruction causing the ex­
ception and include any leading instruction prefixes. 

A table containing up to 256 pointers defines the 
proper interrupt service routine for each interrupt. In'­
terrupts 0-31, some of which are used for instr.uc­
tion exceptions, are reserved. For each interrupt, an 
8-bit vector must be supplied to the 80C286 which 
identifies the appropriate table entry. Exceptions 
supply the interrupt vector internally. INT instructions 
contain or imply the vector and allow access to all 
256 interrupts. Maskable hardware initiated inter­
rupts supply the 8-bit vector to the CPU during an 
interrupt acknowledge bus sequence. Non-maska­
ble hardware interrupts use a predefined internally 
supplied vedor. 

MASKABLE INTERRUPT (INTR) 

The 80C286 provides a maskable hardware interrupt 
request pin, INTR. Software enables this input by 
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Related 
Does Return Address 
Point to Instruction 

Instructions 
Causing Exception? 

DIV,IDIV Yes 

All 

INT 2 or NMI pin 

INT3 

INTO No 

BOUND Yes 

Any undefined opcode Yes 

ESC or WAIT Yes 

ESC or WAIT 

setting the interrupt flag bit (IF) in the flag word. All 
224 user-defined interrupt sources can share this in­
put, yet they can retain separate interrupt handlers. 
An 8-bit vector read by the CPU during the interrupt 
acknowledge sequence (discussed in System Inter­
face section) identifies the source of the interrupt. 

Further maskable interrupts are disabled while serv­
icing an interrupt by resetting the IF but as part of 
the response to an interrupt or exception. The saved 
flag word will reflect the enable status of the proces­
sor prior to the interrupt. Until the flag word is re­
stored to the flag register, the interrupt flag will be 
zero unless specifically set. The interrupt return in­
struction includes restoring the flag word, thereby , 
restoring the original status of IF. 

NON-MASKABLE INTERRUPT REQUEST (NMI) 

A non-maskable interrupt input (NMI) is also provid­
ed. NMI has higher priority than INTR. A typical use 
of NMI would be to activate a power failure routine. 
The activation of this input causes an interrupt with 
an internally supplied vector value of 2. No external 
interrupt acknowledge sequence is performed. 

While executing the NMI servicing procedure, the 
80C286 will service neither further NMI requeSts, 
INTR requests, nor the processor extension seg­
ment overrun interrupt until an interrupt return (IRET) 
instruction is executed or the CPU is reset. If NMI 
occurs while currently servicing an NMI, its presence 
will be saVed for servicing after executing the first 
IRET instruction. IF is cleared at the beginning of an 
NMI interrupt to inhibit INTR interrupts. 
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SINGLE STEP INTERRUPT 

The 80C286 has an internal interrupt that allows pro­
grams to execute one instruction at a time. It is 
called the single step interrupt and is controlled by 
the single step flag bit (TF) in the flag word. Once 
this bit is set, an internal single step interrupt will 
occur after the next instruction has been executed. 
The interrupt clears the TF bit and uses an internally 
supplied vector of 1. The IRET instruction is used to 
set the TF bit and transfer control to the next instruc­
tion to be single stepped. 

Interrupt Priorities 

When simultaneous interrupt requests occur, they 
are processed in a fixed order as shown in Table 5. 
Interrupt processing involves saving the flags, return 
address, and setting CS:IP to point at the first in­
struction of the interrupt handler. If other interrupts 
remain enabled they are processed before the first 
instruction of the current interrupt handler is execut­
ed. The last interrupt processed is therefore the first 
one serviced. 

Table 5. Interrupt Processing Order 
Order Interrupt 

1 Instruction exception 

2 Single step 

3· NMI 

4 Processor extension segment overrun 

5 INTR 

6 I NT instruction 

Initialization and Processor Reset 

Processor initialization or start up is accomplished 
by driving the RESET input pin HIGH. RESET forces 
the 80C286 to terminate all execution and local bus 
activity. No instruction or bus activity will occur as 
long as RESET is active. After RESET becomes in­
active and an internal processing interval elapses, 
the 80C286 begins execution in real address mode 
with the instruction at physical location FFFFFO(H). 
RESET also sets some registers to predefined val­
ues as shown in Table 6. 

Table 6. 80C286 Initial Register State after RESET 
Flag word 0002(H) 
Machine Status Word FFFO(H) 
Instruction pOinter FFFO(H) 
Code segment FOOO(H) 
Data segment OOOO(H) 
Extra segment OOOO(H) 
Stack segment OOOO(H) 

HOLD must not be active during the time from the . 
leading edge of RESET to 34 ClKs after the trailing 
edge of RESET. 

Machine Status Word Description 
The machine status word (MSW) records when a 
task switch takes place and controls the operating 
mode of the 80C286. It is a 16-bit register of which 
the lower four bits are used. One bit places the CPU 
into protected mode, while. the other three bits, as 
shown in Table 7, control the processor extension 
interface. After RESET; this register contains 
FFFO(H) which places the 80C286 in 8086 real ad­
dress mode. 

Table 7 MSW Bit Functions 
Bit 

Name Function Position 

0 PE Protected mode enable places· the 
80C286 into protected mode and cannot 
be cleared except by RESET. 

1 MP Monitor processor extension allows 
WAIT instructions to cause a processor 
extension not present exception 
(number 7). 

2 EM Emulate processor extension causes a 
processor extension not present 
exception (number 7) on ESC 
instructions to allow emulating a 
processor extension. 

3 TS Task switched indicates the next 
instruction using a processor extension 
will cause exception 7, allowing software 
to test whether the current processor 
extension context belongs to the current 
task. 

The lMSW and SMSW instructions can load and 
store the MSW in real address mode. The recom­
mended use of TS, EM, and MP is shown in Table 8. 

Table 8 Recommended MSW Encodings For Processor Extension Control 
Instructions 

TS MP EM Recommended Use Causing 
Exception 7 

0 0 0 Initial encoding after RESET. 80C286 operation is identical to 8086, 88. None 

0 0 1 No processor extension is available. Software will emulate its function. ESC 

1 0 1 No processor extension is available. Software will emulate its function. The current ESC 
processor extension,context may belong to another task. 

0 1 0 A processor extension exists. None 

1 1 0 A processor extension exis.ts. The current processor extension context may belong to ESC or 
another task. The Exception 7 on WAIT allows software to test for an error pending WAIT 
from a previous processor extension operation. 
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Halt 

The HL T instruction stops program execution and 
prevents the CPU from using the local bus until re­
started. Either NMI, INTR with IF = 1, or RESET will 
force the '80C286 out of halt. If interrupted, the 
saved CS:IP will point to the next instruction after 
the HLT. 

8086 REAL ADDRESS MODE 

The 80C286 executes a fully upward-compatible su­
perset of the 8086 instruction set in real address 
mode. In real address mode the 80C286 is object 
code compatible with 8086 and 8088 software. The 
real address mode architecture (registers and ad­
dressing modes) is exactly as described in the 
80C286 Base Architecture section of this Functional 
Description. 

Memory Size 

Physical memory is a contiguous array of up to 
1,048,576 bytes (one megabyte) addressed by pins 
Ao through A19 and'BHE. A20 through A23 should be 
ignored. 

Memory Addressing 

In real address mode physical memory is a contigu­
ous array of up to, 1 ,048,576 bytes (one megabyte) 
addressed by pins Ao through A19 and BHE. Ad­
dress bits A20-A23 may not always be zero in real 
mode. A20-A23 should not be used by the system 
while the 80C286 is operating in Real Mode. 

The selector portion of a pointer is interpreted as the 
upper 16 bits of a 20-bit segment address. The lower 
-four bits of the 20-bit segment address are always 
zero. Segment addresses, therefore, begin on multi­
ples of 16 bytes. See Figure 8 for a graphic repre­
sentation of address information. 

All segments in real address mode are 64K bytes in 
size and may be read, written, or executed. An ex­
ception or interrupt can occur, if data operands or 
instructions attempt to wrap around the end of a 
segment (e.g. a word with its low order byte at offset 
FFFF(H) and its high order byte at offset OOOO(H). If, 
in real address mode, the information contained in a 
segment does not use the full 64K bytes, the unused 
end of the segment may be overlayed by another 
segment to reduce physical memory requirements. 

Reserved Memory Locations 

The 80C286 reserves two fixed areas of memory in 
real address mode (see Figure 9); system initializa-
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tion area and interrupt table area. Locations from 
addresses FFFFO(H) through FFFFF(H) are re­
served for system initialization. Initial execution be­
gins at location FFFFO(H). Locations OOOOO(H) 
through 003FF(H) are reserved for interrupt vectors. 
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Figure 8. 8086 Real Address Mode 
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Table 9. Real Address Mode Addressing Interrupts 

Function 
Interrupt Related Return Address 
Number Instructions - Before Instruction? 

Interrupt table limit too small exception 8 INT vector is not within table limit Yes 

Processor extension segment overrun 9 ESC with memory operand extend- No 
interrupt ing beyond offset FFFF(H) 

Segment overrun exception 13 Word memory reference with offset Yes 
= FFFF(H) or an attempt to exe-
cute past the end of a segment 

Interrupts 

Table 9 shows the interrupt vectors reserved for ex­
ceptions and interrupts which indicate an addressing 
error. The exceptions leave the CPU in the state ex­
isting before attempting to execute the failing in­
struction (except for PUSH, POP, PUSHA, or POPA). 
Refer to the next section on protected mode initiali­
zation for a discussion on exception 8. 

Protected Mode Initialization 

To prepare the 80C286 for protected mode, the 
LlDT instruction is used to load the 24-bit interrupt 
table base and 16-bit limit for the protected mode 
interrupt table. This instruction can also set a base 
and limit for the interrupt vector table in real address 
mode. After reset, the interrupt table base is initial­
ized to OOOOOO(H) and its size set to 03FF(H). These 
values are compatible with 8086, 88 software. LlDT 
should only be executed in preparation for protected 
mode. 

Shutdown 

Shutdown occurs when a severe error is detected 
that prevents further instruction processing by the 
CPU. Shutdown and halt are externally signalled via 
a halt bus operation. They can be distinguished by 
A1 HIGH for halt and A1 LOW for shutdown. In real 
address mode, shutdown can occur under two con­
ditions: 

• Exceptions 8 or 13 happen and the IDT limit does 
not include the interrupt vector. 

• A CALL INT or PUSH instruction attempts to wrap 
around the stack segment when SP is not even. 

An NMI input can bring the CPU out of shutdown if 
the IDT limit is at least OOOF(H) and SP is greater 
than 0005(H), otherwise shutdown can only be exit­
ed via the RESET input. 
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PROTECTED VIRTUAL ADDRESS 
MODE 

The 80C286 executes a fully upward-compatible su­
perset of the 8086 instruction set in protected virtual 
address mode (protected mode). Protected mode 
also provides memory management and protection 
mechanisms and associated instructions. 

The 80C286 enters protected virtual address mode 
from real address mode by setting the PE (Protec­
tion Enable) bit of the machine status word with the 
Load Machine Status Word (LMSW) instruction. Pro­
tected mode offers extended physical and virtual 
memory address space, memory protection mecha­
nisms, and new operations to support operating sys­
tems and virtual memory. 

All registers, instructions, and addressing modes de­
scribed in the 80C286 Base Architecture section of 
this Functional Description remain the same. Pro­
grams for the 8086, 88, 186, and real address mode 
80C286 can be run in protected mode; however, em­
bedded constants for segment selectors are differ­
ent. 

Memory Size 

The protected mode 80C286 provides a 1 gigabyte 
virtual address space per task mapped into a 16 
megabyte physical address space defined by the ad­
dress pin A23-AO and BHE. The virtual address 
space may be larger than the physical address 
space since any use of an address that does not 
map to a physical memory location will cause a re­
startable exception. 

Memory Addressing 

As in real address mode, protected mode uses 32-
bit pOinters, conSisting of 16-bit selector and offset 
components. The selector, however, specifies an in­
dex into a memory resident table rather than the up­
per 16-bits of a real memory address. The 24-bit 
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base address of the desired segment is obtained 
from the tables in memory. The 16-bit offset is add­
ed to the segment base address to form the physical 
address as shown in Figure 10. The tables are auto­
matically referenced by the CPU whenever a seg­
ment register is loaded with a selector. All 80C286 
instructions which load a segment register will refer­
ence the memory based tables without additional 
software. The memory bas,ed tables contain 8 byte 
values called descriptors. 

DESCRIPTORS 

Descriptors define the use of memory. Special types 
of descriptors also define new functions for transfer 
of control and task switching. The 80C286 has seg­
ment descriptors for code, stack and data segments, 
and system control descriptors for special system 
data segments and control transfer operations. De­
scriptor accesses are performed as locked bus op­
erations to assure descriptor integrity in multi-proc­
essor systems. 

CPU 

MEMORY 
OPERAND 

SEGMENT 
DESCRIPTOR 

1------1 
1 ~:~:~R TABLE 

'V 'V 

231923-10 

CODE AND DATA SEGMENT DESCRIP'roRS 
(S = 1) 

Besides segment base addresses, code and data 
descriptors contain other segment attributes includ­
ing segment size' (1 to 64K bytes), access rights 
(read only, read/write, execute only, and execute/ 
read), and presence in memory (for virtual memory 
systems) (See Figure 11). Any segment usage vio­
lating a segment attribute indicated by the segment 
descriptor will prevent the memory cycle and cause 
an exception or interrupt. 

Code or Data Segment Descriptor 

ACCESS 
RIGHTS BYTE 

+7 

+5 

+3 

+1 

07 

INTEL RESERVED' 

ploPLlsl TYPE H BASE23-16 

BASEI5-0 

lIM1Tn ... o 

+6 

+4 

+2 

Figure 10. Protected Mode Memory Addressing 
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Type 
Field 
Definition 

Bit 
Position 

7 

6-5 

4 

3 
2 

1 

3 
2 

1 

0 

231923-11 
'Must be set to 0 for compatibility with 80386. 

Access Rights Byte Definition 

Name Function 

Present (P) P=1 Segment is mapped into physical memory. 
p=o No mapping to physical memory exits, base and limit are 

not used. 
Descriptor Privilege Segment privilege attribute used in privilege tests. 
Level (DPL) 
Segment Descrip- S=1 Code or Data (includes stacks) segment descriptor 
tor(S) S=O System Segment Descriptor or Gate Descriptor 

Executable (E) E=O Data segment descriptor type is: 

) 
If 

Expansion Direc- ED = 0 Expand up segment, offsets must be s limit. Data 
tion(ED) ED = 1 Expand down segment, offsets must be > limit. Segment 
Writeable (W) W=O Data segment may not be written into. (S = 1, 

W= 1 Data segment may be written into. E = 0) 

Executable (E) E=1 Code Segment Descriptor type is: 

} 
If 

Conforming (C) C=1 Code segment may only be executed Code 
when CPL :2: DPL and CPL Segment 
remains unchanged. 

Readable (R) R =0 Code segment may not be read (S = 1, 
R = 1 Code segment may be read. E = 1) 

Accessed (A) A=O Segment has not been accessed. 
A= 1 Segment selector has been loaded into segment register 

or used by selector test instructions. 

Figure 11. Code and Data Segment Descriptor Formats 
3-15 
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Code and data (including stack data) are stored in 
two types of segments: code segments and data 
segments. Both types are identified and defined by 
segment descriptors (S = 1). Code segments are 
identified by the executable (E) bit set to 1 in the 
descriptor access rights byte. The access rights byte 
of both code and data segment descriptor types 
have three fields in common: present (P) bit, De­
scriptor Privilege Level (DPL), and accessed (A) bit. 
If P = 0, any attempted use of this segment will 
cause a not-present exception. DPL specifies the 
privilege level of the segment descriptor. DPL con­
trols when the descriptor may be used by a task 
(refer to privilege discussion below). The A bit shows 
whether the segment has been previously accessed 
for usage profiling, a necessity for virtual memory 
systems. The CPU will always set this bit when ac-
cessing the descriptor. ' 

Data segments (S = 1, E = 0) may be either read­
only or read-write as controlled by the W bit of the 
access rights byte. Read-only (W = 0) data seg­
ments may not be written into. Data segments may 
grow in two directions, as determined by the Expan­
sion Direction (ED) Qit: upwards (ED = 0) for data 
segments, and downwards (ED = 1) for a segment 
containing a stack. The limit field for a data segment 
descriptor is interpreted differently depending on the 
ED bit (see Figure 11). 

A code segment (S = 1, E = 1) may be execute­
only or execute/read as determined by the Read­
able (R) bit. Code segments may never be written 
into and execute-only code segments (R = 0) may 
not be read. A code segment may also have an attri­
bute called conforming (C). A conforming code seg­
ment may,be shared by programs that execute at 
different priyilege levels. The DPL of a conforming 
code segment defines the range of privilege levels 
at which the segment may be executed (refer to priv­
ilege discussion below). The limit field identifies the 
last byte of a code segment. 

SYSTEM SEGMENT DESCRIPTORS (S = 0, 
TYPE = 1-3) 

In addition to code and data segment descriptors, 
the protected mode 80C286 defines System Seg­
ment Descriptors. These descriptors define special 
system data segments which contain a table of de­
scriptors (Local Descriptor Table Descriptor) or seg­
ments which contain the execution state of a task 
(Task State Segment Descriptor). 

Figure 12 gives the formats for the special system 
data segment descriptors. The descriptors contain a 
24-bit base adpress of the segment and a 16-bit lim­
it. The access byte defines the type of descriptor, its 
state and privilege level. The descriptor contents are 
valid and the segment is in physical memory if P = 1. 
If P = 0, the segment is not valid. The DPL field is 
only used in Task State Segment descriptors and 
indicates the privilege level at which the descrip-

tor may be used (see Privilege). Since the Local De­
'scriptor Table descriptor may only be used by a spe­
cial privileged instruction, the DPL field is not used. 
Bit 4 of the access byte is 0 to indicate that it is a 
system control descriptor. The type field specifies 
the descriptor type as indicated in Figure 12. 
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System Segment Descriptor ' 

07 

+7 INTEL RESERVED· +6 

+5 1DPlL~~TYr~J BASE23-11 +4 

+3 BASE1H +2 

+1 LlUIT,5-G 

" " 231923-12 
'Must be set to 0 for compatibility with 80386. 

System Segment Descriptor Fields 

Name Value Description 

TYPE 1 Available Task State Segment (TSS) 
2 Local Descriptor Table 
3 Busy Task State Segment (TSS) 

P 0 Descriptor contents are not valid 
1 Descriptor contents are valid 

DPL 0-3 Descriptor Privilege Level 

BASE 24-bit Base Address of special system data 
number segment in real memory 

LIMIT 16-bit Offset of last byte in segment 
number 

Figure 12. System Segment Descriptor Format 

GATE DESCRIPTORS (S = 0, TYPE = 4-7) 

Gates are used to control access to entry points 
within, the target code segment. The gate descrip­
tors are call gates, task gates, interrupt gates and 
trap gates. Gates provide a level of indirection be­
tween the source and destination of the control 
transfer. This indirection allows the CPU to automati­
cally perform protection checks and control entry 
point of the destination. Call gates are used to 
change privilege levels (see Privilege), task gates 
are used to perform a task switch, and interrupt and 
trap gates are used to specify interrupt service rou­
tines. The interrupt 'gate disables interrupts (resets 
IF) while the trap gate does not. 

Gate Descriptor 

., 
+7 INTEL RESERVED' +6 

+5 pi DPL 10 1 TYPE Ix x xl ~~:r4..IJ .. 
+3 DESTINATION SELECTOR'5-2 Ix x +. 
+1 DEST1NATION OFFSET 15-0 

" " 
231923-13 

'Must be set to 0 for compatibility with 80386 (X is don't care) 
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Gate Descriptor Fields 

Name Value Description 

4 -Call Gate 

TYPE 
5 -Task Gate 
6 -Interrupt Gate 
7 -Trap Gate 

P 0 - Descriptor Contents are not 
valid 

I -Descriptor Contents are 
valid 

DPL 0-3 Descriptor Privilege Level 

WORD Number of words to copy 
COUNT 

0-31 
from callers stack to called 
procedures stack. Only used 
with call gate. 

Selector to the target code 

DESTINATION 16·bit 
segment (Call, Interrupt or 

SELECTOR selector 
Trap Gate) 
Selector to the target task 
state segment (Task Gate) 

DESTINATION 16·bit Entry point within the target 
OFFSET offset code segment 

Figure 13. Gate Descriptor Format 

Figure 13 shows the format of the gate descriptors. 
The descriptor contains a destination pointer that 
points to the descriptor of the target segment and 
the entry point offset. The destination selector in an 
interrupt gate, trap gate, and call gate must refer to a 
code segment descriptor. These gate descriptors 
contain the entry point to prevent a program from 
constructing and using an illegal entry point. Task 
gates may only refer to a task state segment. Since 
task gates invoke a task switch, the destination off­
set is not used in the task gate. 

Exception 13 is generated when the gate is used if a 
destination selector does not refer to the correct de­
scriptor type. The word count field is used in the call 
gate descriptor to indicate the number of parameters 
(0-31 words) to be automatically copied from the 
caller's stack to the stack of the called routine when 
a control transfer changes privilege levels. The word 
count field is not used by any other gate descriptor. 

The access byte format is the same for all gate de­
scriptors. P = 1 indicates that the gate contents are 
valid. P = 0 indicates the contents are not valid and 
causes exception 11 if referenced. OPL is the de-

scriptor privilege level and specifies when this de­
scriptor may be used by a task (refer to privilege 
discussion below). Bit 4 must equal 0 to indicate a 
system control descriptor. The type field specifies 
the descriptor t¥pe as indicated in Figure 13. 

SEGMENT DESCRIPTOR CACHE REGISTERS 

A segment descriptor cache register is assigned to 
each of the four segment registers (CS, 55, OS, ES). 
Segment descriptors are automatically loaded 
(cached) into a segment descriptor cache register 
(Figure 14) whenever the associated segment regis­
ter is loaded with a selector. Only segment descrip­
tors may be loaded into segment descriptor cache 
registers. Once loaded, all references to that seg­
ment of memory use the cached descriptor informa­
tion instead of reaccessing the descriptor. The de­
scriptor cache registers are not visible to programs. 
No instructions exist to store their contents. They 
only change when a segment register is loaded. 

SELECTOR FIELDS 

A protected mode selector has three fields: descrip­
tor entry index, local or global descriptor table indi­
cator (TI), and selector privilege (RPL) as shown in 
Figure 15. These fields select one of two memory 
based _ tables of descriptors, select the appropriate 
table entry and allow highspeed testing of the selec­
tor's privilege attribute (refer to privilege discussion 
below). 

SELECTOR 

I. INDEX 
! ! , ! ! 

1. 3 2 1 0 

BITS NAME FUNCTION 

1-0 REOUESTED INDICATES SELECTOR PRIVILEGE 
PRIVILEGE LEVEL DESIRED 
LEVEL 
(RPLI 

2 TABLE n = 0 USE GLOBAL DESCRIPTOR TABLE 
INDICATOR (GOT) 
(TIl n = 1 USE LOCAL DESCRIPTOR TABLE 

(LOT) 

15-3 INDEX SELECT DESCRIPTOR ENTRY IN TABLE 

231923-15 

Figure 15. Selector Fields 

PROGRAM VISIBLE r - - - - '- - - - - p;oG"R;' ;;viSlaLl~- - - - - - - - - - ., 

I ACCESS I 
SEGMENT SELECTORS I RIGHTs SEGMENT PHYSICAL BASE ADDRESS SEGMENT SIZE I 

~§ i 1 J. J. I : 
I I 

(~~:i:~:=~~=::, I SEGMENT DESCRIPTOR CACHE REGISTERS I L ______ ~~~L~~~~~~ ________ J 

Figure 14. Descriptor Cache Registers 
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LOCAL AND GLOBAL DESCRIPTOR TABLES 

Two tables of descriptors, called descriptor tables, 
contain all descriptors accessible by a task at any 
given time. A descriptor table is a linear array of up 
to 8192 descriptors. The upper 13 bits of the selec­
tor value are an index into a descriptor table. Each 
table has a 24-bit base register to locate the descrip­
tor table in physical memory and a 16-bit limit regis­
ter that confine descriptor access to the defined lim­
its of the table as shown in Figure 16. A restartable 
exception (13) will occur if an attempt is made to 
reference a descriptor outside the table limits. 

One table, called the Global Descriptor table (GDT), 
contains descriptors available to all tasks. The other 
table, called the Local Descriptor Table (LDT), con­
tains descriptors that can be private to a task. Each 
task may have its own private LDT. The GDT may 
contain all descriptor types except interrupt and trap 
descriptors. The LDT may contain only segment, 
task gate, and call gate descriptors. A segment can­
not be accessed by a task if its segment descriptor 
does not exist in either descriptor table at the time of 
access. 

~ MEMORY 'V 
CPU 

231923-16 

Figure 16. Local and Global 
Descriptor Table Definition 

The LGDT and LLDT instructions load the base and 
limit of the global and local descriptor tables. LGDT 
and LLDT are privileged, i.e. they may only be exe­
cuted by trusted programs operating at level O. The 
LGDT instruction loads a six byte field containing the 
16-bit table limit and 24-bit physical base address of 
the Global Descriptor Table as shown in Figure 17. 
The LDT instruction loads a selector which refers to 
a Local Descriptor Table descriptor containing the 

base address and limit for an LDT, as shown in Fig­
ure 12. 

+5 INTEL RESERVED' J BASEU_IIS +4 

+3 BASE15-0 +2 

+1 LlMIT15--O 

15 • 7 

231923-17 
• Must be set to 0 for compatibility with 80386. 

Figure 17. Global Descriptor Table and 
Interrupt Descriptor Table Data Type 

INTERRUPT DESCRIPTOR TABLE 

The protected mode 80C286 has a third descriptor 
table, called the Interrupt Descriptor Table (IDT) 
(see Figure 18), used to define up to 256 interrupts. 
It may contain only task gates, interrupt gates and 
trap gates. The IDT (Interrupt Descriptor Table) has 
a 24-bit physical base and 16-bit limit register in the 
CPU. The privileged LlDT instruction loads these 
registers with a six· byte value of identical form to 
that of the LGDT instruction (see Figure 17 and Pro­
tected Mode Initialization). 

CPU J' 
15 0 

~ 
I lor BASE 

23 0 

I"\... MEMORY "'" , 
GATE FOR 

INTERRUPT #n 

GATE FOR 
INTERRUPT #n-1 

0 

0 

0 

GATE FOR 
INTERRUPT #1 

GATE FOR 
INTERRUPT #0 

<V ~ 

INTERRUPT 
DESCRIPTOR 
TABLE 
(lOT) 

231923-18 

Figure 18. Interrupt D~scriptor Table Definition 

References to IDT entries are made via INT instruc­
tions, external interrupt vectors, or exceptions. The 
IDT must be at least 256 bytes in size to allocate 
space for all reserved interrupts. 

Privilege 
The 80C286 has a four-level hierarchical privilege 
system which controls the use of privileged instruc­
tions and access to descriptors (and their associat­
ed segments) within a task. Four-lever privilege, as 
shown in Figure 19; is an extension of the user/su­
pervisor mode commonly found in minicomputers. 
The privilege levels are numbered 0 through 3. 
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CPU 
ENFORCED 
SOFTWARE 
INTERFACES 

HIGH SPEED 
OPERATING 
SYSTEM 
INTERFACE 

NOTE: PI. BECOMES NUMERICALLY LOWER AS PRIVILEGE LEVEL 
INCREASES 

231923-19 

Level 0 is the most privileged level. Privilege levels 
. provide protection within a task. (Tasks are isolated 
by providing private LDT's for each task.) Operating 
system routines, interrupt handlers, and other sys­
tem software can be included and protected within 
the virtual address space of each task using the four 
levels of privilege. Each task in the system has a 
separate stack for each of its privilege levels. 

Tasks, descriptors, and selectors have a privilege 
level attribute that determines whether the descrip­
tor may be used. Task privilege effects the use of 
instructions and descriptors. Descriptor and selector 
privilege only effect access to the descriptor. 

TASK PRIVILEGE 
A task always executes at one of the four privilege 
levels. The task privilege level at any specific instant 
is called the Current Privilege Level (CPL) and is de­
fined by the lower two bits of the CS register. CPL 
cannot change during execution in a single code 
segment. A task's CPL may only be changed by con­
trol transfers through gate descriptors to a new code 
segment (See Control Transfer). Tasks begin exe­
cuting at the CPL value specified by the code seg­
ment selector within TSS when the task is initiated 
via a task switch operation (See Figure 20). A task 
executing at Level 0 can access all data segments 
defined in the GDT and the task's LDT and is con­
sidered the most trusted level. A task executing a 
Level 3 has the most restricted access to data and is 
considered the least trusted level. 

DESCRIPTOR PRIVILEGE 
Descriptor privilege is specified by the Descriptor 
Privilege Level (DPL) field of the descriptor access 
byte. DPL specifies the least trusted task privilege 

level (CPL) at which a task may access the descrip­
tor. Descriptors with DPL = 0 are the most protect­
ed. Only tasks executing at privilege level 0 
(CPL = 0) may access them. Descriptors with DPL 
= 3 are the least protected (Le. have the least re­
stricted access) since tasks can access them when 
CPL = 0, 1, 2, or 3. This rule applies to all descrip­
tors, except LDT descriptors. 

SELECTOR PRIVILEGE 
Selector privilege is specified by the Requested Priv­
ilege Level (RPL) field in the least significant two bits 
of a selector. Selector RPL may establish a less 
trusted privilege level than the current privilege level 
for the use of a selector. This level. is called the 
task's effective privilege level (EPL). RPL· can only 
reduce the scope of a task's access to data with this 
selector. A task's effective privilege is the numeric 
maximum of RPL and CPL. A selector with RPL = 0 
imposes no additional restriction on its use while a 
selector with RPL = 3 can only refer to segments at 
privilege Level 3 regardless of the task's CPL. RPL 
is generally used to verify that pointer parameters 
passed to a more trusted procedure are not allowed 
to use data at a more privileged level than the caller 
(refer to pointer testing instructions). 

Descriptor Access and Privilege 
Validation 
Determining the ability of a task to access a seg­
ment involves the type of segment to be accessed, 
the instruction used, the type of descriptor used and 
CPL, RPL, and DPL. The two basic types of segment 
accesses are control transfer (selectors loaded into 
CS) and data (selectors loaded into DS, ES or SS). 

DATA SEGMENT ACCESS 
Instructions that load selectors into DS and ES must 
refer to a data segment descriptor or readable code 
segment descriptor. The CPL of the task and the 
RPL of the selector must be the same as or more 
privileged (numerically equal to or lower than) than 
the descriptor DPL. In general, a task can only ac­
cess data segments· at the same or less privileged 
I~vels than the CPL or RPL (whichever is numerically 
higher) to prevent a program from accessing data it 
cannot be trusted to use. 

An exception to the rule is a readable conforming 
code segment. This type of code segment can be 
read from any privilege level. 

. If the privilege checks fail (e.g. DPL is numerically 
less than the maximum of CPL and RPL) or an incor­
rect type of descriptor is referenced (e.g. gate de-
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scriptor or execute only code segment) exception 13 
occurs. If the segment is not present, exception 11 
is generated. 

Instructions that load selectors into SS must refer to 
data segment descriptors for writable data seg­
ments. The descriptor privilege (DPL) and RPL must 
equal CPL. All other descriptor types or a privilege 
level violation will cause exception 13. A not present 
fault causes exception 12. 

CONTROL TRANSFER 

Four types of control transfer can occur when a se­
lector is loaded into CS by a control transfer opera­
tion (see Table 10). Each transfer type can only oc­
cur if the operation which loaded the selector refer­
ences the correct descriptor type. Any violation of 
these descriptor usage rules (e.g. JMP through a call 
gate or RET to" a Task State Segment) will cause 
exception 13. 

The ability to reference a descriptor for control trans­
fer is also subject to rules of privilege. A CALL or 
JUMP instruction may only reference a code seg­
ment descriptor with DPL equal to the task CPL or a 
conforming segment with DPL of equal or greater 
privilege than CPL. The RPL of the selector used to 
reference the code descriptor must have as much 
privilege as CPL. 

RET and IRET instructions may only reference code 
segment descriptors with descriptor privilege equal 
to or less privileged than the task CPL. The selector 
loaded into CS is the return address from the stack. 
After the return, the selector RPL is the task's new 
CPL. If CPL changes, the old stack pointer is popped 
after the return address. 

When a JMP or CALL references a Task State Seg­
ment descriptor, the descriptor DPL must be the 
same or less privileged than the task's CPL. Refer-

ence to a valid Task State Segment descriptor caus­
es a task switch (see Task Switch Operation). Refer­
ence to a Task State Segment descriptor at a more 
privileged level than the task's CPL generates ex­
ception 13. 

When an instruction or interrupt references a gate 
descriptor, the gate DPL must have the same or less 
privilege than the task CPL. If DPL is at a more privi­
leged level than CPL, exeception 13 occurs. If the 
destination selector contained in the gate refer­
ences a code segment descriptor, the code seg­
ment descriptor DPL must be the same or more priv­
ileged than the task CPL. If not, Exception 13 is is­
sued. After the control transfer, the code segment 
descriptors DPL is the task's new CPL. If the desti­
nation selector in the gate references a task state 
segment, a task switch is ,automatically performed 
(see Task Switch Operation). 

The privilege rules on control transfer require: 

- JMP or CALL direct to a code segment (code 
segment descriptor) can only be to a conforming 
segment with DPL of equal or greater privilege 
than CPL or a non-conforming segment at the 
same privilege level. . 

- interrupts within the task or calls that may 
change p~ivilege levels, can only transfer control 
through a gate at the same or a less privileged 
level than CPL to a code segment at the same or 
more privileged level than CPL. 

- return instructions that don't switch tasks can 
only return control to a code segment at the 
same or less privileged level. . 

- task switch can be performed by a call, jump or 
interrupt which references either a task gate or 
task state segment at the same or less privileged 
level. 

Table 10. Descriptor Types Used for Control Transfer 

Control Transfer Types 

Intersegment within the same privilege level 

Intersegment to the same or higher privilege lev~llnterrupt 
within task may change CPL. 

Intersegment to a lower privilege level (changes task CPL) 

Task Switch 

"NT (Nested Task bit of flag word) = 0 
"NT (Nested Task bit of flag word) = 1 

Operation Types 

JMP, CALL, RET, IRET' 

CALL 

Interrupt Instruction, 
Exception, External 
Interrupt 

RET,IRET" 

CALL,JMP 

CALL,JMP 

IRET" 
Interrupt Instruction, 
Exception, External 
Interrupt 
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Descriptor Descriptor 
Referenced Table 

Code Segment GOT/LOT 

Call Gate GOT/LOT 

Trap or lOT 
Interrupt 
Gate 

Code Segment GOT/LOT 

Task State GOT 
Segment 

Task Gate GOT/LOT 

Task Gate lOT 
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PRIVILEGE LEVEL CHANGES 

Any control transfer that changes CPL within the 
task, causes a change of stacks as part of the oper­
ation. Initial values of SS:SP for privilege levels 0, 1, 
and 2 are kept in the task state segment (refer to 
Task Switch Operation). During a JMP or CALL con­
trol transfer, the new stack pointer is loaded into the 
SS and SP registers and the previous stack pointer 
is pushed onto the new stack. 

When returning to the original privilege level, its 
stack is restored as part of the RET or IRET instruc­
tion operation. For subroutine calls that pass param­
eters on the stack and cross privilege levels, a fixed 
number of words, as specified in the gate, are cop­
ied from the previous stack to the current stack. The 
inter-segment RET instruction with a stack adjust­
ment value will correctly restore the previous stack 
pointer upon return. 

Protection 
The 80C286 includes mechanisms to protect critical 
instructions that affect the CPU execution state (e.g. 
HL T) and code or data segments from improper us­
age. These protection mechanisms are grouped into 
three forms: 

Restricted usage of segments (e.g. no write al­
lowed to read-only data segments). The only seg­
ments available for use are defined by descrip­
tors in the Local Descriptor Table (LOT) and 
Global Descriptor Table (GOT). 

Restricted access to segments via the rules of 
privilege and descriptor usage. 

Privileged instructions or operations that may 
only be executed at certain privilege levels as de­
termined by the CPL and I/O Privilege Level 
(IOPL). The 10PL is defined by bits 14 and 13 of 
the flag word. 

These checks are performed for all instructions and 
can be split into three categories: segment load 
checks (Table 11), operand reference checks (Table 
12), and privileged instruction checks (Table 13). 
Any violation of the rules shown will result in an ex­
ception. A not-present exception related to the stack 
segment causes exception 12. 

The IRET and POPF instructions do not perform 
some of their defined functions if CPL is not of suffi­
cient privilege (numerically small enough). Precisely 
these are: 

• The IF bit is not changed if CPL > 10PL. 

• The 10PL field of the flag word is not changed if 
CPL> o. 

No exceptions or other indication are given when 
these conditions occur. 

Table 11 Segment Register Load Checks 

Error Description 
Exception 
Number 

Descriptor table limit exceeded 13 

Segment descriptor not-present 11 or 12 

Privilege rules violated 13 

Invalid descriptor/segment type seg· 
ment register load: 

-Read only data segment load to 
SS 

-Special Control descriptor load to 
DS, ES, SS 13 

-Execute only segment load to 
DS, ES, SS 

-Data segment load to CS 
-Read/Execute code segment 

load to SS 

Table 12. Operand Reference Checks 

Error Description 
Exception 
Number 

Write into code segment 13 
Read from execute-only code 
segment 13 
Write to read·only data segment 13 
Segment limit exceeded1 12 or 13 

NOTE: 
Carry out in offset calculations is ignored. 

Table 13 Privileged Instruction Checks 

Error Description 
Exception 
Number 

CPL oF 0 when executing the following 
instructions: 

13 LlDT, LLDT, LGDT, LTR, LMSW, 
CTS,HLT 

CPL > IOPL when executing the fol· 
lowing instructions: 13 

INS, IN, OUTS, OUT, STI, CLI, 
LOCK 

EXCEPTIONS 

The 80C286 detects several types of exceptions 
and interrupts, in protected mode (see Table 14). 
Most are restartable after the exceptional condition 
is removed. Interrupt handlers for most exceptions 
can read an error code, pushed on the stack after 
the return address, that identifies the selector in­
volved (0 if none). The' return address normally 
points to the failing instruction, including all leading 
prefixes. For a processor extension segment over­
run exception, the return address will not point at the 
ESC instruction that caused the exception; however, 

"the processor extension registers may contain the 
address of the failing instruction. 
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Table 14. Protected Mode Exceptions 

Return Always Error Interrupt 
Function Address Restart- Code Vector At Falling 

able? on Stack? Instruction? 

8 Double exception detected Yes N02 Yes 
9 Processor extension segment overrun No N02 No 

10 Invalid task state segment Yes Yes Yes 
11 Segment not present Yes Yes Yes 
12 Stack segment overrun or stack segment not present Yes Yes1 Yes 
13 General protection Yes N02 Yes 

NOTE: 
1. When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the exception 
will not be restartable because stack segment wrap around is not permitted. This condition is identified by the value of the 
saved SP being either OOOO(H), 0001 (H), FFFE(H), or FFFF(H). 
2. These exceptions indicate a violation to privilege rules or usage rules has occurred. Restart is generally not attempted 
under those conditions. 

These exceptions indicate a violation to privilege 
rules or usage rules has occurred. Restart is gener­
ally not attempted under those conditions. 

All these checks are performed for all instructions 
and can be split into three categories: segment load 
checks (Table 11), operand reference checks (Table 
12), and privileged instruction checks (Table 13). 
Any violation of the rules shown will result in an ex­
ception. A not-present exception causes exception 
11 or 12 and is restartable. 

Special Operations 

TASK SWITCH OPERATION 

The 80C286 provides a built-in task switch operation 
which saves the entire 80C286 execution state (reg­
isters, address space, and a link to the previous 
task), loads a new execution state, and commences 
execution in the new task. Like gates, the task 
switch operation is invoked by executing an inter­
segment JMP or CALL instruction which refers to a 
Task State Segment (TSS) or task gate descriptor in 
the GOT or LOT. An INT n instruction, exception, or 
external interrupt may also invoke the task switch 
operation by selecting a task gate descriptor in the 
associated lOT descriptor entry. 

The TSS descriptor points at a segment (see Figure 
20) containing the entire 80C286 execution state 
while a task gate descriptor contains a TSS selector. 
The limit field of the descriptor must be > 002B(H). 

Each task must have a TSS associated with it. The 
current TSS is identified by a special register in the 
80C286 called the Task Register (TR). This register 
contains a selector referring to the task state seg­
ment descriptor that defines the current TSS. A hid­
den base and limit register associated with TR are 
loaded whenever TR is loaded with a new selector. 
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The IRET instruction is used to return control to the 
task that called the current task or was interrupted. 
Bit 14 in the flag register is called the Nested Task 
(NT) bit. It controls the function of the IRET instruc­
tion. If NT = 0, the IRET instruction performs the 
regular current task by popping values off the stack; 
when NT = 1, IRET performs a task switch opera-
tion back to the previous task. . 

When a CALL, JMP, or INT instruction initiates a 
task switch, the old (except for case of JMP) and 
new TSS will be marked busy and the back link field 
of the new TSS set to the old TSS selector. The NT 
bit of the new'task is set by CALL or INT initiated 
task' switches. An interrupt that does not cause a 
task switch will clear NT. NT may also be set or 
cleared by POPF or IRET instructions. 

The task state segment is marked busy by changing 
the descriptor type field from Type 1 to Type 3. Use 
of a selector that references a busy task state seg­
ment causes Exception 13. 

PROCESSOR EXTENSION CONTEXT 
SWITCHING 
The context of a processor extension (such as the 
80287 numerics processor) is not changed by the 
task switch operation. A processor extension con­
text need only be changed when a different task at­
tempts to use the processor extension (which still 
contains the context of a previous task). The 
80C286 detects the first use of a processor exten­
sion after a task switch by causing the processor 
extension not present exception (7). The interrupt 
handler may then decide whether a context change 
is necessary. 

Whenever the 80C286 switches tasks, it sets the 
Task Switched (TS) bit of the MSW. TS indicates 
that a processor extension context may belong to a 
different task than the current one. The processor 
extension not present exception (7) will occur when 
attempting to execute an ESC or WAIT instruction if 
TS = 1 and a processor extension is present (MP = 1 
in MSW). 
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POINTER TESTING INSTRUCTIONS 

The 80C286 provides several instructions to speed 
pointer testing and consistency checks for maintain­
ing system integrity (see Table 15). These instruc-

tions use the memory management hardware to ver­
ify that a selector value refers to an appropriate seg­
ment without risking an exception. A condition flag 
(ZF) indicates whether use of the selector or seg­
ment will cause an exception. 
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Figure 20. Task State Segment and TSS Registers 
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Table 15. 80C286 Pointer Test Instructions 

Instruction Operands Function 

ARPL Selector, Adjust Requested Privilege 
Register Level: adjusts the RPL of 

the selector to the numeric 
maximum of current selec-
tor RPL' value and the RPL 
value in the register. Set 
zero flag if selector RPL 
was changed by ARPL. 

VERR Selector VERify for Read: sets the 
zero flag if the segment re-
ferred to by the selector 
can be read. 

VERW Selector VERitY for Write: sets the 
zero flag if the segment re-
ferred to by the selector 
can be written. 

LSL Register, Load Segment Limit: reads 
Selector the segment limit into the 

register if privilege rules 
and descriptor type allow. 
Set zero flag if successful. 

LAR Register, Load Access Rights: reads 
Selector the descriptor access 

rights byte into the register 
if privilege rules allow. Set 
zero flag if successful. 

DOUBLE FAULT AND SHUTDOWN 

If two separate exceptions are detected during a sin~ 
gle instruction execution, the 80C286 performs the 
double fault exception (8). If an execution occurs 
during processing of the double fault exception, the 
80C286 will enter shutdown. Ouring shutdown no 
further instructions or exceptions are processed. Ei­
ther NMI (CPU remains in protected mode) or RE­
SET (CPU exits protected mode) can force the 
80C286 out of shutdown. Shutdown is externally sig­
nalled via a HALT bus operation with A1 LOW. 

PROTECTED MODE INITIALIZATION 

The 80C286 initially executes in real address mode 
after RESET. To allow initialization code to be 
placed at the top of physical memory, A23-A20 will 
be HIGH when the 80C286 performs memory refer­
ences relative to the CS register until CS is changed. 
A23-A20 will be zero for references to the OS, ES, or 
SS segments. Changing CS in real address mode 
will force A23-A20 LOW whenever CS is used again. 
The initial CS:IP value of FOOO:FFFO provides 64K 
bytes of code space for initialization code without 
changing CS. 

Protected mode operation requires several registers 
to be initialized. The GOT and lOT base registers 
must refer to a valid GOT and lOT. After ,executing 
the LMSW instruction to set PE, the 80C286 must 

immediately execute an intra-segment JMP instruc­
tion to clear the instruction queue of instructions de­
coded in real address mode. 

To force the 80C286 CPU registers to match the 
initial protected mode state assumed by software, 
execute a JMP instruction with a selector referring to 
the initial TSS used in the system. This will load the 
task register, local descriptor table register, segment 
registers and initial general register state. The TR 
should point at a valid TSS since any task switch 
operation involves saving the current task state. 

SYSTEM INTERFACE 
The 80C286 system interface appears in two forms: 
a local bus and a system bus. The local bus consists 
of address, data, status, and control signals at the 
pins of the CPU. A system bus is any buffered ver­
sion of the local bus. A system bus may also differ 
from the local bus in terms of coding of stat\ls and 
control lines andlor timing and loading of signals. 
The 80C286 family includes several devices to gen­
erate standard system buses such as the IEEE 796 
standard MUL TIBUS. 

Bus Interface Signals and Timing 
The 80C286 microsystem local bus interfaces the 
80C286 to local memory and 1/0 components. The 
interface has 24 address lines, 16 data lines, and 8 
status and control signals. 
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The 80C286 CPU, 82C284 clock generator, 82C288 
bus controller, transceivers, and latches provide a 
buffered and decoded system bus interface. The 
82C284 generates the system clock and synchroniz­
es REAOY and RESET. The 82C288 converts bus 
operation status encoded by the 80C286 into com­
mand and bus control signals. These components 
can provide the timing and electrical power drive lev­
els required for most system bus interfaces including 
the Multibus. 

Physical Memory and 110 Interface 
A maximum of 16 megabytes of physical memory 
can be addressed in protected mode.' One mega­
byte can be addressed in real address mode. Memo­
ry is accessible as bytes or words. Words consist of 
any two consecutive bytes addressed with the least 
significant byte stored in the lowest address. 

Byte transfers occur on either half of the 16-bit local 
data bus. Even bytes are accessed over 07-00 
while odd bytes are transferred over 015-08. Even­
addressed words are transferred over 015-00 in 
one bus cycle, while odd-addressed word require 
two bus operations. The first transfers data on 
015-08, and the second transfers data on 07-00. 
Both byte data transfers occur automatically, trans­
parent to software. 
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Two bus signals, Ao and BHE, control transfers over 
the lower and upper halves of the data bus. Even 
address byte transfers are indicated by Ao lOW and 
BHE HIGH. Odd address byte transfers are indicat­
ed by Ao HIGH and BHE LOW. Both Ao and BHE are 
lOW for even address word transfers. 

The I/O address space contains 64K addresses in 
both modes. The lID space is accessible as either 
bytes or words, as is memory. Byte wide peripheral 
devices may be attached to either the upper or lower 
byte of the data bus. Byte-wide lID devices attached 
to the upper data byte (015-08) are accessed with 
odd lID addresses. Devices on the lower data byte 
are accessed with even 110 addresses. An interrupt 
controller such as Intel's 82C59A-2 must be con­
nected to the lower data byte (DrDo) for proper 
return of the interrupt vector. 

Bus Operation 
The 80C286 uses a double frequency system clock 
(ClK input) to control bus timing. All signals on the 
local bus are measured relative to the system ClK 
input. The CPU divides the system clock by 2 to pro­
duce the internal processor clock, which determines 
bus state. Each processor clock is composed of two 
system clock cycles named phase 1 and phase 2. 
The 82C284 clock generator output (PClK) identi­
fies the next phase of the processor clock. (See Fig­
ure 21.) 

ClK 

PClKY \\-___ -.J 

231923-21 

Figure 21. System and Processor 
Clock Relationships 

Six types of bus operations are supported; memory 
read, memory write, I/O read, 110 write, interrupt ac­
knowledge, and halt/shutdown. Data can be trans­
ferred at a maximum rate of one word per two proc­
essor clock cycles. 

The 80C286 bus has three basic states: idle (Tj), 
send status (T s), and perform command (T d. The 
80C286 CPU also has a fourth local bus state called 
hold (T h). T h indicates that the 80C286 has surren­
dered control of the local bus to another bus master 
in response to a HOLD request. 

Each bus state is one processor clock long. Figure 
22 shows the four 80C286 local bus states and al­
lowed transitions. 
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RESET 
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Figure 22. 80C286 Bus States 

Bus States 
The idle (Tj) state indicates that no data transfers 
are in progress or requested. The first active state 
T s is signaled by status line S1 or SO going lOW 
and identifying phase 1 of the processor clock. Dur­
ing T s, the command encoding, the address, and 
data (for a write operation) are available on the 
80C286 output pins. The 82C288 bus controller de­
codes the status signals and generates Multibus 
compatible readlwrite command and local trans­
ceiver"control signals. 

After T s, the perform command (T c> state is en­
tered. Memory or lID devices respond to the bus 
operation during T c, either transferring read data to 
the CPU or accepting write data. T c states may be 
repeated as often as necessary to assure sufficient 
time for the memory or lID device to respond. The 
READY signal determines whether T c is repeated. A 
repeated Testate is called a wait state, 

During hold (T h), the 80C286 will float* all address, 
data, and status output pins enabling another bus 
master to use the local bus. The 80C286 HOLD in­
put signal is used to place the 80C286 into the T h 
state. The 80C286 HlDA output signal indicates that 
the CPU has entered T h. 

Pipelined Addressing 
The 80C286 uses a local bus interface with pipe­
lined timing to allow as much time as possible for 
data access. Pipelined timing allows a new bus oper­
ation to be initiated every two processor cycles, 
while allowing each individual bus operation to last 
for three processor cycles. 

The timing of the address outputs is pipe lined such 
that the address of the next bus operation becomes 
available during the current bus operation. Or in oth­
er words, the first clock of the next bus operation is 
overlapped with the last clock of the current bus op­
eration. Therefore, address decode and routing logic 
can operate in advance of the next bus operation. 

"NOTE: See section on bus hold circuitry. 
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Figure 23. Basic Bus Cycle 

External address latches may hold the address sta- . 
ble for the entire bus operation, and provide addi­
tional AC and DC buffering. 

The 80C286 does not maintain the address of the 
current bus operation during all Tc states. Instead, 
the address for the next bus operation may be emit­
ted during phase 2 of any T c. The address remains . 
valid during phase 1 of the first T c to guarantee hold 
time, relative to ALE, for the address latch inputs. 

Bus Control Signals 
The 82C288 bus controller provides control signals; 
address latch enable (ALE), Read/Write commands, 
data transmit/receive (DT /R), and data enable 
(DEN) that control the address· latches, data trans­
ceivers, write enable, and output enable for memory 
and I/O systems. 

The Address Latch Enable (ALE) output determines 
when the address may be latched. ALE provides at 
least one system CLK period of address hold time 
from the end of the previous bus operation until the 
address for the next bus operation appears at the 
latch outputs. This address hold time is required to 
support MUL TIBUS. arid common memory systems. 

The data bus transceivers are controlled by B2C28B 
outputs Data Enable (DEN) and Data Transmit/Re­
ceive (DT /R). DEN enables the data transceivers; 
while DT /R controls tranceiver direction. DEN and 
DT /R are timed to prevent bus contention between 
the bus master, data bus transceivers, and system 
data bus transceivers. 

Command Timing Controls 
Two system timing customization options, command 
extension and command delay, are provided on the 
BOC2B6 local bus. 

Command extension allows additional time for exter­
nal devices to respond to a command and is analo­
gous to inserting wait states on the 8086. External 
logic can control the duration of any bus operation 
such that the operation is only as long as necessary. 
The READY input signal can extend any bus opera­
tion for as long as necessary. 

Command delay allows an increase of address or 
write data setup time to system bus command active 
for any bus operation by delaying when the system 
bus command becomes active. Command delay is 
controlled by the 82C2BB CMDL Y input. After T s, 
the bus controller ~amples CMDL Y at each failing 
edge of CLK. If CMDL Y is HIGH, the 82C28B will not 
activate the command signal. When CMDL Y is LOW, 
the B2C2B8 will activate the command Signal. After 
the command becomes active, the CMDL Y input is 
not sampled. 

When a command is delayed, the available re­
sponse time from command active to' return read 
data or accept write data is less. To customize sys­
tem bus timing, an address decoder can determine 
which bus operations require delaying the com­
mand. Tne CMDL Y input does not affect the timing 
of ALE, DEN, or DT/R. 
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Figure 24. CMDL Y Controls the Leading Edge of Command Signal 

Figure 24 illustrates four uses of CMDl Y. Example 1 
shows delaying the read command two system 
ClKs for cycle N-1 and no delay for cycle N, and 
example 2 shows delaying the read command one 
system ClK for cycle N-1 and one system ClK de­
lay for cycle N. 

Bus Cycle Termination 
At maximum transfer rates, the 80C286 bus alter­
nates between the status and command states. The 
bus status signals become inactive after T s so that 
they may correctly signal the start of the next bus 
operation after the completion of the current cycle. 
No external indication of T c exists on the 80C286 
local bus. The bus master and bus controller enter 
T c directly after T s and continue executing T c cycles 
until terminated by READY. 

READY Operation 
The current bus master and 82C288 bus controller 
terminate each bus operation simultaneously to 
achieve maximum bus operation bandwidth. Both 
are informed in advance by READY active (open­
collector output from 82C284) which identifies the 
last T c cycle of the current bus operation. The bus 
master and bus controller must see the same sense 
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of the READY signal, thereby requiring READY be 
synchronous to the system clock. 

Synchronous Ready 
The 82C284 clock generator provides READY syn­
chronization from both synchronous and asynchro­
nous sources (see Figure 25). The synchronous 
ready input (SRDY) of the clock generator is sam­
pled with the falling edge of ClK at the end of phase 
1 of each T c. The state of SRDY is then broadcast to 
the bus master and bus controller via the READY 
output line. 

Asynchronous Ready 
Many systems have devices or subsystems that are 
asynchronous to the system clock. As a result, their 
ready outputs cannot be guaranteed to meet the 
82C284 SRDY setup and hold time requirements. 
But the 82C284 asynchronous ready input (ARDY) is 
designed to accept such signals. The ARDY input is 
sampled at the beginning of each T c cycle by 
82C284 synchronization logic. This provides one 
system ClK cycle time to resolve its value before 
broadcasting it to the bus master and bus controller. 



inter 80C286 

• . MEMORY CYCLE N " 1 .1. MEMORY C'/CLE N ·1 
--T.~-+----TC-------'4---Ts---------~TC-__ I4---TC-'- --. 

I Q I. <lit I G2 d1t I dII I .. lot 1 4t2 .. , I dQ 

eLI( 

PROCCLK 

A23 - At 
--------------~J~~ur--------------~~ 

_ (SEE NOTE 1.1 (SEENOTE2.)· 

AIIliV \\\\\\\\\\\\\\\\\\\\\\\\\\~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ !Ui:mZOIImm 
(SEE NOTU.) 

NOTES: 231923-25 
1. SRDYEN is ac1ive low. 
2. If SRDYEN.is high, the state of SRDY will no affect READY. 
3. ARDYEN is active low. 

Figure 25. Synchronous and Asynchronous Ready 

ARDY or ARDYEN must be HIGH at the end of T S. 
ARDY cannot be used to terminate bus cycle with no 
wait states. 

Each ready input of the 82C284 has an enable pin 
(SRDYEN and ARDYEN) to select whether the cur­
rent bus operation will be terminated by the synchro­
nous or asynchronous ready. Either of the ready in­
puts may terminate a bus operation. These enable 
inputs are active low and have the same timing as 
their respective ready inputs. Address decode logic 
usually selects whether the current bus operation 
should be terminated by ARDY or SRDY. 

Data Bus Control 

Figures 26, 27, and 28 show how the DT/R, DEN, 
data bus, and address signals operate for different 
combinations of read, write, and idle bus operations. 
DT /R" goes active (LOW) for a read operation. DT /R 
remains HIGH before, during, and between write op­
erations. 

. The data bus is driven with write data during the 
second phase of T s. The delay in write data timing 
allows the read data drivers, from a previous read 
cycle, sufficient time to enter 3-state OFF" before 
the 80C286 CPU begins driving the local data bus 
for write operations. Write data will always remain 
valid for one system clock past the last T c to provide 
sufficient hold time for Multibus or other similar 
memory or I/O systems. During write-read or write­
idle sequences the data bus enters 3-state OFF" 
during the second phase of the processor cycle after 
the last T c' In a write-write sequence the data bus 
does not enter 3-state OFF· between T c and T s. 
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Bus Usage 

The 80C286 local bus may be used for several func­
tions: instruction data transfers, data transfers by 
other bus masters, instruction fetching, processor 
extension data transfers, interrupt acknowledge, and 
halt/shutdown. This section describes local bus ac­
tivities which have special signals or requirements. 

·NOTE: See section on bus hold circuitry. 
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Figure 26. Back to Back Read-Write Cycles 
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Figure 28. Back to Back Write-Write Cycles 

HOLD and HLDA 

HOLD AND HLDA allow another bus master to gain 
control of the local bus by placing the BOC2B6 bus 
into the T h state. The sequence of events required 
to pass control between the BOC2B6 and another 
local bus master are shown in Figure 29. 

In this example, the BOC2B6 is initially in the T h state 
as signaled by HLDA being active. Upon leaving T h, 
as signaled by HLDA going inactive, a write opera­
tion is started. During the write operation another 
local bus master requests the local bus from the 
BOC2B6 as shown by the HOLD signal. After com­
pleting the write operation, the BOC286 performs 
one Tj bus cycle, to guarantee write data hold time, 
then enters T h as signaled by HLDA going active. 

The CMDL Y signal and ARDY ready are used to 
start and stop the write bus command, respectively. 
Note that SRDY must be inactive or disabled by 
SRDYEN to guarantee ARDY will terminate the cy­
cle. 

HOLD must not be active during the time from the 
leading edge of HESET until 34 CLKs following the 
trailing edge of RESET. 

Lock 

The CPU asserts an active lock Signal during Inter­
rupt-Acknowledge cycles, the XCHG instruction, and, 
during some descriptor accesses. Lock is also as­
serted when the LOCK prefix is used. The LOCK 
prefix may be used with the following ASM-2B6 as­
sembly instructions; MOVS, INS, and OUTS. For bus 
cycles other than Interrupt-Acknowledge cycles, 
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Lock will be active for the first and subsequent cy­
cles of a series of cycles to be locked. Lock will not 
be shown active during the last cycle to be locked. 
For the next-to-Iast cycle, Lock will become inactive 
at the end of the first T c regardless of the number of 
wait-states inserted. For Interrupt-Acknowledge cy­
cles, Lock will be active for each cycle, and will be­
come inactive at the end of the first T c for each cy­
cle regardless of the number of wait-states inserted. 

Instruction Fetching, 

The BOC2B6 Bus Unit (BU) will fetch instructions 
ahead of the current instruction being executed. This 
activity is called prefetching. It occurs when the local 
bus would ot~erwise be idle and obeys the following 
rules: 

A prefetch bus operation starts when at least two / 
bytes of the 6-byte prefetch queue are empty. 

The prefetcher normally performs word prefetches 
independent of the byte alignment of the code seg­
ment base in physical memory. 

The prefetcher will perform only a byte code fetch 
operation for control transfers to an instruction be­
ginning on a numerically odd physical address. 

Prefetching stops whenever a control transfer or 
HL T instruction is decoded by the IU and placed into 
the instruction queue. 

In real address mode, the prefetcher may fetch up to 
6 bytes beyond the last control transfer or HL T in-
struction in a code segment. ' 
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In protected mode, the prefetcher will never cause a 
segment overrun exception. The prefetcher stops at 
the last physical memory word of the code segment. 
Exception 13 will occur if the program attempts to 
execute beyond the last full instruction in the code 

If the last byte of a code segment appears on an 
even physical memory address, the prefatcher will 
read the next physical byte of mamory (perform a 
word code fetch). The value of this byte is ignored 
and any attempt to execute it causes exception 13. 

segment. .' 
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1. Status lines are not driven by 80C286, yet remain high due to internal pullup resistors during HOLD state. See section 
on bus hold circuitry. 
2. Address, M/iO and COD/INTA may start floating during any Tc depending on when internal 80C286 bus arbiter 
decides to release bus to external HOLD. The float starts in </>2 of T e. See section on bus hold circuitry. 
3. SHE and LOCK may start floating after the end of any T e depending on when internal 80C286 bus arbiter decides to 
release bus to external HOLD. The float starts in </>1 of Te. See section on bus hold circuitry. 
4. The minimum HOLD to HLDA time is shown. Maximum is one T H longer. 
5. The earliest HOLD time is shown. It will always allow a subsequent memory cycle if pending is shown. 
6. The minimum HOLD to HLDA time is shown. Maximum is a function of the instruction, type of bus cycle and other 
machine state (i.e., Interrupts, Waits, Lock, etc.). 
7. Asynchronous ready allows termination of the cycle. Synchronous ready does not signal ready in this example. Syn­
chronous ready state is ignored after ready is Signaled via the asynchronous input. 

Figure 29_ MUL TIBUS® Write Terminated by Asynchronous Ready with Bus Hold 
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Processor Extension Transfers 

The processor extension interface uses 1/0 port ad­
dresses 00F8(H), OOFA(H), and OOFC(H) which are 
part of the 1/0 port address range reserved by Intel. 
An ESC instruction with Machine Status Word bits 
EM = 0 and TS = 0 will perform 1/0 bus operations 
to one or more of these 110 port addresses indepen­
dent of the value of lOP!:. and CPL. 

ESC instructions with memory references enable the 
CPU to accept PEREO inputs for processor exten­
sion operand transfers. The CPU will determine the 
operand starting address and readlwrite status of 
the instruction. For each operand transfer, two or 
three bus operations are performed, one word trans­
fer with 1/0 port address OOFA(H) and one or two 
bus operations with memory. Three bus operations 
are required for each word operand aligned on an 
odd byte address. 

NOTE: 
Odd-aligned numerics instructions should be avoid­
ed when using an 80C286 system running six or 
more memory-write wait-states. The 80C286 can 
generate an incorre.ct numerics address if all the 
following conditions- are met: 

- Two floating point (FP) instructions are fetched 
and in the 80C286 queue. . 

- The first FP instruction is any floating point store 
except FSTSW AX. 

- The second FP .instruction is any floating point 
store except FSTSW AX. 

- The second FP instruction accesses memory. 

- The operand of the first instruction is aligned on 
an odd memory address. 

- More than five wait-states are inserted during ei­
ther of the last two memory write transfers 
(transferred as two bytes for odd aligned oper­
ands) of the first instruction. 

The second FP instruction operand address will be 
incremented by one if these conditions are met. 
These conditions are most likely to occur in a multi­
master system. For a hardware solution, contact 
your local Intel representative. 

Ten or more command delays should not be used 
when accessing the numerics coprocessor. Exces­
sive command delays can cause the 80C286 and 
80287 to lose synchronization. 

Interrupt Acknowledge Sequence 

Figure 30 illustrates an interrupt acknowledge se­
quence performed by the 80C286 in response to an 
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INTR input. An interrupt acknowledge sequence 
consists of two INTA bus operations. The first allows 
a master 82C59A-2 Programmable Interrupt Control­
ler (PIC) to determine which if any· of its slaves 
should return the interrupt vector. An eight bit vector 
is read on 00-07 of the 80C286 during the second 
INTA bus operation to select an interrupt handler 
routine from the interrupt table. 

The Master Cascade Enable (MCE) signal of the 
82C288 is used to enable the cascade address driv­
ers, during INTA bus operations (See Figure 30), 
onto the local address bus for distribution to slave 
interrupt controllers via the system address bus. The 
80C286 emits the LOCK signal (active LOW) during 
T s of the first INTA bus operation. A local bus "hold" 
request will not be honored until the end of the sec­
ond INTA bus operation. 

Three idle processor clocks are provided by the 
80C286 between INTA bus operations to allow for 
the minimum INTA to INTA time and CAS (cascade 
address) out delay of the 82C59A-2. The second 
INTA bus operation must always have at least one 
extra Testate added via logic controlling READY. 
This is needed to meet the 82C59A-2 minimum 
INTA pulse width. 

Local Bus Usage Priorities 

The 80C286 local bus ill shared among several in­
ternal units and external HOLD requests. In case of 
simultaneous requests, their relative priorities are: 

(Highest) Any transfers which assert LOCK either 
explicitly (via the LOCK instruction prefix) 
or implicitly (Le. some segment descriptor 
accesses, interrupt acknowledge· se­
quence, or an XCHG with memory). 

The second of the two byte bus opera­
tions required for an odd aligned word op-
erand. . 

The second or third cycle of a processor 
extension data transfer. 

Local bus request via HOLD input. 

Processor extension data operand trans­
fer via PEREO input. 

Data transfer peiformed by EU as part of 
an instruction. 

(Lowest) An instruction prefetch request from BU. 
The EU will inhibit prefetching two proc­
essor clocks in advance. of any data 
transfers to minimize waiting by EU for a 
prefetch to finish. 
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1. Data is ignored, upper data bus, 08-015, should not change state during this time. 
2. First INTA cycle should have at least one wait state inserted to meet 8259A minimum INTA pulse width. 
3. Second INTA cycle should have at least one wait state inserted to meet 8259A minimum INTA pulse width. 
4. LOCK is active for the first INTA cycle to prevent a bus arbiter from releasing the bus between INTA cycles in a multi· 
master system. LOCK is also active for the second INTA cycle. 
5. A23-AO exits 3·state OFF during </>2 of the second Tc in the INTA cycle. See section on bus hold circuitry. 
6. Upper data bus should not change state during this time. 

Figure 30. Interrupt Acknowledge Sequence 

Halt or Shutdown Cycles 

The 80C286 externally indicates halt or shutdown 
conditions as a bus operation. These conditions oc­
cur due to a HL T instruction or multiple protection 
exceptions while attempting to execute ol)e instruc­
tion. A halt or shutdown bus operation is signalled 
when S1, SO and COD/INTA are LOW and MIlO is 
HIGH. A1 HIGH indicates halt, and A1 LOW indi­
cates shutdown. The 82C288 bus controller does 
not issue ALE, nor is READY required to terminate a 
halt or shutdown bus operation. 
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During halt or shutdown, the 80C286 may service 
PEREa or HOLD requests. A processor extension 
segment overrun exception during shutdown will in­
hibit further service of PEREa. Either NMI or RESET 
will force the 80C286 out of either halt or shutdown. 
An INTR, if interrupts are enabled, or a processor 
extension segment overrun exception will also force 
the 80C286 out of halt. 
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THE POWER-DOWN FEATURE OF 
THE 80C286 

The 80C286, unlike the HMOS part, can enter into a 
power-down mode. By stopping the processor ClK, 
the processor will enter a power-down mode. Once 
in the power-down mode, all 80C286 outputs remain 
static. (the same state as before the mode was en­
tered). The 80C286 D.C. specification Ices rates the 
amount of current drawn by the processor when in 
the power-down mode. When the ClK is reapplied 
to the processor, it will resume execution where it 
was interrupted. 

In order to obtain maximum benefits from the power­
down mode, certain precautions should be taken. 
When in the power-down mode, all 80C286 outputs 
remain static and any output that is turned on and 
remains in a HIGH condition will source current 
when loaded. Best low-power performance can be 
obtained by first putting the processor in the HOLD 

condition (turning off all of the output buffers), and 
then stopping the processor ClK in the phase 2 
state. In this condition, any output that is loaded will 
source only the "Bus Hold Sustaining Current". 

When stopping the processor clock, minimum clock 
high and low times cannot be violated (no glitches 
on the clock line). 

Violating this condition can cause the 80C286 to 
erase its internal register states. Note that all inputs 
to the 80C286 (ClK, HOLD, PER EO, RESET, 
READY, INTR, NMI, BUSY, and ERROR) should be 
at Vee or Vss: any other value will cause the 
80C286 to draw additional current. 

When coming out of power-down mode, the system 
ClK must be started with the same polarity in which 
it was stopped. An example power down sequence 
is shown in Figure 31. 

POWER DOWN WOO[ 

CLK 

PCLK 

,'-_______________ ~~----------~I - II . '0....-_------50.51 

AOOR~S ~--------1C::::::::::::!~::::!~~::::::::J M/iO.COD/INTA ( VALID ADDR~S >----< ... ____________ _ 

~~ ------------------«:::::!~~Lm~:::~.~W~R~~~~~~:::::::::::::::::>---<::::: 
231923-31 

FIgure 31. Example Power-Down Sequence 
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BUS HOLD CIRCUITRY 

To avoid high current conditions caused by floating 
inputs to peripheral CMOS devices and eliminate the 
need for pull-up/down resistors, "bus-hold" circuitry 
has been used on all tri-state 80C286 outputs. See 
Table A for a list of these pins and Figures Ba and 
Bb for a complete description of which pins have 
bus hold circuitry. These circuits will maintain the 
last valid logic state if no driving source is present 
(Le., an unconnected pin or a driving source which 
goes to a high impedance state). To overdrive the 
"bus hold" circuits, an external driver must be capa­
ble of supplying the maximum "Bus Hold Overdrive" 
sink or source current at valid input voltage levels. 
Since this "bus hold" circuitry is active and not a 

Pull-Up/Pull-Down 

EXTERNAL 
PIN . 

231923-50 

Figure Ba. Bus Hold Circuitry Pins 36-51, 66-67 
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"resistive" type element, the associated power sup­
ply current is negligible and power dissipation is sig­
nificantly reduced when compared to the use of pas­
sive pull-up resistors. 

Bus Hold Circuitry on the 80C286 

Signal 
Pin 

Location 

S1, SO, PEACK, LOCK 4-6,68 

Oata Bus (00-015) 36-51 

COO/INTA, MilO 66-67 

Pull-Up 

Polarity Pulled to 
when tri-stated 

Hi, See Figure Bb 

HilLo, 
See Figure Ba 

HilLo, 
See Figure Ba 

EXTERNAL 
PIN 

231923-51 

Figure Bb. Bus Hold Circuitry Pins 4-6,68 
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SYSTEM CONFIGURATIONS 

_ The versatile bus structure of the 80C286 microsys­
tem, with a full complement of support chips, allows 

-flexible configuration of a wide range of systems. 
The basic configuration, shown in Figure 32, is simi­
lar to an 8086 maximum mode system. It includes 
the CPU plus an 82C59A-2 interrupt controller, 
82C284 clock generator, and the 82C288 Bus Con­
troller. 

As indicated by the dashed lines in Figure 32, the 
ability to add processor extensions is an integral fea­
ture of 80C286 microsystems. The processor exten­
sion interface allows external hardware to perform 
special functions and transfer data concurrent with 
CPU execution of other instructions. Full system in­
tegrity is maintained because the 80C286 supervis­
es all data.transfers and instruction execution for the 
processor extension. 

The 80287 has all the instructions and data types of 
an 8087. The 80287 NPX can perform numeric cal­
culations and data transfers concurrently with CPU 
program execution. Numerics code and data have 
the same integrity as all other information protected 
by the 80C286 protection mechanism. 

The 80C286 can overlap chip select decoding and 
address propagation during the data transfer for the 
previous bus operation. This information is latched­
by ALE during the middle of a T 5 cycle. The latched 
chip select and address information remains stable 
during the bus operation while the next cycle's ad-

dress is being decoded and propagated into the sys­
tem. Decode logic can be implemented with a high 
speed PROM or PAL. 

The optional decode logic s~own in Figure 32 takes 
advantage of the overlap between address and data 
of the 80C286 bus cycle to generate advanced 
memory and 10-select signals. This minimizes sys­
tem performance degradation caused by address 
-propagation and decode delays. In addition to se­
lecting memory and 1/0, the advanced selects may 
be used with configurations supporting local and 
system buses to enable the appropriate bus inter­
face for each bus cycle. The COD/INTA and MIlO 
signals are applied to the decode logic to distinguish 
between interrupt, 1/0, code and data bus cycles. 

By adding a bus arbiter, the 80C286 provides a 
MUl TIBUS system bus interface as shown in Figure 
33. The ALE output of the 82C288 for the 
MUl TIBUS bus is connected to its CMDl Y input to 
delay the start of commands one system ClK as 
required to meet MUl TlBUS address and write data 
setup times. This arrangement will add at least one 
extra Testate to each bus operation which uses the 
MUlTIBUS. 

A second 82C288 bus controller and additional 
latches and transceivers could be added to the local 
bus of Figure 33. This configuJation allows the 
80C286 to support an on-board bus for local memo­
ry and peripherals, and the MUl TIBUS for system 
bus interfacing. 
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Figure 33. MUL TIBUS® System Bus Interface 
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Figure 34. 80C286 System Configuration with Dual-Ported Memory 

Figure 34 shows the addition of dual ported dynamic 
memory between the MUL TIBUS system bus and 
the 80C286 local bus. The dual port interface is pro­
vided by the 8207 Dual Port DRAM Controller. The 
8207 runs synchronously with the CPU to maximize 
throughput for local memory references. It also arbi­
trates between requests from the local and system 
buses and performs functions such as refresh, 

3-39 

initialization of RAM, and read/modify/write cycles. 
The 8207 combined with the 8206 Error Checking 
and Correction memory controller provide for single 
bit error correction. The dual-ported memory can be 
combined with a standard MUL TIBUS system bus 
interface to maximize performance and protection in 
multiprocessor system configurations. 
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Table 16. 80C286 Systems RecQmmended Pull Up Resistor Values 

80C286 Pin and Name Pullup Value Purpose 

4-S1 
Pull SO, Sl, and PEACK inactive during 80C286 hold periods 

5-S0 20 Ko. ±10% 
(Note 1) 

6-PEACK 

63-READY 9100. ±5% 
Pull READY inactive wi~hin required minimum time (CL = 150 pF, 

IR ~ 7 mAl 

NOTE: 
1. Pullup resistors are not required for SO and 51 when the corresponding pins on the 82C284 are connected to SO and 51. 

80C286 IN-CIRCUIT EMULATION 
CONSIDERATIONS . 

One of the advantages of using the 80C286 is that 
full in-circuit emulation development support is avail­
able through either' the 121CE 80286 probe \for 
8 MHz/l0 MHz or ICE286 for 12.5 MHz designs. To 
utilize these powerful tools it is necessary that the 
designer be aware of a few minor parametric and 
functional differences between the 80C286 and the 
in-circuit emulators. The 121CE datasheet (121CE Inte­
grated Instrumentation and In-Circuit Emulation Sys­
tem, order #210469) contains a detailed description 
of these design considerations. The ICE286 Fact 
Sheet (#280718) and User's Guide (#452317) con­
tain design considerations for the 80C286 12.5 MHz 
microprocessor. It is recommended that the appro­
priate document be reviewed by the 80C286 system 
designer to determine whether or not these differ­
ences affect the design. 

PACKAGE THERMAL 
SPECIFICATIONS 

The 80C286 Microprocessor is specified for opera­
tion when case temperature (T cl is within the range 
of 0·C-'85·C. Case temperature, unlike ambient 
temperature, is easily measured in any environment 

Table 17. Thermal Resistances 
('C/Watt) 8JC and 8JA 

()JA versus Airflow 

Package ()JC 
ft/mln (m/sec) 

0 200 400 600 800 
(0) (1.01) (2.03) (3.04) (4.06) 

68-Lead PGA 5.5 29 22 16 15 14 

68-Lead PLCC 
w/lnternal 8 29 23 21 18 16 
Heat Speader 

NOTE: 

1000 
(5.07) 

13 

15 

to determine whether the 80C286 Microprocessor is 
within the specified operating range. The case tem­
perature should be measured at the center of the 
top surface of the component. 

The maximum ambient temperature (T A). allowable 
without violating T C specifications can be .calculated 
from the equations shown below. T J is the 80C286 
junction temperature. P is the power dissipated by 
the 80C286. 

TJ = TC + P' 8JC 
TA,= TJ + P' ()JA 
Tc = TA + P' [8JA - ()Jcl 

Values for 8JA and 8JC are given in Table 17. 8JA is 
given at various airflows. Table 18 shows the maxi­
mum T A allowable (without exceeding T cl at various 
airflows. Note that the 80C286 PLCC package has 
an internal heat spreader. T A can be further im­
proved by attaching "fins" or an external "heat sink" 
to the package. 

Junction temperature calculations should use an Icc 
value that is measured without external resistive 
loads. The external resistive loads dissipate addi­
tional power external to the 80C286 and not on the 
die. This increases the resistor temperature, not the 
die temperature. The full capacitive load (CL = 
100 pF) should be applied during the Icc measure· 
ment. 

Table 18. Maximum T A at Various Airflows 

T A('C) versus Airflow 

Package 
ft/min (m/sec) 

0 200 400 600 800 1000 
(0) (1.01) (2.03) (3.04) (4.06) (5.07) 

68-Lead PGA 67 73 76 78 79 79 

68 Lead·PLCC 
w/lnternal 69 74 75 77 79 80 
Heat Speader 

The numbers in Table 18 were calculated using an Icc of 150 rnA, which is representative of the worst case Icc at Tc = 
85'C with the outputs unloaded. 
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ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature under Bias .... o·c to + 70·C 

Storage Temperature ........... -65·C to+ 150·C 

Voltage on Any Pin with 
Respect to Ground .............. -1.0V to + 7V 

Power Dissipation ...........•.............. 1.1 W 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE Specifications contained within the 
following tables are subject to change. 

D.C. CHARACTERISTICS (Vcc = 5V ±10%, TCA~E = O·Cto +85·C) 

Symbol Parameter Min Max Typ Unit Test Conditions 

Icc Supply Current 200 125 rnA CL = 100 pF (Note 1) 

Iccs Supply Current (Static) 5 0.5 rnA (Note 2) 

CCLK ClK Input Capacitance 20 pF FREQ = 1 MHz (Note 3) 

CIN Other Input Capacitance 10 pF FREQ = 1 MHz (Note 3) 

Co Input/Output Capacitance 20 pF FREQ = 1 MHz (Note 3) 

NOTES: 
1. Tested at maximum frequency with no resistive loads on the outputs. 
2. Tested while clock stopped in phase 2 and inputs at Vee or VSS with the outputs unloaded. 
3. These are not tested but are guaranteed by design characterization. 

D.C. CHARACTERISTICS (Vcc = 5V ±10%, TCASE = O·Cto +85°C) 

Symbol Parameter Min Max Unit Test Conditions 

VIL Input lOW Voltage -0.5 0.8 V FREQ = 2 MHz 

VIH Input HIGH Voltage 2.0 Vcc + 0.5 V FREQ = 2MHz 

VILC ClK Input lOW Voltage -0.5 0.8 V FREQ = 2MHz 

VIHC ClK Input HIGH Voltage 3.8 Vcc + 0.5 V FREQ = 2MHz 

VOL Output lOW Voltage 0.45 V IOL = 2.0 rnA, FREQ = 2 MHz 

VOH Output HIGH Voltage 3.0 V IOH = - 2.0 rnA, FREQ = 2 MHz 
Vcc - 0.5 V IOH = -100 /-LA, FREQ = 2 MHz 

III Input leakage Current ±10 /-LA VIN = GND or Vcc (Note 1) 

ILO Output leakage Current ±10 /-LA Vo = GND orVcc (Note 1) 

IlL Input Sustaining Current on -30 -500 /-LA VIN = OV (Note 1) 
BUSY # and ERROR # Pins 

ISHL Input Sustaining Current 38 150 /-LA VIN = 1.0V (Notes 1, 2) 
(Bus Hold LOW) 

ISHH Input Sustaining Current -50 -350 /-LA VIN = 3.0V (Notes 1, 3) 
(Bus Hold HIGH) 

ISHLO Bus Hold lOW Overdrive 200 /-LA (Notes 1, 4) 

ISHHO Bus Hold HIGH Overdrive -400 /-LA (Notes 1, 5) 

NOTES: 
1. Tested with the clock stopped. 
2. ISHl should be measured after lowering VIN to GND and then raising to 1.0V on the following pins: 36-51, 66, 67. 
3. ISHH should be measured after raising VIN to Vee and then lowering to 3.0V on the following pins: 4-6, 36-51, 66-68. 
4. An external driver must source at least ISHlO to switch this node from LOW to HIGH. 
5. An external driver must sink at least ISHHO to switch this node from HIGH to LOW. 
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A.C. CHARACTERISTICS (Vee = 5V ±10%, TeAsE = O°Cto + 85°C) 
A.C. timings are referenced to 1.5V points of signals as illustrated in datasheet waveforms, unless otherwise 
noted. ' 

Symbol Parameter 
12.5 MHz 

Unit 
Test 

Min Max . Conditions 

1 System Clock (ClK) Period 40 DC ns (Note 1) 

2 System Clock (ClK) lOW Time 11 ns at 1.0V 

3 System Clock (ClK) HIGH Time 13 ns at 3.6V 

17 System Clock (ClK) Rise Time 8 ns 1.0V to 3.6V (Note 2) 

18 System Clock (ClK) Fall Time 8 ns 3.6V to 1.0V (Note 2) 

4 Asynchronous Inputs Setup Time 16 ns (Note 3) 

5 Asynchronous Inputs Hold Time 16 ns (Note 3) 

6 RESET Setup Time 19 ns 

7 RESET Hold Time 6 ns 

8 Read Data Setup Time 6 ns 

9 Read Data Hold Time 7 ns 

10 READY Setup Time 23 ns 

11 READY Hold Time 21 ns 

12a1 Status Active Delay 5 16 ns (Notes 4, 5) 

12a2 PEACK Active Delay 5 18 ns (Notes 4, 5) 

12b Status/PEACK Inactive Delay 5 20 ns (Notes 4,5) 

13 Address Valid Delay 4 29 ns (Notes 4,5) 

14 Write Data Valid Delay 3 27 ns (Notes 4, 5) 

15 Address/Status/Data Float Delay 2 32 ns (Notes 2, 4, 6) 

16 HlDA Valid. Delay 3 24 ns (Notes 4, 5) 

19 Address Valid To Status 23 ns (Notes 2, 4, 5) 
Valid Setup Time 

NOTES: 
1. Functionality at frequencies less than 2 MHz is not tested, but is guaranteed by design characterization. 
2. These are not tested but are guaranteed by design characterization. 
3. Asynchronous inputs are INTR, NMI, HOLD, PEREa, ERROR, and BUSY. This specification is given only for testing 
purposes, to assure recognition at a specific ClK edge. 
4. Delay from 1.0V on the ClK, to 1.5V or float on the output as appropriate for valid or floating condition. 
5. Output load: CL = 100 pF. 
6. Float condition occurs when output current is less than ILO in magnitude. 
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A.C. CHARACTERISTICS (Continued) 

NOTE 7: 
AC Test Loading on Outputs 

CLKINPUT 

NOTE 8: 

DEVICE 
OUTPUT 

4.0V 

OA5V 

AC Drive and Measurement Points-CLK Input 

NOTE 9: 

ClK INPUT 

O.45V-----

OTHER 2.4V ~~"--of--."j,.,.~~ 
DEVICE 
INPUT O.45V Zi;~a __ +-_..J.~~~ 

DEVICE 
OUTPUT 

AC Setup. Hold and Delay Time Measurement-General 
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Typical Capacitive Derating Curves 

NOIlA+5 

NOIlA+4 

NOIlA+3 

NOIlA+2 

NOM+l 

OUTPUT VALID DELAY NOIIA i----+---_F----+-----! 
(ns) 50 

NOIlA-l 

NOIlA-2 

NOIlA-4 

NOM-5 

125 150 

..... ADDRESS/DATA 

-o-STATUS 

LOAD CAPACITANCE (pF) 

Typical CMOS Level Slew Rates for Address/Data Buffers 

10 

9 

8 

7 

6 

SLEw RATE 5 
(ns/V) 

4 

3 

2 

..... RISE TIIlAE (0.4V-3.5V) 

-0- FALL TIME (3.5V-0.4V) 

o L----+----t----+--~ 
50 75 100 150 

LOAD CAPACITANCE (pF) 
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Typical TTL Level Slew Rates for Address/Data Buffers 

9 

8 

7 

6 

5 

SLEW RATE 
(nsjV) 4 

3 

2 

-t- RISE TIME (0.8V-2.0V) 

-0- FALL TIME (2.0V-0.8V) 

o ~------~------~---------~------~ 
50 75 100 125 150 

LOAD CAPACITANCE (pF) 
231923-48 

Typical Icc vs Frequency for Different Output Loads 

200 

175 

150 

125 

Icc (rnA) 100 

75 

50 

~/' 
./ 
~ 

~ 

/' ~ ~ 
~ 

~ ~ 

~ 
r 

/. 
~ 

25 

o 
o 2 4 6 8 10 12.5 

FREOUENCY (MHz) 

NOTES: 
1. Vee = 5.0V , 
2. Loaded: IOL = 2.0 rnA, IOH as shown, CL = 100 pF 

Unloaded: CL = 100 pF 
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_IOH=-2rnA 

-+- 10H = -400)LA 

_ UNLOADED 
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A.C. CHARACTERISTICS (Continued) 

82C284 Timing Requirements 

Symbol Parameter 
82C284-12 

Unit 
Test 

Min Max Conditions 

11 SRDY fSRDYEN Setup Time 18 ns 

12 SRDY fSRDYEN Hold Time 2 ns 

13 ARDY f ARDYEN Setup Time 0 ns (Note 1) 

14 ARDY f ARDYEN Hold Time 25 ns (Note 1) 

19 PCLK Delay 0 23 ns CL = 75pF 
IOL = 5mA 
IOH = -1 mA 

NOTE: 
1. These times are given for testing purposes to assure a predetermined action. 

82C288 Timing Requirements 

Symbol Parameter 
82C288-12 

Unit 
Test 

Min Max Conditions 

12 CMDL Y Setup Time 15 ns 

13 CMDL Y Hold Time 1 ns 

30 Command Command Inactive 5 20 CL = 300 pF max 
Delay 

Command Active 3 21 
ns IOL = 32 mA max 

29 from CLK IOH = -5 mA max 

16 ALE Active Delay 3 16 ns 

17 ALE Inactive Delay 19 ns 

19 DT fR Read Active Delay 23 ns 

22 DT fR Read Inactive Delay 5 18 ns CL = 150 pF 

20 DEN Read Active Delay 5 21 
IOL = 16 mA max 

ns IOH = -1 mA max 
21 DEN Read Inactive Delay 3 19 ns 

23 DEN Write Active Delay 23 ns 

24 DEN Write Inactive Delay 3 19 ns 



WAVEFORMS 

MAJOR CYCLE TIMING 

BUS CYCLE TYPE 

READ CYCLE 
ILLUSTRATED WITH ZERO 
WAIT STATES 

T, TS 

80C286 

Te 

WRITE CYCLE 
ILLUSTRATED WITH ONE 
WAIT STATE 

Ts Te Te 

READ 
(T, OR TS) 

CLK x~tr./' ~~ ~~ ~~ ~ J 
® 8- ~ -~-

v 

V OL '--' 

'k / 

-.@. 
~. 1-1 

-@-

.. II/iii. COD/iNfA g .. 
I~ -- -VALID ADDRESS ]f{//1. VALID ADDRESS ]f{//A( VALID If Ts 

f.&t - ~-
-0...:1. 

~ VALID CONTROL w//4 VALID CONTROL lW//l4 

®- I-

!.;eh 
1-18I-l -@ 

-------.--------- ---- ---- ~ VALID WRITE DATA >HtJ 
;ALlDR~D:;: 

-@- -@I-

READY 

l=i@1- I"'@ I-
/JJJ), iW7l ~\.\.\.\.'\. 

- -@ 
-i@ 

SRDY+SRDYEN 

-@ ,- -181-.. .. 
~ ---.. ARDY+ARDYEN 

-=l0 -
~~ ~\.\\. 

PCLK ~ 
@I--

~h-
-181~ 

~ V-I\-F I\.-.-r'-.-r r\. ~ 

ALE 

-@ ~ @I-
I "'\. ~ .r 

1~ - -OJ;; ~r Or:. -i@-
CIIDLY ~ 

.. IIWTC 
- @ r I--

"" 5 
N 

@ -@r- ' (SEE NOTE 1) .. 
IIROC "" I-

-@-
DT/R f-

I@~~ @ 

-@t - @I- -@ -
DEN _-F _--f 

231923-52 
NOTE: 
1. The modified timing is due to the CMDL Y signal being active. 
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WAVEFORMS (Continued) 

BOC2B6 ASYNCHRONOUS 
INPUT SIGNAL TIMING 

BUS CYCLE TYPE 

CLK 

PCLl( 
(SEE NOTE 1.1 

INTR,NMI 
HOLD.PEReQ 
(SEE NOn 2.) Ll..LLLl..Uf~'1'--+-II'U.t..U.t..u..u. 

E.RROR.BUSY 
(SEE NOTE 2.) "'"'I'--+...If'~'""'''''--.J~",," 

NOTES: 
231923-.40 

1. PClK indicates which processor cycle phase will oc­
cur on the next ClK. PClK may not indicate the cor­
rect phase until the first bus cycle is performed. 
2. These inputs are asynchronous. The setup and hold 
times,shown assure recognition for testing purposes. 

EXITING AND ENTERING HOLD 

BUS CYCLE TYPE 

CLl( 

HLDA ---+""" 

BOC2B6 RESET INPUT TIMING AND 
SUBSEQUENT PROCESSOR CYCLE PHASE 

cue 

..... 
--..lfU1 

CLK 

.. SET 

231923-41 

NOTES: 
1. When RESET meets the setup time shown, the next 
ClK will start </>2 of a processor cycle. 
2. When RESET meets the setup time shown, the next 
ClK will repeat </>1 of a processor cycle. 

(SEE NOTE '.) 

IF NPX TRANSFER 

(SEE NoTE 6.) 0" - Do ________________________ _ 

I~~~.::;.:::::~~ 

NOTES: 231923-42 

1. These Signals may not be driven by the 80C286 during the time shown. The worst case in terms of latest float time is 
shown. 
2. The data bus will be driven as shown if the last cycle before T, in the diagram was a write T c. 
3. The 80C286 floats its status pins during T H. External 20 Kn resistors keep these signals high (see Table 16). 
4. For HOLD request set up to HlDA, refer to Figure 29. 
5. SHE and lOCK are driven at this time but will not become valid until TS' 
6. The data bus will remain in 3·state OFF if a read cycle is performed. 

. I 
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WAVEFORMS (Continued) 

80C286 PEREQ/PEACK TIMING FOR ONE TRANSFER ONLY 

BUS CYCLE TYPE 

elK 

S1 • so 

.2:1- Ao 
MIO 
COD INTA 

PEACK 

ASSUMING WORD-ALIGNED MEMORY OPERAND. IF ODD ALIGNED, 802861RANSFERS TO/FIIOIIIIEIIOIIY BYrE-AT.A-llME WITH lWO IIEIIORV CYCLES. 

NOTES: 231923-43 
1. PEACK always goes active during the first bus operation of a processor extension data operand transfer sequence. 
The first bus operation will be either a memory read at operand address or I/O read at port address OOFA(H). 
2. To prevent a second processor extension data operand transfer, the worst case maximum time (Shown above) is: 
3 x <D -12a2max. - @min .. ,The actual, configuration dependent, maximum time is: 3 x <D -12a2max. - @min. + 
AX2X<D. 
A is the number of extra T C states added to either the first or second bus operation of the processor extension data 
operand transfer sequence. 

INITIAL 80C286 PIN STATE DURING RESET 

BUS CYCLE TYPE 

CLK 

~ RESET 
AT LEAST 

16 CLK PERIODS 

51. so 
l UNKNOWN 

PlACK 

Au .. l UNKNOWN 
BItE 

llliii 

l COD/iiil 
UNKNOWN 

lOCK l UNKNOWN 

~~ l~'~U=~==W=N~ __________ ~ ________________________________ ___ 
NOTES: 231923-44 
1. Setup' time for RE.SET i may be violated with the consideration that </>1 of the processor clock may begin one 
system ClK period later. 
2. Setup and hold times for RESET .J, must be met for proper operation, but RESET .J, may occur during </>1 or </>2. 
3. The data bus is only guaranteed to be in 3-state OFF at the time shown. 
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BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTES BYTES 

,.,;':T=1rr::,.:.,.:,..:..r::,,:,rr:..r,..,.., ----- --.,. ----- --..,. - ------..,.- - -- - -- .. 
LOW DlSP/DATA : HIGH DISP/DATA: LOW DATA : HIGH DATA : 

~-T"'"-.....,.y.,;;;z.:J-+..L..:.r..J ------ - ... ---- - __ ... _______ ... _______ ~ 

REGISTER OPERAND/REGISTERS TD U'SE IN DFfSET CALCULATION 

'---- REGISTER OPERAND/EXTENSION OF OPCODE 
'------ REGISTER MODE/IIEMORY MODE WITH DISPLACEMENT LENGTH 

'------- WORDIBYTE OPERA110N 
'-------- DlREClION IS TO REGISTER/oiREC110N IS FROM REGISTER 

'---------- OPERATION (INSTRUCTION) CODE 

A. SHORT OPCODE FORMAT EXAMPLE 

BYTE 1 BYTE 2 BYTE 3 ,BYTE 4 BYTES 
71S4321071S4321071543210 

1111111111111,1 " III " IIII~-:::Sp--~--H:;D:P--~ 
LONG qPCODE mod reg rim I I 

~-___ -I."';;';':'::""---, __ ...L=.JL.....:..::::"'1...,;;;:....J _______ ... _______ .. 

B. LONG OPCODE FORMAT EXAMPLE 

231923-45 

Figure 35. 80C286 Instruction Format Examples 

80C286 INSTRUCTION SET 
SUMMARY 

Instruction Timing Notes 

The instruction clock counts listed below establish 
the maximum execution rate of the 80C286. With no 
delays in bus cycles, the actual clock count of an 
80C286 program will average 5% more than the cal, 
culated clock count, due to instruction sequences 
which execute faster toan they can be fetched from 
memory. 

To calculate elapsed times for instruction se· 
quences, multiply the sum of all instruction clock 
counts, as listed in the table below, by the processor 
clock period. A 12 MHz processor clock has a clock 
period of 83 nanoseconds and requires an 80C286 
system clock (ClK input) of 24 MHz. 

Instruction Clock Count Assumptions 

·1. The instruction has been prefetched, decoded, 
and is ready for execution. Control transfer in· 
struction clock counts include all time required to 
fetch, decode, and prepare the next instruction for 
execution. 

2. Bus cycles do not require wait states. 

3. There are no processor extension data transfer or 
local bus HOLD requests. 

4. No exceptions occur during instruction execution. 

3-50 

Instruction Set Summary Notes 

AddreSSing displacements selected by the MOD 
field are not shown. If necessary they appear after 
the instruction fields shown. 

Ab,ove/below refers to unsigned value 

Greater refers to positive signed value 

less refers to less positive (more negative) signed 

values· 

if d = 1 then to register; if d = 0 then from register 

if w = 1 then word instruction; if w = 0 then byte 
instruction 

if s = 0 then 16-bit immediate data form the oper­
and 

if s = 1 then an immediate data byte is sign-ex­
tended to form the 16-bit operand 

x don't care 

z used for string primitives for comparison with 
ZF FLAG 

If two clock counts are given, the smaller refers to a 
register operand and the larger refers to a memory 
operand 

• = add one clock if offset calculation requires 
summing 3 elements 

n = number of times repeated 

m = number of bytes of code in next instruction 

level (l)-Lexical nesting level of the procedure 
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The following comments describe possible excep­
tions, side effects, and allowed usage for instruc­
tions in both operating modes of the 80C286. 

REAL ADDRESS MODE ONLY 
1. This is a protected mode instruction. Attempted 

execution in real address mode will result in an 
undefined opcode' exception (6). 

2. A segment overrun exception (13) will occur if a 
word operand reference at offset FFFF(H) is at­
tempted. 

3. This instruction may be executed in real address 
mode to initialize the CPU for protected mode. 

4. The IOPL and NT fields will remain O. 

5. Processor extension segment overrun interrupt 
(9) will occur if the operand exceeds the seg­
ment limit. 

EITHER MODE 
6. An exception may occ::ur, depending on the value 

of the operand. 

7. LOCK is automatically asserted regardless of the 
. presence or absence of the LOCK instruction 

prefix. 

8. LOCK does not remain active between all oper­
and transfers. 

PROTECTED VIRTUAL ADDRESS MODE ONLY 
9. A general protection exception (13) will occur if 

the memory operand cannot be used due to ei­
ther a segment limit or access rights violation. If 
a stack segment limit is violated, a stack seg­
ment overrun exception (12) occurs. 

10. For segment load operations, the CPL, RPL, and 
OPL must agree with privilege rules to avoid an 
exception. The segment must be present to 

avoid a not-present exception (11). If the 55 reg­
ister is the destination, and a segment not-pres­
ent violation occurs, a stack exception (12) oc­
curs. 

11. All segment descriptor accesses in the GOT or 
LOT made by this instruction will automatically 
assert LOCK to maintain descriptor integrity in 
multiprocessor systems. 

12. JMP, CALL, INT, RET, IRET instructions refer­
ring to another code segment will cause a gener­
al protection exception (13) if any privilege rule is 
violated. 

. 13. A general protection exception (13) occurs if 
CPL"* O. 
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14. A general protection exception (13) occurs if 
CPL> IOPL. 

15. The IF field of the flag word is not updated if CPL 
> IOPL. The IOPL field is updated only if 
CPL = O. 

16. Any violation of privilege rules as applied to the 
selector operand do not cause a protection ex­
ception; rather, the instruction does not return a 
result and the zero flag is cleared. 

17. If the starting address of the memory operand 
violates a segment limit, or an invalid access is 
attempted, a general protection exception (13) 
will occur before the ESC instruction is execut­
ed. A stack segment overrun exception (12) will 
occur if the stack limit is' violated by the oper­
and's starting address. If a segment limit is vio­
lated during an attempted data transfer then a 
processor extension segment overrun exception 
(9) occurs. 

18. The destination of an INT, JMP, CALL, RET or 
IRET instruction must be in the defined limit of a 
code segment or a general protection exception 
(13) will occur. 
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80C286 INSTRUCTION SET SUMMARY 

CLOCK COUNT COMMENTS 

fuNCTION Real 
Prolected 

Real 
Protected 

FORMAT " Virtual Virtual 
Address 

Address 
Addres. 

Address 
Mode 

Mode 
Mods 

Mode 

PATA TRANSFER 

~OV =Move: 

~egister to RegisterlMemory 1000100w mod reg rim 
, 

2,3' 2,3' 2 9 

~egister/memory to register 1000101w mod reg rim 2,5· 2.5· 2 9 

mmediate to register/memory 1100011 w modOOO rim data I dataifw= 1 I 2,3· 2,3' 2 9 

mmediate to register 1011w reg data dataifw=1 I 2 2 

~emory to accumulator 1010000w addr·low addr·high I 5 5 2 9 

~ccumulator to memory 1010001w addr·low addr·hlgh I 3 3 2 9 

~egister'memory to segment register 10001110 modO reg rim I 2,5' 17,19' 2 9,10,11 

~egment register to registerlmemory 10001100 mod 0 reg rim I 2,3* 2,3' 2 9 

PUSH = Push: 

~emory I 11111111 I mod 1 1 0 rim I 5' 5' 2 9 

~egister I 01010 reg I 3 3 2 9 

egment register 1000regl101 3 3 2 9 

~' 1011010801 'data '. I dsIIllI ... O I ,. 3. .' II 9 " , 

~-Pu$bM 1011000001 
'" '. 

17 17 2 9 

POP = Pop: 

Memory 1 10001111 ImodOOO r/ml 5' 5' 2 9 

Register I 01011 reg I 5 5 2 9 

Segment register loooreglll I (reg"'OI) 5 20 2 9,10,11 

PQPA-foj>Al " I 011 00001 I 19 19 II 9 

CHG = Exhcsnge: 

Register/memory with register I 1000011w Imodreg r/ml 3,5' 3,5* 2,7 7,9 

Register with accumulator I 10010 reg I 3 3 

N = Input from: 

ixedport 1,,1001 Ow I port I 5 5 14 

Variable port 1,110,1 Ow I 5 5 14 

bUT= Output to: 

ixed port 1",001, wi port I 3 3 14 

Wariable port 1111 0111w I 3 3 14 

~LAT=Transtate byte to AL I 11010111 I 5 5 9 

EA = Load EA to register I 10001101 I mod reg rim I 3' 3' 

DS = Load pOinter to OS I 11000101 1 mod reg r/ml (mod"'ll) 7' 21; 2 9,10,11 

ES = Load pOinter to ES I 11000100 1 mod reg r/ml ' (mod"'l) 7' 21' 2 9,10,11 

Shaded areas indicate instructions not available in 8086, 88 microsystems, 
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80C286 INSTRUCTION SET SUMMARY (Continued) 

CLOCK COUNT COMMENTS 

Real 
Protected 

Real 
Protected 

UNCTION FORMAT Virtual Virtual 
Address 

Address 
Address 

Address 
Mode 

Mode 
Mode 

Mode 

DATA TRANSFER (Continued) 

LAHF Load AH with Ilags I tOOlllll I 2 2 

SAHF ~ Store AH into lIags I 10011110 I 2 2 

PUSHF ~ Push lIags I 10011100 I 3 3 2 9 

POPF ~ Pop flags I 10011101 I 5 5 2,4 9,15 

ARITHMETIC 
ADD~Add: 

Reg/memory with register to either I OOOOOOdw I mod reg rIm I 2,7' 2,7' 2 9 

rnmediate to register/memory I 1 OOOOOsw I modOOO rIm I data Idatailsw ~ 011 3,7' 3,7' 2 9 

mmediate to accumulator I 0000010w I data I datailw~l I 3 3 

ADC ~ Add with carry: 

Reg/memory with register to either 10001 OOdw I modreg rIm I 2,7- 2,7: 2 9 

mmediate to register/memory 1100000sw I modOl0 rIm I data Idatailsw ~ 01 I . 3,7* 3,7* 2 \ 9 

mmediate to accumulator 10001010wi data dataifw~1 I 3 3 

NC ~ Increment: 

Register/memory I 1111 111 w I mod 0 0 0 rIm I 2,7' . 2,7- 2 9 

Register I 01000reg I 2 2 

SUB ~ Subtract: 

Reg/memory and register to either I 001010dw I modreg rIm I 2,7' 2,7' 2 9 

mmediate from register/memory 1100000sw I modl0l rIm I data I datailsw ~ 011 3.7· 3,7' 2 9 

rnmediate from accumulator I 0010110w I data I data il w~ 1 I 3 3 

SBB ~ Subtract with borrow: 

Reg/memory and register to either 100011 Odw I modreg rIm I 2,7' 2,7' 2 9 

mmediate from register/memory 11 OOOOOsw I modO 11 rIm I dala I datailsw~Ol I 3,7' 3,7' 2 9 

mmediate from accumulator 10001110wi data I datailw~1 I 3 3 

DEC ~ Decrement 

Register/memory I lllllllw ImodOOl r/ml 2,7' 2,7· 2 9 

Register I 01001 reg I 2 2 

CMP~Compare 

Register/memory with register 10011101 w ImOdreg r/ml 2,S' 2,S' 2 9 

Register with register/memory I 0011100w ImOdreg r/ml 2,7· 2,7' 2 9 

mmediate with register/memory 11 OOOOOsw I mod 1 11 r/ml data I datailsw~Ol I 3,6· 3,S' 2 9 

mmediate with accumulator 1001111 Ow I data I data~w~l I 3 3 

NEG ~ Change sign I 1111011wlmodOll r/ml 2 7' 2 9 

AAA ~ ASCII adjust lor add I 00110111 I 3 3 

DAA ~ Decimal adjusl lor add I 00100111 I 3 3 
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80C286 INSTRUCTION SET SUMMARY (Continued) 

CLOCK COUNT COMMENTS 

FUNCTION Real 
Protected 

Real 
Protected 

FORMAT Virtual Virtual 
Address 

Address 
Address 

Address 
Mode 

Mode 
Mode 

Mode 

~RITHMETIC (Continued) 

~AS ~ ASCII adjust for subtract I 00111111 I 3 3 

pAS ~ Decimal adjust for subtract I 00101111 I 3 3 

r,.UL ~ Multiply (unsigned): I 1111011w Imodl00 rlml 

~egister-Byle 13 13 
~egister-Word 21 21 
~emory-Byle 16' 16' 2 9 
~emory.WOrd 24' 24' 2 9 

MUL ~ Integer mulliply (signed): I 1111011w Imodl0l rlml 

~egister-Byle 13 13 
~egister-WOrd 21 21 
~emOry-Byle t6' 16' 2 9 
l'1emory-Word 24' 24' 2 9 

MI.!L "'1JItegtr IinmedIate multiply I 01101 081jmodn9!1: rlml dala 1 d!IIa'ij" * 0, I 21,14" 21,24' II \I 
[sIgned) 

" 
" 

DIV ~ Divide (unsigned) 1,1,,01, w Imod 110 rIm I 
Register-Byle 14 14 6 6 
Register-Word 22 22 6 6 
Memory-Byle 17' 17' 2,6 6,9 
Memory-Word 25' 25' 2,6 6,9 

DIV ~ Integer divide (signed) I 1111011w Imodl11 rlml 

Register-Byle 17 17 6 6 
Register~Word . 25 25 6 6 
Memory-Byle 20' 20' 2,6 6,9 
Memory-Word 28' 28' 2,6 6,9 

AAM ~ ASCII adjust for multiply I 11010100 100001010 I 16 16 

AAD ~ ASCII adjust for divide I 11010101 1000010101 14 14 

CBW ~ Convert byle to word I 10011000 I 2 2 

CWD~ Convert word to double word I 10011001 I 2 2 

OGIC 
Shift/Rotate Instructions: 

RegisterlMemory by 1 1,101 OOOw ImodTTT rlml 2.7· 2,7' 2 9 

RegisterlMemory by CL 111 01 001 w·lmodTTT rlml 5+n,8+n' 5+n,8+n' 2 9 

l'Ieglsler/Memo.-r by Count 11 f OOOOOW III'IOI.iTTT rlml count I 5+",II+n' 5+0.8+n' 2 9 

TTY InstrucUen 
000 AOL 
001 AOA 
010 ACL 
011 ACA 
100 SHL/SAL 
101 SHA 
111 SAA 

Shaded areas indicate instructions not available in 8086. 88 microsystems_ 
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80C286 INSTRUCTION SET SUMMARY (Continued) 

CLOCK COUNT COMMENTS 

Real 
Protected 

Real 
Protected 

FUNCTION FORMAT Virtual Virtual 
Address 

Address 
Address 

Address 
Mode 

Mode 
Mode 

Mode 

!ARITHMETIC (Continued) 

!AND~And: 

~eg/memory and register to either 1001 OOOdw I mod reg rim I 2,7' 2,7' 2 9 

mmediate to register/memory 11 OOOOOOw I modi 00 rim I data I dataifw~1 I 3,7' 3,7' 2 9 

mmediate to accumulator 10010010wl data I dataifw~11 3 3 

EST ~ And function to flags, no result: 

~egister/memory and register I 100001 Ow I modreg rim I 2,6· 2,6* 2 9 

mmediate data and register/memory I 1 1 1 1 0 1 1 w I mod 000 rim I data I dataifw~1 I 3,6- 3,6' 2 9 

mmediate data and accumulator I 1010100w I data I data ifw~ 1 I 3 3 

PR~Or: 

Reg/memory and register to either I 000010dw I modreg r/m'l 2,7' 2,7' 2 9 

mmediate to register/memory I 1 OOOOOOw I modOOI rim I data I dataifw~1 I 3,7' 3,7' 2 9 

mmediate to accumulator 10000110wl data I dataifw~1 I 3 3 

OR ~ Exclusive or: 

Reg/memory and register to either 10011 OOdw I mod reg rim I 2,7' 2,7' 2 9 

mmediate to register/memory 11 OOOOOOw I modll 0 rim I data I dataifw = 1 I 3,7' 3,7' 2 9 

mmediate to accumulator 10011010wl data I data ifw= 11 3 3 

NOT= Invert register/memory 11 111 011 w I mod 0.1 0 rim I 2,7' 2,7' 2 9 

TAING MANIPULATION: 

MOVS = Move byte/word 1010010w 5 5 2 9' 

CMPS = Compare bytelword 1010011 w 8 8 2 9 

CAS = Scan bytelword 1010111 w 7 7 2 9 

ODS = Load byte/wd to ALI AX 1010110w 5 5 2 9 

TOS ~ Star bytelwd from ALIA 1010101 w 3 3 2 9 

fiIS= Input byie/wd from OX port I 01.10110w I 5 5 ,2 9,14 

GUTS'" Output byte/wd to OX port .!O.110111WI 5 5 2 9,14 

Repeated by count in CX 

r,.OVs ~ Move string I 11110011 I 1010010w I 5+4n 5+4n 2 9 

FMPS = Compare string I 1111001 z I 1010011 wi 5+9n 5+9n 2,8 8,9 

~CAS = Scan string I 1111001 z I 1010111 wi 5+8n 5+8n 2,8 8,9 

ODS = Load string I 11110011 1101011 Ow I 5+4n 5+4n 2,8 8,9 

~TOS= Store string I 11110011 11010101 wi 4+3n 4+3~ 2,8 8,9 

filS'" Input siring I 11110011 I 01101'1 OW I· 5+4n 5+41\ 2 9,14 

~=Outputs1ring I 11110011 I0110111Wl 5+4n 5+40 2 9,14 

Shaded areas indicate instructions not available in 8086, 88.microsystems. 
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80C286 INSTRUCTION SET SUMMARY (Continued) 

CLOCK COUNT COMMENTS 

Real 
Protected 

Real 
Protected 

FUNCTION FORMAT Virtual Virtual 
Address 

Address 
Address 

Address 
Mode 

Mode 
Mode 

Mode 

CONTROL TRANSFER 
CALL ~Call: 

Direct within segment I 11101000 I disp-Iow I disp-high I 7+m 7+m 2 18 

Register/memory I 11111111 ImOdOl0 r/ml 7 +m,11+m'" 7+m,11+m" 2,8 8,9,18 
indirect within segment 

Direct intersegment I 10011010 I segment offset I 13+m 26+m 2 11,12,18 

Protected Mode Only (Dlrectlntersegment): I segment selector I 
Via call gate to same privilege level 41+m 8,11,12,18 
Via call 'gate to different privilege level, no parameters . 82+m 8,11,12,18 
Via call gate to different privilege level, x parameters 86 +4x+m 8,11,12,18 
ViaTSS 177+m 8,11,12,18 

Via task gate 182+m 8,11,12,18 

Indirect intersegment I 11111111 ImOdOll r/ml (mod"'l!) 16+m 29+m'" 2 8,9,11,12,18 

Protected Mode Only (Indirect Intersegment): 
Via call gate to same privilege level 44+m" 8,9,11,12,18 

Via call gate to different privilege level, no parameters 83 +m' 8,9,11,12,18 

Via call gate to different privilege level, x parameters 90+4x +m'" 8,9,11,12,18 
ViaTSS 180+m" 8,9,11,12,18 
Via task gate 185+m' 8,9,11,12,18 

JMP ~ Unconditional lump: 

Short/long I 11 i 01 011 I disp-Iow I 7+m 7+m 18 

Direct within segment I 11101001 I disp-Iow I disp-high I 7+m 7+m 18 

Register/memory indirect within segment I 11111111 ImOdl00 rim I 7+m,11+m* 7+m,11+m* 2 9,18 

Direct intersegment I 11101010 I segment offset I II+m 23+m 11,12,18 

Protected Mode Only (Dlrecllntersegment): I segment selector I 
Via call gate to same privilege level 38+m 8,11,12,18 

ViaTSS 175+m 8,11,12,18 

Via task gate 180+m 8,11,12,18 

Indirect intersegment I 11111111 Imodl01 rim I (mod"'11) 15+m· 26+m* 2 8,9,11,12,18 

Protected Mode Only (Indirect Intersegment): 
Via call gate to same privilege level 41+m· 8,9,11,12,18 

ViaTSS 178+m* 8,9,11,12,18 

Via task gate 183+m' 8,9,11,12,18 

RET ~ Return from CALL: 

Within segment I 11000011 I ll-tm II+m 2 8,9,18 

Within seg adding immed to SP I 11000010 I data-low I data-high I II+m II+m 2 8,9,18 

Intersegment I 11001011 I 15+m 25+m 2 8,9,11,12,18 

Intersegment adding immediate to SP I 11001010 I data-low I data-high I 15+m 2 8,9,11,12,18 

Protected Mode Only (RET): 
To different privilege level 55+m 9,11,12,18 
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80C286 INSTRUCTION SET SUMMARY (Continued) 

CLOCK COUNT COMMENTS 

Real 
Protected 

Real 
Protected 

FUNCTION FORMAT Virtual Virtual 
Address 

Address 
Addres. 

Address 
Mode 

Mode 
Mode 

Mode 

CONTROL TRANSFER (Continued) 

JE/JZ ~ Jump on equal zero Otll0l00 I disp 7+mor3 7+mor3 18 

JL/JNGE ~Jump on less/not greater or equal 01111100 I disp 7+mor3 7+mor3, 18 

JLE/JNG~Jump on less or equal/not greater 01111110 disp 7+mor3 7+mor3 18 

JBI JNAE ~ Jump on below/not above or equal 01110010 disp 7+mor3 7+mor3 18 

JBEI JNA ~ Jump on below or equal/not above 01110110 disp 7+mor3 7+mor3 18 

JP/JPE~Jump on parity/parity even 01111010 disp 7+mor3 7+mor3 18 

JO ~ Jump on overflow 01110000 disp 7+mor3 7+mor3 18 

JS ~ Jump on sign 01111000 disp 7+mor3 7+mor3 18 

JNEI JNZ ~ Jump on not equal/not zero 01110101 disp 7+mor3 7+mor3 18, 

JNU JGE ~ Jump on not less/greater or equal 01111101 disp 7+mor3 7+mor3 18 

JNLE/JG ~Jump on not less or equal/greater 01111111 disp 7+mor3 7+mor3 18 

JNBI JAE ~ Jump on not below/above or equal 01110011 disp 7+mor3 7+mor3 18 

JNBE/JA~Jump on not below or equal/above 01110111 disp 7+mor3 7+mor3 18 

JNP/JPO~Jump on not par/par odd 01111011 disp 7+mor3 7+mor3 18 

JNO ~ Jump on not overflow 01110001 disp 7+mor3 7+mor3 18 

JNS ~ Jump on not Sign 01111001 disp 7+mor3 7+mor3 18 

LOOP ~ Loop CX times 11100010 disp 8 +mor4 8+mor4 18 

LOOPZ/LOOPE ~ Loop while zero/equal 11100001 dlsp S+mor4 8+mor4 18 

LOOPNZ/LOOPNE =' Loop while not zero/equal 11100000 disp B+mor4 8+mor4 18 

JCXZ ~ Jump on CX zero 111'00011 disp 8+mor4 8+mor4 18 

eNTER .. Enter Procedure I 11001000 I dala-tow I data4ligh I L I 2,8 8,9 

L-O - 11 11 
2,8 8,9 

L=1 15 15 
L>l lEl+4(L -1) lEl+4(L -1) 

2,8 8,9 
2,8 8,9 

LEAVE ~ Leave ProcedUAI I 11001001 I 5 5 

INT ~ Interrupt: 

Type specified I 11001101 I type I 23+m 2,7,8 

Type 3 I 11001100 I 23+m 2,7,8 

INTO~ Interrupt on overflow I 11001110 I 24 +mor3 2,6,8 
(3 il no (3 il no 

interrupt) interrupt) 

Shaded areas indicate instructions not available in 8086, 88 microsystems. 
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80C286 INSTRUCTION SET SUMMARY (Continued) 

CLOCK COUNT COMMENTS 

FUNCTION ' Real 
Protected 

Real 
Protected 

FORMAT Virtual Virtual 
Address 

Address 
Address 

Address 
Mode 

Mode 
Mode 

Mode 

ONTROL TRANSFER (Continued) 

Protected Mode Only: 
Via interrupt or trap gate to same privilege level 40+ m 7,8,11,12,18' 
Via interrupt or trap gate to fit different privilege level 78+ m 7,8,11,12,18 
Via Task Gate 167+m 7,8,11,12,18 

RET= Interrupt return I t tOOt 111 I 17+m 31+ m 2,4 8,9,11,12,15,18 

Protected Mode Only: 
To different privilege level 55+m 8,9,11,12,15,18 
To different task (NT= 1) 169+m 8,9,11,12,18 

... ~ ... , 

~UNO*o.ot valU$oo.rtOfrarJ9$ I 01100010 I mod!!!!' rIm I ',IS' 13' U' e.1I.9.11.1a.l~ , 
(tJse !NT clock 

oountlf 

~61 
PROCESSOR CONTROL 

CLC = Clear carry I 11111000 , 2 2 

CMC = Complement carry I 11110101 
, 

2 2 

STC = Set carry 11111001 
, 

2 2 

CLD = Clear direction 11111100 , 2 2 

~TD = Set direction 11111101 , 2 2 

F,LI = Clear interrupt 11111010 , 3 3 14 

~TI = Set interrupt 11111011 
, 

2 2 14 

~LT=Halt 11110100 , 2 2 13 

WAIT = Wait 10011011 
, 

3 3 

OCK = Bus lock prefix I 11110000 , 0 0 14 

~ .. ~-~.h.o' 1000011111000001101 2 2 8 13 """ 

~sc = Processor Extension Escape 1,,01, TTT I mod LLL rim" 9-20' 9-20' 5,8 8,17 

(TIT LLL are opcode to processor extension) 

~EG= Segment civemd~ Prefix I 001 reg 110 

" 

0 0 ,-
""'" I """. """ CONTIIOl " " " 

P'm=Loadglobar d~1able register 100001111 100000001 ImodOl0 rIm! 11' II' ,a;s 9,13 " 
, , 

~=store_daaCl1ptotiabte',eglster I 00001111 I 00000001 ImodOOO rIm I II' II' "2,3 8 
, 

~':'Loadintenupt~1abIere9ls1er I 00001111 100000001 ImodOl1 rIm I 1.2' I!" ,2.3 "9,13 

~=storetnlenuptdaacrlplor1able~ I 00001111 I 00000001 ImodOO! rlml . " 
ll!' 12'" " '~' 9 

f.un'=!.O.d lDc8I~taI\le register 
.. 

, " _ regI$ter memory I 00001111 I 00'000000 I mod 0 1 0 r/ml 17;19-
" 

j IM1.13 

~=Sloielooal~1abIeregl$ter 
10 reglsterlma/ytilry • 100001111 100000000 ImodOOO rIm I a;s' 1 ,\I 

Shaded areas indicate instructio,ns not available in 8086, 88 micro systems, 

3-58 



inter 80C286 

80C286 INSTRUCTION SET SUMMARY (Continued) 

CLOCK COUNT COMMENTS 

Real 
Protected 

Real 
Protected 

FUNCTION FORMAT Virtual Virtual 
Addre.s 

Address 
Addre •• 

Address 
Mode 

Mode 
Mode 

Mode 

PROTECTION CONTROL (Continued) 

LTR = Local \ask register 
from register/memory I 00001111 I 00000000 I modOll rIm I 11,19' t 9,11,13 

STR = Stote \a$k register 
\0 register IlJemDIY I 00001111 I 00000000 I modOOl rIm I 2,3' 1 9 

LMSW= Load machine status word 
from reglster/memory I 00001111 I 00000001 Imodl10 rIm I 3,e' 3.6' 2,3 9,13 

SMSW = Store machine status word I 00001111 I 00000001 I madl00 rIm I 2.a' 2,3' 2,3 9 

LAA ~ Load acoess rights 
from register/memory I 00001111 I 00000010 I modreg rim I 14,16' 1 S,11,le , 

LSL = Leer! $&gment timit 
from regmer/memory I 00001111 I 00000011 I madreg rIm I 14.16' 1 9,11,16 

ARPL = Adjust requested prMlege level: I 01100011 I mod reg rIm I 10"'.11*- 2 8,9 
from registerlmemory 

VEAA M VerilY read access: register/memory I 00001111 I 00000000 I modl00r/m I 14.16' 1 9.11.16 

VEflR= verify write ecoess: I 00001111 I 00000000 I mod 1 01 rIm I 14.1e" 1 9.11.16 

Shaded areas indicate instructions not available in 8086. 88 microsystems. 
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Footnotes 

The Effective Address (EA) of the memory operand 
is computed according to the mod and rim fields: 

if mod = 11 then rim is treated as a REG field 
if mod = 00 then OISP = 0·, disp-Iow and disp-high 
are absent 
if mod = 01 then OISP = disp-Iow sign-extended to 
16 bits, disp-high is absent 
if mod = 10 then OISP = disp-high: disp-Iow 

if rim = 000 then EA = (8X) + (SI) + OISP 
if rim = 001 then EA = (BX) + (01) + OISP 
if rim = 010 then EA = (BP) + (SI) + OISP 
if rim = 011 then EA = (BP) + (01),+ OISP 
if rim = 100 then EA = (SI) + OISP 
if rim = 101 ,then EA = (01) + OISP 
if rim"'; 110 then EA = (BP) + OISp· 
ifr/m = 111 then EA = (BX) + OISP 

OISP follows 2nd byte of instruction (before data if 
required) 
"except if mod = 00 and rIm = 110 then EQ = disp-high: disp-Iow, 

SEGMENT OVERRIDE PREFIX 

'10 0 1 reg 1 1 01 

reg is assigned according to the following: 

Segment 
reg Register 
00 ES 
01 CS 
10 SS 
11 DC 

REG is assigned according to the following table: 
16-Blt (w = 1) a-Bit (w = 0) 

000 AX 000 AL 
001 CX 001 CL 
010 OX 010 OL 
011 BX 011 BL 
100 SP 100 AH 
101 BP 101 CH 
110 SI 110 OH 
111 01 111 BH 

The physical addresses of all operands addressed 
by the BP register are computed using the SS seg­
ment register. The physical addresses of the desti­
nation operands of the string primitive operations 
(those addressed by the 01 register) are computed 
using the ES segment, which may not be overridden. 

DATA SHEET REVISION REVIEW 

The following list represents key differences be­
tween this and the -001 data sheet. Please review 
this summary carefully. 

1. The typical supply current (Icc) specification has 
been improved from 180 mA to 125 mAo 

2_ The "Typical Icc vs Frequency for Different Out­
put Loads" graph has been updated. 

3. The package thermal data section has been ex­
panded. 

4. The "80C286 Reset Input Timing and Subsequent 
Processor Cycle Phase" diagram has been updat­
ed. 
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80286 
High Performance Microprocessor 

with Memory Management and Protection 
(80286-12, 80286-10, 80286-8) 

• High Performance HMOS III Technology 

• Large Address Space: 
-16 Megabytes Physical 
- 1 Gigabyte Virtual per Task 

• Integrated Memory Management, Four­
Level Memory Protection and Support 
for Virtual Memory and Operating 
Systems ' 

• High Bandwidth Bus Interface 
(12.5 Megabyte/Sec) 

• Industry Standard O.S. Support: 
-MS-DOS*, UNIX*, XENIX*, iRMX® 

• Two 8086 Upward Compatible 
Operating Modes: 
- 8086 Real Address Mode 
- Protected Virtual Address Mode 

• Optional Processor Extension: 
- 80287 High Performance 80-bit 

Numeric Data Processor 

• Range of Clock Rates 
-12.5 MHz for 80286-12 
-10 ,MHz for 80286-10 
- 8 MHz for 80826-8 

• Complete System Development 
Support: 
- Assembler, PL/M, Pascal, FORTRAN, 

and In-Circuit-Emulator (ICETM-286) 

• Available in 68 Pin Ceramic Lee 
(Leadless Chip Carrier), PGA (Pin Grid 
Array), and PLCC (PlastiC Leaded Chip 

. Carrier) Packages 
(See Packaging Spec .• Order #231369) 

The 80286 is an advanced, high-performance microprocessor with specially optimized capabilities for multiple 
user and multi-tasking systems. The 80286 has built-in memory protection that supports operating system and 
task isolation as well as program and data privacy within tasks. A 12 MHz 80286 provides six times or more 
throughput than the standard 5 MHz 8086. The 80286 includes memory management capabilities that map 230 

(one gigabyte) of virtual address space per task into 224 bytes (16 megabytes) of physical memory. 

The 80286 is upward compatible with 8086 and 88 software. Using 8086 real address mode, the 80286 is 
object'code compatible with existing 8086, 88 software. In protected virtual address mode, the 80286 is source 
code compatible with 8086, 88 software and may require upgrading to use virtual addresses supported by the 
80286's integrated memory management and protection mechanism. Both modes operate at full 80286 per­
formance and execute a superset of the 8086 and 88 instructions. 

The 80286 provides special operations to support the efficient implementation and execution of operating 
systems. For example, one instruction can end execution of one task, save its state, switch to a new task, load 
its state, and start execution of the new task. The 80286 also supports virtual memory systems by providing a 
segment-not-present exception and restartable instructions. 

'XENIX and MS-DOS are trademarks of Microsoft Corp. 
'UNIX is a trademark of Bell Labs or AT&T 
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Figure 1.80286 Internal Block Diagram 
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Component Pad Views-As viewed from underside of 
component when mounted on the board. 

P.C. Board Views-As viewed from the component 
side of the P.C. board. 
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Table 1. Pin Description 
The following pin function descriptions are for the 80286 microprocessor: 

Symbol Type Name and Function 

ClK I SYSTEM CLOCK provides the fundamental timing for 80286 systems. It is divided by two 
inside the 80286 to generate the processor clock. The internal divide-by-two circuitry can 
be synchronized to an external clock generator by a lOW to HIGH transition on the RESET 
input. 

015- 00 1/0 DATA BUS inputs data during memory, 1/0, and interrupt acknowledge read cycles; 
outputs data during memory and 110 write cycles. The data bus is active HIGH and floats to 
3-state OFF during bus hold acknowledge. 

A23-AO 0 ADDRESS BUS outputs physical memory and 1/0 port addresses. AO is lOW when data is 
to be transferred on pins 07-0. A23-A16 are lOW during 1/0 transfers. The address bus is 
active HIGH and floats to 3-state OFF during bus hold acknowledge. 

BHE 0 BUS HIGH ENABLE indicates transfer or data on the upper byte of the data bus. 015-8. 
Eight-bit oriented devices assigned to the upper byte of the data bus would normally use 
BHE to condition chip select functions. SHE is active LOW and floats to 3-state OFF during 
bus hold acknowledge. 

BHE and AO Encodings 

BHEValue AOValue Function 

0 0 Word transfer 
0 1 Byte transfer on upper half of data bus (015-08) 
1 0 Byte transfer on lower half of data bus (07-0) 
1 1 Will never occur 

S1,SO a BUS CYCLE STATUS indicates initiation of a bus cycle and, along with MilO and COOl 
INTA, defines the type of bus cycle. The bus is in a Ts state whenever one or both are LOW, 
Sl and SO are active LOW and float to 3-state OFF during bus hold acknowledge. 

80286 Bus'Cycle Status Definition 

CODIINTA 
, 

M/IO Sl SO Bus Cycle Initiated 

o (LOW) 0 0 0 Interrupt acknowledge 
0 0 0 1 Will not occur 
0 0 1 0 Will not occur 
0 0 1 1 None; not a status cycle 
0 1 0 0 IF A 1 = 1 then halt; else shutdown 
0 1 0 1 Memory data read 
0 1 1 0 Memory data write 
0 1 1 1 None; not a status cycle 
1 (HIGH) 0 0 0 Will not occur 
1 0 0 1 1/0 read 
1 0 1 0 110 write 
1 0 1 1 None; not a status cycle 
1 1 0 0 Will not occur 
1 1 0 1 Memory instruction read 
1 1 1 0 Will not occur 
1 1 1 1 None; not a status cycle 

MIlO 0 MEMORY I/O SELECT distinguishes memory access from 1/0 access. If HIGH during Ts, a 
memory cycle or a halt/shutdown cyc~ is in progress. If LOW, an 1/0 cycle or an interrupt 
acknowledge cycle is in progress. MilO floats to 3-state OFF during bus hold acknowledge. 

COD/INTA 0 CODE/INTERRUPT ACKNOWLEDGE distinguishes instruction fetch cycles from memory 
data read cycles. Also distinguishes interrupt acknowledge cycles from 1/0 cycles. COOl 
INTA floats to 3-state OFF during bus hold acknowledge. Its timing is the same as M/iO. 

LOCK 0 BUS LOCK indicates that other system bus masters are not to gain control of the system 
bus for the current and the following bus cycle. The LOCK signal may be activated explicitly 
by the "LOCK" instruction prefix or automatically by 80286 hardware during memory XCHG 
instructions, interrupt acknowledge, or descriptor table access. LOCK is active lOW and 
floats to 3-state OFF during bus hold acknowledge. 

READY I BUS READY terminates a bus cycle. Bus cycles are extended without limit until terminated 
by READY LOW. READY is an active LOW synchronous input requiring setup and hold 
times relative to the system clock be met for correct operation. READY is ignored during 
bus hold acknowledge. 
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Table 1. Pin Description (Continued) 

Symbol Type Name and Function 

HOLD I BUS HOLD REQUEST AND HOLD ACKNOWLEDGE control ownership of 
HLDA 0 the 80286 local bus. The HOLD input allows another local bus master to 

request control of the local bus. When control is granted, the 80286 will float 
its bus drivers to 3-state OFF .and then activate HLDA, thus entering the bus 
hold acknowledge condition. The local' bus will remain granted to the 
requesting master until HOLD becomes inactive which results in the 80286 
deactivating HLDA and regaining control of the local bus. This terminates the 
bus hold acknowledge condition. HOLD may be asynchronous to the system 
clock. These signals are active HIGH. 

INTR I INTERRUPT REQUEST requests the 80286 to suspend its current program 
execution and service a pending external request. Interrupt requests are 
masked whenever the interrupt enable bit in the flag word is cleared. When 
the 80286 responds to an interrupt request, it performs two interrupt 
acknowledge bus cycles to read an 8-bit interrupt vector that identifies the 
source of the interrupt. To assure program interruption, INTR must remain 
active until the first interrupt acknowledge cycle is completed. INTR is 
sampled at the beginning of each processor cycle and must be active HIGH 
at least two processor cycles before the current instruction ends in order to 
interrupt before the next instruction. INTR is level sensitive, active HIGH, and 
may be asynchronous to the system clock. 

NMI I NON"MASKABLE INTERRUPT REQUEST interrupts the 80286 with an 
internally supplied vector value of 2. No interrupt acknowledge cycles are 
performed. The interrupt enable bit in the 80286 flag word does not affect this 
input. The NMI input is active HIGH, may be asynchronous to the system 
clock. and is edge triggered after internal synchronization. For proper 
recognition. the input must have been previously LOW for at least four system 
clock cycles and remain HIGH for at least four system clock cycles. 

PEREa I PROCESSOR EXTENSION OPERAND REQUEST AND ACKNOWLEDGE 
PEACK 0 extend the memory management and protection capabilities of the 80286 to 

processor extensions. The PEREa input requests the 80286 to perform a 
data operand transfer for a processor extension. The PEACK output signals 
the processor extension when the requested operand is being transferred. 
PEREa is active HIGH and floats to 3-state OFF during bus hold ___ 
acknowledge. PEACK may be asynchronous to the system clock. PEACK is 
active LOW. 

BUSY I PROCESSOR EXTENSION BUSY AND ERROR indicate the operating 
ERROR I condition of a processor extension to the 80286. An active BUSY input stops 

80286 program execution on WAIT and some ESC instructions until BUSY 
becomes inactive (HIGH). The 80286 may be interrupted while waiting for 
BUSY to become inac,tive. An active ERROR input causes the 80286 to 
perform a processor extension interrupt when executing WAIT or some ESC 
instructions. These inputs are active LOW and may be asynchronous to the 
system clock. These inputs have internal pull-up resistors. 
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Table 1. Pin Description (Continued) 

Symbol Type Name and Function 

RESET I SYSTEM RESET clears the internal logic of the 80286 and is active HIGH. 
The 80286 may be reinitialized at any time with a lOW to HIGH transition on 
RESET which remains active for more than 16 system clock cycles. During 
RESET active. the output pins of the 80286 enter the state shown below: 

80286 Pin State Duri"ng Reset 

Pin Value Pin Names 

1 (HIGH) SO. S1. PEACK. A23-AO, BHE. lOCK 
o (lOW) MliD. CODIINTA. HlDA (Note 1) 
3-stateOFF D1S-Do 

Operation of the 80286 begins after a HIGH to lOW transition on RESET. 
The HIGH to lOW transition of RESET must be synchronous to the system 
clock. Approximately 38 ClK cycles from the trailing edge of RESET are 
required by the 80286 for internal initialization before the first bus cycle. to 
fetch code from the power-on execution address. occurs. 
A lOW to HIGH transition of RESET synchronous to the system clock will 
end a processor cycle at the second HIGH to lOW transition of the system 
clock. The lOW to HIGH transition of RESET may be asynchronous to the 
system clock; however. in this case it cannot be predetermined which phase 
of the processor clock will occur during the next system clock period. 
Synchronous lOW to HIGH transitions of RESET are required only for 
systems where the processor clock must be phase synchronous to another 
clock. 

Vss I SYSTEM GROUND: 0 Volts. 

Vee I SYSTEM POWER: + 5 Volt Power Supply. 

CAP I SUBSTRATEFILTERCAPACITOR:aO.047/-,F ± 20% 12V capacitor must 
be connected between this pin and ground. This capacitor filters the output of 
the internal substrate bias generator. A maximum DC leakage current of 1 /-,A 
is allowed through the capacitor. 
For correct operation of the 80286. the substrate bias generator must charge 
this capacitor to its operating voltage. The capacitor chargeup time is 5 
milliseconds (max.) after Vee and ClK reach their specified AC and DC 
parameters. RESET may be applied to prevent spurious activity by the CPU 
during this time. After this time. the 80286 processor clock can be 
synchronized to another clock by pulsing RESET lOW synchronous to the 
system clock. 

NOTE: 
1. HlDA is only low if HOLD is inactive (low). 
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FUNCTIONAL DESCRIPTION 

Introduction 

The 80286 is an advanced, high-performance micro­
proc.essor with specially optimized capabilities for 
multiple user and multi-tasking systems. Depending 
on the application, a 12 MHz 80286's performance 

. is up to six times faster than the standard 5 MHz 
8086's, while providing complete upward software 
compatibility with Intel's 8086, 88, and 186 family of 
CPU's. 

The 80286 operates in two modes: 8086 real ad­
dress mode and protected virtual address mode. 
Both modes execute a superset of the 8086 and 88 
instruction set. 

In 8086 real address mode programs. use real ad­
dresses with up to one megabyte of address space. 
Programs use virtual addresses in protected virtual 
address mode, also called protected mode. In pro­
tected mode, the 80286 CPU automatically maps 1 
gigabyte of virtual addresses per task into a 16 
":legabyte real address space. This mode also pro­
vides memory protection to isolate the operating 
system and ensure privacy of each tasks' programs 
and data. Both modes provide the same base in­
struction set, registers, and addressing modes. 

The following Functional Description describes first, 
the base 80286 architecture common to both 
modes, second, 8086 real address mode, and third, 
protected mode. 

80286 BASE ARCHITECTURE 

The 8086, 88, 186, and 286 CPU family all contain 
the same basic set of registers, instructions, and 

• BYTE 
ADDRESSABLE 
(S·BIT 
REGISTER 
NAMES 
SHOWN) 

16·BIT 
REGISTER 

NAME 
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ex 

BP 
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o I 
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OH OL 

CH CL 
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GENERAL 
REGISTERS 

I 

I 
) 
I 

addressing modes. The 80286 processor is upward 
compatible with the 8086,8088, and 80186 CPU's. 

Register Set 

The 80286 base architecture has fifteen registers as 
shown in Figure 3. These registers are grouped into 
the following four categories: 

Ge~eral Registers: Eight 16-bit general purpose 
registers used to contain arithmetic and logical oper­
ands. Four of these (AX, BX, CX, and DX) can be 
used either in their entirety as 16-bit words or split 
into pairs of separate 8-bit registers. 

Segment Registers: Four 16-bit special purpose 
registers select, at any given time, the segments of 
memory that are immediately addressable for code, 
stack, and data. (For usage, refer to Memory Organi­
zation.) 

Base and Index Registers: Four of the general pur­
pose registers may also be used to determine offset 
addresses. of operands in memory. These registers 
may contain base addresses or indexes to particular 
locations within a segment. The addressing mode 
determines the specific registers used for operand 
address calculations. 

Status and Control Registers: The 3 16-bit special 
purpose registers in figure.3A record or control cer­
tain aspects of the 80286 processor state including 
the Instruction Pointer, which contains the offset ad­
dress of the next sequential instruction to be execut­
ed. 

Figure 3. Register Set 
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STATUS FLAGS. 

PARITY ~~~~~~~~~P=l=~l-l AUIUUARV CARAV :: 

CONTROL FLAGS: 

LJ=~==== TA"PF~ INTERRUPT EKABLE 
OtAECTtONFL.&a 

SPECIAL FIELDS: 

L_--===========IiOPRIYILEGELEVEL NESTED TASIC FLAO 

~INTELRESl:AVED TASIC SWITCH 
"AOCESSOR EXTENSION EMULATED 

MONITOR PAOCESSOAEXTtNSlON :===~~ 
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Figure 3a. Status and Control Register Bit Functions 

Flags Word Description 

The Flags word (Flags) records specific characteris­
tics of the result of logical and arithmetic instructions 
(bits 0, 2, 4, 6, 7, and 11) and controls the operation 
of the 80286 within a given operating mode (bits 8 
and 9). Flags is a 16-bit register. The function of the 
flag bits is given in Table 2. 

Instruction Set 

The instruction set is divided into seven categories: 
data transfer, arithmetic, shift/rotate/logical, string 
manipulation, control transfer, high level instruc­
tions, and processor control. These categories are 
summarized in Figure 4. 

An 80286 instruction can reference zero, one, or two 
operands; where an operand resides in a register,. in 
the instruction itself, or in memory. Zero-operand in­
structions (e.g. NOP and HL T) are usually one byte 
long. One-operand instructions (e.g. INC and DEC) 
are usually two bytes long but some are encoded in 
only one byte. One-operand instructions may refer­
ence a register or memory location. Two-operand 
instructions permit the following six types of instruc­
tion operations: 

-Register to Register 

-Memory to Register 

-Immediate to Register 

-Memory to Memory 

-Register to Memory 

-Immediate to Memory 
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Table 2 Flags Word Bit Functions 
Bit Function 

, 

Position 
Name 

0 CF Carry Flag-Set on high-order bit 
carry or borrow; cleared otherwise 

2 PF Parity Flag-Set if low-order 8 bits 
of result contain an even number of 
1-bits; cleared otherwise 

4 AF Set on carry from or borrow to the 
low order four bits of AL; cleared 
otherwise 

6 ZF Zero Flag-Set if result is zero; 
cleared otherwise 

7 SF Sign Flag-Set equal to high-order 
bit of result (0 if positive, 1 if negative) 

11 OF Overflow Flag-Set if result is a too-
large positive number or a too-small 
negative number (excluding sign-bit) 
to fit in destination operand; cleared 
otherwise 

8 TF Single Step Flag-Once set, a sin-
gle step interrupt occurs after the 
next instruction executes. TF is 
cleared by the single step interrupt. 

9 IF Interrupt-enable Flag-When set, 
maskable interrupts will cause the 
CPU to transfer control to an inter-
rupt vector specified location. 

10 DF Direction Flag-Causes string 
instructions to auto decrement 
the appropriate index registers 
when set. Clearing DF causes 
auto increment. 
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Two-operand instructions (e.g. MOV and ADD) are 
usually three to six bytes long. Memory to memory 
operations are provided by a special class of string 
instructions requiring one to three bytes. For de­
tailed instruction formats and encodings refer to the 
instruction set summary at the end of this document. 

For detailed operation and usage of each instruc­
tion, see Appendix of .80286 Programmer's Refer­
ence Manual (Order No 210498) 

GENERAL PURPOSE 

MOV Move byte or word 

PUSH Push word onto stack 

POP Pop word off stack 

PUSHA Push all registers on stack 

POPA Pop all registers from stack 

XCHG Exchange byte or word 

XLAT Translate byte 

INPUT/OUTPUT 

IN I nput byte or word 

OUT Output byte or word 

ADDRESS OBJECT 

LEA Load effective address 

LDS Load pointer using DS 

LES Load pointer using ES 

FLAG TRANSFER 

LAHF Load AH register from flags 

SAHF Store AH register in flags 

PUSHF Push flags onto stack 

POPF Pop flags off stack 

Figure 4a. Data Transfer Instructions 

MOVS Move byte or word string 

INS Input bytes or word string 

OUTS Output bytes or word string 

CMPS Compare byte or word string 

SCAS Scan byte or word string 

LODS Load byte or word string 

STOS Store byte or word string 

REP Repeat 

REPE/REPZ Repeat while equal/zero 

REPNE/REPNZ Repeat while not equal/not zero 

Figure 4c. String Instructions 
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ADDITION 

ADD Add byte or word 

ADC Add byte or word with carry 

INC Increment byte or word by 1 

AAA ASCII adjust for addition 

DAA Decimal adjust for addition 

SUBTRACTION 

SUB Subtract byte or word 

SBB Subtract byte or worcj with borrow 

DEC Decrement byte or word by 1 

NEG Negate byte or word 

CMP Compare byte or word 

AAS ASCII adjust for subtraction 

DAS DeCimal adjust for subtraction 

MULTIPLICATION 

MUL Multiple byte or word unsigned 

IMUL Integer multiply byte or word 

AAM ASCII adjust for multiply 

DIVISION 

DIV Divide byte or word unsigned 

IDIV Integer divide byte or word 

AAD ASCII adjust for division 

CBW Convert byte to word 

CWD Convert word to doubleword 

Figure 4b. Arithmetic Instructions 

LOGICALS 

NOT "Not" byte or word 

AND "And" byte or word 

OR "InclUSive or" byte or word 

XOR "Exclusive or" byte or word 

TEST "Test" byte or word 

SHIFTS 

SHLISAL Shift logical/arithmetic left byte or word 

SHR Shift logical right byte or word 

SAR Shift arithmetic right byte or word 

ROTATES 

ROL Rotate left byte or word 

ROR Rotate right byte or word 

RCL Rotate through carry left byte or word 

RCR Rotate through carry right byte or word 

Figure 4d. Shift/Rotate Logical Instructions 
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CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS 

JAlJNBE Jump if above/not below nor equal CALL Call procedure 

JAE/JNB Jump if above or equal/not below RET Return from procedure 

JB/JNAE Jump if below/not above nor equal JMP Jump 

JBE/JNA. Jump if below or equal/not above 

JC Jump if carry ITERATION CONTROLS 

JE/JZ Jump if equal/zero 

JG/JNLE Jump if greater/not less nor equal LOOP Loop 

JGE/JNL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero 

JL/JNGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero 

JLE/JNG Jump if less or equal/not greater JCXZ Jump if register CX = 0 

JNC Jump if not carry 

JNE/JNZ Jump if not equal/not zero INTERRUPTS 

JNO Jump if not overflow 

JNP/JPO Jump.if not parity/parity odd INT Interrupt 

JNS Jump if not sign . INTO Interrupt if overflow 

JO Jump if overflow IRET Interrupt return 

JP/JPE Jump if parity/parity even 

JS Jump if sign 

Figure 4e. Program Transfer Instructions 

FLAG OPERATIONS 

STC Set carry flag 

CLC Clear carry flag 

CMC Complement carry flag 

STD Set direction flag 

CLD Clear direction flag 

STI Set interrupt enable flag 

CLI Clear interrupt enable flag 

EXTERNAL SYNCHRONIZATION 

HLT Halt until interrupt or reset 

WAIT Wait for BUSY not active 

ESC Escape to extension processor 

LOCK Lock bus during next instruction 

NO OPERATION 

NOP No operation 

EXECUTION ENVIRONMENT CONTROL 

LMSW Load machine status word 

SMSW Store machine status word 

Figure 41. Processor Control Instructions 

ENTER Format stack for procedure entry 

LEAVE Restore stack for procedure exit 

BOUND Detects values outside prescribed range 

Figure 4g. High Level Instructions 
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Memory Organization 

Memory is organized as sets of variable length seg­
ments. Each segment is a linear contiguous se­
quence of up to 64K (216) 8-bit bytes. Memory is 
addressed using a two component address (a point­
er) that consists of a i6-bit segment selector, and a 
i6-bit offset. The segment selector indicates the de­
sired segment in memory. The offset component in­
dicates the desired byte address within the segment. 

I 
" 

32-BIT POINTER 
~ 

SEGMENT I OFF.SET I 
1615 0 

l 

~ 

OPERAND 
SELECTED 

-

SELECTED 
SEGMENT 

L. 
"\J "\J 

MEMORY 

210253-5 

Figure 5. Two Component Address 
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Table 3. Segment Register Selection Rules 

Memory Segment Register Implicit Segment 
Reference Needed Used Selection Rule 

-. 
Instructions Code (CS) Automatic with instruction prefetch 

Stack Stack (SS) All stack pushes and pops. Any memory reference which uses BP 
as a base register. 

Local Data Data (DS) All data references except when relative to stack or 
string destination 

External (Global) Data Extra (ES) Alternate data segment and destination of string operation 

All instructions that address operands in memory 
must specify the segment and the offset. For speed 
and compact instruction encoding, segment selec­
tors are usually stored in the high speed segment 
registers. An instruction need specify only the de­
sired segment register and an offset in order to ad­
dress a memory operand. 

Most instructions need not explicitly specify which 
segment register is used. The correct segment reg­
ister is automatically chosen according to the rules 
of Table 3. These rules follow the way programs are 
written (see Figure 6) as independent modules that 
require areas for code and data, a stack, and access 
to external data areas. 

Special segment override instruction prefixes allow 
the implicit segment register selection rules to be 
overridden for special cases. The stack, data, and 
extra segments may coincide for simple programs. 
To access operands not residing in one of the four 
immediately available segments, a full 32-bit pointer 
or a new segment selector must be loaded. 

Addressing Modes 

The . 80286 provides a total of eight addressing 
modes for instructions to specify operands. Two ad­
dressing modes are provided for instructions that 
operate on register or immediate operands: 

Register Operand Mode: The operand is locat­
ed in one of the· 8 or 16-bit general registers. 

Immediate Operand Mode: The operand is in­
cluded in the instruction. 

Six modes are provided to specify the location of an 
operand in a memory segment. A memory operand 
address consists of two 16-bit components: seg­
ment selector and offset. The .segment selector is 
supplied by a segmem register either implicitly cho­
sen by the addressing mode or explicitly chosen by 
a segment override prefix. The offset is calculated 
by summing any combination of the following three 
address elements: 

the displacement (an 8 or 16-bit immediate val­
ue contained in the instruction) 

the base (contents of either the BX or BP base 
registers) 
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Figure 6. Segmented Memory Helps 
Structure Software 

the index (contents of either the 51 or 01 index 
registers) 

Any carry out from the 16-bit addition is ignored. 
Eight-bit displacements are sign extended to 16-bit 
values. 

Combinations of these three address elements de­
fine the six memory addressing modes, described 
below. 

Direct Mode: The operand's offset is contained in 
the instruction as an 8 or 16-bit displacement ele-
ment. . 

Register Indirect Mode: The operand's offset is in 
one of the registers 51, 01, BX, or BP. 

Based Mode: The operand's offset is the sum of an 
8 or 16-bit displacement and the contents of a base 
register (BX or BP). 
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Indexed Mode: The operand's offset is the sum of 
an 8 or 16-bit displacement and the contents of an 
index register (SI or 01). 

Based Indexed Mode: The operand's offset is the 
sum of the contents of a base register and an index 
register. 

Based Indexed Mode with Displacement: The op­
erand's offset is the sum of a base register's con­
tents, an index register's contents, and an 8 or 16-bit 
displacement. 

Data Types 

The 80286 directly supports the following data 
types: 

Integer: A signed binary numeric value con­
tained in an 8-bit byte or a 16-bit 
word. All operations assume a 2's 
complement representation. Signed 
32 and 64-bit integers are supported 
using the Numeric Data Processor, 
the 80287. 

Ordinal: An unsigned binary numeric value 
contained in an 8-bit byte or 16-bit 
word. 

Pointer: A 32-bit quantity, composed of a 
segment selector component and an 
offset component. Each component 
is a 16-bit word. 

String: A contiguous sequence of bytes or 
words. A string may contain from 1 
byte to 64K bytes. 

ASCII: A byte representation of alphanu­
meric and control characters using 
the ASCII standard of character rep­
resentation. 

BCD: A byte (unpacked) representation of 
the decimal digits 0-9. 

Packed BCD: A byte (packed) representation of 
two decimal digits 0-9 storing one 
digit in each nibble of the byte. 

Floating Point: A signed 32, 64, or 80-bit real num­
ber representation. (Floating point 
operands are supported using the 
80287 Numeric Processor). 

Figure 7 graphically represents the data types sup­
ported by the 80286. 

1/0 Space 

The 1/0 space consists of 64K 8-bit or 32K 16-bit 
ports. 1/0 instructions address the 1/0 space with 
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either an 8-bit port address, specified in the instruc­
tion, or a 16-bit port address in the OX register. 8-bit 
port addresses are zero extended such that A15-AS 
are LOW. 1/0 port addresses OOF8(H) through 
OOFF(H) are reserved. 

1 0 

SIGNED rrnTTTT1 
BYTE~ 

SIGN BIT J L---J 
MAGNITUDE 

1 0 
UNSIGNED fTT1lTTT1 

BYTE L-:-...J 
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Figure 7. 80286 Supported Data Types 
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'Table 4. Interrupt Vector Assignments 

Interrupt Related 
Does Return Address 

Function Point to Instruction 
Number 

Divide error exception 0 

Single step interrupt 1 

NMI interrupt 2 

Breakpoint interrupt 3 

INTO detected overflow exception 4 

BOUND range exceeded exception 5 

Invalid opcode exception 6 

Processor extension not available exception 7 

Intel reserved-do not use 8-15 

Processor extension error interrupt 16 

Intel reserved-do not use 17-31 

User defined 32-255 

Interrupts 

An interrupt transfers execution to a new program 
location. The old program address (CS:IP) and ma­
chine state (Flags) are saved on the stack to allow 
resumption of the interrupted program. Interrupts fall 
into three classes: hardware initiated, INT instruc­
tions, and instruction exceptions. Hardware initiated 
interrupts occur in response to an external input and 
are classified as .non-maskable or maskable. Pro­
grams may cause an interrupt with an INT instruc­
tion. Instruction exceptions occur when an unusual 
condition, which prevents further instruction pro­
cessing, is detected while attempting to execute an 
instruction. The return address from an exception 
will always point at the instruction causing the ex­
ception and include any leading instruction prefixes. 

A table containing up to 256 pointers defines the 
proper interrupt service routine for each interrupt. In­
terrupts 0-31, some of which are used for instruc­
tion exceptions, are reserved. For each interrupt, an 
8~bit vector must be supplied to the 80286 which 
identifies the appropriate table entry.' Exceptions 
supply the interrupt vector internally. INT instructions 
contain or imply the vector and allow access to all 
256 interrupts. Maskable hardware initiated inter­
rupts supply the 8-bit vector to the CPU during an 
interrupt acknowledge bus sequence. Non-maska­
ble hardware interrupts use a predefined internally 
supplied vector. 

MASKABLE INTERRUPT (INTR) 

The 80286 provides a maskable.hardware interrupt 
request pin, INTR. Software enables this input by 
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Instructions 
Causing, Exception? 

DIV,IDIV Yes 

All 

INT 2 or NMI pin 

INT3 

INTO No 

BOUND Yes 

Any undefined opcode Yes 

ESC or WAIT Yes 

ESC or WAIT 

setting the interrupt flag bit (IF) in the flag word. All 
224 user-defined interrupt sources can share this in­
put, yet they can retain separate interrupt handlers. 
An 8-bit vector read by the CPU during the interrupt 
acknowledge sequence (discussed in System Inter­
face section) identifies the source of the interrupt. 

Further maskable interrupts are disabled while serv­
icing an interrupt by resetting the IF bit as part of the 
response to an interrupt or exception. The saved 
flag word will reflect the enable status of the proces­
sor prior to the interrupt. Until the flag word is re­
stored to the flag register, the interrupt flag will be 
zero unless specifically set. The interrupt return in­
struction includes restoring the flag word, thereby 
restoring the original status of IF. 

NON-MASKABLE INTERRUPT REQUEST (NMI) 

A non-maskable interrupt input (NMI) is also provid­
ed. NMI has higher priority than INTR. A typical use 
of NMI would be to activate a power failure routine. 
The activation of this input causes an interrupt with 
an internally supplied vector value of 2. No external 
interrupt acknowledge sequence is performed. 

While executing the NMI servicing procedure, the 
80286 will service neither further NMI requests, 
INTR requests, nor the processor extension seg­
ment overrun interrupt until an interrupt return (I RET) 
instruction is executed or the CPU is reset. If NMI 
occurs while currently servicing an NMI, its presence 
will be saved for servicing after executing the first 
IRET instruction. IF is cleared at the beginning of an 
NMI interrupt to inhibit INTR interrupts. 
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SINGLE STEP INTERRUPT 

The 80286 has an internal interrupt that allows pro­
grams to execute one instruction at a time. It is 
called the single step interrupt and is controlled by 
the single step flag bit (TF) in the flag word. Once 
this bit is set, an internal single step interrupt will 
occur after the next instruction has been executed. 
The interrupt clears the TF bit and uses an internally 
supplied vector of 1. The IRET instruction is used to 
set the TF bit and transfer control to the next instruc­
tion to be single stepped. 

Interrupt Priorities 

When simultaneous interrupt requests occur, they 
are processed in a fixed order as shown in Table 5. 
Interrupt processing involves saving the flags, return 
address, and setting CS:IP to point at the first in­
struction of the interrupt handler. If other interrupts 
remain enabled they are processed before the first 
instruction of the current interrupt handler is execut­
ed. The last interrupt processed is therefore the first 
one serviced. 

Table 5 Interrupt Processing Order 
Order Interrupt 

1 Instruction exception 

2 Single step 

3 NMI 

4 Processor extension segment overrun 

5 INTR 

6 INT instruction 

Initialization and Processor Reset 

Processor initialization or start up is accomplished 
by driving the RESET input pin HIGH. RESET forces 
the 80286 to terminate all execution and local bus 
activity. No instruction or bus activity will occur as 
long as RESET is active. After RESET becomes in­
active and an internal processing interval elapses, 
the 80286 begins execution in real address mode 
with the instruction at physical location FFFFFO(H). 
RESET also sets some registers to predefined val­
ues as shown in Table 6. 

Table 6. 80286 Initial Register State after RESET 
Flag word 0002(H) 
Machine Status Word FFFO(H) 
Instruction pOinter FFFO(H) 
Code segment FOOO(H) 
Data segment OOOO(H) 
Extra segment OOOO(H) 
Stack segment OOOO(H) 

HOLD must not be active during the time from the 
leading edge of RESET to 34 ClKs after the trailing 
edge of RESET. 

Machine Status Word Description 
The machine status word (MSW) records when a 
task switch takes place and controls the operating 
mode of the 80286. It is a 16-bit register of which the 
lower four bits are used. One bit places the CPU into 
protected mode, while the other three bits, as shown 
in Table 7, control the processor extension interface. 
After RESET, this register contains FFFO(H) which 
places the 80286 in 8086 real address mode. 

Table 7. MSW Bit Functions 
Bit 

Name Function 
Position 

0 PE Protected mode enable places the 
80286 into protected mode and cannot 
be cleared except by RESET. 

1 MP Monitor processor extension allows 
WAIT instructions to cause a processor 
extension not present exception 
(number 7). \ 

2 EM Emulate processor extension causes a 
processor extension not present 
exception (number 7) on ESC 
instructions to allow emulating a 
processor extension. 

3 TS Task switched indicates the next 
instruction using a processor extension 
will cause exception 7, allowing software 
to test whether the current processor 
extension context belongs to the current 
task. 

The lMSW and SMSW instructions can load and 
store the MSW in real address mode. The recom­
mended use of TS, EM, and MP is shown in Table 8. 

Table 8. Recommended MSW Encodings For Processor Extension Control 
Instructions 

TS MP EM Recommended Use Causing 
Exception 7 

0 0 0 Initial encoding after RESET. 80286 operation is identical to 8086, 88. None 

0 0 1 No processor extension is available. Software will emulate its function. ESC 

1 0 1 No processor extension is available. Software will emulate its function. The current ESC 
processor exten;;ion context may belong to another task. 

0 1 0 A processor extension exists. None 

1 1 0 A processor extension exists. The current processor extension context may belong to ESC or 
another task. The Exception 7 on WAIT allows software to test for an error pending WAIT 
from a previous processor extension operation. 
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Halt 

The HL T instruction stops program execution and 
prevents the CPU from using the local bus until re­
started. Either NMI, INTR with IF = 1, or RESET will 
force the 80286-out of halt. If interrupted, the saved 
CS:IP will point to the next instruction after the HL T. 

8086 REAL ADDRESS MODE 

The 80286 executes a fully upward-compatible su­
perset of the 8086 instruction set in real address 
mode. In real address mode the 80286 is object 
code compatible with 8086 and 8088 software. The 
real address mode architecture (registers and ad­
dressing modes) is exactly as described in the 
80286 Base Architecture section of this Functional 
Description. 

Memory Size 

Physical memory is a contiguous array of up to 
1,048,576 bytes (one megabyte) addressed by pins 
Ao through A'9 and BHE. A20 through A23 should be 
ignored. 

Memory Addressing 

In real address mode physical memory is a contigu­
ous array of up to 1,048,576 bytes (one megabyte) 
addressed by pins Ao through A'9 and BHE. Ad­
dress bits A20-A23 may not always be zero in real 
mode. A20-A23 should not be used by the system 
while the 80286 is operating·in Real Mode. 

The selector portion of a pointer is interpreted as the 
upper 16 bits of a 20-bit segment address. The lower 
four bits of the 20-bit segment address are always 
zero. Segment addresses, therefore, begin on mUlti­
ples of 16 bytes. See Figure 8 for a graphic repre­
sentation of address information. 

All segments in real address mode are 64K bytes in 
size and may be read, written, or executed. An ex­
ception or interrupt can occur if data operands or 
instructions attempt to wrap around the end of a 
segment (e.g. a word with-its low order byte at offset 
FFFF(H) and its high order byte at offset OOOO(H). If, 
in real address mode, the information contained in a 
segment does not use the full 64K bytes, the unused 
end of the segment may be overlayed by another 
segment to reduce physical memory requirements. 

Reserved Memory Locations 

The 80286 reserves two fixed areas of memory in 
real address mode (see Figure 9); system initializa-

tion area and interrupt table area. Locations from 
addresses FFFF,O(H) through FFFFF(H) are re­
served for system initialization. Initial execution be­
gins at location FFFFO(H). Locations OOOOO(H)' 
through 003FF(H) are reserved for interrupt vectors. 
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Figure 8. 8086 Real Address Mode 
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Table 9. Real Address Mode Addressing Interrupts 

Function 
Interrupt Related Return Address 
Number Instructions Before Instruction? 

Interrupt table limit too small exception 8 INT vector is not within table limit . Yes 

Processor extension segment overrun 9 ESC with memory operand extend- No 
interrupt ing beyond offset FFFF(H) 

Segment overrun exception 13 Word memory reference with offset Yes 
= FFFF(H) or an attempt to exe-
cute past the end of a segment 

Interrupts 

Table 9 shows the interrupt vectors reserved for ex­
ceptions and interrupts which indicate an addressing 
error. The exceptions leave the CPU in the state ex­
isting before attempting to execute the failing in­
struction (except for PUSH, POP, PUSHA, or paPA). 
Refer to the next section on protected mode initiali­
zation for a discussion on exception 8. 

Protected Mode Initialization 

To prepare the 80286 for protected mode, the LlDT 
. instruction is used to load the 24-bit interrupt table 
base and 16-bit limit for the protected mode interrupt 
table. This instruction can also set a base and limit 
for the interrupt vector table in real address mode. 
After reset, the interrupt table base is initialized to 
OOOOOO(H) and its size set to 03FF(H). These values 
are compatible with 8086, 88 software. LlDT should 
only be executed in preparation for protected mode. 

Shutdown 

Shutdown occurs when a severe error is detected 
that prevents further instruction processing by the 
CPU. Shutdown and halt are externally signalled via 
a halt bus operation. They can be distinguished by 
A1 HIGH for halt and A1 LOW for shutdown. In real 
address mode, shutdown can occur under two con­
ditions: 

• Exceptions 8 or 13 happen and the lOT limit does 
not include the interrupt vector. 

• A CALL INT or PUSH instruction attempts to wrap 
around the stack segment when SP is not even. 
\ 

An NMI input can bring the CPU out of shutdown if 
the lOT limit is at least OOOF(H) and SP is greater 
than 0005(H), otherwise shutdown can only be exit­
ed via the RESET input. 
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PROTECTED VIRTUAL ADDRESS 
MODE 

The 80286 executes a fully upward-compatible su­
perset of the 8086 instruction set in protected virtual 
address mode (protected mode). Protected mode 
also provides memory management and protection 
mechanisms and associated instructions. 

The 80286 enters protected virtual address mode 
from real address mode by setting the PE (Protec­
tion Enable) bit of the machine status word with the 
Load Machine Status Word (LMSW) instruction. Pro­
tected mode offers extended physical and virtual 
memory address space, memory protection mecha­
nisms, and new operations to support operating sys­
tems and virtual memory. 

All registers, instructions, and addressing modes de­
scribed in the 80286 Base Architecture section of 
this Functional Description remain the same. Pro­
grams for the 8086, 88, 186, and real address mode 
80286 can be run in protected mode; however, em­
bedded constants for segment selectors are differ­
ent. 

Memory Size 

The protected mode 80286 provides a 1 gigabyte 
virtual address space per task mapped into a 16 
megabyte physical address space defined by the ad­
dress pin A23-AO and BHE. The virtual address 
space may be larger than the physical address 
space since any use of an address that does not 
map to a physical memory location will cause a re­
startable exception. 

Memory Addressing 

As in real address mode, protected mode uses 32-
bit pointers, consisting of 16-bit selector and offset 
components. The selector, however, specifies an in­
dex into a memory resident table rather than the up­
per 16-bits of a real memory address. The 24-bit 
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base address of the desired segment is obtained 
from the tables in memory. The 16-bit offset is add­
ed to the segment base address to form the physical 
address as shown in Figure 10. The tables are auto­
matically referenced by the CPU whenever a seg­
ment register is loaded with a selector. All 80286 
instructions which load a segment register will refer­
ence the memory based tables without additional 
software. The memory based tables contain 8 byte 
values called descriptors. 

CPU 

PHYSICAL MEMORY 

""" '" 

MEMORY )' OPE.AND SEGMENT, 

SEGMENT I SEGMENT 
DESCRIPTOR :'~IPTOR 

"V 
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Figure 10, Protected Mode Memory Addressing 

DESCRIPTORS 

Descriptors define the use of memory. Special types 
of descriptors also define new functions for transfer 
of control and task switching. The 80286 has seg­
ment descriptors for, code, stack anc\ data segments, 
and system control descriptors for special system 
data. segments and control transfer operations. De­
scriptor accesses are performed as locked bus op­
erations to assure descriptor integrity in multi-proc­
essor systems. 

CODE AND DATA SEGMENT DESCRIPTORS 
(S = 1) 

Besides segment base addresses, code and data 
descriptors contain other segment attributes includ- , 
ing segment size (1 to 64K bytes), access rights 
(read only, read/write, execute only, and execute/ 
read), and presence in memory (for virtual memory 
systems) (See Figure 11 ). Any segment usage vio­
lating a segment attribute indicated by the segment 
descriptor will prevent the memory cycle and cause 
an exception or interrupt. 

Code or Data Segment Descriptor 

0' 
+7 INTEL RESERVED' +6 

ACCESS 
RIGHTS BYTE + 5 'ID.Llsl TYPE I_I BASE:n-1. +4 

+3 BASE'5-0 +2 

+' UMIT15-D 

" ., 
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• Must be set to 0 for compatibility with 80386. 

Access Rights Byte Definition 

Type 
Field 
Definition 

Bit 
Position 

7 

6-5 

4 

3' 
2 

1 

3 
2 

1 

0 

Name Function 

Present (P) P = 1 Segment is mapped into physical memory. 
p=o No mapping to physical memory exits, base and limit are 

not used. 
Descriptor Privilege Segment privilege attribute used in privilege tests. 
Level (DPL) 
Segment Descrip- S=1 Code or Data (includes stacks) segment descriptor 
tor(S) S=O System Segment Descriptor or Gate Descriptor 

Executable (E) E=O Data segment deSCriptor type is: 

) 
If 

Expansion Direc- ED = 0 Expand up segment, offsets must be ,;;: limit. Data 
tion (ED) ED = 1 Expand down segment, offsets must be > limit. Segment 
Writeable (W) W=O Data segment may not be written into. (S = I, 

W= 1 Data segm~lnt may be written into. E = 0) 

Executable (E) E=1 Code Segment Descriptor type is: 

} 
If 

Conforming (C) C=1 Code segment may only ,be executed Code 
when CPL <: DPL and CPL Segment 
remain!? unchanged. 

Readable (~) R =0 Code segment may not.be read (S = I, 
R=:1 Code segment may be read. E = 1) 

Accessed (A) A=O Segment has not been accessed. 
A~1 Segment selector has been loaded into segment register 

or used by selector test instructions. 

Figure 11. Code and Data Segment Descriptor Formats 
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Code and data (including stack data) are stored in 
two types of segments: code segments and data 
segments. Both types are identified and defined by 
segment descriptors (S = 1). Code segments are 
identified by the executable (E) bit set to 1 in the 
descriptor access rights byte. The access rights byte 
of both code and data segment descriptor types 
have three fields in common: present (P) bit, De­
scriptor Privilege Level (DPL), and accessed (A) bit. 
If P = 0, any attempted use of this segment will 
cause a not-present exception. DPL specifies the 
privilege level of the segment descriptor. DPL con­
trols when the descriptor may be used by a task 
(refer to privilege discussion below). The A bit shows 
whether the segment has been previously accessed 
for usage profiling, a necessity for virtual memory 
systems. The CPU will always set this bit when ac­
cessing the descriptor. 

Data segments (S = 1, E = 0) may be either read­
only or read-write as controlled by the W bit of the 
access rights byte. Read-only (W = 0) data seg­
ments may not be written into. Data segments may 
grow in two directions, as determined by the Expan­
sion Direction (ED) bit: upwards (ED = 0) for data 
segments, and downwards (ED = 1) for a segment 
containing a stack. The limit field for a data segment 
descriptor is interpreted differently depending on the 
ED bit (see Figure 11). 

A code segment (S = 1, E = 1) may be execute­
only or execute/read as determined by the Read­
able (R) bit. Code segments may never be written 
into and execute-only code segments (R = 0) may 
not be read. A code segment may also have an attri­
bute called conforming (C). A conforming code seg­
ment may be shared by programs that execute at 
different privilege levels. The DPL of a conforming 
code segment defines the range of privilege levels 
at which the segment may be executed (refer to priv­
ilege discussion below). The limit field identifies the 
last byte of a code segment. 

SYSTEM SEGMENT DESCRIPTORS (S = 0, 
TYPE = 1-3) 

In addition to code and data segment descriptors, 
the protected mode 80286 defines System Segment 
Descriptors. These descriptors define special sys­
tem data segments which contain a table of descrip­
tors (Local Descriptor Table Descriptor) or segments 
which contain the execution state of a task (Task 
State Segment Descriptor). 

Figure 12 gives the formats for the special system 
data segment descriptors. The descriptors contain a 
24-bit base address of the segment and a 16-bit lim­
it. The access byte defines the type of descriptor, its 
state and privilege level. The descriptor contents are 
valid and the segment is in physical memory if P = 1. 
If P = 0, the segment is not valid. The DPL field is 
only used in Task State Segment descriptors and 
indicates the privilege level at which the descrip-
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tor may be used (see Privilege). Since the Local De­
scriptor Table descriptor may only be used by a spe­
cial privileged instruction, the DPL field is not used. 
Bit 4 of the access byte is 0 to indicate that it is a 
system control descriptor. The type field specifies 
the descriptor type as indicated in Figure 12. 

System Segment Descriptor 

D7 

+7 INTEL RESERVED' +6 

+5 plDPLlol trE, J HASEu_ul +4 

+3 BASE1S_0 +2 

+1 LlWIT,5-0 

15 17 

210253-12 
'Must be set to 0 for compatibility with 80386. 

System Segment Descriptor Fields 

Name Value Description 

TYPE 1 Available Task State Segment (TSS) 
2 Local Descriptor Table 
3 Busy Task State Segment (TSS) 

P 0 Descriptor contents are not valid 
1 Descriptor contents are valid 

DPL 0-3 Descriptor Privilege Level 

BASE 24-bit Base Address of special system data 
number segment in real memory 

LIMIT 16-bit Offset of last byte in segment 
number, 

Figure 12. System Segment Descriptor Format 

GATE DESCRIPTORS (S = 0, TYPE = 4-7) 

Gates are used to control access to entry points 
within the target code segment. The gate descrip­
tors are call gates, task gates, interrupt gates and 
trap gates. Gates provide a level of indirection be­
tween the source and destination of the control 
transfer. This indirection allows the CPU to automati­
cally perform protection checks and control entry 
point of the destination. Call gates are used to 
change privilege levels (see Privilege), task gates 
are used to perform a task switch, and interrupt and 
trap gates are used to specify interrupt service rou­
tines. The interrupt gate disables interrupts (resets 
IF) while the trap gate does not. 

Gate Descriptor 

+7 INTEL RESERVED- +6 

+5 plDPLlol TVPE Ix x xl ~g:T4-0 +4 

+3 DESTINATION SELECTORt5-2 Ix x +2 

+1 DESTINATION OFFSET 15-0 

15 87 

210253-13 
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Gate Descriptor Fields 

Name Value Description 

4 -Call Gate 

TYPE 5 -Task Gate 
6 -Interrupt Gate 
7 - Trap Gate 

P 0 -Descriptor Contents are not 
valid 

1 - Descriptor Contents are 
valid 

DPL 0-3 Descriptor Privilege Level 

WORD Number of words to copy 
COUNT 

0-31 
from callers stack to called 
procedures stack. Only used 
with call gate. 

Selector to the target code 

DESTINATION 16-bit 
segment (Call, Interrupt or 

SELECTOR selector 
Trap Gate) 
Selector to the target task 
state segment (Task Gate) 

DESTINATION 16-bit Entry point within the target 
OFFSET offset code segment 

Figure 13. Gate Descriptor Format 

Figure 13 shows the format of the gate descriptors. 
The descriptor contains a destination pointer that 
points to the descriptor of the target segment and 
the entry point offset. The destination selector in an 
interrupt gate, trap gate, and call gate must refer to a 
code segment descriptor. These gate descriptors 
contain the entry point to prevent a program from 
constructing and using an illegal entry point. Task 
gates may only refer to a task state segment. Since 
task gates invoke a task switch, the destination off­
set is not used in the task gate. 

Exception 13 is generated when the gate is used if a' 
destination selector does not refer to the correct de­
scriptor type. The word count field is used in the call 
gate descriptor to indicate the number of parameters 
(0-31 words) to be automatically copied from the 
caller's stack to the stack of the called routine when 
.a control transfer changes privilege levels. The word 
count field is not used by any other gate descriptor. 

The access byte format is the same for all gate de­
scriptors. P = 1 indicates that the gate contents are 
valid. P = 0 indicates the contents are not valid and 
causes exception 11 if referenced. OPL is the de-

scriptor privilege level and specifies when this de­
scriptor may be used by a task (refer to privilege 
discussion below). Bit 4 must equal 0 to indicate a 
system control descriptor. The type field specifies 
the descriptor type as indicated in Figure 13. 

SEGMENT DESCRIPTOR CACHE REGISTERS 

A segment descriptor cache register is assigned to 
each of the four segment registers (CS, SS, OS, ES). 
Segment descriptors are automatically loaded 
(cached) into a segment descriptor cache register 
(Figure 14) whenever the associated segment regis­
ter is loaded with a selector. Only segment descrip­
tors may be loaded into segment descriptor cache 
registers. Once loaded, all references to that seg-' 
ment of memory use the cached descriptor informa­
tion instead of reaccessing the descriptor. The de­
scriptor cache registers are not visible to programs. 
No instructions exist to store their contents. They 
only change when a segment register is loaded. 

SELECTOR FIELDS 

A protected mode selector has three fields: descrip­
tor entry index, local or global descriptor table indi­
cator (TI), and selector privilege (RPL) as shown in 
Figure 15. These fields select one of two memory 
based tables of descriptors, select the appropriate 
table entry and allow highspeed testing of the selec­
tor's privilege attribute (refer to privilege discussion 
below). 

SELECTOR 

I INDEX ITI RrLI I I I I I I 
15 3 2 1 0 

BITS NAME FUNCTION 

1-41 REOUESTEO INDICATES SELECTOR PRIVILEGE 
PRIVILEGE LEVEL DESIRED 
LEVEL 
(RPL) 

2 TABLE n = 0 USE GLOBAL DESCRIPTOR TABLE 
INDICATOR (GOT) 
(TI) n = 1 USE LOCAL DESCRIPTOR TABLE 

(LOT) 

15-' INDEX SELECT DESCRIPTOR ENTRY IN TABLE 

210253-15 

Figure 15. Selector Fields 
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Figure 14. Descriptor Cache Registers 
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LOCAL AND GLOBAL DESCRIPTOR TABLES 

Two tables of descriptors, called descriptor tables, 
contain all descriptors accessible by a task at any 
given time. A descriptor table is a linear array of up 
to 8192 descriptors. The upper 13 bits of the selec~ 
tor value are an index into a descriptor table. Each 
table has a 24-bit base register to locate the descrip­
tor table in physical memory and a 16-bit limit regis­
ter that confine descriptor access to the defined lim­
its of the table as shown in Figure 16. A restartable 
exception (13) will occur if an attempt is made to 
reference a descriptor outside the table limits. 

One table, called the Global Descriptor table (GDT), 
contains descriptors available to all tasks. The other 
table, called the Local Descriptor Table (LDT), con­
tains descriptors that can be private to a task. Each 
task may have its own private LDT. The GDT may 
contain all descriptor types except interrupt and trap 
descriptors. The LDT may contain only segment, 
task gate, and call gate descriptors. A segment can­
not be accessed by a task if its segment descriptor 
does not exist in either descriptor table at the time of 
access. 

'V MEMORY 'V 
CPU 

'~ 
r 
I 

GOT LIMIT ~I 
2J I I GDTBASE I 

24·BIT PHVS AD. I 

" . I 

~-
_1 

DESCR. lOT, 

r--~----;, r '~ I 23 I..DTlIMIT 

I l LDT BASE }+- ..J 
I 24.8IT PHVS AD. 

1 CURRENT 
LOT 

I I LOTn 
I PRDGRAM INVISIBLE ) 
I (AUTDMAliCALLY I : ) LOADED ) 

I FROM LDT DESCR. I 
WITHIN GOT) I 

~ ______ .J 

v v 
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Figure 16. Local and Global 
Descriptor Table Definition 

The LGDT and LLDT instructions load the base and 
limit of the global and local descriptor tables. LGDT 
and LLDT are privileged, i.e. they may only be exe­
cuted by trusted programs operating at level O. The 
LGDT instruction loads a six byte field containing the 
16-bit table limit and 24-bit physical base address of 
the Global Descriptor Table as shown in Figure 17. 
The LLDT instruction loads a selector which refers 
to a Local Descriptor Table descriptor containing the 
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base address and limit for an LDT, as shown in Fig­
ure 12. 

.7 
+5 INTEL RESERVED' I BASEZJ_16 +4 

+3 BASE'5-D +2 

+1 lIM1T15_0 

15 87 

210253-17 
'Must be set to 0 for compatibility with 80386. 

Figure 17. Global Descriptor Table and Interrupt 
Descriptor Table Data Type 

INTERRUPT DESCRIPTOR TABLE 

The protected mode 80286 has a third descriptor 
table, called the Interrupt Descriptor Table (IDT) 
(see Figure 18), used to define up to 256 interrupts. 
It may contain only task gates, interrupt gates and 
trap gates. The IDT (Interrupt Descriptor Table) has 
a 24-bit physical base and 16-bit limit register in the 
CPU. The privileged LlDT instruction loads these 
registers with a six byte value of identical form to 
that of the LGDT instruction (see Figure 17 and Pro­
tected Mode Initialization). 

~ MEMORY v 

GATE FOR 
INTERRUPT In 

GATE FOR 
INTERRUPT #n-1 

GATE FOR 
INTERRUPT #1 

INTERRUPT 
DESCRIPTOR 
TABLE 
(lOT) 

INTERRUPT #0 W '" GATE FOR 1 ~ lio i 
rt--~~~~~~~) ~a~ 

=------:1 ~:I!~ 
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Figure 18. Interrupt Descriptor Table Definition 

References to IDT entries are made via INT instruc­
tions, external interrupt vectors, or exceptions. The 
IDT must be at least 256 bytes in size to allocate 
space for all reserved interrupts. 

Privilege 
The 80286 has a four-level hierarchical privilege sys­
tem which controls the use of privileged instructions 
and access to descriptors (and their associated seg­
ments) within a task. Four-level privilege, as shown 
in Figure 19, is an extension of the user/supervisor 
mode commonly found in minicomputers. The privi­
lege levels are numbered 0 through 3. Level 0 is the 
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most privileged level. Privilege levels provide protec­
tion within a task. (Tasks are isolated by providing 
private LDT's for each task.) Operating system rou­
tines, interrupt handlers, and other system software 
can be included and protected within the virtual ad­
dress space of each task using the four levels of 
privilege. Each task in the system has a separate 
stack for each of its privilege levels. 

Tasks, descriptors, and selectors have a privilege 
level attribute that determines whether the descrip­
tor may be used. Task privilege effects the use of 
instructions and descriptors. Descriptor and selector 
privilege only effect access to the descriptor. 

TASK PRIVILEGE 
A task always executes at· one of the four privilege 
levels. The task privilege level at any specific instant 
is called the Current Privilege Level (CPL) and is de­
fined by the lower two bits of the CS register. CPL 
cannot change during execution in a single code 
segment. A task's CPL may only be changed by con­
trol transfers through gate descriptors to a new code 
segment (See Control Transfer). Tasks begin exe­
~uting at the CPL value specified by the code seg­
ment selector within TSS when the task is initiated 
via a task switch operation (See Figure 20). A task 
executing at Level 0 can access all data segments 
defined in the GDT and the task's LDT and is 60n­

. sidered the most trusted level. A task executing a 
Level 3 has the'most restricted access to data and is 
considered the least trusted level. 

DESCRIPTOR PRIVILEGE 
Descriptor privilege is specified by the Descriptor 
Privilege Level (DPL) field of the descriptor access 
byte. DPL. specifies the least trusted task privilege 
level (CPL) at which a task may access the descrip-
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tor. Descriptors with DPL = 0 are the most protect­
ed.. Only tasks executing at privilege level 0 
(CPL = 0) may access them. Descriptors with DPL 
= 3 are the least protected (i.e. have the least re­
stricted access) since tasks can access them when 
CPL = 0, 1, 2, or 3. This rule applies to all descrip­
tors, except LDT descriptors. 

SELECTOR PRIVILEGE 
Selector privilege is specified by the,Requested Priv­
ilege Level (RPL) field in the least significant two bits 
of a selector. Selector RPL may establish a less 
trusted privilege level than the current privilege level 
for the use of a selector. This level is called the 
task's effective privil~ge level (EPL). RPL can only 
reduce the scope of a task's access to data with this 
selector. A task's effective privilege is the numeric 
maximum of RPL and CPL. A selector with RPL = 0 
imposes no additional restriction on its use while a 
selector with RPL = 3 can only refer to segments at 
privilege Level 3 regardless of the task's CPL. RPL 
is generally used to verify that pointer parameters 
passed to a more trusted procedure are not allowed 
to use data at a more privileged level than the caller 
(refer to pOinter testing instructions). 

Descriptor Access and Privilege 
Validation 
Determining the ability of a task to access a seg­
ment involves the type of segment to be accessed, 
the instruction used, the type of descriptor used and 
CPL,RPL, and DPL. The two basic types of segment 
accesses are control transfer (selectors loaded into 
CS) and data (selectors loaded into DS, ES or SS). 

DATA SEGMENT ACCESS 
Instructions that load selectors into DS and ES must 
refer to a data segment descriptor or readable code 
segment descriptor. The CPL of the task and the 
RPL of the selector must be the same as or more 
privileged (numerically equal to or lower than) than 
the descriptor DPL. In general, a task can only ac­
cess data segments at the same or less privileged 
I~vels than the CPL or RPL (whichever is numerically 
higher) to prevent a program from accessing data it 
cannot be trusted to use. 

An exception to the rule is a readable conforming 
code segment. This type of code segment can be 
read from any privilege level. 

If the privilege checks fail (e.g. DPL is numerically 
less than the maximum of CPL and RPL) or an incor­
rect type of descriptor is referenced (e.g. gate de-
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scriptor or execute only code segment) exception 13 
occurs. If the segment is not present, exception 11 
is generated. 

Instructions that load selectors into SS must refer to 
data segment descriptors for writable data seg­
ments. The descriptor privilege (DPL) and RPL must 
equal CPL. All other descriptor types or a privilege 
level violation will cause exception 13. A not present 
fault causes exception 12. 

CONTROL TRANSFER 

Four types of control transfer can occur when a se­
lector is loaded into CS by a control transfer opera­
tion (see Table 10). Each transfer type can only oc­
cur if the operation which loaded the selector refer­
ences the correct descriptor type. Any violation of 
these descriptor usage rules (e.g. JMP through a call 
gate or RET to a Task State Segment) will cause 
exception 13. 

The ability to reference a descriptor for control trans­
fer is also subject to rules of privilege. A CALL or 
JUMP instruction may only reference a code seg­
ment descriptor with DPL equal to the task CPL or a 
conforming segment with DPL of equal or greater 
privilege than CPL. The RPL of the selector used to 
reference the code descriptor must have as much 
~rivilege as CPL. 

RET and IRET instructions may only reference code 
segment descriptors with descriptor privilege equal 
to or less privileged than the task CPL. The selector 
loaded into CS is the return address from the stack. 
After the return, the selector RPL is the task's new 
CPL. If CPL changes. the old stack pointer is popped 
after the return address. 

When a JMP or CALL references a Task State Seg­
ment descriptor, the descriptor DPL must be the 
same or less privileged than the task's CPL. Refer-

ence to a valid Task State Segment descriptor caus­
es a task switch (see Task Switch Operation). Refer­
ence to a Task State Segment descriptor at a more 
privileged level than the task's CPL generates ex­
ception 13. 

When an instruction or interrupt references a gate 
descriptor, the gate DPL must have the same or less 
privilege than the task CPL. If DPL is at a more privi­
leged level than CPL, exeception 13 occurs. If the 
destination selector contained in the gate refer­
ences a code segment descriptor, the code seg­
ment descriptor DPL must be the same or more priv­
ileged than the task CPL. If not, Exception 13 is is­
sued. After the control transfer, the code segment 
descriptors DPL is the task's new CPL. If the desti­
nation selector in the gate references a task state 
segment, a task switch is automatically performed 
(see Task Switch Operation). 

The privilege rules on control transfer require: 

- JMP or CALL direct to a code segment (code 
segment descriptor) can only be to a conforming 
segment with DPL of equal or greater privilege 
than CPL or a non-conforming segment at the 
same privilege level. 

- interrupts within the task or calls that may 
change privilege levels, can only transfer control 
through a gate at the same or a less privileged 
level than CPL to a code segment at the same or 
more privileged level than CPL. 

- return' instructions that don't switch tasks can 
only return control to a code segment at the 
same or less privileged level. 

- task switch can be performed by a call, jump or 
interrupt which references either a task gate or 
task state segment at the same or less privileged 
level. 

Table 10. Descriptor Types Used for Control Transfer 

Control Transfer Types 

Intersegment within the same privilege level 

Intersegment to the same or higher privilege level Interrupt 
within task may change CPL. 

Intersegment to a lower privilege level (changes task CPL) 

Task Switch 

'NT (Nested Task bit of flag word) = 0 
"NT (Nested Task bit of flag word) = 1 

Operation Types 

JMP, CALL, RET. IRET* 

CALL 

Interrupt Instruction. 
Exception. External 
Interrupt 

RET.IRET* 

CALL.JMP 

CALL,JMP 

IRET" 
Interrupt Instruction. 
Exception, External 
Interrupt· 
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Descriptor Descriptor 
Referenced Table 

Code Segment GOT/LOT 

Call Gate GOT/LOT 

Trap or lOT 
Interrupt 
Gate 

Code Segment GOT/LOT 

Task State GOT 
Segment 

Task Gate GDT/LOT 

Task Gate lOT 
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PRIVILEGE LEVEL CHANGES 

Any control transfer that changes' CPL within the 
task, causes a change of stacks as part of the oper­
ation. Initial values of SS:SP for privilege levels 0, 1, 
and 2 are kept in the task state segment (refer 'to 
Task Switch Operation). During a JMP or CALL con­
trol transfer, the new stack pointer is loaded into the 
S5 and SP registers and the previous stack pointer 
is pushed onto the new stack. 

When returning to the original privilege level, its 
stack is restored as part of the RET or IRET instruc­
tion operation. For subroutine calis that pass param­
eters on the stack and cross privilege levels, a fixed 
number of words, as specified in the gate, are cop­
ied from the previous stack to the current stack. The 
inter-segment RET instruction with a stack adjust­
ment value will correctly restore the previous stack 
pointer upon return. 

Protection 
The 80286 includes mechanisms to protect critical 
instructions that affect the CPU execution state (e.g. 
HL T) and code or data segments from improper us­
. age. These protection mechanisms are grouped into 
three forms: 

Restricted usage of segments (e.g. no write al­
lowed to read-only data segments). The only seg­
ments available for use are defined by descrip­
tors in the Local Descriptor Table (LOT) and 
Global Descriptor Table (GOT). 

Restricted access to segments via the rules of 
privilege and descriptor usage. 

Privileged instructions or operations that may 
only be executed at certain privilege levels as de­
termined by the CPL and 1/0 Priviiege Level 
(IOPL). The 10PL is defined by bits 14 and 13 of 
the flag word. 

These checks are performed for all instructions and 
can be split into three categories: segment load 
checks (Table 11), operand reference checks (Table 
12), 'and privileged instruction checks (Table 13). 
Any violation of the rules shown will result in an ex­
ception. A not-present exception related to the stack 
segment causes exception 12. 

The IRET and POPF instructions do not perform 
some of their defined functions if CPL is not of suffi­
cient privilege (numerically small enough). Precisely 
these are: 

• The IF bit is not changed if CPL > 10PL. 

• The 10PL field of the flag word is not changed if. 
CPL> O. . 

No exceptions or other indication are given when 
these conditions occur. 
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Table 11 
Segment Register Load Checks 

Error Description 
Exception 
Number 

Descriptor table limit exceeded 13 

Segment descriptor not-present 11 or 12 

Privilege rules violated 13 

Invalid descriptor/segment type seg-
ment register load: 

-Read only data segment load to 
SS 

-Special Control descriptor load to 
DS, ES,SS 13 

-Execute only segment load to 
DS, ES,SS 

-Data segment load to CS 
-Read/Execute code segment 

load to SS 

Table 12. Operand Reference Checks 

Error Description Exception 
Number 

Write into code segment 13 
Read from execute-only code 
segment 13 
Write to read-only data segment 13 
Segment limit exceeded1 120r13 . 

NOTE: 
Carry out in offset calculations is ignored. 

Table 13. Privileged Instruction Checks 

Error Description 
Exception 
Number 

CPL "" 0 when executing the following 
instructions: 

13 LlDT, LLDT, LGDT, L TR, LMSW, 
'CTS,HLT 

CPL > IOPL when executing the fol-
lowing instructions: 13 

INS, IN, OUTS, OUT, STI, CLI, 
LOCK 

EXCEPTIONS 

The 80286 detects several types of exceptions and 
interrupts, in protected mode (see Table 14). Most 
are restartable after the exceptional condition is re­
moved. Interrupt handlers for most exceptions can 
read an error code, pushed on the stack after the 
return address, that identifies the selector involved 
(0 if none). The return address normally points to the 
failing instruction, including all leading prefixes. For a 
processor extension segment overrun exception, 
the return address will not point at the ESC instruc­
tion that caused the exception; however, the proces­
sor extension registers may contain the address of 
the failing instruction. 
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Table 14. Protected Mode Exceptions 

Return 
Always Error Interrupt Function Address 
Restart· Code 

Vector At Falling able? on Stack? 
Instruction? 

8 Double exception'detected Yes N02 Yes 
9 Processor extension segment overrun No N02 No 

10 Invalid task state segment Yes Yes Yes 
11 Segment not present Yes Yes Yes 
12 Stack segment overrun or stack segment not present Yes Yes1 Yes 
13 General protection Yes N02 Yes 

NOTE: 
1. When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the exception 
will not be restartable because stack segment wrap around is not permitted. This condition is identified by the value of the 
saved SP being either OOOO(H), 0001 (H), FFFE(H), or FFFF(H). 
2. These exceptions indicate a violation to privilege rules or usage rules has occurred. Restart is generally not attempted 
under those conditions. 

These exceptions indicate a violation to privilege 
rules or usage rules has occurred. Restart is gener­
ally not attempted under those conditions. 

All these checks are performed for all instructions 
and can be split into three categories: segment load 
checks (Table 11), operand reference checks (Table 
12), and privileged instruction checks (Table 13). 
Any violation of the rules shown will result in an ex­
ception. A not-present exception causes exception 
11 or 12 and is restartable. 

Special Operations 

TASK SWITCH OPERATION 

The 80286 provides a built-in task switch operation 
which saves the entire 80286 execution state (regis­
ters, address space, and a link to the previous task), 
loads a new execution state, and commences exe­
cution in the new task. Like gates, the task switch 
operation is invoked by executing an inter-segment 
JMP or CALL instruction which refers to a Task 
State Segment (TSS) or task gate descriptor in the 
GOT or LOT. An INT n ,instruction, exception, or ex­
ternal interrupt may also invoke the task switch op­
eration by selecting a task gate descriptor in the as­
sociated lOT descriptor entry. 

The TSS descriptor points at a segment (see Figure 
20) containing the entire 80286 execution state 
while a task gate descriptor contains a TSS selector. 
The limit field of the descriptor must be > 002B(H). 

Each task must have a TSS associated with it. The 
current TSS is identified by a special .register in the 
80286 called the Task Register (TR). This register 
contains a selector referring to the task state seg­
ment descriptor that defines the current TSS. A hid­
den base and limit register associated with TR are 
loaded whenever TR is loaded with a new selector. 
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The IRET instruction is used to return control to the 
task that called the current task or was interrupted. 
Bit 14 in the flag register is called the Nested Task 
(NT) bit. It controls the function of the IRET instruc­
tion. If NT = 0, the IRET instruction performs the 
regular current task by popping values off the stack; 
when NT = 1, IRET performs a task switch opera- . 
tion back to the previous task. 

When a CALL, JMP, or INT instruction initiates a 
task switch, the old (except for case of JMP) and 
new TSS will be marked busy and the back link field 
of the new TSS set to the old TSS selector. The NT 
bit of the new task is set by CALL or INT initiated 
task switches. An interrupt that does not cause a 
task switch will clear NT. NT may also be set or 
cleared by POPF or IRET instructions. 

The task state segment is marked busy by changing 
the descriptor type field from Type 1 to Type 3. Use 
of a selector that references a busy task state seg­
ment causes Exception 13. 

PROCESSOR EXTENSION CONTEXT 
SWITCHING 

The context of a processor extension (such as the 
80287 numerics processor) is not changed by the 
task switch operation. A processor extension con­
text need only be changed when a different task at­
tempts to use the processor extension (which still 
contains the context of a previous task). The 80286 
detects the first use of a processor extension after a 
task switch by causing the processor extension not 
present exception (7). The interrupt handler may 
then decide whether a context change is necessary. 

Whenever the 80286 switches tasks, it sets the Task 
Switched (TS) bit of the MSW. TS indicates that a 
processor extension context may belong to a differ· 
ent task than the current one. The processor exten­
sion not present exception (7) will occur when at­
tempting to execute an ESC or WAIT instruction if 
TS = 1 and a processor extension is present (MP = 1 
in MSW). 
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POINTER TESTING INSTRUCTIONS 

The 80286 provides several instructions to speed 
pointer testing and consistency checks for maintain­
ing system integrity (see Table 15). These instruc-

tions use the memory management hardware to ver­
ify that a selector value refers to an appropriate seg­
ment without risking an exception. A condition .flag 
(ZF) indicates whether use of the selector or seg­
ment will cause an exception. 

CPU 

TASK REGISTER 

TAD-~--
SYST£M 

... SEGMENT 
DESCRIPTOR 

" • r---------., 
I PROGRAM INVISIBLE I 
I R- I 
I 

H I 
UMIT 

: I I ------
BASE 

I .. • I 1..--- --- -j 

TASK 
STATE 
SEGMENT 

, -" 
INTEL RESERVED 

TYPE DESCRIPTION 

pJrlol~~1 BASE23-1. I AN AVAILABLE TASK STATE 
SEGMENT. MAY BE USED AS 

BASEt5-0 
THE DESTINAnON Of A TASK 
SwtrCH OPERAnDN. 

3 A BUSY TASK STATE SEGMENT. 
LlMIT,s-o CANNOT BE USED AS THE 

DEsnNAnDN OF A TASK 
SwtrCH. 

------------
,~ 

15 

TASK LOT SELECTOR 

DSSELECTDR 
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DI 
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SPfORCPLO 

BACK UNK SELECTDR TO TSS 

~ 

~ ~. 
BYTE 
OffSET 0 

4 

40 

38 
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28 CURRENT 
TASK 
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2 

22 

20 

I 
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I o 
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~ 
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Figure 20. Task State Segment and TSS Registers 
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Table 15.80286 Pointer Test Instructions mediately execute an intra-segment JMP instruction 

Instruction Operands Function 

ARPL Selector, Adjust Requested Privilege 
Register Level: adjusts the RPL of 

the selector to the numeric 
maximum of current selec-
tor RPL value and the RPL 
value in the register. Set 
zero flag if selector RPL 
was changed by ARPL. 

VERR Selector VERify for Read: sets the 
zero flag if the segment re-
ferred to by the selector 
can be read. 

VERW Selector VERify for Write: sets the 
zero flag if the segment re-
ferred to by the selector 
can be written. 

LSL Register, Load Segment Limit: reads 
Selector the segment limit into the 

register if privilege rules 
and descriptor type allow. 
Set zero flag if successful. 

LAR Register, Load Access Rights: reads 
Selector the descriptor access 

rights byte into the register 
if privilege rules allow. Set 
zero flag if successful. 

DOUBLE FAULT AND SHUTDOWN 

If two separate exceptions are detected during a sin­
gle instruction execution, the 80286 performs the 
double fault exception (8). If an execution occurs 
during processing of the double fault exception, the 
80286 will enter shutdown. Ouring shutdown no fur­
ther instructions or exceptions are processed. Either 
NMI (CPU remains in protected mode) or RESET 
(CPU exits protected mode) can force the 80286 out 
of shutdown. Shutdown is externally signalled via a 
HALT bus operation with A1 LOW. 

PROTECTED MODE INITIALIZATION 

The 80286 initially executes in real address mode 
after RESET. To allow initialization code to be 
placed at the top of physical memory, A23-A20 will 
be HIGH when the 80286 performs memory refer­
ences relative to the CS register until CS is changed. 
A23-A20 will be zero for references to the OS, ES, or 
SS segments. Changing CS in real address mode 
will force A23-A20 LOW whenever CS is used again. 
The initial CS:IP value of FOOO:FFFO provides 64K 
bytes of code space for initialization code without 
changing CS. 

Protected mode operation requires several registers 
to be initialized. The GOT and lOT base registers 
must refer to a valid GOT and lOT. After executing 
the LMSW instruction to set PE, the 80286 must im-

to clear the instruction queue of instructions decod­
ed in real address mode. 

To force the 80286 CPU registers to match the initial 
protected mode state assumed by software, execute 
a JMP instruction with a selector referring to the ini­
tial TSS used in the system. This will load the task 
register, local descriptor table register, segment reg­
isters and initial general register state. The TR 
should point at a valid TSS since any task switch 
operation involves saving the current task state. 

SYSTEM INTERFACE 
The 80286 system interface appears in two forms: a 
local bus and a system bus. The local bus consists 
of address, data, status, and control signals at the 
pins of the CPU. A system bus is any buffered ver­
sion of the local bus. A system bus may also differ 
from the local bus in terms of coding of status and 
control lines and/or timing and loading of signals. 
The 80286 family includes several devices to gener­
ate standard system buses such as the IEEE 796 
standard MUL TIBUS. 

Bus Interface Signals and Timing 
The 80286 microsystem local bus interfaces the 
80286 to local memory and I/O components. The 
interface has 24 address lines, 16 data lines, and 8 
status and control signals. 

The 80286 CPU, 82C284 clock generator, 82C288 
bus controller, tranceivers, and latches provide a 
buffered and decoded system bus interface. The 
82C284 generates the system clock and synchroniz­
es REAOY and RESET. The 82C288 converts bus 
operation status encoded by the 80286 into com­
mand and bus control signals. These ,components 
can provide the timing and electrical power drive lev­
els required for most system bus interfaces including 
the Multibus. 

Physical Memory and 1/0 Interface 
A maximum of 16 megabytes of physical memory 
can be addressed in protected mode. One mega­
byte can be addressed in real address mode. Memo­
ry is accessible as bytes or words. Words consist of 
any two consecutive bytes addressed with the least 
significant byte stored in the lowest address. 

Byte transfers occur on either half of the 16-bit local 
. data bus. Even bytes are accessed over 07-0 while 
odd bytes are' transferred over 015-8. Even-ad­
dressed words are transferred over 015-0 in one 
bus cycle, while odd-addressed word require two 
bus operations. The first transfers data on 015-8, 
and the second transfers data on 07-0. Both byte 
data transfers occur automatically, transparent to 
software. 
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Two bus signals, Ao and BHE, control transfers over 
the lower and upper halves of the data bus. Even 
address byte transfers are indicated by Ao lOW and 
BHE HIGH. Odd address byte transfers are indicat­
ed by Ao HIGH and BHE lOW. Both Ao and BHE are 
lOW for even address word transfers. 

The I/O address space contains 641< addresses in 
both modes. The I/O space is accessible as either 
bytes or words, as is memory. Byte wide peripheral 
devices may be attached to either the upper or lower 
byte of the data bus. Byte-wide liD devices attached 
to the upper data byte (015-8) are accessed with 
odd I/O addresses. Devices on the lower data byte 
are accessed with even liD addresses. An interrupt 
controller such as Intel's 8259A must be connected 
to the lower data byte (07-0) for proper return of the 
interrupt vector. 

Bus Operation 
The 80286 uses a double frequency system clock 
(ClK input) to control bus timing. All signals on the 
local bus are measured relative to the system ClK 
input. The CPU divides the system clock by 2 t6 pro­
duce the internal processor clock, which determines 
bus state. Each processor clock is composed of two 
system clock cycles named phase 1 and phase 2. 
The 82C284 clock generator output (PCLK) identi­
fies the next phase of the processor clock. (See Fig­
ure 21.) 

eLK 

PCLKy \'-----' 
210253-21 

Figure 21. System and Processor 
Clock Relationships 

Six types of bus operations are supported; memory 
read, memory write, liD read, liD write, interrupt ac­
knowledge, and halt/shutdown. Data can be trans­
ferred at a maximum rate of one word per two proc­
essor clock cycles. 

The 80286 bus has three basic states: idle (Ti), send 
status (T s), and perform command (T d. The 80286 
CPU also has a fourth local bus state called hold 
(T h)' T h indicates that the 80286 has surrendered 
control of the local bus to another bus master in 
response to a HOLD request. 

Each bus state is one processor clock long .. Figure 
22 shows the four 80286 local bus states and al­
lowed transitions. 
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Figure 22. 80286 Bus States 

Bus States 
The idle (Ti) state indicates that no data transfers 
are in progress or requested. The first active state 
T s is Signaled by status line S1 or SO going lOW 
and identifying phase 1 of the processor clock. Dur­
ing T s, the command encoding, the address, and 
data (for a write operation) are available on the 
80286 output pins. The 82C288 bus controller de­
codes the status signals and generates Multibus 
compatible readlwrite command and local trans­
ceiver control Signals. 

After T s, the perform command (T c> state is en­
tered. Memory or liD devices respond to the bus 
operation during T c, either transferring read data to 
the CPU or accepting write data. T c states may be 
repeated as often as necessary to assure sufficient 
time for the memory or I/O device to respond. The 
READY signal determines whether T c is repeated. A 
repeated Testate is called a wait state. 

During hold (T h)' the 80286 will float all address, 
data, and status output pins enabling another bus 
master to use the local bus. The 80286 HOLD input 
signal is used to place the 80286 into the T h state. 
The 80286 HlDA output signal indicates that the 
CPU has entered T h. 

Pipelined Addressing 
The 80286 uses a local bus interlace with pipelined 
timing to allow as much time as possible for data 
access. Pipelined timing allows a new bus operation 
to be initiated every two processor cycles, while al­
lowing each individual bus operation to last for three 
processor cycles. 

The timing of the address outputs is pipelined such _ 
that the address of the next bus operation becomes 
available during the current bus operation. Or in otlJ­
er words, the first clock of the next bus operation is 
overlapped with the last clock of the current bus op­
eration. Therefore, address decode and routing logic 
can operate in advance of the next bus operation. 
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Figure 23. Basic Bus Cycle 

External address latches may hold the address sta· 
ble for the entire bus operation, and provide addi­
tional AC and DC buffering. 

The 80286 does not maintain the address of the cur­
rent bus operation during all T C states. Instead, the 
address for the next bus operation may be emitted 
during phase 2 of any T c. The address remains valid 
during phase 1 of the first T c to guarantee hold time, 
relative to ALE, for the address latch inputs. 

Bus Control Signals 
The 82C288 bus controller provides control signals; 
address latch enable (ALE), Read/Write commands, 
data transmit/receive (DT /A), and data enable 
(DEN) that control the address latches, data trans­
ceivers, write enable, and output enable for memory 
and I/O systems. 

The Address Latch Enable (ALE) output determines 
when the address may be latched. ALE provides at 
least one system CLK period of address hold time 
from the end of the previous bus operation until the 
address for the next bus operation appears at the 
latch outputs. This address hold time is required to 
support MUL TIBUS and common memory systems. 

The data bus transceivers are controlled by 82C288 
outputs Data Enable (DEN) and Data Transmit/Re­
ceive (DT lA'). DEN enables the data transceivers; 
while DT lA' controls tranceiver direction. DEN and 
DT /A' are timed to prevent bus contention between 
the bus master, data bus transceivers, and system 
data bus transceivers. 
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Command Timing Controls 
Two system timing customization options, command 
extension and command delay, are provided on the 
80286 local bus. 

Command extension allows additional time for exter­
nal devices to respond to a command and is analo­
gous to inserting wait states on the 8086. External 
logic can control the duration of any bus operation 
such that the operation is only as long as necessary. 
The READY input signal can extend any bus opera­
tion for as long as necessary. 

Command delay allows an increase of address or 
write data setup time to system bus command active 
for any bus operation by delaying when the system 
bus command becomes active. Command delay is 
controlled by the 82C288 CMDL Y input. After T s, 
the bus controller samples CMDL Y at each failing 
edge of CLK. If CMDL Y is HIGH, the 82C288 will not 
activate the command signal. When CMDL Y is LOW, 
the 82C288 will activate the command signal. After 
the command becomes active, the CMDL Y input is 
not sampled. 

When a command is delayed, the available re­
sponse time from command active to return read 
data or accept write data is less .. To customize sys­
tem bus timing, an address decoder can determine 
which bus operations require delaying the com­
mand. The CMDL Y input does not affect the timing 
of ALE, DEN, or DT IA. 
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Figure 24. CMDL Y Controls the Leading Edge of Command Signal 

Figure 24 illustrates four uses of CMDl Y. Example 1 
shows delaying the read command two system 
ClKs for cycle N-1 and no delay for cycle N, and 
example 2 shows delaying the read command one 
system ClK for cycle N-1 and one system ClK de­
lay for cycle N. 

Bus Cycle Termination 
At maximum transfer rates, the 80286 bus alternates 
between the status and command states. The bus 
status signals become inactive after T s so that they 
may correctly signal the start of the next bus opera­
tion after the completion of the current cycle. No 
external indication of T c exists on the 80286 local 
bus. The bus master and bus controller enter T c di­
rectly after T s and continue executing T c cycles until 
terminated by READY. 

READY Operation 
The current bus master and 82C288 bus controller 
terminate each bus operation simultaneously to 
achieve -maximum bus operation bandwidth. Both 
are informed in advance by READY active (open­
collector output from 82C284) which identifies the 
last T C cycle of the current bus operation. The bus 
master and bus controller must see the same sense-
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of the READY signal, thereby requiring READY be 
synchronous to the system clock. 

Synchronous Ready 
The 82C284 clock generator provides READY syn­
chronization from both synchronous and asynchro­
nous sources (see Figure 25). The synchronous 
ready input (SRDY) of the clock generator is sam­
pled with the falling edge of ClK at the end of phase 
1 of each T c. The state of SRDY is then broadcast to 
the bus master and bus controller -via the READY 
output line. 

Asynchronous Ready 
Many systems have devices or subsystems that are 
asynchronous to the system clock. As a result, their 
ready outputs cannot be guaranteed to meet the 
82C284 SRDY setup and hold time requirements. 
But the 62C284 asynchronous ready input (ARDY) is 
designed to accept such signals. The ARDY input is 
sampled at the beginning of each T c cycle by 
82C284 synchronization logic. This provides one 
system ClK cycle time to resolve its value before 
broadcasting it to the bus master and bus controller. 
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1. SRDYEN is active low. 
2. If SRDYEN is high, the state of SRDY will no affect READY. 
3. ARDYEN is active low. 

Figure 25. Synchronous and Asynchronous Ready 

ARDY or ARDYEN must be HIGH at the end of T S. 
ARDY cannot be used to terminate bus cycle with no 
wait states. 

Each ready input of the 82C284 has an enable pin 
(SRDYEN and ARDYEN) to select whether the cur­
rent bus operation will be terminated by the synchro­
nous or asynchronous ready. Either of the ready in­
puts may terminate a bus operation. These enable 
inputs are active low and have the same timing as 
their respective ready inputs. Address decode logic 
usually selects whether the current bus operation 
should be terminated by ARDY or SRDY. 

Data Bus Control 

Figures 26, 27, and 28 show how the DT lA, DEN, 
,data bus, and address signals operate for different 
combinations of read, write, and idle bus operations. 
DT IA goes active (LOW) for a read opera~ion. DT IA 
remains HIGH before, during, and between write op­
erations. 
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The data bus is driven with write data during the 
second phase of T s. The delay in write data timing 
allows the read data drivers, from a previous read 
cycle, sufficient time to enter 3-state OFF before the 
80286 CPU begins driving the local data bus for 
write operations. Write data will always remain valid 
for one system clock past the last T c to provide suffi­
cient hold time for Multibus or other similar memory 
or 1/0 systems. During write-read or write-idle se­
quences the data bus enters 3-state OFF during the 
second phase of the processor cycle after the last 
T c. In a write-write sequence the data bus does not 
enter 3-state OFF between T c and T s. 

Bus Usage 

The 80286 local bus may be used for several func­
tions: instruction data transfers, data transfers by 
other bus masters, instruction fetching, processor 
extension data transfers, interrupt acknowledge, and 
halt/shutdown. This section describes local bus ac­
tivities which have special signals or requirements. 
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Figure 26. Back to Back Read-Write Cycles 

AEADCYCLE 

. elK 

A,23 - Ao 
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0'5-00 ----------
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Figure 27. Back to Back Write-Read Cycles 
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Figure 28. Back to Back Write-Write Cycles 

HOLD and HLDA 
HOLD AND HLDA allow another bus master to gain 
control of the local bus by placing the 80286 bus into 
the T h state. The sequence of events required to 
pass control between the 80286 and another local 
bus master are shown in Figure 29. 

In this example, the 80286 is initially in the T h state 
as signaled by HLDA being active. Upon leaving T h, 
as signaled by HLDA going inactive, a write opera­
tion is started. During the write operation another 
local bus master requests the local bus from the 
80286 as shown by the HOLD signal. After complet­
ing the write operation, the 80286 performs one Tj 
bus cycle, to guarantee write data hold time, then 
enters T h as signaled by HLDA going active. 

The CMDL Y signal and ARDY ready are used to 
start and stop the write bus command, respectively. 
Note that SRDY must be inactive or disabled by 
SRDYEN to guarantee ARDY will terminate the cy­
cle. 

HOLD must not be active during the time from the 
leading edge of RESET until 34 CLKs following the 
trailing edge of RESET. 

Lock 
The CPU asserts an active lock signal during Inter­
rupt-Acknowledge cycles, the XCHG instruction, and 
during some descriptor accesses. Lock is also as­
serted when the LOCK prefix is used. The LOCK 
prefix may be used with the following ASM-286 as­
sembly instructions; MOVS, INS, and OUTS. For bus 
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cycles other than Interrupt-Acknowledge cycles, 
Lock will be active for the first and subsequent cy­
cles of a series of cycles to be locked. Lock will not 
be shown active during the last cycle to be locked. 
For the next-to-Iast cycle, Lock will become inactive 
at the end of the first T c regardless of the number of 
wait-states inserted. For Interrupt-Acknowledge cy­
cles, Lock will be active for each cycle, and will be­
come inactive at the end of the first T c for each cy­
cle regardless of the number of wait-states inserted. 

Instruction Fetching. 
The 80286 Bus Unit (BU) will fetch instructions 
ahead of the current instruction being executed. This 
activity is called prefetching. It occurs when the local 
bus would otherwise be idle and obeys the following 
rules: 

A prefetch bus operation starts when at least two 
bytes of the 6-byte prefetch queue are empty. 

The prefetcher normally performs word prefetches 
independent of the byte alignment of the code seg­
ment base in physical memory. 

The prefetcher will perform only a byte code fetch 
operation for control transfers to an instruction be­
ginning on a numerically odd physical address. 

Prefetching stops whenever a control transfer or 
HL T instruction is decoded by the IU and placed into 
the instruction queue. 

In real address mode, the prefetcher may fetch up to 
6 bytes beyond the last control transfer or HL T in­
struction in a code segment. 
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In protected mode, the prefetcher will never cause a 
segment overrun exception. The prefetcher stops at 
the last physical memory word of the code segment. 
Exception 13 will occur if the program attempts to 
execute beyond the last full instruction in the code 
segment. 

If the last byte of a code segment appears on an 
even physical memory address, the prefetcher will 
read the next physical byte of memory (perform a 
word code fetch). The value of this byte is ignored 
and any attempt to execute it causes exception 13 .. 

NOTES: 

BUS HOlD ACKNOWLEDGE WRITE CYCLE 

BUS CYCLE TYPE I TIT I T 
.1 i.2 .1 IM.2 .1 t $2 

elK 

HOLD 

HlOA -------t-.. 
-~+_----+_---------------------J 

(SEE NOTE 1.) 

!i-SO ------------
A23 - Ao (SEE NOTE 2.) 

WO~~---------------- -\c:::t~~::~~~~~~~~~~~.---------
(SEE NOTE 3,) 

lIRE.rnlm ------------------~=t~=~~~~~~.---------

D,,-Do ------------------------,'-____ ~V~.l;;;;ID;...... ____ ~»>-UJ ...,-------

=~~~~ 
NOT READY NOT RE.(()Y 

WH--------------------------------
DT/A 

DEN ' .... -------
.~ ___________________ _J~'_ ____________________________ _ 

TS s STATUS CYCLE 
TC = COMMAND CYCLE 
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. 1. Status lines ~ not driven by 80286, yet remain high due to pullup resistors in 82C284 during HOLD state. 
2. Address, MIlO and COD/INTA may start floating during any Te depending on when internal 80286 bus arbiter de· 
cides to release bus to external HOLD. The float starts in <1>2 of T c. 
3. SHE and LOCK may start floating after the end of any T e depending on when internal 80286 bus arbiter decides to 
release bus to external HOLD. The float starts in <1>1 of Te. 
4. The minimum HOLD to HLDA time is shown. Maximum is one TH longer. 
5. The earliest HOLD time is shown. It will always allow a subsequent memory cycle if pending is shown. 
6. The minimum HOLD to HLDA time is shown. Maximum is a function of the instruction, type of bus cycle and other 
machine state (i.e., Interrupts, Waits, Lock, etc.). 
7. Asynchronous ready allows termination of the cycle. Synchronous ready does not signal ready in this example. Syn­

. chronous ready state is ignored after ready is signaled via the asynchronous input. 

Figure 29. MUL TIBUS® Write Terminated by Asynchronous Ready with Bus Hold 
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Processor Extension Transfers 

The processor extension interface uses I/O port ad­
dresses 00F8(H), OOFA(H), and OOFC(H) which are 
part of the I/O port address range reserved by Intel. 
An ESC instruction with Machine Status Word bits 
EM = 0 and TS = 0 will perform I/O bus operations 
to one or more of these I/O port addresses indepen­
dent of the value of 10PL and CPL. 

ESC instructions with memory references enable the 
CPU to accept PEREa inputs for processor exten­
sion operand transfers. The CPU will determine the 
operand starting address and read/write status of 
the instruction. For each operand transfer, two or 
three bus operations are performed, one word trans­
fer with I/O port address OOFA(H) and one or two 
bus operations with memory. Three bus operations 
are required for each word operand aligned on an 
odd byte address. 

NOTE: 
Odd-aligned numerics operands should be avoided 
when using an 80286 system running six or more 
memory-write wait states. The 80286 can generate 
an incorrect numerics address if all the following 
conditions are met: 

- Two floating point (FP) instructions are fetched 
and in the 80286 queue. 

- The first FP instruction is any floating point store 
except FSTSW AX. 

- The second FP instruction accesses memory. 

- The operand of the first instruction is aligned on 
an odd memory address. . 

- Six or more wait states are inserted during either 
of the last two memory write (odd aligned oper­
ands are transferred as two bytes) transfers of 
the first instruction. 

The second FP operand's address will be incre­
mented by one if these conditions are met. These 
conditions are most likely to occur in a multi-master 
system. For a hardware solution, contact your local 
Intel representative. 

Commands to the numerics coprocessor should not 
be delayed by nine or more T-states. Excessive 
(nine or more) command-delays can cause the 
80286 and 80287 to lose synchronization. 

Interrupt Acknowledge Sequence 

Figure 30 illustrates an interrupt acknowledge se­
quence performed by the 80286 in response to an 
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INTR input. An interrupt acknowledge sequence 
consists of two INTA bus operations. The first allows 
a master 8259A Programmable Interrupt Controller 
(PIC) to determine which if any of its slaves should 
return the interrupt vector. An eight bit vector is read 
on 00-07 of the 80286 during the second INTA bus 
operation to select an interrupt handler routine from 
the interrupt table. 

The Master Cascade Enable (MCE) signal of the 
82C288 is used to enable the cascade address driv­
ers, during INTA bus operations (See Figure 30), 
onto the local address bus for distribution to slave 
interrupt controllers via the system address bus. The 
80286 emits the LOCK signal (active LOW) during T s 
of the first INT A bus operation. A local bus "hold" 
request will not be honored until the end of the sec­
ond INTA bus operation. 

Three idle processor clocks are provided by the 
80286 between INTA bus operations to allow for the 
minimum INTA to INTA time and CAS (cascade ad­
dress) out delay of the 8259A. The second INTA bus 
operation must always have at least one extra T c 
state added via logic controlling READY. This is 
needed to meet the 8259A minimum INTA pulse 
width. 

Local Bus Usage Priorities 

The 80286 local bus is shared among several inter­
nal units and external HOLD requests. In case of 
simultaneous requests, their relative priorities are: 

(Highest) Any transfers which assert LOCK either 
explicitly (via the LOCK instruction prefix) 
or implicitly (i.e. some segment descriptor 
accesses, interrupt acknowledge se­
quence, or an XCHG with memory). 

The second of the two byte bus opera­
tions required for an odd aligned word op­
erand. 

The second or third cycle of a processor 
extension data transfer. 

Local bus request via HOLD input. 

Processor extension data operand trans­
fer via PEREa input. 

Data transfer performed by EU as part of 
an instruction. 

(Lowest) An instruction prefetch request from BU. 
The EU will inhibit prefetching two proc­
essor clocks in advance of any data 
transfers to minimize waiting by EU for a 
prefetch to finish. 
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NOTES: 
t. Data is ignored, upper data bus, 08-015, should not change state during this time. 
2. First INTA cycle should have at least one wait state inserted to meet 8259A minimum INTA pulse width .. 
3. Second INTA cycle should have at least one wait state inserted to meet 8259A minimum INTA pulse width. 
4. LOCK is active for the first INTA cycle to prevent the bus arbiter from rel.easing the bus between INTA cycles in a 
multi-master system. LOCK is also active for the second INTA cycle. 
5. A23-AO exits 3-state OFF during <1>2 of the second Tc in the INTA cycle. 
6. Upper data bus should not change state during this time. 

Figure 30. Interrupt Acknowledge Sequence 

Halt or Shutdown Cycles 

The 80286 externally indicates halt or shutdown 
conditions as a bus operation. These conditions oc- . 
cur due to a HL T instruction or multiple protection 
exceptions while attempting to execute one instruc­
tion. A halt or shutdown bus operation is Signalled 
when S1, SO and CODIINTA are LOW and MilO is 
HIGH. At HIGH indicates halt, and At LOW indi­
cates shutdown. The 82C288 bus controller does 
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not issue ALE, nor is READY required to terminate a 
halt or shutdown bus operation. 

During halt or shutdown, the 80286 may service 
PEREQ or HOLD requests. A processor extension 
segment overrun exception during shutdown will in­
hibit further service of PEREQ. Either NMI or RESET 
will force the 80286 out of either halt or shutdown. 
An INTR, if interrupts are enabled, or a processor 
extension segment overrun exception will also force 
the 80286 out \of halt. 
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Figure 31. Basic 80286 System Configuration 

SYSTEM CONFIGURATIONS 

The versatile bus structure of the 80286 microsys­
tern, with a full complement of support chips, allows 
flexible configuration of a wide range of systems. 
The basic configuration, shown in Figure 31, is simi­
lar to an 8086 maximum mode system. It includes 
the CPU plus an 8259A interrupt controller, 82C284 
clock generator, and the 82C288 Bus Controller. 

As indicated by the dashed lines in Figure 31, the 
ability to ,add processor extensions is an integral fea­
ture of 80286 microsystems. The processor exten­
sion interface allows external hardware to perform 
special functions and transfer data concurrent with 
CPU execution of other instructions. Full system in­
tegrity is maintained because the 80286 supervises 
all data transfers and instruction execution for the 
processor extension. 
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The 80287 has all the instructions and data types of 
an 8087. The 80287 NPX can perform numeric cal­
culations and data transfers concurrently with CPU 
program execution. Numerics code and data have 
the same integrity as all other information protected 
by the 80286 protection mechanism. 

The 80286 can overlap chip select decoding and ad­
dress propagation during the data transfer for the 
previous bus operation. This information is latched 
by ALE during the middle of a T s cycle~ The latched 
chip select and address information remains stable 
during the bus operation while the next cycle's ad­
dress is being decoded and propagated into the sys­
tem. Decode logic can be implemented with a high 
speed bipolar PROM. ' 

The optional decode logic shown in Figure 31 takes 
advantage of the overlap between address and data 
of the 80286 bus cycle to generate advanced mem­
ory and IO-select signals. This minimizes system 
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Figure 32. MUL TIBUS® System Bus Interface 

performance degradation caused by address propa­
gation and decode delays. In addition to selecting 
memory and 1/0, the advanced selects may be used 
with configurations supporting local and system bus­
es to enable the appropriate bus interface for each 
bus cycle. The COD/INTA and MIlO signals are'ap­
plied to the decode logic to distinguish between in­
terrupt, 1/0, code and data bus cycles. 

MUl TIBUS bus is conneqted to its CMDl Y input to 
delay the. start of commands one system ClK as 
required to meet MUlTIBUS address and write data 
setup times. This arrangement will add at least one 
extra Testate to each bus operation which uses the 
MUlTIBUS_ . 

A second 82C~88 bus controller and additional 
latches and transceivers could be added to the local 
bus of Figure 32. This configuration allows the 
80286 to support an on-board bus for local memory 
and peripherals, and the MUl TIBUS for system bus 
interfacing. 

By adding the 82289 bus arbiter chip, the 80286 pro­
vides a MUl TIBUS system bus interface as shown 
in Figure 32. The ALE output of the 82C288' for the 
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Figure 33. 80286 System Configuration with Dual-Ported Memory 

Figure 33 shows the addition of dual ported dynamic 
memory between the MUL TIBUS system bus and 
the 80286 local bus. The dual port interface is pro­
vided by the 8207 Dual Port DRAM Controller.' The 
8207 runs synchronously with the CPU to maximize 
throughput for local memory references. It also arbi­
trates between requests from the local and' system 
buses and performs functions such as refresh, 

initialization of RAM, and read/modify/write cycles. 
The 8207 combined with the 8206 Error Checking 
and Correction memory controller provide for single 
bit error correction. The dual-ported memory can be 
combined with a standard MUL TIBUS system bus 
interface to maximize performance and protection in 
mUltiprocessor system configurations. 

Table 16. 80286 Systems Recommended Pull Up Resistor Values 

80286 Pin and Name PullupValue Purpose 
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5-S0 20Kn ±10% Pull SO, S1, and PEACK inactive during 80286 hold periods(1) 

6-PEACK 

63-READY 910n ±5% 
Pull READY inactive within required minimum time (CL = 150 pF, 

IR';;; 7mA) 

NOTE: 
1. Pull-up resistors are not required on SO and S1 when the corresponding pins of the 82C284 are connected to SO and S1. 

121CETM·286 System Design 
Considerations 

One of the advantages of using the 80286 is that full 
in-circuit emulation debugging support is provided 
through the 121CE system 80286 probe. To utilize 
this powerful tool it is necessary that the system de­
signer be aware of a few minor parametric and 
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functional differences between the 80286 and 121CE 
,system 80286 probe. The 121CE data sheet (121CE 
Integrated Instrumentation and In-Circuit Emulation 
System; order #210469) contains a detailed de­
scription of these design considerations. It is recom­
mended that this document be reviewed by the 
80286 system designer to determine whether or not 
these differences affect his design. 
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PACKAGE THERMAL 
SPECIFICATIONS 

The 80286 Microprocessor is specified for operation 
when case temperature (T c> is within th~ range 
0·C-85·C. Case temperature, unlike ambient tem­
perature, is easily measured in any environment to 
determine whether the 80286 Microproc~ssor is 
within the specified operating range. The case tem­
perature should be measured at the center of the 
top surface of the component. 

The maximum ambient temperature (T A> .allowable 
without violating T C specifications can be calculated 
from the equations shown below. T J is the 80286 
junction temperature. P is the power dissipated by 
the 80286. 

TA = TJ + p. IJJA 

Tc = TA -+ p. [IJJA -' IJJcl 
, 

Values for (JJA and (JJC are given in Table 17. (JJA is 
given at various airflows. Table 18 shows the maxi­
mum T A allowable (without exceeding T c> at various 
airflows. Note that the 80286 PLCC package has an 
internal heat spreader. T A can be further improved 
by attaching "fins" or an external "heat sink" to the 
package. 

Junction temperature calculations should use an Icc 
value that is measured without external resistive 
loads. The external resistive loads dissipate addi­
tional power external to the 80286 and not on the 
die. This increases the resistor temperature, not the 
die temperature. The full capacitive load (CL = 
100 pF) should be applied during the Icc measure-
ment. . 

Table 17. Thermal Resistances ("C/Watt) (JJC and (JJA 

(JJA versus Airflow - ft/mln (m/sec) 

Package (JJC 0 200 400 600 800 1000 
(0) (1.01) (2.03) (3.04) (4.06) (5.07) 

68-Lead LCC 8 28 22 16 .13 12 11 

68-Lead PGA 5.5. 28 22 16 15 14 13 

68-Lead PLCC 8 28 23 21 18 16 15 
wi Internal 
Heat Spreader 

Table 18. Maximum T A at Various Airflows 

T A ("C) versus Airflow - ft/mln (m/sec) 

Package 0 200 400 . 600 , 800 1000 
(0) (1.01) (2.03) (3.04) (4.06) (5.07) -

68-Lead LCC 35 50 65 72 75 77 

68-Lead PGA 29 44 59 62 64 66 

68-Lead PLCC 35 48 53 60 65 68 
wi Internal 
Heat Spreader 

NOTE: 
The numbers in Table 18 were calculated using an Icc of 450 rnA, which is representative of the worst case Icc at 
T c = 85·C with the outputs unloaded. 
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Typical Icc vs FreqlJency for Different Output Loads and Case Temperatures 

NOTES: 
1. Vee = 5.0V 
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2. loaded: IOL = 2.0 mA, IOH = -400 /LA, CL = 100 pF. 
Unloaded: CL = 100 pF. 

3-99 

__ OOC LOADED 
~ OOC UNLOADED 
--e-- 25°C LOADED 
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ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias •••. O·C to + 70·C 
Storage Temperature ..••..•..•• -65°C to+ 150°C 
Voltage on Any Pin with 

Respect to Ground ...•.••..••.. > 1.0V to + 7V 
Power Dissipation ..••.••••..•..••......•••. 3.3W 

• Notice: Stresses above those listed under '~bso~ 
lute Maximum Ratings" may cause permanent dam, 
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex" 
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS (Vcc = 5V ±5%, TCASE = O·Cto +85°C)* 

Symbol Parameter Min Max Unit Test Condition 

Icc Supply Current (O·C Turn On) 600 mA (Note 1) 

CCLK ClK Input Capacitance 20 pF (Note 2) 

CIN Other input Capacitance 10 pF (Note 2) 

Co Input/Output Capacitance 20 pF (Note 2) 

NOTES: 
1. Tested at worst case load and maximum lrequency. 
2. These are not tested. They are guaranteed by design characterization. 

D.C. CHARACTERISTICS 
(VCC = 5V ±5% , TCASE = O·C to +85°C)* Tested at the minimum operating frequency of the part. 

Symbol Parameter Min Max Unit Test Condition 

VIL Input lOW Voltage -0.5 0.8 V 

VIH Input HIGH Voltage 2.0 VCC +0.5 V 

VILC ClK Input lOW Voltage -0.5 0.6 V 

VIHC ClK Input HIGH Voltage 3.8 VCC +0.5 V 

VOL Output lOW Voltge 0.45 V IOL - 2.0mA 

VOH Output HIGH Voltage 2.4 V IOH = - 4OO I'-A 

III Input leakage Current ±10 I'-A Oy ~ VIN ~ VCC 

ILCR Input ClK, RESET leakage Current ±10 I'-A 0.45 ~ VIN ~ VCC 

.ILCR Input ClK, RESET leakage Current ±1 mA o ~ VIN < 0.45 

IlL Input Sustaining Current on -30 -500 I'-A VIN = OV BUSY and ERROR Pins 

ILO Output leakage Current ±10 I'-A 0.45 ~ VOUT ~ VCC 
25·C ~ T CASE ~ 85·C 

ILO Output leakage Current ±20 I'-A 0.45V ~ VOUT ~ VCC 
O·C ~ T CASE ~ 25·C 

ILO Output leakage Current ±1 mA o ~ VOUT < 0.45 

°TA is guaranteed from O·C to +55·C as long as TCASE is not exceeded. 
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A.C. CHARACTERISTICS (Vcc = 5V ± 5%, T CASE = DoC to + B5°C)* 
AC timings are referenced to O.BV and 2.0V points of signals as illustrated in datasheet waveforms, unless 
otherwise noted. 

8 MHz 10MHz 12.5 MHz 

Symbol Parameter ·8 ·8 -10 -10 -12 -12 Unit Test Condition 
Min Max Min Max Min Max 

1 System Clock (ClK) Period 62 250 50 250 40 250 ns 

2 System Clock (ClK) lOW Time 15 225 12 232 11 237 ns at 1.0V 

3 System Clock (ClK) HIGH Time 25 235 16 239 13 239 ns at3.6V 

17 System Clock (ClK) Rise Time 10 8 - 8 ns 1.0V to 3.6V, 
(Note 7) 

18 System Clock (ClK) Fall Time 10 8 - B ns 3.6V to 1.0V, 
(Note 7) 

4 Asynch. Inputs Setup Time 20 20 15 ns (Note 1) 

5 Asynch. Inputs Hold Time 20 20 15 ns (Note 1) 

6 RESET Setup Time 28 23 18 ns 

7 RESET Hold Time 5 5 5 ns 

8 Read Data Setup Time 10 8 5 ns 

9 Read Data Hold Time 8 8 6 ns 

10 READY Setup Time 38 26 22 ns 

11 READY Hold Time 25 25 20 ns 

12 Status/PEACK Valid Delay 1 40 - - - - ns (Notes 2, 3) 

12a1 Status Active Delay - - 1 22 3 18 ns (Notes 2, 3) 

12a2 PEACK Active Delay - - 1 22 3 20 ns (Notes 2, 3) 

12b Status/PEACK Inactive Delay - - 1 30 3 22 ns (Notes 2, 3) 

13 Address Valid Delay 1 60 1 35 1 32 ns (Notes 2,3) 

14 Write Data Valid Delay 0 50 0 30 0 30 ns (Notes 2, 3) 

15 Address/Status/Data Float Delay 0 50 0 47 0 32 ns (Notes 2, 4, 7) 

16 HlDA Valid Delay 0 50 0 47 0 27 ns (Notes 2, 3) 

19 Address Valid To Status 38 27 22 ns (Notes 3, 5, 6, 7) 
Valid Setup Time 

'T A is guaranteed from QOC to + !j5°C as long as T CASE IS not exceeded. 

NOTES: 
1. Asynchronous inputs are INTR, NMI, HOLD, PEREQ, ERROR, and BUSY. This specification is given only for testing 
purposes, to assure recognition at a specific CLK edge. 
2. Delay from 1.0V on the CLK, to 0.8V or 2.0V or float on the output as appropriate for valid or floating condition. 
3. Output load: CL = 100 pF. 
4. Float condition occurs when output current is less than ILO in magnitude. 
5. Delay measured from ·address either reaching O.BV or 2.0V (valid) to status going active reaching 2.0V or status going 
inactive reaching 0.8V. 
6. For load capacitance of 10 pF or more on STATUS/PEACK lines, subtract typically 7 ns. 
7. These are not tested. They are guaranteed by design characterization. 
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A.C. CHARACTERISTICS (Continued) 

NOTE 8: 
AC Test Loading on Outputs 

CLKINPUT 

NOTE 9: 

DEVICE 
°llTPUT 

4.0V 

AC Drive and Measurement Points-CLK Input 

4.0V 

CLKINPUT 

80286 

O.4SV -------

210253-37 

1.0V 

tHOLD 

OTHER i~"~~;;;:~--1-----;:~~~~~~~~ DEVICE 
INPUT 

O.45V 

NOTE 10: 

DEVICE 
OUTPUT 

AC Setup. Hold and Delay Time Measurement-General 

tOELAY ----I 

2.OV 

O.8V 
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A.C. CHARACTERISTICS (Continued) 

82C284 Timing Requirements 

Symbol Parameter 
82C284-8 82C284·10 82C284-12 

Units 
Test 

Min Max Min Max Min Max Conditions 

11 SRDY ISRDYEN Setup Time 20 18 18 ns 

12 SRDY ISRDYEN Hold Time 0 2 2 ns 

13 ARDY I ARDYEN Setup Time 0 0 0 ns (Note 1) 

14 ARDY I ARDYEN Hold Time 30 30 25 ns (Note 1) 

19 PClK Delay 0 45 0 35 0 23 ns CL = 75 pF 
IOL = 5mA 
IOH = -1 mA 

NOTE 1: 
These times are given for testing purposes to assure a predetermined action. 

82C288 Timing Requirements 

Symbol Parameter 
82C288·8 82C288-10 82C288-12 

Units 
Test 

Min Max Min Max Min Max Conditions 

12 CMDl Y Setup Time 20 15 15 ns 

13 CMDl Y Hold Time 1 1 1 ns 

30 Command Delay Command 5 20 5 20 5 20 CL = 300 pF max 
from ClK inactive IOL = 32 mA max 

ns 
IOH = -5 mA max 29 Command 3 25 3 21 3 21 

Active 

16 ALE Active Delay 3 20 3 16 3 16 ns 

17 ALE Inactive ,Deiay 25 19 19 ns 

19 DT IR Read Active Delay 25 23 23 ns 
CL = 150 pF 

22' DT IR Read Inactive Delay 5 35 5 20 5 18 ns 
IOL = 16 mA max 

20 DEN Read Active Delay 5 35 5 21 5 21 ns 
iOH = -1 mA max 

21 DEN Read Inactive Delay 3 35 3 21 3 19 ns 

23 DEN Write Active Delay 30 23 23 ns 

24 DEN Write Inactive Delay 3 30 3 19 3 19 ns 
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WAVEFORMS 

MAJOR CYCLE TIMING 
READ CYCLE 
ILLUSTRATED WITH ZERO 
WAIT STATES 

80286 

WRITE CYCLE 
ILLUSTRATED WITH ONE 
WAIT STATE 

READ 
(TI OR Tsl 

BUS CYCLE TYPE TI TS ' TC TS TC TC 

CLK 

A23~" 
~ M/iO, COD/INTA 

iii 

READY 

- --
SRDY+SRDYEN 

... .. 
~ ---

ARDY+ARDYEN 

PCLK 

ALE 

CMDLY 

MWTC .. .. ... 
u ... .. 

MRDC 

DT/R 

DEN 

NOTE: 

~ Fn -0)- • ;r ~ V ~ ...:r ~ ~ ~ V~® ~~~ @I--
OL _@~_ @~ 

'11: / 
1+1 @- ~ 

-@~ I-@+ 

- ~-VALID ADDRESS WIIA VALID ADDRESS I~ ~ VALID IF" 1S 

-@1 ~ 
~ VALID CONTROL WI/A( VALID CONTROL ~I/hl 

®.~~ -191 -@ 

----------------- ---- ---- ;~EADD:~: ~ VALID WRITE DATA ~ 

-@- -:[ i-l@- Ij@ 
/JJh WJh Xi \.\\\\\\. 

- I-@ 
.:l@1+ 

~\\'\'\'\'\'\'\'\'\'\W ~" ~ 

-@i- -18Ji-

-' -i@i-
~~ ~\.~ 

- -@>I-- @>- . -~I-
~""'~ ~~ .r L V-~ '-

. -@~ r K . . 
j: I- -@Jji ?t @~ -j@i- I 

~ \,'\'\'\'\'\'\\ '/I·WH """ - .I-@! r ..--
'lit 

-@ -®t (SEE NOTE I) 

-'!( T 
-@>-

-f-

I~_~ @ 

-@t - @r.: -@ -
T ---.f 

210253-40 

1, The modified timing is due to the CMDL Y signal being active. 
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WAVEFORMS (Continued) 

80286 ASYNCHRONOUS 
INPUT SIGNAL TIMING 

80286 RESET INPUT TIMING AND 
SUBSEQUENT PROCESSOR CYCLE PHASE 

BUS CYCLE TYPE 

210253-41 

NOTES: 
1. PClK indicates which processor cycle phase will occur 
on the next ClK. PClK may not indicate the correct phase 
until the first bus cycle is performed. 
2. These inputs are asynchronous. The setup and hold 
times shown assure recognition for testing purposes. 

EXITING AND ENTERING HOLD 

CD 
IX) 

'" o 
IX) 

BUS CYCLE lYPE 

CLK 

. HLDA 

eLK 

RESET 
----'I'-"I 

CLK 

RESET 

210253-42 

NOTE: 
When RESET meets the setup time shown, the next ClK 
will start or repeat </>2 of a processor cycle. 

(SEE NOTE 4.) 

+---+~--+----!r--+~-----------------------

@ r(SEE NOTE 1.) BHE,LOCK 
A23~~ u_u_uuu_ VALID :")T)'M»:-":)+)'M»~) ____________________ _ 
COD/INTA I 

015 _ Do _________________ ~~E~ ::~_6~ __ 1'\.Io, .. ~V_AL_ID~{ WRIT01)f>t-(:~ _N~:E_2~) ______ , _____ _ 

~[ PCLK ____ ..J! 
210253-43 

NOTES: 
1. These signals may not be driven by the 80286 during the time shown. The worst case in terms of latest float time is 
shown. 
2. The data bus will be driven as shown if the last cycle before TI in the diagram was a write Te. 
3. The 80286 floats its status pins during TH. External 20 Kn resistors keep these signals high (see Table 16). 
4. For HOLD request set up to HlDA, refer to Figure 29. 
5. BHE and lOCK are driven at this time but will not become valid until T s. 
6. The data bus will remain in 3-state OFF if a read cycle is performed. 
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WAVEFORMS (Continued) 

80286 PEREQ/PEACK TIMING FOR ONE TRANSFER ONLY 

BUS CYCLE TYPE 
T, 

VCH 

ClK 

51·50 

A
23 ~~8 --:~~:~:t::~::::::::1::::~1~:::~:::::::::::::::::::~'(::::::::::::::: COD INTA 

PEACK 

NOTES: 

I/O PORT ADDRESS OOFA(H) IF PROC. EXT. TO MEMORY TRANSFER 
MEMORY ADDRESS IF MEMORY TO PROC. EXT. TRANSFER 

210253-44 

1. PEACK always goes active during the first bus operation of a processor extension data operand transfer sequence. The 
first bus operation will be either a memory read at operand address or 1/0 read at port address OOFA(H). 
2. To prevent a'second processor extension data operand transfer, the worst case maximum time (Shown above) is: 3x 
(i) -12a2max. - @min .. The actual, configuration dependent, maximum time is: 3 x (i) -12a2max. -@min. + A X 2 X (i). 
A is the number of extra T c states added to either the first or second bus operation of the processor extension data operand 
transfer sequence. . 

INITIAL 80286 PIN STATE DURING RESET. @ <ffi.D VALID 

BUS CYClE TYPE 

ClK 

RESET 
AT LEAST 

16 C1.K PERIODS 

.51 "so 
UNKNOWN 

PtACK 

A23 Ao 
UNKNOWN 

SHE 

M/iO I UNKNOWN 
COO/INTA 

LOCK UNKNOWN 

DATA 

HLDA II UNKNOWN 
@t 

210253-45 

NOTES: 
1. Setup time for RESET i may be violated with the consideration that CP1 of the processor clock may begin one system 
ClK period later. 
2. Setup and hold times for RESET J. must be met for proper operation, but RESET J. may occur during CP1 or cp2. 
3. The data bus is only guaranteed to be in 3-state OFF at the time shown. 

3-106 



80286 

BYTE 1 BYTE 2 BYTE 3 BYTE. BYTES BYTE. 

MTr,,;..,::..r-nTr,,;,,;:,,,:,..:-r:., -------'T------- .... ------- .... - ------, 
LOW DISPIDATA : HIGH DISPIDATA: LOW DATA HIGH DATA I 

..... -T"""-.A.r'T'--r.L--i--'--r..J - -- - - - _. - - - - - - _ ... - - - - - - _.I. -:- ______ .. 

REGISTER OPERANOJREGISTERS TO USE IN OFf'SET CALCULAnoN 

L-__ REGISTER OPERAND/EXTENSION OF OPCODE 

'------ REGISTER IIODElMEIiORY IIODE WITH DISPLACEIIENT LENGTH 

'------- WORD/BYTE OPERAnON 
'-------- DIRECTION IS TO REGISTER/DIRECTION IS FROM REGISTER 

L-_________ OPERATION(INSTRUCnON)CODE 

A. SHORT OPCODE FOAIIAT EXAMPLE 

BYTE 1 BYTEZ BYTE 3 BYTE 4 BYTES 

T.'4~21D7.1.32t.7.1.~2'. 

I""" " """'1'1 " I"I--::Dt-:"--~--H~:D:P--~ LONG qPCODE mod '"II rIm I I ..... ------' _____ ...L._L-..;;....L..--I _______ ... _______ .. 

B. LONG OPCOOE FORIIAT EXAMPLE 

210253-46 

Figure 35. 80286 Instruction Format Examples 

80286 INSTRUCTION SET SUMMARY 

Instruction Timing Notes 

The instruction clock counts listed below establish 
the maximum execution rate of the 80286. With no 
delays in bus cycles, the actual clock count of an 
80286 program will average 5% more than the cal­
culated clock count, due to instruction sequences 
which execute faster than they can be fetched from 
memory. 

To calculate elapsed times for instruction se­
quences, multiply the sum of all instruction clock 
counts, as listed in the table below, by the processor 
clock period. An 8 MHz processor clock has a clock 
period of 125 nanoseconds and requires an 80286 
system clock (ClK input) of 16 MHz. 

Instruction Clock Count Assumptions 

1. The instruction has been prefetched, decoded, 
and is ready for execution. Control transfer in­
struction clock counts include all time required to 
fetch, decode, and prepare the next instruction for 
execution. 

2. Bus cycles do not require wait states. 

3. There are no processor extension data transfer or 
local bus HOLD requests. 

4. No exceptions occur during instruction execution. 

Instruction Set Summary Notes 

Addressing displacements selected by the MOD 
field are not shown. If necessary they appear after 
the instruction fields shown. 

Above/below refers to unsigned value 

Greater refers to positive signed value 

less refers to less positive (more negative) signed 

values 

if d = 1 then to register; if d = 0 then from register 

if w = 1 then word instruction; if w = 0 then byte 
instruction 

if s = 0 then 16-bit immediate data form the oper­
and 

if s = 1 then an immediate data byte is sign-ex­
tended to form the 16-bit operand 

x don't care 

z used for string primitives for comparison with 
ZF FLAG 

If two clock counts are given, the smaller refers to a 
register operand and the larger refers to a memory 
operand 

• = add one clock if offset calculation requires 
summing 3 elements 

n = number of times repeated 

m = number of bytes of code in next instruction 

level (l)-lexical nesting level of the procedure 
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The following comments describe possible excep­
tions, side effects, and allowed usage for instruc­
tions in both operating modes of. the 80286. 

REAL ADDRESS MODE ONLY 
1. This is a protected mode instruction. Attempted 

execution in real address mode will result in an 
undefined opcode exception (6): ' 

2. A segment overrun exception (13) will occur if a 
word oper,and reference at offset FFFF(H) is at­
tempted. 

3. This instruction may be executed in real address 
mode to initialize the CPU for protected mode. 

4. The IOPL and NT fields will remain o. 
5. Processor extension segment overrun interrupt 

(9) will occur if the operand exceeds the seg­
ment limit. 

EITHER MODE 
6. An exception may occur, depending on the value 

of the operand. 

7. LOCK is automatically asserted regardles$ of the 
presence or absence of the LOC~ instruction 
prefix. 

8. LOCK does not remain active between all oper­
and transfers. 

PROTECTED VIRTUAL ADDRESSMODEONL Y 
9. A general protection exception (13) will occur if 

the memory operand cannot be used due toei­
ther a segment limit or access rights violation.' 11 
a stack segment limit is violated, a stack seg­
ment overrun exception (12) occurs. 

10. For segment load operations, the CPL, RPL, and 
OPL must agree with privilege rules to avoid an 
exception. The segment must be present to 
avoid a not-present exception (11). If the SS reg­
ister is the destination, and a segment I)ot-pres­
ent violation occurs, a, stack exception (12) oc­
curs. 

'11. All segment descriptor accesses in the GOT or 
LOT made by this instruction will automatically 
assert LOCK to maintain descriptor integrity in 
multiprocessor systems. 

12. JMP, CALL, INT, RET, IRET instructions refer­
ring to another code segment will cause a gener­
al protection exception (13) if any privilege rule is 
violated. ' ' 

13. A 'general protection, exception (13) occurs if 
CPL *- o. 

14. A general protection exception (13) occurs if 
CPL> IOPL. 

15. The IF field of the flag word is not updated if CPL 
> IOPL. The IOPL field is updated only if 
CPL = O. 

16. Any violation of privilege rules as applied to the 
selector operand do not cause a protection ex­
ception; rather, the instruction does not return a 
result and the ze,ro flag is cleared. 

17. ~f the starting address of the memory operand 
violates a .segment limit, or an invalid access is 
attempted, a general protection exception (13) 
will occur before the ESC instruction is' execut­
ed. A stack segment overrun exception (12) will 
occur if the stack limit is violated by the oper­
and's starting .address. If:a segment limit is vio­
lated during an attempted data transfer then a 
processor extension segment overrun exception 
(9) occurs., . 

18. The destination of an INT, JMP, CALL, RET or 
IRET instruction must be in the defined limit of a 
code segment or a general protection exception 
(13) will occur. 
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80286 INSTRUCTION SET SUMMARY 

CLOCK COUNT COMMENTS 

FUNCTION 
Protected 

Real 
Protected 

FORMAT 
Real 

Virtual Virtual 
Address 

Address 
Address 

Address 
Mode 

Mode 
Mode 

Mode 

pATA TRANSFER 

~OV = Move: 

~egister to Register/Memory I 1000100w mod reg rIm I 2,3' 2,3' 2 9 

~egister/memory to regis~er I 1000101w mod reg rIm I 2,5' 2,5* 2 9 

mmediata,to register/memory I 1100011 w modOOO rIm I data i dataifw = 1 I 2,3' 2,3' 2 9 

mmediate to register I 1011w reg data i dataifw=l I 2 2 

~emory to accumulator I 1010000w addr-Iow i addr-high I 5 5 2 9 

~ccumulator to memory I 1010001w addr-Iow i addr-high I 3 3 2 9 

~egister/memory to segment register I 10001110 mod 0 reg rIm I 2,5* 17,19' 2 9,10,11 

. ~egment register to register Imemory I 10001100 mod 0 reg rim I 2.3* 2,3' 2 9 

PUSH=Push: 

~emory I 11111111 i mod 1 1 a rIm I 5' 5' 2 9 

flegister I 01010 reg I 3 3 2 9 

~egment register I OOOreg 11 a I 3 3 2 9 

mmedia1e 1 011010 sO I data i dataffs=O I 3 3 2 9 

"OSHA ~Push All 1011000001 17 17 2 9 

POP=Pop: 

~emory I 10001111 imodOOO r/ml 5' 5' 2 9 

~egister I a 1 all reg I 5 5 2 9 

~egment register I 000regl11 1 (reg'>"OI) 5 20 2 9,10,11 

roPA~PopAli I 01100001 1 19 19 2 9 

~CHG = Exhcange: 

~egister/memory with register I 1000011w imodreg rlml 3,5' 3,5' 2,7 7,9 

~egister with accumulator I 10010 reg I 3 3 

N = Input from: 

ixed port I 111001 Ow I port I 5 5 14 

Variable port I 111011 Ow I 5 5 14 

OUT = Outpullo: 

ixedport 1110011 wi port I 3 3 14 

Variable port 1110111 wi 3 3 14 

XLAT=Translate byte to AL 11010111 I 5 5 9 

EA = Load EA to register 10001101 I mod reg r/ml 3' 3' 

DS = Load painter to OS 11000101 imOdreg r/ml (mod'>" 11) 7' 21' 2 9,10,11 

ES= Load painter to ES I 11000100 imOdreg r/ml (mod'>"l) 7' 21" 2 9,10,11 

Shaded areas indicate instruclions not available in 8086, 88 micro systems. 
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80286 INSTRUCTION SET SUMMARY (Continued) 

CLOCK COUNT COMMENTS 

FUNCTION Real 
Protected 

Real 
Protected 

FORMAT Virtual Virtual 
Address 

Address 
Address 

Address 
Mode - Mode 

Mode 

DATA TRANSFER (Continued) 

~HF Load AH with flags I 10011111 I 2 2 

SAHF ~ Store AH into flags I 10011110 I 2 2 

PUSHF ~ Push flags I 10011100 I 3 3 2 9 

POPF ~ Pop flags I 100tll01 I 5 5 2.4 9,15 

i'RITHMETIC 
ADD~Add: 

Reg/memory with register to either I OOOOOOdw I mod reg rIm I 2,7- 2,7' 2 9 

mmediate to register/memory 11 OOOOOsw I modOOO rIm I data Idataifsw ~ 011 3,7' 3,7' 2 9 

mmediate to accumulator 1000001 Ow I data I datajfw~1 I 3 3 

"DC ~ Add with carry: 

Reglmemory with register to either 10001 OOdw I modreg rIm I 2,7' 2,7' 2 9 

mmediate to register/memory 11 OOOOOsw I modOI 0 rIm I data Idataifsw ~ 011 3,7' 3,7' 2 9 

mmediate to accumulator 10001010wl data dataifw~1 I 3 3 

NC ~ Increment: 

~egister/memory I 1111 111 w I mod 0 0 0 rIm-I 2,7' 2.7' 2 9 

~egister I 01000reg I 2 2 

~UB ~ Subtrect: 

~eg/memory and register to either 100101 Odw I mod reg rIm I 2,7' 2,7· 2 9 

mmediate from register/memory 1100000sw I modl0l rIm I data Idataffsw ~ 011 3,7' 3,7' 2 9 

mmediate from accumulator 10010110wl data I dataifw~1 I 3 3 

~BB ~ SUbtract with borrow: 

~eg/memory and register to either I 00011 Odw I modreg rIm I 2,7' 2.7· 2 9 

mmediate from register Imemory 1100000sw I modOll rIm I dal;l I datajfsw~OI I 3,7' 3,7' 2 9 

mmediate from accumulator I 0001110w I data I dataifw~1 I 3 3 

PEC~ Decrement 

~egister/memory I llll-lllw ImodOOI r/ml 2,7' 2,7' 2 9 

~egister I 01001 reg I 2 2 

~MP~compare 

~eg;ster/memory with register 0011101w Imodreg r/ml 2,6' 2,S· 2 9 

~egisterwith register/memory 00111 OOw Imodreg r/ml 2,7· 2,7' 2 9 

mmediate with registerlmemory 1 OOOOOsw Imodlll r/ml data I data~sw~OI I 3,S· 3,S· 2 9 

mmediate with accumulator 001111 Ow I data I dataffw~1 I 3 3 

~EG ~ Change sign 1111011w ImodOll r/ml 2 7' 2 9 

~ ~ ASCII adjust for add 00110111 I 3 3 

PAA ~ Decimal adjust for add I 00100111 I 3 3 
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80286 INSTRUCTION SET SUMMARY (Continued) 

CLOCK COUNT COMMENTS 

Real 
Protected 

Real 
Protected 

UNCTION FORMAT Virtual Virtual 
Address 

Address 
Address 

Address 
Mode 

Mode 
Mode 

Mode 

ARITHMETIC (Continued) 

AAS ~ ASCII adjust for subtract I 00111111 I 3 3 

DAS ~ Decimal adjust for subtract I 00101111 1 3 3 

MUL~Multiply (unsigned): I 1111011 w Imod 1 00 r/ml 
Register-Byte 13 13 
Register-Word 21 21 
Memory-Byte 16' 16' 2 9 
Memory-Word .24' 24' 2 9 

MUL ~ Integer multiply (signed): 1 1111011w Imodl0l r/ml 
Register-Byte 13 13 
Register-Word 21 21 
Memory-Byte 16' 16' 2 9 
Memory-Word 24' 24' 2 9 

IMUL "'Integer immediate multiply I 011010s1 lmoal'eg r/ml data I dataHs" 0 I 21,24' 21,24' 2 9 
signed) 

DIV ~ Divide (unsigned) I 1111011w Imod 110 r/ml 

Register-Byte 14 14 6 6 
Register-Word 22 22 6 6 
Memory-Byte 17' 17' 2,6 6,9 
Memory-Word 25' 25' 2,6 6,9 

DIV~ Integer divide (signed) I 1111011 w I mod 111 r/ml 
Register-Byte 17 17 6 6 
Register-Word 25 25 6 6 
Memory-Byte 20' 20' 2,6 6,9 
Memory-Word 28' 28' 2,6 6,9 

AAM ~ ASCII adjusl for multiply I 11010100 1 00001010 1 16 16 

AD ~ ASCII adjust for divide I 11010101 1 00001010 1 14 14 

caw ~ Convert byte to word I 10011000 1 2 2 

WD ~ Convert word to double word I 10011001 1 2 2 

OGIC 
hili/Rotate Instructions: 

Register/Memory by 1 I ltOl000w ImodTTT r/ml 2,7· 2,7· 2 9 

Register IMemory by CL I 110100tw ImodTTT r/ml 5+n,8+n· 5+n,8+n- 2 9 

f'legister/Memory by Count 111 OoOOOw ImodTTT r/ml coUllt I· 5+0.8+0' 5+o,8+n' 2 9 

TTT Instruction 
000 ROL 
001 ROR 
010 RCL 
011 RCR 
100 SHL/SAL 
101 SHR 
111 SAR 

Shaded areas indicate instructions not available in 8086, 88 micro systems. 
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80286 INSTRUCTION SET SUMMARY (Continued) 

CLOCK COUNT COMMENTS 

FUNCTION Real 
Protected 

Real 
Protected 

FORMAT Virtual Virtual 
Address 

Address 
Address 

Address 
Mode 

Mode 
Mode 

Mode 

ARITHMETIC (Continued) 

AND~And: 

Reg/memory and register to either ,1001 OOOdw I modreg rIm I 2,7' 2,7·' 2 9 

mmediate to register/memory 11 OOOOOOw I mod 1 00 rIm I data I dataifw~1 I 3,7' 3,7' 2 9 

mmediate to accumulator 10010010wl dala I dalaifw~1 I 3 3 

EST ~ And function to lIags, no result: 

Register/memory and register 11000010w I modreg rIm I 2,6' 2,S' 2 9 

mmediate data and register/memory I 1 1 1 1 0 1 1 w I mod 0 0 0 rIm I data I dataifw~1 I 3,6* 3,6* 2 9 

mmediate data and accumulator I 1010100w I dala I dataifw~1,1 3 3 

pR~Or: 

Reg/memory and register to either I 000010dw I modreg rIm I 2,7' 2,7' 2 9 

mmediate to register/memory 11 OOOOOOw I mod001 rIm I dala I datadw~1 I 3.7' 3,7" 2 9 

mmediate to accumulator I 0000110w I dala I dalaifw~1 I 3 3 

~OR ~ Exclusive or: 

Reg/memory and register to either 10011 OOdw I mod reg rIm I 2,7' 2,7' 2 9 

mmediate to register/memory 11 000000 w I mod 11 0 rIm I data I dataifw~ 1 I 3,7' 3,7' 2 9 

mmediate to accumulator I 0011010w I data I data ifw ~ 11 3 3 

~OT= Invert register/memory I 1111011 w I mod 0 1 0 rIm I 2,7' 2,7' 2 9 

~TRING MANIPULATION: 

~OVS~ Move byte/word 1010010w 5 5 2 9 

FMPS ~ Compare byte/word 1010011w 8 8 2 9 

~AS ~ Scan byte/word 1010111 w 7 7 2 9 

ODS ~ Load byte/wd 10 ALI AX 1010110w 5 5 2 9 

~TOS ~ Slor byte/wd from AL/ A 1010101w 3 3 2 9 

~=Inputbyte/wd from oX port 0110110wj !; S· 
.. 

2 ~,14· 

puts .. Output byt$Iwd'lO oX port 10110111",1 5 f,; 2 9.14 

~epealed by counl in ex 

r.OV5= Move string 11110011 I 1010010w I 5+4n 5+4n 2 9 

~MPS ~ Compare SIring 1111001 z 1010011 wi 5+9n 5+9n 2,8 8,9 

~CAS= Scan sIring 1111001 z 1010111 wi' 5+8n 5+8n 2,8 8,9 

ODS ~ Load sIring 11110011 101011 Ow 1 5+4n 5+4n 2,8 8,9 

~TOS ~ Slore sIring 11110011 1010101 wi 4+3n 4+3n 2,8 8,9 

~-Input siring I 11110()11 011011 Ow I 5+40 1i+41'1 a &,14 

puts .. Output $\ring 1,1 t1 0011 I 0110111 w I 5+40 5+4n 2 9,14 

Shaded areas indicate instructions not available in BOB6, BB microsystems. 
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80286 INSTRUCTION SET SUMMARY (Continued) 

CLOCK COUNT COMMENTS 

Real 
Protected 

Real 
Protected 

FUNCTION FORMAT Virtual Virtual 
Addre •• 

Addre •• 
Addre •• 

Address 
Mode 

Mode 
Mode 

Mode 

CONTROL TRANSFER 
CALL =Call: 

Direct within segment I 11101000 I disp-Iow I disp-high I 7+m 7+m 2 18 

Registerlmemory I 11111111 ImodOl0 rim I 7+m.11+m· 7+m,ll+m' 2,8 8,9,18 
indirect within segment 

Direct intersegment I 10011010 I segment offset I 13+m 26+m 2 11,12,18 

Protected Mode Only (Direct Intersegment): I segment selector I 
Via call gate to same privilege level 41+m 8,11,12,18 
Via call gate to different privilege level, no parameters 82+m 8,11,12,18 
Via call gate to different privilege level, x parameters 86 +4x+m 8,11,12,18 
ViaTSS 177+m 8,11,12,18 
Via task gate 182+m 8,11,12,18 

Indirect intersegment I 11111111 ImodOll rim I (mod""ll) 16+m 29+m· 2 8,9,11,12,18 

Protected Mode Only (Indirect Interse9ment): 
Via call gate to same privilege level 44+m* 8,9,11,12,18 
Via call gate to dillerent privilege level, no parameters 83 +m' 8,9,11,12,18 
Via call gate to different privilege level, x parameters 90+4x +m' 8,9,11,12,18 
ViaTSS - 180+m· 8,9,11,12,18 
Via task gate 18S+m' 8,9,11,12,18 

JMP = Unconditional Jump: 

Short/long I 11101011 I disp-Iow I 7+m 7+m 18 

Direct within segment I 11101001 I disp-Iow I disp-high I 7+m 7+ m 18 

Register/memory indirect within segment I 11111111 Imodl00 r/ml 7 +m,11+m· 7+m,11+m* 2 9,18 

Direct intersegmenl I 11101010 I segment offset I II+m 23+m 11,12,18 

Protected Mode Only (Direct Intersegment): I segment selector I 
Via call gate to same privilege level 38+m 8,11,12,18 
ViaTSS 17S+m 8,11,12,18 
Via task gate 180+m 8,11,12,18 

Indirect intersegment I 11111111 Imodl0l r/ml (mod"" 11) 1S+m· 26+m· 2 8,9,11,12,18 

Protected Mode Only (Indirect Intersegment): 
Via call gate to same privilege level 41+m* 8,9,11,12,18 
ViaTSS 178+m' 8,9,11,12,18 
Via task gate 183+m' 8,9,11,12,18 

RET = Return Irom CALL: 

Within segment I 11000011 I II+m II+m 2 8,9,18 

Wilhin seg adding immed to SP I 11000010 I data-low I data-high I II+m II+m 2 8,9,18 

Intersegment I 11001011 I IS+m 2S+m 2 8,9,11,12,18 

Intersegment adding immediate to SP I 11001010 I data-low I data-high I IS+m 2 8,9,11,12,18 

Protected Mode Only (RET): 
To different privilege level 5S+m 9,11,12,18 
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80286 INSTRUCTION SET SUMMARY (Continued) 

CLOCK COUNT COMMENTS 

Real 
Protecled 

Real 
Protected 

FUNCTION ,FORMAT Virtual Virtual 
Address 

Address 
Address 

Address 
Mode 

Mode 
Mode 

Mode 

CONTROL TRANSFER (Continued) 

JE/JZ=Jump on equal zero 01110100 disp 7+mor3 7+mor3 18 

JL/JNGE = Jump on less/not greater or equal 01111100 disp 7+mor3 7+mor3 18 

JLEI JNG = Jump on less or equal/not greater 01111110 disp 7+mor3 7+mor3 18 

JB/JNAE=Jump on below/not above or equal 01110010 disp 7+mor3 7+mor3 18 

JBE/JNA = Jump on below or equal/not above 01110110 disp 7+mor3 7+mor3 18 

JP/JPE=Jump on parity/parity even 01111010 disp 7+mor3 7+mor3 18 

JO = Jump on overflow 01110000 disp 7+mor3 7+mor3 18 

JS = Jump on sign 01111000 disp 7+mor3 7+mor3 18 

JNE/JNZ=Jump on not equal/not zero 01110101 disp 7+mor3 7+mor3 18 

JNUJGE = Jump on not less/greater or equal 01111101 disp 7+mor3 7+mor3 18 

JNLE/JG =Jump on not less or equal/greater 01111111 disp 7+mor3 7+mor3 18 

JNB/JAE=Jump on not below/above or equal 01110011 disp 7+'I)or3 7+mor3 18 

JNBE/JA= Jump on not below or equai/above 01110111 disp 7+mor3 7+mor3 18 

JNP/JPO=Jump on not par/par odd 011,11011 disp 7+mor3 7+mor3 18 

JNO= Jump on not overflow 01110001 disp 7+mor3 7+mor3 18 

JNS = Jump on not sign 01111001 disp 7+mor3 7+mor3 18 

LOOP = Loop CX times 11100010 disp 8 +mor4 8+mor4 18 

LOOPZ/LOQPE= Loop while zero/equal 11100001 disp 8+mor4 , 8+mor4 18 

LOOPNZlLOOPNE = Loop while not zero/equal 11100000 disp 8+mor4 8+mor4 18 

JCXZ = Jump on CX zero 11100011 disp 8 +mor4 8+mor4 18 

ENTeft-Enter~ 11001000 da\a4ow da1a-high I L I 2,8 8,9 
L-O ", 1" 11 
L=l 15 ,15 

2,8 8,9 

L>l 18+4(l-1) 18+4(L -'1) M 8,9 

I I 
2.11 a.s 

!$AVE -I.ee¥!J'r.o~dure 11001001 5 5 

INT = Interrupt: 

Type specilied I 11001101 I type I 23+m 2,7,8 

Type 3 I 11001100 I 23+m 2,7,8 

INTO = Interrupt on overflow I 11001110 I 24+mor3 2,6,8 
(3 il no (3 il no 

interrupt) interrupt) 

Shaded areas indicate instructions not available in BOB6, BB microsystems. 
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80286 INSTRUCTION SET SUMMARY. (Continued) 

CLOCK COUNT COMMENTS 

fUNCTION Real 
Protected 

Real 
Protected 

FORMAT Virtual Virtual 
Address 

Address 
Address 

Address 
Mode 

Mode 
Mode 

Mode 

PONTROL TRANSFER (Continued) 

Protected Mode Only: 

Via interrupt or trap gate to same privilege level 40+ m 7,8,11,12,18 

Via interrupt or trap gate to fit different privilege level 78+ m 7,8,11,12,18 

Via Task Gate 167+m 7,8,11,12,18 

RET = Interrupt return I 11001111 I 17+m 31+ m 2,4 8,9,11,12,15,18 

protected Mode Only: , 
To different privilege level 55+m 8,9,11,12,15,18 
To different task (NT= 1) 169+m 8,9,11,12,18 

~OUNO~ Oetect valUe out 01 range I 01100·010 I mad reg rIm I 13' 13' 2,6 6,8.9,11,12,18 

(Use INT cIook 
counlW 

exceptiOn 5) 

PROCESSOR CONTROL 

CLC = Clear carry 11111000 2 2 

CMC = Complement carry 11110101 2 2 

STC = Set carry 11111001 2 2 

LO = Clear direction 11111100 2 2 

STO = Set direction 11111101 2 2 

CLI = Clear interrupt 11111010 3 3 14 

STI = Set interrupt 11111011 2 2 14 

HLT=Halt 11110100 2 2 13 

WAIT = Wait 10011011 3· 3 

OCK = Bus lock prefix 11110000 0 0 14 

CTS = Clear task switched flag I 00001111 00000110 I 2 2' ::I 13 

ESC = Processor Extension Escape I 11011 TTT modLLL rIm I 9-20' 9-20' 5,8 8,17 

(TIT LLL are opcode to processor extension) 

SEG = Segment Override Prefix I 001 regl10 I 0 0 

PROTECTION CONTROL 

GDT= Load glObal descriptor table register I 00001111 I 00000001 Imodolo rlml 11' II' 2,3 9,13 

SGDT=Store global descriptor table register I 00001111 I 00000001 ImadOOD rlml II' II' 2.S 9 

lOT = Load interrupt descriptor table register I 00001111 I 00000001 ImadOl1 rlml 12' 12' 2,3 9,13 

SlOT = Store Interrupt descriptor table register I 00001111 I 00000001 I mad 00 1 rIm I 12' 12' 2.3 9 

LLDT = Load local descriptor table register 

from register memOry I 00001111 I 00000000 ImadDl0 rIm I 17,19' 1 9,11,13 

SLOT=Store local descriptor table register 

to register/memory I 00001111 I 00000000 ImadOOO rIm I 2.S" 1 9 

Shaded areas indicate instructions not available in 8086, 88 microsystems. 
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80286 INSTRUCTION SET SUMMARY (Continued) 

CLOCK COUNT COMMENTS 

Real 
Protected 

Real 
Protected 

FUNCTION FORMAT Virtual Virtual 
Address 

Address 
Address 

Address 
Mode 

Mode 
Mode 

Mode 

.' , , 

PROTECTION CONTROl. (ConIinued) 

LTR-local task register 
" from reglsterlmemory I 00001111 I 00000000 I modO 11 tIm I, 17,1." 1 9,11,13 

STR-Store task register 
: , ' 

10 reg(ster tnefl1OJ)l I 00001111 I 00000000 I modOOl rIm 1 2,3' 1 9 

LMSW= Load machine statUII word 
frOm reglsterlmemory I 00001111 I 000000011 modl10 rIm I 3,$" 3.6- 2,3 iI.13 

SM$W d Store!1'18Cl)ine status word I 00001111 'I '00000001 IIIIOdl00 rIm I 2,3' 2.S' 2.3 
'" 

LAII""I.oad_righ1s 

I oooo~ol'ol mod;;; 

,,' 
; f(O!l1 reglaier/rnemorv I 00001111 tlm,1 14,16' 1 9,11,18 

L$L"loecI~1ImIt 
frQIII register/memory I 00001111 I 000:00011 I mOd!!!! rim 1 14.16' 1 9,11,16 

, , 

AAPt.-Adjustrequestell privilege level; 101100011 I mod reg rim I' 10',11' I! 8,9 
ftom reglst8tlmemory 

VERR-Verily read access: reglster/rneinory I 00001111 I 00000000 1~10orim I 14.16' 1 .,11,18, 

veM-Verilywr!te access: I 00001111 I 00000000 I rnod101rim I $,11,t~ 
, ' 

'14.16* 1 

Shaded areas indicate instructions not available in 8086, 88 microsystems. 
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Footnotes 

The Effective Address (EA) of the memory operand 
is computed according to the mod and rIm fields: 

if mod = 11 then rIm is treated as a REG field 
if mod = 00 then 018P = 0', disp-Iow and disp-high 
are absent 
if mod = 01 then 018P = disp-Iow sign-extended to 
16 bits, disp-high is absent 
if mod = 10 then 018P == disp-high: disp-Iow 

if rIm = 000 then EA = (BX) + (81) + 018P 
. if rIm = 001 'then EA = (BX) + (01) + 018P 
if rIm = '010 then EA = (BP) + (81) + 018P 
if rIm = 011 then EA = (BP) + (01) + 018P 
if rIm = 100 then EA = (81) + 018P 
if rIm = 101 then EA = (01) + 018P 
if rIm = 110thenEA = (BP) + 018P' 
if rIm = 111 then EA = (BX) + 018P 

018P follows 2nd byte of instruction (before data if 
required) 
'except if mod = 00 and rIm = 110 then EQ = disp·high: disp·low, 

SEGMENT OVERRIDE PREFIX 

10 0 1 reg 1 1 01 

reg is assigned according to the following: 

Segment 
reg Register 
00 E8 
01 C8 
10 88 
11 DC 

REG is assigned according to the following table: 
·16-Bit (w = 1) 8·Bit (w = 0) 

000 AX 000 AL 
001 CX 001 CL 
010 OX 010 OL 
011 BX 011 BL 
100 8P 100 AH 
101 BP 101 CH 
110 81 110 OH 
111 01 111 BH 

The physical addresses of all operands addressed 
by the BP register are computed using the 88 seg­
ment register. The physical addresses of the desti­
nation operands of the string primitive operations 
(those addressed by the 01 register) are computed 
using the E8 segment, which may not be overridden. 

DATA SHEET REVISION REVIEW 

The following list represents key differences be­
tween this and the -013 data sheet. Please review 
this summary carefully. 

1. Package thermal specifications were added. 

2. A graph of typical Icc vs. Frequency for different 
output loads and Case Temperatures was added. 

3. The Output Leakage Current Specification (ILO) 
was changed. 
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80C287A 
CHMOS III MATH COPROCESSOR 

• High Performance 80-Bit Internal • Directly Extends CPU's Instruction Set 
Architecture to Trigonometric, Logarithmic, 

• Implements ANSI/IEEE Standard 754- Exponential, and Arithmetic 

1985 for Binary Floating-Point Instructions for All Data Types 

Arithmetic • Full-Range 387TM DC Compatible 

• Implements Extended 80387 Instruction Transcendental Operations for SINE, 

Set COSINE, TANGENT, ARCTANGENT, and 
LOGARITHM. 

• Two to Three Times 8087/80287 
Built-In Exception Handling Performance at Equivalent Clock Speed • 

• Low Power Consumption • Operates in Both Real and Protected 
Mode Systems 

• Upward Object-Code Compatible from 
Eight 80-Bit Numeric Registers, Usable 8087 and 80287 • as Individually Addressable General 

• Interfaces with 80286 and 80C286 CPUs Registers or as a Register Stack 

• Expands CPU's Data Types to Include • Available in 40-pin DIP and 44-pin PLCC 
32-, 64-, 80-Bit Floating Point, 32-, 64- Package 
Bit Integers and. 18-Digit BCD Operands (See Packaging Outlines and Dimensions, order" 231369) 

The Intel80C287A CMOS Math CoProcessor is an extension to the Intel 80286 microprocessor architecture. It 
is functionally equivalent to the NMOS 80287, and provides higher speeds and low power consumption for 
battery powered or no-fan applications. When combined with an 80286 microprocessor the 80C287 A dramati­
cally increases the processing speed of computer application software which utilize mathematical operations. 
This makes an ideal computer workstation platform for applications such as financial modeling and spread­
sheets, CAD/CAM, or graphics. 

The 80C287 A Math CoProcessor adds over seventy mnemonics to the 80286 microprocessor instruction set. 
Specific 8o.C287 A math operations include logarithmic, arithmetic, exponentional, and triginometric functions. 
The 80C287A supports integer, extended integer, floating point and BCD data formats, and fully conforms to 
the ANSIIIEEE floating point standard. 

The 80C287A is object code compatible with the 80287 and 8087. The 80C287A is fabricated with CHMOS III 
technology and available in a 40-pin DIP and 44-pin PLCC packages. 

I 
. BUS CONTROL LOGIC I DATA IH1IRFACE AND CONTROL UNIT I FLOATING POINT UNIT 

32 

c~ 
~ ,.....,.-+.:;:;=-=:1.. 

OO-DI5 

_R, 
PEREQ 
BUSY, 

" 

Figure 0.1. 80C287 A Block Diagram 

For the complete data sheet on thIs device, contact Intel's Literature Distribution Dept., (800) 548-4725. 
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80287 
MATH COPROCESSOR 

• High Performance 80-Bit Internal • Protected Mode Operation Completely 
Architecture Conforms to the 80286 Memory 

• Implements Proposed IEEE Floating Management and Protection 

Point Standard 754 Mechanisms 

• Expands 80286 Data types to Include • Directly Extends 80286 Instruction Set 

32-, 64-, 80-Bit Floating POint, 32-, 64- to Trigonometric, Logarithmic, 

Bit Integers and 18-Digit BCD Operands Exponential and Arithmetic Instructions 
for All Data types 

• Object Code Compatible with 8087 
Operates with 80386 CPU without • • Built-in Exception Handling Software Modification 

• Operates in Both Real and Protected • Available in EXPRESs-standard 
Mode 80286 Systems Temperature Range 

• 8x80-Bit, Individually Addressable, • Available in 40 pin-CERDIP package 
Numeric Register Stack (see Packaging Spec: Order "231369) 

The Intel 80287 Math CoProcessor is an extension to the Intel 80286 microprocessor architecture. When 
combined with the 80286 microprocessor the 80287 dramatically increases the processing speed of computer 
application software which utilize mathematical operations. This makes an ideal computer workstation plat­
form for applications such as financial modeling and spreadsheets, CAD/CAM, or graphics. 

The 80287 Math CoProcessor adds over seventy mnemonics to the 80286 microprocessor instruction set. 
Specific 80287 math operations include logarithmic arithmetic, exponential, and trigonometric functions. The 
80287 supports integer, extended integer, floating point and BCD data formats, and fully conforms to the 
ANSIIIEEE floating point standard. 

The 80286/80287 is object code compatible with the 808618087 and 8088/8087. The 80287 is fabricated with 
HMOS III technology and available in a 40-pin cerdip packages. A CMOS 80C287A math coprocessor is 
available for higher speed or low power applications. 

BUS INTERFilCE UNIT 

CONTROL WORD 

DATA 

STATUS 

ADDRESS 

NUMERIC EXECUTlON UNIT 
--- -- - --- - I NIC 

OPERANDS 
QUEUE 

~ 
I------f":: 
1-----1:: 

IIEalSTER STACK 
1--___ --113) 
1------1.13) 
I-----I:~ 

__ L ____ ~-_ ~.I!! 

Figure 1.80287 Block Diagram 
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D1' 

Vee 
Vss 

DO 

D4 

D2 

NOTE: 

NIC 

NIC 

RESET 

N .... 
eLK 

CMD1 

Vss 
CMDD 

NPW. 

"PRO 
ERROR 

iUii 
PEREQ 

DO 
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N/C Pins should not be connected 

Figure 2. 
80287 Pin Configuration 
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Table 1.80287 Pin Description 

Symbols Type Name and Functon 

ClK I CLOCK INPUT: this clock provides the basic timing for internal 80287 
operations. Special MaS level inputs are required. The 82284 or 8284A 
ClK outputs are compatible to this input. 

CKM I CLOCK MODE SIGNAL: indicates whether ClK input is to be divided by 
3 or used directly. A HIGH input will cause ClK to be used directly. This 
input must be connected to Vee or Vss as appropriate. This input must 
be either HIGH or lOW 20 ClK cycles before RESET goes lOW. 

RESET I SYSTEM RESET: causes the 80287 to immediately terminate its 
present activity and enter a dormant state. RESET is required to be 
HIGH for more than 4 80287 ClK cycles. For proper initialization the 
HIGH-lOW transition must occur no sooner than 50 JLs after Vee and 
ClK meet their O.C:-and A.C. specifications. 

015-00 1/0 DATA: 1-bit bidirectional data bus. Inputs to these pins may be applied 
asynchronous to the 80287 clock. 

BUSY a BUSY STATUS: asserted by the 80287 to indicate that it is currently 
executing a command. 

ERROR a ERROR STATUS: reflects the ES bit of the status word. This signal 
indicates that an unmasked error condition exists. 

PEREa a PROCESSOR EXTENSION DATA CHANNEL OPERAND TRANSFER 
REQUEST: a HIGH on this output indicates that the 80287 is ready to 
transfer data. PEREa will be disabled upon assertion of PEACK or upon 
actual data transfer, whichever occurs first, if no more transfers are 
required. 

PEACK I PROCESSOR EXTENSION DATA CHANNEL OPERAND tRANSFER 
ACKNOWLEDGE: acknowledges that the request signal (PEREa) has 
been recognized. Will cause the request (PEREa) to be withdrawn in 
case there are no more transfers required. PEACK may be 
asynchronous to the 80287 clock. 

NPRO I NUMERIC PROCESSOR READ: Enables transfer of data from the 
80287. This input may be asynchronous to the 80287 clock. 

NPWR I NUMERIC PROCESSOR READ: Enables transfer of data from the 
80287. This input may be asynchronous to the 80287 clock. 

NPS1, NPS2 I NUMERIC PROCESSOR SELECTS: indicate the CPU is performing an 
ESCAPE instruction. Concurrent assertion of these signals (I.e., NPS1 is 
lOW and NPS2 is HIGH) enables the 80287 to perform floating point 
instrucctions. No data transfers involving the 80287 will occur unless the 
device is selected via these lines. These inputs may be asynchronous to 
the 80287 clock. 

CM01,CMOO I COMMAND LINES: These, along with select inputs, allow the CPU to 
direct the operation of the 80287. 
These inputs may be asynchronous to the 80287 clock. 
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Table 1.80187 Pin Description (Continued) 

Symbols Type Name and Function 

Vss I System ground, both pins must be connected to ground. 

Vee I +SVsupply 

FUNCTIONAL DESCRIPTION 

The 80287 Numeric Processor Extension (NPX) pro­
vides arithmetic instructions for a variety of numeric 
data types in 80286/80287 systems. It also exe­
cutes numerous built-in transcendental functions 
(e.g., tangent and log functions). The 80287 exe­
cutes instructions in parallel with an 80286. It effec-

80286 

15 FILE' o I 79 78 

tively extends the register and instruction set of an 
80286 system for existing 80286 data types and 
adds several new data types as well. Figure 3 pres­
ents the program visible register model of the 
80286/80287. Essentially, the 80287 can be treated 
as an additional resource or an extension to the 
80286 that can be used as a single unified system, 
the 80286/80287. 

80287 
STACK: TAG FIELD 

64 63 0 1 0 

AX I R1 SIGN EXPONENT SIGNIFICAND 
I BX 

CX 

DX 

SI 
DI 

BP 
SP 

R2 
I 

R3 I 
R4 I 
R5 I 
RI I 
R7 

I RI I 
L __ , 

r:-'5:.....-_~ __ .... 0 I 

~I--~F~L~:~GS~----il : 

L. ____ ..., 

r'5 ______________ ~0 I 

m Ii 

15 o 
CONTROL REGISTER 

STATUS REGISTER 

TAG WORD 

_ INSTRUCTION POINTER -

~ DATA POINTER -

210920-3 

Figure 3. 80286/80287 Architecture 

The 80287 has two operating modes similar to the 
two modes of the 80286. When reset, 80287 is in 
the real address mode. It can be placed in the pro­
tected virtual address mode by executing the 
SETPM ESC instruction. The 80287 cannot be 
switched back to the real address mode except by 
reset. In the real address mode, the 80286/80287 is 
completely software compatible with 808618087 and 
8088/8087. 
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Once in protected mode, all references to memory 
for numerics data or status information, obey the 
80286 memory management and protection rules 
giving a fully protected extension of the 80286 CPU. 
In the protected mode, 80286/80287 numerics soft­
ware is also completely compatible with 808618087 
and 8088/8087. 
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SYSTEM CONFIGURATION 
WITH 80286 

As a processor extension to an 80286, the 80287 
can be connected to the CPU as shown in Figure 
4A. The data channel control signals (PEREa, 
PEACK), the BUSY signal and the NPRD, NPWR 
signals, allow the NPX to receive instructions and 
data from the CPU. When in the protected mode, all 
information received by the NPX is validated by the 
80286 memory management and protection unit. 
Once started, the 80287 can process in parallel with 
and independent of the host CPU. When the NPX 
detects an error or exception, it will indicate this to 
the CPU by asserting the ERROR signal. 

The NPX uses the processor extension request and 
acknowledge pins of the 80286 CPU to implement 
data transfers with memory under the protection 
model of the CPU. The full virtual and physical ad­
dress space of the 80286 is available. Data for the 
80287 in memory is addressed and represented in 
the same manner as for an 8087. 

The 80287 can operate either directly from the CPU 
clock or with a dedicated clock. For operation with 
the CPU clock (CKM = 0), the 80287 works at one­
third the frequency of the system clock (Le., for an 
8 MHz 80286, the 16 MHz system clock is divided 
down to 5.3 MHz). The 80287 provides· a capability 
to internally divide the CPU clock by three to pro­
duce the required internal clock (33% duty cycle). 
To use a higher performance 80287 (8 MHz), an 
8284A clock driver and appropriate crystal may be 
used to directly drive the 80287 with a Va duty cycle 
clock on the ClK input (CKM = 1). The following 
table describes the relationship between the clock 
speed and the 287 speed version needed as a func­
tion of the CKM state. 

287 Speed CLKSpeed 
Version CKM = 0 

5MHz 12 MHz 
6MHz 16 MHz 
8MHz 20 MHz 

10 MHz 25 MHz 

SYSTEM CONFIGURATION 
WITH 80386 

CKM = 1 

5MHz 
6MHz 
8MHz 

10 MHz 

The 80287 can also be connected as a processor 
extension to the 80386 CPU as shown in Figure 4b. 
All software written for 8086/8087 and 802861 
80287 is object code compatible with 80386/80287 
and can benefit from the increased speed of the 
80386 CPU. 

Note that the PEACK input pin is pulled high.' This is 
because the 80287 is not required to keep track of 
the number of words transferred during an operand 
transfer when it is connected to the 80386 CPU. Un­
like the 80286 CPU, the 80386 CPU knows the exact 
length of the operand being transferred tolfrom the 
80287. After an ESC instruction has been sent to the 
80287, the 80386 processor extension data channel 
will initiate the data transfer as soon as it receives 
the PEREa signal from the 80287. The transfer is 
automatically terminated by the 80386 CPU as soon 
as all the words of the operand have been trans­
ferred. 

Because of the very high speed local local bus of 
the 80386 CPU, the 80287 cannot reside directly on 
the CPU local bus. A local bus controller logic is 
used to generate the necessary read and write cycle 
timings as well as the chip select timings for the 
80287. The 80386 CPU uses 1/0 addresses 
800000F8 through 800000FF to communicate with 
the 80287. This is beyond the normal 1/0 address 
space of the CPU and makes it easie~enerate 
the chip select signals using A31 and MilO. It may 
also be noted that the 80386 CPU automatically 
generates 16-bit bus cycles whenever it communi­
cates with the 80287. 

HARDWARE INTERFACE 
Communication of instructions and data operands 
between the 80286 and 80287 is handled by the 
CMDO, CMD1, NPS1, NPS2, NPRD, and NPWR sig­
nals. 1/0 port addresses 00F8H, OOFAH, and OOFCH 
are used by the 80286 for this communication. 
When any of these addresses are used, the NPS1 
input must~OW and NPS2 input HIGH. The 
10RC and 10WC outputs of the 82288 identify 1/0 
space transfers (see Figure 4A). CMDO should be 
connected to latched 80286 A1 and CMD1 should 
be connected to latched 80286 A2. 

1/0 ports 00F8H to OOFFH are reserved for the 
80286/80287 interface. To guarantee correct opera­
tion of the 80287, programs must not perform any 
1/0 operations to these ports. 

The PEREa, PEACK, BUSY, and ERROR Signals of 
the 80287 are connected to the same-named 80286 
input. The data pins of the 80287 should be directly 
connected to the 80286 data bus. Note that all bus 
drivers connected to the 80286 local bus must be 
inhibited when the 80286 reads from the 80287. The 
use of MilO in the decoder prevents INTA bus cy­
cles from disabling the data transceivers. 

PROGRAMMING INTERFACE 

Table 2 lists the seven data types the 80287 sup­
ports and presents the format for each type. These 
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values are stored in memory with the least signifi­
cant digits at the lowest memory address. Programs 
retrieve these values by generating the lowest ad­
dress. All values should start at even addresses for 
maximum system performance. 

Internally the 80287 holds all numbers in the tempo­
rary real format. Load instructions automatically con­
vert operands represented in memory as 16-, 32-, or 
64-bit integers, 32- or 64-bit floating point number or 

A15-Ao .. RESET 
READY READY 80286 

CLK CLK CPU 
51 51 
so so 

I~ I~ M/iO 

II 
M/iO 

82C288 BUSY 

BUS 
CONTROLLER 

DEN 

DT/R 
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IOWC 10RC 

I I BUSY 

I~ 1>< NPRD ~ 
D.. 

NPWR 

RESET RESET 

f READY 80287 
SOCKET 82C284 CLK t-

CLOCK 51 

~ GENERATOR so 

18-digit packed BCD numbers into temporary real 
format. Store instructions perform the reverse type 
conversion. 

80287 computations use the processor's register 
stack. These eight BO-bit registers provide the equiv­
alent capacity of 40 16-bit registers. The 80287 
register set can be accessed as a stack, with in­
structions operating on the top one or two stack ele­
ments, or as a fixed register set, with instructions 
operating on explicitly designated registers. 

ADDRESS 
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OE 

DATA DIR 
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Figure 4A. 80286/80287 System Configuration 
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Figure 48. 80386/80287 System Configuration 
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Table 2. 80287 Data Type Representation in Memory 

Most Significant Byte HIGHEST ADDRESSED BYTE 
Data 

Formats 
Range Precision 

017 017 017 017 017 017 017 7 

Word Integer 104 16 Bits I (TWO S COMPLEMENT) 
IS 0 

Short Integer 109 32 Bits I'TWO'S COMPLEMENT) 
31 0 

Long Integer 1019 64 Bits 

63 

Packed BCD 1018 18 Digits SI x I dl1 d'b d,!, d'4 d'J d,,J 'd" 
MAGNITUDE 

dIU d" d, d, d, d •• 

79 72 

Short Real 10±38 24 Bits ;1 BIASED I S EXPONENT SIGNIFICAND 
I 

31 23'- I. 0 

Long Real 10±308 53 Bits sl BIASED I SIGNIFICAND EXPONENT 
63 52'- I. 

Temporary Real 10±4932 64 Bits sl BIASED -bl SIGNIFICAND EXPONENT 
79 64 63' 

--

NOTES: 
1. S = Sign bit (0 = positive, 1 = negative) 
2. dn =' Decimal digit (two per byte) 
3. X = Bits have no significance; 8087 ignores when loading, zeros when storing. 
4 . .i. = Position of implicit binary pOint 
5. I = Integer bit of significant; stored in temporary real, implicit in short and long real. 
6. Exponent Bias (normalized values): 

Short Real: 127 (7FH) 
Long Real: 1023 (3FFH) 
Temporary Real: 16383 (3FFFH) 

7. Packed BCD: (-1)8 (017", Do) 
8. Real: (-1)S (2E-BIAS)(FoF1 ... ) 

017 017 0-1 

l'TWO'S COMPLEMENT) 
0 

d, d, .I, d, do I 
0 

I 
0 

I 
0 

210920-6 

Table 6 lists the 80287's instructions by class. No 
special programming tools are necessary to use the 
80287 since all new instructions and data types are 
directly supported by the 80286 assembler and 

appropriate high level languages. All 8086/8088 de­
velopment tools which support the 8087 can also be 
used to develop software for the 80286/80287 in 
real address mode. 
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SOFTWARE INTERFACE 
The 80286/80287 is programmed as a single proc­
essor. All communication between the 80286 and 
the 80287 is transparent to software. The CPU auto­
matically controls the 80287 whenever a numeric in­
struction is executed. All memory addressing 
modes, physical memory, and virtual memory of the 
CPU are available for use by the NPX. 

Since the NPX operates in parallel with the CPU, any 
errors detected by the NPX may be reported after 
the CPU has executed the ESCAPE instruction 
which caused it. To allow identification of the failing 
numeric instruction, the NPX contains two pointer 
registers which identify the address of the failing nu­
meric instruction and the numeric memory operand if 
appropriate for the instruction encountering this er­
ror. 

INTERRUPT DESCRIPTION 

Several interrupts of the 80286 are used to report 
exceptional conditions while executing numeric pro­
grams in either real or protected mode. The inter- . 
rupts and their functions are shown in Table 3. 

PROCESSOR ARCHITECTURE 

As shown in Figure 1, the NPX is internally divided 
into two processing elements, the bus interface unit 
(BIU) and the numeric execution unit (NEU). The 
NEU executes all numeric instructions, while the BIU 
rec~ives and decodes instructions, requests oper­
and transfers to and from memory and executes 
processor control instructions. The two units are 
able to operate independently of one anotherallow­
ing the BIU to maintain asynchronous communica­
tion with the CPU while the NEU is busy processing 
a numeric instruction. 

BUS INTERFACE UNIT 

The BIU decodes the ESC instruction executed by 
the CPU. If the ESC code defines a math instruction, 
the BIU transmits the formatted instruction to the 
NEU. If the ESC code defines an administrative in­
struction, the BIU executes it independently of the 
NEU. The parallel operation of the NPX with the 
CPU is normally transparent to the user. The BIU 
generates the BUSY and ERROR signals for 808261 
80287 processor synchronization and error notifica­
tion, respectively. 

The 80287 executes a single numeric instruction at 
a time. When executing most ESC instructions, the 
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Table 3. 80286 Interrupt Vectors Reserved for NPX 

Interrupt Number Interrupt Function 

7 An ESC instruction was encountered when EM or TS of the 80286 MSW was 
set. EM = 1 indicates that software emulation of the instruction is required. 
When TS is set, either an ESC or WAIT instruction will cause interrupt 7. This 
indicates that the current NPX context may not belong to the current task. 

9 The second or subsequent words of a numeric operand in memory exceeded a 
segment's limit. This interrupt occurs after executing an ESC instruction. The 
saved return address will not point at the numeric instruction causing this 
interrupt. After"processing the addressing error, the 80286 program can be 
restarted at the return address with IRET. The address of the failing numeric 
instruction and numeric operand and saved in the 80287. An interrupt handler 
for this interrupt must execute FNINIT before any other ESC or WAIT 
instruction. ' 

13 The starting address of a numeric operand is not in the segment's limit. The 
return address will point at the ESC instruction, including prefixes, causing this 
error. The 80287 has not executed this instruction. The instruction and data 
address is 80287 refer to a previous, correctly executed, instruction. 

16 The previous numeric instruction caused an unmasked numeric error. The 
address of the faulty numeric instruction or numeric data operand is stored in 
the 80287. Only ESC or WAIT instructions can cause this interrupt. The 80286 
return address will point at a WAIT or ESC instruction, including prefixes, which 
may be restarted after clearing the error condition in the NPX. 

80286 tests the BUSY pin and waits until the 80287 
indicates that it is not busy before initiating the com­
mand. Once initiated, the 80286 continues program 
execution while the 80287 executes the ESC in­
struction. In 8086/8087 systems, this synchroniza­
tion is achieved by placing a WAIT instruction before 
an ESC instruction. For most ESC instructions, the 
80287 does not require a WAIT instruction before 
the ESC opcode. However, the 80287 will operate 
correctly_with these WAIT instruction. In all cases, a 
WAIT or ESC instruction should be inserted after 
any 80287 store to memory (except FSTSW and 
FSTCW) or load from memory (except FLDENV or 
FRSTOR) before the 80286 reads or changes the 
value to be sure the numeric value has already been 
wrtten or read by the NPX. 

Data transfers between memory and the 80287, 
when needed, are controlled by the PEREQ PEACK, 
NPRD, NPWR, NPS1, NPS2 signals. The 80286 
does the actual data transfer with memory through 
its processor extension data channel. Numeric data 
transfers with memory performed by the 80286 use 
the same timing as any other bus cycle. Control sig­
nal for the 80287 are generated by the 80826 as 

shown in Figure 4a, and meet the timing require­
ments'shown in the AC requirements section. 

NUMERIC EXECUTION UNIT 

The NEU executes all instructions that involve the 
register stack; these include arithmetic, logical, tran­
scendental, constant and data transfer instructions. 
The data path in the NEU is 84 bits wide (68 signifi­
cand bits, 15 exponent bits and a sign bit) which 
allows internal operand transfers.to be performed at 
very high speeds. 

When the NEU begins executing an instruction, it 
activated the BIU BUSY signal. This signal is used in 
conjunction with the CPU WAIT instruction or auto-

. mati cally with most of the ESC instructions to syn­
chronize both processors. 

REGISTER SET 

The 80287 register set is shown in Figure 5. Each of 
the eight data registers in the 8087's register stack 
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DATA FIELD TAG FIELD 
79 78 6463 0 1 0 

SIGN EXPONENT SIGNIFICAND 

,. 

15 0 

CONTROL REGISTER 

STATUS REGISTER 

TAG WORD 

,--INSTRUCTION POINTER-

I-- DATA POINTER -

Figure 5. 80287 Register Set 

is 80 bits wide and is divided into "fields" corre­
sponding to the NPX's temporary real data type. 

At a given point in time the TOP field in the status 
word identifies the current top-of-stack register. A 
"push'; operation decrements TOP by 1 and loads a 
value into the new top register. A "pop" operation 
stores the value from the current top register and 
then increments TOP by 1. Like 80286 stacks in 
memory, the 80287 register stack grows "down" 
toward lower-addressed registers. 

Instructions may address the data registers either 
implicitly or explicitly. Many instructions operate on 
the register at the TOP of the stack. These instruc­
tions implicitly address the register pointed by the 
TOP. Other instructions allow the programmer to ex­
plicitfy specify the register which is to be used. This 
explicit register addressing is also "top-relative." 

STATUS WORD 

The 16-bit status word (in the status register) shown 
in Figure 6 reflects the overall state of the 80287. It 
may be read and inspected by CPU code. The busy 
bit(bit 15) indicates whether the NEU is executing 
an instruction (B = 1) or is idle (B = 0). 

The instructions FSTSW, FSTSW AX, FSTENV, and 
FSAVE which store the status -word are executed 
exclusively by the BIU and do not set' the busy bit 
themselves or require the Busy bit be cleared in or­
der to be executed. 

The four numeric condition code bits (CO-C3) are 
similar to the flags in a CPU: instructions that per­
form arithmetic operations update these bits to re­
flect the outcome of NPX operations. The effect of 
these instructions on the condition code is summa­
rized in Tables 4a and 4b. 

Bits 14-12 of the status word point to the 80287 
register that is the current top-of-stack (TOP) as de­
scribed above. Figure 6 shows the six error flags in 
bits 5-0 of the status word. Bits 5-0 are set to indi­
cate that the NEU has detected an exception while 
executing an instruction. The section on exception 
handling explains how they are set and used. 

Bit 7 is the error sLlmmary status bit. This bit is set if 
any unmasked exception bit is set and cleared oth­
erwise. If this bit is set, the ERROR Signal is assert­
ed. 
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1. ES is set if any unmasked exception bit is set, cleared otherwise. 
2. See Table 5 for condition code interpretation. 
S. Top Values 

000 = Register 0 is Top of Stack 
001 = Register 1 is Top of Stack 

• 
• 
• 

111 = Register 7 is Top of Stack . 

• For definitions, see the section on exception handling 

Figure 6. 80287 Status Word 

TAG WORD 

The tag word marks the content of each register as 
shown in Figure 7. The principal function of the tag 
word is to optimize the NPX's performance. The 
eight two·bit tags in the tag word can be used, how· 
ever, to interpret the contents of 80287 registers. 

INSTRUCTION AND DATA POINTERS 

The instruction and data pointers (See Figures 8a 
and 8b) are provided for user·written error handlers. 
Whenever the 80287 executes a new instruction, the 
BIU saves the instruction address, the operand ad· 
dress (if present) and the instruction opcode. 80287 
instructions can store this data into memory. 

The instruction and data pointers appear in one of 
two formats depending on the operating mode of the 
80287. In real mode, these values are the 20·bit 
physical address and 11·bit opcode formatted like 
the 8087. In protection mode, these values are the 

32·bit virtual address used by the program which ex· 
ecuted an ESC instruction. The same FLDENV I 
FSTENV/FSAVE/FRSTOR instructions as those of 
the 8087 are used to transfer these values between 
the 80287 registers and memory. 

The saved instruction address in the 80287 will point 
at any prefixes which preceded the instruction. This 
is different than in the 8087 which only pointed at 
the ESCAPE instruction opcode. 

CONTROL WORD 

The NPX provides several processing options which 
are selected by loading a word from memory into the 
control word. Figure 9 shows the format and encod· 
ing of fields in the control word. 

The low order byte of this control word configures 
the 80287 error and exception masking. Bits 5-0 of 
the control word contain individual masks for each of 
the six exceptions that the 80287 recognizes. The 
high order byte of the control word configures the 
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Table 4a. Condition Code Interpretation' 

Instruction 
C3 C2 Type 

Compare, Test 0 0 
0 0 
1 0 
1 1 

Remainder 01 0 

U 1 

Examine 0 0 
0 0 
0 0 
0 0 
0 1 
0 1 
0 1 
0 1 
1 0 
1 0 
1 0 
1 0 
1 1 
1 1 
1 1 
1 1 

NOTES: 
1. ST = Top of Stack 
2. X = value is not affected by instruction 
3. U = value is undefined following instruction 
4. Qn = Quotient bit n 

Table 4b. Condition Code Interpretation after 
FPREM (See Note 1) Instruction as a Function of 

Dividend Value 

Dividend Rahge Q2 Q1 Qo 

Dividend < 2 • Modulus C3 C1 00 
Dividend < 4 ;,. Modulus Ca 01 00 
Dividend ~ 4 • Modulus 02 01 00 

NOTE: 
1. Previous value of indicated bit, not affected by FPREM 
instruction execution. 

C1 

X 
X 
X 
X 

00 

U 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

Co Interpretation 

0 ST > Source or 0 (FTST) 
1 ST < Source or 0 (FTST) 
0 ST = Source or 0 (FTST) 
1 ST is not comparable 

02 Complete reduction with 
three low bits of quotient 
(See Table 5b) 

U Incomplete Reduction 

0 Valid, positive unnormalized 
1 Invalid, positive, exponent = 0 
0 Valid, negative, unnormalized 
1 Invalid, negative, exponent = 0 
0 Valid, positive, normalized 
1 Infinity, positive 
0 Valid, negative, normalized 
1 Infinity, negative 
0 Zero, positive 
1 Empty 
0 Zero, Negative 
1 Empty 
0 Invalid, positive, exponent = 0 
1 Empty 
0 Invalid, negative, exponent = 0 
1 Empty 

80287 operating mode including precision, rounding,' 
and infinity control. The precision control bits (bits 
9-8) can be used to set the 80287 internal operating 
precision at less than the default of temporary real 
(80-bit) precision. This can be useful in providing 
compatibility with the early generation arithmetic 
processors of smaller precision than the 80287. The 
rounding control bits (bits 11 -10) provide for direct­
ed rounding and true chop as well as the unbiased 
round to nearest even mode specified in the IEEE 
standard. Control over closure of the number space 
at infinity is also provided (either affine closure: ± 
00, or projective closure: 00, is treated as unsigned, 
may be specified). 
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15 

TAG (7) TAG (6) TAG (5) TAG (4) 

NOTE: 
The index i of tag (i) is not top-relative. A program 
typically uses the "top" field of Status Word to deter­
mine which tag (i) field refers to logical top of stack. 

TAG (3) TAG (2) TAG (1) 

TAG VALUES: 
00 = VALID 
01 = ZERO 
10 = INVALID or INFINITY 
11 = EMPTY 

o 

TAG (0) 

Figure 7. 80287 Tag Word 

MEMORY OFFSET 
15 0 

CONTROL WORD +0 

STATUS WORD +2 

TAG WORD +4 

IPOFFSET +6 

CSSELECTOR +8 

DATA OPERAND OFFSET +10 

DATA OPERAND SELECTOR +12 

Figure 8a. Protected Mode 80287 Instruction and Data Pointer Image in Memory 

EXCEPTION HANDLING 

The 80287 detects six different exception conditions 
that can occur during instruction execution. Any or 
all exceptions will cause the assertion of external 
ERROR signal and ES bit of the Status Word if the 
appropriate exception masks are not set. 

The exceptions that the 80287 detects and the 'de­
fault' procedures that will be carried out if the excep­
tion is masked, are as follows: 

Invalid Operation: Stack overflow, stack underflow, 
indeterminate form (0/0, 00, - 00, etc) or the use of 
a Non-Number (NAN) as an operand. An exponent 
value of all ones and non-zero significand is re­
served to identify NANs. If this exception is masked, 
the 80287 default response is to generate a specific 
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NAN called INDEFINITE, or to propogate already ex­
isting NANs as the calculation result. 

Overflow: The result is too large in magnitude to fit 
the specified format. The 80287 will generate an en­
coding for infinity if this exception is masked. 

Zero Divisor: The divisor is zero while the dividend 
is a non-infinite, non-zero number. Again, the 80287 
will generate an encoding for infinity if this exception 
is masked. 

Underflow: The result in non-zero but too small in 
magnitude to fit in the specified format. If this excep­
tion is masked the 80287 will denormalize (shift 
right) the fraction until the exponent is in range. The 
process is called gradual underflow. 
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15 o 
CONTROL WORD 

STATUS WORD 

TAG WORD 

INSTRUCTION POINTER (15-0) 

INSTRUCTION I I INSTRUCTION 
POINTER (19-16) 0 OPCODE (10-0) 

DATA POINTER (15-0), 

DATA POINTER 

I 0 
(19-:16) 

15 12 11 o 

MEMORY 
OFFSET 

+0 

+2 

+4 

+6 

+8 

+10 

+12 

Figure 8b. Real Mode 80287 Instruction and Data Pointer Image in Memory 

16 o 
I X X X Ilcl RC I PC I xl X IPMIUMIOMIZMIDMIIMI 

-

(1) PRECISION CONTROL 
00 = 24 BITS (SHORT REAL) 
01 = RESERVED 
10 = 53 BITS (LONG REAL) 
11 = 64 BITS (TEMP REAL) 

I EXCEPTION MASKS (1 EXCEPTION IS MASKED) 

INVALID OPERATION 
DENORMALIZED OPERAND 
ZERO DIVIDE 

OVERFLOW 
UNDERFLOW 
PRECISION 

(RESERVED) 

(RESERVED) 
PRECISION CONTROL III 

ROUNDING CONTROLI21 

INFINITY CONTROL (0 = PROJECTIVE, 1 = AFFINE) 
(RESERVED) 

(2) ROUNDING CONTROL 
00 = ROUND TO NEAREST OR EVEN 
01 = ROUNDDOWNITOWARD-.oj 
10 = ROUND UP ITOWARD +.oj 
11 = CHOP ITRUNCATE TOWARD ZERO) 

Figure 9. 80287 Control Word 
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Denormalized Operand: At least one of the oper­
ands is denormalized; it has the smallest exponent 
but a non-zero significand. Normal processing con­
tinues if this exception is masked off. 

Inexact Result: The true result is not exactly repre­
sentable in the specified format, the result is round­
ed according to the rounding mode, and this flag is 
set. If this exception is masked, processing will sim­
ply continue. 

If the error is not masked, the corresponding error 
bit and the error status bit (ES) in the control word 
will be set, and the ERROR output signal will be as­
serted. If the CPU attempts to execute another ESC 
or WAIT instruction, exception 7 will occur. 

The error condition must be resolved via an interrupt 
service routine. The 80287 saves the address of the 
floating point instruction causing the error as well as 
the address of the lowest memory location of any 
memory operand required by that instruction. 

8086/8087 COMPATIBILITY: 

The 80286/80287 supports portability of 808618087 
programs when it is in the real address mode. How­
ever, because of differences in the numeric error 
handling techniques, error handling routines may 
need to be changed. The differences between an 
80286/80287 and 808618087 are: 

1. The NPX error Signal does not pass through an 
interrupt controller (8087 INT signal does). 

Therefore, any interrupt controller oriented in­
structions for the 8086/8087 may have to be de­
leted. 

2. Interrupt vector 16 must point at the numeric error 
handler routine. 

3. The saved floating point instruction address in the 
80287 includes any leading prefixes before the 
ESCAPE opcode. The corresponding saved ad­
dress of the 8087 does not includ.e leading prefix­
es. 

4. In protected mode, the format of the saved in­
struction and operand pointers is different than for 
the 8087. The instruction opcode is not saved-it 
must be read from memory if needed. 

5. Interrupt 7 will occur when executing ESC instruc­
tions with either TS or EM or MSW = 1. If TS of 
MSW = 1 then WAIT will also cause interrupt 7. 
An interrupt handler should be added to handle 
this situation. 

6. Interrupt 9 will occur if the second or subsequent 
words of a floating point operand fall outside a 
segment's size. Interrupt 13 will occur if the start­
ing address of a numeric operand falls outside a 
segment's size. An interrupt handler should be 
added to report these programming errors. 

In the protected mode, 8086/8087 application code 
can be directly ported via recompilatiori if the 80286 
memory protection rules are not violated. 
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ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias ...... O°C to 70uC 

Storage Temperature .......... - 65°C to + 150°C 

Case Temperature ................... O°C to 85°C 

Voltage on any Pin with 
Respect to Ground ............... -1.0 to + 7V 

Power Dissipation ....................... 3.0 Watt 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS T A = O°C to 70°C, T e = O°C to 85°C, Vee = 5V ± 5% 

ALL SPEEDS SELECTIONS 

Symbol Parameter Min Max Unit Test Conditions 

VIL Input LOW Voltage -0.5 0.8 V 

VIH Input HIGH Voltage 2.0 Vee +'0.5 V 

VI He Clock Input HIGH Voltage 
CKM = 1: 2.0 Vee +1 V 
CKM = 0: ,3.8 Vee +1 V 

VILe Clock Input lOW Voltage 
CKM =1 -0.5 0.8 V 
CKM = 0 -0.5 0.6 V 

VOL Output lOW Voltage 0.45 V IOL = 3.0mA 

VOH Output HIGH Voltage 2.4 V IOH = -400 p.A 

III Input leakage Current • ±10 p.A OV:s; VIN:S; Vee 

ILO , Output leakage Current • ±10 p.A 0.45V :S; VOUT :S; Vee 

lee Power Supply Current 600 rnA TA = O°C 
475 mA TA = 25~C 

• 375 mA TA = 70°C 

CIN Input Capacitance • 10 pF Fe = MHz 

Co Input/Output Capacitance • 20 pF Ve = 1 MHz 
(DO-D15) 

CeLK ClK Capacitance • 12 pF Fe = 1 MHz 
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A.C. CHARACTERISTICS T A = O·C to 70·C, T CASE = O·C to 85·C, VCC = 5V ± 5% 

TIMING REQUIREMENTS 

A.C. timings are referenced to 0.8V and 2.0V points on signals unless otherwise noted: 

80287-6 80287-8 80287-10 Test Symbol Parameter 6MHz 8MHz 10MHz Units Conditions 
Min Max Min Max Min Max 

TClCl ClK Period 
CKM = 1: 166 500 125 500 100 500 ns 
CKM = 0: 62.5 166 50 166 40 166 ns 

TCLCH ClKlOWTime 
CKM = 1: 100 343 68 343 62 343 ns At 0.8V 
CKM = 0: 15 146 15 146 11 146 ns AtO.6V 

TCHCl ClK HIGH Time 
CKM = 1: 50 230 43 230 28 230 ns At 2.0V 
CKM = 0: 20 151 20 151 18 151 ns At3.6V 

TCH1CH2 ClK Rise Time 10 10 10 ns 1.0V to 3.6V 
ifCKM = 0 

TCL2CL1 ClKFaliTime 10 10 10 ns 3.6Vto 1.0V 
ifCKM = 0 

TDYWH Data Setup to 75 75 75 ns 
NPWR Inactive 

TWHDX Data Hold from 30 18 18 ns 
NPWRlnactive 

TWlWH NPWR NPRD 95 90 90 ns AtO.8V 
TRlRH Active Time 

TAVWL Command Valid 
TAVRl to NPWR or 0 0 0 ns 

NPRDActive 

TMHRl Minimum Delay 
from PEREQ Active 130 130 100 ns 
to NPRD Active 

TKLKH PEAK Active Time 85 85 60 ns AtO.8V 

TKHKL PEAK Inactive Time 250 250 200 ns At 2.0V 

TKHCH PEAK Inactive to 
NPWR,NPRD 50 40 40 ns 
Inactive 

TCHKl NPWR,NPRD 
Inactive to -30 -30 -30 ns 
PEAK Active 

TWHAX Command Hold 
TRHAX from NPWR, 30 30 22 ns 

NPRD Inactive 

TKlCl PEAK Active 
Setup to NPWR 50 40 40 ns 
NPRDActive 
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A.C. CHARACTERISTICS T A = O·G to 70·C, T CASE = O·C to S5°C, VCC = 5V ± 5% (Continued) 

TIMING RI;QUIREMENTS (Continued) 

A.C. timings are referenced to O.SV and 2.0V points on signals unless otherwise noted. 

80287-6 080287-8 80287-10 
Test Symbol Parameter 6 MHz °8MHz 10 MHz Units 

Conditions 
Min Max Min Max Min Max 

TIVCL NPWR, NPRD 70 70 53 ns (Note 1) 
to ClK Setup Time 

TCLIH NPWR,NPRD 45 45 37 ns (Note 1) 
from ClK Hold Time 

TRSCL RESETtoClK 20 20 20 ns (Note 1) 
Setup Time 

TCLRS RESET from ClK 20 20 20 ns (Note 1) 
Hold Time 

TIMING RESPONSES 

80287-6 80287-8 80287-10 
Test 

Symbol Parameter 6MHz 8MHz 10 MHz Units Conditions 
Min Max Min Max Min Max 

TRHOZ NPRD Inactive to 37.5 , 35 21 ns (Note 2) 
Data Float 

TRLOV NPRD Active to 60 60 60 ns (Note 3) 
Data Valid 

TILBH ERROR Active to 100 100 100 ns (Note 4) 
o BUSY Inactive 

TWLBV NPWR Active to 100 100 100 ns (Note 5) 
BUSY Active , 

TKLML PEAK Active to 127 127 100 ns (Note 6) 
PEREQ Inactive 

TCMOI Command Inactive 
Time 

Write-to-Write 95 95 75 ns At2.0V 
Read-to-Read 95 95 75 nso At2.0V 
Write-to-Read 95 95 75 ns At2.0V 
Read-to-Write 95 95 75 ns At2.0V 

TRHOH Data Hold from 3 3 3 ns (Note 7) 
NPRD Inactive 

NOTES: 
1. This is an asynchronous input. This specification is given for testing purposes only, to assure recognition at a specific CLK 
edge. 
2. Float condition occurs when output current is less than ILO on 00-015. 
3.00-015 10SINF¢: XL = 100 pF. 
4. BUSY loading: CL = 100 pF. 
5. BUSY loading: CL = 100 pF. 
6. On last data transfer on numeric instruction. 
7. DO-D15 loading: CL = 100 pF. 
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WAVEFORMS 

DATA TRANSFER TIMING (Initiated by 80286) 

CMDOCMDl 
~,NPS2 

NPRD 

'- VALID 

_TRLRH .. TRHAX 

TAVRL \ V -- _TRHOZ_ 

- TRLOVj_ _TRHOH_I 

11LLLY DATA OUT D TAVWL~'"-\ VALID 

.. "_TWLW_ .. TWHAX 

\ _V 
TDVWH TWHDX - .. .. 

J( 
.. 

) 
DATA 
TRANSFER 
FROM 
80287 

.. 
DATA 
TRANSFER 
TO I X :~ DATA MAY CHANGE 
80287 

DATA MAY CHANGE DATA IN 
VALID - TWLBN ---

DATA CHANNEL TIMING (Initiated by 80287) 

C~CMD1----i ~ 
Nt':;l,NPS2 l----'~ ---I 

_TMHRL 

TAVWL 
TAVRL 

TKLCL_ 

VALID 

-
\ 
"_TCLML_ 

- ~ .-
.... TKLML_ 

210920-12 

- TRHAX -TWHAX 

-,If .. ,TCMDI_ 

_TCHKL_ 

-TKHCH - _TKHKL~ 

S -------------
IL .., V }f- ~~ 

-~ 
PEACK 

... TKLKH .. 
210920-13 
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WAVEFORMS (Continued) 

ERROR OUTPUT TIMING 

BUSY=---___ , r---.~J 
ERROR ~ . 

ClK, RESET TIMING (CKM = 1) 

NOTE: 

CLK 
(IFCKM=ll 

R~_a __________________ T_~_'_H-' ___ ' __ .~_T~ __ L ______ _ 

210920-14 

210920-15 

Reset, NPWR, NPRD are inputs asynchronous to ClK. Timing requirements on this page are given for testing purposes only, 
to assure recognition at a specific ClK edge. 
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WAVEFORMS (Continued) 

ClK, NPRD, NPWR TIMING (CKM = 1) 

ClK (IFCKM=1) '--___ .-J 

NPRD, 
NIIWiI 

ClK, RESET TIMING (CKM = 0) 

NOTE: 

\\\\\\\\\ 

Reset must meet timing shown to guarantee known phase of internal + 3 circuit. 

ClK, NPRD, NPWR TIMING (CKM = 0) 

~ 
NPWR \\\\\\\\\\\ 

3-139 

210920-16 

210920-17 

210920-18 



Data Transfer 

FLD ~ LOAD 

Integer/Real Memory to ST(O) 

Long Integer Memory to ST(O) 

Temporary Real Memory to 
ST(O) 

BCD Memory to ST(O) 

ST(I) to ST(O) 

FST = STORE 

80287 

Table 6. 80287 Extensions to the 80286 Instruction Set 

I o,llone_1 Clock Counl Rang. 
8,11all 32 all 31 all Mall 18 all 

Dlaploc.menl A.al Inleger Reel Inleger 

I MF ~ 00 01 10 11 

-.-.-.- -.- -, I ESCAPE MF MOD 0 0 0 RIM 1 _____ DISP 
-' 38-56 40-60 52-60 46-54 

I ESCAPE 1 1 1 MOD 1 0 1 R/M [ DISP 
-, 
-' 60-68 

I ESCAPE 0 1 MOD 0 1 R/M [ DISP 
-, 
-' 

53-65 

I ESCAPE MOD 0 0 R/M [=_ DISP 
, 
j 290-310 

I ESCAPE 0 0 1 1 0 0 0 ST(,) I 17-22 

ST(O) to Integer/Real Memory I ESCAPE MF MOD 0 0 RIM [ = ___ EI~P _ J 84-90 82-92 96-104 80-90 

;:::===::::;=:=====: 
ST(O) to STeil I ESCAPE 1 0 1 1 _0 0 ST(I) I 15-22 

FSTP = STORE AND POP 

ST(O) to Integer/Real Memory I ESCAPE MF MOD 0 RIM [: = _ = _ ~I~P = --: 86-92 84-94 98-108 82-92 

ST(O) to Long Integer Memory ~I =ES=C=A=P=E====:=M=O=D=====RI=M~[ : ~ oisp --: 
:=====~===~ 

ST(O) to Temporary Real I ESCAPE 0 MOD RIM [. = : = _ EI~ _ .! 
Memory 

ST(O) to BCD Memory "I ESCAPE MOD 0 RIM [ =: = :~i~< 1 
ST(O) to STeil 

FXCH ~ Exchange ST(i) and 
ST(O) 

Comparison 

FCDM = Compare 

I ESCAPE o 

I ESCAPE 0 0 1 

1 1 0 STeil I 
1 1 0 0 1 STeil I 

94-105 

52-58 

520-540 

17-24 

10-15 

Integer/Real Memory to ST(O) I ESCAPE MF 0 MOD 0 o RIM [ ~ -~ -~;~ ~: ~ 60-70 78-91 65-75 72-86 

STeil to ST (0) 

FCOMP ~ Compare and Pop 

Integer/Real Memory to ST(O) 

STeil to ST(O) 

FCOMPP ~ Compar~ ST(I) to 
ST(O) and Pop Twice 

FTST = Test ST(O) 

FXAM ~ Examine ST(O) 

I ESCAPE 0 0 0 1 1 0 1 0 STeil I 

I ESCAPE MF 0 

I ESCAPE 0 0 0 

I ESCAPE 0 

I ESCAPE 0 0 

I ESCAPE 0 0 

MOD 0 RIM [ P:I~P = J 
o STeil I 
o 0 0 I 

o 0 0 0 

o 0 o 
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40-50 

63-73 80-93 67-77 74-88 

45-52 

45-55 

38-48 

12-23 
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ClK 
INPUT 

4.0V 
2.4V 

O.45VCKM = 0 
O.45VCKM = 1 

80287 

CKM ~ 0 
CKM ~ 1 

AC Drive and Measurement Points-ClK Input 

4.0V CKM ~ 0 
2.4V CKM ~ 1 

0.45V CKM =0 
O.45V CKM=1 

2.4V 

OTHER 
DEVICE 
INPUT 

DEVICE 
OUTPUT 

CKM ~ 0 
CKM ~ 1 

CKM ~O 
CKM = 1 

IHOLD 

2.0V 

IDELAY ---.( 

2.0V· 

O.8V 

AC Setup, Hold and Delay Time Measurement-General 

DEVICE 
OUTPUT 

210920-9 

3.6VCKM = 0 
2.0V CKM ~ 1 

CKM=O 
CKM = 1 

210920-11 

AC Test loading on Outputs 
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Table 6. 80287 Extensions to the 80286 Instruction Set (Continued) 

Constants 

FlDZ = LOAD + 0.0 into ST(O) 

FlD1 = LOAD + 1.0 into ST(O) 

FLOPI = LOAD" into ST(O) 

FLDL2T = LOAD log2 10 into 
ST(O) 

FlDl2E = LOAD 1092 e onto 
ST(O) 

FLDlG2 = LOAD 10glO 2 Into 
ST(O) 

FlDlN2 = LOAD log.2 into 
ST(O) 

Arithmetic 

FADD = Addition 

I MF 

ESCAPE 0 0 I 

ESCAPE 0 0 

ESCAPE 0 0 

ESCAPE 0 0 

ESCAPE 0 0 I 

ESCAPE 0 0 1 

ESCAPE 0 0 

= 

1 1 1 0 1 1 1 0 

o I 0 0 0 

1 I o o 

o o 0 

1 1 I 0 1 0 1 0 

o o 0 

o o 

Integer/Real Memory with ST(O) ESCAPE MF 0 MOD 0 o RIM 

ST(i) and ST(O) ESCAPE d POlIO 0 0 ST(i) 

FSUB = Subtraction 

I Option. I Clock Count Aang. 
',18Blt 32 Bit 32 Bit MBlt 

DI.plac.m.nt A •• I In"g.r A •• I 

00 01 10 

11-17 

15-21 

16-22 

16-22 

1S-21 

18-24 

17-23 

70-100 (Nole 1) 

11 Bit 
Integ.r 

11 

Integer/Real Memory with ST(O) ESCAPE MF 0 MOD lOR RIM I: =DI~~=: J 90-120 108-143 95-125 102-137 

ST(i) and ST(O) ESCAPE d POI I 1 0 . R R/M I 70-100 (Note 1) 

FMUL = Multiplication 

Integer/Real Memory with ST(O) ESCAPE MF 0 MOD 0 0 R/M [ DISP : 110-125 130-t44 112-168 124-138 

ST(i) and ST(O) ESCAPEd PO 1100 RIM 90-145 (Nole 1) 

FDIV = Division 
Integer/Real Memory with ST(O) ESCAPE MF 0 MOD R RIM [ = D~P= '. j 215-225 230-243 220-230 224-238 

ST(i) and ST(O) ESCAPE d POll R R/M I 193-203 (Note 1) 

FSOAT = Square Root of ST(O) ESCAPE 0 0 ·1 1 010 180-186 ~ __________ 4-______________ ~ 

FSCALE = Scale ST(O) by ST(I) LI_E_S_C_A_P_E_0_0_--,_I_I_I_' __ ' __ 0_--, 32-38 

FPAEM = Parlial Remainder of ESCAPE 0 0 I 1 1 1 1 1 0 0 0 
ST(O) +ST(I) '----------'----------' 

15-190 

FANDINT = Round ST(O) to ESCAPE 0 0 1 Integer '-______ ..L.. ________ -' 
1 1 1 1 1 1 0 0 16-50 

210920-20 

NOTE: 
1. If P = 1 then add 5 clocks. 
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Table 6. 80287 Extensions to the 80286 Instruction Set (Continued) 

FXTRACT ~ Extract 
Components 01 St(O) 

FABS ~ Absotute Value 01 
ST(O) 

FCHS - Change Sign 01 ST(O) 

Transcendental 
FPTAN • Partoal Tangent 01 
ST(O) 

FPATAN ~ Parlial Arctangent 
01 ST(O) - ST(I) 

F2XMl = 25TI01 -1 

FYL2X = ST(I)· L092 
IST(O)l 

FYL2XPI = ST(I)· L092 
IST(O) +tl 

Processor Control 

FtNtT = Initialize NPX 

FSETPM = Enter Protected 
Mode 

FSTSW AX = Store Control 
Word 

FLDCW = Load Control Word 

FSTCW = Store Control Word 

FSTSW = Store Status Word 

FCLEX = Clear Exceptions 

FSTENV = Store Enyironment 

FLDENV = load EnVironment 

FSAVE = Saye State 

FRSTOR = Restore State 

FINCSTP = Increment Stack 
Pointer 

FDECSTP = Decrement Stack 
Pointer 

ESCAPE 0 0 t 

ESCAPE 0 0 

ESCAPE 0 0 

ESCAPE 0 0 

ESCAPE 0 0 

ESCAPE 0 0 

ESCAPE 0 0 

ESCAPE 0 

ESCAPE 0 

ESCAPE 

tIl 1 0 1 0 0 

o 0 o 

o 0 0 0 

Opllonal 
8.18BII 

Displacement 

1 1 1 100 1 ~ 

o 0 

o o 0 

000 

o 0 

000 

o o 

o 0 0 0 

L.....E_S_C_A_P_E_O_O_--'-_M_o_D __ O __ R_�_M_---'I_ ~ ~I~~ ~ ~ 

I ~~~I~~ ~~: 
~l :::E:::S:::C:::A:::P:::E==O==~M=O::D====::R::,::M=~I ~ ~ ~I~~ ~ J 

ESCAPE 0 0 MOD RIM 

ESCAPE 0 1 1 o 0 0 1 0 

L-E_S_C_A_P_E_O __ O_-'-_M_O_D ____ O_Rl_M_---'[ ~ ~~~ ~J 

L-E_S_C_A_P_E_O_O_---1_M_O_D __ O_O_Rl_M_---'[ = ~~~ = J 
L.....E_S_C_A_P_E __ O_--'-_M_O_D ___ O_Rl_M_---'[ =.~~~ = J 
L-E_S_C_A_P_E. __ O_---1_M_O_D __ O_O_R_'_M_---'I_~ ?~~ J 

ESCAPE 0 0 o 

ESCAPE 0 0 o o 
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Clock Count Range 

27-55 

10-17 

10-17 

30-540 

250-800 

310-630 

900-1100 

700-1000 

2-8 

2-8 

10-16 

7-14 

12-18 

12-18 

2-8 

40-50 

35-45 

205-215 

205-215 

6-12 

6-12 

210920-21 
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Table 6. 80287 Extensions to the 80286 Instruction Set (Continued) 

FFREE = Free ST(I) ESCAPE 1 0 1 I 1 1 0 0 0 ST(I) 

FHOP = No Operation ESCAPE 0 0 1 I t 1 0 1 0 0,0 0 I 

NOTES: 
1, if mod = 00 then DISP = 0'. disp-Iow and disp-high are absent 

if mod = 01 then DISP = disp-Iow sign-extended to 16-bits. disp-high is absent 
if mod = 10 then DISP = disp-high; disp-Iow 
if mod = 11 then rIm is treated as an St(i) field 

2, if rIm = 000 then EA = (BX) + (SI) + DISP 
if rIm = 001 then EA = (BX) + (DI) + DISP 
if rIm = 010 then EA = (BP) + (SI) + DISP 
if rIm = 011 then EA = (BP) + (DI) + DISP 
if rIm = 100 then EA = (SI) + DISP 
if rIm = 101 then EA = (DI) + DISP 
if rIm = 110 then EA = (BP) + DISP 
if rIm = 111 then EA = (BX) + DISP 
'except if mod = 000 and rIm = 110 then EA = disp-high; disp-Iow, 

3. MF = Memory Format 
00-32-bit Real 
01-32-bitlnteger 
10-64-bit Real 
11-16-bitlnteger 

4, ST(O) = Current stack top 
ST(i) = ith register below stack top 

5, d = Destination 
O-Destination is ST(O) 
l-Destination is ST(i) 

6,P = Pop 
a-.-No pop 
l-Pop ST(O) 

7, R = Reverse: When d = 1 reverse the sense of R 
O-Destination (op) Source 
l-Source (op) Destination 

8, For FSQRT: -0 :s: ST(O) :s: + 00 
For FSCALE: -215 :s: ST(l) < +215 and ST(l) integer 
For F2XM1: 0 :s: ST(O) :s: 2-1 
For FYL2X: 0 < ST(O) < 00 

-00 < ST(l) < +00 
For FYL2XP1: 0 :s: IST(O)I < (2 - V2)/2 

-00 < ST(1) < 00 
For FPTAN: 0 :s: ST(O) :s: 'T1'14 
For FPATAN: 0 :s: ST(O) < ST(l) < + 00 

9, ESCAPE bit pattern is 11011. 
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Clock Count R.nll. 

9-16 

10-16 
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82C288 
BUS CONTROLLER FOR 80286 PROCESSORS 

(82C288-12, 82C288-10, 82C288-8) 

• Provides Commands and Controls for 
Local and System Bus 

• Wide Flexibility in System 
Configurations 

.• High Speed CHMOS III Technology 

• Fully Compatible with the HMOS 82288 

• Fully Static Device 

• Available in 20 Pin PLCC (Plastic 
Leaded Chip Carrier) and 20 Pin Cerdip 
Packages 
(See Packaging Spec, Order .. 231369) 

The Intel 82C288 Bus Controller is a 20-pin CHMOS III component for use in 80286 microsystems. The 
82C288 is fully compatible with its predecessor the HMOS 82288. The bus controller is fully static and 
supports a low power mode. The bus controller provides command and control outputs with flexible timing 
options. Separate command outputs are used for memory and 1/0 devices. The data bus is controlled with 
separate data enable and direction control signals. 

Two modes of operation are possible via a strapping option: MUL TIBUS® I compatible bus cycles, and high 
speed bus cycles. 

STATUS 

[ so 
51 

MiiO 

CLK-+--+i 
CONTROL 

INPUTS 

CENlAEtJ 

CENL 

CMDLY 

READY 

MB 

3-STATE 
COMMAND 
OUTPUTS 

-] ~ iOWC 
MRDe 

iiWTC 

Figure 1. 82C288 Block Diagram 
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September 1989 
Order Number: 240042·003 



inter 82C288 

20 Pin Cerdlp Package 

ClK 

MCE 

ALE 

MB 

., CMDlY 

MRDC 

GND 

VCC 

DT/ii. 

DEN 

CEN/ill 

CENl 

240042-2 

P.C. Board Views-As viewed from the compo­
nent side of the P.C. board. 

Component Pad Views-As viewed from under­
side of component when mounted on the board. 

CENL 

CEN/AEN 
DEN 

DT/R 
M/iO 

20 Pin PLCC Package 

MRDC 
CMDLY 
MB 
ALE 
MCE 

240042-3 

MRDC 8 
CMDLY 7 

MB 6 

ALE 5 
MCE 4 

Figure 2. 82C288 Pin Configuration 

3-146 
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·9 10 11 1213 

3 2 1 20 19 

liii '" 1>- ~Io d ~ > III 

'" 

14 CENL 

15 CEN/AEN 
16 DEN 

17·DT/R 
18 M/iO 
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Table 1. Pin Description 

The following pin function descriptions are for the 82C288 bus controller. 

Symbol Type Name and Function 

CLK I SYSTEM CLOCK provides the basic timing control for the 82C288 in an 80286 
microsystem. Its frequency is twice the internal processor clock frequency. The falling 
edge of this input signal establishes when inputs are sampled and command and control 
outputs change. 

SO,S1 I BUS CYCLE STATUS starts a bus cycle and, along with M/IO, defines the ty~ of bus 
cycle. These inputs are active LOW. A bus cycle is started when either S1 or SO is 
sampled LOW at the falling edge of CLK. Setup and hold times must be met for proper 
operation. 

80286 Bus Cycle Status Definition 

M/IO S1 SO Type of Bus Cycle 

0 0 0 Interrupt Acknowledge 
0 0 1 I/O Read 
0 1 0 I/O Write 
0 1 1 None; Idle 
1 0 0 Halt or Shutdown 
1 0 1 Memory Read 
1 1 0 Memory Write 
1 1 1 None; Idle 

M/IO I MEMORY OR 110 SELECT determines whether the current bus cycle is in the memory 
space or I/O space. When LOW, the current bus cycle is ih the I/O space. Setup and 
hold times must be met for proper operation. 

MB I MUL TIBUS MODE SELECT determines timing of the command and control outputs. 
When HIGH, the bus controller operates with MUL TIBUS I compatible timings. When 
LOW, the bus controller optimizes the command and control output timing for short bus 
cycles. The function of the CEN/ AEN input pin is selected by this signal. This input is 
typically a strapping option and not dynamically changed. 

CENL I COMMAND ENABLE LATCHED is a bus controller select signal which enables the bus 
controller to respond to the current bus cycle being initiated. CENL is an active HIGH 
input latched internally at the end of each T s cycle. CENL is used to select the 
appropriate bus controller for each bus cycle in a system where the CPU has more than 
one bus it can use. This input may be connected to Vee to select this 82C288 for all 
transfers. No control inputs affect CENL. Setup and hold times must be met for proper 
operation. 

CMDLY I COMMAND DELAY allows delaying the start of a command. CMDL Y is an active HIGH 
input. If sampled HIGH, the command output is not activated and CMDL Y is again 
sampled at the next CLK cycle. When sampled LOW the selected command is enabled. If 
READY is detected LOW before the command output is activated, the 82C288 will ' 
terminate the bus cycle, even if no command was ,issued. Setup and hold times must be 
satisfied for proper operation. This input may be connected to GND if no delays are 
required before starting a command. This input has no effect on 82C288 control outputs. 

READY I READY indicates the end of the current bus cycle. READY is an active LOW input. 
MUL TIBUS I mode requires at least one wait state to allow the command outputs to 
become active. READY must be LOW during reset, to force the 82C288 into the id~ 
state. Setup and hold times must be met for proper operation. The 82C284 drives READY 
LOW during RESET. 
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Table 1. Pin Description (Continued) 

Symbol Type Name and Function 

CEN/AEN I COMMAND ENABLEI ADDRESS ENABLE controls the command and DEN 
outputs of the bus controller. CENI AEN inputs may be asynchronous to CLK. 
Setup and hold times are given to assure a guaranteed response to 
synchronous inputs. This input may be connected to Vee or GND. 

When MB is HIGH this pin has the AEN function. AEN is an active LOW input 
which indicates that the CPU has been granted use of a sh~red bus and the 
bus contoller command outputs may exit 3-state OFF and become inactive 
(HIGH). AEN HIGH indicates that the CPU does not have control of the shared 
bus and forces the command outputs into 3-state OFF and DEN inactive 
(LOW). 

When MB is LOW this pin has the CEN function. CEN is an unlatched active 
HIGH input which allows the bus controller to activate its command and DEN 
outputs. With MB LOW, CEN LOW forces the command and DEN outputs 
inactive but does not tristate them. 

ALE 
, 

0 ADDRESS LATCH ENABLE controls the address latches used to hold an 
address stable during a bus cycle. This control output is active HIGH. ALE will 
not be issued for the halt bus cycle and is not affected by any of the control 
inputs. . 

MCE 0 MASTER CASCADE ENABLE signals that a cascade address from a master 
8259A interrupt controller may be placed onto the CPU address bus for 
latching by the address latches under ALE control. The CPU's address bus 
may then be used to broadcast the cascade address to slave interrupt 
controllers so only one of them will respond to the interrupt acknowledge cycle. 
This control output is active HIGH. MCE is only active during interrupt 
acknowledge cycles and is not affected by any control input. Using MCE to 
enable cascade address drivers requires latches which save the cascade 
address on the falling edge of ALE. 

DEN 0 DATA ENABLE controls when data transceivers connected to the local data 
bus should be enabled. DEN is an active HIGH control output. DEN is delayed 
for write cycles in the MUL TIBUS I mode.' 

DT/R 0 DATA TRANSMIT IRECEIVE establishes the direction of data flow to or from 
the local data bus. When HIGH, this control output indicates that a write bus 
cycle is being perfQ!med. A LOW indicates a read bus cycle. DEN is always 
inactive wh~n DT IR changes states. This output is HIGH when no bus cycle is 
active. DT IR is not affected by any of the control inputs. 

10WC 0. I/O WRITE COMMAND instructs an 110 device to read the data on the data 
, bus. This command output is active LOW. The MB and CMDL Y inputs control 
when this output becomes active. READY controls when it becomes inactive. 

10RC 0 I/O READ COMMAND instructs an 110 device to place data onto the data bus. 
This command output is active LOW. The MB and CMDL Y inputs control when 
this output becomes active. READY controls when it becomes inactive. 

MWTC 0 MEMORY WRITE COMMAND instructs a memory device to read the data on 
the data bus. This command output is active LOW. The MB and CMDL Y inputs 
control when this output becomes active. READY controls when it becomes 
inactive. 

MRDC 0 MEMORY READ COMMAND instructs the memory device to place data onto 
the data bus. This command output is active LOW. The MB and CMDL Y inputs 
control when this output becomes active. READY controls when it becomes 
inactive. 
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Table 1. Pin Description (Continued) 

Symbol Type Name and Function 

INTA 0 INTERRUPT ACKNOWLEDGE tells an interrupting device that its interrupt 
request is being acknowledged. This command output is active LOW. The MB 
and CMDL Y inputs control when this output becomes active. READY controls 
when it becomes inactive. 

Vee System Power: + 5V Power Supply. 

-GND System Ground: OV 

Table 2. Command, and Control Outputs for Each Type of Bus Cycle 

Type of 
MilO 51 SO 

Bus Cycle 

Interrupt Acknowledge 0 0 0 

1/0 Read 0 0 1 

1/0 Write 0 1 0 

None; Idle 0 1 1 

Halt/Shutdown 1 0 0 

Memory Read 1. 0 1 

Memory Write 1 1 b 
None; Idle 1 1 1 

Operating Modes 

Two types of buses are supported by the 82C288: 
MUL TIBUS I and non-MUL TIBUS I. When the MB 
input is strapped HIGH, MUL TIBUS I timing is used. 
In MUL TIBUS I mode, the 82C288 delays command 
and data activation to meet IEEE-796 requirements 
on address to command active arid write ·data to 
command active setup timing. MUL TIBUS I mode 
requires at least one wait state in the bus cycle since 
the command outputs are delayed. The non­
MUL TIBUS I mode does not delay any outputs and 
does not require wait states. The MB input affects 
the timing of the command and pEN outputs. 

Command and Control Outputs 

The type of bus cycle performed by the local bus 
master is encoded in the MilO, S1, and SO inputs. 
Different command and control outputs are activat­
ed depending on the type of bus cycle. Table 2 indi­
cates the cycle decode done by the 82C288 and the 
effect on command, DT lR, ALE, DEN, and MCE out­
puts. 

Bus cycles come in three forms: read, write, and 
halt. Read bus cycles include memory read, 1/0 
read, and interrupt acknowledge. The timing ·of the 
associated read command outputs (MRDC, 10RC, 

Command DTIR ALE, DEN MCE 
Activated State Issued? Issued? 

INTA LOW YES YES 

10RC LOW YES NO 

10WC HIGH YES NO 

None HIGH NO NO 

None HIGH NO NO 

MRDC LOW YES NO 

MWTC HIGH YES NO 

None HIGH NO NO 

and INTA), control outputs (ALE, DEN, DT/R) and 
control inputs (CENI AEN, CENL, CMDL Y, MB, and 
READY) are identical for all read bus cycles. Read 
cycles differ only in which command output is acti­
vated. The MCE control output is only asserted dur­
ing interrupt acknowledge cycles. 

Write bus cycles activate different control and com­
mand outputs with different timing than read bus cy­
cles. Memory write and 1/0 write are write bus cy­
cles whose timing for command outputs (MWTC and 
10WC) , control outputs (ALE, DEN, DT IR) and con­
trol inputs (CENI AEN, CENL, CMDL Y, MB, and 
READY) are identical. They differ only in which com­
mand output is. activated. 

Halt bus cycles are different because no command 
or control output is activated. All control inputs are 
ignored until the next bus cycle is started via S1 and 
SO. 

Static Operation 

All 82C288 circuitry is of static design. Internal regis­
ters and logic are static and require no refresh as 
with dynamic circuit design. This eliminates the mini­
mum operating frequency restriction placed on the 
HMOS 82288. The CHMOS III 82C288 can operate 
from DC to the appropriate upper frequency limit. 
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The clock may be stopped in either state (HIGH/ 
'LOW) and held there indefinitely. 

Power dissipation is' directly related to operating fre­
quency. As the system frequency is reduced, so is 
the operating power. When the clock is stopped to 
the 82C288, power dissipation is at a minimum. This 
is useful for low-power and portable applications. 

FUNCTIONAL DESCRIPTION 

Introduction 

The 82C288 bus controller is used in 80286 systems 
to provide address latch control, data transceiver 
control, and standard level-type command outputs. 
The command outputs are timed and have sufficient 
,drive capabilities for large TTL buses and meet all 
IEEE-796 requirements for MULTIBUS I. A special 
MUL TIBUS I mode is provided to satisfy all address/ 
data setup and hold time requirements. Command 
timing may be tailored to special needs via a CMDL Y 
input to determine the start of a command' and 
READY to determine the end of a command. 

Connection to multiple buses are supported with a 
latched enable input (CENL). An address decoder 
can determine. which, if any, bus controller should be 
enabled for the bus cycle. This input is latched to 
allow an address decoder to take full advantage of 
the pipe lined timing on the 80286 local bus. 

Buses shared by several bus controllers are sup­
ported. An AEN input prevents the bus controller 
from driving the shared bus command and data 
Signals except when enabled by an external 
MUL TIBUS I type bus arbiter. 

Separate DEN and DT /A outputs control the data 
transceivers for all buses. Bus contention is eliminat­
ed by disabling DEN before changing DT lA. The 
DEN .timing allows sufficient time for tristate bus driv­
ers to enter 3-state OFF before enabling other driv­
ers onto the same bus. 

The term CPU refers to any 80286 processor or 
80286 support component which may become an 
80286 local bus master and thereby drive the' 
82C288 status inputs. 

Processor Cycle Definition 

Any CPU which drives the local bus uses an internal 
clock which is one half the frequency of the system 
clock (CLK) (see Figure 3). Knowledge of the phase 
of the local bus master internal clock is required for 
proper operation of the 80286 local bus. The local 
bus master informs the bus controller of its internal 
clock phase when it asserts the status Signals. 
Status signals are always assertE1d beginning in 
Phase 1 of the local bus master's internal clock. 

ONE PROCESSOR CLOCK CYCLE 

I+--~--ONE BUS T STATE---~ 

VC" 

240042-5 

82C284 
(FOR REFERENCE) 

,ClK j; VeL 

.------+, 
PCLK 

Figure 3. ClK Relationship to the Processor Clock and Bus T-States 
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Bus State Definition 

The 82C288 bus controller has three bus states (see 
Figure 4): Idle (TI) Status (Ts) and Command (Te). 
Each bus state is two ClK cycles long. Bus state 
phases correspond to the internal CPU processor 
clock phases. 

The TI bus state occurs when no bus cycle is cur­
rently active on the 80286 local bus. This state may 
be repeated indefinitely. When control of the local 
bus is being passed between masters, the bus re­
mains in the TI state. 

READY . 
NEW CYCLE 

Figure 4. 82C288 Bus States 

Vat 
ClK 

VOL 

§i.§ij V .. 
FROM 
CPU VL 

240042-6 

Bus Cycle Definition 

The S1 and SO inputs signal the start of a bus cycle. 
When either input becomes lOW, a bus cycle is 
started. The T s bus state is defined to be the two 
ClK cycles during which either S1 or SO are active 
(see Figure 5). These inputs are sampled by the 
82C288 at every falling edge of ClK. When either 
S1 or SO are sampled lOW, the next ClK cycle is 
considered the second phase of the internal CPU 
clock cycle. 

The local bus enters the T c bus state after the T s 
state. The shortest bus cycle may have one Ts state 
and one Testate. longer bus cycles are formed by 
repeating Testate. A repeated T c bus state is called 
a wait state. 

The READY input determines whether the current 
T c bus state is to be repeated. The READY input 
has the same timing and effect for all bus cycles. 
READY is sampled at the end of each T c bus state 
to see if it is active. If sampled HIGH, the T C bus 
state is repeated. This is called inserting a wait state. 
The control and command outputs do not change 
during wait states. 

When READY.is sampled lOW, the current bus cy­
cle is terminated. Note that the bus controller may 
enter the T s bus state directly from T c if the status 
lines are sampled active at the next falling edge of 
ClK. 

240042-7 

Figure 5. Bus Cycle Definition 
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Figures 6 through 10 show the basic command and 
control output timing for read and write bus cycles. 
Halt bus cycles are not shown since they activate no 
outputs. The basic idle-read-idle and idle-write-idle 
bus cycles are shown. The signal label CMD, repre­
sents the appropriate command output for the bus 
cycle. For Figures,6 through 10, the CMDLY input is 
connected to GND and CENL to Vee. The effects of 
CENL and CMDL Yare described later in the section 
on control inputs. 

Figures 6, 7 and 8 show non-MUL TIBUS I cycles. 
MB is connected to GND while CEN is connected to 
Vee. Figure 6 shows a read cycle with no wait states 
while Figure 7 shows a write cycle with one wait 
state. The READY input is shown to illustrate how 
wait states are added. 

T, 

~READ BUS CYCl.E 

I, T. I To T, 

ClK 

AlE ____ ~ 

DEN ______ ~-j 

DT/R 

CMD-------~ 

240042-8 

, Figure 6. Idle-Read-Idle Bus Cycles with MB = 0 

T, Ts 

WRITE BUS CYCLE ':::I 
Te IWArr~ATE I T, 

ClK 

AlE ____ _t' 

DEN ____ ---J 

VOH 
DT/R --------t------+--------\--------

Ciiii ---------It--,. 

240042-9 

Figure 7. Idle-Write-Idle Bus Cycles with MB = 0 
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Bus cycles can occur back to back with no TI bus 
states between T c and T s. Back to back cycles do 
not affect the timing of the command and control 
outputs. Command and control outputs always 
reach the states shown for the same clock edge 
(within T S, T c or following bus state) of a bus cycle. 

A special case in control timing occurs for back to 
back write cycles with MB = O. In this case, DT /R" 
and DEN remain HIGH between the bus cycles (see 
Figure 8). The command and ALE output timing 
does not change. 

Figures 9 and 10 show a MUL TIBUS I cycle with MB 
= 1. AEN and CMDL Yare connected to GND. The 
effects of CMDL Y and AEN are described later in 
the section on control inputs. Figure 9 shows a read 
cycle with one wait state and Figure 10 shows a 
write cycle with two wait states. The second wait 
state of the write cycle is shown only for example 
purposes and is not required. The READY input is 
shown to illustrate how wait states are added. 

T, T, 

ClK 

AlE _____ -' 

DEN _______ +-+-' 

DTIIl --------+ ..... 1 

Te 

1ST WRITE CYCLE --I- 2ND WRITE CYCLE 

Te I T, I Te 

ClK 

DE~OH --+--------+ 

VOH --+--------+ 
DT/ii 

CMD ___ --' 

240042-10 

Figure 8. Write-Write Bus Cycles with MB = 0 

Te T, 

240042-11 

Figure 9. Idle-Read-Idle Bus Cycles with 1 Wait State and with MB = 1 
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T, T. Tc Tc Tc T, 

CLK 

11.§ij--...... 

ALE _____ J 

DEN _________ -.J 

VOH------------~----------~----------+_----------
DT/II 

CMD----------------~~~ 

. 240042-12 

Figure 10," Idle-Write-Idle Bus Cycles with 2 Wait States and with MB = 1 

The MB control input affects the timing of the com­
mand and DEN outputs. These outputs are automat­
ically delayed in MUl TIBUS I mode to satisfy three 
requirements: 

1) 50 ns minimum setup time for valid address be­
fore any command output becomes active. 

2) 50 ns minimum setup time for valid write data 
before any write command output becomes ac­
tive. 

3) 65 ns maximum time from when any read com­
mand becomes inactive until the slave's read 
data drivers reach 3-state OFF. 

Three signal transitions are delayed by MB = 1 as 
compared to MB = 0: 

1) The HIGH to lOW transition of the read com­
mand outputs (IORC, MRDC, and INTA) are de­
layed one ClK cycle. 

2) The HIGH to lOW transition of the write com­
mand outputs (IOWC and MWTC) are delayed 
two ClK cycles. 

3) The LOW to HIGH transition of DEN for write cy­
cles is delayed one ClK cycle. 

Back to back bus cycles with MB = 1 do not change 
the timing of any of the command or control outputs. 
DEN always becomes inactive between bus cycles 
with MB = 1. 

Except for a halt or shutdown bus cycle, ALE will be 
isSued during the second half of T s for any bus cy­
cle. ALE becomes inactive at the end of the T S to 
allow latching the address to keep it stable during 
the entire bus cycle. The address outputs may 
change during Phase 2 of any T C bus state. ALE is 
not affected by any control input. 

Figure 11 shows how MCE is timed during interrupt 
acknowledlge (INTA) bus cycles. MCE is one ClK 
cycle longer than ALE to hold the cascade address 
from a master 8259A valid after the falling edge of 
ALE. With the exception of the MCE control output, 
an INTA bus cycle is identical in timing to a read bus 
cycle. MCE is not affected by any control input. 
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Tt Ts 

CLK 

ALE ----l,-...J 

MCE _____ J 

240042-13 

Figure 11. MCE Operation for an INTA Bus Cycle 

Control Inputs 

The control intputs can alter the basic timing of com· 
mand outputs, allow interfacing to multiple buses, 
and share a bus between different masters. For 
many 80286 systems, each CPU will have more than 
one bus which may be used to perform a bus cycle. 
Normally, a CPU will only have one bus controller 
active for each bus cycle. Some buses may be 
shared by more than one CPU (I.e. MUL TIBUS) re­
quiring only one of them use the bus at a time. 

Systems with multiple and shared buses use two 
control input signals of the 82C288 bus controller, 
CENL and AEN (see Figure 12). CENL enables the 
bus controller to control the current bus cycle. The 
AEN input prevents a bus controller from driving its 
command outputs. AEN HIGH means that another 
bus controller may be driving the shared bus. 

In Figure 12, two buses are shown: a local bus and a 
MUL TIBUS I. Only one bus is used for each CPU 
bus cycle. The CENL inputs of the bus controller 
select which bus controller is to perform the bus cy-. 
cle. An address decoder determines which bus to 
use for each bus cycle. The 82C288 connected to 
the shared MUL TIBUS I must be selected by CENL 
and be given access to the MUL TIBUS I by AEN 
before it will begin a MUL TIBUS I operation. 

CENL must be sampled HIGH at the end of the Ts 
bus state (see waveforms) to enable the bus control­
ler to activate its command and control outputs. If 
sampled LOW the commands and DEN will not go 
active and DTtR will remain HIGH. The bus control­
ler will ignore the CMDL Y, CEN, and READY inputs 
until another bus cycle is started via S1 and SO. 
Since an address decoder is commonly used to 
identify which bus is required for each bus cycle, 
CENL is latched to avoid the need for latching its 
input. 

The CENL input can affect the DEN control output. 
When MB = 0, DEN normally becomes active dur­
ing Phase 2 of T s in write bus cycles. This transition 
occurs before CENL is sampled. If CENL is sampled 
LOW, the DEN output will be forced LOW during T c 
as shown in the timing waveforms. 

When MB = 1, CENt AEN becomes AEN. AEN con­
trols when the bus controller command outputs en­
ter and exit 3-state OFF. AEN is intended to be driv­
en by a MUL TIBUS I type bus arbiter, which assures 
only one bus controller is driving the shared bus at 
any time. When AEN makes a LOW to HIGH tran­
sition, the command outputs immediately enter 
3-state OFF and DEN is forced inactive. An inactive 
DEN should force the local data transceivers con­
nected to the shared data bus into 3-state OFF (see 
Figure 12). The LOW to HIGH transition of AEN 
should only occur during TI or T s bus states. 

The HIGH to LOW transition of AEN signals that the 
bus controller may now drive the shared bus com­
mand signals. Since a bus cycle may be active or be 
in the process of starting, AEN can become active 
during any T-state. AEN LOW immediately allows 
DEN to go to the appropriate state. Three CLK edg­
es later, the command outputs will go active (see 
timing waveforms). The MUL TIBUS I requires this 
delay for the address and data to be valid on the bus 
before the command becomes active. 

When MB = 0, CENt AEN becomes CEN. CEN is an 
asynchronous input which immediately affects the 
command and DEN outputs. When CEN makes a 
HIGH to LOW transition, the commands and DEN 
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are immediately forced inactive. When CEN makes a 
LOW :to HIGH transition, the commands and DEN 
outputs immediately go to the appropriate state (see 
timing waveforms). READY must still become active 
to terminate a bus cycle if CEN remains LOW for a 
selected bus controller (CENL was latched HIGH). 

CMD 

ADDRESS 
DATA 

iiEAiiY 

<= 
READY 

CM~_'ClK 

M/iO 
51.iii 

, 
CENl 

MB CEN 

.,} .!v 

ADDRESS 

DECODER 

11 
II 
A ... 

rO~ 
XI X2 

SiiiiY ARiiY 
12C214--

-# 
SiiiiVEN ARDYEN 

ClK READY 51. iii 

I-

..---

MIlO 

, 
ClK READY MIlO 

Si.iii 

80286 

Some memory or 1/0 systems may require more ad­
dress or write data setup time to command active 
than provided by the basic command output timing. 
To provide flexible command timing, the CMDL Y in­
put can delay the activation of command outputs. 
The CMDL Y input must be sampled LOW to activate 
the command outputs. CMDL Y does not affect the 
control outputs ALE, MCE, DEN, and DT /A". 

XAcii 

910n ±5% 

READY COMM ANDS 

ClK CMD 
. I2C28I . 

MIlO DEN -{>o-ii._ 
DT/R - CENl ALE 

MB AEN 

Jv ! 

READY AEN 
MULn.US-1 

ClK TYPEBUS 
ARBITER 

CON TROl 

M/ill CNTL 

11._ 

SYSliiffi 

r""" ,....., 

/ 

~ 

LATCH II 

- /' 
1.J 

/OIRC / 

DIU 
~ ~=Jl 

-
240042-14 

Figure 12. System Use of AEN and CENL 
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CMDl Y is first sampled on the falling edge of the 
ClK ending T s. If sampled HIGH, the command out­
put is not activated, and CMDl Y is again sampled 
on the next falling edge of ClK. Once sampled 
lOW, the proper command output becomes active 
immediately if MB = O.lf MB = 1, the proper com­
mand goes active no earlier than shown in Figures 9 
and 10. 

READY can terminate a bus cycle before CMDl Y 
allows a command to be issued. In this case no 
commands are issued an the bus controller will de­
activate DEN and DT /R" in the same manner as if. a 
command had been issued. 

Waveforms Discussion 

The waveforms show the timing relationships ofin­
puts and outputs and do not show all possible tran-

sitions of all signals in all modes. Instead, all signal 
timing relationships are shown via the general cas­

, es. Special cases are shown when needed. The 
. waveforms provide some functional descriptions of 

the 82C288; however, most functional descriptions 
are provided in Figures 5 through 11. 

To find the timing specification for a signal transition 
in a particular mode, first look for a special case in 
the waveforms. If no special case applies, then use 
a timing specification for the same or related func­
tion in another mode. 
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ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias O·C to + 70·C . 

Storage Temperature - 65·C to + 150·C 

Voltage on Any Pin with _ 
Respectto GND - 0.5V to + 7V 

Power Dissipation 1 Watt 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute' maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS Vcc = 5V ± 5%, T CASE = O·C to 85·C· 

Symbol Parameter Min Max 

VIL Input lOW Voltage -0.5 0.8 

VIH Input HIGH Voltage 2.0 Vcc + 0.5 

VILC ClK Input lOW Voltage -0.5 0.6 

VIHC ClK Input HIGH Voltage 3.8 Vcc +, 0.5 

VOL Output lOW Voltage 
Command Outputs 0.45 
Control Outputs 0.45 

VOH Output HIGH Voltage 
Command Outputs 2.4 

Vcc - 0.5 
Control Outputs 2.4 

Vcc - 0.5 

IlL Input leakage Current ±10 

ILO Output leakage Current ±10 

Icc Power Supply Current 75 

Icc~ Power Supply Current (Static) 3 

CCLK ClK Input Capacitance 12 

CI Input Capacitance 10 

Co Input/Output Capacitance, 20 

*TA is guarante.ed from O·C to +70·C as long as TCASE'is not exceeded. 

NOTES: 
1. Command Outputs are INTA, IORC, IOWC, MRDC and MWRC. 
2, Control Outputs are DT lA, DEN, ALE and MCE. 
3, Tested while outputs are unloaded, and inputs at Vee or Vss. 
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Units Test Conditions 

V 

V 

V 

V 

V IOL = 32 rnA (Note 1) 
V IOL == 16 rnA (Note 2) 

V IOH = -5 rnA (Note 1) 
V IOH = -1 rnA (Note 1) 
V IOH = -1 rnA (Note 2) 
V IOH = - 0.2 rnA (Note 2) 

p,A OV::;; VIN::;; VCC 

/LA 0.45V ::;; VOUT ::;; Vcc 

rnA 

rnA (Note 3) 

pF Fc = 1 MHz 

pF Fc = 1 MHz 

pF Fe = 1 MHz 
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A.C. CHARACTERISTICS 

Vcc = 5V, ±5%, TCASE = O·C to + 85·C.* AC timings are referenced to 0.8V and 2.0V points of signals as 
illustrated in data sheet waveforms, unless otherwise noted. 

8 MHz 10MHz 12.5 MHz 
Test 

Symbol Parameter -8 -8 -10 -10 -12 -12 Unit Condition 
Min Max Min" Max Min Max 

1 ClKPeriod 62 250 50 250 40 250 ns 

2 ClK HIGH Time 20 16 13 ns at 3.6V 

3 ClKlOWTime 15 12 11 ns at 1.0V 

4 ClK Rise Time 10 8 8 ns 1.0V to 3.6V 

5 ClK Fall Time 10 8 8 ns 3.6V to 1.0V 

6 MilO and Status 22 18 15 ns 
Setup Time 

7 MilO and Status 1 1 1 ns 
Hold Time 

8 CENl Setup Time 20 15 15 ns 

9 CENl Hold Time 1 1 1 ns 

10 READY Setup Time 38 26 18 ns 

11 READY Hold Time 25 25 20 ns 

12 CMDl Y Setup Time . 20 15 15 ns 

13 CMDl Y Hold Time 1 1 1 ns 

14 AEN Setup Time 20 15 15 ns (Note 3) 

15 AEN Hold Time 0 0 0 ns (Note 3) 

16 ALE, MCE Active 3 20 3 16 3 16 ns (Note 4) 
Delay from ClK 

17 ALE, MCE Inactive 25 19 19 ns (Note 4) 
Delay from ClK 

18 DEN (Write) 35 23 23 ns (Note 4) 
Inactive from CENl 

19 DT IR lOW from ClK 25 23 23 ns (Note 4) 

20 DEN (Read) ActiveR 5 35 5 21 5 21 ns (Note 4) 
from DTI -

21 DEN (Read) Inactive 3 35 3 21 3 19 ns (Note 4) 
DlyfromClK 

22 DT IR HIGH from 5 35 5 20 5 18 ns (Note 4) 
DEN Inactive 

23 DEN (Write) Active 30 23 23 ns (Note 4) 
Delay from ClK 

24 DEN (Write) Inactive 3 30 3 19 3 19 ns (Note 4) 
DlyfromClK 

*T A IS guaranteed from O·C to + 70·C as long as T CASE IS not exceeded. 
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A.C. CHARACTERISTICS 

Vee = 5V, ±5%, TeAsE = O·C to +85·C.* AC timings are referenced to 0.8V and 2.0V points of signals as 
illustrated in data sheet waveforms, unless otherwise noted. (Continued) 

8MHz 10 MHz 12.SMHz 
Test 

Symbol Parameter -8 -8 -10 -10 -12 -12 Unit Condition 
Min Max Min Max Min Max 

25 DEN Inactive from 30 25 25 ns (Note 4) 
CEN 

26 DEN Active from 30 24 24 ns (Note 4) 
CEN ' , 

27 DT/R HIGH from ClK 35 25 25 ns (Note 4) 
(when CEN = lOW) 

28 DEN Active from AEN 30 26 26 ns (Note 4) 

29 CMD Active Delay 3 25 3 21 3 21 ns (Note 5) 
fromClK , 

30 CMD Inactive Delay 5 20 5 20 5 20 ns (Note 5) 
fromClK 

31 CMD Active from 25 25 25 ns (Note 5) 
CEN 

32 CMD Inactive from CEN 25 25 25 ns (Note 5) 

33 CMD Inactive Enable 'from AEN 40 40 40 ns (Note 5) 

34 CMD Float Delay from AEN 40 40 40 ns (Note 6) 

35 MB Setup Time 20 20 20 ns 

36 MB Hold Time 0 0 0 ns 

37 Command Inactive Enable 40 40 40 ns (Note 5) 
from MB J, 

38 Command Float Time from MB t 40 40 40 ns (Note 6) 

39 DEN Inactive from MB t 30 26 26 ns (Note 4) 

40 DEN Active from MB J, 30 30 30 ns (Note 4) 

·T A IS guaranteed from o·e to + 70·C as long as T CASE IS not exceeded. 

NOTES: 
3. AEN is an asynchronous input. This specification is for testing purposes only, to assure recognition at a specific ClK 
edge. 
4. Control output load: CI = 150 pF. 
5. Command output load: CI = 300 pF. 
6. Float condition occurs when output current is less than ILO in magnitude. 
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4.0V 

ClKINPUT 

1.0V 

O.45V --------t-'------' 

OTHER 
DEVICE 
INPUT 

DEVICE 
OUTPUT 

tHOLD 

2.0V 

O.BV 

240042-16 

Note 7: AC Setup, Hold and Delay Time Measurement-General 

WAVEFORMS 

ClK CHARACTERISTICS 

ClK 

DEVICE 
OUTPUT 

Note 8: AC Test loading on Outputs 
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WAVEFORMS (Continued) 

STATUS, ALE, MCE, CHARACTERISTICS 

ClK 

MliO,ii,ii ---t=.i 

AlE _____ --I-::!.. 

MCE ______ J 

°240042-19 

CENL, CMDLY, DEN CHARACTERISTICS WITH MB = 0 AND CEN = 1 DURING WRITE CYCLE 

ClK 

240042-20 

READ CYCLE CHARACTERISTICS WITH MB = 0 AND CEN = 1 

T.--~--

ClK 

DEN __ -+.:::~ 

CMij---M: 

CENl 

240042-21 
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WAVEFORMS (Continued) 

WRITE CYCLE CHARACTERISTIC WITH MB = 0 AND CEN = 1 

ClK 

VOH---------+~-+_---__jt_--_I------

L-________________________________________________________________ _ 

CEN CHARACTERISTICS WITH MB = 0 

ClK 

CEN 

DEN 

DT/R __________ H ___ +-:J 

240042-23 
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WAVEFORMS (Continued) 

AEN CHARACTERISTICS WITH MB = 1 

NOTE: 

eLK 

AEN 

DEN ___ J 

82C288 

240042-24 

1. AEN is an asynchronous input. AEN setup and hold time is specified to guarantee the response shown in the waveforms. 

MB CHARACTERISTICS WITH AEN/CEN = HIGH 

Ts TC TC Tc TS 

240042-25 
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WAVEFORMS (Continued) 

MB CHARACTERISTICS WITH AEN/~EN = HIGH (Continued) 

240042-27 

NOTES: 
1. MB is an asynchronous input. MB setup and hold times specified to guarantee the re~ponse shown in the waveforms. 
2. If the setup time, t35, is met two clock cycles will occur before CMD becomes active after the falling edge of MB. 

DATA SHEET REVISION REVIEW 

The following list represents key differences between this and the -002 data sheet. Please review this summa­
ry carefully. 

1. The Iccs specification was changed from 1 mA to 3 mA maximum. 

2. The "PRELIMINARY" markings have been removed from the data sheet. 
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CLOCK GENERATOR AND READY INTERFACE 

FOR 80286 PROCESSORS 
(82C284-12, 82C284-10, 82C284-8) 

• Generates System Clock for 80286 
Processors 

• Uses Crystal or TTL Signal for 
Frequency Source 

• Provides Local READY and 
MUL TIBUS®I READY Synchronization 

• High Speed CHMOS III Technology 

• Generates System Reset Output 

• Available In 18-Lead Cerdip and 20-Pin 
PLCC (Plastic Leaded Chip Carrier) 

. Packages 
(See Packaging Spec, Order #231369) 

The 82C284 is a clock generator/driver which provides clock signals for 80286 processors' and support 
components. It also contains logic to supply READY to the CPU from either asynchronous or synchronous 
sources and synchronous RESET from an asynchronous input. 
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P.C. Board Views-As viewed from the compo­
nent side of the P.C. Board. 

Component Pad Views-As viewed from under­
side of component when mounted on the board. 

NOTE: 
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GND 
so 
51 

1. N.C. Signals must not be connected. 

20 Pin PLCC 
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Figure 2. 82C284 Pin Configuration 
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Table 1. Pin Description 

The following pin function descriptions are for the 82C284 clock generator. 

Symbol Type Name and Function 

ClK a SYSTEM CLOCK is the signal used by the processor and support 
devices which must be synchronous with the processor. The frequency 
of the ClK output has twice the desired internal processor clock 
frequency. ClK can drive both TIL and MaS level inputs. 

F/C I FREQUENCY ICRYST AL SELECT ~ a strapping option to select the 
source for the ClK output. When F/C ~ strapped lOW, the internal 
crystal oscillator drives ClK. When F/C is strapped HIGH, the EFI 
input drives the ClK output. 

. X1,X2 I CRYSTAL IN are the pins to which a parallel resonant fundl!.mental 
mode crystal is attached for the internal oscillator. When F/C is lOW, 
the internal oscillator will drive the ClK output at the crystal frequency. 
The crystal frequency must be twice the desired internal processor 
clock frequency. 

EFI I EXTERNAL FREQUENCY IN drives ClK when the F/C input is 
strapped HIGH. The EFI input frequency must be twice the desired 
internal processor clock frequency. 

PClK a PERIPHERAL CLOCK is an output which provides a 50% duty cycle 
clock with 112 the frequency of ClK. PClK will be in phase with the 
internal processor clock following the first bus cycle after the 
processor has been reset. 

ARDYEN I ASYNCHRONOUS READY ENABLE is an active lOW input which 
qualifies the ARDY input. ARDYEN selects ARDY as the source of 
ready for the current bus cycle. Inputs to ARDYEN may be applied 
asynchronously to ClK. Setup and hold times are given to assure a 
guaranteed response to synchronous inputs. 

ARDY I ASYNCHRONOUS READY is an active lOW input used to terminate 
the current bus cycle. The ARDY input is qualified by ARDYEN. Inputs 
to ARDY may be applied asynchronously to ClK. Setup and hold times 
are given to assure a guaranteed r.esponse to synchronous outputs. 

SRDYEN I SYNCHRONOUS READY ENABLE is an active lOW input which 
qualifies SRDY. SRDYEN selects SRDY as the source for READY to 
the CPU for the current bus cycle. Setup and hold times must be 
satisfied for proper operation. 

SRDY I SYNCHRONOUS READY is an active lOW input used to terminate 
the current bus cycle. The SRDY input is qualified by the SRDYEN 
input. Setup and hold times must be satisfied for proper operation. 

READY a READY is an active lOW output which signals the current bus..E}'cle is 
to be completed. The SRDY, SRDYEN, ARDY, ARDYEN, S1, SO and 
RES inputs control READY as explained later in the READY generator 
section. READY is an open drain output requiring an external pull-up 
resistor. 
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Table 1. Pin Description (Continued) 

The following pin function descriptions are for the 82C284 clock generator. 

Symbol Type Name and Function 

SO,S1 I STATUS input prepare the 82C284 for a subsequent bus cycle. SO and 
S1 synchronize PClK to the internal processor clock and control 
READY. These inputs have internal pull-up resistors to keep them 
HIGH if nothing is driving them. Setup and hold times must be satisfied 
for proper operation. 

RESET a RESET is an active HIGH output which is derived from the RES input. 
RESET is used to force the system into an initial state. When RESET is 
active, READY will be active (lOW). 

RES I RESET IN is an active lOW input which generates the system reset 
signal, RESET. Signals to RES may be applied asynchronously to ClK. 
Setup and hold times are given to assure a guaranteed response to 
synchronous inputs. ' 

Vee SYSTEM POWER: + 5V Power Supply 

GND SYSTEM GROUND: OV 

FUNCTIONAL DESCRIPTION 

Introduction 

The 82C284 generates the clock, ready, and reset 
signals required for 80286 processors and support 
components. The 82C284 contains a crystal con­
trolled oscillator, clock generator, peripheral clock 
generator, Multibus ready synchronization logic and 
system reset generation logic. 

Clock Generator 

The ClK output provides the basic timing control for 
an 80286 system. ClK has output characteristics 
sufficient to drive MaS devices. ClK is generated by 
either an internal crystal oscillator or an external 
source as selected by the F /C strapping option. 
When FIG is lOW, the crystal oscillator drives the 
ClK output. When FIG is HIGH, the EFI input drives 
the ClK output. 

The 82C284 provides a second clock output, PClK, 
for peripheral devices. PClK is ClK divided by two. 
PClK has a duty cycle of 50% and MaS output 
drive characteristics. PClK is normally synchronized 
to the internal processor clock. 

After reset, the PClK signal may be out of phase 
with the internal processor clock. The S1 and SO 
Signals of the first bus cycle are used to synchronize 

PClK to the internal processor clock. The phase of 
the PClK output changes by extending its HIGH 
time beyond one system clock (see waveforms). 
PClK is forced HIGH whenever either SO or S1 were 
active (lOW) for the two previous ClK cycles. PClK 
continues to oscillate when both SO and S1 are 
HIGH. 

Since the phase of the internal processor clock will 
not change except during reset, the phase of PClK 
will not change except during the first bus cycle after 
reset. 

Oscillator 

The oscillator circllit of the 82C284 is a linear Pierce 
oscillator which requires an external parallel reso­
nant, fundamental mode, crystal. The output of the 
oscillator is internally buffered. The crystal frequency 
chosen should be twice the required internal proces­
sor clock frequency. The crystal should have a typi­
cal load capacitance of 32 pF. 

X1 and X2 are the oscillator crystal connections. For 
stable operation of the oscillator, two loading capac­
itors are recommended, as shown in Table 2. The 
sum of the board capacitance and loading capaci­
tance should equal the values shown. It is advisable 
to limit stray board capacitances (not including the 
effect of the loading capacitors or crystal capaci­
tance) to less than 10 pF between the X1 and X2 
pins. Decouple Vee and GND as close to the 
82C284 as possible. 

3-169 



82C284 

10 
ClK 

r--+----=-t X2 82C284 

e1 I I C2 READY 4 

":" ":" 18 

ClK 
80281 

CPU or 
SUPPORT 

COMPONENT 

READY 

SEE TABLE 
2 FOR 
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Figure 3. Recommended Crystal 
and READY Connections 

elK Termination 

~ue t~. t~e ClK output having a very fast rise and fall 
lIlIltJ, IL IS le(;On-lrflt.::.,ndE;~ to proper:y tSimir.ate the 
ClK line at frequencies above 10 MHz to avoid sig· 
nal reflections and ringing. Termination is accom­
plished by. inserting a small resistor (typically 100.-
740.) in series with the output, as shown in Figure 4. 
This is known as series termination. The resistor val­
ue plus the circuit output impedance should be 
made equal to the impedance of the transmission 
line. 

210453-15 

Figure 4. Series Termination 

Reset Operation 

The reset logic provides the RESET output to force 
the system into a known, initial state. When the RES 
input is active (lOW), the RESET output becomes 
active (HIGH). RES is synchronized internally at the 
falling edge of ClK before generating the RESET 
output (see waveforms). Synchronization of the RES 
input introduces a one or two ClK delay before af­
fecting the RESET output. 

At power up, a system does not have a stable Vee 
and ClK. To prevent spurious activity, RES should 

be asserted until Vec and ClK stabilize at their oper­
ating values. 80286 processors and support compo­
nents also require their RESET inputs be HIGH a 
minimum of 16 ClK cycles. A network such as 
shown in Figure 5 will keep RES lOW long enough 
to satisfy both needs. 

Vee 

210453-4 

Figure 5_ Typical RES Timing Circuit 

Ready Operation 

The 82C284 accepts two ready sources for the sys­
tem ready signal which terminates the current bus 
cycle. Eithe~nchronous (SRDY) or asynchro­
nous ready (ARDY) source may be used. Each ready 
input has an enable (SRDYEN and ARDYEI'\j) for se­
lecting the type of ready source required to termi­
nate the current bus cycle. An address decoder 
would normally select one of the enable inputs. 

READY is enabled (lOW), if either SRDY + 
SRDYEN = 0 or ARDY + ARDYEN = 0 when 
sampled by the 82C284 READY generation logic. 
READY will remain active for at least two ClK cy-
cles. . 

The READY output has an open-drain driver allow­
ing other ready circuits to be wire or'ed with it, as 
shown in Figure 3. The READY signal of an 80286 
system requires an external pull-up resistor. To force 
the READY signal inactive (HIGH) at the start of a 
bus cycle, the READY output floats when either S1 
or SO are sampled lOW at the falling edge of ClK. 
Tw? system clock periods are allowed for the pull-up 

. resistor to pull the READY signal to VIH. When RE­
SET is active, READY is forced active one ClK later 
(see waveforms). 

Figure 6 illustrates the operation of SRDY and 
SRDYEN. These inputs ar~sampled on the falling 
edge of ClK when S1 and SO are inactive and PClK 
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is HIGH. READY is forced active when both 8RDY 
and 8RDYEN are sampled as lOW. 

Figure 7 shows the operation of ARDY and 
ARDYEN. These inputs are sampled by an internal 
synchronizer at each falling edge of ClK. The output 
of the synchronizer is then sampled when PClK is 
HIGH. If the synchronizer resolved both the ARDY 

and ARDYEN as active, the 8RDY and 8RDYEN in­
puts are ignored. Either ARDY or ARDYEN must be 
HIGH at the end of T s (see Figure 7). 

NOTE: 

READY remains active until either 81 or 80 are sam­
pled lOW, or the ready inputs are sampled as inac­
tive. 

Table 2. 82C284 Crystal Loading CapaCitance Values 

Crystal Frequency 
C1 Capacitance C2 Capacitance 

(Pin 7) (Pin 8) 

1 to 8 MHz 60pF 40pF 
8to20MHz 25 pF 15 pF 

Above 20 MHz 15 pF 15 pF 

Capacitance values must include stray board capacitance. 

T. To To T, I 
CLK 

PClK 

v," 
ARDYEN----------~-----------+----------------~----+--------

+ 
SRDY 

REMY---------------' 

Figure 6. Synchronous Ready Operation 

T. , I 
ClK 

PClK 

T, 

SRD~~----------~r-----t--=-f------r---------~---------1--­
ARDY 

+ 
ARDYEN 

READY ______________ .Y"" 

Figure 7. Asynchronous Ready Operation 
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ABSOLUT~ MAXIMUM RATINGS* 

Temperature Under Bias ............ O°C to + 70°C 

Storage Temperature .....•.... - 65°C to + 150°C 

All Output and Supply Voltages ..... - 0.5V to + 7V 

All Input Voltages ................ -1.0V to + 5.5V 

Power Dissipation ......•................. 1 Watt 

"Notice: Stresses above those listed under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

D.C. CHARACTERISTICS TCASE = O°Cto + 85°C,* Vcc = 5V ±5% 

'. Symbol Parameter Min Max Unit Test Condition 

VIL Input lOW Voltage 0.8 V 

VIH Input HIGH Voltage 2.0 V 

VIHR RES and EFllnput HIGH Voltage 2.6 V 

VOL RESET, PClK Output lOW Voltage 0.45 V IOL = 5mA 

VOH RESET, PClK Output 2.4 V IOH = -1 mA 
HIGH Voltage Vcc-0.5 V IOH = -0.2 mA 

VOLR READY, Output lOW Voltage 0.45 V IOL = 9mA 

VOLC ClK Output lOW Voltage 0.45 V IOL = 5mA 

VOHC elK Output HIGH Voltage 4.0 V IOH = - 800JA-A 

IlL Input $ustaining Current -30 -500 JA-A VIN = OV 
on SO and S1 Pins 

III Input leakage Current ±10 JA-A o :,; VIN :,; VCC(1) 

Icc Pow~r Supply Current 
75 mA 

at 25 MHz Output 
ClK Frequency 

CI Input Capacitance 10 pF Fc = 1 MHz 
'T A IS guaranteed from O'C to + 70"C as long as T CASE IS not exceeded. 

NOTE: • 
1. Status lines SO and 51 'excluded because they have internal pull-up resistors. 
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A.C. CHARACTERISTICS vcc = 5V ±5%, TCASE = O°Cto +85°C.* 

Timings are referenced to 0.8V and 2.0V points of signals as illustrated in the datasheet waveforms, unless 
otherwise noted. 

82C284 A.C. Timing Parameters 

Symbol Parameter 8.0 MHz 10.0 MHz 12.5 MHz Units Test 

Min Max Min Max Min Max Conditions 

1 EFI to ClK Delay 25 25 25 ns At 1,5V (1) 

2 EFI lOW Time 28 22.5 13 ns At 1.5V (1, 7) 

3 EFI HIGH Time 28 22.5 22 ns At 1.5V (1, 7) 

4 ClK Period 62 500 50 500 40 500 ns 

5 ClKlOWTime 15 12 11 ns At 1.0V (1, 2, 7, 8, 9, 10) 

6 ClK HIGH Time 25 16 13 ns At 3.6V (1, 2, 7, 8, 9, 10) 

7 ClK Rise Time 10 8 8 ns 1.0V to 3.6V (1, 2,10,11) 

8 ClK Fall Time 10 8 8 ns 3.6V to 1.0V (1,9,10,11) 

9 Status Setup Time 22 - - ns (Note 1) 

9a Status Setup Time for - 20 22 ns (Note 1) 
Status Going Active 

9b Status Setup Time for - 20 18 ns (Note 1) 
Status Going Inactive 

10 Status Hold Time 1 1 3 ns (Note 1) 

11 SRDY or SRDYEN 20 18 18 ns (Note 1) 
Setup Time 

12 SRDY or SRDYEN 0 2 2 ns (Notes 1,11) 
Hold Time 

13 ARDY or ARDYEN 0 0 0 ns (Notes 1, 3) 
Setup Time 

14 ARDY or ARDYEN 30 30 25 ns (Notes 1, 3) 
Hold Time 

15 RES Setup Time 20 20 18 ns (Notes 1,3) 

16 RES Hold Time 10 10 8 ns (Notes 1,3) 

17 READY Inactive Delay 5 5 5 ns At 0.8V (4) 

18 READY Active Delay 0 24 0 24 0 18 ns At 0.8V (4) 

19 PClK Delay 0 45 0 35 0 23 ns (Note 5) 

20 RESET Delay 5 34 5 27 3 22 ns (Note 5) 

21 PClK lOW Time t4-20 t4-20 T4-20 ns (Notes 5,6) 

22 PClK HIGH Time t4-20 t4-20 T4-20 ns (Notes 5, 6) 

'T A is guaranteed from O'C to 70'C as long as T CASE IS not exceeded. 

NOTES: 
1. ClK loading: CL = 100 pF. The 82C284'S X1 and X2 inputs are designed primarily for parallel·resonant crystals. Serial· 
resonant crystals may also be used, however, they may oscillate up to 0.01 % faster than their nominal frequencies when 
used with the 82C284. For either type of crystal, 'capacitive loading should be as specified by Table 2. 
2. With the internal crystal oscillator using recommended crystal and capacitive loading; or with the EFI input meeting speci· 
fications t2 and t3. The recommended crystal loading for ClK frequencies of 8 MHz-20 MHz are 25 pF from pin X1 to 
ground, and 15 pF from pin X2 to ground; for ClK frequencies above 20 MHz 15 pF from pin X1 to ground, and 15 pF from 
pin X2 to ground. These recommended values are ±5 pF and include all stray capacitance. Decouple Vcc and GND as 
close to the 82C284 as possible. 
3. This is an asynchronous input. This specification is given for testing purposes only, to assure recognition at specific ClK 
edge. 
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NOTES: 
4. Pull·up Resistor values for READY 'Pin' 

CPU Frequency 8 MHz 10 MHz 12.5 MHz 

Resistor 9100 7000 6000 
Cl 150pF 150 pF 150 pF 
IOL 7mA 7mA 9mA 

5. PClK and RESET loading: CL = 75 pF. 
6. t4 refers to any allowable ClK period. 
7. When driving the 82C284 with EFI, provide minimum EFI HIGH and lOW times as follows: 

ClK Output Frequency 16 MHz 20 MHz 25 MHz 

Min. Required EFI HIGH Time 28ns 22.5 ns 22ns 
Min. Required EFI lOW Time 28 ns 22.5 ns 13 ns 

.. 
8. When uSing a crystal (with recommended capacitive loading per Table 2) appropriate for the speed of the 80286, ClK 
output HIGH and lOW times guaranteed to meet the 80286 requirements. 

Reset Drive EFI Drive and 
Measurement Points 

ClK Output Measurement 
Points 
I' 

FIC Drive Points 

~
.ov' 

1.SV 1.SV 

O.4SV ~ .45 

3.61 
1.0V \; 1.OV 

Note 9 
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82C284 
ClK 

OUTPUT 

DEVICE 
INPUT 
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Note 10 

O.4SV ..... ......:. ...... "'-"----+---'T'......,"""-' ................ 

OTHER 
DEVICE 
OUTPUT 

Note 11 

210453-10 

Note 12. AC Setup, Hold and Delay Time Measurement-General 
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PCLK 
output 

WAVEFORMS 

Vee 

9 
> 7500hm~ 
~> 

75PF! 
-

ClK as a Function of EFI 

NOTE: 

82C284 

Vee 

9 

9100hm~ 
READY 0-----. 
output 

Note 13. AC Test loading on Outputs 

Other 
outpuIlCiO----l"'l 

CLI 

210453-12 

210453-11 

The EFI input lOW and HIGH times as shown are required to guarantee the elK lOW and HIGH times shown. 

RESET and READY Timing as a Function of RES with S1, SO, ARDY + ARDYEN, and SRDY + 
SRDYEN High 

210453-13 

NOTE: 
1. This is an asynchronous input. The setup and hold times shown are required to guarantee the response shown. 
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WAVEFORMS (Continued) 

READY and PCLK Timing with RES High 

210453-14 

NOTES: 
1. This is an asynchronous input. The setup'and hold times shown are required to guarantee the response shown. 
2. If SRDY + SRDYEN or ARDY + ARDYEN are active before and/or during the first bus cycle after RESET, READY 
may not be deasserted until after the falling edge of </>2 of T s. 

Icc vs Frequency @ Nominal Conditions 

N 1.6 ::J: 
::Ii 

1.5 ~ 
!;( 1.4 
c 1.3 .., 
!:::! 
-' 1.2 « 
::Ii 

1.1 II< 
0 
z 1 .; 
.!! 0.9 

12 14 16 18 20 22 24 

ClK OUTPUT FREQUENCY,lAHz 
2310453-16 

ICC vs Case Temperature @ 25 MHz 

1.04 
~ 1.03 
II) 1.02 

'" 1.01 
!;( 1 

,0.99 
c 0.98 .., 
N 0.97 ::::; 0.96 « 0.95 ::Ii 
II< 0.94 
0 0.93 z 0.92 .; 0.91 .!! 0.9 

0.89 
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DATA SHEET REVISION REVIEW 

The following list represents key differences between this and the -009 data sheet. Please review this summa­
ry carefully. 

1. The AC timing parameter SRDY or SRDYEN setup time (T11) has been changed to 18 ns for the 10 and 
12.5 MHz parts and 20 ns for the 8 MHz part. 
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i486™ MICROPROCESSOR 

• Binary Compatible with Large 
Software Base 
-MS-DOS*, OS/2**, Windows 
-UNIX*** System V/386 
- iRMX®, iRMKTM Kernels 

• High Integration Enables On-Chip 
- 8 Kbyte Code and Data Cache 
- Floating Point Unit 
- Paged, Virtual Memory Management 

• Easy To Use 
- Built-In Self Test 
- Hardware Debugging Support 
-Intel Software Support 
- Extensive Third Party Software 

Support 

• High Performance Design 
- Frequent Instructions Execute in One 

Clock 
- 25 MHz and 33 MHz Clock 

Frequencies 
-106 MbytelSec Burst Bus 
- CHMOS IV Process Technology 

• Complete 32-Bit Architecture 
- Address and Data Busses 
-Registers 

• Multiprocessor Support 
- Multiprocessor Instructions 
- Cache Consistency Protocols 
- Support for Second Level Cache 

The i486™ CPU offers the highest performance for DOS, OS/2, Windows and UNIX System V/386 applica­
tions. It is 100% binary compatible with the 386TM CPU. One million transistors integrate cache memory, 
floating point hardware and memory management on-chip while retaining binary compatibility with previous 
members of the 86 architectural family. Frequently used instructions execute in one cycle resulting in RISC 
performance levels. An 8 Kbyte unified code and data cache combined with a 106 Mbyte/Sec burst bus at 
33.3 MHz ensure high system throughput even with inexpensive DRAMs. 

New features enhance multiprocessing systems. New instructions speed manipulation of memory based sem­
aphores. On-chip hardware ensures cache consistency and provides hooks for multilevel caches. 

The built in self test extensively tests on-chip logic, cache memory and the on-chip paging translation cache. 
Debug features include breakpoint traps on code execution and data accesses. 

i486™ Microprocessor Pipelined 32-Bit Microarchitecture 
64 Bit I t It T f B 

~i 
n arun ronser us 

32-blt Data Bus 

~ 32 
32-blt Data Bus 

Jl j l II II II 
32 

h Linear Address Bus 

~t 32 

Segmentation Paging pea. pwr 
Barrel Snifter Basel UnIt UnIt 2 Cache Unit 

Index 

~ 
Descriptor 

Reglsternle Raglst ... s 20 Bk Byte 
32 Physical Cacha 

Umltond Translation Address AlU AttrIbute Lookaslda 
PLA Buffer 

1r 
12Blt 

Dis lacamani Bus Praf.tener 

micro-InstructIon 32 ... Cod. 32 Byte Code 
Stream Queue 

~ 
floating Control and Instruction Point Protection Test 

I 
,. 2 x 16 Bytes 

Unit Unit Oecode ~ F,P. Register Control Instruction 

File ROM Path 

iRMX, iRMK, 386, 387, 486, i486 are trademarks of Intel Corporation. 
"MS-DOS@ is a registered trademark oi Microsoft Corporation . 

• "OS/2TM is a trademark of Microsoft Corporation. 
"'UNIXTM is a trademark of AT&T. 
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Bus Interface A2-A31 

~ Address Drivers 

BEO#-B 

~ 

f=tr=: WrRe Buffars 
-4 x 80 -- .. -... ------- 00-031 

Data Bus 

~w ~ Transcelyers 

Jr Bus Control ~6lU*l 
80 # 

Request Sequencer HOLD H 
INTR NI.I 

~-------------
Burst Bus Control BROYI 

~ ------------
BLAST, 

• Bus Size Control BS16# 

~, 
8581 

-------------
cache Control ~. ------------
~ Parity Glneratlon OPo- P 

and Control 
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i486TM MICROPROCESSOR 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

S 1.27 1.26 1.23 HC 1.14 VSS 1.12 VSS VSS VSS VSS VSS 1.10 VSS 1.6 1.4 AOS# S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

R 1.28 1.25 vee VSS 1.18 vee 1.15 vec vee VCC VCC All 1.8 VCC 1.3 BLAST, NC R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Q 1.31 VSS 1.17 1.19 1.21 1.24 1.22 1.20 1.16 1.13 1.9 AS 1.7 1.2 BREQ PlOCK# PCHK# Q 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P DO 1.29 1.30 HlDA vee VSS p 
0 0 0 0 0 0 

N 02 01 OPO lOCK# M/IOf, W/R# N 0 0 0 0 0 0 

M vss vee D4 O/C# vee vss M 0 0 0 0 0 0 

L VSS os 07 PWT vce vss L 0 0 0 0 0 0 

K vss VCC 014 1-4861\t Microprocessor BEO# VCC VSS K 0 0 0 PIN SlOE VIEW 0 0 0 

J vee OS 016 BE2# 8El# PCO J 0 0 0 0 0 0 

H VSS 03 OP2 BROY# Vee VSS H 0 0 0 0 0 0 

G VSS vee 012 HC vee VSS G 0 0 0 0 0 0 

F OPI OS 015 KEN# ROY# B[3# F 0 0 0 0 0 0 

E VSS VCC 010 HOlO vce VSS E 0 0 0 0 0 .0 

D D9 013 017 A20M# BS8# Borr # D 0 0 0 0 0 0 

C 011 018 ClK vee vee 027 026 028 030 HC He HC NC rERR# ~lUSH# RESET BSI6# C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B 019 021 vss VSS vss 025 VCC 031 vee HC vee He HC HC NMI NC [AOS, B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A 020 022 HC 023 OP3 024 VSS 029 VSS HC VSS HC He Ne IGNNE# INTR AHOLO A 0 0 0 '0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 3 4 5 6 .7 8 9 10 11 12 13 14 15 16 17 
240440-2 

Figure 1.1 
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i486TM MICROPROCESSOR 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 

S AOS# A4 A6 VSS Al0 VSS VSS vss vss VSS A12 vss A14 Ne A23 A26 A27 S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

R Ne BlAST# A3 vee A8 All vee vee vee vee A15 vee A18 VSS vee A25 A28 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Q peHK# PloeK# BREQ A2 A7 AS A9 A13- A16 A20 A22 A24 A21 A19 A17 VSS A31 Q 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

p vss vec HlOA A30 A29 DO P 0 0 0 0 0 0 

N w/R# M/IO# loeK# OPO 01 02 N 0 0 0 0 0 0 

M VSS vcc o/e# 04 vec vss M 0 0 0 0 0 0 

L vss vee PWT 07 06 VSS L 0 0 0 0 0 0 

K vss vee BEO# 1486 ™ Microprocessor Pinout 014 vee VSS K 0 0 0 TOP SIDE VIEW 0 0 0 

J 
peo BE1# BE2# 016 05 vee J 0 0 0 0 0 0 

H vss vee BROY# OP2 03 VSS H 0 0 0 0 0 0 

G 
vss vee Ne 012 vce vss G 0 0 0 0 0 0 

F BE3# ROY# KEN# 015 08 OPI F 0 0 0 0 0 0 

E VSS vee HOLD DlO vee VSS E 0 0 0 0 0 0 

D BOFF# BS8# A20M# 017 013 09 D 0 0 0 0 0 0 

C BS 16# RESET FlUSH# FERR# NC Ne Ne NC 030 028 026 027 vce VCC ClK 018 011 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B EAOS# NC NMI NC NC NC VCC NC VCC 031 vee 025 VSS VSS VSS 021 019 B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A AHOlO INTR IGNNE# NC NC NC vss NC VSS 029 VSS 024 OP3 023 NC 022 020 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 
240440-3 

Figure 1.2 
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Pin Cross Reference by Pin Name 

Address Data Control N/C Vee Vss 
A2 014 00 P1 A20M# 015 A3 87 A7 
A3 R15 01 N2 A08# 817 A10 89 A9 
A4 816 02 N1 AHOLO A17 A12 811 A11 
A5 012 03 H2 8EO# K15 A13 C4 83 
A6 815 04 M3 8EH J16 A14 C5 84 
A7 013 05 J2 8E2# J15 810 E2 85 
A8 R13 06 L2 8E3# F17 812 E16 E1 
A9 011 07 L3 8LA8T# R16 813 G2 E17 
AlO 813 08 F2 BOFF# 017 B14 G16 G1 
All R12 09 01 8ROY# H15 816 H16 G17 
A12 87 010 E3 8REO# 015 C10 J1 H1 
A13 010 011 C1 888# 016 C11 K2 H17 
A14 85 012 G3 8816# C17 C12 K16 K1 
A15 R7 013 02 CLK C3 C13 L16 K17 
A16 09 014 K3 O/C# M15 G15 M2 L1 
A17 03 015 F3 OPO N3 R17 M16 L17 
A18 R5 016 J3 OP1 F1 84 P16 M1 
A19 04 0 17 03 OP2 H3 R3 M17 
A20 08 018 C2 OP3 A5 R6 P17 
A21 05 019 81 EA08# 817 R8 02 
A22 Q7 020 A1 FERR# C14 R9 R4 
A23 83 021 82 FLU8H# C15 R10 86 
A24 06 022 A2 HLOA P15 R11 88 
A25 R2 023 A4 HOLO E15 R14 89 
A26 82 024 A6 IGNNE# A15 810 
A27 81 025 86 INTR A16 811 
A28 R1 026 C7 KEN# F15 812 
A29 P2 027 C6 LOCK# N15 S14 
A30 P3 028 C8 M/IO# N16 
A31 01 029 A8 NMI 815 

030 C9 PCO J17 
031 88 PCHK# 017 

PWT L15 
PLOCK# 016 
ROY# F16 
RESET C16 
W/R# N17 
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QUICK PIN REFERENCE 

What follows is a brief pin description. For detailed signal descriptions refer to Section 6. 

Symbol Type Name and Function 

ClK I Clock provides the fundamental timing and the internal operating frequency for the 486 
microprocessor. All external timing parameters are specified with respect to the rising 
edge ofClK. 

ADDRESS BUS 

A31-A4 1/0 A31-A2 are the address lines of the microprocessor. A31-A2, together with the bYte 
A2-A3 0 enables BEO # -BE3 #, define the physical area of memory or input/ output space 

accessed. Address lines A31-A4 are used to drive addresses into the microprocessor to 
perform cache line invalidations. Input signals must meet setup and hold times t22 and 
t23. A31-A2 are not driven during bus or address hold. 

BEO-3# 0 The byte enable signals indicate active bytes during read and write cycles. During the 
first cycle of a cache fill, the external system should assume that all byte enables are 
active. BE3# applies to 024-031, BE2# applies to 016-023, BE1 # applies to 08-
015 and BEO# applies to 00-07. BEO#-BE3# are active lOW and are not driven 
during bus hold. 

DATA BUS 

031-00 1/0 These are the data lines for the 486 microprocessor. Lines 00-07 define the least 
significant byte of the data bus while lines D24-D31 define the most significant byte of 
the data bus. These signals must meet setup and hold times t22 and t23 for proper 
operation on reads. These pins are driven during the second and subsequent clocks of 
write cycles. 

DATA PARITY 

OPO-OP3 1/0 There is one data parity pin for each byte of the data bus. Data parity is generated on all 
write data cycles with the same timing as the data driven by the 486 microprocessor. 
Even parity information must be driven back into the microprocessor on the data parity 
pins with the same timing as read information to insure that the correct parity check 
status is indicated by the 486 microprocessor. The signals read on these pins do not 
affect program execution. 
Input signals must meet setup and hold times t22 and t23. OPO-OP3 should be 
connected to Vee through a pullup resistor in systems which do not use parity. OPO-OP3 
are active HIGH and are driven during the second and subsequent clocks of write cycles. 

PCHK# 0 Parity Status is driven on the PCHK # pin the clock after ready for read operations. The 
parity status is for data sampled at the end of the previous clock. A parity error is 
indicated by PCHK# being lOW. Parity status is only checked for enabled bytes as 
indicated by the byte enable and bus size signals. PCHK# is valid only in the clock 
immediately after read data is returned to the microprocessor. At all other times PCHK # 
is inactive (HIGH). PCHK# is never floated. 

BUS CYCLE DEFINITION 

MIIO# 0 The memory/input-output, data/control and write/read lines are the primary bus 
O/C# 0 definition signals. These signals are driven valid as the ADS # signal is asserted. 
W/R# 0 M/IO# D/C# W/R# Bus Cycle Initiated 

0 0 0 Interrupt Acknowledge 
0 0 1 Halt/Special Cycle 
0 1 0 I/O Read 
0 1 1 I/O Write 
1 0 0 Code Read 
1 0 1 Reserved 
1 1 0 Memory Read 
1 1 1 Memory Write 

The bus definition signals are not driven during bus hold and follow the timing of the 
address bus: Refer to Section 7.2.11 for a description of the special bus cycles. 
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QUICK PIN REFERENCE (Continued) 

Symbol Type Name and Function 

BUS CYCLE DEFINITION (Continued) 

LOCK# a The bus lock pin indicates that the current bus cycle is locked. The 486 microprocessor 
will not allow a bus hold when LOCK # is asserted (but address holds are allowed). 
LOCK # goes active in the first clock of the first locked bus cycle and goes inactive after 
the last clock of the last locked bus cycle. The last locked cycle ends when ready is 
returned. LOCK # is active LOW and is not driven during bus hold. Locked read cycles 
will not be transformed into cache fi~ cycles if KEN # is returned active. 

PLOCK# a The pseudo-lock pin indicates that the current bus transaction requires more than one 
bus cycle to complete. Examples of such operations are floating point long reads and 
writes (64 bits); segment table descriptor reads (64 bits), in addition to cache line fills 
(128 bits). The 486 microprocessor will drive PLOCK # active until the addresses for the 
last bus cycle of the transaction have been driven regardless of whether ROY # or 
BROY # have been returned. 
Normally PLOCK # and BLAST # are inverse of each other. However during the first bus· 
cycle of a 64-bit floating point write, both PLOCK # and BLAST # will be asserted. 
PLOCK # is a function of the BS8 #, BS16 # and KEN # inputs. PLOCK # should be 
sampled only in the clock ready is returned. PLOCK # is active LOW and is not driven 
during bus hold. 

BUS CONTROL 

AOS# a The address status output indicates that a valid bus cycle definition and address are 
available on the cycle definition lines and address bus. ADS # is driven active in the same 
clock as the addresses are driven. AOS# is active LOW and is not driven during bus hold. 

ROY# I The non-burst ready input indicates that the current bus cycle is complete. ROY # 
indicates thatthe external system has presented valid data on the data pins in response 
to a read or that the external system has accepted data from the 486 microprocessor in 
response to a write. ROY # is ignored when the bus is idle and at the end of the first clock 
of the bus cycle. 
ROY # is active during address hold. Data can be returned to the processor while AHOLO 
is active. 
ROY # is active LOW, and is not provided with an internal pull up resistor. ROY # must 
satisfy setup and hold times t16 and t17 for proper chip operation. 

BURST CONTROL 

BROY# I The burst ready input performs the same function during a burst cycle that ROY # 
performs during a non-burst cycle. BROY # indicates that the external system has 
presented valid data in response to a read or that the external system has accepted data 
in response to a write. BROY # is ignored when the bus is idle and at the end of the first 
clock in a bus cycle. 
BROY # is sampled in the second and subsequent clocks of a burst cycle. The data 
presented on the data bus will be strobed into the microprocessor when BROY # is 
sampled active. If ROY # is returned simultaneously with BROY #, BROY # is ignored and 
the burst cycle is prematurely aborted. 
BROY # is active LOW and is provided with a small pullup resistor. BROY # must satisfy 
the setup and hold times t16 and t17' 

BLAST # a The burst last signal indicates that the next time BROY # is returned the burst bus cycle is 
complete. BLAST # is active for both burst and non-burst bus cycles. BLAST # is active 
LOW and is not driven during bus hold. 
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QUICK PIN REFERENCE (Continued) 

Symbol Type Name and Function 

INTERRUPTS 

RESET I The reset input forces the 486 microprocessor to begin execution at a known state. The 
microprocessor cannot begin execution of instructions until at least 1 ms after Vee and 
CLK have reached their proper DC and AC specifications. The RESET pin should remain 
active during this time to insure proper microprocessor operation. RESET is active HIGH. 
RESET is asynchronous but must meet setup and hold times t20 and t21 for recognition in 
any specific clock. 

INTR I The maskable interrupt indicates that an external interrupt has been generated. If the 
internal interrupt flag is set in EFLAGS; active interrupt processing will be initiated. The 
486 microprocessor will generate two locked interrupt acknowledge bus cycles in 
response to the INTR pin going active. INTR must remain active until the interrupt 
acknowledges have been performed to assure that the interrupt is recognized. 
INTR is active HIGH and is not provided with an internal pulldown resistor. INTR is 
asynchronous, but must meet setup and hold times t20 and t21 for recognition in any 
specific clock. 

NMI I The non-maskable interrupt request signal indicates that an external non-maskable 
interrupt has been generated. NMI is rising edge sensitive. NMI must be held LOW for at 
least four CLK periods before this rising edge. NMI is not provided with an internal 
pulldown resistor. NMI is asynchronous, but must meet setup and hold times t20 and t21 
for recognition in any specific clock. 

BUS ARBITRATION 

BREQ 0 The internal cycle pending signal indicates that the 486 microprocessor has internally 
generated a bus request. BREQ is generated whether or not the 486 microprocessor is 
driving the bus. BREQ is active HIGH and is never floated. 

HOLD I The bus hold request allows another bus master complete control of the 486 
microprocessor bus. In response to HOLD going active the 486 microprocessor will float. 
most of its output and input/output pins. HLDA will be asserted after completing the 
current bus cycle, burst cycle or sequence of locked cycles. The 486 microprocessor will 
remain in this state until HOLD is deasserted. HOLD is active high and is not provided with 
an internal pulldown resistor. HOLD must satisfy setup and hold times t1B and t19 for 
proper operation. 

HLDA 0 Hold acknowledge goes active in response to a hold request presented on the HOLD pin. 
HLDA indicates that the 486 microprocessor has given the bus to another local bus 
master. HLDA is driven active in the same clock that the 486 microprocessor floats its 
bus. HLDA is driven inactive when leaving bus hold. HLDA is active HIGH and remains 
driven during bus hold. 

BOFF# I The backoffinput forces the 486 microprocessor to float its bus in the next clock. The 
microprocessor will float all pins normally floated during bus hold but HLDA will not be 
asserted in response to BOFF #. BOFF # has higher priority than ROY # or BRDY #; if 
both are returned in the same clock, BOFF # takes effect. The microprocessor remains in 
bus hold until BOFF # is negated. If a bus cycle was in progress when BOFF # was 
asserted the cycle will be restarted. BOFF # is active LOW and must meet setup and hold 
times t1B.and t19 for proper operation. 

CACHE INVALIDATION 

AHOLD I The address hold request allows another bus master access to the 486 microprocessor's 
address bus for a cache invalidation cycle. The 486 microprocessor will stop driving its 
address bus in the clock following AHOLD going active. Only the address bus will be 
floated during address hold, the remainder of the bus will remain active. AHOLD is active 
HIGH and is provided with a small internal pulldown resistor. For proper operation AHOLD 
must meet setup and hold times t1B and t19' 
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QUICK PIN REFERENCE (Continued) 

Symbol Type Name and Function 

CACHE INVALIDATION (Continued) 

EADS# I This signal indicates that a valid external address has been driven onto the 486 
microprocessor address pins. This address will be used to perform an internal cache 
invalidation cycle. EADS# is active LOW and is provided with an internal pullup resistor. 
EADS# must satisfy setup and hold times t12 and t13 for proper operation. 

CACHE CONTROL 

KEN# I The cache enable pin is used to determine whether the current cycle is cacheable. When 
the 486 microprocessor generates a cycle that can be cached and KEN # is active, the 
cycle will become a cache line fill cycle. Returning KEN # active one clock before ready 
during the last read in the cache line fill will cause the line to be placed in the on-chip 
cache. KEN # is active LOW and is provided with a small internal pullup resistor. KEN # 
must satisfy setup and hold times t14 and t15 for proper operation. 

FLUSH# I The cache flush input forces the 486 microprocessor to flush its entire internal cache. 
FLUSH # is active low and need only be asserted for one clock. FLUSH # is 
asynchronous but setup and hold times t20 and t21 must be met for recognition in any 
specific clock. FLUSH # being sampled low in the clock before the falling edge of RESET 
causes the 486 microprocessor to enter the tri-state test mode. 

PAGE CACHEABILITY 

PWT 0 The page write-through and page cache disable pins reflect the state of the page 
PCD 0 attribute bits, PWT and PCD, in the page table entry or page directory entry. If paging is 

disabled or for cycles that are not paged, PWT and PCD reflect the state of the PWT and 
PCD bits in control register 3. PWT and PCD have the same timing as the cycle definition 
pins (M/IO#, D/C# and W/R#). PWT and PCD are active HIGH and are not driven 
during bus hold. PCD is masked by the cache disable bit (CD) in Control Register o. 

NUMERIC ERROR REPORTING 

FERR# 0 ,The floating point error pin is driven active when a floating point error occurs. FERR # is 
similar to the ERROR # pin on the 387TM math coprocessor. FERR # is included for 
compatibility with systems using DOS type floating pOint error reporting. FERR # is active 
LOW, and is not floated during bus hold. 

IGNNE# I When the ignore 'numeric error pin is asserted the 486 microprocessor will ignore a 
numeric error and continue executing non-control floating point instructions. When 
IGNNE # is deasserted the 486 microprocessor will freeze on a non-control floating point 
instruction, if a previous floating pOint instruction caused an error. IGNNE# has no effect 
when the NE bit in control register 0 is set. IGNNE# is active LOW and is provided with a 
small internal pullup resistor. IGNNE# is asynchronous but setup and hold times t20 and 
t21 mustbe met to insure recognition on any specific clock. 

BUS SIZE CONTROL 

8516# I The bus size 16 and bus size 8 pins (bus sizing pins) cause the 486 microprocessor to run 
858# I multiple bus cycles to complete a request from devices that cannot provide or accept 32 

bits of data in a sin.gle cycle. The bus sizing pins are sampled every clock. The state of 
these pins in the clock before ready is used by the 486 microprocessor to determine the 
bus size. These signals are active LOW and are provided with internal pullup resistors. 
These inputs must satisfy setup and hold times t14 and t15 for proper operation. 

ADDRESS MASK 

A20M# I When the address bit 20 mask pin is asserted, the 486 microprocessor masks physical 
address bit 20 (A20) before performing a lookup to the internal cache or driving a memory 
cycle on the bus. A20M # emUlates the ,address wraparound at one Mbyte which occurs 
on the 8086. A20M # is active LOW and Sh9uld be asserted only when the processor is in 
real mode. This pin is asynchronous but should meet setup and hold times t20 and t21 for 
recognition in any specific clock. For proper operation, A20M # should be sampled high 
at the falling edge of RESET. 
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Table 1.1. Output Pins Table 1.2. Input Pins 

Name 
Active When 
Level Floated 

Name 
Active Synchronousl 
Level Asynchronous 

BREQ HIGH CLK 
HLOA HIGH RESET HIGH Asynchronous 

BEO#-BE3# LOW Bus Hold HOLO HIGH Synchronous 
PWT,PCO HIGH Bus Hold AHOLO HIGH Synchronous 

W/R#, O/C#, M/IO# HIGH Bus Hold EAOS# LOW Synchronous 
LOCK# LOW Bus Hold BOFF# LOW Synchronous 

PLOCK# LOW Bus Hold FLUSH# LOW Asynchronous 
AOS# LOW Bus Hold A20M# LOW Asynchronous 

BLAST # LOW Bus Hold BS16#, BSB# LOW Synchronous 
PCHK# LOW KEN# LOW Synchronous 
FERR# LOW ROY# LOW Synchronous 
A2-A3 HIGH Bus, Address Hold BROY# LOW Synchronous 

INTR HIGH Asynchronous . 
NMI HIGH Asynchronous 

IGNNE# LOW Asynchronous 

Table 1.3. Input/Output Pins 

Name 
Active When 
Level Floated 

00-031 HIGH Bus Hold 
OPO-OP3 HIGH Bus Hold 
A4-A31 HIGH Bus, Address Hold 
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2.0 ARCHITECTURAL OVERVIEW 

The 486 microprocessor is a 32-bit architecture with 
on-chip memory management, floating point and 
cache memory units. , 

The 486 microprocessor contains all the features of 
the 386TM microprocessor with enhancements to in­
crease performance. The instruction set includes the 
complete 386 microprocessor instruction set along 
with extensions to serve new applications. The on­
chip memory management unit (MMU) is completely 
compatible with the 386 microprocessor MMU. The 
486 microprocessor brings the 387TM math coproc­
essor on-chip. All software written for the 386 micro­
processor, 387 math coprocessor and previous 
members of tre 86/87 architectural family will run on 
the 486 microprocessor without any modifications. 

Several enhancements have been added to the 486 
microprocessor to increase performance. On-chip 
cache memory allows frequently used data and 
code to be stored on-chip reducing accesses to the 
external bus. RISC design techniques have been 
used to reduce instruction cycle times: ,A burst bus 
feature enables fast cache fills. All of these features, 

. comoined, lead to performance greater than twice 
that of a 386 microprocessor. 

The memory management unit (MMU) consists of a 
segmentation unit and a paging unit. Segmentation 
allows management of the logical address space by 
providing easy data and code relocatibility and effi­
cient sharing of global resources. The paging mech­
anism operates beneath segmentation and is trans­
parent to the segmentation process. Paging is op­
tional and can be disabled by system software. Each 
segment can be divided into one or more 4 Kbyte 
segments. To implement a virtual memory system, 
the 486 microprocessor supports full restartability 
for all page and segment faults. 

Memory is organized into one or more variable 
length segments .. each up to four gigabytes (232 

bytes) in size. A segment can have attributes associ­
ated with it which include its location, size, type (Le., 
stack, code or data), and protection characteristics. 
Each task on a 486 microprocessor can have a max­
imum of 16,381 segments, each up to four gigabytes 
in size. Thus each task has a maximum of 64 tera­
bytes (trillion bytes) of virtual memory. 

The segmentation unit provides four-levels of pro­
tection for isolating and protecting applications and 
the operating system from each other. The hardware 
enforced protection allows the design of systems 
with a high degree of integrity. 

The 486 microprocessor has two modes of opera­
tion: Real Address Mode (Real Mode) and Protected 

Mode Virtual Address Mode (Protected Mode). In 
Real Mode the 486 microprocessor operates as a 
very fast 8086. Real Mode is required primarily to set 
up the processor for Protected Mode operation. Pro­
tected Mode provides access to the sophisticated 
memory management paging and privilege capabili­
ties of the processor. 

Within Protected Mode, software can perform a task 
switch to enter into tasks designated as Virtual 8086 
Mode tasks. Each virtual 8086 task behaves with 
8086 semantics, allowing 8086 software (an applica­
tion program or an entire operating system) to exe­
cute. 

The on-chip floating point unit operates in parallel 
with the arithmetic and logic unit and provides arith­
metic instructions for a variety of numeric data types. 
It execute,s numerous built-in transcendental func­
tions (e.g., tangent, sine, cosine, and log functions). 
The floating point unit fully conforms to the ANSI! 
IEEE standard 754-1985 for floating point arithmetic. 

The on-chip cache is 8 Kbytes in size. It is 4-way set 
associative and follows a write-through policy. The 
on-chip cache includes features to provide flexibility 
in external memory system design. Individual pages 
can be designated as cacheable or non-cacheable 
by software or hardware. The cache can also be en­
abled and disabled by software or hardware. 

Finally the 486 microprocessor has features to facili­
tate high performance hardware designs. The 1 X 
clock eases high frequency board level deSigns. The 
burst bus feature enables fast cache fills. These fea­
tures are described beginning in Section 6. 

2.1 Register Set 

The 486 microprocessor register set includes all the 
registers contained in the 386 microprocessor and 
the 387 math coprocessor. The register set can be 
split into the following categories: 
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Base Architecture Registers 

General Purpose Registers 

Instruction Pointer 

Flags Register 

Segment Registers 

Systems Level Regis!ers 

Control ~egisters 

System Address Registers 
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Floating Point Registers 

Data Registers 

Tag Word 

Status Word 

Instruction and Data Pointers 

Control Word 

Debug and Test Registers 

The base architecture and floating point registers 
are accessible by the applications program. The sys­
tem level registers are only accessible at privilege 
level 0 and are used by the systems level program. 
The debug and test registers are also only accessi­
ble at privilege level O. 

2.1.1 BASE ARCHITECTURE REGISTERS 

Figure 2.1 shows the 486 microprocessor base ar­
chitecture registers. The contents of these registers 
are task-specific and are automatically loaded with a 
new context upon a task switch operation. 

General Purpose Registers 
31 24123 16 15 sl7 0 

AH AX AL EAX 

SH SX SL ESX 

CH cx CL ECX 

OH DX DL EDX 

Sl ESI 

DI EDI 

SP ESP 

SP ESP 

Segment Registers 
15 0 

CS Code Segment 

SS Stack Segment 

DS 

" ) Data Segments 
FS 

GS 

Instruction Pointer 
31 16 15 0 

I I IP I EIP 

Flags Re'gister 

I I FLAGS I EFLAGS 

Figure 2.1. Base Architecture Registers 
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The base architecture includes six directly accessi­
ble descriptors, each specifying a segment up to 4 
Gbytes in size. The descriptors are indicated by the 
selector values placed in the 486 microprocessor 
segment registers. Various selector values can be 
loaded as a program executes. 

The selectors are also task-specific, so the segment 
registers are automatically loaded with new context 
upon a task switch operation. 

2.1.1.1 General Purpose Registers 

The eight 32-bit general purpose registers are 
shown in Figure 2.1. These registers hold data or 
address quantities. The general purpose registers 
can support data operands of 1, 8, 16 and 32 bits, 
and bit fields of 1 to 32 bits. Address operands of 16 
and 32 bits are supported. The 32-bit registers are 
named EAX, EBX, ECX, EOX, ESI, EOI, EBP and 
ESP. 

The least significant 16 bits of the general purpose 
registers can be accessed separately by' using the 
16-bit names of the registers AX, BX, CX, OX, SI, 01, 
BP and SP. The upper 16 bits of the register are not 
changed when the lower 16 bits are accessed sepa­
rately. 

Finally n-bit operations can individually access the 
lowest byte (bits 0-7) and the higher byte (bits 8-
15) of the general purpose registers AX, BX, CX and 
OX. The lowest bytes are named AL, BL, CL and OL 
respectively. The higher bytes are named AH, BH, 
CH and OH respectively. The individual byte acces­
sibility offers additional flexibility for data operations 
but is not used for effective address calculation. 

2.1.1.2 Instruction Pointer 

The instruction pointer, shown in Figure 2.1, is a 32-
bit register named EIP. EIP holds the offset of the 
next instruction to be executed. The offset is always 
relative to the base of the code segment (CS). The 
lower 16 bits (bits 0-15) of the EIP contain the 16-bit 
instruction pointer named IP, which is used for 16-bit 
addressing. 

2.1.1.3 Flags Register 

The flags register is a 32-bit register named 
EFLAGS. The defined bits and bit fields within 
EFLAGS control certain operations and indicate 
status of the 486 microprocessor. The lower 16 bits 
(bit 0-15) of EFLAGS contain the 16-bit register 
named FLAGS, which is most useful when executing 
8086 and 80286 code. EFLAGS is shown in Figure 
2.2. 
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FLAGS 

3 3 2 2 2 2 2 2 2 2 221 1 1 1 1 111 1 
1 0 9 8 7 6 ~ 4 3 2 1 0 9 8 7 6 5 4 3 2 0 9 8 7 6 5 4 3 2 1 0 

EFLAGS RESERVED FOR INTEL 

ALIGNMENT CHECK-----...I 
VIRTUAL MODE--------' 
RESUME FLAG--------....I 
NESTED TASK FLAG--------..J 
I/O PRIVILEGE LEVEL---------.... 
OVERFLOW---------------' 

CARRY FLAG 
L.-__ PARITY FLAG 

L.-----AUXILlARY CARRY 
'-------ZERO FLAG 

L.-______ SIGN FLAG 

L.--------TRAP fLAG 
DIRECTION FLAG------------...... 
INTERRUPT ENABLE------------...... 

240440-6 

NOTE: 
o indicates Intel Reserved: do not define; see Section 2.1.6. 

Figure 2.2. Flags Register 

EFLAGS bits 1, 3, 5,15 and 19-31 are "undefined". 
When these bits are stored during interrupt process­
ing or with a PUSHF instruction (push flags onto 
stack), a one is stored in bit 1 and zeros in bits 3, 5, 
15 and 19:-31. 

The EFLAGS register in the 486 microprocessor 
contains a new bit not previously defined. The new 
bit, AC, is defined in the upper 16 bits of the register 
and it enables faults on accesses to misaligned 
data. 

AC (Alignment Check, bit 18) 

The AC bit enables the generation of faults if a 
memory reference is to a misaligned address. 
Alignment faults are enabled when AC is set 
to 1. A mis-aligned address is a word access 

to an odd address, a dword access to an ad­
dress that is not on a dword boundary, or an 
8-byte reference to an address that is not on a 
64-bit word boundary. See Section. 7.1.6 for 
more information on operand alignment. 

Alignment faults are only generated by pro­
grams running at privilege level 3. The AC bit \ 
setting is ignored at privilege levels 0, 1 and 2. 
Note that references to the descriptor tables 
(for selector loads), or the task state segment 
(TSS) , are implicitly level 0 references even if 
the instructions causing the references are 
executed at level 3. Alignment faults are re­
ported through interrupt 17, with an error code 
of O. Table 2.1 gives the alignment required 
for the 486 microprocessor data types. 

Table 2.1. Data Type Alignment Requirements 

Memory Access Alignment (Byte Boundary) 

Word 2 
Dword 4 
Single Precision Real 4 
Double Precision Real 8 
Extended Precision Real 8 
Selector 2 
48-Bit Segmented Pointer 4 
32-Bit Flat Pointer 4 
32-Bit Segmented Pointer 2 
48-Bit "Pseudo-Descriptor" 4 
FSTENV IFLDENV Save Area 4/2 (On Operand Size) 
FSAVE/FRSTOR Save Area 4/2 (On Operand Size) 
Bit String 4 

4-12 
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IMPLEMENTATION NOTE: 
Several instructions on the 486 microprocessor 
generate misaligned references, even if their mem­
ory address is aligned. For example, on the 486 mi­
croprocessor, the SGDT /SIDT (store global/inter­
rupt descriptor table) instruction reads/writes two 
bytes, and then reads/writes four bytes from a 
"pseudo-descriptor" at the given address. The 486 
microprocessor will generate misaligned references 
unless the address is on a 2 mod 4 boundary. The 
FSAVE and FRSTOR instructions (floating pOint 
save and restore state) will generate misaligned 
references for one-half of the register save/restore 
cycles. The 486 microprocessor will not cause any 
AC faults if the effective address given in the in­
struction has the proper alignment. 

VM (Virtual 8086 Mode, bit 17) 

The VM bit provides Virtual 8086 Mode within 
Protected Mode. If set while the 486 Micro­
processor is in Protected Mode, the 486 Mi­
croprocessor will switch to Virtual 8086 opera­
tion, handling segment loads as the 8086 
does, but generating exception 13 faults on 
privileged opcodes. The VM bit can be set 
only in Protected Mode, by the IRET instruc­
tion (if current privilege level = 0) and by task 
switches at any privilege level. The VM bit is 
unaffected by POPF. PUSHF always pushes a 
o in this bit, even if e)(ecuting in Virtual 8086 
Mode. The EFLAGS image pushed during in­
terrupt processing or saved during task 
switches will contain a 1 in this bit if the inter­
rupted code was executing as a Virtual 8086 
TasK. 

RF (Resume Flag, bit 16) 

The RF flag is used in conjunction with the 
debug register breakpoints. It is checked at 
instruction boundaries before breakpoint pro­
cessing. When RF is set, it causes any debug 
fault to be ignored on the next instruction. RF 
is then automatically reset at the successful 
completion of every instruction (no faults are 
signalled) except the IRET instruction, the 
POPF instruction, (and JMP, CALL, and INT 
instructions causing a task switch). These in­
structions set RF to the value specified by the 
memory image. For example, at the end of the 
breakpoint service routine, the IRET instruc­
tion can pop an EFLAG image having the RF 
bit set and resume the program's execution at 
the breakpoint address without generating an­
other breakpoint fault on the same location. 

NT (Nested Task, bit 14) 

This flag applies to Protected Mode. NT is set 
to indicate that the execution of this task is 
nested within another task. If set, it indicates 
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that the current nested task's Task State Seg­
ment (TSS) has a valid back link to the previ­
ous task's TSS. This bit is set or reset by con­
trol transfers to other tasks. The value of NT 
in EFLAGS is tested by the IRET instruction to 
determine whether to do an inter-task return 
or an intra-task return. A POPF or an IRET 
instruction will affect the setting of this bit ac­
cording to the image popped, at any privilege 
level. 

10PL (Input/Output Privilege Level, bits 12-13) 

This two-bit field applies to Protected Mode. 
10PL indicates the numerically maximum CPL 
(current privilege level) value permitted to ex­
ecute I/O instructions without generating an 
exception 13 fault or consulting the I/O Per­
mission Bitmap. It also indicates the maximum 
CPL value allowing alteration of the IF (INTR 
Enable Flag) bit when new values are popped 
into the EFLAG register. POPF and IRET in­
struction can alter the 10PL field when execut­
ed at CPL = o. Task switches can always al­
ter the 10PL field, when the new flag image is 
loaded from the incoming task's TSS. 

OF (Overflow Flag, bit 11) 

OF is set if the operation resulted in' a signed . 
overflow. Signed overflow occurs when the 
operation resulted in carry/borrow Into the 
sign bit (high-order bit) of the result but did not 
result in a carry/borrow out of the high-order 
bit, or vice-versa. For 8-, 16-, 32-bit opera­
tions, OF is set according to overflow at bit 7, 
15,31, respectively. 

DF (Direction Flag, bit 10) 

DF defines whether ESI and/or EDI registers 
postdecrement or postincrement during the 
string instructions. Postincrement occurs if DF 
is reset. Postdecrement occurs if DF is set. 

IF (INTR Enable Flag, bit 9) 

The IF flag, when set, allows recognition of 
external interrupts signalled on the INTR pin. 
When IF is reset, external interrupts signalled 
on the INTR are not recognized. 10PL indi­
cates the maximum CPL value allowing altera­
tion of the IF bit when new values are popped 
into EFLAGS or FLAGS. 

TF (Trap Enable Flag, bit 8) 

TF controls the generation of exception 1 trap 
when single-stepping through code. When TF 
is set, the 486 Microprocessor generates an 
exception 1 trap after the next instruction is 
executed. When TF is reset, exception 1 traps 
occur only as a function of the breakpoint ad­
dresses loaded into debug registers DRO­
DR3. 
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SF (Sign Flag, bit 7) 

SF is set if the high-order bit of the result is 
set, it is reset otherwise. For 8-, 16-, 32-bit 
operations, SF reflects the state of bit 7, 15, 
31 respectively. 

ZF (Zero Flag, bit 6) 

ZF is set if all bits of the result are o. Other­
wise it is reset. 

AF (Auxiliary Carry Flag, bit 4) 

The Auxiliary Flag is used to simplify the addi­
tion and subtraction of packed BCD quanti­
ties. AF is set if the operation resulted in a 
carry out of bit 3 (addition) or a borrow into bit 
3 (subtraction). Otherwise AF is reset. AF is 
affected by carry out of, or borrow into bit 3 
only, regardless of overall operand length: 8, 
16 or 32 bits. 

PF (Parity Flags, bit 2) 

PF is set if the low-order eight bits of the oper­
ation contains an even number of "1's" (even 
parity). PF is reset if the low-order eight bits 
have odd parity. PF is a function of only the 
low-order eight bits, regardless of operand 
size. 

CF (Carry Flag, bit 0) 

CF is set if the operation resulted in a carry 
out of (addition), or a borrow into (subtraction) 
the high-order bit. Otherwise CF is reset. For 
8-, 16- or 32-bit operations, CF is set accord­
ing to carry/borrow at bit 7,15 or 31, respec­
tively. 

SEGMENT 

NOTE: 
In these descriptions, "set" means "set to 1," and 
"reset" means "reset to 0." 

2.1.1.4 Segment Registers 

Six 16-bit segment registers hold segment selector 
values identifying the currently addressable memory 
segments. In protected mode, each segment may 
range in size from one byte up to the entire linear 
and physical address space of the machine, 4 
Gbytes (232 bytes). In real address mode, the maxi­
mum segment size is fixed at 64 Kbytes (216 bytes). 

The six addressable segments are defined by the 
segment registers CS, SS, OS, ES, FS and GS. The 
selector in CS indicates the current code segment; 
the selector in SS indicates the current stack seg­
ment; the selectors in OS, ES, FS and GS indicate 
the current data segments. 

2.1.1.5 Segment Descriptor Cache Registers 

The segment descriptor cache registers are not pro­
grammer visible, yet it is very useful to understand 
their content. A programmer invisible descriptor 
cache register is associated with each programmer­
visible segment register, as shown by Figure 2.3. 
Each descriptor cache register holds a 32-bit base 
address, a 32-bit segment limit, and the other neces­
sary segment attributes. 

REGISTERS DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY) 
~ • r \ r Other \ 

Segment 
15 0 Physical Base Address Segment Limit Attributes from Descriptor 

Selector CS- -
Selector SS- - -, 
Selector DS- - - -
Selector ES- - - -
Selector FS- - - -
Selector GS-" - - -

Figure 2.3. i486TM Microprocessor Segment Registers and Associated Descriptor Cache Registers . " 
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When a selector value is loaded into a segment reg­
ister, the associated descriptor cache register is au­
tomatically updated with the correct information. In 
Real Address Mode, only the base address is updat­
ed directly (by shifting the selector value four bits to 
the left), since the segment maximum limit and attri­
butes are fixed in Real Mode. In Protected Mode, 
the base address, the limit, and the attributes are all 
updated per the contents of the segment descriptor 
indexed by the selector. 

Whenever a memory reference occurs, the segment 
descriptor cache register associated with the seg­
ment being used is automatically involved with the 
memory reference. The 32-bit segment base ad­
dress becomes a component of the linear address 
calculation, the 32-bit limit is used for the limit-check 
operation, and the attributes are checked against 
the type of memory reference requested. 

2.1.2 SYSTEM LEVEL REGISTERS 

The system level registers, Figure 2.4, control opera­
tion of the on-chip cache, the on-chip floating point 

31 24123 16115 

unit (FPU) and the segmentation and paging mecha­
nisms. These registers are only accessible to pro­
grams running at privilege level 0, the highest privi­
lege level. 

The system level registers include three control reg­
isters and four segmentation base registers. The 
three control registers are CRO, CR2 and CR3. CR1 
is reserved for future I ntel processors. The four seg­
mentation base registers are the Global Descriptor 
Table Register (GDTR), the Interrupt Descriptor Ta­
ble Register (GDTR), the Local Descriptor Table 
Register (LDTR) and the Task State Segment Regis­
ter (TR). 

2.1.2.1 Control Registers 

Control Register 0 (CRO) 

CRO, shown in Figure 2.5, contains 10 bits for con­
trol and status purposes. Five of the bits defined in 
the 486 microprocessor's CRO are newly defined. 
The new bits are CD, NW, AM, WP and NE. The 
function of the bits in CRO can be categorized as 
follows: 

817 0 

PAGE FAULT LINEAR ADDRESS REGISTER 

CRO 
CR2 

CR3 PAGE DIRECTORY BASE REGISTER 1 
SYSTEM ADDRESS REGISTERS 

47 32-BIT LINEAR BASE ADDRESS 16 15 LIMIT 0 

~~~:I I I 
SYSTEM SEGMENT 

REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED) 

~5 ( 32-BIT LINEAR BASE ADDRESS 20-BIT SEGMENT LIMIT 

TR I--_S::..:E::.::L=E.=,CT::..:O::..:R-=----1 

LDTR SELECTOR 
'--------' I 

. Figure 2.4. System Level Registers 

\ 
T 

MSW 
NOTE: 

indicates Intel reserved: Do not define; See Section 2.1.6 

Figure 2.5. Control Register 0 

4-15 

ATTRIBUTES' 

II II 

) 



inter i486TM MICROPROCESSOR 

486 Microprocessor Operating Modes: PG, PE 
(Table 2.2) 

On-Chip Cache Control Modes: CD, NW (Table 2.3) 

On-Floating Point Unit Control: TS, EM, MP, NE 
(Table 2.4) . 

Alignment Check Control: AM 

Supervisor Write Protect: WP 

Table 2.2. Processor Operating Modes 

PG PE Mode 

0 0 REAL Mode. Exact 8086 semantics, 
with 32-bit extensions available with 
prefixes. 

0 1 Protected Mode. Exact 80286 
semantics, plus 32-bit extensions 
through both prefixes and "default" 
prefix setting associated with code 
segment descriptors. Also, a sub-
mode is defined to support a virtual 
8086 within the context of the 
extended 80286 protection moc.!el. 

1 0 UNDEFINED. Loading CRO with this 
combination of PG and PE bits will 
raise a GP fault with error code O. 

1 1 Paged Protected Mode. All the 
facilities of Protected mode, with 
paging enabled underneath 
segmentation. 

Table 2.3. On-Chip Cache Control Modes 

CD NW Operating Mode 

1 1 Cache fills disabled, write-through and 
invalidates disabled. 

1 0 Cache fi\ls disabled, write-through and 
invalidates enabled. 

0 1 INVALID. If CRO is loaded with this 
configuration of bits, a GP fault with 
error code is raised. 

0 0 Cache fills enabled, write-through and 
invalidates enabled. 

Table 2.4. On-Chip Floating Point Unit Control 

CROBIT Instruction Type 
.. 

EM TS MP Floating-Point Walt 

0 0 0 Execute Execute 
0 0 1 Execute Execute 
0 1 0 Trap 7 Execute 
0 1 1 Trap 7 Trap 7 
1 0 0 Trap 7 Execute 
1 0 1 Trap 7 Execute 
1 1 0 Trap 7 Execute 
1 1 1 Trap 7 Trap 7 

The low-order 16 bits of CRO are also known as the 
Machine Status Word (MSW), for compatibility with 
the 80286 protected mode. LMSW and SMSW (load 
and store MSW) instructions are taken as special 
aliases of the load and store CRO operations, where 
only the low-order 16 bits of CRO are involved. The 
LMSW and SMSW instructions in the 486 microproc­
essor work in an identical fashion to the LMSW and 
SMSW instructions in the 80286 (i.e., they only oper­
ate on the low-order 16 bits of CRO and ignores the 
new bits). New 486 microprocessor operating sys­
tems should use the MOV CRO, Reg instruction. 

The defined CRO bits are described below. 

PG (Paging Enable, bit 31) 

The PG bit is used to indicate whether paging is 
enabled (PG= 1) or disabled (PG=O). See Ta­
ble 2.2. 

CD (Cache Disable, bit 30) 

The CD bit is used to enable the on-chip cache. 
When CD = 1, the cache will not be filled on 
cache misses. When CD = 0, cache fills may be 
performed on misses. See, Table 2.3. 

The state of the CD bit, the cache enable input 
pin (KEN#), and the relevant page cache dis­
able (PCD) bit determine if a line read in re­
sponse to a cache miss will be installed in the 
cache. A line is installed in the cache only if 
CD = 0 and KEN # and PCD are both zero. The 
relevant PCD bit comes from either the page 
table entry, page directory entry or control reg­
ister 3. Refer to Section 5.6 for more details on 
page cacheability. 
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CD is set to one after RESET. 

NW (Not Write-Through, bit 29) 

The NW bit enables on-chip cache write­
throughs and write-invalidate cycles (NW = 0). 
When NW = 0, all writes, including cache hits, 
are sent out to ·the pins. Invalidate cycles are 
enabled when NW = o. During an invalidate cy­
cle a line will be removed from the cache if the 
invalidate address hits in the cache. See Table 
2.3. 

When NW = 1, write-throughs and write-invali­
date cycles are disabled. A write will not be sent 
to the pins if the write hits in the cache. With 
NW = 1 the only write cycles that reach the ex­
ternal bus are cache misses. Write hits with 
NW = 1 'Will never update main memory. Invali­
date cycles are ignored when NW = 1. 

AM (Alignment Mask, bit 18) 

The AM bit controls whether the alignment 
check (AC) bit in the flag register (EFLAGS) can 
allow an alignment fault. AM = 0 disables the 
AC bit. AM = 1 enables the AC bit. AM = 0 is the 
386 microprocessor compatible mode. 
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386 microprocessor software may load incor­
rect data into the AC bit in the EFLAGS register. 
Setting AM = 0 will prevent AC faults from oc­
curring before the 486 microprocessor has cre­
ated the AC interrupt service routine. 

WP (Write Protect, bit 16) 

WP protects read-only pages from supervisor 
write access. The 386 microprocessor allows a 
read-only page to be written from privilege lev­
els 0-2. The 486 microprocessor is compatible 
with the 386 microprocessor when WP = o. 
WP = 1 forces a fault on a write to a read-only 
page from any privilege level. Operating sys­
tems with Copy-on-Write features can be sup­
ported with the WP bit. Refer to Section 4.5.3 
for further details on use of the WP bit. 

NE (Numerics Exception, bit 5) 

The NE bit controls whether unmasked floating 
point exceptions (UFPE) are handled through 
interrupt vector 16 (NE = 1) or through an exter­
nal interrupt (NE = 0). NE = 0 (default at reset) 
supports the DOS operating system error re­
porting scheme from the 8087, 80287 and 387 
math coprocessor. In DOS systems, math co­
processor errors are reported via external inter­
rupt vector 13. DOS uses interrupt vector 16 for 
an operating system call. Refer to Sections 
6.2.13 and 7.2.14 for more information on float­
ing point error reporting. 

For any UFPE the floating point error output pin 
(FERR#) will be driven active. 

, For NE = 0, the 486 microprocessor works in 
conjunction with the ignore numeric error input 
(IGNNE#) and the FERR# output pins. When a 
UFPE occurs and the IGNNE# input is inactive, 
the 486 microprocessor freezes immediately 
before executing the next floating point instruc­
tion. An external interrupt controller will supply 
an interrupt vector when FERR# is driven ac­
tive. The UFPE is ignored if IGNNE# is active 
and floating point execution continues. 

NOTE: 
The freeze does not take place if the next in­
struction is one of the control instructions 
FNCLEX, FNINIT, FNSAVE, FNSTENV, 
FNSTCW, FNSTSW, FNSTSW AX, FNENI, 
FNDISI and FNSETPM. The freeze does occur 
if the next instruction is WAIT. 

For N E = 1, any UFPE will result in a software 
interrupt 16, immediately before executing the 
next non-control floating point or WAIT instruc­
tion. The ignore numeric error input (IGNNE#) 
signal will be ignored. 
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TS (Task Switched, bit 3) 

The TS bit is set whenever a task switch opera­
tion is performed. Execution of a floating point 
instruction with TS = 1 will cause a device not 
available (DNA) fault (trap vector 7). If TS = 1 
and MP= 1 (monitor coprocessor in CRO) a 
WAIT instruction will cause a DNA fault. See 
Table 2.4. 

EM (Emulate Coprocessor, bit 2) 

The EM bit determines whether floating point 
instructions are trapped (EM = 1) or executed. If 
EM = 1, all floating point instructions will cause 
fault 7. 

NOTE: 
WAIT instructions are not affected by the state 
of EM. See Table 2.4. 

MP (Monitor Coprocessor, bit 1) 

The MP bit is used in conjunction with the TS bit 
to determine if WAIT instructions should trap. If 
MP=1 and TS=1, WAIT instructions cause 
fault 7. Refer to Table 2.4. The TS bit is set to 1 
on task switches by the 486 microprocessor. 
Floating point instructions are not affected by 
the state of the MP bit. It is recommended that 
the MP bit be set to one for the normal opera­
tion of the 486 microprocessor. 

PE (Protection Enable, bit 0) 

The PE bit enables the segment based protec­
tion mechanism. If PE = 1 protection is enabled. 
When PE = 0 the 486 microprocessor operates 
in REAL mode, with segment based protection 
disabled, and addresses formed as in an 8086. 
Refer to Table 2.2. 

All new CRO bits added to the 386 and 486 micro­
processors, except for ET and NE, are upward com­
patible with the 80286 because they are in register 
bits not defined in the 80286. For strict compatibility 
with the 80286, the load machine status word 
(LMSW) instruction is defined to not change the ET 
or NE bits. 

Control Register 1 (CR1) 

CR1 is reserved for 'use in future Intel microproces­
sors. 

Control Register 2 (CR2) 

CR2, shown in Figure 2.6, holds the 32-bit linear ad­
dress that caused the last page fault detected. The 
error code pushed onto the page fault handler's 
stack when it is invoked provides additional status 
information on this page fault. 
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31 0 

~I __________________ ~_P_A_G_E_F_A_U_LT __ LI_N_E_A_R_A_D_D_R_E_S_S_R_E_G_IS_T_E_R ____________________ ~ICR2, 
31 4 3 o 

P P 
PAGE DIRECTORY BASE REGISTER 0, 0 o 0 0 0 0 C W o 0 0 CR3 

D T 
NOTE: 
o indicates Intel reserved: Do not define; See Section 2.1.6. 

Figure 2.6. Control Registers 2 and 3 

Control Register 3 (CR3) 

CRS, shown in Figure 2.6, contains the physical 
base address of the page directory table. The 486 
microprocessor page directory is always page 
aligned (4 Kbyte·aligned). This alignment is enforced 
by only storing bits 20-S1 in CRS. 

In the 486 microprocessor CRS contains two new 
bits, page write·through (PWT) (bit S) and page 
cache disable (PCO) (bit 4). The page table entry 
(PTE) and page directory entry (POE) also contain 
PWT and PCO bits. PWT and PCO control page 
cacheability. When a page is accessed in external 
memory, the state of PWT and PCO are driven out 
on the PWT and PCO pins. The source of PWT and 
PCO can be CRS, the PTE or the POE. PWT and 
PCO are sourced from CRS under two conditions: 
when paging is disabled (PG = 0 in CRO) or when the 
POE is being updated. 

A task switch through a task state segment (TSS) 
which changes the values in CRS, or an explicit load 
into CRS with any value, will invalidate all cached 
page table entries in the translation lookaside buffer 
(TLB). 

The page directory base address in CRS is a physi­
cal address. The page directory can be paged out 
while its associated task is suspended, but the oper­
ating system must ensure that the page directory is 
resident in physical memory before the task is dis­
patched. The entry in the TSS for CRS has a physi­
cal address, with no provision for a present bit. This 
means that the page directory for ~ task must be 
resident in physical memory. The CRS image in a 
TSS must point to this area, before the task can be 
dispatched through its TSS. 

2.1.2.2 System Address Registers 

Four special registers are defined to reference the 
tables or segments supported by the 80286, S86 
and 486 microprocessor protection model. These ta­
bles or segments are: 

GOT (Global Descriptor Table) 
lOT (Interrupt Descriptor Table) 
LOT (Local Descriptor Table) 
TSS (Task State Segment) , 

The addresses of these tables and segments are 
stored in special registers, the System Address and 
System Segment Registers, illustrated in Figure 2.4. 
These registers are named GOTR, IOTR, LOTR and 
TR respectively. Section 4, Protected Mode Archi­
tecture, describes the use of these registers. 

System Address Registers: GDTR and IDTR 

The GOTR and IOTR hold the S2-bit linear base ad­
dress and 16-bit limit of the GOT and lOT, respec-
tively. ' 
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Since the GOT and lOT segments are global to .all 
tasks in the system, the GOT and lOT are defined by 
S2-bit linear addresses (subject to page translation if 
paging is enabled) and 16-bit limit values. 

System Segment Registers: LDTR and TR 

The LOTR and TR hold the 16~bit selector for the 
LOT descriptor and the TSS descriptor, respectively. 

Since the LOT and TSS segments are task specific 
segments, the LOT and TSS are defined by selector 
values stored in the system segment registers. 

NOTE: 
A programmer-invisible segment descriptor register 
is associated with each system segment register. 
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2.1.3 FLOATING POINT REGISTERS 

Figure 2.7 shows the floating point register set. The 
on-chip FPU contains eight data registers, a tag 
word, a control register, a status register, an instruc­
tion pointer and a data pointer. 

79 78 64 63 o 
RO Sign Exponent Significand 

R1 
~~----~~--------~ 

R2 
~--~-----+----------~ 

R3 
~~----~~--------~ 

R4 
~--~-----+----------~ 

R5 
~~----~~--------~ 

R6 
~--~-----+----------~ 

R7 

15 o 47 

Control Register 

Status Register 

Tag Word 

Instruction Pointer 

Data Pointer 

Figure 2.7. Floating P9int Registers 

Tag 
Field 
1 0 

o 

The operation of the 486 microprocessor's on-chip 
floating point unit is exactly the same as the 387 
math coprocessor. Software written for the 387 
math coprocessor will run on the on-chip floating 
point unit (FPU) w,ithout any modifications. 

2.1.3.1 Data Registers 

Floating point computations use the 486 microproc­
essor's FPU data registers. These eight 80-bit regis­
ters provide the equivalent capacity of twenty 32-bit 
registers. Each of the eight data registers is divided 

15 

TAG (7) TAG (6) TAG (5) TAG (4) 

NOTE: 

into "fields" corresponding to the FPU's extended­
precision data type. 

The FPU's register set can be accessed either as a 
stack, with instructions operating on the top one or 
two stack elements, or as a fixed register set, with 
instructions operating on explicitly deSignated regis­
ters. The TOP field in the status word identifies the 
current top-of-stack register. A "push" operation 
decrements TOP by one and loads a value into the 
new top register. A "pop" operation stores the value 
from the current top register and then increments 
TOP by one. Like other 486 microprocessor stacks 
in memory, the FPU register stack grows "down" 
toward lower-addressed registers. 

Instructions may address the data registers either 
implicitly or explicitly. Many instructions operate on 
the register at the TOP of the stack. These instruc­
tions implicitly address the register at which TOP 
points. Other instructions allow the programmer to 
explicitly specify which register to use. This explicit 
register addressing is also relative to TOP. 

2.1.3.2 Tag Word 

. The tag word marks the content of each numeric 
data register, as shown in Figure 2.8. Each two-bit 
tag represents one of the eight data registers. The 
principal function of the tag word is to optimize the 
FPUs performance and stack handling by making it 
possible to distinguish between empty and nonemp­
ty register locations. It also enables exception han­
dlers to check the contents of a stack location with­
out the need to perform complex decoding of the 
actual data. 

2.1.3.3 Status Word 

The 16-bit status word reflects the overall state of 
the FPU. The status word is shown in Figure 2.9 and 
is located in the status register. 

o 
TAG (3) TAG (2) TAG (1) TAG (0) 

The index i of tag(i) is not top-relative. A program typically uses the "top" field of Status Word to determine which tag (i) 
field refers to logical top of stack. 
TAG VALUES: 

00 = Valid 
01 = Zero 
10 = QNaN, SNaN, Infinity, Denormal and Unsupported Formats 
11 = Empty 

Figure 2.8. FPU Tag Word 
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.------------------------------------BUSY 

r--r--,-,--------------------------- TOP OF STACK POINTER 

.--+-+--+---,-----,--.-------------------- CONDITION CODE 

ERROR SUMMARY STATUS --------------' 
STACK FLAG ---------------' 

EXCEPTION FLAGS: 
PRECISION -----------------' 

UNDERFLOW __________________ ---1 

OVERFLOW ----------------------' 
ZERO DIVIDE ----------------' 

DENORMALIZED OPERAND --------------------------' 
INVALID OPERATI,ON -----------------------------' 

ES is set if any unmasked exception bit'is set; cleared otherwise. 
See Table'2.5 for interpretation of condition code. 
TOP values: 

000 = Register 0 is Top of Stack 
001 = Register 1 is Top of Stack . 
111 = Register 7 is,Top of Stack 

For definitions of exceptions, refer to the Section entitled 
"Exception Handling". 

Figure 2.9. FPU Status Word 

240440-7 

The B bit (Busy, bit 15) is included for 8087 compati­
bility. The B bit reflects the contents of the ES bit (bit 
7 of the status word). 

The four numeric condition code bits, CO-C3, are 
similar to the flags in EFLAGS. Instructions that per­
form arithmetic operations update CO-C3 to reflect 
the outcome. The effects of these instructions on 
the condition codes are summarized in Tables 2.5 
through 2.8. 

Bits 13-11 (TOP) pOint to the FPU register that is 
the current top-of-stack. ' 
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Table 2.5. FPU Condition Code Interpretation 

Instruction CO(S) I C3(Z) C1 (A) C2(C) 

FPREM, FPREM1 Three least significant bits 
Reduction 

(see Table 2.3) of quotient 
0= complete 

02 00 01 
orO/U# 1 = incomplete 

FCOM, FCOMP, 
FCOMPP, FTST, Result of comparison 

Zero 
Operand is not 

FUCOM, FUCOMP, (see Table 2.7) 
orO/U# 

comparable 
FUCOMPP, FICOM, (Table 2.7) 
FICOMP 

FXAM Operand class Sign Operand class 
(see Table 2.8) orO/U# (Table 2.8) 

FCHS, FABS, FXCH, 
FINCTOP, FDECTOP, 
Constant loads, 

UNDEFINED 
Zero 

UNDEFINED 
FXTRACT, FLO, orO/U# 
FILD, FBLD, 
FSTP (ext real) 

FIST, FBSTP, 
FRNDINT, FST, 
FSTP, FADD, FMUL, 
FDIV, FDIVR, 

UNDEFINED 
Roundup 

UNDEFINED 
. FSUB, FSUBR, orO/U# 
FSCALE, FSORT, 
FPATAN, F2XM1, 
FYL2X, FYL2XP1 

FPTAN, FSIN Roundup Reduction 
FCOS, FSINCOS UNDEFINED orO/U#, o = complete 

undefined 1 = incomplete 
ifC2 = 1 

FLDENV, FRSTOR Each bit loaded from memory 

FINIT Clears these bits 

FLDCW, FSTENV, 
FSTCW, FSTSW, UNDEFINED 
FCLEX, FSAVE 

O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit 
distinguishes between stack overflow (C1 = 1) and underflow (C1 = 0). 

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is 
complete. When reduction is incomplete the value at the top of the stack is a partial 
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and 
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this 
case the original operand remains at the top of the stack. 

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the 
instruction was upward. 

. UNDEFINED Do not rely on finding any specific value in these bits . 
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Table 2.6. Condition Code Interpretation after FPREM and FPREM1 Instructions 

Condition Code 
Interpretation after FPREM and FPREM1 

C2 C3 C1 CO 

Incomplete Reduction: 
1 X )( X further interaction required 

for complete reduction 

01 00 02 o MOD8 

0 0 0 0 
0 1 0 1 

Complete Reduction: 
1 0 0 2 

0 
1 1 0 3 

CO, C3, C1 contain three least 

0 0 1 4 
significant bits of quotient 

0 1 1 5 
1 0 1 6 
1 1 1 7 

Table 2.7. Condition Code Resulting from Comparison 

Order C3 C2 CO 

TOP> Operand 0 0 0 
TOP < Operand 0 0 1 
TOP = Operand 1 0 0 
Unordered 1 1 1 

Table 2.8. Condition Code Defining Operand Class 

C3 C2 C1 CO Value at TOP 

0 0 0 0 + Unsupported 
·0 0 0 1 + NaN 
0 0 1 0 - Unsupported 
0 0 1 1 - NaN 
0 1 0 0 + Normal 
0 1 0 1 + Infinity 
0 1 1 <;> - Normal 
0 1 1 1 - Infinity 
1 0 0 0 +0 
1 0 0 1 + Empty 
1 0 1 0 - O. 
1 0 1 1 - Empty 
1 1 0 0 + Denormal 
1 1 1 0 - Denormal 
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Bit 7 is the error summary (ES) status bit. The ES bit 
is set if any unmasked exception bit (bits 0-5 in the 
status word) is set; ES is clear otherwise. The 
FERR# (floating point error) signal is asserted when 
ES is set. 

Bit 6 is the stack flag (SF). This bit is used to distin­
guish invalid operations due to stack overflow or un­
derflow. When SF is set, bit 9 (C1) distinguishes be­
tween stack overflow (C1 = 1) and underflow 
(C1 =0). 

Table 2.9 shows the six exception flags in bits 0-5 
of the status word. Bits 0-5 are set to indicate that 
the FPU has detected an exception while executing 
an instruction. 

The six exception flags in the status word can be 
individually masked by mask bits in the FPU control 
word. Table 2.9 lists the exception conditions, and 
their causes in order of precedence. Table 2.9 also 
shows the action taken by the FPU if the corre­
sponding exception flag is masked. 

An exception that is not masked by the control word 
will cause three things to happen: the corresponding 
exception flag in the status word will be set, the ES 
bit in the status word will be set and the FERR # 
output signal will be asserted. When the 486 micro­
processor attempts to execute another floating point 
or WAIT instruction, exception 16 occurs or an exter­
nal interrupt happens if the NE = 1 in control register 

O. The exception condition must be resolved via an 
interrupt service routine. The FPU saves the address 
of the floating point instruction that caused the ex­
ception and the address of any memory operand re­
quired by that instruction in the instruction and data 
pointers (see Section 2.1.3.4). 

Note that when a new value is loaded into the status 
word by the FLDENV (load environment) or 
FRSTOR (restore state) instruction, the value of ES 
(bit 7) and its reflection in the B bit (bit 15) are not 
derived from the values loaded from memory. The 
values of ES and B are dependent upon the values 
of the exception flags in the status word and their 
corresponding masks in the control word. If ES is set 
in such a case, the FERR # output of the 486 micro­
processor is activated immediately. 

2.1.3.4 Instruction and Data Pointers 

Because the FPU operates in parallel with the ALU 
(in the 486 microprocessor the arithmetic and logic 
unit (ALU) consists of the base architecture regis­
ters), any errors detected by the FPU may be report­
ed after the ALU has executed the floating point in­
struction that caused it. To allow identification of the 
failing numeric instruction, the 486 microprocessor 
contains two pointer registers that supply the ad­
dress of the failing numeric instruction and the ad­
dress of its numeric memory operand (if appropri­
ate). 

Table 2.9. FPU Exceptions 

Exception Cause 
Default Action 

(if exception is masked) 

Invalid Operation on a signaling NaN, unsupported format, Result is a quiet NaN, integer 
Operation indeterminate form (0' 00, a/a, (+ 00) + (- 00), etc.), or indefinite, or BCD indefinite 

stack overflow/underflow (SF is also set). 

Denormalized At least one of the operands is denormalized, i.e., it has Normal processing 
Operand the smallest exponent but a nonzero significand. continues 

Zero Divisor The divisor is zero while the dividend is a noninfinite, Result is 00 
nonzero number. 

Overflow The result is too large in magnitude to fit in the specified Result is largest finite value 
format. or 00 

Underflow The true result is nonzero but too small to be Result is denormalized or 
represented in the specified format, and, if underflow zero 
exception is masked, denormalization causes loss of 
accuracy. 

Inexact The true result is not exactly representable ir:J the Normal processing 
Result . specified format (e.g., 1/3); the result is rounded continues 
(Precision) according to the rounding mode. 
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The instruction and data pointers are provided for 
user-written error handlers. These registers are ac­
cessed by the FLDENV (load environment), 
FSTENV (store environment), FSAVE (save state) 
and FRSTOR (restore state) instructions. Whenever 
the 486 microprocessor decodes a new floating 
point instruction, it saves the instruction (including 
any prefixes that may be present), the address of 
the operand (if present) and the opcode. 

The instruction and data pOinters appear in one of 
four formats depending on the operating mode of 
the 486 microprocessor (protected mode or real-ad-

dress mode) and depending on the operand-size at­
tribute in effect (32-bit operand or 16-bit operand). 
When the 486 microprocessor is in the virtual-86 
mode, the real address mode formats are used. The 
four formats are shown in Figures 2.10-2.13. The 
floating point instructions FLDENV, FSTENV, 
FSAVE and FRSTOR are used to transfer these val­
ues to and from memory. Note that the value of the 
data pointer is undefined if the prior floating point 
instruction did not have a memory operand. 

NOTE: 
The operand size attribute is the 0 bit in a segment 
descriptor. 

32-BIT PROTECTED MODE FORMAT 
31 

31 

23 15 7 0 

RESERVED CONTROL WORD 

RESERVED STATUS WORD 

RESERVED TAG WORD 

IPOFFSET 

00000 I OPCODE10 .. 0 CSSELECTOR 

DATA OPERAND OFFSET 

RESERVED OPERAND SELECTOR 

Figure 2.10: Protected Mode FPU Instruction and Data Pointer Image in Memory, 32·Blt Format 

0000 
1 

0000 1 

23 
32-BIT REAL-ADDRESS MODE FORMAT 

15 7 

RESERVED CONTROL WORD 

RESERVED STATUS WORD 

RESERVED TAG WORD 

RESERVED INSTRUCTION POINTER 15 .. 0 

INSTRUCTION POINTER 31 .. 16 
.. 

1 01 OPCODE10 .. 0 

RESERVED OPERAND POINTER 15 .. 0 

OPERAND POINTER 31 .. 16 1 0000 00000000 

Figure 2.11. Real Mode FPU Instruction and Data Pointer Image in Memory, 32·Blt Format· 
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16-BIT PROTECTED MODE FORMAT 
15 7 0 

CONTROL WORD 

STATUS WORD 

TAG WORD 

IPOFFSET 

CSSELECTOR 

OPERAND OFFSET 

OPERAND SELECTOR 

Figure 2.12. Protected Mode FPU 
Instruction and Data Pointer 

Image in Memory, 16-Bit Format 

2.1.3.5 FPU Control Word 

o 

2 

4 

6 

B 

A 

C 

16-BIT REAL-ADDRESS MODE AND 
VIRTUAL-BOB6 MODE FORMAT 

15 7 0 

CONTROL WORD 

STATUS WORD 

TAG WORD 

INSTRUCTION POINTER 15 .. 0 

IP19:16 101 OPCODE10 .. 0 

OPERAND POINTER 15 .. 0 

DP 19.161 010 0 0 0 0 0 0 0 000 

Figure 2.13. Real Mode FPU 
Instruction and Data Pointer 

Image in Memory, 16-Bit Format 

o 

2 

4 

6 

B 

A 

C 

The FPU provides several processing options that are selected by loading a control word from memory into 
the control register. Figure 2.14 shows the format and encoding of fields in the control word. 

r--r--r----------------- RESERVED 

r--------------- RESERVED­
r-;-------------- ROUNDING CONTROL 

r--r----------- PRECISION CONTROL 

RESERVED ______ ..J......-' 

EXCEPTION MASKS: 
PRECISION ---------' 

UNDERFLOW ------------' 
OVERFLOW ------------' 

ZERO DIVIDE --------------' 

- "0" AFTER RESET OR FIN IT; 
CHANGEABLE UPON LOADING THE 
CONTROL WORD (ew). PROGRAMS 
MUST IGNORE THIS BIT. 

DENORMALIZED OPERAND _____________ .J 

INVALID OPERATION ---------------' 

PreCision Control 
00--24 bits (single precision) 
01-(reserved) 
10--53 bits (double precision) 
11-64 bits (extended precision) 

Rounding Control 
OO--Round to nearest or even 
01-Round down (toward - 00) 
10--Round up (toward + 00) 
11-Chop (truncate toward zero) 

Figure 2.14. FPU Control Word 
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The low-order byte of the FPU control word config­
ures the FPU error and exception masking. Bits 0-5 
of the control word contain individual masks for each 
of the six exceptions that the FPU recognizes. 

The high-order byte of the control word configures' 
the FPU operating mode, including precision and 
rounding. 

RC (Rounding Control, bits 10-11) 

The RC bits provide for directed rounding and 
true chop, as well as the unbiased round to 
nearest even mode specified in the IEEE stan­
dard. Rounding control affects only those in­
structions that perform rounding at the end of 
the operation (and thus can generate a preci­
sion exception): namely, FST, FSTP, FIST, all 
arithmetic instructions (except FPREM, 
FPREM1, FXTRACT, FABS and FCHS), and all 
transcendental instructions. 

PC (Precision Control, bits 8-9) 

The PC bits can be used to set the FPU internal 
operating precision of the significand at less 
than the default of 64 bits (extended precision). 
This can be useful in providing compatibility with 
early generation arithmetic processors of small­
er precision. PC affects only the instructions 
ADD, SUB, DIV, MUL, and SQRT. For all other 
instructions, either the precision is determined 
by the opcode or extended precision is used. 

2.1.4 DEBUG AND TEST REGISTERS 

2.1.4.1 Debug Registers 

The six programmer accessible debug registers, Fig­
ure 2.15, provide on-chip support for debugging. De­
bug registers DRO-3 specify the four linear break­
points. The Debug control register DR7, is used to 
set the breakpoints and the Debug Status Register, 
DR6, displays the current state of the breakpoints. 
The use of the Debug registers is described in Sec­
tion 9. 
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Debug Registers 

LINEAR BREAKPOINT ADDRESS 0 

LINEAR BREAKPOINT ADDRESS 1 

LINEAR BREAKPOINT ADDRESS 2 

LINEAR BREAKPOINT ADDRESS 3 

Intel Reserved Do Not Define 

Intel Reserved Do Not Define 

BREAKPOINT STATUS 

BREAKPOINT CONTROL 

Test Registers 

CACHE TEST DATA 

CACHE TEST STATUS 

CACHE TEST CONTROL 

TLB TEST CONTROL 

TLB TEST STATUS 

TLB = Translation Lookaslde Buffer 

, Figure 2.15 

2.1.4.2 Test Registers 

DRO 
DR1 
DR2 

DR3 
DR4 

DR5 
DR6 

DR7 

TR3 

TR4 

TR5 
TR6 

TR7 

The 486 microprocessor contains five test registers. 
The test registers are shown in Figure 2.15. TR6 and 
TR7 are used to control the testing of the translation 
lookaside buffer. TR3, TR4 and TR5 are used for 
testing the on-chip cache. The use of the test regis­
ters is discussed in Section 8. 

2.1_5 REGISTER ACCESSIBILITY 

There are a few differences regarding the accessibil­
ity of the registers in Real and Protected Mode. Ta­
ble 2.10 summarizes these differences. See Section 
4, Protected Mode Architecture, for further details. 
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Table 2.10. Register Usage 

Use in Use in Use in 

Register 
Real Mode Protected Mode Virtual 8086 Mode 

Load Store Load Store Load Store 

General Registers Yes Yes Yes Yes Yes Yes 

Segment Register Yes Yes Yes Yes Yes Yes 

Flag Register Yes Yes Yes Yes IOPL IOPL' 

Control Registers Yes Yes PL = 0 PL = 0 No Yes 

GDTR Yes Yes PL = 0 Yes No Yes 

IDTR Yes Yes PL = 0 Yes No Yes 

LDTR No No PL = 0 Yes No No 

TR No No PL = 0 Yes ·No No 

FPU Data Registers Yes Yes Yes Yes Yes Yes 

FPU Control Registers Yes Yes Yes Yes Yes Yes 

FPU Status Registers Yes Yes Yes Yes Yes Yes 

FPU Instruction Pointer Yes Yes Yes Yes Yes Yes 

FPU Data Pointer Yes Yes Yes Yes Yes Yes 

Debug Registers Yes Yes PL = 0 PL = 0 No No 

Test Registers Yes Yes PL = 0 PL = 0 No No 

NOTES: 
PL = 0: 'The registers can be accessed only when the current privilege level i's zero. 
*IOPL: The PUSHF and POPF instructions are made I/O Privilege Level sensitive in Virtual 86 Mode. 

2.1.6 COMPATIBILITY 

VERY IMPORTANT NOTE: 
COMPATIBILITY WITH FUTURE PROCESSORS 

In the preceding register descriptions, note cer­
tain 486 Microprocessor register bits are Intel re­
served. When reserved bits are called out, treat 
them as fully undefined. This is essential for 
your software compatibility with future proces­
sorsl Follow the guidelines below: 

1) Do not depend on the states of any unde­
fined bits when testing the values of defined 
register bits. Mask them out when testing. 

2) Do not depend on the states of any unde­
fined bits when storing them to memory or 
another register. 
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3) Do not depend on the ability to retain infor­
mation written into any undefined bits. 

4) When loading registers always load the unde­
fined bits as zeros. 

5) However, registers which have been previ­
ously stored may be reloaded without mask­
ing. 

Depending upon the values of undefined regis­
ter bits will make your software dependent upon 
the unspecified 486 Microprocessor handling of 
these bits. Depending on undefined values risks 
making your software incompatible with future 
processors that define usages for the 486 Micro­
processor-undefined bits. AVOID ANY SOFT­
WARE DEPENDENCE UPON THE STATE OF UN­
DEFINED 486 MICROPROCESSOR REGISTER 
BITS. 
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2.2 Instruction Set 

The 486 microprocessor instruction set can be divid­
ed into 11 categories of operations: 

Data Transfer 
Arithmetic 
Shift/Rotate 
String Manipulation 
Bit Manipulation 
Control Transfer 
High Level Language Support 
Operating System Support 
Processor Control 
Floating Point 
Floating point Control 

The 486 microprocessor instructions are listed in 
Section 10. Note that all floating point unit instruc­
tion mnemonics begin with an F. 

All 486 microprocessor instructions operate on ei­
ther 0, 1, 2 or 3 operands; where an operand resides 
in a register, in the instruction itself or.in memory. 
Most zero operand instructions (e.g., CLI, STI) take 
only one byte. One operand instructions generally 
are two bytes long. The average instruction is 3.2 
bytes long. Since the 486 microprocessor has a 32-
byte instruction queue, an average of 10 instructions 
will be prefetched. The use of two operands permits 
the following types of common instructions: 

Register to Register 
Memory to Register 
Memory to Memory 
Immediate to Register, 
Register to Memory 
Immediate to Memory 

The operands can be either 8, 16, or 32 bits long. As 
a general rule, when executing code written for the 
486 or 386 microprocessors (32-bit code), operands 
are 8 or 32 bits; when executing existing 80286 or 
8086 code (16-bit code), operands are 8 or 16 bits. 
Prefixes can be added to all instructions which over­
ride the default length of the operands (Le., use 32-
bit operands for 16-bit code, or 16-bit operands for 
32-bit code). 

2.3 Memory Organization 

Introduction 

Memory on the 486 Microprocessor is divided up 
into 8-bit quantities (bytes), 16-bit quantities (words), 
and 32-bit quantities (dwords). Words are stored in 
two consecutive bytes in memory with the low-order 
byte at the lowest address, the high order byte at the 

high address. Dwords are stored in four consecutive 
bytes in memory with the low-order byte at the low­
est address, the high-order byte at the highest ad­
dress. The address of a word or dword is the byte 
address of the low-order byte. . 

In addition to these basic data types, the 486 Micro­
processor supports two larger units of memory: 
pages and segments. Memory can be divided up 
into one or more variable length segments, which 
can be swapped to disk or shared between pro­
grams. Memory can also be organized into one or 
more 4 Kbyte pages. Finally, both segmentation and 
paging can be combined, gaining the advantages of 
both systems. The 486 Microprocessor supports 
both pages and segments in order to provide maxi­
mum flexibility to the system designer, Segmentation 
and paging are complementary. Segmentation is 
useful for organizing memory in logical modules, and 

. as such is a tool for the application programmer, 
while pages are useful for the system programmer 
for managing the physical memory of a system. 
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2.3.1 ADDRESS SPACES 

The 486 Microprocessor has three distiflct address 
spaces: logical, linear, and physical. A logical 
address (also known as a virtual address) consists 
of a selector and an offset. A selector is the con­
tents of a segment register. An offset is formed by 
summing all of the addressing components (BASE, 
INDEX, DISPLACEMENT) discussed in Section 
2.5.3 Memory Addressing Modes into an effective 
address. Since each task on the 486 Microproces­
sor has a maximum of 16K (214 ":'1) selectors, and 
offsets can be 4 gigabytes, (232 bits) this gives a 
total of 246 bits or,64 terabytes of logical address 
space per task. The programmer sees this virtual 
address space. 

The segmentation unit translates the logical ad­
dress space into a 32-bit linear address space. If the 
paging unit is not enabled then the 32-bit linear ad­
dress corresponds to the physical address. The 
paging unit translates the linear address space into 
the physical address space. The physical address 
is what appears on the ,address pins .. 

The primary difference between Real Mode and Pro­
tected Mode is how the segmentation unit performs 
the translation of the logical address into the linear 
address. In Real Mode, the segmentation unit shifts 
the selector left four bits and adds the result to the 
offset to ,form the linear address. While in Protected 
Mode every selector has a linear base address as­
sociated with it. The linear base address is stored in 
one of two operating system tables (i.e., the Local 
Descriptor'Table or Global Descriptor Table). The 
selector's linear base address is added to the offset 
to form the final linear address, 
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EFFECTIVE ADDRESS CALCULATION 

BE3-BEO 
,0.31 - "'2 

31 0 

PHYSICAL 
MEMORY 

LOGICAt~~RESS SEGMENTATION 32 PAGING UNIT 
VIRTUAL ADDRESS UNIT I-LI--NEA-R~·I (OPTIONAL USE) 

32 

PHYSICAL 
... 1~3~==':""""--I~"" ____ '" ADDRESS 

DESCRIPTOR 
ADDRESS '--_--' 

SEGMENT 
REGISTER 

INDEX 

240440-4 

Figure 2.16. Address Translation 

Figure 2.16 shows the relationship between the vari­
ous address spaces. 

2.3.2 SEGMENT REGISTER USAGE 

The main data structure used to organize memory is 
the segment. On the 486 Microprocessor, segme~ts 
are variable sized blocks of linear addresses which 
have certain attributes associated with them. There 
are two main types of segments: code and data, the 
segments are of variable size and can be as sl)1all 
as 1 byte or as large as 4 gigabytes (232 bytes). 

In order to provide compact instruction encoding, 
and increase processor performance, instructions 
do not need to explicitly specify which segment reg­
ister is used. A default segment register is automati­
cally chosen according to the rules of Table 2.11 
(Segment Register Selection Rules). In general, data 
references use the selector contained in the OS reg­
ister; Stack references use the SS register and In­
struction fetches use the CS register. The contents 
of the Instruction Pointer provide the offset. Special 
segment override prefixes allow the ~xplicit u~e o! ~ 
given segment register, and override the Implicit 
rules listed in Table 2.11. The override prefixes also 
allow the use of the ES, FS and GS segment regis­
ters. 

There are no restrictions regarding the overlapping 
of the base addresses of any segments. Thus, all 6 
segments could have the base address set to zero 
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and create a system with a four gigabyte linear ad­
dress space. This creates a system where the virtual 
address space is the same as the linear address 
space. Further details of segmentation are dis­
cussed in Section 4.1. 

2.4 I/O Space 

The 486 Microprocessor has two distinct physical 
address spaces: Memory and I/O. Generally, perip~­
erals are placed in I/O space although the 486 MI­
croprocessor also supports memory-mapped periph­
erals. The I/O space consists of 64 Kbytes, it can be 
divided into 64K 8-bit ports, 32K 16-bit ports, or 16K 
32-bit ports, or any combination of ports which add 
up to less than 64 Kbytes. The 64K I/O ad~ress 
space refers to physical memory rather than linear 
address since I/O instructions do not go through the 
segmentation or paging hardware. The M/IC?# pin 
acts as an additional address line thus allOWing the 
system designer to easily determine which address 
space the processor is accessing. 

The I/O ports are accessed via the IN and OUT I/O 
instructions, with the port address supplied as an 
immediate 8-bit constant in the instruction or in the 
OX register. All 8- and 16-bit port addresses are zero 
extended on the upper address lines. The I/O in­
structions cause the M/IO# pin to be driven low. 

I/O port addresses OOF8H through OOFFH are re­
served for use by Intel. 
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Table 2.11. Segment Register Selection Rules 

Type of 
Memory Reference 

Code Fetch 

Destination of PUSH, PUSHF, INT, 
CALL, PUSHA Instructions 

Source of POP, POPA, POPF, 
IRET, RET instructions 

Destination of STOS, MOVS, REP 
STOS, REP MOVS Instructions 
(01 is Base Register) 

Other Data References, with 
Effective Address Using Base 
Register of: 

[EAX] 
[EBX] 
[ECX] 
[EDX] 
[ESI] 
[EDI] 
[EBP] 
[ESP] 

2.5 Addressing Modes 

2.5.1 ADDRESSING MODES OVERVIEW 

The 486 Microprocessor provides I:! total of 11 ad­
dressing modes for instructions to specify operands. 
The addressing modes are optimized to allow the 
efficient execution'Of high level languages such as C 
and FORTRAN, and they cover the vast majority of 
data references needed by high-level languages. 

2.5.2 REGISTER AND IMMEDIATE MODES 

Two, of the addressing modes provide for 'instruc­
tions that operate on register or immediate oper-
ands:' , 

Register Operand Mode: The operand is located in 
one of the 8-, 16- or 32-bit general registers. 

Immediate Operand Mode: The operand is indud~ 
ed in the instruction as part of the opcode. 

Implied (Default) Segment Override 
Segment Use Prefixes Possible 
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CS None 

SS None 

SS None 

ES None 

OS 
OS 
OS 
OS 

All 
OS 
OS 
S8 
SS 

2.5.3 32-BIT MEMORY ADDRESSING MODES 

The remaining 9 modes provide a' mechanism for 
specifying the effective address of an operand. The 
linear address consists of two components: the seg­
ment base address and an effective address. The 
effective address is calculated 'by using combina­
tions of the following four address elements: 

DISPLACEMENT: An 8-, or 32-bit immediate value, 
following the instruction. 

BASE: The contents of any general purpose regis­
ter. The base registers are generally used by compil­
ers to point to the start of the local variable area. 

INDEX: The contents of any general purpose regis­
ter except for ESP. The index registers are used to 
access the elements of an array, or a string of char­
acters. 

SCALE: The index register's value can be multiplied 
by a scale factor, either 1, 2, 4 or 8. Scaled index 
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mode is especially useful for accessing arrays or 
structures. 

Combinations of these 4 components make up the 9 
additional addressing modes. There is no perform­
ance penalty for using any of these addressing com­
binations, since the effective address calculation is 
pipelined with the execution of other instructions. 
The one exception is the simultaneous use of Base 
and Index components which requires one addition­
al clock. 

As shown in Figure 2.17, the effective address (EA) 
of an operand is calculated according to the follow­
ing formula. 

EA = Base Reg + (Index Reg * Scaling) + Displacement 

Direct Mode: The operand's offset is contained as 
part of the instruction as an 8-, 16- or 32-bit dis­
placement. 
EXAMPLE: INC Word PTR [500] 

Register Indirect Mode: A BASE register contains 
the address of the operand. 
EXAMPLE: MOV [ECX], EDX 

SEGMENT REGISTER 

SS 
GS 

FS 
ES 

OS 

EFFECTIVE 
ADORE SS 

LINEAR 

Based Mode: A BASE register's contents is added 
to a DISPLACEMENT to form the operand's offset. 
EXAMPLE: MOV ECX, [EAX + 24] 

Index Mode: An INDEX register's contents is added 
to a DISPLACEMENT to form the operand's offset. 
EXAMPLE: ADD EAX, TABLE[ESI] 

Scaled Index Mode: An INDEX register's contents is 
multiplied by a scaling factor which is added to a 
DISPLACEMENT to form the operand's offset. 
EXAMPLE: IMUL EBX, TABLE[ESI*4],7 

Based Index Mode: The contents of a BASE register 
is added to the contents of an INDEX register to 
form the effective address of an operand. 
EXAMPLE: MOV EAX, [ESJ] [EBX] 

Based Scaled Index Mode: The contents of an IN­
DEX register is multiplied by a SCALING factor and 
the result is added to the contents of a BASE regis­
ter to obtain the operand's offset. 
EXAMPLE: MOV ECX, [EDX*S] [EAX] 

/' 
SEGMENT 
LIMIT 

DESCRIPTOR REGISTERS ADDRESS 

SS 
GS 

FS 
ES 

OS 

ACCESS RIGHTS CS 

LIMIT 

BASE ADDRESS 

~ TARGET ADDRESS 

------~ 
SEGMENT BASE ADDRESS 

Figure 2.17. Addressing Mode Calculations 
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Based Index Mode with Displacement: The contents 
of an INDEX Register and a BASE .register's con­
tents and a DISPLACEMENT are all summed to­
gether to form the operand offset. 
EXAMPLE: ADD EDX, [ESIl [EBP + OOFFFFFOH] 

Based Scaled Index Mode with Displacement: The 
contents 'of an INDEX register are multiplied by a 
SCALING factor, the result is added to the contents 
of a BASE register and a DISPLACEMENT to form 
the operand's offset. . 
EXAMPLE: MOV EAX, LOCALTABLE[EDI*4] 
[EBP + 80] 

2.5.4 DIFFERENCES BETWEEN 16- AND 32-BIT 
ADDRESSES 

In order to provide software compatibility with the 
80286 and the 8086, the' 486 Microprocessor can 
execute 16-bit instructions in Real and Protected 
Modes. The processor determines the size of the 
instructions it is executing by examining the D bit in 
the CS segment Descriptor. If the D bit is 0 then all 
operand lengths and effective addresses are as­
sumed to be 16 bits long. If the D bit is 1 then the 
default length for operands and addresses is 32 bits. 
In Real Mode the default size for operands and ad­
dresses is 16-bits. 

Regardless of the.default precision of the operands 
or addresses, the 486 Microprocessor is able to exe­
cute either 16- or 32-bit instructions. This is specified 
via the use of override prefixes. Two prefixes, the 
Operand Size Prefix and the Address Length Pre­
fix, override the value of the D bit on an individual 
instruction basis. These prefixes are automatically 
added by Intel assemblers. 

Example: The processor is executing in Real Mode 
and the programmer needs to access the EAX regis­
ters. The assembler code for this might be MOV 
EAX, 32-bit MEMORYOP, ASM486 Macro Assem­
bler automatically determines that an Operand Size 
Prefix is needed and generates it. 

Example: The D bit is 0, and the programmer wishes 
to use Scaled Index addressing mode to access an 
'array. The Address Length Prefix allows the use of 
MOV DX, TABLE[ESI*2]. The assembler uses an 

Address Length Prefix since, with D ,= 0, the default 
addressing mode is 16-bits. 

Example: The D bit is 1, and the prognim wants to 
store a 16-bit quantity. The Operand Length Prefix is 
used to specify only a 16-bit value; MOV MEM16, 
DX. 

The OPERAND LENGTH and Address Length Pre­
fixes can be applied separately or in combination to 
any instruction. The Address Length Prefix does not 
allow addresses over 64 Kbytes to be accessed in 
Real Mode. A memory address which exceeds 
FFFFH will result in a General Protection Fault. An 
Address Length Prefix only allows the use of the ad­
ditional 486 Microprocessor addressing modes. 

When executing 32-bit code, the 486 Microproces­
sor uses either 8-, or 32-bit displacements, and any 
register can be used as base or index registers. 
When executing 16-bit code, the displacements are 

- either 8, or 16 bits, and the base and index register 
conform to the 80286 model. Table 2.12 illustrates 
the differences. 

2.6 Data Formats 

2.6.1 DATA TYPES 

The 486 microprocessor can support a wide-variety 
of data types. In the following descriptions, the on­
chip floating point unit (FPU) consists of the floating 
pOint registers. The central processing unit (CPU) 
consists of the base architecture registers. 

2.6.1.1 Unsigned I?ata Types 

The FPU does not support unsigned data types. Re­
fer to Table 2.13. 

Byte: Unsigned 8-bit quantity 

Word: Unsigned 16-bit quantity 

Dword: Unsigned 32-bit quantity 

The least significant bit (LSB) in a byte is bit 0, and 
the most significant bit is 7. 

Table 2.12. BASE and INDEX Registers for 16- and 32-Blt Addresses 

16-Bit Addressing 32-Blt Addressing 

BASE REGISTER BX,BP Any 32-bit GP Register 
INDEX REGISTER SI,DI Any 32-bit GP Register 

Except ESP 
SCALE FACTOR none 1,2,4,8 
DISPLACEMENT 0,8,16 bits 0,8,32 bits 
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2.6.1.2 Signed Data Types 

All signed data types assume 2's complement nota­
tion. The signed data types contain two fields, a sign 
bit and a magnitude. The sign bit is the most signifi­
cant bit (MSB). The number is negative if the sign bit 
is 1. If the sign bit is 0, the number is positive. The 
magnitude field consists of the remaining bits in the 
number. Refer to Table 2.13. 

a-bit Integer: Signed a-bit quantity 

16-bit Integer: Signed 16~bit quantity 

32-bit Integer: Signed 32-bit quantity 

64-bit Integer: Signed 64-bit quantity 

The FPU only supports 16-, 32- and 64-bit integers. 
The CP'U only supports 8-, 16- and 32-bit integers. 

2.6.1.3 Floating Point Data Types 

Floating point data type in the 486 microprocessor 
contain three fields, sign, significand and exponent. 
The sign field is one bit and is the MSB of the float­
ing point number. The number is negative if the sign 
bit is 1. If the sign bit is 0, the number is positive. The 
significand gives the significant bits of the number. 
The exponent field contains the, power of 2 needed 
to scale the significand. Refer to Table 2.13. 

Only the FPU supports floating point data types. 

Single Precision Real: 23-bit significand and 8-
bit exponent. 32 bits total. 

Double Precision Real: 52-bit significand and 11-
bit expone'nt. 64 bits total. 

Extended Precision Real: 64-bit significand and 15-
bit exponent. 80 bits total. 
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2.6.1.4 BCD Data Types 

The 486 microprocessor supports packed and un­
packed binary coded decimal (BCD) data types. A 
packed BCD data type contains two digits per byte, 
the lower digit is in bits 0-3 and the upper digit in 
bits 4-7. An unpacked BCD data type contains 1 
digit per byte stored in bits 0-3. 

The CPU supports 8-bit packed and unpacked BCD 
data types. The FPU only supports 80-bit packed 
BCD data types. Refer to Table 2.13. 

2.6.1.5 String Data Types 

A string data type is a contiguous sequence of bits, 
bytes, words or dwords. A string may contain be­
tween 1 byte and 4 Gbytes. Refer to Table 2.14. 

String data types are only supported by the CPU. 

Byte String: Contiguous sequence of bytes. 

Word String: Contiguous sequence of words. 

Dword String: Contiguous sequence of dwords. 

Bit String: A set of contiguous bits. In the 486 micro­
processor bit strings can be up to 4 gigabits long. 

2,6.1.6 ASCII Data Types 

The 486 microprocessor supports ASCII (American 
Standard Code for Information Interchange) strings 
and can perform arithmetic operations (such as ad­
dition arid division) on ASCII data. The CPU can only 
operate on ASCII data. Refer to Table 2.14. 
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Table 2.13. i486TM Microprocessor Data Types 
Supported by Supported by 

Base Registers FPU 
! ! 

Least Significant Byte 
! 

Data Format Range Precision 7 01 7 01 7 01 7 01 7 01 7 ' 01 7 01 7 01 7 01 7 a 

7 0 

Byte X 0-255 8 bits C 
15 0 

Word X 0-64K 16 bits l' 
31 0 

Dword X 0-4G 32 bits I 

7 0 

8-Bit Integer 102 Two's ,,0= X 8 bits Complement 

Sign Bit t 

15 0 

16-Bit Integer X X 104 16 bits Two's II 
Complement 

Sign Bit i 

31 0 

32-Bit Integer X X 109 32 bits Two's II 
Complement 

Sign Bit i 

63 0 

64-Bit Integer X 1019 64 bits Two's I I 
Complement 

Sign Bit i 

7 0 

8-~it Unpacked BCD X 0-9 1 Digit One BCD Digit per Byte l 

7 0 

8-Bit Packed BCD X 0-9 2 Digits Two BCD Digits per Byte I 

79 72 0 

80-Bit Packed BCD X ±10±18 18 Digits I Ignored I 
i Sign Bit 

31 23 0 

S'ingle Precision Real X ± 10±38 24 Bits I IBiasedl 
Exp. Significand 

Sign Bit i 

63 52 0 

Double Precision Real X ± 10±308 53 Bits I IBiasedl 
Exp. 

Significand 

Sign Bit i 

79 63 0 

Extended Precision Real X ±10±4932 64 Bits I 
Biased 

11 
Significand Exp., 

i Sign Bit 
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Table 2.14. String and ASCII Data Types 

String Data Types 

Address A+N A+l A 

U 17 

1 

017 

0 

01 
Byte String ... 

A+2N+1 A+2N A+3 A+2 A+l A 

115 

I 

01 115 

I 
0115 

I 

01 
Word String N ... 1 0 

A+4N+3 A+4N+2 A+4N+1 A+4N A+7 A+6 A+5 A+4 A+3 A+2 A+l A 

Dwordl 
, I , 

01 131 

, I , 
0131 

, I , 
01 

N ... 1 0 
String 31 

A + 268.435,455 A - 268,435.456 
! A+3 A+2 A+l A A-l A-2 A-3 ! 

Bit I 
017 01 II 17 017 017 017 ... 1 017 017 017 01 II 17 017 01 String 7 

i i i i i 
+2.147,483,647 +7 +10 -2.147,483.648 

ASCII Data Types 

ASCII Character D 
2.6.1.7 Pointer Data T~!les Table 2.15. Pointer Data Types 

A pointer data type contains a value that gives the 
address of a piece of data. The 486 microprocessor 
supports two types of pointers. Refer to Table 2.15. 

48-bit Pointer: 16-bit selector and 32-bit offset 

32-bit Pointer: 32-bit offset 
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Data Format I I 

48-Bit Pointer 

32-Bit Pointer 

I I I I 
47 

I Selector I 
-

I 

Least 51g Byte 

! 

I I I 
31 0 

Offset 

31 0 

Offset 
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2.6.2 LITTLE EN DIAN vs BIG ENDIAN 
DATA FORMATS 

The 486 microprocessor, as well as all other mem­
bers of the 86 architecture use the "little-endian" 
method for storing data types that are larger than 
one byte. Words are stored in two consecutive bytes 
in memory with the low-order byte at the lowest ad­
dress and the high order byte at the high address. 
Dwords are stored in four consecutive bytes in. mem­
ory with the low-order byte at the lowest address 
and the high order byte at the highest addres~. The 
address of a word or dword data item is the byte 
address of the low-order byte. 

Figure 2.18 illustrates the differences between the 
big-endian and little-endian formats for dwords. The 
32 bits of data are shown with the low order bit num­
bered bit 0 and the high order bit numbered 32. Big­
end ian data is stored with the high-order bits at the 
lowest addressed byte. Little-endian data is stored 
with the high-order bits in the highest addressed 
byte. 

The 486 microprocessor has two instructions which 
can convert 16- or 32-bit data between the two byte 
orderings. BSWAP (byte swap) handles four byte 
values and XCHG (exchange) handles two byte val­
ues. 

m+3 m+2 m+1 m 
31 24 23 16 15 8 7 ·0 

Dword In Llttle-Endlan Memory Format· 

m m+1 m+2 m+3 
31 24 23 16 15 8 7 0 

Dword in Big-Endian Memory Formal 

Figure 2.18. Big vs Little Endian Memory Format 

2.7 Interrupts 

2.7.1 INTEBRUPTS AND EXCEPTIONS 

Interrupts and exceptions alter the normal program 
flow, in order to handle external events, to 'report 
errors or exceptional conditions. The difference be­
tween interrupts and exceptions is that interrupts are 
used to handle asynchronous external events while 
exceptions handle instruction faults. Although a pro­
gram can generate a software interrupt via an INT N 
instruction, the processor treats software interrupts 
as exceptions. 
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Hardware interrupts occur as the result of an exter­
nal event and are classified into two types: maskable 
or non-maskable. Interrupts are serviced after the' 
execution of the· current instruction. After the inter­
rupt handler is finished servicing the interrupt, exe­
cution proceeds with the instruction immediately 
after the interrupted instruction. Sections 2.7.3 and 
2.7.4 discuss the differences between Maskable and 
Non-Maskable interrupts. 

Exceptions are classified as faults, traps, or aborts 
depending on the way they are reported, and wheth­
er or not restart of the instruction causing the excep­
tion is supported. Faults are exceptions that are de­
tected and serviced before the execution of the 
faulting instruction. A fault would occur in a virtual' 
memory system, when the processor referenced a 
page or a segment which was not present. The oper­
ating system would fetch the page or segment from 
disk, and then the 486 Microprocessor would restart 
the instruction. Traps are exceptions that are report­
ed immediately after the execution of the instruction 
which caused the problem. User defined interrupts 
are examples of traps. Aborts are exceptions which 
do not permit the precise location of the instruction 
causing the exception to be determined. Aborts are 
used to report severe errors, such as a hardware 
error, or illegal values in system tables. 

Thus, when an interrupt service routine has been 
completed, execution proceeds from the instruction 
immediately following the interrupted instruction. On 
the other hand, the return address from an excep­
tion fault routine will always point at the instruction 
causing the exception and include any leading in­
struction prefixes. Table 2.16 summarizes the possi­
ble interrupts for the 486 Microprocessor and shows 
where the return address points. 

The 486 Microprocessor has the ability to handle up 
to 256 different interrupts/exceptions. In order to 
service the interrupts, a table with up to 256 interrupt 
vectors must be defined. The interrupt vectors are 
simply pointers to the appropriate interrupt service 
routine. In Real Mode (see Section 3.1), the vectors 
are 4 byte quantities, a Code Segment plus a 16-bit 
offset; in Protected Mode, the interrupt vectors are 8 
byte quantities, which are put in an Interrupt Descrip­
tor Table (see Section 4.3.3.4). Of the 256 possible 
interrupts, 32 are reserved for use by Intel, the re­
maining 224 are free to be used by the system de­
signer. 

2.7.2 INTERRUPT PROCESSING 

When an interrupt occurs the following actions hap­
pen. First, the current program address and the 
Flags are saved on the stack to allow resumption of 
the interrupted program. Next, an 8-bit vector is sup­
plied to the 486 Microprocessor which identifies the 
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2.7.3 MASKABLE INTERRUPT appropriate entry in the interrupt table. The table 
contains the starting address of the interrupt service 
routine. Then, the user supplied interrupt service 
routine is executed. Finally, when an IRET instruc­
tion is executed the old processor state is restored 
and program execution resumes at the appropriate 
instruction. 

The 8-bit interrupt vector is supplied to the 486 Mi­
croprocessor in several different ways: exceptions 
supply the interrupt vector internally; software INT 
instructions contain or imply the vector; maskable' 
hardware'interrupts supply the 8-bit vector via the 
interrupt acknowledge bus sequence. Non-Maska­
ble hardware interrupts are assigned to interrupt 
vector 2. 

Maskable interrupts are the most common way used 
by the 486 Microprocessor to respond to asynchro­
nous external hardware events. A hardware interrupt 
occurs when the INTR is pulled high and the Inter­
rupt Flag bit (IF) is enabled. The processor only re­
sponds to interrupts between instructions, (REPeat 
String instructions, have an "interrupt window", be­
tween memory moves, which allows interrupts dur­
ing 19n9 string moves). When an interrupt occurs the 
processor reads an 8-bit vector supplied by the 
hardware which identifies the source of the interrupt, 
(one of 224 user defined interrupts). The exact na­
ture of the interrupt 'sequence is discussed in Sec­
tion 7.2.10. 

Table 2.16. Interrupt Vector Assignments 

Instruction Which 
Return Address 

Function 
Interrupt 

Can Cause 
Points to 

Type 
Number Faulting 

Exception 
Instruction 

Divide Error 0 DIV,IDIV YES FAULT 

Debug Exception 1 Any Instruction YES TRAP' 

NMllnterrupt 2 INT20rNMI NO NMI 

One Byte Interrupt 3 INT NO TRAP 

Interrupt on Overflow 4 INTO NO TRAP 

Array Bounds Check 5 BOUND YES FAULT 

Invalid OP-Code 6 Any Illegal Instruction YES FAULT 

Device Not Available 7 ESC,WAIT YES FAULT 

Double Fault 8 Any Instruction That Can ABORT 
Generate an Exception 

Intel Reserved '9 

InvalidTSS 10 JMP, CALL, IRET, INT YES FAULT 

Segment Not Present 11 Segment Register Instructions YES FAULT 

Stack Fault 12 Stack References YES FAULT 

General Protection Fault 13 Any Memory Reference YES FAULT 

Page Fault 14 Any Memory Access or Code Fetch YES FAULT 

Intel Reserved 15 

Floating Point Error 16 Floating Point, WAIT YES FAULT 

Alignment Check Interrupt 17 Unaligned Memory Access YES FAULT 

Intel Reserved 18-32 

Two Byte Interrupt 0-255 INTn NO TRAP 

'Some debug exceptions may report both traps on the previous instruction, and faults on the next instruction, 
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The IF bit in the EFLAG registers is reset when an 
interrupt is being serviced. This effectively disables 
servicing additional interrupts during an interrupt 
service routine. However, the IF may be set explicitly 
by the interrupt handler, to allow the nesting of inter­
rupts. When an IRET instruction is executed 1he 
original state of the IF is restored. 

2.7.4 NON·MASKABLE INTERRUPT 

Non-maskable interrupts provide a method of servic­
ing very high priority interrupts. A common example 
of the use of a non-maskable interrupt (NMI) would 
be to activate a power failure routine. When the NMI 
input is pulled high it causes an interrupt with an 
internally supplied vector value of 2. Unlike a normal 
hardware interrupt, no interrupt acknowledgment se­
quence is performed for an NMI. 

While executing the NMI servicing procedure, the 
486 Microprocessor will not service further NMI re­
quests until an interrupt return (IRET) instruction is 
executed or the processor is reset. If NMI occurs 
while currently servicing an NMI, its presence will be 
saved for servicing after executing the first IRET in­
struction. The IF bit is cleared at the beginning of an 
NMI interrupt to inhibit further INTR interrupts. 

2.7.5 SOFTWARE INTERRUPTS 

A third type of interrupt/exception for the 486 Micro­
processor is the software interrupt. An INT n instruc­
tion causes the processor to execute the interrupt 
service routine pointed to by the nth vector in the 
interrupt table. 

A special case of the two byte software interrupt INT 
n is the one byte INT 3, or breakpoint interrupt. By 
inserting this one byte instruction in a program, the 
user can set breakpoints in his program as a debug­
ging tool. 

A final type of software interrupt is the single step 
interrupt. It is discussed in Section 9.2. 

2.7.6 INTERRUPT AND EXCEPTION PRIORITIES 

Interrupts are externally-generated events. Maska­
ble Interrupts (on the INTR input) and Non-Maskable 
Interrupts (on, the NMI input) are recognized at in­
struction boundaries. When NMI and maskable 
INTR are both recognized at the same instruction 
boundary, the 486 Microprocessor invokes the NMI 
service routine first. If, after the NMI service routine­
has bee!1 invoked, maskable interrupts are still en­
abled, then the 486 Microprocessor will invoke the 
appropriate interrupt service routine. 

Table 2.17a. i486™ Microprocessor Priority for 
Invoking Service Routines in Case of _ 

Simultaneous External Interrupts 

1.NMI 

2.INTR 

, Exceptions are internally-generated events. Excep­
tions are detected by the 486 Microprocessor if, in 
the course of executing an instruction, the 486 Mi­
croprocessor detects a problematic condition. The' 
486 Microprocessor th,en immediately invokes the 
appropriate exception service routine. The state of 
the 486 Microprocessor is such that the instruction 
causing the exception can be restarted. If the excep­
tion service routine has taken care of the problemat­
ic condition, the instruction will execute without 
causing the same exception. 
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It is possible for a single instruction to generate sev­
eral exceptions (for example, transferring a single 
operand could generate two page faults if the oper­
and location spans two "not present" pages). How­
ever, only one exception is generated upon each at­
tempt to execute the instruction. Each exception 
service routine should correct its corresponding ex­
ception, and restart the instruction. In this manner, 
exceptions are serviced until the instruction exe­
cutes successfully. 

As the 486 Microprocessor executes instructions, it 
follows a cO!1sistent cycle in checking for excep­
tions, as shown in Table 2.17b. This cycle is repeat­
ed as each instruction is executed, and occurs in 
parallel with instruction decoding and execution. 
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Table 2.17b. Sequence of Exception Checking 

Consider the case of the 486 Microprocessor 
having just completed an instruction. It then per­
forms the following checks before reaching the 
point where the next instruction is completed: 

1. Check for Exception 1 Traps from the instruc­
tion just completed (single-step via Trap Flag, 
or Data Breakpoints set in the Debug Regis­
ters). 

2. Check for Exception 1 Faults in the next in­
struction (Instruction Execution Breakpoint set 
in the Debug Registers for the next instruc­
tion). 

3. Check for external NMI and INTR. 

4. Check for Segmentation Faults that prevented 
fetching the entire next instruction (exceptions 
11 or 13). 

5. Check for Page Faults that prevented fetching 
the entire next instruction (exception 14). 

6. Check for Faults decoding the next instruction 
(exception 6 if illegal opcode; exception 6 if in 
Real Mode or in Virtual 8086 Mode and at­
tempting to execute an instruction for Protect­
ed Mode only (see Section 4.6.4); or exception 
13 if instruction is longer than 15 bytes, or priv­
ilege violation in Protected Mode (Le., not at 
IOPL or at CPL = 0). 

7. If WAIT opcode, check if TS= 1 and MP= 1 
(exception 7 if both are 1). 

8. If opcode for Floating Point Unit, check if 
EM = 1 or TS = 1 (exception 7 if either are 1). 

9. If opcode for Floating Point Unit (FPU), check 
FPU error status (exception 16 if error status is 
asserted). 

10. Check in the following order for each memo­
ry reference required by the instruction: 

a. Check for Segmentation Faults that pre­
vent transferring the entire memory quanti­
ty (exceptions 11, 12, 13). 

b. Check for Page Faults that prevent trans­
ferring the entire memory quantity (excep­
tion 14). 

NOTE: 
The order stated supports the concept of the 
paging mechanism being "underneath" the seg­
mentation mechanism. Therefore, for any given 
code or data reference in memory, segmenta­
tion exceptions are generated before paging ex­
ceptions are generated. 
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2.7.7 INSTRUCTION RESTART 

The 486 Microprocessor fully supports restarting all 
instructions after faults. If an exception is detected in 
the instruction to be executed (exception categories 
4 through 10 in Table 2.17b), the 486 Microproces­
sor invokes the appropriate exception service rou­
tine. The 486 Microprocessor is in a state that per­
mits restart of the instruction, for all cases but those 
in Table 2.17c. Note that all such cases are easily 
avoided by proper design of the operating system. 

Table 2.17c. Conditions Preventing 
Instruction Restart 

An instruction causes a task switch to a task 
whose Task State Segment is partially "not 
present". (An entirely "not present" TSS is re­
startable.) Partially present TSS's can be avoid­
ed either by keeping the TSS's of such tasks 
present in memory, or by aligning TSS segments 
to reside entirely within a single 4K page (for TSS 
segments of 4 Kbytes or less). 

NOTE: 
These conditions are avoided by using the oper­
ating system designs mentioned in this table. 

2.7.8 DOUBLE FAULT 

A Double Fault (exception 8) results when the proc­
essor attempts to invoke an exception service rou­
tine for the segment exceptions (10, 11, 12 or 13), 
but in the process of doing so, detects an exception 
other than a Page Fault (exception 14). 

A Double Fault (exception 8) will also be generated 
when the processor attempts to invoke the Page 
Fault (exception 14) service routine, and detects an 
exception other than a second Page Fault. In any 
functional system, the entire Page Fault service rou­
tine must remain "present" in memory. 

When a Double Fault occurs, the 486 Microproces­
sor invokes the exception service routine for excep­
tion 8. 

2.7.9 FLOATING POINT INTERRUPT VECTORS 

Several interrupt vectors of the 486 microprocessor 
are used to report exceptional conditions while exe­
cuting numeric programs in either real or protected 
mode. Table 2.18 shows these interrupts and their 
causes. 
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Table 2.18. Interrupt Vectors Used by FPU 

Interrupt 
Cause of Interrupt 

Number 

7 A Floating Point instruction was encountered when EM or TS of the 486™ processor 
control register zero (CRO) was set. EM = 1 indicates that software emulation of the 
instruction is required. When TS is set, either a Floating Point or WAIT instruction causes 
interrupt 7. This indicates that the current FPU context may not belong to the current task. 

13 The first word or doubleword of a numeric operand is not entirely within the limit of its 
segment. The return address pushed onto the stack of the exception handler points at the 
Floating Point instruction that caused the exception, including any prefixes. The FPU has 
not executed this instruction; the instruction pointer and data pointer register refer to a 
previous, correctly executed instruction. 

16 The previous numerics instruction caused an unmasked exception. The address of the 
faulty instruction and the address of its operand are stored in the instruction pointer and 
data pointer registers. Only Floating Point and WAIT instructions can cause this interrupt. 
The 486TM processor return address pushed onto the stack of the exception handler 
points to a WAIT or Floating Point instruction (including prefixes). This instruction can be 
restarted after clearing the exception condition in the FPU. The FNINIT, FNCLEX, 
FNSTSW, FNSTENV, and FNSAVE instructions cannot cause this interrupt. 

3.0 REAL MODE ARCHITECTURE All of the 486 Microprocessor instructions are avail­
able in Real Mode (except those instructions listed 
in Section 4.6.4). The default operand size in Real 
Mode is 16 bits, just like the 8086. In order to use the 
32-bit registers and addressing modes, override pre­
fixes must be used. In addition, the segment 
size on the 486 Microprocessor in Real Mode is 
64 Kbytes so 32-bit effective addresses must have a 
value less the OOOOFFFFH. The primary purpose of 
Real Mode is to set up the processor for Protected 
Mode Operation. 

3.1 Real Mode Introduction 

When the processor is reset or powered up it is ini· 
tialized in Real Mode. Real Mode has the same base 
architecture as the 8086, but allows access to the 
32·bit register set of the 486 Microprocessor. The 
addressing mechanism, memory size, interrupt han­
dling, are all identical to the Real Mode on the 
80286. 

MEMORY OPERAND 

MAX LIMIT 
FIXED AT 64K IN 
REAL MODE 

SELECTED 
SEGMENT 

~----~----~~--------+----
SEGM ENT BASE 

Figure 3.1. Real Address Mode Addressing 

4-40 

240440-9 



i486TM MICROPROCESSOR 

The LOCK prefix on the 486 Microprocessor, even in 
Real Mode, is more restrictive than on the 80286. 
This is due to the addition of paging on the 486 Mi­
croprocessor in Protected Mode and Virtual 8086 
Mode. Paging makes it impossible to guarantee that 
repeated string instructions can be LOCKed. The 
486 Microprocessor can't require that all pages 
holding the string be physically present in memory. 
Hence, a Page Fault (exception 14) might have to be 
taken during the repeated string instruction. There­
fore the LOCK prefix can't be supported during re­
peated string instructions. 

These are the only instruction forms where the 
LOCK prefix is legal on the 486 Microprocessor: 

Opcode 
Operands 

(Dest, Source) 

BIT Tes! and Mem, Reg/immed 
SET /RESET /COMPLEMENT 

XCHG Reg, Mem 
XCHG Mem, Reg 
ADD, OR, ADC, SBB, Mem, Reg/immed 

AND, SUB, XOR 
NOT, NEG, INC, DEC Mem 

An exception 6 will be generated if a LOCK prefix is 
placed before any instruction form or opcode not 
listed above. The LOCK prefix allows indivisible 
read/modify/write operations on memory operands 
using the instructions above. For example, even the 
ADD Reg, Mem is not LOCKable, because the Mem 
operand is not the destination (and therefore no 
memory read/modify/operation is being performed). 

Since, on the 486 Microprocessor, repeated string 
instructions are not LOCKable, it is not possible to 
LOCK the bus for a long period of time. Therefore, 
the LOCK prefix is not IOPL-sensitive on the 486 
Microprocessor. The LOCK prefix can be used at 
any privilege level, but only on the instruction forms 
listed above. 

3.2 Memory Addressing 

In Real Mode the maximum memory size is limited to 
1 megabyte. Thus, only address lines A2-A 19 are 
active. (Exception, after RESET address lines A20-
A31 are high during CS-relative memory cycles until 
an intersegment jump or call is executed (see Sec­
tion 6.5». 

Since paging is not allowed in Real Mode the linear 
addresses are the same as physical addresses. 
Physical addresses are formed in Real Mode by 
adding the contents of the appropriate segment reg­
ister which is shifted left by four bits to an effective 
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address. This addition results in a physicai address 
from OOOOOOOOH to 0010FFEFH. This is compatible 
with 80286 Real Mode. Since segment registers are 
shifted left by 4 bits, Real Mode segments always 
start on 16 byte boundaries. 

All segments in Real Mode are exactly 64 Kbytes 
long, and may be read, written, or executed. The 486 
Microprocessor will generate an exception 13 if a 
data operand or instruction fetch occurs past the 
end of a segment (Le., if an operand has an offset 
greater than FFFFH, for example a word with a low 
byte at FFFFH and the high byte at OOOOH). 

Segments may be overlapped in Real Mode. Thus, if 
a particular segment does not use all 64 Kbytes an­
other segment can be' overlayed on top of the un­
used portion of the previous segment. This allows 
the programmer to minimize the amount of physical 
memory needed for a program. 

3.3 Reserved Locations 

There are two fixed areas in memory which are re­
served in Real address mode: system initialization 
area and the interrupt table area. Locations OOOOOH 
through 003FFH are reserved for interrupt vectors. 
Each one of the 256 possible interrupts has a 4-byte 
jump vector reserved ior it. Locations FFFFFFFOH 
through FFFFFFFFH are reserved for system initiali­
zation. 

3.4 Interrupts 

Many of the exceptions shown in Table 2.16 and 
discussed in Section 2.7 are not applicable to Real 
Mode operation, in particular exceptions 10, 11, 14, 
will not happen in Real Mode.' Other exceptions 
have slightly different meanings in Real Mode; Table 
3.1 identifies these exceptions. 

3.5 Shutdown and Halt 

The HL T instruction stops program execution and 
prevents the processor from using the local bus until 
restarted. Either NMI, INTR with interrupts enabled 
(IF= 1), or RESET will force the 486 Microprocessor 
out of halt. If interrupted, the saved CS:IP will point 
to the next instruction after the HL T. 

Shutdown will occur when a severe error is detected 
that prevents further proceSSing. In Real MOde, 
shutdown can occur under two conditions: 

An interrupt or an exception occur (exceptions 8 or 
13) and the interrupt vector is larger than the Inter­
rupt Descriptor Table (Le., there is not an interrupt 
handler for the interrupt). 
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Table 3.1. Exceptions with Different Meanings in Real Mode (see Table 2.16) 

Function 
Interrupt 
Number 

Interrupt table limit too small 8 

CS, OS, ES, FS, GS 13 
Segment overrun exception 

SS Segment overrun exception 12 

A CALL, INT or PUSH instruction attempts to wrap 
around the stack segment when SP is not even (Le., 
pushing a value on the stack when SP = 0001 re­
sulting in a stack segment greater than FFFFH). 

An NMI input can bring the processor out of shut­
down if the Interrupt Descriptor Table limit is large 
enough to contain the NMI interrupt vector (at least 
0017H) and ihe siack has enough room io coniain 
the vector and flag information (Le., SP is greater 
than OOOSH). Otherwise shutdown can only be exit-
ed via the RESET input. . 

4.0 PROTECTED MODE 
ARCHITECTURE 

4.1 Introduction 

The complete capabilities of the 486 Microprocessor 
are unlocked when the processor operates in Pro­
tected Virtual Address Mode (Protected Mode). Pro­
tected Mode vastly increases the linear address 
space to four gigabytes (232 bytes) and allows the 
running of virtual memory programs of almost unlim­
ited size (64 terabytes or 246 bytes). In addition Pro­
tected Mode allows the 486 Microprocessor to run 
all of the existing 8086, 80286 and 386 microproces­
sor software, while providing a sophisticated memo­
ry management and a hardware-assisted protection 
mechanism. Protected Mode allows the use of addi­
tional instructions especially optimized for support­
ing multitasking operating systems. The base archi­
tecture of the 486 Microprocessor remains the 
same, the registers, instructions, and addressing 
modes described in the previous sections are re-

Related Return 
Instructions Address Location 

INT Vector is not Before 
within table limit Instruction 

Word memory reference Before 
beyond offset = FFFFH. Instruction 
An attempt to execute 
past the end of CS segment. 

Stack Reference Before 
beyond offset = FFFFH Instruction 
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tained. The main difference between Protected 
Mode, and Real Mode from a programmer's view is 
the increased address space, and a different ad­
dressing mechanism. 

4.2 Addressing Mechanism 

Like Real Mode, Protected Mode uses two compo­
nents to form the logical address, a 16-bit selector is 
used to determine the linear base address of a seg­
ment, the base address is added to a 32-bit effective 
address to form a 32-bit linear address. The linear 
address is then either used as the 32-bit physical 
address, or if paging is enabled the paging mecha­
nism maps the 32-bit linear address into a 32-bit 
physical address. 

The difference between the two modes lies in calcu­
lating the base address. In Protected Mode the se­
lector is used to specify an index into an operating 
system defined table (see Figure 4.1). The table 
contains the 32-bit base address of a given seg­
ment. The physical address is formed by adding the 
base address obtained from the table to the offset. 

Paging provides an additional memory management 
mechanism which operates only in Protected Mode. 
Paging provides a means of managing the very large 
segments of the 486 Microprocessor. As such, pag­
ing operates beneath segmentation. The paging 
mechanism translates the protected linear address 
which comes from the segmentation unit into a 
physical address. Figure 4.2 shows the complete 
486 Microprocessor addressing mechanism with 
paging enabled. 
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Figure 4.1. Protected Mode Addressing 
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Figure 4.2. Paging and Segmentation 

4.3 Segmentation 

4.3.1 SEGMENTATION INTRODUCTION 

Segmentation is one method of memory manage­
ment. Segmentation provides the basis for protec­
tion. Segments are used to encapsulate regions of 
memory which have common attributes. For exam­
ple, all of the code of a given program could be con­
tained in a segment, or an operating system table 
may r~side in a segment. All information about a 
segment is stored in an 8 byte data structure called 
a descriptor. All of the descriptors in a system are 
contained in tables recognized by hardware. 

4-43 

4.3.2 TERMINOLOGY 

The following terms are used throughout the discus­
sion of descriptors, privilege levels and protection: 

PL: Privilege Level-One of the four hierarchical 
privilege levels. Level 0 is the most privileged level 
and level 3 is the least privileged. More privileged 
levels are numerically smaller than less privileged 
levels. 

RPL: Requestor Privilege Level-The privilege level 
of the original supplier of the selector. RPL is deter­
mined by the least two significant bits of a selector. 
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DPL: Descriptor Privilege Level-This is the least 
privileged level at which a task may access that de­
scriptor (and the segment associated with that de­
scriptor). Descriptor Privilege Level is determined by 
bits 6:5 in the Access Right Byte of a descriptor. 

CPL: Current Privilege Level-The privilege level at 
which a task is currently executing, which equals the 
privilege level of the code segment being executed. 
CPL can also be determined by examining the low­
est 2 bits of the CS register, except for conforming 
code segments. 

EPL: Effective Privilege Level-The effective privi­
lege level is the least privileged of the RPL and DPL. 
Since smaller privilege level values indicate greater 
privilege, EPL is the numerical maximum of RPL ~nd 
DPL. 

Task: One instance of the execution of a program. . 
Tasks are also referred to as processes. 

4_3.3 DESCRIPTOR TABLES 

4.3.3.1 Descriptor Tables Introduction 

The descriptor tables define all of the segments 
which are used in an 486 Microprocessor system, 
There are three types of tables on the 486 Micro­
processor which hold descriptors: the Global De­
scriptor Table, Local Descriptor Table, and the Inter­
rupt Descriptor Table. All of the tables are variable 
length memory arrays. They can range in size be­
tween 8 bytes and 64 Kbytes. Each table can hold 
up to 8192 8-byte descriptors. The upper 13 bits of a 
selector are used as an index into the descriptor ta­
ble. The tables have registers associated with them 
which hold the 32-bit linear base address, and the 
16-bit limit of each table. 

Each of the tables has a register associated with it, 
the GDTR, LDTR, and the IDTR (see Figure 4.3). 
The LGDT, LLDT, and LlDT instructions, load the 
base and limit of the Global, Local, and Interrupt De­
scriptor Tables, respectively, into the appropriate 
register. The SGDT, SLDT, and SIDT store the base 
and limit values. These tables are manipulated by 
the operating system. Therefore, the load descriptor 
table instructions are privileged instructions. 
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LDTR 

IDTR 

GDTR 

;.;;... __ ...;;0 : 
I 

LOT LIMIT I 
I 
I 
I 
I 
I 
I 
I 

PROGRAM INVISIBLE I 

AUTOMATICALLY LOADED: 
FROM LOT DESCRIPTOR I 

240440-12 

Figure 4.3. Descriptor Table Registers 

4.3.3.2 Global Descriptor Table 

The Global Descriptor Table (GDT) contains de­
scriptors which are possibly available to all of the 
tasks in a system. The GDT can contain any type of 
segment descriptor except for descriptors which are 
used for servicing interrupts (i.e., interrupt and trap 
descriptors). Every 486 Microprocessor system con­
tains a GDT. Generally the GDT contains code and 
data segments used by the operating systems and 
task state segments, and descriptors for the LDTs in 
a system. 

The first slot of the Global Descriptor Table corre­
sponds to the null selector and is not used. The null 
selector defines a null pointer value. 

4.3.3.3 Local Descriptor Table 

LDTs contain descriptors which are associated with 
a given task. Generiilly, operating systems are de­
signed so that each task has a separate LDT. The 
LDT may contain only code, data, stack, task gate, 
and call gate descriptors. LDTs provide a mecha­
nism for isolating a given task's code and data seg­
ments from the rest of the operating system, while 
the GDT contains descriptors for segments which 
are common to all tasks. A segment cannot be ac­
cessed by a task if its segment descriptor does not 
exist in either the current LDT or the GDT. This pro-
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vides both isolation and protection for a task's seg­
ments, while still allowing global data to be shared 
among tasks. 

Unlike the 6 byte GOT or lOT registers which contain 
a base address and limit, the visible portion of the 
LOT register contains only a 16-bit selector. This se­
lector refers to a Local Descriptor Table descriptor in 
the GOT. 

4.3.3.4 Interrupt Descriptor Table 

The third table needed for 486 Microprocessor sys­
tems is the Interrupt Descriptor Table. (See Figure 
4.4.) The lOT contains the descriptors which point to 
the location of up to 256 interrupt service routines. 
The lOT may contain only task gates, interrupt 
gates, and trap gates. The lOT should be at least 
256 bytes in size in order to hold the descriptors for 
the 32 Intel Reserved Interrupts. Every interrupt 
used by a system must have an entry in the lOT. The 
lOT entries are referenced via INT instructions, ex­
ternal interrupt vectors, and exceptions. (See Sec­
tion 2.7 Interrupts). 

""' MEMORY '"'"' 

GAT£FOR 
INTERRUPT lin 

GATE FOR 
INTERRUPT #n·1 

INTERRUPT 
DESCRIPTOR 
TABLE 
(lOT) 

GAT£FOR 
INTERRUPT #1 

GATE FOR 1 ~~; 
~ ____ ~r+ __ ~_INT __ ER_RU~PT~#_O~J III 

""" 240440-13 

Figure 4.4. Interrupt Descriptor 
Table Register Use 

4-45 

4.3.4 DESCRIPTORS 

4.3.4.1 Descriptor Attribute Bits 

The object to which the segment selector points to 
is called a descriptor. Descriptors are eight byte 
quantities which contain attributes about a given re­
gion of linear address space (i.e., a segment). These 
attributes include the 32-bit base linear address of 
the segment, the 20-bit length and granularity of the 
segment, the protection level, read, write or execute 
privileges, the default size of the operands (16-bit or 
32-bit), and the type of segment. All of the attribute 
information about a segment is contained in 12 bits 
in the segment descriptor. Figure 4.5 shows the gen­
eral format of a descriptor. All segments on the 486 
Microprocessor have three attribute fields in com­
mon: the P bit, the DPL bit, and the S bit. The Pres­
ent P bit is 1 if the segment is loaded in physical 
memory, if P=O then any attempt to access this 
segment causes a not present exception (exception 
11). The Descriptor Privilege Level DPL is a two-bit 
field which specifies the protection level 0-3 associ­
ated with a segment. 

The 486 Microprocessor has two main categories of 
segments: system segments and non-system seg­
ments (for code and data). The segment S bit in the 
segment descriptor determines if a given segment is 
a system segment or a code or data segment. If the 
S bit is 1 then the segment is either a code or data 
segment, if it is 0 then the segment is a system seg­
ment. 

4.3.4.2 i486TM CPU Code, Data Descriptors 
(S= 1) 

Figure 4.6 shows the general format of a code and 
data descriptor and Table 4.1 illustrates how the bits 
in the Access Rights Byte are interpreted. 
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I 

31 0 BYTE 
ADDRESS 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 
0 

BASE 31 ... 241 G I D I 0 I AVL 11;~~~~6 pi DPL I S I TYPE I A I BASE +4 

I I I 
23 ... 16 

BASE Base Address of the segment 
LIMIT The length of the segment 
P Present Bit 1 = Present 0= Not Present 
DPL Descriptor Privilege Level 0-3 
S Segment Descriptor 0= System Descriptor 1 = Code or Data Segment. Descriptor 
TYPE Type of Segment 
A Accessed Bit 
G Granularity Bit 1 = Segment length is page granular 0= Segment length is byte granular. 
D Default Operation Size (recognized in code segment descriptors only) 

1 = 32-bit segment 0= 16-bit segment 
0 Bit must be zero (0) for compatibility with future processors 
AVL Available field for user or OS 

. NOTE: 
In a maximum-size segment (i.e., a segment with G=l and segment limit 19 ... 0=FFFFFH), the lowest 12 bits of the 
segment base should be zero (i.e., segment base 11 ... 000 = OOOH). 

Figure 4.5. Segment Descriptors 

31 0 

SEGMENT BASE 15 ••. 0 SEGMENT LIMIT 15 ..• 0 0 

LIMIT 
ACCESS BASE 

BASE 31 .• ' .24 G 0 0 AVL RIGHTS +4 
19 .•. 16 

BYTE 
23 •.. 16 

DIB 1 = Default Instruction Attributes are 32-Bits 
0= Default Instruction Attributes are 16-Bits 

AVL Available field for user or OS 
G Granularity Bit 1 = Segment length is page granular 

0= Segment length is byte granular 
0 Bit must be zero (0) for compatibility with future processors 

Figure 4.6. Segment Descriptors 
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Table 4.1. Access Rights Byte Definition for Code and Data Descriptions 

Bit 
Name Function 

Position 

7 Present (P) P = 1 Segment is mapped into physical memory. 
p=o No mapping to physical memory exits, base and limit are 

not used. 
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests. 

Level (DPL) 
4 Segment Descrip· S=1 Code or Data (includes stacks) segment descriptor. 

tor (S) S::O System Segment Descriptor or Gate Descriptor. 

Type 
Field 
Definition 

3 
2 

1 

Executable (E) 
Expansion Direc· 
tion (ED) 
Writeable (W) 

E ~ 0 De,,,',1o< type "data ... ment r 
ED = 0 Expand up segment, offsets must be ~ limit. Data 
ED :: 1 Expand down segment, offsets must be > limit. Segment 
W = 0 Data segment may not be written into. (S = 1, 
W = 1 Data segment may be written into. E = 0) 

3 Executable (E) E=1 Descriptor type is code segment: 

r 2 Conforming (C) C=1 Code segment may only be executed Code 
when CPL ~ DPL and CPL Segment 
remains unchanged. (S = 1, 

1 Readable (R) R=O Code segment may not be read. E = 1) 
R=1 Code segment may be read. 

0 Accessed (A) A=O Segment has not been accessed. 
A=1 Segment selector has been loaded into segment register 

or used by selector test instructions. 

Code and data segments have several descriptor 
fields in common. The accessed A bit is set whenev· 
er the processor accesses a descriptor. The A bit is 
used by operating systems to keep usage statistics 
on a given segment. The G bit, or granularity bit, 
specifies if a segment length is byte·granular or 
page·granular. 486 Microprocessor segments can 
be one megabyte long with byte granularity (G = 0) 
or four gigabytes with page granularity (G = 1), (i.e., 
220 pages each page is 4 Kbytes in length). The 
granularity is totally unrelated to paging. A 486 Mi­
croprocessor system can consist of segments with 
byte granularity, and page granularity, whether or not 
paging is enabled. 

The executable E bit tells if a segment is a code or 
data segment. A code segment (E = 1, S = 1) may be 
execute-only or execute/read as determined by the 
Read R bit. Code segments are execute only if 
R = 0, and execute/read if R = 1. Code segments 
may never be written into. 

NOTE: 
Code segments may be modified via aliases. Alias­
es are writeable data segments which occupy the 
same range of linear address space as the code 
segment. 
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The D bit indicates the default length for operands 
and effective addresses. If D= 1 then 32-bit oper­
ands and 32-bit addressing modes are assumed. If 
D = 0 then 16-bit operands and 16-bit addressing 
modes are assumed. Therefore all existing 80286 
code segments will execute on the 486 Microproc­
essor assuming the D bit is set o. 

Another attribute of code segments is determined by 
the conforming C bit. Conforming segments, C ~ 1, 
can be executed and shared by programs at differ­
ent privilege levels. (See Section 4.4 Protection.) 

Segments identified as data segments (E = 0, S = 1) 
are used for two types of 486 Microprocessor seg­
ments: stack and data segments. The expansion di­
rection (ED) bit specifies if a segment expands 
downward (stack) or upward (data). If a segment is a 
stack segment all offsets must be greater than the 
segment limit. On a data segment all offsets must be 
less than or equal to the limit. In other words, stack 
segments start at the base linear address plus the 
maximum segment limit and grow down to the base 
linear address plus the limit. On the other hand, data 
segments start at the base linear address and ex­
pand to the base linear address plus limit. 
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The write W bit controls the ability to write into a 
segment. Data segments are read-only if W = O. The 
stack segment must have W = 1. 

The B bit controls the size of the stack pointer regis­
ter. If B = 1, then PUSHes, POPs, and CALLs all use 
the 32-bit ESP register for stack references and as­
sume an upper limit of FFFFFFFFH. If B = 0, stack 
instructions all use the 16-bit SP register and as­
sume an upper limit of FFFFH. 

4.3.4.3 System Descriptor Formats 

System segments describe information about oper­
ating system tables, tasks, and gates. Figure 4.7 
shows the general format pf system segment de­
scriptors, and the various types of system segments. 
486 Microprocessor system descriptors contain a 
32-bit base linear address and a 20-bit segment lim­
it. 80286 system descriptors have a 24-bit base ad­
dress and a 16-bit segment limit. 80286 system de­
scriptors are identified by the upper 16 bits being all 

,zero. 

4.3.4.4 LOT Descriptors (S = 0, TYPE = 2) 

LDT descriptors (S = 0, TYPE = 2) contain informa­
tion about Local Descriptor Tables. LDTs contain a 
table of segment descriptors, unique to a particular 
task. Since the instruction to load the LDTR is only 
available at privilege level 0, the DPL field is ignored. 
LDT descriptors are only allowed in the Global De­
scriptor Table (GDT). 

31 16 

SEGMENT BASE 15 ... 0 

',I I I II LIMIT BASE31. .. 24 GOO 0 19 ... 16 

Type 
o 
1 
2 
3 
4 
5 
6 
7 

Defines 
Invalid 
Available 80286 TSS 
LOT 
Busy 80286 TSS 
80286 Call Gale 
Task Gale (for 80286 or 486TM CPU Task) 
80286 Inlerrupl Gale 
80286 Trap Gale 

4.3.4.5 TSS Descriptors (S = 0, 
TYPE = 1,3,9, B) , 

A Task State Segment (TSS) descriptor contains in­
formation about the location, size, and privilege level 
of a Task State Segment (TSS). A TSS in turn is a 
special fixed format segment which contains all the 
state information for a task and a linkage field to 
permit nesting tasks. The TYPE field is used to indi­
cate whether the task is currently BUSY (Le., on a 
chain of active tasks) or the TSS is available. The 
TYPE field also indicates if the segment contains a 
80286 or a 486 Microprocessor TSS. The Task Reg­
ister (TR) contains the selector which points to the 
current Task State Segment. 

4.3.4.6 Gate Descriptors (S = 0, 
TYPE=4-7, C, F) 

Gates are used to control access to entry points 
within the target code segment. The various types of 
gate descriptors are call gates, task gates, 
interrupt gates, and trap gates. Gates provide a 
level of indirection between the source and destina­
tion of the control transfer. This indirection allows 
the processor to automatically perform protection 
checks. It also allows system designers to control 
entry points to the operating system. Call gates are 
used to change privilege levels (see Section 4,4 
Protection), task gates are used to perform a task 
switch, and interrupt and trap gates are used to 
specify interrupt service routines. 

o 
SEGMENT LIMIT 15 ... 0 

P I DPL I 0 I TYPE I BASE 
23 ... 16 

Type 
8 
9 
A 
B 
C 
o 
E 
F 

Defines 
Invalid 
Available 486TM CPU TSS 
Undefined (Inlel Reserved) 
Busy 486TM CPU TSS 
486™ CPU Call Gale 
Undefined (Inlel Reserved) 
486™ CPU Inlerrupl Gale 
486TM CPU Trap Gale 

o 

+4· 

Figure 4.7. System Segment Descriptors 
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Figure 4.8 shows the format of the four types of gate 
descriptors. Call gates are primarily used to transfer 
program control to a more privileged level. The call 
gate descriptor consists of three fields: the access 
byte, a long pointer (selector and offset) which 
points to the start of a routine and a word count 
which specifies how many parameters are to be cop­
ied from the caller's stack to the stack of the called 
routine. The word count field is only used by call 
gates when there is a change in the privilege level, 
other types of gates ignore the word count field. 

Interrupt and trap gates use the destination selector 
and destination offset fields of the gate descriptor as 
Ii pointer to the start of the interrupt or trap handler 
routines. The difference between interrupt gates and 
trap gates is that the interrupt gate disables inter­
~upts (resets the IF bit) while the trap gate does not. 

Task gates are used to switch "tasks. Task gates 
may only refer to a task state segment (see Section 
4.4.6 Task Switching) therefore. only the destination 
selector portion of a task gate descriptor is used, 
and the destination offset is ignored. 

Exception 13 is" generated when a destination selec­
tor does not refer to a correct descriptor type, i.e., a 
code segment for an interrupt, trap or call gate, a 
TSS for a task gate. . 

31 24 16 

The access byte format is the same for all gate de­
scriptors. P = 1 indicates that the gate contents are 
valid. P = 0 indicates the contents are not valid and 
causes exception 11 if referenced. DPL is the de­
scriptor privilege level and specifies when this de­
scriptor may be used by a task (see Section 4.4 
Protection). The S field, bit 4 of the access rights 
byte, must be 0 to indicate a system control descrip­
tor. The type field specifies the descriptor type as 
indicated in Figure 4.8. 

4.3.4.7 Differences Between i486TM 
Microprocessor and 80286 Descriptors 

In order to provide operating system compatibility 
between the 80286 and 486 Microprocessor, the 
486 Microprocessor supports all of the 80286 seg­
ment descriptors. Figure 4.9 shows the general for­
mat ,of an 80286 system segment descriptor. The 
only differences between 80286 and 486 Microproc­
essor descriptor formats are that the values of the 
type fields, and the limit and base address fields 
have been expanded for the 486 Microprocessor. 
The 80286 system segment descriptors contained a 
24-bit base address and 16-bit limit, while the 486 
Microprocessor system segment descriptors have a 
32-bit base address, a 20-bit limit field, and a granu­
larity bit. 

"8 5 0 

SELECTOR OFFSET 15 ... 0 0 

WORD 
OFFSET 31 ... 16 P DPL 0 TYPE 0 0 0 COUNT +4 

4 ... 0 

Gate Descriptor Fields 
Name Value Description 
Type 4 80286 call gate 

5 Task gate (for 80286 or 486™ CPU task) 
6 80286 interrupt gate 
7 80286 trap gate 
C 486TM CPU call gate 
E 486™ CPU interrupt gate 
F 486™ CPU trap gate 

P 0 Descriptor contents are not valid 
I Descriptor contents are valid 

DPL-teast privileged level at which a task may access the gate. WORD COUNT 0-31-the number of parameters to copy from caller's stack 
to the called procedure's stack. The parameters are 32-bit quantities for 486™ CPU gates, and 16-bit quantities for 80286 gates. 

DESTINATION t6-bit Selector to the target code segment 
SELECTOR selector or 

Selector to the target task state segment for task gate 

DESTINATION offset Entry point within the target code segment 
OFFSET 16-bit 80286 

32-bit 486TM CPU 

Figure 4.8. Gate Descriptor Formats 
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By supporting 80286 system segments the 486 Mi­
croprocessor is able to execute 80286 application 
programs on a 486 Microprocessor operating sys­
tem. This is possible because the processor auto­
matically understands which descriptors are 80286-
style descriptors and which descriptors are 486 Mi­
croprocessor-style descriptors. In particular, if the 
upper word of a descriptor is zero, then that descrip­
tor is a 80286-style descriptor. 

The only other differences between 80286-style de­
scriptors and 486 Microprocessor descriptors is the 
interpretation of the word count field of call gates 
and the B bit. The word count field specifies the 
number of 16-bit quantities to copy for 80286 call 
gates and 32-bit quantities for 486 Microprocessor 
call gates. The B bit controls the size of PUSHes 
when using a call gate; if B = 0 PUSHes are 16 bits, 
if B = 1 PUSHes are 32 bits. 

4.3.4.8 Selector Fields 

A selector in Protected Mode has three fields: Local 
or Global Descriptor Table Indicator (TI), Descriptor 

31 

SEGMENT BASE 15 ... 0 

Intel Reserved 
SettoO 

BASE Base Address of the segment 
LIMIT The length. of the segment 
P Present Bit 1 = Present a = Not Present 

Entry Index (Index), and Requestor (the selector's) 
Privilege Level (RPL) as shown in Figure 4.10. The 
TI bits select one of two memory-based tables of 
descriptors (the Global Descriptor Table or the Local 
Descriptor Table). The Index selects one of 8K de­
scriptors in the appropriate descriptor table. The 
RPL bits allow high speed testing of the selector's 
privilege attributes. 

4.3.4.9 Segment Descriptor Cache 

In addition to the selector value, every segment reg­
ister has a segment deSCriptor -cache register asso­
ciated with it. Whenever a segment register's con­
tents are changed, the 8-byte descriptor associated 
with that selector is automatically loaded (cached) 
on the Chip. Once loacied, all references to that seg­
ment use the cached descriptor information ihstead 
of reaccessing the descriptor. The contents of the 
descriptor cache are not visible to the programmer. 
Since descriptor caches only change when a seg­
ment register is changed, programs which modify 
the descriptor tables must reload the appropriate 
segment registers after changing a descriptor'S val­
ue. 

0 

SEGMENT LIMIT 15 ... 0 0 

P I DPL lsi TYPE I BASE 
23 ... 16 

+4 

DPL Descriptor Privilege Level 0-3 
S System Descriptor 0= System 1 = User 
TYPE Type of Segment 

Figure 4.9. 80286 Code and Data Segment Descriptors 
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SELECTOR 

15 4 3 2 1 a 
SEGMENT 
REGISTER 1 a 1 0 ---- a 1 a 1 11 1 ~II R~L 1 . . 

TABLE INDEX 
INDICATOR 

TI=1 TI-a! 

N N 

DESCRIPTOR • 
NUMBER 

6 6 

5 5 

4 4 

~ ·OESCRIPTOR. 3 

2 

1 
0 

'LOCAL 
DESCRIPTOR 

TABLE 

2 

1 
a NULL 

GLOBAL 
DESCRIPTOR 

TABLE 
240440-14 

Figure 4.10. Example Descriptor Selection 

4.3.4.10 Segment Descriptor Register Settings 

The contents of the segment descriptor cache vary 
depending on the· mode the 486 Microprocessor is 
operating in. When operating in Real Address Mode, 
the segment base, limit, and other attributes within 
the segment cache registers are defined as shown 
in Figure 4.11. For compatibility with the 8086 archi-
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tecture, the base is set to sixteen times the current 
selector value, the limit is fixed at OOOOFFFFH, and 
the attributes are fixed so as to indicate the segment 
is present and fully usable. In Real Address Mode, 
the, internal "privilege level" is always fixed to the 
highest level, level 0, so I/O and other privileged 
opcodes may be executed. 
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SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS 

32- BIT BASE 

(UPDATED DURING SELECTOR 
LOAD INTO SEGMENT REGISTER) 

32 - BIT LIMIT 

(FIXED) 

OTHER ATIRIBUTES 

(FIXED) 

CONFORMING PRIVILEGE---------------------, 
STACK SIZE---------------------.., 
EXECUTABLE----------------------. 
WRITEABLE---------------------., 
READABLE--------------------.., 
EXPANSION DIRECTION 

GRANULARITY 1 
ACCESSED 1 
PRIVILEGE LEVEL ! 
~R~~E~~ _______ '!.A~~ ___________ ~I~I! ___ :t ~ _ _ _ __ 
CS 16X CURRENT CS SELECTOR· OOOOFfffH y 0 y B U Y y y - N 
SS 16X CURRENT SS SELECTOR OOOOffffH y 0 y B U y y N W -
OS 16X CURRENT OS SELECTOR OOOOffffH y 0 y B U y y N - -
ES 1 6X CURRENT ES SELECTOR OOOOffffH y 0 y B U y y N - -
FS 16X CURRENT FS SELECTOR OOOOFFFFH y 0 y B U y y N - -
GS 16X CURRENT GS SELECTOR OOOOFfFFH y 0 y B U y y N - -

240440-,15 

'Except the 32·bit CS base is initialized to FFFFFOOOH after reset until first intersegment control transfer (i.e., intersegment CALL, or 
intersegment JMP, or IND. (See Figure 4.13 Example.) 

Key: Y = yes 
N = no 
o = privilege level 0 
1 = privilege level 1 
2 = privilege level 2 
3 = privilege level 3 
U = expand up 

o = expand down 
B = by1e granularity 
P = page granularity 
W = push/pop Hi·bit words 
F = push/pop 32·bit dwords 
- = does not apply to that segment cache register 

Figure 4.11. Segment Descriptor Caches for Real Address Mode 
(Segment Limit and Attributes are Fixed) 

When operating in Protected Mode, the segment 
base, limit, and other attributes within the segmerit 
cache registers are defined as shown in Figure 4.12. 
In Protected Mode, each of these fields are defined 
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according to the contents of the segment descriptor 
indexed by the selector value loaded into the seg­
ment register. 
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SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS 

32- BIT BASE 

(UPDATED DURING 
SELECTOR LOAD INTO 

SEGMENT REGISTER) 

32 - BIT LIMIT 

(UPDATED DURING 
SELECTOR LOAD INTO 

SEGMENT REGISTER) 

OTHER ATIRIBUTES 

(UPDATED DURING 
SELECTOR LOAD INTO 

SEGMENT REGISTER) 

CONFORMING PRIVILEGE----------------------. 
STACK SIZE-----------------------, 
EXECUTABLE----------------------. 
WRITEABLE ---------------------, 
READABLE--------------------~ 

EXPANSION DIRECTION 

GRANULARITY 1 
ACCESSED 1 
~:~V~~~~E _L:~E~ ~~s~ ___________ ~I~I~ ______ t 11 _ __ 
CS BASE PER SEG DESCR LIMIT PER SEG DESCR P d d d d d N Y -
SS BASE PER SEG DESCR LIMIT PER SEG DESCR p d d d d r w N d 

DS BASE PER SEG DESCR LIMIT PER SEG DESCR p d d d d d d N -

d 

-
-

ES BASE PER SEG DESCR LIMIT PER SEG DESCR p d d d d d d N - -
FS 
GS 

Key: Y = fixed yes 
N = fixed no 

BASE PER SEG DESCR 
BASE PER SEG DESCR 

d = per segment descriptor 

LIMIT PER SEG DESCR P d d 

LIMIT PER SEG DESCR P d d 

p = per segment descriptor; descriptor must indicate "present" to avoid exception 11 
(exception 12 in case of SS) 

d 

d 

r = per segment descriptor, but descriptor must indicate "readable" to avoid exception 13 
(special case for 55) 

w = per segment descriptor, but descriptor must indicate "writable" to avoid exception 13 
(special case for SS) 

- = does not apply to that segment cache register 

d d d N - -
d d d N - -

240440-16 

Figure 4.12. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor) 

When operating in a Virtual 8086 Mode within the 
Protected Mode, the segmeht base, limit, and other 
attribute's within the segment cache registers are de­
fined as shown in Figure 4.13. For compatibility with 
the 8086 architecture, the base is set to sixteen 
times the current selector value, the limit is fixed at 
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OOOOFFFFH, and the attributes are fixed so as to 
indicate the segment is present and fully usable. The 
virtual program executes at lowest privilege level, 
level 3, to allow trapping of all IOPL-sensitive in­
structions and level-a-only instructions. 
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SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS 

32- BIT BASE 

(UPDATED DURING SELECTOR 
LOAD INTO SEGMENT REGISTER) 

32 - BIT LlIAIT 

(FIXED) 

OTHER ATTRIBUTES 

(FIXED) 

CONFORMING PRIVILEGE----------------------, 
STACK SIZE------------------------, 
EXECUTABLE---------------------, 
WRITEABLE---------------------., 
READABLE--------------------~ 
EXPANSION DIRECTION 

GRANULARITY 1 
ACCESSED 1 
~:!~~~~E_L~E~ ___ B~~E ____________ ~I~I! ___ t 11 _ __ __ _ 

Key: Y = yes 
N = no 

CS 

SS 
OS 

ES 
FS 

GS 

16X CURRENT CS SELECTOR 

16X CURRENT SS SELECTOR 
16X CURRENT OS SELECTOR 

16X CURRENT ES SELECTOR 
16X CURRENT FS SELECTOR 

16X CURRENT GS SELECTOR 

O. = privilege level 0 
1 = privilege level 1 
2 = privilege level 2 
3 = privilege level 3 
U = expand up 

OOOOFFFFH Y 3 Y 
OOOOFFFFH Y 3 Y 
OOOOFFFFH Y 3 Y 

OOOOFFFFH Y 3 Y 
OOOOFFFFH Y 3 Y 

OOOOFFFFH Y 3 Y 

D = expand down 
B = byte granularity 
P = page granularity 

B U 
B U 
B U 

B U 
B U 
B U 

W = push/pop lS-bit words 
F = push/pop 32-bit dwords 

Y Y Y - N 
Y Y N W -
Y Y N - -
Y Y N - -
Y Y N - -
Y Y N - -

240440-17 

- = does not apply to that segment cache register 

Figure 4.13. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode 
(Segment Limit and Attributes are Fixed) 

4.4 Protection 

4.4.1 PROTECTION CONCEPTS 

CPU 
ENFORCED 
SOFTWARE 
INTERFACES 

HIGH SPEED 
OPERAnNG 
SYSTEM 
WTERFACE 

240440-18 

Figure 4.14. Four-Level Hierarchical Protection 

The 486 Microprocessor has four levels of protec­
tion which are optimized to support the needs of a 
multi·tasking operating system to isolate and protect 
user programs from each other and the operating 
system. The privilege levels control the use of privi" 
leged instructions, I/O instructions, and access to 
segments and segment descriptors. Unlike tradition­
al microprocessor-based systems where this protec· 

. tion .is achieved only through the use of complex 
external hardware and software the 486 Microproc· 
essor provides the protection as part of its integrat­
ed Memory Management Unit. The 486 Microproc­
essor offers an additional type of protection on a 
page basis, when paging is enabled (See Section 
4.5.3 Page Level Protection). 
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The four-level hierarchical privilege system is illus­
trated in Figure 4-14. It is an extension of the user/ 
supervisor privilege mode commonly used by mini­
computers and, in fact, the user/supervisor mode is 
fully supported by the 486 Microprocessor paging 
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mechanism. The privilege levels (PL) are numbered 
o through 3. Level 0 is the most privileged or trusted 
level. 

4.4.2 RULES OF PRIVILEGE 

The 486 Microprocessor controls access to both 
data and procedures between levels of a task, ac­
cording to the following rules. 

• Data stored in a segment with privilege level p can 
be accessed only by code executing at a privilege 
level at least as privileged as p. 

• A code segment/procedure with privilege level p 
can only be called by a task executing at the same 
or a lesser privilege level than p. . . 

4.4.3 PRIVILEGE LEVELS 

4.4.3.1 Task Privilege 

At any point in time, a task on the 486 Microproces· 
sor always executes at one of the four privilege lev· 
els. The Current Privilege Level (CPL) specifies the 
task's privilege level. A task's CPL may only be 
changed by control transfers through gate descrip· 
tors to a code segment with a different privilege lev· 
el. (See Section 4.4.4 Privilege Level Transfers) 
Thus, an application program running at PL = 3 may 
call an operating system routine at PL = 1 (via a 
gate) which would cause the task's CPL to be set to 
1 until the operating system routine was finished. 

4.4.3.2 Selector Privilege (RPL) 

The privilege level of a selector is specified by the 
RPL field. The RPL is the two least significant bits of 
the selector. The selector's RPL is only used to es· 
tablish a less trusted privilege level than the current 
privilege level for the use of a segment. This level is 
called the task's effective privilege level (EPL). The 
EPL is defined as being the least privileged (Le. nu· 
merically larger) level of a task's CPL and a selec­
tor's RPL. Thus, if selector's RPL = 0 then the CPL 
always specifies the privilege level for making an ac· 
cess using the selector. On the other hand if RPL = 
3 then a selector can only access segments at level 
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3 regardless of the task's CPL. The RPL is most 
commonly used to verify that pointers passed to an 
operating system procedure do not access data that 
is of higher privilege than the procedure that origi· 
nated the pointer. Since the originator of a selector 
can specify any RPL value, the Adjust RPL (ARPL) 
instruction is provided to force the RPL bits to the 
originator's CPL. 

4.4.3.3 1/0 Privilege and 1/0 Permission Bitmap 

The I/O privilege level (IOPL, a 2·bit field in the 
EFLAG register) defines the least privileged level at 
which I/O instructions can be unconditionally per· 
formed. I/O instructions can be unconditionally per­
formed when CPL ::;; 10PL. (The I/O instructions are 
IN, OUT, INS, OUTS, REP INS, and REP OUTS.) 
When CPL > 10PL, and the current task is associat­
ed with a 286 TSS, attempted I/O instructions cause 
an exception 13 fault. When CPL > 10PL, and the 
current task is associated with a 486 Microprocessor 
TSS, the I/O Permission Bitmap (part of a 486 Mi­
croprocessor TSS) is consulted on whether I/O to 
the port is allowed, or an exception 13 fault is to be 
generated instead. For diagrams of the I/O Permis­
sion Bitmap, refer to Figures 4.15a and 4.15b. For 
further information on how the I/O Permission Bit­
map is used in Protected Mode or in Virtual 8086 
Mode, refer to Section 4.6.4 Protection and I/O Per­
mission Bitmap. 

The I/O privilege level (IOPL) also affects whether 
several other instructions can be executed or cause 
an exception 13 fault instead. These instructions are 
called "IOPL-sensitive~' instructions and they are 
CLI and STI. (Note that the LOCK prefix is not 10PL­
sensitive on the 486 Microprocessor.) 

The 10PL also affects whether the IF (interrupts en­
able flag) bit can be changed by loading a value into 
the EFLAGS register. When CPL ::;; 10PL, then the 
IF bit can be changed by loading a new value into 
the EFLAGS register. When CPL > 10PL, the IF bit 
cannot be changed by a new value POP'ed into (or 
otherwise loaded into) the EFLAGS register; the IF 
bit merely remains unchanged and no exception is 
generated. 
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Table 4.2. Pointer Test Instructions 

Instruction Operands Function 

ARPL Selector, Adjust Requested Privi-
Register lege Level: adjusts the 

RPL of the selector to the 
numeric maximum of 
current selector RPL value 
and the RPL value in the 
register. Set zero flag if 
selector RPL was 
changed. 

VERR Selector VERify for Read: sets the 
zero flag if the segment 
referred to by the selector 
can be read. 

VERW Selector VERify for Write: sets the 
zero flag if the segment 
referred to by the selector 
can be written. 

LSL Register, Load Segment Limit: reads 
Selector the segment limit into the 

register if privilege rules 
and descriptor type allow. 
Set zero flag if successful. 

LAR Register. Load Access Rights: reads 
Selector the descriptor access 

rights byte into the register 
if privilege rules allow. Set 
zero flag if successful. 

4.4.3.4 Privilege Validation 

The 486 Microprocessor provides several instruc­
tions to speed pointer testing and help maintain sys­
tem integrity by verifying that the selector value 
refers to an appropriate segment. Table 4.2 summa­
rizes the selector validation procedures available for 
the 486 Microprocessor. . 

This pointer verification prevents the common prob­
lem of an application at PL = 3 calling a operating 
systems routine at PL = 0 and passing the operat­
ing system routine a "bad" pointer which corrupts a 
data structure belonging to the operating system. If 
the operating system routine uses the ARPL instruc-

tion to ensure that the RPL of the selector has no 
greater privilege .than that of the caller, then this 
problem can be avoided. 

4.4.3.5 Descriptor Access 

There are basically two types of segment accesses: 
those involving code segments such as control 
transfers, and those involving data accesses. Oeter­
mining the ability of a task to access a segment in­
volves the type of segment to be accessed, the in­
struction used, the type of descriptor used and CPL, 
RPL, and OPL as described above. 

Any time an instruction loads data segment registers 
(OS, ES, FS, GS) the 486 Microprocessor makes 
protection validation checks. Selectors loaded in the 
OS,' ES, FS, GS registers must refer only to data 
segments or readable code segments. The data ac­
cess rules are specified in Section 4.4.2 Rules of 
Privilege. The only exception to those rules is read­
able conforming code segments which can be ac­
cessed at any privilege level. 

Finally the privilege validation checks are performed. 
The CPL is compared to the EPL and if the EPL is 
more privileged than the CPL an exception 13 (gen­
eral protection fault) is generated. 

The rules regarding the stack segment are slightly 
different than those involving data segments. In­
structions that load selectors into SS must refer to 
data segment descriptors for writeable data seg­
ments. The OPL and RPL must equal the CPL. All 
other descriptor types or a privilege level violation 
will cause exception 13. A stack not present fault 
causes exception 12. Note that an exception 11 is 
used for a not-present code or data segment. 
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4,4.4 PRIVILEGE LEVEL TRANSFERS 

Inter-segment control transfers occur when a selec­
tor is loaded in ·the CS register. For a typical system 
most of these transfers are simply the result of a call 
or a jump to another routine. There are five types of 
control transfers which are summarized in Table 4.3. 
Many of these transfers result in a privilege level 
transfer. Changing privilege levels is done only via 
control transfers, by using gates, task switches, and 
interrupt or trap gates. 
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Table 4.3. Descriptor Types Used for Control Transfer 

Control Transfer Types 

Intersegment within the same privilege level 

Intersegment to the same or higher privilege level 
Interrupt within task may change CPL 

Intersegment to a lower privilege level 
(changes task CPL) 

Task Switch 

'NT (Nested Task bit of flag register) = 0 
-'NT (Nested Task bit of flag register) = 1 

Control transfers can only occur if the operation 
which loaded the selector references the correct de­
scriptor type. Any violation of these descriptor usage 
rules will cause an exception 13 (e.g. JMP through a 
call gate, or IRET from a normal subroutine call). 

In order to provide further system security, all control 
transfers are also subject to the privilege rules. 

The privilege rules require that: 

- Privilege level transitions, can only occur via 
gates. 

- JMPs can be made to a non-conforming code 
segment with the same privilege or to a conform­
ing code segment with greater or equal privilege, 

- CALLs can be made to a non-conforming code 
segment with the same privilege or via a gate to a 
more privileged level. 

- Interrupts handled within the task obey the same 
privilege rules as CALLs. 

- Conforming Code segments are accessible by 
privilege levels which are the same or less privi­
leged than the conforming-code segment's OPL. 

- Both the requested privilege level (RPL) in the 
selector pointing to the gate and the task's CPL 
must be of equal or greater privilege than the 
gate's OPL. 

- The ,code segment selected in the gate must be 
the same or more privileged than the task's CPL. 

Operation Types 
Descriptor Descriptor 
Referenced Table 

JMP, CALL, RET, IRET' Code Segment GOT/LOT 

CALL Call Gate GOT/LOT 

Interrupt Instruction, Trap or lOT 
Exception, External Interrupt 
Interrupt Gate 

RET,IRET' Code Segment GOT/LOT 

CALL, JMP Task State GOT 
Segment 

CALL, JMP Task Gate GOT/LOT 

IRET" Task Gate lOT 
Interrupt Instruction, 
Exception, External 
Interrupt 
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- Return instructions that do not switch tasks can 
only return control to a code segment with same 
or less privilege. 

- Task switches can be performed by a CALL, 
JMP, or INT which references either a task gate 
or task state segment who's OPL is less privi­
,Ieged or the same privilege as the old task's CPL. 

Any control transfer that changes CPL within a task 
causes a change of stacks as a result of the privi­
lege level change. The initial values of SS:ESP for 
privilege levels 0, 1, and 2 are retained in the task 
state segment (see Section 4.4.6 Task Switching). 
During a JMP or CALL control transfer, the new 
stack pointer is loaded into the SS and ESP regis­
ters and the previous stack pointer is pushed onto 
the new stack. 

When RETurning to the original privilege level, use 
of the lower-privileged stack is restored as part of 
the RET or IRET instruction operation. For subrou­
tine calls that pass parameters on the stack and 
cross privilege levels, a fixed number of words (as 
specified in the gate's word count field) are copied 
from the previous stack to the current stack. The 
inter-segment RET instruction with a stack adjust­
ment value will correctly restore the previous stack 
pointer upon return. 
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Figure 4.1Sa. i486™ Microprocessor TSS and TSS Registers 
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31 

63 

95 

127 

31302928272625242322212019181716151413121110987 6 5 4 3 2 1 0 

1 1 1 1 0 1 1 0 o 0 o 0 1 1 1 1 0 1 o 0 1 1 0 0 0 0 0 0 o 0 1 1 

0 0 1 000 1 1 1 1 o 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 o 0 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

000 o 0 O. o 0 0 000 0 0 0 0 0 0 0 000 0 o 0 0 0 o 0 0 o 0 

1 1 1 1 1 1 1 1 

-l- etc. -l-
110 Ports Accessible: 2 -> 9, 12, 13, 15, 20 -> 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 -> 60, 62, 63, 96 -> 127 240440-20 

Figure 4.15b. Sample 110 Permission Bit Map 

4.4.5 CALL GATES 

Gates provide protected, indirect CALLs. One of the 
major uses of gates is to provide a secure method of 
privilege transfers within a task. Since the operating 
system defines all of the gates in a system, it can 
ensure that all gates only allow entry into a few trust­
ed procedures (such as those which allocate memo­
ry, or perform I/O). 

Gate descriptors follow the data access rules of priv" 
ilege; that is, gates can be accessed by a task if the 
EPL, is equal to or more privileged than the gate 
descriptor's OPL. Gates follow the control transfer 
rules of privilege and therefore may only transfer 
control to a more privileged level. 

Call Gates are accessed via a CALL instruction and 
are syntactically identical to calling a normal subrou­
tine. When an inter-level 4~6 Microprocessor call 
gate is activated, the following actions occur. 

1. Load CS:EIP from gate check for validity 

2. SS is pushed zero-extended to 32 bits 

3. ESP is pushed 

4. Copy Word Count 32-bit parameters from the 
old stack to the new stack 

5. Push Return address on stack 

The procedure is identical for 80286 Call gates, ex­
cept that 16-bit parameters are copied and 16-bit 
registers are pushed. 

Interrupt Gates and Trap gates work in a similar 
fashion as the call gates, except there is no copying 
of parameters. The only difference between Trap 
and Interrupt gates is that control transfers through 
an Interrupt gate disable further interrupts (Le. the IF 
bit is set to 0), and Trap gates leave the interrupt 
status uncHanged. 

4.4.6 TASK SWITCHING 

A very important attribute of any multi-tasking/multi­
user operating systems is its ability to rapidly switch 
between tasks or processes. The 486 Microproces­
sor directly supports this operation by providing a 
task switch instruction in hardware. The 486 Micro­
processor task switch operation saves the entire 
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state of the machine (all of the registers, address 
space, and a link to the previous task), loads a new 
execution state, performs protection checks, and 
commences execution in the new task, in about 17 
microseconds. Like transfer of control via gates, the 
task switch operation is invoked by executing an in­
ter-segment JMP or CALL instruction which refers to 
a Task State Segment (TSS), or a task gate descrip­
tor in the GOT or LOT. An INT n instruction, excep­
tion, trap, or external interrupt may also invoke the 
task switch operation if there is a task gate descrip­
tor in the associated lOT descriptor slot. 

The TSS descriptor points to a segment (see Figure 
4.15) containing the entire 486 Microprocessor exe­
cution state while a task gate descriptor contains a 
TSS selector. The 486 Microprocessor supports 
both 80286 and 486 Microprocessor style TSSs. Fig­
ure 4.16 shows a 80286 TSS. The limit of a 486 
Microprocessor TSS must be greater than 0064H 
(002BH for a 80286 TSS), and can be as large as 4 
Gigabytes. In the additional TSS space, the operat­
ing system is free to store additional information 
such as the reason the task is inactive, time the task 
has spent running, and open files belong to the task. 

Each task must have a TSS associated with it. The 
current TSS is identified by a special register in the 
486 Microprocessor called the Task State Segment 
Register (TR). This register contains a selector refer­
ring to the task state segment descriptor that de­
fines the current TSS. A hidden base and limit regis­
ter associated with TR are loaded whenever TR is 
loaded with a new selector. Returning from a task is 
accomplished by the IRET instruction. When IRET is 
executed, control is returned to the task which was 
interrupted. The current executing task's state is 
saved in the TSS and the old task state is restored 
from its TSS. 

Several bits in the flag register and machine status 
word (CRO) give information about the state of a 
task which are useful to the operating system. The 
Nested Task (NT) (bit 14 in EFLAGS) controls the 
function of the IRET instruction. If NT = 0, the IRET 
instruction performs the regular return; when NT = 
1, IRET performs a task switch operation back to the 
previous task. The NT bit is set or reset in the follow­
ing fashion: 
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Figure 4.16. 80286 TSS 

When a CALL or INT instruction initiates a task 
switch, the new TSS will be marked busy and the 
back link field of the new TSS set to the old TSS 
selector. The NT bit of the new task is set by CALL 
or INT initiated task switches. An interrupt that does 
not cause a task switch will clear NT. (The NT bit will 
be restored after execution of the interrupt handler) 
NT may also be set or cleared by POPF or IRET 
instructions. 

The 486 Microprocessor task state segment is 
marked busy by changing the descriptor type field 
from TYPE 9H to TYPE BH. An 80286 TSS is 
marked busy by changing the descriptor type field 
from TYPE 1 to TYPE 3. Use of a selector that refer­
ences a busy task state segment causes an excep­
tion 13. 

The Virtual Mode (VM) ,bit 17 is used to indicate if a 
task, is a virtual 8086 task. If VM = 1, then the tasks 
. will use the, Real Mode addressing mechanism. The 
virtual 8086 environment is only entered and exited 
via a task switch (see Section 4.6 Virtual Mode). 

The FPU's state is not automatically saved when a 
task switch occurs, because the incoming task may 
not use the FPU. The Task Switched (TS) Bit (bit 3 in 
the CRO) helps deal with the FPU's state in a multi­
tasking environment. Whenever the 486 Micro-

I 

processor switches tasks, it sets the TS bit. The 486 
Microprocessor detects the first use of a processor 
extension instruction after a task switch and causes 
the processor extension not available exception 7. 
The exception handler for exception 7 may then de­
cide whether to save the state of the FPU. A proces­
sor extension not present exception (7) will occur 
when attempting to execute' a Floating Point or 
WAIT instruction if the Task Switched and Monitor 
coprocessor extension bits are both set (Le. TS = 1 
and MP = 1). 

The T bit in the 486 Microprocessor TSS indicates 
that the processor should generate a debug excep­
tion when switching to a task. If T = 1 then upon 
entry to a new task a debug exception 1 will be gen­
erated. 

4.4.7 INITIALIZATION AND TRANSITION TO 
PROTECTED 'MODE 

Since tlJe 486 Microprocessor begins executing in 
Real Mode immediately after RESET it is necessary 
to initialize the system tables and registers with the' 

'appropriate values. 
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The GOT and lOT registers must refer to a valid GOT 
and lOT. The lOT should beat least 256 bytes long. 
and GOT must contain descriptors for the initial 
code, and data segments. Figure 4.17 shows the ta­
bles and Figure 4.18 the descriptors needed for a 
simple Protected Mode 486 Microprocessor system. 
It has a single code and single data/stack segment 
each four gigabytes long and a single privilege level 
PL = o. . 

The actual method of enabling Protected Mode is to 
load CRO with the PE bit set, via the MOV CRO, R/M 
instruction. This puts the 486 Microprocessor in Pro­
tected Mode. 

After enabling Protected Mode, the next instruction 
should execute an intersegment JMP to load the CS 
register and flush the instruction decode queue. The 
final step is to load all of the data segment registers 
with the initial selector values. 

An alternate approach to entering Protected Mode 
which is especially appropriate for multi-tasking op­
erating systems, is to use the built in task-switch to 
load all of the registers. In this case the GOT would 
contain two TSS descriptors in addition to the code 
and data descriptors needed for the first task. The 
first JMP instruction in Protected Mode would jump 
to the TSS causing a task switch and loading all of 
the registers with the values stored in the TSS. The 
Task State Segment Register should be initialized to 
point to a valid TSS descriptor since a task switch 
saves the state of the current task ina task state 
segment. 
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Figure 4.18. GDT Descriptors for Simple System 

4.4.8 TOOLS FOR BUILDING PROTECTED 
SYSTEMS 

In order to simplify the design of a protected multi­
tasking system, Intel provides a tool which allows 
the system designer an easy method of constructing 
the data structures needed for a Protected Mode 
486 Microprocessor system. This tool is the builder 
BLD-386™. BLD-386 lets the operating system writ­
er specify all of the segment descriptors discussed 
in the previous sections (LOTs, lOTs, GDTs, Gates, 
and TSSs) in a high-level language. 
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4.5 Paging 

4.5.1 PAGING CONCEPTS 

Paging is another type of memory management 
useful for virtual memory multitasking operating sys­
tems. Unlike segmentation which modularizes pro­
grams and data into variable length segments, pag­
ing divides programs into multiple uniform size 
pages. Pages bear no direct relation to the logical 
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structure of a program. While segment selectors can 
be considered the logical "name" of a program 
module or data structure, a page most likely corre­
sponds to only a portion of a module or data struc­
ture. 

By taking advantage of the locality of reference dis­
played by most programs, only a small number of 
pages from each active task need be in memory at 
anyone moment. 

4.5.2 PAGING ORGANIZATION 

4.5.2.1 Page Mechanism 

The 486 Microprocessor uses two levels of tables to 
translate the linear address (from the segmentation 
unit) into a physical address. There are three com­
ponents to the paging mechanism of the 486 Micro­
processor: the page directory, the page tables, and 
the page itself (page frame). All memory-resident el­
ements of the 486 Microprocessor' paging mecha­
nism are the same size, namely, 4 Kbytes. A uniform 
size for all of the elements simplifies memory alloca­
tion and reallocation schemes, since there is no 
problem with memory fragmentation. Figure 4.19 
shows how the paging mechanism works. 

4.5.2.2 Page Descriptor Base Register 

CR2 is the Page Fault Linear Address register. It, 
holds the 32-bit linear address which caused the last 
page fault detected. 

CR3 is the Page Directory Physical Base Address 
Register. It contains the physical starting address of 
the Page Directory. The lower 12 bits of CR3 are 
always zero to ensure that the Page Directory is al­
ways page aligned. Loading it via a MOV CR3, reg 
instruction causes the Page Table Entry cache to be 
flushed, as willa task switch through a TSS which 
changes the value of CRO. (See 4.5.5 Translation 
Lookaside Buffer). 

4.5.2.3 Page Directory 

The Page Directory is 4 Kbytes long and allows up to 
1024 Page Directory Entries. Each Page Directory 
Entry contains the address of the next level of ta­
bles, the Page Tables and information about the 
page table. The contents of a Page Directory Entry 
are shown in Figure 4.20. The upper 10 bits of the 
linear address (A22-A31) are used as an index to 
select the correct Page Directory Entry. 

TWO LEVEL PAGING SCHEME 

31 22 12 0 

~ DIRECTORY I TABLE I OFFSET I USER 
LINEAR MEMORY 

ADDRESS 10} I 12 
10 or 31 

ADDRESS 

486™ CPU 
31 or 31 0 

CRO I 

t 1-+ CR1 
PAGE TABLE 

CR2 

CR3 ROOT 
DIRECTORY 

CONTROL REGISTERS 

240440-23 

Figure 4.19. Paging Mechanism 

31 12 11 10 9 8 7 6 5 4 3 2 1 0 

OS P P U R 
PAGE TABLE ADDRESS 31 .. 12 RESERVED 0 0 D A C W - - P 

D T S W 

Figure 4.20. Page Directory Entry (Points to Page Table) 
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31 12 11 10 9 8 7 6 5 4 3 2 1 0 
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Figure 4.21. Page Table Entry (Points to Page) 

4.5.2.4 Page Tables 

Each Page Table is 4 Kbytes and holds up to 1024 
Page Table Entries. Page Table Entries contain the 
starting address of the page frame and statistical 
information about the page (see Figure 4.21). Ad­
dress bits A12-A21 are used as an index to select 
one of the 1024 Page Table Entries. The 20 upper­
bit page frame address is concatenated with the 
lower 12 bits of the linear address to form the physi­
cal address. Page tables can be shared between 
tasks and swapped to disks. 

4.5.2.5 Page Directory/Table Entries 

The lower 12 bits of the Page Table Entries and 
Page Directory Entries contain statistical information 
about pages and page tables respectively. The P 
(Present) bit 0 indicates if a Page Directory or Page 
Table entry can be used in address translation. If 
P = 1 the entry can be used for address translation 
if P = 0 the entry can not be used for translation, 
and all of the other bits are available for use by the 
software. For example the remaining 31 bits could 
be used to indicate where on the disk the page is 
stored. 

The A (Accessed) bit 5, is set by the 486 Microproc­
essor for both types of entries before a read or write 
access occurs to an address covered by the entry. 
The D (Dirty) bit 6 is set to 1 before a write to an 
address covered by that page table entry occurs. 
The D bit is undefined for Page Directory Entries. 
When the P, A and D bits are updated by the 486 
Microprocessor, the processor generates a Read­
Modify-Write cycle which locks the bus and prevents 
conflicts with other processors or perpherials. Soft­
ware which modifies these bits should use the LOCK 
prefix to ensure the integrity of the page tables in 
multi-master systems. 

The 3 bits marked OS Reserved in Figure 4.20 and 
Figure 4.21 (bits 9-11) are software definable. OSs 
are free to use these bits for whatever purpose they 
wish. An example use of the OS Reserved bits 
would be to store information about page aging. By 
keeping track of how long a page has been in mem­
ory since being accessed, an operating system can 
implement a page replacement algorithm like Least 
Recently Used. 
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The (User/Supervisor) U/S bit 2 and the (Read/ 
Write) R/W bit 1 are used to provide protection attri­
butes for individual pages. 

4.5.3 PAGE LEVEL PROTECTION 
(R/W, U/S BITS) 

The 486 microprocessor provides a set of protection 
attributes for paging systems. The paging mecha­
nism distinguishes between two levels of protection: 
User which corresponds to level 3 of the segmenta­
tion based protection, and supervisor which encom­
pa~ses all of the other protection levels (0, 1, 2). 

The R/W and U/S bits are used in conjunc~ion with 
the WP bit in the flags register (EFLAGS). The 386 
microprocessor does not contain the WP bit. The 
WP bit has been added to the 486 microprocessor 
to protect read-only pages from supervisor write ac­
cesses. The 386 microprocessor allows a read-only 
page to be written from protection levels 0, 1 or 2. 
WP = 0 is the 386 mi'croprocessor compatible mode. 
When WP = 0 the supervisor can write to a read-only 
page as defined by the U/S and R/W bits. When 
WP = 1 supervisor access to a read-only page 
(R/W=O) will cause a page fault (exception 14). 

Table 4.4 shows the affect of the WP, U/S and R/W 
bits on accessing memory. When WP = 0, the super­
visor can write to pages regardless of the state of 
the R/W bit. When WP = 1 and R/W = 0 the supervi­
sor cannot write to a read-only page. A user attempt 
to access a supervisor only page (U/S=O), or write 
to a read only page will cause a page fault (excep­
tion 14). 

The R/W and U/S bits provide protection from user 
access on a page by page basis since the bits are 
contained in the Page Table Entry and the Page Di­
rectory Table. The U/S and R/W bits in the first level 
Page Directory Table apply to all entries in the page 
table pointed to by that directory entry. The U/S and 
R/W bits in the second level Page Table Entry apply 
only to the page described by that entry. The most 
restrictive of the U/S and R/W bits from the Page 
Directory Table and the Page Table Entry ar~ used 
to address a page. 

Example: If the U/S and R/W bits for the Page Di­
rectory entry were 10 (user read/execute) and the 
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UlS and R/W bits for the Page Table Entry were 01 
(no user access at. all), the access rights for the 
page wquld be 01, the numerically smaller of the 
two. 

Note that a given segment can be easily made read­
only for level 0, 1 or 2 via use of segmented protec­
tion mechanisms. (Section 4.4 Protection). 

4.5.4 PAGE CACHEABILITY 
(PWT AND PCD BITS) 

PWT (page write through) and PCD (page cache dis­
able) are two new bits defined in entries in both lev­
els of the page table structure, the Page Directory 
Table and the Page Table Entry. PCD and PWT con­
trol page cacheability and write policy. 

PWT controls write policy. PWT= 1 defines a write­
through policy for the current page. PWT = 0 allows 
the possibility of write-back. PWT is ignored internal­
ly because the 486 microprocessor has a write­
through cache. PWT can be used to control the write 
policy. of a second level cache. 

PCD controls cacheability. PCD=O enables caching 
in the on-chip cache. PCD alone does not enable 
caching, it must be conditioned by the KEN # (cache 
enable) input signal and the state of the CD (cache 
disable bit) and NW (no write-through) bits in control 
register 0 (CRO). When PCD = 1, caching is disabled 
regardless of the state of KEN #, CD and NW. (See 
Section 5.0, 'On-Chip Cache) .. 

The state of the PCD and PWT bits are driven out on 
the PCD and PWT pins during a memory access. 

The PWT and PCD bits for a bus cycle are obtained 
either from control register 3 (CR3), the Page Direc­
tory Entry or the Page Table Entry, depending on the 
type of cycle run. If paging is not enabled (PG = 0 in 
CRO), or for cycles which bypass paging (Le., I/O 
(input/output) references, IN'rR (interrupt request) 
and Halt cycles), the PWT and PCD bits are taken 

from bits 3 and 4 of CR3. These bits in CR3 are 
. initialized to zero at reset, but can be set to any val­
ue by level 0 software. 

When paging is enabled (PG = 1 in CRO), ,the bits 
from the page table entry are cached in the transla­
tion lookaside buffer (TLB), and are driven any time 
the page mapped by the TLB entry is referenced. 
For normal memory cycles run with paging enabled, 
the PWT and PCD bits are taken from the Page Ta­
ble Entry. During TLB refresh cycles when the Page 
Directory and Page Table entries are read, the PWT 
and PCD bits must be obtained elsewhere. The bits 
are taken from CR3 when a Page Directory Entry is 
being read. The bits are taken from the Page Direc­
tory Entry when the Page Table Entry is being updat­
ed. 

4.5.5 TRANSLATION LOOKASIDE BUFFER 

The 486 Microprocessor paging hardware is de­
signed to support demand paged virtual memory 
systems. However, performance would degrade 
substantially if the processor was required to access 
twa levels of tables for every memory reference. To 
solve this problem, the 486 Microprocessor keeps a 
cache of the most recently accessed. pages, this 
cache is called the Translation Lookaside Buffer 
(TLB). The TLB is a four-way set associative 32-en­
try page table cache. It automatically keeps the most 
commonly used Page Table Entries in the proces­
sor. The 32-entry TLB coupled with a 4K page size, 
results in coverage of 128 Kbytes of memory ad­
dresses. For many common multi-tasking systems, 
the TLB will have a hit rate of about 98%. This 
means that the processor will only have to access 
the two-level page structure on 2% of all memory 
references. Figure 4.22 illustrates how the TLB com­
plements the 486 Microprocessor's paging mecha-
nism. ' 

Reading a new entry into the TLB (TLB refresh) is a 
two step process handled by the 486 microproces­
sor hardware. The sequence of data cycles to per­
form a TLB refresh are: 

Table 4.4. Page Level Protection Attributes 

U/S R/W WP User Access Supervisor Access 

0 0 0 None Read/Write/Execute 
0 1 0 None Read/Write/ Execute 

0 0 Read/Execute Read/Write/Execute 
1 1 0 Read/Write/Execute Read/Write/Execute 
0 0 1 None Read/Execute 
0 1 1 None Read/Write/ Execute 

0 Read/Execute Read/Execute 
ReadiWrite/Execute Read/Write/Execute 
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1. Read the correct Page Directory Entry, as point­
ed to by the page base register and the upper 1 0 
bits of the linear address. The page base register 
is in control register 3. 

1 a. Optionally perform a locked read/write to set the 
accessed bit in the directory entry. The directory 
entry will actually get read twice if the 486 micro­
processor needs to set any of the bits in the en­
try. If the page directory entry changes between 
the first and second reads, the data returned for 
the second read will be used. 

2. Read the correct entry in the Page Table and 
place the entry in the TLB. 

2a. Optionally perform a locked read/write to set the 
accessed and/or dirty bit in the page table entry. 
Again, note that the page table entry will actually 
get read twice if the 486 microprocessor needs 
to set any of the bits in the entry. Like the direc­
tory entry, if the data changes between the first 
and second read the data returned for the sec~ 
ond read will be used. 

Note that the directory entry must always be read 
into the processor, since directory entries are never 
placed in the paging TLB. Page faults can be sig­
naled from either the page directory read or the 
page table read. Page directory and page table en­
tries may' be placed in the 486 on-chip cache just 
like normal data. 

4.5.6 PAGING OPERATION 

32 ENTRIES 
PHYSICAL 
MEMORY 
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TRANSLATION 

lOOKASIDE 
BUFFER HIT 

MISS 

31 0 

u- -

"-+ 

PAGE PAGE 
DIRECTORY TABLE 
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Figure 4.22. Translation Lookaside Buffer 

The paging hardware operates in the following fash­
ion. The paging unit hardware receives a 32-bit lin­
ear address from the segmentation unit. The upper 
20 linear address bits are compared with all 32 en­
tries in the TLB to determine if there is a match. If 
there is a match (Le., a TLB hit), then the 32-bit 
phxsical address is calculated and will be placed on 
the address bus. 
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However, if the page .table entry is not in the TLB, 
the 486 Microprocessor will read the appropriate 
Page Directory Entry. If P = 1 on the Page Directory 
Entry indicating that the page table is in memory, 
then the 486 Microprocessor will read the appropri­
ate Page Table Entry and set the Access bit. If P = 

1 on the Page Table Entry indicating that the page is 
in memory, the 486 Microprocessor will update the 
Access and Dirty bits as needed and fetch the oper­
and. The upper 20 bits of the linear address, read 
from the page table, will be stored in the TLB for 
future accesses. However, if P = 0 for either the 
Page Directory Entry or the Page Table Entry, then 
the processor will generate a page fault, an Excep­
tion 14. 

The processor will also generate an exception 14 
page fault, if the memory reference violated the 
page protection attributes (Le., U/S or R/W) (e.g., 
trying to write to a read-only page). CR2 will hold the 
linear address which caused the page fault. If a sec­
ond page fault occurs, while the processor is at­
tempting to enter the service routine for the first, 
then the processor will invoke the page fault (excep­
tion 14) handler a second time, rather than the dou­
ble fault (exception 8) handler. Since Exception 14 is 
classified as a fault, CS: EIP will point to the instruc­
tion causing the page fault. The 16-bit error code 
pushed as part of the page fault handler will contain 
status bits which indicate the cause of the page 
fault. 

The 16-bit error code is used by the operating sys­
tem to determine how to handle the page fault. Fig­
ure 4.23a shows the format of the page-fault error 
code and the interpretation of the bits. 

NOTE: 
Even though the bits in the error code (U/S, W/R, 
and P) have similar nanies as the bits in the Page 
Directory/Table Entries, the interpretation of the er­
ror code bits is different. Figure 4.23b indicates 
what type of access caused the page fault. 

15 321 0 

Figure 4.23a. Page Fault Error Code Format 

U/S: The U/S bit indicates whether the access 
causing the fault occurred when the processor was 
executing in User Mode (U/S = 1) or in Supervisor 
mode (U/S = 0). 

W/R: The W/R bit indicates whether the access 
causing the fault was a Read (W/R = 0) or a Write 
(W/R = 1). 
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P: The P bit indicates whether a page fault was 
caused by a not-present page(P = 0), or by a page 
level protection violation (P = 1). 

U: UNDEFINED 

U/S W/R Access Type 

0 0 Supervisor· Read 
0 1 Supervisor Write 
1 0 User Read 
1 1 User Write 

'Descriptor table access will fault with Uts = 0, even if the program 
is executing at level 3. 

Figure 4.23b. Type of Access 
Causing Page Fault 

4.5.7 OPERATING SYSTEM RESPONSIBILITIES 

The 486 Microprocessor takes care of the page ad­
dress translation process, relieving the burden from 
an operating system in a demand-paged system. 
The operating system is responsible for setting up 
the initial page tables, and handling any page faults. 
The operating system also is required to invalidate 
(Le., flush) the TLB when any changes are made to 
any of the page table entries. The operating system 
must reload' CR3 to cause the TLB to be flushed. 

Setting up the tables is simply a matter of loading 
CR3 with the address of the Page Directory, and 
allocating space for the Page Directory and the 
Page Tables. The primary responsibility of the oper­
ating system is to implement a swapping policy and 
handle all of the page faults. 

A final concern of the operating system is to ensure 
that the TLB cache matches the information in the 
paging tables. In particular, any time the operating 
system sets the P present bit of page table entry to 
zero, the TLB must be flushed. Operating systems 
may want to take advantage of the fact that CR3 is 
stored as part of a TSS, to give every task or group 
of tasks its own set of page tables. 

4.6 Virtual 8086 Environment 

4.6.1 EXECUTING 8086 PROGRAMS 

The 486 Microprocessor allows the execution of 
8086 application programs in both Real Mode and in 
the Virtual 8086 Mode (Virtual Mode). Of the two 
methods, Virtual 8086 Mode offers the system de­
signer the most flexibility. The Virtual 8086 Mode al­
lows the execution of 8086 applications, while still 
allowing the system designer to take full advantage 
of the 48.6 Microprocessor protection ~echanism. In 

particular, the 486 Microprocessor allows the simul­
taneous execution of 8086 operating systems and 
its applications, and a 486 Microprocessor operating 
system and both 80286 and 486 Microprocessor ap­
plications. Thus, in a multi-user 486 Microprocessor 
computer, one person could be running an MS-DOS 
spreadsheet, another person using MS-DOS, and a 
third person could be running multiple Unix utilities 
and applications. Each person in this scenario would 
believe that he had the computer completely to him­
self. Figure 4.24 illustrates this concept. ' 

4.6.2 VIRTUAL 8086 MODE ADDRESSING 
MECHANISM 

One of the major differences between 486 Micro­
processor Real and Protected modes is how the 
segment selectors are interpreted. When the proc­
essor is executing in Virtual 8086 Mode the segment 
registers are used in an identical fashion to Real 
Mode. The contents of the segment register is shift­
ed left 4 bits and added to the offset to form the 
segment base linear address. 

The 486 Microprocessor allows the operating sys­
tem to specify which programs use the 8086 style 
address mechanism, and which programs use Pro­
tected Mode addressing, on a per task basis. 
Through the use of paging, the one megabyte ad­
dress space of the Virtual Mode task can be mapped 
to anywhere in the 4 gigabyte linear address space 
of the 486 Microprocessor. Like Real Mode, Virtual 
Mode effective addresses (i.e., segment offsets) that 
excee9 64 Kbyte will cause an exception 13. Howev­
er, these restrictions should not prove to be impor­
tant, because most tasks running in Virtual 8086 
Mode will simply be existing 8086 application pro­
grams. 
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4.6.3 PAGING IN VIRTUAL MODE 

The paging hardware allows the concurrent running 
of multiple Virtual Mode tasks, and provides protec­
tion and operating system isolation. Although it is 
not strictly necessary to have the paging hardware 
enabled to run Virtual Mode tasks, it is needed in 
order ,to run multiple Virtual Mode tasks or to relo­
cate the address spac~ of a Virtual Mode task to 
physical address space greater than one megabyte. 

The paging hardware allows the 20-bit linear ad­
dress produced by a Virtual Mode program tp be 
divided into up to 256 pages. Each one of the pages 
can be located anywhere within the maximum 4 gig­
abyte physical address space of the 486 Microproc­
essor. In addition, since CR3 (the Page Directory 
Base Register) is loaded by a task switch, eac~ Vir­
tual Mode task can use a different mapping scheme 
to map pages to differel')t physical locations. 
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Finally, the paging hardware allows the sharing of 
the 8086 operating system code between multiple 
8086 applications. Figure 4.24 showS how the 486 
Microprocessor paging hardware enables multiple 
8086 programs to run under a virtual memory de­
mand paged system. 

4.6.4 PROTECTION AND 1/0 PERMISSION 
BITMAP 

All Virtual 8086 Mode programs execute at privilege 
level 3, the level of least privilege. As such, Virtual 
8086 Mode programs are subject to all of the protec­
tion checks defined in Protected Mode. (This is dif­
ferent from Real Mode which implicitly is executing 
at privilege level 0, the level of greatest privilege.) 
Thus, an attempt to execute a privileged instruction 
when in Virtual 8086 Mode will cause an exception 
13 fault. 

The following are privileged instructions, which may 
be executed only at Privilege Level O. Therefore, at­
tempting to execute these instructions in Virtual 
8086 Mode (or anytime CPL > 0) causes an excep­
tion 13 fault: 

VIRTUAL MODE 
8086 TASK 

PAGE 

VIRTUAL MODE 
8086 TASK 

TASK 1 PAGE 
TABLE 

PAGE DIRECTORY 
TASK 1 

LIDT; 
LGDT; 
LMSW; 
CLTS; 
HLT; 

MOV DRn,reg; 
MOV TRn,reg; 
MOV CRn,reg; 

MOV reg,DRn; 
MOV reg, TRn; 
MOV reg,CRn. 

Several instructions, particularly those applying to 
the multitasking model and protection model, are 
available only in Protected Mode. Therefore, at­
tempting to execute the following instructions in 
Real Mode or in Virtual 8086 Mode generates an 
exception 6 fault: 

LTR; 
LLDT; 
LAR; 
LSL; 
ARPL. 

STR; 
SLDT; 
VERR; 
VERW; 

The instructions which are IOPL-sensitive in Protect­
ed Mode are: 

IN;. STI; 
OUT; CLI 
INS; 
OUTS; 
REP INS; 
REP OUTS; 

PHYSICAL 
MEMORY 
~~~~ 02000000{H) 

OOOOOOOO{H) 

• TASK 1 • 8086 OS 
MEMORY MEMORY 

I'177J TASK 2 ~ 386TIA CPU OS 
({/l.iI MEMORY E:iOSIMEMORY 
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Figure 4.24. Virtual 8086 Environment Memory Management 
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In Virtual 8086 Mode, .a slightly different set of in­
struct!ons are-made 10PL-sensitive. The following in­
structions are 10PL-sensitive in Virtual 8086 Mode: 

INT n; STI; 
PUSHF; eLI; 
POPF; IRET 

ThePUSHF, POPF, and IRET instructions are 10PL­
sensitive in Virtual 8086 Mode only. This provision 
allows the IF flag (interrupt enable flag) to be virtual­
ized to the Virtual 8086 Mode program. The INT n 
software interrupt instruction is also 10PL-sensitive 
in Virtual 8086 Mode. Note, however, that the INT 3 
(opcode OCCH), INTO, and BOUND instructions are 
not 10PL-sensitive in Virtual 8086 mode (they aren't 
10PL sensitive in Protected Mode either). 

Note that the I/O instructions (IN, OUT, INS, OUTS, 
REP INS, and REP OUTS) are not 10PL-sensitive in 
Virtual 8086 mode. Rather, the I/O instructions be­
come automatically sensitive to the 1/0 Permission 
Bitmap contained in the 486 Microprocessor Task 
Sta~e Segment. The lID Permission Bitmap, auto­
matically used by the 486 Microprocessor in Virtual 
8086 Mode, is illustrated by Figures 4.15a and 
4.15b. . 

The 110 Permission Bitmap can be viewed as a d-
. 64 Kbit bit string, which begins in memory at offset 
BiLMap_Offset in the current TSS. BiLMap_ 
Offset must be ~ DFFFH so the entire bit map and 
the byte FFH which follows the bit map are all at 
offsets s FFFFH from the TSS base. The 16-bit 
pointer BiLMap_Offset (15:0) is found in the word 
beginning at offset 66H (102 decimal).fromthe TSS 
base, as shown in Figure 4.15a. 

Each bit in the 110 Permission Bitmap corresponds 
to a single byte-wide 110 port, as illustrated in Figure 
4.15a. If a bit is 0, 110 to the corresponding byte­
wide port can occur without generating an excep­
tion. Otherwise the 110 instruction causes an excep­
tion 13 fault. Since every byte-wide 110 port must be 
protectable, all bits corresponding to a word-wide or 
dword-wide port must be 0 for the word-wide or 
dword-wide 110 to be permitted. If all the referenced 
bits are 0, the 110 will be allowed. If any referenced 
bits are 1, the attempted lID will cause an exception 
13 fault. 

Due to the use of a pointer to the base of the 110 
Permission Bitmap, the bitmap may oe located any­
where within the TSS, or may be ignored completely 
by pointing the BiLMap_Offset (15:0) beyond the 
limit of the TSS segment. In the same manner, only 
a small portion of the 64K 110 space need have an 
associated map bit, by adjusting. the TSS limit to 
truncate the bitmap. This eliminates the commitment 
of 8K of memory when a complete bitmap is not 
required, while allowing the fully general case if de­
sired. 

EXAMPLE OF BITMAP FOR 110 PORTS 0-255: 
Setting the TSS limit to {biLMap"":'Offset + 31 
+ 1 ** I [** see note belowl will allow a 32-byte bit­
map for the 110 ports #0-255, plus a terminator 
byte of all, 1 's [** see note belowl. This allows the 
I/O bitmap to control 110 Permission to lID port 0':' 
255 while causing an exception 13 fault on attempt­
ed 110 to any 110 port 80256 through 65,565. 

-*IMPORTANT IMPLEMENTATION NOTE: Beyond 
the last byte of lID mapping information in the 110 
Permission Bitmap must be a byte containing all 1 'so 
The byte of all 1 's must be within the limit of the 486 
Microprocessor TSS segment (see Figure 4.15a). 

4.6.5 INTERRUPT HANDLING 

In order to fully support the emulation of an 8086 
machine, interrupts in Virtual 8086 Mode are han­
dled in a unique fashion. When running in Virtual 
Mode all interrupts 'and exceptions involve a privi­
lege change back to the host 486 Microprocessor 
~perating system. The 486 Microprocessor operat­
Ing system determines if the interrupt comes from a 
Protected Mode application or from a Virtual Mode 
program by examining the VM bit in the EFLAGS 
image stored on 'the stack. 

When a Virtual Mode program is interrupted and ex­
ecution passes to the interrupt routine at level 0, the 
VM bit is cleared. However, the VM bit is still set in 

. the EFLAG image, on the stack. 

The 486 Microprocessor operating system in turn 
handles the exception or interrupt and then returns 

- control to the 8086 program. The 486 Microproces­
sor operating system may choose to let the 8086 
operating system handle the interrupt or it may emu­
late the function of the interrupt handler. For exam­
. pie, many 8086 operating system calls are accessed 
by PUSHing parameters on the stack, and then exe­
cuting an INT n instruction. If the 10PL is set to 0 
then a!1 INT n instructions will be intercepted by the 
486 Microprocessor operating system. The 486 Mi­
croprocessor operating system could emulate the 
8086 operating system's call. Figure 4.25 shows 
how the 486 Microprocessor operating system could 
intercept an 8086 operating system's call to "Open 
a File". 
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A 4~6 Microprocessor operating system can provide 
a Virtual 8086 Environment which is totally transpar­
ent to the application software via intercepting and 
then emulating 8086 operating system's calls, and 
intercepting IN and OUT instructions. 
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4.6.6 ENTERING AND LEAVING VIRTUAL 
8086 MODE 

Virtual 8086 mode is entered by executing an IRET 
instruction (at CPL=O), or Task Switch (at any CPL) 
to a 486 Microprocessor task whose 486 Microproc· 
essor TSS has a FLAGS image containing a 1 in the 
VM bit position while the processor is executing in 
Protected Mode. That is, one way to enter Virtual 
8086 mode is to switch to a task with a 486 Micro­
processor TSS that has a 1 in the VM bit in the 
EFLAGS image. The other way is to execute a 32-bit 
IRET instruction at privilege level 0, where the stack 
has a 1 in the VM bit in the EFLAGS image. POPF 
does not affect the VM bit, even if the processor is in 
Protected Mode or level 0, and so cannot be used to 
enter Virtual 8086 Mode. PUSHF always pushes a 0 
in the VM bit, even if the processor is in Virtual 8086 
Mode, so that a program cannot tell if it is executing 
in REAL mode, or in Virtual 8086 mode. 

The VM bit can be set by executing an IRET instruc­
tion only at privilege level 0, or by any instruction or 
Interrupt which causes a task switch in Protected 
Mode (with VM = 1 in the new FLAGS image), and 
can be cleared only by an inte~rupt or exception in 
Virtual 8086 Mode. IRET and POPF instructions exe­
cuted in REAL mode or Virtual 8086 mode will not 
change the value in the VM bit. 

The transition out of virtual 8086 mode to 486 Micro­
processor protected mode occurs only on receipt of 
an interrupt or exception (such as due to a sensitive 
instruction). In Virtual 8086 mode, all interrupts and 
exceptions vector through the protected mode lOT, 
and enter an interrupt handler in protected 486 Mi­
croprocessor mode. That is, as part of interrupt pro­
cessing, the VM bit is cleared. 

Because the matching IRET must occur from level 0, 
if an Interrupt or Trap Gate is used to field an inter­
rupt or exception out of Virtual 8086 mode, the Gate 
must perform an inter-level interrupt only to level o. 
Interrupt or Trap Gates through conforming seg­
ments, or through segments with OPL> 0, will raise a 
GP fault with the CS selector as the error code. 

4.6.6.1 Task Switches To/From Virtual 
8086 Mode 

Tasks which can execute in virtual 8086 mode must 
be described by a TSS with the new 486 Microproc­
essor format (TYPE 9 or 11 descriptor). 

A task switch out of virtual 8086 mode will operate 
exactly the same as any other task switch out of a 
task with a 486 Microprocessor TSS. All of the pro­
grammer visible state, including the FLAGS register 
with the VM bit set to 1, is stored in the TSS. 
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The segment registers in the TSS will contain 8086 
segment base values rather than selectors. 

A task switch into a task described by a 486 Micro­
processor TSS will have an additional check to de­
termine if the incoming task should be resumed in 
virtual 8086 mode. Tasks described by 80286 format 
TSSs cannot be resumed in virtual 8086 mode, so 
no check is required there (the FLAGS image in 
80286 format TSS has only the low order 16 FLAGS 
bits). Before loading the segment register images 
from a 486 Microprocessor TSS, the FLAGS image 
is loaded, so that the segment registers are loaded 
from the TSS image as 8086 segment base values. 
The task is now ready to resume in virtual 8086 exe­
cution mode. 

4.6.6.2 Transitions Through Trap and Interrupt 
Gates, and IRET 

A task switch is one way to enter or exit virtual 8086 
mode. The other method is to exit through a Trap or 
Interrupt gate, as part of handling an interrupt, and 
to enter as part of executing an IRET instruction. 
The transition out must use a 486 Microprocessor 
Trap Gate (Type 14), or 486 Microprocessor Inter­
rupt Gate (Type 15), which must point to a non-con­
forming level 0 segment (OPL=O) in order to permit 
the trap handler to IRET back to the Virtual 8086 
program. The Gate must point to a non-conforming 
level 0 segment to perform a level switch to level 0 
so that the matching IRET can change the VM bit. 
486 Microprocessor gates must be used, since 
80286 gates save only the low 16 bits of the FLAGS 
register, so that the VM bit will not be saved on tran­
sitions through the 80286 gates. Also, the 16-bit . 
IRET (presumably) used to terminate the 80286 in­
terrupt handler will pop only the lower 16 bits from 
FLAGS, and will not affect the VM bit. The action 
taken for a 486 Microprocessor Trap or Interrupt 
gate if an interrupt occurs while the task is executing 
in virtual 8086 mode is given by the following se­
quence. 

(1) Save the FLAGS register in a temp to push later. 
Turn off the VM and TF bits, and if the interrupt is 
serviced by an Interrupt Gate, turn off IF also. 

(2) Interrupt and Trap gates must perform a level 
switch from 3 (where the VM86 program exe­
cutes) to level 0 (so IRET can return). This pro­
cess involves a stack switch to the stack given in 
the TSS for privilege level O. Save the Virtual 
8086 Mode SS and ESP registers to push in a 
later step. The segment register load of SS will 
be done as a Protected Mode segment load, 
since the VM bit was turned off above. 
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BOB6 Application makes "Open File Call" -+ causes 
General Protection Fault (Arrow ;111) 
Virtual 8086 Monitor intercepts call. Calls 486™ CPU OS (Arrow '" 2) 
486TM CPU OS opens file returns control to 8086 OS (Arrow '" 3) 
B086 OS returns control to application. (Arrow #4) 
Transparent to Application 
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Figure 4.25. Virtual 8086 Environment Interrupt and Call Handling 

(3) Push the 8086 segment register values onto the 
new stack, in the order: GS, FS, OS, ES. These 
are pushed as .32-bit quantities, with undefined 
values in the upper 16 bits. Then. load these 4 
registers with null selectors (0). 

(4) Push the old 8086 stack pointer onto the new 
stack by pushing the SS register (as 32-bits, high 
bits undefined), then pushing the 32-bit ESP reg­
ister saved above. 

(5) Push the 32-bit FLAGS register saved in step 1. 

(6) Push the old 8086 instruction pointer onto the 
new stack by pushing the CS register (as 32-bits, 
high bits undefined), then pushing the 32-bit EIP 
register. 

(7) Load up the new CS:EIP value from the interrupt 
gate, and begin execution of the interrupt routine 
in protected 486 Microprocessor mode.· 

The transition out of virtual 8086 mode performs a 
level change and stack switch, in addition to chang­
ing back to protected mode. In addition, all of the 
8086 segment register images are stored on the 
stack (behind the SS:ESP image), and then loaded 
with null (0) selectors before entering the interrupt 
handler. This will permit the handler to safely save 
and restore the OS, ES, FS, and GS registers as 
80286 selectors. This is needed so that interrupt 
handlers which don't care about the mode of the 
interrupted program can use the same prolog and 
epilog code for state saving (i.e., push all registers in 
prolog, pop all in epilog) regardless of whether or not 
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a "native" mode or Virtual 8086 mode program was 
interrupted. Restoring null selectors to these regis­
ters before executing the IRET will not cause a trap 
in the interrupt handler. Interrupt routines which ex­
pect values in the segment registers, or return val­
ues in segment registers will have to obtain/return 
values from the 8086 register images pushed onto 
the new stack. They will need to know the mode of 
the interrupted program in order to know where to 
find/return segment registers, and also to know how 
to interpret segment re.gister values. 

The IRET instruction will perform the inverse of the 
above sequence. Only the extended 486 Microproc­
essors IRET instruction (operand size=32) can be 
used, and must be executed at level 0 to change the 
VM bit to 1. 

(1) If the NT bit in tl)e FLAGs register is on, an inter­
task return is performed. The current state is 
stored in the current TSS, and the link field in the 
current TSS is used to locate the TSS for the 
interrupted task which is to be resumed. 

Otherwise, continue with the following sequence. 

(2) Read the FLAGS image from SS:8[ESP] into the 
. FLAGS register. This will set VM to the value ac­
tive in the interrupted routine. 

(3) Pop off the instruction pointer CS:EIP. EIP is 
popped first, then a 32-bit word is popped which 
contains the CS value in the lower 16 bits. If 
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VM = 0, this CS load is done as a protected 
mode segment load. If VM = 1, this will be done 
as an 8086 segment load. 

(4) Increment the ESP' register by 4 to bypass the 
FLAGS image which was "popped" in step 1. 

(5) If VM = 1, load segment registers ES, DS, FS, 
and GS from memory locations SS:[ESP+8), 
SS:[ESP+ 12], SS:[ESP+ 16], and 
SS:[ESP+20], respectively, where the new val­
ue of ESP stored in step 4 is used. Since VM = 1, 
these are done as 8086 segment register loads. 

Else if VM = 0, check that the selectors in ES, 
DS, FS, and GS are valid in the interrupted rou­
tine. Null out invalid selectors to trap if an at­
tempt is made to acces~ through them. 

(6) If (RPL(CS) > CPL), pop the stack pointer 
SS:ESP from the stack. The ESP register is 
popped first, followed by 32-bits containing SS in 
the lower 16 bits. If VM = 0, SS is loaded as a 
protected mode segment register load. If VM = 1 , 
an 8086 segment register load is used. 

(7) Resume execution of the interrupted routine. The 
VM bit in the FLAGS register (restored from the 
interrupt routine's stack image in step 1) deter­
mines whether the processor resumes the inter­
rupted routine in Protected. mode of Virtual 8086 
mode. 

5.0 ON-CHIP CACHE 

To meet its performance goals the 486 microproces­
sor contains an eight Kbyte cache. The cache is 

software transparent to maintain binary compatibility 
, with previous generations of the x86 architecture. 

The on-chip cache has been designed for maximum 
flexibility and performance. The cache has several 
operating modes offering flexibility during program 
execution and debugging. Memory areas can be de­
fined as non-cacheable by software and external 
hardware. Protocols for cache line invalidations and 
replacement are implemented in hardware, easing 
system design. 

5.1 Cache Organization 

The on-chip cache is a unified code and data cache. 
The cache is used for both instruction and data ac­
cesses and acts on physical addresses. 

The cache organization is 4-way set associative and 
each line is 16 bytes wide. The eight Kbytes of 
cache memory. are logically organized as 128 sets, 
each containing four lines. 

The cache memory is physically split into four 
2-Kbyte blocks each containing 128 lines (see Fig­
ure 5.1). Associated with each 2-Kbyte block are 
128 21-bit tags. There is a valid bit for each line in 
the cache. Each line in the cache is either valid or 
not valid. There are no provisions for partially valid 
lines. 

1--16"8"8 LIne SIZ8-1 

c::Jk'yt.. J. 
Sets 

~ 

r 3 LRU -t-- -4 Valid --1 
Bits I Bits I 

I 11 
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Figure 5.1. On-Chip Cache Physical Organization 
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The write strategy of on-chip cache is write-through. 
All writes will drive an external write bus cycle in 
addition to writing the information to the internal 
cache if the write was a cache hit. A write to an 
address not contained in the internal cache will only 
be written to external memory. Cache allocations 
are not made on write misses. 

5.2 Cache Control 

Control of the cache is provided by the CD and NW 
bits in CRO. CD enables and disables the cache. NW 
controls'memory write-through and invalidates. 

The CD and NW bits define four operating modes of 
the on-chip cache as given in Table 5.1. These 
modes provide flexibility in how the on-chip cache is 
used. 

The CD-and NW bits define four operating modes of 
the on-chip code and data cache, as given in the 
following table: 

Table 5.1. Cache Operating Modes 

CD' NW Operating Mode 

1 1 Cache fills disabled, write-through and 
invalidates disabled 

1 0 Cache fills disabled, write-through and 
invalidates enabled 

0 1 INVALID. IF CRO is loaded with this 
configuration of bits, a GP fault with 
error code of 0 is raised. 

0 0 Cache fills enabled., write-through and 
invalidates enabled 

.CD=1, NW=1 

The cache is completely disabled by setting 
CD = 1 and NW = 1 and then flushing the 
cache. This mode may be useful for debug­
ging programs where it is important to see 
all memory cycles at the pins. Writes which 
hit in the cache will not appeai on the extei­
nal bus. 

It is possible to use the on-chip cache as 
fast static RAM by "pre-loading" certain 
memory areas into the cache and then set-

, ting CD = 1 and NW = 1. Pre-loading can be 
done by careful choice of memory refer­
ences with the cache turned on or by use of 
the testability functions (see Section 8.2). 
When the cache is turned off the memory 
mapped by the cache is "frozen" into tne 
cache since fills and invalidates are dis­
abled. 

CD=1,' NW=O 

Cache fills are disabled but write-throughs 
and invalidates are enabled. This mode is 
the same as if the KEN # pin was strapped 
HIGH disabling cache fills. Write-throughs 
and invalidates may still occur to keep the 
cache valid. This mode is useful if the soft­
ware must disable the cache for a short pe­
riod of time, and then re-enable it without 
flushing the original contents. 

CD=O, NW=1 

INVALID. If CRO is loaded with this bit con­
figuration, a General Protection fault with 
error code of 0 is raised. Note that this 
mode would ilT)ply a non-transparent write­
back cache. A future processor may define 
this combination of bits to implement a 
write-back cache. 

CD=O, NW=O 

This is the normal operating mode. 

Completely disabling the cache is a two step pro­
cess. First CD and NW must be set to 1 and then the 
cache must be flushed. If the cache is not flushed, 
cache hits on reads will still occur and data will be 
read from the cache. 
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5.3 Cache Line Fills 

Any area of memory can be cached in the 486 mi­
croprocessor. Non-cacheable portions of memory 
can be defined by the external system or by soft­
ware. The external system can inform the 486 micro­
processor that a memory address is non-cacheable 
by returning the KEN # pin inactive during a memory 
access (refer to Section 7.2.3). Software can pre­
vent certain pages from being cached by setting the 
PCD bit in the page table entry. 

A read request can be generated from program op­
eration or by an instruction pre-fetch. The data will 
be supplied from the on-chip cache if a cache hit 
occurs on the read address. If the address is not in 
the cache, a read request for the data is generated 
on the external bus. 

If the read request is to a cacheable portion of mem­
ory, the 486 microprocessor initiates a cache line fill. 
During a line fill a 16-byte line is read i':1to the 486 
microprocessor. 

Cache fills will only be generated for read misses. 
Write misses will never cause a line in the internal 
cache to be allocated. If a cache hit occurs on a 
write, the line will be updated. 
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Cache line fills can be performed over 8- and 16-bit 
busses using the dynamic bus sizing feature. Refer 
to Section 7.1.3 for a description of dynamic bus 
sizing. 

Refer to Section 7.2.3 for further information on 
cacheable cycles. 

5.4 Cache Line Invalidations 

The 486 microprocessor contains both a hardware 
and software mechanism for invalidating lines in its 
internal cache. Cache line invalidations are needed 
to keep the 486 microprocessor's cache contents 
consistent with external memory. 

Refer to Section 7.2.8 for further information on 
cache line invalidations. 

5.5 Cache Replacement 

When a line needs to be placed in its internal cache 
the 486 microprocessor first checks to see if there is 
a non-valid line in the set that can be replaced. If all 
four lines in the set are valid, a pseudo least-recent­
Iy-used mechanism is used to determine which line 
should be replaced. 

A valid bit is associated with each line in the cache. 
When a line needs to be placed in a set, the four 

valid bits are checked to see if there is a non-valid 
line that can be replaced. If a non-valid line is found, 
that line is marked for replacement. 

The four lines in the set are labeled 10, 11, 12, and 13. 
The order in which the valid bits are checked during 
an invalidation is 10, 11, 12 and 13. All valid bits are 
cleared when the processor is reset or when the 
cache is flushed. 

Replacement in the cache is handled by a pseudo 
least recently used (LRU) mechanism when all four 
lines in a set are valid. Three bits, BO, B 1 and B2, 
are defined for each of the 128 sets in the cache. 
These bits are called the LRU bits. The LRU bits are 
updated for every hit or replace in the cache. 

If the most recent access to the set was to 10 or 11, 
BO is set to 1. BO is set to 0 if the most recent ac­
cess was to 12 or 13. If the most recent access to 
10:11 was to 10, B1 is set to 1, else B1 is set to O. If 
the most recent access to 12:13 was to 12, B2 is set to 
1, else B2 is set to o. 

The pseudo LRU mechanism works in the following 
manner. When a line must be replaced, tho cacho 
will first select which of 10:11 and 12:13 was loast ro· 
cently used. Then the cache will detormino which of 
the two lines was least recently used and mark it for 
replacement. This decision tree is shown in Figure 
5.2. When the processor is reset or when the cache 
is flushed all 128 sets of three LRU bits are set to o. 

Ali four lines In the set valid? ~ Replace non-valid line 

Yes! 

, BO=O? 
Yes: 10 or 11 least recently used No: 12 or 13 least recently used 

Bl =O? B2=0? 

A A 
Replace 

10 
Replace Replace 

11 12 
Replace 

13 

Figure 5.2. On-Chip Cache Replacement Strategy 
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5.6 Page Cacheability 

Two bits for cache control, PWT and PCD, are de­
fined in the page table and page directory entries. 
The state of these bits are driven out on the PWT 
and PCD pins during memory access cycles. 

The PWT bit controls write policy for second level 
caches used with the 486 microprocessor. Setting. 
PWT= 1 defines a write-through policy for the cur­
rent page while PWT = 0 allows the possibility of 

CRa 

CACHE CONTROL LOGIC 

CACHE MEMORY 

write-back. The state of PWT is ignored internally by 
the 486 microprocessor since the on-chip cache is 
write through. 

The PCD bit controls cacheability on a page by page 
basis. The PCD bit is internally ANDed with the 
KEN # signal to control cacheability on a cycle by 
qycle basis (see Figure 5.3). PCD=O enables cache 
ing while PCD= 1 forbids it. Note that cache fills are 
enabled when PCD=O AND KEN# =0. This logical 
AND is implemented physically with a NOR gate. 
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Figure 5.3. Page Cacheability 
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The state of the PCD bit in the page table entry is 
driven on the PCD pin when a page in external mem­
ory is accessed. The state of the PCD pin informs 
the external system of the cacheability of the re­
quested information. The external system then re­
turns KEN # telling the 486 microprocessor if the 
area is cacheable. The 486 microprocessor initiates 
a cache line fill if PCD and KEN # indicate that the 
requested information is cacheable. 

The PCD bit is masked with the CD (cache disable) 
bit in control register 0 to determine the state of the 
PCD pin. If CD = 1 the 486 microprocessor forces 
the PCD pin HIGH. If CD=O the PCD pin is driven 
with the value for the page table entry/directory. See 
Figure 5.3. 

The PWT and PCD bits for a bus cycle are obtained 
from either CR3, the page directory or page table 
entry. If paging is not enabled, or for cycles that by­
pass paging, (1/0 references, interrupt acknowledge 
and Halt cycles), the PWT and PCD bits are taken 
from CR3. These bits are initialized to 0 on reset, but 
can be set to any value by level 0 software. 

When paging is enabled, the bits from the page table 
entry are cached in the TLB, and are driven any time 
the page mapped by the TLB entry is referenced. 
For normal memory cycles, PWT and PCD are taken 
from the page table entry. During TLB refresh cycles 
where the page table and directory entries are read, 
the PWT and PCD bits must be obtained elsewhere. 
During page table updates the bits are obtained from 
the page directory. When the page directory is up­
dated the bits are obtained from CR3. 

5.7 Cache Flushing 

The on-chip cache can be flushed by external hard­
ware or by software instructions. Flushing the cache 
clears all valid bits for all lines in the cache. The 
cache is flushed when external hardware asserts the 
FLUSH# pin. 

The instructions INVD and WBINVD cause the on­
cache to be flushed. External caches connected to 
the 486 microprocessor are Signalled to flush their 
contents when these instructions are executed. 

WBINVD will cause an external write-back cache to 
write back dirty lines before flushing its contents. 
The external cache is signalled using the bus cycle 
definition pins and the byte enables (refer to Section· 
6.2.5 for the bus cycle definition pins and Section 
7.2.11 for special bus cycles). Refer to the 486 mi­
croprocessor programmers reference manual for de­
tailed instruction definitions. 
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The results of the INVD and WBINVD instructions 
are identical for the operation of the 486 microproc­
essor's on-chip cache since the cache is write­
through. Note that the INVD and WBINVD instruc­
tions are machine dependent. Future members of 
the 486 microprocessor family may change the defi­
nition of this instruction. 

5.8 Caching Translation Lookaside 
Buffer Entries 

The 486 microprocessor contains an integrated pag­
ing unit with a translation lookaside buffer (TLB). The 
TLB contains 32 entries. The TLB has been en­
hanced over the 386 microprocessor's TLB by up­
grading the replacement strategy to a pseudo-LRU 
(least recently used) algorithm. The pseudo-LRU re­
placement algorithm is the same as that used in the 
on-chip cache. 

The paging TLB operation is automatic whenever 
paging is enabled. The TLB contains the most re­
cently used page table entries. A page table entry 
translates the linear address pointing to a particular 
page to the physical address wllero tllo pa~Jo is 
stored in memory (refer to Section 4.5, Paging). 

The paging unit will look up the linear address in the 
TLB in response to an internal bus request. The cor­
responding physical address is passed on to the on­
chip cache or the external bus (in the event of a 
cache miss) when the linear address is present in 
the TLB. 

The paging unit will access the page tables in exter­
nal' memory if the linear address is not in the TLB. 
The required page table entry will be read into the 
TLB and then the cache or bus cycle for the actual 
data will take place. The process of reading a new 
page table entry into the TLB is called a TLB refresh. 

A TLB refresh is a two step process. The paging unit 
must first read the page directory entry which points 
to the appropriate page table. The page table entry 
to be stored in the TLB is then read from the page 
table. Control register 3 (CR3) points to the base of 
the page directory table. 

The 486 microprocessor will allow page directory 
and page table entries (returned during TLB refresh­
es) to be stored in the on-chip cache. Setting the 
PCD bits in CR3 and the page directory entry to 1 
will prevent the page directory and page table en­
tries from being stored in the on-chip cache (see 
Section 5.6, Page Cacheability). 
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6.0 HARDWARE INTERFACE 

6.1 Introduction 

The 486 microprocessor bus has been designed to 
be similar to the 386 microprocessor bus whenever 
possible. Several new features have been added to 
the 486 microprocessor bus resulting in increased 
performance and functionality. New features include 
a 1X clock,' a burst bus mechanism for high-speed 
internal cache fills, a cache line invalidation mecha­
nism, enhanced bus arbitration capabilities, a BS8 # 
bus sizing mecnanism and parity support. 

The 486 microprocessor is driven by a 1 X clock as 
opposed to a 2X clock in the 386 microprocessor. A 
25 MHz 486 microprocessor uses a 25 MHz clock in 
contrast to a 25 MHz 386 microprocessor which re­
,quires a 50 MHz clock. A 1X clock allows simpler 
system design by cutting in half the clock speed re- ' 
quired in the external system. 

Like the 386 microprocessor, the 486 microproces­
sor has separate parallel busses for data and ad­
dresses. The bidirectonal data bus is 32 bits in width. 
The address bus con,sists of two components: 30 
address lines (A2-A31) and 4 byte enable lines 
(BEO# -BE3#). The address bus addresses exter-

ClK 
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nal memory in the same manner as the 386 micro­
processor: The address lines form the upper 30 bits 
of the address and the byte enables select individual 
bytes within a 4 byte location. The address lines are 
bidirectional for use in cache line invalidations. 

The 486 microprocessor's burst bus mechanism en­
ables high-speed cache fills from external memory. 
Burst cycles can strobe data into the processor at a 
rate of one item every clock. Non-burst qycles have 
a maximum rate of one item every two clocks. Burst 
cycles are not limited to cache fills: al\ bus cycles 
requiring more than a single data cycle can be burst­
ed. 

The 486 microprocessor has a bus hold feature simi­
lar to that of the 386 microprocessor. During bus 
hold, the 486 microprocessor relinquishes control of , 
the local bus by floating its address, data and control 
busses. 

The 486 microprocessor has an address hold fea­
ture in addition to bus hold. During address hold only 
the address bus is floated, the data and control bus­
ses can remain' active. Address hold is used for 
cache line invalidations. 

Ahead is a brief description of the 486 microproces­
sor input and output signals arranged by functional 
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groups. Before beginning the Signal descriptions a 
few terms need to be defined. The # symbol at the 
end of a signal name indicates the active, or assert­
ed, state occurs when the signal is at a loW voltage. 
When a # is not present after the signal name, the 
Signal is active at the high voltage level. The term 
"ready" is used to indicate that the cycle is terminat­
ed with ROY # or BROY #. 

Section 6 and 7 will discuss bus cycles and data 
cycles. A bus cycle is at least two clocks long and 
begins with AOS# active in the first clock and ready 
active in the last clock. Oata is transferred to or from 
the 486,microprocessor during a data cycle. A bus 
cycle contains one or more data cycles. 

6.2 Signal Descriptions 

6.2.1 CLOCK (ClK) 

elK provides the fundamental timing and the inter­
nal operating frequency for the 486 microprocessor. 
All external timing parameters are specified with re­
spect to the rising edge of elK. 

The 486 microprocessor can operate over a wide 
frequency range but elK's frequency cannot 
change rapidly while RESET is inactive. elK's fre­
quency must be ·stable for proper chip operation 
since a single edge of elK is used internally to gen­
erate two phases. elK only needs TTL levels for 
proper operation. Figure 6.2 illustrates the elK 
waveform. 

6.2.2 Address Bus (A31-A2, BEO#-8E3#) 

A31-A2 and BEO#-BE3# form the address bus 
and provide physical memory and 110 port address-

tx = input setup times 
ty = input hold times, output float, valid and hold times 

es. The 486 microprocessor is capable of address­
ing 4 gigabytes of physical memory space 
(OOOOOOOOH through FFFFFFFFH), and 64 Kbytes 
of lID address space (OOOOOOOOH through 
OOOOFFFFH). A31-A2 identify addresses to a 4-byte 
location. BED # - BE3 # identify which bytes within 
the 4-byte location are involved in the current trans­
fer. 

Addresses are driven back into the 486 microproc­
essor over A31-A4 during cache line invalidations. 
The address lines are active HIGH. When used as 
inputs into the processor, A31-A4 must meet the 
setup and hold times, t22 and t23. A31-A2 are not 
driven during bus or address hold. 

The Qyte enable outputs, BEO#-BE3#, determine 
which bytes must be driven valid for read and write 
cycles to external memory. 

BE3# applies to 024-031 

BE2# applies to 016-023 

BE1 # applies to 08-015 

BED# applies to 00-07 

BED#-BE3# can be decoded to generate AD, A1 
and BHE # signals used in 8- and 16-bit systems 
(see Table 7.5). BEO#-BE3# are active lOW and 
are not driven during bus hold. 

6.2.3 DATA liNES (031-00) 

The bidirectional lines, 031-00, form the data bus 
for the 486 microprocessor. 00-07 define the least 
significant byte' and 024-031 the most significant 
byte. Oata transfers to 8- or 16-bit devices is possi­
ble using the data bus sizing feature controlled by 
the BS8# or BS16# input pins. 

240440-31 

Figure 6.2. ClK waveform 
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031-00 are active HIGH. For reads, 031-00 must 
meet the setup and hold times, t22 and t23. 031-00 
are not driven during read cycles and bus hold. 

6.2.4 PARITY 

Data Parity Input/Outputs (DPO-DP3) 

OPO-OP3 are the data parity pins for the processor. 
There is one pin for each byte of the data bus. Even 
parity is generated or checked by the parity genera· 
torsi checi<ers. Even parity means that there are an 
even number of HIGH inputs on the eight corre· 
sponding data bus pins and parity pin. 

Data parity is generated on all write data cycles with 
the same timing asthe data driven by the 486 micro· 
processor. Even parity information must be driven 
back to the 486 microprocessor on these pins with 
the same timing as read information to insure that 
the correct parity check status is indicated by the 
486 microprocessor. 

The values read on thes,e pins do not affect program' 
execution. It is the responsibility of the system to 
take appropriate actions if a parity error occurs. 

Input signals on OPO-OP3 must meet setup and 
hold times t22 and t23 for proper operation. 

Parity Status Output (PCHK#) 

Parity status is driven on the PCHK # pin, and a pari· 
ty error is indicated by this pin being LOW. PCHK# 
is driven the clock after ready for read operations to 
indicate the parity status for the data sampled at the 
end of the previous clock. Parity is checked during 
code reads, memory reads and 1/0 reads. Parity is 
not checked during interrupt acknowledge cycles. 
PCHK# only checks the parity status for enabled 
bytes as indicated by the byte enable and bus size 
Signals. It is valid only in the clock immediately after 
read data is returned to the 486 microprocessor. At 
all other times it is inactive (HIGH). PCHK# is never 
floated. 

Driving PCHK# is the only effect that bad input pari· 
ty has on the 486 microprocessor. The 486 micro· 
processor will not vector to a bus error interrupt 
when bad data parity is returned. In systems that will 
not employ parity, PCHK# can be ignored. In sys· 
terns not using parity, OPO-OP3 should be connect· 
ed to Vee through a pullup resistor. 

6.2.S BUS CYCLE DEFINITION 

M/IO#, D/C#, W/R# Outputs 

M/IO#, O/C# and W/R# are the primary bus cycle 
definition signals. They are driven valid as the AOS# 
signal is asserted. M/IO# distinguishes between 
memory and 1/0 cycles, O/C# distinguishes be· 
tween data and control cycles and W/R# distin· 
guishes between write and rea~ cycles. ' 

Bus cycle definitions as a function of M/IO#, O/C# 
and W/R# are given in Table 6.1. Note there is a 
difference between the 486 microprocessor and 386 
microprocessor bus cycle definitions. The halt bus 
cycle type has been moved to location 001 in the 
486 microprocessor from location 101 in the 386 mi· 
croprocessor. Location 101 is now reserved and will 
never be generated by the 486 microprocessor. 

Table 6.1. ADS # Initiated Bus Cycle Definitions 

M/IO# D/C# W/R# Bus Cycle Initiated 

0 0 0 Interrupt Acknowledge 
0 0 Halt/Special Cycle 
0 0 1/0 Read 
0 1/0 Write 

0 0 Code Read 
0 1 Reserved 

0 Memory Read 
1 Memory Write 

Special bus cycles are discussed in Section 7.2.11. 

Bus Lock Output (LOCK #) 

LOCK # indicates that the 486 microprocessor is 
running a read·modify·write cycle where the external 
bus must not be relinquished between the read and 
write cycles. Read·modify·write cycles are used to 
implement memory·based semaphores. Multiple 
reads or writes can be locked. 

When LOCK # is asserted, the current bus cycle is 
locked and the 486 microprocessor should be al· 

, lowed exclusive access to the system bus. LOCK # 
goes active in the first clock of the first locked bus 
cycle and goes inactive after ready is returned indio 
cating the last locked bus cycle. 

The 486 microprocessor will not acknowledge bus 
hold when LOCK # is asserted (though it will allow 
an address hold). LOCK# is active LOW and is float· 

, ed during bus hold. Locked read cycles will not be' 
transformed into cache fill cycles if KEN # is reo 
turned active. Refer to Section 7.2.6 for a detailed 
discussion of Locked bus cycles. 
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Pseudo-Lock Output (PLOCK #) 

The pseudo-lock feature allows atomic reads and 
writes of memory operands greater than 32 bits. 
These operands require more than one cycle to 
transfer. The 486 microprocessor asserts PLOCK# 
during floating point long reads and writes (64 bits), 
segment table descriptor reads (64 bits) and cache 
line fills (128 bits). 

When PLOCK# is asserted no other master will be 
given control of the bus between cycles. A bus hold 
request (HOLD) is not acknowledged during pseudo­
locked reads and writes. The 486 microprocessor 
will drive PLOCK # active until the addresses for the 
last bus cycle of the transaction have been driven 
regardless of whether BROY # or ROY # are re­
turned. 

A pseudo-locked transfer is meaningful only if the 
memory operand is aligned and if its completely con­
tained within a single cache line. A 64-bit floating 
point number must be aligned to· an 8-byte boundary 
to guarantee an atomic access. 

Normally PLOCK# and BLAST# are inverse of 
each other. However during the first cycle of a 64-bit 
floating point write, both PLOCK# and BLAST# will 
be asserted. 

. Since PLOCK # is a function of the bus size and 
KEN # inputs, PLOCK # should be sampled only in 
the clock ready is returned. This pin is active LOW 
and is not driven during bus hold. Refer to Section 
7.2.7 for a detailed discussion of pseudo-locked bus 
cycles. 

6.2.6 BUS CONTROL 

The bus control signals allow the processor to indi­
cate when a bus cycle has begun, and allow other 
system hardware to control burst cycles, data bus 
width and bus cycle termination. 

Address Status Output (AOS#)' 

The AOS# output indicates that the address and 
bus cycle definition signals are valid. This signal will 
go active in the first clock of a bus cycle and go 
inactive in the second and subsequent clocks of the 
cycle. AOS# is also inactive when the bus is idle. 

AOS# is used by external bus circuitry as the indica­
tion that the processor has started a bus cycle. The 
external circuit must sample the bus cycle definition 
pins on the next rising edge of the clock after ADS # 
is driven active. 

ADS # is active LOW and is not driven during bus 
hold. 
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Non-burst Ready Input (ROY #) 

ROY # indicates that the current bus cycle is com­
plete. In response to a read, RDY # indicates that 
the external system has presented valid data on the 
data pins. In response to a write request, ROY # indi­
cates that the external system has accepted the 486 
microprocessor data. ROY # is ignored when the 
bus is idle and at the end of the first clock of the bus 
cycle. Since ROY # is sampled during address hold, 
data can be returned to the processor when AHOLO 
is active. 

ROY # is active LOW, and is not provided with an 
internal pullup resistor. This input must satisfy 'setup 
and hold times t16 and t17 for proper chip operation. 

6.2.7 BURST CONTROL 

Burst Ready Input (BROY #) 

BROY # performs the same function during a burst 
cycle that ROY # performs during a non-burst cycle. 
BROY # indicates that the external system has pre­
sented valid data on the data pins in response to a 
read .or that the external system has acceptod tho 
486 microprocessor data in response to a writo. 
BROY # is ignored when the bus is idle and at the 
end of the first clock in a bus cycle . 

During a burst cycle, BROY # will be sampled each 
clock, and if active, the data presented on the data 
bus pins will be strobed into the 486 microprocessor. 
AOS# is negated during the second through last 
data cycles in the burst, but address lines A2-A3 
and byte enables will change to reflect the next data 
item expected by the 486 microprocessor. 

If ROY # is returned simultaneously with BROY #, 
BROY # is ignored and the burst cycle is premature­
ly aborted. An additional complete bus cycle will be 
initiated after an aborted burst cycle if the cache line 
fill was not complete. BROY # is treated as a normal 
ready for the last data cycle in a burst transfer or for 
non-burstable cycles. Refer to Section 7.2.2 for 
burst cycle timing. 

BROY # is active LOW and is provided with a small 
internal pullup resistor. BROY # must satisfy the set­
up and hold times t16 and t17' 

Burst Last Output (BLAST #) 

BLAST# indicates that the next time BROY# is re­
turned it will be treated as a normal ROY #, terminat­
ing the line fill or other multiple-data-cycle transfer. 
BLAST# is active for all bus cycles regardless of 
whether they are cacheable or not. This pin is active 
LOW and is not driven during bus hold. 
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6.2.8 INTERRUPT SIGNALS (RESET, INTR, NMI) 

The interrupt signals can interrupt or suspend exe­
cution of the processor's current instruction stream. 

Reset Input (RESET) 

RESET forces the 486 microprocessor to begin exe­
cution at a known state. Vee and CLK must reach 
their proper DC and AC specifications for at least 
1 ms before the 486 microprocessor begins instruc­
tion execution. The RESET pin should remain active 
during this time to ensure proper 486 microproces­
sor operation. The testability operating modes are 
programmed by the falling (inactive going) edge of 
RESET. (Refer to Section 8.0 for a description of the 
test modes during reset.) . 

Maskable Interrupt Request Input (INTR), 

INTR indicates that an external interrupt has been 
generated. Interrupt processing is initiated if the IF 
flag is active in the EFLAGS register. 

The 486 microprocessor will generate two locked in­
terrupt acknowledge bus cycles in response to as­
serting the INTR pin. An 8-bit interrupt number will 
be latChed from an external interrupt controller at 
the end of the" second interrupt acknowledge cycle. 
INTR must remain active until the interrupt acknowl­
edges have been performed to assure program in­
terruption. Refer to Section 7.2.10 for a detailed dis­
cussion of interrupt acknowledge cycles. 

, The INTR pin is active HIGH and is not provided with 
an internal pulldown resistor. INTR is asynchronous, 
but the INTR setup and hold times, t20 and t21, must 
be met to assure recognition on any specific clock. 

Non-maskable Interrupt Request Input (NMI) 

NMI is the non-maskable interrupt request signal. 
Asserting NMI causes an interrupt with an internally 
supplied vector value of 2. External interrupt ac­
knowledge cycles aiS not geneiated since the NMI 
interrupt vector is internally generated. When NMI 
processing begins, the NMI signal will be masked 
internally until the IRET instruction is eX,ecuted. 

NMI is rising edge sensitive after internal synchroni­
zation. NMI must be held LOW for at least four CLK 
periods before this rising edge for proper operation. 
NMI is not provided with an internal pulldown resis­
tor. NMI is asynchronous but setup and hold times, 
t20 and t21 must be met to assure recognition on any 
specific clock. ' 

6.2.9 BUS ARBITRATION SIGNALS 

This section describes the mechanism by which the 
processor relinquishes control of its local bus when 
requested by another bus master. 

Bus Request Output (BREQ) 

The 486 asserts BREQ whenever a bus cycle is 
pending internally. Thus, BREQ is always asserted in 
the first clock of a bus cycle, along with ADS#. Fur­
thermore, if the 486 is currently not driving the bus 
(due to HOLD, AHOLD, or BOFF#), BREQ is assert­
ed in the same clock that ADS # would have been 
asserted if the processor were'driving the bus. After 
the first clock of the bus cycle, BREQ may change 
state. It will be asserted if additional cycles are nec­
essary to complete a transfer (via BS8#, BS16#, 
KEN#), or if more cycles are pending internally. 
However, if no additional cycles are necessary to 
complete the current transfer, BREQ can be negat­
ed before ready comes back for the current cycle. 
External logic c~n use the BREQ signal to arbitrate 
among multiple processors. This pin is driven re­
gardless of the state of bus hold or address hold. 
BREQ is active HIGH and is never floated. 
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Bus Hold Request Input (HOLD) 

HOLD allows another bus master complete control , 
of the 486 microprocessor bus. The 486 microproc­
essor will respond to an active HOLD signal by as­
serting HLDA and placing most of its output and in­
put/output pins in a high impedance state (floated) 
after completing its current bus cycle, burst cycle, or 
sequence of locked cycles. The BREQ, HLDA, 
PCHK# and FERR# pins are not floated during bus 
hold. The 486 microprocessor will. maintain its bus in 
this state until the HOLD is deasserted. Refer to 
Section 7.2.9 for timing diagrams for a bus hold cy­
cle. 

Unlike the 386 microprocessor, the 486 microproc­
essor will recognize HOLD during reset. Pullup resis­
tors are not provided for the outputs that are floated 
in response to HOLD. HOLD is active HIGH and is 
not provided with an internal pulldown resistor. 
HOLD must satisfy setup and hold times t18 and t19 
for proper chip operation. 

Bus Hold Acknowledge Output (HLDA) , 

HLDA indicates ,that the 486 microprocessor has 
given the bus to another local bus master. HLDA 
goes active in response to a hold request presented 
on the HOLD pitt HLDA is driven active in the same 
clock that the 486 microprocessor floats its bus. 
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HLDA will be driven inactive when leaving bus hold 
and the 486 microprocessor will resume driving the 
bus. The 486 microprocessor will not cease internal 
activity during bus hold since the internal cache will 
satisfy the majority of bus requests. HLDA is active 
HIGH and remains driven during bus hold. 

Backoff Input (BOFF #) 

Asserting the BOFF # input forces the 486 micro­
processor to release control of its bus in the next 
clock. The pins floated are exactly the same as in 
response to HOLD. The response to BOFF# differs 
from the response to HOLD in two ways: First, the 
bus is floated immediately in response to BOFF # 
while the 486 completes the current bus cycle be­
fore floating its bus in response to HOLD. Second 
the 486 does not assert HLDA in response to 
BOFF#. 

The processor remains in bus hold until BOFF # is 
negated. Upon negation, the 486 microprocessor re­
starts the bus cycle aborted when BOFF # was as­
serted. To the internal execution engine the effect of 
BOFF # is the same as inserting a few w~it states to 
the original cycle. Refer to Section 7.2.12 for a de­
scription of bus cycle restart. 

Any data returned to the processor while BOFF # is 
asserted is ignored. BOFF# has higher priority than 
RDY# or BRDY#. If both BOFF# and ready are 
returned in the same clock, BOFF # takes effect. If 
BOFF # is asserted while the bus is idle, the 486 
microprocessor will float its bus in the next clock. 
BOFF # is active LOW and must meet setup and 
hold times t18 and t19 for proper chip operation. 

6.2.10 CACHE INVALIDATION 

The AHOLD and EADS # inputs are used during 
cache invalidation cycles. AHOLD conditions the 
486 microprocessors address lines, A4-A31, to ac­
cept an address input. EADS# indicates that an ex­
ternal address is actually valid on the address 
inputs. Activating EADS# will cause the 486 mi­
croprocessor to read the external address bus 
and perform an internal cache invalidation cycle to 
the address indicated. Refer to Section 7.2.8 for 
cache invalidation cycle timing. 

Address Hold Request Input (AHOLD) 

AHOLD is the address hold request. It allows anoth­
er bus master access to the 486 microprocessor 
address bus for performing an internal cache invali-
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dation cycle. Asserting AHOLD will force the 486 mi­
croprocessor to stop driving its address bus in the 
next clock. While AHOLD is active only the address 
bus will be floated, the remainder of the bus can 
remain active. For example, data can be returned for 
a previously specified bus cycle when AHOLD is ac­
tive. The 486 microprocessor will not initiate another 
bus cycle during address hold. Since the 486 micro­
processor floats its bus immediately in response to 
AHOLD, an address hold acknowledge is not re­
quired. If AHOLD is asserted while a bus cycle is in 
progress, and no readies are returned during the 
time AHOLD is asserted, the 486 will redrive the 
same address (that it originally sent out) once 
AHOLD is negated. 

AHOLD is recognized during reset. Since the entire 
cache is invalidated by reset, any invalidation cycles 
run during reset will be unnecessary. AHOLD is ac­
tive HIGH and is provided with a small internal pull­
down resistor. It must satisfy the setup and hold 
times t18 and t19 for proper chip operation. This pin 
determines whether or not the built in self test fea­
tures of the 486 microprocessor will be exercised on 
assertion of RESET. 

External Address Valid Input (EADS /I) 

EADS# indicates that a valid external address has 
been driven onto the 486 address pins. This address 
will be used to perform an internal cache invalidation 
cycle. The external address will be checked with the 
current cache contents. If the address specified 
matches any areas in the cache, that area will imme­
diately be invalidated. 

An invalidation cycle may be run by asserting 
EADS# regardless of the state of AHOLD, HOLD 
and BOFF #. EADS # is active LOW and is provided 
with an internal pullup resistor. EADS# must satisfy 
the setup and hold times t12 and t13 for proper chip 
operation. 

6.2.11 CACHE CONTROL 

Cache Enable Input (KEN#) 

KEN # is the cache enable pin. KEN # is used to 
determine whether the data being returned by the 
current cycle is cacheable. When KEN # is active 
and the 486 microprocessor generates a cycle that 
can be cached (most any memory read cycle), the 
cycle will be transformed into a cache line fill cycle. 

A cache line is 16 bytes long. During the first cycle of 
a cache line fill the byte-enable pins should be ig­
nored and data should be returned as if all four byte 
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enables were asserted. The 486 microprocessor will 
run between 4 and 16 contiguous bus cycles to fill 
the line depending on the bus data width selected by 
8S8# and 8S16#. Refer to Section 7.2.3 for a de~ 
scription of cache line fill cycles. 

The KEN # input is active LOW and is provided with 
a small internal pullup resistor. It must satisfy the 
setup and hold times t14 and t15 for proper chip op­
eration. 

Cache Flush Input (FLUSH#) 

The FLUSH # input forces the 486 microprocessor 
to flush its entire internal cache. FLUSH # is active 
LOW and need only be asserted for one clock. 
FLUSH # is asynchronous but setup and hold times 
t20 and t21 must be met for recognition on any spe­
cific clock. 

FLUSH # also determines whether or not the tristate 
test mode of the 486 microprocessor will be invoked 
on assertion of RESET. 

6.2.12 PAGE CACHEABILITY (PWT, PCD) 

The PWT and PCD output signals correspond to two 
user attribute bits in the page table entry. When pag­
ing is enabled, PWT and PCD correspond to bits 3 
and 4 of the page table entry respectively. When 
paging is disabled, or for cycles that are not paged 
when paging is enabled (for example 1/0 cycles) 
PWT and PCD correspond to bits 3 and 4 in control 
register 3. 

PCD is masked by the CD (cache disable) bit in con­
trol register 0 (CRO). When CD = 1 (cache line fills 
disabled) the 486 microprocessor forces PCD HIGH. 
When CD = 0, PCD is driven with the value of the 
page table entry/directory: 

The purpose of PCD is to provide a cacheable/non­
cacheable indication on a page by page basis. The 
486 will not perform a cache fill to any page in which 
bit 4 of the page table entry is set. PWT corresponds 
to the write-back bit and can be used by an external 
cache to provide this functionality. Refer to Sections 
4.5.4 and 5.6 for a discussion of non-cacheable 
pages. 

PCD and PWT have the same timing as the cycle 
definition pins (M/IO#, D/C#, W/R#). PCD and 
PWT are active HIGH and are not driven during bus 
hold. 

6.2.13 NUMERIC ERROR REPORTING 
(FERR #, IGNNE #) 

To allow PC-type floating point error reporting, the 
486 microprocessor provides two pins, FERR# and 
IGNNE#. 

Floating Point Error Output (FERR #) 

The 486 microprocessor asserts FERR # whenever 
an unmasked floating point error is encountered. 
FERR# is similar to the ERROR# pin on the 387 
math coprocessor. FERR# can be used by external 
logic for PC-type floating point error reporting in 486 
microprocessor systems. FERR # is active LOW, 
and is not floated during bus hold. 

Ignore Numeric Error Input (IGNNE#) 

The 486 microprocessor will ignore a numeric error 
and continue executing non-control floating point 
instructions when IGNNE.# is asserted. When deas­
serted, the 486 microprocessor will freeze on a 
non-control floating point instruction if a previous in­
struction caused an error. IGNNE# has no effect 
when the NE bit in control register 0 is set. 

The IGNNE# input is active LOW and is provided 
with a small internal pull up resistor. This input is 
asynchronous, but must meet setup and hold times 
t20 and t21 to insure recognition on any specific 
clock. 

6.2.14 BUS SIZE CONTROL (BS16#, BS8#) 

The 8S16# and8S8# inputs allow external 16- and 
8-bit busses to be supported with a small number of 
external components. The 486 CPU samples these 
.pins every. clock. The value sampled in the clock 
before ready determines the bus size. When assert­
ing 8S16# or 8S8# only 16 or 8 bits of the data bus 
need be valid: If both 8S16# and 858# are assert­
ed, an 8-bit bus width is selected. 
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When 8S16# or 8S8# are asserted the 486 micro­
processor will convert a larger data request to the 
appropriate number of smaller transfers. The byte 
enables will also be modified appropriately for the 
bus size selected. 

8S16# and 8S8# are active LOW and are provided 
with small internal pullup resistors. 8S16# and 
8S8# must satisfy the setup and hold times t14 and 
t15 for proper chip operation. 
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6.2.15 ADDRESS BIT 20 MASK (A20M#) 

Asserting the A20M # input causes the 486 micro­
processor to mask physical address bit 20 before 
performing a lookup in the internal cache and before 
driving a memory cycle to the outside world. When 
A20M # is asserted, the 486 microprocessor emu­
lates the 1 Mbyte address wraparound that occurs 
on the 8086. A20M # is active LOW and must be 
asserted only when the processor is in real mode. 
A20M # is asynchronous but should meet setup and 
hold times t20 and t21 for recognition in any specific 
clock. For correct operation of the chip, A20M # 
should be sampled high at the falling edge of RE-
SET. . 

6.3 Write Buffers 

The 486 microprocessor contains four write buffers 
to enhance the performance of consecutive writes 
to memory. The buffers can be filled at a rate of one 
write per clock until all four buffers are filled. 

When all four buffers are empty and the bus is idle, a 
write request will propagate directly to the external 
bus bypassing the write buffers. If the bus is not 
available at the time the write is generated internally, 
the write will be placed in the write buffers and prop­
agate to the bus as soon as the bus becomes avail­
able. The write is stored in the on-chip cache imme­
diately if the write is a cache hit. 

Writes will be driven onto the external bus in the 
same order in which they are received by the write 
buffers. Under certain conditions a memory read will 
go onto the external bus before the memory writes 
pending in the buffer even though the writes oc­
curredearlier in the program execution. 

A memory read will only be reor.dered in front of all 
writes in the buffers under the following conditions: If 
all writes pending in the buffers are cache hits and 
the read is a cache miss. Under these conditions the 
486 microprocessor will not read from an external 
memory location that needs to be updated by one of 
the pending writes. 

Reordering of a read with the writes pending in the 
buffers can only occur once before all the buffers 
are emptied. The problem with reordering more than 
one write is illustrated with the following example. A 
write to external memory location M is pending in the 
write buffers. This write was a cache hit to location C 
in the on-chip cache. A read is reordered ahead of 
the write to location M. The data from this read re­
places the data in location C in the on-chip cache. 
Before the pending write can update location M the 
processor generates a read to location M. This read 
is a cache miss since the previous read replaced the 
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information in on-chip location C. If the 486 micro­
processor reordered this second read ahead of the 
pending write to location M, the processor would 
read stale data. 

6.3.1 WRITE BUFFERS AND 1/0 CYCLES 

Input/Output (I/O) cycles must be handled in a dif­
ferent manner by the write buffers. 

I/O reads are never reordered in front of buffered 
memory writes. This insures that the 486 microproc­
essor will update all memory locations before read- , 
ing status from an I/O device. 

The 486 microprocessor never buffers single I/O 
writes. When processing an OUT instruction, internal 
execution stops until the I/O write actually com­
pletes on the external bus. This allows time for the 
external system to drive an invalidate into the 486 
microprocessor or to mask interrupts before the 
processor progresses to the instruction following 
OUT. Repeated OUTS instructions will be buffered. 

I/O device recovery time must be handlod slifJiltly 
differently by the 486 microprocossor than wilil lilo 
386 microprocessor. I/O dovice back-to-back write 
recovery times could be guaranteed by the 386 mi­
croprocessor by inserting a jump to the next instruc­
tion in the code that writes to the device. The jump 
forces the 386 microprocessor to generate a pre­
fetch bus cycle which can't begin until the I/O write 
complEltes. 

Inserting a jump to the next write will not work with 
the 486 microprocessor because the prefetch could 
be satisfied by the on-chip cache. A read cycle must 
be explicitly generated to a non-cacheable location 
in memory to guarantee that a read bus cycle is per­
formed. This read will not be allowed to proceed to 
the bus until after the I/O write has completed be­
cause I/O writes are not buffered. The I/O device 
will have time to recover to accept another write dur­
ing the read cycle. 

6.3.2 WRITE BUFFERS IMPLICATIONS ON 
LOCKED BUS CYCLES 

Locked bus cycles are used for read-modify-write 
accesses to memory. During a read-modify-write ac­
cess, a memory base variable is read, modified and 
then written back to the same memory location. It is 
important that no other bus cycles, generated by 
other bus masters or by the 486 microprocessor it­
self, be allowed on the external bus between the 
read and write portion of the locked sequence. 

During a locked read cycle the 486 microprocessor 
will always access external memory, it will never 
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look for the location in the on-chip cache. All data 
pending in the 486 microprocessor's write buffers 
will be written to memory before a locked cycle is 
allowed to proceed to the external bus. 

The 486 microprocessor will assert the LOCK # pin 
after the write' buffers are emptied during a locked 
bus cycle. With the LOCK # pin asserted, the micro­
processor will read the data, operate on the data 
and place the results in a write buffer. The contents 
of the write buffer will then be written to external 
memory. LOCK# will become inactive after the write 
part of the locked cycle. 

6.4 Interrupt and Non-Maskable 
Interrupt Interface 

The 486 microprocessor provides two asynchronous 
interrupt inputs, INTR (interrupt request) and NMI 
(non-maskable interrupt input). This section de­
scribes the hardware interface between the instruc­
tion execution unit and the pins. For a description of 
the algorithmic response to interrupts refer to Sec­
tion 2.7. For interrupt timings refer to Section 7.2.10. 

6.4.1 INTERRUPT LOGIC 

The 486 microprocessor contains a two-clock syn­
chronizer on the interrupt line. An interrupt request 
will reach the internal instruction execution unit two 
clocks after the INTR pin is asserted, if proper setup 
is provided to the first stage of the synchronizer. 
There is no special logic in the interrupt path other 
than the synchronizer. The INTR signal is level sen­
sitive and must remain active for the instruction' exe­
cution unit to recognize it. The interrupt will not be 
serviced by the 486 microprocessor if the INTR sig­
nal does not remain active. 

The instruction execution unit will look at the state of 
the synchronized interrupt signal at specific clocks 
during the execution of instructions (if interrupts are 
enabled). These specific clocks are at instruction 
boundaries, or iteration boundaries in the case of 
string move instructions. Interrupts will only be ac­
cepted at these boundaries. 

An interrupt must be presented to the 486 micro­
processor INTR pin three clocks before the end of 
an instruction for the interrupt to be acknowledged. 
Presenting the interrupt 3 clocks before the end of 
an instruction allows the interrupt to pass through 
the two clock synchronizer leaving one clock to pre­
vent the initiation of the next sequential instruction 
and to begin interrupt service. If the interrupt is not 
received in time to prevent the next instruction, it will 
be accepted at the end of next instruction, assuming 
INTR is still held active. The interrupt service micro­
code will start after two dead clocks. 

The longest latency between when an interrupt re­
quest is presented on the INTR pin and when the 
interrupt service begins is: longest instruction used 
+ the two clocks for synchronization + one clock 
required to vector into the interrupt service micro­
code. 

6.4.2 NMI LOGIC 

The NMI pin has a synchronizer like that used on the 
INTR line. Other than the synchronizer, the NMI log­
ic is different from that of the maskable interrupt. 

NMI is edge triggered as opposed to the level trig­
gered INTR signal. The rising edge of the NMI signal 
is used to generate the interrupt request. The NMI 
input need not remain active until the interrupt is ac­
tually serviced. The NMI pin only needs to remain 
active for a single clock if the required setup and 
hold times are met. NMI will operate properly if it is 
held active for an arbitrary number of clocks. 

. The NMI input must be held inactive for at least four 
clocks after it is asserted to reset the edge triggered 
logic. A subsequent NMI may not be generated if the 
NMI is not held inactive for at least two clocks after 
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being asserted. ' 

The NMI input is internally masked whenever the 
NMI routine is entered. The NMI input will remain 
masked until an IRET (return from interrupt) instruc­
tion is executed. Masking the NMI signal prevents 
recursive NMI calls. If another NMI occurs while the 
NMI is masked off, the pending NMI will be executed 
after the current NMI is done. Only one NMI can be 
pending While NMI is masked. 

6.5 Reset and Initialization 

The 486 microprocessor has a built in self test 
(BIST) that can be run during reset. The BIST is in­
voked if the AHOLO pin is asserted on the falling 
edge of RESET. Refer to Section 8.0 for information 
on 486 microprocessor testability. 

The 486 microprocessor registers have the values 
shown in Table 6.2 after RESET is performed. The 
EAX register contains information on the success or 
failure of the BIST if the self test is executed. The 
OX register always contains a component identifier 
at the conclusion of RESET. The upper byte of OX 
(OH) will contain 04 and the lower byte (OL) will con­
tain a stepping identifier. The floating point registers 
are initialized as if the FINIT/FNINIT (initialize proc­
essor) instruction was executed if the BIST was per­
formed. If the BIST is not executed, the floating point 
registers are unchanged. 
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Table 6.2. Register Values after Reset 

Register Initial Value (BIST) Initial Value (No Bist) 

EAX Zero (Pass) Undefined 
ECX Undefined Undefined 
EOX 0400 + Revision 10 0400 + Revision 10 
EBX Undefined Undefined 
ESP Undefined Undefined 
EBP Undefined Undefined 
ESI Undefined Undefined 
EOI Undefined Undefined 
EFLAGS 00000002h 00000002h 
EIP OFFFOh OFFFOh 
ES OOOOh OOOOh 
CS FOOOh" FOOOh' 
SS OOOOh OOOOh 
OS OOOOh OOOOh 
FS OOOOh OOOOh 
GS OOOOh OOOOh 
10TR Base = 0, Limit = 3FFh Base = 0, Limit = 3FFh 
CRO 60000000h 
OR7 OOOOOOOOh 

CW 037Fh 
SW OOOOh 
TW FFFFh 
FIP OOOOOOOOh 
FEA OOOOOOOOh 
FCS OOOOh 
FOS OOOOh 
FOP OOOh 
FSTACK Undefined 

The 486 microprocessor will start executing instruc­
tions at location FFFFFFFOH after RESET. When 
the first InterSegment Jump or Call is executed, ad­
dress lines A20-A31will drop LOW for CS-relative 
memory cycles, and the 486 microprocessor will 
only execute instructions in the lower one Mbyte of 
physical memory. This allows the system designer to 
use a ROM at the top of physical memory to initialize 
the system and take care of RESETs. 

RESET forces the 486 microprocessor to terminate 
all execution and local bus activity. No instruction or 
bus activity will occur as long as RESET is active. 

All entries in the cache are invalidated by RESET. 

6.5.1 PIN STATE DURING RESET 

The 486 microprocessor recognizes and can re­
spond to HOLO, AHOLD, and BOFF# requests re-

4-85 

60000000h 
OOOOOOOOh 

Unchanged 
Unchanged 
Unchanged 
Unchanged 
Unchanged 
Unchanged 
Unchanged 
Unchanged 
Unchanged 

gardless of the state of RESET. Thus, even though 
the processor is in reset, it can still float its bus in 
response to any of these requests. 

While in reset, the 486 microprocessor bus is in the 
state shown in Figure 6.3 if the HOLD, AHOLD and 
BOFF # requests are inactive. Note that the address 
(A31-A2, BE3#-BEO#) and cycle definition 
(M/IO#, D/C#, W/R#) pins are undefined from the 
time reset is asserted up to the start of the first bus 
cycle. All undefined pins (except FERR#) assume 
known values at the beginning of the first bus cycle. 
The first bus cycle is always a code fetch to address 
FFFFFFFOH. FERR # reflects the state of the ES 
(error summary status) bit in the floating point unit 
status word. The ES bit is initialized whenever the 
floating point unit state is initialized. 
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7.0 BUS OPERATION 

7.1 Data Transfer Mechanism 

All data transfers occur as a result of one or more 
bus cycles. Logical data operands of byte, word and 
dword lengths may be transferred without restric­
tions on physical address alignment. Data may be 
accessed at any byte boundary but two or three cy­
cles may be required for unaligned data transfers. 
See Section 7.1.3 Dynamic Bus Sizing and 7.1.6 Op­
erand Alignment. 

The 486 microprocessor address signals are split 
into two components. High-order address bits are 
provided by the address lines, A2-A31. The byte 
enables, BEO#-BE3#, form the low-order address 
and provide linear selects for the four bytes of the 
32-bit address bus. 

The byte enable outputs are asserted when their as­
sociated data bus bytes are involved with the pres­
ent bus cycle, as listed in Table 7.1. Byte enable 
patterns which have a negated byte enable separat­
ing two or three asserted byte enables will never 
occur (see Table 7.5). All other byte enable patterns 
are possible. . 

Table 7.1. Byte Enables and Associated 
Data and Operand Bytes 

Byte 
Enable Associated Data Bus Signals 
Signal 

BEO# 00-07 (byt~ O-Ieast significant) 

BE1# 08-015 (byte 1) 

BE2# 016-023 (byte 2) 

BE3# 024-031 (byte 3-most significant) 
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Address bits AO and A 1 of the physical operand's 
base address can be created when necessary. Use 
of the byte enables to create AO and A 1 is shown in 
Table 7.2. The byte enables can also be decoded to 
generate BLE# (byte low enable) and BHE# (byte 
high enable). These Signals are needed to address 
16-bit memory systems (see Section 7.1.4 Inter­
facing with 8- and 16-bit memories). 

A31 

A31 

A31 

A31 

A31 

A31 

Table 7.2. Generating AO-A31 from 
BEO#-BE3# and A2-A31 

486TM CPU Address Signals 

......... A2 BE3# BE2# BE1# 

Physical Base 

Address 

......... A2 A1 AO 

......... A2 0 0 X X X 

......... A2 0 1 X X Low 

......... A2 1 0 X Low High 

......... A2 1 1 Low High High 

7.1.1 MEMORY AND 1/0 SPACES 

BEO# 

Low 

High 

High 

High 

Bus cycles may access physical memory space or 
110 space. Peripheral devices in the system may ei­
ther be memory-mapped, or liD-mapped, or both. 
Physical memory addresses range from OOOOOOOOH 
to FFFFFFFFH (4 gigabytes). 110 addresses range 
from OOOOOOOOH to OOOOFFFFH (64 Kbytes) for pro­
grammed 110. See Figure 7.1. 
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FTfFFFFFH r---..., 

PHYSICAL 
MEMORY 

4GBYTE 

~ I~!~ 

I ~ /NOT/). 

~ 
OOOOOOOOH ..... __ .....1 

./~ 
OOOOFFFFH B } ACCESSIBLE 

64kBYTE PROGRAMMED 
OOOOOOOOH I/O SPACE 240440-33 

Physical Memory Space 1/0 Space 

Figure 7.1. Physical Memory and I/O Spaces 

7.1.2 MEMORY AND 1/0 SPACE 
ORGANIZATION 

The 486 microprocessor datapath to memory and 
input/output (I/O) spaces can be 32-, 16- or 8-bits 
wide. The byte enable signals, BEO#-BE3#, allow 
byte granularity when addressing any memory or I/O 
structure whether 8, 16 or 32 bits wide. 

The 486 microprocessor includes bus control pins, 
8516 # and B58 #, which allow direct connection to 
16- and 8-bit memories and I/O devices. Cycles to 
32·, 16- and 8-bit may occur in any sequence, since 
the 858# and B516# signals are sampled during 
each bus cycle. 

32·bit wide memory and I/O spaces are organized 
as arrays of physical 4-byte words. Each memory or 
I/O 4-byte word has four individually addressable 
bytes at consecutive byte. addresses (see Figure 
7.2). The lowest addressed byte is associated with 
data signals 00-07; the highest-addressed byte 
with 024-031. Physical 4-byte words begin at ad-
dresses divisible by four. I 
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32-81t Wide Organization 

~'~'"I I I I I~'~ 
00000003H • • .~ OOOOOOOOH 

BE3# BE2# BE1# BEO# 
240440-34 

16-8it Wide Organization 

'~~ITJ~~ 
00000001 H '- • ~ OOOOOOOOH 

BHE# BLE# 
240440-35 

Figure 7.2. Physical Memory 
and I/O Space Organization 
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16-bit memories are organized as arrays of physical 
2-byte words. Physical 2-byte words begin at ad· 
dresses divisible by two. The byte enables BEO#­
BE3#, must be decoded to A1, BLE# and BHE# to 
address 16-bit memories (see 5ection 7.1.4). 

To address 8-bit memories, the two low order ad· 
dress bits AO and A 1, must be decoded from BEO # -
BE3 #. The same logic can be used for 8- and 16-bit 
memories since the decoding logic for BLE# and AO 
are the same (see 5ection 7.1.4). 

7.1.3 DYNAMIC DATA BUS SIZING 

Dynamic data bus sizing is a feature allowing proc· 
essorconnection to 32-, 16- or 8-bit buses for memo 
ory or 110. A processor may connect to all three bus 
sizes. Transfers to or from 32-, 16- or 8-bit devices 
are supported by dynamically determining the bus 
width during each bus cycle. Address decoding cir· 
cuitry may assert B516# for 16-bit devices, or 
B58 # for 8-bit devices during each bus cycle. 858 # 
and 8516# must be negated when addressing 32-
bit devices. An 8-bit bus width is selected if both 
8516# and 858# are asserted. 

8516# and 858# force the 486 microprocessOr to 
run additional bus cycles to complete requests larg· 
er than 16- or 8 bits. A 32-bit transfer will be convert· 
ed into two 16-bit transfers (or 3 transfers if the data 
is misaligned) when 8516# is asserted. Asserting 
858 # will convert a 32-bit transfer into four 8-bit 
transfers. 

Extra cycles forced by 8516# or 858# should be 
viewed as independent bus cycles. B516# or 858# 
must be driven active during each of the extra cycles 
unless the addressed device has the ability to 
change the number of bytes it can return between 
cycles. 

The 486 microprocessor will drive the byte enables 
appropriately during extra cycles forced by 858 # 
and 8516#. A2-A31 will not change if accesses are 
to a 32-bit aligned area. Table 7.3 shows the set of 
byte enables that will be generated on the next cycle 
for each of the valid possibilities of the byte enables 
on the current cycle. 

The dynamic bus sizing feature of the 486 micro· 
processor is significantly different than that of the 
386 microprocessor. Unlike the 386 microprocessor, 
the 486 microprocessor requires that data bytes be 
driven on the addressed data pins. The simplest ex· 
ample of this function is a 32-bit aligned, 8516# 
read. When the 486 microprocessor reads the two 
high order bytes, they must be driven on the data 
bus pins 016-031. The 486 microprocessor ex· 
pects the two low order bytes on 00-015. The 386 
microprocessor expects both the high and low order 
bytes on 00-015. The 386 microprocessor always 
reads or writes data on the lower 16 bits of the data 
bus when 8516# is asserted. < 

The external system must contain buffers to enable 
the 486 microprocessor to read and write data on 

. the appropriate data bus pins. Table 7.4 shows the 
data bus lines where the 486 microprocessor ox· 
pects data to be returned for each valid combination 
of byte enables and bus sizing options. 

Valid data will only be driven onto data bus pins cor· 
responding to active byte enables during write cy· 
cles. Other pins in the data bus may be driven but 
they will not contain valid data. Unlike tne 386 micro· 
processor, the 486 microprocessor will not duplicate 
write data onto parts of the data bus for which the· 
corresponding byte enable is negated. 

Table 7.3. Next Byte Enable Values for BSn# Cycles 

Current Next with BS8# Next with BS 16 # 
BE3# BE2# BE1# BEO# BE3# BE2# BE1# BEO# BE3# BE2# BE1# BEO# 

1 1 1 0 n n n n n n n n 
1 1 0 0 1 1 0 1 n n n n 
1 0 0 0 1 0 0 1 1 0 1 1 
0 0 0 0 0 0 0 1 0 0 1 1 
1 1 0 1 n n n n n n n n 
1 0 0 1 1 0 1 1 1 0 1 1 
0 0 0 1 0 0 1 1 0 0 1 1 
1 0 1 1 n n n n n n n n 
0 0 1 1 0 1 1 1 n n n n 
0 1 1 1 n n 1"1 n n n n n 

"n" means that another bus cycle will not be reqUired to satisfy the request. 
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Table 7.4. Data Pins Read with Different-Bus Sizes 

BE3# BE2# BEH BEO# 

1 1 1 0 
1 1 0 O. 
1 0 0 0 
0 0 0 0 
1 1 0 1 
1 .0 0 1 
0 0 0 1 
1 0 1 1 
0 0 1 1 
0 1 1 1 

7.1.4 INTERFACING WITH 8-, 16- AND 32-BIT 
MEMORIES 

In 32-bit physical memories such as Figure 7.3, each 
4-byte word begins at a byte address that is a multi­
ple of four. A2-A31 are used as a 4-byte word se­
lect. BEO#-BE3# select individual bytes within the 
4-byte word. B88# and B816# are negated for all 
bus cycles involving the 32-bit array. 

32 DATA BUS (DO-D31) 

486™ 32-BIT 
CPU ADDRESS BUS (BEO#-BE3#.A2-A31) MEMORY 

JeS8# Jas 16# 

"HIGH" "HIGH" 
240440-36 

Figure 7.3. i486™ Microprocessor 
with 32-Bit Memory 

w/o BS8#/BS16# wBS8# WBS16# 

07-00 07-00 07-00 
015-00 07-00 015-00 
023-00 07-00 015-00 
031-00 07-00 015-00 
015-08 015-08 015-08 
023-08 015-08 015-08 
031-08 015-08 015-08 
023-016 023-016 023-016 
031-016 023-.016 031-016 
031-024 031-024 031-024 

16- and 8-bit memories require external byte swap­
ping logic for routing data to the appropriate data 
lines and logic for generating BHE #. BLE # and A 1. 
In systems where mixed memory widths are used. 
extra address decoding logic is necessary to assert 
B816# or B88#. 

Figure 7.4 shows the 486 microprocessor address 
bus interface to 32-, 16- and 8-bit memories. To ad­
dress 16-bit memories the byte enables must be 
decoded to produce A1, BHE# and BLE# (AO). For 
8-bit wide memories the byte enables must be de­
coded to produce AO and A 1. The same byte select 
logic can be used in 16-· and 8-bit systems since 
BLE# is exactly the same as AO (see Table 7.5). 

BEO#-BE3# can be decoded as shown in Table 
7.5 to generate A1, BHE# and BLE#. The byte se­
lect logic necessary to generate BHE # and BLE # is 
shown in Figure 7.5. 

486 ™ Microprocessor 
Address Bus (A31-A2 BEO#-BE3#) 32-Blt 

Memory 

s8#1 -1 8516# 
A3.1-A2 

B 

Address 
~ 

16-Blt 
Decode BHE#. BLE#. Al 

Memory 

BEO#-BE3# Byte 
Select Logic 

AO(BLE#), Al 
B-Blt 

A31-A2 Memory 

240440-37 

Figure 7.4. Addressing 16- and 8-Bit Memories 
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Table 7.5. Generating A1, BHE# and BLE# for Addressing 16-Bit Devices 

i486TM CPU Signals 8, 16-Bit Bus Signals 
Comments 

BE3# BE2# BE 1# BEO# A1 BHE# BLE# (AO) 

H* H* H* H* x x x x-no active bytes 
H H H L L H L 
H H L H L L H 
H H L L L L L 
H L H H H H L 
H* L* H* L*, x x x x-not contiguous bytes 
H L L H L L H 
H L L L L L L 
L H H H H L H 
L* H* H* L* x x x x-not contiguous bytes 
L* H* L* H* x x x x-not contiguous bytes 
L* H* L* L* x x x x-not contiguous bytes 
L L H H H L L 
L* - L* H* L* x x x x-not contiguous bytes 
L L L H L L H 
L L L L L L L 

BLE# asserted when 00-07 of 16-bit bus is active. 
BHE# asserted when 08-015 of 16-bit bus is active. 
A 1 low for all even words; A 1 high for all odd words. --_ .. 
Key: 

x = don't care 
H = high voltage level 
L = low voltage level 
* = a non-occurring pattern of Byte Enables; either none are asserted, 

or the pattern has Byte Enables asserted for non-contiguous bytes 

BEO# 

_BE_1_#-....[--'~ 
BE1# 

_BE_3_#-....[--'~ 
240440-38 240440-39 

240440-40 

Figure 7.5. Logic to Generate A1, BHE# and BLE# for 16-Bit Busses 

Combinations of BEO#-BE3# which never occur 
are those in which two or three asserted byte en­
ables are separated by one or more negated byte 
enables, These combinations are "don't care" con­
ditions in the decoder. A decoder can use the non­
occurring BEO#-BE3# combinations to its best ad­
vantage. 
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Figure 7.6 shows a 486 microprocessor data bus in­
terface to 16- and 8-bit wide memories. External 
byte swapping logic is needed on the data lines so 
that data is supplied to, and received from the 486 
microprocessor on the correct data pins (see Table 
7.4). 
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00-07 4 
08-015 4 32-Blt 

486 TN Microprocessor 016-023 4 Memory 
024-031 4 

8S8 # 
BS16# (A2-A31, BEO#-BE3#) 

Byte 
16 16-Blt Swap 

Logic Memory 

~I I Address Byte 
! 8 8-Blt 

Decode Swap 4 , Memory 
Logic 

240440-74 

Figure 7.6. Data Bus Interface to 16- and 8-bit Memories 

7.1.5 DYNAMIC BUS SIZING DURING CACHE 
LINE FILLS 

88811 and BS16# can be driven during cache line 
fills. The 486 microprocessor will generate enough 
8- or 16-bit cycles to fill the cache line. This can be 
up to 16 8-bit cycles. 

The external system should assume that all byte en­
ables are active for the first cycle of a cache line fill. 
The 486 microprocessor will generate proper byte 
enables for subsequent cycles in the line fill. Table 
7.6 shows the appropriate AO (BLE#), A1 and 
BHE# for the various combinations of the 486 mi­
croprocessor byte enables on both the first and sub­
sequent cycles of the cache line fill. The ..... marks 
all combinations of byte enables that will be generat­
ed by the 486 microprocessor during a cache line fill. 

7.1.6 OPERAND ALIGNMENT' 

Physical 4-byte words begin at addresses that are 
multiples of four. It is possible to transfer a logical 
operand that spans more than one physical 4-byte 
word of memory or I/O at the expense of extra cy­
cles. Examples are 4-byte operands beginning at ad­
dresses that are not evenly divisible by 4, or 2-byte 
words split betwee~ two physical· 4-byte words. 
These are referred to as unaligned transfers. 

Operand alignment and data bus size dictate when 
multiple bus cycles are required. Table 7.7 describes 
the transfer cycles generated for all combinations of 
logical operand lengths, alignment, and data bus siz­
ing. When multiple cycles are required to transfer· a 
multi-byte logical operand, the highest-order bytes 
are transferred first. For example, when the proces­
sor does a 4-byte unaligned read beginning at loca­
tion x11 in the 4-byte aligned space, the three high 
order bytes are read in the first bus cycle. The low 
byte is read in a subsequent bus cycle. 

Table 7.6. Generating AO, A 1 and BHE # from the 1486™ Microprocessor Byte Enables 

BE3# BE2# BE 1# BEO# 
First Cache Fill Cycle Any Other Cycle 

AO A1 BHE# AO' A1 BHE# 

1 1 1 0 0 0 0 0 0 1 
1 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 

·0 0 0 0 0 0 0 0 0 0 
1 1 0 1 0 0 0 1 0 0 
1 0 0 1 - 0 0 0 1 q 0 

·0 0 0 1 0 0 0 1 0 0 
1 0 1 1 0 0 0 0 1 1 

·0 0 1 1 0 0 0 0 1 0 
·0 1 1 1 0 0 0 1 1 0 
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Table 7.7. Transfer Bus Cycles for Bytes, Words and Dwords 

Byte-Length of Logical Operand 

1 2 4 

Physical Byte Address in 
xx 00 01 10 11 00 01 10 11 

Memory (Low Order Bits) 

Transfer Cycles 
b 

hb 
d 

hb hw h3 
over 32-Bit Bus 

w w w 
Ib 13 Iw Ib 

Transfer Cycles over Ib hb Iw hb hw mw 
16-Bit Data Bus b w hb w Ib hw Ib Iw hb 

= BS16# Asserted -

Transfer Cycles over 
8-Bit Data Bus 

= BS8 # Asserted 

KEY: 
b = byte transfer 
w = 2-byte transfer 
3 = 3-byte transfer 
d = 4-byte transfer 

b Ib 

hb 

h = high-order portion 
I = iow·order portion 
m = mid·order portion 

Ib 

hb 

The function of unaligned transfers with dynamic 
bus sizing is not obvious. When the external systems 
asserts BS16# or BS8# forcing extra cycles, low· 
order bytes or words are transferred first. (opposite 
to the example above). When the 486 microproces' 
sor requests a 4-byte read and the external system 
asserts BS16#, the lower 2 bytes are read first fol· 
lowed by the upper 2 bytes. 

In the unaligned transfer described above, the proc· 
essor requested three bytes on the first cycle. If the 
external system asserted BS 16 # during this 3-byte 
transfer, the lower word is transferred first followed 
by the upper byte. In the final cycle the lower byte of 
the 4-byte operand is transferred as in the 32-bit ex· 
ample above. 

7.2 Bus Functional Description 

The 486 microprocessor supports a wide variety of 
bus transfers to meet the needs of high performance 
systems. Bus transfers can be single cycle or multi· 
pie cycle, burst or non·burst, cacheable or non· 
cacheable, 8-, 16- or 32-bit, and pseudo·locked. To 
support multiprocessing systems there are cache in· 
validation cycles and locked cycles. 

row Ib 

Ib hb mhb mlb 

Ib hb mlb Ib hb mhb 

hb Ib mhb mlb Ib hb 
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hb mhb mlb Ib 

4-Byte Operand Ib mlb I mhb I hb 

i t 
byte with byte with 
lowest highest 
address address 

This section begins with basic non·cacheable non· 
burst single cycle transfers. It moves on to multiple 
cycle transfers and introduces the burst mode. 
Cacheability is introduced in Section 7.2.3. The reo 
maining sections describe locked, pseudo·locked, 
invalidate, bus hold and interrupt cycles. 

Bus cycles and data cycles are discussed in this 
section. A bus cycle is at least two clocks long and 
begins with ADS# active in the first clock and ready 
active in the last clock. Data is transferred to or from 
the 486 microprocessor during a data cycle. A bus 
cycle contains one or more data cycles. 

Refer to Section 7.2.13 for a description of the bus 
states shown in the timing diagrams. 

7.2.1 NON-CACHEABLE NON-BURST SINGLE 
CYCLE 

7.2.1.1 No Wait States 

The fastest non·burst bus cycle that the 486 micro· 
processor supports is two clocks long. These cycles 
are called 2-2 cycles because reads and writes take 
two cycles each. The first 2 refers to reads and the 
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second to writes. For example, if a wait state needs 
to be a!;lded to a write, the cycle would be called 2-3. 

Basic two clock read and write cycles are shown in 
Figure 7.7. The 486 microprocessor initiates a cycle 
by asserting the address status signal (AOS#) at the 
rising edge of the first clock. The AOS# output indi­
cates that a valid bus cycle definition and address is 
available on the cycle definition lines and address 
bus. 

The non-burst ready input (ROY #) is returned by the 
external system in the second clock. ROY # indi­
cates that the external system has presented valid 
data on the data pins in response to a read or the 
external system has accepted data in response to a 
write. 

The 486 microprocessor samples ROY # at the end 
of the second clock. The cycle is complete if ROY # 
is active (LOW) when sampled. Note that ROY # is 
ignored at the end of the first clock of the bus cycle. 

The burst last signal (BLAST#) is asserted (LOW) 
by the 486 microprocessor during the second clock 
of the first cycle in all bus transfers illustrated in Fig­
ure 7.7. This indicates that each transfer is complete 
after a single cycle. The 486 microprocessor asserts 
BLAST# in the last cycle of a bus transfer. 

The timing of the parity check' output (PCHK#) is 
shown in Figure 7.7. The 486 microprocessor drives 
the PCHK# output one clock after ready terminates 
a read cycle. PCHK# indicates the parity status for 
the data sample~ at the end of the previous clock. 
The PCHK# signal can be used by the external sys­
tem. The 486 microprocessor does nothing in re­
sponse to the PCHK# output. 

7.2.1.2 Inserting Walt States 

The external system can insert wait states into the 
basic 2-2 cycle by driving ROY # inactive at the end 
of the second clock. ROY # must be driven inactive 
to insert a wait state. Figure 7.8 illustrates a simple 
non-burst, non-cacheable signal with one wait state 
added. Any number of wait states can be added to a 
486 microprocessor bus cycle by maintaining ROY # 
inactive. ' 

The burst ready input (BROY #) must be driven inac­
tive on all clock edges where ROY # is driven inac­
tive for proper operation of these simple non-burst 
cycles. 
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7.2.2 MULTIPLE AND BURST CYCLE BUS 
TRANSFERS 

Multiple cycle bus transfers can be caused by inter­
nal requests from the 486 microprocessor or by the 
external memory system. An internal' request for a 
64-bit floating point load or a 128-bit pre-fetch must 
take more than one cycle. Internal requests for un­
aligned data may also require multiple bus cycles. A 
cache line fill require~ multiple cycles to complete. 
The external system can cause a multiple cycle 
transfer when it can only supply 8 or 16 bits per 
cycle. 

Only multiple cycle transfers caused by internal re­
quests are considered in this section. Cacheable cy­
cles and 8- and 16-bit transfers are covered in Sec­
tions 7.2.3 and 7.2.5. 

7.2.2.1 Burst Cycles 

The 486 microprocessor can accept burst cycles for 
any bus requests that, require more than a single 
data cycle. During burst cycles, anew data item is 
strobed into the 486 microprocessor every clock 
rather than every other clock as in non-burst cycles. 
The fastest burst cycle requires 2 clocks for the first 
data item with subsequent data items returned every 
clock. 

The 486 microprocessor is capable of bursting a 
maximum of 32 bits during a write. Burst writes can 
only occur if 8S8# or BS16# is asserted. For exam­
ple, the 486 microprocessor can burst write four 8-
bit operands or two 16-bit operands in a single burst 
cycle. But the 486 microprocessor cannot burst mUl­
tiple 32-bit writes in a single burst cycle. 

Burst cycles begin with the 486 microprocessor driv­
ing out an address and asserting AOS# in the same 
manner as non-burst cycles. The 486 microproces­
sor indicates that it is willing to perform a burst cycle 
by holding the burst last signal ,(BLAST #) inactive in 
the second clock of the cycle. The external system 
indicates its willingness to do a burst cycle by reiurn­
ing the burst ready signal (BROY#) active. 

The addresses of the data items in a b'urst cycle will 
all fall within the same 16-byte aligned area (corre­
sponding to an internal 486 microprocessor cache 
line). A 16-byte aligned area begins at location 
XXXXXXXO and ends at location XXXXXXXF. During 
a burst cycle, only BEO-3#, A2, and Aa may 
change. A4-Aa1, MIIO#, O/C#, and W/R# will re­
main stable throughout a burst. Given the first ad­
dress in a burst, external hardware can easily calcu­
late the address of subsequent transfers in advance. 
An external memory system can be designed to 
quickly fill the 486 microprocessor internal cache 
lines. 
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TI T1 12 T1 T2 T1 T2 T1 T2 TI 
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Figure 7.7. Basic 2-2 Bus Cycle 
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Figure 7.8. Basic 3-3 Bus Cycle 

4-95 



inter i486TM MICROPROCESSOR 

Burst cycles are _not limited to cache line fills. Any 
multiple cycle read request by the 486 microproces-

. sor can be converted into a burst cycle. The 486 
microprocessor will only burst ,he number of bytes 
needed to complete a transfer. For example, eight 
bytes will be bursted in for a 64-bit floating point 
non-cacheable read. 

The external system- converts a multiple cycle re­
quest into a burst cycle by returning BROY # active 
rather than ROY # (non-burst ready) in the first cycle 
of a transfer. For cycles that cannot be bursted such 
as interrupt acknowledge and halt, BROY # has the 
same effect as ROY #. BROY # is ignored if both 
BROY # and ROY # are returned in the same clock. 
Memory areas and peripheral devices that cannot 
perform bursting must terminate cycles with ROY # . 

7.2.2.2 Terminating Multiple and 
Burst Cycle Transfers 

The 486 microprocessor drives BLAST #. inactive for 
all but the last cycle in a multiple cycle transfer. 
BLAST # is driven inactive in the first cycle to inform 
the external system that the transfer could take ad­
ditional cycles. BLAST # is driven active in the last 
cycle of the transfer indicating that the next time 
BROY # or ROY # is returned the transfer is com­
plete. 

BLAST# is not valid in the first clock of a bus cycle. 
It should be sampled only in the second and subse­
quent clocks when ROY # or BROY # is returned. 

The number of cycles in a transfer is a function of 
several factors including the number of bytes the mi­
croprocessor needs to complete an internal request 
(1, 2, 4, 8, or 16), the state of the bus size inputs 
(BS8# and BS16#); the state of the cache enable 
input (KEN#) and alignment of the data to be trans­
ferred. 

When the 486 microprocessor initiates a request it 
knows how many bytes will be transferred and if the 
data is aligned. The .external system must tell the 
microprocessor whether the data is cacheable (if the 
transfer is a read) and the width of the bus by return­
ing the state of the KEN #, BS8 # and BS 16 # inputs 
one clock before ROY # or BROY # is returned. The 
486 microprocessor determines how many cycles a 
transfer will take based on its internal information 
and inputs from the external system. 

BLAST # is not valid in the first clock of a bus cycle 
because the 486 microprocessor cannot determine 
the number of cycles a transfer will take until the 
external system returns KEN#, BS8# and BS16#. 
BLAST# should only be sampled in the second and 
subsequent clocks of a cycle when the external sys­
tem returns ROY # or BROY #. 

7.2.2.3 Non-Cacheable, Non-Burst, Multiple 
Cycle Transfers -

Figure 7.9 illustrates a 2 cycle non-burst, non-cache­
able multiple cycle read. This transfer is simply a 
sequence of two single cycle transfers. The 486 mi­
croprocessor indicates to the external system that 
this is a multiple cycle transfer by driving BLAST# 
inactive during the second clock of the first cycle. 
The external system returns ROY # active indicating 
that it will not burst the data. The external system 
also indicates that the data is not cacheable by re­
turning KEN # inactive one clock before it returns 
ROY # active. When the 486 microprocessor sam­
ples ROY # active it ignores BROY #. 

Each cycle in the transfer begins when AOS# is 
driven active and the cycle is complete when the 
external system returns ROY # active. 

The 486 microprocessor indicates the last cycle of 
the transfer by driving BLAST# active. The next 
ROY # returned by the external system termihates 
the transfer. 
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7.2.2.4 Non-Cacheable Burst Cycles 

The external system converts a multiple cycle re­
quest into a burst cycle by returning BROY # active 
rather than ROY # in the first cycle of the transfer. 
This is illustrated in Figure 7.10. 

There are several features to note in the burst read. 
AOS # is only driven active during the first cycle of 
the transfer. ROY # must be driven inactive when 
BROY # is returned active. 

BLAST # behaves exactly as it does in the non-burst 
read. BLAST # is driven inactive in the second clock 
of the first cycle of the transfer indicating more cy­
cles to follow. In the last cycle, BLAST# is driven 
active telling the external memory system to end the 
burst after returning the next BROY #. 
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Figure 7.9. Non-Cacheable, Non-Burst, Multiple Cycle Transfers 
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Figure 7.10. Non-Cacheable Burst Cycle 
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7.2.3 CACHEABLE CYCLES 

Any memory read can become a cache fill operation. 
The external memory system can allow a read re­
quest to fill a cache line by returning KEN # active 
one clock before ROY # or BROY # during the first 
cycle of the transfer on the external bus. Once 
KEN # is asserted and the remaining three require­
ments described below are met, the 486 microproc­
essor will fetch an entire cache line regardless of the 
state of KEN #. KEN # must be returned active in . 
the last cycle of the transfer for the data to be writ­
ten into the internal cache. The 486 microprocessor 
will only convert memory reads or prefetches into a 
cache filL 

KEN# is ignored during write or 1/0 cycles. Memory 
writes will only be stored in the on-Chip cache if 
there is a cache hit. 1/0 space is never cached in 
the internal cache. 

To transform a read or a prefetch into a cache line 
fill the following conditions must be met: 

1. The KEN# pin must be-asserted one clock pri­
or to ROY # or BROY # being returned for the 
first data cycle. 

2. The cycle must be of the type that can be inter­
nally cached. (Locked reads, 110 reads, and in­
terrupt acknowledge cycles are never cached). 

3. The page table entry must have the page cache 
disable bit (PCO) set to O. To cache a page 
table entry, the page directory must have 
PCO=O. To cache reads or prefetches when 
paging is disabled, or to cache the page direc­
tory entry, control register 3 (CR3) must have 
PCO=O. 

4. The cache disable (CO) bit in control register 0 
(CRO) must be clear. 

External hardware can determine when the 486 mi­
croprocessor has transformed a read or prefetch 
into a cache fill by examining the KEN#, MIIO#, 
O/C#, W/R#, LOCK#, and PCD pins. These pins 
convey to the system the outcome of conditions 1-3 

. in the above list. In addition, the 486 drives PCO high 
whenever the CO bit in CRO is set, so that external 
hardware can evaluate condition 4. 

Cacheable cycles can be burst or non-burst. 
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7.2.3.1 Byte Enables during a Cache Line Fill 

For the first cycle in the line fill, the state of the byte 
enables should be ignored. In a non-cacheable 
memory read, the byte ,enables indicate the bytes 
actually required by the memory or -code fetch. 

The 486 microprocessor expects to receive valid 
data on its entire bus (32 bits) in the first cycle of a 
cache line fill. Data should be returned with the as­
sumption that all the byte enable pins are driven ac­
tive. However if BS8# is asserted only one byte 
need be returned on data lines 00-07. Similarly if 
BS16# is asserted two bytes should be returned on 
00-015. 

The 486 microprocessor will generate the addresses 
and byte enables for all subsequent cycles in the 
line fill. The order in which data is read during a line 
fill depends on the address of the first item read. 
Byte ordering is discussed in Section 7.2.4. 

7.2.3.2 Non-Burst Cacheable Cycles 

Figure 7.11 shows a non-burst cacheable cycle. The 
cycle becomes a cache fill when the 486 microproc­
essor samples KEN # active at the end of the first 
clock. The 486 microprocessor drives BLAST# in­
active in the second clock in response to KEN # . 
BLAST # is driven inactive because a cache fill re­
quires 3 additional cycles to complete. BLAST # re­
mains inactive until the last transfer in the cache line 
fill. 

Note· that this cycle would be a single bus cycle if 
KEN # was not sampled active at the end of the first 
clock. The subsequent three reads would not have 
happened since a cache fill was not requested. 

The BLAST # output is invalid in the first clock of a 
cycle. BLAST# may be active during the first clock 
due to earlier inputs. Ignore BLAST# until the sec­
ond clock. 

Ouring the first cycle of the cache line fill the exter­
nal system should treat the byte enables as if they 
are all active. In subsequent cycles in the burst, the 
486 microprocessor drives the address lines and 
byte enables (see Section 7.2.4.2 for Burst and 
Cache Line Fill-Order). 
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Figure 7.11. Non-Burst, Cacheable Cycles 

7.2.3.3 Burst Cacheable Cycles 

Figure 7.12 illustrates a burst mode cache fill. As in 
Figure 7.11, the transfer becomes a cache line fill 
when the external system returns KEN # active at 
the end of the first clock in the cycle. 
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The external system informs the 486 microproces­
sor that it will burst the line in by driving BRDY # 
active at the end of the first cycle in the transfer. 

Note that during a burst cycle ADS# is only driven 
with the first address. 
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Figure 7.12. Burst Cacheable Cycle 

7.2.3.4 Effect of Changing KEN# during a 
Cache Line Fill 

KEN# can change multiple times as long as it ar­
rives at its final value in the clock before ROY # or 
BROY# is returned. This is illustrated in Figure 7.13. 
Note that the timing of BLAST# follows that of 
KEN # by one clock. In the first clock KEN # is driv­
en active converting the cycle into a cache fill and in 
the second clock BLAST# is driven inactive in re­
sponse. In the second clock, KEN # is driven inac-

tive converting the cache fill back to a normal cycle 
and BLAST # responds by going active in the next 
clock. Finally in the third clock KEN # goes active 
again converting the cycle to a cache fill and 
BLAST # go inactive in the next clock. ROY # is re­
turned active in the fourth clock starting the cache 
fill. 

KEN # can also change multiple times before a burst 
cycle as long as it arrives at its final value one clock 
before ready is returned active. 
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Figure 7.13. Effect of Changing KEN# 

7.2.4 BURST MODE DETAILS 

7.2.4.1 Adding Wait States to Burst Cycles 

Burst cycles need not return data on every clock. 
The 486 microprocessor will only strobe data into 
the chip when either RDY # or BRDY # ar.e active. 
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Driving BRDY # and RDY # inactive adds a wait 
state to the transfer. A burst cycle where two clocks 
are required for every burst item is shown in Figure 
7.14. 
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Figure 7.14. Slow Burst Cycle 

7.2.4.2 Burst and Cache Line Fill Order 

The burst order used by the 486 microprocessor is 
shown in Table 7.7. Non-burst cache line fills also 
follow the order. in Table 7.7. 

First 
Addr. 

0 
4 
8 
C 

240440-57 

Table 7.7. Burst Order 

Second Third Fourth 
Addr. Addr. Addr. 

4 8 C 
0 C 8 
C 0 4 
8 4 0 

The microprocessor presents each request for data 
in an order determined by the first address in the 
transfer. For example, if the first address was 104 
the next. three addresses in the burst will be 100, 
10C and 108. An example of burst address sequencing is shown in 

Figure 7.15. 

4-102 



i486™ MICROPROCESSOR 

n T1 T2 T2 T2 T2 TI 

elK 

ADS# \1...---1...-11 

A2-A31 

RDY# 

BRDY# 

I 

KEN# W 
BLAST# 

DATA 

240440-58 

Figure 7.15. Burst Cycle Showing Order of Addresses 

The sequences shown in Table 7.7 accommodate 
systems with 64-bit busses as well as systems with 
32-bit data busses. The sequence applies to all 
bursts, regardless of whether the purpose of the 
burst is to fill a cache line, do a 64-bit read, or do a 
pre-fetch. If either BS8# or BS16# is returned ac­
tive, the 486 microprocessor completes the transfer 
of the current 32-bit word before- progressing to the 
next 32-bit word. For example, a BS16# burst to 
address 4 has the following order: 4-6-0-2-C-E-8-A. 

7.2.4.3 Interrupted Burst Cycles 

Some memory systems may not be able to respond 
with burst cycles in the order defined in Table 7.7. 
To support these systems the 486 microprocessor 
allows a burst cycle to be interrupted at any time. 

The 486 microprocessor will automatically generate 
another normal bus cycle after being interrupted to 
complete the data transfer. This is called an inter­
rupted burst cycle. The external system can respond 
to an interrupted burst cycle with another burst cy­
cle. 

The external system can interrupt a burst cycle by 
returning RDY # instead of BRDY #. RDY # can be 
returned after any number of data cycles terminated 
with BRDY#. . 

An example of an interrupted burst cycle is shown in 
Figure 7.16. The 486 microprocessor immediately 
drives ADS# active to initiate a new bus cycle after 
RDY# is returned active. BLAST# is driven inactive 
one clock after ADS # begins the second bus cycle 
indicating that the transfer is not complete. 
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Figure 7.16. Interrupted Burst Cycle 

KEN # need not be returned active in the first data 
cycle of the second part of the transfer in Figure 
7.16. The cycle had been converted to a cache fill in 
the first part of the transfer and the 486 microproc­
essor expects the cache fill to be completed. Note 
that the first half and second half of the transfer in 
Figur~ 7.16 are each two cycle burst transfers. 

The order in which the 486 microprocessor requests 
operands during an interrupted burst transfer is de­
termined by Table 7.7. Mixing ROY# and BROY# 
does not change the order in which operand ad­
dresses are requested by the 486 microprocessor. 

An example of the order in which the 486 microproc­
essor requests operands during a cycle in which the 
external system mixes ROY # and BROY # is shown 
in Figure 7.17. The 486 microprocessor initially re­
quests a transfer beginning at location· 104. The 
transfer becomes a cache line fill when the external 
system returns KEN # active. The first cycle of the 
cache fill transfers the contents of location 104 and 
is terminated with ROY #. The 486 microprocessor 
drives out a new request (by asserting AOS#) to 
address 100. If the external system terminates the 
second cycle with BROY #, the 486 microprocessor 
will next request! expect address 10C. The correct 
order is determined by the first cycle in the transfer, 
which may not be the first cycle in the burst if the 
system mixes ROY # with BROY #. 
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Figure 7.17. Interrupted Burst Cycle with Unobvious Order of Addresses 

7.2.5 8- AND 16-BIT CYCLES 

The 486 microprocessor supports both 16- and 8-bit 
external busses through the BS16# and BS8# in­
puts. BS 16 # and BS8 # allow the external system to 
specify, on a cycle by cycle basis, whether the ad­
dressed component can supply 8, 16 or 32 bits. 
BS16# and BS8# can be used in burst cycles as 
well as non-burst cycles. If both BS16# and BS8# 
are returned active for any bus cycle, the 486 micro­
processor will respond as if only BS8# were active. 

The timing of BS16# and BS8# is the same as that 
of KEN#. BS16# and BS8# must be driven active 
before the first ROY # or BRDY # is driven active. 

Driving the BS16# and BS8# active can force the 
486 microprocessor to run additional cycles to com­
plete what would have been only a single 32-bit cy­
cle. BS8# and BS16# may change the state of 
BLAST # when they force subsequent cycles from 
the transfer. 

Figure 7.18 shows an example in which B88# 
forces the 486 microprocessor to run two extra cy­
cles to complete a transfer. The 486 microprocessor 
issues a request for 24 bits of information. The ex­
ternal system drives BS8 # active indicating that 
only eight bits of data can be supplied per cycle. The 
486 microprocessor issues two extra cycles to com­
plete the transfer. 
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Figure 7.18. 8·Bit Bus Size Cycle 

Extra cycles forced by the 8S16# and 8S8# should 
be viewed as independent bus cycles. 8S16# and 
8S8 # should be driven active for each additional 
cycle unless the addressed device has the ability to 
change the number of bytes it can return between 
cycles. The 486 microprocessor will drive 8LAST# 
inactive until the last cycle before the transfer is 
complete. 

Refer to Section 7.1.3 for the sequencing of ad­
dresses while 8S8# or 8S16# are active. 

8S8# and 8S16# operate during burst cycles in ex­
actly the same manner as non-burst cycles. For ex­
ample, a single non-cacheable read could be trans­
ferred by the 486 microprocessor as four 8-bit burst 
data cycles. Similarly, a single 32-bit write could be 
written as four 8-bit burst data cycles. An example of 
a burst write is shown in Figure 7.19. 8urst writes 
can only occur if 8S8# or 8S16# is asserted. 
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Figure 7.19. Burst Write as a Result of BS8# or BS16# 

7.2.6 LOCKED CYCLES 

Locked cycles are generated in software for any in· 
struction that performs a read·modify-write opera­
tion. During a read-modify-write operation the proc­
essor ,can read and modify a variable in external 
memory and be assured that the variable is not ac­
cessed between the read and write. 

Locked cycles are automatically generated during 
certain bus transfers. The xchg (exchange) instruc­
tion generates a locked cycle when one of its oper­
ands is memory based. Locked cycles are generat­
ed when a segment or page table entry is updated 

and during interrupt acknowledge cycles. Locked cy­
cles are also generated when the LOCK instruction 
prefix is used with selected instructions. 

Locked cycles are implemented in hardware with the 
LOCK # pin. When LOCK # is active, the processor 
is performing a read-modify-write operation and the 
external bus should not be relinquished until the cy­
cle is complete. Multiple reads or writes can be 
locked. A locked cycle is shown in Figure 7.20. 
LOCK # goes active with the address and bus defini­
tion pins at the beginning of the first read cycle and 
remains active until ROY # is returned for the last 
write cycle. 
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Figure 7.20. Locked Bus Cycle 

When LOCK # is active, the 486 microprocessor will 
recognize address hold and backoff but will not rec­
ognize bus hold. It is left to the external system to 
properly arbitrate a central bus when the 486 micro­
processor generates LOCK # . 

7.2.7 PSEUDO-LOCKED CYCLES 

Pseudo-locked cycles assure that no other master 
will be given control of the bus during operand trans­
fers which take more than one bus cycle. Examples 
include 64-bit floating point read and writes, 64-bit 
descriptor loads and cache line fills. 

Pseudo-locked transfers are indicated by the 
PLOCK # pin. The memory operands must be 
aligned for correct operation of a pseudo-locked cy-
cle. . 

PLOCK # need not be examined during burst reads. 
A 64-bit aligned operand can be retrieved in one 
burst (note: this is only valid in systems that do not 
interrupt bursts). 

The system must examine PLOCK # during 64-bit 
writes since the 486 microprocessor cannot burst 
write 1"110re than 32 bits. A 64-bit write will be driven 
out as two non-burst bus cycles. BLAST# is assert­
ed during both writes since a burst is not possible. 
PLOCK # isa.sserted during the first write to indicate 
that another write follows. This behavior is shown in 
Figure 7.21. 

The first cycle of a 54-bit floating point write is the 
. only case in which both PLOCK# and BLAST# are 

asserted. Normally PLOCK# and BLAST# are the 
inverse of each other. 
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Figure 7.21. Pseudo Lock Timing 

PLOCK # can change several times during a cycle 
settling to its final value in the clock ready is re-
turned. . 

7.2.8 INVALIDATE CYCLES 

Invalidate cycles are needed to keep the 486 micro­
processor's internal cache contents consistent with 
external memory. The 486 microprocessor contains 
a mechanism for listening to writes by other devices 
to external memory. When the processor finds a 
write to a Section of external memory contained in 
its internal cache, the processor's internal copy is 
invalidated. . 

Invalidations use two pins,· address hold request 
(AHOLD) and valid external address (EADS#). 
There are two steps in an invalidation cycle. First, 
the extern~1 system asserts the AHOLD input forcing 
the 486 microprocessor to immediately relinquish its 
address bus. Next, the external system asserts 
EADS # indicating that a valid address is on the 486 
microprocessor's address bus. The microprocessor 
reads the address over its address lines. If the mi­
croprocessor finds this address in its internal cache, 
the cache entry is invalidated. Note that the 486 mi­
croprocessor's address bus is input/output unlike 
the 386 microprocessor's bus, which is output only. 

The 486 microprocessor immediately relinquishes its 
address bus in the next clock upon assertion of 
AHOLD. For example, the bus could be 3 wait states 
into a read cycle. If AHOLD is activated, the 486 
microprocessor will immediately float its address bus 
before ready is returned terminating the bus cycle. 

When AHOLD is asserted only the address bus is 
floated, the data bus can remain active. Data can be 
returned for a previously specified bus cycle during 
address hold (see Figures 7.22, 7.23). 

EADS # is normally asserted when an external mas­
ter drives an address onto the bus. AHOLD need not 
be driven for EADS# to generate an internal invali­
date. If EADS# alone is asserted while the 486 mi­
croprocessor is driving the address bus, it is possible 
that the invalidation address will come from the 486 
microprocessor itself. 

Running an invalidate cycle prevents the 486 micro­
processor cache from satisfying other internal re­
quests, so invalidations should be run only when 
necessary. The fastest possible invalidate cycle is 
shown in Figure 7.22, while a more realistic invalida­
tion cycle is shown in 7.23. Both of the examples 
take one clock of cache access from the rest of the 
486 microprocessor. 

4-109 



inter 1486TM MICROPROCESSOR 

TI T1 T2 TI n T1 T2 TI 

ClK 

ADS# \ I \ I 
'1 

I 

ADDR ;, X ) @ CPu ( i C 
I 

. 
AHOlD \ 
EADS# 1 \JJ 

1 I 

RDY# 

I I I 

DATA @ ~ CP I 

I 

BREQ I W 
240440-65 

, Figure 7.22. Fast Internal Cache Invalidation Cycle 
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Figure 7.23. Typical Internal Cache Invalidation Cycle 

4-110 



inter i486™ MICROPROCESSOR 

7.2.8.1 Rate of Invalidate Cycles 

The 486 microprocessor can accept one invalidate 
per clock except in the last clock of a line fill. One 
invalidate per clock is possible as long as EADS# is 
negated in ONE or BOTH of the following cases: 

1. In the clock RDY # or BRDY # is returned for 
the last time. 

2. In the clock following RDY# or BRDY# being 
returned for the last time. 

This definition allows two system designs. Simple 
designs can restrict invalidates to one every other 
clock. The simple design need not track bus activity. 
Alternatively, systems can request one invalidate 
per clock provided that the bus is monitored. 

7.2.8.2 Running Invalidate Cycles Concurrently 
with Line Fills 

Precautions are necessary to avoid caching stale 
data in the 486 microprocessor's cache in a system 
with a second level cache. An example of a system 
with a second level cache is shown in Figure 7.24. 
An external device can be writing to main memory 
over the system bus while the 486 microprocessor is 
retrieving data from the second level cache. The 486 
microprocessor will need to invalidate a line in its 
internal cache if the external device is writing to a 
main memory address also contained in the 486 mi­
croprocessor's cache. 
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Figure 7.24. System with Second Level Cache 

A potential problem exists if the external device is 
writing to an address in external memory, and at the 
same time the 486 microprocessor is reading data 
from the same address in the second level cache. 
The system must force an invalidation cycle to invali­
date the data that the 486 microprocessor has re­
quested during the line fill. 

If the system asserts EADS# before the first data in 
the line fill is returned to the 486 microprocessor, the 
system must return data consistent with the new 
data in the external memory upon resumption of the 
line fill after the invalidation cycle. This is illustrated 
by the asserted EADS# signal labeled 1 in Figure 
7.25. 
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1. Data returned must be consistent if its address equals the invalidation address in this clock 
2. Data returned will not be cached if its addre~s equals the invalidation address in this clock 

Figure 7.25. Cache Invalidation Cycle Concurrent with Line Fill 

If the system asserts EADS# at the same time or 
after the first data in the line fill is returned (in the 
same clock that the first RDY # or BRDY # is re­
turned or any subsequent clock in the line fill) the 
data will be read into the 486 microprocessors input 
buffers but it will not be stored in the on-chip cache. 
This is illustrated by asserted EADS# signal labeled 
2 in Figure 7.25. The stale data will be used to satis­
fy the request that initiated the cache fill cycle. 

7.2.9 BUS HOLD 

The 486 microprocessor provides a bus hold, hold 
acknowledge protocol using the bus hold request 
(HOLD) and bus hold acknowledge (HLDA) pins. As­
serting the HOLD input indicates that another bus 
master desires control of the 486 microprocessor's 
bus. The processor will respond by floating its bus 
and driving HLDA active when the current bus cycle, 

or sequence of locked cycles is complete. An exam­
ple of a HOLD/HLDA transaction is shown in Figure 
7.26. Unlike the 386 microprocessor, the 486 micro­
processor can respond to HOLD by floating its bus 
and asserting HLDA while RESET is asserted. 

The pins iloated during bus hold are: BEO#-BE3#, 
PCD, PWT, W/R#, D/C#, M/IO#, LOCK#, 
PLOCK#, ADS#, BLAST # , DO-D31, A2-A31, 
DPO-DP3. 

7.2.10 INTERRUPT ACKNOWLEDGE 

The 486 microprocessor generates interrupt ac­
knowledge cycles in response to maskable interrupt 
requests generated on the interrupt request input 
(INTR) pin. Interrupt acknowledge cycles have a 
unique cycle type generated on the cycle type pins. 

/ 
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Figure 7.26. HOLD/HLDA Cycles 

An example interrupt acknowledge transaction is 
shown in Figure 7.27. Interrupt acknowledge cycles 
are generated in locked pairs. Data returned during 
the first cyCle is ignored. The interrupt vector is re­
turned during the second cycle on the lower 8 bits of 
the data bus. The 486 microprocessor has 256 pos­
sible interrupt vectors. 
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The state of A2 distinguishes the first and second 
interrupt acknowledge cycles. The byte address 
driven during the first interrupt acknowledge cycle is 
4 (A31-A3 low, A2 high, BE3 # -BE1 # high, and 
BEO# low). The address driven during the second 
interrupt acknowledge cycle is 0 (A31-A2 low, 
BE3#-BE1 # high, BEO# low). 
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Figure 7.27. Interrupt Acknowledge Cycles 
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Each of the interrupt acknowledge cycles are termi­
nated when the external system returns ROY # or 
BRDY #. Wait states can be added by withholding 
ROY # or BRDY #. The 486 microprocessor auto­
matically generates four idle clocks between the first 
and second cycles to allow for 8259A recovery time. 

7.2.11 SPECIAL BUS CYCLES 

The 486 microprocessor provides four special bus 
cycles to indicate that certain instructions have been 
executed, or certain conditions have occurred inter­
nally. The special bus cycles in Table 7.8 are defined 
when the bus cycle definition pins are in the follow­
ing state: M/IO# =0, D/C# =0 and W/R# = 1. 

Two of the special cycles indicate halt or shutdown. 
Another special cycle is generated when the 486 mi­
croprocessor executes an INVD (invalidate data 
cache) instruction and could be used to flush an ex­
ternal cache. The Write Back cycle is generated 
when the 486 microprocessor executes the 
WBINVO (write-back invalidate data cache) instruc­
tion and could be used to synchronize an external 
write-back cache. 

The external hardware must acknowledge these 
special bus cycles by returning ROY # or BROY #. 

ClK 
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A2-A31 
M/IO# 
D/c# 

BEO-3# 

RDY# 
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KEN# 
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w 

Table 7.8. Special Bus Cycle Encoding 

BE3# BE2# BE1# BEO# 
Special 

Bus Cycle 

1 1 1 0 Shutdown 
1 1 0 1 Flush 
1 0 1 1 Halt 
0 1 1 1 Write Back 

7.2.12 BUS CYCLE RESTART 

Ina multi-master system another bus master may 
require the use of the bus to enable the 486 micro­
processor to complete its current bus request. In this 
situation the 486 microprocessor will need to restart 
its bus cycle after the other bus master has complet­
ed its bus transaction. 

A bus cycle may be restarted if the external system 
asserts the backoff (BOFF #) input. The 486 micro­
processor samples the BOFF # pin every clock. The 
486 microprocessor will immediately (in the next 
clock) float its address, data and status pins when 
BOFF# is asserted (see Figure 7.28). Any bus cycle 
in progress when BOFF # is asserted is aborted and 

T1b T2 T2 T2 T2 

u.n I I 
I w 

BOFF# \ ........ __ ---IJ: 
BlAST# 

DATA 

\I------«I----!--J! 

Figure 7.28. Restarted Read Cycle 
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Figure 7.29. Restarted Write Cycle 

any data returned to the processor is ignored. The 
same pins are floated in response to BOFF # as are 
floated in response to HOLD. HLDA is not generated 
in response to BOFF #. BOFF # has higher priority 
than ROY # or BRDY #. If either ROY # or BRDY # 
are returned in the same clock as BOFF #, BOFF # 
takes effect. 

The device asserting BOFF # is free to run any cy­
cles it wants while the 486 microprocessor bus is in 
its high impedance state. If backoff is requested af­
ter the 486 microprocessor has started a cycle, the 
new master should wait for memory to return ROY # 
or BRDY # before assuming control of the bus. Wait­
ing for ready provides a handshake to insure that the 
memory system is ready to accept a new cycle. If 
the bus is idle when BOFF # is asserted, the new 
master can start its cycle two clocks after issuing 
BOFF#. 

The external memory can view BOFF # in the same 
manner as BLAST #. Asserting BOFF # tells the ex­
ternal memory system that the current cycle is the 
last cycle in a transfer. 

The bus remains in the high impedance state until 
BOFF # is negated. Upon negation, the 486 micro­
processor restarts its bus cycle by driving out the 
address and status and asserting ADS#. The bus 
cycle then continues as usual. 

Asserting BOFF# during a burst, BS8# or BS16# 
cycle will force the 486 microprocessor to ignore 

data returned for that cycle only. Data from previous 
cycles will still be valid. For example, if BOFF # is 
asserted on the third BRDY # of a burst, the 486 
microprocessor assumes the data returned with the 
first and second BRDY#'s is correct and restarts 
the burst beginning with the third item. The same 
rule applies to transfers broken into multiple cycle by 
BS8# or BS16#. 

Asserting BOFF# in the same clock as ADS# will 
cause the 486 microprocessor to float its bus in the 
next clock and leave ADS# floating low. Since 
ADS# is floating low, a peripheral may think that a 
new bus cycle has begun even-though the cycle was 
aborted. There are two possible solutions to this 
problem. The first is to have all devices recognize 
this condition and ignore ADS# until ready comes 
back. The second approach is to use a "two clock" 
backoff: in the first clock AHOLD is asserted, and in 
the second clock BOFF # is asserted. This guaran­
tees that ADS# will not be floating low. This is only 
necessary in systems where BOFF# may be assert­
ed in the same clock as ADS#. 

7.2.13 BUS STATES 

A bus state diagram is shown in Figure 7.30. A de­
scription of the signals used in the diagram is given 
in Table 7.9. 
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Figure 7.30. Bus State Diagram 

Table 7.9. Bus State Description 

Means 

240440-73 

Bus is idle. Address and status signals may be driven to undefined values, or 
the bus may be floated to a high impedance state. ' 

First clock cycle of a bus cycle. Nalid address and status are driven and 
AOS# is asserted. 

Second and subsequent clock cycles of a bus cycle. Data is driven if the 
cycle is a write, or data is expected if the cycle is a read. ROY # and BROY # 
are sampled. 

First clock cycle of a restarted bu,s cycle. Valid address and status are driven 
and AOS# is asserted. 

Second and subsequent clock cycles of an aborted bus cycle. 
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7.2.14 FLOATING POINT ERROR HANDLING 

The 486 microprocessor provides two options for re­
porting floating pOint errors. The simplest method is 
to raise interrupt 16 whenever an unmasked floating 
point error occurs. This option may be enabled by 
setting the NE bit in control register 0 (CRO). 

The 486 microprocessor also provides the option of 
allowing external hardware to determine how float­
ing point errors are reported. This option is neces­
sary for compatibility with the error reporting scheme 
used in DOS based systems. The NE bit must be 
cleared in CRO to enable user-defined error report­
ing. User-defined error reporting is the default condi­
tion because the NE bit is cleared on reset. 

Two pins, floating point error (FERR#) and ignore 
numeric error (IGNNE#), are provided to direct the 
actions of hardware if user-defined error reporting is 
usep. The 486 microprocessor asserts the FERR # 
output to indicate that a floating point error has oc­
curred. FERR # corresponds to the ERROR # pin on 
the 387 math coprocessor. 

IGNNE# is an input to the 486 microprocessor. 
When the NE bit in CRO is cleared, and IGNNE# is 
asserted, the 486 microprocessor will ignore a user 
floating point error and continue executing floating 
point instructions. When IGNNE# is negated, the 
486 microprocessor will freeze on floating point in­
structions which get errors (except for the control 
instructions FNCLEX, FNINIT, FNSAVE, FNSTENV, 
FNSTCW, FNSTSW, FNSTSW AX, FNENI, FNDISI 
and FNSETPM). IGNNE# may be asynchronous to 
the 486 clock. 

In systems with user-defined error reporting, the 
FERR # pin is connected to the interrupt controller. 
When an unmasked floating point error occurs, an 
interrupt is raised. If IGNNE# is high at the time of 
this interrupt, the 486 microprocessor will freeze 
(disallowing execution of a subsequent floating point 
instruction) until the interrupt handler is invoked. By 
driving the IGNNE# pin low (when clearing the inter­
rupt request), the interrupt handler can allow execu­
tion of a floating point instruction, within the interrupt 
handler, before the error condition is cleared (by 
FNCLEX, FNINIT, FNSAVE or FNSTENV). If execu­
tion of a non-control floating point instruction, within 
the floating point interrupt handler, is not needed, 
the IGNNE# pin can be tied HIGH. 

8.0 TESTABILITY 

Testing in the 486 microprocessor can be divided 
into two categories: Built-in Self Test (BIST) and ex­
ternal testing. The BIST tests the non-random logic, 
control ROM (CROM), translation lookaside buffer 
(TLB) and on-chip cache memory. External tests can 
be run on the TLB and the on-chip cache. The 486 
microprocessor also has a test mode in which all 
outputs are tristated. 

8.1 Built-In Self Test (BIST) 

The BIST is initiated by holding the AHOLD (address 
hold) pin HIGH in the clock prior to RESET going 
from HIGH to LOW as shown in Figure 6.3. The BIST 
takes approximately 2**20 clocks, or approximately 
42 milliseconds with a 25 MHz 486 microprocessor. 
No bus cycles will be run by the 486 microprocessor 
until the BIST is concluded. 

The results of BIST is stored in the EAX register. 
The 486 microprocessor has successfully passed 
the BIST if the contents of the EAX register are zero. 
If the results in EAX are not zero then the BIST has 
detected a flaw in the microprocessor. The micro­
processor performs reset and begins normal opera­
tion at the completion of the BIST. 

4-117 



intJ i486TM MICROPROCESSOR 

The non-random logic, control ROM, on-chip cache 
and translation lookaside buffer (TLB) are tested 
during the BIST. 

The cache portion of the BIST verifies that the 
cache is functional and that it is possible to read and 
write to the cache. The BIST manipulates test regis­
ters TR3, TR4 and TR5 while testing the cache. 
These test registers are described in Section 8.2. 

The cache testing algorithm writes a value to each 
cache entry, reads the value back, and checks that 
the correct value was read back. The algorithm may 
be repeated more than once for each of the 512 
cache entries using different constants. 

The TLB portion of the BIST verifies that the TLB is 
functional and that it is possible to read and write to 
the TLB. The BIST manipulates test registers TR6 
and TR7 while testing the TLB. TR6 and TR7 are 
described in Section 8.3. . 

8.2 On~Chip Cache Testing 

The on-chip cache testability hooks are designed to 
be accessible during the BIST and for assembly lan­
guage testing of the cache. 

31 

DATA 

The 486 microprocessor contains a cache fill buffer 
and a cache read buffer. For testability writes, data 
must be written to the cache fill buffer before it can 
be written to a location in the cache. Data must be 
read from a cache location into the cache read buff­
er before the microprocessor can access the data. 
The cache fill and cache read buffer are both 128 
bits wide. 

8.2.1 CACHE TESTING REGISTERS TR3, TR4 
AND TR5 

Figure 8.1 shows the three cache testing registers: 
the Cache Data Test Register (TR3), the Cache 
Status Test Register (TR4) and the Cache Control 
Test Register (TR5). External access to these regis­
ters is provided through MOV reg,TREG and MOV 
TREG, reg instructions. 

o 

Cache Data ITR3 

L-________________________________ ...JTestReglster 

TR4 
Tag Cache Status 

L-_-,-________________ ~ _ _'___=__'_..:.L_ _ _=____'__'_..L_ __ __'Test Register 

31 11 10 4 3 2 1 0 

Set Select Entry I Controll~::he C~ntrol 
Select. .' est Register 

= unused 

Figure 8.1. Cache Test Registers 
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Cache Data Test Register: TR3 

The cache fill buffer and the cache read buffer can 
only be accessed through TA3. Data to be written to 
the cache fill buffer must first be written to TA3. Data 
read from the cache read buffer must be loaded into 
TA3. 

TA3 is 32 bits wide while the cache fill and read 
buffers are 128 bits wide. 32 bits of data must be 
written to TA3 four times to fill the cache fill buffer. 
32 bits of'data must be read from TA3 four times to 
empty the cache read buffer. The entry select bits in 
TA5 determine which 32 bits of data TA3 will access 
in the buffers. 

Cache Status Test Register: TR4 

TA4 handles tag, LAU and valid bit information dur­
ing cache tests. TA4 must be loaded with a tag and 
a valid bit before a write to the cache. After a read 
from a cache entry, TA4 contains the tag and valid 
bit from that entry, and the LAU bits and four valid 
bits from the accessed set. 

Cache Control Test Register: TR5 

TA5 specifies which testability operation will be per­
formed and the set and entry within the set which 
will be accessed. 

The seven bit set select field determines which of 
the 128 sets will be accessed. 

The functionality of the two entry select bits depend 
on the state of the control bits. When the fill or read 

buffers are being accessed, the entry select bits 
point to the 32-bit location in the buffer being ac­
cessed. When a cache location is specified, the en­
try select bits point to one of the four entries in a set. 
Refer to Table 8.1. 

Five testability functions can be performed on the 
cache. The two control bits in TR5 specify the oper­
ation to be executed. The five operations are: 

1. Write cache fill buffer 

2. Perform a cache testability write 

3. Perform a cache testability read 

4. Read the cache read buffer 

5. Perform a cache flush 

Table 8.1 shows the encoding of the two control bits 
in TR5 for the cache testability functions. Table 8.1 
also shows the functionality of the entry and set se­
lect bits for each control operation. 

The cache tests attempt to use as much of the nor­
mal operating circuitry as possible. Therefore when 
cache tests are being performed, the cache must be 
disabled (the CD and NW bits in control register 
must be set to 1 to disable the cache. See Section 
5). 

8.2.2 CACHE TESTABILITY WRITE 

A testability write to the cache is a two step process. 
First the cache fill buffer must be loaded with 128 
bits of data and TR4 loaded with the tag and valid 
bit. Next the contents of the fill buffer are written to a 
cache location. Sample assembly code to do a write 
is given in Figure 8.2. 

Table 8.1. Cache Control Bit Encoding and Effect of 
Control Bits on Entry Select and Set Select Functionality 

Control Bits 
Operation. 

Entry Select Bits 
Set Select Bits 

Bit 1 BitO Function 

0 0 
Enable { Fill Buffer Write Select 32-bit location in fill/read 

Read Buffer Read buffer -
0 1 Perform Cache Write Select an entry ill' set. Select a set to write to 

1 0 Perform Cache Read Select an entry in set. Select a set to read from 

1 1 Perform Flush Cache - -
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Sample Assembly Code 

An example assembly language sequence to perform a cache write is: 

. , 

eax. ebx. ecx. edx contain the cache line to write 
edi cont-ains the tag information to load 
eRO already says to enable reads/write to TR5 

fill the cache buffer 
mov esi,O set up command 
mov tr5,esi load to TR5 
mov tr3,eax load data into cache fill buffer 
mov esi,4 
mov tr5,esi 
mov tr3,ebx 
mov esi,8 
mov tr5,esi 
mov tr3,ecx 
mov esi,Och 
mov tr5,esi 
mov tr3,edx 

load the Cache Status Register 

mo'! tr4,ed1 ; load 21-bit tag and valid bit 

perform the cache write 

mov esi,l 
mov tr5,esi ; write the cache (set 0, entry 0) 

An example assembly language sequence to perform a cache read is: 

data into eax, ebx, ecx, edx; status into edi· 

read the cache line back 

mov esi,2 
mov tr5,esi ; do cache testability read (set 0, entry 0) 

read the data from the read buffer 

mov esi,O 
mov' tr5,esi 
mov eax,tr3 
me'! esi,4 
m!lv tr5,esi 
mov ebx,tr3 
mov esi,8 
mov tr5,esi 
mov ecx,tr3 
mov esi,Och 
mov tr5,esi 
mov edx,tr3 

read the status from TR4 

mov edi,tr4 

Figure 8.2 Sample Assembly Code for Cache Testing 
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Loading the fill buffer is accomplished by first writing 
to the entry select bits in TR5 and setting the control 
bits in TR5 to 00. The entry select bits identify one of 
four 32-bit locations in the cache fill buffer to put 32 
bits of data. Following the write to TR5, TR3 is writ­
ten with 32 bits of data which are immediately 
placed in the cache fill buffer. Writing to TR3 initiates 
the write to the cache fill buffer. The cache fill buffer 
is loaded with 128 bits of data by writing to TR5 and 
TR3 four times using a different entry select location 
each time. 

TR4 must be loaded with the 21-bit tag and valid bit 
(bit 10 in TR4) before the contents of the fill buffer 
are written to a cache location. 

The contents of the cache fill buffer are written to a 
cache location by writing TR5 with a control field of 
01 along with the set select and entry select fields. 
The set select and entry select field indicate the lo­
cation in the cache to be written. The normal cache 
LRU update circuitry updates the internal LRU bits 
for the selected set. 

Note that a cache testability write can only be done 
when the cache is disabled for replaces (the CD bit 
is control register 0 is reset to 1). Also note that care 
must be taken when directly writing to entries in the 
cache. If the entry is set to overlap an area of mem­
ory. that is being used in external memory, that 
cache entry could inadvertently be used instead of 
the external memory. Of course, this is exactly the 
type of operation that one ~ould desire if the cache 
were to be used as a high speed RAM. 

8.2.3 CACHE TESTABILITY READ 

A cache testability read is a two step process. First 
the contents of the cache location are read into the 
cache read buffer. Next the data is examined by 
reading it out of the read buffer. Sample assembly 
code to do a testability read is given in Figure 8.5., 

Reading th,e contents of a cache location into the 
cache read buffer is initiated by writing TR5 with the 
control bits set to 10 and the desired seven-bit set 
select and two-bit entry select. In response to the 
write to TR5, TR4 is loaded with the 21-bit tag field 
and the single valid bit from the cache entry read. 
TR4 is also loaded with the'three LRU bits and four 
valid bits corresponding to the cache set that was 
accessed. The cache read buffer is filled with the 
128-bit value which was found in the data array at 
the specified location. 

The contents of the read buffer are examined by 
performing four reads of TR3. Before reading TR3 
the entry select bits in TR5 must loaded to indicate 
which of the four 32-bit words in the read buffer to 

, transfer into TR3 and the control bits in TR5 must be 
loaded with 00. The register read of TR3 will initiate 
the transfer of the 32-bit value from the read buffer 
to the specified general purpose register. 

Note that it is very important that the entire 128-bit 
quantity from the read buffer and also the informa­
tion from TR4 be read before any memory refer­
ences are allowed to occur. If memory operations 
are allowed to happen, the contents of the read buff­
er will be corrupted. This is because the testability 
operations use hardware that is used in normal 
memory accesses for the 486 microprocessor 
whether the cache is enabled or not. 

8.2.4 FLUSH CACHE 

The control bits in TR5 must be written with 11 to 
flush the cache. None of the other bits in TR5 have 
any meaning when 11 is written to the control bits. 
Flushing the cache will reset the LRU bits and the 
valid bits to 0, but will not change the cache tag or 
data arrays. 

When the cache is flushed by writing to TR5 the 
special bus cycle indicating a cache flush to the ex­
ternal system is not run (see Section 7.2.11, Special 
Bus Cycles). The cache should be flushed with the 
instruction INVD (Invalidate Data Cache) instruction 
or the WBINVD (Write-back and Invalidate Data 
Cache) instruction. 

8.3 Translation Lookaside Buffer 
(TLB) Testing 

The 486 microprocessor TLB testability hooks are 
similar to those in the 386 microprocessor. The test­
ability hooks have been enhanced to provide added 
test features and to include new features in the 486 
microprocessor. The TLB testability hooks are de­
signed to be accessible during the BIST and for as­
sembly language testing of the TLB. 

8.3.1 TRANSLATION LOOKASIDE BUFFER 
ORGANIZATION 

The 486 microprocessors TLB is 4-way set associa­
tive and has space for 32 entries. The TLB is logical­
ly split into three blocks shown in Figure 8.3. 

The data block is physically split into four arrays, 
each with space for eight entries. An entry in the 
data block is 22 bits wide containing a 20-bit physi­
cal address and two bits for the page attributes. The 
page attributes are the PCD (page cache disable) bit 
and the PWT (page write-through) bit. Refer to Sec­
tion 4.5.4 for a discussion of the PCD and PWT bits. 
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Figure 8.3. TLB Organization 

The tag block is also split into four arrays, one for 
each of the data arrays. A tag entry is 21 bits wide 
containing a 17·bit linear address and four protec· 
tion bits. The protection bits are valid (V), user/su­
pervisor (U/S), read/write (R/W) and dirty (0). 

The third block contains eight three bit quantities 
used in the pseudo least recently used (LRU) re­
placement algorithm. These bits are called the LRU 
bits. The LRU replacement algorithm used in the 

31 

TLB is the same as used by the on·chip cache. For a 
description of this algorithm refer to Section 5.5. 

8.3.2 TLB TEST REGISTERS TR6 AND TR7 

The two TLB test registers are shown in Figure 8.4. 
TR6 is the command test register and TR7 is the 
data test register. External access to these registers 
is provided through MOV· reg,TREG and MOV 
TREG,reg instructions. . 

12 11 10 9 8 7 6 5 4 0 

L-__ ~ ___ Lin_ear_Ad_dr_eS_S ______ -'I_v-L.I_D-'I_D#-'I_U..LIU_#..LI w_I'-w_#J..I __ --'I_O_Pt_ion-'I~~ ~~i::~d 
31 12 11 10 9 8 7 6 5 4 3 2 1 o 

'--_______ Ph_Y_Si_Ca_IA_d_d_re_SS _______ --Llp_C_D .... lp_WT--L1..:~::.:J.:.~1.:.1..:i;°:....LI _ __'I__'I _ __'I_· __ --lI;~~~::ster 
t t 

Replacement Pointer Select (Writes) Replacement Pointer (Writes) 
= unused Hit Indication (Lookup) Hn Location (Lookup) 

Figure 8.4. TLB Test Registers 
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Command Test Register: TR6 

TR6 contains the tag information and control infor­
mation used in a TLB test. Loading TR6 with tag and 
control information initiates a TLB write or lookup 
test. 

TR6 contains three bit fields, a 20-bit linear address 
(bits 12-31), seven bits for the TLB tag protection 
bits (bits 5-11) and one bit (bit 0) to define the type 
of operation to be performed on the TLB. 

The 20-bit linear address forms the tag information 
used in the TLB access. The lower three bits of the 
linear address select which of the eight sets are ac­
cessed. The upper 17 bits of the linear address form 
the tag stored in the tag array. 

The seven TLB tag protection bits are described be­
low. 

V: The valid bit for this TLB entry 

0,0#: The dirty bit for/from the TLB entry 

U,U#: The user/supervisor bit for/from the TLB 
entry 

W,W#: The read/write bit for/from the TLB entry 

Two bits are used to represent the 0, U/S and R/W 
bits in the TLB tag to permit the option of a forced 
miss or hit during a TLB lookup operation. The 
forced miss or hit will occur regardless of the state 
of the actual bit in the TLB. The meaning of these 
pairs of bits is given in Table 8.2. 

The operation bit in TR6 determines if the TLB test 
operation will be a write or a lookup. The function of 
the operation bit is given in Table 8.3. 

Table 8.3. TR6 Operation Bit Encoding 

TR6 TLB Operation 
BitO to Be Performed 

0 TLB Write 
1 TLB Lookup 

Data Test Register: TR7 

TR7 contains the information stored or read from the 
data block during a TLB test operation. Before a TLB 

test write, TR7 contains the physical address and 
the page attribute bits to be stored in the entry. After 
a TLB test lookup hit, TR7 contains the physical ad­
dress, page attributes, LRU bits and entry location 
from the access. 

TR7 contains a 20-bit physical address (bits 12-31), 
two bits for peD (bit 11) and PWT (bit 10) and three 
bits for the LRU bits (bits 7-9). The LRU bits in TR7 
are only used during a TLB lookup test. The func­
tionality of TR7 bit 4 differs for TLB writes and look­
ups. The encoding of bit 4 is defined in Tables 8.4 
and 8.5. Finally TR7 contains two bits (bits '2-3) to 
specify a TLB replacement pointer or the location of 
a TLB hit. 

Table 8.4. Encoding of Bit 4 of TR7 on Writes 

TR7 Replacement Pointer 
Bit4 Used on TLB Write 

0 Pseudo-LRU Replacement Pointer 
1 Data Test Register Bits 3:2 

Table 8.5. Encoding of Bit 4 of TR7 on Lookups 

TR7 Meaning after TLB 
Bit 4 Lookup Operation 

0 TLB Lookup Resulted in a Miss 
1 TLB Lookup Resulted in a Hit 

A replacement pointer is used during a TLB write. 
The pointer indicates which of the four entries in an 
accessed set is to be written. The replacement 
pointer can be specified to be the internal LRU bits 
or bits 2-3 in TR7. The source of the replacement 
pointer is specified by TR7 bit 4. The encoding of bit 
4 during a write is given by Table 8.4. 

Note that both testability writes and lookups affect 
the state of the internal LRU bits regardless of the 
replacement pointer used. All TLB write operations 
(testability or normal operation) cause the written 
entry to become the most recently used. For exam­
ple,during a testability write with the replacement 
pointer specified by TR7 bits 2-3, the indicated en­
try is written and that entry becomes the most re­
cently used as specified by the internal LRU bits. 

Table 8.2. Meaning of a Pair of TR6 Protection Bits 

TR6 Protection Bit TR6 Protection Bit # Meaning on Meaning on 
(B) (B#) TLB Write Operation TLB Lookup Operation 

0 0 Undefined Miss any TLB TAG Bit B 
0 1 Write 0 to TLB TAG Bit B Match TLB TAG Bit B if 0 
1 0 Write 1 to TLB TAG Bit B Match TLB TAG Bit B if 1 
1 1 Undefined Match any TLB TAG Bit B 
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There are two TLB testing operations: write entries 
into the TLB, and perform TLB lookups. One major 
enhancement over TLB testing in the 386 micro­
processor is that paging need not be disabled while 
executing testability writes or lookups. 

Note that any time one TLB set contains the same 
linear address in more than one of its entries, look­
ing up that linear address will not result in a hit. 
Therefore a single linear address should not be writ­
ten to one TLB set more than once. 

8.3.3 TLB WRITE TEST 

To perform a TLB write TR7 must be loaded fol­
lowed by a TR6 load. The register operations must 
be performed in this order since the TLB operation is 
triggered by the write to TR6. 

TR7 is loaded with a 20-bit physical address and 
values for I?CD and PWT to be written to the data 
portion of the TLB. In addition, bit 4 of TR7 must be 
loaded to indicate whether to use TR7 bits 3-2 or the 
internal LRU bits as the replacement pointer on the 
TLB write operation. Note that the LRU bits in TR7 
are not used in a write test. . 

TR6 must. be written to initiate the TLB write opera­
tion. Bit 0 in TR6 must be reset to zero to indicate a 
TLB write. The 20-bit linear address and the seven 
page protection bits must also be written in TR6 to 
specify the tag portion of the TLB entry. Note that 
the three least significant bits of the linear address 
specify which 'of the eight sets in the data block will 
be loaded with the physical address data. Thus only 
17 of the linear address bits are stored in the tag 
array. 

8.3.4 TLB LOOKUP TEST 

To perform a TLB lookup it is only necessary to write 
the proper tags and control information into TR6. Bit 
o in TR6 must be set to 1 to indicate a TLB lookup. 
TR6 must be loaded with a 20-bit linear address and 
the seven protection bits. To force misses and 
matches of the individual protection bits on TLB 
lookups, set the seven protection bits as specified in 
Table 8.2. . 

A TLB lookup operation is initiated by the write to 
TR6. TR7 will indicate the result of the lookup opera­
tion following the write to TR6. The hit/miss indica­
tion can be found in TR7 bit 4 (see Table 8.5). 

TR7 will contain the following information if bit 4 indi­
cated that the lookup test'resulted in a hit. Bits 2-3 
will indicate in which set the match occurred. The 22 
most significant bits in TR7 will contain the physical 
address and page attributes contained in the entry. 
Bits 9-7 will contain the LRU bits associated with 
the accessed set. The state of the LRU bits is previ­
ous to their being updated for. the current lookup. 

If bit 4 in TR7 indicated that the lookup test resulted 
in a miss the remaining bits in TR7 are undefined. 

Again it should be noted that a TLB testability lookup 
operation affects the state of the LRU bits. The LRU 
bits will be updated if a hit occurred. The entry which 
was hit will become the most recently used. 

8.4 Tristate Output Test Mode 

The 486 microprocessor provides the ability to float 
all its outputs and bidirectional pins. This includes all 
pins floated during bus hold as well as pins which 
are never floated in normal operation of the chip 
(HLDA, BREQ, FERR # and PCHK #). When the 486 
microprocessor is in the tristate output test mode 
external testing can be used to test board 'connec-
tions. . , 

The tristate test mode is invoked by driving FLUSH # 
low in the clock prior to RESET going low (see Fig­
ure 6.3). The 486 microprocessor remains in the tri-
state test mode until the next RESET. ' 
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9.0 DEBUGGING SUPPORT 9.3 Debug Registers 

The 486 Microprocessor provides several features 
which simplify the debugging process. The three cat­
egories of on-chip debugging aids are: 

1) the code execution breakpoint opcode (OCCH), 

2) the single-step capability provided by the TF bit 
in the flag register, and 

3) the code and data breakpoint capability provided 
by the Debug Registers DRO-3, DR6, and DR7. 

9.1 Breakpoint Instruction 

A single-byte-opcode breakpoint instruction is avail­
able for use by software debuggers. The breakpoint 
opcode is OCCH, and generates an exception 3 trap 
when executed. In typical use, a debugger program 
can "plant" the breakpoint instruction at all desired 
code execution breakpoints. The single-byte break­
point opcode is an alias for the two-byte general 
software interrupt instruction, INT n, where n = 3. 
The only difference between INT 3 (OCCh) and INT n 
is that INT 3 is never IOPL-sensitive but INT n is 
IOPL-sensitive in Protected Mode and Virtual 8086 
Mode. 

9.2 Single-Step Trap 

If the single-step flag (TF, bit 8) in the EFLAG regis­
ter is found to be set at the end of an instruction, a 
single-step exception occurs. The single-step ex­
ception is auto vectored to exception number 1. Pre­
cisely, exception 1 occurs as a trap after the instruc­
tion following the instruction which set TF. In typical 
practice, a debugger sets the TF bit of a flag register 
image on the debugger's stack. It then typically 
transfers control to the user program and loads the 
flag image with a signal instruction, the IRET instruc­
tion. The single-step trap occurs after executing one 
instruction of the user program. 

Since the exception 1 occurs as a trap (that is, it 
occurs after the instruction has already executed), 
the CS:EIP pushed onto the debugger's stack points 
to the next unexecuted instruction of the program 
being debugged. An exception 1 handler, merely by 
ending with an IRET instruction, can therefore effi­
ciently support single-stepping through a user pro­
gram. 

The Debug Registers are an advanced debugging 
feature of the 486 Microprocessor. They allow data 
access breakpoints as well as code execution 
breakpoints. Since the breakpoints are indicated by 
on-chip registers, an instruction execution break­
point can be placed in ROM code or in code shared 
by several tasks, neither of which can be supported 
by the INT3 breakpoint opcode. 

The 486 Microprocessor contains six Debug Regis­
ters, providing the ability to specify up to four distinct 
breakpoints addresses, breakpoint control options, 
and read breakpoint status. Initially after reset, 
breakpoints are in the disabled state. Therefore, no 
breakpoints will occur unless the debug registers are 
programmed. Breakpoints set up in the Debug Reg­
isters are autovectored to exception number 1. 

9.3.1 LINEAR ADDRESS BREAKPOINT 
REGISTERS (DRO-DR3) 

Up to four breakpoint addresses can be specified by 
writing into Debug Registers DRO-DR3, shown in 
Figure 9.1. The breakpoint addresses specified are 
32-bit linear' addresses. 486 Microprocessor hard­
ware continuously compares the linear breakpoint 
addresses in DRO-DR3 with the linear addresses 
generated by executing software (a linear address is 
the result of computing the effective address and 
adding the 32-bit segment base address). Note that 
if paging is not enabled the linear address equals the 
physical address. If paging is enabled, the linear ad­
dress is translated to a physical 32-bit address by 
the on-chip paging unit. Regardless of whether pag­
ing is enabled or not, however, the breakpoint regis­
ters hold linear addresses. 

9.3.2 DEBUG CONTROL REGISTER (DR7) 

A Debug Control Register, DR7 shown in Figure 9.1, 
allows several debug control functions such as en­
abling the breakpoints and setting up other control 
options for the breakpoints. The fields within the De­
bug Control Register, DR7, are as follows: 

LENi (breakpoint length specification bits) 

A 2-bit LEN field exists for each of the four break­
points. LEN specifies the length of the associated 
breakpoint field. The choices for data breakpoints 
are: 1 byte, 2 bytes, -and 4 bytes. Instruction execu­
tion breakpoints must have a length of 1 (LENi = 
00). Encoding of the LENi field is as follows: 

4-125 



intJ i486TM MICROPROCESSOR 

31 16 15 0 

BREAKPOINT 0 LINEAR ADDRESS DRO 

BREAKPOINT 1 LINEAR ADDRESS DR1 

BREAKPOINT 2 LINEAR ADDRESS DR2 

BREAKPOINT 3 LINEAR ADDRESS DR3 

Intel reserved. Do not define. , DR4 

Intel reserved. Do not define. DR5 

0 B B B 0;0 ° 0 •• 0 8 8 88 DR6 
TSD 3210 

LEN 1~lwl LEN 1~lwl LEN IRlwl LEN 1~lw GOGO GLGLGLGLGL DR? 
333222111000 D EE33221100 

31 16 15 0 

NOTE: 
Oindicates Intel reserved: Do not define; SEE SECTION 2.3.10 

Figure 9.1. Debug Registers 

Usage of Least 
LENi Breakpoint Significant Bits in 

Encoding Fieid Widih Breakpoilli f\ddress 
Register i, (I = 0 - 3) 

00 1 byte All 32-bits used to 
specify a single-byte 
breakpoint field. 

01 2 bytes A1-A31 used to 
specify Ii two-byte, 
word-alia ned 
breakpoint field. AO in 
Breakpoint Address 
Register is not used. 

10 Undefined-
,do not use 
this encoding 

11 4 bytes A2-A31 used to 
specify a four-byte, 
dword-aligned 
breakpoint field. AO 
and A 1 in Breakpoint 
Address Register are 
not used. 

The LENi field controls the size of breakpoint field i 
by controlling whether all low-order linear address 
bits in the breakpoint address register are used to 
detect the breakpoint event. Therefore, all break­
point fields are aligned; 2~byte breakpoint fields be­
gin on Word boundaries, and 4-byte breakpoint 
fields begin on Dword boundaries. 

The following is an example of various size break­
point fields. Assume the breakpoint linear address in 
DR2 is 00000005H. In that situation, the following 
illustration indicates the region of the breakpoint 
field for lengths of 1, 2, or 4 bytes. 

DR2 = 00000005H; LEN2 = OOB 

1
31 , I, 0 I 

I----I----\-,-~I----I00000008H 

F I 
,lbkPifkjf 100000004H 

OOOOOOOOH 

DR2 = 00000005H; LEN2 = 01B 
31 

I 
0 

I 00000008H 

- bkptfld2 -+ 00000004H 

I OOOOOOOOH 

DR2 = 00000005H; LEN2 = 11B 
31 

I I I 
0 

I 00000008H - bkptfld2 -+ 00000004H 

I OOOOOOOOH 
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RWi (memory access qualifier bits) 

A 2-bit RW field exists for each of the four break­
points. The 2-bit RW field specifies the type of usage 
which must occur in order to activate the associated 
breakpoint. 

RW Usage 
Encoding Causing Breakpoint 

00 Instruction execution only 
01 Data writes only 
10 Undefined-do not use this encoding 
11 Data reads and writes only 

RW encoding 00 is used to set up an instruction 
execution breakpoint. RW encodings 01 or 11 are 
used to set up write-only or read/write data break­
points. 

Note that instruction execution breakpoints are 
taken as faults (Le., before the instruction exe­
cutes), but data breakpoints are' taken as traps 
(Le., after the data transfer takes place). ' 

Using LENi and RWi to Set Data Breakpoint i 

A data breakpoint can be set up by writing the linear 
address into DRi (i = 0-3). For data breakpoints, 
RWi can = 01 (write-only) or 11 (write/read). LEN 
can = 00,01,or11. 

If a data access entirely or partly falls within the data 
breakpoint field, the data breakpoint condition has 
occurred, and if the breakpoint is enabled, an excep­
tion 1 trap 'will occur. 

USing LENi and RWi to Set Instruction Execution 
Breakpoint i 

An instruction execution breakpoint can be set up by 
writing address of the beginning of the instruction 
(including prefixes if any) into DRi (i = 0-3). RWi 
must = 00 and LEN must = 00 for instruction exe­
cution breakpoints. 

If the instruction beginning at the breakpoint address 
is about to be executed, the instruction execution 
breakpoint condition has occurred, and if the break­
point is enabled, an exception 1 fault will occur be­
fore the instruction is executed. 

Note that an instruction execution breakpoint .ad­
dress must be equal to the beginning byte address 
of an instruction (including prefixes) in order for the 
instruction execution breakpoint to occur. 

GO (Global Debug Register access detect) 

The Debug Registers can only be accessed in Real 
Mode or at privilege level 0 in Protected Mode. The 
GO bit, when set, provides extra protection against 
any Debug Register access even in Real Mode or at 
privilege level 0 in Protected Mode. This additional 
protection feature is provided to guarantee that a 
software debugger can have full control over the De­
bug Register resources when required. The GO bit, 
when set, causes an exception 1 fault if an instruc­
tion attempts to read or write any Debug Register. 
The GO bit is then automatically cleared when the, 
exception 1 handler is invoked, allowing the excep­
tion 1 handler free access to the debug registers. 

GE and LE (Exact data breakpoint match, global and 
local) 

The breakpoint mechanism of the 486 Microproces­
sor differs from that of the 386. The 486 Microproc­
essor always does exact data breakpoint matching, 
regardless of GE/LE bit settings. Any data break­
point trap will be reported exactly after completion of 
the instruction that caused the operand transfer. Ex­
act reporting is provided by forcing the 486 Micro­
processor execution unit to wait for completion of 
data operand transfers before beginning execution 
of the next instruction. 

When the 486 Microprocessor performs a task 
switch, the LE bit is cleared. Thus, the LE bit sup­
ports fast task switching Ol,lt of tasks, that have 
enabled the exact data breakpoint match for their 
task-local breakpoints. The LE bit is cleared by the 
processor during a task switch, to avoid having ex­
act data breakpoint match enabled in the new task. 
Note that exact data breakpoint match must be re­
enabled under software control. 

The 486 Microprocessor GE bit is unaffected during 
a task switch. The GE bit supports exact data break­
point match that is to remain enabled during all tasks 
executing in the system. 

Note that instruction execution breakpoints are al­
ways reported exactly. 

Gi and Li (breakpoint enable, global and local) 

If either Gi or Li is set then the associated breakpoint 
(as defined by the linear address in DRi, the length 
in LENi and the usage criteria in RWi) is enabled. If 
either Gi or Li is set, and the 486 Microprocessor 
detects the ith breakpoint condition, then the excep­
tion 1 handler is invoked. 

When the 486 Microprocessor performs a task 
switch to a new Task State Segment (TSS), all Li 
bits are cleared. Thus, the Li bits support fast task 
switching out. of tasks that use some task-local 
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breakpoint registers. The Li bits are cleared by the 
processor during a task switch, to avoid spurious ex­
ceptions in ,the new task. Note that the breakpoints 
must be re-enabled under software control. 

All 486 Microprocessor Gi bits are unaffected during 
a task switch. The Gi bits support breakpoints that 
are active in all tasks executing in the system. 

9.3.3 DEBUG STATUS REGISTER (DR6) 

A Debug Status Register, DR6 shown in Figure 9.1, 
allows the exception 1 handler to easily determine 
why it was invoked. Note the exception 1 handler 
can be invoked as a result of one of several events: ' 

1) ORO Breakpoint faultltrap. 

2) DR1 Breakpoint faultltrap. 

S) DR2 Breakpointfaultltrap. 

4) DRS Breakpoint faultltrap. 

5) Single-step (TF) trap. 

6) Task switch trap. 

7) Fault due to attempted debug register access 
when GD=1. 

The Debug Status Register contains single-bit flags 
for each of the possible events invoking exception 1. 
Note below that some of these events are faults (ex­

'ception taken before the instruction is executed), 
while other events are traps (exception taken after 
thA rlAhll~ AV",,,t .. nr.r.llrrerlt 

The flags in DR6 are set by the hardware but never 
cleared by hardware. Exception 1 handler software 
should clear DR6 before returning to the user pro­
gram to avoid future confusion in identifying the 
source of exception 1. 

The fields within the Debug Status Register, DR6, 
are a's follows: 

Bi (debug fault/trap due to breakpoint O-S) 

Four breakpoint indicator flags, BO-BS, correspond 
one-to-one with the breakpoint registers in DRO­
DRS. A flag Bi is set when the condition described 
by DRi, LENi, and RWi occurs. 

If Gi or Li is set, and if the ith breakpoint is detected, 
the processor will invoke the exception 1 handler. 
The exception is handled as a fault if an instruction 
execution breakpoint occurred, or as a trap if a data 
breakpoint occurred. 

IMPORTANT NOTE: A flag Bi is set whenever the 
hardware detects a match condition on enabled 

breakpoint i. Whenever a match is detected on at 
least one enabled breakpoint i, the hardware imme­
diately sets all Bi bits corresponding to breakpoint 
conditions matching at that instant, whether enabled 
or not. Therefore, the exception 1 handler may see 
that multiple Bi bits are set, but only set Bi bits corre­
sponding to enabled breakpoints (Li or Gi set) are 
true indications of why the exception 1 handler was 
invoked. 

BD (debug fault due to attempted register access 
when GO bit set) 

This bit is set if the exception 1 handler was invoked 
due to an instruction attempting to read or write to 
the debug registers when GO bit was set. If such an 
event occurs, then the GO bit is automatically 
cleared when the exception 1 handler is invoked, 
allowing handler access to the debug registers. 

BS (debug trap due to single-step) 

This bit is set if the exception 1 handler was invoked 
due to the TF bit in the flag register being set (for 
single-stepping). 

BT (debug trap due to task switch) 

This bit is set if the exception 1 handler was invoked 
due to a task switch occurring to a task having a 486 
Microprocessor TSS with the T bit set. Note the task 
switch into the new task occurs normally, but before 
!~~ ~!~! ~r::::trlll'ti0!" r'f th~ t~c:1t i~ Co~~"" J!~t:I. thA tly. 

ception 1 handler is invoked. With respect to the 
task switch operation, the operation is considered to 
be a trap. 

9.3.4 USE OF RESUME FLAG (RF) IN FLAG 
REGISTER 

The Resume Flag (RF) in the flag word can sup­
press an instruction execution breakpoint when the 
exception 1 handler returns to a user program at a 
user address which is also an instruction execution 
breakpoint. 

10.0 INSTRUCTION SET SUMMARY 

This section describes the 486 microprocessor in­
struction set. Tables 10.1 through 10.S list all in­
structions along with instruction encoding diagrams 
and clock counts. Further details of the instruction 
encoding are then provided in Section 10.2, which 
completely describes the encoding structure and the 
definition of all fields occurring within the 486,micro­
processor instructions. 
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10.1 i486™ Microprocessor 
Instruction Encoding and Clock 
Count Summary 

To calculate elapsed time for an instruction, multiply 
the instruction clock count, as listed in Tables 1 0.1 
through 1 0.3 by the processor clock period (e.g., 
40 ns for a 25 MHz 486 microprocessor). 

For more detailed information on the encodings of 
instructions, refer to Section 10.2 Instruction Encod­
ings. Section 10.2 explains the general structure of 
instruction encodings, and defines exactly the en­
codings of all fields contained within the instruction. 

INSTRUCTION CLOCK COUNT ASSUMPTIONS 

The 486 microprocessor instruction clock count ta­
bles give clock counts assuming data and instruction 
accesses hit in the cache. A separate penalty col­
umn defines clocks to add if a data access misses in 
the cache. The combined instruction and data cache 
hit rate is over 90%. . 

A cache miss will force the 486 microprocessor to 
run an external bus cycle. The 486 microprocessor 
32-bit burst bus is defined as r-b-w. 

Where: 

r = The number of clocks in the first cycle of a 
burst read or the number of clocks per data 
cycle in a non-burst read. 

b = The number of clocks for the second and sub­
sequent cycles in a burst read. 

w = The number of clocks for a write. 

The fastest bus the 486 microprocessor can support 
is 2 -1 - 2 assuming 0 wait states. The clock counts 
in the cache miss penalty column assume a 2 -1 - 2 
bus. For slower busses add r-2 clocks to the cache 
miss penalty for the first dword accessed. Other fac­
tors also affect instruction clock counts. 

Instruction Clo~k .count Assumptions 

1. The external bus is available for reads or writes at 
all times. Else add clocks to reads until the bus is 
available. 

2. Accesses are aligned. Add three clocks to each 
misaligned access. 

3. Cache fills complete before subsequent accesses 
to the same line. If a read misses the cache dur­
ing a cache fill due to a previous read or pre-fetch, 
the read must wait for the cache fill to complete. If 
a read or write accesses a cache line still being 
filled, it must wait for the fill to complete. 

4. If an effective address is calculated, the base 
register is not the destination register of the pre­
ceding instruction. If the base register is the des­
tination register of the preceding instruction add 
1 to the clock counts shown. Back-to-back 
PUSH and POP instructions are not affected by 
this rule. 

5. An effective address calculation uses one base 
register and does not use an index register. 
However, if the effective address calculation 
uses an index register, 1 clock may be added to 
the clock count shown. 

6. The target of a jump is in the cache. If not; add r 
clocks for accessing the destination instruction 
of a jump. If the destination instruction is not 
completely contained in the first dword read\ add 
a maximum of 3b clocks. If the destination in­
struction is not completely contained in the first 
16 byte burst, add a maximum of another r + 3b 
clocks. 

7. If no write buffer delay, w clocks are added only 
in the case in which all write buffers are full. Typi­
cally, this case rarely occurs. 

8. Displacement and immediate not used together. 
If displacement and immediate used together, 1 
clock may be added to the clock count shown. 

9. No invalidate cycles. Add a delay of 1 clock for 
each invalidate cycle if the invalidate cycle con­
tends for the internal cache/ external bus when 
the 486 CPU needs to use it. 

10. Page translation hits in TLB. A TLB miss will add 
13, 21 or 28 clocks to the instruction depending 
on whether the Accessed and/or Dirty bit in nei­
ther, one or both of the page entries needs to be 
set in memory. This assumes that neither page 
entry is in the data cache and a page fault does 
not occur on the address translation. 

11. No exceptions are detected during instruction 
execution. Refer to Interrupt Clock Counts Table 
for extra clocks if an interrupt is detected. 

12. Instructions that read multiple consecutive data 
items (Le. task switch, paPA, etc.) and miss the 
cache are assumed to start the first access on a 
16-byte boundary. If not, an extra cache line fill 
may be necessary which may add up to (r+3b) 
clocks to the cache miss penalty. 
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Table 10.1. 1486TM Microprocessor Integer Clock Count Summary 

INSTRUCTION FORMAT Cache Hit Penalty II Notes 
CacheMlss 

INTEGER OPERATIONS 

MOV = Move: 

regl toreg2 1000100W 111 regl reg21 1 

r.g2loregl 1000101w 111 regl reg21 1 

memory to reg 1000101w I mod reg rIm I 1 2 

reg 10 memory 1000100w I mod reg rIm I 1 

Immediate to rag 1100011 w 111000 reg I immediate data 1 

or 1011w reg I immediate data 1 

Immediate to Memory 1100011w I mod 000 rIm I displaC,ement 
Immediate 

1 

Memory \0 Accumulalor 1010000w I lull displacement 1 2 

~ccumulator to Memory 1010001w I lull displacement 1 

MOVSX/MOVZX = Move with SlgnlZero Extension 

reg2to regl I 00001111 I 1011z11w 111 regl reg21 3 

memory to reg I 00001111 I 1011 zll w I mod reg rIm I 3 2 

z Instruction 

0 MOVZX 
1 MOVSX 

PUSH = Push 

reg I 11111111 111 110 reg 1 4 

or 101010 reg 1 1 

~ . I 11111111 ImOd 110 rIm I 4 1 1 
~ . 

immediate I 011010s0 1 immediate data 1 

PUSHA = Push All I 01100000 1 11 

POP = Pop 

reg I 10001111 111 000 reg 1 4 1 

or 101011 reg I . 1 2 

memory I 10001111 I mod 000 rIm 1 5 2 1 

POPA = Pop All I 01100001 1 9 7115 16/32 

XCHG = Excha~l!e 
regl with reg2 I 1000011w 111 regl reg21 3 2 

Accumulator with reg 110010 reg 1 3 2 

Memory with reg I 100~0011w I mod reg rIm 1 5 2 

NOP = No OperaUon I 10010000 I 1 

LEA = Load EA to Register I 10001101 I mod reg rIm 1 
no index register 1 
with index register 2 
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Table 1 0.1. i486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Penalty if 
Notes 

CacheMlss 

INTEGER OPERATIONS (Continued) 

Instruction ITT 

ADD ~ Add 000 
ADC ~ Add with Carry 010 
AND ~ Logical AND 100 
OR ~ Logical OR 001 
SUB ~ Subtract 101 
SBB ~ Subtract with BarTOW 011 
XOR ~ Logical Exclusive OR 110 

regl to reg2 OOTTTOOw 11 regl reg21 1 

reg2to regl OOTTTOlw 11 r!l11 ;eg21 1 

memory to register OOTTTOlw mod reg rim 1 2 2 

register to memory OOTTTOOw mod reg rim 1 a 6/2 U/L 

immediate to register 100000sw 11 TTT reg I immediate register 1 

immediate to accumulator 00TTT10w immediate data 1 

immediate to memory 100000sw mod TTT rim 1 immediate data a 6/2 U/L 

Instruction ITT 

INC ~ Increment 000 
DEC ~ Decrement 001 

reg I lllllllw 111 TTT reg 1 1 

or 101 TTT reg I 1 

memory I lllllllw I mod TTT rim 1 a 6/2 U/L 

Instruction ITT 

NOT ~ Logical Complement 010 
NEG ~ Negate 01t 

reg I 1111.011w 111 TTT reg I 1 

memory I 1111011w I mod TTT rim I a 6/2 u/L 

CMP ~ Compare 

regl with reg2 0011100w 11 regl reg21 1 

reg2 with regl 0011101w 11 re91 reg21 1 

memory with register 0011100w mod reg rim I 2 2 

register with memory 0011101w mod reg rim I 2 2 

immediate with register 100000sw 11 111 reg I Immediate data 1 

immediate with acc. 0011110w immediate data 1 

immediale with memory 100000sw I mod 111 rIm I immediate data 2 2 

TEST ~ logical Compare 

regl and reg2 I 1000010w 111 regl reg21 1 

memory and register I 1000010w I mod reg rim 1 2 2 

immediate and register I 1111011 w 111 000 reg 1 immediate data 1 

immediate and acc. I 1010100w I immediate data 1 

immediate and memory I 1111011w I mod 000 rim I Immediate data 2 2 
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Table 10.1. i486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Penalty If 
Notes CacheMlss 

INTEGER OPERATIONS (Continued) 

MUL = MulUply (unsigned) 

acc. with register I 1111011w 111 100 reg I 
Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 
Dword 13/42 MN/MX,3 

acc. with memory 1 1111011w 1 mod 100 r/ml 

Multiplier-Byte 13/18 1 MN/MX,3 
Word 13/26 1 MN/MX,3 
Dword 13/42 1 MN/MX,3 

IMUL = Integer Multiply (signed) 

acc. with register I 1111011 w 111 101 reg I 
Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 
Dword 13/42 MN/MX,3 

acc. with memory I 1111011 w 1 mod 101 rIm I 
Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 
Dword 13/42 MN/MX,3 

rpq 1 with mg2 I 00001111 1 10101111 111 reg1 reg21 

MulllplIOf·[Jylll 13/18 MN/MX,3 
Word 13/26 MN/MX,3 
Dword 13142 MN/MX,3 

register with memory 1 00001111 1 10101111 1 mod reg rIm I 
Multiplier-Byte 13/18 1 MN/MX,3 

Word 13/26 1 MN/MX,3 
Dword 13142 1 MN/MX,3 

regl with imm. to reg2 1 011010s1 111 reg1 reg21 immediate data 

Multiplier-Byte 13/18 MN/MX,3 
Word 13/26 MN/MX,3 
Dword 13/42 MN/MX,3 

memo with !mm. to reg. I 011010s1 1 mod reg rIm I immediate data 

Multiplier-Byte \ 13/18 2 MN/MX,3 
Word 13/26 2 MN/MX,3 
Dword 13142 2 MN/MX,3 

DIV = Divide (unsigned) 

acc. by register I 1111011w 111 110 reg I 
Divisor-Byte 16 

Word 24 
Dword 40 

acc. by memory I 1111011w 1 mod 110 rIm I 
Divisor-Byte 16 

Word 24 
Dword 40 

IDlY = Integer Divide (signed) 

acc. by register I 1111011 w 111 111 reg I 
Divisor-Byte 19 

Word 27 
Dword 43 
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Table 10.1. i486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
Penally II 

Not.s 
Cache Miss 

INTEGER OPERATIONS (Continued) 

acc. by memory I 1111011w I mod 111 rlml 

Divisor-Byte 20 
Word 28 
Dword 44 

CBW = Convert Byte to Word I 10011000 ! 3 

CWO = Convert Word to Oword I 10011001 ! 3 

Instruction TTT 

ROL = Rotate Left 000 
ROR = Rotate Right 001 
RCL = Rotate through Carry Left 010 
RCR = Rotate through Carry Right 011 
SHL/SAL = Shift Logicall Arithmetic Left 100 
SHR = Shift Logical Right 101 
SAR = Shift Arithmetic Right 111 

Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR) 

reg by 1 I 1101000w 11 TTT reg ! 3 

memory by 1 I 1101000w mod TTT rim! 4 6 

regbyCL I 1101001 w 11 TTT reg ! 3 

memorybyCL I 1101001 w mod TTT rim! 4 6 

reg by immediate count I 1100000w 11 TTT reg I immediate a-bit data 2 

mem by immediate count I 1100000w I mod TTT rIm I immediate a-bit data 4 6 

Through Carry (RCL and RCR) 

reg by 1 I 1101000w 11 TTT reg ! 3 

memory by 1 I 1101000w mod TTT rim! 4 6 

reg byCL I 1101001w 11 TTT reg ! 8/30 MN/MX,4 

memorybyCL I 1101001 w mod TTT rim! 9/31 MN/MX,5 

reg by immediate count I 1100000w 11 TTT reg I immediate a-bit data 8/30 MN/MX,4 

mem by immediate count I 1100000w mod TTT rim I immediate 8·bit data 9/31 MN/MX,5 

Instruction TTT 

SHLD = Shift Left Double 100 
SHRD = Shift Right Double 101 

register with immediate I 00001111 10TTT100 111 reg2 regl I imm 8·bit data 2 

memory by immediate I 00001111 10TTT100 I mod reg rim I imm 6-bit data 3 6 

register by CL I 00001111 10TTT10l 111 reg2 regll 3 

memorybyCL I 00001111 10TTT10l I mod reg rim I 4 5 

BSWAP = Byte Swap I 00001111 11001 reg I 1 

XADO = Exchange and Add 

regl, reg2 I 00001111 11100000W 111 reg2 regll 3 

memory, reg I 00001111 11100000W I mod reg rim! 4 6/2 u/L 

CMPXCHG = Compare and Exchange 

regl, reg2 I 00001111 11011000W 111 reg2 regll 6 

memory, reg I 00001111 11011000W I mod reg rim! 7/10 2 6 
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Table 10; 1. i486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Penalty II 
Notes CacheMlss 

CONTROL TRANSFER (within segment) 

NOTE: Ti"1es are jump takenlnot taken 

Jc,,!, = Jump on ccc 

8·bit displacement I 0111 tttn I 8·bitdisp. I 3/1 TINT, 23 , 
I I I full displacement full displacement 00001111 1000tttn 3/1 TINT, 23 

NOTE: Times are jump takenlnot taken 

SETcccc = Set Byte on cccc (Times are cccc truellalse) 

reg I 00001111 I 1001tttn 111 000 reg I 4/3 

memory I 00001111 I 1001tttn I mod 000 rIm I 3/4 

MnemoniC 
Condition IIIn 

ecce 

0 Overflow 0000 
NO No Overflow 0001 
BINAE BelowlNot Above or Equal 0010 
NB/AE Not Belowl Above or Equal 0011 
E/Z Equal/Zero 0100 
NE/NZ Not Equal/Not Zero 0101 
BE/NA Below or Equal/Not Above 0110 
NBE/A Not Below or Equal/Above 0111 
S Sign 1000 
NS Not Sign 1001 
PIPE ParitylParity Even 1010 
NP/PO Not ParitylParity Odd 1011 
L/NGE Less ~han/Not Greater or Equal 1100 
NL/GE Not Less Than/Greater or Equal 1101 
LE/NG Less Than or Equal/Greater Than 1110 
NLE/G Not Less Than or Equal/Greater Than 1111 

LOOP = LOOP CX Times 11100010 I 8·bit disp. I 7/6 LINL,23 

LOOPZ/LOOPE = Loop with· 11100001 I 8·bit disp. I 9/6 LINL,23 
Zero/Equal 

LOOPNZ/LOOPNE = Loop while 11100000 I 8·bitdisp. I 9/6 LINL,23 
Not Zero 

JCXZ = Jump on CX Zero 11100011 I 8·bitdisp. I 8/5 TINT, 23 

JECXZ = Jump on ECX Zero 11100011 I 8.bitdisp. I 8/5 TINT, 23 

~Address Size Prefix Differentiates JCXZ for JECXZ) 

JMP = Unconditional Jump (within segment) 

Short I 11101011 I 8·bitdisp. I 3 7,23 

Direct I 11101001 I full displacement 3 7,23 

Register Indirect I 11111111 111 100 reg I 5 7,23 

Memory Indirect I 11111111 I mod 100 r/ml 5 5 7 

. CALL = Call (within segment) 

Direct I 11101000 I full displacement 3 7,23 

Registpr Indirect I 11111111 111 010 reg I 5 7,23 

Memory Indirect I 11111111 ImodOl0 r(ml 5 5 7 

RET = Return Irom CALL (within segment) 

I 11000011 I 5 5 

Adding Immediate to SP I 11000010 I 16·bit disp. I 5 5 
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Table 10.1. i486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
Penally I' 

Notes 
Cache Miss 

CONTROL TRANSFER (within segment) (Continued) 

ENTER ~ Enter Procedure I 11001000 116-bit di.p., B·bit level 

Level ~ 0 14 
Level ~ 1 17 
Level (L) > 1 17+3L 8 

LEAVE ~ Leave Procedure I 11001001 I 5 1 

MULTIPLE·SEGMENT INSTRUCTIONS 

MOV.~ Move 

reg. to segment reg. I 10001110 111 sreg3 reg I 3/9 0/3 RV/P,9 

memory to segment reg. I 10001110 I mod sraga rim I 3/9 2/5 RVlP,9 

segment reg. to reg. I 10001100 111 sreg3 reg I 3 

segment reg. to memory I 10001100 l';'Od sreg3 rim I 3 

PUSH ~ Push 

segment reg. 1000sreg21101 3 
(E5, CS, 55, or 05) 

segment reg. (F5 or G5) I 00001111 110 sreg3000 I 3 

POP ~ Pop 

segment reg. 1000Sreg2111 3/9 2/5 RV/P,9 
(E5, 55, or 05) 

segment reg. (F5 or G5) I 00001111 10 Sreg30011 - 3/9 2/5 RVlP,9 

LDS ~ Load Pointer to DS I 11000101 mod reg rim I 6/12 7110 RV/P,9 

LES ~ Load Pointer to ES I 11000100 mod reg rim I 6/12 7110 RVlP,9 

LFS ~ Load Pointer to FS I 00001111 10110100 I mod reg rim I 6/12 7/10 RVlP,9 

LGS ~ Load Pointer 10 GS I 00001111 10110101 I mod reg rim I 6/12 7/10 RV/P,9 

LSS ~ Load Pointer 10 SS I 00001111 10110010 I mod reg r/ml 6/12 7/10 RVlP,9 

CALL ~ CaU 

Direct intersegment I 10011010 I unsigned ful~ offset, selector 18 2 R,7,22 

to same level 20 3 P,9 
thru Gate to same level 35 6 P,9 
to inner level, no parameters 69 17 P,9 
to inner level, x parameter (d) words n+4X 17+n P,II,9 
toT55 37+T5 3 P,10,9 
thru Task Gate 38+T5 3 P,10,9 

Indirect intersegment I 11111111 I mod 011 rim I 17 8 R,7 

to same level 20 10 P,9 
thru Gate to same level 35 13 P,9 
to inner level. no parameters 69 24 P,9 
to inner level, x parameter (d) words 77+4X 24+n P,11,9 
toT55 37+T5 10 P,10,9 
thru Task Gate 38+T5 10 P,10,9 

RET ~ Relurn from CALL 

intersegment I 11001011 I 13 8 R,7 

to same level 17 9 P,9 
to outer level 35 12 P,9 

intersegment adding I 11001010 I 16-bit disp .. I 
imm.to 5P 14 8 R,7 

to same level 18 9 P,9 
to outer level 36 12 P,9 
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Table 10.1. i486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
Penalty I! 

Notes 
CacheMlss 

MULTIPLE·SEGMENT INSTRUCTIONS (Continued) 

JMP ~ Unconditional Jump 

Direct intersegment I 11101010 I unsigned full offset, selector 17 2 R,7,22 

to same level 19 3 P,9 
thru Call Gate to same level 32 6 P,9 
thruTSS 42+TS 3 P,10,9 
thru Task Gate 43+TS 3 P,10,9. 

Indirect intersegment I 11111111 I mod 101 rIm I 13 9 R,7,9 

to same level 18 10 P,9 
thru Call Gate to same level 31 13 P,9 
thruTSS 41+TS 10 P,10,9 
thru Task Gate 42+TS 10 P,10,9 

BIT MANIPULATION 

BT ~ Test bit 

register, immediate I 00001111 I 10111010 111 100 reg I imm. 8-bit data 3 

memory, immediate I 00001111 I 10111010 I mod 100 rIm I imm. 8-bit data 3 1 

regl, reg2 I 00001111 110100011 111 reg2 regll 3 

memory, reg I 00001111 I 10100011 I mod reg rIm I 8 2 

Instruction TTl , 
BTS ~ Test Bit and Set 101 
BTR ~ Test Bit and Reset 110 
BTC ~ Test Bit and Compliment 111 

register, immediate I 00001111 I 10111010 111 TTT rag I imm. 8-bit data 6 

memory, immediate I 00001111 I 10111010 I mod TTT rIm I imm. 8-bit data 8 2/0 UlL 

regl, reg2 100001111 I 10TTTOll 111 reg2 regll 6 

memory trag I 00001111 I 10TTTOll I mod reg r/ml 13 3/1 U/L 

BSF ~ Scan Bit Forward 

regl, reg2 I 00001111 I 10111100 111 reg2 regll 6/42 MN/MX,12 

memory,reg I 00001111 I 10111100 I mod reg rIm I 7/43 2 MN/MX,13 

BSR ~ Scan Bit Reverse 

reg1, reg2 I 00001111 I 10111101 111 reg2 regll 6/103 MN/MX, '14 

memory,reg I 00001111 I 10111101 I mod reg r/ml 7/104 1 MN/MX.15 

STRING INSTRUCTIONS 

CMPS ~ Compare Byte Word I 1010011w I 8 6 16 

I I 
I 

LODS ~ Load BytelWord 1010110w 5 2 
toAL/AX/EAX 

MOVS ~ Move BytelWord I 1010010w I 7 2 16 

SCAS ~ Scan Byte/Word I 1010111 w I 6 2 

STOS ~ Store Byte/Word I 1010101w I 5 
from ALI AXIEX 

XLA T ~ Translate String I 11010111 I 4 2 
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Table 1 0.1. i486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Penalty II Notes 
Cache Mis. 

REPEATED STRING INSTRUCTIONS 

Repeated by Count in CX or ECX (C ~ Count in CX or ECX) 

REPE CMPS ~ Compare String I 11110011 I 1010011 w I 
(Find Non-Match) 
C~O 5 
C>O 7+7c 16,17 

REPNE CMPS ~ Compare String I 11110010 I 1010011 w I 
(Find Match) 
C~O 

5 
C>O 7+7c 16,17 

REP LODS ~ Load String I 11110010 I 1010110w I 
C~O 5 
C>O 7+4c 16,18 

REP MOVS ~ Move String I 11110010 I 1010010w I 
C ~ 0 5 
C ~ 1 13 1 16 
C>l 12+3c 16,19 

REPE SCAS ~ Scan String I 11110011 I 1010111 w I 
(Find Non-ALI AX/EAX) 
C ~ 0 5 
C>O 7+5c 20 

REPNE SCAS ~ Scan String I 11110010 I 1010111 w I 
(Find ALI AX/EAX) 
C~O 5 
C>O 7+5c 20 

REP STOS ~ Store Siring I 11110010 I 1010101 w I 
C~O 5 
C>O 7+4c 

FLAG CONTROL 

CLC ~ Clear Carry Flag I 11111000 I 2 

STC ~ Set Carry Flag I 11111001 I 2 

CMC ~ Complement Carry Flag I 11110101 I 2 

CLD ~ Clear Direction Flag I 11111100 I 2 

STO = Set Direction Flag I 11111101 I 2 

CLI ~ Clear Interrupt I 11111010 I 5 

Enable Flag 

STI ~ Set Interrupt I 11111011 I 5 
Enable Flag 

LAHF ~ Load AH into Flag I 10011111 I 3 

SAHF ~ Store AH into Flags I 10011110 I 2 

PUSHF ~ Push Flags I 10011100 I 4/3 RV/P 

POPF ~ Pop Flags I 10011101 I 9/6 RV/P 

DECIMAL ARITHMETIC 

AAA ~ ASCII Adjusl lor Add I 00110111 I 3 

AAS ~ ASCII Adjust lor I 00111111 I 3 
Subtract 

AAM ~ ASCII Adjuslfor I 11010100 I 00001010 I 15 
Multiply 
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Table 10.1. i486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
Penalty II 

Notes Cache Miss 

DECIMAL ARITHMETIC (Continued) 
, 

AAD ~ ASCII Adjustlor 1 t 1010101 1 00001010 1 14 

Divide 

DAA ~ Decimal Adjust lor Add 1 00100111 1 2 

DAS ~ Decimal Adjust lor Subtract 1 00101111 1 2 

PROCESSOR CONTROL INSTRUCTIONS 

HLT ~ Halt 1 11110100 1 4 

MOV ~ Move To and From Control/Debug/Test Registers / 

CRO from register 1 00001111 00100010 11 000 reg I 17 2 

CR2/CR3 from register I 00001111 00100010 11 eee reg I 4 

Reg from CRO-3 1 00001111 00100000 11 eee reg I 4 

DRO-3 from register I 00001111 00100011 11 eee reg I 10 

DRS-7 from register I 00001111 00100011 11 eee reg I 10 

Register from ORS-7 00001111 00100001 11 eee reg I 9 

Register from ORO-3 00001111 00100001 11 eee reg 1 9 

lRS from register 00001111 00100110 11 011 reg 1 4 

TR4-7 from register 00001111 00100110 11 eee reg 1 4 

Register from TR3 00001111 00100100 11 011 reg 1 3 

Register from TR4-7 00001111 00100100 11 eee reg 1 4 

CL TS ~ Clear Task Switched Flag 00001111 00000110 7 2 

INVD ~ Invalidate Data Cache 00001111 00001000 I 4 

WBINVD ~ Wrlte·Back and Invalidate 00001111 00001001 I 5 
Data Cache 

INVLPG ~ I~valldate TLB Entry 

INVLPG memory I 00001111 I 00000001 I mod 111 r/ml 12/11 HINH 

PREFIX BYTES 

Address Size Prefix I 01100111 I 1 

LOCK ~ Bus Lock Prefix I 11110000 I 1 

Operand Size Prefix 01100110 I 1 

Segment Override Prelix 

CS: 00101110 I 1 

OS: 00111110 I 1 

ES: 00100110 I 1 

FS: 01100100 I 1 

GS: 01100101 I 1 

SS: 00110110 I 1 
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Table 10.1. i486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
Penalty If 

Notes 
Cache Miss 

PROTECTION CONTROL 

ARPL = Adjust Requested Privilege Level 

From register I 01100011 111 regl reg21 9 

From memory I 01100011 I mod reg rIm I 9 

LAR = Load Access Rights 

From register I 00001111 I 00000010 111 regl reg21 11 3 

From memory I 00001111 I 00000010 I mod reg r/ml 11 5 

LGDT = Load Global Descriptor 

Table register I 00001111 I 00000001 I mod 010 rIm 1 12 5 

LIDT = Load Interrupt Descriptor 

Table register I 00001111 I 00000001 I mod 011 rIm 1 12 5 

LLDT = Load Local Descriptor 

Table register from reg. I 00001111 I 00000000 111 010 reg I 11 3 

Table register from memo I 00001111 I 00000000 I mod 010 r/ml 11 6 

LMSW = Losd Machine Status Word 

From register I 00001111 I 00000001 111 110 reg 1 13 

From memory I 00001111 I 00000001 I mod 110 rIm 1 13 1 

LSL = Load Segment Limit 

Fran:- register I 00001111 I 00000011 111 regl reg21 10 3 

From memory I 00001111 I 00000011 I mod reg r/ml 10 6 

L TR = Load Task Register 

From Register I 00001111 I 00000000 111 001 reg 1 20 

From Memory I 00001111 I 00000000 I mod 001 r/ml 20 

SGDT = Store Global Descriptor Table 

I 00001111 I 00000001 I mod 000 rIm 1 10 

SIDT = Store Interrupt Descriptor Table 

I 00001111 I 00000001 I mod 001 r/ml 10 

SLDT = Store Local Descriptor Table 

To register I 00001111 I 00000000 111 000 reg 1 2 

To memory I 00001111 I 00000000 I mod 000 rIm I 3 

SMSW = Store Machine Status Word 

To register I 00001111 I 00000001 111 100 reg I 2 

To memory I 00001111 I 00000001 I mod 100 r/ml 3 

STR = Store Task Register 

To register I 00001111 I 00000000 111 001 reg I 2 

To memory I 00001111 I 00000000 I mod 001 r/ml 3 
I 

VERR = Verify Read Access 

Register I 00001111 I 00000000 111 10Q rIm I 11 3 

Memory I 00001111 I 00000000 I mod 100 rIm I 11 7 

VERW = Verify Wrfte Access 

Teregister I 00001111 I 00000000 111 101 reg I 11 3 

To memory I 00001111 I 00000000 I mod 101 rIm I 11 7 
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Table 10.1.1486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT eacheHlt 
Penalty If 

Notes CscheMlaa 

INTERRUPT INSTRUCTIONS 

INT n = Interrupt Type n I "00"0' I type I INT+4/0 RVlP, 2' 

I 1 

, 
INT 3 = Interrupt Type 3 "00"00 INT+O 2' 

INTO = Interrupt 41f I "00"'0 I 
Overflow Flag Set 
Taken INT+2 2' 
NotTaken 3 2' 

BOUND = Interrupt 5 If Detect I 0"000'0 I mod reg r/ml 
Value Out Range 

Ilinrange 7 7 2' 
II out 01 range INT+24 7 2' 

IRET = Inlerrupt Return I "00'" , I 
Real Mode/Virtual Mode '5 8 
Protected Mode 

To same level 20 " 9 
To outer level 38 '9 9 
To nested task (EFLAGS.NT =') TS+32 4 9, '0 

Extemallnlerrupt INT+" 2' 

NMI = No".Maskable Interrupt INT+3 2' 

Page Fault INT+24 2' 

Wa6 Exceptions 
eLi INT+8 2' 
STI 1NT+8 2' 
INTn INT+9 
PUSHF INT+9 2' 
POPF 1NT+8 2' 
IRET INT+9 
IN 

Fixed Port INT+50 2' 
VarisblePort INT+5' 2' 

OUT 
Fixed Port 1NT+50 2' 
Variable Port INT+5' 2' 

INS INT+50 2' 
OUTS INT+50 2' 
REP INS INT+5' 2' 
REP OUTS 1NT+5' 2' 

Task Switch Clock Counts Table 

Method 
Value for TS 

Cache Hit Miss Penalty 

VM/486 CPU/286 TSS To 486 CPU TSS 162 55 
VM/486 CPU/286 TSS To 286 TSS 143 31 
VM/486 CPU/286 TSS To VM TSS 140 37 
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Interrupt Clock Counts Table 

Method 

Real Mode 

Protected Mode 
Interrupt/Trap gate, same level 
Interrupt/Trap gate, different level 
Task Gate 

Virtual Mode 
Interrupt/Trap gate, different level 
Task gate 

Abbreviations 
16/32 
U/L 
MN/MX 
LlNL 
RV/P 
R 
P 
T/NT 
H/NH 

NOTES: 

Definition 
16/32 bit modes 
unlocked/locked 
minimum/maximum 
loop/no loop 
real and virtual mode/protected mode 
real mode 
protected mode 
taken/not taken 
hit/no hit 

Cache Hit 

26 

44 
71 

37 + TS 

82 
37 + TS 

Value for INT 

Miss Penalty 

2 

6 
17 
3 

17 
3 

1. Assuming that the operand address and stack address fall in different cache sets. 
2. Always locked, no cache hit case. 
3. Clocks = 10 + max(log2(imi),n) 

m = multiplier value (min clocks for m = 0) 
n = 3/5 for ±m 

4. Clocks = (quotient(countl operand length) 1*7 + 9 
= 8 if count ,;;: operand length (8/16/32) 

5. Clocks = (quotient(countl operand length) 1*7 + 9 
= 9 if count,;;: operand length (8/16/32) 

6. Equal/not equal cases (penalty is the same regardless of lock). 

Notes 

9 
9 

9,10 

10 

7. Assuming that addresses for memory read (for indirection), stack push/pop, and branch fall in different cache sets. 
8. Penalty for cache miss: add 6 clocks for every 16 bytes copied to new stack frame. 
9. Add 11 clocks for each unaccessed descriptor load. 
10. Refer to task switch clock counts table for value of TS. 
11. Add 4 extra clocks to the cache miss penalty for each 16 bytes. 
For notes 12-13: (b = 0-3, non-zero byte number); 

(i = 0-1, non-zero nibble number); 
(n = 0-3, non bit number in nibble); 

12. Clocks = 8+4 (b+ 1) + 3(i+ 1) + 3(n+ 1) 
= 6 if second operand = 0 

13. Clocks = 9+4(b+1) + 3(i+1) + 3(n+1) 
= 7 if second operand = 0 

For notes 14-15: (n = bit position 0-31) 
14. Clocks = 7 + 3(32-n) 

6 if second operand = 0 
15. Clocks = 8 + 3(32-n) 

7 if second operand = 0 
16. Assuming that the two string addresses fall in different cache sets. 
17. Cache miss penalty: add 6 clocks for every 16 bytes compared. Entire penalty on first compare. 
18. Cache miss penalty: add 2 clocks for every 16 bytes of data. Entire penalty on first load. 
19. Cache miss penalty: add 4 clocks for every 16 bytes moved. 

(1 clock for the first operation and 3 for the second) 
20. Cache miss penalty: add 4 clocks for every 16 bytes scanned. 

(2 clocks each for first and second operations) 
21. Refer to interrupt clock counts table for value of INT 
22. Clock count includes one clock for using both displacement and immediate. 
23. Refer to assumption 6 in the case of a cache miss. 
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Table 10.2.1486™ Microprocessor 1/0 Instructions Clock Count Summary 

Real Protected Protected Virtual8B 
INSTRUcnON FORMAT Mode Mode Mode Mode Notes 

(CPL<:IOPL) (CPL>IOPL) 

/0 INSTRUCTIONS 

N = Input from: 

Fixed Port 1111001 Ow I port number I 14 9 29 27 

Variable Port 1111011 Ow I 14 8 28 27 

~UT = Output to: 

Fixed Port 11110011 wi port number I 16 11 31 29 

Variable Port 11110111 wi 16 10 30 29 

NS = Input Byte/Word 1011011 Ow I 17 10 32 30 
from DX Port 

OUTS = Output Byte/Word 10110111 wi 17 10 32 30 1 
to DX Port 

REP INS = Input String 11111001010110110wl 16+8c 10+8c 30+8c 29+8c 2 

REP OUTS = Output String 111110010 I 0110111w I 17+5c 11+5c 31+5c 30+5c 3 

NOTES: 
1. Two clock cache miss penalty in all cases. 
2. c .; count in CX or ECX. 
3. Cache miss penalty in aU modes: Add 2 clocks for every 16 bytes. Entire penalty on second operation. 
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Table 10.3. i486TM Microprocessor Floating Point Clock Count Summary 

Cache Hit 
Concurrent 

Penalty I! Execution 

INSTRUCTION FORMAT Avg(Lower Cache Miss Avg(Lower Notes 
Range ••. Range ••• 

Upper Range) Upper Range) 

DATA TRANSFER 

FLO ~ Real Load to ST(O) 

32-blt memory 1"0,, oOllmod 000 r/ml s·l-b/dlsp_ I 3 2 

64-blt memory 1"0,, 1011mod 000 '/ml s-I-b/dlsp_ I 3 3 

80-blt memory 1"0,, olllmod 101 "ml s-I-b/dlsp. I 6 4 

ST(I) 1"0,, 00,1,,000 ST(I) I 4 

FILD = Integer Load to ST(O) 

16·bit memory 1"0,, 1111 mod 000 "ml s-i-b/disp. I 14.5(13-16) 2 4 

32-blt memory 1"0,, a 111 mod 000 "ml s-I-b/dlsp. I 11.5(9-12) 2 412-4) 

64-blt memory 1"0,, 1111 mod 1 01 "ml 8-1-b/dlsp. I 16.8(10-18) 3 7.8(2-8) 

FBLD ~ BCD Load to ST(O) 1"0,, 1111 mod 100 "ml 8-1-b/dlsp. I 75(70-103) 4 7.7(2-8) 

FST ~ Store Real from ST(O) 

32-blt memory 1"0,, oOllmodolo "ml 8-1-b/dlsp. I 7 1 

54-bit memory 1"0,, 1011modolo '/ml s-I-b/dlsp. I 8 2 

ST(I) 1"0,, 1 0,1" 0 1 a ST(I) I 3 

FSTP ~ Store Real from ST(O) and PDP 

32-blt memory 1"0,, 0111 mod all "ml s-I-b/dlsp. I 7 1 

64-blt memory 1"0,, 1 all mod all "ml s-I-b/dlsp. I 8 2 

80-bH memory 1"0,, 0111 mod 111 "ml 8-1-b/dlsp. I 6 

STII) 1"0,, 1 0,1" 001 STII) I 3 

FIST ~ Store Integer from ST(O) 

16-bH memory 1"0,, llllmod 010 "ml s-I-b/dlsp. I 33.4(29-34) 

32-bH memory 1"0,, olllmod 010 "ml s-I-b/dlsp. I 32.4(28-34) 

FISTP ~ Store Integer f'om ST(O) and PDP 

16-bH memory 1"0,, 1111 mod 011 "ml s-I-b/dlsp. I 33.4(29-34) 

32-blt memory 1"0,, olllmod 011 "ml s-I-b/dlsp. I 33.4(29-34) 

64-blt memory 1"0,, 1111 mod 111 "ml s-I-b/dlsp. I 33.4(29-34) 

FBSTP ~ Store BCD from 1"0,, 1111 mod 110 "ml s-I-b/dlsp. I 175(172-176) 

ST(O) and Pop 

FXCH ~ Exchange ST(O) and ST(I) 1"0,, 00,1" 001 ST(I) I 4 

COMPARISON INSTRUCTIONS 

FCOM ~ Compare ST(O) with Real 

32-blt memory 1"0,, 000 I mod 010 "ml s-I-b/dlsp. I 4 2 1 

64-blt memory 1"0,, 100lmod 010 '/ml 8-1-b/dlsp. I 4 3 1 

ST(I) 1"0,, 0001,,0,0 STII) I 4 1 

FCOMP ~ Compare ST(O) with Real and Pop 

32-blt memory 1"0,, oooimod all "ml s-I-b/dlsp. I 4 2 1 

64-bitmemory 1"0,, 100lmod 011 "ml s-I-b/dlsp. I 4 3 1 

ST~) 1"0,, 0001"0,, STII) I 4 1 
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Table 10.3. i486TM Microprocessor Floating Point Clock Count Summary (Continued) 

Cache Hit Concurrent 

Penalty If Execution 

INSTRUCTION FORMAT Avg(Lower eacheMlss Avg(Lower Notes 
Range ... Range ••• 

Upper Range) Upper Range) 

COMPARISON INSTRUCTIONS (Continued) 

FCOMPP = Compare ST(O) with 111011 11011101 10011 5 1 
ST(I) and Pop Twice 

FICOM = Compare ST(O) with Integer 

16-bit memory 111011 110lmod 010 rim I s-i-b/disp_ I 18(16-20) 2 1 

32-bit memory 111011 ololmod 010 rlml s-i-b/disp_ I 16_5(15-17) 2 1 

FICOMP = Compare ST(O) with Integer 

16-bit memory 11011 1101 mod all rim I s-i-b/disp. I 18(16-20) 2 1 

32-bit memory 11011 ololmod all rim I s-i-b/disp. I 16.5(15-17) 2 1 

FTST = Compare ST(O) with 0.0 11011 00 111110 0100 I 4 1 

FUCOM = Unordered compare 11011 101111100 ST(i) I 4 1 
ST(O) with ST(I) 

FUCOMP "' Unordered compare 11011 101111101 ST(i) I 4 1 
ST(O) with ST(I) and Pop 

FUCOMPP = Unordered compare 11011 101111101 10011 5 1 
ST(O) with ST(I) and Pop Twice 

FXAM = Examine ST(O) 111011 00 11111 a 01011 8 

CONSTANTS 

FLOZ = Load + 0.0 Into ST(O) 111011 00111110 11101 4 

FLOI = Load + 1.0 Into ST(O) 111011 00 11111 a 1000 I 4 

FLOPI = Load". Into ST(O) 111011 00 111110 10111 8 2 

FLOL2T = Load 1092(10) Into ST(O) 111011 00111110 10011 8 2 

FLOL2E = Load log2(e) Into ST(O) 111011 00111110 10101 8 2 

FLOLG2 = Loa,d logI0(2) Into ST(O) 111011 00111110 11001 8 2 

FLOLN2 = Load 109.(2) Into ST(O) 111011 00111110 11011 8 2 

ARITHMETIC 

FAOO = Add Real with ST(O) 

ST(O) <- ST(O) + 32-bit memory 111011 oooimod 000 rim I s-i-b/disp_ I 10(8-20) 2 7(5-17) 

ST(O) <- ST(O) + 64-bit memory 111011 100lmod 000 rim I s-i-b/disp. I 10(8-20) 3 7(5-17) 

ST(d) <- ST(O) + ST(I) 111011 doolliooo ST(i) I 10(8-20) 7(5-17) 

FAOOP = Add real with ST(O) and 111011 110111000 STeil I 10(8-20) 7(5-17) 

Pop (ST(i) <- ST(O) + ST(I» 

FSUB = Subtract real from ST(O) 

ST(O) <- ST(O) - 32-bit memory 111011 oooimod 100 rim I s-i-b/disp. I 10(8-20) 2 7(5-17) 

ST(O) <- ST(O) - 64-bit memory 111011 100lmod 100 r/ml s-i-b/disp. I 10(8-20) 3 7(5-17) 

ST(d) <- ST(O) - STeil 111011 doollll0l ST(i) I 10(8-20) 7(5-17) 

FSUBP = Subtract real from ST(O) 111011 110111101 ST(i) I 10(8-20) 7(5-17) 

and Pop (ST(I) <- ST(O) - ST(I» 
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Table 10.3. i486TM Microprocessor Floating Point Clock Count Summary (Continued) 

Cache Hit 
Concurrent 

Penalty If Execution 

INSTRUCTION FORMAT Avg(Lower Cache Miss Avg(Lower Notes 
Range ••• Range •.• 

Upper Range) Upper Range) 

ARITHMETIC (Continued) 

FSUBR = Subtract real reversed (Subtract ST(O) from real) 

ST(O) +- 32·bit memory - ST(O) 1"0,, oooimod 101 r/ml s·i·b/disp. I 10(8-20) 2 7(5-17) 

ST(O) +- 64·bit memory - ST(O) 1"0,, 1 oolmod 101 r/ml s·i·b/disp. I 10(8-20) 3 7(5-17) 

ST(d) +- STeil - ST(O) 1,1011 dool"'00 ST(i) I 10(8-20) 7(5-17) 

FSUBRP = SUbtract real reversed 1"0,, ,,01,1,00 ST(i) I 10(8-20) 7(5-17) 
and Pop (ST(I) +- ST(I) - ST(Ol) 

FMUL = Multiply real with ST(OI 

ST(O) +- ST(O) X 32·bit memory 1"0,, oooimod 001 r/ml s·i·b/disp. I 11 2 8 

ST(O) +- ST(O) X 64·bit memory 1,1011 1001 mod 001 r/ml s·i·b/disp. I 14 3 11 

ST(d) +- ST(O) X STeil 1"0,, dool"00' ST(i) I 16 13 

FMULP = Multiply ST(O) with STO) 1,,01, ,,01,,00, ST(i) I 16 13 
and Pop (ST(I) +- ST(O) x ST(Il) 

FDIV = Divide ST(O) by Real 

ST(O) +- ST(0)/32·bit memory 1,,01, 000 I mod 110 r/ml s-i·b/disp. I 73 2 70 3 

ST(O) +- ST(0)/64·bit memory 1"0,, 1001 mod 100 r/ml s-i-b/disp. I 73 3 70 3 

ST(d) +- ST(O)/ST(i) 1"0,, doollllll ST(i) I 73 70 3 

FDIVP = Divide ST(O) by ST(I) and 1"0,, "01,,1,, ST(i) I 73 70 3 
Pop (ST(I) +- ST(O)/ST(I» 

FDIVR = Divide real reversed (ReaIlST(O» 

ST(O) +- 32-bit memory/ST(O) 1,10" ooolmod 111 r/ml s·i·b/disp. I 73 2 70 3 

ST(O) +- 64-bit memory/ST(O) 1"0,, 100lmod 111 r/ml s·i·b/disp. I 73 3 70 3 

ST(d) +- ST(i)/ST(O) 1,,0,1 dool""0 ST(i) I 73 70 3 

FDIVRP = Divide real reversed and 1,,0,1 "01",, 0 ST(i) I 73 70 3 
Pop (ST(I) +- ST(II/ST(O» 

FIADD = Add Integer to ST(O) 

ST(O) +- ST(O) + IS-bit memory 1"0,, 1101 mod 000 r/ml s·i·b/disp. I 24(20-35) 2 7(5-17) 

ST(O) +- ST(O) + 32·bit memory 1"0,, ololmod 000 r/ml s-i·b/disp. I 22.5(19-32) 2 7(5-17) 

FISUB = Subtract Integer from ST(O) 

ST(O) +- ST(O) - 16-bit memory 1,,0,1 110lmod 100 r/ml s-i·b/disp. I 24(20-35) 2 7(5-17) 

ST(O) +- ST(O) - 32-bit memory 1,10,1 ololmod 100 r/ml s-i-b/disp. I 22.5(19-32) 2 7(5-17) 

FISUBR = Integer Subtract Reversed 

ST(O) +- 16·bit memory - ST(O) 1,,01, 110lmod 101 r/ml s-i-b/disp. I 24(20-35) 2 7(5-17) 

ST(O) +- 32-bit memory - ST(O) 1,,01, ololmod 101 r/ml s-i-b/disp. I 22.5(19-32) 2 7(5-17) 

FIMUL = Multiply Integer with ST(O) 

ST(O) +- ST(O) X 16-bit memory 1"0,, 110lmod 001 rim I s·i-b/disp. I 25(23-27) 2 8 

ST(O) +- ST(O) X 32-bit memory 1"0,, ololmod 001 rim I s-i-b/disp. I 23.5(22-24) 2 8. 

FIDIV = Integer Divide 

ST(O) +- ST(0)116-bit memory 1,10,1 110lmod 110 r/ml s-I-b/disp. I 87(85-89) 2 70 3 

ST(O) +- ST(0)/32-bit memory 1" 011 ololmod 110 rim I s-i-b/disp. I 85.5(84-86) 2 70 3 
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Table 10.3. i486TM Microprocessor Floating Point Clock Count Summary (Continued) 

Cache Hit Concurrent 

Penalty II Execution 

INSTRUCTION FORMAT Avg(Lower Cache Miss Avg(Lower Notes 
Range ••• Range ••. 

Upper Range) Upper Range) 

ARITHMETIC (Continued) 

FIDIVR ~ Integer Divide Reversed 

ST(O) +- 16·bH memoryIST(O) 111011 1101 mod 111 r/ml s·i·b/disp. I 87(85-89) 2 70 3 

ST(O) +- 32·bit memoryIST(O) 11011 010 mod 111 r/ml s-i·b/disp. I 85.5(84-86) 2 70 3 

FSQRT ~ Square Root 11011 001 1111 10101 85.5(83-87) 70 

FSCALE ~ Scale ST(O) by ST(I) 11011 001 1111 11011 31(30-32) 2 

FXTRACT ~ Extract componentS 11011 001 1111 01001 19(16-20) 4(2-4) 
0151(0) 

FPREM ~ Partial Reminder 11011 001 1111 10001 84(70-138) 2(2-8) 

FPREM 1 ~ Partial Reminder (IEEE) 11011 001 1111 01011 94.5(72-167) 5.5(2-18) 

FRNDINT ~ Round ST(O) to Integer 11011 001 1111 11001 29.1 (21-30) 7.4(2-8) 

FABS ~ Absolute value 01 ST(O) 11011 001 1110 00011 3 

FCHS ~ Change sign 0151(0) . 11011 001 1110 00001 6 

TRANSCENDENTAL 

FCOS ~ Cosine 01 51(0) 11011 001 1111 11111 241(193-279) 2 6,7 

FPTAN ~ Partial tangent 01 ST(O) 11011 001 1111 00101 244(200-273) 70 6,7 

FPATAN ~ Partial arctangent 11011 001 1111 00111 289(218-303) . 5(2-17) 6 

FSIN ~ Sine 01 ST(O) 11011 001 1111 11101 241(193-279) 2 6,7 

FSINCOS ~ Sine and cosine 01 ST(O) 11011 001 1111 10111 291 (243-329) 2 6,7 

F2XMl ~ 2ST(O) - 1 11011 001 1111 00001 242(140-279) 2 6 

FYL2X ~ 51(1) x log2(ST(0)) 11011 001 1111 00011 311 (196-329) 13 6 

FYL2XPI ~ ST(I) x log2(51(0) + 1.0) 11011 001 1111 10011 313(171-326) 13 6 

PROCESSOR CONTROL 

FINIT ~ InlUallze FPU 111011 01111110 00111 17 4 

FSTSW AX ~ Store status word 111011 11-111110 00001 3 5 

Into AX 

FSTSW ~ Store status word 11011 1011 mod 111 rIm I s-i-b/disp. I 3 5 

Into memory 

FLDCW ~ Load control word 11011 oOllmod 101 rIm I s-i-b/disp. I 4 2 

F51CW ~ Store control word 11011 oOllmod 111 rIm I s-i-b/disp. I 3 5 

FCLEX ~ Clear exceptions 11011 01111110 00101 7 4 

FSTENV ~ Store environment 11011 oOllmod 110 rIm I s-i-bl disp. I 
Real and Virtual modes 16-bit Address 67 4 
Real and Virtual modes 32-bit Address 67 4 
Protected mode 16-bit Address 56 4 
Protected mode 32-bit Address 56 4 

FLDENV ~ Load environment 111011 oOllniod 100 rIm I s-i-b/disp. I 
Real and Virtual modes 16-bit Address 44 2 
Real and Virtual modes 32-bit Address 44 2 
Protected mode 16-bit Address 34 2 
Protected mode 32-bit Address 34 2 
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Table 103 i486TM Microprocessor Floating Point Clock Count Summary (Continued) 

CacheHl1 Concurrent 
Execution Penally II 

INSTRUCTION FORMAT Avg(Lower Cache Miss Avg(Lower Notes 
Range ••• Range ••• 

Upper Range) Upper Range) 

PROCESSOR CONTROL (Continued) 

FSAVE = Save slale 111011 1011mod 110 rim I s·i·b/disp. I 
Real and Virtual modes 1 6--bit Address 154 4 
Real and Virtual modes 32·bit Address 154 4 
Protected mode 16·bit Address 143 4 
Protected mode 32-bit Address 143 4 

FRSTOR = Restore state 111011 1011modl00 rim I s·i·bl I 
Real and Virtual modes 16·bit Address 131 23 
Real and Virtual modes 32·bit Address 131 27 
Protected mode 16·bit Address 120 23 
Protected mode 32-bit Address 120 27 

FINCSTP = Incremenl Stack Pointer 111011 00111111 01111 3 

FDECSTP = Decrement Stack Pointer 11 1 0 1 1 00111111 01101 3 

FFREE = Free ST(i) 111011 101111000 ST(i) I 3 

FNOP = No operations 111011 00 11110 1 00001 3 

WAIT = Walt until FPU ready I 10011011 I 
(Minimum/Maximum) 1/3 

NOTES: 
1. If operand is 0 clock counts = 27: 
2. If operand is 0 clock counts = 28. 
3. If CW.PC indicates 24 bit precision then subtract 38 clocks. 

If CW.PC indicates 53 bit precision then subtract 11 clocks. 
4. If there is a numeric error pending from a previous instruction add 17 clocks. 
5. If there is a numeric error pending from a previous instruction ad~ 18 clocks. . 
6. The INT pin is polled several times while this instruction is executmg to assure short Interrupt latency. 
7. If ABS{operand) is greater than '1T/4 then add n clocks. Where n = (operand/{'1T/4)). 

encodings of the mod rim byte indicate a second 
10.2 Instruction Encoding addressing byte, the scale-index-base byte, follows 

the mod rim byte to fully specify the addressing 
10.2.1 OVERVIEW mode. 

All instruction encodings are subsets of the general 
instruction format shown in Figure 10.1. Instructions 
consist of one or two primary opcode bytes, possibly 
an address specifier consisting of the "mod rim" 
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if required. 

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The fields define 
such information as direction of the operation, size 
of the displacements, register encoding, or sign ex­
tension. 

Almost all instructions referring to an operand in 
memory have an addressing mode byte following 
the primary opcode byte(s). This byte, the mod rim 
byte, specifies the address mode to be used. Certain 

Addressing modes can include a displacement i~­
mediately following the mod rim byte, or scaled In­
dex byte. If a displacement is present, the possible 
sizes are ~, 16 or 32 bits. 

If the instruction specifies an rmmediate operand, 
the immediate operand follows any displacement 
bytes. The immediate operand, if specified, is always 
the last field of the instruction. 

Figure 10.1 illustrates several of the fields ~hat can 
appear in an instruction, such as the mod flel~ and 
the rim field, but the Figure does not show all fields. 
Several smaller fields also appear in certain instruc­
tions sometimes within the opcode bytes them­
selv~s. Table 10.4 is a complete list of all fields ap­
pearing in the 486 Microprocessor instruction set. 
Further ahead, following Table 10.4, are detailed ta­
bles for each field. 
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ITTTTTTTT I TTTTTTTT I mod TTT rim I ss index base Id32!16!8! nonedata32!16!8! none 

Z"-_____ 0..,,7 ____ ___'0� \.. 7 6 5.3 2 ° 1\..7 6 5.} 2 ° A ..... __ ..,_--} \."-__ -.,-__ ~I 

opcode "mod rIm" us-i-b" 
(one or two bytes) 
(T represents an 

opcode bit.) 

\..,--_b_yt_e_-vT __ b_yt_e_~1 
address 

displacement 
(4, 2, 1 bytes 

or none) 

immediate 
data 

(4, 2, 1 bytes 
or none) register and address 

mode specifier 

Figure 10.1. General Instruction Format 

Table 10.4. Fields within i486™ Microprocessor Instructions 

Field Name Description Number of Bits 

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 1 
d Specifies Direction of Data Operation 1 
s Specifies if an Immediate Data Field Must be Sign-Extended 1 
reg General Register Specifier 3 
mod rim Address Mode Specifier (Effective Address can be a General Register) 2 for mod; 

3 for rim 
ss Scale Factor for Scaled Index Address Mode 2 
index General Register to be used as Index Register 3 
base General Register to be used as Base Register 3 
sreg2 Segment Register Specifier for CS, SS, OS, ES 2 
sreg3 Segment Register Specifier for CS, SS, OS, ES, FS, GS 3 
tttn For Conditional Instructions, Specifies a Condition Asserted 

or a Condition Negated 

NOTE: 
Tables 10.1-10.3 show encoding of individual instructions. 

10.2.2 32-BIT EXTENSIONS OF THE 
INSTRUCTION SET 

With the 486 Microprocessor, the 8086/801861 
80286 instruction set is extended in two orthogonal 
directions: 32-bit forms of all 16-bit instructions are 
added to support the 32-bit data types, and 32-bit 
addressing modes are made available for all instruc­
tions referencing memory. This orthogonal instruc­
tion set extension is accomplished having a Default 
(D) bit in the code segment descriptor, and by hav­
ing 2 prefixes to the instruction set. 

Whether the instruction defaults to operations of 16 
bits or 32 bits depends on the setting of the 0 bit in 
the code segment descriptor, which gives the de­
fault length (either 32 bits or 16 bits) for both oper­
ands and effective addresses when executing that 
code segment. In the Real Address Mode or Virtual 
8086 Mode, no code segment descriptors are used, 
but a 0 value of ° is assumed internally by the 486 

4 

Microprocessor when operating in those modes (for 
16-bit default sizes compatible with the 80861 
80186/80286). 

Two prefixes, the Operand Size Prefix and the Effec­
tive Address Size Prefix, allow overriding individually 
the Default selection of operand size and effective 
address size. These prefixes may precede any op­
code bytes and affect only the instruction they pre­
cede. If necessary, one or both of the prefixes may 
be placed before the opcode bytes. The presence of 
the Operand Size Prefix and the Effective Address 
Prefix will toggle the operand size or the effective 
address size, respectively, to the value "opposite" 
from the Default setting. For example, if the default 
operand size is for 32-bit data operations, then pres­
ence of the Operand Size Prefix toggles the instruc­
tion to 16-bit data operation. As another example, if 
the default effective address size is 16 bits, pres­
ence of the Effective Address Size prefix toggles the 
instruction to use 32-bit effective address computa­
tions. 
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These 32-bit extensions are available in all 486 Mi­
croprocessor modes, including the Real Address 
Mode or the Virtual 8086 Mode. In these modes the 
default is always 16 bits, so prefixes are needed to 
specify 32-bit operands or addresses. For instruc­
tions with more than one prefix, the order of prefixes 
is unimportant. 

Unless specified otherwise, instructions with 8-bit 
and 16-bit operands do not affect the contents of 
the high-order bits of the extended registers. 

10.2.3 ENCODING OF INTEGER 
INSTRUCTION FIELDS 

Within the instruction are several fields indicating 
register selection, addressing mode and so on. The 
exact encodings of these fields are defined immedi­
ately ahead. 

10.2.3.1 Encoding of Operand Length (w) Field 

For any given instruction performing a data opera­
tion, the instruction is executing as a 32-bit operation 
or a 16-bit operation. Within the constraints of the 
operation size, the w field encodes the operand size 
as either one byte or the full operation size, as 
shown in the table below. 

Operand Size Operand Size 
wField During 16-Bit During 32-Bit 

Data Operations Da~a Operations 

0 8 Bits 8 Bits 
1 16 Bits 32 Bits 

10.2.3.2 Encoding of the General 
Register (reg) Field 

The general register is specified by the reg field, 
which may appear in the primary opcode bytes, or as 
the reg field of the "mod rim" byte, or as the rim 
field of the "mod rim" by1e. 
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Encoding of reg Field When w Field 
is not Present in Instruction 

Register Selected Register Selected 
reg Field During 16-Bit During 32-Bit 

000 
001 
010 
011 
100 
101 
110 
111 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

Data Operations Data Operations 

AX EAX 
CX ECX 
OX EOX 
BX EBX 
SP ESP 
BP EBP 
SI ESI 
01 EOI 

Encoding of reg Field When w Field 
is Present in Instruction 

Register Specified by reg Field 
During 16-Bit Data Operations: 

Function of w Field 

(when w = 0) (when w = 1) 

AL AX 
CL CX 
OL OX 
BL BX 
AH SP 
CH BP 
OH SI 
BH 01 

Register Specified by reg Field 
During 32-Bit Data Operations 

Function of w Field 

(when w = 0) (when w = 1) 

AL EAX 
CL ECX 
OL EOX 
BL EBX 
AH ESP 
CH EBP 
OH ESI 
BH EOI 
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10.2.3.3 Encoding of the Segment 
Register (sreg) Field 

The sreg field in certain instructions is a 2-bit field 
allo,!"ing one of. the four 80286 segment registers to 
be specified. The sreg field in other instructions is a 
3-bit field, allowing the 486 Microprocessor FS and. 
GS segment registers to. be specified. 

2·Blt sreg2 Field 

2·Bit 
Segment 

sreg2 Field 
Register 
Selected 

00 ES 
01 CS 
10 SS 
11 OS 

3·Bit sreg3 Field 

3·Bit 
Segment 

sreg3Fieid 
Register 
Selected 

000 ES 
001 CS 
010 5S 
011 OS 
100 FS 
101 GS 
110 do not use 
111 do not use 

10.2.3.4 Encoding of Address Mode 

Except for special instructions, such as PUSH or 
POP, where the addressing mode is pre-determined, 
the addressing mode for the current instruction is 
specified by addressing bytes following the primary 
opcode. The primary addressing byte is the "mod 
rIm" byte, and a second byte of addressing informa­
tion, the "s-i-b" (scale-index-base) byte, can be 
specified. 

The s-i-b byte (scale-index-base byte) is specified 
when using 32-bit addressing mode and the "mod 
rIm" byte has rIm = 100 and mod = 00,01 or 10. 
When the sib byte is present, the 32-bit addressing 
mode is a function of the mod, ss, index, and base 
fields. 

The primary addressing byte, the "mod rIm" byte, 
also contains three bits (shown as TTT in Figure 
10.1) sometimes used as an extension of the pri­
mary opcode. The three bits, however, may also be 
used as a register field (reg). . 

When calculating an effective address, either 16-bit 
addressing or 32-bit addressing is used. 16-bit ad­
dressing uses 16-bit address components to calcu­
late the effective address while 32-bit addressing 
uses 32-bit address components to calculate the ef­
fective address. When 16-bit addressing is used, the 
"mod rIm" byte is interpreted as a 16-bit addressing 
mode specifier. When 32-bit addressing is used, the 
"mod rIm" byte is interpreted as a 32-bit addressing 
mode specifier .. 

Tables on the following three pages define all en­
codings of all 16-bit addressing modes and 32-bit 
addressing modes. 
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Encoding of 16-bit Address Mode with "mod rim" Byte 

mod rim Effective Address mod rim Effective Address 

00000 OS:[BX+SI] 10000 DS:[BX + SI +d16] 
00001 OS:[BX+OJ] 10001 OS:[BX+01+d16] 
00010 SS:[BP+Si] 10010 SS:[BP+ SI + d16] 
00011 SS:[BP+OJ] 10011 SS:[BP+OI +d16] 
00100 OS:[SJ] 10100 OS:[Si+d16] 
00101 OS: [OJ] 10101 OS:[DI + d16] 
00110 OS:d16 10110 SS:[BP+d16] 
00111 OS: [BX] 10111 OS:[BX+d16] 

01000 OS: [BX + SI + d8] 11000 register-see below 
01001 OS: [BX + 01 + d8] 11001 register-see below 
01 010 SS:[BP+SI+dB] 11010 register-see below 
01011 SS: [BP + 01 + d8] 11 011 register-see below 
01100 OS:[SI+d8] 11100 register-see below 
01101 OS:[OI+dB] 11 101 register-see below 
01110 SS:[BP+d8] 11 110 register-see below 
01 111 OS:[BX+d8] 11 111 register-see below 

Register Specified by rim Register Specified by rim 
During 16-Bit Data Operations During 32-Bit Data Operations 

mod rim 
Function of w Field 

mod rim 
Function of w Field 

(whenw=O) (whenw =1) (whenw=O) (whenw = 1) 

11000 AL AX 11000 .AL EAX 
11001 CL CX 11001 CL ECX 
11010 OL OX 11010 OL EOX 
11 011 BL BX 11 011 BL EBX 
11100 AH SP 11100 AH ESP 
11 101 CH BP 11 101 CH EBP 
11 110 DH SI 11 110 OH ESI 
11 111 BH 01 11 111 BH EOI 
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Encoding of 32-bit Address Mode with "mod rim" byte (no "s·i·b" byte present): 

mod rIm Effective Address mod rIm . Effective Address 

00000 OS: [EAX] 10000 OS: [EAX + d32] 
00001 OS: [ECX] 10001 OS:[ECX+d32] 
00010 OS: [EOX] 10010 OS: [EOX + d32] 
00011 OS: [EBX] 10011 OS: [EBX + d32] 
00100 s-i-b is present 10100 s-i-b is present 
00101 OS:d32 10101 SS:[EBP+d32] 
00110 OS: [ESI] 10110 OS: [ESI + d32] 
00111 OS: [EOIl 10111 OS: [EOI + d32] 

01000 OS:[EAX+dS] 11000 register-see below 
01001 OS:[ECX+dS] 11001 register-see below 
01010 OS: [EOX + dS] 11010 register-see below 
01011 OS:[EBX+dS] 11 011 register-see below 
01100 . s-i-b is prell'ent 11100 register-see below 
01101 55: [EBP + dS] 11 101 register-see below 
01110 OS: [ESI + dB] 11 110 register-see below 
01 111 OS: [ED I + dS] 11 111 register-see below 

Register Specified by reg or rIm Register Specified by reg or rIm 
during 16-81t Data Operations: during 32-81t Data Operations: 

mod rIm 
Function of w field 

mod rIm 
Function of w field 

(whenw=O) (whenw=1) (whenw=O) . (whenw=1) 

11000 AL AX 11000 AL EAX 
11 001 CL CX 11001 CL ECX 
11010 OL OX 11010 OL EOX 
11 011 BL BX 11 011 BL EBX 
11100 AH SP' 11100 AH ESP 
11101 CH· BP. 11101 CH EBP 
11 110 OH 51 11110 OH ESI 
11 111 BH 01 11 111 BH EOI 
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mod base 

00000 
00001 
00010 
00011 
00100 
00101 
00110 
00111 

01000 
01001 
01 010 
01 011 
01100 
01 101 
01110 
01 111 

10000 
10001 
10010 
10011 
10100 
10101 
10110 
10 111 

NOTE: 

i486TM MICROPROCESSOR 

Encoding of 32-bit Address Mode (Umod rIm" byte and us-i-b" byte present): 

Effective Address 

OS: [EAX + (scaled index)] 
OS: [ECX + (scaled index)] 
OS:[EOX + (scaled index)] 
OS: [ESX + (scaled index)] 
SS: [ESP + (scaled index)] 
OS: [d32 + (scaled index)] 
OS: [ESI + (scaled index)] 
OS:[EOI + (scaled index)] 

OS: [EAX + (scaled index) + dB] 
OS: [ECX + (scaled index) + dB] 
OS: [EOX + (scaled index) + dB] 
OS: [ESX + (scaled index) + dB] 
SS: [ESP + (scaled index) + dB] 
SS: [ESP + (scaled index) + dB] 
OS: [ESI + (scaled index) + dB] 
OS: [EOI + (scaled index) + dB] 

OS: [EAX + (scaled index) + d32] 
OS: [ECX + (scaled index) + d32] 
OS: [EOX + (scaled index) + d32] 
OS: [ESX + (scaled index) + d32] 
SS: [ESP + (scaled index) + d32] 
SS: [ESP + (scaled index) + d32] 
OS: [ESI + (scaled index) + d32] 
OS: [EOI + (scaled index) + d32] 

ss Scale Factor 

00 x1 
01 x2 
10 x4 
11 xB 

index Index Register 

000 EAX 
001 ECX 
010 EOX 
011 ESX 
100 no index reg" 
101 ESP 
110 ESI 
111 EOI 

"IMPORTANT NOTE: 
When index field is lOa, indicating "no index register," then 
ss field MUST equal 00. If index is 100 and ss does not 
equal 00, the effective address is undefined. 

Mod field in "mod rim" byte; ss, index. base fields in 
"s-i-b" byte. 
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10.2.3.5 Encoding of Operation 
Direction (d) Field 

. . 
in many two-operand instructions the d field is pres­
ent to indicate which operand is considered the 
source and which is the destination. 

d Direction of Operation 

0 Register/Memory <- - Register 
"reg" Field Indicates Source Operand; 
"mod rim" or "mod ss index base" Indicates 
Destination Operand 

1 Register <- - Register/Memory 
"reg" Field Indicates Destination Operand; 
"mod rim" or "mod ss index base" Indicates 
Source Operand 

10.2.3.6 Encoding of Sign-Extend (s) Field 

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if 
the size of the immediate d~ta is 8 bits and is being 
placed in a 16-bit or 32-bif destination. 

Effect on Effect on 
s Immediate Immediate 

DataB Data 16132 

0 None None , 

1 Sign-Extend Data8 to Fill None 
16-8it or 32-8it Destination 

10.2.3.7 Encoding of Conditional 
Test (tun) Field 

For the conditional instructions (conditional jumps 
and set on condition), tttn is encoded with n indicat­
ing to use the condition (n = 0) or its negation (n = 1), 
and ttt giving the condition to test. 

Mnemonic Condition 

0 Overflow 
NO No Overflow 
B/NAE Below/Not Above or Equal 
NB/AE Not Belowl Above or ~qual 
Ell Equal/Zero 
NE/NZ Not Equal/Not Zero 
BE/NA Below or Equal/Not Above 
NBE/A Not Below or Equall Above. 
S Sign 
NS Not Sign 
PIPE Parity/Parity Even 
NP/PO Not Parity/Parity Odd 
L/NGE Less Than/Not Greater or Equal 
NL/GE Not Less Than/Greater or Equal 
LE/NG Less Than or Equal/Greater Than 
NLE/G Not Less or Equal/Greater Than 

10.2.3.B Encoding of Control or Debug 
or Test Register (eee) Field 

tttn 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

For the loading and storing of the Control, Debug 
and Test registers. 

When Interpreted as Control Register Field 

eeeCode Reg Name 

000 CRO 
010 CR2 
011 CR3 

Do not use any other encoding 

When Interpreted as Debug Register Field 

eeeCode Reg Name 

000 DRO 
001 DR1 
010 DR2 
011 DR3 
110 DR6 
111 DR7 

Do not use any other encoding 

When Interpreted as Test Register Field 

eeeCode Reg Name 

011 TR3 
100 TR4 
101 TR5 
110 TR6 
111 TR7 

Do not use any other encoding 
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Instruction 

2 

3 

4 

5 

11011 

11011 

11011 

11011 

11011 

15-11 

First Byte 

OPA 

MF 

d P 

0 0 

0 1 

10 9 

1 

OPA 

OPA 

1 

1 

8 

10.2.4 ENCODING OF FLOATING POINT 
INSTRUCTION FIELDS 

mod 

mod 

1 

1 

1 

7 

Instructions for the FPU assume one of the five 
forms shown in the following table. In all cases, in­
structions are at least two bytes long and begin with 
the bit pattern 11011 B. 

OP = Instruction opcode, possible split into two 
fields OPA and OPB 

MF = Memory Format 
00-32-bit real 
01-32-bit integer 
10-64-bit real 
11-16-bit integer 

P = Pop 
0-00 not pop stack 
1-Pop stack after operation 

d = Destination 
O-Destination is ST(O) 
1-Destination is ST(i) 

R XOR d = O-Destination (op) Source 
R XOR d = 1-Source (op) Destination 

ST(i) = Register stack element i 
000 = Stack top 
001 = Second stack element 

• 
• 
• 

111 = Eighth stack element 

mod (Mode field) and rim (Register/Memory specifi­
er) have the same interpretation as the correspond­
ing fields of the integer instructions. 

s-i-b (Scale Index Base) byte and disp (displace­
ment) are optionally present in instructions that have 
mod and rim fields. Their presence depends on the 
values of mod and rim, as for integer instructions. 

Optional 

Second Byte Fields 

1 I OPB rim s-i-b I disp 

OPB rim s-i-b I disp 

1 OPB ST(i) 

1 1 I OP 

1 1 I OP 

6 5 43210 

11.0 DIFFERENCES BETWEEN THE 
i486™ MICROPROCESSOR AND 
THE 386™ MICROPROCESSOR 
PLUS THE 387™ MATH 
COPROCESSOR EXTENSION 

The differences between the 486 microprocessor 
and the 386 microprocessor are due to performance 
enhancements. The differences between the micro­
processors are listed below. 

1. Instruction clock counts have been reduced to 
achieve higher performance. See Section 1 O. 

2. The 486 microprocessor bus is significantly fast­
er than the 386 microprocessor bus. Differences 
include a 1 X clock, parity support, burst cycles, 
cacheable cycles, cache invalidate cycles and 
8-bit bus support. The Hardware Interface and 
Bus Operation Sections (Sections 6 and 7) of 
the data sheet should be carefully read to un­
derstand the 486 microprocessor bus function­
ality. 

3. To support the on-chip cache new bits have 
been added to control register 0 (CD and NW) 
(Section 2.1.2.1), new pins have been added to 
the bus (Section 6) and new bus cycle types 
have been added (Section 7). The on-chip 
cache needs to be enabled after reset by clear­
ing the CD and NW bit in CRO. 

4. The complete 387 math coprocessor instruction 
set 'and register set have been added. No 1/0 
cycles are performed during Floating Point in­
structions. The instruction and data pointers are 
set to 0 after FINIT/FSAVE. Interrupt 9 can no 
longer occur, interrupt 13 occurs instead. 

5. The 486 microprocessor supports new floating 
point error reporting modes to guarantee DOS 
compatibility. These new modes required a new 
bit in control register 0 (NE) (Section 2.1.2.1) 
and new pins (FERR# and IGNNE#) (Section 
6.2.13 and 7.2.14). 
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6. Six new instructions have been added: 

Byte Swap (BSWAP) 

Exchange-and-Add (XADD) 

Compare and Exchange (CMPXCHG) 

Invalidate Data Cache (INVD) 

Write-back and Invalidate Data Cache 
(WBINVD) 

Invalidate TLB Entry (INVLPG) 

7. There are two new bits defined in control regis­
ter3, the page table entries and page directory 
entries (PCD and PWT) (Section 4.5.2.5). 

8. A new page protection feature has been added. 
This feature required a new bit in control register 
o (WP) (Section 2.1.2.1 and 4.5.3). 

9. A new Alignment Check feature has been add­
ed. This feature required a new bit in the flags 
register (AC) (Section 2.1.1.3) and a new bit in 
control register 0 (AM) (Section 2.1.2.1). 

10. The replacement algorithm for the translation 
lookaside buffer has been changed to a pseudo 
least recently used algorithm like that used by 
the on-chip cache. See Section 5.5 for a de­
scription of the algorithm. 

11. Three new testability registers, TR3, TR4 and 
TR5, have been added for testing the on-chip 
cache. TLB testability has been enhanced. See 
Section 8. 

12. The prefetch queue has been increased from 16 
bytes to 32 bytes. A jump always needs to exe­
cute after modifying code to guarantee correct 
execution of the new instruction. 

13. After reset, the ID in the upper byte of the DX 
register is 04. The contents of the base regis­
ters including the floating point registers may be 
different after reset. 

12.0 ELECTRICAL DATA 

The following sections describe recommended elec­
trical connections for the.486 microprocessor, and 
its electrical specifications. 

12.1 Power and Grounding 

12.1.1 POWER CONNECTIONS 

The 486 microprocessor is implemented in CHMOS 
IV technology and has modest power requirements. 

However, its high clock frequency output buffers can 
cause power surges as multiple output buffers drive 
new signal levels simultaneously. For clean on-chip 
power distribution at high frequency, 24 Vee and 28 
Vss pins feed the 486 microprocessor. 

Power and ground connections must be made to all 
external Vee and GND pins of the 486 microproces­
sor. On the circuit board, all Vee pins must be con­
nected on a Vee plane. All Vss pins must be like­
wise connected on a GND plane. 

12.1.2 POWER DECOUPLING 
RECOMMENDATIONS 

Liberal decoupling capacitance should be placed 
near the 486 microprocessor. The 486 microproces­
sor driving its 32-bit parallel address and data bus­
ses at high frequencies can cause transient power . 
surges, particularly when driving large capacitive 
loads. 

Low inductance capacitors and interconnects are 
recommended for best high frequency electrical per­
formance. Inductance can be reduced by shortening 
circuit board traces between the 486 microproces-

. sor and decoupling capacitors as much as possible. 
Capacitors specifically for PGA packages are also 
commercially available. 

12.1.3 OTHER CONNECTION 
RECOMMENDATIONS 

N.C. pins should always remain unconnected. 

For reliable operation, always connect unused in­
puts to an appropriate signal level. Active LOW in­
puts should be connected to Vee through a pullup 
resistor. Pullups in the range of 20 Kn are recom­
mended. Active HIGH inputs should be connected to 
GND. 

12.2 Maximum Ratings 

Table 12.1 is a stress rating only, and functional op­
eration at the maximums is not guaranteed. Function 
operating conditions are given in 12.3 D.C. Specifi­
cations and 12.4 A.C. Specifications. 

Extended exposure to the Maximum Ratings may af­
fect device reliability. Furthermore, although the 486 
microprocessor contains protective circuitry to resist 
damage from static electric discharge, always take 
precautions to avoid high static voltages or electric 
fields. 
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Table 12.1. Absolute Maximum Ratings 

Case Temperature under Bias ... -65°C to + 110°C 

Storage Temperature .......... - 65°C to + 150°C 

Voltage on Any Pin with 
Respect to Ground ......... - 0.5 to VCC + 0.5V 

Supply Voltage with 
Respect to V ss ............... - 0.5V to + 6.5V 

12.3 D.C. Specifications 
Functional Operating Range: VCC = 5V ± 5%; T CASE = O°C to + 85°C 

Table 12.2. DC Parametric Values 

Symbol Parameter Min Max'; Unit Notes 

VIL Input low Voltage -0.3 " +(f8 ' ' V 

VIH Input High Voltage 2.0 ·;'ilcc + Q·3 V 

VOL Output low Voltage ,OA5 V (Note 1) 

VOH Output High Voltage 2.4, , 
V (Note 2) . ; 

Icc Power Supply Current (25 MHz) 
Power Supply Current (33 MHz) 

III Input leakage Current 
" . ,~':-IIH Input leakage Current 

IlL Input leakage Current. ' 
Output leakage Current ILO 

," , CIN Input Capacitance 

Co 110 or Output Capacitance 

CCLK ClK Capacitance 

NOTES: 
1. This parameter is measured at: 

Address, Data, BEn 4.0 mA 
Definition, Control 5.0 mA 

2. This parameter is measured at: 
Address, Data, BEn 1.0 mA 
Definition, Control 0.9 mA 

3. Typical supply current: 
550 mA @ 25 MHz 
700 mA @ 33 MHz 

',~' 
",,' 

"-'" 
700 mA (Note 3) 

,','-
" ·"'900 

" . t>' ±15 fLA (Note 4) . 
,"0" 

200 fLA (Note 5) 
-400 fLA (Note 6) 
±15 fLA 
20 pF Fc = 1 MHz (Note 7) 
20 pF Fc = 1 MHz (Note 7) 
20 pF Fc = 1 MHz (Note 7) 

4. This parameter is for inputs without pullups or pull downs and 0 :0; VIN :0; Vcc. 
5. This parameter is for inputs with pull downs and VIH = 2.4V. 
6. This parameter is for inputs with pullups and VIL = 0.45V. 
7. Not 100% tested. 

12.4 A.C. Specifications 

The A.C. specifications, given in Table 12.3, consist 
of output delays, input setup requirements and input 
hold requirements. All A.C. specifications are rela­
tive to the rising edge of the ClK signal. 

A.C. specifications measurement is defined by Fig­
ures 12.1-12.3. Inputs must be driven to the voltage 
levels indicated by Figure 12.3 when A.C. specifica-

tions are measured. 486 microprocessor output de- . 
lays are specified with minimum and maximum limits, 
measured as shown. The minimum 486 microproc­
essor delay times are hold times provided to exter­
nal circuitry. 486 microprocessor input setup and 
hold times are specified as minimums, defining the 
smallest acceptable sampling window. Within the 
sampling window, a synchronous input signal must 
be stable for correct 486 microprocessor operation. 
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Table 12.3. 25 MHz i486 Microprocessor A.C. Characteristics 

Vee =SV ±5%; Tcase = O·C to +8SoC; CI = SO pF unless otherwise specified 

Symbol Parameter Min Max Unit Figure " Note,s 

Frequency 8 2S MHz 1 X Clock Driven to 486 

t1 ClKPeriod 40 125 ns 12.1 

t1a ClK Period Stability 0.1% A Adjacent Clocks 

t2 ClK High Time 14 ns 12.1 at2V 

t3 ClKlowTime 14 ns 12.1 atO.8V 

l.! ClK Fall Time 4 ns 

t5 ClK Rise Time 4 .ns 

ts A2-A31, PWT, PCD"BEO-3#, 3 22 ns 
M/IO#, D/C#, W/R#, ADS#, 
lOCK#, FERR#, BREQ, HlDA 
Valid Delay 

t7 A2-A31, PWT, PCD, BEO-3#, 
M/IO#, D/C#, W/R#, ADS#, 
lOCK # Float Delay 

ta PCHK# Valid Delay 

taa BLAST#, PlOCK# Valid Delay 

t9 

tlO" DO-D31, DPO-3 Write Data V lid 
Delay' 

t11 DO-D31, DPO-3 Write D 12.2 Note 1 
Delay 

t12 EADS# Setup Ti ns 12.3 

t13 ns 12.3 

t14 ns 12.3 

t15 KEN#, ' ns 12.3 

t16 Ro:t,-tF, 8 ns 12.3 

t17 IdTime 3 ns 12.3 

t18 , BOFF # Setup Time 10 ns 12.3 

t19 HOLD, AHOlD, BOFF # Hold Time 3 ns 12.3 

t20 RESET, FLUSH #, A20M #, NMI, . 10 ns 12.3 
INTR, IGNNE# Setup Time 

t21 RESET, FlUSH#, A20M#, NMI, 3 ns 12.3 
INTR, IGNNE# Hold Time 

t22 DO-D31, DPO-3, A4-A31 Read, S ns 12.3 
Setup Time 

t23 DO-D31, DPO":'3, A4-A31 Read 3 ns 12.3 
Hold Time 

NOTE: 
1. Not 100% tested. ~uaranteed by design characterization. 
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Table 12.3.33 MHz i486 Microprocessor A.C. Characteristics 

Vee = 5V ±5%; Tease = O·C to +85·C; CI = 50 pF unless otherwise specified 

Symbol Parameter Min Max Unit Figure Notes 

Frequency 8 33 MHz 1 X Clock Driven to 486 

tl ClK Period 30 125 ns 12.1 

tl a ClK Period Stability 0.1% !1 Adjacent Clocks 

t2 ClK High Time 11 ns 12.1 at2V 

t3 ClK low Time 11 ns 12.1 atO.8V 

t4 ClKFaliTime 3 ns 12.1 

ts ClK Rise Time 3 ns 12.1 

ts A2-A31, PWT, PCD, BEO-3#, 3 16 ns 
M/IO#, D/C#, W/R#, ADS#, 
lOCK#,FERR#,BREQ,HlDA 
Valid Delay 

t7 A2-A31, PWT, PCD, BEO-3#, 20 
M/IO#, D/C#, W/R#, ADS#, 
lOCK # Float Delay 

ts PCHK# Valid Delay 3 

tSa BLAST # , PlOCK# Valid Delay 

t9 BlAST#, PlOCK# Float Delay 

tlO DO-D31, DPO-3 Write Data Valid 
Delay 

t11 DO-D31, DPO-3 Write Data F Note 1 
Delay 

tl2 EADS # Setup Time 12.3 

tl3 EADS# Hold Time 12.3 

tl4 KEN#, BS16# ns 12.3 

tl5 ns 12.3 

tiS ns 12.3 

tl7 ns 12.3 

tiS 6 ns 12.3 

tlSa 8 ns 12.3 

tl9 HOLD, AHOlD, BOFF # Hold Time 3 ns 12.3 

t20 RESET, FlUSH#, A20M#, NMI, 5 ns 12.3 
INTR,IGNNE# Setup Time 

t21 RESET, FlUSH#, A20M#, NMI, 3 ns 12.3 
INTR, IGNNE# Hold Time 

t22 DO-D31, DPO-3, A4-A31 Read 5 ns 12.3 
Setup Time 

t23 DO-D31, DPO-3, A4-A31 Read 3 ns 12.3 
Hold Time 

NOTE: 
I. Not 100% tested. Guaranteed by design characterization. 
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240440-45 
tx = inpul selup limes 
ty = inpul hold limes, oulpul floal, valid and hold limes 

Figure 12.1. elK Waveforms 

CLK . L (PH1) \ (PH2) / --.Ii 1.5V 

~ "'~!" =:l"'-:-------J 

CLK 

Iy = 112, 114, 116, 118, 120, 122 
tz = 113,115,117,119,121,123 

______ u_O=*_'_.5V___ ~ 

Figure 12.2. Output Waveforms 

Figure 12.3. Input Waveforms 
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12.4.1 Typical Output Valid Delay versus Load 
Capacitance Under Worst Case 
Conditions 

NOTE: 

nom+6r---r---r-~--~---' 

j nom+4 

'" c 

v 

240440-75 

This graph will not be linear outside of the CL range shown. 
non = nominal value given in A.C. Characteristics table. 

12.4.2 Typical Output Rise Time versus Load 
Capacitance Under Worst-Case 
Conditions 

150 

240440-76 

NOTE: 
This graph will not be linear outside of the CL range shown. 

12.5 Designing for ICD-486 
(Advance Information) 

The ICD-486 (In-Circuit Debugger) is a hardware as­
sisted debugger for the 486 CPU. To use the ICD-
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486, the 486 CPU component must be removed 
from its socket replaced with the ICD-486 module. 
Because of the high operating frequency of 486 CPU 
systems, there is no buffering of signals between the 
486 CPU in the ICD-486 and the target system. A 
direct result of the non-buffered interconnect is that 
the ICD-486 shares the address and data bus of the 
target system. In order for the ICD-486 to function 
properly (without the Optional Isolation Board in­
stalled), the design of the target system must meet 
the following restrictions: 

1. The bus controller must only enable data trans­
ceivers onto the data bus during valid read cycles 
of the 486 CPU, other local devices, or other bus 
masters. 

2. Before another bus master drives the local proc­
essor address bus, the other bus master must 
gain access to the address bus through the use 
of HOlD-HlDA, AHOlD, or BOFF #. 

In addition to the above restrictions, the ICD-486 has 
several electrical and mechanical characteristics 
that should be taken into consideration when de­
signing the 486 CPU system. 

Capacitive loading: ICD-486 adds up to 30 pF to the 
ClK signal, and up to 20 pF to each of the other 486 
CPU signals. 

DC loading: ICD-486 adds ± 15 /LA loading to the 
ClK and data bus signals and ± 5 /LA loading to the 
address and control signals. 

Power Requirements: For noise immunity and 
CMOS latch-up protection the ICD-486 is powered 
by the target system through the power and ground 
pins of the 486 CPU socket. The circuitry on the 
ICD-486 draws up to 1.3A excluding the 486 CPU 
ICC· 

No Connects: Pins specified as N.C. in the 486 CPU 
pin description must be left unconnected. Connec­
tion of any of these pins to power, ground, or any 
other signal may cause the processor or the ICD-
486 to malfunction. 

486 CPU location and Orientation: The ICD-486 
may require lateral clearance. Figure 12.4 shows the 
clearance requirements of the ICD-486. 
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Optional Isolation Board (OIB) 

Due to its unbuffered design, the ICD-486 is suscep­
tible to errors on the target system's bus. The OIB 

. installs between the ICD·486 and 486 CPU socket in 
the target system and allows the ICD-486 to function 
in systems with faults (Le., shorted signals). After 
electrical verification the OIB may be removed. The 
OIB has the following electrical and mechanical 
characteristics: 

Buffer Characteristics: The OIB buffers the address 
and data busses as well as the byte enables, ADS#, 
W/R#, M/IO#, BLAST#, and HLDA. The buffers 
are advanced CMOS devices and have the following 
DC drive specifications: IOH = -15 mA, IOL = 
64 mAo The propagation delay of each buffer is 5 ns 
max driving a 50 pF load. To guarantee proper oper-

ation with the OIB, the clock period should be in­
creased by the round trip buffer delay (10 ns) unless 
the target system design already has enough timing 
margin. 

Unbuffered Signals: Signals not listed above as buff­
ered are passed through the OIB and will have addi­
tional capacitive loading due to the connectors and 
circuit board of up to 10 pF. 

Power Requirements: The OIB is also powered by 
the target system through the 486 CPU socket and 
requires 0.5A in addition to the ICD-486 and 486 
CPU requirements. 

OIB Clearance Requirements: The OIB requires an 
extra 0.55" of vertical clearance in the target system 
above the 486 CPU socket. 
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0-----------+1 ..; 

Figure 12.4a. ICD·486TM Probe Dimensions 
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Figure 12.4b. ICD-486TM Probe Dimensions 
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13.0 MECHANICAL DATA 
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240440-49 

Family: Ceramic Pin Grid Array Package 

Symbol 
Millimeters Inches 

Min Max Notes Min Max Notes 

A 3.56 4.57 0.140 0.180 

A, 0.64 1.14 SOLID LID 0.025 0.045 SOLID LID 

A2 23 0.30 SOLID LID 0.110 0.140 SOLID LID 

A3 1.14 1.40 0.045 0.055 

B 0.43 0.51 0.017 0.020 

D 44.07 44.83 1.735 1.765 

D, 40.51 40.77 1.595 1.605 

e, 2.29 2.79 0.090 0.110 

L 2.54 3.30 0.100 0.130 

N 168 168 

S, 1.52 2.54 0.060 0.100. 

ISSUE IWS REVX 7/15/88 

Figure 13.1. 168 Lead Ceramic PGA Package Dimensions 
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Table 13.1 Ceramic PGA Package Dimension Symbols 

Letter or 
Description of Dimensions 

Symbol 

A Distance from seating plane to highest point of body 

A1 Distance between seating plane and base plane (lid) 

A2 Distance from base plane to highest point of body 

A3 Distance from seating plane to bottom of body 

B Diameter of terminal lead pin 

0 Largest overall package dimension of length 

01 A body length dimension, outer lead center to outer lead center 

e1 Linear spacing between true lead position centerlines 

L Distance from seating plane to end of lead 

Sl Other body dimension, outer lead center to edge of body 

NOTES: 
1. Controlling dimension: millimeter. 
2. Dimension "e1" ("e") is non-cumulative. 
3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch. 
4. Dimensions "S", "Sl" and "c" are nominal. 
5. Details of Pin 1 identifier are optional. 

13.1 Package Thermal Specifications 

The 486 microprocessor is specified for operation 
when T C (the case temperature) is within the range 
of O·C-85·C. T c may be measured in any environ­
ment to determine whether the 486 microprocessor 
is within .specified operating range. The case tem­
perature should be measured at the center of the 
top surface opposite the pins. 

Note that T A is greatly improved by attaching "fins" 
or a "heat sink" to the package .. P (the maximum 
power consumption) is calculated byusing the maxi­
mum Icc at 5V as tabulated in the DC Characteris­
tics of Section 12. 

T A (the ambient temperature) can be calculated 
from (JCA '(thermal resistance from case to ambient) 
with the following equation: 

TA = Tc - P'OCA 

Typical values for (JCA at various airflows are given 
in Table 13.2 for the 1.75 sq. in., 168 pin, ceramic 
PGA. 

Table 13.3 shows the T A allowable (without exceed­
ing T C) at various airflows and operating frequencies 
(fCLK)' 

Table 13.2. Thermal Resistance (8CA) at Various 
Airflows . 

In ·C/Watt 

Airflow-ft/min (m/sec) 

0 200 400 600 800 1000 
(0) (1) (2) (3) (4) (5) 

8CAwith 12 7.5 5.5 4.5 3.5 3.0 
Heat Sink' (·C/W) 

8CA without 
'15.5 13.0 11.0 9.5 8.5 B.O 

Heat Sink (·C/W) 
.. '0.300" high Unidirectional heat Sink (AI alloy 6061, 50 mil 

fin width, 170 mil center-te-center fin spacing). 

Heat Sink Dimensions 

.050"1 r- 1.120" r 

[ULJ1JUUJJ 
I. 1.58" ·1 

240440-81 
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Table 13.3. Maximum T A at Various Airflows 

InDC 

Airflow-ft/min (m/sec) 

felK 0 200 
(MHz) (0) (1.01) 

TAwith 25.0 43 59 
Heat Sink 33.3 31 51 

TA without 25.0 31 40 
Heat Sink 33.3 15 27 

14.0 REVISION HISTORY 

Revision -002 of the i486 CPU data sheet contains 
many updates and improvements to the original ver­
sion. A revision summary of major changes is listed 
below: 

Section 2.1.2 The polarity and names of the two 
cache control bits in Control Regis­
ter 0 (CRO) have been modified. 
The Cache Enable (CE) and Writes 
Transparent (WR) have been re­
named Cache Disable (CD) and Not 
Write Through (NW). The value of 

, CRO after RESET has been 
changed to reflect the polarity 
change. 

Section 6.2.15 The discussion of A20M# has been 
clarified. During the falling edge of 
RESET, A20M # should be high, for 
proper operation of the CPU. 

Section 6.5 The value of CRO after RESET has 
been modified. 

Section 6.5.1 Figure 6.3, "Pin State during RE­
SET" is added. This Figure is a gen­
eral reference for-Reset issues. Pre­
vious Figures 8.1, 8.2, and 8.8 have 
been deleted, since Figure 6.3 now 
contains Reset information. 

Section 7.2.10 A discussion of addresses and byte 
enables driven during INTA cycles 
has been added. 

Section 10.1 Clock counts and opcodes have 
been clarified and corrected. 

400 600 800 1000 
(2.03) (3.04) (4.06) (5.07) 

66 69 73 75 

60 65 69 72 

47 _ 52 55 57 

36 42 47 49 

Section 10.1 The opcode slot for CMPXCHG in­
struction has been moved from 
OFA6/A7 to OFBO/B1. 

Section 12.2 Table 12.1 has been enhanced. The 
"Case Temperature under Bias" 
spec -was improved. The "Supply 
Voltage with Respect to Vss" spec 
was added. 

Section 12.3 MaXimum Icc values have been im­
proved to 700 mA at 25 MHz and 
900 mA at 33 MHz. 

Section 12.3 Typical Icc values have been modi­
fied to 550 mA at 25 MHz and 700 
mA at 33 MHz. 

Section 12.3 CIN, Co, .and CClK values have 
been changed to 20 pF. Testing pa­
rameters and Note 7 were added. 

Section 12.4 The A.C. Specifications have been 
improved. Float delays were im­
proved at both 25 MHz and 33 MHz. 
Note 1 was added to the float de­
lays. Maximum valid delays were re­
duced at 33 MHz. 

Section 12.5 The ICD section was enhanced. 

Section 13.1 Thermal resistance (JCA values of . 
the 168-pin ceramic package have 
been corrected. 

Section 13.1 Maximum - ambient temperatures 
have been corrected to use the max 
Icc values. 
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386TM DX MICROPROCESSOR , 
HIGH PERFORMANCE 32-BIT CHMOS MICROPROCESSOR" 

WITH INTEGRATED MEMORY MANAGEMENT 
• Flexible 32-Bit Microprocessor 

- 8, 16, 32-Bit Data Types 
- 8 General Purpose 32-Bit Registers 

• Very Large Address Space 
- 4 Gigabyte Physical 
- 64 T~rabyte Virtual 
- 4 Gigabyte Maximum Segment Size 

• Integrated Memory Management Unit 
- Virtual Memory Support ' 
- Optional On-Chip Paging 
- 4 Levels of Protection 
- Fully Compatible with 80286 

• Object Code Compatible with All 8086 
Family Microprocessors 

• Virtual 8086 Mode Allows Running of 
8086 Software in a Protected and 
Paged System 

• Hardware Debugging Support 

• Optimized for System Performance 
- Pipelined Instruction Execution 
- On-Chip Address Translation Caches 
- 20, 25 and 33 MHz Clock ' ' 
- 40, 50 and 66 Megabytes/Sec Bus 

Bandwidth 

• High Speed Numerics Support via 387 
DXTM Coprocessor 

• Complete System Development 
Support 
- Software: C, PL/M, Assembler 

System Generation Tools 
- Debuggers: PSCOPE, ICETM-386 

• High Speed CHMOS '" and CHMOS IV 
Technology 

• 132 Pin Grid Array Package 
,(See Packaging Specification. Order # 231369) 

The 386TM OX Microprocessor is an advanced 32-bit microprocessor designed for applications needing very 
high performance and optimized for multitasking operating systems. The 32-bit registers and data paths 
support 32-bit addresses and data types. The processor addresses up to four gigabytes of physical memory 
and 64 terabytes (2**46) of virtual memory. The integrated memory management and protection architecture 
includes address tran'slation registers, advanced multitasking hardware and a protection mechanism to sup­
port operating systems. In addition, the 386 OX allows the simultaneous running of multiple operating systems. 
Instruction pipelining, on-chip address translation, and high bus bandwidth ensure short average instruction 
execution times and high system throughput. 

The 386 OX offers new testability and debugging features. Testability features include a self-test and direct 
access to the page translation cache. Four new breakpoint registers provide breakpoint traps on code execu­
tion or data accesses, for powerful debugging of even ROM-based systems. 

Object-code compatibility with all 8086 family members (8086, 8088, 80186, 80188, 80286) means the 386 OX 
offers immediate access to the world's largest microprocessor software base. 

386TM OX Pipelined 32-Bit Microarchltecture 
386TM OX and 387TM OX are Trademarks of Intel Corporation. 
UNIXTM is a Trademark of AT&T Bell Labs. 
MS-DOS is a Trademark of MICROSOFT Corporation. 
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intJ 386TM OX MICROPROCESSOR 

1. PIN ASSIGNMENT 

The 386 OX pinout as viewed from the top side of 
the component is shown by Figure 1-1. Its pinout as 
viewed from the Pin side of the component is Figure 
1-2. 
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Vee and GNO connections must be made to multi­
ple Vee and Vss (GNO) pins. Each Vee and Vss 
must be connected to the appropriate voltage level. 
The circuit board should include Vee and GNO 
planes for power distribution and all Vee and Vss 
pins must be connected to the appropriate plane. 

NOTE: 
Pins identified as "N.C." should remain completely 
unconnected. 
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Figure 1-1. 386™ OX PGA Figure 1·2. 386™ OX PGA 
Pinout-View from Top Side Pinout-View from Pin Side 

Table 1·1. 386TM OX PGA Pinout-Functional Grouping 

Signal/Pin Signal/Pin Signal/Pin Signal/Pin Signal/Pin Signal/Pin 
A2 C4 A24 L2 06 L14 028 M6 Vee C12 Vss F2 
A3 A3 A25 K3 07 K12 029 P4 012 F3 
A4 B3 A26 M1 08 L13 030 P3 G2 F14 
A5 B2 A27 N1 09 N14 031 M5 G3 J2 
A6 C3 A28 L3 010 M12 O/C# A11 G12 J3 
A7 C2 A29 M2 011 N13 ERROR# A8 G14 J12 
A8 C1 A30 Pl 012 N12 HLDA M14 L12 J13 
A9 03 A31 N2 013 P13 HOLO 014 M3 M4 
Al0 02 AOS# E14 014 P12 iNTR B7 M7 M8 
All 01 BEO# E12 015 M11 LOeK# e10 M13 M10 
A12 E3 BE1# C13 016 N11 MliO# A12 N4 N3 
A13 E2 BEU B13 017 N10 NA# 013 N7 P6 
A14 E1 8E3# A13 018 Pll NMi B8 P2 P14 
A15 Fl BS16# C14 019 P10 PEREQ e8 P8 W/R# B10 
A16 G1 BUSY# 89 020 M9 REAOY# G13 Vss A2 N.C. A4 
A17 H1 CLK2 F12 021 N9 RESET C9 A6 B4 
A18 H2 00 H12 022 P9 Vee A1 A9 B6 
A19 H3 01 H13 023 N8 A5 81 B12 
A20 J1 02 H14 024 P7 A7 B5 C6 
A21 K1 03 J14 025 N6 Al0 B11 C7 
A22 K2 04 K14 026 P5 A14 B14 E13 
A23 L1 05 K13 027 N5 C5 C11 F13 
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1.1 PIN DESCRIPTION TABLE 

The following table lists a brief description of each pin on the 386 DX. The following definitions are used in 
these descriptions: 

# The named signal is active LOW. 
I Input signal. 
o Output signal. 
1/0 Input and Output signal. 

No electrical connection. 

For a more complete description refer to Section 5.2 Signal Description. 

Symbol Type Name and Function 

CLK2 I CLK2 provides the fundamental timing for the 386 DX. 

D31-DO 1/0 DATA BUS inputs data during memory, 1/0 and interrupt acknowledge 
read cycles and outputs data during memory and 1/0 write cycles. 

A31-A2 .0 ADDRESS BUS outputs physical memory or port 1/0 addresses. 

BEO#-BE3# 0 BYTE ENABLES indicate which data bytes of the data bus take part in 
a bus cycle. 

W/R# 0 WRITE/READ is a bus cycle definition pin that. distinguishes write 
cycles from read cycles. 

D/C# 0 DATA/CONTROL is a bus cycle definition pin that distinguishes data 
cycles, either memory or 1/0, from control cycles which are: interrupt 
acknowledge, halt, and instruction fetching. 

M/IO# 0 MEMORY I/O is a bus cycle definition pin that distinguishes memory 
cycles from input! output cycles. 

LOCK# 0 BUS LOCK is a bus cycle definition pin that indicates that other 
system bus masters are denied access to the . system bus while it is 
active. 

ADS# 0 ADDRESS STATUS indicates that a valid bus cycle definition and 
address (W/R#, D/C#, MIIO#, BEO#, BE1 #, BE2#, BE3# and 
A31-A2) are being driven at the 386 DX pins. 

NA# I NEXT ADDRESS is used to request address pipelining. 

READY# I BUS READY terminates the bus cycle. 

BS16# I BUS SIZE 16 input allows direct connection of 32-bit and 16-bit data 
buses. 

HOLD I BUS HOLD REQUEST input allows another bus master to request 
control of the local bus. 
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1.1 PIN DESCRIPTION TABLE (Continued) 

Symbol Type Name and Function 

HLOA 0 BUS HOLD ACKNOWLEDGE output indicates that the 386 OX has 
surrendered control of its local bus to another bus master. 

BUSY# I BUSY signals a busy condition from a processor extension. 

ERROR# I ERROR signals an error condition from a processor extension. 

PEREa I PROCESSOR EXTENSION REQUEST indicates that the processor 
extension has data to be transferred by the 386 OX. 

INTR I INTERRUPT REQUEST is a maskable input that signals the 386 OX to 
suspend execution of the current program and execute an interrupt 
acknowledge function. 

NMI I NON-MA,SKABLE INTERRUPT REQUEST is a non-maskable input 
that signals the 386 OX to suspend execution of the current program 
and execute an interrupt acknowledge function. 

RESET I RESET suspends any operation in progress and places the 386 OX in 
a known reset state. See Interrupt Signals for additional information. 

N/C - NO CONNECT should always remain unconnected. Connection of a 
N/C pin may cause the processor to malfunction or be incompatible 
with future steppings of the 386 Ox. 

Vee I SYSTEM POWER provides the + 5V nominal D.C. supply input. 

Vss I SYSTEM GROUND provides OV connection from which all inputs and 
outputs are measured. 
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2. BASE ARCHITECTURE 

2.1 INTRODUCTION 

The 386 OX consists of a central processing unit, a 
memory management unit and a bus interface. 

The central processing unit consists of the execu­
tion unit and instruction unit. The execution unit con­
tains the eight 32-bit general purpose registers 
which are used for both address calculation, data 
operations and a 64-bit barrel shifter used to speed 
shift, rotate, multiply, and divide op~rations. The 
multiply and divide logic uses a 1-bit per cycle algo­
rithm. The multiply algorithm stops the iteration 
when the most significant bits of the multiplier are all 

, zero. This allows typical 32-bit multiplies to be exe­
cuted in under one microsecond. The instruction unit 
decodes the instruction opcodes and stores them in 
the decoded instruction queue for immediate use by, 
the execution unit. 

The memory management unit (MMU) consists of a 
segmentation unit and a paging unit. Segmentation 
allows the managing of the logical address space by 
providing an extra addressing component, one that ' 
allows easy code and data relocatability, and effi­
cient sharing. The paging mechanism operates be­
neath and is transparent to the segmentation pro­
cess, to allow management of the physical address 
space. Each segment is divided into one or more 4K 
byte pages. To implement a virtual memory system, 
the 386 OX supports full restartability for all page 
and segment faults. 

Memory is organized into one or more variable 
length segments, each up to four gigabytes in size. A 
given region of the linear address space, a segment, 
can have attributes associated with it. These attri­
butes include its location, size, type (Le. stack, code 
or data), and protection characteristics. Each task 
on an 386 OX can have a maximum of 16,381 seg­
ments'of up to four gigabytes each, thus providing 
64 terabytes (trillion bytes) of virtual memory to each 
task. -

The segmentation unit provides four-levels of pro­
tection for isolating and protecting applications and 
the operating system from each other. The hardware 
enforced protection allows the design of systems 
with a high degree of integrity. 

The 386 OX has two modes of operation: Real Ad­
dress Mode (Real Mode), and Protected Virtual Ad­
dress Mode (Protected Mode). In Real Mode the 

386 OX operates as a very fast 8086, but with 32-bit 
extensions if desired. Real Mode is required primari­
ly to setup the processor for Protected Mode opera­
tion. Protected Mode provides access to the sophis­
ticated memory management, paging and privilege 
capabilities of the processor. 

Within Protected Mode, software can perform a task 
switch to enter into tasks designated as Virtual 8086 
Mode tasks. Each such task behaves with 8086 se­
mantics, thus allowing 8086 software (an application 
program, or an entire operating system) to execute. 
The Virtual 8086 tasks can be isolated and protect­
ed from one anotl:ler and the host 386 OX operating 
system, by the use of paging, and the liD Permis­
sion Bitmap. 

Finally, to facilitate high performance system hard­
ware designs, the 386 OX bus interface offers ad­
dress pipelining, dynamic data bus sizing, and direct 
Byte Enable signals for each byte of the data bus. 
These hardware features are described fully begin­
ning in Section 5. 

2.2 REGISTER OVERVIEW 

The 386 OX,has 32 register resources in the follow­
ing categories: 

• General Purpose Registers 

• Segment Registers 

• Instruction Pointer and Flags 

• Control Registers 

• System Address Registers 

• Oebug Registers 

• Test Registers. 

The registers are a superset of the 8086,80186 and 
80286 registers, so all 16-bit 8086, 80186 and 
80286 registers are contained within the 32-bit 386 
OX. 

Figure 2-1 shows all of 386 OX base architecture 
registers, which include the general address and 
data registers, the instruction pointer, and the flags 
register. The contents of these registers' are task­
specific, so these registers are automatically loaded 
with a new context upon a task switch operation. 

The base architecture also includes six directly ac­
cessible segments, each up to 4 Gbytes in size. The 
segments are indicated by the selector values 
placed in 386 OX segment registers of Figure 2-1. 
Various selector values can be loaded as a program 
executes, if desired. 
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GENERAL DATA AND ADDRESS REGISTERS 
31 16 15 0 

AX EAX 

BX EBX 

CX ECX 

DX EDX 

SI ESI 

DI EDI 

BP EBP 

SP ESP 

SEGMENT SELECTOR REGISTERS 
15 0 

CS CODE 

SS STACK 

DS 

lDATA ES 

FS 

GS 

INSTRUCTION POINTER 
AND FLAGS REGISTER 
31 16 15 0 

I I 
IP I EIP 

FLAGS : EFLAGS 

Figure 2-1. 386TM DX Base 
Architecture Registers 

The selectors are also task-specific, so the segment 
'registers are automatically loaded with new context 
upon a task switch operation. 

The other types of registers, Control, System Ad­
dress, Debug, and Test, are primarily used by sys-
tem software. ' 

2.3 REGISTER DESCRIPTIONS 

2.3.1 General Purpose Registers 

General Purpose Registers: The eight general pur­
pose registers of 32 bits hold data or address quanti­
ties. The general registers, Figure 2-2, support data 
operands of 1, 8, 16, 32 and 64 bits, and bit fields of 
1 to 32 bits. They support address operands of 16 
and 32 bits. The 32-bit registers are named EAX, 
EBX, ECX, EDX, ESI, EDI, EBP" and ESP. 

The least significant 16 bits of the registers can be 
accessed separately. This is done by using the 16-
bit names of the registers AX, BX, CX, DX, SI, DI, 

BP, and SP. When accessed as a 16-bit operand, 
the upper 16 bits, of the register are neither used nor 
changed. 

Finally 8-bit operations can individually ,access the 
lowest byte (bits 0-7) and the higher byte (bits 8-
15) of general purpose registers AX, BX, CX and DX. 
The lowest bytes are named AL, BL, CL and DL, 
respectively. The higher bytes are named AH, BH, 
CH and DH, respectively. The individual byte acces­
sibility offers additional flexibility for data operations, 
but is not used for effective address calculation. 

31 

31 

I 

16 15 8 7 0 

AH AX AL 

BH BX BL 

CH CX CL 

DH OX DL 

SI 

DI 

BP 

SP 

16 15 0 

I I 
\ J 

T 

IP 

Figure 2-2. General Registers 
and Instruction Pointer 

2.3.2 Instruction Pointer 

EAX 

EBX 

ECX 

EDX 

ESI 

EDI 

EBP 

ESP 

EIP 

The instruction pointer, Figure 2-2, is a 32-bit regis­
ter named EIP. EIP holds the offset of the next in­
struction to be executed. The offset is always rela­
tive to the base of the code segment (CS). The low­
er 16 bits (bits 0-15) of EIP contain the 16-bit in­
struction pointer named IP, which is used by 16-bit 
addressing. 

2.3.3 Flags Register 

The Flags Register is a 32-bit register named 
EFLAGS. The defined bits and bit fields within 
EFLAGS, shown in Figure 2-3, control certain opera­
tions and indicate status of the 386 DX. The lower 
,16 bits (bit 0-15) of EFLAGS contain the 16-bit flag 
register named FLAGS, which is most useful when 
executing 8086 and 80286 code. 
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FLAGS 

332 2 2 2 2 2 2 2 221 111 1 1 1 1 1 
109 B 7 6 5 432 1 0 9 B 7 6 5 432 0 9 B 7 6 5 432 1 0 

EFLAGS 

VIRTUAL MODE-------..... 

RESUME F~~G~~~~~~~~§=~~J NESTED TASK FLAG 
I/O PRIVILEGE LEVEL 
OVERFLOW 

CARRY FLAG 
'----PARITY FLAG 

'------AUXILlARY CARRY 
'-------ZERO FLAG 

L----....;....--SIGN FLAG 
L--------TRAP FLAG 

DIRECTION FLAG.~============:J INTERRUPT ENABLE 

231630-50 

NOTE: 
o indicates.lntel reserved: do not define; see section 2.3.10. 

Figure 2·3. Flags Register 

VM (Virtual 8086 Mode, bit 17) 

The VM bit provides Virtual 8086 Mode within 
Protected Mode. If set while the 386 DX is in 
Protected Mode, the 386 DX will switch to Vir­
tual 8086 operation, handling segment loads 
as the 8086 does, but generating exception 
13 faults on privileged opcodes. The VM bit 
can be set only in Protected Mode, by the 
IRET instruction (if current privilege level = 
0) and by task switches at any privilege level. 
The VM bit is unaffected by POPF. PUSHF 
always pushes a 0 in this bit, even if execut­
ing in virtual 8086 Mode. The EFLAGS image 
pushed during interrupt processing or saved 
during task switches will contain a 1 in this bit 
if the interrupted code was executing as a Vir­
tual 8086 Task. 

RF (Resume Flag, bit 16) 

The RF flag is used in conjunction with the 
debug register breakpoints. It is ch~cked at 
instruction boundaries before breakpoint pro­
cessing. When RF is set, it causes any debug 
fault to be ignored on the next instruction. RF 
is then automatically reset at the successful 
completion of every instruction (no faults are 
signalled) except the IRET instruction, the 
POPF instruction, (and JMP, CALL, and INT 
instructions causing a task switch). These in­
structions set RF to the value specified by the 
memory image. For example, at the end of 
the breakpoint service routine, the IRET 

instruction can pop an EFLAG image having 
the RF bit set and resume the program's exe­
cution at the breakpoint address without gen­
erating another breakpoint fault on the same 
location. 

NT (Nested Task, bit 14) 

This flag applies to Protected Mode. NT is set 
to indicate that the execution of this task is 
nested within another task. If set, it indicates 
that the current nested task's Task State 
Segment (TSS) has a valid back link to the 
previous task's TSS. This bit is set or reset by 
control transfers to other tasks. The value of 
NT in EFLAGS is tested by the IRET instruc­
tion to determine whether to do an inter-task 
return or an intra-task return. A POPF or an 
IRET instruction will affect the setting of this 
bit according to the image popped, at any 
privilege level. 

10PL (Input/Output Privilege Level, bits 12-13) 

This two-bit field applies to Protected Mode. 
10PL indicates the numerically maximum CPL 
(current privilege level) value permitted to ex­
ecute I/O instructions without generating an 
exception 13 fault or consulting the I/O Per­
mission Bitmap. It also indicates the maxi­
mum CPL value allowing alteration of the IF 
(INTR Enable Flag) bit when new values are 
popped into the EFLAG. register. POPF and 
IRET instruction can alter the 10PL field when 
executed at CPL = O. Task switches can al­
ways alter the 10PL field, when the new flag 
image is loaded from the incoming task's 
TSS. 
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OF (Overflow Flag, bit 11) 

OF is set if the operation resulted in a signed 
overflow. Signed overflow occurs when the 
operation resulted in carrY/borrow Into the 
sign bit (high-order bit) of the result but did 
not result. in a carry/borrow out of the high­
order bit, or vice-versa. For 8/16/32 bit oper­
ations, OF is set according to overflow at bit 
7/15/31, respectively. 

DF (Direction Flag, bit 10) 

DF defines whether ESI and/or EDI registers 
postdecrement or postincrement during the 
string instructions. Postincrement occurs if 
DF is reset. Postdecrement occurs if DF is 
set. 

IF (INTR Enable Flag, bit 9) 

The IF flag, when set, allows recognition of 
external interrupts signalled on the INTR pin. 
When IF is reset, external interrupts signalled 
on the INTR are not recognized. IOPL indi­
cates the maximum CPL value allowing alter­
ation of the IF bit when new values are 
popped into EFLAGS or FLAGS. 

TF (Trap Enable Flag, bit 8) 

TF controls the generation of exception 1 
trap when single-stepping through code. 
When TF is set, the 386 DX generates an ex­
ception 1 trap after the next instruction is exe­
cuted. When TF is reset, exception 1 traps 
occur only as a function of the breakpoint ad­
dresses loaded into debug registers DRO­
DRS. 

SF (Sign Flag, bit 7) 

SF is set if the high-order bit of the result is 
set, it is reset otherwise. For 8-, 16-, 32-bit 
operations, SF reflects the state of bit 7, 15, 
31 respectively. 

SEGMENT 

ZF (Zero Flag, bit 6) 

ZF is set if all bits of the result are o. Other­
wise it is reset. 

AF (Auxiliary Carry Flag, bit 4) 

The Auxiliary Flag is used to simplify the addi­
tion and subtraction of packed BCD quanti­
ties. AF is set if the operation resulted in a 
carry out of bit 3 (addition) or a borrow into bit 
3 (subtraction). Otherwise AF is reset. AF is 
affected by carry out of, or borrow into bit 3 
only, regardless of overall operand lel")gth: 8, 
16 or 32 bits. 

PF (Parity Flags, bit 2) 

PF is set if the low-order eight bits of the op­
eration contains an even number of "1 's" 
(even parity). PF is reset if the low-order eight 
bits have odd parity. PF is a function of only 
the low-order eight bits, regardless of oper­
and size. 

CF (Carry Flag, .bit 0)' 

CF is set if the operation resulted in a carry 
out of (addition), or a borrow into (subtraction) 
the high-order bit. Otherwise CF is reset. For 
8-, 16- or 32-bit operations, CF is set accord­
ingto carry/borrow at bit 7,15 or 31, respec­
tively. 

Note in these descriptions, "set" means "set to 1," 
and "reset" means "reset to 0." 

2.3.4 Segment Registers 

Six 16-bit segment registers hold segment selector 
values identifying the currently addressable memory 
segments. Segment registers are shown in Figure 2-
4. In Protected Mode, each segment may range in 
size from one byte up to the entire linear and physi-

REGISTERS DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY) 

• • r \ r Other \ 

Segment 
15 0 Physical Base Address Segment Limit Attributes from Descriptor 

Selector CS- -
Selector SS- - -
Selector DS- - - -
Selector ES- - - -
Selector FS- - - -
Selector GS- - - -

Figure 2-4. 386™ OX Segment Registers, and Associated Descriptor Registers 
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cal space of the machine, 4 Gbytes (232 bytes). If a 
maximum sized segment is used (limit 
FFFFFFFFH) it should be Oword aligned (Le., the 
least two significant bits of the segment base should 
be zero). This will avoid a segment limit violation (ex­
ception 13) caused by the wrap around. In Real Ad­
dress Mode, the maximum segment size is fixed at 
64 Kbytes (216 bytes). 

The six segments addressable at any given moment 
are defined by the segment registers CS, SS, OS, 
ES, FS and GS. The selector in CS indicates the 
current code segment; the selector in SS indicates 
the current stack segment; the selectors in OS, ES, 
FS and GS indicate the current data segments. 

2.3.5 Segment Descriptor Registers 

The segment descriptor registers are not program­
mer visible, yet it is very useful to understand their 
content. Inside the 386 OX, a descriptor register 
(programmer invisible) is associated with each pro­
grammer-visible segment register, as shown by Fig­
ure 2-4. Each descriptor register holds a 32-bit seg­
ment base address, a 32-bit segment limit, and the 
other necessary segment attributes. 

When a selector value is loaded into a segment reg­
ister, the associated descriptor register is automati­
cally updated with the correct information. In Real 
Address Mode, only the base address is updated 
directly (by shifting the selector value four bits to the 
left), since the segment maximum limit and attributes 
are fixed in Real Mode. In Protected Mode, the base 
address, the limit, and the attributes are all updated 
per the contents of the segment descriptor indexed 
by the selector. ' 

Whenever a memory reference occurs, the segment 
descriptor register associated with the segment be­
ing used is automatically involved with the memory 
reference. The 32-bit segment base address be­
comes a component of the linear address calcula-

\. 

tion, the 32-bit limit is used for the limit-check opera­
tion, and the attributes are checked against the type 
of memory reference requested. 

2.3.6 Control Registers 

The 386, OX has three control registers of 32 bits, 
CRO, CR2 and CR3, to hold machine state of a glob­
al nature (not specific to an individual task). These 
registers, along with System Address Registers de­
scribed in the next section, hold machine state that 
affects all tasks in the system. To access the Con­
trol Registers, load and store instructions are de­
fined. 

CRO: Machine Control Register (includes 80286 
Machine Status Word) 

CRO, shown in Figure 2-5, contains 6 defined bits for 
control and status purposes. The low-order 16 bits 
of CRO are also known as the Machine Status Word, 
MSW, for compatibility with 80286 Protected Mode. 
LMSW and SMSW instructions are taken as special 
aliases of the load and store CRO operations, where 
only the low-order 16 bits of CRO are involved. For 
compatibility with 80286 operating systems the 386 
OX LMSW instructions work in an identical fashion 
to the LMSW instruction on the 80286. (i.e. It. only 
operates on the low-order 16-bits of CRO and it ig­
nores the new bits in CRO.) New 386 OX operating 
systems should use the MOV CRO, Reg instruction. 

The defined CRO bits are described below. 

PG (Paging Enable, bit 31) 

the PG bit is set to enable the on-chip paging 
unit. It is reset to disable t,he on-chip paging 
unit. 

R (reserved, bit 4) 

This bit is reserved by Intel. When loading CRO 
care'should be taken to not alter the value ,of 
this bit. 

) 

MSW 

NOTE: Windicates Intel reserved: Do not define; SEE SECTION 2.3.10 

Figure 2-5. Control Register 0 
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TS (Task Switched, bit 3) 

TS is automatically set whenever a task switch 
operation is performed. If TS is set, a coproces­
sor ESCape opcode will cause a Coprocessor 
Not Available trap (exception 7). The trap han­
dier typically saves the 387 OX coprocessor 
context belonging to a previous task, loads the 
387 OX coprocessor state belonging to the cur­
rent task, and clears the TS bit before returning 
to the faulting coprocessor opcode. 

EM (Emulate Coprocessor, bit 2) 

The EMulate coprocessor bit is set to cause all 
coprocessor opcodes to generate a Coproces­
sor Not Available fault (exception 7). It is reset 
to allow coprocessor opcodes to be executed 
on an actual 387 OX coprocessor (this is the 
default case after reset). Note that the WAIT 
opcode is not affected by the EM bit setting. 

MP (Monitor Coprocessor, bit 1) 

The MP bit is used in conjunction with the TS 
bit to determine if the WAIT opcode will gener­
ate a Coprocessor Not Available fault (excep­
tion 7) when TS = 1. When both MP = 1 and 
TS = 1, the WAIT opcode generates a trap. 
Otherwise, the WAIT opcode does not gener­
ate a trap. Note that TS is automatically set 
whenever a task switch operation is performed. 

PE (Protection Enable, bit 0) 

The PE bit is set to enable the Protected Mode. 
If PE is reset, the processor operates again in 
Real Mode. PE may be set by loading MSW or 
CRO. PE can be reset only by a load into CRO. 
Resetting the PE bit is typically part of a longer 
instruction sequence needed for proper tran­
sition from Protected Mode to Real Mode. Note 
that for strict 80286 compatibility, PE cannot be 
reset by the LMSW instruction. 

CR1: reserved 

CR1 is reserved for use in future Intel processors. 

CR2: Page Fault Linear Address 

CR2, shown in Figure 2-6, holds the 32-bit linear ad­
dress that caused the last page fault detected. The 

31 24 

error code pushed onto the page fault handler's 
stack when it is invoked provides additional status 
information on this page fault. 

CR3: Page Directory Base Address 

CR3, shown in Figure 2-6, contains the physical 
base address of the page directory table. The 386 
OX page directory table is always page-aligned 
(4 Kbyte-aligned). Therefore the lowest twelve bits 
of CR3 are ignored when written and they store as 
undefined. 

A task switch through a TSS which changes the 
value in CR3, or an explicit load into CR3 with any 
value, will invalidate all cached page table entries in 
the paging unit cache. Note that if the value in CR3 
does not change during the task switch, the cached 
page table entries are not flushed. 

2.3.7 System Address Registers 

Four special registers are defined to reference the 
tables or segments supported by the 80286 CPU 
and 386 OX protection modeL These tables or seg­
ments are: 

GOT (Global Descriptor Table), 

lOT (Interrupt Descriptor Table), 

LOT (Local Descriptor Table), 

TSS (Task State Segment). 

The addresses of these tables and segments are 
stored in special registers, the System Address and 
System Segment Registers illustrated in Figure 2-7. 
These registers are named GOTR, 10TR, LOTR and 
TR, respectively. Section 4 Protected Mode Archi­
tecture describes the use of these registers. 

GDTR and IDTR 

These registers hold the 32-bit linear base address 
and 16-bit limit of the GOT and lOT, respectively. 

The GOT and lOT segments, since they are global to 
all tasks in the system, are defined by 32-bit linear 
addresses (subject to page translation if paging is 
enabled) and 16-bit limit values. 

CR2 
~------------------------------------------~~~~~~~~~~~~~ 

PAGE DIRECTORY BASE REGISTER CR3 L-______________________________________ ~~_i~_L_L~~~~~ 

NOTE: 0 indicates Intel reserved: Do not define; SEE SECTION 2.3.10 

Figure 2-6. Control Registers 2 and 3 
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SYSTEM ADDRESS REGISTERS 
47 32-BIT LINEAR BASE ADDRESS 16 15 LIMIT 0 

~~~:I I I 
SYSTEM SEGMENT 

REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED) 

~5 r 32-BIT LINEAR BASE ADDRESS 32-BIT SEGMENT LIMIT ATTRIBUTES' 

I II II 
TR SELECTOR 

LDTR SELECTOR 

Figure 2-7. System Address and System Segment Registers 

LDTR and TR 

These registers hold the is-bit selector for the LDT 
descriptor and the TSS descriptor, respectively. 

The LDT and TSS segments, since they are task­
specific segments, are defined by selector values 
stored in the system segment .registers. Note that a 
segment descriptor register (programmer-invisible) 
is associated with each system segment register. 

2.3.8 Debug and Test Registers 

Debug Registers: The six programmer accessible 
debug registers provide on-chip support for debug­
ging. Debug Registers DRO-3 specify the four linear 
breakpoints. The Debug Control Register DR7 is 
used to set the breakpoints and the Debug Status 
Register DRS, displays the current state of the 
breakpoints. The use of the debug registers is de­
scribed in section 2.12 Debugging support. 

DEBUG REGISTERS 
31 o 
LINEAR BREAKPOINT ADDRESS 0 

LINEAR BREAKPOINT ADDRESS 1 

LINEAR BREAKPOINT ADDRESS 2 

LINEAR BREAKPOINT ADDRESS 3 

Intel reserved. Do not define. 

Intel reserved. Do not define. 

BREAKPOINT STATUS 

BREAKPOINT CONTROL 

TEST REGISTERS (FOR PAGE CACHE) 
31 O· 

DRO 

DR1 

DR2 

DR3 

DR4 

DRS 

DRS 

DR7 

TEST CONTROL TRS 

TEST STATUS TR7 

Figure 2-8. Debug and Test Registers 

Test Registers: Two registers are used to control 
. the testing of the RAM/CAM (Content Addressable 

Memories) in the Translation Lookaside Buffer por­
tion of the 38S DX. TRS is the command test regis­
ter, and TR7 is the data register which contains the 
data of the Translation Lookaside buffer test. Their 
use is discussed in section 2.11 Testability. 

Figure 2-8 shows the Debug·and Test registers. 

2.3;9 Register Accessibility 

There. are a few differences regarding the accessibil­
ity of the registers in Real and Protected Mode. Ta­
ble 2-1 summarizes these differences. See Section 
4 Protected Mode Architecture for further details. 

2.3.10 Compatibility 

VERY IMPORTANT NOTE: 
COMPATIBILITY WITH FUTURE PROCESSORS 

In the preceding register descriptions, note cer­
tain 386 DX register bits are Intel reserved. 
When reserved bits are called out, treat them as 
fully undefined. This is essential for your soft­
ware compatibility with future processorsl Fol­
low the guidelines below: 

1) Do not depend on the states of any unde­
fined bits when testing the values of defined 
register bits. Mask them out when testing. 

2) Do not depend on the states of any unde­
fined bits when storing them to memory or 
another register. . 

3) Do not depend on the ability to retain infor­
mation written into any undefined bits. 

4) When loading registers always load the unde­
fined bits as zeros. 
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Table 2-1. Register Usage 

Use in Use in Use in 

Register 
Real Mode Protected Mode Virtual 8086 Mode 

Load Store Load Store Load Store 

General Registers Yes Yes Yes Yes Yes Yes 

Segment Registers Yes Yes Yes Yes Yes Yes 

Flag Register Yes Yes Yes Yes IOPL' IOPL' 

Control Registers Yes Yes PL = 0 PL = 0 No Yes 

GOTR Yes Yes PL = 0 Yes No Yes 

IOTR Yes Yes PL = 0 Yes No Yes 

LOTR No No PL = 0 Yes No No 

TR No No PL = 0 Yes No No 

Debug Control Yes Yes PL = 0 PL =.0 No No 

Test Registers Yes Yes PL = 0 PL = 0 No No 

NOTES: 
PL = 0: The registers can be accessed only when the current privilege level is zero. 
"IOPL: The PUSHF and POPF instructions are made 110 Privilege Level sensitive in Virtual 8086 Mode. 

5) However, registers which have been previ­
ously stored may be reloaded without mask­
ing. 

Depending upon the values of undefined regis­
ter bits will make your software dependent upon 
the unspecified 386 DX handling of these bits. 
Depending on undefined values risks making 
your software incompatible with future proces­
sors that define usages for the 386 DX-unde­
fined bits. AVOID ANY SOFTWARE DEPEN­
DENCE UPON THE STATE OF UNDEFINED 386 
DX REGISTER BITS. 

2.4 INSTRUCTION SET 

2.4.1 Instruction Set Overview 

The instruction set is divided into nine categories of 
operations: 

Data Transfer 

Arithmetic 

Shift/Rotate 

String Manipulation 

Bit Manipulation 

Control Transfer 

High Level Language Support 

Operating System Support 

Processor Control 

These 386 OX instructions are listed in Table 2-2. 

All 386 OX instructions operate on either 0, 1, 2, or 3 
operands; where an operand resides in a register, in 
the instruction itself, or in memory. Most zero oper­
and instructions (e.g. CLI, STI) take only one byte. 
One operand instructions generally are two bytes 
long. The average instruction is 3.2 bytes long. 
Since the 386 OX has a 16-byte instruction queue, 
an average of 5 instructions will be prefetched. The 
use of two operands permits the following types of 
common instructions: 

Register to Register 

Memory to Register 

Immediate to Register 

Register to Memory 

Imrrrediate to Memory. 

The operands can be either 8, 16, or 32 bits long. As 
a general rule, when executing code written for the 
386 OX (32-bit code), operands are 8 or 32 bits; 
when executing existing 80286 or 8086 code (16-bit 
code), operands are 8 or 16 bits. Prefixes can be 
added to all instructions which override the default 
length of the operands, (I.e. use 32-bit operands for 
16-bit code, or 16-bit operands for 32-bit code). 

For a more elaborate description of the instruction 
set, refer to the "386 OX Programmer's Reference 
Manual." 

4-181 



inter 386TM ox MICROPROCESSOR 

2.4.2 386TM OX Instructions 
Table 2-2a. Data Transfer 

GENERAL PURPOSE 

MOV Move operand 

PUSH Push operand-onto stack 

POP Pop operand off stack 

PUSHA Push all registers on stack 

POPA Pop all registers off stack 

XCHG Exchange Operand, Register 

XLAT Translate 

CONVERSION 

MOVZX Move byte or Word, Dword, with zero 
extension 

MOVSX Move byte or Word, Dword, sign 
extended 

CBW Convert byte to Word, or Word to Dword 

CWO Convert Word to DWORD 

CWDE Convert Word to DWORD extended 

CDa Convert DWORD to aWORD 

INPUT IOUTPUT 

IN Input operand from 1/0 space 

OUT Output operand to I/O space 

ADDRESS OBJECT 

LEA Load effective address 

LOS Load pointer into 0 segment register 

LES Load poii1ter into E segment register 

LFS Load pointer into F segment register 

LGS Load pointer into G segment register 

LSS Load pointer into S (Stack) segment 
register 

FLAG MANIPULATION 

LAHF Load A register from Flags 

SAHF Store A register in Flags 

PUSHF Push flags onto stack 

POPF Pop flags off stack 

PUSHFD Push EFlags onto stack 

POPFD Pop EFlags off stack 

CLC Clear Carry Flag 

CLD Clear Direction Flag 

CMC Complement Carry Flag 

STC Set Carry Flag 

sm Set Direction Flag 

Table 2-2b. Arithmetic Instructions 

ADDITION 

ADD Add operands 

ADC Add with carry 

INC Increment operand by 1 

AAA ASCII adjust for addition 

DAA Decimal adjust for addition 

SUBTRACTION 

SUB Subtract operands 

SBB Subtract with borrow 

DEC Decrement operand by 1 

NEG Negate operand 

CMP Compare operands 

DAS Decimal adjust for subtraction 

AAS ASCII Adjust for subtraction 

MULTIPLICATION 

MUL Multiply Double/Single Precision 

IMUL Integer multiply 

AAM ASCII adjust after multiply 

DIVISION 

DIV Divide unsigned 

IDIV Integer Divide 

AAD ASCII adjust before division 

Table 2-2c. String Instructions 

MOVS Move byte or Word, Dword string 

INS Input string from I/O space 

OUTS Output string to I/O space 

CMPS Compare byte or Word, Dword string 

SCAS Scan Byte or Word, Dword string 

LODS Load byte or Word, Dwordstring 

STOS Store byte or Word, Dword string 

REP Repeat 

REPE/ 
REPZ Repeat while equal/zero 

RENE/ 
REPNZ Repeat while not equal/not zero 

Table 2-2d. Logical Instructions 

LOGICALS 

NOT "NOT" operands 

AND "AND" operands 

OR "Inclusive OR'.' operands 

XOR "Exclusive OR" operands 

TEST "Test" operands 
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Table 2-2d Logical Instructions (Continued) Table 2-2f. Program Control Instructions 

SHIFTS (Continued) 

SHL/SHR Shift logical left or right UNCONDITIONAL TRANSFERS 

SAL/SAR Shift arithmetic left or right CALL Call procedure/task 

SHLD/ RET Return from procedure 

SHRD Double shift left or right JMP Jump 
ROTATES ITERATION CONTROLS 

ROL/ROR Rotate left/right LOOP Loop 
RCL/RCR Rotate through carry left/right LOOPE/ 

Table 2-2e Bit Manipulation Instructions LOOPZ Loop if equal/zero 

SINGLE BIT INSTRUCTIONS 

BT Bit Test 

BTS Bit Test and Set 

BTR Bit Test and Reset 

BTC Bit Test and Complement 

BSF Bit Scan Forward 

BSR Bit Scan Reverse 

Table 2-2f Program Control Instructions 

CONDITIONAL TRANSFERS 

SETCC Set byte equal to condition code 

JAlJNBE Jump if above/not below nor equal 

JAE/JNB Jump if above or equal/not below 

LOOPNE/ 
LOOPNZ Loop if not equal/not zero 

JCXZ JUMP if register CX=O 

INTERRUPTS 

INT Interrupt 

INTO I nterrupt if overflow 

IRET Return from Interrupt/Task 

CLI Clear interrupt Enable 

STI Set Interrupt Enable 

Table 2 2g High Level Language Instructions -
BOUND Check Array Bounds 

ENTER Setup Parameter Block for Entering 
Procedure 

JB/JNAE Jump if below/not above nor equal LEAVE Leave Procedure 
JBE/JNA Jump if below or equal/not above Table 2-2h Protection Model 
JC Jump if carry SGDT Store Global Descriptor Table 
JE/JZ Jump if equal/zero SIDT Store Interrupt Descriptor Table 
JG/JNLE Jump if greater/not less nor equal 

JGE/JNL Jump if greater or equal/not less 
STR Store Task Register 

SLOT Store Local Descriptor Table 
JL/JNGE Jump if less/not greater nor equal LGDT Load Global Descriptor Table 
JLE/JNG Jump if less or equal/not greater LlOT Load Interrupt Descriptor Table 
JNC Jump if not carry LTR Load Task Register 
JNE/JNZ Jump if not equal/not zero LLDT Load Local Descriptor Table 
JNO Jump if not overflow 

JNP/JPO Jump if not parity/parity odd 

JNS Jump if not sign 

ARPL Adjust Requested Privilege Level 

LAR Load Access Rights 

LSL Load Segment Limit 
JO Jump if overflow VERR/ 
JP/JPE Jump if parity/parity even VERW Verify Segment for Reading or Writing 

JS Jump if Sign LMSW Load Machine Status Word (lower 
16 bits of CRO) 

SMSW Store Machine Status Word 

Table 2-21 Processor Control Instructions 

HLT Halt 

WAIT Wait until BUSY # negated 

ESC Escape 

LOCK Lock Bus 

4-183 



inter 386TM ox MICROPROCESSOR 

2.5 ADDRESSING MODES 

2.5.1 Addressing Modes Overview 

The 386 OX provides a total of 11 addressing modes 
for instructions to specify operands. The addressing 
modes are optimized to allow the efficient execution 
of high level languages such as C and FORTRAN, 
and they cover the vast majority of data references 
needed by high-level languages. 

2.5.2 Register and Immediate Modes 

Two of the addressing modes provide for instruc­
tions that operate on register or immediate oper­
ands: 

Register Operand Mode: The operand is located 
in one of the 8-, 16- or 32-bit general registers. 

Immediate Operand Mode: The operand is in­
cluded in the instruction as part of the opcode. 

2.5.3 32-Bit Memory Addressing 
Modes 

The remaining 9 modes provide a mechanism for 
specifying the effective address of an operand. The 
linear address consists of two components: the seg­
ment base address and an effective address. The 
effective address is calculated by using combina­
tions of the following four address elements: 

DISPLACEMENT: An 8-, or 32-bit immediate value, 
fo!!o\A!ing the instruction. 

BASE: The contents of any general purpose regis­
ter. The base registers are generally used by compil­
ers to point to the start of the local variable area. 

INDEX: The contents of any general purpose regis­
ter except for ESP. The index registers are used to 
access the elements of an array, or a string of char­
acters. 

SCALE: The index register's value can be multiplied 
by a scale factor, either 1, 2, 4 or 8. Scaled index 
mode is especially useful for accessing arrays or 
structures. 

Combinations of these 4 components make up the 9 
additional addressing modes. There is no perform­
ance penalty for using any of these addressing com­
binations, since the effective address calculation is 
pipe lined with the execution of other instructions. 

The one exyeption is the simultaneous use of Base 
and Index components which requires one addition­
al clock. 

As shown in Figure 2-9, the effective address (EA) of 
an operand is calculated according to the following 
formula. 

EA = Base Reg + (Index Reg • Scaling) + Displacement 

Direct Mode: The operand's offset is contained as 
part of the instruction as an 8-, 16- or 32-bit dis­
placement. 
EXAMPLE: INC Word PTR [500] 

Register Indirect Mode: A BASE register contains 
the address of the operand. 
EXAMPLE: MOV [ECX], EDX 

Based Mode: A BASE register's contents is added 
to a DISPLACEMENT to form the operands offset. 
EXAMPLE: MOV ECX, [EAX + 24] 

Index Mode: An INDEX register's contents is added 
to a DISPLACEMENT to form the operands offset. 
EXAMPLE: ADD EAX, TABLE[ESJ] 

Scaled Index Mode: An INDEX register's contents is 
multiplied by a scaling factor which is added to a 
DISPLACEMENT to form the operands offset. 
EXAMPLE: IMUL EBX, TABLE[ESI04],7 

Based Index Mode: The contents of a BASE register 
is added to the contents of an INDEX register to 
form the effective address of an operand. 
EXAMPLE: MOV EAX, [ESt] [EBX] 

!3~.serl Scaled Index Mode: The contents of an IN­
DEX register is multiplied by a SCALING factor and. 
the result is added to the contents of a BASE regis­
ter to obtain the operands offset. 
EXAMPLE: MOV ECX, [EDX'8] [EAX] 

Based Index Mode with Displacement: The contents 
of an INDEX Register and a BASE register's con­
tents and a DISPLACEMENT are all summed to­
gether to form the operand offset. 
EXAMPLE: ADD EDX, [ESt] [EBP + OOFFFFFOH] 

Based Scaled Index Mode with Displacement: The 
contents of an INDEX register are multiplied by a 
SCALING factor, the result is added to the contents 
of a BASE register and a DISPLACEMENT to form 
the operand's offset. 
EXAMPLE: MOV EAX, LOCALTABLE[EDI*4] 
[EBP+80] 
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Figure 2·9. Addressing Mode Calculations 

2.5.4 Differences Between 16 and 32 
Bit Addresses 

In order to provide software compatibility with the 
80286 and the 8086, the 386 DX can execute 16-bit 
instructions in Real and Protected Modes. The proc­
essor determines the size of the instructions it is ex­
ecuting by examining the D bit in the CS segment 
Descriptor. If the D bit is 0 then all operand lengths 
and effective addresses are assumed to be 16 bits 
long. If the D bit is 1 then the default length for oper­
ands and addresses is 32 bits. In Real Mode the 
default size for operands and addresses is 16-bits. 

Regardless of the default precision of the operands 
or addresses, the 386 DX is able to execute either 
16 or 32·bit instructions. This is specified via the use 
of override prefixes. Two prefixes, the Operand Size 
Prefix and the Address Length Prefix, override the 
value of the D bit on an individual instruction basis. 
These prefixes are automatically added by Intel as­
semblers. 

Example: The processor is executing in Real Mode 
and the programmer needs to access the EAX regis­
ters .. The assembler code for this might be MOV 
EAX, 32-bit MEMORYOP, ASM386 Macro Assem­
bler automatically determines that an Operand Size 
Prefix is needed and generates it. 

Example: The D bit is 0, and the programmer wishes' 
to use Scaled Index addressing mode to access an 
array. The Address Length Prefix allows the use of 
MOV DX, TABLE[ESI*2]. The assembler uses an 
Address Length Prefix since, with D = 0, the default 
addressing mode is 16-bits. 

Example: The D bit is 1, and the program wants to 
store a 16-bit quantity. The Operand Length Prefix is 
used to specify only a 16-bit value; MOV MEM16, 
OX. 
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Table 2·3. BASE and INDEX Registers for 16· and 32·Bit Addresses. 

16·Blt Addressing 32·Blt Addressing 

BASE REGISTER BX,BP 
INDEX REGISTER SI,DI 

SCALE FACTOR none 
DISPLACEMENT 0,8,16 bits 

The OPERAND LENGTH and Address Length Pre· 
fixes can be applied separately or in combination to 
any instruction. The Address Length Prefix does not 
allow addresses over 64K bytes to be accessed in 
Real Mode. A memory address which exceeds 
FFFFH will result in a General Protection Fault. An 
Address Length Prefix only allows the use of the ad· 
ditional 386 OX addressing modes .. 

When executing 32·bit code, the 386 OX uses either 
8·, or 32·bit displacements, and any register can be 
used as base or index registers. When executing 16· 
bit code, the displacements are either 8, or 16 bits, 
and the base and index register conform to the 
80286 model. Table 2·3 illustrates the differences. 

2.6 DATA TYPES 

The 386 OX supports all of the data types commonly 
used in high level languages: 

Bit: A single bit quantity. 

Bit Field: A group of up to 32 contiguous bits, 
which spans a maximum of four bytes .. 

Cit C::trin,,· A ~.o.t nf ,..."ntinllnIIQ hitC!': nn tho '=IAR nv ....... _ ...... t9 •• , ,."",,,..,0 ........... :::l!_ .... _- _ ... _, _ •• uo_ --- _. ~ 

bit strings can be up to 4 gigabits long. 

Byte: A signed 8·bit qual1tity. 

Unsigned Byte: An unsigned 8·bit quantity. 

Integer (Word): A signed 16·bit quantity. 

Long Integer (Double Word): A signed 32·bit quan· 
tity. All operations assume a 2's complement rep· 
resentation. 

Unsigned Integer (Word): An unsigned 16·bit 
quantity. 

Any 32·bit GP Register 
Any 32·bit GP Register 
Except ESP 
1,2,4,8 
O,8,32bits 

Unsigned' Long Integer (Double Word): An un­
signed 32·bit quantity. 

Signed Quad Word: A signed 64·bit quantity. 

Unsigned Quad Word: An unsigned 64-bit quanti­
ty. 

Offset: A 16· or 32-bit offset only quantity which 
indirectly references another memory location. 

Pointer: A full pointer which consists of a 16-bit 
segment selector and either a 16- or 32-bit offset. . 

Char: A byte representation of an ASCII Alphanu­
meric or control character. 

String: A contiguous sequence of bytes, words or 
dwords. A string may contain between 1 byte and 
4 Gbytes. 

BCD: A byte (unpacked) representation of decimal 
digits 0-9. 

Packed BCD: A byte (packed) representation of 
two decimal digits 0-9 storing one digit in each 
nibble. . 

When the 386 OX is coupled with a 387 OX Numeri­
cs Coprocessor then the following common Floating 
Point types are support~d. . 

Floating Point: A signed 32-, 64-, or 80-bit real 
number representation. Floating point numbers 
are supported by the 387 OX numerics coproces­
sor. 

Figure 2-10 illustrates the data types supported by 
the 386 OX and the 387 OX numerics coprocessor. 
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+N +1 0 
7 0 7 0 7 07 0 

SIGNED~ 
BYTE 

BINARYE:j ••• 
CODED 

1"'1"'1'111'"1 

SIGN BIT.JL-,.J DECIMAL BCD BCD BCD 
(BCD) DIGIT N DIGIT 1 DIGIT 0 

MAGNITUDE 

+N +1 0 
7 0 7 0 7 07 0 

UNSIGNED E:j 
BYTE 

ASCIIE:j ••• 1"'1"'1"11'"1 

L---J ASCII ASCII ASCII 
MAGNITUDE CHARACTERN CHARACTER 1 CHARACTERO 

+1 0 +N +1 0 
1514 87 0 7 0 7 07 0 

s~~~g I1''1'''1'''1'''1 PACKEDE:j ••• 
BCD 1"11"11"'1'"1 

SIGN BIT.J,LMSB I L..l L..l 
MOST LEAST 

MAGNITUDE SIGNIFICANT DIGIT SIGNIFICANT DIGIT 

+1 0" " +N +1 0 
15 0 7/15 0 7/15 07/15 0 

UNS~~~g I'''1'''1'I'1'''1 ST~TtJ~E:j·· .1"'1'"1"'1"'1 

I I 
MAGNITUDE 

+3 +2 +1 0 +2 GIGABITS -2 GIGABITS 
31 1615 0 210 

SIGNED DO~g~~ I1I'1'''1'''1'''1'''1'''1'''1'''1 STRI~I~ I1111 II \\ 11111 
SIGN BIT .J1L MSB I BITO 

MAGNITUDE 

+3 +2 +1 0 +3 +2 +1 0 
31 0 31 0 

UNSIQNED DO~g~~ t '1'''1'I'1'''1'''1'''1'''1'''1 :~_O~i I'''1'''1'''1'''1'''1'1 '1'''1'''1 
POINTER 

I I I I 
MAGNITUDE OFFSET 

+7 +6 +5 +5 +3 +2 +1 0 +5 +4 +3 +2 +1 0 
63 4847 3231 1615 0 47 0 

SIGNED ~~~g II I I I I I I I I 
4i~~I~ I'''1' ''1'''1'''1I''1I I'1'''1'''1'''1'''1'''1'''1 

SIGN BIT.J1LMSB 
POINTER 

I I I I 
MAGNITUDE SELECTOR OFFSET 

+9 +8 +7 +6 +5 +4 +3 +2" +1 0 
79 0 

FLOATING II 
POINT· I I I I I I I I I I 

SIGN BIT.J1 I I 
EXPONENT MAGNITUDE 

+5 +4 +3 +2 +1 0 

BIT3~~~~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'1111"I 
·SUPPORTED BY 80387 

j. BIT FIELD .j NUMERIC DATA 

1 TO 32 BITS COPROCESSOR 

231630-52 

Figure 2-10. 386TM DX Supported Data Types 
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2.7 MEMORY ORGANIZATION 

2.7.1 Introduction 
Memory on the 386 OX is divided up into 8-bit quan­
tities (bytes), 16-bit quantities (words), and 32-bit 
quantities (dwords). Words are stored in two consec­
utive bytes in memory with the low-order byte at the 
lowest address, the high order byte at the high ad­
dress. Dwords are stored in four consecutive bytes 
in memory with the low-order byte at the lowest ad­
dress, the high-order byte at the highest address. 
The address of a word or dword is the byte address 
of the low-order byte. 

In addition to these basic data types, the 386 OX 
supports two larger units of memory: pages and seg­
ments. Memory can be divided up into one or more 
variable length segments, which can be swapped to 
disk or shared between' programs. Memory can also 
be organized into one or more 4K byte pages. Final­
ly, both segmentation and paging can be combined, 
gaining the advantages of both systems. The 386 
OX supports both page~ and segments in order to 
provide maximum flexibility to the system designer. 
Segmentation and paging are complementary. Seg­
mentation is useful for organizing memory in logical 
modules, and as such is a tool for the application 
programmer, while pages are useful for the system 
programmer for managing the physical memory of a 
system. 

2.7.2 Address Spaces 
The 386 OX has three distinct address spaces: 
logical, linear, and physical. A logical address 

EFFECTIVE ADDRESS CALCULATION 

(also known as a virtual address) consists of a se- , 
lector and an offset. A selector is the contents of a 
segment register. An offset is formed by summing all 
of the addressing components (BASE, INDEX, DIS­
PLACEMENT) discussed in section 2.5.3 Memory 
Addressing Modes into an effective address. Since 
each task on 386 OX has a maximum of 16K (214 
-1) selectors, and offsets can be 4 gigabytes, (232 
bits) this gives a total of 246 bits or 64 terabytes of 
logical address space per task. The programmer 
sees this virtual address space. 

The segmentation unit translates the logical ad­
dress space into a 32-bit linear address space. If the 
paging unit is not enabled then' the 32-bit linear ad­
dress corresponds to the physical address. The 
paging unit translates the linear address space into ' 
the physical address space. The physical address 
is what appears on the address pins. 

The primary difference between Real Mode and Pro­
tected Mode is how the segmentation unit performs 
·the translation of the logical address into the linear 
address. In Real Mode, the segmentation unit shifts 
the selector left four bits and adds the result to the 
offset to form the linear address. While in Protected 
Mode every selector has a linear base address as­
sociated with it. The linear base address is stored in 
one of two operating system tables (i.e. the Local 
Descriptor Table or Global Descriptor Table). The 
selector's I,inear base address is added to the offset 
to form the final linear address. . 

Figure 2-11 shows the relationship between the vari­
ous addres~ spa,ces. 

BO-BEO 
A31-A2 

32 0 

PHYSICAL 
MEMORY 

ADDRESS 
LOGICAL OR SEGMENTATION 1-_3::2>'+1 PAGING UNIT 

14 VIRTUAL ADDRESS UNIT LINEAR (OPTIONAL USE) 

32 

PHYSICAL 

SEGMENT 
REGISTER 

h~D::;E;::SC::;;R;;;IPT:;:::O:::R--+IL-___ ....J ADDRESS 

INDEX 

Figure 2-11. Address Translation 
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2.7.3 Segment Register Usage 

The main data structure used to organize memory is 
the segment. On the 386 DX, segments are variable 
sized blocks of linear addresses which have certain 
attributes associated with them. There are two main 
types of segments: code and data, the segments are 
of variable size and can be as small as 1 byte or as 
large as 4 gigabytes (232 bytes). 

In' order to provide compact instruction encoding: 
and increase processor performance, instructions 
do not need to explicitly specify which segment reg­
ister is used. A default segment register is automati­
cally chosen according to the rules of Table 2-4 
(Segment Register Selection Rules). In general, data 
references use the selector contained in the DS reg­
ister; Stack references use the SS register and In­
struction fetches use the CS register. The contents 
of the Instruction Pointer provides the offset. Special 
segment override prefixes allow the explicit use of a 
given segment register, and override the implicit 
rules listed in Table 2-4. The override prefixes also 
allow the use of the ES, FS and GS segment regis­
ters. 

There are no restrictions regarding the overlapping 
of the base addresses of any segments. Thus, all 6 
segments could have the base address set to zero 
and create a system with a four gigabyte linear ad­
dress space. This creates a system where the virtual 
address space is the same as the linear address 
space. Further details of segmentation are dis­
cussed in section 4.1. 

2.8 I/O SPACE 

The 386 DX has two distinct physical address 
spaces: Memory and 1/0. Generally, peripherals are 
placed in 1/0 space although the 386 DX also sup­
ports memory-mapped peripherals. The 1/0 space 
consists of 64K bytes, it can be divided into 64K 
8-bit ports, 32K 16-bit ports, or 16K 32-bit ports, or 
any combination of ports which add up to less than 
64K bytes. The 64K .1/0 address space refers to 
physical memory rather than linear address since II 
o instructions do not go through the segmentation 
or paging hardware. The M/IO# pin acts as an addi­
tional address line thus allowing the system designer 
to easily determine which address space the proces­
sor is accessing. 

Table 2-4. Segment Register Selection Rules 

Type of Implied (Default) Segment Override 
Memory Reference Segment Use Prefixes Possible 

Code Fetch CS None 

Destination of PUSH, PUSHF, INT, SS None 
CALL, PUSHA Instructions 

Source of POP, POPA, POPF, SS None 
IRET, RET instructions 

Destination of STOS, MOVS, REP ES None 
STOS, REP MOVS Instructions 
(DI is Base Register) 

Other Data References, with 
Effective Address Using Base 
Register of: 

[EAX] DS DS,CS,SS,ES,FS,GS 
[EBX] DS DS,CS,SS,ES,FS,GS 
[ECX] DS DS,CS,SS,ES,FS,GS 
[EDX] DS DS,CS,SS,ES,FS,GS 
[ESI] DS DS,CS,SS,ES,FS,GS 
[EDI] DS DS,CS"SS,ES,FS,GS 
[EBP] SS DS,CS,SS,ES,FS,GS 
[ESP] SS DS,CS,SS,ES,FS,GS 

4-189 



intJ 386TM OX MICROPROCESSOR 

The I/O ports are accessed via the IN and OUT I/O 
instructions, with the port address supplied as an 
immediate 8-bit constant in the instruction or in the 
OX register. All 8- and 16-bit port addresses are zero 
extended on the upper address lines. The I/O in­
structions cause the M/IO# pin to be driven low. 

I/O port addresses 00F8H through OOFFH are re­
served for use by Intel. 

2.9 INTERRUPTS 

2.9.1 Interrupts and Exceptions 

Interrupts and exceptions alter the normal program 
flow, in order to handle external events, to report 
errors or exceptional conditions. The difference be­
tween interrupts and exceptions is that interrupts are 
used to handle asynchronous external events while 
exceptions handle instruction faults. Although a pro­
gram can generate a software interrupt via an INT N 
instruction, the processor treats software interrupts 
as exceptions. 

Hardware interrupts occur as the result of an exter­
nal event and are·classified into two types: maskable 
or non-maskable. Interrupts are serviced after the 
execution of the current instruction. After the inter­
rupt handler is finished servicing the interrupt, exe­
cution proceeds with the instruction 'immediately 
after the interrupted instruction. Sections 2.9.3 and 
2.9.4 discuss the differences between Maskable and 
Non-Maskable interrupts. 

Exceptions are classified as faults, traps, or aborts 
rlAnl'mriinn nn the wav thev are reoorted. and wheth­
~i 0': n~t restart of the instruction causing the excep­
tion is supported. Faults are exceptions that are de­
tected and serviced before the execution of the 
faulting instruction. A fault would occur in a virtual 
memory system, when the processor referenced a 
page or a segment which was not present. The oper­
ating system would fetch ·the page or segment from 
disk, and then the 386 OX would restart the instruc­
tion. Traps are exceptions that are reported immedi­
ately after the execution of the instruction which 
caused the problem. User defined interrupts are ex­
amples, of traps. Aborts are exceptions which do 
not permit the precise, location of the instruction 
causing the exception to be determined. Aborts are 
used to report severe errors, such as a hardware 
error, or illegal values in ,system tables. . 

Thus, when an interrupt service routine has been 
completed, execution proceeds from the instruction 

immediately following the interrupted instruction. On 
the other hand, the return address from an excep­
tion fault routine will always point at the instruction 
causing the exception and include any leading in­
struction prefixes. Table 2-5 summarizes the possi­
ble interrupts for the 386 OX and shows where the 
return address points. 

The 386 OX has the ability to handle up to 256 differ­
ent interrupts/exceptions. In order to service the in­
terrupts, a table with up to 256 interrupt vectors 
must be defined. The interrupt vectors are simply 
pointers to the appropriate interrupt service routine. 
In Real Mode (see section 3.1), the vectors are 4 
byte quantities, a Code Segment plus a 16-bit offset; 
in Protected Mode, the interrupt vectors are 8 byte 
quantities, which are put in an Interrupt Descriptor 
Table (see section 4.1). Of the 256 possible inter­
rupts, 32 are reserved for use by Intel, the remaining 
224 are free to be used by the system designer. 

2.9.2 Interrupt Processing 

When an interrupt occurs the following actions hap­
pen. First, the current program address and the 
Flags are saved on the stack to allow resumption of 
the interrupted program. Next, an 8-bit vector is sup­
plied to the 386 OX which identifies the appropriate 
entry in the interrupt table. The table contains the 
starting address of the interrupt service routine. 
Then, the user supplied interrupt service routine is 
executed. Finally, when an IRET instruction is exe­
cuted the old processor state is restored and pro­
gram execution resumes at the appropriate instruc­
tion. 

ThA R-hit intArrunt vA~tnr il'l l'IlJoolied tn the 386 DX in 
s~~e~aidiffer~~t wa';s:- excepti·ons supply the inter­
rupt vector internally; software INT instructions con­
tain or imply the vector; maskable hardware inter­
rupts supply the 8-bit vector via the interrupt ac­
knowledge bus sequence. Non-Maskable hardware 
interrupts are assigned to interrupt vector 2. 

2.9.3 Maskable Interrupt 

Maskable interrupts are the most common way used 
by the 386 OX to respond to asynchronous external 
hardware events. A hardware interrupt occurs when 
the INTR is pulled high and the Interrupt Flag bit (IF) 
is enabled. The processor only responds to inter­
rupts between instructions, (REPeat String instruc­
tions, have an "interrupt window", between memory 
moves, which allows, interrupts during long 
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Table 2-5. Interrupt Vector Assignments 

Instruction Which 
Return Address 

Interrupt Points to 
Function Can Cause Type 

Number 
Exception 

Faulting 
Instruction 

Divide Error 0 DIV,IDIV YES FAULT 

Debug Exception 1 any instruction YES TRAP' 

NMllnterrupt 2 INT2 or NMI NO NMI 

One Byte Interrupt 3 INT NO TRAP 

Interrupt on Overflow 4 INTO NO TRAP 

Array Bounds Check 5 BOUND YES FAULT 

Invalid OP-Code 6 Any Illegal Instruction YES FAULT 

Device Not Available 7 ESC, WAIT YES FAULT 

Double Fault 8 Any Instruction That Can ABORT 
Generate an Exception 

Coprocessor Segment Overrun 9 ESC NO ABORT 

InvalidTSS 10 JMP, CALL, IRET, INT YES FAULT 

Segment Not Present 11 Segment Register Instructions YES FAULT 

Stack Fault 12 Stack References YES FAULT 

General Protection Fault 13 Any Memory Reference YES FAULT 

Intel Reserved 15 

Page Fault 14 Any Memory Access or Code Fetch YES FAULT 

Coprocessor Error 16 ESC, WAIT YES FAULT 

Intel Reserved 17-31 

Two Byte Interrupt 0-255 INTn NO TRAP 
• Some debug exceptions may report both traps on the prevIous instruction, and faults on the next instruction. 

string moves). When an interrupt occurs the proces­
sor reads an 8-bit vector supplied by the hardware 
which identifies the source of the interrupt, (one of 
224 user defined interrupts). The exact nature of the 
interrupt sequence is discussed in section 5. 

The IF bit in the EFLAG registers is reset when an 
interrupt is being serviced. This effectively disables 
servicing additional interrupts during an interrupt 
service routine. However, the IF may be set explicitly 
by the interrupt handler, to allow the nesting of inter­
rupts. When an IRET instruction is executed the 
original state of the IF is restored. 

2.9.4 Non-Maskable Interrupt 

Non-maskable interrupts provide a method of servic­
ing very high priority interrupts. A common example 
of the use of a non-maskable interrupt (NMI) would 
be to activate a power failure routine. When the NMI 
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input is pulled high it causes an interrupt with an 
internally supplied vector value of 2. Unlike a normal 
hardware interrupt, no interrupt acknowledgment se­
quence is performed'for an ,NMI. 

While executing the NMI servicing procedure, the 
386 DX will not service further NMI requests, until an 
interrupt return (IRET) instruction is executed or the 
processor is reset. If NMI occurs while currently 
servicing an NMI, its presence will be saved for serv­
icing after executing the first IRET instruction. The IF 
bit is cleared at the beginning of an NMI interrupt to 
inhibit further INTR interrupts. 

2.9.5 Software Interrupts 

A third type of interrupti exception for the 386 DX is 
the software interrupt. An INT n instruction causes 
the processor to execute the interrupt service rou­
tine pointed to by the nth vector in the interrupt ta­
ble. 
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A special case of the two byte software interrupt INT 
n is the one byte INT 3, or breakpoint interrupt. By 
inserting this one byte instruction in a program, the 
user can set breakpoints in his program as a debug­
ging tool. . 

A final type of software interrupt, is the single step 
interrupt. It is discussed in section 2.12. 

2.9.6 Interrupt and Exception 
Priorities 

Interrupts are externally-generated events. Maska­
ble Interrupts (on the INTR input) and Non-Maskable 
Interrupts (on the NMI input) are recognized at in­
struction boundaries. When NMI and maskable 
INTR are both recognized at the same instruction 
boundary, the 386 DX invokes the NMI service rou­
tine first. If, after the NMI service routine has been 
invoked, maskable interrupts are still enabled, then 
the 386 DX will invoke the appropriate interrupt serv­
ice routine. 

Table 2-6a. 386TM OX Priority for 
Invoking Service Routines in Case of 

Simultaneous External Interrupts 

1.NMI 

2.INTR 

Exceptions are internally-generated events. Excep­
tions are detected by the 386 DX if, in the course of 
executing an instruction, the 386 DX detects a prob­
lematic condition. The 386 DX then immediately in­
vokes the appropriate exception service routine. The 
............... _l .a.""_ I'lO~ nv : ......... _ .... + ........ + +h .... : ........ + ......... +i ....... ,. .. "'u ..... 
• :ncuV' UI Llle; ~uu LJ" 10:1 .;:IIU\,.r11 U IQIo Lllu III~LI "",",,,IVII vuu""'-

ing the exception can be restarted. If the exception 
service routine has taken care of the problematic 
condition, the instruction will execute without caus­
ing the same exception. 

It is possible for a single instruction to generate sev­
eral exceptions (for example, transferring a single 
operand could generate two page faults if the oper- . 
and location spans two "not present" pages). How­
ever, only one exception is generated upon each at­
tempt to execute the instruction. Each exception 
service routine should correct its corresponding ex­
ception, and restart the instruction. In this manner, 
exceptions are serviced until the instruction exe­
cutes successfully. 

As the 386 DX executes instructions, it follows a 
consistent cycle in checking for exceptions, as 
shown. in Table 2-6b. This cycle is repeated 

as each instruction is executed, and occurs in paral­
lel with instruction decoding and execution. 

Table 2-6b. Sequence of Exception Checking 

Consider the case of the 386 DX having just 
completed an instruction. It then performs the 
following checks before reaching the point where 
the next instruction is completed: 

1. Check for Exception 1 Traps from the instruc­
tion just completed (single-step via Trap Flag, 
or Data Breakpoints set in the Debug Regis­
ters). 

2. Check for Exception 1 Faults in the next in­
struction (Instruction Execution Breakpoint set 
in the Debug Registers for the next instruc­
tion). 

3. Check for external NMI and INTR. 

4. Check for Segmentation Faults that prevented 
fetching the entire next instruction (exceptions 
11 or 13). 

5. Check for Page Faults that prevented fetching 
the entire next instruction (exception 14). 

6. Check for Faults decoding the next instruction 
(exception 6 if illegal opcode; exception 6 if in 
Real Mode or in Virtual 8086 Mode and at­
tempting to execute an instruction for Protect­
ed Mode only (see 4.6.4); or exception 13 if 
instruction is longer than 15 bytes, or privilege 
violation in Protected Mode (i.e. not at IOPL or 
at CPL=O). 

7. If WAIT opcode, check if TS=1 and MP=1 
(exception 7 if both are 1). 

8. If ESCAPE opcode for numeric coprocessor, 
check if EM = 1 or TS = 1 (exception 7 if either 
are 1). 

9. If. WAIT opcode or ESCAPE opcode for nu­
meric coprocessor, check ERROR # input sig­
nal (exception 16 if ERROR # input is assert­
ed). 

10. Check in the following order for each memo­
ry reference required by the instruction: 

a. Check for Segmentation Faults that pre­
vent transferring the entire memory quanti­
ty (exceptions 11, 12, 13). 

b. Check for Page Faults that prevent trans­
ferring the entire memory quantity (excep­
tion 14). 

Note that the order stated supports the concept 
of the paging mechanism being "underneath" 
the segmentation mechanism. Therefore, for any 
given code or data reference in memory, seg­
mentation exceptions are generated before pag­
ing exceptions are generated. 
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2.9.7 Instruction Restart 

The 386 DX fully supports restarting all instructions 
after faults. If an exception is detected in the instruc­
tion to be executed (exception categories 4 through 
10 in Table 2-6b), the 386 DX invokes the appropri­
ate exception service routine. The 386 DX is in a 
state that permits restart of the instruction, for all 
cases but those in Table 2-6c. Note that all such 
cases are easily avoided by proper design of the 
operating system. 

Table 2·6c. Conditions Preventing 
Instruction Restart 

A. An instruction causes a task switch to a task 
whose Task State Segment is partially "not 
present". (An entirely "not present" TSS is re­
startable.) Partially present TSS's can be 
avoided either by keeping the TSS's of such 
tasks present in memory, or by aligning TSS 
segments to reside entirely within a single 4K 
page (for TSS segments of 4K bytes or less). 

B. A coprocessor operand wraps around the top 
of a 64K-byte segment or a 4G-byte segment, 
and spans three pages, and the page holding 
the middle portion of the operand is "not pres­
ent." This condition can be avoided by starting 
at a page boundary any segments containing 

, coprocessor operands if the segments are ap­
proximately 64K-200 bytes or larger (Le. large 
enough for wraparound of the coprocessor 
operand to possibly occur). 

Note that these conditions are avoided by using 
the operating system designs mentioned in this 
table. 

2.9.8 Double Fault 

A Double Fault (exception 8) results when the proc­
essor attempts to invoke an exception service rou­
tine for the segment exceptions (10, 11, 12 or 13), 
but in the process of doing so, detects an exception 
other than a Page Fault (exception 14). 

A Double Fault (exception 8) will also be generated 
when the processor attempts to invoke the Page 
Fault (exception 14) service routine, and detects an 
exception other than a second Page Fault. In any 
functional system, the entire Page Fault service rou­
tine must remain "present" in memory. 

Double page faults however do not raise the double 
fault exception. If a second page fault occurs while 
the processor is attempting to enter the service rou­
tine for the first tinie, then the processor will invoke 

the page fault (exception 14) handler a second time, 
rather than the double fault (exception 8) handler. A 
subsequent fault, though, will lead to shutdown. 

When a Double Fault occurs, the 386 DX invokes 
the exception service routine for exception 8. 

2.10 RESET AND INITIALIZATION 

When the processor is initialized or Reset the regis­
ters have the values shown in Table 2-7. The 386 
DX will then start executing' instructions near the top 
of physical memory, at location FFFFFFFOH. When 
the first InterSegment Jump or Call is executed, ad­
dress lines A20-31 will drop low for CS-relative 
memory cycles, and the 386 DX will only execute 
instructions in the lower one megabyte of physical 
memory. This allows the system designer to use a 
ROM at the top of physical memory to initialize the 
system and take care of Resets. 

RESET forces the 386 DX to terminate all execution 
and local bus activity. No instruction execution or 
bus activity will occur as long as Reset is active. 
Between 350 and 450 CLK2 periods after Reset be­
comes inactive the 386 DX will start executing in­
structions at the top of physical meniory. 

Table 2-7. Register Values after Reset 

Flag Word UUUU0002H Note 1 
Machine Status Word (CRO) UUUUUUUOH Note 2 
Instruction Pointer OOOOFFFOH 
Code Segment FOOOH Note 3 
Data Segment OOOOH 
Stack Segment OOOOH 
Extra Segment (ES) OOOOH 
Extra Segment (FS) OOOOH 
Extra Segment (GS) OOOOH 
DX register component and 

stepping ID Note 5 
All other registers undefined Note 4 

NOTES: 
1. EFLAG Register. The upper 14 bits of the EFLAGS reg­
ister are undefined, VM (Bit 17) and RF (BIT) 16 are 0 as 
are all other defined flag bits. 
2. CRO: (Machine Status Word). All of the defined fields in 
the CRO are 0 (PG Bit 31, TS Bit 3, EM Bit 2, MP Bit 1, and 
PE Bit 0). 
3. The Code Segment Register (CS) will have its Base Ad­
dress set to FFFFOOOOH and Limit set to OFFFFH. 
4. All undefined bits are Intel Reserved and should not b.e 
used. 
5. DX register always holds component and stepping iden­
tifier (see 5.7). EAX register holds self-lest signature if self­
test was requested (see 5.6). 
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2.11 TESTABILITY 

2.11.1 Self-Test 

The 386 OX has the capability to perform a self-test. 
The self-test checks the function of all of the Control 
ROM and most of the non-random logic of the part. 
Approximately one-half of the 386 OX can be tested 
during self-test. 

Self-Test is initiated on the 386 OX when the RESET 
pin transitions from HIGH to LOW, and the BUSY# 
pin is low. The self-test takes about 2··19 clocks, or 
approximately 26 milliseconds with a 20 MHz 386 
OX. At the completion of self-test the processor per­
forms reset and begins normal operation. The part 
has successfully passed self-test if the contents of 
the EAX register are zero (0). If the results of EAX 
are not zero then the self-test has detected a flaw in 
the part. 

2.11.2 TLB Testing 

The 386 OX provides a mechanism for testing the 
Translation Lookaside Buffer (TLB) if desired. This 
particular mechanism is unique to the 386 OX and 
may not be continued in the same way in future 
processors: When testing the TLB paging must be 
turned off (PG = 0 in CRO) to enable the TLB test­
ing hardware and avoid interference with the test 
data being written to the TLB. 

There are two TLB testing operations: 1) write en­
tries into the TLB, and, 2) perform TLB lookups. Two 
Test Registers, shown in Figure 2-12, are provided 
for the purpose of testing. TR6 is the "test command 
register", and TR7 is the "test data register". The 
fields within these registers are defined below. 

c: This is the command bit. For a write into TR6 to 
cause an immediate write into the TLB entry, write a 
o to this bit. For a write into TR6 to cause an immedi­
ate TLB lookup, write a 1 to this bit. 

Linear Address: This is the tag field of the TLB. On 
a TLB write, a TLB entry is allocated to this linear 
address and the rest of that TLB entry is set per the 
value of TR7 and the value just written into TR6. On 
a TLB lookup, the TLB is interrogated per this value 
and if one and only one TLB entry matches, the rest 
of the fields of TR6 and TR7 are set from the match­
ing TLB entry. 

Physical Address: This is the data field of the TLB. 
On a write to the TLB, the TLB entry allocated to the 
linear address in TR6 is set to this value. On a TLB 
lookup, the data field (physical address) from the 
TLB is read out to here. 

PL: On a TLB write, PL = 1 causes the REP .field of 
TR7 to select which of four associative blocks of the 
TLB is to be written, but PL = 0 allows the internal 
pointer in the paging unit to select which TLB block 
is written. On a TLB lookup, the PL bit indicates 
whether the lookup was a hit (PL gets set to 1) or a. 
miss (PL gets reset to 0). 

V: The valid bit for this TLB entry. All valid bits can 
also be cleared by writing to CR3. 

D, D#: The dirty bit for/from the TLB entry. 

U, U#: The user bit for/from the TLB entry. 

W, W#: The writable bit for/from the TLB entry. 

For 0, U and W, both the attribute and its comple­
ment are provided as tag bits, to permit the option of 
a "don't care" on TLB lookups. The meaning of 
these pairs of bits is given in the following table: 

X X# 
Effect During Value of Bit 

, TLB Lookup X after TLB Write 

0 0 Miss All Bit X Becomes Undefined 
0 1 Match if X.= 0 Bit X Becomes 0 
1 0 Match if X = 1 Bit X Becomes 1 
1 1 Match all Bit X BeComes Undefined 

For writing a TLB entry: 

1. Write TR7 for the desired physical address, PL 
and REP values. 

2. Write TR6 with the appropriate linear address, 
etc. (be sure to write C = 0 for "write" com­
mand). 

For looking up (reading) a TLB entry: 

1. Write TR6 with the appropriate linear address (be 
sure to write C = 1 for "lookup" command). 

2. Read TR7 and TR6. If the PL bit in TR7 indicates 
a hit, then the other values reveal the TLB con­
ten is. ii PL indical~s a (Tliss, then tlie other values 
in TR7 and TR6 are indeterminate. 

2.12 DEBUGGING SUPPORT 

The 386 OX provides several features which simplify 
the debugging process. The three categories of on­
chip debugging aids are: 

1) the code execution breakpoint opcode (OCCH), 

2) the single-step capability provided by the TF bit in 
the flag register, and 

3) the code and data breakpoint capability provided. 
by the 'Debug Registers DRO-3, DR6, and DR7 .. 
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31 12 11 0 

LINEAR ADDRESS 
V D D U U W W 

0 01 0 0 C 
# # # 

TR6 

PHYSICAL ADDRESS 0 0 0 0 0 0 0 
P 

REP 0 0 
L 

TR7 

NOTE: 0 indicates Intel reserved: Do not define; SEE SECTION 2.3.10 

Figure 2-12. Test Registers 

2.12.1 Breakpoint Instruction 

A single-byte-opcode breakpoint instruction is avail­
able for use by software debuggers. The breakpoint 
opcode is OCCh, and generates an exception 3 trap 
when executed. In typical use, a debugger program 
can "plant" the breakpoint instruction at all desired 
code execution breakpoints. The single-byte break­
point opcode is an alias for the two-byte general 
software interrupt instruction, INT n, where n = 3. 
The only difference between INT 3 (OCCh) and INT n 
is .that INT 3 is never IOPL-sensitive but INT n is 
IOPL-sensitive in Protected Mode and Virtual 8086 
Mode. 

2.12.2 Single-Step Trap 

If the single-step flag (TF, bit 8) in the EFLAG regis­
ter is found to be set at the end of an instruction, a 
single-step exception occurs. The single-step ex­
ception is auto vectored to exception number 1. Pre­
cisely, exception 1 occurs as a trap after the instruc­
tion following the instruction which set TF. In typical 
practice, a debugger sets the TF bit of a flag register 
image on the debugger's stack. It then typically 
transfers control to the user program and loads the 
flag image with a signal instruction, the IRET in'struc­
tion. The single-step trap occurs after executing one 
instruction of the user program. 

Since the exception 1 occurs as a trap (that is, it 
occurs after the instruction has already executed), 
the CS:EIP pushed onto the debugger's stack points 
to the next unexecuted instruction of the program 
being debugged. An exception 1 handler, merely by 
ending with an IRET instruction, can therefore effi­
ciently support single-stepping through a user pro­
gram. 

2.12.3 Debug Registers 

The Debug Registers are an advanced debugging 
feature of the 386 DX. They allow data access 
breakpoints as well as code execution breakpoints. 
Since the breakpoints are indicated by on-chip regis­
ters, an instruction execution breakpoint can be 

placed in ROM code or in code shared by several 
tasks, neither of which can be supported by the,INT3 
breakpoint opcode. 

The 386 DX contains six Debug Registers, providing 
the ability to specify up to four distinct breakpoints 
addresses, breakpoint control options, and read 
breakpoint status. Initially after reset, breakpoints 
are in the disabled state. Therefore, no breakpoints 
will occur unless the debug registers are pro­
grammed. Breakpoints set up in the Debug Regis­
ters are autovectored to exception number 1. 

2.12.3.1 LINEAR ADDRESS BREAKPOINT 
REGISTERS (DRO-DR3) 

Up to four breakpoint addresses can be specified by 
writing into Debug Registers DRO-DR3, shown in 
Figure 2-13. The breakpoint addresses specified are 
32-bit linear addresses. 386 OX hardware continu­
ously compares the linear breakpOint addresses in 
DRO-DR3 with the linear addresses generated by 
executing software (a linear address is the result of 
computing the effective address and adding the 
32-bit segment base address). Note that if paging is 
not enabled the linear address equals the physical 
address. If paging is enabled, the linear address is 
translated to a physical 32-bit address by the on­
chip paging unit. Regardless of whether paging is 
enabled or not, however, the breakpoint registers 
hold linear addresses. 

2.12.3.2 DEBUG CONTROL REGISTER (DR7) 

A Debug Control Register, DR7 shown in Figure 
2-13, allows several debug control functions such as 
enabling the breakpoints and setting up other con­
trol options for the breakpoints. The fields within the 
Debug Control Register, DR7, are as follows: 

LENi (breakpoint length specification bits) 

A 2-bit LEN field exists for each of the four break­
points. LEN specifies the length of the associated 
breakpoint field. The choices for data breakpoints 
are: 1 byte, 2 bytes, and 4 bytes. Instruction execu-
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31 16 15 0 

BREAKPOINT 0 LINEAR ADDRESS DRO 

BREAKPOINT 1 LINEAR ADDRESS DR1 

BREAKPOINT 2 LINEAR ADDRESS DR2 

BREAKPOINT 3 LINEAR ADDRESS DR3 

Intel reserved. Do not define. DR4 

Intel reserved. Do not define. DR5 

0 B B B o 0 o 0 o 0 o 0 o B B B B 
DR6 

T S D 3 2 1 O' 

LEN I R I W I LEN I ~ I w I LEN I R I w I LEN I R I w 0 o G o 0 OG L G L G L G L G L 
DR? 

333222111000 D E E 3 3 2 2 1 1 0 0 

31 16 15 0 

NOTE: DJ indicates I ntel reserved: Do not define; SEE SECTION 2.3.10 

Figure 2-13. Debug Registers 

tion breakpoints must have a length of 1 (LENi = 
00). Encoding of the LENi field is as follows: 

Usage of Least 
LENi Breakpoint Significant Bits in 

Encoding Field Width Breakpoint Address 
Register i, (I = 0 - 3) 

00 1 bYte Ail 32-bits used to 
specify a single-byte 
breakpoint field. 

01 2 bytes A 1-A31 used to 
specify a two-byte, 
word-aligned 
breakpoint field. AO in 
Breakpoint Address 
ConiC!tor iC! nnt IIC!Orl .. -~ .............. .., ................ _. 

10 Undefined-
do not use 

this encoding 

11 4 bytes A2-A31 used to 
specify a four-byte, 
dword-aligned 
breakpoint field. AO 
and A1 in Breakpoint 
Address Register are 
not used. 

The LENi field controls the size of breakpoint field i 
by controlling whether all low-order linear address 
bits in the breakpoint address register are used to 
detect the breakpoint event. Therefore, all break­
point fields are aligned; 2-byte breakpoint .fields be­
gin on Word boundaries, and 4-byte breakpoint 
fields begin .on Dword boundaries. 

The following is an example of various size break­
point fields. Assume the breakpoint linear address in 
DR2 is 00000005H. In that situation, the following 
illustration indicates the region of the breakpoint 
field for lengths of 1, 2, or 4 bytes. 

DR2 = 00000005H; LEN2 = OOB 

1

31 

1 Ib~"d~ '1::::: 
DR2=!!!!!!!!!!!!!!5H; LEN2 = !!1B 
31 

I 
o 

I OOOOOOOBH 

+- bkpt fld2 ---+ 00000004H 

! OOOOOOOOH 
~----~----~----~----~ 

DR2 = 00000005H; LEN2 = 118 
31 

I I I 
0 

I OOOOOOOBH 

+- bkptfld2 ---+ 00000004H 

I OOOOOOOOH 
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RWi (memory access qualifier bits) 

A 2-bit RW field exists for each of the four break­
points. The 2-bit RW field specifies the type of usage 
which must occur in order to activate the associated 
breakpoint. 

RW Usage 
Encoding Causing Breakpoint 

00 Instruction execution only 
01 Data writes only 
10 Undefined-do not use this encoding 
11 Data reads and writes only 

RW encoding 00 is used to set up an instruction 
execution breakpoint. RW encodings 01 or 11 are 
used to set up write-only or read/write data break­
points. 

Note that instruction execution breakpoints are 
taken as faults (Le. before the instruction exe­
cutes), but data breakpoints are taken as traps 
(Le. after the data transfer takes place). 

Using LENi and RWi to Set Data Breakpoint i 

A data breakpoint can be set up by writing the linear 
address into DRi (i = 0-3). For data breakpoints, 
RWi can = 01 (write-only) or 11 (write/read). LEN 
can = 00, 01, or 11. 

If a data access entirely or partly falls within the data 
breakpoint field, the data breakpoint condition has 
occurred, and if the breakpoint is enabled, an excep­
tion 1 trap will occur. 

Using LENi and RWi to Set Instruction Execution 
Breakpoint i 

An instruction execution breakpoint can be set up by 
writing address of the beginning of the instruction 
(including prefixes if any) into DRi (i = 0-3). RWi 
must = 00 and LEN must = 00 for instruction exe­
cution breakpoints. 

If the instruction beginning at the breakpoint address 
is about to be executed, the instruction execution 
breakpoint condition has occurred, and if the break­
point is enabled, an exception 1 fault will occur be­
fore the instruction is executed. 

Note that an instruction execution breakpoint ad­
dress must be equal to the beginning byte address 
of an instruction (including prefixes) in order for the 
instruction execution breakpoint to occur. 

GD (Global Debug Register access detect) 

The Debug Registers can only be accessed in Real 
Mode or at privilege level 0 in Protected Mode: The 

GD bit, when set, provides extra protection against 
any Debug Register access even in Real Mode or at 
privilege level a in Protected Mode. This additional 
protection feature is provided to guarantee that a 
software debugger (or ICETM-386) can have full con­
trol over the Debug Register resources when re­
quired. The GD bit, when set, causes an exception 1 
fault if an instruction attempts to read or write any 
Debug Register. The GD bit is then automatically 
cleared when the exception 1 handler is invoked, 
allowing the exception 1 handler free access to the 
debug registers. 

GE and LE (Exact data breakpoint match, global and 
local) 

If either GE or LE is set, any data breakpoint trap will 
be reported exactly after completion of the instruc­
tion tilat caused the operand transfer. Exact report­
ing is provided by forcing the 386 bx execution unit 
to wait for completion of data operand transfers be­
fore beginning execution of the next instruction. 

If exact data breakpoint match is not selected, data 
breakpoints may not be reported until several in­
structions later or may not be reported at all. When 
enabling a data breakpoint, it is therefore recom­
mended to enable the exact data breakpoint match. 

When the 386 DX performs a task switch, the LE bit 
is cleared. Thus; the LE bit supports fast task switch­
ing out of tasks, that have enabled the exact data 
breakpoint match for their task-local breakpoints. 
The LE bit is cleared by the processor during a task 
switch, to avoid having exact data breakpoint match 
enabled in the new task. Note that exact data break­
point match must be re-enabled under software con­
trol. 

The 386 DX GE bit is unaffected during a task 
switch. The GE bit supports exact data breakpoint 
match that is to remain enabled during all tasks exe­
cuting in the system. 

Note that instruction execution breakpoints are al­
ways reported exactly, whether or not exact data 
breakpoint match is selected. 

Gi and Li (breakpoint enable, global and local) 

If either Gi or Li is set then the associated breakpoint 
(as defined by the linear address in DRi, the length 
in LENi and the usage criteria in RWi) is enabled. If 
either Gi or Li is set, and the 386 DX detects the ith 
breakpoint condition, then the exception 1 handler is 
invoked. 

When the 386 DX performs a task switch to a new 
Task State Segment (TSS), all Li bits are cleared. 
Thus, the Li bits support fast task switching out of 
tasks that use some task-local breakpoint 
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registers. The Li bits are cleared by the processor 
during a task switch, to avoid spurious exceptions in 
the new task. Note that the breakpoints must be re­
enabled under software control. 

All 386 OX Gi bits are' unaffected during a task 
switch. The Gi bits support breakpoints that are ac­
tive in all tasks executing in the system. 

2.12.3.3 DEBUG STATUS REGISTER (DR6) 

A Debug Status Register, DR6 shown in Figure 2-13, 
allows the exception. 1 handler to easily determine 
why it was invoked. Note the exception 1 handler 
can be invoked as a result of one of several events: 

1) ORO Breakpoint fault/trap. 

2) DR1 Breakpoint fault/trap. 

3) OR2 Breakpoint fault/trap. 

4) OR3 Breakpoint fault/trap. 

5) Single-step (TF) trap. 

6) Task switch trap. 

7) Fault due to attempted debug register access 
when GD=1. 

The Debug Status Register contains single-bit flags 
for each of the possible events invoking exception 1. 
Note below that some of these events are faults (ex­
ception taken before the instruction is executed), 
while other events are traps (exception taken after 
the debug events occurred). 

The flags in DR6 are set by the hardware but never 
cleared by hardware. Exception 1 handler software 
should clear DR6 before returning to the user pro­
cram to avoid future confusion in identifvinc the 
source of exception 1. - -

The fields within the Debug Status Register, DR6, 
are as follows: 

Bi (debug fault/trap due to breakpoint 0-3) 

Four breakpoint indicator flags, BO-B3, correspond 
one-to-one with the breakpoint registers in DRO­
OR3. A flag Bi is set when the condition described 
by ORi, LENi, and RWi occurs. 

If Gi or Li is set, and if the ith breakpoint is detected, 
the processor will invoke the exception 1 handler. 
The exception is handled as a fault if an instruction 
execution breakpoint occurred, or as a trap if a data 
breakpoint occurred. 

IMPORTANT NOTE: A flag Bi is set whenever the 
hardware detects a match condition on enabled 
breakpoint i. Whenever a match is detected on at 
least one enabled breakpoint i, the hardware imme-

diately sets all Bi bits corresponding to breakpoint 
conditions matching at that instant, whether enabled 
or not. Therefore, the exception 1 handler may see 
that multiple Bi bits are set, but only set Bi bits corre­
sponding to enabled breakpoints (Li or Gi set) are 
true indications of why the exception 1 handler was 
invoked. 

BD (debug fault due to attempted register access 
when GO bit set) . 

This bit is set if the exception 1 handler was invoked 
due to an instruction attempting to read or write to 
the debug registers when GO bit was set. If such an 
event occurs, then the GO bit is automatically 
cleared when the exception 1 handler is invoked, 
allowing handler access to the debug registers. 

BS (debug trap due to single-step) 

This bit is set if the exception 1 handler was invoked 
due to the TF bit in the flag register being set (for 
single-stepping). See section 2.12.2. 

BT (debug trap due to task switch) 

This bit is set if the exception 1 handler was invoked 
due to a task switch occurring to a task having a.386 
OX TSS with the T bit set. (See Figure 4-15a). Note 
the task switch into the new task occurs normally, 
but before the first instruction of the task is execut­
ed, the exception 1 handler is invoked. With respect 
to the task switch operation, the operation is consid­
ered to be a trap. 

2.12.3.4 USE OFRESU·ME FLAG (RF) IN FLAG 
REGISTER ' 

The Resume Flag (RF) in the flag word' can sup­
press an instruction execution breakpoint when the 
exception 1 handler returns to a user program at a 
user address which is also an instruction execution 
breakpoint. See section 2.3.3 .. 

3. REAL MODE ARCHITECTURE 

3.1 REAL MODE INTRODUCTION 

When the processor is reset or powered up it is ini­
tialized in Real Mode. Real Mode has the same base 
architecture as the 8086, but allows access to the 
32-bit register set of the 386 OX. The addressing 
mechanism, memory size, interrupt handling, are all 
identical to the Real Mode on the 80286. 
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19 o 
MAX LIMIT 
fiXED AT 64K IN 
REAL MODE 

r 
64K 

L-____ ~ ____ ~~ ________ +_--l~ 
SELECTED 
SEGMENT 

SEGMENT BASE 

231630-54 

Figure 3-1. Real Address Mode Addressing 

All of the 386 DX instructions are available in Real 
Mode (except those instructions listed in 4.6.4). The 
default operand size in Real Mode is 16-bits, just like 
the 8086. In order to use the 32-bit registers and 
addressing modes, override prefixes must be used. 
In addition, the segment size on the 386 DX in Real 
Mode is 64K bytes so 32-bit effective addresses 
must have a value less the OOOOFFFFH. The primary 
purpose of Real Mode is to set up the processor for 
Protected Mode Operation. 

The LOCK prefix on the 386 DX, even in Real Mode, 
is more restrictive than on the 80286. This is due to 
the addition of paging on the 386 DX in Protected 
Mode and Virtual 8086 Mode. Paging makes it im­
possible to guarantee that repeated string instruc­
tions can be LOCKed. The 386 DX can't require that 
all pages holding the string be physically present in 
memory. Hence, a Page Fault (exception 14) might 
have to be taken during the repeated string instruc­
tion. Therefore the LOCK prefix can't be supported 
during repeated string instructions. 

These are the only instruction forms where the 
LOCK prefix is legal on the 386 DX: 

Opcode Operands 
(Cest, Source) 

BIT Test and 
Mem, Reg/immed SET/RESET/COMPLEMENT 

XCHG Reg, Mem 
XCHG Mem, Reg 
ADD, OR, ADC, SBB, Mem, Reg/immed 

AND, SUB, XOR 
NOT, NEG, INC, DEC Mem 

An exception 6 will be generated if a LOCK prefix is 
placed before any instruction form or opcode not 
listed above. The LOCK prefix allows indivisible 

read/modify/write operations on memory operands 
using the instructions above. For example, even the 
ADD Reg, Mem is not LOCKable, because the Mem 
operand is not the destination (and therefore no 
memory read/modify/operation is being performed). 

Since, on the 386 DX, repeated string instructions 
are not LOCKable, it is not possible to LOCK the bus 
for a long period of time. Therefore, the LOCK prefix 
is not IOPL-sensitive on the 386 DX. The LOCK pre­
fix can be used at any privilege level, but only on the 
instruction forms listed above. 

3.2 MEMORY ADDRESSING 

In Real Mode the maximum memory size is limited to 
1 megabyte. Thus, only address lines A2-A 19 are 
active. (Exception, the high address lines A20-A31 
are high during CS-relative memory cycles until an 
intersegment jump or call is executed (see section 
2.10». 

Since paging is not allowed in Real Mode the linear 
addresses are the same as physical addresses. 
Physical addresses are formed in Real Mode by 
adding the contents of the appropriate segment reg­
ister which is shifted left by four bits to an effective 
address. This addition results in a physical address 
from OOOOOOOOH to 0010FFEFH. This is compatible 
with 80286 Real Mode. Since segment registers are 
shifted left by 4 bits this implies that Real Mode seg­
ments always start on 16 byte boundaries. 

All segments in' Real Mode are exactly 64K bytes 
long, and may be read, written, or executed. The 386 
DX will generate an exception 13 if a data operand 
or instruction fetch occurs past the end of a seg­
ment. (Le. if an operand has an offset greater than 
FFFFH, for example a word with a low byte at 
FFFFH and the high byte at OOOOH.) 
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Segments may be overlapped in Real Mode. Thus, if 
a particular segment does not use all 64K bytes an­
other segment can be overlayed on top of the un­
used portion of the previous segment. This allows 
the programmer to minimize the amount of physical 
memory needed for a program. 

3.3 RESERVED LOCATIONS 

There are two fixed areas in memory which are re­
served in Real address mode: system initialization 
area and the interrupt table area. Locations OOOOOH 
through 003FFH are reserved for interrupt vectors. 
Each one of the 256 possible interrupts has a 4-byte 
jump vector reserved for it. Locations FFFFFFFOH 
through FFFFFFFFH are reserved for system initiali­
zation. 

3.4 INTERRUPTS 

Many of the exceptions shown in Table 2-5 and dis­
cussed in section 2.9 are not applicable to Real 
Mode operation, in particular exceptions 10, 11, 14, 
will not happen in Real Mode. Other exceptions 
have slightly different meanings in Real Mode; Table 
3-1 identifies these exceptions. 

3.5 SHUTDOWN AND HALT 

The HL T instruction stops program execution and 
prevents the processor from using the local bus until 
restarted. Either NMI, INTR with interrupts enabled 
(IF = 1), or RESET will force the 386 DX out of halt. If 
interrupted, the saved CS:IP will point to the. next 
instruction after the HL T. 

Shutdown will occur when a severe error is detected 
that prevents further processing. In Real Mode, 
shutdown can occur under two conditions: 

An interrupt or an exception occur (Exceptions 8 
Of 13; and the interrupt vector is larger than the 

Interrupt Descriptor Table (i.e. There is not an in­
terrupt handler for the interrupt). 

A CALL, INT or PUSH instruction attempts to wrap 
around the stack segment when SP is not even. 
(e.g. pushing a value on the stack when SP = 

0001 resulting in a stack segment greater than 
FFFFH) 

An NMI input can bring the processor out of shut­
down if ·the Interrupt Descriptor Table limit is large 
enough to contain the NMI interrupt vector (at least 
0017H) and the stack has enough room to contain 
the vector and flag information (i.e. SP is greater 
than 0005H). Otherwise shutdown can only be exit­
ed via the RESET input. 

4. PROTECTED MODE 
ARCHITECTURE 

4.1 INTRODUCTION 

The complete capabilities of the 386 DX are un­
locked when the processor operates in Protected 
Virtual Address Mode (Protected Mode). Protected 
Mode vastly increases the linear address space to 
four gigabytes (232 bytes) and allows the running of 
virtual memory programs of almost unlimited size 
(64 terabytes or 246 bytes). In addition Protected 
Mode allows the 386 DX to run all of the existing 
8086 and 80286 software, while providing a sophisti~ 
cated memory management and a hardware-assist­
ed protection mechanism. Protected Mode allows 
the use of additional instructions especially opti­
mized for supporting multitasking operating systems. 
The base architecture of the 386 OX remains the 
same, the registers, instructions, and addressing 
modes described in the previous sections arere­
tained. The main difference between Protected 
Mode, and Real Mode from a programmer's view is 
the increased address space, and a different ad­
dressing mechanism. 

Table 3·1 

Interrupt Related . Return 
Function 

Number 
, 

Instructions Address Location 

Interrupt table limit too small 8 INT Vector is not Before 
within table limit Instruction 

es, DS, ES, FS, GS 13 Word memory reference Before 
Segment ov.errun exception beyond offset = FFFFH. Instruction 

An attempt to execute 
past the end of es segment. 

SS Segment overrun exception 12 Stack Reference Before 
beyond offset = FFFFH Instruction 
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4.2 ADDRESSING MECHANISM 

Like Real Mode, Protected Mode uses two compo­
nents to form the logical address, a 16-bit selector is 
used to determine the linear base address of a seg­
ment, the base address is added to a 32-bit effective 
address to form a 32-bit linear address. The linear 
address is then either used as the 32-bit physical 
address, or if paging is enabled the paging mecha­
nism maps the 32-bit linear address into a 32-bit 
physical address. 

The difference between the two modes lies in calcu­
lating the base address. In Protected Mode the se­
lector is used to specify an index into an operating 

48/32 BIT POINTER 

system defined table (see Figure 4-1). The table 
contains the 32-bit base address of a given seg­
ment. The physical address is formed by adding the 
base address obtained from the table to the offset. 

Paging provides an additional memory management 
mechanism which operates only in Protected Mode. 
Paging provides a means of managing the very large 
segments of the 386 DX. As such, paging operates 
beneath segmentation. The paging mechanism 
translates the protected linear address which comes 
from the segmentation unit into a physical address. 
Figure 4-2 shows the complete 386 DX addressing 
mechanism with paging enabled. 

SEGMENT LIMIT 

ACCESS RIGHTS 

LIMIT 

0---+ MEMORY OPERAND i 
UP TO 
4GB 

SELECTED 
SEGMENT 

BASE ADDRESS 

SEGMENT 
DESCRIPTOR 

SEGMENT BASE 
ADDRESS 

1 

Figure 4-1. Protected Mode Addressing 

48 BIT POINTER ,. 
"' PHYSICAL ADDRESS 

I SEGMENT I OFFSET 

15 31 I 0 

386Tt.! DX CPU 

ACCESS RIGHTS PAGING 
MECHANISM PHYSICAL 

LIMIT ~ ,. ADDRESS • ~ LINEAR'" 

MEMORY OPERAND 
BASE ADDRESS PAGE FRAME 

SEGMENT ADDRESS ADDRESS 
DESCRIPTOR 

-

Figure 4-2. Paging and Segmentation 
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4.3 SEGMENTATION 

4.3.1 Segmentation Introduction 

Segmentation is one method of memory manage­
~ent. Segmentation provides the basis for protec­
tion. Segments are used to encapsulate regions of 
memory which have common attributes. For exam­
ple, all of the code of a given program could be con­
tained in a segment, or an operating system table 
may reside in a segment. All information about a 
segment is stored in an 8 byte data structure called 
a descriptor. All of the descriptors in a system are 
contained in tables recognized by hardware. 

4.3.2 Terminology 

The following terms are used throughout the discus­
sion of descriptors, privilege levels and protection: 

PL: Privilege Level-One of the four hierarchical 
privilege levels. Level 0 is the most privileged level 
and level 3 is the least privileged. More privileged 
levels are numerically smaller than less privileged 
levels. 

RPL: Requestor Privilege Level-The privilege level 
of the original supplier of the selector. RPL is deter­
mined by the least two significant bits of a selector. 

DPL: Descriptor Privilege Level-This is the least 
privileged level at which a task may access that de­
scriptor (and the segment associated with that de­
scriptor). Descriptor Privilege Level is determined by 

. bits 6:5 in the Access Right Byte of a descriptor. 

CPL: Current Privilege Level-The privilege level at 
which a task is currently executing, which equals the 
privilege level of the code segment being executed. 
CPL can also be determined by examining the low­
est 2 bits of the CS register, except for conforming 
code segments. 

EPL: Effective Privilege Level-The effective privi­
lege level is the least privileged of the RPL and DPL. 
Since smaller privilege level values indicate greater 
privilege, EPL is the numerical maximum of RPL and 
DPL. 

Task: One instance of the execution of a program. 
Tasks are also referred to as processes. 

4.3.3 Descriptor Tables 

4.3.3.1 DESCRIPTOR TABLES INTRODUCTION 

The descriptor tables define all of the segments 
which are used in an 386 DX system. There are 
three types of tables on the 386 DX which hold de­
scriptors: the Global Descriptor Table, Local De­
scriptor Table, and the Interrupt Descriptor Table. All 
of the tables are variable length memory arrays. 
They can range in size between 8 bytes and 64K 
bytes. Each table can hold up to 8192 8 byte de­
scriptors. The upper 13 bits of a selector are used as 
an index into the descriptor. table. The tables have 
registers associated with them which hold the 32-bit 
linear base address, and the 16-bit limit of each ta­
ble. 

Each of the tables has a register associated with it 
the GDTR, LDTR, and the IDTR (see Figure 4-3). 
The LGDT, LLDT, and LlDT instructions, load the 
base and limit of the Global, Local, and Interrupt De­
scriptor Tables, respectively, into the appropriate 
register. The SGDT, SLDT, and SIDT instructions 
store the base and limit values. These tables are 
manipulated by the operating system. Therefore, the 
load descriptor table instructions are privileged in­
structions. 

4.3.3.2 GLOBAL DESCRIPTOR TABLE 

The Global Descriptor Table (GDT) contains de­
scriptors which are possibly available to all of the 
tasks in a system. The GDT can contain any type of 
segment descriptor except for descriptors which are 
used for servicing interrupts (Le. interrupt and trap 
deSCiiptoiS). Every 336 DX system contains

j 
a 

LDTR 

IDTR 

GOTR 

o 

.--------------. ;.::.. __ .....:;0.: 
I 

LOT LIMIT I 
I 
I 
I 
I 
I 
I 
I 

PROGRAM INVISIBLE I 

AUTOMATICALLY LOADED I 
FROM LOT DESCRIPTOR : ._------------_. 

231630-57 

Figure 4-3. Descriptor Table Registers 
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GOT. Generally the GOT contains code and data 
segments used by the operating systems and task 
state segments, and descriptors for the LOTs in a 
system. 

The first slot of the Global Oescriptor Table corre­
sponds to the null selector and is not used. The null 
selector defines a null pointer value. 

4.3.3.3 LOCAL DESCRIPTOR TABLE 

LOTs contain descriptors which are associated with 
a given task. Generally, operating systems are de­
signed so that each task has a separate LOT. The 
LOT may contain only code, data, stack, task gate, 
and call gate descriptors. LOTs provide a mecha­
nism for isolating a given task's code and data seg­
ments from the rest of the operating system, while 
the GOT contains descriptors for segments which 
are common to all tasks. A segment cannot be ac­
cessed by a task if its segment descriptor does not 
exist in either the current LOT or the GOT. This pro­
vides both isolation and protection for a task's seg­
ments, while still allowing global data to be shared 
among tasks. 

Unlike the 6 byte GOT or lOT registers which contain 
a base address and limit, the visible portion of the 
LOT register contains only a 16-bit selector. This se­
lector refers to a Local Descriptor Table descriptor in 
the GOT. . 

4.3.3.4 INTERRUPT DESCRIPTOR TABLE 

The third table needed for 386 OX systems is the 
Interrupt Descriptor Table. (See Figure 4-4.) The lOT 
contains the descriptors which point to the location 
of up to 256 interrupt service routines. The lOT 

31 

may contain only task gates, interrupt gates, and 
trap gates. The lOT should be at least 256 bytes in 
size in order to hold the descriptors for the 32 Intel 
Reserved Interrupts. Every interrupt used by a sys­
tem must have an entry in the lOT. The lOT entries 
are referenced via INT instructions, external inter­
rupt vectors, and exceptions. (See 2.9 Interrupts). 

'" MEMORY ~ 

GATE FOR 
INTERRUPT .. n 

GATE FOR 
INTERRUPT #rH 

GATE FOR 

INTERRUPT 
DESCRIPTOR 
TABLE 
(lOTI 

INTERRUPT .. 1 !il III 

INTERRUPT .. 0 iii Ii! -GATE FOR 1 !1i rr ~ 
~ ____ ~+-~--------iJ ~il 

'" 231630-58 

Figure 4-4. Interrupt Descriptor 
Table Register Use 

4.3.4 Descriptors 

4.3.4.1 DESCRIPTOR ATTRIBUTE BITS 

The object to which the segment selector points to 
is called a descriptor. Descriptors are eight byte 
quantities which contain attributes about a given re­
gion of linear address space (i.e. a segment). These 
attributes include the 32-bit base linear address of 
the segment, the 20-bit length and granularity of the 
segment, the protection level, read, write or execute 
privileges, the default size of the operands (16-bit or 

0 BYTE 
ADDRESS 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 
0 

BASE 31 ... 24 G D 0 AVL 
LIMIT 

P DPL 
I S I 

TYPE IAI BASE +4 
19 ... 16 

I I I 
23 ... 16 

BASE Base Address of the segment 
LIMIT The length of the segment 
P Present Bit I = Present 0= Not Present 
DPL Descriptor Privilege Level 0-3 
S Segment Descriptor 0= System Descriptor I = Code or Dala Segment Descriptor 
TYPE Type of Segment 
A Accessed Bit 
G Granularity Bit I = Segmenl length is page granular 0= Segment length is byte granular 
0 Default Operation Size (recognized in code segment descriptors only) I = 32·bit segment 0= 16·bit segment 
0 Bit must be zero (0) for compatibility with future processors 
AVL Available field for user or OS 

NOTE: 
In a maximum-size segment (ie. a segment with G= 1 and segment limit 19 ... 0= FFFFFH), the lowest 12 bits of the 
segment base should be zero (ie. segment base 11 ... 000 = OOOH). 

Figure 4-5. Segment Descriptors 
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32-bit), and the type of segment. All of the attribute 
information about a segment is contained in 12 bits 
in the segment descriptor. Figure 4-5 shows the gen­
eral format of a descriptor. All segments on the 386 
DX have three attribute fields in common: the P bit, 
the DPL. bit, and the S bit. The Present P bit is 1 if 
the segment is loaded in physical memory, if P = 0 
then any attemptto access this segment causes a 
not present exception (exception 11). The Descrip­
tor Privilege Level DPL is a two-bit field which speci­
fies the protection level 0-3 associated with a seg­
ment. 

code and data). The segment S bit in the segment 
descriptor determines if a given segment is a system 
segment or a code or data segment. If the S bit is 1 
then the segment is either a code or data segment, if 
it is 0 then the segment is a system segment. 

4.3.4.23S6T1A DX CODE, DATA DESCRIPTORS 
(S= 1) . . 

Figure 4-6 shows the general format of a code and 
data descriptor and Table 4-1 illustrates how the bits 
in the Access Rights Byte are interpreted. 

The 386 DX has two main categories of segments 
.system segments and non-system segments (for 

31 0 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 0 

ACCESS BASE 
LIMIT 

BASE 31 ... 24 G DIB 0 AVL RIGHTS +4 
19 ... 16 23 ... 16 

BYTE 
DIB 1 = Default Instructions Attributes are 32-Bits G Granularity Bit . 1 = Segment length is page granular 

0= Default Instruction Attributes are ·16-Bits 0= Segment length is byte granular 
AVL Available field for user or OS 0 Bit must be zero (0) for compatibility wHh future processors 

NOTE: 
In a maximum-size segment (ie. a segment with G = 1 and segment limit 19 ... 0 = FFFFFH), the lowest 12 bits of the 
segment base should be zero (ie:. segnient base 11 ... 000 = OOOH). 

Type 
Field 
Definition 

Figure 4-6. Segment Descriptors 

Table 4-1. Access Rights Byte Definition for Code and Data Descriptions 

Bit 
Name Function 

Position 

7 Present (P) P = 1 Segment is mapped into physical memory_ 
p=o No mapping to physical memory exits, base and limit are 

not used. 
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests. 

Le\(el (DPL) 
4 Segment Descrip- S=1 Code or Data (includes stacks) segment descriptor 

tor (S) S=O System Segment Descriptor or Gate Descriptor 

3 Executable (E) E ~ 0 De"ript'" type ;, data oegmem, r 
2 Expansion Direc- ED = 0 Expand up segment, offsets must be ::;; limit. Data 

tion (ED) ED =. 1 Expand down segment. offsets must be > limit. Segment 
1 Writeable (W) W = 0 Data segment may not be written into. . (S = 1.· 

W = 1 Data segment may be written into.· . E = 0) 

3 Executable (E) E = 1 Descriptor type is code segment: 

r 2 Conforming (C) C=1 Code segr.nent may only be executed Code 
when CPL :<: DPL and CPL Segment 
remains unchanged. (S = 1, 

1 Readable (R) R=O Code segment may not be read. E = 1) 
R=1 Code segment may be read: 

0 Accessed (A) A=O Segment has not been accessed. 
A=1 Segment selector has been loaded into segment register 

or used by selector test instructions. 
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Code and data segments have several descriptor 
fields in common. The accessed A bit is set whenev­
er the processor accesses a descriptor. The A bit is 
used by operating systems to keep usage statistics 
on a given segment. The G bit, or granularity bit, 
specifies if a segment length is byte-granular or 
page-granular. 386 DX segments can be one mega­
byte long with byte granularity (G = 0) or four giga­
bytes with page granularity (G = 1), (Le., 220 pages 
each page is 4K bytes in length). The granularity is 
totally unrelated to paging. A 386 DX system can 
consist of segments with byte granularity, and page 
granularity, whether or not paging is enabled. 

The executable E bit tells if a segment is a code or 
data segment. A code segment (E = 1, S = 1) may be 
execute-only or execute/read as determined by the 
Read R bit. Code segments are execute only if 
R = 0, and execute/read if R = 1. Code segments 
may never be written into. 

NOTE: 
. Code segments may be modified via aliases. Alias­
es are writeable data segments which occupy the 
same range of linear address space as the code 
segment. 

The 0 bit indicates the default length for operands 
and effective addresses. If D= 1 then 32-bit oper­
ands and 32-bit addressing modes are assumed. If 
D = 0 then 16-bit operands and 16-bit addressing 
modes are assumed. Therefore all existing 80286 
code segments will execute on the 386 DX assum­
ing the D bit is set O. 

Another attribute of code segments is determined by 
the conforming C bit. Conforming segments, C= 1, 
can be executed and shared by programs at differ­
ent privilege levels. (See section 4.4 Protection.) 

31 16 

SEGMENT BASE 15 ... 0 

BASE 31 ... 24 
LIMIT 

19 ... 16 
Type 

o 
1 
2 
3 
4 
5 
6 
7 

NOTE: 

Defines 
Invalid 
Available 80286 TSS 
LOT 
Busy 80286 TSS 
80286 Cali Gate 
Task Gate (for 80286 or 386™ OX Task) 
80286 Interrupt Gate 
80286 Trap Gate 

Segments identified as data segments (E = 0, S = 1) 
are used for two types of 386 DX segments: stack 
and data segments. The expansion direction (ED) bit 
specifies if a segment expands downward (stack) or 
upward (data). If a segment is a stack segment all 
offsets must be greater than the segment limit. On a 
data segment all offsets must be less than or equal 
to the limit. In other words, stack segments start at 
the base linear address plus the maximum segment 
limit and grow down to the base linear address plus 
the limit. On the other hand, data segments start at 
the base linear address and expand to the base lin­
ear address plus limit. 

The write W bit controls the ability to write into a 
segment. Data segments are read-only if W = o. The 
stack segment must have W = 1. 

The B bit controls the size of the stack pointer regis­
ter. If B = 1, then PUSHes, POPs, and CALLs all use 
the 32-bit ESP register·for stack references and as­
sume an upper limit of FFFFFFFFH. If B=O, stack 
instructions all use the 16-bit SP register and as­
sume an upper limit of FFFFH. 

4.3.4.3 SYSTEM DESCRIPTOR FORMATS 

System segments describe information about oper­
ating system tables, tasks, and gates. Figure 4-7 
shows the general format of system segment de­
scriptors, and the various types of system segments. 
386 DX system descriptors contain a 32-bit base lin­
ear address and a 20-bit segment limit. 80286 sys­
tem descriptors have a 24-bit base address and a 
16-bit segment limit. 80286 system descriptors are 
identified by the upper 16 bits being all zero. 

o 
SEGMENT LIMIT 15 ... 0 o 

P 

Type 

8 
9 
A 
B 
C 
o 
E 
F 

Defines 
Invalid 

TYPE 

Available 386TM ox TSS 
Undefined (Intel Reserved) 
Busy 386™ OX TSS 
386™ OX Call Gate 
Undefined (Intel Reserved) 
386TM OX Interrupt Gate 
386TM OX Trap Gate 

BASE 
23 ... 16 

+4 

In a maximum-size segment (ie. a segment with G = 1 and segment limit 19 ... 0 = FFFFFH), the lowest 12 bits of th~ 
segment base should be zero (ie. segment base 11 ... 000 = OOOH). 

Figure 4-7. System Segments Descriptors 
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4.3.4.4 LDT DESCRIPTORS (S = 0, TYPE = 2) 

LOT descriptors (S = 0 TYPE = 2) contain informa­
tion about Local Descriptor Tables. LOTs contain a 
table of segment descriptors, unique to a particular 
task. Since the instruction to load the LOTR is only 
available at privilege level 0, the OPL field is ignored. 
LOT descriptors are only allowed in the Global De­
scriptor Table (GOT). 

4.3.4.5 TSS DESCRIPTORS (S=O, 
TYPE = 1,3,9,8) 

A Task State Segment (TSS) descriptor contains in­
formation about the locatiqn, size, and privilege level 
of a Task State Segment (TSS). A TSS in turn is a 
special fixed format segment which contains all the 
state information for a task and a linkage field to 
permit nesting tasks. The TYPE field is used to indi­
cate whether the task is currently BUSY (Le. on a 
chain of active tasks) or the TSS is available. The 
TYPE field also indicates if the segment contains a 
80286 or a 386 DX TSS. The Task Register (TR) 
contains the selector which pOints to the current 
Task State Segment. 

4.3.4.6 GATE DESCRIPTORS (S=O, 
. TYPE=4-7, C, F) 

Gates are used to control access to entry points 
within the target code segment. The various types of 

31 24 16 

gate descriptors are call gates, task gates, 
interrupt gates, and trap gates. Gates provide a 
level of indirection between the source and destina­
tion of the control transfer. This indirection allows 
the processor to automatically perform protection 
checks. It also allows system designers to control 
entry points to the operating system. Call gates are 
used to change privilege levels (see section 4.4 
Protection), task gates are used to perform a ta.sk 
switch, and interrupt and trap gates are used to 
specify interrupt service routines. 

Figure 4-8 shows the format of the four types of gate 
descriptors. Call gates are primarily used to transfer 
program control to a more privileged level. The call 
gate descriptor consists of three fields: the access 
byte, a long pointer (selector and offset) which 
points to the start of a routine and a word count 
which specifies how many parameters are to be cop­
ied from the caller's stack to the stack of the called 
routine. The word count field is. only used' by call 
gates when there is a change in the privilege level, 
other types of gates ignore the word count field. 

Interrupt and trap gates use the destination selector 
and destination offset fields of the gate descriptor as 
a pointer to the start of the interrupt or trap handler 
routines. The difference between interrupt gates alld 
trap gates is that the interrupt gate disables inter­
rupts (resets the IF bit) while the trap gate does not. 

8 5 0 
I SELECTOR I OFFSET 15 ... 0 

I II I I I I WORD 1° I 
1 OFFSET 31 ... 16 

Name 
Type 

P 

Value 
4 
5 
6 
7 
C 
E 
F 
o 
1 

1 P 1 D~L 101 
Gale DeSCriptor Fields 

Description 
80286 call gate 
Task gate (for 80286 or 386TM DX task) 
80286 Interrupt gate 
80286 trap gate 
386TM DX call gate 
386TM DX interrupt gate 
386TM DX trap gate 
Descriptor contents are not valid 
Descriptor contents are valid 

TYPE 1 0 1 0 1 0 1 ~~~~; 1+4 

DPL-Ieast privileged level at which a task may access the gate. WORD COUNT 0-3l-the number of parameters to copy from caller's stack 
to the called procedure's stack. The parameters are 32·bit quantities for 386TM DX gates, and l6-bit quantities for 80286 gates. 

DESTINATION l6-bit Selector to the target code segment 
SELECTOR selector or 

DESTiNATiON 
OFFSET 

offset 
l6-bit 80286 
32-bit 386TM DX 

Selector to the target task state segment for task gate 

Entry point within the target code segment 

Figure 4-8. Gate Descriptor Formats 
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Task gates are used to switch tasks. Task gates 
may only refer to a task state segment (see section 
4.4.6 Task Switching) therefore only the destination 
selector portion of a task gate descriptor is used, 
and the destination offset is ignored. 

Exception 13 is generated when a destination selec­
tor does not refer to a correct descriptor type, i.e., a 
code segment for an interrupt, trap or call gate, a 
TSS for a task gate. 

The access byte format is the same for all gate de­
scriptors. P = 1 indicates that the gate contents are 
valid. P = 0 indicates the contents are not valid and 
causes exception 11 if referenced. DPL is the de­
scriptor privilege level and specifies when this de­
scriptor may be used by a task (see section 4.4 
Protection). The S field, bit 4 of the access rights 
byte, must be 0 to indicate a system control descrip­
tor. The type field specifies the descriptor type as 
indicated in Figure 4-8. 

4.3.4.7 DIFFERENCES BETWEEN 386TM OX AND 
80286 DESCRIPTORS 

In order to provide operating system compatibility 
between the 80286 and 386 DX, the 386 DX sup­
ports all of the 80286 segment descriptors. Figure 
4-9 shows the general format of an 80286 system 
segment descriptor. The only differences between 
80286 and 386 DX descriptor formats are that the 
values of the type fields, and the limit and base ad­
dress fields have been expanded for the 386 DX. 
The 80286 system segment descriptors contained a 
24-bit base address and 16-bit limit, while the 386 
DX system segment descriptors have a 32-bit base 
address, a 20-bit limit field, and a granularity bit. 

By supporting 80286 system segments the 386 DX 
is able to execute 80286 application programs on a 
386 DX operating system. This is possible because 
the processor automatically understands which de­
scriptors are 80286-style descriptors and which de-

31 

scriptors are 386 DX-style descriptors. In particular, 
if the upper word of a descriptor is zero, then that 
descriptor is a 80286-style descriptor. 

The only other differences between 80286-style de­
scriptors and 386 DX descriptors is the interpretation 
of the word count field of call gates and the B bit. 
The word count field specifies the number of 16-bit 
quantities to copy for 80286 call gates and 32-bit 
quantities for 386 DX call gates. The B bit controls 
the size of PUSHes when using a call gate; if B = 0 
PUSHes are 16 bits, if B = 1 PUSHes are 32 bits. 

4.3.4.8 SELECTOR FIELDS 

A selector in Protected Mode has three fields: Local 
or Global Descriptor Table Indicator (TI), Descriptor 
Entry Index (Index), and Requestor (the selector's) 
Pi"ivilege Level (RPL) as shown in Figure 4-10. The 
TI bits select one of. two memory-based tables of 
descriptors (the Global Descriptor Table or the Local 
Descriptor Table). The Index selects one of 8K de­
scriptors in the appropriate descriptor table. The 
RPL bits allow high speed testing of the selector's 
privilege attributes. 

4.3.4.9 SEGMENT DESCRIPTOR CACHE 

In addition to the selector value, every segment reg­
ister has a segment descriptor cache register asso­
ciated with it. Whenever a segment register's con­
tents are changed, the 8-byte descriptor associated 
with that selector is automatically loaded (cached) 
on the chip. Once loaded, all references to that seg­
ment use the cached descriptor information instead 
of reaccessing the descriptor. The contents of the 
descriptor cache are not visible to the programmer. 
Since descriptor caches only change when a seg­
ment register is changed, programs which modify 
the descriptor tables must reload the appropriate 
segment registers after changing' a descriptor's 
value .. 

0 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 0 

Intel Reserved 
P I DPL lsi TYPE I BASE +4 

Set to 0 23 ... 16 
BASE Base Address of the segment DPL Descriptor Privilege Level 0-3 
LIMIT The length of the segment S System Descriptor 0= System 1 = User 
P Present Bit 1 = Present 0= Not Present TYPE Type of Segment 

Figure 4-9. 80286 Code and Data Segment Descriptors 
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SELECTOR 

15 4 3 2 1 0 

1.0Jo ---- oj oJ1111~IlR~L 1 . 
INDEX 

N 

6 

5 

4 

e-.l 
2 

1 

0 

. 
TABLE 
INDICATOR 

TI=l 

• 

QEsCRIi"Tcirr 

LOCAL 
DESCRIPTOR 

TABLE 

N 

DESCRIPTOR 
NUMBER 

6 

5 

4 

3 

2 

1 

0 

TI-O! 

NULL 

GLOBAL 
DESCRIPTOR 

TABLE 

Figure 4-10. Example Descriptor Selection 

4-208 

231630-59 



inter 386TM ox MICROPROCESSOR 

4.3.4.10 SEGMENT DESCRIPTOR REGISTER 
SETTINGS 

The contents of the segment descriptor cache vary 
depending on the mode the 386 DX is operating in. 
When operating in Real Address Mode, the segment 
base, limit, and other attributes within the segment 
cache registers are defined as shown in Figure 4-11. 

For compatiblity with the 8086 architecture, the base 
is set to sixteen times the current selector value, the 
limit is fixed at OOOOFFFFH, and the attributes are 
fixed so as to indicate the segment is present and 
fully usable. In Real Address Mode,' the internal 
"privilege level" is always fixed to the highest level, 
level 0, so liD and other privileged opcodes may be 
executed. 

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS 

32- BIT BASE 

(UPDATED DURING SELECTOR 
LOAD INTO SEGMENT REGISTER) 

32 - BIT LIMIT 

(FIXED) 

. OTHER ATTRIBUTES 

(FIXED) 

CONFORMING PR�VILEGE--------------------.., 
STACK SIZE-----------------------, 
EXECUTABLE------------------;...-----, 
WRITEABLE---------------------, 
READABLE--------------------~ 

EXPANSION DIRECTION 

GRANULARITY 1 
ACCESSED 1 
~:!~~~~E_L:~E~u_~A~~u ______ u_~I~I!_utl1 _ u u _ 

CS 16X CURRENT CS SELECTOR· OOOOFFFFH Y 0 Y B U Y Y Y - N 
SS 16X CURRENT SS SELECTOR OOOOFFFFH Y 0 Y B U Y Y N W -
OS 16X CURRENT OS SELECTOR OOOOFFFFH Y 0 Y B U Y Y N - -
ES 16X CURRENT ES SELECTOR OOOOFFFFH Y 0 y B U Y Y N - -
FS 16X CURRENT FS SELECTOR OOOOFFFFH Y 0 Y B U Y Y N - -
GS 16X CURRENT GS SELECTOR OOOOFFFFH Y 0 Y B U Y Y N - -

. 231630-60 

'Except the 32·bit CS base is initialized to FFFFFOOOH after reset until first intersegment control transfer (e.g. intersegment CALL, or 
intersegment JMP, or INT), (See Figure 4·13 Example.) 

Key: Y = yes 
N = no 
o = privilege level 0 
1 = privilege level 1 
2 = privilege level 2 
3 = privilege level 3 
U = expand up 

D = expand down 
B = byte granularity 
P = page granularity 
W = push/pop 16·bit words 
F = push/pop 32·bit dwords 
- = does not apply to that segment cache register 

Figure 4·11. Segment Descriptor Caches for Real Address Mode 
(Segment Limit and Attributes are Fixed) 

4-209 



inter 386TM DX MICROPROCESSOR 

When operating in Protected Mode, the segment 
base, limit, and other attributes within the segment 
cache registers are defined as shown in Figure 4-12. 
In Protected Mode, each of these fields are defined 

according to the contents of the segment descriptor 
indexed by the selector value loaded into the seg­
ment register. 

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS 

32- BIT BASE 

(UPDATED DURING 
SELECTOR LOAD INTO 

SEGMENT REGISTER) 

32 - BIT LIMIT 

(UPDATED DURING 
SELECTOR LOAD INTO 

SEGMENT REGISTER) 

OTHER ATTRIBUTES 

(UPDATED DURING 
SELECTOR LOAD INTO 

SEGMENT REGISTER) 

CONFORMING PRIVILEGE---------------------. 
STACK SIZE . 
EXECUTABLE--------------------., 
WRITEABLE ---.,....,---------...,...--------, 
READABLE--------------------., 
EXPANSION DIRECTION 

GRANULARITY 1 
ACCESSED 1 
~:~~~~~ _L~~E~ ~~S; ___________ :I~I! ______ t 11 _ __ 
CS BASE PER SEG OEseR LIMIT PER SEG OEseR P d d d d d N 

.SS BASE PER SEG OESeR LIMIT PER SEG OEseR P d d d d r w 
OS 

ES 

FS 

GS 

Key: Y = fixed yes 
N = fixed no 

BASE PER SEG OEseR 

BASE PER SEG OEseR 

BASE PER SEG OEseR 

BASE PER SEG OEseR 

d = per segment descriptor 

LIMIT PER SEG OEseR p d d 

LIMIT PER SEG OEseR P d d 

. LIMIT PER SEG DESCR P d d 

LIMIT PER SEG OEseR p d d 

p = per segment descriptor; descriptor must indicate "present" to avoid exCeption 11 
(exception 12 in case Of. SS) 

d 

d 

d 

d 

r = per segment descriptor. but descriptor must indicate "readable" to avoid exception 13 
(special case for SS) 

w = per segment descriptor. but descriptor must'indicate "writable" to avoid exception 13 
(special case for SS) 

- = DOttS not appiy to mat segment cache register 

d d d 
d d d 

d d d 

d d d 

Y - d 

N d -

N - -
N - -
N - -
N - -

231630-61 

Figure 4-12. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor) 
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When operating in a Virtual BOB6 Mode within the 
Protected Mode, the segment base, limit, and other 
attributes within the segment cache registers are de­
fined as shown in Figure 4-13. For compatibility with 
the BOB6 architecture, the base is set to sixteen 
times the current selector value, the limit is fixed at 

OOOOFFFFH, and the attributes are fixed so as to 
indicate the segment is present and fully usable. The 
virtual program executes at lowest privilege level, 
level 3, to allow trapping of all IOPL-sensitive in­
structions and level-a-only instructions. -

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS 

32- BIT BASE 

(UPDATED DURING SELECTOR 
LOAD INTO SEGMENT REGISTER) 

32 - BIT LIMIT 

(FIXED) 

OTHER ATIRIBUTES 

(FIXED) 

CONFORMING PRIVILEGE---------------------, 
STACK SIZE-----------------------, 
EXECUTABLE---------------'------., 
WRITEABLE---------------------.., 
R~DABLE---------------------------------., 

EXPANSION DIRECTION--------------------------------. 
GRANULARITY--,.-------------------------'----....., 1 
ACCESSED 1 
PRIVILEGE LEVEL 1 
~R~~E~~ _______ B~:E_' ___________ ~I~I! ___ } J __ _ __ __ _ 
CS 

SS 
OS 

ES 
FS 

GS 

Key: Y = yes 
N = no . 

16X CURRENT CS SELECTOR 
I 6X CURRENT SS SELECTOR 
16X CURRENT OS SELECTOR 
16X CURRENT ES SELECTOR 
16X CURRENT FS SELECTOR 
16X CURRENT GS SELECTOR 

OOOOFFFFH Y 3 Y 

·oooorrrrH y 3 Y 
oooorrFFH y 3 Y 
OOOOFFFFH y 3 Y 
OOOOFFFFH Y 3 Y 

OOOOFFFFH Y 3 Y 

o = expand down 
B = byle granularity 
P = page granularity 

B U Y Y Y - N 

B U y y N W -
B U y y N - -
B U y y N - -
B U Y Y N - -
B U y y N - -

23j630-62 

o = privilege level 0 
I = privilege level I 
2 = privilege level 2 
3 = privilege level 3 
U = expand up 

W = push/pop 16·bit words 
F = pushfpop 32-bit dwords 
- = does not apply to that segment cache register 

Figure 4-13. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode 
(Segment Limit and Attributes are Fixed) 
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4.4 PROTECTION 

4.4.1 Protection Concepts 

CPU 
ENFORCED 
SOFTWARE 
INTERFAces 

HIGH SPEED 
OPERAnNG 
SYSTEM 
INTERFACE 

231630-63 

Figure 4-14. Four-Level Hierachical Protection 

The 386 OX has four levels of protection which are 
optimized to support the needs of a multi-tasking op­
erating system to isolate and protect user programs 
from each other and the operating system. The privi­
lege levels control the use of privileged instructions, 
1/0 instructions, and access to segments and se'g­
ment descriptors. Unlike traditional microprocessor­
based systems where this protection is achieved 
only through the use of complex external hardware 
and software the 386 OX provides the protection as 
part of its integrated Memory Management Unit. The 
386 OX offers an additional type of protection on a 
page basis, when paging is enabled (See section 
.. ,.. n ft ___ I _ .. ~_I n .. _ .. __ .I_ .... \ 
"t.U.V r'CI!::fCl L.'III:!VC:I rl "'''C:'''''.VII/' 

The four-level hierarchical privilege system is illus­
trated in Figure 4-14. It is an extension of the userl 
supervisor privilege mode commonly used by mini­
computers and, in fact, the userlsupervisor mode is 

,fully supported by the 386 OX paging mechanism. 
The privilege levels (PL) are numbered 0 through 3. 
Level 0 is the most privileged or trusted level. 

4.4.2 Rules of Privilege 
The 386 OX controls access to both data and proce­
dures between levels of a task, according to the fol­
lowing rules. 

• Data stored. in a seg~ent with privilege level p can 
be accessed orily by code executing at a privilege 
level at least as privileged as p. 

• A code segment/procedure with privilege level p 
can only be called by a task executing at the same 
or a lesser privilege level than p. 

4.4.3 Privilege Levels 

4_4.3_1 TASK PRIVILEGE 

At any point in time, a task on the 386 OX always 
executes at one of the four privilege levels. The Cur­
rent Privilege Level (CPL) specifies the task's privi-

. lege'level. A task's CPL rnay only be changed by 
control transfers through gate descriptors to a code 
segment with a different privilege level. (See section 
4.4.4 Privilege Level Transfers) Thus, an applica­
tion program running at PL = 3 may call an operat­
ing system routine at PL = 1 (via a gate) which 
would cause the task's CPL to be set to 1 until the 
operating system routine was finished. 

4.4.3.2 SELECTOR PRIVILEGE (RPL) 

The privilege level of a selector is specified by the 
RPL field. The RPL is the two least significant bits of 
the selector. The selector's RPL is only used to es­
tablish a less trusted privilege level than the current 
privilege level ,for the use of a segment. This level is 
called the task's effective privilege level (EPL). The 
EPL is defined as being the least privileged (I.e. nu­
merically larger) level of a task's CPL and a, selec­
tor's RPL. Thus, if selector's RPL = 0 then the CPL 
always specifies the privilege level for making an ac­
cess using the selector. On the pther hand if RPL = 
3 then a selector can only access segments at level 
3 regardless of the task's CPL. The RPL is most 
commonly used to verify that pointers passed to an 
operating system procedure do not access data that 
is of higher privilege than the procedure that origi­
nated the pointer. Since the originator of a selector 
can specify any RPL value, the Adjust RPL (ARPL) 
• • .". • 1_.1 &_ ~ ____ 4.1-._ nnt L.:.a._ ... _ ...... _ 
Insuucuon IS prOVlutlu lU lUi ..... III .. no .. U"''' LV ".0 

originator's CPL. 

4.4_3.3 I/O PRIVILEGE AND 1/0 PERMISSION 
BITMAP 

The 1/0 privilege level (IOPL, a 2-bit field in the 
EFLAG register) defines the least privileged level at 
which 1/0 instructions can be unconditionally per­
formed. 1/0 instructions can be unconditionally per­
formed when CPL :;:; 10PL. (The 1/0 instructions are 
IN, OUT, INS, OUTS, REP INS, and REP OUTS.) 
When CPL > IOPL, and the current task is associat­
ed with a 286 TSS, attempted 1/0 instructions cause 
an exception 13 fault. When CPL > 10PL, and the 
current task is associated with a 386 OX TSS, the 
1/0 Permission Bitmap (part of a 386 OX TSS) is 
consulted on whether 1/0 to the port is allowed, or 
an exception 13 fault is to be generated instead. For 
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diagrams of the 110 Permission Bitmap, refer to Fig­
ures 4-15a and 4-15b. For further information on 
how the 110 Permission Bitmap is used in Protected 
Mode or in Virtual 8086 Mode, refer to section 4.6.4 
Protection and 1/0 Permission Bitmap. 

The 1/0 privilege level (IOPL) also affects whether 
several other instructions can be executed or cause 
an exception 13 fault instead. These instructions are 
called "IOPL-sensitive" instructions and they are 
CLI and STI. (Note that the LOCK prefix is not 10PL­
sensitive on the 386 OX.) 

The 10PL also affects whether the IF (interrupts en­
able flag) bit can be changed by loading a value into 
the EFLAGS register. When CPL s: 10PL, then the 
IF bit can be changed by loading a new value into 
the EFLAGS register. When CPL > 10PL, the IF bit 
cannot be changed by a new value POP'ed into (or 
otherwise ·Ioaded into) the EFLAGS register; the IF 
bit merely remains unchanged and no exception is 
generated. 

Table 4·2. Pointer Test Instructions 

Instruction Operands Function 

ARPL Selector, Adjust Requested Privi-
Register lege Level: adjusts the 

RPL of the selector to the 
numeric maximum of 
current selector RPL value 
and the RPL value in the 
register. Set zero flag if 
selector RPL was 
changed. 

VERR Selector VERify for Read: sets the 
zero flag if the segment 
referred to by the selector 
can be read. 

VERW Selector VERify for Write: sets the 
zero flag if the segment 
referred to by the selector 
can be written. 

LSL Register, Load Segment Limit: reads 
Selector the segment limit into the 

register if privilege rules 
and descriptor type allow. 
Set zero flag if successful. 

LAR Register, Load Access Rights: reads 
Selector the descriptor access 

rights byte into the register 
if privilege rules allow. Set 
zero flag if successful. 

4.4.3.4 PRIVILEGE VALIDATION 

The 386 OX provides several instructions to speed 
pointer testing and help maintain system integrity by 
verifying that the selector value refers to an appro­
priate segment. Table 4-2 summarizes the selector 
validation procedures available for the 386 OX. 

This pointer verification prevents the common prob­
lem of an application at PL = 3 calling a operating 
systems routine at PL = 0 and passing the operat­
ing system routine a "bad" pointer which corrupts a 
data structure belonging to the operating system. If 
the operating system routine uses the ARPL instruc­
tion to ensure that the RPL of the selector has no 
greater privilege than that of the caller, then this 
problem can be avoided. 

4.4.3.5 DESCRIPTOR ACCESS 

There are basically two types of segment accesses: 
those involving code segments such as control 
transfers, and those involving data accesses. Deter­
mining the ability of a task to access a segment in­
volves the type of segment to be accessed, the in­
struction used, the type of descriptor used and CPL, 
RPL, and OPL as described above. 

Any time an instruction loads data segment registers 
(OS, ES, FS, GS) the 386 OX makes protection vali­
dation checks. Selectors loaded in the OS, ES, FS, 
GS registers must refer only to data segments or 
readable code segments. The data access rules are 
specified in section 4.2.2 Rules of Privilege. The 
only exception to those rules is readable conforming 
code segments which can be accessed at any privi-. 
lege level. 

Finally the privilege validation checks are performed. 
The CPL is compared to the EPL and if the EPL is 
more privileged than the CPL an exception 13 (gen­
eral protectiorffault) is generated. 

The rules regarding the stack segment are slightly 
different than those involving data segments. In­
structions that load selectors into SS must refer to 
data segment descriptors for writeable data seg­
ments. The OPL and RPL must equal the CPL. All 
other descriptor types or a privilege level violation 
will· cause exception 13. A stack not present fault 
causes exception 12. Note that an exception 11 is 
used for a not-present code or data segment. 

4.4.4 Privilege Level Transfers 

Inter-segment control transfers occur when a selec­
tor is loaded in the CS register. For a typical system 
most of these transfers are simply the result of a call 
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Table 4-3. Descriptor Types Used for Control Transfer 

Control Transfer Types 

Intersegment within the same privilege level 

Intersegment to the same.,or higher privilege level 
Interrupt within task may change CPL 

Intersegment to a lower privilege level 
(changes task CPL) 

Task Switch 

'NT (Nested Task bit of flag register) = 0 
"NT (Nested Task bit of flag register) = 1 

or a' jump to another routine. There are five types of 
control transfers which are summarized in Table 4-3. 
Many of these transfers result in a privilege level 
transfer. Changing privilege levels is done only via 
control transfers, by using gates, task switches, and 
interrupt or trap gates. . 

Control transfers can only occur if the operation 
which loaded the selector references the correct de­
scriptor type. Any violation of these descriptor usage 
rules will cause an exceotion 13 (e.Q. JMP throuQh a 
call gate, or IRET from a normalsu-broutine call). 

Operation Types 
Descriptor Descriptor 
Referenced Table 

JMP, CALL, RET, IREP Code Segment GOT/LOT 

CALL Call Gate GOT/LOT 

Interrupt Instruction, Trap or lOT 
Exception, External Interrupt 
Interrupt Gate 

RET,IRET* Code Segment GOT/LOT 

CALL,JMP Task State GOT 
Segment 

CALL,JMP Task Gate GOT/LOT 

IREP' Task Gate lOT 
Interrupt Instruction, 
Exception" External 
Interrupt 

must be of equal or greater privilege than the 
gate's OPL. 

- The code sEilgment selected in the gate must be 
the same or more privileged than the task's CPL. 

- Return instructions that do not switch tasks can 
only return control to a code segment with same 
or I,ess privilege. 

- Task switches can be performed by a CALL. 
JMP, or INT which references either a task gate 
or task state segment who's OPL is less privi­
leged or the same privilege as the old task's CPL. 

In order to provide further system security, all control ' 
transfers are also subject to the privilege rules. 

Any control transfer that changes CPL within a task 
causes a change of stacks as a result of the privi­
lege level change. The initial values of SS:ESP for 
privilege levels 0, 1,and 2 are retained in the task 
state segment (see section 4.4.6 Task Switching). 
During a JMP or CALL control transfer, the new 
stack pointer is loaded into the SS and ESP regis­
ters and the previous stack pointer is pushed onto 
the new stack. 

The privilege rules require that: 

- Privilege level transitions can only occur via 
gates. 

- JMPs can be made to a. non-conforming code 
segment with the same privilege or to a conform­
ing code segment with greater 'or equal privilege. 

- CALLs can be made to a non-conforming code 
segment with the same privilege or via a gate to a 
more privileged level. 

- Interrupts handled within the task obey the same 
privilege rules as CALLs. 

- Conforming Code segments are accessible by 
privilege levels which are the same or less privi­
leged than the conforming-code segment's OPL. 

- Both the requested privilege level (RPL) in the 
selector pointing to the gate and the task's CPL 

When RETurning to the original privilege level. use 
of the lower-privileged stack is restored as part of 
the RET or IRET instruction operation. For subrou­
tine calls that pass parameters on the stack and 
cross privilege levels, a fixed number of words (as 
specified in the gate's word count field) are copied 
from the previous stack to the current stack. The 
inter-segment RET instruction with a stack adjust­

,ment value will correctly restore the previous stack 
pointer upon return. 
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Figure 4·15b. Sample 1/0 Permission Bit Map 

4.4.5 Call Gates 

Gates provide protected, indirect CALLs. One of the 
major uses of gates is to provide a secure method of 
privilege transfers within a task .. Since the operating 
system defines all of the gates in a system, it can 
ensure that all gates only allow entry into a few trust­
ed procedures (such as those which allocate memo-
ry, or perform I/O). " 

Gate descriptors follow the data access rules of priv­
ilege; that is, gates can be accessed by a task if the 
EPL, is equal to or more privileged than the gate 
descriptor's OPL. Gates follow the control transfer 
rules of privilege and therefore may only transfer 
control to a more privileged level. 

Call Gates are accessed via a CALL instruction and 
are syntactically identical to calling a normal subrou­
tine. When an inter-level 386 OX call gate is activat­
ed, the following actions occur. 

1. Load CS:EIP from. gate check for validity 

2. SS is pushed zero-extended to 32 bits 

3. ESP is pushed 

4. Copy Word Count 32-bit parameters from the 
old :;t~ck to the ne':: stack ' 

5. Push Return address on stack 

The procedure is identical for 80286 Call gates, ex­
cept that 16-bit parameters are copied and 16-bit 
registers are pushed. " 

Interrupt Gates and Trap gales work in a similar 
fashion as the call gates, except there is no copying 
of parameters. The only difference between Trap 
and Interrupt gates is that control transfers through 
an Interrupt gate disable further interrupts (Le. the IF 
bit is set to 0), and Trap gates leave the interrupt 
status unchanged. 

4.4.6 Task Switching 

A very important attribute of any multi-tasking/multi­
user operating systems is its ability to rapidly switch 
between tasks or processes. The 386 OX directly 
supports this operation by providing a task switch 
instruction in hardware. The 386 OX task switch op-

eration saves the entire state of the machine (all of 
the registers, address space, and a link to the previ­
ous task), loads a new execution state, performs 
protection checks, and commences execution in the 
new task, in about 17 microseconds. Like transfer of 
control via gates, the task switch operation is in­
voked by executing an inter-segment JMP or CALL 
instrliction which refers to a Task State Segment 
(TSS), or a task gate descriptor in the GOT or LOT. 
An INT n instruction, exception, trap, or external in­
terrupt may also invoke the task switch operation if 
there is a task gate descriptor in the associated lOT 
descriptor slot. 

The TSS descriptor points to a segment (see Figure 
4-15) containing the entire 386 OX execution state 
while a task gate descriptor contains a TSS selector. 
The 386 OX.supports both 80286 and 386 OX style 
TSSs. Figure 4-16 shows a 80286 TSS. The limit of 
a 386 OX TSS must be greater than 0064H (002BH 
for a 80286 TSS), and can be as large as 4 Giga­
bytes. In the additional TSS space, the operating 
system is free to store additional information such as 
the reason the task is inactive, time the task has 
spent running, and open files belong to the task. 

Each task "must have a TSS associated with it. The 
current TSS is identified by a speciai register in the 
386 OX called the Task State Segment Register 
(TR). This register contains a selector referring to 
the task state segment descriptor that defines the 
current TSS. A hidden base and limit register associ­
ated with TR are loaded whenever TR is loaded with 
a new selector. Returning from a task is accom­
plished by the IRET instruction. When IRET is exe­
cuted, control is returned to the task which was in­
terrupted. The current executing task's state is 
saved in the TSS and the old task state is restored 
from its TSS. 

Several bits in the flag register and machine status 
word (CRO) give information about the state of a 
task which are useful to the operating system. Th~ 
Nested Task (NT) (bit 14 in EFLAGS) controls the 
function of the IRET instruction. If NT = 0, the IRET 
instruction performs the regular return; when NT = 
1, IRET performs a task switch operation back to the 
previous task. The NT bit is set or reset in the follow­
ing fashion: 
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Figure 4-16. 80286 TSS 

When a CALL or INT instruction initiates a task 
switch, the new TSS will be marked busy and the 
back link field of the new TSS set to the old TSS 
selector. The NT bit of the new task is set by CALL 
or INT initiated task switches. An interrupt that does 
not cause a task switch will clear NT. (The NT bit will 
be restored after execution of the interrupt handler) 
NT may also be set or cleared by POPF or IRET 
instructions. 

The 386 OX task state segment is marked busy by 
changing the descriptor type field from TYPE 9H to 
TYPE BH. An 80286 TSS is marked busy by chang­
ing the descriptor type field from TYPE 1 to TYPE 3. 
Use of a selector that references a busy task state 
segment causes an exception 13. 

The Virtual Mode (VM) bit 17 is used to indicate if a 
task, is a virtual 8086 task. If VM = 1, then the tasks 
will use the Real Mode addressing mechanism. The 
virtual 8086 environment is only entered and exited 
via a task switch (see section 4.6 Virtual Mode). 

The coprocessor's state is not automatically saved 
when a task switch occurs, because the incoming 
task may not use the coprocessor. The Task 
Switched (TS) Bit (bit 3 in the CRO) helps deal with 
the coprocessor's state in a multi-tasking environ-

ment. Whenever the 386 OX switches tasks, it sets 
the TS bit. The 386 OX detects the first use of a 
processor extension instruction after a task switch 
and causes the processor extension not available 
exception 7. The exception handler for exception 7 
may then decide whether to save the state of the 
coprocessor. A processor extension not present ex­
ception (7) will occur when attempting to execute an 
ESC or WAIT instruction if the Task S,witched and 
Monitor coprocessor extension bits are both set (i.e. 
TS = 1 and MP = 1). 

The T bit in the 386 OX TSS indicates that the proc­
essor should generate a debug exception when 
switching to a task. If T = 1 then upon entry to a 
new task a debug exception 1 will be generated. 

4.4.7 Initiali:zation and Tiansition to 
Protected Mode 

Since the 386 OX begins executing in Real Mode 
.immediately after RESET it is necessary to initialize 
the system tables and registers with the appropriate 
values. 

The GOT and lOT registers must refer to a valid GOT 
and lOT. The lOT should be at least 256 bytes long, 
and GOT must contain descriptors for the initial 
code, and data segments. Figure 4-17 shows the 
tables and Figure 4-18 the descriptors needed fo~ a 
simple Protected Mode 386 OX system. It has a sin­
gle code and single data/stack segment each four 
gigabytes long and a single privilege level PL = O. 

The actual method of enabling Protected Mode is to 
load CRO with the PE bit set, via the MOV CRO, R/M 
instruction. This puts the 386 OX in Protected Mode. 

After enabling Protected Mode, the next instruction 
should execute an intersegment JMP to load the CS 
register and flush the instruction decode queue: The 
final step is to load all of the data segment registers 
with the initial selector values. 

An alternate approach to entering Protected Mode 
which is especially appropriate for multi-tasking op­
erating systems, is to use the built in task-switch to 
load all of the registers. In this case the GOT would 
contain two TSS descriptors in addition to the code 
and data descriptors needed for the first task. The 
first JMP instruction in Protected Mode would jump 
to the TSS causing a task switch and loading all of 
the registers with the values stored in the TSS. The 
Task State Segment Register should be initialized to 
point to a valid TSS descriptor since a task switch 
saves the state of the current task in a task state 
segment. 
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. . 
4.4.8 Tools for Building Protected 

Systems .' 
In order to simplify the design of a protected multi­
tasking system, Intel provides a tool which allows 
the system designer an easy method of constructing 
the data structures needed for a Protected Mode 
386 OX system. This tool is the builder BLD-386TM. 
BLD-386 lets the operating system writer specify all 
of the segment descriptors discussed in the previous 
sections (LOTs, lOTs, GDTs, Gates, and TSSs) in a 
high-level language. 

4.5 PAGING 

4.5.1 Paging Concepts 

Paging is another type of memory management use­
ful for virtual memory multitasking operating sys­
tems. Unlike segmentation which modularizes pro­
grams and data into variable length segments, 
paging divides programs into multiple uniform size 
pages. Pages bear no direct relation to t!le logical 
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structure of a program. While segment selectors can 
be considered the logical "name" of a program 
module or data structure, a page most likely corre­
sponds to only a portion of a module or data struc­
ture. 

By taking advantage of the locality of reference dis­
played by most programs, only a small number of 
pages from each active task need be in memory at 
anyone moment. 

4.5.2 Paging Organization 

4.5.2.1 PAGE MECHANISM 

The 386 DX uses two levels of tables to translate 
the linear address (from the segmentation unit) into 
a physical address. There are three components to 
the paging mechanism of the 386 DX: the page di­
rectory, the page tables, and the page itself (page 
frame). All memory-resident elements of the 386 DX 
paging mechanism are the same size, namely, 4K 
bytes. A uniform size for all of the elements simpli­
fies memory allocation and reallocation schemes, 
since there is no problem with memory fragmenta­
tion. Figure 4-19 shows how the paging mechanism 
works. 

4.5.2.2 PAGE DESCRIPTOR BASE REGISTER 

CR2 is the Page Fault Linear Address register. It 
holds the 32-bit linear address which caused the last 
page fault detected. 

CR3 is the Page Directory Physical Base Address 
Register. It contains the physical starting address of 
the Page Directory. The lower 12 bits of CR3 are 
always zero to ensure that the Page Directory is al­
ways page aligned. Loading it via a MOV CR3, reg 
instruction causes the Page Table Entry cache to be 
flushed, as will a task switch through a TSS which 
changes the value of CRO. (See 4.5.4 Translation 
Lookaside Buffer). 

4.5.2.3 PAGE DIRECTORY 

The Page Directory is 4K bytes long and allows up to 
1024 Page Directory Entries. Each Page Directory 
Entry contains the address of the next level of ta­
bles, the Page Tables and information about the 
page table. The contents of a Page Directory Entry 
are shown in Figure 4-20. The upper 10 bits of the 
linear address (A22-A31) are used as an index to 
select the correct Page Directory Entry. 

TWO LEVEL PAGING SCHEME 

31 22 12 0 
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Figure 4-19. Paging Mechanism 
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Figure 4-20. Page Directory Entry (Points to Page Table) 
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Figure 4-21. Page Table Entry (Points to Page) 

4.5.2.4 PAGE TABLES 

Each Page Table is 4K bytes and holds up to 1024 
Page Table Entries. Page Table Entries contain the 
starting address of the page frame and statistical 
information about the page (see Figure 4-21). Ad­
dress bits A12-A21 are used as an index to select 
o~e of the 1024 Page Table Entries. The 20 upper­
bit page frame address is concatenated with the 
lower 12 bits of the linear address to form the physi­
cal address. Page tables can be shared between 
tasks and swapped to disks. 

4.5.2.5 PAGE DIRECTORY/TABLE ENTRIES 

The lower 12 bits of the Page Table Entries and 
Page Directory Entries contain statistical information 
about pages and page tables respectively. The P 
(Present) bit 0 indicates if a Page Directory or Page 
Table entry can be used in address translation. If 
P ,= 1 the entry can be used for address translation; 
if P = 0 the entry oan not be used for translation. 
N~te that t,he present bit of the page table entry that 
POints to the page where code is currently being ex­
ecuted should always be set. Code that marks its 
own page not present should not be written. All of 
the other bits are available for use by the software. 
For example the remaining 31 bits could be used to 
indicate where on the disk the page is stored. 

The A (Accessed) bit 5, is set by the 386 DX for both 
types of entries before a read or write access occurs 
to an address covered by the entry. The D (Dirty) bit 
6 is set to 1 before a write to an address covered by 
that page table entry occurs. The D bit is undefined 
for Page Directory Entries. When the P, A and D bits 
are updated by the 386 DX, the processor generates 
a Read-Modify-Write cycle which locks the bus and 
prevents conflicts with other processors or perpheri­
als. Software which modifies these bits should use 
the LOCK prefix to ensure the integrity of the page 
tables in mUlti-master systems, 

The 3 bits marked OS Reserved in Figure 4-20 and 
Figure 4-21 (bits 9-11) are software definable. OSs 
are free to use these bits for whatever purpose they 
wish. An example use of the OS Reserved bits 
woul~ be to store information about page aging. By 
keeping track of how long a page has been in 'mem­
~ry since being accessed, an operating system can 
Implement a page replacement algorithm like Least 
Recently Used. 

The (User/Supervisor) U/S bit 2 and the (Read/ 
Write) R/W bit 1 are used to provide protection attri­
butes for individual pages. 

4.5.3 Page Level Protection 
(R/W, U/S Bits) 

The 386 DX provides a set of protection attributes 
for paging systems. The paging mechanism distin­
guishes between two levels of protection: User 
which corresponds to level 3 of the segmentation 
based protection, and supervisor which encompass­
es all of the other protection levels (O, 1, 2). Pro­
grams executing at Level 0, 1 or 2 bypass the page 
protection, although segmentation based protection 
is still enforced by the hardware. 

The U/S and R/W bits are used to provide Us­
er/Supervisor and Read/Write protection for individ­
u~1 pages or for all pages covered by a Page Table 
Directory Entry. The U/S and R/W bits in the first 
level Page Directory Table apply to all pages de­
scribed by the page table pOinted to by that directory 
entry. The U/S and R/W bits in the second level 
Page Table Entry apply only to the page described 
by that entry. The U/S and R/W bits for a given 
page are obtained by taking the most restrictive of 
the UlS and R/W from the Page Directory Table 
Enlriel; emu lin:! Paye Tabie Eniries and uSing ihese 
bits to address the page. 

Example: If the U/S and R/W bits for the Page Di­
rectory entry were 10 and the U/S and R/W bits for 
the Page Table Entry were 01, the access rights for 
the page would be 01, the numerically smaller of the 
two. Table 4-4 shows the affect of the U/S and R/W 
bits on accessing memory. 

Table 4-4 Protection Provided by R/W and U/S 

U/S R/W 
Permitted Permitted Access 

Level 3 Levels 0, 1, or 2 

0 0 None Read/Write 
0 1 None Read/Write 
1 0 Read-Only Read/Write 
1 1 Read/Write Read/Write 

However a given segment can be easily made read­
only for level 0, 1, or 2 via the use of segmented 
protection mechanisms. (Section 4.4 Protection). 
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4.5.4 Translation Lookaside Buffer 

The 386 OX paging hardware is designed to support 
demand paged virtual memory systems. However, 
performance would degrade substantially if the proc­
essor was required to access two levels of tables for 
every memory reference. To solve this problem, the 
386 OX keeps a cache of the most recently ac­
cessed pages, this cache is called the Translation 
Lookaside Buffer (TLB). The TLB is a four-way set 
associative 32-entry page table cache. It automati­
cally keeps the most commonly used Page Table 
Entries in the processor. The 32-entry TLB coupled 
with a 4K page size, results in coverage of 128K 
bytes of memory addresses. For many common mUl­
ti-tasking systems, the TLB will have a hit rate of 
about 98%. This means that the processor will only 
have to access the two-level page structure on 2% 
of all memory references. Figure 4-22 illustrates how 
the TLB complements the 386 OX's paging mecha­
nism. 

4.5.5 Paging Operation 

32 ENTRIES 
PHYSICAL 
MEt.tORY 

A~~~~:S --+-
TRANSLATION 

LOOI<ASIDE 
BUffER HIT 

MISS 

31 0 

r I--

L...i. 

PAGE PAGE 
DIRECTORY TABLE 

• 98% HIT RATE 
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Figure 4·22. Translation Lookaside Buffer 

The paging hardware operates in the following fash­
ion. The paging unit hardware receives a 32-bit lin­
ear address from the segmentation unit. The upper 
20 linear address bits are compared with all 32 en­
tries in the TLB to determine if there is a match. If 
there is a match (Le. a TLB hit), then the 32-bit phys­
ical address is calculated and will be placed on the 
address bus. 

However, if the page table en~ry is not in the TLB, 
the 386 OX will read the appropriate Page Directory 
Entry. If P = 1 on the Page Directory Entry indicat­
ing that the page table is in memory, then the 386 
OX will read the appropriate Page Table Entry 

and set the Access bit. If P = 1 on the Page Table 
Entry indicating that the page· is in memory, the 386 
OX will update the Access and Dirty bits as needed 
and fetch the operand. The upper 20 bits of the lin­
ear address, read from the page table, will be stored 
in the TLB for future accesses. However, if P = 0 for 
either the Page Directory Entry or the Page Table 
Entry, then the processor will generate a page fault, 
an Exception 14. 

The processor will also generate an exception 14, 
page fault, if the memory reference violated the 
page protection attributes (Le. U/S or R/W) (e.g. try­
ing to write to. a read-only page). CR2 will hold the 
linear address which caused the page fault. If a sec­
ond page fault occurs, while the processor is at­
tempting to enter the service routine for the first, 
then the processor will invoke the page fault (excep­
tion 14) handler a second time, rather than the dou­
ble fault (exception 8) handler. Since Exception 14 is 
classified as a fault, CS: EIP will point to the instruc­
tion causing the page fault. The 16-bit error code 
pushed as part of the page fault handler will contain 
status bits which indicate the cause of the page 
fault. 

The 16-bit error code is used by the operating sys­
tem to determine how to handle the page fault Fig­
ure 4-23A shows the format of the page-fault error 
code and the interpretation of the bits. 

NOTE: 
Even though the bits in the error code (U/S, W/R, 
and P) have similar names as the bits in the Page 
Directory/Table Entries, the interpretation of the er­
ror code bits is different. Figure 4-23B indicates 
what type of access caused the page fault. 

15 3 2 1 0 

lulululululululululululululul~I~lpl 
Figure 4·23A. Page Fault Error Code Format 

U/S: The U/S bit indicates whether the access 
causing the fault occurred when the processor was 
executing in User Mode (U/S = 1) or in Supervisor 
mode (UIS = 0) 

W/R: The W/R bit indicates whether the access 
causing the fault was a Read (W/R = 0) or a Write 
(W/R = 1) 

P: The P bit indicates whether a page fault was 
caused by a not-present page (P = 0), or by a page 
level protection violation (P = 1) 

U: UNDEFINED 
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U/S W/R Access Type 

0 0 Supervisor' Read 
0 1 Supervisor Write' 
1 0 User Read 
1 1 User Write 

'Descrlptor table access WIll fault wIth utS - 0., even If the program 
is executing at level 3. 

Figure 4-238. Type of Access 
Causing Page Fault 

4.5.6 Operating System 
Responsibilities 

The 386 OX takes care of the page address transla­
tion process, relieving the burden from an operating 
system in a demand-paged system. The operating 
system is responsible for setting up the initial p~ge 
tables, and handling any page faults. The operating 
system also is required to invalidate (I.e. flush) the 
TLB when any changes are made to any of the page 
table entries. The operating system must reload 
CR3 to cause the TLB to be flushed. 

Setting up the tables is simply a matter of loading 
CR3 with the address of the Page Directory, and 
allocating space for the Page Directory and the 
Page Tables. The primary responsibility of the oper­
ating system is to implement a swapping policy and 
handle all of the page faults. 

A final concern of the operating system is to ensure 
that the TLB cache matches the information in the 
paging tables. In particular, any time the operating 
system sets the P present bit of page table entry to 
zero the TLB must be flushed. Operating systems 
may'want to take advantage of the fact that CR3 is 
stored as part of a TSS, to give every task or group 
of tasks its own set of page tables. 

4.6 VIRTUAL 8086 ENVIRONMENT 

4.6.1 Executing 8086 Programs 

The 386 OX allows the execution of 8086 application 
programs in both Real Mode and in the Virtual 8086 
Mode (Virtual Mode). Of the two methods, Virtual 
8086 Mode ,offers the system' designer the most 
flexibility. The Virtual 8086 Mode allows the execu- ' 
tion of 8086 applications, while still allowing the sys­
tem designer to take full advantage of the 386 OX 
protection mechanism. In particular, the 386 OX al­
lows the simultaneous execution of 8086 operating 
systems and its applications, and a 386 OX opera~­
ing system and both 80286 and 386 OX apph-

cations. Thus, in a multi-user 386 OX computer, one 
person could be running an MS-DOS spreadsheet, 
another person using MS-DOS, and a third person 
could be running multiple Unix utilities and applica­
tions. Each person in this scenario would believe 
that he had the computer completely to himself. Fig­
ure 4-24 illustrates this concept. 

4.6.2 Virtual 8086 Mode Addressing 
Mechanism 

One of. the major differences between 386 OX Real 
and Protected modes is how the segment selectors 
are interpreted. When the processor is executing in 
Virtual 8086 Mode the segment registers are used in 
an identical fashion to Real Mode. The contents of 
the segment register is shifted left 4 bits and added 
to the offset to form the segment base linear ad­
dress. 

The 386 OX allows the operating system to specify 
which programs use the 8086 style address mecha­
nism, and which programs use Protected Mode ad­
dressing, on a per task basis. Through the use ?f 
paging, the one megabyte address space of .the Vir­
tual Mode task. can be mapped to anywhere In the 4 
gigabyte linear address space of the 386 OX. Like 
Real Mode, Virtual Mode effective addresses (I.e., 
segment offsets) that exceed 64K byte will cause an 
exception 13. However, these restrictions should ~ot 
prove to be important, because most tasks running 
in Virtual 8086 Mode will simply be existing 8086 
application programs. 

4.6.3 Paging In Virtual Mode 

The paging hardware allows the concurrent running 
of multiple Virtual Mode tasks, and provides protec­
tion and operating system isolation. Although it is 
not strictly necessary to have the paging hardware 
enabled 'to run Virtual Mode tasks, it is needed in 
order to run multiple Virtual Mode tasks or to relo­
cate the address space of a Virtual Mode task to 
physical address space greater than one megabyte. 

The paging hardware allows the 20-bit linear ad­
dress produced by a Virtual Mode program to be 
divided into up to 256 pages. Each one of the pages 
can be located anywhere within the maximum 4 giga­
byte physical address space of the 386 OX. In addi­
tion, since CR3 (the Page Directory Base Register) 
is loaded by a task switch, each Virtual Mode task 
can use a different mapping scheme to map pages 
to different physical locations. Finally, the paging 
hardware allows the sharing of the 8086 operating 
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Figure 4-24. Virtual 8086 Environment Memory Management 

system code between multiple 8086 applications. 
Figure 4-24 shows how the 386 DX paging hardware 
enables multiple 8086 programs to run under a virtu­
al memory demand paged system. 

4.6.4 Protection and 1/0 Permission 
Bitmap 

All Virtual 8086 Mode programs execute at privilege 
level 3, the level of least privilege. As such, Virtual 
8086 Mode programs are subject to all of the protec­
tion checks defined in Protected Mode. (This is dif­
ferent from Real Mode which implicitly is executing 
at privilege level 0, the level of greatest privilege.) 
Thus, an attempt to execute a privileged instruction 
when in Virtual 8086 Mode will cause an exception 
13 fault. 

The following are privileged instructions, which may 
be executed only at Privilege Level O. Therefore, at­
tempting to execute these instructions in Virtual 
8086 Mode (or anytime CPL > 0) causes an excep­
tion 13 fault: 

LIDT; 
LGOT; 

MOV ORn,reg; 
MOV TRn,reg; 

MOV reg,ORn; 
MOV reg, TRn ; 

LMSW; 
CLTS; 
HLT; 

MOV CRn,reg; MOV reg,eRn. 

Several instructions, particularly those applying to 
the multitasking model and protection model, are 
available only in Protected Mode. Therefore, at­
tempting to execute the following instructions in 
Real Mode or in Virtual 8086 Mode generates an 
exception 6 fault: 

LTR; 
LLOT; 
LAR; 
LSL; 
ARPL. 

STR; 
SLOT; 
VERR; 
VERW; 

The instructions which are IOPL-sensitive in Protect­
ed Mode are: 

IN; STI; 
OUT; eLI 
INS; 
OUTS; 
REP,INS; 
REP OUTS; 
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In Virtual 8086 Mode, a slightly different set of in­
structions are made 10PL-sensitive. The following in­
structions are 10PL-sensitive in Virtual 8086 Mode: 

INT n; STI; 
PUSHF'; eLI; 
POPF; IRET 

The PUSHF, POPF, and IRET instructions are 10PL­
sensitive in Virtual 8086 Mode only. This provision 
allows the IF flag (interrupt enable flag) to be .virtual­
ized to the Virtual 8086 Mode program. The INT n 
software interrupt instruction is also 10PL-sensitive 
in Virtual 8086 Mode. Note, however, that the INT 3 
(opcode OCCH), INTO, and BOUND instructions are' 
not 10PL-sensitive in Virtual 8086 mode (they aren't 
10PL sensitive in Protected Mode either). 

Note that the 110 instructions (IN, OUT, INS, OUTS, 
REP INS, and REP OUTS) are not 10PL-sensitive in 
Virtual 8086 mode. Rather, the 110 instructions be­
come automatically sensitive to the 1/0 Permission 
Bitmap ,contained in the 386 OX Task State Seg­
ment. The 110 Permission Bitmap, automatically 
used by the 386 OX in Virtual 8086 Mode, is illustrat­
ed by Figures 4.15a and 4-15b. 

The 110 Permission Bitmap can be viewed as a 0-
64 Kbit bit string, which begins in memory at offset 
BiLMap_Offset in the current TSS. BiLMap_ 
Offset must be s OFFFH so the entire bit map and 
the byte FFH which follows the bit map are all at 
offsets s FFFFH from the TSS base. The 16-bit 
pointer BiLMap_Offset (15:0) is found in the word 
beginning at offset 66H (102 decimal) from the TSS 
base, as shown in Figure 4-15a. 

Each bit in the 110 Permission Bitmap corresponds 
to ~ !'lingle hyte-wide 110 port, as illustrated in Figure 
4-1.5a. If a bit is 0, 110 to the corresponding byte­
wide port can occur without generating an excep~ 
tion. Otherwise the 110 instruction causes an excep­
tion 13 fault. Since every byte-wide 110 port must be 
protectable, all bits corresponding to a word-wide or 
dword-wide port must be 0 for the word-wide or 
dword-wide 110 to be permitted. If all the referenced 
bits are 0, the 110 will be allowed. If any referenced 
bits are 1, the attempted 110 will cause an exception 
13 fault. 

Due to the use of a pointer to the base of the 110 
Permission Bitmap, the bitmap may be located any­
where within the TSS, or may be ignored completely 
by pointing the BiLMap_Offset (15:0) beyond the 
limit of the TSS segment. In the same manner, only 
a small portion of the 64K 110 space need have an 
associated map bit, by adjusting the TSS 'limit to 
truncate the bitmap. This eliminates the commitment 
of 8K of memory when a complete bitmap is not 
required, while allowing the fully general case if 
desired. 

EXAMPLE OF BITMAP FOR 110 PORTS 0-255: 
Setting the TSS limit to (biLMap_Offset + 31 
+ 1"j [" see note below] will allow a 32-byte bit­
map for the 110 ports #0-255, plus a terminator 
byte of all 1 's [ •• see note below]. This allows the 
110 bitmap to control 110 Permission to 110 port 0-
255 while causing an exception 13 fault on attempt­
ed 110 to any 110 port 80256 through 65,565. 

"IMPORTANT IMPLEMENTATION NOTE: Beyond 
the last byte of 110 mapping information in the 110 
Permission Bitmap must be a byte containing all 1 'so 
The byte of all 1 's must be within the limit of the 386 
OX TSS segment (see Figure 4-15a). 

4_6_5 Interrupt Handling 

In order to fully support the emulation of an 8086 
machine, interrupts in Virtual 8086 Mode are han­
dled in a unique fashion. When running in Virtual 
Mode all interrupts and exceptions involve a privi­
lege change back to the host 386 OX operating sys­
tem. The 386 OX operating system determines if the 
interrupt comes from a Protected Mode application 
or from a Virtual Mode program by examining the 
VM bit in the EFLAGS image stored on the stack. 

When a Virtual Mode program is interrupted and ex­
ecution passes to the interrupt routine at level 0, the 
VM bit is cleared. However, the VM bit is still set in 
the EFLAG image on the stack. 

The 386 OX operating system in turn handles tbe 
exception or interrupt and then returns control to the 
8086 program. The 386,OX operating system may 
choose to let the 8086 operating system handle the 
interruot or it mav emulate the function of the inter­
rupt handler. For example, many 8086 operating 
system calls are accessed by PUSHing parameters 
on the stack, and then executing an INT n instruc­
tion. If the 10PL is set to 0 then alllNT n instructions 
will be intercepted by the 386 OX Microprocessor 
operating system. The 386 OX operating system 
could emulate the 8086 operating system's call. Fig" 
ure 4-25 shows how the 386 OX operating system 
could intercept an 8086 operating system's call to 
"Open a File". 

A 386 OX operating system can provide a Virtual 
8086 Environment which is totally transparent to the 
application software via intercepting and then emu­
lating 8086 operating system's calls, and intercept­
ing IN and OUT instructions. 

4-224 



inter 386TM ox MICROPROCESSOR 

4.6.6 Entering and Leaving Virtual 
8086 Mode 

Virtual 8086 mode is entered by executing an IRET 
instruction (at CPL = a), or Task Switch (at any CPL) 
to a 386 OX task whose 386 OX TSS has a FLAGS 
image containing a 1 in the VM bit position while the 
processor is executing in Protected Mode. That is, 
one way to enter Virtual 8086 mode is to switch to a 
task with a 386 OX TSS that has a 1 in the VM bit in 
the EFLAGS image. The other way is to execute a 
32-bit IRET instruction at privilege level 0, where the 
stack has a 1 in the VM bit in the EFLAGS image. 
POPF does not affect the VM bit, even if the proces­
sor is in Protected Mode or level 0, and so cannot be 
used to enter Virtual 8086 Mode. PUSHF always 
pushes a a in the VM bit, even if the processor is in 

. Virtual 8086 Mode, so that a program cannot tell if it 
is executing in REAL mode, or in Virtual 8086 mode. 

The VM bit can be set by executing an IRET instruc­
tion only at privilege level 0, or by any instruction or 
Interrupt which causes a task switch in Protected 
Mode (with VM = 1 in the new FLAGS image), and 
c~n be cleared only by an interrupt or exception in 
Virtual 8086 Mode. IRET and POPF instructions exe­
cuted in REAL mode or Virtual 8086 mode will not 
change the value in the VM bit. 

The transition out of virtual 8086 mode to 386 OX 
protected mode occurs only on receipt of an inter­
rupt or exception (such as due to a sensitive instruc­
tion). In Virtual 8086 mode, all interrupts and excep­
tions vector through the protected mode lOT, and 
enter an interrupt handler in protected 386 OX 
mode. That is, as part of interrupt processing, the 
VM bit is cleared. 

Because the matching IRET must occur from level a 
if an Interrupt or Trap Gate is used to field an inter~ 
rupt or exception out of Virtual 8086 mode, the Gate 
must perform an inter-level interrupt only to level o. 
Interrupt or Trap Gates through conforming seg­
ments, or through segments with DPL> 0, will raise a 
GP fault with the CS selector as the error code. 

4.6.6.1 TASK SWITCHES TO/FROM VIRTUAL 
8086 MODE 

Tasks which can execute in virtual 8086 mode must 
be described by a TSS with the new 386 OX format 
(TYPE 9 or 11 descriptor). 

A task switch out of virtual 8086 mode will operate 
exactly the same as any other task switch out of a 
task with a 386 OX TSS. All of the programmer visi­
ble state, including the FLAGS register with the VM 
bit set to 1, is stored in the TSS. The segment 

registers in the TSS will contain 8086 segment base 
values rather than selectors. 

A task switch into a task described by a 386 OX TSS 
will have an additional check to determine if the in­
coming task should be resumed in virtual 8086 
mode. Tasks described by 80286 format TSSs can­
not be resumed in virtual 8086 mode, so no check is 
required there (the FLAGS image in 80286 format 
TSS has only the low order 16 FLAGS bits). Before 
loading the segment register images from a 386 OX 
TSS, the FLAGS image is loaded, so that the seg­
ment registers are loaded from the TSS image as 
8086 segment base values. The task is now ready to 
resume in virtual 8086 execution mode. 

4.6.6.2 TRANSITIONS THROUGH TRAP AND 
INTERRUPT GATES, AND IRET 

A task switch is one way to enter or exit virtual 8086 
mode. The other method is to exit through a Trap or 
Interrupt gate, as part of handling an interrupt, and 
to enter as part of executing an IRET instruction. 
The transition out must use a 386 OX Trap Gate 
(Type 14), or 386 OX Interrupt Gate (Type 15), which 
must point to a non-conforming level a segment 
(OPL = a) in order to permit the trap handler to IRET 
back to the Virtual 8086 program. The Gate must­
point to a non-conforming level a segment to per­
form a level switch to level a so that the matching 
IRET can change the VM bit. 386 OX gates must be 
used, since 80286 gates save only the low 16 bits of 
the FLAGS register, so that the VM bit will not be 
saved on transitions through the 80286 gates. Also, 
the 16-bit IRET (presumably) used to terminate the 
8?286 interrupt handler will pop only the lower 16 
bits from FLAGS, and will not affect the VM bit. The 
~ction taken for a 386 OX Trap or Interrupt gate if an 
Interrupt occurs while the task is executing in virtual 
8086 mode is given by the following sequence. 

(1) Save the FLAGS register in a temp to push later. 
Turn off the VM and TF bits, and if the interrupt is 
serviced by an Interrupt Gate, turn off IF also. 

(2) Interrupt and Trap gates must perform a level 
switch from 3 (where the VM86 program exe­
cutes) to level a (so IRET can return). This pro­
cess involves a stack switch to the stack given in 
the TSS for privilege level o. Save the Virtual 
8086 Mode SS and ESP registers to push in a 
later step. The segment register load of SS will 
b~ done as a Protected Mode segment load, 
since the VM bit was turned off above. 

(3) Push the 8086 segment register values onto the 
new stack, in the order: GS, FS, OS, ES. These 
are pushed as 32-bit quantities, with undefined 
values in the upper 16 bits. Then load these 4 
registers with null selectors (0). 
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Figure 4-25. Virtual 8086 Environment Interrupt and Call Handling 

(4) Push the old SOS6 stack pointer onto the new 
stack by pushing the SSregister (as 32-bits, high 
bits undefined), then pushing the 32-bit ESP reg­
ister saved above. 

(5) Push the 32-bit FLAGS register saved in step 1. 

(6) Push the old SOS6 instruction pointer onto the 
new stack by pushing the CS register (as 32-bits, 
high bits undefined), then pushing the 32-bit EIP 
register. . 

(7) Load up me new CS:EiP vaiue from the interrupt 
, gate, and begin execution of the interrupt routine 

in protected 3S6 OX mode. 

The transition out of virtual SOS6 mode performs a 
level change and stack switch, in addition to chang-
ing back to protected mode. In addition, all of the 
S086 segment register images are stored on the 
stack (behind the SS:ESP image), and then loaded 
with null (0) selectors before entering the interrupt 
handler. This will permit the handler to safely save 
and restore the OS, ES, FS, and GS registers as 
S0286 selectors. This is needed so that interrupt 
handlers which don't care about the mode of the 
interrupted program can use the same prolog and 
epilog code for state saving (Le. push all registers in 
prolog, pop all in epilog) regardless of whether or not 
a "native" mode or Virtual SOS6 mode program was 
interrupted. Restoring null selectors to these regis­
ters before executing the IRET will not cause a trap 
in the interrupt handler. Interrupt routines which ex­
pect values in the segment registers, or return val-
ues in segment registers will have to obtain/return 
values from the SOB6 register images pushed onto 

the new stack. They will need to know the mode of 
the interrupted program in order to know where to 
find/return segment registers, and also to know how 
to interpret segment register values. 

The IRET instructioll will perform the inverse of the 
above sequence. Only the extended 3S6 OXs IRET 
instruction (operand size = 32) can be used, and 
must be executed at level a to change the VM bit to 
1. 

(1) If the NT bit in the FLAGs register is on, an inter­
task return is performed. The current state is 
stored in the current TSS, and the link field in the 
current TSS is used to locate the TSS for the 
interrupted task which is to be resumed. 

Otherwise, continue with the following sequence. 

(2) Read the FLAGS image from SS:B[ESP1 into the 
FLAGS register. This will set VM to the value ac­
tive in the interrupted routine. 

(3) Pop off the instruction pOinter CS:EIP. EIP is 
popped first, then a 32-bit word is popped which 
contains the CS value in the lower 16 bits. If 
VM = 0, this CS load is done as a protected 
mode segment load. If VM = 1, this will be done 
as an 8086 seg~ent load. 

(4) Increment the ESP register by 4 to bypass the 
FLAGS image which was "popped" in step 1. 

(5) If VM = 1, load segment registers ES, OS, FS, 
and GS from memory locations SS:[ESp+s1, 
SS:[ESP+ 121, SS:[ESP+ 161. and 
SS:[ESP+201, respectively, where the new val-
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ue of ESP stored in step 4 is used. Since VM = 1, 
these are done as 8086 segment register loads. 

Else if VM = 0, check that the selectors in ES, 
OS, FS, and GS are valid in the interrupted rou­
tine. Null out invalid selectors to trap if an at­
tempt is made to access through them. 

(6) If (RPL(CS) > CPL), pop the stack pointer 
SS:ESP from the stack. The ESP register is 
popped first, followed by 32-bits containing SS in 
the lower 16 bits. If VM = 0, SS is loaded as a 
protected mode segment register load. If VM = 1, 
an 8086 segment register load is used. 

(7) Resume execution of the interrupted routine. The 
VM bit in the FLAGS register (restored from the 
interrupt routine's stack image in step 1) deter­
mines whether the processor resumes the inter­
rupted routine in Protected mode of Virtual 8086 
mode. 

5. FUNCTIONAL DATA 

5.1 INTRODUCTION 
The 386 OX features a straightforward functional in­
terface to the external hardware. The 386 OX has 
separate, parallel buses for data and address. The 
data bus is 32-bits in width, and bidirectional. The 
address bus outputs 32-bit address values in the 
most directly usable form for the high-speed local 
bus: 4 individual byte enable signals, and the 30 up­
per-order bits as a binary value. The data and ad­
dress buses are interpreted and controlled with their 
associated control signals. 

A dynamic data bus sizing feature allows the proc­
essor to handle a mix of 32- and 16-bit external bus­
es on a cycle-by-cycle basis (see 5.3.4 Data Bus 
Sizing). If 16-bit bus size is selected, the 386 DX 
automatically makes any adjustment needed, even 
performing another 16-bit bus cycle to complete the 
transfer if that is necessary. 8-bit peripheral devices 
may be connected to 32-bit or 16-bit buses with no 
loss of performance. A new address pipelining op­
tion is provided and applies to 32-bit and 16-bit bus­
es for substantially improved memory utilization, es­
pecially for the most heavily used memory resourc­
es. 

The address pipelining option, when selected, typ­
ically allows a given memory interface to operate 
with one less wait state than would otherwise be 
required (see 5.4.2 Address Pipelining). The pipe­
lined bus is also well suited to interleaved memory 
designs. When address pipelining is requested by 
the external hardware, the 386 OX will output the 
address and bus cycle definition of the next bus cy­
cle (if it is internally available) even while waiting for 
the current cycle to be acknowledged. 

Non-pipelined address timing, however, is ideal for 
external cache designs, since the cache memory will 
typically be fast enough to allow non-pipelined cy­
cles. For maximum design flexibility, the address 
pipelining option is selectable on a cycle-by-cycle 
basis. 

The processor's bus cycle is the basic mechanism 
for information transfer, either from system to proc­
essor, or from processor to system. 386 OX bus cy­
cles perform data transfer in a minimum of only two 
clock periods. On a 32-bit data bus, the maximum 
386 DX transfer bandwidth at 20 MHz is therefore 
40 MBytes/sec, at 25 MHz bandwidth, is 
50 Mbytes/sec, and at 33 MHz bandwidth, is 
66 Mbytes/sec. Any bus cycle will be extended for 
more than two clock periods, however, if external 
hardware withholds acknowledgement of the cycle. 
At the appropriate time, acknowledgement is sig­
nalled by asserting the 386 OX READY # input. 

The 386 OX can relinquish control of its local buses 
to allow mastership by other devices, such as direct 
memory access channels. When relinquished, HLOA 
is the only output pin driven by the 386 DX providing 
near-complete isolation of the processor from its 
system. The near-complete isolation characteristic is 
ideal when driving the system from test equipment, 
and in fault-tolerant applications. 

Functional data covered in this chapter describes 
the processor's hardware interface. First, the set of 
signals available at the processor pins is described 
(see 5.2 Signal Description). Following thai are the 
signal waveforms occurring during bus cycles (see 
5.3 Bus Transfer Mechanism, 5.4 Bus Functional 
Description and 5.5 Other Functional Descrip­
tions). 

5.2 SIGNAL DESCRIPTION 

5.2.1 Introduction 

Ahead is a brief description of the 386 DX input and 
output signals arranged by functional. groups. Note 
the # symbol at the end of a signal name indicates 
the active, or asserted, state occurs when the signal 
is at a low Voltage. When no # is present after the 
signal name, the signal is asserted when at the high 
voltage level. 

Example Signal: M/IO# - High voltage indicates 
Memory selected 

- Low voltage indicates 
I/O selected 
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Figure 5-1. Functional Signal Groups 
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Figure 5-2. CLK2 Signal and Internal Processor Clock 

The signal descriptions sometimes refer to AC tim­
ing paiameteis, such as "t25 Reset Setup Time" and 
"t26 Reset Hold Time." The values of these parame­
ters can be found in Tables 7-4 and 7-5. 

5.2.2 Clock (CLK2) 

CLK2 provides the fundamental timing for the 386 
DX. It is divided by two internally to generate the 
internal processor clock used for instruction execu­
tion. The internal clock is comprised of two phases, 
"phase one" and "phase two." Each CLK2 period is 
a phase of the internal clock. Figure 5-2 illustrates 
the relationship. If desired, the phase of the internal 
processor clock can be synchronized to a known 
phase by ensuring the RESET signal falling edge 
meets its applicable setup and hold times, t25 and 
t26' 

5.2.3 Data Bus (DO through 031) 

These three-state bidirectional signals provide the 
general purpose data path between the 386 DX a~d 

other devices. Data bus inputs and outputs indicate 
11"", ••• t.. __ UIr"U -rk_ ...1_+ ... 10.. ...... ___ + ........... , ........... "'.,.. ....... 

I "'fII"'11 I IIUI I. I IIQ UQLQ uu~ \Jail LI QII.;tlwl UQLQ UII 

32- and 16-bit buses using a data bus sizing feature 
controlled by the 8516# input. See section 5.2.6 
Bus Contol. Data bus reads· require that read data 
setup and hold times t21 and t22 be met for correct 
operation. In addition, the 386 DX requires that all 
data bus pins be at a valid logiC state (high or low) at 
the end of each read cycle, when READY # is as­
serted. During any write operation (and during halt 
cycles and shutdown cycles), the 386 DX always 
drives all 32 signals of the data bus even if the cur­
rent bus size is 16-bits. 

5.2.4 Address Bus (BED # through 
BE3#, A2 through A31) 

These three-state outputs provide physical memory 
addresses or I/O port addresses. The address bus 
is capable of addressing 4 gigabytes of physical 
memory space (OOOOOOOOH through FFFFFFFFH), 
and 64 kilobytes of liD address space (OOOOOOOOH 
through OOOOFFFFH) for programmed .110. liD 
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transfers automatically generated for 386 OX-to-co­
processor communication use 1/0 addresses 
800000F8H through 800000FFH, so A31 HIGH in 
conjunction with M/IO# LOW allows simple genera­
tion of the coprocessor select signal. 

The Byte Enable outputs, BEO#-BE3#, directly in­
dicate which by1es of the 32-bit data bus are in­
volved with the current transfer. This is most conve­
nient for external hardware. 

BEO# applies to 00-07 
BE1 # applies to 08-015 
BE2 # applies to 016-023 
BE3 # applies to 024-031 

The number of Byte Enables asserted indicates the 
physical size of the operand being transferred (1, 2, 
3, or 4 bytes). Refer to section 5.3.6 Operand Align­
ment. 

When a memory write cycle or 1/0 write cycle is in 
progress, and the operand being transferred occu­
pies only the upper 16 bits of the data bus (016-
031), duplicate data is simultaneously presented on 
the corresponding lower 16-bits of the data bus 
(00-015). This duplication is performed for optimum 
write performance on 16-bit buses. The pattern of 
write data duplication is a function of the By1e En­
ables asserted during the write cycle. Table 5-1 lists 
the write data present on 00-031, as a function of 
the asserted Byte Enable outputs BEO#-BE3#. 

5.2.5 Bus Cycle Definition Signals 
(W/R#, D/C#, M/IO#, LOCK#) 

These three-state outputs define the type of bus cy­
cle being performed. W/R# distinguishes between 
write and read cycles. O/C# distinguishes between 
data and control cycles. MIIO# distinguishes be­
tween memory and 1/0 cycles. LOCK # distin­
guishes between locked and unlocked bus cycles. 

The primary bus cycle definition signals are W/R#, 
O/C# and M/IO#, since these are the signals driv­
en valid as the ADS # (Address Status output) is 
driven asserted. The LOCK # is driven valid at the 
same time as the first locked bus cycle begins, 
which due to address pipelining, could be later than 
AOS# is driven asserted. See 5.4.3.4 Pipelined Ad­
dress. The LOCK # is negated when the READY # 
input terminates the last bus cycle which was 
locked. 

Exact bus cycle definitions, as a function of W IR #, 
O/C#, and M/IO#, are given in Table 5-2. Note one 
combination of W/R#, O/C# and M/IO# is never 
given when AOS# is asserted (however, that combi­
nation, which is listed as "does not occur," mayoc­
cur during idle bus states when ADS# is not assert­
ed). If MIIO#, O/C#, and W/R# are qualified by 
ADS # asserted, then a decoding scheme may be 
simplified by using this definition of the "does not 
occur" combination. 

Table 5-1 Write Oata Ouplication as a Function of BEQ # - BE3 # 

386TM OX Byte Enables 386TM OX Write Oata Automatic 

BE3# BE2# BE1# BEO# 024-031 016-023 08-015 00-07 Ouplication? 

High High High Low undef undef undef A No 
High High Low High undef undef B undef No 

'High Low High High undef C undef C Yes 
Low High High High 0 undef 0 undef Yes 

High High Low Low undef undef B A No 
High Low Low High undef C B undef No 
Low Low High High 0 C 0 C Yes 

High Low Low Low undef C B A No 
Low ' Low Low High 0 C B undef No 

Low Low Low Low 0 C B A No 

Key: 
o = logical write data d24-d31 
C = logical write data d16-d23 
B = 'logical write data d8-d15 
A = logical write data dO-d7 
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Table 5-2 Bus Cycle Definition 

MilO # D/C# W/R# Bus Cycle Type Locked? 

Low Low· Low INTERRUPT ACKNOWLEDGE Yes 

Low Low High does not occur 

Low High Low 1/0 DATA READ No 

Low High High 1/0 DATA WRITE No 

High Low Low MEMORY CODE READ No 

High Low High HALT: SHUTDOWN: No 
Address = 2 Address = 0 

(BEO# High (BEO# Low 
BE1 # High BE1 # High 
BE2# Low BE2# High 
BE3# High BE3# High 
A2-A31 Low) A2 A31 Low) 

High High Low MEMORY DATA READ Some Cycles 

High High High MEMORY DATA WRITE Some Cycles 

5.2.6 Bus Control Signals (ADS # , 
READY#, NA#, BS16#) 

5.2.6.1 INTRODUCTION 

The following signals allow the processor to indicate 
when a bus cycle has begun, and allow other system 
h~rdware to control address pipelining, data bus 
width and bus cycle termination. 

5.2.6.2 ADDRESS STATUS (ADS#) 

This three-state output indicates that a valid bus cy­
cle definition, and address (W/R#, D/C#, M/IO#, 
BEO#-BE3#, And A2-A31) is beina driven at the 
386 DX pins. It is asserted during T1 and T2P bus 
states (see 5.4.3.2 Non-pipelined Address and 
5.4.3.4 Plpellned Address for additional information 
on bus states). 

5.2.6.3 TRANSFER ACKNOWLEDGE (READY#) 

This input indicates the current bus cycle is com-' 
plete, and the active bytes indicated by BEO #­
BE3# and BS16# are accepted or provided. When 
~EADY # is sampled asserted during a read cycle or 
Interrupt acknowledge cycle, the 386 DX latches the 
input data and terminates the cycle. When READY # 
is sampled asserted during a write cycle, the proces­
sor terminates the bus cycle. 

READY # is ignored on the first bus state of all bus 
cycles, and sampled each bus state thereafter until 
asserted. READY # must eventually be asserted to 
~cknowledge every bus cycle, including Halt Indica­
tion and Shutdown Indication bus cycles. When be­
ing sampled, READY must always meet setup and 

hold. times t19 and t20 for correct operation. See all 
sections of 5.4 Bus Functional Description. 

5.2.6.4 NEXT ADDRESS REQUEST (NA#) 

This is used to request address pipelining. This input 
indicates the system is prepared to accept new val­
ues of BEO#-BE3#, A2-A31, W/R#, D/C# and 
M/IO# from the 386 DX even if the end of the cur­
rent cycle is not being acknowledged on READY #. 
If this input is asserted when sampled, the next ad­
dress is driven onto the bus; provided the next bus 
request is already pending internally. See 5.4.2 Ad­
dress Pipelining and 5.4.3 Read and Write 
Cycles. NA # must always meet setup and hold 
iiffles, 115 and t161 for corfect operation. 

5.2.6.5 BUS SIZE 16 (BS16#) 

The BS16# feature allows the 386 DX to directly 
connect to 32-bit and 16-bit data buses. Asserting 
this input constrains the current bus cycle to use 
only the lower-order half (DO-D15) of the data bus 
corresponding to BEO# and BE1 #. Asserting 
BS16# has no additional effect if only BEO# andlor 
BE~ # are asserted in the current cycle. However, 
dunng bus cycles asserting BE2# or BE3# assert­
ing BS16# will automatically cause the38S DX to 
make adjustments for correct transfer of the upper 
bytes(s) using only physical data signals DO-D15. 

If the operand. spans both halves of. the data bus 
and BS16# is asserted, the 386 DX will automatical­
ly perform another 16-bit bus cyCle. BS16# must 
always meet setup and hold times t17 and t18 for 
correct operation. 
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386 OX I/O cycles are automatically generated for· 
coprocessor communication. Since the 386 OX must 
transfer 32-bit quantities between itself and the 387 
OX, BS16# must not be asserted during 387 OX 
communication cycles. 

5.2.7 Bus Arbitration Signals 
(HOLD, HLDA) 

5.2.7.1 INTRODUCTION 

This section describes the mechanism by which the 
processor relinquishes control of its local buses 
when requested by another bus master device. See 
5.5.1 Entering and Exiting Hold Acknowledge for 
additional information. 

5.2.7.2 BUS HOLD REQUEST (HOLD) 

This input indicates some device other than the 386 
DX requires bus mastership. 

HOLO must remain asserted as long as any other 
device is a local bus master. HOLO is not recognized 
while RESET is asserted. If RESET is asserted while 
HOLO is asserted, RESET has priority and places 
the bus into an idle state, rather than the hold ac­
knowledge (high impedance) state. 

HOLO is level-sensitive and is a synchronous input. 
HOLD signals must always meet setup and hold 
times t23 and t24 for correct operation. 

5.2.7.3 BUS HOLD ACKNOWLEDGE (HLDA) 

Assertion of this output indicates the 386 OX has 
relinquished control of its local bus in response to 
HOLO asserted, and is in the bus Hold Acknowledge 
state. 

The Hold Acknowledge state offers near-complete 
signal isolation. In the Hold Acknowledge state, 
HLOA is the only signal being driven by the 386 OX. 
The other output signals or bidirectional signals 
(00-031, BEO#-BE3#, A2-A31, W/R#, O/C#, 
M/IO#, LOCK# and AOS#) are in a high-imped­
ance state so the requesting bus master may control 
them. Pullup resistors may be desired on several sig­
nals to avoid spurious activity when no bus master is 
driving them. See 7.2.3 Resistor Recommenda­
tions. Also, one rising edge occuring on the NMI 
input during Hold Acknowledge is remembered, for 
processing after the HOLO input is negated. 

In addition to the normal usage of Hold Acknowl­
edge with OMA controllers or master peripherals, 
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the near-complete isolation has particular attractive­
ness during system test when test equipment drives 
the system, and in hardware-fault-tolerant applica­
tions. 

5.2.8 Coprocessor Interface Signals 
(PEREQ, BUSY # , ERROR #) 

5.2.8.1 INTRODUCTION 

In the following sections are descriptions of signals 
dedicated to the numeric coprocessor interface. In 
addition to the data bus, address bus, and bus cycle 
definition signals, these following signals control 
communication between the 386 OX and its 387 OX 
processor extension. 

5.2.8.2 COPROCESSOR REQUEST (PEREQ) 

When asserted, this input signal indicates a coproc­
essor request for a data operand to be transferred 
to/from memory by the 386 OX. In response, the 
386 OX transfers information between the coproces­
sor and memory. Because the 386 OX has internally 
stored the coprocessor opcode being executed, it 
performs the requested data transfer with the cor­
rect direction and memory address. 

PEREa is level-sensitive and is allowed to be asyn­
chronous to the CLK2 signal. 

5.2.8.3 COPROCESSOR BUSY (BUSY #) 

When asserted, this input indicates the coprocessor 
is still executing an instruction, and is not yet able to 
accept another. When the 386 OX encounters any 
coprocessor instruction which operates on the nu­
meric stack (e.g. load, pop, or arithmetic operation), 
or the WAIT instruction, this input is first automatical­
ly sampled until it is seen to be negated. This sam­
pling of the BUSY # input prevents overrunning the 
execution of a previous coprocessor instruction. 

The FNINIT and FNCLEX coprocessor instructions 
are allowed to execute even if BUSY # is asserted, 
since these instructions are used for coprocessor 
initialization and exception-clearing. 

BUSY # is level-sensitive and is allowed to be asyn­
chronous to the CLK2 signal. 

BUSY # serves an additional function. If BUSY # is 
sampled LOW at the falling edge of RESET, the 386 
OX performs an internal self-test (see 5.5.3 Bus Ac­
tivity During and Following Reset). If BUSY # is 
sampled HIGH, no self-test is performed. 
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5.2.8.4 COPROCESSOR ERROR (ERROR #) 

This input signal indicates that the previous coproc· 
essor instruction generated a coprocessor error of a 
type not masked by the coprocessor's control regis­
ter. This input is automatically sampled by the 386 
OX when a coprocessor instruction is encountered, 
and if asserted, the 386 OX generates exception 16 
to 'access the error-handling software. 

Several coprocessor instructions, generally those 
which clear the numeric error flags in the coproces­
sor or save coprocessor state, do execute without 
the 386 OX generating exception 16 even if ER­
ROR # is asserted. These instructions are FNINIT, 
FNCLEX, FSTSW, FSTSWAX, FSTCW, FSTENV, 
FSAVE, FESTENV and FESAVE. 

ERROR # is level-sensitive and is allowed to be 
asynchronous to the CLK2 signal. 

5.2.9 Interrupt Signals (INTR, NMI, 
RESET) , 

5.2.9.1 INTRODUCTION 

The following descriptions cover inputs that can in­
terrupt or suspend execution of the processor's cur­
rent instruction stream. 

5.2.9.2 MASKABLE INTERRUPT REQUEST (INTR) 

When asserted, this input indicates a request for in­
terrupt service, which can be masked by the 386 OX 
Flag Register IF bit. When the 386 OX responds to 
the INTR input, it performs two interrupt acknowl­
edge bus cycles, and at the end of the second, 
latches an 8-bit interrupt vector on 00-07 to identify 
the source of the interrupt. 

INTR is level-sensitive and is allowed to be asyn­
chronous to the CLK2 signal. To assure recognition 
of an INTR request, INTR should remain asserted 
until the first interrupt acknowledge bus cycle be­
gins. 

5.2.9.3 NON·MASKABLE INTERRUPT REQUEST 
(NMI) 

This input indicates a request for interrupt service, 
which cannot be masked by software. The non-

maskable interrupt request is always processed ac­
cording to the pointer or gate in slot 2 of the interrupt 
table. Because of the fixed NMI slot assignment, no 
interrupt acknowledge cycles are perfomed when 
processing NMI. 

NMI is rising edge-sensitive and is allowed to be 
asynchronous to the CLK2 signal. To assure recog­
nition of NMI, it must be negated for at least eight 
CLK2 periods, and then be asserted for at least 
eight CLK2 periods. 

Once NMI processing has begun, no additional 
NMl's are processed until after the next IRET in­
struction, which is typically the end of the NMI serv­
ice routine. If NMI is re-asserted prior to that time, 
however, one rising edge on NMI will be remem­
bered for processing after executing the next IRET 
instruction. 

5.2.9.4 RESET (RESET) 

This input signal suspends any operation in prpgress 
and places the 386 OX in a known reset state. The 
386 OX is reset by asserting RESET for 15 or more 
CLK2 periods (80 or more CLK2 periods before re­
questing self test). When RESET is asserted, all oth­
er input pins are ignored, and all other bus pins are 
driven to an idle bus state as shown in Table 5-3. If 
RESET and HOLD are both asserted at a point in 
time, RESET takes priority even if the 386 OX was in 
a Hold Acknowledge state prior to RESET asserted. 

RESET is level-sensitive and must be synchronous 
to the CLK2 signal. If desired, the phase of the inter­
nal processor clock, and the entire 386 OX state can 
be completely synchronized to external circuitry by 
ensuring the RESET Signal falling edge meets its ap­
pllcabie setup and hoid times, t25 and 126. 

Table 5-3. Pin State (Bus Idle) During Reset 
Pin Name Signal Level During Reset 

ADS# High 
DO-031 High Impedance 
BEO#-BE3# Low 
A2-A31 High 
W/R# Low 
D/C# High 
MIIO# Low 
LOCK # High 
HLOA Low 
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5.2.10 Signal Summary 

Table 5-4 summarizes the characteristics of all 386 DX signals. 

Table 5-4. 386TM OX Signal Summary 

Signal Name Signal Function 

CLK2 Clock 

OO-D31 Data Bus 

BEO#-BE3# Byte Enables 

A2-A31 Address Bus 

W/R# Write-Read Indication 

D/C# Data-Control Indication 

M/IO# Memory-I/O Indication 

LOCK# Bus Lock Indication 

AD8# Address 8tatus 

NA# Next Address Request 

B816# Bus8ize 16 

READY# Transfer Acknowledge 

HOLD Bus Hold Request 

HLDA Bus Hold Acknowledge 

PEREa Coprocessor Request 

BU8Y# Coprocessor Busy 

ERROR# Coprocessor Error 

INTR Maskable Interrupt Request 

NMI Non-Maskable Intrpt Request 

RE8ET Reset 

5.3 BUS TRANSFER MECHANISM 

5.3.1 Introduction 

All data transfers occur as a result of one or more 
bus cycles. Logical data operands of byte, word and 
double-word lengths may be transferred without re­
strictions on physical address alignment. Any byte 
boundary may be used, although two or even three 
physical bus cycles are performed as required for 
unaligned operand transfers. 8ee 5.3.4 Dynamic 
Data Bus Sizing and 5.3.6 Operand Alignment. 

Input 
Output 

Active Input! Synch or 
High Impedance 

State Output Asynch 
During HLDA? 

toCLK2 

- I - -
High 1/0 8 Yes 

Low 0 - Yes 

High 0 - Yes 

High 0 - Yes 

High 0 - Yes 

High 0 - Yes 

Low 0 - Yes 

Low 0 - Yes 

Low I 8 -
Low I 8 -
Low I 8 -
High I 8 -
High 0 - No 

High I A -

Low I A -
Low I A -
High I A -
High I A -
High I 8 -

The 386 DX address signals are designed to simplify 
external system hardware. Higher-order address bits 
are provided by A2-A31. Lower-order address in the 
form of BEO#-BE3# directly provides linear selects 
for the four bytes of the 32-bit data bus. Physical 
operand size information is thereby implicitly provid­
ed each bus cycle in the most usable form. 

Byte Enable outputs BEO# -BE3# are .asserted 
when their associated data bus bytes are involved 
with the present bus cycle, as listed in Table 5-5. 
During a bus cycle, any possible pattern of contigu­
ous, asserted Byte Enable outputs can occur, but 
never patterns having a negated Byte Enable sepa­
rating two or three asserted Enables. 
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Address bits AO and A1 of the physical operand's 
base address can be created when necessary (for 
instance, for MUL TIBUS® I or MUL TIBUS® II inter­
face), as a function of the lowest-order asserted 
Byte Enable. This is shown by Table 5-6. Logic to 
generate AO and A 1 is given by Figure 5-3. 

Table 5-5. Byte Enables and Associated 
Data and Operand Bytes 

Byte Enable Signal Associated Data Bus Signals 

BEO# 00-07 (byte O-Ieast significant) 

BE1# 08-015 (byte 1) 

BE2# 016-023 (byte 2) 

BE3# 024-031 (byte 3-most significant) 

8EO# 
L H 

L x H L L 
L 

L x L 

A31 

A31 

A31 

A31 

A31 

A31 

BEO# 

Table 5-6. Generating AO-A31 from 
BEO#-BE3# and A2-A31 

386TM DX Address Signals 

......... A2 BE3# BE2# BE1# 

Ph9sical Base 
Address 

......... A2 Al AO 

......... A2 0 0 X X X 

......... A2 0 1 X X Low 

......... A2 1 0 X Low High 

......... A2 1 1 Low High High 

BEO# 

Low 

High 

High 

High 

BE2# 
:l-i 

H 
L L X L 

, [~1 BE3# BE1# _ ...... L-... 
H 

x x fI x 

L H L 

BE1# 

K - Map for A 1 Signal 

L 

BE2# 
H 

BEO# 
L H 

L x L H L 

L x L If 
H 

L L x H 

I x I x !>H IX)I L 
L H L 

BE1# 

K - Map for AO Signal 

L 

231630-3 

BE3# 

231630-4 

Figure 5-3. Logic to Generate AO, A1 from BEO#-BE3# 

Each bus cycle is composed of at least two bus 
states. Each bus ~tate requires one processor clock 
period. Additional bus states added to a single bus 
cycle are called wait states. See 5.4 Bus Functional 
Description. 

Since a bus cycle requires a minimum of two bus 
states (equal to two processor clock periods), data 
can be transferred between external devices and 
the 386 OX at a maximum rate of one 4-byte Oword 
every two processor clock periods, for a maximum 
bus bandwidth of 66 megabytes/second (386 OX 
operating at 33 MHz processor clock rate). 

5.3.2' Memory and 1/0 Spaces 

Bus cycles may access physical memory space or 
I/O space. Peripheral devices in the system may ei· 
ther be memory-mapped, or I/O-mapped, or both. 
As shown in Figure 5-4, physical memory addresses 
range from OOOOOOOOH to FFFFFFFFH (4 gigabytes) 
and I/O addresses from OOOOOOOOH to OOOOFFFFH 
'(64 kilobytes) for programmed I/O. Note the I/O ad­
dresses used by the automatic I/O cycles for co­
processor communication are 800000F8H to 
800000FFH, beyond the address range of pro­
grammed I/O, to allow easy generation of a cqproc­
essor chip select signal using the A31 and MIIO# 
signals. 
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64 kBYTE PROGRAMMED 
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231630-5 
Physical Memory Space 1/0 Space 

NOTE: 
Since A31 is HIGH during automatic communication with coprocessor, A31 HIGH and M/IO# LOW can be used to 
easily generate a coprocessor select signal. 

Figure 5-4. Physical Memory and I/O Spaces 

5.3.3 Memory and I/O Organization 

The 386 OX datapath to memory and I/O spaces 
can be 32 bits wide or 16 bits wide. When 32-bits 
wide, memory and 110 spaces are organized natural­
ly as arrays of physical 32-bit Owords. Each memory 
or 110 Oword has four individually addressable bytes 
at consecutive byte addresses. The lowest-ad­
dressed byte is associated with data signals 00-07; 
the highest-addressed byte with 024-031. 

The 386 OX includes a bus control input, B516#, 
that also allows direct connection to 16-bit memory 
or I/O spaces organized as a sequence of 16-bit 
words. Cycles to 32-bit and 16-bit memory or 110 
devices may occur in any sequence, since the 
B516# control is sampled during each bus cycle. 
5ee 5.3.4 Dynamic Data Bus Sizing. The Byte En­
able signals, BEO#-BE3#, allow byte granularity 
when addressing any memory or 110 structure, 
whether 32 or 16 bits wide. 

5.3.4 Dynamic Data Bus Sizing 

Oynamic data bus sizing is a feature allowing direct 
processor connection to 32-bit or 16-bit data buses 
for memory or 110. A Single processor may connect 
to both size buses. Transfers to or from 32- or 16-bit 
ports are supported by dynamically. determining the 
bus width during each bus cycle. Ouring each bus 
cycle an address decoding circuit or the slave de-

vice itself may assert B516# for 16-bit ports, or ne­
gate B516# for 32-bit ports. 

With B516# asserted, the processor automatically 
converts operand transfers larger than 16 bits, or 
misaligned 16-bit transfers, into two or three trans­
fers as required. All operand transfers physically oc­
cur on 00-015 when B516# is asserted. There­
fore, 16-bit memories or 110 devices only connect 
on data signals 00-015. No extra transceivers are 
required. 

Asserting B516# only affects the processor when 
BE2# andlor BE3# are asserted during the current 
cycle. If only 00-015 are involved with the transfer, 
asserting B516# has no affect since the transfer 
can proceed normally over a 16-bit bus whether 
B516# is asserted or not. In other words, asserting 
8516# has no effect when only the lower half of the 
bus is involved with the current cycle. 

There are two types of situations where the proces­
sor is affected by asserting B516#, depending on 
which 8yte Enables are asserted during the current 
bus cycle: 

Upper Half Only: 
Only 8E2# andlor BE3# asserted. 

Upper and Lower Half: 
At least BEl #, BE2 # asserted (and perhaps 
also BEO# andlor BE3#). 

4-235 



inter 386TM DX MICROPROCESSOR 

Effect of asserting B516# during "upper half only" 
read cycles: 

Asserting B516# during "upper half only" reads 
causes the 386 OX to read data on the lower 16 
bits of the data bus and ignore data on the upper 
16 bits of the data bus. Oata that would have been 
read from 016-031 (as indicated by BE2# and 
BE3#) will instead be read from 00-015 respec­
tively. 

Effect of asserting B516# during "upper half only" 
write cycles: 

Asserting B516# during "upper half only" writes 
does not affect the 386 OX. When only BE2 # 
and/or BE3# are asserted during a write cycle 
the 386 OX always duplicates data signals 
D16-031 onto 00-015 (see Table 5-1). There­
fore, no further 386 OX action is required to per­
form these writes on 32-bit or 16-bit buses. 

Effect of asserting B516# during "upper and lower 
half" read cycles: 

Asserting B516# during "upper and lower half" 
reads causes the processor to perform two 16-bit 
read cycles for complete physical operand trans­
fer. Bytes 0 and 1 (as indicated by BEO# and 
BE1 #) are read on the first cycle using 00-015. 
Bytes 2 and 3 (as indicated by BE2# and BE3#) 
are read during the second cycle, again using 
DO-015. 016-031 are ignored during both 16-bit 
cycles. BEO# and BE1 # are always negated dur­
ing the second 16-bit cycle (5ee Figure 5-14, cy-' 
cles 2 and 2a). 

Effect of asserting B516# during "upper and lower 
half" write cycles: 

Asserting B516# during "upper and lower half" 
writes causes the 386 OX to perform two 16-bit. 
write cycles for.complete physical operand trans­
fer. All bytes are available the first write cycle al­
lowing external hardware to receive Bytes 0 and 1 
(as indicated by BEO# and BE1 #) using 00-015. 
On the second cycle the 386 OX duplicates Bytes 
2 and 3 on 00-015 and Bytes 2 and 3 (as indicat­
ed by BE2# and BE3#) are written using 00-
015. BEO# and BE1 # are always negated during 
the second 16-bit cycle. B516# must be asserted 
during the second 16-bit cycle. 5ee Figure 5-14, 
cycles 1 and 1a. 

5.3.5 Interfacing with 32- and 16-Bit 
Memories . 

In 32-bit-wide physical memories such as Figure 5-5, 
each physical Oword begins at a byte address that is 
a multiple of 4. A2-A31 are directly used as a Oword 
select and BEO#-BE3# as byte selects. B516# is 
negated for all bus cycles involving the 32-bit array. 

When 16-bit-wide physical arrays are included in the 
system, as in Figure 5-6, each 16-bit physical word 
begins at a address that is a multiple of 2. Note the 

. address is decoded, to assert B516# only during 
bus cycles involving the 16-bit array. (If desiring to 

I ~ 32 ( DATA BUS (00-031) I· I 
386 ™ OX ' ~ 32-BIT 

CPU AuuRESS BuS (BEO/I""BE3i!',AZ-A31) r.1EMORY I 
BSI6# 

"HIGH" 
231630-6 

Figure 5-5. 386TM OX with 32-Bit Memory 

DATA BUS (00-031) 

ADDRESS BUS 

(BEO#-BE3#,A2-A31) 

DATA BUS (00-015) 

32-BIT 
MEMORY 

16-BIT 
~-"";'==;;"';;'';';;''=;'';';;;';':'~~MEMORY 

Figure 5-6. 386TM OX with 32-Bit and 16-Bit Memory 
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use pipelined address with 16-bit memories then 
BEO#-BE3# and W/R# are also decoded to de­
termine when BS16# should be asserted. See 
5.4.3.6 Pipelined Address with Dynamic Data Bus 
Sizing.) 

A2-A31 are directly usable for addressing 32-bit 
and 16-bit devices. To address 16-bit devices, A1 
and two byte enable signals are also needed. 

To generate an A1 Signal and two Byte Enable sig­
nals for 16-bit access, BEO # -BE3 # should be de­
coded as in Table 5-7. Note certain combinations of 
BEO # - BE3 # are never generated by the 386 OX, 
leading to "don't care" conditions in the decoder. 
Any BEO#-BE3# decoder, such as Figure 5-7, may 
use the non-occurring BEO#-BE3# combinations 
to its best advantage. 

5.3.6 Operand Alignment 

With the flexibility of memory addressing on the 386 
OX, it is possible to transfer a logical operand that 
spans more than one physical Oword or word of 
memory or 1/0. Examples are 32-bit Owordoperands 

beginning at addresses not evenly divisible by 4, or a 
16-bit word operand split between two physical 
Owords of the memory array. 

Operand alignment and data bus size dictate when 
multiple bus cycles are required. Table 5-8 describes 
the transfer cycles generated for all combinations of 
logical operand lengths, alignment, and data bus siz­
ing. When multiple bus cycles are required to trans­
fer a multi-byte logical operand, the highest-order 
bytes are transferred first (but if BS 16 # asserted 
requires two 16-bit cycles be performed, that part of 
the transfer is low-order first). 

5.4 BUS FUNCTIONAL DESCRIPTION 

5.4.1 !ntroc!!..lct!on 

The 386 OX has separate, parallel buses for data 
and address. The data bus is 32-bits in width, and 
bidirectional. The address bus provides a 32-bit val­
ue using 30 signals for the 30 upper-order address 
bits and 4 Byte Enable signals to directly indicate the 
active bytes. These buses are interpreted and con­
trolled via several associated definition or conti 01 
signals. 

Table 5-7. Generating A1, BHE# and BLE# for Addressing 16-Bit Devices 

386TM DX Signals 16-Bit Bus Signals 
Comments 

BE3# BE2# BE1# BEO# A1 BHE# BLE# (AO) 

H* H* H* H* x x x x-no active bytes 
H H H L L H L 
H H L H L L H 
H H L L L L L 
H L H H H H L 
H* L* H* L* x x x x-not contiguous bytes 
H L L H L L H 
H L L .L ·L L L 
L H H H H L H 
L* H* H* L* x x x x-not contiguous bytes 
L* H* L* H* x x x x-not contiguous bytes 
L* H* L* L* x x x x-not contiguous bytes 
L L H H H L L 
L* L* H* L' x x x x-not continguous bytes 
L L L H L L H 
L L L L L L L 

BLE# asserted when 00-07 of 16-bit bus is active. 
BHE # asserted when 08-015 of 16-bit bus is active. 
A 1 low for all even words; A 1 high for all odd words. 

Key: 
x = don't care 
H = high voltage level 
L = low voltage level 
* = a non-occurring pattern of Byte Enables; either none are asserted, 

or the pattern has Byte Enables asserted for non-contiguous bytes 
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BEON 
L H 

BE2N 

L x 1:\ L L 
L 

)1', L x L 

'~' 
H 

L L L 
H 

[~'.Al BE3N BEIN 
--t.... ... 

BEON 

x x f.I x L 

L H L 

BEIN 
231630-8 

K-map for Al signal (same as Figure 5-3) 

BEON 
L H 

L x L L L 

BE2N 
L 

L ,x, :f:I L 
:H js)L 

H 
L 

H 
x x L x L 

L H L 

BEIN 
231630-9 

K-map for 16-bit BHE# signal 

BEON 
L H BEON 

L x L Ii L BE2N L 
L x L ,H: 

BE2N li:, H 
H BE3N 

L L 
H fj, ·x: x x L 

L H L 

BEIN 
231630-10 

K-map for 16-b~ BLE # signal (same as AO signal in Figure 5-3) 

Figure 5-7. Logic to Generate A1, BHE# and ~LE# for 16-Blt Buses 

Table 5-8. Transfer Bus Cycles for Bytes, Words and Dwords 

Byte-Length of Logical Operand 

1 2 4 

Physical Byte Address xx 00 01 10 11 00 01 10 11 
in Memory (low-order bits) 

Transfer Cycles over b w w w hb: d hb hw, h3, 
32-Bit Data Bus Ib 13 Iw Ib 

Transfer Cycles over b w 1bJ: w hb, 1W4<, hb, hw, 
" 

mw, 
16-Bit Data Bus "hb' Ib .'~:~; :<~;:i; Iw 'hb; 

~ 

;'nIW ' Ib 

Key: 'b = byte transfer 3 = 3-byte transfer 
w = word transfer d = Dword transfer 
I = low-order portion h = high-order portion 
m = mid-order portion 
x = don't care 
, = BS 16 # asserted causes second bus cycle 

"For this case, BOB6, BOBB, B0186, 801 BB, 80286 transfer Ib first, then hb. 
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The definition of each bus oycle is given by three 
definition signals: M/IO#, W/R# and O/C#. At the 
same time, a valid address is present on the byte 
enable signals BED # - BE3 # and other address sig­
nals A2-A31. A status signal, AOS#, indicates 
when the 386 OX issues a new bus cycle definition 
and address. 

Collectively, the address bus, data bus and all asso­
ciated control signals are referred to simply as "the 
bus". 

When active, the bus performs one of the bus cycles 
below: 

1) read from memory space 

2) locked read from memory space 

3) write to memory space 

4) locked write to memory space 

5) read from 110 space (or coprocessor) 

6) write to 110 space (or coprocessor) 

7) interrupt acknowledge 

8) indicate halt, or indicate shutdown 

CYCLE 1 
NON-PIPELINED 

(READ) 

Table 5-2 shows the encoding of the bus cycle defi­
nition signals for each bus cycle. See section 5.2.5 
Bus Cycle Definition. 

The data bus has a dynamic sizing feature support­
ing 32- and 16-bit bus size. Data bus size is indicated 
to the 386 OX using its Bus Size 16 (BS16#) input. 
All bus functions can be performed with either data 
bus size. 

When the 386 OX bus is not performing one of the 
activities listed above, it is either Idle or in the Hold 
Acknowledge state, which may be detected by ex­
ternal circuitry. The idle state can be identified by the 
386 OX giving no further assertions on its address 
strobe output (AOS#) since the beginning of its 
most recent bus cycle, and the most recent bus cy­
cle has been terminated. The hold acknowledge 
state is identified by the 386 OX asserting its hold 
acknowledge (HLOA) output. 

The shortest time unit of bus activity is a bus state. A 
bus state is one processor clock period (two CLK2 
periods) in duration. A complete data transfer ?ccurs 
during a bus cycle, composed of two or more bus 
states. 

CYCLE 2 
NON-PIPELINED 

(READ) 

CYCLE 3 
NON-PIPELINED 

(READ) 

T1 T2 Tl T2 Tl T2 

CLK2[ 
(INPUT) 

BEog-BE3g,A2-A31, [ 
lA/lOg, o/cg, W/Rg 

. (OUTPUTS) 

ADSg[ 
(OUTPUT) 

NA# [ 
(INPUT) 

READY# [ 
(INPUT) 

LOCK#[ 
(OUTPUT) 

00-031 [ 
(INPUT DURING READ) 

4>114>2 4>114>2 4>114>2 4>114>2 4>11.2 4>114>2 4>1 

Fa~test non·pipelined bus cycles consist of Tl and T2 

Figure 5·8. Fastest Read Cycles with Non·Plpelined Address Timing 
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The fastest 386 DX bus cycle requires only two bus 
states. For example, three consecutive bus read cy­
cles, each consisting of two bus states, are shown 
by Figure 5-8. The bus states in each cycle are 
named T1 and T2. Any memory or I/O address may 
be accessed by such a two-state bus cycle, if the 
external hardware is fast enough. The high-band­
width, two-clock bus cycle realizes the full potential 
of fast main memory, or cache memory. 

Every bus cycle continues until it is acknowledged 
by the external system hardware, using the 386 DX 
READY # input. Acknowledging the bus cycle at the 
end of the first T2 results in the shortest bus cycle, 
requiring only T1 and T2. If READY # is not immedi­
ately asserted, however, T2 states are repeated in­
definitely until the READY # input is sampled assert­
ed. 

5.4.2 Address Pipelining 

The address pipelining option provides a choice of 
bus cycle timings. Pipelined or non-pipelined ad­
dress timing is selectable on a cycle-by-cycle basis 
with the Next Address (NA #) input. 

CYCLE 1 
PIPELINED 

(READ) 

When address pipelining is not selected, the current 
address and bus cycle definition remain stable 
throughout the bus cycle. ' 

When address pipelining is selected, the address 
(BEO#'-BE3#, A2-A31) and definition (W/R#, 
D/C# and M/IO#) of the next cycle are available 
before the end of the current cycle. To signal their 
availability, the 386 DX address status output 
(ADS #) is also asserted.- Figure 5-9 illustrates the 
fastest read cycles with pipelined address timing. 

Note from Figure 5-9 the fastest bus cycles using 
pipe lined address require only two bus states, 
named T1P and T2P. Therefore cycles with pipe­
lined address timing allow the same data bandwidth 
as non-pipelined cycles, but address-to-data access 
time is increased compared to that of a non-pipe­
lined cycle. 

By increasing the address-to-data access time, pipe­
lined address timing reduces wait state require­
ments. For example, if one wait state is required with 
non-pipelined address timing, no wait states would 
be required with pipelined address. 

CYCLE 2 
PIPELINED 

(READ) 

CYCLE 3 
PIPELINED 

(READ) 

TIP T2P TIP 'T2P TIP T2P 

CLK2 [ 
(INPUT) 

8EO#-8E3#. A2-A31. r 
11./10#. D/c#. W IR# 

'(OUTPUTS) ... 

ADS# [ 
(OUTPUT) 

NA# [ 
(INPUT) 

READY# [ 
(INPUT) 

DO-D31'[ 
(INPUT DURING READ) 

.' 1.2 .' 1.2 .'1.2 .'1.2 .' 1.2 .'1.2 

Faslest pipelined bus cycles consist of T1 P and T2P 

Figure 5·9. Fastest Read Cycles with Pipelined Address Timing 
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Pipelined address timing is useful in typical systems 
having address latches. In those systems, once an 
address has been latched, pipe lined availability of 
the next address allows decoding circuitry to gener­
ate chip selects (and other necessary select signals) 
in advance, so selected devices are accessed im­
mediately when the next cycle begins. In other 
words, the decode time for the next cycle can be 
overlapped with the end of the current cycle. 

If a system contains a memory structure of two or 
more interleaved memory banks, pipe lined address 
timing potentially allows even more overlap of activi­
ty. This is true when the interleaved memory control­
ler is designed to allow the next memory operation 

TWO-BANK INTERLEAVED MEMORY 

a) Address signal A2 selects bank 

b) 32-bit datapath to each bank 

FOUR-BANK INTERLEAVED MEMORY 

a) Address Signals A3 and A2 select bank 

b) 32-bit datapath to each bank 

to begin in one memory bank while the current bus 
cycle is still activating another memory bank. Figure 
5-10 shows the general structure of the 386 DX with 
2-bank and 4-bank interleaved memory. Note each 
memory bank of the interleaved memory has full 
data bus width (32-bit data width typically, unless 16-
bit bus size is selected). 

Further details of pipelined address timing are given 
in 5.4.3.4 Pipelined Address, 5.4.3.5 Initiating and 
Maintaining Pipelined Address, 5.4.3.6 Pipelined 
Address with Dynamic Bus Sizing, and 5.4.3.7 
Maximum Plpelined Address Usage with 16-Bit 
Bus Size. 

231630-13 

231630-14 

Figure 5-10. 2-Bank and 4-Bank Interleaved Memory Structure 
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5.4.3 Read and Write Cycles 

5.4.3.1 INTRODUCTION 

Data transfers occur as a result of bus cycles, classi­
fied as read or write cycles. During read cycles, data 
is transferred from an external device to the proces­
sor. During write cycles data is transferred in the oth­
er direction, from the processor to an external de­
vice. 

Two choices of address timing are dynamically se­
lectable: non-p'ipelined, or pipelined. After a bus idle 
state, the processor always uses non-pipelined ~d­
dress timing. However, the NA# (Next Address) In­

put may be asserted to select pipelined address 
timing for the next bus cycle. When pipelining is se­
lected and the 386 OX has a bus request pending 
internally, the address and definition of the next cy­
cle is made available even before the current bus 
cycle is acknowledged by READY #. Generally, the 
NA# input is sampled each bus cycle to select the 
desired address timing for the next bus cycle. 

Two choices of physical data bus width are dynami­
cally selectable: 32 bits, or 16 bits. Generally, the 
B816# (Bus 8ize 16) input is sampled near the end 
of the bus cycle to confirm the physical data bus size 
applicable to the current cycle. Negation of B816# 
indicates a 32-bit size, and assertion indicates a 16-
bit bus size. 

If 16-bit bus size is indicated, the 386 OX automati­
cally responds as required to complete the transfer 
on a 16-bit data bus. Depending on the size and 
alignment of the operand, another 16-bit bus cycle 
may be required. Table 5-7 provides all details. 
When necessary, the 386 OX performs an additional 
16-bitbus cycle, using 00-015 in place of 016-
031. 

Terminating a read cycle or write cycle, like any bus 
cycle, requires acknowledging the cycle by asserting 
the READY # input. Until acknowledged, the proces­
sor inserts wait states into the bus cycle, to allow 
adjustment for the speed of any external device. Ex­
ternal hardware, which has decoded the address 
and bus cycle type asserts the READY# input at the 
appropriate time. 

IDLE I CYCLE 1 I 
. NON-PIPELINED 

(WRITE) 

CYCLE 2 I CYCLE 3 I 
NON-PIPELINED NDN-PIPELINED 

(READ) (WRITE) 

IDLE 

I CYCLE 4 I 
NON-PIPELINED 

(READ) . 

IDLE I 
n n T1 T2 T1 T2 T1 T2 n Tl T2 

CLK2 [ 

(CLK) [ 

W/R#[ ~~ur 

ADS# [ 

NA# [ ~M~W~~~~~~~~~0.0.1.~~~~~~ 

00-031 [ 

231630-15 
Idle s1ales are shown here for diagram variety only. Wrile cycles are not always followed by an idle slale. An active bus cycle can immediately 
follow the write cycle. . 

Figure 5-11. Various Bus Cycles and Idle States with Non-Pipelined Address (zero walt states) 
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At the end of the second bus state within the bus 
cycle, READY # is sampled. At that time, if external 
hardware acknowledges the bus cycle .by asserting 
READY #, the bus cycle terminates as shown in Fig­
ure 5-11. If READY # is negated as in Figure 5-12, 
the cycle continues another bus state (a wait state) 
and READY # is sampled again at the end of that 
state. This continues indefinitely until the cycle is ac­
knowledged by READY # asserted. 

When the current cycle is acknowledged, the 386 
DX terminates it. When a read cycle is acknowl­
edged, the 386 DX latches the information present 
at its data pins. When a write cycle is acknowledged, 
the 386 DX write data remains valid throughout 
phase one of the next bus state, to provide write 
data hold time. 

5.4.3.2 NON-PIPELINED ADDRESS 

Any bus cycle may be performed with non-pipelined 
address timing. For example, Figure 5-11 shows a 
mixture of read and write cycles with non-pipelined 
address timing. Figure 5-11 shows the fastest possi-

ble cycles with non-pipelined address have two bus 
. states per bus cycle. The states are named T1 and 

T2. In phase one of the T1, the address signals and 
bus cycle definition signals are driven valid, and to 
signal their availability, address status (ADS#) is 
simultaneously asserted. 

During read or write cycles, the data bus behaves as 
follows. If the cycle is a read, the 386 DX floats its 
data signals to allow driving by the external device 
being addressed. The 386 DX requires that all 
data bus pins be at a valid logic state (high or 
low) at the end of each read cycle, when 
READY # is asserted, even if all byte enables are 
not asserted. The system MUST be designed to 
meet this requirement If the cycle is a write, data 
signals are driven by the 386 DX beginning in phase 
two of T1 until phase one of the bus state following 
cycle acknowledgment. 

Figure 5-12 illustrates n,on-pipelined bus cycles with 
one wait added to cycles 2 and 3. READY # is sam­
pled negated at the end of the first T2 in cycles 2 
and 3. Therefore cycles 2 and 3 have T2 repeated. 
At the end of the second T2, READY # is sampled 
asserted. 

IDLE I CYCLE 1 I CYCLE 2 IDLE CYCLE 3 I IDLE I NON-PIPELINED NON-PIPELINED NON-PIPELINED 
(READ) (WRITE) (READ) 

n T1 T2 T1 12 T2 n T1 T2 T2 n 

CLK2 [ 

(CLK) [ 

8EO#-8El # [ 
A2-A31. 

M/IO#.D/q 

W/R# [ 

ADS # [ 

NA# [ 

32-811 32-811 
BUS SIZE BUS SIZE 

8S16# [ 

READY# [ 

END CYCLE 1 END CYCLE 2 

LOCK# [ VALID 3 

00-031 [ • 

231630-16 
Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus cycle can immediately 
follow the write cycle. 

Figure 5-12. Various Bus Cycles and Idle States with Non-Pipelined Address 
(various number of wait states) 
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HOLD ASSERTED 

REQUEST PENDING. 
HOLD NEGATED 

Bus States: 

ALWAYS 

READYH ASSERTED· 
HOlO NEGATED. 

REQUEST PENDING 

READYH NEGATED. 
NAN ·NEGATED 

T1-first clock 01 a non-pipelined bus cycle (386™ DX drives new address and asserts ADS#) 
T2-subsequent clocks 01 a bus cycle when NA # has not been sampled asserted in the current bus cycle 
Ti- idle state . 

231630-17 

Th-hold acknowledge state (386™ DX asserts HLDA) 
The lastest bus cycle consists 01 two states: T1 and T2. 
Four basic bus states describe bus operation when not using pipelined address. These states do include BS16# usage lor 32-bit and 16-bit 
bus size. II asserting BS 16 # requires a second 16-bit bus cycle to be performed, it is performed before HOLD asserted is acknowledged. 

Figure 5-13. 386TM OX Bus States (not using pipelined address) 

When address pipelining is not used, the address 
and bus cycle definition remain valid during all wait 
states. When wait states are added and you desire 
to maintain non-pipelined address timing, it is neces­
sary to negate NA # during each T2 state except the 
last one, as shown in Figure 5-12 cycles 2 and 3. If 
NA # is sampled asserted during a T2 other than the 
last one, the next state would be T21 (for pipelined 
address) or T2P (for pipelined address) instead of 
another T2 (for non-pipe lined address). 

When address pipelining is not used, the bus states 
and· transitions are completely illustrated by Figure 
5-13. The bus transitions between four possible 
states: T1, T2, Ti, and Th. Bus cycles consist of T1 
and T2, with T2 being repeated for wait states. Oth­
erwise, the bus may be idle, in the Ti state, or in hold 
acknowledge, the Th state. 

When address pipelining is not used, the bus state 
diagram is as shown in Figure 5-13. When the bus is 

idle it is in state Ti. Bus cycles always begin with n. 
T1 always leads to T2. If a bus cycle is not acknowl­
edged during T2 and NA# is negated, T2 is repeat­
ed. When a cycle is acknowledged during T2, the 
following state will be T1 of the next bus cycle if a 
bus request is pending internally, or Ti if there is no 
bus request pending, or Th if the HOLD input is be­
ing asserted. 

The bus state diagram in Figure 5-13 also applies to 
the use of B516#. If the 386 OX makes internal ad­
justments for 16-bit bus size, the adjustments do not 
affect the external bus states. If an additional 16-bit 
bus cycle is required to complete a transfer on a 
16-bit bus, it also follows the state transitions shown 
in Figure 5-13. 

Use of pipelined address allows the 386 OX to enter 
. three additional bus states not shown in Figure 5-13. 
Figure 5-20 in' 5.4.3.4 Plpellned Address is the 
complete bus state diagram, including pipelined ad­
dress cycles. 
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5.4.3.3 NON-PIPELINED ADDRESS WITH 
DYNAMIC DATA BUS SIZING 

The physical data bus width for any non-pipelined 
bus cycle can be either 32-bits or 16-bits. At the 
beginning of the bus cycle, the processor behaves 
as if the data bus is 32-bits wide. When the bus cy­
cle is acknowledged, by asserting READY # at the 
end of a T2 state, the most recent sampling of 
8816# determines the data bus size for the cycle 
being acknowledged. If 8816# was most recently 
negated, the physical data bus size is defined as 

32 bits. If 8816# was most recently asserted, the 
size is defined as 16 bits. 

When 8816# is asserted and two 16-bit bus cycles 
are required to complete the transfer, 8816 # must 
be asserted during the second cycle; 16-bit bus size 
is not assumed. Like any bus cycle, the second 16-
bit cycle must be acknowledged by asserting 
READY#. 

When a second 16-bit bus cycle is required to com­
plete the transfer over a 16-bit bus, the addresses 

A TRANSFER REQUIRING TWO 
CYCLES ON 16-BIT DATA BUS 

A TRANSFER REQUIRING TWO 
CYCLES ON 16-BIT DATA BUS 

CLK2 [ 

(CLK) [ 

BEOII,BEIIl [ 

BE211, BE311 
A2-A31, 

1.1/1011, D/CII 
[ 

W/RII [ 

ADSII [ 

NAil [ 

BS1611 [ 

READY II [ 
LOCK II [ 

DO- DIS [ 

IDLE 

n 

D16- D31 [ . -----
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Figure 5-14. Asserting BS16# (zero wait states, non-pipelined address) 
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16-BIT 
BUS SIZE 

~XXX, .1.7 ~ I '(X XT 

X VALID 1 

dO-dIS 

---- --- --0-- ---
IGNORED 
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Figure 5-15. Asserting 8S16# (one walt state, non-plpellned address) 

generated for the two 16-bit bus cycles are closely 
related to each other. The addresses are the same 
except 8EO# and 8E1 # are always negated for the 
second cycle. This is because data on 00-015 was 
already transferred during the first 16-bit cycle. 

Figures 5-14 and 5-15 show casas where assertion 
of 8S16# requires a second 16-bit cycle for com­
plete operand transfer. Figure 5-14 illustrates cycles 

without wait states. Figure 5-15 illustrates cycles 
with one wait state. In Figure 5-15 cycle 1, the bus 
cycle during which 8S16# is asserted, note that 
NA# must be negated in the T2 state(s) prior to the 
last T2 state. This is to allow the recognition of 
8S16# asserted in the final T2 state. The relation of 
NA# and 8S16# is given fully in 5.4.3.4 Plpellned 
Address, but Figure 5-15 illustrates this only pre­
caution you need to know when using 8S16# with 
non-pipelined address. 
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5.4.3.4 PIPELINED ADDRESS 

Address pipelining is the option of requesting the 
address and the bus cycle definition of the next, in­
ternally pending bus cycle before the current bus 
cycle is acknowledged with READY # asserted. 
AD5# is asserted by the 386 OX when the next ad­
dress is issued. The address pipelining option is con­
trolled on a cycle-by·cycle basis with the NA# input 
signal. . 

Once a bus cycle is in progress and the current ad­
dress has been valid for at least one entire bus 
state, the NA# input is sampled at the end of every 
phase one until the bus cycle is acknowledged. Our· 
ing non·pipelined bus cycles, therefore, NA # is 
sampled at the end of phase one in every T2. An 
example is Cycle 2 in Figure 5·16, during which NA# 
is sampled at the end of phase one of every T2 (it 
was asserted once during the first T2 and has no 
further effect during that bus cycle). 

If NA # is sampled asserted, the 386 OX is free to 
drive the address and bus cycle definition of the next 
bus cycle, and assert AD5#, as soon as it has a bus 
request internally pending. It may drive the next ad­
dress as early as the next bus state, whether the 
current bus cycle is acknowledged at that time or 
not. 

Regarding the details of address pipelining, the 386 
OX has the following characteristics: 

1) For NA# to be sampled asserted, 8516# must 
be negated at that sampling window (see Figure 
5-16 Cycles 2 through 4, and Figure 5-17 Cycles 1 
through 4). If NA# and 8516# are both sampled 
asserted during the last T2 period of a bus cycle, 
8516# asserted has priority. Therefore, if both 
are asserted, the current bus size is taken to be 
16 bits and the next address is not pipelined. 

IDLE CYCLE 1 
NON-PIPELINED 

(WRITE) 

CYCLE 2 
NON-PIPElINED 

CYCLE 3 
PIPELINED 

(WRITE) 

CYCLE 4 
PIPEllNED 

(READ) 

IDLE 

ClK2 [ 

(ClK) [ 

8EO#-8E3# [ 
A2-A31, 

1.1/10#, D/C# 

n 

W/R# [ ~~'J( 

ADS# [ 

8S16# [ 

READY# [ 

Tl T2 

(READ) 

Tl T2 T2P T1 P T2P T1 P T21 n 

lOCK # [ ~~~""':';:::"~'---+-"';';"~--1' '-~.;;;..;;..-r '"---:~-i'''-lUUj 
DO-D31 [ 

231630-20 
,Following any idle bus state (Ti), addresses are non·pipelined. Within non·pipelined bus cycles, NA # is only sampled during wait states. 
Therefore, to begin address pipelining during a group of non·pipelined bus cycles requires a non·pipelined cycle with at least one wait state 
(Cycle 2 above). . . 

Figure 5·16. Transltlonlng to Plpellned Address During Burst of Bus Cycles 
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T2 T2P T1P T2P T1P T2P T1P 
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PIPELINED 
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T21. T21 
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CLK2 [ 

~ (CLK) [ 
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MilO #. D/C# t:i(.~OCp.~T";""'-¥~~~':""-H";""'';'';;;';'';''''''~'';'''''F''';''''-A"PL~:JiL.l~JCJI~ 

W/R# [ 

ADS # [ 

B516# [ q~~~C1L.~ 

READY # [ C41~~~C1L.~(Y 

LOCK# [ ~~~~ __ -+~~~ __ ~~~~ __ ~~~~~~ __ ~~~ ____ ~~ 

231630-21 
Following any idle bus state (Ti) the address is always non-pipelined and NA#';s only sampled during wait states. To start address pipelining 
after an idle state requires a non-pipelined cycle with at least one wait state (cycle 1 above). 
The pipelined cycles (2. 3. 4 above) are shown with various numbers of wait states. 

Figure 5-17. Fastest Transition to Pipelined Address Following Idle Bus State 

2) The next address may appear as early as the bus 
state after NA# was sampled asserted (see Fig­
ures 5-16 or 5-17). In that case, state T2P is en­
tered immediately. However, when there is not an 
internal bus request already pending, the next ad­
dress will not be available immediately after NA# 
is asserted and T21 is entered instead of T2P (see 
Figure 5-19 Cycle 3i. Provided the current bus cy­
cle isn't yet acknowledged by REAOY # asserted, 
T2P will be entered as soon as the 386 OX- does 
drive the next address. External hardware should 
therefore observe the AOS# output as confirma­
tion the next address is actually being driven on 
the bus. 

3) Once NA# is sampled asserted, the 386 OX com­
mits itself to the highest priority bus request that 
is pending internally. It can no longer perform an­
other 16-bit transfer to the same address should 
8S16# be asserted externally, so thereafter 

must assume the current bus size is 32 bits, 
Therefore if NA # is sampled asserted within a 
bus cycle, 8S16# must be negated thereafter in 
that bus cycle (see Figures 5-16, ,5-17, 5-19). 
Consequently, do not assert NA# during bus cy­
cles which must have 8S16# driven asserted. 
See 5.4.3.6 DynamiC Bus Sizing with Pipelined 
Address. . 

. 4) Any address which is validated by a pulse on the 
386 OX' AOS # output will remain stable on the 
address pins for at least two processor clock peri­
ods. The 386 OX cannot produce a new address 
more frequently than every two processor clock 
periods (see Figures 5-16,5-17,5-19). 

5) Only the address and bus cycle definition of the 
very next bus cycle is available. The pipelining ca­
pability cannot look further than one bus cycle 
ahead (see Figure 5-19 Cycle 1). 
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The complete bus state transition diagram, including 
operation with pipelined address is given by 5-20. 
Note it is a superset of the diagram for non-pipelined 
address only, and the three additional bus states for 
pipelined address are drawn in bold. 

The fastest bus cycle with pipelined address con­
sists of just two bus states, T1 P and T2P (recall for 
non-pipelined address it is T1 and T2). T1 P is the 
first bus state of a pipelined cycle. 

5.4.3.5 INITIATING AND MAINTAINING 
PIPELINED ADDRESS 

Using the state diagram Figure 5-20, observe the 
transitions from an idle state, Ti, to the beginning of 
a pipe lined bus cycle, T1 P. From an idle state Ti, the 
first bus cycle must begin with T1, and is therefore a 
non-pipelined bus cycle. The next bus cycle will be 
pipelined, however, provided NA# is asserted and 
the first bus cycle ends in a T2P state (the address 
for the next bus cycle is driven during T2P). The fast­
est path from an idle state to a bus cycle with pipe­
lined address is shown in bold below: 

~ ,T1-T~-T2P,) ,T1P~T2P'1 

idle non-pipelined pipelined 
states cycle cycle 

T1-T2-T2P are the states of the bus cycle that es­
tablishes address pipelining for the next bus cycle, 
which begins with T1 P. The same is true after a bus 
hold state, shown below: 

,Th, T~, Th'I\.T1 - T~ - T2P,) ,T1 P ~ T2P,) 

hold non-pipelined pipelined 
acknowledge cycle cycle 

states 

The transition to pipelined address is shown func­
tionally by Figure 5-17 Cycle 1. Note that Cycle 1 is 
used to transition into pipelined address timing for 
the subsequent Cycles 2, 3 and 4, which are pipe­
lined. The NA# input is asserted at the appropriate 
time to select address pipelining for Cycles 2, 3 
and 4. 

Once a bus cycle is in progress and the current ad­
dress has become valid, the NA# input is sampled 
at the end of every phase one, beginning with the 
next bus state, until the bus cycle is acknowledged. 
During Figure 5-17 Cycle 1 therefore, sampling be­
gins in T2. Once NA # is sampled asserted during 
the current cycle, the 386 OX is free to drive a new 
address and bus cycle definition on the bus as early 
as the next bus state. In Figure 5-16 Cycle 1 for 
example, the next address is driven during state 
T2P. Thus Cycle 1 makes the transition to pipelined 
address timing, since it begins with T1 but ends with 
T2P. Because the address for Cycle 2 is available 
before Cycle 2 begins, Cycle 2 is called a pipelined 
bus cycle, and it begins with T1P. Cycle 2 begins as 
soon as READY # asserted terminates Cycle 1. 

Example transition bus cycles are Figure 5-17 Cycle 
1 and Figure 5-16 Cycle 2. Figure 5-17 shows tran­
sition during the very first cycle after an idle bus 
state, which is the fastest possible transition into ad­
dress pipelining. Figure 5-16 Cycle 2 shows a tran­
sition cycle occurring during a burst of bus cycles. In 
any case, a transition cycle is the same whenever it 
occurs: it consists at least of T1, T2 (you assert 
NA# at that time), and T2P (provided the 386 OX 
has an internal bus request already pending, which it 
almost always has). T2P states are repeated if wait 
states are added to the cycle. 

Note three states (T1, T2 and T2P) are only required 
in a bus cycle performing a transition from non­
pipelined address into pipelined address timing, for 
example Figure 5-17 Cycle 1. Figure 5-17 Cycles 2, 
3 and 4 show that address pipelining can be main­
tained with two-state bus cycles conSisting only of 
T1P and T2P. 

Once a pipelined bus cycle is in progress, pipelined 
timing is maintained for the next cycle by asserting 
NA# and detecting that the 386 OX enters T2P dur­
ing the current bus cycle. The current bus cycle must 
end in state T2P for pipelining to be maintained in 
the next cycle. T2P is identified by the assertion of 
ADS#. Figures 5-16 and 5-17 however, each show 
pipelining ending after Cycle 4 because Cycle 4 
ends in T21. This indicates the 386 OX didn't have an 
internal bus request prior to the acknowledgement 
of Cycle 4. If a cycle ends with a T2 or T21, the next 
cycle will not be pipelined. 
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Figure 5-19. Details of Address Pipelining During Cycles with Walt States 
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HOLD ASSERTED 

Bus States: 

READY# ASSERTED­
HOLD NEGATED· 

NO REQUEST 

Tl-first clock of a non-pipelined bus cycle (386™ DX drives new address 
and asserts ADS #). 
T2-subsequent clocks of a bus cycle when NA # has not been sampled 
asserted in the current bus cycle. 
T21-subsequent clocks of a bus cycle when NA # has been sampled as­
serted in the current bus cycle but there is not yet an internal bus request 
pending (386 OX will not drive new address or assert AOS#). 
T2P-subsequent clocks of a bus cycle when NA # has been sampled 
asserted in the current bus cycle and there is an internal bus request pend­
ing (386 OX drives new address and asserts AOS#). 
Tl P-first clock of a pipelined bus cycle. 
Ti-idle state. 
Th-hold acknowledge state (386 OX asserts HLOA). 
Asserting NA # for pipe lined address gives access to three more bus 
states: T21, T2P and Tl P. 
Using pipelined address, the fastest bus cycle consists of TIP and T2P. 
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Figure 5-20. 386TM DX Complete Bus States (including pipelined address) 
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Realistically, address pipelining is almost always 
maintained as long as NA# is sampled asserted. 
This is so because in the absence of any other re­
quest, a code prefetch request is always internally 
pending until the instruction decoder and code pre­
fetch queue are completely full. Therefore address 
pipelining is maintained for long bursts of bus cycles, 
if the bus is available (Le., HOLD negated) and NA# 
is sampled asserted in each of the bus cycles. 

interface hardware performs appropriate action to 
make the transfer using a 16-bit data bus connected 
on 00-015. 

5.4.3.6 PIPELINED ADDRESS WITH DYNAMIC 
DATA BUS SIZING 

The BS 16 # feature allows easy interface to 16-bit 
data buses. When asserted, the 386 OX bus 
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There is a degree of interaction, however, between 
the use of Address Pipelining and the use of Bus 
Size 16. The interaction results from the multiple bus 
cycles required when transferring 32-bit operands 
over a 16-bit bus. If the operand requires both 16-bit 
halves of the 32-bit bus, the appropriate 386 OX ac­
tion is a second bus cycle to complete the operand's 
transfer. It is this necessity that conflicts with NA# 
usage. 

When NA# is sampled. asserted, the 386 OX 
commits itself to perform the next inter-
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nally pending bus request, and is allowed to drive 
the next internally pending address onto the bus. As­
serting NA # therefore makes it impossible for the 
next bus cycle to again access the current address 
on A2-A31, such as may be required when 8816# 
is asserted by the external hardware. 

sampled asserted in the current cycle. If NA # is 
sampled asserted, the current data bus size is as­
sumed to be 32 bits. 

2) To also avoid conflict, if NA# and 8816# are 
both asserted during the same sampling window, 
8816# asserted has priority and the 386 OX acts 
as if NA# was negated at that time. Internal 386 
OX circuitry, shown conceptually in Figure 5-18, 
assures that 8816# is sampled asserted and 
NA# is sampled negated if both inputs are exter­
nally asserted at the same sampling window. 

To avoid conflict, the 386 OX is designed with follow­
ing two provisions: 

1) To avoid c~nflict, 8816# must be negated in the 
current bus cycle if NA#' has already been 
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32-BIT 

BUS/IZI 

B516#[ IXXXX IXXXX X XXX IXXXXIX ~ XXX M ~ 
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d16-d31 . I d16-d31 I dt6-d 
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Key: Dn = physical data pin n 231630-25 
dn = logical data bit n . 

Cycle 1 is pipelined. Cycle t a cannot be pipelined, but its address can be inferred from that of Cycle 1, to externally simulate address pipelining 
during Cycle 1 a. 

Figure 5-21. Using NA# and 8516# 
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Certain types of 16-bit or 8-bit operands require no 
adjustment for correct transfer on a 16-bit bus. 
Those are read or write operands using only the low­
er half of the data bus, and write operands using 
only the upper half of the bus since the 386 DX 
simultaneously duplicates the write data on the low­
er half of the data bus. For these patterns of Byte 
Enables and the R/W # signals, BS 16 # need not be 
asserted at the 386 DX allowing NA# to be asserted 
during the bus cycle if desired. 

5.4.4 Interrupt Acknowledge (INTA) 
Cycles 

In response to an interrupt request on the INTR in­
put when interrupts are enabled, the 386 DX per-

PREVIOUS I 
CYCLE 

T2 T1 

INTERRUPT 
ACKNOWLEDGE 

CYCLE I 

T2 T2 TI 

forms two interrupt acknowledge cycles. These bus 
cycles are similar to read cycles in that bus definition 
signals define the type of bus activity taking place, 
and each cycle continues until acknowledged by 
READY # sampled asserted. 

The state of A2 distinguishes the first and second 
interrupt acknowledge cycles. The byte address 
driven during the first interrupt acknowledge cycle is 
4 (A31-A3 low, A2 high, BE3#-BE1 # high, and 
BEO# low). The address driven during the second 
interrupt acknowledge cycle is 0 (A31-A2 low, 
BE3#-BE1 # high, BEO# low). 

IDLE 
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IDLE 

TI 
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READY#[ XXXXX XX IXXY ~\ "<X XXX IXXX IXXX IXXX IXXY ~ m 
IGNORED VECTOR 

- ---- ---- -----r--m-- ---- .--------- ----- ---- --0---
IGNORED IGNORED 

08-031 [ . ---- ---- ----- --cp-- .. _-- ----- ----- ----- ---- --cp---
231630-26 

Interrupt Vector (0-255) is read on DO-D7 at end of second Interrupt Acknowledge bus cycle. 
Because each Interrupt Acknowledge bus cycle is followed by idle bus states. asserting NA;II has no practical effect. Choose the approach 
which is simplest for your system hardware design. 

Figure 5-22. Interrupt Acknowledge Cycles 
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I CYCLE 1 I 
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(WRITE) 

Tl T2 

CYCLE 2 I IDLE 
NON-PIPELINED 

(HALT) 
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Figure 5-23. Halt Indication Cycle 

The LOCK # output is asserted from the beginning 
of the first interrupt acknowledge cycle until the end 
of the second interrupt acknowledge cycle. Four idle 
bus states, Ti, are inserted by the 386 OX between 
the two interrupt acknowledge cycles, allowing for 
compatibility with spec TRHRL of the 8259A Inter­
rupt Controller. 

During both interrupt acknowledge cycles, 00-031 
float. No data is read at the end of the first interrupt 
acknowledge cycle. At the end of the second inter­
rupt acknowledge cycle, the 386 OX will read an ex­
ternal interrupt vector from 00-07 of the data bus. 
The vector indicates the specific interrupt number 
(from 0-255) requiring service. 

5.4.5 Halt Indication Cycle 

The 386 OX halts as a result of executing a HALT 
instruction. Signaling its entrance into the halt state, 
a halt indication cycle is performed. The halt indica­
tion cycle is identified by the state of the bus defini­
tion signals shown in 5.2.5 Bus Cycle Definition 
and a byte-address of 2. BEO# and BE2# are the 
only signals distinguishing halt indication from shut­
down indication, which drives an address of O. Dur­
ing the halt cycle undefined data is driven on 
00-031. The halt indication cycle must be acknowl­
edged by READY # asserted. 

A halted 386 OX resumes execution when INTR (if 
interrupts are enabled) or NMI or RESET is assert­
ed. 
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5.4.6 Shutdown Indication Cycle 

The 386 OX shuts down as a result ofa protection 
fault while attempting to process a double fault. Sig­
naling its entrance into the shutdown state, a shut­
down indication cycle is performed. The shutdown 
indication cycle is identified by the state of the bus 
definition signals shown in 5.2.5 Bus Cycle Defini· 
tion and a byte address of o. BEO# and BE2# 

are the only signals distinguishing shutdown indica­
tion from halt indication, which drives an 'address of 
2. During the shutdown cycle undefined data is driv­
en on 00-031. The shutdown indication cycle must 
be acknowledged by READY # asserted. 

A shutdown 386 OX resumes execution when NMI 
or RESET is asserted. 
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1.1/10#. W/R# '\Q~~~~~~~~ UNTIL NMI OR RESET 

- IS ASSERTED. 

BEO#. A2-A31. [ I I 
D/C# -I..;.;.;,;;;;;.-+~_+ __ ..p~~~~~p.I~~386TM OX CPU RESPONDS TO 

ADS#[ 
_-+--+---l----1- HOLD INPUT WHILE IN 

THE SHUTDOWN STATE. 

NA# [ ~~~~~"--~~~~~~~~~~Qj 
BS16# [ 

LOCK#[ 

00-031 [ 

231630-28 

Figure 5·24. Shutdown Indication Cycle 
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5.5 OTHER FUNCTIONAL 
DESCRIPTIONS 

5.5.1 Entering and Exiting Hold 
Acknowledge 

The bus hold acknowledge state, Th, is entered in 
response to the HOLD input being asserted. In the 
bus hold acknowledge state, the 386 OX floats all 
output or bidirectional signals, except for HLDA. 
HLDA is asserted as long as the 386 OX remains in 
the bus hold acknowledge state. In the bus hold ac­
knowledge state, all inputs except HOLD, RESET, 
BUSY #, ERROR #, and PEREa are ignored (also 
up to one rising edge on NMI is remembered for 
processing when HOLD is no longer asserted). 

IDLE ~ ,o\CK~gW1.EOGE~ IDLE 

TI Th Th Th TI 

8£0#-8E3# [ ~IO"\:~ 
,o\2-A31, M/IO# - - - - (rLOATING) ----

O/C#. W/R# I 
AOS#[ \,---- (rLOATING)----

NA#[ ~e:.a.~~~~~~~~ 

LOCK#[ ~~':q ---- (rLOATlNG)'---

I 
(FLOATING) ---------- ----~----00- 031[ -

'231630-29 
NOTE: 
For maximum design flexibility the 386TM OX has no in­
ternal pullup resistors on its outputs. Your design may 
require an external pullup on AOS# and other 386 OX 
outputs to keep them negated during float periods. 

Figure 5-25. Requesting Hold from Idle Bus 

Th may be entered from a bus idle state as in Figure 
5-25 or after the acknowledgement of the current 
physical bus cycle if the LOCK # signal is not assert­
ed, as in Figures 5-26 and 5-27. If HOLD is asserted 
during a locked bus cycle, the 386 OX may execute 
one unlocked bus cycle before acknowledging 
HOLD. If asserting BS16# requires a second 16-bit 

bus cycle to complete a physical operand transfer, it 
is performed before HOLD is acknowledged, al­
though the bus state diagrams in Figures 5-13 and 
5-20 do not indicate that detail. 

Th is exited in response to the HOLD input being 
negated. The following state will be Ti as in Figure 
5-25 if no bus request is pending. The following bus 
state will be T1 if a bus request is internllily pending, 
as in Figures 5-26 and 5-27. 

Th is also exited in response to RESET being assert­
ed. 

If a rising edge occurs on the edge-triggered NMI 
input while in Th, the event is remembered as a non­
maskable interrupt 2 and is serviced when Th is exit­
ed, unless of course, the 386 OX is reset before Th 
is exited. 

5.5.2 Reset During Hold Acknowledge 

RESET being asserted takes priority over HOLD be­
ing asserted. Therefore, Th is exited in reponse to 
the RESET input being asserted. If RESET is assert­
ed while HOLD remains asserted, the 386 OX drives 
its pins to defined states during reset, as in Table 
5-3 Pin State During Reset, and performs internal 
reset activity as usual. 

If HOLD remains asserted when RESET is negated, 
the 386 OX enters the hold acknowledge state be­
fore performing its first bus cycle, provided HOLD is 
still asserted when the 386 OX would otherwise per­
form its first bus cycle. If HOLD remains asserted 
when RESET is negated, the BUSY # input is still 
sampled ~s usual to determine 'Nhether a self test is 
being requested, and ERROR # is still sampled as 
usual to determine whether a 387 OX coprocessor 
vs. an 80287 (or none) is present. 

5.5.3 Bus Activity During and 
Following Reset 

RESET is the highest priority input signal, capable of 
interrupting any processor activity when it is assert­
ed. A bus cycle in progress can be aborted at any' 
stage, or idle states or bus hold acknowledge states 
discontinued so that the reset state is established. 

RESET should remain asserted for at least 15 CLK2 
periods to ensure it is recognized throughout the 386 
OX, and at least 80 CLK2 periods if 386 OX self-test 
is going to be requested at the falling edge. RESET 
asserted pulses less than 15 CLK2 periods may not 
be recognized. RESET pulses less than 80 CLK2 
periods followed by a self-test may cause the self­
test to report a failure when no true failure exists. 
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NOTE: 

CLK2[ 

HOLD [ 

. HLDA [ 

BEO#-BE3#,A2-A31, [ 
110/10#, D/C#, W /R# 

T1 

CYCLE 1 
NON-PIPELINED 

(READ) 

T2 T2 

NOTE: IF ASSERTING BS 16# 
REOUIRES A SECOND BUS 
CYCLE TO BE PERFORMED, 
THE SECOND CYCLE IS 
PERFORMED BEFORE 
HOLD ACKNOWLEDGE 

HOLD CYCLE 2 
ACKNOWLEDGE NON-PIPELINED 

(WRITE) 

Th Th T1 T2 

VALID 2 

231630-30 

HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency. 

Figure 5-26. Requesting Hold from Active Bus (NA # negated) 

The additional RESET pulse width is required to 
clear additional state prior to a valid self-test. 

Provided the RESET falling edge meets setup and 
hold times t25 and t26, the internal processor clock 
phase is defined at that time, as illustrated by Figure 
5-28 and Figure 7-7. 

A 386 OX self-test may be requested at the time 
RESET is negated by having the BUSY # input at a 
LOW level, as shown in Figure 5-28. The self-test 
requires (220) + approximately 60 CLK2 periods to 
complete. The self-test duration is not affected by 
the test results. Even if the self-test indicates a prob­
lem, the 386 OX attempts to proceed with the reset 
sequence afterwards. 

After the RESET falling edge (and after the self-test 
if it was requested) the 386 OX performs an internal 
initialization sequence for approximately 350 to 450 
CLK2 periods. 

The 386 OX samples its ERROR # input some time 
after the falling edge of RESET and before execut­
ing the first ESC instruction. During this sampling pe­
riod BUSY # must be HIGH. If ERROR # -was sam­
pled active, the 386 OX employs the 32-bit protocol 
of the 387 OX. Even though this protocol was select­
ed, it is still necessary to ~se a software recognition 
test to determine the presence or identity of the co­
processor and to assure compatibility with future 
processors. (See Chapter 11 of the 386TM OX Pro­
grammer's Reference Manual, Order # 230985-
002). 
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CLK2[ 

HOLD [ 

HLDA [ 

BEO#-BE3#. A2-A3l. [ 
M/IO#. D/C#. W/R# 

ADS#[ 

TIP 

CYCLE 1 
PIPELINED 

(WRITE) 

T21 T21 

HOLD CYCLE 2 
ACKNOWLEDGE NON-PIPELINED 

(READ) 

Th Th 11 T2 

NA#[ ~ ...... ~~~~~~~~~~~~ 
BS16#[ 

231630-31 

NOTE: 
HOLD is a synchronous input and can be asserted at any CLK2 edge. provided setup and hold (t23 and t24) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency. 

Figure 5·27. Requesting Hold from Active Bus (NA# asserted) 

5.6 SELF-TEST SIGNATURE 

Upon completion of self-test. (if self-test was re­
quested by holding BUSY # LOW at least eight 
CLK2 periods before and after the falling edge of 
RESET). the EAX register will contain a signature of 
OOOOOOOOh indicating the 386 OX passed its self­
test of microcode and major PLA contents with no 
. problems detected. The passing signature in EAX. 
OOOOOOOOh, applies to all 386 OX revision levels. 
Any non-zero signature indicates the 386 OX unit is 
faulty. 

5.7 COMPONENT AND REVISION 
IDENTIFIERS 

To assist 386 OX users, the 386 OX after reset holds 
a . component identifier and a revision identifier 

in its OX register. The upper 8 bits of OX hold 03h as 
identification of the 386 OX component. The lower 8 
bits of OX hold an 8-bit unsigned binary number re­
lated to the component revision level. The revision 
identifier begins chronologically with a value zero 
and is subject to change (typically it will be incre­
mented) with component step pings intended to have 
certain improvements or distinctions from previous 
steppings . 

These features are intended to assist 386 OX users 
to a practical extent. However, the revision identifier 
value is not guaranteed to change with every step­
ping revision, or to follow a completely uniform nu­
merical sequence, depending on the type or inten­
tion of revision, or manufacturing materials required 
to be changed. Intel has sole discretion over these 
characteristics of the component. 
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CLK2[ 

RESET [ 

CLK (INTERNAL) [ 

BUSY# [ 

ERROR# [ 

BEO#-BE3#. 
W/R#.M/IO#. [ 

HLDA 

A2-A31. [ 
D/C#. LOCK# 

ADS#[ 

NA#[ 

'BSI6#[ 

READY# [ 

00-031# [ 

NOTES: 

386TM ox MICROPROCESSOR 

1-----RESET-----1---IN~!~:~~ON-----~ 
l!: 1 5 CLK2 DURATION IF 
NOT GOING TO REQUEST 
SELF-TEST. 

l!: 80 CLK2 DURATION 
BEFORE REQUESTING NUMBERS 

CYCLE 1 

NON-PIPELINED 
(READ) 

Tl T2 (
IF SELF-TEST IS PERFORMED. 
ADD (2'20)+60· TO THESE 

~ -ulmuui.ri.ri mrl ~ 
·APPROXIMATELY 

/ - 11/>211/> 111/>2 I/> 111/>2 I/> 1 1/>2 I/> 111/>2 

X )(X)()( KJ(XXX7\J ~T~T::V "-
NO SELF-TEST SENSING OF THE 387TIoI OX IoIATH COPROCESSOR 

XX XXXXXX (NOTE 1) ~:.l.u rxXX,X 
----or-- LOW TO BEGIN SELF-TEST (NOTE 2) ASSERTED TO INDICATE 

387Tr.t OX MATH COPROCESSOR PROTOCOL· 

xxxxxXXX IX X) XXXXXxxXXXXXXX)I KXX XXXXlXX 
UP TO 30 CLK2-

XXXXXXXX LOW DURING RESET . '<XXXX)I XXXIX ~X VALID 1 

UP TO 30 CLK2-

xxxxxxxY HIGH DURING RESET '(XXXX)I xx 11()( ~)X VALID 1 

UP TO 30 CLK2-

HIGH DURING RESET - '--V-XXXXXXXy 

XXXXXXXXXX xxxxxxxxxxXXXX) XX IX XXX XX 

XXXXXXXXX.X) XXXXXXXXXXXXXX XX IX XXX XX 

XXXXXXXXX.X) XXXXXXXXXXXXX.X) XX IX XXX IXX 

~gggg~--- - (FLOATING) - - - - - - - - - -- --- -- - ---- -_. 
231630-32 

1. BUSY# should be held stable for 8 CLK2 periods before and after the CLK2 period in which RESET falling edge 
occurs. 
2. If self-test is requested. the 386TM DX outputs remain in their reset state as shown here and in Table 5-3. 

Figure 5·28. Bus Activity from Reset Until First Code Fetch 

Table 5·10. Component and Revision Identifier History 

386TM OX 
Component Revision 

386™ OX 
Component Revision 

Stepping Stepping 
Name 

Identifier Identifier 
Name 

Identifier Identifier 

80 03 03 DO 03 05 
81 03 03 01 03 08 
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5.8 COPROCESSOR INTERFACING 

The 386 OX provides an automatic interface for the 
Intel' 387 OX numeric floating-point coprocessor. 
The 387 OX coprocessor uses an liD-mapped inter­
face driven automatically by the 386 OX and assist­
ed by three dedicated signals: BUSY #, ERROR # , 
and PEREQ. 

As the 386 OX begins supporting a coprocessor in­
struction, it tests the BUSY# and ERROR# signals 
to determine if the coprocessor can accept its next 
instruction. Thus, the BUSY # and ERROR # inputs 
eliminate the need for any "preamble" bus cycles 
for communication between processor and coproc­
essor. The 387, OX can be given, its command op­
code immediately. The dedicated signals provide in­
struction 'synchronization, and eliminate the need of 
using' the 386 OX WAIT opcode (9Bh) for 387 OX 
coprocessor instruction synchronization (the WAIT 
opcode was required when 8086 or 8088 was used 
with the 8087 coprocessor). 

Custom coprocessors can be· included in 386 OX­
based systems, via memory-mapped or liD-mapped 
interfaces. Such coprocessor interfaces allow a 
completely custom protocol, and are not limited to a 
set of coprocessor protocol "primitives". Instead, 
memory-mapped or liD-mapped interfaces may use 
all applicable 386 OX instructions for high-speed co­
processor communication. The BUSY # and 
ERROR # inputs of the 386 OX may also be used for 
the custom coprocessor interlace, if such hardware 
assist is desired. These signals can be tested by the 
386 OX WAIT opcode (9Bh). The WAIT instruction 
will wait until the BUSY # input is negated (interrupt­
able by an NMI or enabled INTR input), but gener­
ates an exception i6 iauii if ihe ERROR# pin is in 
the asserted state when the BUSY # goes (or is) 
negated. If the custom coprocessor interface is 
memory-mapped, protection of the addresses used 
for the interface can be provided with the 386 OX 

on-chip paging or segmentation mechanisms. If the 
custom interface is liD-mapped, protection of the 
interface can be provided with the 386 OX 10PL (110 , 
Privilege Level) mechanism. 

The 387 OX numeric coprocessor interface is 110 
mapped as shown in Table 5-11. Note that the 
387 OX coprocessor interface addresses are be­
yond the Oh-FFFFh range for programmed 110. 
When the 386 OX supports the 387 OX coprocessor, 
the 386 OX automatically generates bus cycles to 
the coprocessor interface addresses. 

Table 5·11. Numeric Coprocessor 
Port Addresses 

Address in 387TMDX 
386TM DX Coprocessor 
1/0 Space Register 

800000F8h Opcode Register 
(32-bit port) , 

800000FCh Operand Register 
(32-bit port) 

To correctly map the 387 OX coprocessor registers 
to the appropriate 110 addresses, connect the 
387 OX coprocessor CMOO # pin directly to the A2 
output of the 386 OX. ' 

5.8.1 Software Testing for 
Coprocessor Presence 

When software is used to test for coprocessor 
(387 OX) presence, it should use only the following 
coprocessor opcodes: F!N!T, FN!N!T, FSTCW memo 
FSTSW mem, FSTSW AX. To use other coproces­
sor opcodes when a coprocessor is known to be not 
present, first s,et EM = 1 in 386 OX CRO. 
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6. INSTRUCTION SET 

This section describes the 386 OX instruction set. A 
table lists all instructions along with instruction en­
coding diagrams and clock counts. Further details of 
the instruction encoding are then provided in the fol­
lowing sections, which completely describe the en- . 
coding structure and the definition of ali fields occur­
ring within 386 OX instructions. 

6.1 386™ DX INSTRUCTION 
ENCODING AND CLOCK COUNT 
SUMMARY 

To calculate elapsed time for an instruction, multiply 
the instruction clock count, as listed in Table 6-1 
below, by the processor clock period (e.g. 50 ns for 
a 20 MHz 386 DX, 40 ns for a 25 MHz 386 OX, and 
30 ns for a 33 MHz 386 OX). 

For more detailed information on the encodings of 
instructions refer to section 6.2 Instruction Encod­
ings. Section 6.2 explains the general structure of 
instruction encodings, and defines exactly the en­
codings of ali fields contained within the instruction. 

Instruction Clock Count Assumptions 

1. The instruction has been prefetched, decoded, 
and is ready for execution. 

2. Bus cycles do not require wait states. 

3. There are no local bus HOLD requests delaying 
processor access to the bus. 

4. No exceptions are detected during instruction ex­
ecution. 

5. If an effective address is calculated, it does not 
use two general register components. One regis­
ter, scaling and displacement can be used within 
the clock counts shown. However, if the effective 
address calculation uses two general register 
components, add 1 clock to the clock count 
shown. 

Instruction Clock Count Notation 

1. If two clock counts are given, the smaller refers to 
a register operand and the larger refers to a mem­
ory operand. 

2. n = number of times repeated. 

3. m = number of components in the next instruc­
tion executed, where the entire displacement (if 
any) counts as one component, the entire imme­
diate data (if any) counts as one component, and 
each of the other bytes of the instruction and pre­
fix(es) each count as one component. 
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Table 6·1" 386TM OX Instruction Set Clock Count Summary 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode' 8086 Mode 
Mode Mode 

GENERAL DATA TRANSFER 
MOV ~ Move: 

Register to Register/Memory 1000100w I mod reg r/ml 2/2 2/2 b h 

Register/Memory to Register 1000101'; I mod reg r/ml 2/4 2/4 b h 

Immediate to Register/Memory 1100011 w I modOOO r/ml immediate data 2/2 2/2 b h 

Immediate to Register (short form) 1011 w reg I immediate data 2 2 

Memory to Accumulator (short form) 1010000w I full displacement 4 4 b h 

Accumulator to Memory (short form) 1010001w I full displacement 2 2 b h 

Register Memory to Segment Register I 10001110 I mod sreg3 r/ml 2/5 18/19 b h, i,j 

Segment Register to Register/Memory I 10001100 I mod sreg3 rim I 2/2 2/2 b h 

MOVSX ~ Move With Sign Extension 

Register From Register/Memory I 00001111 I 1011111 w I mod reg r/ml 3/6 3/6 b h 

MOVZX ~ Move With Zero Extension 

Register From Register/Memory I 00001111 1011011w I mod reg rim I 3/6 3/6 b h 

PUSH ~ Push: 

Register/Memory I 11111111 mod 11 0 r/ml 5 5 b h 

Register (short form) 101010 reg 2 2 b h 

Segment Register (ES, CS, SS or OS) I 000 sreg2 1 1 0 2 2 b h 

Segment Register (FS or GS) I 00001111 10sreg3000 I 2 2 b h 

Immediate I 011010s0 immediate data 2 2 b h 

PUSHA ~ Push All I 01100000 I 18 18 b h 

POP ~ Pop 

Register/Memory 10001111 modOOO r/ml 5 5 b h 

Regisler (short form) 01011 reg 4 4 b h 

Segment Register (ES, SS or OS) 000sreg2111 7 21 b h, i,j 

Segment Register (FS or GS) 00001111 10sreg3001 I 7 21 b h, i,j 

POPA ~ Pop All 01100001 24 24 b h 

XCHG ~ Exchange 

Register/Memory With Reglster I 1000011w I mod reg rimJ 3/5 3/5 b,f f,h 

Register With Accumulator (short form) 110010 reg I ClkCount 3 3 

Virtual 
IN ~ Inputfrom: 8086 Mode 

Fixed Port I 1110010w I port number 1"26 12 6'/26"" m 

Variable Port I 1110110w I t27 13 7"/27"" m 

OUT ~ Outputto: 

Fixed Port I 1110011 w I port number t24 10 4"/24"" m 

Variable Port I 111 0111 w I t25 11 5*/25" m 

LEA ~ Load EA to Register I 100011 01 I mod reg rim I 2 2 

* If CPL ;:; IOPL ** If CPL > IOPL 
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Table 6·1. 386TM OX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addres. Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

SEGMENT CONTROL 

LOS = Load Pointer to OS 11000101 mod reg rIm 7 22 b h, i,j 

LES = Load Pointer to ES 11000100 mod reg rIm 7 22 b h, i,j 

LFS = Load Pointer to FS 00001111 10110100 mod reg rIm I 7 25 b h,i,j 

LGS = Load Pointer to GS 00001111 10110101 mod reg rIm I 7 25 b h,i,j 

LSS = Load Pointer to SS 00001111 10110010 mod reg r/ml 7 22 b h,i,j 

FLAG CONTROL 

CLC = Clear Carry Flag I 11111000 2 2 

CLD = Clear Direction Flag I 11111100 2 2 

CLI = Clear Interrupt Enable Flag I 11111010 8 8 m 

CL TS = Clear Task Switched Flag 00001111 00000110 I 6 6 c I 

CMC = Complement Carry Flag 11110101 2 2 

LAHF = Load AH Into Flag 10011111 2 2 

POPF = Pop Flags 10011101 5 5 b h, n 

PUSHF = Push Flags 10011100 I 4 4 b h 

SAHF = Store AH Into Flags 10011110 I 3 3 

STC = Set Carry Flag . 11111001 I 2 2 

STD = Set Direction Flag 11111101 I 2 2 

STI = Set Interrupt Enable Flag 11111011 I 8 8 m 

ARITHMETIC 
ADD = Add 

Register to Register I OOOOOOdw mod reg rIm I 2 2 

Register to Memory I OOOOOOOw mod reg rIm I 7 7 b h 

Memory to Register I 0000001w mod reg rIm I 6 6 b h 

Immediate to RegisterlMemory I 100000sw modOOO rim I immediate data 217 217 b h 

Immediate to Accumulator (short fonn) I 0000010w immediate data 2 2 

ADC = Add With Carry 

Register to Register 000100dw mod reg rIm I 2 2 

Register to Memory 0001000w mod reg rIm I 7 7 b h 

Memory to Register 0001001w mod reg rIm I 6 6 b h 

Immediate to RegisterlMemory 100000sw modO 10 rIm I immediate data 217 217 b h 

Immediate to Accumulator (short form) 0001010w immediate data 2 2 

INC = Increment 

Register/Memory I 1111111w I modOOO rIm I 2/6 2/6 b h 

Register (short form) 101000 reg I 2 2 

SUB = Subtract 

Register from Register 1 001010dw I mod reg rIm I 2 2 
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Table 6-1. 386TM DX Instruction Set Clock Count Summary (Continued) 

INSTRUCTION 

ARITHMETIC (Continued) 

Register from Memory 

Memory from Register 

Immediate from Register/Memory 

Immediate from Accumulator (short form) 

SBB ~ Subtract with Borrow 

Register from Register 

Register from Memory 

Memory from Register 

Immediate from RegisterlMemory 

Immediate from Accumulator (short form) 

DEC ~ i>ecrement 

RegisterlMemory 

Register (short form) 

CMP ~ Compare 

Register with Register 

Memory with Register 

Register with Memory 

Immediate with RegisterlMemory 

Immediate with Accumulator (short form) 

NEG ~ Change Sign 

... .. __ •• A_I' _ .. ~ ,,-,,_. -I"'''''' "'~"II MUJUtn lUI '"''''V 

AAS ~ ASCII Adjust for Subtract 

DAA ~ Decimal Adjust for Add 

DAS ~ Decimal Adjust for Subtract 

MUL ~ Multiply (unsigned) 

Accumulator with Register/Memory 

Multiplier-Byte 
-Word 
~Ooubleword 

IMUL ~ Integer Multiply (Signed) 

Accumulator with RegisterlMemory 

Multiplier·Byte 
-Word 
-Doubleword 

FORMAT 

I OOIOIOOw ImOdreg r/ml 

I OOIOIOlw ImOdreg r/ml 
II OOOOOsw ImOd I 01 rlml immediate data 

I OOIOllOw I immediate ~ata 

I OOOllOdw ImOdreg r/ml 
100011 OOw I mod reg r/ml 
I OOOllOlw I mod reg r/ml 
II OOOOOsw ImodO II rlml immediate data 

loooillowl immediate data 

IlllllllW IregOOI r/ml 
101001 reg 1 

00111 Odw ImOdreg r/ml 
00111 OOw ImOdreg r/ml 
0011101w 1 mod reg r/ml 

1 OOOOOsw Imod III rlml immediate data 

001111 Ow 1 immediate data 

1111011wlmOdOIl r/ml 
""" .... " I UU I I U I I I 

00111111 

00100111 

00101111 

11111011 w Imod 100 r/ml 

1111 011 w Imod 1 01 r/ml 

00001111 10101111 ImOdreg r/ml 
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CLOCK COUNT 

Real 
Address Protected 
Modear Virtual 
Virtual Address 
8086 Mode 
Mode 

7 7 

6 6 

2/7 2/7 

2 2 

2 2 

7 7 

6 6 

2/7 217 

2 2 

2/6 2/6 

2 2 

2 2 

5 5 

6 6 

2/5 2/5 

2 2 

2/6 2/6 

. 
4 4 

4 4 

4 

12-17115-20 12-17115-20 
12-25115-28 12-25115-28 

12-41115-44 12-41115-44 

12-17115-20 12-17115-20 
12-25115-28 12-25115-28 
12-41115-44 12-41115-44 

12-17115-20 12-17115-20 
12-25115-28 12-25115-28 
12-41115·44 12-41115-44 

13-26114-27 13-26114-27 
13-42114-43 13-42114-43 

NOTES 

ReBI 
Address 
Modear 
Virtual 
8086 
Mode 

b 

b 

b 

, 

b 

b 

b 

b 

b 

b 

b 

b 

bod 
bod 
bo d 

bod 
bod 
bod 

bod 
bod 
bod 

bod 
bod 

Protected 
Virtual 

Address 
Mode 

h 

h 

h 

h 

h 

h 

h 

h 

h 

h 

h 

doh 
doh 
do h 

doh 
doh 
doh 
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Table 6-1. 386TM OX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
SOS6 Mode SOS6 Mode 
Mode Mode 

ARITHMETIC (Continued) 
DIV ~ Divide (Unsigned) 

Accumulator by RegisterlMemory 1 1 1 1 1 0 1 1 w ImOd 1 10 r/ml 

Divisor-Byte 14/17 14/17 b,e e,h 
-Word 22/25 22/25 b,e e,h 
-Doubleword 3S/41 3S/41 b,e e,h 

IDIV ~ Integer Divide (Signed) 

Accumulator By Register/Memory 1 1 1 1 1 0 1 1 w ImOd 11 1 rim I 

Divisor-Byte 19/22 19/22 b,e e,h 
-Word 27/30 27/30 b,e e,h 
-Doubleword 43/46 43/46 b,e e,h 

AAD ~ ASCII Adjust lor Divide 111010101 100001010 I 19 19 

AAM ~ ASCII Adjust lor Multiply 111010100100001010 I 17 17 

CBW ~ Convert Byte to Word 1100110001 3 3 

CWO ~ Convert Word to Double Word I 10011001 I 2 2 

LOGIC 

Shift Rotate Instructions 

Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR) 

RegisterlMemory by 1 11101 OOOw ImOdTTT r/ml 317 317 b h 

RegisterlMemory by CL 11101001W ImOdTTT r/ml 3/7 317 b h 

RegisterlMemory by Immediate Count 111 OOOOOw ImOdTTT r/mlimmed 8·bit data 317 317 b h 

Through Carry (RCL and RCR) 

RegisterlMemory by 1 11101 OOOw ImOdTTT r/ml 9/10 9/10 b h 

RegisterlMemory by CL 11101001W ImOdTTT r/ml 9/10 9/10 b h 

RegisterlMemory by Immediate Count 111 OOOOOw ImOdTTT r/mhmmed B-bitdata 9/10 9/10 b h 

TTT Instrucllon 
000 ROL 
001 RDR 
010 RCL 
011 RCR 
100 SHL/SAL 

101 SHR 

111 SAR 
SHLD ~ Shin Left Double 

Register/Memory by Immediate I 00001111 I 1 a 1 0010 a ImOd reg r/mlimmed a-bit data 317 317 

RegisterlMemory by CL 100001111 I 10100101 ImOd reg r/ml 3/7 317 

SHRD = Shift Right Double 

RegisterlMemory by Immediate 100001111 I 10101100lmOdreg r/mlimmed B-bit data 3/7 3/7 

Register IMemory' by CL 100001111 I 10101101 ImOd reg r/ml '317 317 

AND ~ And 

Register to Register I 001000dw ImOdreg r/ml 2 2 
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Table 6-1, 386™ DX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Addreaa Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8066 Mode 
Mode Mode 

LOGIC (Continued) 

Register to Memory 1001 OOOOw ImOdreg r/ml 7 7 b h 

Memory to Register I 0010001w ImOdreg r/ml 6 6 b h 

Immediate to Register IMemory 11 OOOOOOw Imodl 00 r/ml immediate data 2/7 217 b h 

Immediate to Accumulator (Short Form) 1001001 Ow I immediate data 2 2 

TEST ~ And Function to Flags, No Result 

Register/Memory and Register I 100001 Ow ImOdreg r/ml 2/5 2/5 b h 

Immediate Data and Register/Memory I 1111011w ImodOOO r/ml immediate data 2/5 2/5 b h 

Immediate Data and Accumulator 
~~ immediate data (Short Form) 2 2 

OR~Or 

Register to Register I 00001 Odw ImOdreg r/ml 2 2 

Register to Memory 100001 OOw ImOdreg rIm I 7 7 b h 

Memory to Register I0000101W ImOdreg r/ml 6 6 b h 

Immediate to RegisterlMemory 11 OOOOOOw ImodOOl r/ml immediate data 2/7 217 b h 

Immediate to Accumulator (Short Form) I 0000 11 Ow I immediate data 2 2 

XOR ~ Exclusive Or 

Register to Register 0'011 OOdw Imodreg r/ml 2 :1 

Register to Memory 0011 OOOw Imodreg r/ml 7 7 b h 

Memory to Register 0011001w I mod reg r/ml 6 6 b h 

Immediate to Register/Memory 1 OOOOOOw Imod 110 r/ml immediate data 217 217 b h 

Immediate to Accumulator (Short Form) 001101 Ow I immediate data 2 2 

INnT - Inverl Reolster/Memorv 1111011 w ImodO 10 rIm I 2/6 2/6 b ---- - _.-.. 
~ . . 

Clk 

STRING MANIPULATION Count 
Virtual 

CMPS ~ Compare Byte Word I 1010011 w I 8086 
10 10 b h Mode 

INS ~ Input Byte/Word from OX Port 1011011 Ow I I t29 15 9·/29·· b h,m 

LOOS ~ Load BytelWord to ALI AXIEAX I 101011 Ow I 5 5 b h 

MOVS ~ Move Byte Word I 1010010w I 8 8 b h 

OUTS ~ OUtput Byte/Word to OX Port I 0110111 w I I t28 14 8'/28" b h,m 

SCAS ~ Scan Byte Word I 1010111 w I 8 8 b h 

STOS ~ Store Byte/Word from, 

AL/AX/EX 1·' 01 01 01 w I 5 5 b h 

XLAT ~ Translate String I 11010111 I 5 5 h 

REPEATED STRING MANIPULATION 
Repeated by Count in CX or ECX 

REPE CMPS ~ Compare String 

(Find Non·Match) I 11110011 1,0, 0011w I 5+9n 5+9n b h 

." CPL ~ IOPL •• If CPL > IOPL 
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Table 6·1" 386TM OX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

REPEATED STRING MANIPULATION (Continued) 

REPNE CMPS ~ Compare String ClkCount 

(Find Match) 11110010 1010011w 
Virtual 

5+9n 5+9n b h 8086 Mode 

REP INS ~ Input String 11110010 0110110w L t28+6n 14+6n 8+6n"/28+6n"" b h,m 

REP LODS ~ Load String 11110010 1010110w 5+6n 5+6n b h 

REP MOVS ~ Move String 11110010 1010010w 8+4" 8+4n b h 

REP OUTS ~ Output String 11110010 0110111 w I "t26+5n 12+5n 6+5n·/26+5n" b h,m 

REPE SCAS ~ Scan String 

(Find Non·ALI AX/EAX) I 11110011 11010111 wi 5+8n 5+8n b h 

REPNE SCAS ~ Scan String 

(Find ALI AX/EAX) 11111001011010111Wl 5+8n 5+8n b h 

REP STOS ~ Store String 11111001011010101Wl 5+5n 5+5n b h 

BIT MANIPULATION 

BSF ~ Scan Bit Forward 100001111 I 10111100lmOdreg r/ml 11+3n 11+3n b h 

BSR ~ Scan Bit Reverse I 00001111 I 1 0 1 1 1 1 01 ImOd reg r/ml 9+3n 9+3n b h 

BT ~ Test Bit 

RegisterlMemory, Immediate 100001111 I 1 0 1 1 1 0 1 0 ImOd 1 00 r/mlimmed 8·bit datal 3/6 3/6 b h 

RegisterlMemory, Register 100001111 I 10100011 Imodreg r/ml 3/12 3/12 b h 

BTC ~ Test Bltand Complement 

RegisterlMemory, Immediate I 00001 111 11 01 11 01 0 Imod 1 11 rlmlimmed 8·bit datal 6/8 6/8 b h 

RegisterlMemory, Register 1000011111101110111mOdreg r/ml 6/13 6/13 b h 

BTR ~ Test Bit and Reset 

RegisterlMemory, Immediate I 00001111 110111010 Imod 110 rlmlimmed 8·bit datal 6/8 6/8 b h 

Register/Me!l1ory, Register 100001111 110110011 ImOdreg r/ml 6/13 6/13 b h 

BTS ~ Test Bit and Set 

RegisterlMemory, Immediate I 00001111 11 01 11 01 0 ImOd 1 01 r/mlimmed 8·bit datal 6/8 6/8 b h 

RegisterlMemory, Register 100001111 I 10101011 ImOdreg r/ml 6/13 6/13 b h 

CONTROL TRANSFER 

CALL ~ C!,II 

Direct Within Segment 11 1 1 0 1 0 0 0 I full displacement 7+m 7+m b r 

RegisterlMemory 

111111111 ImOdO 1 0 Indirect Within Segment r/ml 
7+ml 7+ml b h,r 
10+m 10+m 

Direct Intersegment 11 0 0 1 1 0 1 0 IUnSigned full offset, selector 17+m 34+m b I,k,r 

NOTES: 
t Clock count shown applies if I/O permission allows I/O to the port in virtual 8086 mode, If I/O bit map denies permission 
exception 13 fault occurs; refer to clock counts for INT 3 instruction . 
• If CPL :s; 10PL •• If CPL > 10PL 
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Table 6-1. 386™ OX Instruction Set Clock Count Summary (Continued) 

INSTRUCTION FORMAT 

CONTROL TRANSFER (Continued) 

Protected Mode Only (Direct Intersegment) 

Via Call Gate to Same Privilege Level 
Via Call Gate to Different Privilege Level, 

(No Parameters) 

Via Call Gate to Different Privilege Level, 
(x Parameters) 

From 8028S Task to 8028S TSS 

From 8028S Task to 38STM OX TSS 

From 8028S Task to Virtual 808S Task (38S™ OX TSS) 

From 38STM OX Task to 8028S TSS 

From 38STM OX Task to 38STM OX TSS 

From 38STM OX Task to Virtual808S Task (38S™ OX TSS) 

Indirect Intersegment 111111111 ImodO 11 r/ml 

Protected Mode Only (Indirect Intersegment) 

Via Call Gate to Same Privilege Level 
Via Call Gate to Different Privilege Level, 

(No Parameters) 

Via Call Gate to Different Privilege Level, 
(x Parameters) 

From 80286 Task to 80286 TSS 

From 80286 Task to 38STM OX TSS 

From 8028S Task to Virtual808S Task (38S™ OX TSS) 

From 38S™ OX Task to 8028S TSS 

From 38STM OX Task to 38STM OX TSS 

From 38STM OX Task to Virtual 808S Task (38STM OX TSS) 

JMP = Unconditional Jump 

Short I 11101011 IS-bit displacement I 
Direct within Segmen,t I 11101001 I full displacement 

Register/Memory Indirect within segment! 1 11 1 1 1 1 1 Imod 1 00 r/ml 

Direct Intersegment I 1 1 1 0 1 0 1 0 I unsigned lull offset, selector 

Protected Mode Only (Direct Intersegment) 

Via Call Gate to Same Privilege Level 
From 8028S Task to 8028S TSS 

From 8028S Task to 38STM OX TSS 

From 8028S Task to Virtual 808S Task (38STM OX TSS) 

From 38STM OX Task to 8028S TSS 

From 38STM OX Task to 38STM OX TSS 

From 38STM OX Task to Virtual808S Task (38STM OX TSS) 

Indirect Intersegment 111111111 Imod 1 0 1 r/ml 

Protected Mode Only (Indirect Intersegment) 

Via Call Gate to Same Privilege Level 
From 8028S Task to 8028S TSS 

From 80286 Task to 386™ OX TSS 

From 8028S Task to Virtual 808S Task (38S™ OX TSS) 

From 38STM OX Task to 8028S TSS 

From 386TM ox Task to 38STh1 OX TSS 

From 38STM OX Task to Virtual808S Task (38STM OX TSS) 
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CLOCK COUNT 

Real 
Address Protected 
Mode or Virtual 
Virtual Address 
8086 Mode 
Mode 

52+m 

8S+m 

94+4x+m 

273 

298 

218 

273 

300 

218 

22+m 38+m 

56+m 

90+m 

98+4x+m 

278 

303 

222 

278 

305 

222 

7+m 7+m 

7+m 7+m 

7+ml 7+ml 
10+m 10+m 

I 12+m I 27+m 

4S+m 

274 

301 

219 

270 

303 

221 

17+m 31+m 

49+m 

279 

30S 

223 

275 

308 

225 

NOTES 

Real 
Address Protected 
Mode or Virtual 
Virtual Address 
8086 Mode 
Mode 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

b h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

r 

r 

b h,r 

I j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 



386TM OX MICROPROCESSOR 

Table 6-1. 386TM OX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

CONTROL TRANSFER (Continued) 

RET = Return from CALL: 

Within Segment I 11000011 I 10 + m 10+ m b g, h,r 

Within Segment Adding Immediate to SP I 11000010 I 16·bit displ I 10+ m 10+ m b g, h,r 

Intersegment I 11001011 I 1B + m 32+m b g, h,j, k,r 

Intersegment Adding Immediate to SP I 11001010 I 16·bit displ I 1B + m 32+m b g, h, j, k, r 

Protected Mode Only (REn: 
to Dillerent Privilege Level 

Intersegment 69 h,j,k,r 

Intersegment Adding Immediate to SP 69 ~,j, k, r 

CONDITIONAL JUMPS 
NOTE: Times Are Jump "Taken or Not Taken" 
JO = Jump on Overflow 

B·Bit Displacement I 01110000 I B·bitdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000000 I full displacement 7+mor3 7+mor3 r 

JNO = Jump on Not Overflow 

B·Bit Displacement I 0111000·1 I B·bitdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000001 I full displacement 7 + mor3 7 + mor3 r 

JB/JNAE = Jump on BelowlNot Above or Equal 

B·Bit Displacement 1 01110010 1 B·bitdispl 1 7 + m,or3 7 + mor3 r 

Full Displacement 100001111 1 10000010 1 full displacement 7 + mor3 7 + mor3 r 

JNB/JAE = Jump on Not Below/Above or Equal 

8·Bit Displacement I 01110011 I 8·bitdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000011 I full displacement 7+ mor3 7 + mor3 r 

JElJZ = Jump on Equal/Zero 

a-Bit Displacement I 01110100 I 8·bitdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000100 I full displacement 7 + mor3 7 + morS r 

JNE/JNZ = Jump on Not Equal/Nol Zero 

8·Bit Displacement I 01110101 I 8·bitdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000101 I full displacement 7 + mor3 7+mor3 r 

JBE/JNA = Jump on Below or Equal/Not Above 

8·Bit Displacement I 01110110 I B·bitdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000110 I full displacement 7+mor3 7+mor3 r 

JNBEI JA = Jump on Not Below or Equall Above 

8·Bit Displacement I 01110111 I 8·bitdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10000111 I full displacement 7 + mora 7 + mor3 r 

JS = Jump on Sign 

B·Bit Displacement I 01111000 I B·bitdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10001000 I full displacement 7 + mor3 7 + mor3 r 
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Table 6-1. 386TM DX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addten Protected Addren Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

CONDITIONAL JUMPS (Continued) .. 
JNS = Jump on Not Sign 

8-Bit Displacement I 01111001 I 8·bitdispl I 7+mor3 7 + mor3 r 

Full Displacement I 00001111 I 10001001 I full displacement 7 + mor3 7 + mora r 

JP/JPE = Jump on Parity/Parity Even 

8·Bit Displacement I 01111010 I 8·bitdispl I 7+mor3 7 + mor3 r 

Full Displacement I 00001111 I 10001010 I ful~ displacement 7+mor3 7 + mor3 r 

JNP/JPO = Jump on Not Parity/Parity Odd 

a..Bit Displacement I 01111011 I 8·bitdispl I 7 + mor3 7 + mor3 r 

Full Displacement I 00001111 I 10001011 I full displacement 7+mor3 7 + mor3 r 

JL/JNGE = Jump on Less/Not Greater or Equal 

a·Sit Displacement I 01111100 I 8·bitdispl I 7+mor3 7 + mora r 

Full Displacement I 00001111 I 10001100 I full displacement 7+inor3 7 + morS r 

JNL/JGE = Jump on Not Less/Greater or Equal 

8-Bit Displacement I 01111101 I B·bitdispl I 7.+ mor3 7+mor3 r 

I I I full displacement 
-

Full Displacement 00001111 10001101 7+mor3 7 + mor3 r 

JLE/JNG = Jump on Less or EquallNot Greater 

8-Bit Displacement I 01111110 I 8-bit displ I 7 + mor3 7'+ mor3 r 

Full Displacement I 00001111 I 10001110 I full displacement 7+mor3 7 + mor3 r 

JNLE/JG = Jump on Not Less or Equal/Greater 

a-Bit Displacement I 01111111 I B·bildispl I 7+mor3 7 + morS r 

Full Displacement I 00001111 I 10001111 I full displacement 7 + morS 7+mor3 r 

I JCXZ = Jump onCX Zero 11100011 B·bitdispl. 19+morsl 9+mor5 
I 

JECXZ = Jump on ECX Zero I 11100011 B·bitdispl 9+morS 9 + morS 

(Address Size Prefix Differentiates JCXZ from JECXZ) 

LOOP = Loop CX Times 11100010 B-bitdispl 11 + m 11 + m 

LOOPZ/LOOPE = Loop wllh 
Zero/Equal 11100001 B·bitdispl 11 + m 11 + m 

LOOPNZ/LOOPNE = Loop While 
NOIZero 11100000 B·bitdispl 11 + m 11 + m 

CONDITIONAL BYTE SET 
NOTE: Times Are Register/Memory 

SETO = Set Byte on OverflOW 

To Register/Memory . 00001111 10010000 I modOOO r/ml 4/S 4/S h 

SETNO = Sel Byte on Nol Overflow 

To Register/Memory 00001111 10010001 I modOOO r/ml 4/S 4/S 

SETB/SETNAE = Set Byle on BelowlNol Above or Equal 

To Register/Memory I 00001111 I 10010010 I modOOO rim I 4/S 4/S 
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Table 6-1. 386™ OX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addre •• Protected Addres. Protected 

Mode or Virtual Mode or Virtual 
Virtual Addres. Virtual Addres. 
8086 Mode 8086 Mode 
Mode Mode 

CONDITIONAL BYTE SET (Continued) 

SETNB ~ Set Byte on Not Below/Above or Equal 

To Register/Memory I 00001111 I 10010011 ImodOOO rim I 4/5 4/5 h 

SETE/SETZ ~ Set Byte on Equal/Zero 

To Register/Memory I 00001111 I 10010100 ImcdOOO rim I 4/5 4/5 h 

SETNE/SETNZ ~ Set Byte on Not Equal/Not Zero 

To Register/Memory I 000011 1 1 I 10010101 ImodOOO rIm' 415 4/5 h 

SETBE/SETNA ~ Set Byte on Below Dr EquallNot Above 

To Register/Memory I 00001111 I 10010110 , modOOO rim' 4/5 4/5 h 

SETNBE/SETA ~ Set Byte on Not Below Dr Equal/Above 

To Register/Memory I 00001111 I 10010111 I mcdOOO rIm' 4/5 4/5 h 

SETS ~ Set Byte on Sign 

To Register/Memory I 00001111 
, 

10011000 I mcdOOO rIm' 4/5 4/5 h 

SETNS ~ Set Byte on Not Sign , 
To Register/Memory I 00001111 I 10011001 I modOOO rim' 4/5 4/5 h 

SETP/SETPE ~ Set Byte on ParltylParlty Even 

To Register/Memory I 00001111 I 10011010 I modOOO rim' 4/5 4/5 h 

SETNP/SETPO ~ Set Byte on Not ParltylParlty Odd 

To ,Register/Memory I 00001111 I 10011011 I modOOO rim' 4/5 4/5 h 

SETL/SETNGE ~ Set Byte on LesslNot Greater Dr Equal 

To Register/Memory I 00001111 I 10011100 I modOOO rIm' 4/5 4/5 h 

SETNLlSETGE ~ Set Byte on Not Less/Greater Dr Equal 

To RegisterlMemory I 0000 1 1 1 1 I 01111101 I modOOO rim' 4/5 4/5 h 

SETLE/SETNG ~ Set Byte on Less Dr Equal/Not Greater 

To RegisterlMemory I 0000 1 1 1 1 I 10011110 I modOOO rim' 4/5 4/5 h 

SETNLE/SETG ~ Set Byte on Not Less or Equal/Greater 

To RegisterlMemory I 00001111 I 10011111 I modOOO rim' 4/5 4/5 h 

ENTER ~ Enter Procedure I 11001000 I 16-bit displacement, S-bit level 
, 

L;=O 10 10 b h 
L ~ 1 12 12 b h 
L>1 15 + 15 + b h 

4(n - 1) 4(n -1) 

LEAVE ~ Leave Procedure I 11001001 I 4 4 b h 
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Table 6·1. 386TM OX Instruction Set Clock Count Summary (Continued) 

INSTRUCTION FORMAT 

.-

INTERRUPT INSTRUCTIONS 

INT ~ Interrupt: 

Type Specified I 11001101 I type 

Type 3 I 11001100 I 
INTO ~ Interrupt 4 II OverflOw Flag Set I 11001110 I 

IfOF ~ 1 

If OF ~ 0 

Bound ~ InterruptSl1 Detect Value I 01100010 I mod reg 
Out 01 Range 

If Out of Range 
If In Range 

Protected Mode Only (INT) 

INT: Type Specified' 

Via Interrupt or Trap Gate 
to Same Privilege Level 

Via Interrupt or Trap Gate 
to Different Privilege Level 

From 80286 Task 10 80286 TSS via Task Gale 

From 80286 Task to 386T" OX TSS via Task Gate 
From 80286 Task to virt 8086 md via Task Gate 

From 386T" OX Task to 80286 TSS via Task Gate 
From 386TM OX Task to 386TM OX TSS via Task Gate 

From 386TM OX Task 10 vir! 8086 md via Task Gate 
From vir! 8086 md 10 80286 TSS via Task Gate 
From vir! 8086 md 10 386TM OX TSS via Task Gale 

From virt B086 md to priv level 0 via Trap Gate or Interrupt Gate 

INT:TYPE3 

Via Interrupt or Trap Gate 
to Same Privilege Level 

Via Interrupt or Trap Gate 
to Different Privilege Level 

From 80286 Task 10 80286 TSS via Task Gale 
From 80286 Task to 386TM OX TSS via Task Gale 
From 80286 Task 10 Vir! 8086 md via Task Gale 
From 386TM OX Task 10 80286 TSS via Task Gate 

From 386TM OX Task 10 386™ OX TSS via Task Gale 
From 386TM OX Task 10 Vir! 8086 md via Task Gate 
From vir! 8086 md 10 80286 TSS via Task Gate 

From vir! 8086 md 10 386™ OX TSS via Task Gale 
From virt B086 md to priv level 0 via Trap Gate or Interrupt Gate 

INTO: 

Via Interrupt or Trap Grate 
to Same Privilege Level 

Via Interrupt or Trap Gate 
to Different Privilege Level 

From 80286 Task 10 80286 TSS via Task Gale 
From 80286 Task to 386TM DX TSS via Task Gate 
From 80286 Task 10 vir! 8086 md via Task Gale 
From 386TM OX Task 10 80286 TSS via Task Gale 
From 386TM OX Task 10 386TM OX TSS via Task Gale 
From 386TM OX Gale 

From vir! 8086 md 10 80286 TSS via Task Gale 

From vir! 8086 md 10 386™ OX TSS via Task Gate 
From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 

I 

rim I 
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CLOCK COUNT 

Real 
Address 
Mode or 
Virtual 
8086 
Mode 

37 

33 

35 

3 

44 
10 

Protected 
Virtual 

Address 
Mode 

3 

10 

59 

99 

282 

309 

226 

284 

311 

228 

289 

316 

119 

<0 

278 

305 

222 

280 

307 

224 

285 

312 

119 

59 

99 

280 

307 

224 

282 

309 

225 

287 

314 

119 

NOTES 

Real 
Address 
Mode or 
Virtual 
8086 
Mode 

b 

b 

b, e 
b, e 

b, e 
b, e 

Protected 
Virtual 

Address 
Mode 

e, g, h, j, k, r 
e, g, h,j, k, r 

g, j, k, r 

g,j, k, r 
g,j, k,r 

g, j, k, r 
g,j, k, r 
g, j, k, r 
g, j, k, r 

g,j, k, r 
g,j, k, r 
g,j, k, r 

... ; 1 ... 
l:hJ," .. 

g,j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 
g,j, k, r 
g,j,k,r 
g,j, k, r 
g,j, k, r 

g, j, k, r 

g,j, k, r 
g,j, k, r 
g,j,k,r 
g,j, k, r 
g,j,k,r 
g,j, k, r 
g,j, k,r 
g, j, k, r 
g, j, k, r 
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Table 6-1. 386TM OX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

INTERRUPT INSTRUCTIONS (Continued) 

BOUND: 

Via Interrupt or Trap Gate 

to Same Privilege Level 59 g,i,k,r 
Via Interrupt or Trap Gate 

to Different Privilege level 99 g,l,k,r 

From 80286 Task to 80286 TSS via Task Gate 254 g,i,k,r 

From 80286 Task to 386TM OX TSS via Task Gate 284 g,l,k,r 
From 80268 Task to virt BOB6 Mode via Task Gate 23t g,l,k, r 
From 3BSTM OX Task to B02B6 TSS via Task Gate 264 g,l,k,r 
From 3B6TM OX Task to 3B6TM OX TSS via Task Gate 294 g,l, k, r 
From B036B Task to virt BOB6 Mode via Task Gate 243 g,l, k, r, 
From virt BOB6 Mode to B0286 TSS via Task Gate 264 g,l, k, r 
From virt BOB6 Mode to 3B6TM OX TSS via Task Gate 294 g,l, k, r 

From virt BOB6 md to priv level 0 via Trap Gate or Interrupt Gate 119 

INTERRUPT RETURN 

IRET = Interrupt Return I 11001111 I 22 g, h,l, I<. r 

Protected Mode Only (IRET) 

To the Same Privilege Level (within task) 3B g, h,i,k,r 
To Different Privilege Level (within task) B2 g, h,i,k, r 

From B02B6 Task to B02B6 TSS 232 h, i, k, r 
From B02BS Task to 3B6TM OX TSS 265 h,l, k,r 

From B02B6 Task to Virtual B086 Task 213 h,l,k, r 

From B02B6 Task to Virtual BOB6 Mode (within task) 60 
From 3B6™ OX Task to B02B6 TSS 271 h,l, k, r 
From 3B6T .. OX Task to 3B6T .. OX TSS 275 h,l, k, r 
From 3B6TM OX Task to Virtual BOB6 Task 223 h, I, k, r 

From 3B6T .. OX Task to Virtual60B6 Mode (within task) 60 

PROCESSOR CONTROL 

HLT = HALT I 11110100 I 5 5 I 

MOV = Move to and From Control/Deb glTest Registers 

CRO/CR2/CR3 from register 00001111 00100010 11 eee reg I 11/4/5 11/4/5 I 

Register From CRO-3 00001111 00100000 11 eaereg I 6 6 I 

DRO-3 From Register 00001111 00100011 11 eee reg 22 22 I 

DRS-7 From Register 00001111 00100011 11 eeareg 16 16 I 

Register from DR6-7 00001111 00100001 11 eeereg 14 14 I 

Register from DRO-3 00001111 00100001 11 eearag 22 22 I 

TR6-7. from Register I 00001111 00100110 11 eee reg 12 12 I 

Register from TR6-7 I 00001111 00100100 11 eeereg 12 12 I 

NOP = No Operation I 10010000 3 3 

WAIT=WalluntlIBUSY# pin is negated I 10011011 7 7 
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Table 6-1. 386™ DX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual' 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

PROCESSOR EXTENSION INSTRUCTIONS 

Processor Extension Escape 111011 TTT ImodLLL rIm I See h 

:rrr and LLL bits are opcode 80287/80387 

information for coprocessor. data sheets for 
clock counts 

PREFIX BYTES 

Addres. Size Prefix I 01100111 I 0 0 

LOCK ~ Bus Lock Prefix I 11110000 I 0 0 m 

Operand Size Prefix I 01100110 I 0 0 

Segment Override Prefix 

CS: I 00101110 I 0 0 

DS: 00111110 0 0 

ES: 00100110. 0 0 

FS: 01100100 0 0 

GS: 01100101 0 0 

SS: 00110110 0 0 

PROTECTION CONTROL 

ARPL ~ Adjust Requested Privilege Level 

From RegisterlMemory I 01100011 I mod reg rIm I N/A 20/21 a h 

LAR ~ Load Acces. Rights 

From RegisterlMemory I 00001111 I 00000010 I mod reg rIm I N/A 15116 a g,h,l,p 

LGDT .~ Load Global Descriptor 

Table Register I 00001111 I 00000001 ImodOl0 rIm I 11 11 b,c h,l 

IUDT ~ Load Interrupt Descriptor 

Tab!e Register I 00001111' 00000001 I mod011 .,_1 11 11 ti,e 11,1 I 1111', 

LLDT ~ Load Local DeSCriptor 

Table Register to 
RegisterlMemory 00001111 00000000 ImodOl0 rIm I N/A 20/24 a g,h,j,1 

LMSW ~ Load Machine Stetus Word 

From Register/Memory I 00001111 00000001 I modll 0 rim I 11114 11114 b,c h,l 

LSL ~ Load Segment Limit 

From Register/Memory 00001111 00000011 I mod reg rim I 

Byte-Granular Limit N/A 21122 a g,h,l,p 
Page-Granular Limit N/A 25/26 a g,h,l,p 

LTR ~ Load Task Reglater 

From RegisterlMemory 00001111 00000000 I modOO 1 rim I N/A 23/27 a g,h,I,' 

SGDT ~ Store Global Descriptor 

Table Reglater I 00001111 00000001 I modOOO rim I b,c 

SIDT ~ Store Interrupt Descriptor 

Table Register I 00001111 00000001 I moil 00 1 rim I 9 9 b,c h 

SLDT ~ Store Local DeSCriptor Table Register 

To RegisterlMemory I 00001111 00000000 I modOOO rim I N/A 2/2 a 
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Table 6-1. 386TM OX Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

SMSW = Store Machine 
Imod100 SlatusWard I 00001111 I 00000001 r/ml 2/2 2/2 b,c h, I 

STR = Store Task Register 

To Register/Memory I 00001111 I 00000000 I mod001 r/ml N/A 2/2 a h 

VERR = Verify Read Acces.s 

Regisler/Memory I 00001111 I 00000000 Imodl00 r/ml N/A 10/11 a g,h,j,p 

VERW = Verify Write Accesss I 00001111 I 00000000 I mod 1 01 r/ml N/A 15/16 a g, h,j,p 

INSTRUCTION NOTES FOR TABLE 6-1 

Notes a through c apply to 386 OX Real Address Mode only: 
a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
b. Exception 13 fault (general protection)· will occur in Real Mode if an operand reference is made that partially or fully 
extends beyond the maximum CS, OS, ES, FS or GS limit, FFFFH. Exception 12 fault (stack segment limit violation or not 
present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum SS limit. 
c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected 
Mode. 

Notes d through g apply to 386 OX Real Address Mode and 386 OX Protected Virtual Address Mode: 
d. The 386 OX uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most 
significant bit in the operand (multiplier). 

Clock counts given are minimum to maximum. To calculate actual clocks use the following formula: 
Actual Clock = if m < > 0 then max ([Iog2 Imll. 3) + b clocks: 

if m = 0 then 3+b clocks 
In this formula, m is the multiplier, and 
b = 9 for register to register, 
b = 12 for memory to register, 
b = 10 for register with immediate to register, 
b = 11 for memory with immediate to register. 

e. An exception may occur, depending on the value of the operand. 
f. LOCK# is automatically asserted, regardless of the presence or absence of the LOCK# prefix. 
g. LOCK # is asserted during descriptor table accesses. 

Notes h through r apply to 386 OX Protected Virtual Address Mode only: 
h. Exception 13 fault (general protection violation) will occur if the memory operand in CS, OS, ES, FS or GS cannot be used 
due to either a segment limit violation or access rights violation. If a stack limit is violated, an exception 12 (stack segment 
limit violation or not present) occurs. 
i. For segment load operations, the CPL, RPL, and OPL must agree with the privilege rules to avoid an exception 13 fault 
(general protection violation). The segment's descriptor must indicate "present" or exception 11 (CS, DS, ES, FS, GS not 
present). If the SS register is loaded and a stack segment not present is detected, an exception 12 (stack segment limit 
violation or not present) occurs. , 
j. All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCK# to maintain 
descriptor integrity in multiprocessor systems. 
k. JMP, CALL, INT, RET and IRET instructions referring. to another code segment will cause an exception 13 (general 
protection violation) if an applicable privilege rule is violated. 
I. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level). 
m. An exception 13 fault occurs if CPL is greater than IOPL. 
n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are 
updated only if CPL = O. 
o. The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if deSiring to reset the PE bit. 
p. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero 
flag is cleared. 
q. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault (general 
protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation 
or not present) will occur if the stack limit is violated by the operand's starting address. 
r. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13 fault 
(general protection violation) will occur. 
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6.2 INSTRUCTION ENCODING 

6.2.1 Overview·· 

All instruction encodings are subsets of the general 
instruction format shown in Figure 6-1. Instructions 
consist of one or two primary opc::ode bytes, possibly 
an address specifier consisting of the "mod rIm" 
byte and "scaled index" byte, a displacement if re" 
qui red, and an immediate data field if required. 

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The fields define 
such information as direction of the operation, size 
of the displacements, register encoding, or sign ex­
tension. 

Almost all instructions referring to an operand in 
memory have an addressing mode byte following 
the primary opcode byte(s). This byte, the mod rIm 
byte, specifies the address mode to be used. Certain 

encodings of the mod rIm byte indicate a second 
addressing byte, the scale-index-base byte, follows 
the mod rIm byte .to fully specify the addressing 
mode. 

Addressing modes can include a displacement im­
mediately following the mod rIm byte, or scaled in­
dex byte. If a displacement is present, the possible . 
sizes are 8, 16 or 32 bits. 

If the instruction specifies an immediate operand, 
the immediate operand follows any displacement 
bytes. The immediate operand, if specified, is always 
the last field of the instruction. 

Figure 6-1 illustrates several of the fields that can. 
appear in an instruction, such as the mod field and 

. the rIm field, but the Figure does not show all fields. 
Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes them­
selves. Table 6-2 is a complete list of all fields ap­
pearing in the 386 OX instruction set. Further .ahead, 
following Table 6-2, are detailed tables for each 
field. 

ITT T T T T TTl T T T T T T TTl mod T T T rIm I 55 index base Id32 1161.a I none data32 1161 8 I none . 

{ 07 0j\7653201\7653201\ 1\ I 
~--------~T~--------~ T T '-__ -y ____ J ,----~----~ 

opcode 
(one or two bytes) 
(T represents an 

opcode bit.) 

"mod rIm" 
\ byte byte. 
~' ________ -v ________ -JJ 

register and address 
mode specifier 

address 
displacement 
(4, 2, 1 bytes 

or none) 

Figure 6·1. uei'iefai iiisiructiuii Fai"mat 

Table 6-2. Fields within 386™ DX Instructions 

Field Name Description 

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 
d Specifies Direction of Data Operation 
s Specifies if an. Immediate Data Field Must be Sign-Extended 
reg General Register Specifier 
mod rIm Address Mode Specifier (Effective Address can be a General Register) . 

ss Scale Factor for Scaled Index Address Mode 
index General Register to be used as Index Register 
base General Register to be used as Base Register 
sreg2 Segment Register Specifier for CS, SS, OS, ES . 
sreg3 Segment Register Specifier for CS, SS, OS, ES, FS, GS 
tttn For Conditional Instructions, Specifies a Condition Asserted 

or a Condition Negated 
. . 

No~e: Table 6-1 shqws encoding of IndIVidual instructions • 
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immediate 
data 

(4, 2, 1 bytes 
or none) 

Number of Bits 

1 
1 
1 
3 

2 for mod; 
3 for rIm 

2 
3 
3 
2 
3 

4 
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6.2.2 32·Bit Extensions of the 
Instruction Set 

With the 386 OX, the 8086/80186/80286 instruction 
set is extended in two orthogonal directions: 32-bit 
forms of all 16-bit instructions are added to support 
the 32-bit data types, and 32-bit addressing modes 
are made available for all instructions referencing 
memory. This orthogonal instruction set extension is 
accomplished having a Default (D) bit in the code 
segment descriptor, and by having 2 prefixes to the 
instruction set. 

Whether the instruction defaults to operations of 16 
bits or 32 bits depends on the setting of the 0 bit in. 
the code segment descriptor, which gives the de­
fault length (either 32 bits or 16 bits) for both oper­
ands and effective addresses when executing that 
code segment. In the Real Address Mode or Virtual 
8086 Mode, no code segment descriptors are used, 
but a 0 value of 0 is assumed internally by the 386 
OX when operating in those modes (for 16-bit de­
fault sizes compatible with the 8086/80186/80286). 

Two prefixes, the Operand Size Prefix and th~ Effec­
tive Address Size Prefix, allow overriding individually 
the Default selection of operand size and effective 
address size. These prefixes may precede any op­
code bytes and affect only the instruction they pre­
cede. If necessary, one or both of the prefixes may 
be placed before the opcode bytes. The presence of 
the Operand Size Prefix and the Effective Address 
Prefix will toggle the operand size or the effective 
address size, respectively, to the value "opposite" 
from the Default setting. For example, if the default 
operand size is for 32-bit data operations, then pres­
ence of the Operand Size Prefix toggles the instruc­
tion to 16-bit data operation. As another example, if 
the default effective address size is 16 bits, pres­
ence of the Effective Address Size prefix toggles the 
instruction to use 32-bit effective address computa­
tions. 

These 32-bit extensions are available in ali 386 OX 
modes, including the Real Address Mode or the Vir­
tual 8086 Mode. In these modes the default is al­
ways 16 bits, so prefixes are needed to specify 32-
bit operands or addresses. For instructions with 
more than one prefix, the order of prefixes is unim­
portant. 

Unless specified otherwise, instructions with 8-bit 
and 16-bit operands do not affect the contents of 
the high-order bits of the extended registers. 

6.2.3 Encoding of Instruction Fields 
Within the instruction are several fields indicating 
register selection, addressing mode and so on. The 
exact encodings of these fields are defined immedi­
ately ahead. 

6.2.3.1 ENCODING OF OPERAND LENGTH (w) 
FIELD 

For any given instruction performing a data opera­
tion, the instruction is executing as a 32-bit operation 
or a 16-bit operation. Within the constraints of the 
operation size, the w field encodes the operand size 
as either one byte or the full operation size, as 
shown in the table below. 

Operand Size Operand Size 
wField During 16·8it During 32·8it 

Data Operations Data Operations 

0 8 Bits 8 Bits 
1 16 Bits 32 Bits 

6.2.3.2 ENCODING OF THE GENERAL 
REGISTER (reg) FIELD 

The general register is specified by the reg field, 
which may appear in the primary opcode bytes, or as 
the reg field of the "mod rIm" byte, or as the rIm 
field of the "mod rIm" byte. 

Encoding of reg Field When w Field 
is not Present in Instruction 

Register Selected Register Selected 
reg Field During 16-8it During 32-81t 

000 
001 
010 
011 
100 
101 
110 
111 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

Data Operations Data Operations 

AX EAX 
CX ECX 
OX EDX 
BX EBX 
SP ESP 
BP EBP 
SI . ESI 
01 EDI 

Encoding of reg Field When w Field 
is Present in Instruction 

Register Specified by reg Field 
During 16-81t Data Operations: 

Function of w Field 

(whenw = 0) (whenw = 1) 

AL AX 
CL CX 
DL OX 
BL BX 
AH SP 
CH BP 
DH SI 
BH 01 
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Register Specified by reg Field 
During 32-Blt Data Operations 

. reg Function of w Field 

(whenw = 0) (whenw = 1) 

000 AL EAX 
001 CL ECX 
010 DL EDX 
011 BL EBX 
100 AH ESP 
101 CH EBP 
110 DH ESI 
111 BH EDI 

6.2.3.3 ENCODING OF THE SEGMENT 
REGISTER (sreg) FIELD 

The sreg field in certain instructions is a 2-bit field 
allowing one of the four 80286 segment registers to 
be specified. The sreg field in other instructions is a 
3-bit field, allowing the 386 DX FS and GS segment 
registers to be specified. 

2-Blt sreg2 Field 

2-Blt 
Segment 

sreg2Fleid 
Register 
Selected 

00 ES 
01 CS 

, 10 SS 
11 DS 

'a_Rit Rr .. n'a ~1 .. lrI - _ ... _. -0;1- ... -.-

3-Bit Segment 

sreg3Fleid 
Register 
Selected 

000 ES. 
001 CS 
010 SS 
011 DS 
100 FS 
101 GS 
110 do not use 
111 do not use 

6.2.3.4 ENCODING 'OF ADDRESS MODE 

Except for special instructions, such. as PUSH or 
POP, where the addressing mode is pre-determined, 
the addressing mode for the current instruction is 
specified by addressing bytes following the primary 
opcode. The primary addressing byte is the "mod 
rim" byte, and a second byte of addressing informa­
tion, the "s-i-b" (scale-index-base) byte, can be 
specified. 

The s-i-b byte (scale-index-base byte) is specified 
when using 32-bit addressing mode and the "mod 
rim" byte has rim = 100 and mod = 00,01 or 10. 
When the sib byte is present, the 32-bit addressing 
mode is a function of the mod, ss, index, and base 
fields. . 

The primary. addressing byte, the "mod rim" byte, 
also contains three bits (shown as TTT in Figure 6-1) 
sometimes used as an extension of the primary op­
code. The three bits, however, may also be used as 
a register field (reg). 

When calculating an effective address, either 16-bit 
addressing or 32-bit addressing is used. 16-bit ad­
dressing uses 16-bit address components to calcu­
late the effective address while 32-bit addressing 
uses 32-bit address components to calculate the ef­
fective address. When 16-bit addressing is used, the 
"mod rim" byte is interpreted as a 16-bit addressing 
mode specifier. When 32-bit addressing is used, the 

. "mod rim" byte is interpreted as a 32-bit addressing 
mode specifier. 

Tables .on the following three pages define all en­
codings of all 16-bit addressing modes and 32-bit 
addressing modes. 
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Encoding of 16·bit Address Mode with "mod rIm" Byte 

mod rIm Effective Address mod rIm Effective Address 

00000 OS:[BX+SI] 10000 OS:[BX+SI+d16] 
00001 OS:[BX+OI] 10001 OS:[BX+ 01+d16] 
00010 SS:[BP+SI] 10010 SS:[BP+SI+d16] 
00011 SS:[BP+OI] 10011 SS:[BP+ 01 + d16] 
00100 OS:[SI] 10100 OS:[SI+d16] 
00101 OS: [01] 10101 OS:[01+d16] 
00110 OS:d16 10110 SS:[BP+d16] 
00111 OS: [BX] 10 111 OS:[BX+d16j 

01000 OS: [BX + SI + dB] 11000 register-see below 
01001 OS: [BX + 01 + dB] 11001 register-see below 
01010 SS: [BP + SI + dB] 11010 register-see below 
01011 SS: [BP + 01 + dB] .11 011 register-see below 
01100 DS:[SI+dB] 11100 register-see below 
01101 OS:[OI+dB] 11.101 register-see below 
01110 SS:[BP+dB] 11 110 register-see below 
01 111 OS:[BX+dB] 11 111 register-see below 

Register Specified by rIm 
During 16·Bit Data Operations 

mod rIm 
Function of w Field 

(whenw=O) (whenw =1) 

11 000 AL AX 
11001 CL CX 
11 010 OL OX 
11 011 BL BX 
11100 AH SP 
11 101 CH BP 
11110 OH SI 
11 111 BH 01 

Register Specified by rIm 
During 32·Bit Data Operations 

mod rIm 
Function of w Field 

.(whenw=O) (when w =1) 

11 000 AL EAX 
11001 CL ECX 
11 010 OL EOX 
11 011 BL EBX 
11100 AH ESP 
11 101 CH EBP 
11110 OH ESi 
11 111 BH EOi 
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Encoding of 32-bit Address Mode with "mod rIm" byte (no "s-I-b" byte present): 

mod rIm Effective Address mod rIm Effective Address 

00000 OS: [EAX) 10000 OS: [EAX + d32) 
00001 OS: [ECX) 10001 OS: [ECX + d32) 
00010 OS: [EDX) 10010 OS: [EOX + d32] 
00011 OS: [EBX) 10011 OS: [EBX + d32] 
00100 s-i-b is present' 10100 s-i-b is present 
00101 DS:d32 10101 SS: [EBP + d32] 
00110 OS:[ESI) . 10110 OS: [ESI + d32] 
00111 OS:[EOI) 10111 OS: [EOI + d32] 

01000 OS: [EAX+ dS) 11000 register-see below 
01001 OS:[ECX+dS) 11001 register-see below 
01010 OS:[EOX+d8) 11010 register-see below 
01011 OS:[EBX+d8) 11 011 register-see below 
01100 s-i-b is present 11100 register-see below 
01101 SS:[EBP+ dS) 11 101 register-see below 
01110 OS: [ESI + d8) 11110 register-see below 
01111 OS:[EOI+dS) 11 111 register-see below 

Register Specified by reg or rIm 
during 16-Blt Data Operations: 

mod rIm 
function of w field 

(whenw=O) (whenw=1) 

11000 AL· AX 
11001 CL CX 
11010 OL OX 
11 011 BL BX 
11100 AH SP 
11101 CH BP 
11110 OH SI 
11 111 BH 01 

Register Specified by reg or rIm 
during 32-Bit Data Operations: 

mod rIm 
function of w field 

(whenw=O) (whenw=1) 

11000 AL EAX 
11001 CL ECX 
11010 OL EDX 
11 011 BL EBX 
11100 AH ESP 
11101 CH EBP 
11 110 OH ESI 
11 111 BH EDI 
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Encoding of 32-bit Address Mode (Umod rIm" byte and us-i-b" byte present): 

mod base Effective Address 

00000 DS:[EAX + (scaled index») 
00001 DS:[ECX + (scaled index») 
00010 DS: [EDX + (scaled index») 
00011 DS: [EBX + (scaled index)) 
00100 SS:[ESP + (scaled index)) 
00101 DS: [d32 + (scaled index») 
00110 DS:[ESI + (scaled index») 
00111 DS:[EDI + (scaled index») 

01000 DS: [EAX + (scaled index) + dB) 
01001 DS: [ECX + (scaled index) + dB) 
01010 DS: [EDX + (scaled index) + dB) 
01011 DS: [EBX + (scaled index) + dB) 
01100 SS:[ESP + (scaled index) + dB) 
01101 SS: [EBP + (scaled index) + dB) 
01110 DS:[ESI + (scaled index) + dB) 
01 111 DS:[EDI + (scaled index) + dB) 

10000 DS:[EAX + (scaled index) + d32) 
10001 DS:[ECX + (scaled index) + d32) 
10010 DS:[EDX + (scaled index) + d32) 
10011 DS:[EBX + (scaled index) + d32) 
10100 SS:[ESP + (scaled index) + d32) 
10101 SS: [EBP + (scaled index) + d32) 
10110 DS:[ESI + (scaled index) + d32) 
10111 DS:[EDI + (scaled index) + d32) 

NOTE: 
Mod field in "mod rim" byte; 55, index, base fields in 
"s-i-b" byte. . 

4-2B1 

ss Scale Factor 

00 x1 
01 x2 
10 x4 
11 xB 

index Index Register 

000 EAX 
001 ECX 
010 EDX 
011 EBX 
100 no index reg"' 
101 EBP 
110 ESI 
111 EDI 

"IMPORTANT NOTE: 
When index field is 100, indicating "no index register," then 
55 field MUST equal 00. If index is 100 and ss does not 
equal 00, the effective address is undefined. 
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6.2.3.5 ENCODING OF OPERATION DIRECTION 
(d) FIELD 

In many two-operand instructions the d field is pres­
ent to indicate which operand is considered the 
source and which is the destination. 

d Direction of Operation 

0 Register/Memory <- - Register 
"reg" Field Indicates Source Operand; 
"mod r/m" or "mod ss index base" Indicates 
Destination Operand 

1 Register <- - Register/Memory 
"reg" Field Indicates Destination Operand; 
"mod r/m" or "mod ss index base" Indicates 
Source Operand 

6.2.3.6 ENCODING OF SIGN-EXTEND (s) FIELD 

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if 
the size of the immediate data is 8 bits and is being 
placed in a 16-bit or 32-bit destination. 

Effect on Effect on 
s 

Immediate Dat88 Immediate Data 16132 

None 'None 

1 Sign-Extend Data8 to Fill None 
1S-Bit or 32-Bit Destination 

6.2.3.7 ENCODING OF CONDITIONAL TEST 
(tUn) FIELD 

For the co.nditional instructions (conditional jumps 
,." .... ,.1 ~"f "' .... ,..nnl"litinn\ tttn io .o"I"",l"Iori \A.ith n inrlil"'~::d_' 
WI'-" .., ....... V" ""'v ......... ..,11/1 ........................ ..., ................... II ....... __ .. 

ing to use the condition (n = 0) or its negation (n = 1), 
and ttt giving the condition to test 

Mnemonic Condition tttn 

0 Overflow 0000 
NO No Overflow 0001 
B/NAE Below/Not Above or Equal 0010 
NB/AE Not Below/Above or Equal 0011 
E/Z Equal/Zero 0100 
NE/NZ Not Equal/Not Zero 0101 
BE/NA Below or Equal/Not Above 0110 
NBE/A Not Below or Equal/ Above 0111 
S Sign 1000 
NS Not Sign 1001 
PIPE Parity/Parity Even 1010 
NP/PO Not Parity/Parity Odd 1011 
LlNGE Less Than/Not Greater or Equal 1100 
NL/GE Not Less Than/Greater or Equal 1101 
LE/NG Less Than or Equal/Greater Than 1110 
NLE/G Not Less or Equal/Greater Than 1111 

6.2.3.8 ENCODING OF CONTROL OR DEBUG 
OR TEST REGISTER (eee) FIELD 

For the loading and storing of the Control, Debug 
and Test registers. 

When Interpreted as Control Register Field 

eeeCode Reg Name 

000 CRO 
010 CR2 
011 CR3 

Do not use any other encoding 

When Interpreted as Debug Register Field 

eeeCode 
nnt\ 
vvv 

001 
010 
011 
110 
111 

Do not use any other encoding 

Reg Name 

DRO 
DR1 
DR2 
DR3 
DRS 
DR7 

When Interpreted as Test Register Field 

eeeCode Reg Name 

110 TRS 
111 TR7 

Do not use any other encoding 
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Figure 7-1. Processor Module Dimensions 

7. DESIGNING FOR ICETM-386 DX 
EMULATOR USE 

The 386 OX in-circuit emulator products are ICE-386 
OX 25 MHz or 33 MHz (both referred to as ICE-386 
OX emulator). The ICE-386 OX emulator probe mod­
ule has several electrical and mechanical character­
istics that should be taken into consideration when 
designing the hardware. 

Capacitive loading: The ICE-386 OX emulator adds 
up to 25 pF to each line. 

Drive requirement: The ICE-386 OX emulator adds 
one standard TTL load on the CLK2 line, up to one 
advanced low-power Schottky TTL load per control 
signal line, and one advanced low-power Schottky 
TTL load per address, byte enable, and data line. 
These loads are within the probe module and are 
driven by the probe's 386 OX component, which has 
standard drive and loading capability listed in the 
AC. and D.C. Specification Tables in Sections 9.4 
and 9.5. 

Power requirement: For' noise immunity the ICE-
386 OX emulator probe is powered by the user sys­
tem. This high-speed probe circuitry draws up to 
1.5A plus the maximum Icc from the user 386 OX 
component socket 

386 OX location and orientation: The ICE-386 OX 
processor module, target-adaptor cable (which does 
not exist for the ICE-386 OX 33 MHz emulator), arid 
the isolation board used for extra electrical buffering 
of the emulator initially, require clearance as illustrat­
ed in Figures 7-1 and 7-2. 

Interface Board and CLK2 speed reduction: 
When the ICE-386 OX emulator probe is first at­
tached to an unverified user system, the interface 
board helps the ICE-386 OX emulator function in 
user systems with bus faults (shorted signals, etc.). 
After electrical verification it may be removed. Only 
when the interface board is installed, the user sys­
tem must have a 'reduced CLK2 frequency of 25 
MHz maximum. 

Cache coherence: The ICE-386 OX emulator loads 
user memory by performing 386 OX component 
write cycles. Note that if the user system is not de­
signed to update or invalidate its cache (if it has a 
cache) upon processor writes to memory, the cache 
could contain stale instruction code and/or data. For 
best use of the ICE-386 OX emulator, the user 
should consider designing the, cache (if any) to up­
date itself automatically when processor writes oc­
cur, or find another method of maintaining cache 
data coherence with main user memory. 
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PIN 1 
1+--------17.5 .. -------.... ' .... 1'---4.5 .. --+--

Do 

00 t--------~ 

----

~I ,---------------'---27.1 .. -----------------1 

Po 
.25" 

1--------12.75 .. --------1 

PIN 1 

01-----~---;;;;;;;;;;;;;;;--~-~=----............. ---- ---.I L...-~~::-=--~-~-------iiiiiioooooio~ -r---=-......... -:~--~--~~ ---v--~---'------' 

1+-----------'-------23.4 .. ------------------1 

231630-85 

Figure 7-2. Processor Module, Target-Adapter Cable, and Isolation Board Dimensions 
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8. MECHANICAL DATA 8.2 PACKAGE DIMENSIONS AND 
MOUNTING 

8.1 INTRODUCTION 

In this section, the physical packaging and its con­
nections are described in detail. 

The initial 386 OX package is a 132-pin ceramic pin 
grid array (PGA). Pins of this package are arranged 
0.100 inch (2.54mm) center-to-center, in a 14 x 14 
matrix, three rows around. 

A wide variety of available sockets allow low inser­
tion force or zero insertion force mountings, and a 
choice of terminals such as soldertail, surface 
mount, or wire wrap. Several applicable sockets are 
listed in Table 8.1. 

CIN #1 POSITION 

• ®®®®®®I'®®®®®®® 
2 ®®®®®®®®®®®®®® 
3 ® ® (iJ) ® ® ® ®'® ® ® ® ((!1l ® ® 
4 ®®® ®®® 
5 ®®® ®®® 
6 ®®® I ®®® 
7 ®®® + ®®® 
8 -®®@ -- -- @®@ 
9 ®®® ®®® 

10 ®®® ®®® 
11 ®®® ®®® 
12 ®®((!1l®®®®,®®®® ®® 
13 ®®®®®®®I®®®®®®® 
14 ®@@@®®®,®®®®®®® 

C D E F G H J K L M N P Ii 
.020 (0.508) .020 -
MIN lYP (0.508) 
.070 (1.777) DIA. 
lYP BRAZE PAD 

1------1.450 (36.802) • 

.725 (18.401) 

.650 (16.497) 

.550 (13.959) 

.450 (11.421) 

.350 (8.883) 

.250 (6.345) 

.150 (3.807) 

.050 (1.269) 
o 

SWEDGE PIN 
STANDOFF 
(4) PLACES 

.057(1.269) -1
1
-

MAX lYP 

.001 (0.025) R 
MIN lYP 

.018 (0.47) 1 
DIA lYP -=~1:11" T±Jj 

.165 (4.189) 

.110(2.792) 

231630-35 

Figure 8.1. 132-Piri Ceramic PGA Package Dimensions 
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, Table 8.1. Several'Socket Options for 132-Pin PGA 

• Low insertion force (LIF) soldertail 
55274-1 

• Amp tests indicate 50% reduction in insertion 
force compared to machined sockets 

Other socket options 
• Zero insertion force (ZIF) soldertail 

55583-1 
• Zero insertion force (ZIF) Burn-in'version 

55573-2 

Amp Incorporated 
(Harrisburg, PA 17105 U,SA 
Phone 717-564-0100) 

231630-45 
Cam handle locks in low profile position when substrate is installed (handle UP for 
open and DOWN for closed positions) 

Peel-A-WayTM Mylar and Kapton 
Socket'Terminai Carriers 

• Low insertion force surface 
mount CS132-37TG 

• Low insertion force solderlail 
CS132-0tTG 

• Low insertion force wire-wrap 
CS 132-02TG (two level) 
CS 132-03TG (three-level) 

• Low insertion force press-fit 
CS132-05TG 

Advanced Interconnections 
(5 Division Streel 
Warwick, RI 02818 U,SA 
n ... ___ An .. aD£: nAOI:\ 
• "UI,CiI ....... ·U ... o.I-........... o.Il 

Peel-A-Way Carrier No. 132: 
Kaplan Carrier is KS132 
Mylar Carrier is MS132 

Molded Plastic Body KS 132 
is shown below: 

FOOT PRINT NO. 132 

231630-46 

4-286 

courtesy Amp Incorporated 

SOLDEATAIL ..a1 LOW PROFILE -04 PRESS FIT ·05 

r B. I' . 4.1" 

'1-* 
:uo ., .. 

~. -+ uo 

~ ~DlA. ~ ~'~ ::. DtA. .... ~A • -- MTCLMOUlP.T .... -,-- ......... t ... 

WIRE WRAP -02/·03 SOLDER TAIL-33 SURFACE MOUNnNG 0.37 

E 
PEEL-A-WAY IT .~ ~o 'U 

.'u 

II~II ~ ~~vJ '~lli' :'11 I 
' .. 70 .. 03 .1. 
.... 3 LEVEL ,!!. -l ~ 
~, :.:. 

231630-47 
courtesy Advanced Interconnections 

(Peel-A-Way Terminal Carriers 
U.S. Patent No. 4442938) 

II 
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Table 8.1. Several Socket Options for 132-Pin PGA (Continued) 

PIN GRID ARRAY 
DECOUPLING SOCKETS 

• Low insertion force soldertail 
0.125 length PGD·005·1Al 
Finish: Term/Contact Tin· 
Lead/Gold 

• Low insertion force soldertail 
0.180 length PGD·005·1 Bl 
Finish: Term/Contact: Tin· 
Lead/Gold 

• Low insertion 3 level Wire/ 
Wrap PGD·005·1 Cl Finish: 
Term/Contact Tin·Lead/Gold 

Includes 0.10 }!F & 1.0 }!F 
Decoupling Capacitors 

AUGAT INC. 

VisinPak Kapton Carrier 

PKC Series 

Pin Grid Array 

PGM (Plastic) or PPS 
(Glass Epoxy) Series 

33 Perry Ave., P.O. Box 779 Attleboro, MA 02703 
TECHNICAL INFORMATION: (508) 222·2202 
CUSTOMER SERVICE: (508) 699·9800 

• Low insertion force socket soldertail 
(for production use) 
2XX-6576·00·3308 (new style) 
2XX·6003·00·3302 (older style) 

• Zero insertion force soldertail 
(for test and burn·in use) 
2XX·6568·00·3302 

Textool Products 
Electronic Products Division/3M 

(1410 West Pioneer Drive 
Irving, Texas 75601 U.S.A. 
Phone .214·259·2676) 

4-287 

1-0.020 

C: Soldertail 

I 
0.193 

r 
0.510 

~~.~~ 
••. .. " . •• 0 

Ti'-"-"---'~ ~ 
" II If) i i :: 1M 
:: !!~ 
II "UD 
.~ .. - .. -.H ........ ---_._ ... 
I II .I 

B: Soldertoil 

I 
0.166 

r 
0.180 

L 
-..11-0.020 

1---1 .450 :I: 0.020 ---.j 
I (SQUARE) I 

g~ggggggggg~gg oogooooooooogo 
§~§ w. §g§ ~INC. 8§§ 
§§§8~8~~8g§g§ .oooooooooooogg 

-l1-0.100TYP. 

231630-86 

I 

* "-
courtesy TeXlool productS/3~ 231630-48 
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8.3 PACKAGE THERMAL 
SPECIFICATION 

The 'PGA case temperature should be measured at 
the center of the top surface opposite the pins, as in 
Figure 8.2. 

The 386 OX is specified for operation when case 
temperature is within the range of O·C-85·C. The 
case temperature may be measured in any environ­
ment, 'to determine whether the 386 OX is within 
specified operating range. 

MEASURE PGA CASE TEMPERATURE 
AT CENTER OF" TOP SURF"ACE 

231630-36 

Figure 8.2. Measuring 386™ OX PGA Case Temperature 

Table 8.2. 386TM ,OX PGA Package Thermal Characteristics 

Thermal Resistance - "C/Walt 

Airflow -It./mln (m/sec) 

I L-__ p_a_~_m_e_te_r __ ~~0~~5=0~~~10~0~~2~0~0~~~~-r~60~0~~8~0=O~ r (0) (0.25) (0.50) (1.01) (2.03) (3.04) (4.06) 

8 Junctian-to-Case 2 2 2 2 2 2 2 
(case measured 
as Fig. 6-4) 

8 Case-to-Ambient 19 18 17 15 12 10 9 
(no heatsink) 

8 Case-to-Ambient 16 
(with omnidirectional 
heatsink) 

15 14 12 9 7 6 UU' 'UUU 
8 Case-ta-Ambient 15 14 
(with unidirectional 
heatsink) 

NOTES: 
1. Table 8.2 applies to 386™ OX PGA 
plugged into socket or soldered directly 
into board. 
2. 8JA = 8JC + 8CA. 

13 11 8 6 5 

3. 8 J-CAP = 4"C/w (approx.) 
OJ_PIN = 4"C/w (inner pins) (approx.) 
8 J.PIN = 8"C/w (outer pins) (approx.) 
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9. ELECTRICAL DATA 

9.1 INTRODUCTION 

The following sections describe recommended elec­
trical connections for the 386 DX, and its electrical 
specifications. 

9.2 POWER AND GROUNDING 

9.2.1 Power Connections 

The 386 DX is implemented in CHMOS III and 
CHMOS IV technology and has modest power re­
quirements. However, its high clock frequency and 
72 output buffers (address, data, control, and HLDA) 
can cause power surges as multiple output buffers 
drive new signal levels simultaneously. For clean on­
chip power distribution at high frequency, 20 Vee 
and 21 Vss pins separately feed functional units of 
the 386 DX. 

Power and ground connections must be made to all 
external Vee and GND pins of the 386 DX. On the 
circuit board, all Vee pins must be connected on a 
Vee plane. All Vss pins must be likewise connected 
on a GND plane. 

9.2.2 Power Decoupling 
Recommendations 

Liberal decouplihg capacitance should be placed 
near the 386 DX. The 386 DX driving its 32-bit paral­
lel address and data buses at high frequencies can 
cause transient power surges, particularly when driv­
ing large capacitive loads. 

Low inductance capacitors and interconnects are 
recommended for best high frequency electrical per­
formance. Inductance can be reduced by shortening 
circuit board traces between the 386 DX and 

decoupling capacitors as much as possible. Capaci­
tors specifically for PGA packages are also commer­
cially available, for the lowest possible inductance. 

9.2.3 Resistor Recommendations 

The ERROR # and 8USY # inputs have resistor pull­
ups of approximately 20 K!l built-in to the 386 DX to 
keep these signals negated when no 387 DX co­
processor is present in the system (or temporarily 
removed from its socket). The 8S16# input also has 
an internal pull up resistor of approximately 20 K!l, 
and the PEREa input has an internal pull down resis­
tor of approximately 20 K!l. 

In typical designs, the external pullup resistors 
shown in Table 9-1 are recommended. However, a 
particular design may have reason to adjust the re­
sistor values recommended here, or alter the use of 
pullup resistors in other ways. 

9.2.4 Other Connection 
Recommendations 

For reliable operation, always connect unused in­
puts to an appropriate signal level. N.C. pins should 
always remain unconnected. 

Particularly when not using interrupts or bus hold, 
(as when first prototyping, perhaps) prevent any 
chance of spurious activity by connecting these as­
sociated inputs to GND: 

Pin Signal 

87 INTR 
88 NMI 
D14 HOLD 

If not using address pipelining, pullup D13 NA# to 
Vee· 

If not using 16-bit bus size, pullup C14 8S16# to 
Vee· ~ 

Pullups in the range of 20 K!l are recommended. 

Table 9-1. Recommended Resistor Pull ups to Vee 

Pin and Signal Pullup Value Purpose 

E14 ADS# 20 K!l ±10% Lightly Pull ADS # Negated 
During 386TM DX Hold 
Acknowledge States 

C10 LOCK# 20 K!l ±10% Lightly Pull LOCK # Negated 
During 386TM DX Hold 
Acknowledge States 
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9.3 MAXIMUM RATINGS 

Table 9-2. Maximum Ratings 

386TM ox 
Parameter 20, 25, 33 MHz 

Maximum Rating 

Storage Temperature - 6S·C to + 1S0·C 
Case Temperature Under Bias -.6S·C to + 11 O·C 
Supply Voltage with Respect to Vss -O.SVto +6.5V 
Voltage on Other Pins -0.5VtoVcc + 0.5V 

9.4 D.C. SPECIFICATIONS 

Table 9·2 is a stress rating only, and functional oper· 
ation at the maximums is not guaranteed. Functional 
operating conditions are given in 9.4 D.C. Specifica­
tions and 9.5 A.C. Specifications. 

Extended exposure to the Maximum Ratings may af­
fect device reliability. Furthermore, although the 386 
OX contains protective circuitry to resist damage 
from static electric discharge, always take precau-

. tions to avoid high static voltages or electric fields. 

Functional Operating Range: VCC = 5V ±5%; TCASE = O·C to 85·C 

, Table 9-3 386™ DX D C. Characteristics 

386TM DX 

Symbol Parameter 
20 MHz, 25 MHz, 

Unit 
Test 

33 MHz Conditions 

Min Max 

VIL Input Low Voltage -0.3 0.8 V (Note 1) 

VIH Input High Voltage 2.0 VCC + 0.3 V 

VILC CLK2 Input Low Voltage -0.3 0.8 V (Note 1) 

VIHC CLK2 Input High Voltage 
20 MHz Vcc - 0.8 VCC + 0.3 V 
25 MHz and 33 MHz 3.7 VCC + 0.3 V 

VOL Output Low Voltage 
IOL = 4 mA: A2-A31, 00-031 0.45 V 
IOL = 5 mA: BEO#-BE3#, W/R#, 0.45 V 

O/C#, M/IO#, LOCK#, AOS#, HLOA 

VOH Output High Voltage 
IOH = 1 mA: A2-A31, 00-031 2.4 V 
IOH = 0.9 mA: BEO#-BE3#, W/R#, 

O/C#, M/IO#, LOCK#, AOS#, HLOA 
2.4 V 

v-or All t'lnS excepi Co;:)l 0 It, ... n~\.alJ 

BUSY#, and ERROR#) 

IIH Input Leakage Current 200 /LA VIH = 2.4V (Note 2) 
(PER EO Pin) 

IlL Input Leakage Current -400 /LA VIL = 0.45 (Note 3) 
(BS16#, BUSY#, and ERROR# Pins) 

ILO Output Leakage Current ±15 /LA 0.45V ::;; VOUT ::;; VCC 

Icc Supply Current 
CLK2 = 40 MHz: with 20 MHz 386TM OX 500 mA Icc Typ. = 460 mA 
CLK2 = 50 MHz: with 25 MHz 386TM OX 550 mA ICC Typ. = 500 mA 
CLK2 = 66 MHz: with 33 MHz 386TM OX 550 mA Icc Typ. = 400 mA 

CIN Input or 1/0 Capacitance 10 pF Fc = 1 MHz (Note 4) 

COUT Output Capacitance 12 pF Fc = 1 MHz (Note 4) 

CCLK CLK2 Capacitance 20 pF Fe = 1 MHz (Note 4) 

NOTES: 
1. The min value, -0.3, is not 100% .tested. 
2. PEREQ input has an intemal pulldown resistor. 
3. BS16#, BUSY# and ERROR# inputs each have an internal pullup resistor. 
4. Not 100% tested. 
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9.5 A.C.' SPECIFICATIONS 

9.5.1 A.C. Spec Definitions 

The A.C. specifications, given in Tables 9-4, 9-5, and 
9-6, consist of output delays, input setup require­
ments and input hold requirements. All A.C. specifi­
cations are relative to the CLK2 rising edge crossing 
the 2.OV level. 

A.C. spec measurement is defined by Figure 9-1. In­
puts must be driven to the voltage levels indicated 
by Figure 9-1 when A.C. specifications are mea­
sured. 386 OX output delays are specified with mini­
mum and maximum limits, measured as shown. The 
minimum 386 OX delay times are hold times 

provided to' external circuitry. 386 OX input setup 
and hold times are specified as minimums, defining 
the smallest acceptable sampling window. Within 
the sampling window, a synchronous input signal 
must be stable for correct 386 OX operation. 

Outputs NA#, W/R#, O/C#, MlIO#, LOCK#, 
BEO#-BE3#, A2-A31 and HLOA only change at 
the beginning of phase one. 00'-031 (write cycles) 
only change at the beginning of phase two. The 
REAOY#, HOL~ BU8Y#, ERROR#, PEREQand 
00-031 (read cycles) inputs are sampled at the be­
ginning of phase one. The NA#, B816#, INTR and 
NMI inputs are sampled at the beginning of phase 
two. 

Tx 

CLK2 [J~;g~~~~1:==1~2_V __ 
OUTPUTS 

(A2-A31. D/CH. 8EOH-8E3'#, [ 

'-----.1] 2V 

ADSH. M/IOH, W/RH, LOCKH. HLDA) ~~~---..to:.l,;lo.lo,:.;""":.:l...--";-i==;::~ __ --+j 

OUTPUTS [ 
(00-031) 

INPUTS 
(NAH.8S16H. [ 

INTR.NMi) 

INPUTS 
(READY#.HOLD,8USYH. [ 

ERRORH. PEREO. 00-031) 

VALID OUTPUT n 1.5V 1.5V VALID OUTPUT n+l 

~'I'~ 30V NOTE 1 

• ~""\\\\~i5\CVALID INPUT~"\\\W 
OV I 

LEGEND: 

NOTES: 

(6)- MAXIMUM OUTPUT DELAY SPEC. 

®- MINIMUM OUTPUT DELAY SPEC. 

©- MINIMUM INPUT SETUP SPEC. 

@-MINIMUM INPUT HOLD SPEC. 

1. Input waveforms have tr :;; 2.0 ns from O.BV to 2.0V. 
2. See section 9.5.B for typical output rise time versus load capacitance. 

Figure 9-1. Drive Levels and Measurement Points for A.C. Specifications 
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9.5.2 A.C. Spe~ification Tables 
Functional Operating Range: Vee = SV ±S%; TeASE = O°C to +BSoC 

Table 9-4. 33 MHz 386™ OX A.C. Characteristics 

33 MHz 
Ref. 

Symbol Parameter 386TM ox Unit 
Fig. 

Notes 

Min Max 

Operating Frequency B 33.3 MHz Half of CLK2 Frequency 

t1 CLK2 Period ,1S.0 62.S ns 9-3 

t2a CLK2 High Time 6.2S ns 9-3 at.2V 

t2b CLK2 High Time 4.5 ns 9-3 at 3.7V 

t3a CLK2 Low Time 6.25 ns 9-3 at2V 

tab CLK2 Low Time 4.S ns 9-3 atO.BV 

t4 CLK2 Fall Time 4 ns 9-3 3.7V to O.BV (Note 3) 

tS CLK2 Rise Time 4 ns 9-3 O.BV to 3.7V (Note 3) 

t6 A2-A31 Valid Delay 4 15 ns 9-5 CL = 50pF 

t7 A2-A31 Float Delay 4 20 ns 9-6 (Note 1) 

tB BEO#-8E3#, LOCK# Valid Delay 4 15 ns 9-5 CL = 50 pF 

t9 BEO#-8E3#, LOCK# Float Delay 4 20 ns 9-6 (Note 1) 

t10 WI,R#, MIIO#, D/C#, Valid Delay 4 15 ns 9-5 CL = 50pF 

t10a ADS# Valid Delay 4 14.5 ns 9-5 CL = 50 pF 

t11 W/R#, MIIO#, D/C#, ADS# Float Delay 4 20 ns 9-6 (Note 1) 

t12 00-031 Write Data Valid Delay 7 24 ns 9-5a CL = 50 pF, (Note 4) 

t12a 00-031 Write Data Hold Time 2 9-Sb CL = 50pF 

t13 00-031 Float Delay 4 17 ns 9-6 (Note 1) 

t14 HLDA Valid Delay 4 20 ns 9-6 CL = 50 pF 

i15 NA:# Setup Tline 5 ns 9-4 

t16 NA# Hold Time 2 ns 9-4 

t17 8S16# Setup Time 5 ns 9-4 

tlB 8S16# Hold Time 2 ns 9-4 

t19 READY # Setup Time 7 ns 9-4 

t20 READY # Hold Time 4 ns 9-4 
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9.5.2 A.C. Specification Tables (Continued) 
Functional Operating Range: Vcc = 5V ±5%; TCASE = O°C to +85°C 

Table 9·4. 33 MHz 386TM OX A.C. Characteristics (Continued) 

33 MHz 
Ref. 

Symbol Parameter 386TM OX Unit 
Fig. 

Notes 

Min Max 

t21 00-031 Read Setup Time 5 ns 9·4 

t22 00-031 Read Hold Time 3 ns 9-4 

t23 HOLO Setup Time 11 ns 9-4 

t24 HOLO Hold Time 2 ns 9-4 

t25 RESET Setup Time 5 ns 9-7 

t26 RESET Hold Time 2 ns 9-7 

t27 NMI, INTR Setup Time 5 ns 9-4 (Note 2) 

t28 NMI, INTR Hold Time 5 ns 9-4 (Note 2) 

t29 PEREQ, ERROR #, BUSY # Setup Time 5 ns 9-4 (Note 2j' 

t30 PEREQ, ERROR #, BUSY # Hold Time 4 ns 9-4 (Note 2) 

NOTES: 

1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not 100% 
tested. 
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, 
to assure recognition within a specific CLK2 period. 
3. Rise and fall times are not tested. 
4. Min. time not 100% tested. 
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9.5.2 A.C. Specification Tables (Continued) 
Functional Operating Range: Vee = 5V ±5%; TeASE = O°C to +B5°C 

Table 9·5. 25 MHz 386™ DX A.C. Characteristics 

25 MHz 
Ref. 

Symbol Parameter 386TM OX Unit 
Fig. 

Notes' 

Min Max 

Operating Frequency 4 25 MHz Half of CLK2 Frequency 

t1 CLK2 Period 20 125 ns 9-3 

t2a CLK2 High Time 7 ns 9-3 at2V 

t2b CLK2 High Time 4 ns 9-3 at3.7V 

t3a CLK2 Low Time 7 ns 9-3 at2V 

t3b CLK2 Low Time 5 ns 9-3 atO.BV 

t4 CLK2 Fall Time 7 ns 9-3 3.7VtoO.BV 

t5 CLK2 Rise Time 7 ns 9-3 O.BVto 3.7V 

t6 A2-A31 Valid Delay 4 21 ns 9-5 CL= 50 pF 

t7 A2-A31 Float Delay 4 30 ns 9-6 (Note 1) 

tB BEO#-BE3# Valid Delay 4 24 ns 9-5 CL = 50 pF 

tBa LOCK # Valid Delay 4 21 ns 9-5 CL = 50 pF 

t9 BEO#-BE3#, LOCK# Float Delay 4 30 ns 9-6 (Note 1) 

t10 W/R#, M/IO#, D/C#, AD5# Valid Delay 4 21 ns 9-5 CL = 50pF 

t11 W/R#, M/IO#, D/C#, AD5# Float Delay 4 30 ns 9-6 (Note 1) 

t12 DO-D31 Write Data Valid Delay 7 27 ns 9-5a CL = 50 pF 

t12a DO-D31 Write Data Hold Time 2 9-5b CL = 50 pF 

t13 DO-D31 Float Delay 4 22 ns 9-6 (Note 1) 

I HLDA Valid Delay 4 

ti5 NA# Setup Time 7 ns 9-4 

t16 NA# Hold Time 3 ns 9-4 

t17 B516# Setup Time 7 ns 9-4 

t1B B516# Hold Time 3 ns 9-4 

t19 READY # Setup Time 9 ns 9-4 

t20 READY # Hold Time 4 ns 9-4 
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9.5.2 A.C. Specification Tables (Continued) 
Functional Operating Range: Vcc = 5V ± 5%; T CASE = O°C to + 85°C 

Table 9·5. 25 MHz 386™ OX A.C. Characteristics (Continued) 

25 MHz 
Ref. 

Symbol Parameter 386TM OX Unit 
Fig. 

Notes 

Min Max 

t21 00-031 Read Setup Time 7 ns 9-4 

t22 00-031 Read Hold Time 5 ns 9-4 

t23 HOLO Setup Time 15 ns 9-4 

t24 HOLO Hold Time 3 ns 9-4 

t25 RESET Setup Time 10 ns 9-7 

t26 RESET Hold Time 3 ns 9-7 

t27 NMI, INTR Setup Time 6 ns 9-4 (Note 2) 

t28 NMI, INTR Hold Time 6 ns !;l-4 (Note 2) 

t29 PEREa, ERROR #, BUSY # Setup Time 6 ns 9-4 (Note 2) 

t30 PEREa, ERROR#, BUSY# Hold Time 5 ns 9-4 (Notes 2,3) 

NOTES: 

1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not 10q% 
tested. 
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, 
to assure recognition within a specific CLK2 period. 
3. Symbol Parameter Min 

T C = O'G t30 PEREQ, ERROR #, BUSY # Hold Time 4 
Tc = +85'C t30 PEREQ, ERROR#, BUSY# Hold Time 5 
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9.5.2 A.C. Specification Tables (Continued) 
Functional Operating Range: Vee = 5V ±5%; TeAsE = O·C to +85·C 

Table 9.6. 20 MHz 386TM OX A.C. Characteristics 

20 MHz 
Ref. 

Symbol Parameter 386TM OX Unit 
Fig. 

Notes 

Min Max 

Operating Frequency 4 20 'MHz Half of CLK2 
Frequency 

11 CLK2 Period 25 125 ns 9-3 

t2a CLK2 High Time 8 ns 9-3 at2V 

12b CLK2 High Time 5 ns 9-3 at (Vee - 0.8V) 

t3a CLK2 Low Time 8. ns 9-3 at2V 

t3b CLK2 Low Time 6 ns 9-3 atO.8V 

4 CLK2 Fall Time 8 ns 9-3 (Vee - 0.8V) to O.BV 

t5 CLK2 Rise Time 8 ns 9-3 0.8V 10 (Vee - 0.8V) 

ts A2-A31 Valid Delay 4 30 ns 9-5 CL = 120 pF 

17 A2-A31 Float Delay 4 32 ns 9-6 (Note 1) 

18 BEO#-BE3#, LOCK# 4 30 ns 9-5 CL = 75pF 
Valid Delay 

t9 BEO,#-BE3#, LOCK# 4 32 ns 9-6 (Note 1) 
Float Delay 

tlO W/R#, MIIO#, D/C#, 6 28 ns 9-5 CL = 75pF 
ADS# Valid Delay 

t11 W/R#, MIIO#, D/C#, 6 30 ns 9-6 (Note 1) 
ADS# Float Delay 

t12 DO-D31 Write Data 4 38 ns 9-5c CL = 120 pF 
Valid Delay 

I DO-D31 Float Delay 4 27 ns 9-6 I (Note 1) 

t14 HLDA Valid Delay 6 28 ns 9-6 CL = 75 pF 

t15 NA # Setup Time 9 ns 9-4 

t16 NA # Hold Time 14 ns 9-4 

. t17 BS16# Setup Time 13 ns 9-4 

t18 BS16# Hold Time 21 ns 9-4 

t19 READY # Setup Time 12 ns 9-4 

t20 READY # Hold Time 4 ns 9-4 

t21 DO-D31 Read 11 ns 9-4 
Setup Time 

t22 DO-D31 Read 6 ns 9-4 
Hold Time 

t23 HOLD Setup Time 17 ns 9-4 

t24 HOLD Hold Time 5 ' ns 9-4 

t25 RESET Setup Time 12 ns 9-7 
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9.5.2 A.C. Specification Tables (Continued) 
Functional Operating Range: Vcc = 5V ±5%; TCASE = QOC to +85°C 

Table 9·6. 20 MHz 386™ OX A.C. Characteristics (Continued) 

20 MHz 
Ref. 

Symbol Parameter 386™ OX Unit 
Fig. 

Notes 

Min Max 

t26 RESET Hold Time 4 ns 9-7 

t27 NMI, INTR Setup Time 16 ns 9-4 (Note 2) 

t28 NMI, INTR Hold Time 16 ns 9-4 (Note 2) 

t29 PEREO,ERROR#,BUSY# 14 ns 9-4 (Note 2) 
Setup Time 

t30 PEREO,ERROR#,BUSY# 5 ns 9-4 (Note 2) 
Hold Time 

NOTES: 
1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not 100% 
tested. 
2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes, 
to assure recognition within a specific CLK2 period. 
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9.5.3 A.C. Test Loads 

386 OX CPU 0--, 
OUTPUT ..L 

~CL 
, 231630-38 

CL = 120 pF on A2-A31, DO-D31 
CL = 75 pF on BEO#-BE3#, W/R#, MIIO#, D/C#, ADS#, 
LOCK#,HLDA 
CL includes all parasi1ic capacttances. 

Figure 9·2. A.C. Test Load 

9.5.4 A.C~ Timing Waveforms 

Figure 9·3. CLK2 Timing 

Tx Tx 

231630-40 

Figure 9·4. Input Setup and Hold Timing 
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CLK2[ 

W/RII[.-J 

CLK2 [ 

BEOII-BE311. [ 
LOCKII 

W/RII. lA/lOll. [ 
D/CII.ADSII 

A2-A31 [ 

HLDA [ 

386™ ox MICROPROCESSOR 

Tx 

231630-41 

Figure 9-5. Output Valid Delay Timing 

CLK2[ 

231630-79 231630-80 

Figure 9-5a. Write Data Valid Delay Timing 
(25 MHz, 33 MHz) 

Figure 9-5b. Write Data Hold Timing 
(25 MHz, 33 MHz) 

CLK2 [ 

00-031 [ 

231630-81 

Figure 9-5c. Write Data Valid Delay Timing (20 MHz) 
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9.5.5 Typical Output Valid Delay Versus Load Capacitance 
at Maximum Operating Temperature (CL = 120 pF) 

nom+6 

'OJ' nom+3 

-=-j ..., 
0 

nom 

~ « 
> nom-3 
'I-
:::> 
Q. 
I-
:::> 
0 nom-6 

nom-9 L--_.....l-_--L ____ .L.-_....I 

50 75 loo 25 150 

CL (picofarads) 

NOTE: 
This graph will not be linear outside of the CL range shown. 

9.5.6 Typical Output Valid Delay Versus Load Capacitance 
at Maximum Operating Temperature (CL = 75 pF) 

nom+9 

'OJ' nom+6 

-=->-
5 
~ ;-;,,;;;+3

1 Q 
:::; 
~ 
I- nom 
:::> 
'Q. 
I-
:::> 
0 

nom-3 

nom-6 75 100 125 150 

CL (picofarads) 

NOTE: 
This graph will not be linear outside of the CL range shown. 
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9.5.7 Typical Output Valid Delay Versus Load Capacitance 
at Maximum Operating Temperature (CL = 50 pF) 

nom +9 
'0' 
..5. 
>-
:'3 
loA 
0 
0 
:::; 
< > 
t-
;:) 
0-
t-
;:) 

0 

nom-3 

50 75 100 125 150 

CL (picofarads) 

NOTE: 
This graph will not be linear outside of the CL range shown. 

9.5.8 Typical Output Rise Time Versus Load Capacitance 
at Maximum Operating Temperature 

B 

> 
C! 
N 
I 
> 
00 
ci 
.... ..s ... 
:::E 
;:: ... 2 
en 
iii: 

B 
50 75 100 125 150 

231630-83 

CL (picofarads) 
231630-78 

NOTE: 
This graph will not be linear outside of the CL range shown. 
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Th Tl OR T1 ' 

CLK2 [ 

BEON-BE3N. [ LOCKN 

W/RN.M/ION. [ D/CN.ADSN 

A2-A31 [ 

00-031 [ 

12 • 'W 'j 
__ +--I-__ -+-IM:;,GH Z) - r~ ___ /AX 

HLDA [. 

@ALSO APPLIES TO DATA FLOAT WHEN WRITE 
CYCLE IS FOLLOWED BY READ OR IDLE 

Figure 9-6. Output Float Delay and HLDA Valid Delay Timing 

, -RESET-i----

CLK2 [ 

RESET I 
L 

The second internal processor phase following RESET high-to-Iow transition (provided 125 and t26 are met) is 4>2, 

Figure 9-7. RESET Setup and Hold Timing, and Internal Phase 

4·302 

231630-42 

231630-43 



386TM OX MICROPROCESSOR 

10.0 Revision History 

This 386 DX data sheet, version -005, contains updates and improvements to previous versions. A revision 
summary is listed here for your convenience. . 

The sections significantly revised since version -001 are: 

2.9.6 Sequence of exception checking table added. 

2.9.7 

2.11.2 

2.12 

3.1 

4.4.3.3 

Figures 4-15a, 4-15b 

4.6.4 

4.6.6 

5.6 

5.8 

5.8.1 

Table 6-3 

7. 
Figures 7-8, 7-9, 7-10 

6.2.3.4 

Instruction restart revised. 

TL8 testing revised. 
Debugging support revised. 

LOCK prefix restricted to certain instructions. 

1/0 privilege level and 1/0 permission bitmap added. 

1/0 permission bitmap added. 

Protection and 1/0 permission bitmap revised. 

Entering and leaving virtual 8086 mode through task switches, trap and interrupt 
gates, and IRET explained. 

Self-test signature stored in EAX. 

Coprocessor interface description added. 

Software testing for coprocessor presence added. 

PGA package thermal characteristics added. 

Designing for ICE-386 revised. 

ICE-386 clearance requirements added. 

Encoding of 32-bit address mode with no "sib" byte corrected. 

The sections significantly revised since version -002 are: 

Table 2-5 Interrupt vector assignments updated. 

Figure 4-15a BiLmap_offset must be less than or equal to DFFFH. 

Figure 5-28 

5.7 

9.4 

9.5 

Table 6-1 

386 DX outputs remain in their reset state during self-test. 

Component and revision identifier history updated. 

20 MHz D.C. specifications added. 

16 MHz A.C. specifications updated. 20 MHz A.C. specifications added. 

Clock counts updated. 

The sections significantly revised since version -003 are: 

Table 2-6b Interrupt priorities 2 and 3 interchanged. 

2.9.8 Double page faults do not raise double fault exception. 

Figure 4-5 

5.4.3.4 

Figures 5-16, 5-17, 

5-19,5-22 

9.5 

Maximum-sized segments must have segments 8ase11 .. 0 = o. 
8S16# timing corrected. 

8S16# timing corrected. 8S16# must not be asserted once NA# has been 

sampled asserted in the current bus cycle. 

16 MHz and 20 MHz A.C. specifications revised. All timing parameters are now 
guaranteed at 1.5V test levels. The timing parameters have been adjusted to 
remain compatible with previous 0.8V 12.0V specifications. 
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The sections significantly revised since version -004 are: 
Chapter 4 25 MHz Clock data included. 

Table 2-4 

5.4.4 

Table 5-10 

Table 9-3 

9.5.2 

Figure 9-5 

Table 6-1 

Segment Register Selection Rules updated. 

Interrupt Acknowledge Cycles discussion corrected. 

Additional Stepping Information added. 

Icc values updated. 

Table for 25 MHz A.C. Characteristics added. A.C. Characteristics tables reor­
dered. 

Output Valid Delay Timing Figure reconfigured. Partial data now provided in addi­
tional Figures 9-5a and 9-5b. 

Clock counts updated and formats corrected. 

The sections significantly revised since version -005 are: 
Table of Contents Simplified. 

Chapter 1 Pin Assignment. 

2.3.6 Control Register O. 

Table 2-4 

Figure 4-6 

Figure 4-7 

5.2.3 

5.2.8.4 

5.5.3 

Figure 5-28 

Chapter 6 

Chapter 7 

Chapter 8 

Table 9-3 

Table 9-3 

Table 9-4 

Figure 9:5 

Figure 9-5e 
9.5.6 

9.5.7 

Figure 9.6 

Segment override prefixes possible. 

Note added. 

Note added. 

Data bus state at end of cycle. 

'Coprocessor error. 

Bus activity during and following reset. 
ERROR#. 

Moved forward in datasheet. 

Moved forward in datasheet. 

Upgraded to chapter. 

25 MHz Icc Typ. value corrected. 

33 MHz D.C. Specifications added. 

33 MHz A.C. Specifications added. 

t8a and t10a added. 

Added. 
Added derating for CL = 75 pF. 

Added derating for CL = 50 pF. 

t8a and t10a added. 

The sections significantly revised since version -006 are: 
2.3.4 Alignment of r:naximum sized segments. 

2.9.8 Double page faults do not raise double fault exception. 

5.5.3 ERROR # and BUSY # sampling after RESET: 

Figure 5-21 

Figure 5-26 

Figure 5-28 

6.2.3.1 

Chapter 7 

9.5.2 

9.5.2 

BS16# timing altered. 

READY # timing altered. 

ERROR# timing corrected. 

Corrected Encoding of Register Field Chart. 

Updated ICE-386 DX information. 

Remove preliminary stamp on 25 MHz A.C. Specifications._ 

Remove preliminary stamp on 33 MHz A.C. Specifications. 
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387TM OX 
MATH COPROCESSOR 

• High Performance 80-Bit Internal • Upward Object-Code Compatible from 
Architecture 8087 and 80287 

• Implements ANSI/IEEE Standard 754- , • Full-Range Transcendental Operations 
1985 for Binary Floating-Point for SINE, COSINE, TANGENT, 
Arithmetic ARCTANGENT and LOGARITHM 

• Six to Eleven Times 8087/80287 • Built-In Exception Handling 
Performance • Operates Independently of Real, 

• Expands 386TM OX CPU Data Types to Protected and Virtual-8086 Modes of 
Include 32-, 64-, 80-Bit Floating POint, the 386™ OX Microprocessor 
32-, 64-Bit Integers and 18-Digit BCD. • Eight 80-Bit Numeric Registers, Usable 
Operands as Individually Addressable General 

• Directly Extends 386TM OX CPU Registers or as a Register Stack 
Instruction Set to include • Available in 68-Pin PGA Package 
Trigonometric, Logarithmic, 
Exponential and Arithmetic Instructions 

(See Packaging Spec: Order .. 231369) 

for All Data Types 

The Intel 387™ OX Math CoProcessor is an extension to the Intel 386TM microprocessor architecture. The 
combination of the 387 OX with the 386TM OX Microprocessor dramatically increases the processing speed of 
computer application software which utilize mathmatical operations. This makes an ideal computer workstation 
platform for applications such as financial modeling and spreadsheets, CA~/CAM, or graphics. 

The 387 OX Math CoProcessor adds over seventy mnemonics to the 386 OX Microprocessor instruction set. 
Specific 387 OX math operations include logarithmic, arithmetic, exponentional, and triginometric functions. 
The 387 OX supports integer, extended integer, floating point and BCO data formats, and fully conforms to the 
ANSIIIEEE floating point standard. 

The 387.' OX Math CoProcessor is object code compatible with the 80387SX, and upward object code compati­
ble from the 80287 and 8087 math coprocessors. Object code for 386 OX/387 OX is also compatible with the 
Intel 486™ microprocessor. The 387 OX is manufactured on 1 micron, CHMOS IV technology and packaged 
in a 68-pin PGA package. 

1 
aus CONTROL LOGIC 

I DATA INTERFACE AND CONTROr.:
L U:Nrr~I~ __ -IC;;F;LO~:~:.~,~~~:~::~UN;rr;J 

DATA ALLGHWEtfT AND OP£RAND CHECKINO 

r-"""E~3~4IINTERN.l.L I "" sus I 

I· 

Figure 0.1. 387™ DX Math Coprocessor Block Diagram 
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386™ DX Microprocessor Registers 

GENERAL REGISTERS SEGMENT REGISTERS 
31 15 0 15 0 

EAX CS 

SS 
BX 

I BH I BL 
EBX OS 

ES 
CX 

I CH I CL 
ECX 

FS 

GS OX 

.1 OH 1 OL 
EOX 

ESI 
I 

SI 31 o 

EOI 

I 
01 

EBP 

I 
BP 

ESP 

1 

SP 

I 

387TM DX NPX Data Registers 

79 78 64 63 o 
RO Sign Exponent Significand 

R1 
r-~------+---------~ 

R2 
r---r------+------------~ 

R3 
r-~------r---------~ 

R4 
r-~------r---------~ 

R5 
r---r------+------------~ 

R6 
r-~----~r---------~ 

R7 

15 o 47 

Tag 
Field 
1 0 
r--

-

-
-
-

o ,-------, r-------------------, 
Control Registe Iinstruction Painter (in 386TM OX CPU) 

Status Register I Data Pointer (in 386TM OX CPU) 

Tag Word 

Figure 1.1. 386TM DX Microprocessor and 387™ DX Math Coprocessor Register Set 

1.0 FUNCTIONAL DESCRIPTION 

The 387TM OX Math Coprocessor provides arithme­
tic instructions for a variety of numeric data types in 
386™ OX Microprocessor and 387 OX Math Co­
processor systems. It also executes numerous built­
in transcendental functions (e.g. tangent, sine, co­
sine, and log functions). The 387 OX Math Coproc­
essor effectively extends the register and instruction 
__ .L _1 _ .... ,.",.. f""\'-I' •• : _____________ •• _.L __ ,1. __ _ •• :_.L: __ 
~t::l UI C( \:Jou UA Ivll ..... rufJIVl.it:=~::.VI ::.y~l~111 lUI t::liA.I::>UII!::J 

data types and adds several new data types as well. 
Figure 1.1 shows the model of registers visible to 
386 OX Microprocessor and 387 OX Math Coproc­
essor programs. Essentially, the 387 OX Math Co­
processor can be treated as an additional resource 
or an extension to the 386 OX Microprocessor. The 
386 OX Microprocessor together with a 387 OX 
Math Coprocessor can be used as a single unified 
system, the 386 OX Microprocessor and 387 OX 
Math Coprocessor. 

The 387 OX Math Coprocessor works the same 
whether the 386 OX Microprocessor is executing in 
real-address mode, protected mode, or virtual-8086 
mode. All memory access is handled by the 386 OX 
Microprocessor; the 387 OX Math Coprocessor 
merely operates on instructions and values passed 
to it by the 386 OX Microprocessor. Therefore, the 
387 OX Math Coprocessor is not sensitive to the 
processing mode of the 386 OX Microprocessor. 

In real-address mode and virtual-8086 mode, the 
386 OX Microprocessor and 387 OX Math Coproc­
essor are completely upward compatible with soft­
ware for 8086/8087, 80286/80287 real-address 
mode, and 386 OX Microprocessor and 80287 Co­
processor real-address mode systems. 

In protected mode, the 386 OX Microprocessor and 
387 OX Math Coprocessor are completely upward 
,..."'""" ....... +;J...I,... ,u-:fh ,.. ... l-........... ;-" 1-,...,. onl")oa IOnI"J07 "" ... ""+ ........ + 
,",VIII""QLIUI~ ""'LII ~VI"""Qlv IVI uvc..VV/VV.c;.UI t-'IV'C,-,,'-

ed mode, and 386 OX Microprocessor and 80287 
Coprocessor protected mode systems. 

The only differences of operation that may appear 
when 8086/8087 programs are ported to a protect­
ed-mode 386 OX Microprocessor and 387 OX Math 
Coprocessor system (not using virtual-8086 mode), 
is in the format of operands for the administrative 
instructions FLOENV, FSTENV, FRSTOR and 
FSAVE. These instructions are normally used only 
by exception handlers and operating systems, not by 
applications programs. 

The 387 OX Math Goprocessor contains three func­
tional units that can operate in parallel to increase 
system performance. The 386 OX Microprocessor 
can be transferring commands and data to the NPX 
bus control logic for the next instruction while the 
NPX floating-point unit is performing the current nu­
meric instruction. 
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2.0 PROGRAMMING INTERFACE 

The NPX adds to the 386 OX Microprocessor sys­
tem additional'data types, registers, instructions, and 
interrupts specifically designed to facilitate high­
speed' numerics processing. To use the NPX re­
quires no special programming tools, because all 
new instructions and data types are directly support­
ed by the 386 OX CPU assembler and compilers for 
high-level languages. All 8086/8088 development 
tools that support the 8087 can also be used to de­
velop software for the 386 OX Microprocessor and 
387 OX Math Coprocessor in real-address mode or 
virtual-8086 mode. All 80286 development tools that 
support the 80287 can also be used to develop soft­
ware for the 386 OX Microprocessor and 387 OX 
Math Coprocessor. 

All communication between the 386 OX Microproc­
essor and the NPX is transparent to applications 
software. The CPU automatically controls the NPX 
whenever a numerics instruction is executed. All 
physical memory and virtual memory of the CPU are 
available for storage of the instructions and oper­
·ands of programs that use the NPX. All memory ad­
dressing modes, including use of displacement, 
base register, index register, and scaling, are avail­
able for addressing numerics operands. 

Section 6 at the end of this data sheet lists by class 
the instructions that the NPX adds to the instruction 
set of the 386 OX Microprocessor system. 

2.1 Data Types 

Table 2.1 lists the seven data types that the 387 OX 
NPX supports and presents the format for each type. 
Operands are stored in memory with the least signifi­
cant digit at the lowest memory address. Programs 
retrieve these values by generating the lowest ad­
dress. For maximum system performance, all oper­
ands should start at physical-memory addresses 
evenly divisible by four (doubleword boundaries); op­
erands may begin at any other addresses, but will 
require extra memory cycles to access the entire op-
erand. ' 

Internally, the 387 OX NPX holds all numbers in the 
extended-precision real format. Instructions that 
load operands from memory automatically convert 
operands represented in memory as 16-, 32-, or 64-
bit integers, 32- or 64-bit floating-point numbers, or 
18-digit packed BCD numbers into extended-preci­
sion real format. Instructions that store operands in 
memory perform the inverse type conversion. 

2.2 Numeric Operands 

A typical NPX instruction accepts one or two oper­
ands and produces a single result. In two-operand 
instructions, one operand is the contents of an NPX 
register, while the other may be a memory location. 
The operands of some instructions are predefined; 
for example FSQRT always takes the square root of 
the number in the top stack element. 
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Table 2.1. 387™ DX NPX Data Type Representation in Memory 

Data 
Most SIgnificant Byte = Higheat Addreaaed Byte 

Format. 
Range Preclalon 

017 017 0/7 0/7 0/7 01 7 0/7 017 017 oj 7 
Word Integer ±1()4 16 Bits J ITWO 5 

COMPLEMENT I , 
,S 0 

Short Integer ±109 32 Bits IlTWO'S 
COMPLEMENT! 

l' 0 

Long Integer ±1018 ~4 Bits JITWO S 
COMPLEMENT, 

63 0 , 

MAGNITUDE 
Packed BCD ±10±18 18 Digits sl X _Ld l1 diD d,~ dUo d'J d,~ do d. u d9 d, d, d, d.,' UI d, d, d, d, I 

19 12 

Single Precision ±10±38 
, 

_, BIASED , 
24 Bits S EXPONENT SIGNIFICAND 

3' 

Double PreciSIOn ±10±308 53 Bits sl 

~3 

Extended ~10±4932 64 Bits sl Precision 
iT' 

NOTES: 
11\ ~ = !';inn hit 10 = Dositive.1 = neQative) 
(2) dn = Decimai digit ·(two per byte) -

23~ 

" 
BIASED I EXPDNENT 

52'- I, 

BIASED hl EXPONENT 

64 63' 

I 
0 

SIGNIFICAND 

SIGNIFICAND 

(S) X = Bits have no significance; 387TM DX NPX ignores when loading, zeros when storing 
(4)" = Position of implicit binary point 
(5) I = Integer bit of significand; stored in temporary real, implicit in Single and double precision 
(6) Exponent Bias (normalized values): 

Single: 127 (7FH) 
Double: 1023 (3FFH) 
Extended Real: 16383 (3FFFH) 

(7) Packed BCD: (-l)S (017 ... 00) 
(8) Real: (-l)S (2E-BIAS) (Fo Fl ... ) 

4-308 
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0 
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15 o 
TAG (7) TAG (6) TAG (5) TAG (4) TAG (3) TAG (2) TAG (1) TAG (0) 

NOTE: 
The index i of tag(i) is not top-relative. A program typically uses the "top" field of Status Word to determine which tag (i) 
field refers to logical top of stack. 
TAG VALUES: 

00 = Valid 
01 = Zero 
10 = QNaN. SNaN. Infinity. Denormal and Unsupported Formats 
11 = Empty 

Figure 2_1_ 387™ DX NPX Tag Word 

2.3 Register Set 

Figure 1.1 shows the 387 OX NPX register set. 
When an NPX is present in a system, programmers 
may use these registers in addition to the registers 
normally available on the 386 OX CP,U. 

2_3.1 DATA REGISTERS 

387 OX NPX computations use the NPX's data regis­
ters. These eight 80-bit registers provide the equiva­
lent capacity of twenty 32-bit registers. Each of the 
eight data registers in the NPX is 80 bits wide and is 
divided into "fields" corresponding to the NPXs ex­
tended-precision real data type. 

The 387 OX NPX register set can be accessed either ' 
as a stack, with instructions operating on the top one 
or two stack elements, or as a fixed register set, with 
instructions operating on explicitly designated regis­
ters. The TOP field in the status word identifies the 
current top-of-stack register. A "push" operation 
decrements TOP by one and loads a value'into the 
new top register. A "pop" operation stores the value 
from the current top register and then increments 

TOP by one. Like the 386 OX Microprocessor stacks 
in memory, the NPX register stack grows "down" 
toward lower-addressed registers. 

Instructions may address the data registers either 
implicitly or explicitly. Many instructions operate on 
the register at the TOP of the stack. These instruc­
tions implicitly address the register at which TOP 
points. Other instructions allow the programmer to 
explicitly specify which register to user. This explicit 
register addressing is also relative to TOP. 

2.3.2 TAG WORD 

The tag word marks the content of each numeric 
data register, as Figure 2.1 shows. Each two-bit tag 
represents one of the eight numerics registers. The 
principal function of the tag word is to optimize the 
NPXs performance and stack handling by making it 
possible to distinguish between empty and nonemp­
ty register locations. It also enables exception han­
dlers to check the contents of a stack location with­
out the need to perform complex decoding of the 
actual data. 
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.-------------------NPXBUSY 

r-.,.--.---------~---- TOP OF STACK POINTER 

.-+-+--+--r-r-,----.,..------- CONDITION CODE 

ERROR SUMMARY STATUS --------' 
STACK FLAG --------' 

EXCEPTION FLAGS: 

PRECISION ---------' 
, UNDERFLOW ------------' 

OVERFLOW ----,---------' 
, ZERO DIVIDE --..,-----------' 

DENORMALIZED OPERAND -------------' 
INVALID OPERATION _____________ -0 

240448-3 

ES is set if any unmasked exception bit is set; cleared othelWise. 
See Table 2.2 for interpretation of condition code. 
TOP values: ' 

000 = Register O'is Top of Stack 
001 = Register 1 is Top of Stack . 
111 = 'Register 7 is Top of Stack 

For definitions of exceptions, refer to the section entitled 
"Exception Handling" 

Figure 2.2. NPX Status Word 

2.3.3 STATUS WORD 

The 16-bit status word (in the status register) shown 
in Figure 2.2 refiects the overaii state of the NPX. It 
may be read and inspected by CPU code. 

Bit 15, the B-bit (busy bit) is included for 8087 com­
patibility only. It reflects the contents of the ES bit 
(bit 7 of the status word), not the status of the 
BUSY # output of the 387 OX NPX. 

Bits 13-11 (TOP) point to the 387 OX NPX register 
that is the current top-of· stack. 

The four numeric condition code bits (Ca-Co) are 
similar to the flags in a CPU; instructions that per­
form arithmetic operations update these bits to re­
flect the outcome. The effects of these instructions 
on the condition code are summarized in Tables 2.2 
through 2.5. 

Bit 7 is the error summary (ES) status bit. This bit is 
set if any unmasked exception bit is set; it is clear 
otherwise. If this bit is set, the ERROR # signal is 
asserted. 

Bit 6 is the stack flag (SF). This bit is used· to distin­
nllil':h invAliri ooerations due to stack overflow or un­
d~rli~w f~om other kinds of invalid operatioAs. When 
SF is sat; bit 9 (Ci) distinguishes bet\Yeen stack 
overflow (Cl = 1) and underflow (Cl = 0). 

Figure 2.2 shows the six exception flags in bits 5-0 
of the status word. Bits 5-0 are set to indicate that 
the NPX has detected an exception while executing 
an instruction. A later section entitled "Exception 
Handling" explains how they are set and used. 

Note that when a new value is loaded into the status 
word by the FLOENV or FRSTOR instruction, the 
value of ES (bit 7) and its reflection in the B-bit (bit 
15) are not derived from the values loaded from 
memory but rather are dependent upon the values of 
the exception flags (bits 5-0) in the status word and 
their corresponding masks in the control word. If ES 
is set in such a case, the ERROR # output of the 
NPX is activated immediately. 
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Table 2.2. Condition Code Interpretation 

Instruction CO (5) I C3(Z) C1 (A) C2(C) 

FPREM, FPREM1 Three least significant bits 
Reduction 

(see Table 2.3) of quotient 
0= complete 

02 00 01 
orO/U# 1 = incomplete 

FCOM, FCOMP, 
FCOMPP, FTST, Result of comparison 

Zero 
Operand is not 

FUCOM, FUCOMP, (see Table 2.4) 
orO/U# 

comparable 
FUCOMPP, FICOM, (Table 2.4) 
FICOMP 

FXAM Operand class Sign Operand class 
(see Table 2.5) orO/U# (Table 2.5) 

FCHS, FABS, FXCH, 
FINCSTP, FDECSTP, 

Zero 
Constant loads, UNDEFINED UNDEFINED 
FXTRACT, FLO, orO/U# 

FILD, FBLD, 
FSTP (ext real) 

FIST, FBSTP, 
FRNDINT, FST, 
FSTP, FADD, FMUL, 

Roundup 
FDIV, FDIVR, UNDEFINED UNDEFINED 
FSUB, FSUBR, orO/U# 

FSCALE, FSORT, 
FPATAN, F2XM1, 
FYL2X, FYL2XP1 

FPTAN, FSIN Roundup Reduction 
FCOS, FSINCOS UNDEFINED orO/U#, 0= complete 

undefined 1 = incomplete 
ifC2 = 1 

FLDENV, FRSTOR Each bit loaded from memory . 

FLDCW, FSTENV, 
FSTCW, FSTSW, UNDEFINED 
FCLEX, FINIT, 
FSAVE 

O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit 
distinguishes between stack overflow (C1 = 1) and underflow (C1 = 0). 

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is 
complete. When reduction is incomplete the value at the top of the stack is a partial 
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and 
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this 
case the original operand remains at the top of the stack. 

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the 
instruction was upward. 

UNDEFINED Do not rely on finding any specific value in these bits. 
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Table 2.3. Condition Code Interpretation after FPREM and FPREM1 Instructions 

Condition Code 
Interpretation after FPREM and FPREM1 

C3 

X 

01 

0 
0 
1 
1 
0 
0 
1 
1 

C3 

0 
0 
-u 
o 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 

C1 CO 

Incomplete Reduction: 
X X further interation required 

for complete reduction 

00 02 o MOD8 

0 0 0 
1 0 1 

Complete Reduction: 
0 0 2 
1 0 a CO, ca, C1 contain three least 

0 1 .4 significant bits of quotient 

1 1 5 
0 1 6 
1 1 7 

. Table 2.4. Condition Code Resulting from Comparison 

Order C3 C2 CO 

TOP> Operand 0 0 0 
TOP < Operand 0 0 1 , 
TOP = Operand 1 0 0 
Unordered 1 1 1 

Table 2.5. Condition Code Defining Operand Class 

C2 

0 
0 -v 
o 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 

-

C1 

0 
0 . 
0 
0 
1 
1 
0 
0 
1 
1 
0 
1 

4-312 

CO Value at TOP 

0 + Unsupported 
1 + NaN 
n 11 __ •• __ .................. 
v VIIt::.U,..,,..,VI 'QU 

- NaN 
0 + Normal 
1 + Infinity 
0 - Normal 
1 - Infinity 
0 +0 
1 + Empty 
0 -0 
1 - Empty 
0 + Denormal 
0 - Denormal 
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2.3.4 INSTRUCTION AND DATA POINTERS 

Because the NPX operates in parallel with the CPU, 
any errors detected by the NPX may be reported 
after the CPU has executed the ESC instruction 
which caused it. To allow identification of the failing 
numeric instruction, the 386 DX Microprocessor and 
387 DX Math Coprocessor contains two pointer reg­
isters that supply' the address of the failing numeric 
instruction and the address of its numeric memory 
operand (if appropriate). 

The instruction and data pointers are provided for 
user-written error handlers. These registers are ac­
tually located in the 386 DX CPU, but appear to be 
located in the NPX because they are accessed by 
the ESC instructions FLDENV, FSTENV, FSAVE, 
and FRSTOR. (In the 8086/8087 and 80286/80287, 
these registers are located in the NPX.) Whenever 

the 386 DX CPU decodes a new ESC instruction, it 
saves the address of the instruction (including any 
prefixes that may be present), the address of the 
operand (if present), and the opcode. 

The instruction and data pointers appear in one of 
four formats depending on the operating mode of 
the 386 DX Microprocessor (protected mode or real­
address mode) and depending on the operand-size 
attribute in effect (32-bit operand or 16-bit operand). 
When the 386 DX Microprocessor is in virtual-8086 
mode, the real-address mode formats are used. 
(See Figures 2.3 through 2.6.) The ESC instructions 
FLDENV, FSTENV, FSAVE, and FRSTOR are used 
to transfer these values between the 386 DX Micro­
processor registers and memory. Note that the value 
of the data pointer is undefined if the prior ESC in­
struction did not have a memory operand. 

32-BIT PROTECTED MODE FORMAT 
31 

00000 .~ 

23 15 7 

RESERVED CONTROL WORD 

RESERVED STATUS WORD 

RESERVED TAG WORD 

IPOFFSET 

OPCODE 10 .. 0 CSSELECTOR 

DATA OPERAND OFFSET 

RESERVED OPERAND SELECTOR 

Figure 2.3. Protected Mode 387TM DX NPX Instruction and 
Data Pointer Image in Memory, 32-8it Format 
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32-BIT REAL-ADDRESS MODE FORMAT 
23 15 7 

RESERVED f CONTROL WORD 

RESERVED STATUS WORD 

RESERVED TAG WORD 

RESERVED INSTRUCTION POINTER 15 .. 0 

INSTRUCTION POINTER 31 .. 16 I 0 I OPCODE 10 .. 0 

RESERVED OPERAND POINTER 15 .. 0 

OPERAND POINTER 31 .• 16 I 0000 00000000 

o 

o 

4 

a 

C 

10 

14 

18 

Figure 2.4. Real Mode 387TM OX NPX Instruction and Data Pointer Image in Memory, 32·Bit Format 

16-BIT PROTECTED MODE FORMAT 16-BIT REAL-ADDRESS MODE AND 
15 7 0 VIRTUAL-80a6 MODE FORMAT 

15 7 0 

CONTROL WORD 0 
CONTROL WORD 0 

STATUS WORD 2 
STATUS WORD 2 

TAG WORD 4 
TAG WORD 4 

IPOFFSET 6 ''''C!TC' I('TII"'III.I CI"'IIII.ITI=~ 1<; n 6 
I I I I 

11'1"""1, __ •• _,,., _ .... _ ••• _ •• _ 

I 
I I 

CSSELECTOR 8 IP19.16 101 OPCODE 10 .. 0 8 

OPERAND OFFSET A- OPERAND POINTER 15 .. 0 A 

OPERAND SELECTOR C 
DP 19.161010 0 0 0 0 0 0 0 0 0 0 C 

Figure 2.5. Protected Mode 387TM OX NPX Figure 2.6. Real Mode 387TM OX NPX 
Instruction and Data Pointer Instruction and Data Pointer 

Image in Memory, 16·Bit Format -Image in Memory, 16·Blt Format 
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5 117 0 

RESERVED 

RESERVEDO 
ROUNDING CONTROL 

PRECISION CONTROL 

I X; x : x I x I ~C I P:C r X; x I : I ~ I ~ I ~ I ~ I ~ I 

RESERVED 

EXC EPTION MASKS: 

PRECISION 

U NDERFLOW 
OVERFLOW 

ERO DIVIDE 
D OPERAND 

Z 
DENORMALIZE 

INVALID OPERATION 

Precision Control 
00-24 bits (single precision) 
01-(reserved) 
10-53 bits (double precision) 
11-64 bits (extended preCision) 

o "0" AFTER RESET OR FlNIT; 
CHANGEABLE UPON LOADING THE 
CONTROL WORD (CW). PROGRAMS 
MUST IGNORE THIS BIT. 

Rounding Control 
OO-Round to nearest or even 
01-Round down (toward - 00) 
1 O-Round up (toward + 00) 
11-Chop (truncate toward zero) 

240448-4 

Figure 2.7. 387TM OX NPX Control Word 

2.3.5 CONTROL WORD 

The NPX provides several processing options that 
are selected by loading a control word from memory 
into the control register. Figure 2.7 shows the format 
and encoding of fields in the control word. 

The low-order byte of this control word configures 
the NPX error and exception masking. Bits 5-0 of 
the control word contain individual masks for each of 
the six exceptions that the NPX recognizes. 

The high-order byte of the control word configures 
the NPX operating mode, including precision and 
rounding. 

• Bit 12 no longer defines infinity control and is a 
reserved bit. Only affine closure is supported for 
infinity arithmetic. The bit is initialized to zero after 
RESET or FINIT and is changeable upon loading 
the CW .. Programs must ignore this bit. 

• The rounding control (RC) bits (bits 11-10) pro­
vide for directed rounding and true chop, as well 
as the unbiased round to nearest even mode 
specified in the IEEE standard. Rounding control 

affects only those instructions that perform 
rounding at the end of the operation (and thus 
can generate a precision exception); namely, 
FST, FSTP, FIST, all arithmetic instructions (ex­
cept FPREM, FPREM1, FXTRACT, FABS, and 
FCHS), and all transcendental instructions. 

• The precision control (PC) bits (bits 9-8) can be 
used to set the NPX internal operating precision 
of the significand at less than the default of 64 
bits (extended precision). This can be useful in 
providing compatibility with early generation arith­
metic processors of smaller precision. PC affects 
only the instructions ADD, SUB, DIV, MUL, and 
SORT. For all other instructions, either the preci­
sion is determined by the opcode or extended 
precision is used. 

2.4 Interrupt Description 

Several interrupts of the 386 OX CPU are used to 
report exceptional conditions while executing nu­
meric programs in either real or protected mode. Ta­
ble 2.6 shows these interrupts and their causes. 

4-315 



387TM OX MATH COPROCESSOR 

Table 2.6. 386TM OX Microprocessor Interrupt Vectors Reserved for NPX 

Interrupt 
Cause of Interrupt 

Number 

7 An ESC instruction was encountered when EM or TS of the 386TM OX CPU control register 
zero (CRO) was set. EM = 1 indicates that software emulation of the instruction is 
required. When TS is set, either an ESC or WAIT instruction causes interrupt 7. This 
indicates that the current NPX context may not belong to the current task. 

9 An operand of a coprocessor instruction wrapped around an addressing limit (OFFFFH for 
small segments, OFFFFFFFFH for big segments, zero for expand-down segments) and 
spanned inaccessible addressesa. The failing numerics instruction is not restartable. The 
address of the failing numerics instruction and data operand may be lost; an FSTENV does 
not return reliable addresses. As with the 80286/80287, the segment overrun exception 
should be handled by executing an FNINIT instruction (Le. an FINIT without a preceding 
WAIT). The return address on the stack does not necessarily point to the failing instruction 
nor to the following instruction. The interrupt can be avoided by never allowing numeric 
data to start within 108 bytes of the end of a segment. 

13 The first word or doubleword of a numeric operand is not entirely within the limit of its 
segment. The return address pushed onto the stack of the exception handler points at the 
ESC instruction that caused the exception, including any prefixes. The 387™ OX NPX has 
not executed this instruction; the instruction pointer and data pointer register refer to a, 
previous, correctly executed instruction. 

16 The previous numerics instruction caused an unmasked exception. The address of the 
faulty instruction and the address of its operand are stored in the instruction pointer and 
data pointer registers. Only ESC and WAIT instructions can cause this interrupt. The 386TM 
OX CPU return address pushed onto the stack of the exception handler points to a WAIT 
or ESC instruction (including prefixes). This instruction can be restarted after clearing the 
exception condition in the NPX. FNINIT, FNCLEX, FNSTSW, FNSTENV, and FNSAVE 
cannot cause this interrupt. 

. . . .. .. a. An operand may wrap around an addreSSing limit when the segment limit IS near an addreSSing limit and the operand IS near the largest valid 
address in the segment. Because of the wrap-around, the beginning and ending addresses of such an operand will be at opposite ends of the 
segment. There are tv(o ways that such an operand may also span inaccessible addresses: 1) if the segment limit is not equal to th~ addressing 
limit (e.g. addressing limit is FFFFH and segment limit is FFFDH) the operand will span addresses that are not within the segment (e.g. an B-byte 
operand that starts at valid offset FFFC will span addresses FFFC-FFFF and 0000-0003; however addresses FFFE and FFFF are not valid, 
because they exceed the limit); 2) if the operand begins and ends in present and accessible pages but intermediate bytes of the operand fall in a 
not-present page or a page to which the procedure does not have access rights. 

2.5 Exception Handling 

The 387 OX NPX detects six different exception con­
ditions that can occur during instruction execution. 
Table 2.7 lists the exception conditions in order of 
precedence, showing for each the cause and the 
default action taken by the NPX if the exception is 
masked by its corresponding mask bit in the control 
word. 

Any exception that is not masked by the control 
word sets the corresponding exception flag of the 
status word, sets the ES bit of the status word, and 
asserts the ERROR# signal. When the CPU at­
tempts to execute another ESC instruction or WAIT, 
exception 7 occurs. The exception condition must 
be resolved via an interrupt service routine. The 386 
OX Microprocessor and 387 OX Math Coprocessor 
save the address of the floating-point instruction that 
caused the exception and the address of any memo­
ry operand required by that instruction. 

2.6 Initialization 

387 OX NPX initialization software must execute an 
FNINIT instruction (Le. an FINIT without a preceding 
WAIT) to clear ERROR#. After a hardware RESET, 
the ERROR # output is asserted to indicate that a 
387 OX NPX is present. To accomplish this, the IE 
and ES bits of the status word are set, and the 1M bit 
in the control word is reset. After FNINIT, the status 
word and the control word have the same values as 
in an 80287 after RESET. . 
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2.7 8087 and 80287 Compatibility 

This section summarizes the differences between 
the 387 OX NPX and the 80287. Any migration from 
the 8087 directly to the 387 OX NPX must also take 
into account the differences between the 8087 and 
the 80287 as listed in Appendix A. 

Many changes have been designed into the 387 OX 
NPX to directly support the IEEE standard in hard­
ware. These changes result in increased perform­
ance by eliminating the need for software that sup­
ports the standard. 

2.7.1 GENERAL DIFFERENCES 

The 387 OX NPX supports only affine closure for 
infinity arithmetic, not projective closure. Bit 12 of 
the Control Word (CW) no longer defines infinity 
control. It is a reserved bit; but it is initialized to zero 
after RESET or FINIT and is changeable upon load­
ing the CWo Programs must ignore this bit. 

Operands for FSCALE and FPATAN are no longer 
restricted in range (except for ± 00); F2XM1 and 
FPT AN accept a wider range of operands. 

The results of transcendental operations may be 
slightly different from those computed by 80287. 

In the case of FPTAN, the 387 OX NPX supplies a 
true tangent result in ST(1), and (always) a floating 
point 1 in ST. 

Rounding control is in effect for FLO constant. 

Software cannot change entries of the tag word to 
values (other than empty) that do not reflect the ac­
tual register contents. 

After reset, FINIT, and incomplete FPREM, the 387 
OX NPX resets to zero the condition code bits C3-
Co of the status word. 

In conformance with the IEEE standard, the 387 OX 
NPX does not support the special data formats: 
pseudozero, pseudo-NaN, pseudoinfinity, and un­
normal. 

Table 2.7. Exceptions 

Exception Cause 
Default Action 

(if exception is masked) 

lrivalid Operation on a signaling NaN, unsupported format, Result is a quiet NaN, integer 
Operation indeterminate form (0· 00, 0/0, (+ 00) + (- 00), etc.), or indefinite, or BCD indefinite 

stack overflow/underflow (SF is also set). 

Denormalized At least one of the operands is denormalized, i.e. it has Normal processing 
Operand the smallest exponent but a nonzero significand. continues 

Zero Divisor The divisor is zero while the dividend is a noninfinite, Result is 00 
nonzero number. 

Overflow The result is too large in magnitude to fit in the specified Result is largest finite value 
format. or 00 

Underflow The true result is nonzero but too small to be Result is denormalized or 
represented in the specified format, and, if underflow zero 
exception is masked, denormalization causes loss of 
accuracy. 

Inexact The true result is not exactly representable in the Normal processing 
Result specified format (e.g. 1/3); the result is rounded continues 
(Precision) according to the rounding mode. 
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2.7.2 EXCEPTIONS 

A number of differences exist due to changes in the 
IEEE standard and to functional improvements to' 
the architecture of the 387 OX NPX: 

1. When the overflow or underflow exception is 
masked, the 387 OX NPX differs from the 80287 
in rounding when overflow or underflow occurs. 

. The 387 OX NPX produces results that are con­
sistent with the rounding mode. 

2. When the underflow exception is masked, the 
387 OX NPX sets its underflow flag only if there 
is also a loss of accuracy during denormaliza­
tion. 

3. Fewer invalid-operation exceptions due to de­
normal operands, because the instructions 
FSORT, FOIV, 'FPREM, and conversions to BCD 
or to integer normalize denormal operands be­
fore proceeding. 

4. The FSORT, FBSTP, and FPREM instructions 
may cause underflow, because they support de-
normal operands. . 

5. The denormal exception can occur during the 
transcendental instructions and the FXTRACT 
instruction. 

6. The denormal exception no longer takes prece­
dence over all other exceptions. 

7. When the denormal exception is masked, the 
387 OX NPX automatically normalizes denormal 
operands. The 8087/80287 performs unnormal 
arithmetic, which might produce an unnormal re­
sult. 

8. When the operand is zero, the FXTRACT in­
struction reports a zero-divide exception and 
leaves - 00 in ST(1). 

,.. "T"I ___ .1._.1. ________ ...1 L _____ ._. L~'" I,",~ .LL_.L _~ ___ I_ 

tI. Illt:::II ::ili:lLU::i VVUIU (Itt::» a. IItlW UIL \\:;Jr} LllctL ::»1~1ICl.1~ 

when invalid-operation exceptions are due to 
stack underflow or overflow. 

10. FLO extended precision no longer reports denor­
mal exceptions, because the instruction is not 
numeric. 

11. FLO single/double precision when the operand 
is denormal converts the number to extended 
precision and signals the denormalized operand 
exception. When loading a signaling NaN, FLO 
single/double precision Signals an invalid-oper­
and exception. 

12. The 387 OX NPX only generates quiet NaNs (as 
on the 80287); however, the 387 OX NPX distin­
guishes between quiet NaNs and signaling 
NaNs. Signaling NaNs trigger exceptions when 
they are used as operands; quiet NaNs do not 
(except for FCOM, FIST, and FBSTP which also 
raise IE for quiet NaNs). 

13. When stack overflow occurs during FPT AN and 
overflow is masked, both ST(O) and ST(1) con­
tain quiet NaNs. The 80287/8087 leaves the 
original operand in ST(1) intact. 

14. When the scaling factor is ± 00, the FSCALE 
(ST(O), ST(1)) instruction behaves as follows 
(ST(O) and ST(1) contain the scaled and scaling 
operands respectively): 

• FSCALE(O, 00) generates the invalid operation 
exception. ' 

• FSCALE(finite, - 00) generates zero with the 
same sign as the scaled operand . 

• FSCALE(finite, + 00) generates 00 with the 
same sign as the scaled operand. 

The 8087/80287 returns zero in the first case 
and raises the invalid-operation exception in the 
other cases. 

15. The 387 OX NPX returns signed infinity/zero as 
the unmasked response to massive' overflow/ 
underflow. The 8087 and 80287 support a limit­
ed range for the scaling factor; within this range 
either massive overflow/underflow do not occur 
or undefined results are produced. 

3.0 HARDWARE INTERFACE 

In the following description of hardware interface, 
the # symbol at the end of a signal name indicates 
that the active or asserted state occurs when the 
signal is at a low voltage. When no # is present after 
the signal name, the signal is asserted when at the 
high voltage level. 

3.1 Signal Description 

In the following signal descriptions, the 387 OX Math 
Coprocessor pins are grouped by function as fol­
lows: 

1. Execution control-CPUCLK2, NUMCLK2, CKM, 
RESETIN 

2. NPX handshake-PER EO, BUSY #, ERROR # 

3. Bus interface pins-031-00, W/R#, AOS#, 
REAOY#, REAOYO# 

4. Chip/Port Select-STEN" NPS1 #, NPS2, 
CMOO# 

5. Power supplies-Vee, Vss 

Table 3.1 lists every pin by its identifier, gives a brief 
description of its function, and lists some of its char­
acteristics. All output signals are tristate; they leave 
floating state only when STEN is active. The output 
buffers of the bidirectional data pins 031-00 are 
also tristate; they leave floating state' only in read 
cycles when the NPX is selected (i.e. when STEN, 
NPS1 #, and NPS2 are all active). 

Figure 3.1 and Table 3.2 together show the location 
of every pin in the pin grid array. 
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Table 3.1. 387TM OX NPX Pin Summary 

Pin 
Function 

Active Input/ Referenced 
Name State Output To 

CPUCLK2 386™ OX CPU CLocK 2 I 
NUMCLK2 387TM OX NPX CLocK 2 I 
CKM 387™ OX NPX CLocKing Mode I 
RESETIN System reset High I CPUCLK2 

PEREQ Processor Extension High 0 CPUCLK2/STEN 
REQuest 

BUSY# Busy status Low 0 CPUCLK2/STEN 
ERROR# Error status Low 0 NUMCLK2/STEN 

031-00 Oata pins High I/O CPUCLK2 
W/R# Write/Read bus cycle Hi/La I CPUCLK2 
AOS# AOdress Strobe Low I CPUCLK2 
REAOY# Bus ready input Low I CPUCLK2 
REAOYO# Ready output Low 0 CPUCLK2/STEN 

STEN STatus ENable High I CPUCLK2 
NPS1# NPX select #1 Low I CPUCLK2 
NPS2 NPX select #2 High I CPUCLK2 
CMOO# CoMmanO Low I CPUCLK2 

Vee I 
Vss I 

NOTE: 
STEN is referenced to only when getting the output pins into or out of tristate mode. 

Table 3.2. 387TM OX NPX Pin Cross-Reference 

AOS# - K7 018 - A8 STEN - L4 
BUSY# - K2 019 - B9 W/R# - K4 

CKM - J11 020 - B10 
CPUCLK24 - K10 021 - A10 Vee - A6, A9, B4, 

CMOO# - L8 022 - B11 E1, F1, F10, 
00 - H2 023 - C10 J2, K3, K5, 
01 - H1 024 - 010 L7, L9 
02 - G2 025 - 011 
03 - G1 026 - E10 VSS - B2,B7,C11, 
04 - 02 027 - E11 E2, F2, F11, 
05 - 01 028 - G10 J1,J10,L5 
06 - C2 029 - G11 
07 - C1 030 - H10 NO CONNECT - K9 
08 - B1 031 - H11 
09 - A2 ERROR# - L2 

010 - B3 NPS1# - L6 
011 - A3 NPS2 - K6 
012 - A4 NUMCLK2 - K11 
013 - B5 PEREQ - K1 
014 - A5 REAOY# - K8 
015 - B6 REAOYO# - L3 
016 - A7 RESETIN - L10 
017 - B8 
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A B C 0 E F G H K L 

DB 07 05 Vee Vee 03 01 VSS PEREO 

* 
09 VSS 06 04 VSS VSS 02 DO Vee BUSY# ERROR# 

2 

011 010 Vee REAOYO# 
3 

012 Vee W/R# STEN 
4 .0 

014 013 Vee vss 
5 

vee 015 
PIN SIDE VIEW 

NPS2 NPS1# 
6 (BOTTOM) 

016 Vss ADS, Vee 
7 

D1B 017 READY, cwoo# 
8 

vee 019 N/C Vee 
9 

021 020 023 024 026 Vee 02B 030 VSS CPUCLK2 RESETIN 
10 .0 

022 Vss 025 027 Vss 029 031 CKW NUWCLK2 
11 

240448-5 
'Pin 1 

L K H G F E 0 C B A 

PEREO Vss 01 03 Vee Vee 05 07 DB 

* 
ERRORH BUSY# Vee 00 02 Vss Vss 04 06 vss 

2 

D~Anvn.# v __ 01(1 

I· 3 I·-~· -" .... 
0 0 

STEN W/R# vee 012 
4 

vss vee 013 014 
5 

NPS1# NPS2 TOP VIEW 015 Vee 
6 

vee AOS, Vss 016 
7 

CWOO# REAOYH 017 01B 
8 

vee· N/C 019 Vee 
9 

RESETIN CPUCLK2 Vss 030 02B Vee 026 024 023 020 021 
10 0 o· 

NUWCLK2 CKM 031 029 Vss 027 025 Vss 022 
11 

240448-6 
'Pin 1 

Figure 3.1. 387TM OX NPX Pin Configuration 
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3.1.1 386TM DX CPU CLOCK 2 (CPUCLK2) 

This input uses the 386 DX CPU ClK2 Signal to time 
the bus control logic. Several other NPX signals are 
referenced to the rising edge of this signal. When 
CKM = 1 (synchronous mode) this pin also clocks 
the data interface and control unit and the floating­
point unit of the NPX. This pin requires MOS-Ievel 
input. The signal on this pin is divided by two to pro­
duce the internal clock signal ClK. 

3.1.2 387™ DX NPX CLOCK 2 (NUMCLK2) 

When CKM' = 0 (asynchronous mo!;le) this pin pro­
vides the clock for the data interface and control unit 
and the floating-point unit of the NPX. In this case, 
the ratio of the frequency of NUMClK2 to the fre-

quency of CPUClK2 must lie within the range 10:16 
to 14:10. When CKM = 1 (synchronous mode) this 
pin is ignored; CPUClK2is used instead for the data 
interface and control unit and the floating-point unit. 
This pin requires TTL-level input. 

3.1.3 387™ DX NPX CLOCKING MODE (CKM) 

This pin is a strapping option. When it is strapped to 
Vee, the NPX operates in synchronous mode; when 
strapped to Vss, the NPX operates in asynchronous 
mode. These modes relate to clocking of the data 
interface and control unit and the floating-point unit 
only; the bus control logic always operates synchro­
nously with respect to the 386 DX Microprocessor. 

! 
CKM=I'J 

~ 
II~TERFACE S YNCHRONOUS 

BUS ----------
CPUCLK2 -4 

NUMERIC A CORE SYNCHRONOUS 

386TlAOX cpu 'r 387TlAOX NPX 

NUMCLK2 
240448-7 

Figure 3.2. Asynchronous Operation 
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3.1.4 SYSTEM RESET (RESETIN) 

A LOW to HIGH transition on this pin causes the 
NPX to terminate its present activity and to enter a 
dormant state. RESETIN must remain HIGH for at 
least 40 NUMCLK2 periods. The HIGH to LOW tran­
sitions of RESETIN must be synchronous with 
CPUCLK2, so that the phase of the internal clock of 
the bus control logic (which is the CPUCLK2 divided 
by 2) is the same as the phase of the internal clock 
of the 386 OX CPU. After RESETIN goes LOW, at 
least 50 NUMCLK2 periods must pass before the 
first NPX instruction is written into the 387 OX NPX. 
This pin should be connected to the 386 OX CPU 
RESET pin. Tabl.e 3.3 shows the status of other pins 
after a reset. 

Table 3.3. Output Pin Status During Reset 

Pin Value Pin Name 

HIGH REAOYO #, BUSY # 

LOW PEREa, ERROR # 

Tri-State OFF 031-00 

3.1.5 PROCESSOR EXTENSION REQUEST 
(PEREQ) 

When active, this pin signals to the 386 OX CPU that 
the NPX is ready for data transfer to/from its data 
FIFO. When all data is written to or read from the 
data FIFO, PEREa is deactivated. This signal al­
ways goes inactive before BUSY # goes inactive. 
This signal is referenced to CPUCLK2. It should be 
connected to the 386 OX CPU PEREa input. Refer 
to Figure 3.8 for the timing relationships between 
this and the BUSY # and ERROR # pins. 

3.1.6 BUSY STATUS (BUSY#) 

When active, this pin Signals to the 386 OX CPU that 
the NPX is currently executing an instruction. This 
signal is referenced to CPUC~K2. It should be con­
nected to the 386 OX CPU BUSY # pin. Refer to 
Figure 3.8 for the timing relationships between this 
and the PEREa and ERROR # pins. 

3.1.7 ERROR STATUS (ERROR#) 

This pin reflects the ES bits of the status register. 
When active, it indicates that an unmasked excep­
tion has occurred (except that, immediately after a 
reset, it indicates to the 386 OX Microprocessor that 
a 387 OX NPX is present in the system). This signal 
can be changed to inactive state only by the follow­
ing instructions (without a preceding WAIT): FNINIT, 
FNCLEX, FNSTENV, and FNSAVE. This signal is 
referenced to NUMCLK2. It should be connected to 
the 386 OX CPU ERROR # pin. Refer to Figure 3.8 
for the timing relationships between this and the 
PEREa and BUSY # pins. 

3.1.8 DATA PINS (D31-DO) 

These bidirectional pins are used to transfer data 
and opcodes between the 386 OX CPU and 387 OX 
NPX. They are normally connected directly to the 
corresponding 386 OX CPU data pins. HIGH state 
indicates a value of one. 00 is the least significant 
data bit. Timings are referenced to CPUCLK2. 

3.1.9 WRITE/READ BUS CYCLE (W/R#) 

This signal indicates to the NPX whetlJer the 386 OX 
CPU bus cycle in progress is a read or a write cycle. 
This pin should be connected directly to the 386 OX 

• CPU W/R# pin. HIGH indicates a write cycle; LOW, 
a read cycle. This input is ignored if any of the sig­
nals STEN, NPS1 #, or NPS2 is inactive. Setup and 
hold times are referenced to CPUCLK2. 

3.1.10 ADDRE$S STROBE (ADS#) 

This input, in conjunction with the REAOY # input 
indicates when the NPX bus-control loaic mav sam­
ple W/R#'and the chip-select signals. Setup and 
hold times are referenced to CPUCLK2. This pin 
should be connected to the 386 OX CPU AOS# pin. 
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3.1.11 BUS READY INPUT (READY#) 

This input indicates to the NPX when a 386 DX CPU 
bus cycle is to be terminated. It is used by the bus­
control logic to trace bus activities. Bus cycles can 
be extended ind.efinitely until terminated by 
READY #. This input should be connected to the 
same signal that drives the 386 DX CPU READY # 
input. Setup and hold times are referenced to 
CPUClK2. 

3.1.12 READY OUTPUT (READYO#) 

This pin is activated at such a time that write cycles 
are terminated after two clocks (except FlDENV 
and FRSTOR) and read cycles after three.clocks. In 
configurations where no extra wait states are re­
quired, this pin must directly or indirectly drive the 
386 DX CPU READY # input. Refer to section 3.4 
"Bus Operation" for details. This pin is activated 
only during bus cycles that select the NPX. This sig­
nal is referenced to CPUClK2. 

3.1.13 STATUS ENABLE (STEN) 

This pin serves as a chip select for the NPX. When 
inactive, this pin forces BUSY #, PEREa, ERROR #, 
and READYO# outputs into floating state. D31-DO 
are normally floating and leave floating state only if 
STEN is active and additional conditions are met. 
STEN also causes the chip to recognize its other 
chip-select inputs. STEN makes it easier to do on­
board testing (using the overdrive method) of other 
chips in systems containing the NPX. STEN should 
be pulled up with a resistor so that it can be pulled 
down when testing. In boards that do not use on­
board testing, STEN should be connected to Vee. 
Setup and hold times are relative to CPUClK2. Note 
that STEN must maintain the same setup and hold 
times as NPS1 #, NPS2, and CMDO# (Le. if STEN 
changes state during a 387 DX NPX bus cycle, it 
should change state during the same ClK period as 
the NPS1 #, NPS2, and CMDO# signals). 

3.1.14 NPX Select #1 (NPS1#) 

When active (along with STEN and NPS2) in the first 
period of a 386 DX CPU bus cycle, this signal indi­
cates that the purpose of the bus cycle is to commu-

nicate with the NPX. This pin should be connected 
directly to the 386 DX CPU M/IO# pin, so that the 
NPX is selected only when the 386 DX CPU per­
forms 1/0 cycles. Setup and hold times are refer­
enced to CPUClK2. 

3.1.15 NPX SELECT #2 (NPS2) 

When active (along with STEN and NPS1 #) in the 
first period of an 386 DX CPU bus cycle, this signal 
indicates that the purpose of the bus cycle is to com­
municate with the NPX. This pin should be connect­
ed directly to the 386 DX CPU A31 pin, so that the 
NPX is selected only when the 386 DX CPU uses 
one of the 1/0 addresses reserved for the NPX 
(800000F8 or 800000FC). Setup and hold times are 
referenced to CPUClK2. 

3.1.16 COMMAND (CMDO#) 

During a write cycle, this signal indicates whether an 
opcode (CMDO# active) or data (CMDO# inactive) 
is being sent to the NPX. During a read cycle, it indi­
cates whether the control or status register (CMDO# 
active) or a data register (CMDO# inactive) is being 
read. CMDO# should be connected directly to the 
A2 output of the 386 DX Microprocessor. Setup and 
hold. times are referenced to CPUClK2. 

3.2 Processor Architecture 

As shown by the block diagram on the front page, 
the NPX is internally divided into three sections: the 
bus control logic (BCl), the data interface and con­
trol unit, and the floating point unit (FPU). The FPU 
(with the support of the control unit which contains 
the sequencer and other support units) executes all 
numerics instructions. The data interface and control 
unit is responsible for the data flow to and from the 
FPU and the control registers, for receiving the in­
structions, decoding them, and sequencing the mi­
croinstructions, and for handling some of the admin­
istrative instructions. The BCl is responsible for the 
386 DX CPU bus tracking and interface. The BCl is 
the only unit in the 387 DX NPX that must run syn­
chronously with the 386 DX CPU; the rest of the 
NPX can run asynchronously with respect to the 386 
DX Microprocessor. 
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3.2.1 BUS CONTROL LOGIC 

The BCl communicates solely with the CPU using 
I/O bus cycles. The BCl appears to the CPU as a 
special peripheral device. It is special in two re­
spects: the CPU initiates I/O automatically when it 
encounters ESC instructions, and the CPU uses re­
served I/O addresses to communicate with the BCL. 
The BCl does not communicate directly with memo­
ry. The CPU performs all memory access, transfer­
ring input operands from memory to the NPX and 
transferring outputs from the NPX to memory. 

3.2.2 DATA INTERFACE AND CONTROL UNIT 

The data interface and control unit latches the data 
and, subject to BCl control, directs the data to the 
FIFO or the instruction decoder. The instruction de­
coder decodes the ESC instructions sent to it by the 
CPU ana generates controls that direct the data flow 
in the FIFO. It also triggers the microinstruction se­
quencer that controls execution of each instruction. 
If the ESC instruction is FINIT, FClEX, FSTSW, 
FSTSW AX, or FSTCW, the control executes it inde-

pendently of the FPU and the sequencer. The data 
interface and control unit is the one that generates 
the BUSY #, PEREQ and ERROR # signals that syn­
chronize 387 OX NPX activities with the 386 OX 
CPU. It also supports the FPU in all operations that it 
cannot perform alone (e.g. exceptions handling, 
transcendental operations, etc.). 

3.2.3 FLOATING POINT UNIT 

The FPU executes all instructions that involve the 
register stack, including arithmetic, logical, transcen­
dental, constant, and data transfer instructions. The 
data path in the FPU is 84 bits wide (68 significant 
bits, 15 exponent bits, and a sign bit) which allows 
internal operand transfers. to be performed at very 
high speeds. 

3.3 System Configuration 

As an extension to the 386 OX Microprocessor, the 
387 OX Math Coprocessor can be connected to the 
CPU as shown by Figure 3.3. A dedicated communi-
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Figure 3.3. 386TM DX Microprocessor and 387™ DX Math Coprocessor System Configuration 
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Table 3.4. Bus Cycles Definition 

STEN NPS1# NPS2 CMDO# 

0 x x x 

1 1 x x 
1 x 0 x 
1 0 1 0 
1 0 1 0 
1 0 1 1 
1 0 1 1 

cation protocol makes possible high-speed transfer 
of opcodes and operands between the 386 DX CPU 
and 387 DX NPX. The 387 DX NPX is designed so 
that no additional components are required for inter­
face with the 386 DX CPU. The 387 DX NPX shares 
the 32-bit wide local bus of the 386 DX CPU and 
most control pins of the 387 DX NPX are connected 
directly to pins of the 386 DX Microprocessor. 

3.3.1 BUS CYCLE TRACKING 

The ADS# and READY# signals allow the NPX to 
track the beginning and end of the 386 DX CPU bus 
cycles, respectively. When ADS# is asserted at the 
same time as the NPX chip-select inputs, the bus 
cycle is intended for the NPX. To signal the end of a 
bus cycle for the NPX, READY # may be asserted 
directly or indirectly by the NPX or by other bus-con­
trol logic. Refer to Table 3.4 for definition of the 
types of NPX bus cycles. 

3.3.2 NPX ADDRESSING 

The NPS1 #, NPS2 and STEN signals allow the NPX 
to identify which bus cycles are intended for the 
NPX. The NPX responds only to 110 cycles when bit 
31 of the 110 address is set. In other words, the NPX 
acts as an liD device in a reserved liD address 
space. 

Because A31 is used to select the NPX for data· 
transfers, it is not possible for a program running on 
the 386 DX CPU to address the NPX with an I/O 
instruction. Only ESC instructions cause the 386 DX 
Microprocessor to communicate with the NPX. The 
386 DX CPU BS16# input must be inactive during 
liD cycles when A31 is active. 

3.3.3 FUNCTION SELECT 

The CMDO# and W/R# signals identify the four 
kinds of bus cycle: control or status register read, 
data read, opcode write, data write. 

W/R# Bus Cycle Type 

x NPX not selected and all 
outputs in floating state 

x NPX not selected 
x NPX not selected 
0 CW or SW read from NPX 
f Opcode write to NPX 
0 Data read from NPX 
1 Data write to NPX 

3.3.4 CPU/NPX Synchronization 

The pin pairs BUSY #, PEREa, and ERROR # are 
used for various aspects of synchronization between 
the CPU and the NPX. 

BUSY # is used to synchronize instruction transfer 
from the 386 DX CPU to the NPX. When the NPX 
recognizes an ESC instruction, it asserts BUSY #. 
For most ESC instructions, the 386 DX CPU waits 
for the NPX to deassert BUSY # before sending the 
new opcode. 

The NPX uses the PEREa pin of the 386 DX CPU to 
signal that the NPX is ready for data transfer to or 
from its data FIFO. The NPX does not directly ac­
cess memory; rather, the 386 DX Microprocessor 
provides memory access services for the NPX. 
Thus, memory access on behalf of the NPX always 
obeys the rules applicable to the mode of the 386 
DX CPU, whether the 386 DX CPU be in real-ad­
dress mode or protected mode .. 

Once the 386 DX CPU initiates an NPX instruction 
that has operands, the 386 DX CPU waits for 
PEREa signals that indicate when the NPX is ready 
for operand transfer. Once all operands have been 
transferred (or if the instruction has no operands) 
the 386 DX CPU continues program execution while 
the NPX executes the ESC instruction. 

In 8086/8087 systems, WAIT instructions may be 
required to achieve synchronization of both com­
mands and operands. In 80286/80287, 386 DX Mi­
croprocessor and 387 DX Math Coprocessor sys­
tems, WAIT instructions are required only for oper­
and synchronization; namely, after NPX stores to 
memory (except FSTSW and FSTCW) or loads from 
memory. Used this way, WAIT ensures that the'val­
ue has already been written or read by the NPX be­
fore the CPU reads or changes the value. 
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Once it has started to execute a numerics instruction 
and has transferred the operands from the 386 DX 
CPU, the NPX can process the instruction in parallel 
with and independent of the host CPU. When the 
NPX detects an exception, it asserts the ERROR# 
signal, which causes a 386 DX CPU interrupt. 

3.3.5 SYNCHRONOUS OR ASYNCHRONOUS 
MODES 

The internal logic of the 387 DX NPX (the FPU) can 
either operate directly from the CPU clock (synchro­
nous mode) or from a separate clock (asynchronous 
mode). The two configurations are distinguished by 
the CKM pin. In either case, the bus control logic 
(BCl) of the NPX is synchronized with the CPU 
clock. Use of asynchronous mode allows the 386 
DX CPU and the FPU section of the NPX to run at 
different speeds. In this case, the, ratio of the fre­
quency of NUMClK2 to the frequency of CPUClK2 
must lie within the range 10:16 to 14:10. Use of syn­
chronous mode eliminates one cl09k generator from 
the board design. 

3.3.6 AUTOMATIC BUS CYCLE TERMINATION 

In configurations where no extra wait states are re­
quired, READYO# can be used to drive the 386 DX 
CPU READY # input. If this pin is used, it should be 
connected to the logic that ORs all READY outputs 
from peripherals on the 386 DX CPU bus. 
READYO# is asserted by the NPX only during I/O 
cycles that select tlfe NPX. Refer to section 3.4 
"Bus Operation" for details. 

3.4 Bus Operation 

With respect to the bus interface, the 387 OX NPX is 
fully synchronous with the 386 DX Microprocessor.' 
Both operate at the same rate, because each gener­
ates its internal ClK signal by dividing CPUClK2 by 
two. 

The 386 DX CPU initiates a new bus cycle by acti­
vating ADS#. The NPX recognizes a bus cycie, if, 
during the cycle in which ADS# is activated, STEN, 
NPS1 #, and NPS2 are all activated. Proper opera­
tion is achieved if NPS1 # is connected to the 
M/IO# output of the 386 DX CPU, and NPS2 to the 
A31 output. The 386 DX CPU's A31 output is guar~ 
anteed to be inactive in all bus cycles that do not 
address the NPX (Le. 110 cycles to other devices, 
interrupt acknowledge, and reserved types of bus 
cycles). System logic must not signal a 16-bit bus 
cycle via the 386 DX CPU BS16# input during I/O 
cycles when A31 is active. 

During the ClK period in which ADS # is activated, 
the NPX also examines the W/R# input signal to 
determine whether the cycle is a read or a write cy­
cle and examine.s the CMDO # input to determine 
whether an opcode, operand, or control/status reg­
ister transfer is to occur. 

The 387 DX NPX supports both pipelined and non­
pipelined bus cycles. A nonpipelined cycle is one for 
which the 386 DX CPU asserts ADS# when no oth­
er NPX bus cycle is in progress. A pipelined bus cy­
cle is one for which the 386 DX CPU asserts ADS # 
and provides valid next-address and control signals 
as soon as in the second ClK period after the 
ADS# assertion for the previous 386 DX CPU bus 
cycle. Pipelining increases the availability of the bus 
by at least one ClK period. The NPX supports pipe­
lined bus cycles in order to optimize address pipe lin­
ing by the 386 DX CPU for memory cycles. 

Bus operation is described in terms of an abstract 
state machine. Figure 3.4 illustrates the states and 
state transitions for NPX bus cycles: 

• TI is the idle state. This is the state of the bus 
logic after RESET, the state to which' bus logic 
returns after evey nonpipelined bus cycle, and 
the stElte to which bus logic returns after a series 
of pipelined cycles. 

• T RS is the READY # sensitive state. Different 
types of bus cycle may require a minimum of one 
or. two successive T RS states. The bus logic re­
mains in T RS state until READY # is sensed, at 
which point the bus cycle terminates. Any number 
of wait states may be implemented by delaying 
READY #, thereby causing additional successive 
T RS states. ' 

• Tp is thl'l first st~.tl'l for I'lVl'lry pipl'llinl'lr:l btlS CYCII'l, 

ADSII 

READY# 

240448-9 

Figure 3.4. Bus State Diagram 
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The READYO# output of the 387 DX NPX indicates 
when a bus cycle for the NPX may be terminated if 
no extra wait states are required. For all write cycles 
(except those for the instructions FlDENV and 
FRSTOR), READYO# is always asserted in the first 
T RS state, regardless of the number of wait states. 
For all read cycles and write cycles for FlDENV and 
FRSTOR, READYO# is always asserted in the sec­
ond T RS state, regardless of the number of wait 
states. These rules apply to both pipelined and non­
pipelined cycles. Systems designers must use 
READYO # in one of the following ways: 

1. Connect it (directly or through logic that ORs 
READY signals from other devices) to the 
READY # inputs of the 386 DX CPU and 387 DX 
NPX. 

2. Use it as one input to a wait-state generator. 

The following sections illustrate different types of 
NPX bus cycles. 

Because different instructions have different 
amounts of overhead before, between, and after op­
erand transfer cycles, it is not possible to represent 
in a few diagrams all of the combinations of succes­
sive operand transfer cycles. The following bus-cy­
cle diagrams show memory cycles between NPX op­
erand-transfer cycles. Note however that, during the 
instructions FlDENV, FSTENV, FSAVE, and 
FRSTOR, some consecutive accesses to the NPX 
do not have ·intervening memory accesses; For the 
timing relationship between operand transfer cycles 
and opcode write or other overhead activities, see 
Figure 3.8. 

3.4.1 NONPIPELINED BUS CYCLES 

Figure 3.5 illustrates bus activity for consecutive 
nonpipelined bus cycles. 

3.4.1.1 Write Cycle 

At the second clock of the bus cycle, the 387 DX 
NPX enters the TRS (READY#-sensitive) state. Dur­
ing this state, the ·387 DX NPX samples the 
READY # input and stays in this state as long as 
READY # is inactive. 

In write cycles, the NPX drives the READYO# signal 
for one ClK period beginning with the second ClK 
of the bus cycle; therefore, the fastest write cycle 
takes two ClK cycles (see cycle 2 of Figure 3.5). For 
the instructions FlDENV and FRSTOR, however, 
the NPX forces a wait state by delaying the activa­
tion of READYO# to the second TRS cycle (not 
shown in Figure 3.5). 

When READY # is asserted the NPX returns to the 
idle state, in which ADS# could be asserted again 
by the 386 DX Microprocessor for the next cycle. 

3.4.1.2 Read Cycle 

At the second clock of the bus cycle, the NPX enters 
the T RS state. See Figure 3.5. In this state, the NPX 
samples the READY # input and stays in this state 
as long as READY # is inactive. 

At the rising edge of ClK in the second clock period 
of the cycle, the NPX starts to drive the D31-DO 
outputs and continues to drive them as long as it 
stays in T RS state. 

In read cycles that address the NPX, at least one 
wait state must be inserted to insure that the 386 DX 
CPU latches the correct data. Since the NPX starts 
driving the system data bus only at the rising edge of 
ClK in the second clock period of the bus cycle, not 
enough time is left for the data signals to propagate 
and be latched by the 386 DX CPU at the falling edge 
of the same clock period. The NPX drives the 
READYO# signal for one ClK period in the third 
ClK of the bus cycle. Therefore, if the READYO # 
output is used to drive the 386 DX CPU READY # 
input, one wait state is inserted automatically. 

Because one wait state is required for NPX reads, 
the minimum is three ClK cycles per read, as cycle 
3 of Figure 3.5 shows. 

When READY# is asserted the NPX returns to the 
idle state, in which ADS# could be asserted again 
by the 386 DX CPU for the next cycle. The transition 
from T RS state to idle state causes the NPX to put 
the tristate D31-DO outputs into the floating state, 
allowing another device to drive the system data 
bus. 
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Cycles 1 & 2 represent part of the operand transfer cycle for instructions involving either 4-byte or a-byte operand loads. 
Cycles 3 & 4 represent part of the operand transfer cycle for a store operation. 
·Cycles 1 & 2 could repeat here or TI states for various non-operand transfer cycles and overhead. 

Figure 3.5. Nonpipe~ned Read and Write Cycles 

3.4.2 P!PELINED BUS CYCLES 

Because all the activities of the 387 DX NPX bus 
interface occur either during the T RS state or during 
the transitions to or from that state, the only differ­
ence between a pipelined and a nonpipelined cycle 
is the manner of changing from one state to another. 
The exact activities in each state are detailed in the 
previous section "Nonpipelined Bus Cycles". 

When the 386 DX CPU asserts ADS # before the 
end of a bus cycle, both ADS# and READY# are 
active during a T RS state. This condition causes the 
NPX to change to a different state named T p. The 
NPX activities in the transition from a T RS state to a 
T p state are exactly the same as those in the tran­
sition froll) a T RS state to a TI state in nonpipelined 
cycles. . 

T p state is metastable; therefore. one clock period 
later the NPX returns to T RS state. In consecutive 
pipe lined cycles, the NPX bus logiC uses only T RS 
and T p states. 

Figure 3.6 shows the fastest transition into and out 
of the pipelined bus cycles. Cycle 1 in this figure 
represents a nonpipelined cycle. (Nonpipelined write 
cycles with only one T RS state (i.e. no wait states) 
are always followed by another nonpipelined cycle, 
because READY # is asserted before the earliest 
possible assertion of ADS # for the next cycle.) 

Figure 3.7 shows the pipe lined write and read cycles 
with one additional T RS states beyond the minimum 
required. To delay the assertion of READY # re­
quires external logic. 
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3.4.3 BUS CYCLES OF MIXED TYPE 

When the 387 DX NPX bus logic is in the T RS state, 
it distinguishes between non pipe lined and pipelined 
cycles according to the behavior of ADS# and 
READY #. In a nonpipelined cycle, only READY # is 
activated, and the transition is from T RS to idle state. 
In a pipelined cycle, both READY# and ADS# are 
active and the transition is first from T RS state to T p 
state then, after one clock period, back to T RS state. 

3.4.4 BUSY # AND PEREQ TIMING 
RELATIONSHIP 

Figure 3.8 shows the activation of BUSY # at the 
beginning of instruction execution and its deactiva-

CPUCLK2 

(CLK) 

CYCLE 1 
NON-PIPELINED 
MEMORY READ 

CYCLE 2 
PIPELINED 

NPX WRITE 

tion after execution of the instruction is complete. 
When possible, the 387 DX NPX may deactivate 
BUSY # prior to the completion of the current in­
struction allowing the CPU to transfer the next in­
struction's opcode and operands. PEREQ is activat­
ed in this interval. If ERROR# (not shown in the 
diagram) is ever asserted, it would occur at least six 
CPUCLK2 periods after the deactivation of PEREQ 
and at least six CPUCLK2 periods before the deacti­
vation of BUSY #. Figure 3.8 shows also that STEN 
is activated at the beginning of a bus cycle. 

CYCLE 3 
PIPELINED 

MEMORY READ 

CYCLE 4 
NON-PIPELINED 

NPX WRITE 

NPS2, ~--~----~~--~----~r---~----+-----TT--~~---+----~ 
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Cycle I-Cycle 4 represent the operand transfer cycle for an instruction involving a transfer of two 32-bit loads in total. 
The opcode write cycles and other overhead are not shown. 
Note that the next cycle will be a pipelined cycle if both READY# and ADS# are sampled active at the end of a TAS 
state of the current cycle. 

Figure 3.6. Fastest Transitions to and from Pipelined Cycles 
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ADS# 

READYO# 

00-031 

NOTE: 
1. Cycles between operand write to the NPX and storin~ result. 

CPUClK2 

STEN 

ADS# 

READY# 

BUSY# 

PEREO 

NOTES: 

OPCODE 
WRITE 

U 
1,--11 

___ 1·11 

._--\' 1\ 

1. Instruction dependent. 

Figure 3.7. Pipelined Cycles with Wait States 
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NOTE 1 NOTE 2 

1ST OPERAND 
WRITE 

'--if 
\... 

/ 

L-II 

ij 

NOTE 3 

/ 
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\ 
NOTE 1 

240448-12 

240448-13 

2. PEREQ is an asynchronous input to the 386TM DX Microprocessor; it may not be asserted (instruction dependent). 
3. More operand transfers. 
4. Memory read (operand) cycle is not shown. 

Figure 3.S. STEN, BUSY # and PEREQ Timing Relationship 
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4.0 ELECTRICAL DATA 

4.1 Absolute Maximum Ratings· 

Case Temperature T C 
Under Bias ................. - 65°C to + 110°C 

Storage Temperature .......... - 65°C to + 150°C 

Voltage on Any Pin with 
Respectto Ground ......... -0.5 to Vcc +0.5V 

Power Dissipation ......................•... 1.5W 

4.2 D.C. Characteristics 

"Notice: Stresses above those listed under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE: Specifications contained lA(ithin the 
following tables are subject to change. 

Table 5.1. DC Specifications T c = 0° to 85°C, Vcc = 5V ± 5% 

Symbol Parameter Min Max 

VIL Input LO Voltage -0.3 +0.8 

VIH Input HI Voltage 2.0 VCC + 0.3 
VCL CPUCLK2 Input LO Voltage -0.3 +0.8 

VCH CPUCLK2 Input HI Voltage 3.7 VCC +0.3 
VOL Output LO Voltage 0.45 

VOH Output HI Voltage 2.4 

Icc Supply Current 
NUMCLK2 = 32 MHz(4,6) 250 
NUMCLK2 = 40 MHz(4,6) 310 
NUMCLK2 = 50 MHz(4,6) 390 
NUMCLK2 = 66.6 MHz(4,5) 250 

III Input Leakage Current ±15 
ILO I/O Leakage Current ±15 

CIN Input Capacitance 10 
Co I/O or Output Capacitance 12 

CCLK· Clock Capacitance 15 

NOTES: 
1. This parameter is for all inputs, including NUMCLK2 but excluding CPUCLK2. 
2. This parameter is measured at IOL as follows: 

data = 4.0 rnA 
READYO# = 2.5 rnA 
ERROR #, BUSY #, PEREa = 2.5 rnA 

3. This parameter is measured at IOH as follows: 
data = 1~0 rnA 
READYO# = 0.6 rnA 
ERROR#, BUSY#, PEREa = 0.6 rnA 

Units Test Conditions 

V (Note 1) 
V (Note 1) 
V 
V 
V (Note 2) 
V (Note 3) 

mA Icc typo = 150 mA 
mA Icc typo = 190 mA 
mA Icc typo = 250 mA 
mA Icc typo = 150 mA 

/LA OV::;: VIN::;: Vcc 
/LA 0.45V ::;: Vo :s; Vcc 
pF fc = 1 MHz 
pF fc = 1 MHz 
pF fc = 1 MHz 

4. ICC is measured at steady state, maximum capacitive loading on the outputs, and worst-case DC level at the inputs; 
CPUCLK2 at the same frequency as NUMCLK2. 

5. Icc specification for 387 DX-33 only (low power CHMOS IV process). 
6. ICC specification for 387 DX-16, 20, 25 at corresponding maximum NUMCLK2 FREa. 
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4.3 A.C. Characteristics 

Pin 

Table 4.2a. Combinations of Bus Interface and Execution Speeds 

Functional Block 80387·16 80387·20 80387·25 80387DX·33 

Bus Interface Unit (MHz) 16 20 25 
Execution Unit (MHz) 16 20 25 

Table 4.2b. Timing Requirements of the Execution Unit 
Te = o'C to + 85'C, Vee = 5V ±5% 

16 MHz 20 MHz 25 MHz 33 MHz 
Symbol Parameter 

33 
33 

Test Figure 
Min Max Min Max Min Max Min Max 
(ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns) 

Conditions Reference 

NUMCLK2 t1 
NUMCLK2 t2a 
NUMCLK2 t2b 
NUMCLK2 t3a 
NUMCLK2 t3b 
NUMCLK2 t4 
NUMCLK2 t5 

Period 31.25 125 25 125 20 125 15 125 2.0V 
High Time 9 8 7 6.25 2.0V 
High Time 5 5 4 4.5 3.7V 
Low Tir'ne 9 8 7 6.25 2.0V 
Low Time 7 6 5 4.5 0.8V 
Fall Time 8 8 7 6 3.7VtoO.8V 
Rise Time 8 8 7 6 0.8Vto8.7V 

Table 4.2c. Timing Requirements of the Bus Interface Unit 
Te = O'Cto + 85'C, Vee = 5V ±5% 

. (All measurements made at 1.5V and CL = 50 pF unless otherwise specified) 

16 MHz 20 MHz 25 MHz 33 MHz 
Test 

Pin Symbol Parameter Min Max Min Max Min Max Min Max 
(ns) (ns) (ns) (ns) (ns) (ns) (ns) (ns) 

Conditions 

CPUCLK2 t1 Period 31.25 125 25 125 20 125 15 125 2.0V 
CPUCLK2 t2a High Time 9 8 7 6.25 2.0V 
CPUCLK2 t2b High Time 5 5 4 4.5 3.7V 
CPUCLK2 t3a Low Time 9 8 7 6.25 2.0V 
CPUCLK2 t3b Low Time 7 6 5 4.5 0.8V 
CPIJCLK2 t4 F .. !!Time 8 

I 8 I 
8 

I 81 
? 4 3.?VtnO.8V I 4 I 0.8VI~3.7V I 

CPUCLK21 Ratio 10/16 14/10 10/16 14/10 10/16 14/10 10/16 14/10 
NUMCLK2 

READYO# 17 Out Delay 3 34 ? 31 3 24 3 17 CL = 75 pFt 
READYO# (2) t7 Out Delay 4 31 3 27 3 21 3 15 CL = 25 pFtt 
PEREQ (1) t7 Out Delay 5 34 5 34 4 33 4 25 CL = 75pFt 
BUSY# (1) t7 Out Delay 5 34 5 29 4 29 4 21 CL = 75 pFt 
BUSY# (1,2) t7 Out Delay N/A N/A N/A N/A 4 27 4 19 CL = 25 pFtt 
ERROR# (1) 17 Out Delay 5 34· 5 34 4 33 4 25 CL = 75 pFt 

D31-DO t8 Out Delay 1 54 1 54· 0 40 0 37 CL = 120 pFt 
D31-DO 110 Setup Time 11 11 11 8 
D31-DO t11 Hold Time 11 11 11 8 
D31-DO (3) t12' Float Time 6 33 6 27 5 24 3 19 CL = 120 pFt 

PEREQ(3) t13' Float Time 1 60 1 50 1 40 1 30 CL = 75 pFt 
BUSY# (3) t13' FloalTime 1 60 1 50 1 40 1 30 CL = 75 pFt 
ERROR#'(3) t13' FloalTime 1 60 1 50 1 40 1 30 CL = 75 pFt 
READYO# (3) 113' FloalTime 1 60 1 50 1 40 1 30 CL = 75pFt 

4.1 

Figure 

Reference 

4.1 

4.2 

4.3 

4.5 

"Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not tested. 
tFor 25 MHz and 33 MHz, CL = 50 pF . 
ttFor 33 MHz, CL = 50 pF 
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Table 4.2c. Timing Requirements of the Bus Interface Unit (Continued) 
Te = O·C to + 85·C, Vee = 5V ±5% 

(All measurements made at 1.5V and CL = 50 pF unless otherwise specified) 

16 MHz 
Pin Symbol Parameter Min 

(ns) 

ADS# t14 Setup Time 25 
ADS# t15 Hold Time 5 
W/R# t14 Setup Time 25 
W/R# t15 Hold Time 5 

READY# t16 Setup Time 20 
READY# t17 Hold Time 4 
CMDO# t16 Setup Time 20 
CMDO# t17 Hold Time 2 
NPS1# t16 Setup Time 20 
NPS2 
NPS1# t17 Hold Time 2 
NPS2 
STEN t16 Setup Time 20 
STEN t17 Hold Time 2 

RESETIN t18 Setup Time 13 
RESETIN t19 Hold Time 4 

NOTES: 
1. PEREa, BUSY #, ERROR # 

Out Delay 4 @Tc=O·C 
4 @Tc= 85·C 

2. Not tested at 25 pF. 

Max 
(ns) 

20 MHz 25 MHz 33 MHz 
Figure 

Min Max Min Max Max Min 
(ns) (ns) (ns) (ns) (ns) (ns) 

Reference 

20 15 13 4.3 
5 4 4 

20 15 13 
5 4 4 

11 8 7 
4 4 4 
18 15 13 
2 4 4 
18 15 13 

2 4 4 

20 14 13 
2 2 2 

12 10 5 4.4 
4 3 3 

3. Float delay is not tested. Float condition occurs when maximum output current becomes less than ILO in magnitude. 

NOW+6 ;-__ ---,-___ .... ___ ,-__ ---, 

NOt.l+3 f-----+----j---::::;ooo+""''--~L...J 

NOU' f------::.,...f-=----j----:7""+----j 

NO"-3 f----+--~4----+----I 

NO"-6 f------::A----j----+----j 

NO"-9 [-__ --+ ___ -j-___ +-__ -j 

NOY'"'12 '--__ --' ___ -'-___ "'-__ --' 

50 75 100 125 150 

• nom - nominal value 240448-14 

NOTE: 
This graph will not be linear outside of the CL' range 
shown. 

Figure 4.0a. Typical Output Valid Delay vs Load 
Capacitance at Max Operating Temperature 

4-333 

10;-__ -r __ -.--: __ ,-__ -, 

" 75 '0' 125 15' 
240448-15 

NOTE: 
This graph will not be linear outside of the CL range 
shown . 

Figure 4.0b. Typical Output Rise Time vs Load 
Capacitance at Max Operating Temperature 
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CPUCLK2/NUt.lCLK2 

1.4V/2.0V 

1-------tl -----+I 

r~: r~~~ 
1.~-----"'~ 3.0V 

INPUTS I. OV 

I 

Figure 4.1. CPUCLK2INUMCLK2 Waveform and Measurement Points for 
Input/Output A.C. Specifications 

(CLK) (PH2) \\00: __ : :_(P_H_1 )_--11 ,,"" 

CPUCLK2 

(OUTPUTS) DD 

(ERROR# REFERENCED TO NUt.lCLK2) 
240448-17 

Figure 4.2. Output Signals 
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(ClK)\ (PH1) / (PH2) \ (PH1) / (PH2) \.-

CPUClK2 

AOS# 

W/R# 

NPS1 #. NPS2. 
ST£N. 

CMOON 

REAOYN 

00-031 
(INPUT) 

00-031 
(OUTPUT) 

Figure 4.3. Input and I/O Signals 

(ClK) / (PH1 or PH2) \ (PH1 or PH2) F> 
CPUClK2 

t19 r- --I t18 

RESET --il-'\~\S:\SS:iS~\\L_.l __ _ 
The second internal processor phase following RESET high to low transition is PH2. 

ST£N 

00·031. PEREQ 
BUSYN. ERROR#. REAOYO# 

Figure 4.4. RESET Signal 

Figure 4.5. Float from STEN 
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Pin 

RESETIN 

RESETIN 

BUSY# 

BUSY #, ERROR # 

PEREQ, ERROR# 

READY #, BUSY # 

READY# 

READY# 

387™ OX MATH COPROCESSOR 

Table 4.3. Other Parameters 

Symbol Parameter Min Max 

t30 Duration 40 

t31 RESETIN Inactive to 1 st Opcode Write 50 

t32 Duration 6 

t33 ERROR # (In) Active to BUSY # Inactive 6 

t34 PEREQ Inactive to ERROR # Active 6 

t35 READY # Active to BUSY # Active 4 4 

t36 Minimum Time from Opcode Write to 6 
Opcode/Operand Write 

t37 Minimum Time from Operand Write to 8 
Operand Write 

•• 
1ST OPCODE 

WRITE NOTE 1 
1 ST OPERAND 2ND OPERAND 

WRITE WRITE (NOTE 1 ) 

1---j---t-t36 -+--+-----foo---

Units 

NUMCLK2 

NUMCLK2 

CPUCLK2 

CPUCLK2 

CPUCLK2 

CPUCLK2 

CPUCLK2 

CPUCLK2 

~I~~--+-~~+---+---~~~--~~~~--~I~~~~~ 

~l""-+---!---!~H 
ADS# 

READY# \.~ \.'rl \. 'rl 
" " 

If 
BUSY# L ~H Je.. 

" 

PEREQ I 1\ 
J H II---i\ " " 

ERROR# 
-II-

-t35 t32 

I 
240448-21 

, In NUMCLK2's 
.. or last operand 

NOTE: 
1. Memory read (operand) cycle is not shown. 

Figure 4.6. Other Parameters 
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Instruction 

2 

3 

4 

5 

11011 

11011 

11011 

11011 

11011 

15-11 

First Byte 

OPA 

MF 

d P 

0 0 

0 1 

10 9 

1 

OPA 

OPA 1 

1 1 

1 1 

8 7 

5.0 387™ OX NPX EXTENSIONS TO 
. THE 386™ OX CPU 

INSTRUCTION SET 

MOD 

MOD 

Instructions for the 387 OX NPX assume one of the 
five forms shown in the following table. In all cases, 
instructions are at least two bytes long and begin 
with the bit pattern 11011 B, which identifies the 
ESCAPE class of instruction. Instructions that refer 
to memory operands specify addresses using the 
386 OX CPU addressing modes. 

OP = Instruction opcode, possible split into two 
fields OPA and OPB 

MF = Memory Format 
00-32-bit real 
01-32-bit integer 
10-64-bit real 
11-16-bit integer 

P = Pop 
0-00 not pop stack 
1-Pop stack after operation 

ESC = 11011 

d = Destination 
O-Destination is ST(O) 
1-Destination is ST(i) 

R XOR d = O-Destination (op) Source 
R XOR d = 1-Source (op) Destination 

Optional 

Second Byte Fields 

1 1 OPB RIM SIB I DISP 

OPB RIM SIB I DISP 

1 OPB ST(i) 

1 1 1 OP 

1 1 I OP 

6 5 43210 

ST(i) = Register stack element i 
000 = Stack top 
001 = Second stack element 

• 
• 
• 

111 = Eighth stack element 

MOD (Mode field) and RIM (Register/Memory spec­
ifier) have the same interpretation as the corre­
sponding fields of the 386 OX Microprocessor in­
structions (refer to 386TM DX Microprocessor Pro­
grammer's Reference Manual). 

SIB (Scale Index Base) byte and DISP (displace­
ment) are optionally present in instructions that have 
MOD and RIM fields. Their presence depends on 
the values of MOD and RIM, as for 386 OX Micro­
processor instructions. 

The instruction summaries that follow assume that 
the instruction has been prefetched, decoded, and is 
ready for execution; that bus cycles do not require 
wait states; that there are no local bus HOLD re­
quest delaying processor access to the bus; and 
that no exceptions are detected during instruction 
execution. If the instruction has MOD and RIM fields 
that call for both base and index registers, add one 
clock. 
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387™ OX NPX Extensions to the 386TM OX CPU Instruction Set 

I Encoding 
Instruction I Byte I Byte I Optional 

0 1 Bytes 2-6 
DATA TRANSFER 

FLD = Load" 
Integer/real memory to ST(O) I ESCMFI J MOD 000 RIM l SIB/DISP 

Long integer memory to ST(O) I ESClll I MOD 101 RIM I SIB/DISP 

Extended real memory to ST(O) I ESC 011 I MOD 101 RIM I SIB/DISP 

BCD memory to ST(O) I "ESClll I MOD 100 RIM I SIB/DISP 

ST(i) to ST(O) I ESC 001 I 11000 ST(i) I 
FST = Store 

ST(O) to integer/real memory I ESCMFI I MOD 010 RIM I SIB/DISP 

ST(O) to ST(i) I ESC 101 I 11010ST(i) I 
FSTP = Store and Pop 

ST(O) to integer/real memory I ESCMFI I MODOll RIM I SIB/DISP 

ST(O) to long integer memory I ESClll J MODlll RIM I SIB/DISP 

ST(O) to extended real I ESCOll I MODlll RIM I SIB/DISP 

ST(O) to BCD memory I ESClll I MOD 110 RIM I SIB/DISP 

ST(O) to ST(il I ESC 101 I 1101IST(i) I 
FXCH = Exchange 

ST(i) and ST(O) I ESC 001 I 11001 ST(i) I 
COMPARISON 

FCOM = Compare 

Integer/real memory to ST(O) I ESCMFO I MOD010R/M I SIB/DISP 

ST(i) to ST(O) I ESC 000 I 11010ST(i) I 
FCOMP = Compare and pop 

Integer/real memory to ST I ESCMFO I MODOll RIM I SIB/DISP 

ST(i) to ST(O) I ESC 000 I 11011 ST(i) I 
FCOMPP = Compare and pop twice 

ST(I) to ST(O) I ESC 110 I 11011001 I 

1==:::O~are 
ESC 001" 11100100 

E$C1Q1'":: 11tOO3T(I) 

FUCOMP"" Unordered comp8re 
and pop ESC 101 1110t ST(l) 

FUCOMPP = UnOrdered COl1lJ)8I'e 
andpop~ ESCotO I 11101001 

FXAM = Examine ST(O) ESC 001 I 11100101 

CONSTANTS 

FLDZ = Load + 0,0 into ST(O) ESC 001 11101110 

FLDI = Load +1.0intoST(0) ESC 001 11101000 

FLDPI = Load pi into ST(O) ESC 001 11101011 

FLDL2T = Load 1092(10) into ST(O) ESC 001 11101001 

Shaded areas indicate instructions not available in 8087/80287. 

NOTE: 
a. When loading single- or double-precision zero from memory. add 5 clocks. 
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Clock Count Range 

32-Blt I 32-Blt I 64-Blt I 16-Blt 
Real Integer Real Integer 

18 

43 

43 

25 

25 

35-42 23 

43-54 

43 

69-97 

12 

62-76 44 

11 

62-76 44 

65-82 

52 

134-190 

45-52 

45-52 

11 

17 

21 

21 

21 

25 

21 

21 

21 

29-37 

17 

22 

36 

36 

27 

27 

42 

63-76 

63-76 

58-62 

58-62 
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387TM DX NPX Extensions to the 386TM DX CPU Instruction Set (Continued) 

I Encoding Clock Count Range 

Instruction I Byte I Byte I Optional 32-BII I 32-BII I 64-BII I 16-BII 
0 1 Byles 2-6 Real Integer Real Inleger 

CONSTANTS (Continued) 

FLDL2E = Load log2(e) into ST(O) I ESC 001 I 11101010 I 36 

FLDLG2 = Load IOg10(2) into ST(O) I ESC 001 I 11101100 I 35 

FLDLN2 = Load log.(2) into ST(O) I ESC 001 I 11101101 I 38 

ARITHMETIC 

FADD = Add 

Integer/real memory with ST(O) I ESCMFO I MOD 000 A/M I SIB/DISP 21-29 41-56 26-34 53-64 

ST(i) and ST(O) I ESCdPO I 11000ST(i) I 18-26b 

FSUB = Subtract 

Integer/real memory with ST(O) I ESCMFO -' MOD10AA/MJ SIB/DISP 21-29 41-56 26-34 53-64c 

ST(i) and ST(O) I ESCd P 0 I 1110 A A/M I 18-26d 

FMUL = Multiply 

Integer/real memory with ST(O) I ESCMFO I MOD 001 A/M I SIB/DISP 24-32 50-71 28-53 63-74 

ST(i) and ST(O) I ESCdPO I 11001 A/M I 22-50e 

FDIV = Divide 

Integer/real memory with ST(O) I ESCMFO I MOD 11 A A/M I SIB/DISP 85 107-1141 91 120-1249 

ST(i) and ST(O) I ESCdPO I 1111 AA/M I BOh 

FSQRTI = Square root I ESC 001 I 11111010 I 104-111 

FSCALE = Scale ST(O) by ST(1) I ESC 001 I 11111101 I 63-82 

FPREM = Partial remainder I ESC 001 I 11111000 I 60-140 

FPREMl = Partial remainder 

(IEEE) I ESCOOt I 1111010t I 78-168 

FRNDINT = Aound ST(O) I ESC 001 I 11111100 I 48-62 
to integer ' 

FXTRACT = Extract components 
oIST(O) I ESC 001 I 11110100 I 57-63 

FABS = Absolute value 01 ST(O) I ESC 001 I 11100001 I 21 

FCHS = Change sign 01 ST(O) I ESC 001 I 11100000 I 23-24 

, Shaded areas indicate instructions not available in 8087/80287. 

NOTES: 
b. Add 3 clocks to the range when d = 1. 
c. Add 1 clock to each range when R = 1. 
d. Add 3 clocks to the range when d = O. 
e. typical = 52 (When d = 0, 46-54, typical = 49). 
f. Add 1 clock to the range when R = 1. 
g. 135-141 when R = 1. 
h. Add 3 clocks to the range when d = 1. 
i. -0';; ST(O)';; +00. 
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387™ OX NPX Extensions to the 386TM OX CPU Instruction Set (Continued) 

I Encoding 
Instruction I Byte I Byte I Optional Clock Count Range 

.0 1 Bytes 2-6 

TRANSCENDENTAL 

FCOSk = CosIne of ST(O) I ESG001 I 1111 1111 I 122-680 

FPTANk = Partial tangent of ST(O) I ESGOOI I 11110010 I 162-430i 

FPATAN = Partial arctangent I ESGOOI I 1111 0011 I 250-420 

F$lMk = Sine of ST(O) I ESC 001 I 11111110 I 121-680 

FSlNCOSi< = Sine and cosine of S1(0) I ESC 001 I 11111011 I 150-650 

F2XM1' = 2ST(O) - 1 I ESC 001 I 11110000 I 167-410 

FYL2Xm = ST(I) 'I092(ST(0» I ESC 001 I 11110001 I 99-436 

FYL2XP1" = ST(I) '1092(ST(0) + 1.0) I ESC 001 I 1111100.1 I 210-447 

PROCESSOR CONTROL 

FINIT = Initialize NPX I ESC011 I 11100011 I 33 

FSTSW AX = Store status word I ESClll I 11100000 I 13 

FLDCW = Load control word I ESC 001 I MOD 101 RIM I SIB/DISP 19 

FSTCW = Store control word I ESC 101 I MOD 111 RIM I SIB/DISP 15 

FSTSW = Store status word I ESC 101 I MOD 111 RIM I SIB/DISP 15 

FCLEX = Clear exceptions I ESC011 I 11100010 I 11 

FSTENV = Store environment I ESC 001 I MOD 110 RIM I SIB/DISP 103-104 

FLDENV = Load environment I ESC 001 I MOD 100 RIM I SIB/DISP 71 

FSAVE = Save state I ESC 101 I MOD 110 RIM I SIB/DISP 375-376 

FRSTOR = Restore state I ESC 101 I MOD 100 RIM I SIB/DISP 308 

FINCSTP = Increment stack pOinter I ESC 001 I 1111 0111 I 21 

FDECSTP = Decrement stack pointer I ESC 001 I 1111 0110 I 
.. 

22 

FFREE = Free ST(i) I ESC 101 I 11000ST(i) I 18 

FNOP = No operations I ESC 001 I 11010000 I 12 
I 1 

Shaded areas indicate instnJctions nof available in 8087/80287. 

NOTES: 
j. These timings hold for operands in the range Ixl < '11"/4. For operands not in this range, up to 76 additional clocks may be 
needed to reduce the operand. 
k. 0 ,;; I ST(O) I < 263. 
I. -1.0';; ST(O) ,;; 1.0. 
m.O ,;; ST(O) < 00, - 00 < ST(1) < + 00. 

n. 0 ,;; IST(O)I < (2 - SQRT(2»/2, - 00 < ST(1) < + 00. 
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APPENDIX A 
COMPATIBILITY BETWEEN 
THE 80287 AND THE 8087 

The 80286/80287 operating in Real-Address mode 
will execute 808618087 programs without major 
modification. However, because of differences in the 
handling of numeric exceptions by the 80287 NPX 
and the 8087 NPX, exception-handling routines may 
need to be changed. . 

This appendix summarizes the differences between 
the 80287 NPX and the 8087 NPX, and provides 
details showing how 8086/8087 programs can be 
ported to the 80286/80287. 

1. The NPX signals exceptions through a dedicated 
ERROR# line to the 80286. The NPX error signal 
does not pass through an interrupt controller (the 
8087 INT signal does). Therefore, any interrupt­
controller-oriented instructions in numeric excep­
tion handlers for the 8086/8087 should be delet­
ed. 

2. The 8087 instructions FENJlFNENI and FDISJI 
FNDISI perform no useful furiction in the 80287. If 
the 80287 encounters one of these opcodes in its 
instruction stream, the instruction will effectively 
be ignored-none of the 80287 internal states will 
be updated. While 8086/808T containing these 
instructions may be executed on the 
80286/80287. it is unlikely that the exc€lption .. 
handling routines containing these instructions 
wiii be compieteiy portabie to the 80287. 

3. Interrupt vector 16 must point to the numeric ex­
ception handling routine. 

4. The ESC instruction address saved in the 80287 
includes any leading prefixes before the ESC op­
code. The corresponding address saved in the 
8087 does not include leading prefixes. 

5. In Protected-Address mode, the format of the 
80287's saved instruction and address pointers is 
different than for the 8087. The instruction op­
code is not saved in Protected mode-exception 
handlers will have to retrieve the opcode from 
memory if needed. . 

6. Interrupt 7 will occur in the 80286 when executing 
ESC instructions with either TS (task switched) or 
EM (emulation) of the 80286 MSW set (TS = 1 or 
EM = 1). If TS is set, then a WAIT instruction will 

also cause interrupt 7. An exception handler 
should be included in 80286/80287 code to han­
dle these situations. 

7. Interrupt 9 will occur if the second or subsequent 
words of a floating-point operand fall outside a 
segment's size. Interrupt 13 will occur if the start­
ing address of a numeric operand falls outside a 
segment's size. An exception handler should be 
included in 80286/80287 code to report these 
programming errors. 

8. Except for the processor control instructions, all 
of the 80287 numeric instructions are automati­
cally synchronized by the 80286 CPU-the 80286 
automatically tests the BUSY # line from the 
80287 to ensure that the 80287 has completed its 
previous instruction before executing the next 
ESC instruction. No explicit WAIT instructions are 
required to assure this synchronization. For the 
8087 used with 8086 and 8088 processors, ex­
plicit WAITs are required before each numeric in­
struction to ensure synchronization. Although 
8086/8087 programs having explicit WAIT in­
structions will execute perfectly on the 
80286/80287 without reassembly, these WAIT in­
structions are unnecessary. 

S. Since the 80287 docs net require \ItJ;6.!T !!1strt!c" 
tions before each numeric instruction, the 
ASM286 assembier does not autornaticaiiy gene;­
ate these WAIT instructions. The ASM86 assem­
bler, however, automatically precedes every ESC 
instruction with a WAIT instruction. Although nu­
meric routines generated using the ASM86 as­
sembler will generally execute correctly on the 
80286/80287, reassembly using ASM286 may re­
sult in a more compact code image. 

The processor control instructions for the 80287 
may be coded using either a WAIT or No-WAIT 

. form of mnemonic. The WAIT forms of these in­
structions cause ASM286 to precede the ESC in­
struction with a CPU WAIT instruction, in the iden­
tical manner as does ASM86. 
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1.0 82385 FUNCTIONAL OVERVIEW 

The 82385 Cache Controller is a high performance 
32-bit peripheral for the Intel386 microprocessor. 
This chapter provides an overview of the 82385, and 
of the basic architecture and operation of an 386 OX 
CPU/82385 system. 

1.1 82385 OVERVIEW 

The main function of a cache memory system is to 
provide fast local storage for frequently accessed 
code and data. The cache system intercepts 386 OX 
memory references to see if the required data re­
sides in the cache. If the data resides in the cache (a 
hit), it is returned to the 386 OX without incurring wait 
states. If the data is not cached (a miss), the refer­
ence is forwarded to the system and the data re­
trieved from main memory. An efficient cache will 
yield a high "hit rate" (the ratio of cache hits to total 
386 OX accesses), such that the majority of access­
es are serviced with zero wait states. The net effect 
is that the wait states incurred in a relatively infre­
quent miss are averaged ,over a large number of ac­
cesses, resulting in an average of nearly zero wait . 

states per access. Since cache hits are serviced lo­
cally, a processor operating out of its local cache 
has a much lower "bus utilization" which reduces 
system bus bandwidth requirements, making more 
bandwidth available to other bus masters. 

The 82385 Cache Controller integrates a cache di­
rectory and all cache management logiC required to 
support an external 32 Kbyte cache. The cache di­
rectory structure is such that the entire physical ad­
dress range of the 3~6 OX (4 Gigabytes) 'is mapped 
into the cache. Provision is made to allow areas of 
memory to be set aside as non-cacheable. The user 
has two cache organization options: direct mapped 
and 2-way set associative. 80th provide the high hit 
rates necessary to make a large, relatively slow 
main memory array look like a fast, zero wait state 
memory to the 386 OX. 

1.2 SYSTEM OVERVIEW I: 
BUS STRUCTURE 

A good grasp of the bus structure of a 386 OX CPU! 
82385 system is essential in understanding both the 
82385 and its role in an 386 OX system. The follow­
ing is a description of this structure. 

~ I 
2~ 386 OX 

LOCAL BUS 

r----Z-.. .....,~ 

"---:l~1 ,--I __ ..... 

1 I 1 
290143-2 

Figure 1-1.386 OX System Bus Structure 
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1.2.1 386 OX Local Bus/82385 Local 
Bus/System Bus 

Figure 1-1 depicts the bus structure of a typical 386 
OX system. The "386 OX Local Bus" consists of the 
physical 386 OX address, data, and control busses. 
The local address and data busses are buffered 
and/or latched to become the "system" address 
and data busses. The local control bus is decoded 
by bus control logic to generate the various system 
bus read and write commands. 

The addition of an 82385 Cache Controller causes a 
separation of the 386 OX bus into two distinct bus­
ses: the actual 386 OX local bus and the "82385 
Local Bus" (Figure 1-2). The 82385 local bus is de­
signed to look like the front end of an 386 OX by 
providing 82385 local bus equivalents to all appropri­
ate 386 OX signals. The system ties to this "386 OX­
like" front end just as it would to an actual 386 OX. 
The 386 OX simply sees a fast system bus, and the 
system sees a 386 OX front end with low bus band­
width requirements. The cache subsystem is trans­
parent to both. Note that the 82385 local bus is not 
simply a buffered version of the 386 OX bus, but 
rather is distinct from, and able to operate in parallel 
with the 386 OX bus. Other masters residing on ei­
ther the 82385 local bus or system bus are free to 
manage system resources while the 386 OX oper­
ates out of its cache. 

1.2.2 Bus Arbitration 

The 82385 presents the "386 OX-like" interface 
which is called the 82385 local bus. Whereas the 
386 OX provides a Hold Request/Hold Acknowl­
edge bus arbitration mechanism via its HOLD and 
HLOA pins, the 82385 provides an equivalent mech­
anism via its BHOLO and BHLOA pins. (These sig­
nals are described in Section 3.7.) When another 
master requests the 82385 local bus, it issues the 
request to the 82385 via BHOLO. Typically, at the 
end of the current 82385 local bus cycle, the 82385 
will release the 82385 local bus and acknowledge 
the request via BHLOA. The 386 OX is of course free 
to continue operating on the 386 OX local bus while 
another master owns the 82385 local bus. 

·i.2.3 Master/Slave Operation 

The above 82385 local bus arbitration discussion is 
true when the 82385 is programmed for "Master" 
mode operation. The user can, however, configure 
the 82385 for "Slave" mode operation. (Program­
ming is done via a hardware strap option.) The roles 
of BHOLO and BHLOA are reversed for an 82385 in 
slave mode; BHOLD is now an ofltput indicating a 
request to control the bus, and BHLOA is an input 
indicating that a request has been granted. An 
82385 programmed in slave mode drives the 82385 
local bus only when it has requested and subse­
quently been granted bus control. This allows multi­
ple 386 OX CPU/82385 subsystems to reside on the 
same 82385 local bus (Figure 1-3). 

1 
386 OX 

LOCAL BUS 

-1 
82385 

LOCAL BUS 

~ 

290143-3 

Figure 1-2. 386TM OX CPU/82385 System Bus Structure 
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, , ------------ ------------------------. 

SYSTEM BUS 

290143-4 

Figure 1-3. Multi-Master/Multi-Cache Environment 

1.2.4 Cache Coheren~y 

Ideally, a cache contains a copy of the most heavily 
used portions of main memory. To maintain cache 
"coherency" is to make sure that this local copy is 
identical to main memory. In a system where multi­
ple masters can access the ,same memory, there is 
always a risk that one master will alter the contents 
of a memory location that is duplicated in the local 
cache of another master. (The cache is said to con­
tain "stale" data.) One rather restrictive solution is to 
not allow cache subsystems to cache shared memo­
ry. Another simple solution is to flush the cache any­
time another master writes to system memory. How­
ever, this can seriOl.Is1y degrAde system perform­
ance as excessive cache flushing will reduce the hit 

SNOOP BUS 
-SYSTOA ADDRESS BUS 
-WRITE CYCLE INDICATOR 

rate of what may otherwise be a highly effiCient 
cache. 

The 82385 preserves cache coherency via' "bus 
watching" (also called snooping), a, technique that 
neither impacts performance nor restri,cts memory 
mapping. An 82385 that is not currently bus master 
monitors system bus cycles, and when a write cycle 
by another master is detected (a snoop), the system 
address is sampled and used to see if the refer­
enced location is duplicated in the cache. If so (a 
snoop hit), the corresponding cache entry is invali­
dated, which will force the 386 DX to fetch the up-to­
date data from main memory the next time it access­
es this modified location. Figure 1-4 depicts the gen­
eral form of bus watching. 

"--"--.1~5m BUS 

290143-5 

Figure 1-4. 82385 Bus Watching-Monitor System Bus Write Cycles 
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1.3 SYSTEM OVERVIEW II: 
BASIC OPERATION 

_ This discussion is an overview of the basic operation 
of an 386 OX CPU/82385 system. Items discussed 
include the 82385's response to all 386 OX cycles, 
including interrupt acknowledges, halts, and shut­
downs. Also discussed are non-cacheable and local 
accesses. 

1.3.1 386 DX Memory Code and Data 
Read Cycles 

1.3.1.1 READ HITS 

When the 386 OX initiates a memory code or data 
read cycle, the 82385 compares the high order bits 
of the 386 OX address bus with the appropriate ad­
dresses (tags) stored in its on-chip directory. (The 
directory structure is described in Chapter 2.) If the 
82385 determines that the requested data is in the 
cache, it issues the appropriate control signals that 
direct the cache to drive the requested data onto the 
386 OX data bus, where it is read by the 386 OX. 
The 82385 terminates the 386 OX cycle without in­
serting any wait states. 

1.3.1.2 READ MISSES 

If the 82385 determines that the requested data is 
not in the cache, the request is forwarded to the 
82385 local bus and the data retrieved from main 
memory. As the data returns from main memory, it is 
directed to the 386 OX and also written into the 
cache. Concurrently, the 82385 updates the cache 
directory such that the next time this particular piece 
of information is requested by the 386 OX, the 
82385 will find it in the cache and return it with zero 
wait states. 

The basic unit of transfer between main memory and 
cache memory in a cache subsystem is called the 
line size. In an 82385 system, the line size is one 32-
bit aligned doubleword. During· a read miss, all four 
82385 local bus byte enables are active. This en­
sures that a full 32-bit entry is written into the cache. 
(The 386 OX simply ignores what it did not request.) 
In any other type of 386 OX cycle that is forwarded 
to the 82385 local bus, the logic levels of the 386 OX 
byte enables are duplicated on the 82385 local bus. 

The 82385 does not actively fetch main memory 
data independently of the 386 OX. The 82385 is es­
sentially a passive device which only monitors the 
address bus and activates control signals. The read 
miss is the only mechanism by which main memory 
data is copied into the cache and validated in the 
cache directory. 

In an isolated read miss, the number of wait states 
seen by the 386 OX is that required by the system 
memory to respond with data plus the cache com­
parison cycle (hit/miss decision). The cache system 
must determine that the cycle is a miss before it can 
begin the system memory access. However, since 
misses most often occur consecutively, the 82385 
will begin 386 OX address pipelined cycles to effec­
tively "hide" the comparison cycle beyond the first 
miss (refer to Section 4.1.3). 

The 82385 can execute a main memory access on 
the 82385 local bus only if it currently owns the bus. 
~f not, an 82385 in master mode will run the cycle 
after the current master releases the bus. An 82385 
in slave mode will issue a hold request, and will run 
the cycle as soon as the request is acknowledged. 
(This is true for any read or write cycle that needs to 
run on the 82385 local bus.) 

1.3.2 386 DX Memory Write Cycles 

The 82385's "posted write" capability allows the 
majority of 386 OX memory write cycles to run with 
zero wait states. The primary memory update policy 
implemented in a posted write is the traditional 
cache "write through" technique, which implies that 
main memory is always updated in any memory write 
cycle. If the referenced location also happens to re­
side in the cache (a write hit), the cache is updated 
as well. 

Beyond this, a posted write latches the 386 OX ad­
dress, data, and cycle definition signals, and the 386 
OX local bus cycle is terminated without any wait 
states, even though the corresponding 82385 local 
bus cycle is not yet completed, or perhaps not even 
started. A posted write is possible because the 
82385's bus state machine, which is almost identical 
to the 386 OX bus state machine, is able to run 
82385 local bus cycles independently of the 386 OX. 
The only time the 386 OX sees write cycle wait 
states is when a previously latched (posted) write 
has not yet been completed on the 82385 local bus 
or during an 1/0 write (which is not posted). A 386 
OX write can be posted even if the 82385 does not 
currently own the 82385 local bus. In this case, an 
82385 in master mode will run the cycle as soon as 
the current master releases the bus, and an 82385 
in slave mode will request the bus and run the cycle 
when the request is acknowledged. The 386 OX is 
free to continue operating out of its cache (on the 
386 OX local bus) during this time. 

1.3.3 Non-Cacheable Cycles 

Non-cacheable cycles fall into one of two catego­
ries: cycles decoded as non-cacheable, and cycles 

4-347 



inter 82385 

that are by default non-cacheable according to the 
82385's design. All non-cacheable cycles are for­
warded to the 82385 local bus. Non-cacheable cy­
cles have no effect on the cache or cache directory. 

The 82385 allows the sy~tem designer to define ar­
eas of main memory as non-cacheable. The 386 OX 
address bus is decoded and the decode output is 
connected to the 82385'5 non-cacheable access 
(NCA \IF) input. This decoding is done in the first 386 
OX bus state in which the non-cacheable cycle ad­
dress becomes available. Non-cacheable read cy­
cles resemble cacheable read miss cycles, except 
that the cache and cache directory are unaffected. 
NCA defined non-cacheable writes, like most writes, 
are posted. 

The 82385 defines certain cycles as non-cacheable 
without using its non-cacheable access input. These 
include 110 cycles, interrupt acknowledge cycles, 
and halt/shutdown cycles. 110 reads and interrupt 
acknowledge cycles execute as any other non­
cacheable read. 110 write cycles are not posted. The 
386 DX is not allowed to continue until a ready signal 
is returned from the system. Halt/Shutdown cycles 
are posted. During a halt/shutdown condition, the 
82385 local bus duplicates the behavior of the 386 
DX, including the ability to recognize and respond to 
a 8HOLD request. (The 82385's bus watching 
mechanism is functional in this condition.) 

1.3.3.1 16-BIT MEMORY SPACE 

The 82385 does not cache 16-bit memory space (as 
decoded by the 386 DX 8S16# input), but does 
make provisions to handle 16-bit space as non­
cacheable. (There is no 82385 equivalent to the 386 
DX 8816# input.) !n a system 'Nithout an 82385, the 
386 DX 8S16# input need not be asserted until the 
last state of a 16 .. bit cycle for the 386 DX to recog­
nize it as such (unless NA# is sampled active earlier 
in the cycle.) The 82385, however, needs this infor­
mation earlier, specifically at the end of the first 386 
DX bu.s state in which the address of the 16-bit cycle 
becomes available.· The result is that in a system 
without an 82385, 16-bit devices can inform the 386 
DX that they are 16-bit devices "on the fly," while. in 

a system with an 82385, devices decoded as 16-bit 
(using the 386 DX 8S16#) must be located in ad­
dress space set aside for 16-bit devices. If 16-bit 
space is decoded according to 82385 guidelines (as 
described later in the data sheet), then the 82385 
will handle 16-bit cycles just like the 386 OX does, 
including effectively locking the two halves of a non­
aligned 16-bit transfer from interruption by another 

. master. 

1.3.4 386 OX Local Bus Cycles 

386 OX Local 8us Cycles are accesses to resources 
on the 386 DX local bus other, than to the 82385 
itself. The 82385 simply ignores these accesses: 
they are neither forwarded to the system nor do they 
affect the cache. The designer sets aside memory 
and lor 110 space for local resources by decoding 
the 386 DX address bus and feeding the decode to 
the 82385's local bus access (L8A#) input. The de­
Signer can also decode the 386 OX cycle definition 
signals to keep specific 386 OX cycles from being 
forwarded to the system. For example, a multi-proc-

. essor design may wish to capture and remedy a 386 
OX shutdown locally without having it detected by 
the rest of the system. Note that in such a design, 
the local shutdown cycle must be terminated by lo­
cal bus control logic. The 387 Math Coprocessor is 
considered a 386 OX local bus resource, but it need 
not be decoded as such by the user since the 82385 
is able to internally recognize. 387 accesses via the 
MIIO# and A31 pins. 

1.3.5 Summary of 82385 Response to 
All 386 OX Cycles 

Table 1-1 summarizes the 82385 response to all 386 
DX bus cycles, as conditioned by whethet or not the 
cycle is decoded as local or non-cacheable. The ta­
ble describes the impact of each cycle on the cache 
and on the cache directory, and whether or not the 
cycle is forwarded to the 82385 local bus. Whenever 
the 82385 local bus is marked "IDLE", it implies that 
this bus is available to other masters. 
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Table 1-1.82385 Response to 386 DX Cycles 

MilO # 

0 

0 

0 

0 

1 

1 

1 

1 

NOTES: 

386 DX Bus Cycle 
Definition 

D/C# W/R# 
386DX 
Cycle 

0 0 INTACK 

0 1 UNDEFINED 

1 0 I/O READ 

1 1 I/O WRITE . 

MEMCODE 
0 0 

READ 

0 1 
HALTI 

SHUTDOWN 

MEMDATA 
1 0 

READ 

MEMDATA 
1 1 

WRITE 

Cache 

N/A -
N/A 

N/A -
N/A -

HIT 
CACHE 
READ 

MISS 
CACHE 
WRITE 

N/A -

HIT 
CACHE 
READ 

MISS 
CACHE 
WRITE 

HIT 
CACHE 
WRITE 

MISS -

82385 Response 
when Decoded 
as Cacheable 

Cache 82385 
Directory Local Bus 

- INT ACK 

UNDEFINED 

- I/O READ 

- I/O WRITE 

- IDLE 

DATA MEMCODE 
VALIDATION READ 

HALTI - SHUTDOWN 

- IDLE 

DATA MEMDATA 
VALIDATION READ 

MEMDATA - WRITE 

MEMDATA .-
WRITE 

Cache 

-

-
-

-

-

-

-

--

82385 Response 
when Decoded 

as Non-Cacheable 

Cache 82385 
Directory Local Bus 

- INT ACK 

UNDEFINED 

- I/O READ 

- 1/0 WRITE 

MEM 
- CODE 

READ 

HALTI - SHUTDOWN 

MEM 
- DATA 

READ 

MEM 
- DATA 

WRITE 

------ _. 

• A dash (-) indicates that the cache and cache directory are unaffected. This table does not reflect how an access affects the LRU bit. 
• An "IDLE" 82385 Local Bus implies that this bus is available to other masters. 
• The 82385's response to 80387 accesses is the same as when decoded as an 386 OX Local Bus access. 
• The only other operations that affect the cache directory are: 

1. RESET or Cache Flush-all tag valid bits cleared. 
2. Snoop Hit-{)orresponding line valid bit cleared. 

82385 Response when 
Decoded as an 386 DX 

Local Bus Access 

Cache 
Cache 82385 

Directory Local Bus 

- - IDLE 

IDLE 

- - IDLE 

- - IDLE 

- - IDLE 

- - IDLE 

- - IDLE 

- - IDLE 
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1.3.6 Bus Watching 

As previously discussed, the 82385 "qualifies" an 
386 OX bus cycle in the first bus state in which the 
address and cycle definition signals of the cycle be­
come available. The cycle is qualified as read or 
write, cacheable or non-cacheable, etc. Cacheable 
cycles are further classified as hit or miss according 
to the results of the cache comparison, which ac­
cesses the 82385 directory and compares the ap­
propriate directory location (tag) to the current 386 
OX address. If the cycle turns out to be non-cache­
able or a 386 OX local bus access, the hitlmiss deci­
sion is ignored. The cycle qualification requires one 
386 OX state. Since the fastest 386 OX access is 
two states, the second state can be used for bus 
watching. 

When the 82385 does not own the system bus, it 
monitors system bus cycles. If another master writes 
into main memory, the 82385 latches the system ad­
dress and executes a cache look-up to see if the 
altered main memory location resides in the cache. 
If so (a snoop hit), the cache entry is marked invalid 
in the cache directory. Since the directory is at most 
only being used every other state to qualify 386 OX 
accesses, snoop look-ups are interleaved between 
386 OX local bus look-ups. The cache directory is 
time multiplexed between the 386 OX address and 
the latched system address. The result is that all 
snoops are caught and serviced without slowing 
down the 386 OX, even when running zero wait state 
hits on the 386 OX local bus. 

1.3.7 Cache Flush 

The 82385 offers a cache flush inout. When activat­
ed, this signal causes the 82385 to invalidate all 
data \lIhich had previously been cached. Specifically. 

INTF.RNAL EXTERNAL 
CACHE DIRECTORY DATA CACHE 

all tag valid bits are clea~ed. (Refer to the 82385 
directory structure in Chapter 2.) Therefore, the 
cache is empty and subsequent cycles are misses 
until the 386 DX begins repeating the new accesses 
(hits). The primary use of the FLUSH input is for di­
agnostics and multi-processor support. . 

NOTE: 
The use of this pin as a coherency mechanism may 
impact software transparency. 

2.0 82385 CACHE ORGANIZATION 

The 82385 supports two cache, organizations: a sim­
ple direct mapped organization and a slightly more 
complex, higher performance two way set associa­
tive organization. The choice is made by strapping 
an 82385 input (2W/O#) either high or low. This 
chapter describes the structure and operation of 
both organizations. 

2.1 DIRECT ,MAPPED CACHE 

2.1.1 Direct Mapped Cache Structure 
and Terminology 

Figure 2-1 depicts the relationship between the, 
82385's internal cache directory, the external cache 
memory, and the 386 OX's 4 Gigabyte physical ad­
dress space. The 4 Gigabytes can conceptually be 
thought of as cache "pages" each being 8K double­
words (32 Kbytes) deep. The page size matches the 
cache size. The cache can be further divided into 
1024 (0 thru 1023) sets of eight doublewords (8 x 32 
bits). Each 32-bit doubleword is called a "line." The 
unit of transfer between the main memory and 
cache is one line. 

l;;;;;;;;;~ PAGE SIZE 
=32KB 

(8K DOUBLE 
WORDS) 

4 GIGABYTES MAIN ~EMORY 

290143-6 

Figure 2-1. D!rect Mapped Cache Organization 
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Each block in the external cache has an associated 
26-bit entry in the 82385's internal cache directory. 
This entry has three components: a 17-bit "tag," a 
"tag valid" bit, and eight "line valid" bits. The tag 
acts as a main memory page number (17 tag bits 
support 217 pages). For example, if line 9 of page 2 
currently resides in the cache, then a binary 2 is 
stored in the Set 1 tag field. (For any 82385 direct 
mapped cache page in main memory, Set 0 consists 
of lines 0-7, Set 1 consists of lines 8-15, etc. Line 9 
is shaded in Figure 2-1.) An important characteristic 
of a direct mapped cache is that line 9 of any page 
can only reside in line 9 of the cache. All identical 
page offsets map to a single cache location. 

The data in a cache set is considered valid or invalid 
depending on the status of its tag valid bit. If clear, 
the entire set is considered invalid. If true, an individ­
ual line within the set is considered valid or invalid 
depending on the status of its line valid bit. 

The 82385 sees the 386 OX address bus (A2-A31) 
as partitioned into three fields: a 17-bit "tag" field 
(A15-A31), a 10-bit "set-address" field (A5-A14), 
and a 3-bit "line select" field (A2-A4). (See Figure 
2-2.) The lower 13 address bits (A2-A14) also serve 
as the "cache address" which directly selects one 
of 8K doublewords in the external cache. 

2.1.2 Direct Mapped Cache Operation 

The following is a description of the interaction be­
tween the 386 OX, cache, and cache directory. 

2.1.2.1 READ HITS 

When the 386 OX initiates a memory read cycle, the 
82385 uses the 10-bit set address to select one of 

1 024 directory entries, and the 3-bit line select field 
to select one of eight line valid bits within the entry. 
The 13-bit cache address selects the corresponding 
doubleword in the cache. The 82385 compares the 
17-bit tag field (A 15-A31 of the 386 OX access) with 
the tag stored in the selected directory entry. If the 
tag and upper address bits match, and if both the 
tag and appropriate line valid bits are set, the result 
is a hit, and the 82385 directs the cache to drive the 
selected doubleword onto the 386 OX data bus. A 
read hit does not alter the contents of the cache or 
directory. 

2.1.2.2 READ MISSES 

A read miss can occur in two ways. The first is 
known as a "line" miss, and occurs when the tag 
and upper address bits match and the tag valid bit is 
set, but the line valid bit is clear. The second is 
called a "tag" miss, and occurs when either the tag 
and upper address bits do not match, or the tag valid 
bit is clear. (The line valid bit is a "don't care" in a 
tag miss.) In both cases, the 82385 forwards the 386 
OX reference to the system, and as the returning 
data is fed to the 386 OX, it is written into the cache 
and validated in the cache directory. 

In a line miss, the incoming data is validated simply 
by setting the previously clear line valid bit. In a tag 
miss, the upper address bits overwrite the previously 
stored tag, the tag valid bit is set, the appropriate 
line valid bit is set, and the other seven line valid bits 
are cleared. Subsequent tag hits with line misses will 
only set the appropriate line valid bit. (Any data as­
sociated with the previous tag is no longer consid­
ered resident in the cache.) 

CACHE ADDRESS r (lor 8K DOUBLE WORDS) I 
A31 A15 A14 AS A4 A2 

~IIIIIIIIIIIIIIIIIIIIIIII 

17-BITTAG ~ SETADDRESS ~LlNE) 
(lor 217 PAGES (lor 1024 SETS) SELECT 

(lor 8 LINES) 
290143-7 

Figure 2-2. 386 OX Address Bus Bit Fields-Direct Mapped Organization 
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2.1.2,3 OTHER OPERATIONS THAT AFFECT 
THE CACHE AND CACHE DIRECTORY 

The other operations that affect the cache and/or 
directory are write hits. snoop hits. cache flushes. 
and 82385 resets. In a write hit. the cache is updat­
ed along with main memory. but the directory is un­
affected. In a snoop hit. the cache is unaffected. but 
the affected line is invalidated by clearing its line 
valid bit in the directory. Both an 82385 reset and 
cache flush clear all tag valid bits. 

When an 386 OX CPUl82385 system "wakes up" 
upon reset. all tag valid bits are clear. At this point. a 
read miss is the only mechanism by which main 
memory data is copied into the cache and validated 
in the cache directory. Assume an early 386 OX 
code access seeks (for the first time) line 9 of page 
2. Since the tag valid bit is clear. the access is a tag 
miss. and the data is fetched from main memory. 
Upon return. the data is fed to the 386 OX and simul­
taneously written into line 9 of the cache. The set 
directory entry is updated to show this line as valid. 
Specifically. the tag and appropriate line valid bits 
are set. the remaining seven line valid bits cleared. 
and a binary 2 written into the tag. Since code is 
sequential in nature. the 386 OX will likely next want 
line 10 of page 2. then line 11. and so on. If the 386 
OX sequentially fetches the next six lines. these 
fetches will be line misses. and as each is fetched 
from main memory and written into the c?che. its 
corresponding line valid bit is set. This is the basic 

floW of events that fills the cache with valid data. 
Only after a piece of data has been copied into the 

. cache and validated can it be accessed in a zero 
wait state read hit. Also. a cache entry must have 
been validated before it can be subsequently altered 
by a write hit. or invalidated by a snoop hit. 

An extreme example of "thrashing" is if line 9 of 
page two is an instruction to jump to line 9 of page 
one. which is an instruction to jump back to line 9 of 
page two. Thrashing results from the direct mapped 
cache characteristic that all identical page offsets 
map to a single cache location. In this example. the 
page one. access overwrites the cached page two 
data. and the page two access overwrites the cach­
ed page one data. As long as the code jumps back 
and forth the hit rate is zero. This is of course an 
extreme case. The effect of thrashing is that a direct 
mapped cache exhibits a slightly reduced overall hit 
rate as compared to a set associative cache of the 
same size. 

2.2 TWO WAY SET ASSOCIATIVE 
CACHE ' 

2.2.1 Two Way Set Associative Cache 
Structure and Terminology 

Figure 2-3 illustrates the relationship between the 
directory. cache. and 4 Gigabyte address space. 

DIRECTORY A DIRECTORY B BANK A BANK B ~ 
TAG VALID TAG VALID 

BIT BIT 
I L'''E I LINE 

IS-BIT I VALID LBU IS-!-BIT-=i!'TIViTAiTLIDm--i---';.:;....+--+--"'''--i-_..,.,.~'-I.I==7rf LW TAG + BITS BITS TAG + BITS .~:-:::::-
SETO~; 1111111111 E3 ~~ 

S~ 1 qj-WjLLUW E3 qhnrmm--t=;;t-:::I;;;;;;;;;t-t~aar~ 
. 
I 

rn
p~G1E6~~E 

. (4K DOUBLE 
WORDS) 

1 W W L~~"Li'L' 
INTERNAL 

CACHE DIRECTORY 
EXTERNAL 

DATA CACHE 
4 GIGABYTES MAIN MEMORY 

Figure 2-3. Two-Way Set Associative Cache Organizatl,on 
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Whereas the direct mapped cache is organized as 
one bank of 8K doublewords, the two way set asso­
ciative cache is organized as two banks (A and B) of 
4K doublewords each. The page size is halved, and 
t~e number of pages doubled. (Note the extra tag 
bit.) The cache now has 512 sets in each bank. (Two 
banks times 512 sets gives a total of 1024. The 
structure can be thought of as two half-sized direct 
mapped caches in parallel.) The performance ad­
vantage over a direct mapped cache is that all iden­
tical page offsets map to two cache locations in­
stead of one, reducing the potential for thrashing. 
The 82385's partitioning of the 386 OX address bus 
is depicted in Figure 2-4. 

2.2.2 LRU Replacement Algorithm 

The two way set associative directory has an addi­
tional feature: the "least recently used" or LRU bit. 
In the event of a read miss, either bank A or bank B 
will b~ updated with new data. The LRU bit flags the 
candidate for replacement. Statistically, of two 
blocks of data, the block most recently used is the 
block most likely to be needed again in the near 
future. By flagging the least recently used block, the 
82385 ensures that the cache block replaced is the 
least likely to have data needed by the CPU. 

2.2.3 Two Way Set Associative 
Cache Operation 

2.2.3.1 READ HITS 

When the 386 OX initiates a memory read cycle, the 
82385 uses the 9-bit set address to select one of 
512 sets. The two tags of this set are simultaneously 
compared with A14-A31, both tag valid bits 
checked, and both appropriate line valid bits 
checked. If either comparison produces a hit, the 
corresponding cache bank is directed to drive the 
selected doubleword onto the 386 OX data bus. 
(Note that both banks will never concurrently cache 
the same main memory location.) If the requested 
data resides in bank A, the LRU bit is pointed toward 

A31 

B. If B produces the hit, the LRU bit is pointed 
toward A. 

2.2.3.2 READ MISSES 

As in direct mapped operation, a read miss can be 
either a line or tag miss. Let's start with a tag miss 
example. A~sume the 386 OX seeks line 9 of page 2, 
and that neither the A or B directory produces a tag 
match. Assume also, as indicated in Figure 2-3, that 
the LRU bit points to A. As the data returns from 
main memory, it is loaded into offset 9 of bank A. 
Concur.rently, this data is validated by updating the 
set 1 directory entry for bank A. Specifically, the up­
pe~ ad~r~ss bits overwrite the previous tag, the tag 
valid bit IS set, the appropriate line valid bit is set, 
and the other seven line valid bits cleared. Since this 
data is the most recently used, the LRU bit is turned 
toward B. No change to bank B occurs. 

If the next 386 OX request is line 10 of page two, the 
result !will be a line miss. As the data returns from 
main memory, it will be written into offset 10 of bank 
A (tag hit/line miss in bank A), and the appropriate 
line valid bit will be set. A line miss in one bank will 
cause the LRU bit to point to the other bank. In this 
example, however, the LRU bit has already been 
turned toward B. ' 

2.2.3.3 OTHER OPERATIONS THAT AFFECT 
THE CACHE AND CACHE DIRECTORY 

Other operations that affect the cache and cache 
directory are write hits, snoop hits, cache flushes, 
and 82385 resets. A write hit updates the cache 
along with main memory. If directo'ry A detects the 
hit, bank A is updated. If directory B detects the hit 
bank B is updated. If one bank is updated, the LRU 
bit is pointed toward the other. 

If a snoop hit invalidates an entry, for example, in 
cache bank A, the corresponding LRU bit is pointed 
towa~d A. This ensures that invalid data is the prime 
candidate for replacement in a read miss. Finally, 
resets and flushes behave just as they do in a direct 
mapped cache, clearing all tag valid bits. 

CACHE ADDRESS 
r-"" (1 OF 4K DOUBLE WORDS) """---J 

A14 A13 AS' A4 A2 

I I I I I I I I I I I I I I I I I I I I 

18-BIT TAG ~ SET ADDRESS -A LINE) 
(1 OF 21B PAGES) (1 OF 512 SETS) SELECT 

(1 OF 8 LINES) 

290143-9 

Figure 2-4. 386 OX Address Bus Bit Fields-Two-Way Set Associative Organization 
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3.0 82385 PIN DESCRIPTION 

The 82385 creates the 82385 local bus, which is a 
functional 386 OX interface. To facilitate under­
standing, 82385 local bus signals go by the same 
name as their 386 OX equivalents, except that they 
are preceded by the letter "B". The 82385 local bus 
equivalent to AOS# is BAOS#, the equivalent to 
NA# is BNA#, etc. This convention applies to bus 
states as well. For example, Bn P is the 82385 local 
bus state equivalent to the 386 OX T1 P state. 

3.1 386 OX CPU/82385 INTERFACE 
SIGNALS 

These signals form the direct interface between the 
386 OX and 82385. 

3.1.1 386 OX CPU/82385 Clock (CLK2) 

CLK2 provides the fundamental timing for an 386 OX 
CPU/82385 system, and is driven, by the same 
source that drives the 386 OX CLK2 input. The 
82385, like the 386 OX, divides CLK2 by two to gen­
erate an internal "phase indication" clock. (See Fig­
ure 3-1.) The CLK2 period whose rising edge drives 
the internal clock low is called PHI1, and theCLK2 
period that drives the internal clock high is called 
PHI2. A PHI1-PHI2 combination (in that order) is 

known as a "T" state, and is the basis for 386 OX 
bus cycles. 

3.1.2 386 OX CPU/82385 Reset 
(RESET) 

This input resets the 82385, bringing it to an initial 
known state, and is driven by the same source that 
drives the 386 OX RESET input. A reset effectively 
flushes the cache by clearing all cache directory tag 
valid bits. The falling edge of RESET is synchronized 
to CLK2, and used by the 82385 to properly estab­
lish the phase of its internal clock. (See Figure 3-2.) 
Specifically, the second internal phase following the 
falling edge of RESET is PHI2. 

3.1.3 386 OX CPU/82385 Address Bus 
(A2-A31), Byte Enables 

, (BEO # -BE3 #), and Cycle 
Definition Signal.s (MIlO #, 
D/C#, W/R#, LOCK#) 

The 82385 directly connects to these 386 OX out­
puts. The 386 OX address bus is used in the cache 
directory comparison to see if data referenced by 
386 OX resides in the cache, and the byte enables 
inform the 82385 as to which portions of the data 
bus are involved in an 386 OX cycle. The cycle defi­
nition signals are decoded by the 82385 to deter­
mine the type of cycle the 386 OX is executing. 

290143-10 

Figure 3·1. CLK2 and Internal Clock 
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Figure 3·2. Resetllnternal Phase Relationship 
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3.1.4 386 OX CPU/82385 Address 
Status (AOS#) and Ready Input 
(REAOVI#) 

ADS #, a 386 OX output, tells the 82385 that new 
address and cycle definition information is available. 
REAOYI # , an input to both the 386 OX (via the 386 
OX READY # input pin) and 82385, indicates the 
completion of an 386 OX bus cycle. AOS# and 
REAOYI # are used to keep track of the 386 OX bus 
state. 

3.1.5 386 OX Next Address Request 
(NA#) 

This 82385 output controls 386 OX pipelining. It can 
be tied directly to the 386 OX NA# input, or it can be 
logically "ANO"ed with other 386 OX local bus next 
address requests. 

3.1.6 Ready Output (REAOVO #) and 
Bus Ready Enable (BROVEN #) 

The 82385 directly terminates all but two types of 
386 OX bus cycles with its REAOYO# output. 386 
OX local bus cycles must be terminated by the local 
device being accessed. This includes devices de­
coded using the 82385 LBA# signal and 80387 ac­
cesses. Th.e other cycles not directly terminated by 
the 82385 are 82385 local bus reads, specifically 
cache read misses and non-cacheable reads. (Re­
call that the 82385 forwards and runs such cycles on 
the 82385 bus.) In these cycles the signal that termi­
nates the 82385 local bus access is BREAOY#, 
which is gated through to the 386 OX local bus such 
that the 386 OX and 82385 local bus cycles are con­
currently terminated. BROYEN # is used to gate the 
BREADY # signal to the 386 OX. 

3.2 CACHE CONTROL SIGNALS 

These 82385 outputs control the external 32 KB 
cache data memory. 

3.2.1 Cache Address Latch Enable 
(CALEN) 

This signal controls the latch (typically an F or AS 
series 74373) that resides between the low order 
386 OX address bits and the cache SRAM address 
inputs. (The outputs of this latch are the "cache ad­
dress" described in the previous chapter.) When 
CALEN is high the latch is transparent. The falling 
edge of CALEN latches the current inputs which re­
main applied to the cache data memory until CALEN 
returns to an active high state. 

3.2.2 Cache Transmit/Receive 
(CT/R#) 

This signal defines the direction of an optional data 
transceiver (typically an F or AS series 74245) be­
tween the cache and 386 OX data bus. When high, 
the transceiver is pointed towards the 386 OX local 
data bus (the SRAMs are output enabled). When 
low, the transceiver points towards the cache data 
memory. A transceiver is required if the cache is de­
signed with SRAMs that lack an output enable con­
trol. A transceiver may also be desirable in a system 
that has a heavily loaded 386 OX local data bus. 
These devices are not necessary when using 
SRAMs which incorporate an output enable. 

3.2.3 Cache Chip Selects 
(CSO#-CS3#) 

These active low signals tie to the cache SRAM chip 
selects, and individually enable the four bytes of the 
32-bit wide cache. CSO# enables 00-07, CS1 # 
enables 08-015, CS2# enables 016-023, and 
CS3# enables 024-031. During read hits, all four 
bytes are enabled regardless of whether or not all 
four 386 OX byte enable~ are active. (The 386 OX 
ignores what it did not request.) Also, all four cache 
bytes are enabled in a read miss so as to update the 
cache with a complete line (double word). In a write 
hit, only those cache bytes that correspond to active 
byte enables are selected. This prevents cache data 
from being corrupted in a partial doubleword write. 

3.2.4 Cache Output Enables 
(COEA #, COEB #) and Write 
Enables (CWEA # , CWEB #) 

COEA# and COEB# are active low signals which 
tie to the cache SRAM or Transceiver output en­
ables and respectively enable cache bank A or B. 
The state of OEFOE# (define cache output enable), 
an 82385 configuration input, determines the func­
tional definition of COEA# and COEB#. 

If DEFOE # = VIL, in a two-way set associative 
cache, either COEA# or COEB# is active during 
read hit cycles only, depending on which bank is 
selected. In a direct mapped cache, both are activat­
ed during read hits, so the designer is free to use 
either one. This COEx# definition best suites cache 
SRAMs with output enables. 

If OEFOE# = VIH, COEx# is active during read hit, 
read miss (cache update) and write hit cycles only. 
This COEx# definition suites cache SRAMs without 
output enables. In such systems, transceivers are 
needed and their output enables must be active for 
writing, as well as reading, the cache SRAMs. 
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CWEA# and CWEB# are active low signals which 
tie to the cache SRAM write enables, and respec­
tively enable cache bank A or B to receive data from 
the 386 OX data bus (386 OX write hit or read miss 
update). In a two-way set associative cache, one or 
the other is enabled in a read miss or write hit. In a 
direct mapped cache, both are activated, so the de­
signer is free to use either one. 

The various cache configurations supported by the 
82385 are described in Chapter 4. 

,3.3 386 DX LOCAL BUS DECODE 
INPUTS 

These 82385 inputs are generated by decoding the 
386 OX address and cycle definition lines. These ac­
tive low inputs are sampled at the end of the first 
state in which the address of a new 386 OX cycle 
becomes available (T1 or first T2P). 

3.3.1 386 DX Local Bus Access 
(LBA#) 

This input identifies an 386 OX access as directed to 
a resource (other than the cache) on the 386 OX 
local bus. (The 387 Numerics Coprocessor is con­
sidered a 386 OX local bus resource, but LBA# 
need not be generated as the 82385 internally de­
codes 387 accesses.) The 82385 simply ignores 
these cycles. They are neither forwarded to the sys- , 
tem nor do they affect the cache or cache directory. 
Note that LBA # has priority over all other types of 
cycles. If LBA# is asserted, the cycle is interpreted 
as an 386 OX local buS access, regardless of the 
cycle type or status of NCA #" or X1 Sit. This aHcw"vs . 
any 386 OX cycle (memory, I/O, interrupt acknowl­
edge, etc.j to be kept on the 386 iocai bus if desired. 

3.3.2 Non-Cacheable Access (NCA #) 

This active low input identifies a 386 OX cycle as 
non-cacheable. The 82385 forwards non-cacheable 
cycles to the 82385 local bus and runs them. The 
cache and cache directory are unaffected. 

NCA# allows a designer to set aside a portion of 
main memory as non-cacheable. Potential applica­
tions include memory-mapped I/O and systems 
where multiple masters access dual ported memory 
via different busses. Another possibility makes use 
of the 386 OX O/C#output. The 82385 by default 
implements a unified code and data cache, but driv­
ing NCA# directly by O/C# creates a data only 
cache. If O/C# is inverted first, the result is a code 
only cache. 

3.3.3 16-Bit Access (X 16 #) 

X16# is an active low input which identifies 16-bit 
memory and/or I/O space, and the decoded signal 
that drives X16# should also drive the 386 OX 
BS16# input. 16-bit accesses are treated like non­
cacheable accesses: they are forwarded to and exe­
cuted on the 82385 local bus with no impact on the 
cache or cache directory. In addition, the 82385 
locks the two halves of a non-aligned 16-bit transfer 
from interruption by another master, as does the 386 
OX. 

3.4 82385 LOCAL BUS INTERFACE 
SIGNALS 

The 82385 presents a "386 OX-like" front end to the 
system, and the signals discussed in this section are 
82385 local bus equivalents to actual 386 OX sig­
nals. These signals are named with respect to their 
386 OX counterparts, but with the letter "B" append­
ed ~o the front. 

Note 'that the 82385 itself does not have equivalent 
output signals to the 386 OX data bus (00-031), 
address bus (A2-A31), and cycle definition signals 
(M/IO#, O/C#, W/R#).The 82385 data bus (BOO­
B031) is actually the system side of a latching trans­
ceiver, and the 82385 address bus and cycle defini­
tion signals (BA2-BA31, BMIIO#, BO/C#, 
BW/R#) are the outputs of an edge-triggered latch. 
The signals that control this data transceiver and ad­
dress latch are discussed in Section 3.5. 

3.4.1 82385 Bus Byte Enables 
(BBEO # ~BBE3 #) 

BBEO#-BBE3# are the 82385 local bus equiva­
lents to the 386 OX byte enables. In a cache read 
miss, the 82385 drives all four signals low, regard­
less of whether or not all four 386 OX byte enables 
are active. This ensur.es that a complete line (dou­
bleword) is fetched from main memory for the cache 
update. In all other -82385 local bus cycles, the 
82385 duplicates the logic levels of the 386 OX byte 
enables. The 82385 tri-states these outputs when it 
is not the current bus master. 

3.4.2 82385 Bus Lock (BLOCK #) 

BLOCK# ,is the 82385 local bus equivalent to the 
386 OX LOCK # output, and distinguishes between 
locked and unlocked cycles. When the 386 OX runs 
a locked sequence of cycles (and LBA# is negated), 
the 82385 forwards and runs the sequence o~ the 
82385 local bus, regardless of whether any locations 
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referenced in the sequence reside in the cache. A 
·read hit will be run as if it is a read miss, but a write 
hit will update the cache as well as being completed 
to system memory. In keeping with 386 DX behavior, 
the 82385 does not allow another master to interrupt 
the sequence. BLOCK# is tri-stated when the 
82385 is not the current bus master. 

3.4.3 82385 Bus Address Status 
(BADS#) 

BADS# is the 82385 local bus equivalent of ADS#, 
and indicates that a valid address (BA2-BA31, 
BBEO#-BBE3#) and cycle definition (BM/IO#, 
BW/R#, BD/C#) is available. It is asserted in BT1 
and BT2P states, and is tri-stated when the 82385 
does not own the bus. 

3.4.4 82385 Bus Ready Input 
(BREADY#) 

82385 local bus cycles are terminated by 
BREADY #, just as 386 DX cycles are terminated by 
the 386 DX READY # input. In 82385 local bus read 
cycles, BREADY # is gated by BRDYEN # onto the 
386 DX local bus, such that it terminates both the 
386 DX and 82385 local bus cycles. 

3.4.5 82385 Bus Next Address 
Request (BNA #) 

BNA# is the 82385 local bus equivalent to the 386 
DX NA# input, and indicates that the system is pre­
pared to accept a pipe lined address and cycle defi­
nition. If BNA# is asserted and the new cycle infor­
mation is available, the 82385 begins a pipelined cy­
cle on the 82385 local bus. 

3.5 82385 BUS DATA TRANSCEIVER 
AND ADDRESS LATCH CONTROL , 
SIGNALS 

The 82385 data bus is the system side of a latching 
transceiver (typically. an F or AS series 74646), and 
the 82385 address bus and cycle definition signals 
are the outputs of an edge-triggered latch (F or AS 
series 74374). The following is a discussion of the 
82385 outputs that control these devices. An impor­
tant characteristic of these signals and the devices 
they control is that they ensure that BDO-BD31, 
BA2-BA31, BM/IO#, BD/C#, and BW/R# repro­
duce the functionality and timing behavior of their 
386 DX equivalents: 

3.5.1 Local Data Strobe (LDSTB), Data 
Output Enable (DOE #), and Bus 
Transmit/Receive (BT fR #) 

These signals control the latching data transceiver. 
BT IR # defines the transceiver direction. When 
high, the transceiver drives the 823~5 dat~ bus in 
write cycles. When low, the transceiver drives the 
386 DX data bus in 82385 local bus read cycles. 
DOE # enables the transceiver outputs. 

The rising edge of LDSTB latches the 386 DX data 
bus in all write cycles. The interaction of this signal 
and the latching transceiver is used to perform the 
82385's posted write capability. 

3.5.2 Bus Address Clock Pulse 
(BACP) and Bus Address 
Output Enable (BAOE #) 

These signals coritrol the latch that drives BA2-
BA31, BM/IO#, BW/R#, and BO/C#. In any 386 
DX cycle that is forwarded to the 82385 local bus, 
the rising edge of BACP latches the 386 DX address 
and cycle definition signals. BADE # enables the 
latch outputs when the 82385 is the current bus 
master and disables them otherwise. 

3.6 STATUS AND CONTROL 
SIGNALS 

3.6.1 Cache Miss Indication (MISS #) 

This output accompanies cacheable read and write 
miss cycles. This signal transitions to its active low 
state when the 82385 determines that a cacheable 
386 DX access is a miss. Its timing behavior follows 
that of the 82385 local bus cycle definition signals 
(BMIIO#, BD/C#, BW/R#) so that it becomes 
available with BADS# in BT1 or the first BT2P. 
MISS # is floated when the 82385 does not own the 
bus, such that multiple 82385's can share the same 
node in multi-cache systems. (As discussed in Chap­
ter 7, this signal also serves a reserved function in 
testing the 82385.) 

3.6.2 Write Buffer Status (WBS) 

The latching data transceiver is also known as the 
"posted write buffer." WBS indicates that this buffer 
contains data that has not yet been written to the 
system even though the 386 DX may have begun i~s 
next cycle. It is activated when 386 DX data IS 

latched, and deactivated when the corresponding 
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82385 local bus write cycle is completed 
(BREADY#). (As discussed in Chapter 7, this signal 
also serves a reserved function in testing the 
82385.) 

WBS can serve several functions. In multi-processor 
applications, it can act as a coherency mechanism 
by informing a bus arbiter that it should let a write 
cycle run on the system, bus so that main memory 
has the latest data. If any other 82385 cache sub­
systems are on the bus, they will monitor the cycle 
via their bus watching mechanisms. Any 82385 that 
detects a snoop hit will invalidate the corresponding , 
entry in its local cache. 

3.6.3 Cache Flush (FLUSH) 

When activated, this signal causes the 82385 to 
clear all of its directory tag valid bits, effectively 
flushing the cache. (As discussed in Chapter 7, this 
signal also serves'a reserved function in testin.g the 
82385.) The primary use of the FLUSH input is for 
diagnostics and multi-processor support. The use of 
this pin as a coherency mechanism may impact soft­
ware transparency. 

The FLUSH input must be held active for at least 4 
CLK(8 CLK2) cycles to complete the flush se­
quence. If FLUSH is still active after 4 CLK cycles, 
any accesses to the cache will be misses and the 
cache will not be updated (since FLUSH, is active). 

3.7 BUS ARBITRATION SIGNALS 
(BHOLD AND BHLDA) 

I .... ..... ~If'+,.. .. "",,,,,,.I,.. OUI""\I n : ... "'P'!I : .................. _+ = ........ :,..,..._ ... .... 
III IIIW ...... 'V1 1,'\.1\01\01, _ •• ...., ... ..., 10 QII II'..,UII. ""g, IIIUI\.rQ"Q.;J Q 

request by a slave device for bus ownership. The 
82385 acknowiedges this request via its BHLDA out­
put. (These signals function identically to the 386 OX 
HOLD and HLDA signals.) 

The roles of BHOLD and BHLDA are reversed for an 
82385 in slave mode. BHOLD is now an output indi­
cating a request for bus ownership, and BHLDA an 
input indicating that the request has been granted. 

3.8 COHERENCY (BUS WATCHING) 
SUPPORT SIGNALS (SA2-SA31, 
SSTB#, SEN) 

These signals form the 82385's bus watching inter­
face. The Snoop Address Bus (SA2-SA31) con­
nects to the system address lines if masters reside 
at both the system and 82385 local bus levels, or 
the 82385 local bus address lines if masters reside 
only at. the 82385 local bus level. Snoop Strobe 
(SSTB #) indicates that a' valid address is on the 

snoop address inputs. Snoop Enable (SEN) indi­
cates that the cycle is a write. In a system with mas­
ters only at the 82385 local bus level, SA2-SA31, 
SSTB #, and SEN can be driven respectively by 
BA2-BA31, BADS#, and BW/R# without any sup­
port circuitry. 

3.9 CONFIGURATION INPUTS 
(2W/D#, M/S#, DEFOE#) 

These signals select the configurations supported 
by the 82385. They are hardware strap options and 
must not be changed dynamically. 2W/D# (2-Way/ 
Direct Mapped Select) selects a two-way set asso­
ciative cache when tied high, or a direct mapped 
cache when tied low. M/S# (Master/Slave Select) 
chooses between master mode (M/S# high) and 
slave mode (M/S# low). DEFOE# defines the func­
tionality of the 82385 cache output enables 
(COEA# and COEB#). DEFOE# allows the 82385' 
to interface to SRAMs with output enables 
(DEFOE # low) or to SRAMs requiring transceivers 
(DEFOE# high). 

4.0 386 OX LOCAL BUS INTERFACE 

The following is a detailed description of how the 
82385 interfaces to the 386 OX and to 386 OX local 
bus resources. Items specifically addressed are the 
interfaces to the 386 OX, the cache SRAMs, and the 
387 Numerics Coprocessor. 

The many timing diagrams in this and the next chap­
ter provide insight into the dual pipelined bus struc­
ture of a 386 OX CPUl82385 system. It's important 
+_ ........ 1:_ ....... _ ••• _. __ .... a..._ ... ______ .... __ + 1.. __ ......... __ • 
I.V I 'aQII,,"OW, I IV.,YOWY-C;;I , Lila .. VII'C' II'C'vU IIU\' ~IIVYY a'V'C'1 Y 

possible cycle combination to use the 82385. The 
interface is simpie, and the dual bus operation Invisi­
ble to the 386 OX and system. To facilitate discus­
sion of the timing diagrams, several conventions 
have been adopted. Refer to Figure 4-2A, and note 
that 386 OX bus cycles, 386 OX bus states, and 
82385 bus states are identified along the top. All 
states can be identified by the "frame numbers" 
along the bottom. The cycles in Figure 4-2A include 
a cache read hit (CRDH), a cache read miss 
(CRDM), and a write (WT). WT represents any write, 
cacheable or not. When necessary to distinguish 
cacheable writes, a write hit goes by CWTH and a 
write miss by CWTM. Non-cacheable system reads 
go by SBRD. Also; it is assumed that. system bus 
pipelining occurs even though the BNA# signal is 
~ot shown. When the system pipeline begins is a 
function of the system bus controller. 

386 OX bus cycles can be tracked by ADS# and 
READYI#, and 82385 cycles by BADS# and 
BREADY #. These four signals are thus a natural 
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choice to help track parallel bus activity. Note in the 
timing diagrams that 386 OX cycles are numbered 
using ADS# and READYI#, and 82385 cycles using 
BADS# and BREADY#. For example, when the ad­
dress of the first 386 OX cycle becomes available, 
the corresponding assertion of ADS# is marked 
"1 ", and the READYI # pulse that terminates the cy­
cle is marked "1" as well. Whenever a 386 OX cycle 
is forwarded to the system, its number is forwarded 
as well so that the corresponding 82385 bus cycle 
can be tracked by BADS# and BREADY#. 

The "N" value in the timing diagrams is the assumed 
number of main memory wait states inserted in a 
non-pipelined 82385 bus cycle. For example, a non­
pipelined access to N = 2 memory requires a total of 
four bus states, while a pipelined access requires 
three. (The pipeline advantage effectively hides one 
main memory wait state.) 

4.1 PROCESSOR INTERFACE 

This section presents the 386 OX CPU /82385 hard­
ware interface and discusses the interaction and 
timing of this interface. Also addressed is how to 
decode the 386 OX address bus to generate the 

82385 inputs LBA#, NCA#, and X16#. (Recall that 
LBA# allows memory and/or I/O space to be set 
aside for 386 OX local bus resources; NCA# allows 
system memory to be set aside as non-cacheable; 
and X16# allows system memory and/or I/O space 
to be reserved for 16-bit resources.) Finally, the 
82385's handling of 16-bit space is discussed. 

4.1.1 Hardware Interface 

Figure 4-1 is a diagram of an 386 OX CPU/82385 
system, which can be thought of as three distinct 
interfaces. The first is the 386 OX CPU/82385 inter­
face (including the Ready Logic). The second is the 
cache interface, as depicted by the cache control 
bus in the upper left corner of Figure 4-1. The third is 
the 82385 bus interface, which includes both direct 
connects and signals that control the 74374 ad­
dress/cycle definition latch and 74646 latching data 
transceiver. (The 82385 bus' interface is the subject 
of the next chapter.) 

As seen in Figure 4-1, the 386 OX CPU/82385 inter­
.face is a straightforward connection. The only nec­
essary support logic is that required to sum all ready 
sources. 
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4.1.2 Ready Generation 

Note in Figure 4-1 that the ready logic consists of 
two gates. The upper three-input AND gate (shown 
as a negative logic OR) sums all 386 DX local bus 
ready sources. One such source is the 82385 
READYO# output, which terminates read hits and 
posted writes. The output of this gate drives the 386 
DX READY # input and is monitored by the 82385 
(via READYI #) to track the 386 DX bus state. 

When the 82385 forwards a 386 DX read cycle to 
the 82385 bus (cache read miss or non-cacheable 
read), it does not directly terminate the cycle via 
READYO#. Instead, the 386 DX and 82385 bus cy­
cles are concurrently terminated by a system ready 

source. This is the purpose of the additional two-in­
put OR gate (negative logic AND) in Figure 4-1. 
When the 82385 forwards a read to the 82385 bus, it 
asserts BRDYEN # which enables the system ready 
signal (BREADY#) to directly terminate the 386 DX 
bus cycle. 

Figures 4-2A and 4-2B illustrate the behavior of the 
signals involved in ready generation. Note in cycle 1 
of Figure 4-2A that the 82385 READYO# directly 
terminates the hit cycle. In cycle 2, READYO# is not 
activated. Instead the 82385 BRDYEN # is activated 
in BT2, BT2P, or BT21 states such that BREADY # 
can concurrently terminate the 386 DX and 82385 
bus cycles (frame 6). Cycle 3 is a posted write. The 
write data becol"(1es available in T1 P (frame 7), and 

386 ™ OX CYCLE I CRDH 

386 OX BUS STATE n I T2 
82385 BUS STATE BTl BTl 

CRDM I WT 

n I T2 I T2P I T2P n P I T2 
BTl . Bn BT2 BT21 BTl Bn 

CRDM I 
Tl I T2 I T2 I T2P 

BT2 BT2P BTl P BT21 

CLK2 

ClK 

ADS# 

BRDYEN# 

READYD# 

READYI# 

NAil 

BADS# 

BREADY# 

FRAME 
NUMBER 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

290143-13 

Figure 4-2A. READYO#, BRDYEN#, and NA# (N= 1) 
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the address, data, and cycle definition of the write 
are latched in T2 (frame 8). The 386 DX cycle is 
terminated by READYO# in frame 8 with no wait 
states. The 82385, however, sees the write cycle 
through to completion on the 82385 bus where it is 
terminated in frame 10 by BREADY#. In this case, 
the BREADY # signal is not gated through to the 
386 DX .. Refer to Figures 4-2A and 4-2B for clarifi-
cation. . 

4.1.3. NA# and 386 OX Local Bus 
Pipelining 

Cycle 1 of Figure 4-2A is a typical cache read hit. 
The 386 DX address becomes available in T1, and 
the 82385 uses this address to determine if the ref­
erenced data resides in the cache. The cache look­
up is completed and the cycle qualified as a hit or 
miss in T1. If the data resides in the cache, the 
cache is directed to drive the 386 DX data bus, and 
the 82385 drives its READYO# output so the cycle 
can be terminated at the end of the first T2 with no 
wait states. 

Although cycle 2 starts out like cycle 1, at the end of 
T1 (frame 3), it is qualified as a miss and forwarded 
to the 82385 bus. The 82385 bus cycle begins one 
state after the 386 DX bus cycle, implying a one wait 
state overhead associated with cycle 2 due to the 
look-up. When the 82385 encounters the miss, it im­
mediately asserts NA #, which puts the 386 DX into 
pipelined mode. Once in pipelined mode, the 82385 
is able to qualify an 386 DX cycle using the 386 DX 
pipelined address and control signals. The result is 
that the cache look-up state is hidden in all but the 
first of a contiguous sequence of read misses. This 
is shown in the first two cycles, both read misses, of 
Figure 4-2B. The CPU sees the look-up state in the 
first cycle, but not in the second. In fact, the second 
miss requires a total of only two states, as not only 
does 386 DX pipelining hide the look-up state, but 
system pipelining hides one of the main memory 
wait states. (System level pipelining via BNA # is dis­
·cussed in the next chapter.) Several characteristics 
of the 82385's pipelining of the 386 DX are as fol-· 
lows: 

- The above discussion applies to all system 
reads, not just cache read misses. 

386 ™ OX CYCLE I CROM I CROM I CROH I CROH I 
386 OX BUS STATE Tl T2 T2P T2P T1P T2P T1P T2P T1P 12 
82385. BUS STATE BTl I BTl I BT2 I BT2P BT1P I B121 BTl I BTl BTl I BTl. I I I I I 

CLK2 

,~ 

AOSN~~. 3~ . 

~~ . 

REAOYO# I I· I I I I =l k 31M 41, I I I I I I 
READYI# 

NAN 

BADS# 

BREADY# 

FRAME 
NUMBER 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 ·16 

290143-14 

Figure 4-2B. READYO#, BRDYEN#, and NA# (N= 1) 
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- The 82385 provides the fastest possible switch 
to pipelining, Tl-T2-T2P. The exception to this is 
when a system read follows a posted write. In 
this case, the sequence is Tl-T2-T2-T2P. (Refer 
to cycle 4 of Figure 4-2A.) The number of T2 
states is dependent on the number of main 
memory wait states. 

- Refer to the read hit in Figure 4-2A (cycle 1), and 
note that NA # is actually asserted before the 
end of Tl, before the hit/miss decision is made. 
This is of no consequence since even though 
NA# is sampled active in T2, the activation of 
READYO# in the same T2 renders NA# a 
"don't care". NA# is asserted in this manner to 
meet 386 DX timing requirements and to ensure 
the fastest possible switch to pipelined mode. 

- All read hits and the majority of writes can be 
serviced by the 82385 with zero wait states in 
non-pipelined mode, and the 82385 accordingly 
attempts to run all such cycles in non-pipelined 
mode. An exception is seen in the hit cycles (cy­
cles 3 and 4) of Figure 4-28. The 82385 does not 
know soon enough that cycle 3 is a hit, and thus 
sustains the pipeline. The result is that three se­
quential hits are required before the 386 DX is 
totally out of pipelined mode. (The three hits look 
like T1P-T2P, T1P-T2, Tl-T2.) Note that this 

386™ DX 

does not occur if the number of main memory 
wait states is equal to or greater than two. 

As far as the design is concerned, NA# is generally 
tied directly to the 386 DX NA # input. However, oth­
er local NA# sources may be logically "AND"ed 
with the 82385 NA# output if desired. It is essential, 
however, that no device other than the 82385 drive 
the 386 DX NA# input unless that device resides on 
the 386 DX local bus in space decoded via LBA #. If 
desired, the 82385 NA# output can be ignored and 
the 386 DX NA# input tied high. The 386 DX NA# 
input should never be tied low, which would always 
keep it active. 

4.1.4 LBA#, NCA#, and X16# 
Generation 

The 82385 input signals LBA#, NCA# and X16# 
are generated by decoding the 386 DX address 
(A2-A31) and cycle definition (W/R#, D/C#, 
M/IO#) lines. The 82385 samples them at the end 
of the first state in Which they become available, 
which is either Tl or the first T2P cycle. The decode 
configuration and timings are illustrated respectively 
in Figures 4-3A and 4-38. 

82385 

ADDRESS AND " 386 DX LOCAL • CYCLE DEFINITION NCA#, LBA#, X16# 
SIGNALS v BUS DECODE ... 

290143-15 

A. Decode Configuration 

386™ DX BUS STATE Tl T2 T2 T1 T2 T2P T1P T2 -1\ V 1\ V 1\ V ADS# 

- P< -ADDRESS & CYCLE DEF. 

-P< -LBA#,X16# 

NCA# XXXX X 

290143-16 

B. Decode Timing 

Figure 4·3. NCA #, LBA #, X 16 # Generation 
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4.1.5 82385 Handling of 16-Bit Space 

As discussed previously, the 82385 does not cache 
devices decoded as 16-bit. Instead it makes provi­
sion to accommodate 16-bit space as non-cache­
able via the X16# input. X16# is generated when 
the user decodes the 386 DX address and cycle def­
inition lines for the BS16# input of the 386 DX (Fig­
ure 4-3). The decode output now drives both the 386 
DX BS16# input and the 82385 X16# input. Cycles 
decoded this way are treated as non-cacheable. 
They are forwarded to and executed on the 82385 
bus, but have no impact on the cache or cache di­
rectory. The 82385 also monitors the 386 DX byte 
enables in a 16-bit cycle t6 see if an additional cycle 
is required to complete the transfer. Specifically, a 
second cycle is required if (BEO# OR BE1 #) AND 
(BE2# OR BE3#) is asserted in the current cycle. 
The 82385, like the 386 DX , will not allow the two 
halves of a 16-bit transfer to be interrupted byanoth­
er master. There is an important distinction between 
the handling of 16-bit space in a 386 DX system with 
an 82385 as compared to a system without an 
82385. The 386 DX BS16# fnput need not be as­
serted until the last state of a 16-bit cycle for the 386 
DX to recognize it as such. The 82385, however, 
needs the information earlier, specifically at the end 
of the first 386 DX bus state (T1 or first T2P) in 
which the address of the 16-bit cycle becomes avail­
able. The result is that in a system without an 82385, 
16-bit devices can define themselves as 16-bit de­
vices "on the fly", while in a system with an 82385, 
16-bit devices should be located in space set aside 
for 16-bit devices via the X16 # decode. 

4~ CACHE INTERFACE 
The following is a description of the external data 
cache and 82385 cache interface. 

4.2 .. 1 Cache Configurations 

The 82385 controls the cache memory via the con­
trol signals shown in Figure 4-1. These signals drive 
one of four possible cache configurations, as depict­
ed in Figures 4-4A through 4-4D. Figure 4-4A shows 
a direct mapped cache organized as 8K double­
words. The likely design choice is four 8K x 8 
SRAMs. Figure 4-4B depicts the same cache memo­
ry but with a data transceiver between the cache 
and 386 DX data bus. In this configuration, CT fR # 
controls the transceiver direction, COEA# drives the 
transceiver output enable. (COEB # could also be 
used, and DEFOE# is strapped high.) A data buffer 
is required if the chosen SRAM does not have a 
separate output enable. Additionally, buffers may be 
used to ease SRAM timing requirements or in a sys­
tem with a heavily loaded data bus. (Guidelines for 
SRAM selection are included in Chapter 6.) 

Figure 4-4C depicts a two-way set associative cache 
organized as two banks· (A and B) of 4K double­
words each. The likely design choice is sixteen 
4K x 4 SRAM's. Finally, Figure 4-4D depicts the two­
way organization with data buffers between the 
cache memory and data bus. 

4-364 



8Kx8 
8Kx8 

8Kx8 

CACHE 
SRAM 

(8Kx 8) 

8Kx8 
8Kx8 

8Kx8 

CACHE 
SRAM 

(8K x 8) 

CSO#­
CS3# 

82385 

2x373 
VU~--~Q ~-+----~ 

OE# E 

4 

CALEN 

82385 
CACHE 
CONTROL 

290143-17 

Figure 4·4A. Direct Mapped Cache without Data Buffers 

2x373 
VU~--~Q 0 Il--f------I 

4 

A2-A14 
~-i-' 

CALEN 

CT/R# 
COEA# 
CWEA# 

CSO#-CS3# 

Figure 4·4B. Direct Mapped Cache with Data Buffers 

4·365 

82385 
CACHE 
CONTROL 

DEFOE# =V1H 

290143-18 



.' 
4Kx4 

ADDRESS 
;--

CACHE SRAt.l 
BANK A 
(4Kx4) 

DATA 

CSO#- .P 
CS3# OE# WEN 

~ 1 f 

4 11 
cso#- OE# WEN 
CS3# 

Vt---ADDRESS 

CACHE SRAt.l " BANK B 
(4Kx 32) 

DATA 
... 

82385 

~AI .').~~ 
,.- 0 D 

~2JA13 
-

OE# E 

--
11\ 

DO~D31 ... 

~ 
III 

iil-
:;1-
g-
~-
~-
co 

'" 

I 

DO~D31 
'v 

f-< CALEN 

III 
III 

'" '" 0 
0 

~~ CWEA# 

COEA# 
CSO#-CS3# 

CWEB# 

COEB# 
~~ 
~f-< 
<D 
co 

'" 

7 

82385 
CACHE 
CONTROL 

Figure 4·4C. Two-Way Set Associative Cache without Data Buffers 

4Kx4 

CACHE S.RAt.l 
BANK A 

4 

lu; .• , 
\ .. ,,"' .... , 

CSO#- WEN 
CS3# 

ADDRESS 
CACHE SRAt.l 

BANK B 
(4Kx32) 

DATAIJL--..-1'\1 

82385 
COEA# CACHE 
CWEA# CONTROL 

-' 
~ CSO#-CS3# 0 
-' CT/R# x 
0 

<D CWEB# co 

'" COEB# 

Figure 4-40. Two-Way Set Associative Cache with Data Buffers 

4-366 

290143-19 

290143-20 



inter 82385 

4.2.2 Cache Control-Direct Mapped 

Figure 4-5A illustrates the timing of cache read and 
write hits, while Figure 4-58 illustrates cache up­
dates. In a read hit, the cache output enables are 
driven from the beginning of T2 (cycle 1 of Figure 
4-5A). If at the end of T1 the cycle is qualified as a 
cacheable read, the output enables are asserted on 
the assumption that the cycle will be a hit. (Driving 
the output enables before the actual hit/miss deci­
sion is made eases SRAM timing requirements.) 

Cycle 1 of Figure 4-58 illustrates what happens 
when the assumption of a hit turns out to be wrong. 

CROH CRDH 
(BYTESO, 1) 

Note that the output enables are asserted at the be­
ginning of T2, but then disabled at the end of T2. 
Once the output enables are inactive, the 82385 
turns the transceiver around (via CT fR #) and drives 
the write enables to begin the cache update cycle. 
Note in Figure 4-58 that once the 386 DX is in pipe­
lined mode, the output enables need not be driven 
prior to a hit/miss decision, since the decision is 
made earlier via the pipelined address information. 

One consequence of driving the output enables low 
in a miss before the hit/miss decision is made is that 
since the cache starts driving the 386 DX data bus, 

CWTH 
(BYTES 2, 3) 

CROH 
386 ™ OX CYCLE I 

386 OX BUS STATE 
82385 BUS STATE 

Tl I T2 
BTl BTl 
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Figure 4·5A. Cache Read and Write Cycles-Direct Mapped (N = 1) 
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the 82385 cannot enable the 74646 transceiver (Fig­
ure 4-1) until after the cache outputs are disabled. 
(The timing of the 74646 control signals is described 
in the next chapter.) The result is that the 74646 
cannot be enabled soon enough to support N = 0 
main memory ("N" was defined in section 4.0 as the 
number of non-pipelined main memory wait states). 
This means that memory which can run with zero 
wait states in a non-pipelined cycle should not be 
mapped into cacheable memory. This should not 
present a problem, however, as a main memory sys­
tem built 'Nith f\J = 0 memory has no need of a cache. 
(The main memory is as fast as the cache.) Zero 
wait state memory can be supported if it is decoded 
as non-cacheable. The 82385 knows that a cycle is 

non-cacheable in time not to drive the cache output 
enables, and can thus enable the 74646 sooner. 

In a write hit, the 82385 only updates the cache 
bytes that are meant to be updated as directed by 
the 386 OX byte enables. This prevents corrupting 
cache data in partial doubleword writes. Note in Fig­
ure 4-5A that the appropriate bytes are selected via 
the cache byte select lines CSO # -CS3 #. In a read 
hit, all four select lines are driven as the 386 OX will 
simply ignore data it does not need. Also, in a cache 
update (read miss), an four selects are active in or­
der to update the cache with a complete line (dou­
bleword). 

386 ™ OX CYCLE I 
386 OX BUS STATE Tl 
82385 BUS STATE BTl 

T2 CRIO~2P I T2P I n ;RIO~2P I n P I C;:pM I T2P I Tl ;R10H T2 
Bn BT2 BT2P Bn P BT21 BTl BT2 BT21 BTl BTl 

ClK2 

ClK 

AOS# 

READYI/I 
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BREAOY# 

CAlEN 

CSD#. CS3# I--I--i-' 

13 14 15 16 

290143-22 
N ~ Number of Non·Pipelined. main memory wait states. Must be greater than zero. 

NOTE: 
CRDM = Cache Read Miss 

Figure 4·58. Cache Update Cycles-Direct Mapped (N = 1) 
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4.2.3 Cache Control-Two-Way Set 
Associative 

Figures 4-6A and 4-68 illustrate the timing of cache 
read hits, write hits, and updates for a two-way set 
associative cache. (Note that the cycle sequences 
are the same as those in Figures 4-5A and 4-58.) In 
a cache read hit, only one bank on the other is en­
abled to drive the 386 OX data bus, so unlike the 
control of a direct mapped cache, the appropriate 
cache output enable cannot be driven until the out­
come of the hit/miss decision is known. (This im­
plies stricter SRAM timing requirements for a two­
way set associative cache.) In write hits and read 
misses, only one bank or the other is updated. 

4.3 387™ OX INTERFACE 

The 387 OX Math Coprocessor interfaces to the 386 
OX just as it would in a system without an 82385. 
The 387 OX READYO# output is logically "AND"ed 
along with all other 386 OX local bus ready sources 
(Figure 4-1), and the output is fed to the 387 OX 
READY #, 82385 READYI #, and 386 OX READY # 
inputs. 

The 386 OX uniquely addresses the 387 OX by driv­
ing M/IO# low and A31 high. The 82385 decodes 
this internally and treats 387 OX accesses in the 
same way it treats 386 OX cycles in which L8A # is 
asserted, it ignores them. 

386 ™ OX CYCLE I 
386 OX BUS STATE 
82385 BUS STATE 

CROH,A CROH,B 

I CWTH,A I CWTH,B I CROH,A I (BYTES 0, 1) (BYTES 2, 3) 
n n n n n n n 
BTl 1 BTl BT2 1 BT2 I· BTl BT2 1 BT2 

CLK2 

REAOYI# 

BAOS# 

BREAOY# 

CALEN 

·cso#, <;SI# i--+--+--+--+-..J 

CS2#, CS3# I---I---I---I--.J-..J 

CWEA# 

CWEB# 

COEA# 

COEB# 

CT/R 

FRAME 
NUMBER 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

290143-23 
N = Number of Non·Pipelined, main memory wait states. Must be greater than zero. 

Figure 4-6A. Cache Read and Write Cycles-Two Way Set Associative (N = 1) 
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386 ™ OX CYCLE I CRDM I CRDM I CRDM I CRDH,A I (UPDATE A) (UPDATE B) (UPDATE A) • 
386 OX BUS STATE T1 I 12 I T2P I T2P T1P I T2P TIP I T2P I T2P T1P I T2 
82385 BUS STATE BTl BTl BT2 BT2P BT1 P BT21 BT1 BT2 BT21 BTl BTl 

CLK2 

CLK 

ADS# 

READYI# 

BADS# 

BREADY# 

CALEN 

CSO#. CS3# I-_+-~~ 

CWEA# 

CWEB# 

COEA# 

COEBn 

CT/R 

FRAME 
NUMBER 

2 3 4 5 6 7 8 9 "10 11 12 13 14 15 16 

290143-24 
N = Number of Non-Pipelined. main memory wan states. Must be greater than zero. 

Figure 4·68. Cache Update Cycles-Two Way Set Associative (N = 1) 

5.0 82385 LOCAL BUS AND SYSTEM 
INTERFACE 

The 82385 system interface is the 82385 Local Bus. 
which presents a "386 OX -like" front end to the 
system. The system ties to it just as it would to a 386 
OX . Although this 386 OX -like front end is function­
ally equivalent to a 386 OX , there are timing differ­
ences which can easily be accounted for in a system 
design. 

The following is a description of the 82385 system 
interface. After presenting the 82385 bus state ma­
chine. the 82385 bus signais are described, as are 
techniques for accommodating any differences be­
tween the 82385 bus and 386 OX bus. Following this 
is a discussion of the 82385'5 condition upon reset. 

5.1 THE 82385 BUS STATE MACHINE 

5.1.1 Master Mode 

Figure 5-1A illustrates the 82385 bus state machine 
when the 82385 is programmed in master mode. 
Note that it is almost identical to the 386 OX bus 
state machine, only the bus states are 82385 bus 
states (BT1 P, BTH, etc.) and the state transitions 
are conditioned by 82385 bus inputs (BNA # , 
BHOLO, etc.). Whereas a "pending request" to the 
386 OX state machine indicates that the 386 OX ex­
ecution or prefetch unit needs bus access, a pend­
ing request to the 82385 state machine indicates 
that a 386 OX bus cycle needs to be forwarded to 
the system (read miss, non-cacheable read, write, 
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Figure 5-1B. 82385 Local Bus State Machine-Slave Mode 
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etc.). The only difference between the state ma­
chines is that the 82385 does not implement a direct 
BT1 P-BT2P transition. If BNA# is asserted in 
BT1 P, the resulting state sequence is BT1 P-BT21-
BT2P. The 82385's ability to sustain a pipeline is not 
affected by the-lack of this state transition. 

5.1.2 Slave Mode 

The 82385's slave mode state machine (Figure 
5-1 B) is similar to the master mode machine except 
that now transitions are conditioned by BHLDA rath­
er than BHOLD. (Recall that in slave mode, the roles 
of BHOLD and BHLDA are reversed from their mas­
ter mode roles.) Figure 5-2 clarifies slave mode state 
machine operation. Upon reset, a slave mode 82385 
enters the BTH state. When the 38S DX of the slave 
82385 subsystem has a cycle that needs to be for­
warded to the system, the 82385 moves to BTl and 
issues a hold request via BHOLD. It is important to 
note that a slave mode 82385 does not drive the bus 
in a BTl state. When the master or bus arbiter re­
turns BHLDA, the slave 82385 enters BT1 and runs 

the cycle. When the cycle is completed, and if no 
additional requests are pending, the 82385 moves 
back to BTH and disables BHOLD. 

If, while a slave 82385 is running a cycle, the master 
or arbiter drops BHLDA (Figure 5-2B), the 82385 will 
complete the current cycle, move to BTH and re­
move the BHOLD request. If the 82385 still had cy­
cles to run when it was kicked off the bus, it will 
immediately assert a new BHOLD and move to BTl 
to await bus acknowledgement. Note, however, that 
it will only move to BTl if BHLDA is negated, ensur­
ing that the handshake sequence is completed. 

There are several cases in which a slave 82385 will 
not immediately release the bus if BHLDA is 
dropped. For example, if BHLDA is dropped during a 
BT2P state, the 82385 has already committed to the 
next system bus pipelined cycle and will execute it 
before releasing the bus. Also, the 82385 will com­
plete the second half of a two-cycle 1S-bit transfer, 
or will complete a sequence of locked cycles before 
releasing the bus. This should not present any prob­
lems, as a properly designed arbiter will not assume 
tnat the 82385 has released the bus until it sees 
BHOLD become inactive. 

BTH BTl BTl BT1 BT2 BT2 BTH BTH 

BTH BTl 

BHOLD 1/// 

BHLDA 

BHOLD 

BHLDA 

BTl BTl 

1/// 

A. Normal Slave Mode Sequence 

BT2 BT2 BT1 BT2 

1\\\ 

t 
ARBITER 

DROPS BHLDA 

BT2 BTH BTl BTl 

1\\\ 1/// 

T2:-frCsSFRTS 
BHOLD 

I 1 I 

B. Sequence of Events if Master or Arbiter Drops BHLDA 

Figure 5·2. BHOLD/BHLDA-Slave Mode 
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5.2 The 82385 Local Bus 

The 82385 bus can be broken up into two groups of 
signals: those which have direct 386 OX counter­
parts, and additional status and control signals pro­
vided by the 82385. The operation and interaction of 
all 82385 bus signals are depicted in Figures 5-3A 
through 5-3L for a wide variety of cycle sequences. 
These diagrams serve as a reference for the 82385 
bus discussion and provide insight into the dual bus 
operation of the 82385. 

5.2.1 82385 Bus Counterparts to 
386 OX Signals 

The following sections discuss the signals presented 
on the 82385 local bus which are functional equiva­
lents to the signals present at the 386 OX local bus. 

5.2.1.1 ADDRESS BUS (BA2-BA31) AND 
CYCLE DEFINITION SIGNALS 
(BMIIO#, BO/C#, BW/R#) 

These signals are not driven directly by the 82385, 
but rather are the outputs of the 74374 address/cy­
cle definition latch. (Refer to Figure 4-1 for the hard­
ware interface.) This latch is controlled by the 82385 
BACP and BAOE# outputs. The behavior and timing 
of these outputs and the latch they control (typically 
F or AS series TTL) ensure that BA2-BA31, 
BM/IO#, BWfR#, and BDfC# are compatible in 
timing and function to their 386 OX counterparts. 

The behavior of BACP can be seen in Figure 5-3B, 
where the rising edge of BACP latches and forwards 
the 336 DX addi6ss aiid Cyd6 definitioii signals iii a 
BT1 or first BT2P state. However, the 82385 need 
not be the current bus master to latch the 386 DX 
address, as evidenced by cycle 4 of Figure 5-3A. In 
this case, the address is latched in frame 8, but not 
forwarded to the system (via BAOE #) until frame 
10. (The latch and output enable functions of the 
74374 are independent and invisible to one 
another.) 

Note that in frames 2 and 6 the BACP pulses are 
marked "False." The reason is that BACP is issued 
and the address latched before the hit/miss deter­
mination is made. This ensures that should the cycle 
be a miss, the 82385 bus can move directly into BT1 
without delay. In the case of a hit, the latched ad­
dress is simply never qualified by the assertion of 
BADS#. The 82385 bus stays in BTl if there is no 
access pending (new cycle is a hit) and no bus activ­
ity. It will move to and stay in BT21 if the system has 
requested a pipelined cycle and the 82385 does not 
have a pending bus access (new cycle is a hit). 

5.2.1.2 DATA BUS (BOO-B031) 

The 82385 data bus is the system side of the 74646 
latching transceiver. (See Figure 4-1.) This device is 
controlled by the 82385 outputs LDSTB, DOE #, and 
BT fR #. LDSTB latches data in write cycles, DOE # 
enables the transceiver outputs, and BT fR # con­
trols the transceiver direction. The interaction of 
these signals and the transceiver is such that BOO­
B031 behave just like their 386 OX counterparts. 
The transceiver is configured such that data flow in 
write cycles (A to B) is latched, and data flow in read 
cycles (B to A) is flow-through. 

Although BOO-B031 function just like their 386 OX 
counterparts, there is a timing difference that must 
be accommodated for in a system design. As men­
tioned above, the transceiver is transparent during 
read cycles, so the transceiver propagation delay 
must be added to the 386 OX data setup. In addition, 
the cache SRAM setup must be accommodated for 
in cache read miss cycles. 

Fe!" !1c!"'!-cachee.b!e reads the data setL!p !S give!'"'! by: 
Min BOO-B031 
Read Oala Setup 

386 OX Min 
Data Setup + 

74646 B-to-A 
Max Propagation 
Delay 
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The required BDO-BD31 setup in a cache read miss 
is given by: 

Min BDO-BD31 
Read Data 
Setup-

+ 

74646 B-to-A 
Max Propagation 
Delay 

One CLK2 
Period 

+ CacheSRAM 
Min Write 
Setup 

82385 CWEA # or 
CWEB# Min Delay 

If a data buffer is located between the 386 DX data 
bus and the cache SRAMs, then its maximum propa­
gation delay must be added to the above formula as 
well. A design analysis should be completed for ev­
ery new design to determine actual margins_ 

A design can accommodate the increased data set­
up by choosing appropriately fast main memory 
DRAMs and data buffers_ Alternatively, a designer 
may deal with the longer setup by inserting an extra 
wait state into cache read miss cycles. If an addition­
al state is to be inserted, the system bus controller 
should sample the 82385 MISS# output to distin­
guish read misses from cycles that do not require 
the longer setup. Tips on using the 82385 MISS# 
signal are presented later in this chapter. 

The behavior of LDSTB, DOE#, and BT/R# can be 
understood via Figures 5-3A through 5-3L. Note that 
in cycle 1 of Figure 5-3A (a non-cacheable system 
read), DOE # is activated midway through BT1, but 
in cycle 1 of Figure 5-3B (a cache read miss), DOE # 
is not activated until midway through BT2. The rea­
son is that in a cacheable read cycle, the cache 
SRAMs are enabled to drive the 386 DX data bus 
before,the outcome of the hit/miss decision (in an­
ticipation of a hit). In cycle 1 of Figure 5-3B, the as­
sertion of DOE# must be delayed until after the 
82385 has disabled the cache output buffers. The 
result is that N = 0 main memory should not be 
mapped into the cache. 

5.2.1.3 BYTE E~ABLES (BBEO#-BBE3#) 

These outputs are driven directly by the 82385, and 
are completely compatible in timing and function 
with their 386 DX counterparts. When a 386 DX cy­
cle is forwarded to the 82385 bus, the 386 DX byte 
enables are duplicated on BBEO#-BBE3#. The 
one exception is a cache read miss, during which 
BBEO#-BBE3# are all active regardless of the 
status of the 386 DX byte enables_ This ensures that 
the cache is updated with a valid 32-bit entry. 

5.2.1,4 ADDRESS STATUS (BADS#) 

BADS # is identical in function and timing to its 386 
DX counterpart. It is asserted in BT1 and BT2P 
states, and indicates that valid address and cycle 
definition (BA2-BA31, BBEO#-BBE3#, BMIIO#, 
BW/R#, BD/C#) information is available on the 
82385 bus. 

5.2.1.5 READY (BREADY#) 

The 82385 BREADY # input terminates 82385 bus 
cycles just as the 386 DX READY # input terminates 
386 DX bus cycles. The behavior of BREADY # is 
the same as that of READY #, but note in the A.C. 
timing specifications that a cache read miss requires 
a longer BREADY # setup than do other cycles. This 
must be accommodated for in ready logic design. 

5.2.1.6 NEXT ADDRESS (BNA #) 

BNA# is identical in function and timing to its 386 
DX counterpart. Note that in Figures 5-3A through 5-
3L, BNA # is assumed asserted in every BT1 P or 
first BT2 state. Along with the 82385's pipelining of 
the 386 DX , this ensures that the timing diagrams 
accurately reflect the full pipelined nature of the dual 
bus structure. 

5.2.1.7 BUS LOCK (BLOCK#) 

The 386 DX flags a locked sequence of cycles by 
asserting LOCK #. During a locked sequence, the 
386 DX does not acknowledge hold requests, so the 
sequence executes without interruption by another 
master. The 82385 forces all locked 386 DX cycles 
to run on the 82385 bus (unless LBA# is active), 
regardless of whether or not the referenced location 
resides in the cache. In addition, a locked sequence 
of 386 DX cycles is run as a locked sequence on the 
82385 bus; BLOCK# is asserted and the 82385 
does not allow the sequence to be interrupted. 
Locked writes (hit or miss) and locked read misses 
affect the cache and cache directory just as their 
unlo,cked counterparts do. A locked read hit, howev­
er, is handled differently. The read is necessarily 
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forced to run on the 82385 local bus, and as the 
data returns from main memory, it is "re-copied" into 
the cache. (See Figure 5-3L.) The directory is not 
changed as it already indicates that this location ex­
ists in the cache. This activity is invisible to the sys­
tem and ensures that semaphores are properly han­
dled. 

BlOCK# is asserted during locked 82385 bus cy­
cles just as lOCK # is asserted during locked 386 
DX cycles. The BlOCK# maximum valid delay, 
however, differs from that of LOCK #, and this must 
be accounted for in any circuitry that makes use of 
BLOCK #. The difference is due to the fact that 
LOCK #, unlike the other 386 DX cycle definition sig­
nals, is not pipelined. The situation is clarified in Fig­
ure 5-3K. In cycle 2 the state of LOCK# is not 
known before the corresponding system read starts 
(Frames 4 and 5). In this case, lOCK# is asserted 
at the beginning of T1 P, and the delay for BlOCK# 
to become active is the delay of LOCK # from the 
386 DX plus the propagation delay through the 
82385. This occurs because T1 P and the corre­
sponding BT1 P are concurrent (Frame 5). The result 
is that BlOCK# should not be sampled at the end. 
of BT1 P. The first appropriate sampling point is mid­
way through the next state, as shown in Frame 6. In 
Figure 5-3L, the maximum delay for BLOCK # to be­
come valid in Frame 4 is the same as the maximum 
delay for LOCK # to become valid from the 386 DX . 
This is true since the pipelining issue discussed 
above does not occur. 

The 82385 should negate BlOCK# after 
BREADY # of the last 82385 Locked Cycle was as­
serted and lock turns inactive. This means that in a 
sequence of cycles which begins with a 82385 
Locked Cycitt anti goes on with an the possible 
locked Cycles (other 82385 cycles, idles, and local 
cycles), while lOCK# is. continuously active, the 
82385 will maintain BlOCK# active continuously. 
Another implication is that in a locked Posted Write 
Cycle followed by non-locked sequence, BLOCK# 
is negated one ClK after BREADY # of the write 
cycle. In other 82385 Locked Cycles, followed by 
non-locked sequences, BLOCK # is negated one 
ClK after LOCK # is riegated, which occurs two 
ClKs after BREADY # is asserted. In the last case 
BLOCK # active moves by one ClK to the non­
locked sequence. 

The arbitration rules of Locked Cycles are: 

MASTER MODE: 

BHOlD input signal is ignored when BlOCK# or 
internal lock (16-bit non-aligned cycle) are active. 
BHLDA output signal remains inactive, and BAOE# 
output signal, remains active at that time interval. 

SLAVE MODE: 

The 82385 does not relinquish the system bus if 
BLOCK# or internal lock are active. The BHOLD 

. output signal remains active when BlOCK# or inter­
nal lock is active plus one ClK. The BHlDA input 
signal is ignored when BLOCK # or the internal lock 
is active plus one ClK. This means the 82385 slave 
does not respond to BHLDA inactivation. The 
BAOE # output signal remains active during the 
same time interval. 

5.2.2 Additional 82385 Bus Signals 

The 82385 bus provides two status outputs and one 
control input that are unique to cache operation and 
thus have no 386 DX counterparts. The outputs are 
MISS#, and WBS, and the input is FLUSH. 

5.2.2.1 CACHE READ/WRITE MISS 
INDICATION (MISS#) 

MISS# can be thought of as an extra 82385 bus 
cycle definition signal similar to BM/IO#, BW/R#, 
and BD/C#, that distinguishes cacheable read and 
write misses from other cycles. MISS#, like the oth­
er definition signals, becomes valid with BADS # 
(BT1 or first BT2P). The behavior of MISS# is illus­
trated in Figures 5-3B, 5-3C, and 5-3J. The 82385 
floats MISS# when another master owns the bus, 
allowing multiple 82385s to share the same node in 
multi-cache systems. MISS# should thus be lightly 
pulled up (- 20 Kn) to keep it negated during hold 
(BTH) states. 

MISS# can serve several purposes. As discussed 
previously, the 8DO-BD31 and BREADY# setup 
times in a cache read miss are longer than in other 
cycles. A bus controller can distinguish these cycles 
by gating MISS# with BW/R#. MISS# may also 
prove useful in gathering 82385 system perform­
ance data. 

5.2.2.2 WRITE BUFFER STATUS (WBS) 

WBS is activated when 386 DX write cycle data is 
latched into the 74646 latching transceiver (via 
LDSTB). It is deactivated upon completion of the 
write cycle on the 82385 bus when the 82385 sees 
the BREADY # signal. WBS behavior is illustrated in 
Figures 5-3F through 5-3J, and potential applica­
tions are discussed in Chapter 3. 
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Figure S-3A. Consecutive SBRD Cycles-(N = 0) 
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Figure S-3B. Consecutive CRDM Cycles-(N = 1) 
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Figure 5-30. SBRD Cycles Interleaved with 8TH States-{N = 1) 
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Figure 5·3E. Interleaved SBRD/CRDH Cycles-(N = 1) 
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Figure 5-3G. Interleaved WT ICRDH Cycles-(N = 1) 
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386 ™ OX CYCLE I WT 
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Figure 5-31. WT, WT, SBRD-{N= 1) 
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Figure 5-3J. Consecutive Write Cycles-{N= 1) 
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Figure S-3K. LOCK # IBLOCK # in Non-Cacheable or Miss Cycles-(N = 1) 
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5.2.2.3 CACHE FLUSH (FLUSH) 

FLUSH is an 82385 input which is used to reset all 
tag valid bits within the cache directory. The FLUSH 
input must be kept active for at least 4 ClK (8 ClK2) 
periods to complete the directory flush. Flush is gen­
erally used in diagnostics but can also be used in 
applications where snooping cannot guarantee co­
herency. 

5.3 BUS WATCHING (SNOOP) 
INTERFACE 

The 82385's bus watching interface consists of the 
snoop address (SA2-SA31), snoop strobe 
(SSTB#), and snoop enable (SEN) inputs. If mas­
ters reside at the system bus level, then the SA2-
SA31 inputs are connected to the system address 
lines and SEN the system bus memory write com­
mand. SSTB# indicates that a valid address is pres­
ent on the system bus. Note that the snoop bus in­
puts are synchronous, so care must be taken to en­
sure that they are stable during their sample win­
dows. If no master resides beyond the 82385 bus 
level, then SA2-SA31, SEN, and SSTB# can re­
spectively tie directly to BA2 - BA31, BW I R #, and 
BADS#. However, it is recommended that SEN be 
driven by the logical "AND" of BW/R# and 
BM/IO# so as to prevent 110 writes from unneces­
sarily invalidating cache data. 

CLK,BCLK 

ADS# 

SSTB# (BADS#) 

Tl 
BTl 

T2 
BT2 

When the 82385 detects a system write by another 
master, it internally latches SA2-SA31 and runs a 
cache look-up to see if the altered main memory 
location is duplicated in the cache. If yes (a snoop 
hit), the line valid bit associated with that cache en­
try is cleared. An important feature of the 82385 is 
that even if the 386 DX is running zero wait state hits 
out of the cache, all snoops are serviced. This is 
accomplished by time multiplexing the cache direc­
tory between the 386 DX address and latched sys­
tem address. If the SSTB # signal occurs during an 
82385 comparison cycle (for the 386 DX ), the 386 
DX cycle has the highest priority in accessing the 
cache directory. This takes the first of the two 386 
DX states. The other state is then used for the 
snoop comparison. This worst case example, depict­
ed in Figure 5-4, shows the 386 DX running zero wait 
state hits on the 386 DX local bus, and another mas­
ter running zero wait state writes on the 82385 bus. 
No snoops are missed, and no performance penalty 
incurred. 

5.4 RESET DEFINITION 

Table 5-1 summarizes the states of all 82385 out­
puts during reset and initialization~ A slave mode 
82385 tri-states its "386 DX-like" front end. A mas­
ter mode 82385 emits a pulse stream on its BACP 
output. As the 386 DX address and cycle definition 
lines reach their reset values, this stream will latch 
the reset values through to the 82385 bus. 

Tl 
BTl 

T2 
BT2 

Tl 
BTl 

385LB ADDRESS 
-+J,-----+~~---rJ 

SEN (B/WR#) 

CACHE DIR. ADDR. -+ __ J' __ "",,":"""';;""J 

290143-41 

Figure 5.4. Interleaved Snoop and 386 DX Accesses to the Cache Directory 
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Table 5-1. Pin State During RESET and Initialization 

Output Name 
Signal Level During RESET and Initialization 

Master Mode Slave Mode 

NA# High High 

REAOYO# High High 

BROYEN# High High 

CALEN High High 

CWEA # -CWES # High High 

CSO#-CS3# Low Low 

CT/R# High I High 

COEA#-COEB# High High 

BAOS# High HighZ 

BBEO#-BBE3# 386 OX BE# HighZ 

BLOCK# High HighZ 

MISS# High HighZ 

BACP Pulse(1) Pulse 

BAOE# Low High 

BT/R# Low Low 

OOE# High High 

LOSTB Low Low 

BHOLD - Low 

BHLOA Low -
WBS Low Low 

NOTE: 
1. In Master Mode, BAOE# is low and BACP emits a pulse,stream during reset. As the 386 OX address and cycle definition 
signals reach their reset values, the pulse stream on BACP will latch these values through to the 82385 local bus. 

6.0 82385 SYSTEM DESIGN 
CONSIDERATIONS 

6.1 INTRODUCTION 

This chapter discusses techniques which should be 
implemented in an 82385 system. Because of the 
high frequencies and high performance nature of the 
386 OX CPU/82385 system, good design and layout 
techniques are necessary. It is always recommend­
ed to perform a complete design analysis on new 
system designs. 

6.2 POWER AND GROUNDING 

6.2.1 Power Connections 

The PGA 82385. utilizes 8 power (Veel and 10 
ground (Vss) pins. The PQFP 82385 has 9 power 
and 9 ground pins. All Vce and Vss pins must be 
connected to their appropriate plane. On a printed 
circuit board, all Vee pins must be connected to the 
power plane and all Vss pins must be connected to 
the ground plane. 

6.2.2' Power Decoupling 

Although the 8238'5 itself is generally a "passive" 
device in that it has few output signals, the cache 
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subsystem as a whole is quite active. Therefore, 
many decoupling capacitors should be placed 
around the 82385 cache subsystem. 

Low inductance capacitors and interconnects are 
recommended for best high frequency electrical per­
formance. Inductance can be reduced by shortening 
circuit board traces between the decoupling capaci­
tors and their respective devices as much as possi­
ble. Capacitors specifically for PGA packages are 
also commercially available, for the lowest possible 
inductance. 

6.2.3 Resistor Recommendations 

Because of the dual bus structure of the 82385 sub­
system (386 DX Local Bus and 82385 Local Bus), 
any signals which are recommended to be pulled. up 
will be respective to one of the busses. The follow­
ing sections will discuss signals for both busses. 

6.2.3.1 386 OX LOCAL BUS 

For typical designs, the pullup resistors shown in Ta­
ble 6-1 are recommended. This table correlates to 
Chapter 7 of the 386 DX Data Sheet. However, par­
ticular designs may have a need to differ from the 
listed values. Design analysis is recommended to 
determine specific requirements. 

6.2.3.2 82385 LOCAL BUS 

Pullup resistor recommendations for the 82385 Lo­
cal Bus signals are shown in Table 6-2. Design anal­
ysis is necessary to determine if deviations to the 
typical values given is needed. 

Table 6-1. Recommended Resistor Pull ups to 
Vee (386 OX Local Bus) 

Pin and Pullup 
Purpose 

Signal Value 

AOS# 20 Kn ± 10% Lightly Pull ADS# 
PGA E13 Negated for 386 OX 
PQFP 123 Hold States 

LOCK# 20 Kn ±10% Lightly Pull LOCK# 
PGA F13 Negated for 386 DX 
PQFP 118 Hold States 

Table 6-2. Recommended Resistor Pullupsto 
Vee (82385 Local Bus) 

Signal and Pullup 
Purpose 

Pin Value 

BAOS# 20 Kn ± 10% Lightly Pull BAOS# 
PGAN9 Negated for 82385 
PQFP 89 Hold States 

BLOCK# 20 Kn ±10% Lightly Pull BLOCK # 
PGAP9 Negated for 82385 
PQFP86 Hold States 

MISS# 20 Kn ±10% Lightly Pull MISS# 
PGAN8 Negated for 82385 
PQFP85 Hold States 

6.3 82385 SIGNAL CONNECTIONS 

6.3.1 Configuration Inputs 

The 82385 configuration signals (M/S#, 2W/D#, 
DEFOE#) must be connected (pulled up) to the ap­
propriate logic level for the system design. There is 
also a reserved 82385 input which must be tied to 
the appropriate level. Refer to Table 6-3 for the sig­
nals and their required logic level. 

Table 6-3. 82385 Configuration 
Inputs Logic Levels 

Pin and Logic 
Purpose 

Signal Level 

M/S# High Master Mode Operation 
PGAB13 Low Slave Mode Operation 
PQFP 129 

2W/D# High 2-Way Set Associative 
PGA D12 Low Direct Mapped 
PQFP 127 

Resrved High Must be tied to Vee via 
PGA L14 a pull-up for proper 
PQFP 102 functionality 

DEFOE# N/A Define Cache Output 
PGAA14 Enables. Allows use of 
PQFP 128 anySRAM. 

NOTE: 
The listed 82385 pins which need to be tied high should 
use a pull-up resistor in the range of 5 KO to 20 KO. 
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6.3.2 CLK2 and RESET 

The 82385 has two inputs to which the 386 OX 
CLK2 signal must be connected. One is labeled 
CLK2 (82385 PGA pin C13, PQFP lead 126) and the 
other is labeled BCLK2 (82385 PGA pin L 13, PQFP 
lead 103). These two inputs must be tied together on 
the printed circuit board. 

The 82385 also has two reset inputs. RESET (82385 
PGA pin 013, PQFP lead 125) and BRESET (82385 
PGA pin K12, PQFP lead 104) must be connected 
on the printed circuit board. 

6.4 UNUSED PIN REQUIREMENTS 

For reliable operation, ALWAYS connect unused in­
puts to a valid logic level. As is the case with most 
other CMOS processes, a floating input will increase 
the current consumption of the component and give 
an indeterminate state to the component. 

6.5 CACHE SRAM REQUIREMENTS 

The 82385 offers the option of using SRAMs with or 
without an output enable pin. This is possible by in­
serting a transceiver between the SRAMs and the 
386 OX local data bus and strapping DEFOE# to 
the appropriate logic level for a given system config­
uration. This transceiver may also be desirable in a 
system which has a very heavily loaded 386 OX lo-
cal data bus. The following sections discuss the 
SRAM requirements for all cache configurations. 

6.5.1 Cache Memory without 
Transceivers 

As discussed in Section 3.2, the 82385 presents all 
of the control signals necessary to access the cache 
memory. The SRAM chip selects, write enables, and 
output enables are driven directly by the 82385. Ta­
ble 6-4 lists the required SRAM specifications. 
These specifications allow for zero margins. They 
should be used as guides for the actual system de­
sign. 

6.5.2 Cache Memory With 
Transceivers 

To implement an 82385 subsystem using cache 
memory transceivers, COEA# or COEB# must be 
used as output enable signals for the transceivers 
and DEFOE # must be appropriately strapped for 
proper COEx# functionality (since the cache SRAM 
transceivers must be enabled for writes as well as 
reads ). DEFOE# must be tied high when using 
cache SRAM transceivers. In a 2-way set associa­
tive organization, COEA # enables the transceiver 
for bank A and COEB# enables the bank B trans­
ceiver. A direct mapped cache may use either 
COEA# or COEB# to enable the transceiver. Table 
6-5 lists the required SRAM specifications. These 
specifications allow for zero margin. They should be 
used as guides for the actual system design. 

Table 6-4. SRAM Specs for Non-Buffered Cache Memory 

SRAM Spec Requirements. 
i i 

Direct Mapped ' 2-Way Set Associative 
20 25 33 20 25 33 

Read Cycle Requirements 
Address Access (MAX) 44 36 27 42 34 27 
Chip Select Access (MAX) 56 44 35 56 41 35 
OE# to Data Valid (MAX) 19 13 10 14 13 10 
OE # to Data Float (MAX) 20 15 10 20 15 10 

Write Cycle Requirements 
Chip Select to End of Write (MIN) 30 25 20 30 25 20 
Address Valid to End of Write (MIN) 42 37 29 40 37 29 
Write Pulse Width (MIN) 30 25 20 30 25 20 
Data Setup (MAX) - - - - - -
Data Hold (MIN) 4 4 2 4 4 2 
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Table 6-5. SRAM Specs for Buffered Cache Memory 

SRAM Spec Requirements 

Direct Mapped 2-Way Set Associative 
20 

Read Cycle Requirements 
Address Access (MAX) 37 
Chip Select Access (MAX) 48 
OE# to Data Valid (MAX) N/A 
OE # to Data Float (MAX) N/A 

Write Cycle Requirements 
Chip Select to End of Write (MIN) 30 
Address Valid to End of Write (MIN) 42 
Write Pulse Width (MIN) 30 
Data Setup (MAX) 15 
Data Hold (MIN) 3 

7.0 SYSTEM TEST CONSIDERATIONS 

7.1 INTRODUCTION 

Power On Self Testing (POST) is performed by most 
systems after a reset. This chapter discusses the 
requirements for properly testing an 82385 based 
system after power up. 

7.2 MAIN MEMORY (DRAM) TESTING 

Most systems perform a memory test by writing a 
data pattern and then reading and comparing the 
data. This test may also be used to determine the 
total available memory within the system. Without 
properly taking into account the 82385 cache mem­
ory, the memory test can give erroneous results. 
This will occur if the cache responds with read hits 
during the memory test routine. 

7.2.1 Memory Testing Routine 

In order to properly test main memory, the test rou­
tine must not read from the same block consecutive­
ly. For instance, if the test routine writes a data pat­
tern to the first 32 kbytes of memory (0000-7FFFH), 
reads from the same block, writes a new pattern to 
the same locations (0000-7FFFH), and reads the 
new pattern, the second pattern tested would have 
had data returned from the 82385 cache memory. 
Therefore, it is recommended that the test routine 
work with a memory block of at least 64 kbytes. This 
will guarantee that no 32 kbyte block will be read 
twice consecutively. 

25 33 20 25 33 

29 20 35 29 20 
36 27 48 36 27 

N/A N/A N/A N/A N/A 
N/A N/A N/A N/A N/A 

25 20 30 23 20 
37 29 40 36 27 
25 20 30 25 20 
10 10 15 10 10 
3 3 3 3 3 

7.3 82385 CACHE MEMORY TESTING 

With the addition of SRAMs for the cache memory, it 
may be desirable for the system to be able to test 
the cache SRAMs during system diagnostics. This 
requires the test routine to access only the cache 
memory. The requirements for this routine are based 
on where it resides within the memory map. This can 
be broken into two areas: the routine residing in 
cacheable memory space or the routine residing in 
either non-cacheable memory or on the 386 DX lo­
cal bus (using the LBA# input). 

7.3.1 Test Routine in the NCA# or 
LBA # Memory Map 

In this configuration, the test routine will never be 
cached. The recommended method is code which 
will access a single 32 kbyte block during the test. 
Initially, a 32 kbyte read (assume 0000-7FFFH) 
must be executed. This will fill the cache directory 
with the address information which will be used in 
the diagnostic procedure. Then, a 32 kbyte write to 
the same address locations (0000-7FFFH) will load 
the cache with the desired test pattern (due to write 
hits). The comparison can be made by completing 
another 32 kbyte read (same locations, 0000-
7FFFH), which will be cache read hits. Subsequent 
writes and reads to the same addresses will enable 
various patterns to be tested. 
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7.3.2 Test Routine in Cacheable 
Memory 

In this case, it must be understood that the diagnos­
tic routine must reside in the cache memory before 
the actual data testing can begin. Otherwise, when 
the 386 OX performs a code fetch, a location within 
t!1e cache memory which is to be tested will be al­
tered due to the read ,miss (code fetch) update. 

The first task is to load the diagnostic routine into 
ihe iop of the cache memory. it must be known how 
much memory is required for the code as the rest of 
the cache memory will be tested as in the earlier 
method. Once the diagnostics have been cached 
(via read updates), the code will perform the same 
type of read/write/read/compare. as in the routine 
explained in the above section. The difference is 
that now the amount of cache memory to be tested 
is 32 kbytes minus the length of the test routine. 

7.4 82385 CACHE DIRECTORY 
TESTING 

Since the 82385 does not directly access the data 
bus, it is not possible to easily complete a compari­
son of the cache directory. (The 82385 can serially 
transmit its directory contents. See Section 7.5.) 
However, the cache memory tests described in Sec­
tion 7.3 will indicate if the directory is working prop­
erly. Otherwise, the data comparison within the diag­
nostics will show locations which fail. 

There is a slight possibility that the cache memory 
comparison could pass even if locations within the 
directory gave false hit/miss results. This could 
cause the cOiTiparisofl to always be 'periorrned to 
main memory instead of the cache and give a proper 
comparison to the 386 OX . The solution here is to 
use the MISS# output of the 82385 as an indicator 
to a diagnostic port which can be read by the 386 
OX . It could also be used to flag an interrupt if a 
failure occurs. 

The implementation of these techniques in the diag­
nostics will assure proper functionality of the 82385 
subsystem. 

7.5 SPECIAL FUNCTION PINS 

As 'mentioned in Chapter 3, there are three 82385 
pins which have reserved functions in addition to 
their normal operational functions. These pins are 
MISS#, WBS, and FLUSH. 

As discussed previously, the 82385 performs a di­
rectory flush when the FLUSH input is held active for 
at least ,4 ClK (8 ClK2) cycles. However, the 
FLUSH pin also serves as a diagnostic input to the 
82385. The 82365 will enter a reserved Inode if the 
FLUSH pin is high at the falling edge of RESET. 

If, during normal operation, the FLUSH input, is ac­
tive for only one ClK (2 ClK2) cycle/s, the 82385 
will enter another reserved mode. Therefore it must 
be guaranteed that FLUSH is active for at least the 4 
ClK (8 ClK2) cycle specification. 

WBS and MISS# serve as outputs in the 82385 re­
served modes. 

8.0 MECHANICAL DATA 

8.1 INTRODUCTION 

This chapter discusses the physical package and its 
connections in detail. 

8.2 PIN ASSIGNMENT 

The 82385 pinout as viewed from the top side of the 
component is shown by Figure 8-1. Its pinout as 
viewed from the Pin side of the comoonent is shown 
in Figure 8-2. . 

Vee and Vss connections must be made to multiple 
Vee and Vss (GNO) pins. Each Vee and Vss must 
be connected to the appropriate voltage level. The 
circuit board should include Vee and GNO planes for 
power distribution and all Vee and Vss pins must be 
connected to the appropriate plane. 

4-388 



inter 82385 

P N K H G E o C B A 

o 0 0 0 0 0 0 0 0 0 o o 0 o 
VCC VSS VCC A27 A24 A22 A19 A18 A1S A12 A9 VCC VSS A6 

2 o o o o o o o o o o o o o o 
VSS VSS A31 A29 A2S A23 A21 A17 A14 All A8 A7 A3 SA2 

3 o o o o o o o o o o o o o o 
VCC NA# READYO# A30 A28 A26 A20 A16 A13 Al0 AS A4 A2 SA3 

4 o o o o o o 
VSS CALEN LDSTB SA4 SAS SA7 

5 o o o o o o 
CS3# CT/R# CSO# SA6 SA10 SA9 

6 o o o o o o 
CWEB# CS2# CS 1 # SA8 SAll SA13 

7 o o o o o o 
COEA# CWEA# COEB# SA12 SA1S SA14 

8 o o o o o o 
BRDYEN# MISS# WBS SA18 SA16 SA17 

9 o o o o o o 
BLOCK# BADS# BAOE# SA22 SA 19 SA20 

10 0 0 0 000 
BACP BT/R# DOE# SA25 SA24 SA21 

11 0 0 0 000 
VCC BHOLD BHLOA SA27 SA26 SA23 

12 o o o o o o o o 0 0 0 O' o o 
vss BBEl # BBEO# BBE2# BRESET SEN BE2# NCA# O/C# fLUSH 2W /0# SA31 SA29 SA28 

13 o o o o o o o o 0 o o o o o 
VCC VCC BBE3# BCLK2 BREADY# SSTB# BE1# X16# LOCK# AOS# RESET CLK2 M/S# SA30 

14 o o o o o o o o o 00 o o o 
VSS VSS VSS RESERVED BNA# BE3# LBA# BEO# W/R# M/IO# READYI# VCC VSS DEfOE# 

290143-42 

Figure 8-1. 82385 PGA Pinout-View from TOP Side 
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A B C o G H K L 1.1 N P 

o o 0 o o 0 0 0 0 0 000 0 
A6 vss vcc A9 A12 A15 A18 A19 A22 A24 A27 VCC VSS vcc 

2 or 0 o o o o o o o '0 o o o o 
SA2 A3 A7 A8 All A14 A17 A21 A23 A25 A29 A31 VSS VSS 

3 o o o o o o o o o o o o o o 
SA3 A2 A4 A5 AID A13 A16 A2D A26 A2B A3D REAOYD# NA# vcc 

4 o o .0 o o o 
SA7 SA5 SA4 LOSTB CALEN VSS 

METAL LID 
5 000 000 

SA9 SAID SA6 CSDII CT/ /RII CS311 

6 o o o o o o 
SA13 SAIl SA8 cs 111 CS211· CWEBII 

7 o o o o o o 
SA14 SA15 SA12 COEBII CWEAII COEAII 

8 o o o o o o 
SA17 SA16 SA18 WBS MISSII BROYEN# 

9 o o o o o o 
SA20 SA 19. SA22 BAOEII BADSII BLOCKII 

10 0 0 0 000 
SA21 SA24 SA25 DOEll BT /RII BACP 

11 0 0 0 0 0 0 

12 

14 

SA23 SA26 SA27 '--__________________ ---1 BHLDA BHOLD . VCC 

o o o o o o o o o o o o o o 
SA28 SA29 SA31 2W/01I FLUSH O/CII NCAII BE211 SEN BRESET BBE211 BBEOII BBEIIl vss 

'"' V 
SA3D 

o 

'"' V 
M/SII 

o 

'"' V 
CLK2 

o 

'"' V 
RESET 

o 

'"' V 
ADSII 

o 

'"' V 
LOCKII 

o 

'"' V 
X1611 

o 

'"' V 
BElli 

o 

'"' '"' '"' V V V 
SSTBII BREADY II BCLK2 

o o o 

'"' V 
BBE311 

o 

'"' V 
VCC 

o 

'"' ~ II 
o 

DEfOEIl vss vcc READYIII 1.1/1011 W /R# BEO# LBA# BE3# BNA# RESERVED VSS VSS VSS 

290143-43 

Figure 8·2. 82385 PGA Pinout-View from PIN Side 
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82385 

132-LEAD 

PLASTIC QUAD FLAT PACK (PQFP) 

(TOP VIEW) 

Figure 8-3. 82385 PGA Pinout-View ,from TOP Side 
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Table 8-1. 82385 PGA Pinout-Functional Grouping 

PGA PQFP Signal PGA PQFP Signal PGA PQFP Signal PGA PQFP Signal 

M2 65 A31 C12 130 SA31 - 116 Vee B1 5 Vss 
L3 64 A30 A13 131 SA30 C1 6 Vee B14 16 Vss 
L2 63 A29 B12 132 SA29 C14 17 Vee M14 27 Vss 
K3 62 A28 A12 1 SA28 M1 28 Vee N1 50 Vss 
L 1 61 A27 C11 2 SA27 N13 51 Vee N2 71 Vss 
J3 60 A26 B11 3 SA26 P1 72 Vee N14 79 Vss 
K2 59 A25 C10 4 SA25 P3 80 Vee P2 87 Vss 
K1 58 /\24 810 7 SA24 P11 88 \/_-

'vv P4 95 \/~~ ."'''' 
J2 57 A23 A11 8 SA23 P13 96 Vee P12 115 Vss 
J1 56 A22 C9 9 SA22 E13 123 AOS# P14 - Vss 
H3 54 A20 A10 10 SA21 
H1 53 A19 A9 11 SA20 F14 119 W/R# N9 89 BAOS# 
G1 52 A18 B9 12 SA19 F12 120 O/C# M12 98 BBEO# 
G2 49 A17 C8 13 SA18 E14 121 M/IO# N12 99 BBE1# 
G3 48 A16 A8 14 SA17 F13 118 LOCK# L12 100 BBE2# 
F1 47 A15 B8 15 SA16 M13 101 BBE3# 
F2 46 A14 B7 18 SA15 N3 67 NA# P9 86 BLOCK# 
F3 45 A13 A7 19 SA14 
E1 44 A12 A6 20 SA13 G13 117 X16# K14 106 BNA# 
E2 43 A11 C7 21 SA12 G12 114 NCA# 
E3 42 A10 B6 22 SA11 H14 113 LBA# N4 69 CALEN 
01 41 A9 B5 23 SA10 014 122 REAOYI# P7 81 COEA# 
02 40 A8 A5 24 SA9 M3 66 REAOYO# M7 82 COEB# 
C2 39 A7 C6 25 SA8 N7 77 CWEA# 
A1 38 A6 A4 26 SA7 E12 124 FLUSH P6 78 CWEB# 
03 37 A5 C5 29 SA6 M8 84 WBS M5 73 CSO# 
C3 36 A4 B4 30 SA5 N8 85 MISS# M6 74 CS1# 
B2 35 A3 C4 31 SA4 N6 75 CS2# 
B3 34 A2 A3 32 SA3 A14 128 OEFOE# P5 76 CS3# 
G14 112 BEO# A2 33 SA2 012 127 2W/O# 
H13 111 BE1# J12 107 SEN B13 129 M/S# N5 70 CT/R# 

I H12 110 BE2# IJ13 108 SSTB# IM10 92 OOE# 
Ip8 BRDYEN#I J14 109 BE3# M'! 68 LDSTB 83 
K13 105 BREAOY# 

C13 126 CLK2 L14 102 RESERVED N11 97 BHOLD P10 91 BACP 
013 125 RESET M11 94 BHLOA M9 90 BAOE# 
K12 104 BRESET N10 93 BT/R# 
L13 103 BCLK2 

4·392 



inter 82385 

8.3 PACKAGE DIMENSIONS AND 
MOUNTING 

8.4 PACKAGE THERMAL 
SPECIFICATION 

The 82385 package is a 132-pin ceramic Pin Grid 
Array (PGA). The pins are arranged 0.100 inch 
(2.5 mm) center-to-center, in a 14 x 14 matrix, three 
rows around (Figure 8-3). 

The PGA case temperature should be measured at 
the center of the top surface opposite the pins, as in 
Figure 8-4. The case temperature may be measured 
in any environment to determine whether or not the 
82385 is within the specified operating range. 

A wide variety of available sockets allow low inser­
tion force or zero insertion force mounting. These 
come in a choice of terminals such as soldertail, sur­
face mount, or wire wrap. 
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co a ... IX) "": en ... 
"! IX) '" IX) ..; to 
~ ~ ~ e ~ ~ ~ 
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@@@@@@@@@@@@@@ 
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7 -@@~----+---r-~@~ 
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@@I!l@@@@!@@@@ @@ 
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~ 
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.650 (16.497) 
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.350 (8.883) 
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Figure 8·3.1. 132-Pin PGA Package Dimensions 
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mm (inch) 

mm (inch) 

mm (inch) 

82385 

,BASE PLANE 

I-Al 

~ 
-C- SEA TING PLANE 
C\ 11.111 <'11114) 

Figure 8-3.2. Principal Dimensions and Datums 
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Figure 8-3.3. Molded Details 
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Figure 8-3.4. Terminal Details 
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mm (inch) 
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AA0.41 

~~j "'" 
0.31 (.012)-11-
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82385 

( .01b) 
( .008) 

0.20 (.008) 
0.14 (,005) 

Figure 8-3.5. Typical Lead 
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0.90 (.035) MIN. j 
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1.93 <'07b) 
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Figure 8-3.S. Detail M 
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1. 93 (. 07b) 

290143-62 

290143-61 

PLASTIC QUAD FLAT PACK 

Letter or 
Symbol 

A 

A1 

DIE 

D1/E1 

D2/E2 

D3/E3 

L1 

N 

Table 8-2. Symbol List for Plastic Quad Flat Pack 

Description 
of Dimensions 

Package height: distance 
from seating plane to 
highest point of body 

Standoff: Distance from 
seating plane to base plane 

Overall package dimension: 
lead tip to lead tip 

Plastic body dimension 

Bumper Distance 

Footprint 

Foot length 

Total number of leads 

NOTES: 
1. All dimensions and tolerances conform to ANSI YI4.5M-
1982. 
2. Datum plane -H- located at the mold parting line and 
coincident with the bottom of the lead where lead exits 
plastic body. 
3. Datums A-8 and -0- to be determined where center 
leads exit plastic body at datum plane -H-. 
4. Controlling Dimension, Inch. 
5. Dimensions 01, 02, E1 and E2 are measured at the 
mold parting line and do not include mode protrusion. Al­
lowable mold protrusion of 0.18mm (0.007 in.) per side. 
6. Pin 1 identifier is located within one of the two zones 
indicated. 
7. Measured at datum plane -H-. 
8. Measured at seating plane datum -Co. 
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290143-45 

Figure 8·4. Measuring 82385 PGA Case Temperature 

Table 8·3. 82385 PGA Package Typical Thermal Characteristics. 

Thermal Resistance-°C/Watt 

Airflow-f3/min (m3/sec) 

Parameter 0 50 100 200 400 600 
(0) (0.25) (0.50) (1.01) (2.03) (3.04) 

8 Junction-to-Case 2 2 2 2' 2. 2 
(Case Measured 
as Figure 8.4) 

8 Case-to-Ambient 19 18 17 15 12 10 
(No Heatsink) 

8 Case-to-Ambient 16 15 14 12 9 7 
(with Omnidirectional 
I-Ioatcinlt\ .. __ ........... ,/ 
8 Case-to-Ambient 15 14 13 11 8 6 
(with Unidirectional 
Heatsink) 

NOTES: 
1. Table 8-3 applies to 82385 PGA plugged into socket or soldered directly onto board. 
2. (JJA = (JJC + (JCA· . 
3. (JJ-CAP = 4°C/W (approx.) 

(JJ-PIN = 4°C/W (inner pins) (approx.) 
(JJ-PIN = 8°C/W (outer pins) (approx.) 

290143-46 
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Thermal Resistance-oC/Watt 

Airflow-f3/min (m3/sec) 

Parameter 0 50 100 200 400 600 
(0) (0.25) (0.50) (1.01) (2.03) (3.04) 

(J Junction-to-Case 
(Case Measured " 

" , 
as Figure 8.4) 

(J Case-to-Ambient 
(No Heatsink) " ",I" 

(J Case-to-Ambient .,1 ':;' 

(with Omnidirectional 
.... 

" ',,,'1 
Heatsink) " , 

. (J Case-to-Ambient ~ . 'I 

(with Unidirectional 
, 

'1,'" 

Heatsink) 

NOTES: 
1. Table 8-4 applies to 82385 PQFP plugged into socket or soldered directly onto board. 
2. OJA = OJC + 0CA. 
3.0J.CAP = 4°C/W (approx.) 

OJ.PIN = 4°C/W (inner pins) (approx.) 
0J.PIN = 8°C/W (outer pins) (approx.) 

800 
(4.06) 
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9.0 ELECTRICAL DATA 

9.1 INTRODUCTION 

This chapter presents the A.C. and D.C. specifica­
tions for the 82385. 

9.2 MAXIMUM RATINGS 
~+,.. ......... ,.. T "' __ .... ,.. ........ , .. ,.. _ ~r::.o"" +,.. ...L... .. -=:nof" 
VLUICl\:lv 1IIi:iIIIII-'wlClL1.I111iJ •••••••••• u,,", v LV I 'oJV V 

Case Temperature under Bias ... - 65·C to + 11 O·C 

Supply Voltage with Respect 
to Vss ........•.............. -0.5V to +6.5V 

Voltage on Any Other Pin .... -0.5V to Vee + 0.5V 

NOTE: 
Stress above those listed may cause permanent 
damage to the device. This is a stress rating only 
and functional operation at these or any other con­
ditions above those listed in the operational sec­
tions of this specification is not implied. 

Exposure to absolute maximum rating conditions 
for extended periods may affect device reliability. 
Although the 82385 contains protective circuitry to 
resist damage from static electrical discharges, al~ 
ways take precautions against high static voltages 
or electric fields. 

9.3 D.C. SPECIFICATIONS Vee = 5V ±5%;Vss = OV 

Table 9-1. D.C~ Specifications 

Symbol Parameter Min Max Unit Test Condition 

Vil Input Low Voltage -0.3 0.8 V (Note 1) 

VIH Input High Voltage 2.0 Vee + 0.3 V 

Vel CLK2, BCLK2 Input Low -0.3 0.8 V (Note 1) 

VeH CLK2, BCLK2 Input High 3.7 Vee + 0.3 V 

VOL Output Low Voltage 0.45 V IOl = 4mA 

VOH Output High Voltage 2.4 V IOH = -1 rnA 

Icc Supply Current , 300 rnA (Note 2) 
(Note 4) 

III Input Leakage Current ±15 p.A OV < VIN ~ Vec 

I ILO I Output Leakage Current ±15 p.A I 0.45 < VOUT < Vcc I 
CIN Input Capacitance 10 pF (Note 3) 

COUT Output Capacitance 10 pF (Note 3) 

CClK CLK2 Input Capacitance 15 pF (Note 3) 

NOTES: 
1. Minimum value is not 100% tested. 
2. Icc is specified with inputs driven to CMOS levels. Icc may be higher if driven to TTL levels. 
3. Not 100% tested. Test conditions fc = 1 MHz, Inputs = OV, TCASE = Room. 
4. 300 mA is the maximum Icc at 33 MHz. 

275 mA is the maximum Icc at 25 MHz. 
25Q mA is the maximum Icc at 20 MHz. 
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9.4 A.C. SPECIFICATIONS 

The A.C. specifications given in the following tables 
consist of output delays and input setup require­
ments. The A.C. diagram's purpose is to illustrate 
the clock edges from which the timing parameters 
are measured. The reader should not infer any other 
timing relationships from them. For specific informa­
tion on timing relationships between signals, refer to 
the appropriate functional section. 

A.C. spec measurement is defined in Figure 9-1. In­
puts must be driven to the levels shown when A.C. 
specifications are measured. 82385 output delays 

CLK2 [ 2V 

are specified with minimum and maximum limits, 
which are measured as shown. 82385 input setup 
and hold times are specified as minimums and de­
fine the smallest acceptable sampling window. With­
in the sampling window, a synchronous input signal 
must be stable for correct 82385 operation. 

9.4.1 Frequency Dependent Signals 

The 82385 has signals whose output valid delays 
are dependent on the clock frequency. These sig­
nals are marked in the A.C. Specification Tables with 
a Note 1. 

3.0V ----+-......tm'('ll'!~;,;;,;.-....j--
VALID 

OUTPUT n 
OV~~~~~~~~~~~~~ 

3.0V ~~--.... -_ ...... ~ 

LEGEND: 
A-Maximum output delay speCification 
B-Minimum output delay specification 
C-Minimum input setup speCification 
B-Minimum input hold speCification 

NOTES: 

NOTE 2 

NOTE 1 

1. Under rated loading 82385 output (t, and tIl is typically s; 4.0 ns from 0.8V to 2.0V. 
2. Input waveforms have t, s; 2.0 ns from 0.8V to 2.0V. 

Figure 9-1. Drive Levels and Measurement Points for A.C. Specification 
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A.C. SPECIFICATION TABLES 
Many of the A.C. Timing parameters are frequency dependent. The frequency dependent A.C. Timing parame­
ters are guaranteed only at the maximum specified operating frequency. 

Table 9·2. 82385 A.C. Timing Specifications 
Vee = 5.0 ±5% 

Symbol, Parameter 
20 MHz 25 MHz 

'. 

Min Max 'Min Max 

TeASE Case Temperature 0 85 0 75 

t1 Operating Frequency 15.40 20.00 ;5.40 25.00 

t2 CLK2, BCLK2 Clock Period 25.00 32.50 20.00 32.50 

t3a CLK2, BCLK2 High Time @ 2.0V 10 8 

t3b CLK2, BCLK2 High Time@ 3.7V 7 5 

t4a CLK2, BCLK2 Low Time @ 2.0V 10 8 

t4b CLK2, BCLK2 Low Time @ 0.8V 8 6 

t5 CLK2, BCLK2 Fall Time 8 7 

t6 CLK2, BCLK2 Rise Time 8 7 

t7a A2-A 19, A21-A31 'Setup Time 19 18 

t7b LOCK # Setup Time 16 14 

t7c BE(0-3)# Setup Time 19 14 

t7d A20 Setup Time 13 13 

t8 A2-A31, BE(0-3)# LOCK# Hold Time 3 3 

t9a MIIO#, D/C# Setup Time 22 17 

t9b W/R# Setup Time 22 18 

t9c ADS# Setup Time 22 18 

t10 ADS#, D/C#, M/IO#, W/R# Hold Time 5 3 

It11 IREADYI# Setup Time 

t12 READYI # Hold Time 4 4 

t13a1 NCA# Setup Time (See t55b2) 21 18 

t13a2 NCA # Setup Time (See t55b3) 16 13 

t13b LBA # Setup Time 10 8 

t13c X16 # Setup Time 10 7 

t14a NCA# Hold Time 4 3 

t14b LBA#, X16# Hold Time 4 3 

t15 RESET, BRESET Setup Time 12 10 

t16 RESET, BRESET Hold Time 4 3 

t17 NA# Valid Delay 15 34 4 27 

t18 READYO# Valid Delay 4 28 4 22 

t19 BRDYEN # Valid Delay 4 28 4 21 

4-400 

33 MHz 
Units Notes 

Min Max 

0 75 ·C 

;5.40 33.33 MHz 

15.00 32.50 ns 

6.25 ns 

4.5 ns (Note 8) 

6.25 ns 

4.5 ns (Note 8) , 

4 ns (Notes 8,9) 

4 ns (Notes 8,9) 

13 ns (Note 1) 

9.5 ns (Note 1) 

10 ns (Note 1) 

9 ns (Note 1) 

3 ns 

13 ns (Note 1) 

13 ns (Note 1) 

13.5 ns (Note 1) 

3 ns 

1 ns 1 (Note 1) 1 

3 ns 

13 ns (Note 6) 

9 ns (Note 6) 

5.75 ns 

5.5 ns 

3 ns 

3 ns 

8 ns 

2 ns 

4 19.2 ns (25 pF Load) 
(Note 1) 

3 15 ns (25 pF Load) 
(Note 1) 

3 13 ns 
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Symbol 

t21a1 

t21a2 

t21a3 

t21b 

t21c 

t21d 

t22a1 

t22a2 

t22b 

t22c1 

t22c2 

t23a 

t23b 

t24 

t25a 

t25b 

t25c1 

t25c2 

t25d 

t26 

t27 

t28a 

t28b 

t31 

t32 

t33 

t34 

t35 

t36 

t37 

t38 

t40a 

t40b 

Table 9-2. 82385 A.C. Timing Specifications (Continued)' 
Vee = 5.0 ±5% 

Parameter 
20 MHz 25 MHz 33 MHz 

Units 
Min Max Min Max Min Max 

CALEN Rising, PHI1 3 24 4 21 3 15 ns 

CALEN Falling, PHI1 3 24 4 21 3 15 ns 

CALEN Falling in T1 P, PHI2 3 24 4 21 3 15 ns 

CALEN Rising Following CWTH Cycle 3 34 4 27 3 20 ns 

CALEN Pulse Width 10 10 10 ns 

CALEN Rising to CS# Falling 13 13 13 ns 

CWEx# Falling, PHI1 (CWTH) 4 25 4 23 3 18 ns 

CWEx# Falling, PHI2 (CRDM) 4 25 4 23 3 18 ns 

CWEd Pulse Width 30 25 20 ns 

CWEx# Rising, PHI1 (CWTH) 4 25 4 21 3 16 ns 

CWEx# Rising, PHI2 (CRDM) 12 25 8 21 6 16 ns 

CS(0-3) # Rising 12 3r 9 29 3 25 ns 

COEd Falling to CS(0-3)# Falling 0 0 0 ns 

CT IR # Valid Delay 12 38 9 30 3 22 ns 

COEx# Falling (Direct) 1 22 4 19.5 3 15 ns 

COEd Falling (2-Way) 1 24.5 4 19.5 3 15 ns 

COEd Rising Delay @ TeASE = Min 5 17 4 17.5 3 12 ns 

COEx# Rising Delay @ TeASE = Max 5 19 4 19.5 3 12 ns 

CWEx# Falling to COEx# Falling or 0 5 0 5 0 5 ns 
CWEx# Rising to COEX# 
Rising when DEFOE# = Vee 

CS(0-3)# Falling to CWEx# Rising 30 25 20 ns 

CWEx# Falling to CS(0-3)# Falling 0 0 0 ns 

CWEx # Rising to CALEN Rising 0 0 2 ns 

CWEx# Rising to CS(0-3)# Falling 0 0 2 ns 

SA(2-31) Setup Time 19 10 8 ns 

SA(2-31) Hold Time 3 3 3 ns 

BADS# Valid Delay 6 28 4 21 3 16 ns 

BADS# Float Delay 6 30 4 30 4 25 ns 

BNA # Setup Time 9 7 7 ns 

BNA# Hold Time 15 4 2 ns 

BREADY # Setup 'rime 26 20 13 ns 

BREADY # Hold Time 4 3 2 ns 

BACP Rising Delay 4 20 4 16 2 12 ns 

BACP Falling Delay 4 22 4 20 2 18 ns 

4-40~ 

Notes 

(Note 1) 

(Note 1) 

(Note 1) 

(Notes 1, 2) 

(Note 1) 

(Note 1) 

(Note 1) 

(Note 1) - .--_. 
(Noto 1) 

(25 pF Load) 

(25 pF Load) (Note 1) 

(25pF Load) 

(25pF Load) 

(25 pF Load) 

(Notes 1, 2) 

(Note 1) 

(Note 3) 

(Note 1) 
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Table 9-2. 82385 A.C. Timing Specifications (Continued) 
Vcc = 5.0 ±5% 

Symbol Parameter 
20 MHz 25 MHz 33 MHz 

Min Max Min Max Min Max 

t41 BAOE# Valid Delay 4 18 4 15 2 12 

t43a BT/R# Valid Delay 2 19 4 16 2 14 

t43b1 DOE # Falling Delay 2 23 4 20 2 16 

t43b2 DOE # Rising Delay @ T CASE = Min 4 17 4 17 2 12 

t43b3 DOE # Rising Delay @ T CASE = Max 4 19 4 19 2 14 

t43c LDSTB Valid Delay 2 26 2 21 2 16 

t44a SEN Setup Time 11 9 7 

t44b SSTB # Setup Time 11 5 5 

t45 SEN, SSTB# Setup Time 5 5 2 

MfS# = Vee (Master Mode) 

t46 BHOLD Setup Time 17 15 11 

t47 BHOLD Hold Time . 5 3 2 

t48 BHLDA Valid Delay 5 28 4 23 3 16 

MIS # = Vss (Slave Mode) 

t49 BHLDA Setup Time 17 15 11 

t50 BHLDA Hold Delay 5 .3 2 

t51 BHOLD Valid Delay 5 28 4 23 3 18 

t55a BLOCK# Valid Delay 4 30 4 26 3 20 

t55b1 BBE(0-3)# Valid Delay 4 30 .4 26 3 20 

t55b2 BBE(0-3#) Valid Delay 4 30 4 26 3 20 

t55b3 BBE(0-3)# Valid Delay 4 36 4 32 3 .23 
.- .. 

t55c LOCK# Valid to BLOCK# Valid 0 30 0 26 0 20 

t56 MISS# Valid Delay 4 35 4 30 3 22 

t57 MISS#, BBE(0-3)#, BLOCK# Float Delay 4 32 4 30 4 25 

t58 WBS Valid Delay 4 37 4 25 3 16 

t59 FLUSH Setup Time 16 12 10 

t60 FLUSH Hold Time 5 5 3 

t61 FLUSH Setup to RESET Falling 26 21 16 

t62 FLUSH Hold to RESET Falling 26 21 16 

NOTES: 
1. Frequency dependent specification. 
2. Used for cache data memory (SRAM) specifications. 
3. Float times not 100% tested. 
4. This feature is tested only at 16 MHz. 

Units Notes 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns (Notes 1,5) 

ns (Notes 1, 7) 

ns (Notes 1, 7) 

ns (Notes 1, 7) 

ns (Notes 1, 5) 

ns (Note 1) 

ns (Note 3) 

ns (Note 1) 

ns 

ns 

ns (Note 4) 

ns (Note 4) 

5. BLOCK# delay is either from BPHI1 or from 386 LOCK#. Refer to Figure 5-3K and 5-3L in the 82385 data sheet. 
6. NCA# setup time is now specified to the rising edge of PHI2 in the state alter 386 OX addresses become valid (either the 

first T2 or the state alter the first T2P). 
7. BBE# Valid delay is a function of NCA# setup. 
8. Not 100% tested. 
9. t5 is measured from 0.8V to 3.7V. 

t6 is measured from 3.7V to 0.8V 
This parameter is not 100% tested and is guaranteed by Intel's test methodology. 
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PHI2 . 

CLK2 

ClK 

82385 

\5 \6 

Figure 9-2. CLK2, BCLK2 Timing 

82385 
OUTPUT~ 

~CL 
290143-49 

CL indicates all parasitic capacitances. 

Figure 9-3. A.C. Test Load 

386 OX Interface Parameters 

PHil PHI2 

290143-48 

PHil 

A2-31~~~~~--~-+----------+-----------~~~~~~~ 
BEO#-3#~~~~~ ____ -+ __________ +-__________ ~ __ ~~~~~ 

lOCK# -
W/R#~~~~r-____ ~ ________ -+ __________ ~ __ ~~~~T-
1.1/10# 
D/C# ~~~~~----+----------+----------+---~~~~~ 

lBA#~~~~~------~---+----~~----------~--~~~~~ 
X16# ~~ __ ~~ ____ ~~ __ ~ ____ ~ __________ ~ __ ~~~~ .. ~ 

READYI# 

290143-50 
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OUTPUT DELAYS 

PHI2 PHil PHI2 PHil' 

CLK2 

ClK 

NA# __ ~ __________ ~ ________ ~~~~~ __ +-______ __ 

::::::=====1=1=1 = 290143-51 

Cache Write Hit Cycle 

Tl,lP T2 

I ,PHil 
, 
:,PHI2 I PHil 

, 
: PHI2 : PHI2 I PHil 

ClK2 

CAlEN 
~'""''' 

CS# -+----;.--~""I 

CWE# 

CT/R# 
24MIN1 t: I . ~~) 

~24M~AX~~~'------~------~----~----~ 
290143-52 

CD'. This would be 218 if previous bus cycle was Cache Write Hit cycle. 
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Cache Read Miss (Cache Update Cycle) 

liP T2P 

PHil : PHI2 PHil : PHI2 

CLK2 

CALEN 
-1"""""'" 

CS# -+-"'"f"""''. 

CWE# 

CT/R# 

"<D. This would be 219 if previous bus cycle was Cache Write Hit cycle. 

PHil 

CLK2 

CALEN (11) _+*""'"'-'1'.1 

CS# 

Cache Read Cycle 

T1, T1P 
PHI2 PHil 

CT/R# _+-___ ....&.._ ...... '"'-'~+'_'. 

COER -+-----;-----IM:-MI. 

I PHil 

T2, T2P 
PHI2 

T1P 

: PHI2 

PHil 

(DIRECT MAPPED) ~ ..... .a.._...;. ____ _I""""J.I 

COER -+-----'"-----i--"T"M""l 
(2WAY) ~""'-""' ___ -I,"",JJ 

CALEN 
(n P) -1'-'-""""''.1 

"<D. This would be 219 if previous bus cycle was Cache Write Hit cycle. 
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BCLK2 

BCLK 

BNA# 

BREADY# 

SEN 
SSTB# 

BHOLD 
(IolASTER CONFIG.) 

BHLDA 
(SLAVE CON FIG.) 

82385 

System Bus Interface Parameters 

BPHI2 BPHll BPHI2 

'This would be 218 if previous cycle was Cache Write HH. 
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System Bus Interface Parameters (Continued) 

OUTPUT DELAYS 

BCLK2 -
BCLK -

BADS#. BB 
BLOC 

MIS 

E# 
K# 
S# 

(VALID DELA Y) 

E# BADS#. BB 
BLOC 

MIS 
K# 
S# 

FLOAT DEL AY 

LD BHO 
(SLAVE CONf IG.) 

BS BHLDA. W 
(MASTER CONf IG.) 

BACP.BAO E# 

BT/R#.DO E# 

LDS TB 

BPHI2 

~ 

V 

I 

BA CP I 
I 
I 

E# I 
I 

DO 

I 

BPHl1 BPHI2 

~ r--\. 

~ I 

33 
55 

1--56--

rx/IIIX 

34 
1----57--

rxli/~ 

I---- 51--

rx/IIIX 

48 
-58--

XlIIIX 

40 
1-41--

rxli/IX 

!-43A-- i-- 43A--I 

rxli/~ rxI I / f)(I 
I 

f--43C--I 

~/11Xl 
-40--

I 

XIII: 
-43B ..... 

1111I 
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APPENDIX A 
82385 Signal Summary 

Signal 
Signal Function Active Inputl Tri-State 

GrouplName State Output Output? 

386 OX INTERFACE 

RESET 386 OX Reset High I -
A2-A31 386 OX Address Bus High I -
BEO#-BE3# 386 DX Byte Enabies Low I -
CLK2 386 OX Clock - I -
REAOYO# Ready Output Low 0 No 

BROYEN# Bus Ready Enable Low 0 No 

REAOYI# 386 OX Ready Input Low I -
AOS# 386 OX Address Status Low I -
MIIO# 386 OX Memory 1110 Indication - I -
W/R# 386 OX Write/Read Indication - I -
O/C# 386 OX Oata/Controllndication - I -
LOCK # 386 OX Lock Indication Low I -
NA# 386 OX Next Address Request Low 0 No 

CACHE CONTROL 

CALEN Cache Address Latch Enable High 0 No 

CT/R# Cache Transmit/Receive - 0 No 

CSO#-CS3# Cache Chip Selects Low 0 No 

COEA#, COEB# Cache Output Enables Low 0 No 

CWEA#, CWEB# Cache Write Enables Low 0 No 

LOCAL DECODE 

LBA# 386 OX Local Bus Access Low 
---.. 

NCA# Non-Cacheable Access Low I -
X16# 16-Bit Access Low I -
STATUS AND CONTROL 

MISS# Cache Miss Indication Low 0 Yes 

WBS Write Buffer Status High 0 No 

FLUSH Cache Flush High I -
82385 INTERFACE 

BREAOY# 385 Ready Input Low I -
BNA# 385 Next Address Request Low I -
BLOCK# 385 Lock Indication Low 0 Yes 

BAOS# 385 Address Status Low 0 Yes 

BBEO#-BBE3# 385 Byte Enables Low 0 Yes 
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82385 Signal Summary (Continued) 

Signal 
Signal Function 

Active Inputl Tri-State 
GrouplName State Output Output? 

DATAIADDR CONTROL 

LDSTB Local Data Strobe Pos.Edge 0 No 

DOE# Data Output Enable Low 0 No 

BTIR# Bus Transmit/Receive - 0 No 

BACP Bus Address Clock Pulse Pos.Edge 0 No 

BAOE# Bus Address Output Enable Low 0 No 

CONFIGURATION 

2W/D# 2-Way/Direct Map Select - I -
M/S# MasterlSlave Select - I -
DEFOE# Define Cache Output Enable - 1 -
COHERENCY 

SA2-SA31 Snoop Address Bus High I -
SSTB# Snoop Strobe Low I -
SEN Snoop Enable High I -
ARBITRATION 

BHOLD Hold High 1/0 No 

BHLDA Hold Acknowledge High 1/0 No 

10.0 REVISION HISTORY 
DOCUMENT: ADVANCE INFORMATION DATA SHEET 
PRIOR REV: 290143-003 September 1988 
NEW REV: 290143-004 September 1989 

Change # Page # Para. # Change 

1. Throughout Fig. 8-3 PQFP Package added 
2. Throughout Tables PQFP Info 

8-2,8-3. 
3. Throughout Table 8-4 PQFP Thermal Resistance 
4. Throughout A.C. Specifications Unified (20 MHz, 25 MHz, 33 MHz) 
5. Throughout DEFOE # Specifications added to device 

4·409 



386™ SX MICROPROCESSOR 

• Full 32-Bit Internal Architecture • Virtual 8086 Mode Allows Execution of 
- 8-, 16-, 32-Bit Data Types 8086 Software in a Protected and 
- 8 General Purpose 32-Bit Registers Paged System 

• Runs Intel386TM Software in a Cost • Large Uniform Address Space 
Effective 16-Bit Hardware Environment - 16 Megabyte Physical 
- Runs Same Applications and O.S.'s - 64 Terabyte Virtual 

as the 386™ OX Processor - 4 Gigabyte Maximum Segment Size 
- Object Code Compatible with 8086, . • High Speed Numerics Support with the 

80186,80286, and 386 Processors <:IR7TU ~y ~ ... "r,.,. ......... r 
- Runs MS-DOS*, OS/2* and UNIX** 

-_. ---- _., --..... _----_. 
• Very High Performance 16-Bit Data Bus • On-Chip Debugging Support Including 

Breakpoint Registers 
- 20 MHz Clock 
- Two-Clock Bus Cycles • Complete System Development 
- 20 Megabytes/Sec Bus Bandwidth Support 
- Address Pipelining Allows Use of - Software: C, PL/M, Assembler 

Slower/Cheaper Memories - Debuggers: PMON-386 OX, 
ICETM-386 SX • Integrated Memory Management Unit .-Extensive Third-Party Support: C, 

- Virtual Memory Support Pascal, FORTRAN, BASIC, Ada*** on 
- Optional On-Chip Paging VAX, UNIX**, MS-DOS·, and Other 
- 4 Levels of Hardware Enforced . Hosts 

Protection 
- MMU Fully Compatible with Those of • High Speed CHMOS III Technology 

the 80286 and 386 OX CPUs • 100-Pin Plastic Quad Flatpack Package 
(See Packaging Outlines and Dimensions #231369) 

The 386TM SX Microprocessor is a 32-bit CPU with a 16-bit external data bus and a 24-bit external address 
bus. The 386 SX CPU brings the high-performance software of the Intel386TM Architecture to midrange 
systems. It provides the performance benefits of a 32-bit programming architecture with the cost savings 
associated with 16-bit hardware systems. 

SEGMENTATION UNIT PAGING UNIT 

rl ;=::::lEllFFE[£CTi'i!iIV~E A~DD~RE§SS[jB!iEUSc:~/~=~1 3;~~T 1(_ _~I ADDER 1Ct:::i 
II r;::'~-ftt]-£\,;!JJ-.n!!!vE~All!iDui!li(E~S5[].!!liJ5c:::::t·::~:::)~IIO:i~~~~.I' tt'; 1 1"25 Iii 

BARREl 
SHinER, 

ADDER 

MULTIPLY / 
DIVIDE 

CONTROL 
1\.--:7::""-1 RO" 

CONTROL 

DEDICATED ALU BUS 

CODE 
QUEUE 

INSTRUCTION 
PREF'ETCH '2 

386TM SX Plpelined 32-81t Mlcroarchltecture 
*MS-DOS and OS/2 are trademarks of Microsoft Corporation. 
"UNIX is a trademark of AT&T . 
••• Ada is a trademark of the Department of Defense. 
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A1-A23 

"/lO,.D/CI. 
W/R,. LOCK,. 
ADS,.NA,. 
READYI 
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1.0 PIN DESCRIPTION 

NOTE: 
NC = No Connect 

DO 
VSS 

HLDA 
HOLD 

VSS 
NAN 

READY# 
Vee 
Vee 
Vee 
Vss 
Vss 

. Vss 
Vss 

CLK2 
ADS# 
BLEN 

Al 
SHEN 

NC 
Vee 
vss 

lA/ION 
D/CN 
W/R# 

386TM SX MICROPROCESSOR 

Figure 1.1. 386TM SX Microprocessor Pin out Top View 

Table 1.1. Alphabetical Pin Assignments 

Address Data Control N/C 

Al 18 00 1 AOS# 16 20 
A2 51 01 100 BHE# 19 27 
A3 52 02 99 BLE# 17 28 
A4 53 03 96 BUSY# 34 29 
A5 54 04 95 CLK2 15 30 
As 55 05 94 O/C# 24 31 
A7 56 Os 93 ERROR# 36 43 
As 58 07 92 HLOA 3 44 
A9 59 Os 90 HOLO 4 45 
AlO 60 09 89 INTR 40 46 
All 61 010 88 LOCK# 26 47 
A12 62 011 87 M/IO# 23 
A13 64 012 86 NA# 6 
A14 65 013 83 NMI 38 
A15 66 014 82 PEREa 37 
A1S 70 015 81 REAOY# 7 
A17 72 RESET 33 
A1S 73 W/R# 25 
A19 74 
A20 75 
A21 76 
A22 79 
A23 80 
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A20 
A19 
AlB 
A17 
Vee 
A16 
Vee 
Vss 
Vss 
AIS 
A14 
A13 
Vss 
A12 
All 
AID 
A9 
A8 
Vee 
A7 
A6 
AS 
A4 
A3 
A2 

240187-1 

Vee 
8 
9 
10 
21 
32 
39 
42 
48 
57 
69 
71 
84 
91 
97 

Vss 
2 
5 
11 
12 
13 
14 
22 
35 
41 
49 
50 
63 
67 
68 
77 
78 
85 
98 



386™ SX MICROPROCESSOR 

1.0 PIN DESCRIPTION (Continued) 

The following are the 386TM SX Microprocessor pin descriptions. The following definitions 'are used in the pin 
descriptions: 

# The named signal is active LOW. 
I Input signal. 
o , Output signal. 
1/0 Input and Output signal. 

No electrical connection. 

t! •• _"'_1 1 ....... - 1 ..,,111..,"'. I,..,.., rut 

CLK2 I 15 

RESET I 33 

015-0 0 1/0 81-83,86-90, 
~2-96,99-1 00,1 

A23-A1 0 80-79,76-72,70, 
66-64,62-58, 
56-51,18 

W/R# 0 25 

O/C# 0 24 

M/IO# 0 23 

I LOCK# 

AOS# 0 16 

NA# I 6 

REAOY# I 7 

BHE#, BLE# 0 19,17 

... gl.l .. U.IU • UI ........ .., •• 

CLK2 provides the fundamental timing for the 386™ SX 
Microprocessor. For additional information see Clock. 

RESET suspends any operation in progress and places the 
386TM SX Microprocessor in a known reset state. See Interrupt 
Signals for additional information. 

Data Bus inputs data during memory, 1/0 and interrupt 
acknowledge read cycles and outputs data during memory and 
1/0 write cycles. See Data Bus for additional information. 

Address Bus outputs physical memory or port 1/0 addresses. 
See Address Bus for additional information. 

Write/Read is a bus cycle definition pin that distinguishes write 
cycles from read cycles. See Bus Cycle Definition Signals for 
additional information. 

Data/Control is a bus cycle definition pin that distinguishes data 
cycles, either memory or 1/0, from control cycles which are: 
interrupt acknowledge, halt, and code fetch. See Bus Cycle 
Definition Signals for additional information. 

Memory/lO is a bus cycle definition pin that distinguishes 
memory cycles from input/output cycles. See Bus Cycle 
De.lnltlon Signals for additional information. 

I Bus Lock is a bus cycle definition pin that indicates that other 
""d",m h"" m""tAr" ,:orA nnt tn n"in ~nntrnl nf thA "v"tAm hll" -.1-"-'" --_ ••• __ .. -. __ .- ,-_ •• - >:11-'" -'_ •••• _- --" '-,,'- -_. - ---'--- -
while it is active. See Bus Cycle Definition Signals for 
additional information. 

Address Status indicates that a valid bus cycle definition and 
address (W/R#, O/C#, M/IO#, BHE#, BLE# and A23-A1 are 
being driven at the 386™ SX Microprocessor pins. See Bus 
Control Signals for additional information. 

Next Address is used to request address pipelining. See Bus 
Control Signals for additional information. 

Bus Ready terminates the bus cycle. See Bus Control Signals 
for additional information. 

Byte Enables indicate which data bytes of the data bus take part 
in a bus cycle. See Address Bus for additional information. 
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1.0 PIN DESCRIPTION (Continued) 

Symbol Type Pin Name and Function 

HOLD I 4 Bus Hold Request input allows another bus master to request 
control of the local bus. See Bus Arbitration Signals for 
additional information. 

HLDA 0 3 Bus Hold Acknowledge output indicates that the 386™ SX 
Microprocessor has surrendered control of its local bus to 
another bus master. See Bus Arbitration Signals for additional 
information. 

INTR I 40 Interrupt Request is a maskable input that signals the 386TM SX 
Microprocessor to suspend execution of the current program and 
execute an interrupt acknowledge function. See Interrupt 
Signals for additional information. 

NMI I 38 Non-Maskable Interrupt Request is a non-maskable input that 
signals the 386TM SX Microprocessor to suspend execution of 
the current program and execute an interrupt acknowledge 
function. See Interrupt Signals for additional information. 

BUSY# I 34 Busy signals a busy condition from a processor extension. See 
Coprocessor Interface Signals for additional information. 

ERROR# I 36 Error signals an error condition from a processor extension. See 
Coprocessor Interface Signals for additional information. 

PEREQ I 37 Processor Extension Request indicates that the processor has 
data to be transferred by the 386TM SX Microprocessor. See 
Coprocessor Interface Signals for additional information. 

N/C - 20,27-31,43-47 No Connects should always be left unconnected. Connection of 
a N/C pin may cause the processor to malfunction or be 
incompatible with future steppings of the 386™ SX 
Microprocessor. 

Vee I 8-10,21,32,39 System Power provides the + 5V nominal DC supply input. 
42,48,57,69, 
71,84,91,97 

Vss I 2,5,11-14,22 System Ground provides the OV connection from which all 
35,41,49-50, inputs and outputs are measured. 
63,67-68, 
77-78,85,98 
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386TM SX MICROPROCESSOR 

31 16 15 87 0 -
AH AL EAX 

BH BL EBX 

CH CL ECX 

DH DL EDX 
GENERAL PURPOSE 

SI ESI REGISTERS 

01 ' EDI 

BP EBP 

I , SP , ESP 
---' , 

15 0 -CS 

SS 

OS 
SEGMENT 

ES REGISTERS 

FS 

GS 

-
31 16 15 0 

I I 
FLAGS I EFLAGS ] FLAGS AND 

INSTRUCTION 
IP EIP POINTER 

31 16 15 0 

MSW CRO ] ~ CRI CONTROL 

PAGE FAULT LINEAR ADDRESS REGISTER CR2 REGISTERS 

I 
PAGE DIRECTORY SASE REGISTER CR3 

47 16 15 0 

4BI I I 
GDTR l SYSTEW ADDRESS 
10TR 

31 

LINEAR BREAKPOINT ADDRESS 0 

LINEAR BREAKPOINT ADDRESS 1 

LINEAR BREAKPOINT ADDRESS 2 

31 

o 

LDTR 

ORO 

DR1 

DR2 

DR3 

OR4 

DRS 

DR6 

DR7 

TEST CONTROL TR6 

r-------------~ 
TEST STATUS TR7 L-____________ ---' 

IZ2I - INTEL RESERVED DO NOT USE 

] 

Figure 2.1. 386TM SX Microprocessor Registers 
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386™ SX MICROPROCESSOR 

INTRODUCTION 

The 386 SX Microprocessor is 100% object code 
compatible with the 386 OX, 286 and 8086 micro­
processors. System manufacturers can provide 386 
OX CPU based systems optimized for performance 
and 386 SX CPU based systems optimized for cost, 
both sharing the same operating systems and appli­
cation software. Systems based on the 386 SX CPU 
can access the world's largest existing microcom­
puter software base, including the growing 32-bit 
software base. Only the Intel386 OX architecture 
can run UNIX, OS/2 and MS-DOS. 

Instruction pipelining, high bus bandwidth, and a 
very high performance ALU ensure short average 
instruction execution times and high system 
throughput. The 386 SX CPU is capable of execution 
at sustained rates of 2.5-3.0 million instructions per 
second. 

The integrated memory management unit (MMU) in­
cludes an address translation cache, advanced mUl­
ti-tasking hardware, and a four-level hardware-en­
forced protection· mechanism to support operating 
systems. The virtual machine capability of the 
386 SX CPU allows simultaneous execution of appli­
cations from multiple operating systems such as 
MS-DOS and UNIX. 

The 386 SX CPU offers on-chip testability and de­
bugging features. Four breakpoint registers allow 
conditional or unconditional breakpoint traps on 
code execution or data accesses for powerful de­
bugging of even ROM-based systems. Other testa­
bility features include self-test, tri-state of output 
buffers, and direct access to the page translation 
cache. 

2.0 BASE ARCHITECTURE 

The 386 SX Microprocessor consists of a central 
processing unit, a memory management unit and a 
bus interface. 

The central processing unit consists of the execu­
tion unit and the instruction unit. The execution unit 
contains the eight 32-bit general purpose registers 
which are used for both address calculation and 
data operations and a 64-bit barrel shifter used to 
speed shift, rotate, multiply, and divide operations. 
The instruction unit decodes the instruction opcodes 
and stores them in the decoded instruction queue 
for immediate use by the execution unit. 

The memory management unit (MMU) consists of a 
segmentation unit and a paging unit. Segmentation 
allows the managing of the logical address space by 

providing an extra addressing component, one that 
allows easy code and data relocatability, and effi­
cient sharing. The paging mechanism operates be­
neath and is transparent to the segmentation pro­
cess, to allow management of the physical address 
space. 

The segmentation unit provides four levels of pro­
tection for isolating and protecting applications and 
the operating system from each other. The hardware 
enforced protection allows the design of systems 
with a high degree of integrity. 

The 386 SX Microprocessor has two modes of oper­
ation: Real Address Mode (Real Mode), and Protect­
ed Virtual Address Mode (Protected Mode). In Real 
Mode the 386 SX Microprocessor' operates as a very 
fast 8086, but with 32-bit extensions if desired. Real 
Mode is required primarily to set up the processor 
for Protected Mode operation. 

Within Protected Mode, software can perform a task 
switch to enter into tasks designated as Virtual 8086 
Mode tasks. Each such task behaves with 8086 se­
mantics, thus allowing 8086 software (an application 
program or an entire operating system) to execute. 
The Virtual 8086 tasks can be isolated and protect­
ed from one another and the host 386 SX Micro­
processor operating system by use of paging. 

Finally, to facilitate high performance system hard­
ware designs, the 386 SX Microprocessor bus inter­
face offers address pipelining and direct Byte En­
able signals for each byte of the data bus. 

2.1 Register Set 

The 386 SX Microprocessor has thirty-four registers 
as shown in Figure 2-1. These registers are grouped 
into the following seven categories: 

General Purpose Registers: The eight 32-bit gen­
eral purpose registers are used to contain arithmetic 
and logical operands. Four of these (EAX, EBX, 
ECX, and EDX) can be used either in their entirety as 
32-bit registers, as 16-bit registers, or split into pairs 
of separate 8-bit registers. 

Segment Registers: Six 16-bit special purpose reg­
isters select, at any given time, the segments of 
memory that are immediately addressable for code, 
stack, and data. 

Flags and Instruction Pointer Registers: The two 
32-bit special purpose registers in figure 2.1 record 
or control certain aspects of the 386 SX Microproc­
essor state. The EFLAGS register includes status 
and control bits that are used to reflect the outcome 
of many instructions and modify the semantics of 
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some instructions. The Instruction Pointer. called 
EIP. is 32 bits wide. The Instruction Pointer controls 
instruction fetching and the processor automatically 
increments it after executing an instruction. 

Control Registers: The four 32-bit· control register 
are used to control the global nature of the 386 SX 
Microprocessor. The CRO register contains bits that 
set the different processor modes (Protected. Real. 
Paging and Coprocessor Emulation). CR2 and CR3 
registers are used in the paging operation. 

System Address Registers: These four special 
registers reference the tables or segments support­
ed by the 80286/386 SX/386 OX CPU's protection 
model. These tables or segments are: 

GDTR (Global Descriptor Table Register). 
IOTR (Interrupt Descriptor Table Register). 
LDTR (Local Descriptor Table Register). 
TR (Task State Segment Register). 

SPECIAL rIELDS: 

Debug Registers: The six programmer accessible 
debug registers provide on-chip support for debug­
ging. The use of the debug registers is described in 
Section 2.10 Debugging Support. 

Test Registers: Two registers are used to control 
the testing of the RAM/CAM (Content Addressable 
Memories) in the Translation Lookaside Buffer por­
tion of the 386 SX Microprocessor. Their use is dis­
cussed in Testability. 

EFLAGS REGISTER 

The flag register is a 32-bit register named EFLAGS. 
The defined bits and bit fields within EFLAGS. 
shown in Figure 2.2. control certain operations and 
indicate the status of the 386 SX Microprocessor. 
The lower 16 bits (bits 0-15) of EFLAGS contain the 
16- bit flag register named FLAGS. This is thede­
fault flag register used when executing 8086. 80286. 
or real mode code. The functions of the flag bits are 
given in Table 2.1. 

STATUS rLAGS: 

.-------------OvERrLOw 

r-------'-- SIGN 

r------- ZERO 

r---'---- AUX CARRY 

CONTROL rLAGS 

'-----INAI"' 

'------ INTERRUPT 

'-------DIRECTION 

PARITY 

CARRY 

EFLAGS 

L------------RESUME 

'--------------VIRTUAL B086 MODE 

r-----PAGING ENABLE 

PROTECTION ENABLE -------, 

MONITOR COPROCESSOR ------, 

Figure 2.2. Status and Control Register Bit Functions 
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Table 2.1. Flag Definitions 

Bit Position Name Function 

0 CF Carry Flag-Set on high-order bit carry or borrow; cleared 
otherwise. 

2 PF Parity Flag-Set if low-order 8 bits of result contain an even 
number of 1-bits; cleared otherwise. 

4 AF Auxiliary Carry Flag-Set on carry from or borrow to the low 
order four bits of AL; cleared otherwise. 

6 ZF Zero Flag-Set if result is zero; cleared otherwise. 

7 SF Sign Flag-Set equal to high-order bit of result (0 if positive, 1 if 
negative), 

8 TF Single Step Flag-Once set, a single step interrupt occurs after 
the next instruction executes. TF is cleared by the single step 
interrupt. 

9 IF Interrupt-Enable Flag-When set, maskable interrupts will cause 
the CPU to transfer control to an interrupt vector specified 
location. 

10 OF Direction Flag-Causes string instructions to auto-increment 
(default) the appropriate index registers when cleared. Setting 
OF causes auto-decrement, 

11 OF Overflow Flag-Set if the operation resulted in a carry/borrow 
into the sign bit (high-order bit) of the result but did not result in a 
carry/borrow out of the high-order bit or vice-versa. 

12,13 10PL I/O Privilege Level-Indicates the maximum CPL permitted to 
execute I/O instructions without generating an exception 13 fault 
or consulting the I/O permission bit map while executing in 
protected mode. For virtual 86 mode it indicates the maximum 
CPL allowing alteration of the IF bit. 

14 NT Nested Task-Indicates that the execution of the current task is 
nested within another task. 

16 RF Resume Flag-Used in conjunction with debug register 
breakpoints. It is checked at instruction boundaries before 
breakpoint processing. If set, any debug fault is ignored on the 
next instruction. 

17 VM Virtual 8086 Mode-If set while in protected mode, the 386TM SX 
Microprocessor will switch to virtual 8086 operation, handling 
segment loads as the 8086 does, but generating exception 13 
faults on privileged opcodes. 
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. CONTROL REGISTERS 

The 386 SX Microprocessor has three control registers of 32 bits, CRO, CR2 and CR3, to hold the machine 
state of a global nature. These registers are shown in Figures 2.1 and 2.2. The defined CRO bits are described 
in Table 2.2. 

Table 2.2. CRO Definitions 

Bit Position Name Function 

° PE Protection mode enable-places the 386TM SX Microprocessor 
into protected mode. If PE is reset, the processor operates again 
in Real Mode. PE may be set by loading MSW or CRO. PE can be 
reset only by loading CRO, it cannot be reset by the LMSW 
instruction. 

1 MP Monitor coprocessor extension-allows WAIT instructions to 
cause a processor extension not 'present exception (number 7). 

2 EM Emulate processor exte,nsion-causes a processor extension 
not present exception (number 7) on ESC instructions to allow 
emulating a processor extension. 

3 TS Task switched-indicates the next instruction using a processor 
extension will cause exqeption 7, allowing software to test 
whether the current processor extension context belongs to the 
current task. 

31 PG Paging enable bit-is set to enable the on-chip paging unit. It is 
reset to disable the on-chip paging unit. 

2.2 Instruction Set 

The instruction set is divided into nine categories of 
operations: 

All 386 SX Microprocessor instructions operate on 
either 0, 1, 2 or 3 operands; an operand resides in a 
register, in the instruction itself, or in memory. Most 
zero operand instructions (e.g CLI, STI) take only 
one byte. One operand instructions generally are 
two bytes long. The average instruction is 3.2 bytes 
long. Since the 386 SX Microprocessor has a 16 
byte prefetch instruction queue, an average of 5 in­
structions 'Ni!! be prefetched. The use of hNo oper .. 
ands permits the following types of common instruc- ' 
tions: 

Data Transfer 
Arithmetic 
Shift/Rotate 
""'.I._~ __ ... __ =_ •. 1_.1.:_-
"11111~ IVldlUI-'UIClUUl1 

Bit Manipulation 
Control Transfer 
High Level Language Support 
Operating System Support 
Processor Control 

These instructions are listed in Table 9.1 
Instruction Set Clock Count Summary. 
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The operands can be either 8, 16, or 32 bits long. As 
a general rule, when executing code written for the 
386 SX Microprocessor (32 bit code), operands are 
8 or 32 bits; when executing existing 8086 or 80286 
code (16-bit code), operands are 8 or 16 bits. Prefix­
es can be added to all instructions which override 
the default length of the operands (i.e. use 32-bit 
operands for 16-bit code, or 16-bit operands for 32-
bit code). 

2.3 Memory Organization 

Memory on the 386 SX Microprocessor is divided 
into 8-bit quantities (bytes), 16-bit quantities (words), 
and 32-bit quantities (dwords). Words are stored in 
two consecutive bytes in memory with the low-order 
byte at the lowest address. Dwords are stored in 
four consecutive bytes in memory with the low-order 
byte at the lowest address. The address of a word or 
dword is the byte address of the low-order byte. 

In addition to these basic data types, the 386 SX 
Microprocessor supports two larger units of memory: 
pages and segments. Memory can be divided up 
into one or more variable length segments, which 
can be swapped to disk or shared between pro­
grams. Memory can also be organized into one or 
more 4K byte pages. Finally, both segmentation and 
paging can be combined, gaining the advantages of 
both systems. The 386 SX Microprocessor supports 
both pages and segmentation in order to provide 
maximum flexibility to the system designer. Segmen­
tation and paging are complementary. Segmentation 
is useful for organizing memory in logical modules, 
and as such is a tool for the application programmer, 
while pages are useful to the system programmer for 
managing the physical memory of a system. 

ADDRESS SPACES 

The 386 SX Microprocessor has three types of ad­
dress spaces: logical, linear, and physical. A 
logical address (also known as a virtual address) 
consists of a selector and an offset. A selector is the 
contents of a segment register. An offset is formed 
by summing all of the addressing components 
(BASE, INDEX, DISPLACEMENT), discussed in sec­
tion 2.4 Addressing Modes, into an effective ad­
dress. This effective address along with the selector 
is known as the logical address. Since each task on 
the 386 SX Microprocessor has a maximum of 16K 
(214 -1) selectors, and offsets can be 4 gigabytes 
(with paging enabled) this gives a total of 246 bits, or 
64 terabytes, of logical address space per task. The 
programmer sees the logical address space. 

The segmentation unit translates the logical ad­
dress space into a 32-bit linear address space. If the 
paging unit is not enabled then the 32-bit linear ad­
dress is truncated into a 24-bit physical address. 
The physical address is what appears on the ad­
dress pins. 

The primary differences between Real Mode and 
Protected Mode are how the segmentation unit per­
forms the translation of the logical address into the 
linear address, size of the address space, and pag­
ing capability. In Real Mode, the segmentation unit 
shifts the selector left four bits and adds the result to 
the effective address to form the linear address. 
This linear address is limited to 1 megabyte. In addi­
tion, real mode has no paging capability. 

Protected Mode will see one of two different ad­
dress spaces, depending on whether or not paging 
is enabled. Every selector has a logical base ad­
dress associated with it that can be up to 32 bits in 
length. This 32-bit logical base address is added to 
the effective address to form a final 32-bit linear 
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Figure 2.3. Address Translation 

address. If paging is disabled this final linear ad­
dress reflects physical memory and is truncated so 
that only the 10wElr 24 bits of this address are used 
to address the 16 megabyte memory address space. 
If paging is enabled this final linear address reflects 
a 32-bit address that is translated through the pag­
ing unit to form' a 16-megabyte physical address. 
The logical base address is stored in one Of two 
operating system tables (Le. the Local Descriptor 
Table or Global Descriptor Table). ' 

Figure 2.3 shows the relationship between the vari­
ous address spaces. 

SEGMENT REGISTER USAGE 
\ 

The main data structure used to organize memory is 
the segment. On the 386 SX Microprocessor. seg­
ments are variable sized blocks 6f linear addresses 
which have certain attributes associated with them. 
There are two main types of segments. code and 
data. The segments are of variable size and can be 
as small as 1 byte or as liuge as 4 gigabytes (232 
bits). 

In order to provide compact instruction encoding 
and increase processor performance. instructions 
do not need to explicitly specify which segment reg­
ister is used. The segment register is automatically 
chosen according to the rules of Table 2.3 (Segment 
Register Selection Rules). In general. data refer­
ences use the selector contained in the DS register. 
stack references use the SS register and instruction 

fetches use the CS register. The contents of the In­
struction Pointer provide the offset. Special segment 
override prefixes allow the explicit use of a given 
segment register. and override the implicit rules' list­
ed in Table 2.3. The override prefixes also allow the 
use of the ES, FS and GS segment registers. 

There are no restrictions regarding the overlapping 
of the base addresses of any segments. Thus, all 6 
seQments could have the base address set to zero 
and create a system with a four gigabyte linear ad­
dress space. This creates a system Y/here the virtual 
address space is the same as the linear address 
space. Further details of segmentation are dis­
cussed in chapter 4 PROTECTED MODE ARCHI· 
TECTURE. 

2.4 Addressing Modes 

The 386 SX Microprocessor provides a total of 8 
addressing modes for instructions to specify oper­
ands. The addressing modes are optimized to allow 
the efficient execution of high level languages such 
as C and FORTRAN, and they cover the vast majori­
ty of data references needed by high-level lan­
guages. 

REGISTER AND IMMEDIATE MODES 

Two of the addressing modes provide for instruc­
tions that operate on register or immediate oper­
ands: 

4-420 



inter 386™ SX MICROPROCESSOR 

Table 2.3. Segment Register Selection Rules 

Type of 
Memory Reference 

Code Fetch 

Destination of PUSH, PUSHF, INT, 
CALL, PUSHA Instructons 

Source of POP, POPA, POPF, IRET, 
RET Instructions 

Destination of STOS, 
MOVE, REP STOS, and 
REP MOVS instructions 

Other data references, 
with effective address 
using base register of: 

[EAX) 
[EBX) 
[ECX) 
[EDX) 
[ESI] 
[EDI] 
[EBP) 
[ESP) 

Register Operand Mode: The operand is located in 
one of the 8, 16 or 32-bit general registers. 

Immediate Operand Mode: The operand is includ­
ed in the instruction as part of the opcode. 

32-BIT MEMORY ADDRESSING MODES 

The remaining 6 modes provide a mechanism for 
. specifying the effective address of an operand. The 
linear address consists of two components: the seg­
ment base address and an effective address. The 
effective address is calculated by summing any 
combination of the following three address elements 
(see figure 2.3): 

DISPLACEMENT: an 8, 16 or 32-bit immediate val­
ue, following the instruction. 

BASE: The contents of any general purpose regis­
ter. The base registers are generally used by compil­
ers to point to the start of the local variable area. 

INDEX: The contents of any general purpose regis­
ter except for ESP. The index registers are used to 
access the elements of an array, or a string of char­
acters. The index register's value can be multiplied 
by a scale factor, either 1, 2, 4 or 8. The scaled index 
is especially useful for accessing arrays or struc­
tures. 

Implied (Default) Segment Override 
Segment Use Prefixes Possible 

CS None 

SS None 

SS None 

ES None 

DS CS,SS,ES,FS,GS 
DS CS,SS,ES,FS,GS 
DS CS,SS,ES,FS,GS 
DS CS,SS,ES,FS,GS 
DS CS,SS,ES,FS,GS 
DS CS,SS,ES,FS,GS 
SS CS,DS,ES,FS,GS 
SS CS,DS,ES,FS,GS 

Combinations of these 3 components make up the 6 
additional addressing modes. There is no perform­
ance penalty for using any of these addressing com­
binations, since the effective address calculation is 
pipelined with the execution of other instructions. 
The one exception is the simultaneous use of Base 
and Index components which requires one addition­
al clock. 

As shown in Figure 2.4, the effective address (EA) of 
an operand is calculated according to the following 
formula: 

EA = BaSeRegista, + (IndeXRegister'scaling) + Displacement 

1. Direct Mode: The operand's offset is contained· 
as part of the instruction as an 8, 16 or 32-bit 
displacement. 

2. Register Indirect Mode: A BASE register con­
tains the address of the operand. 

3. Based Mode: A BASE register's contents are 
added to a DISPLACEMENT to form the oper­
and's offset. 

4. Scaled Index Mode: An INDEX register's con­
tents are multiplied by a SCALING factor, and the 
result is added to a DISPLACEMENT to form the 
operand's offset. 
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Figure 2.4. Addressing Mode Calculations 

5. Based Scaled Index Mode: The contents of an 
1II.lnr-v ___ :_.L ______ .. 1.&:_1:_-1 L .. _ C"'O""AI .".,.... .t __ 
II'IUC.A U'!::II~Lt:a C11 C IIIUllltJlICU uy Cl ..:I\JML.II'\IU lau-

tor, and the result is added to the contents of a 
BASE register to obtain the operand's offset. 

6. Based Scaled Index Mode with Displacement: 
The contents of an INDEX register are multiplied 
by a SCALING factor, and the result is added to 
the contents of a BASE register and a DISPLACE­
MENT to form the operand's offset. 

DIFFERENCES BETWEEN 16 AND 32 BIT 
ADDRESSES 

In order to provide software comp'atibility with the 
8086 and the 80286, the 386 SX Microprocessor 
can execute 16-bit instructions in Real and Protect­
ed Modes. The processor determines the size of the 
instructions it is executing by examining the D bit in a 
Segment Descriptor. If the D bit is 0 then all operand 
lengths and effective addresses are assumed to be 
16 bits long. If the D bit is 1 then the default length 
for operands and addresses is 32 bits. In Real Mode 
the default size for operands and addresses is 16 
bits. 

Regardless of the default precision of the operands 
__ .... ..J-I ______ .Lt.. .... nOD C"V lA: .................. _____ ... : ........... 1 ....... ..... 
VI auul ~\:);:''O'''I It 1'0 \Juv oJ" IVII"". V}JI V\.I'O';:);:)VI lo:J aUlo LV 

execute either 16 or 32-bit instructions. This is speci­
fied through the use Of override prefixes. Two, prefix­
es, the Operand Length Prefix and the Address 
Length Prefix, override the value of the D bit on an 
individual instruction basis. These prefixes are auto­
matically added by assemblers. 

The Operand Length and Address Length Prefixes 
can be applied separately or in combination to any 
instruction. The Address Length Prefix does not al­
low addresses over 64K bytes to be accessed in 
Real Mode. A memory address which exceeds 
OFFFFH will result in a General Protection Fault. An 
Address Length Prefix only allows the use of the ad­
ditional 386 SX Microprocessor addressing modes. 

When executing 32-bit code, the 386 SX Microproc­
essor uses either 8 or 32-bit displacements, and any 
register can be used as base or index registers. 
When executing 16-bit code, the displacements are 
either 8 or 16-bits, and the base and index register 
conform to the 80286 model. Table 2.4 illustrates 
the differences. 
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Table 2.4. BASE and INDEX Registers for 16· and 32·Bit Addresses 

16·Bit Addressing 32·Bit Addressing 

BASE REGISTER BX,BP 
INDEX REGISTER SI,DI 

SCALE FACTOR None 
DISPLACEMENT 0, 8, 16-bits 

2.5 Data Types 

The 386 SX Microprocessor supports all of the data 
types commonly used in high level languages: 

Bit: A single bit quantity. 

Bit Field: A group of up to 32 contiguous bits, which 
spans a maximum of four bytes. 

Bit String: A set of contiguous bits; on the 386 SX 
Microprocessor, bit strings can be up to 4 gigabits 
long. 

Byte: A signed 8-bit quantity. 

Unsigned Byte: An unsigned 8-bit quantity. 

Integer (Word): A signed 16-bit quantity. 

Long Integer (Double Word): A signed 32-bit quan­
tity. All operations assume a 2's complement repre­
sentation. 

Unsigned Integer (Word): An unsigned 16-bit 
quantity. 

Unsigned Long Integer (Double Word): An un­
signed 32-bit quantity. 

Signed Quad Word: A signed 64-bit quantity. 

Unsigned Quad Word: An unsigned 64-bit quantity. 

Pointer: A 16 or 32·bit offset·only quantity which in­
directly references another memory location. 

Long Pointer: A full pointer which consists of a 16-
bit segment selector and either a 16 or 32·bit offset. 

Char: A byte representation of an ASCII Alphanu­
meric or control character. 

String: A contiguous sequence of bytes, words or 
dwords. A string may contain between 1 byte and 4 
gigabytes 

Any 32-bit GP Register 
Any 32-bit GP Register 
Except ESP 
1,2,4,8 
0, 8, 32-bits 

BCD: A byte (unpacked) representation of decimal 
digits 0-9. 

Packed BCD: A byte (packed) representation of two 
decimal digits 0-9 storing one digit in each nibble. 

When the 386 SX Microprocessor is coupled with its 
numerics coprocessor, the 387TM SX, then the fol­
lowing common floating point types are supported: 

Floating Point: A signed 32, 64, or 80-bit real num­
ber representation. Floating point numbers are sup­
ported by the 387™ SX numerics coprocessor. 

Figure 2.5 illustrates the data types supported by the 
386 SX Microprocessor and the 387 SX. 

2.6 1/0 Space 

The 386 SX Microprocessor has two distinct physi­
cal address spaces: physical memory and liD. Gen­
erally, peripherals are placed in liD space although 
the 386 SX Microprocessor also supports memory­
mapped peripherals. The liD space consists of 64K 
bytes which can be divided into 64K 8-bit ports or 
32K 16-bit ports, or any combination of ports which 
add up to no more than 64K bytes. The 64K liD 
address space refers to physical addresses rather 
than linear addresses since liD instructions do not 
go through the segmentation or paging hardware. 
The M/IO# pin acts as an additional address line, 
thus allowing the system designer to easily deter­
mine which address space the processor is access­
ing. 

The liD ports are accessed by the IN and OUT in­
structions, with the port address supplied as an im­
mediate 8-bit constant in the instruction or in the OX 
register. All 8-bit and 16-bit port addresses are zero 
extended on the upper address lines. The liD in­
structions cause the MIIO# pin to be driven LOW. 
liD port addresses 00F8H through OOFFH are re­
served for use by Intel. 
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Figure 2.5. 386™ SX Microprocessor Supported Data Types 
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Table 2.5. Interrupt Vector Assignments 

Instruction Which 
Return Address 

Interrupt Points to 
Function Number Can Cause Faulting Type 

Exception Instruction 

Divide Error 0 DIV,IDIV YES FAULT 

Debug Exception 1 any instruction YES TRAP' 

NMllnterrupt 2 INT 20rNMI NO NMI 

One Byte Interrupt :3 INT NO TRAP 

Interrupt on Overflow 4 INTO NO TRAP 

Array Bounds Check 5 BOUND YES FAULT 

Invalid OP-Code 6 Any illegal instruction YES FAULT 

Device Not Available 7 ESC,WAIT YES FAULT 

Double Fault 8 
Any instruction that can 

ABORT 
generate an exception 

Coprocessor Segment Overrun 9 ESC NO ABORT 

InvalidTSS 10 JMP, CALL, IRET, INT YES FAULT 

Segment Not Present 11 Segment Register Instructions YES FAULT 

Stack Fault 12 Stack References YES FAULT 

General Protection Fault 13 Any Memory Reference YES FAULT 

Page Fault 14 Any Memory Access or Code Fetch YES FAULT 

Coprocessor Error 16 ESC,WAIT YES FAULT 

Intel Reserved 17-32 

Two Byte Interrupt 0-255 INTn NO TRAP 

'Some debug exceptions may report both traps on the previous instruction and faults on the next instruction. 

2.7 Interrupts and Exceptions 

Interrupts and exceptions alter the normal program 
flow in order to handle external events, report errors 
or exceptional conditions. The difference between 
interrupts and exceptions is that interrupts are used 
to handle asynchronous external events while ex­
ceptions handle instruction faults. Although a pro­
gram can generate a software interrupt via an INT N 
instruction, the processor treats software interrupts 
as exceptions. 

Hardware interrupts occur as the result of an exter­
nal eyent and are classified into two types: maskable 
or non-maskable. Interrupts are serviced after the 
execution of the current instruction. After the inter­
rupt handler is finished servicing the interrupt, exe­
cution proceeds with the instruction immediately 
after the interrupted instruction. 

Exceptions are classified as faults, traps, or aborts, 
depending on the way they are reported and wheth­
er or not restart of the instruction causing the excep­
tion is supported. Faults are exceptions that are de­
tected and serviced before the execution of the 
faulting instruction. Traps are exceptions that are 
reported immediately after the execution of the in­
struction which caused the problem. Aborts are ex­
ceptions which do not permit the precise location of 
the instruction causing the exception to be deter­
mined. 

Thus, when an interrupt service routine has been 
completed, execution proceeds from the instruction 
immediately following the interrupted instruction. On 
the other hand, the return address from an excep­
tion fault routine will always point to the instruction 
causing the exception and will include any leading 
instruction prefixes. Table 2.5 summarizes the possi­
ble interrupts for the 386 SX Microprocessor and 
shows where the return address points to. 
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The 386 SX Microprocessor has the ability to handle 
up to 256 different interrupts/exceptions. In order to 
service the interrupts, a table with up to 256 interrupt 
vectors must be defined. The interrupt vectors are 
simply pointers to the appropriate interrupt service 
routine. In Real Mode, the vectors are 4-byte quanti­
ties, a Code Segment plus a 16-bit offset; in Protect­
ed Mode, the interrupt vectors are 8 byte quantities, 
which are put in an Interrupt Descriptor Table. Of the 
256 possible interrupts, 32 are reserved for use by 
Intel and the remaining 224 are free to be used by 
the system designer. 

INTERRUPT PROCESSING 

When an interrupt occurs, the following actions hap­
pen. First, the current program address and Flags 
are saved on the stack to allow resumption of the 
interrupted program. Next, an 8-bit vector is supplied 
to the 386 SX Microprocessor which identifies the 
appropriate entry in the interrupt table. The table 
contains the starting address of the interrupt service 
routine. Then, the user. supplied interrupt service 
routine is executed. Finally, when an IRET instruc­
tion is executed the old processor state is restored 
and program execution resumes at the appropriate 
instruction. 

The 8-bit interrupt vector is supplied to the 386 Sx 
Microprocessor in several different ways: exceptions 
supply the interrupt vector internally; software INT 
instructions contain or imply the vector; maskable 
hardware interrupts supply the 8-bit vector via the 
interrupt acknowledge bus sequence. Non-Maska­
ble hardware interrupts are assigned to interrupt 
vector 2. 

Maskable Interrupt 

Maskable interrupts are the most common way to 
respond to asynchronous external hardware events. 
A hardware interrupt occurs when the INTR is pulled 
HIGH and the Interrupt Flag bit (IF) is enabled. The 
processor only responds to interrupts between· in­
structions (string instructions have an 'interrupt win­
dow' between memory moves which allows inter­
rupts during long string moves). When an interrupt 
occurs the processor reads an 8-bit vector supplied 
by the hardware which identifies the source of the 
interrupt (one of 224 user defined interrupts). 

Interrupts through interrupt gates automatically reset 
IF, disabling INTR requests. Interrupts through Trap 
Gates leave the state of the IF bit unchanged. Inter­
rupts through a Task Gate change the IF bit accord­
ing to the image of the EFLAGs register in the task~s 
Task State Segment (TSS). When an IRET instruc­
tion is executed, the original state of the IF bit is 
restored. 

Non-Maskable Interrupt 

Non-maskable interrupts provide a method of servic­
ing very high priority interrupts. When the NMI input 
is pulled HIGH it causes an interrupt with an internal­
ly supplied vector value of 2. Unlike a normal.hard~ 
ware interrupt, no interrupt acknowledgment se­
quence is performed for an NMI. 

While executing the NMI servicing procedure, the 
386 SX Microprocessor will not service any further 
NMI request or INT requests until an interrupt return 
(IRET) instruction is executed or the processor is 
reset. If NMI occurs while currently servicing an NMI, 
its presence will be saved for servicing after execut­
ing the first IRET instruction. The IF bit is cleared at 
the beginning of an NMI interrupt to inhibit further 
INTR interrupts. 

Software Interrupts 

A third type of interrupt/exception for the 386 SX 
Microprocessor is the software interrupt. An INT n 
instruction causes the processor to execute the in­
terrupt service routine pointed to by the nth vector in 
the interrupt table. 

A ____ !_I _____ Z.&.L_ .L. •• _ L.~ _ __ LL. •• ___ !_.L ___ .. _.I. 1111.1'"1"" 
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n is the one byte INT 3, or breakpoint interrupt. By 
inserting this one byte instruction in a program, the 
user can set breakpoints in his program as a debug­
ging tool. 

A final type of software interrupt is the single step 
interrupt. It is discussed in Single Step Trap. 
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INTERRUPT AND EXCEPTION PRIORITIES 

Interrupts are externally generated events. Maska­
ble Interrupts (on the INTR input) and Non-Maskable 
Interrupts (on the NMI input) are recognized at in­
struction boundaries. When NMI and maskable 
INTR are both recognized at the same instruction 
boundary, the 386 SX Microprocessor invokes the 
NMI service routine first. If maskable interrupts are 
still enabled after the NMI service routine has been 
invoked, then the 386 SX Microprocessor will invoke 
the appropriate interrupt service routine. 

As the 386 SX Microprocessor executes instruc­
tions, it follows a consistent cycle in checking for 
exceptions, as shown in Table 2.6. This cycle is re-

peated as each instruction is executed, and occurs 
in parallel with instruction decoding and execution. 

INSTRUCTION RESTART 

The 386 SX Microprocessor fully supports restarting 
all instructions after Faults. If an exception is detect­
ed in the instruction to be executed (exception cate­
gories 4 through 10 in Table 2.6), the 386 SX Micro­
processor invokes the appropriate exception service 
routine. The 386 SX Microprocessor is in a state that 
permits restart of the instruction, for all cases but 
those given in Table 2.7. Note that all such cases 
will ,be avoided by a properly designed operating 
system. 

Table 2.6. Sequence of Exception Checking 

Consider the case of the 386TM SX Microprocessor having just completed an instruction. It then performs 
the following checks before reaching the point where the next instruction is completed: 

1. Check for Exception 1 Traps from the instruction just completed (single~step via Trap Flag, or Data 
Breakpoints set in the Debug Registers). 

2. Check for external NMI and INTR. 

3. Check for Exception 1 Faults in the next instruction (Instruction Execution Breakpoint set in the Debug 
Registers for the next instruction). 

4. Check for Segmentation Faults that prevented fetching the entire next instruction (exceptions 11 or 13). 

5. Check for Page Faults that prevented fetching the entire next instruction (exception 14). 

6. Check for Faults decoding the next instruction (exception 6 if illegal opcode; exception 6 if in Real Mode 
or in Virtual 8086 Mode and attempting to execute an instruction for Protected Mode only; or exception 
13 if instruction is longer than 15 bytes, or privilege violation in Protected Mode (Le. not at IOPL or at 
CPL=O). 

7. If WAIT opcode, check if TS= 1 and MP= 1 (exception 7 if both are 1). 

8. If ESCape opcode for numeric coprocessor, check if EM = 1 or TS = 1 (exception 7 if either are 1). 

9. If WAIT opcode or ESCape opcode for numeric coprocessor, check ERROR# input signal (exception 16 
if ERROR # input is asserted). 

10. Check in the following order for each memory reference required by the instruction: 

a. Check for Segmentation Faults that prevent transferring the entire memory quantity (exceptions 11, 
12,13). 

b. Check for Page Faults that prevent transferring the entire memory quantity (exception 14). 

NOTE: 
Segmentation exceptions are generated before paging exceptions. 

Table 2.7. Conditions Preventing Instruction Restart 

1. An instruction causes a task switch to a task whose Task State Segment is partially 'not present' (An 
entirely 'not present' TSS is restartable). Partially present TSS's can be avoided either by keeping the 
TSS's of such tasks present in memory, or by aligning TSS segments to reside entirely within a single 4K 
page (for TSS segments of 4K bytes or less). 

2. A coprocessor operand wraps around the top of a 64K-byte segment or a 4G-byte segment,'and spans 
three pages, and the page holding the middle portion of the operand is 'not present'. This condition can 
be avoided by starting at a page boundary any segments containing coprocessor operands if the 
segments are approximately 64K-200 bytes or larger (Le. large enough for wraparound of the coproces­
sor operand to possibly occur). 

Note that these conditions are avoided by using the operating system designs mentioned in this table. 
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Table 2.8. Register Values after Reset 

Flag Word (EFLAGS) uuuuOO02H Note 1 
Machine Status Word (CRO) uuuuuu10H 
Instruction Pointer (EIP) OOOOFFFOH 
Code Segment (CS) FOOOH Note 2 
Data Segment (OS) OOOOH Note 3 
Stack Segment (SS) OOOOH 
Extra Segment (ES) OOOOH Note 3 
Extra Segment (FS) OOOOH 
Extra Segment (GS) .OOOOH 
EAX register OOOOH· Note 4 
EDX register component and stepping .10 Note 5 
All other registers undefined Note 6 

NOTES: 
1. EFLAG Register. The upper 14 bits of the EFLAGS register are undefined, all defined flag bits are zero. 
2. The Code Segment Register (CS) will have ,its Base Address set to OFFFFOOOOH and Limit set to OFFFFH. 

I 3. The Data and Extra Segment Registers (OS, ES) will have their Base Address set to OOOOOOOOOH and Limit set to 
OFFFFH. . 
4. If self-test is selected, the EAX register should contain a 0 value. If a value of 0 is not found then the self-test has 
detected a flaw in the part. 
5. EOX register always holds component and stepping identifier. 
6. All undefined bits are Intel Reserved and should not be used. 

DOUBLE FAULT 

A Double Fault (exception 8) results when the proc­
essor attempts to invoke an exception sE!rvice rou­
tine for the segment exceptions (10, 11, 12 or 13), 
but in the process of doing· so detects an exception 
other than a Page Fault (exception 14). 

One other cause of generating a Double Fault is the 
386 SX Microprocessor detecting any other excep­
tion when it is attempting to invoke the Page Fault 
(exception 14) service routine (for example, if a Page 
Fault is detected when the 386 SX Microprocessor 
attempts to invoke the Page Fault service routine). 
Of course, in any functional system, not only in 386 
SX Microprocessor-based systems, the entire page 
fault service routine must remain 'present' in memo­
ry. 

2.8 Reset and Initialization 

When the processor is initialized or Reset the regis­
ters have the values shown in Table 2.8. The 386 SX 
Microprocessor will then start executing instructions 
near the top of physical memory, at location 
OFFFFFOH. When the first Intersegment Jump or 
Call is executed, address lines A20-A23 will drop 
LOW for CS-relative memory cycles, and the 386 SX 
Microprocessor will only execute instructions in the 
lower one megabyte of physical memory. This al­
lows the system designer to use a shadow ROM at 
the top of physical memory to initialize the system 
and take care of Resets. 

RESET forces the 386 SX Microprocessor to termi­
nate all execution and local bus activity. No instruc­
tion execution or bus activity will occur as long as 
Reset is active: Between 350 and 450 CLK2 periods 
after Reset becomes inactive, the 386 SX Micro­
processor will start executing instructions at the top 
of physical memory. 

2.9 Testability 

The 386 SX Microprocessor, like the 386 Microproc­
essor, offers testability features which include a self­
tlilst and direct access to the page iransiaiion cache. 

SELF-TEST 

The 386 SX Microprocessor has the capability to 
perform a self-test. The self-test checks the function 
of all of the Control ROM and most of the non-ran­
dom logic of the part. Approximately one-half of the 
386 SX Microprocessor can be tested during self-
test. . 

Self-Test is initiated on the 386 SX Microprocessor 
when the RESET pin transitions from HIGH to LOW, 
and the BUSY# pin is LOW. The self-test takes 
about 220 clocks, or approximately 33 milliseconds 
with a 16 MHz 386 SX CPU. At the completion of 
self-test the processor performs reset and begins 
normal operation. The part has successfully passed 
self-test if the contents of the EAX are zero. If the 
results of the EAX are not zero then the self-test has 
detected a flaw in the part. 
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COMMAND-------------------------, 

WRITABLE------------------, 

USER-----------------, 

DIRTY ---------------, 

VALID -------------, 

LINEAR ADDRESS 

31 

PHYSICAL ADDRESS 

31 

1221 - INTEL RESERVED DO NOT USE 

TEST 
STATUS 

~PLI+~TR7 
12 4 3 2 
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Figure 2.6. Test Registers 

TLB TESTING 

The 386 SX Microprocessor also provides a mecha­
nism for testing the Translation Lookaside Buffer 
(TLB) if desired. This particular mechanism may not 
be continued in the same way in future processors. 

There are two TLB testing operations: 1) writing en­
tries into the TLB, and, 2) performing TLB lookups. 
Two Test Registers, shown in Figure 2.6, are provid­
ed for the purpose of testing. TR6 is the "test com­
mand register", and TR? is the "test data register". 
For a more detailed explanation of testing the TLB, 
see the 386TM SX Microprocessor Programmer's 
Reference Manual. 

2.10 Debugging Support 

The 386 SX Microprocessor provides several fea­
tures which simplify the debugging process. The 
three categories of on-chip debugging aids are: 

1. The code execution breakpoint opcode (OCCH). 

2. The single-step capability provided by the TF bit 
in the flag register. 

3. The code and data breakpoint capability provided 
by the Debug Registers DRO-3, DR6, and DR? 

BREAKPOINT INSTRUCTION 

A single-byte software interrupt (Int 3) breakpoint in­
struction is available for use by software debuggers. 

The breakpoint opcode is OCCh, and generates an 
exception 3 trap when executed. 

SINGLE·STEP TRAP 

If the single-step flag (TF, bit 8) in the EFLAG regis­
ter is found to be set at the end of an instruction, a 
single-step exception occurs. The single-step ex­
ception is auto vectored to exception number 1. 

DEBUG REGISTERS 

The Debug Registers are an advanced debugging 
feature of the 386 SX Microprocessor. They allow 
data access breakpoints as well as code execution 
breakpoints. Since the breakpoints are indicated by 
on-chip registers, an instruction execution break­
point can be placed in ROM code or in code shared 
by several tasks, neither of which can be supported 
by the INT 3 breakpoint opcode. 

The 386 SX Microprocessor contains six Debug 
Registers, consisting of four breakpoint address reg­
isters and two breakpoint control registers. Initially 
after reset, breakpoints are in the disabled state; 
therefore, no breakpoints will occur unless the de­
bug registers are programmed. Breakpoints set up in 
the Debug Registers are auto-vectored to exception 
1. Figure 2.? shows the breakpoint status and con­
trol registers. 
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BREAKPOINT 0 DEBUG FAULT/TRAP --------------------, 

BREAKPOINT I DEBUG FAULT/TRAP -------------------, 

BREAKPOINT 2 DEBUG FAULT/TRAP -----------------, 

BREAKPOINT 3 DEBUG FAULT/TRAP ----------------, 
DEBUG 
STATUS 
REGISTER 

REGISTER ACCESS FAULT -----, 

SINGLE-STEP DEBUG TRAP ---...., 

TASK SWITCH DEBUG TRAP 

G~I:G~g~:t ::~~~g:=~, ~~::t~: 1--------------...., 
LOCAL EXACT BREAKPOINT MATCH -------...., 

GLOBAL EXACT BREAKPOINT MATCH ------.... 

GLOBAL DEBUG REGISTER ACCESS DETECT 

BREAKPOINT 
.--___ .L... ___ ., CONTROL 

[ LENI: BREAKPOINT LENGTH I '-------------1 RWI: MEMORY ACCESS QUALIFIER I 

1221 - INTEL RESERVED DO NOT USE 
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Figure 2.7. Debug Registers 

3.0 REAL iviODE ARCHiTECTURE 

When the processor is reset or powered up it is, ini­
tialized in Real Mode. Real Mode has the same base 
architecture as the 8086, but allows access to the 
32·bit register set of the 386 SX Microprocessor. 
The addressing mechanism, memory size, and inter­
rupt handling are all identical to the Real Mode on 
the 80286. 

The default operand size in Real Mode is 16 bits, as 
in the 8086. In ,order to use the 32-bit registers and 
addressing modes, override prefixes must be used. 
In addition, the segment size on the 386 SX Micro­
processor in Real Mode is 64K bytes so 32·bit ad­
dresses must have a value less then OOOOFFFFH. 
The primary purpose of Real Mode is to set up the 
processor for Protected Mode operation. 

3. i iviemory Ac:ic:iressing 

In Real Mode the linear addresses are the same as 
physical addresses (paging is not allowed). Physical 
address~s are formed in Real Mode by adding the 
contents of the appropriate segment register which 
is shifted left by four bits to an effective address. 
This addition results in a 20-bit physical address or a 
1 megabyte address space. Since segment registers 
are shifted left by 4 bits, Real Mode segments al­
ways sta~ on 16-byte boundaries. 

All segments in Real Mode are exactly 64K bytes 
long, and may be read, written, or executed. The 
386 SX Microp'rocessor will generate an exception 
13 if a data operand or instruction fetch occurs past 
the end of a segment. 
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Table 3.1. Exceptions In Real Mode 

Function 
Interrupt 
Number 

I nterrupt table limit 8 
too small 

CS, DS, ES, FS, GS 13 
Segment overrun exception 

SS Segment overrun 12 
exception 

3.2 Reserved Locations 

There are two fixed areas in memory which are re­
served in Real address mode: the system initializa­
tion area and the interrupt table area. Locations 
OOOOOH through 003FFH are reserved for interrupt 
vectors. Each one of the 256 possible interrupts has 
a 4-byte jump vector reserved for it. Locations 
OFFFFFOH through OFFFFFFH are reserved for sys­
tem initialization. 

3.3 Interrupts 

Many of the exceptions discussed in section 2.7 are 
not applicable to Real Mode operation; in particular, 
exceptions 10, 11 and 14 do not occur in Real 
Mode. Other exceptions have slightly different 
meanings in Real Mode; Table 3.1 identifies these 
exceptions. 

3.4 Shutdown and Halt 

The HL T instruction stops program execution and 
prevents the processor from using the local bus until 
restarted. Either NMI, INTR with interrupts enabled 
(IF= 1), or RESET will force the 386 SX Microproc­
essor out of halt. If interrupted, the saved CS:IP will 
point to the next instruction after the HL T. 

Shutdown will occur when a severe error is detected 
that prevents further processing. In Real Mode, 
shutdown can occur under two conditions: 

1. An interrupt or an exception occurs (Exceptions 8 
or 13) and the interrupt vector is larger than the 
Interrupt Descriptor Table. 

2. A CALL, INT or PUSH instruction attempts to 
wrap around the stack segment when SP is not 
even. 

An NMI input can bring the processor out of shut­
down if the Interrupt Descriptor Table limit is large 
enough to contain the NMI interrupt vector (at least 

Related Return 
Instructions Address Location 

INT vector is not Before 
within table limit Instruction 

Word memory reference Before 
with offset = OFFFFH. Instruction 
an attempt to execute 
past the end of CS segment. 

Stack Reference Before 
beyond offset = OFFFFH Instruction 

OOOFH) and the stack has enough room to contain 
the vector and flag information (I.e. SP is greater that 
0005H). Otherwise, shutdown can only be exited by 
a processor reset. 

3.5 LOCK operation 

The LOCK prefix on the 386 SX Microprocessor, 
even in Real Mode, is more restrictive than on the 
80286. This is due to the addition of paging on the 
386 SX Microprocessor in Protected Mode and Vir­
tual 8086 Mode. The LOCK prefix is not supported 
during repeat string instructions. 

The only instruction forms where the LOCK prefix is 
legal on the 386 SX Microprocessor are shown in 
Table 3.2. 

Table 3.2. Legal Instructions for the LOCK Prefix 

Opcode 
Operands 

(Dest, Source) 

BIT Test and 
SET/RESET Mem, Regllmmediate 
/COMPLEMENT 

XCHG Reg, Mem 

XCHG Mem,Reg 

ADD, OR, ADC, SBB, 
AND, SUB, XOR Mem, Regllmmediate 

NOT, NEG, INC, DEC Mem 

An exception 6 will be generated if a LOCK prefix is 
placed before any instruction form or opcode not 
listed above. The LOCK prefix allows indivisible 
read/modify/write operations on memory operands 
using the instructions above. 

The LOCK prefix is not IOPL-sensitive on the 386 SX 
Microprocessor. The LOCK prefix can be used at 
any privilege level, but only on the instruction forms 
listed in Table 3.2. 

4-431 



386™ SX MICROPROCESSOR 

4.0 PROTECTED MODE 
ARCHITECTURE 

The complete capabilities of the 386 SX Microproc­
essor are unlocked when the processor operates in 
Protected Virtual Address Mode (Protected Mode). 
Protected Mode vastly increases the linear address 
space to four gigabytes (232 bytes) and allows the 
running of virtual memory programs of almost unlim­
ited size (64 terabytes (246 bytes)). In addition, Pro­
tected Mode allows the 386 SX Microprocessor to 
run ail of the existing 386 DX CPU (using oniy i 6 
megabytes of physical memory), 80286 and 8086 
CPU's software, while providing a sophisticated 
memory management and a hardware-assisted pro­
tection mechanism. Protected Mode allows the use 
of additional instructions specially optimized for sup­
porting multitasking operating systems. The base ar­
chitecture of the 386 SX Microprocessor· remains 
the same; the registers, instructions, and addressing 
modes described in the previous sections are re­
tained. The main difference between Protected 
Mode and Real Mode from a programmer's view­
point is the increased address space and a different 
addressing mechanism. 
I 

4.1 Addressing Mechanism 

Like Real Mode, Protected Mode uses two compo­
nents to form the logical address; a 16-bit selector is 
used to determine the linear base address of a seg­
ment, the base address is added to a 32-bit effective 
address to form a 32-bit linear address. The linear 
address is then either used as a 24-bit physical ad­
dress, or if paging is enabled the paging mechanism 
maps the 32-bit linear address into a 24-bit physical 
,.....1,.1 .. ,.. ... ,.. 
QUUIV~"'. 

The difference between the two modes lies in calcu­
lating the base address. In Protected Mode, the se­
lector is used to specify an index into an operating 
system defined table (see Figure 4.1). The table 
contains the 32-bit base address of a given seg­
ment. The physical address is formed by adding the 
base address obtained from the table to the offset. 

Paging provides an additional memory management 
mechanism which operates only in Protected Mode. 
Paging provides a means of managing the very large 
segments of the 386 SX Microprocessor, as paging 
operates beneath segmentation. The page mecha­
nism translates the protected linear address which 
comes from the segmentation unit into a physical 
address. Figure 4.2 shows the complete 38~ SX Mi­
croprocessor addressing mechanism with paging 
enabled. 

4.2 Segmentation 

Segmentation is one method of memory manage­
ment. Segmentation provides the basis for protec­
tion. Segments are used to encapsulate regions of 
memory which have common attributes. For exam­
ple, all of the code of a given program could be con­
tained in a segment, or an operating system table 
may reside in a segment. All information about each 
segment is stored in an 8 byte data structure called 
a descriptor. All of the descriptors in a system are 
coniained in descriptor tabies which are recognized 
by hardware. 

TERMINOLOGY 

The following terms are used throughout the discus­
sion of descriptors, privilege levels and protection: 

PL: Privilege Level-One of the four hierarchical 
privilege levels. Level 0 is the most privileged 
level and level 3 is the least privileged. 

RPL: Requestor Privilege Level-The privilege level 
of the original supplier of the selector. RPL is 
determined by the least two significant bits of 
a selector. 

DPL: Descriptor Privilege Level-This is the least 
privileged level at which a task may access 
that descriptor (and the segment associated 
with that descriptor). Descriptor Privilege Lev­
el is determined by bits 6:5 in the Access 
Right Byte of a descriptor. 

CPL: Current Privilege Level-The privilege level at 
which a task is currently executing, which 
equals the privilege level of the code segment 
being executed. CPL can also be determined 
bv examinina the IOWA!1t ? hit!! of thA r.~ rl'lni!!­
ter, except i'or conforming co-de· ~egment~~·-

EPL: Effective Privilege Level-The effective privi­
lege level is the least privileged of the RPL 
and the DPL. EPL is the numerical maximum 
of RPL and DPL. 

Task: One instance of the execution of a program. 
Tasks are also referred to as processes. 

DESCRIPTOR TABLES 

The descriptor tables define all of the segments 
which are used in a 386 SX Microprocessor system. 
There are three types of tables which hold descrip­
tors: the Global Descriptor Table, Local Descriptor 
Table, and the Interrupt Descriptor Table. All of the 
tables are variable length memory arrays and can 
vary in size from 8 bytes to 64K bytes. Each table 
can hold up to 8192 8-byte descriptors. The upper 
13 bits of a selector are used as an index into the 
descriptor table. The tables have registers associat­
ed with them which hold the 32-bit linear base ad­
dress and the 16-bit limit of each table. 
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Each of the tables has a register associated with it: 
GDTR, LDTR, and IDTR; see Figure 2.1. The LGDT, 
LLDT, and LlDT instructions load the base and limit 
of the Global, Local, and Interrupt Descriptor Tables 
into the appropriate register. The SGDT, SLDT, and 
SIDT store the base and limit values. These are priv­
ileged instructions. 

Global DescrIptor Table 

The Global Descriptor Table (GDT) contains de­
scriptors which are avaiiable to ail Of the tasKs in a 
system. The GDT can contain any type of segment 
descriptor except for interrupt and trap descriptors. 
Every 386 SX CPU system contains a GDT. 

The first slot of the Global Descriptor Table corre­
sponds to the null selector and is not used. The null 
selector defines a null pointer value. 

Local Descriptor Table 

LDTs contain descriptors which are associated with 
a given task. Generally, operating systems are de­
signed so that each task has a separate LDT. The 
LDT may contain only code, data, stack, task gate, 
and call gate descriptors. LDTs provide a mecha­
nism for isolating a given task's code and data seg­
ments from the rest of the operating system, while 
the GDT contains descriptors for segments which 
are common to all tasks. A segment cannot be ac­
cessed by a task if its segment descriptor does not 
exist in either the current LDT or the GDT. This pro­
vides both isolation and protection for a task's seg­
ments while still allowing global data to be shared 
among tasks. 

I ~1 
Y' 

Unlike the 6-byte GDT or IDT registers which contain 
a base address and limit, the visible portion of the 
LDT register contains only a 16-bit selector. This se- . 
lector refers to a Local Descriptor Table descriptor in 
the GDT (see figure 2.1). 

Interrupt Descriptor Table 

The third table needed for 386 SX Microprocessor 
systems is the Interrupt Descriptor Table. The IDT 
contains the descriptors which point to the location 
Of the up to 256 interrupt service routines. The iOr 
may contain only task gates, interrupt gates, and 
trap gates. The IDT should be at least 256 bytes in 
size in order to hold the descriptors for the 32 Intel 
Reserved Interrupts. Every interrupt used by a sys­
tem must have an entry in the IDT. The IDT entries 
are referenced by INT instructions, external interrupt 
vectors, and exceptions. 

DESCRIPTORS 

The object to which the segment selector points to 
is called a descriptor. Descriptors are eight byte 
quantities which contain attributes about a given re­
gion of linear address space. These attributes in­
clude the 32-bit base linear address of the segment, 
the 20-bit length and granularity of the segment, the 
protection level, read, write or execute privileges, 
the default size of the operands (16-bit or 32-bit), 
and the type of segment. All of the attribute informa­
tion about a segment is contained in 12 bits in the 
segment descriptor. Figure 4.4 shows the general 
format of a descriptor. All segments on the 386 SX 
Microprocessor have three attribute fields in com­
mon: the. P bit, the DPL bit, and the S bit. The P 

n RYTI= - _ .. -
ADDRESS 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 
0 

BASE 31 ... 24 G D 0 AVL 
LIMIT 

P DPL S TYPE A 
BASE 

+4 
19 ... 16 

I I I 
23 ... 16 

BASE Base Address of the segment 
LIMIT The length of the segment 
P Present Bit 1 = Present 0= Not Present 
DPL Descriptor Privilege Level 0-3 
S Segment Descriptor 0= System Descriptor 1 = Code or Data Segment Descriptor 
TYPE Type of Segment 
A Accessed Bit 
G Granularity Bit 1 = Segment length is page granular 0= Segment length is byte granular 
D Default Operation Size (recognized in code segment descriptors only) 1 = 32-bit segment 0= 16-bit segment 
0 Bit must be zero (0) for compatibility with future processors 
AVL Available field for user or OS 

Figure 4.4. Segment Descriptors 
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(Present) Bit is 1 if the segment is loaded in physical 
memory. If P ='0 then any attempt to access this 
segment causes a not present exception (exception 
11). The Descriptor Privilege Level, DPL, is a two bit 
field which specifies the protection level, 0-3, asso­
ciated with a segment. 

or a code or data segment. If the S bit is 1 then the 
segment is either a code or data segment; if it is 0 
then the segment is a system segment. 

Code and Data Descriptors (5= 1) 

The 386 SX Microprocessor has two main catego­
ries of segments: system segments and non-system 
segments (for code and data). The segment bit, S, 
determines if a given segment is a system segment 

Figure 4.5 shows the general format of a code and 
data descriptor and Table 4.1 illustrates how the bits 
in the Access Right Byte are interpreted. 

31 o 
SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 o 

LIMIT 
ACCESS BASE 

BASE 31 ... 24 G D 0 AVL RIGHTS 
19 ... 16 

BYTE 
23 ... 16 

+4 

DIB 1 = Default InstructIons Attributes are 32-Bits 
0= Default Instruction Attributes are 16-Bits 

AVL Available field for user or as 

G Granularity Bil 1 = Segment length is page granular 
0= Segment length is byte granular 

o Bit must be zero (0) for compatibility with future processors 

Figure 4.5. Code and Data Descriptors 

Table 4.1. Access Rights Byte Definition for Code and Data Descriptors 

Bit 
Name Function 

Position 

7 Present (P) P=1 Segment is mapped into physical memory. 
p=o No mapping to physical memory exists, base and limt are 

not used. 
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests. 

Level (DPL) 
4 Segment Descrip- S = 1 Code or Data (includes stacks) segment descriptor 

tor (S) S=O System Segment Descriptor or Gate Descriptor 

3 Executable (E) E=O Descriptor type is data segment: r 2 Expansion Direc- ED = 0 Expand up segment, offsets must be ::;: limit. Data 
tion (ED) ED = 1 Expand down segment, offsets must be > limit. Segment 

1 Writeable (W) W . = 0 Data segment may not be written into. (5 = 1, 
W = 1 Data segment may be written into. E = 0) 

3 Executable (E) E = 1 Descriptor type is code segment: If 
2 Conforming (C) C = 1 Code segment may only be executed 

r~ when CPL ~ DPLand CPL Segment 
remains unchanged. (S = 1, 

1 Readable (R) R=O Code segment may not be read. E = 1) 
R = 1 Code segment may be read. 

0 Accessed (A) A=O Segment has not been accessed. 
A=1 Segment selector has been loaded into segment register 

or used by selector test instructions. 
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31 

SEGMENT BASE 15 ... 0 

BASE 31 ... 24 

Type Defines 
o Invalid 
1 Available 80286 TSS 
2 LOT 
3 Busy 80286 TSS 
4 80286 Call Gate 

16 

LIMIT 
19 ... 16 

5 Task Gate (for 80286 or 386TM SX Microprocessor Task) 
6 80286 Interrupt Gate 
7 80286 Trap Gate 

o 
SEGMENT LIMIT 15 ... 0 

P 

Type Defines 
8 Invalid 

TYPE 
BASE 

23 ... 16 

9 Available 386TM SX Microprocessor TSS 
A Undefined (Intel Reserved) 
B Busy 386TM SX Microprocessor TSS 
C 386™ Sx Microprocessor Cali Gale 
o Undefined (Intel Reserved) 
E 386™ SX Microprocessor Interrupt Gate 
F 386™ SX Microprocessor Trap Gate 

o 

+4 

Figure 4.6. System Descriptors 

Code and data segments have several descriptor 
fields in common. The accessed bit, A, is set when­
ever the processor accesses a descriptor. The gran­
ularity bit, G, specifies if a segment length is byte­
granular or page-granular. 

System Descriptor Formats (S = 0) 

System segments describe information about oper­
ating system tables, tasks, and gates. Figure 4.6 
shows the general format of system segment de­
scriptors, and the various types of system segments. 
386 SX system descriptors (which are the same as 
386 DX CPU system descriptors) contain a 32-bit 
base linear address and a 20-bit segment limit. 
80286 system descriptors have a 24-bit base ad­
dress and a 16-bit segment limit. 80286 system de­
scriptors are identified by the upper 16 bits being all 
zero. 

D!fferences Between 386™ SX Microprocessor 
and 80286 Descriptors 

In order to provide operating system compatibility 
with the 80286 the 386 SX CPU supports all of the 
80286 segment descriptors. The 80286 system seg­
ment descriptors contain a 24-bit base address and 
16-bit limit, while the 386 SX CPU system segment 
descriptors have a 32-bit base address, a 20-bit limit 
field, and a granularity bit. The word count field 
specifies the number of 16-bit quantities to copy for 
80286 call gates and 32-bit quantities for 386 SX 
CPU call gates. 

Selector Fields 

A selector in Protected Mode has'three fields: Local 
or Global Descriptor Table indicator (TI), Descriptor 
Entry Index (Index), and Requestor (the selector's) 
Privilege Level (RPL) as shown in Figure 4.7. The TI 
bit selects either the Global Descriptor Table or the 
Local Descriptor Table. The Index selects one of 8k 
descriptors in the appropriate descriptor table. The 
RPL bits allow high speed testing of the selector's 
privilege attributes. 

Segment Descriptor Cache 

In addition to the selector value, every segment reg­
ister has a segment descriptor ·cache register asso­
ciated with it. Whenever a segment register's con­
tents are changed, the 8-byte descriptor associated 
with that selector is automatically loaded (cached) 
on the chip. Once loaded. all references to that seg­
ment use the cached descriptor information instead 
of raaccGssing the descriptor. The contents of the 
descriptor cache are not visible to the programmer. 
Since descriptor caches only change when a seg· 
ment register is changed, programs which modify 
the descriptor tables must reload the appropriate 
segment registers after changing a descriptor's val· 
ue. 
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SELECTOR 

15 432 1 D 

SEGMENT 
REGISTER I DID ---- DID 1 11 gil R~L I . , 

TABLE INDEX 
INDICATOR 

N 

6 

5 

4 

~ 
2 

1 

D 

TI=1 

DESCRIPTOR 

LOCAL 
DESCRIPTOR 

TABLE 

DESCRIPTOR 
NUMBER 

N 

6 

5 

4 

3 

2 

1 

D 

TI=D~ 

• 

NULL 

GLOBAL 
DESCRIPTOR 

TABLE 
240187-12 

Figure 4.7. Example Descriptor Selection 

4.3 Protection 

The 386 SX Microprocessor has four levels of pro­
tection which are optimized to support a multi-task­
ing operating system and to isolate and protect user 
programs from each other and the operating system. 
The privilege levels control the use of privileged in­
structions, I/O instructions, and access to segments 
and segment descriptors. The 386 SX Microproces­
sor also offers an additional type of protection on a 
page basis when paging is enabled. 

The four-level hierarchical privilege system is an ex­
tension of the user/supervisor privilege mode com­
monly used by minicomputers. The user/supervisor 
mode is fully supported by the 386 SX Microproces­
sor paging mechanism. The privilege levels (PL) are 
numbered 0 through 3. Level 0 is the most privileged 
level. 

RULES OF PRIVILEGE 

The 386 SX Microprocessor controls access to both 
data and procedures between levels of a task, ac­
cording to the following rules. 

- Data stored in a segment with privilege level p 
can be accessed only by code executing at a 
privilege level at least as privileged as p. 

- A code segment/procedure with privilege level p 
can only be called by a task executing at the 
same or a lesser privilege level than p. 

PRIVILEGE LEVELS 

At any point in time, a task on the 386 SX Microproc­
essor always executes at one of the four privilege 
levels. The Current Privilege Level (CPL) specifies 
what the task's privilege level is. A task's CPL may' 
only be changed by control transfers through gate 
descriptors to a code segment with a different privi­
lege level. Thus, an application program running at 
PL=3 may call an operating system routine at 
PL= 1 (via a gate) which would cause the task's CPL 
to be set to 1 until the operating system routine was 
finished. 

Selector Privilege (RPL) 

The privilege level of a selector is specified by the 
RPL field. The selector's RPL is only used to estab­
lish a less trusted privilege level than the current 
privilege level of the task for the use of a segment. 
This level is called the task's effective privilege level 
(EPL). The EPL is defined as being the least privi­
leged (numerically larger) level of a task's CPL and a 
selector's RPL. The RPL is most commonly used to 
verify that pointers passed to an operating system 
procedure do not access data that is of higher privi­
lege than the procedure that originated the pointer. 
Since the originator of a selector can specify any 
RPL value, the Adjust RPL (ARPL) instruction is pro­
vided to force the RPL bits to the originator's CPL. 
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Table 4.2. Descriptor Types Used for Control Transfer 

Control Transfer Types 

Intersegment within the same privilege level 

Intersegment to the same or higher privilege level 
Interrupt within task may change CPL 

Intersegment to a lower privilege level 
(changes task CPL) 

Task Switch 

"NT (Nested Task bit of flag register) = 0 
"NT (Nested Task bit of flag register) = 1 

I/O Privilege 

The 110 privilege level (IOPL) lets the operating sys­
tem code executing at CPL = 0 define the least privi­
leged level at which 110 instructions can be used. An 
exception 13 (General Protection Violation) is gener­
ated if an 110 instruction is attempted when the CPL 
of the task- is less privileged then the 10PL. The 
IOPL is stored in bits 13 and 14 of the EFLAGS reg­
ister. The following instructions cause an exception 
13 if the CPL is greater than 10PL: IN, INS, OUT, 
OUTS, .ST!, CLI, LOCK pr",fix. 

Descriptor Access 

There are basically two types of segment accesses: 
those involving code segments such as control 
transfers, and those involving data accesses. Oeter­
mining the ability of a task to access a segment in­
volves the type of segment to be accessed, the in­
struction used, the type of descriptor used and CPL, 
RPL, and OPL as described above. 

Any time an instruction loads a data segment regis­
ter (OS, ES, FS, GS) the 386 SX Microprocessor 
makes protection validation checks. Selectors load­
ed in the OS, ES, FS, GS registers must refer only to 
data segment or readable code segments. 

Operation-Types 
Descriptor Descriptor 
Referenced Table 

JMP, CALL R,ET, JRET* Code Segment GOT/LOT 

CALL Call Gate GOT/LOT 

Interrupt instruction Trap or lOT 
Exception External _ Interrupt 
Interrupt Gate 

RET, iRET" Code Segment GDiiLDT 

CALL,JMP Task State GOT 
Segment· 

CALL,JMP Task Gate GOT/LOT 

IRET** Task Gate lOT 
Interrupt instruction, 
Exception, External 
Interrupt 

Finally the privilege validation checks are performed. 
The CPL is compared to the EPL and if the EPL is 
more privileged than the CPL, an exception 13 (gen­
eral protection fault) is generated. 

The rules regarding the stack segment are slightly 
different than those involving data segments. In­
structionsthat load selectors into SS must refer to 
data segment descriptors for writeable data seg­
ments. The OPL and RPL must equal the CPL of all 
other descriptor types or a privilege level violation 
will cause an exception 13. A stack not present fault 
causes an exception 12. 

PRIVILEGE LEVEL TRANSFERS 

Inter-segment control transfers occur when a selec­
tor is loaded in the CS register. For a typical system 
most of these transfers are Simply the result of a call 
or a jump to another routine. There are five types of 
control transfers which are summarized in Table 4.2. 
Many of these transfers result in a privilege level 
transfer. Changing privilege levels is done only by 
control transfers, using gates, task switches, and in­
terrupt or trap gates. 

Control transfers can only occur if the operation 
which loaded the selector references the correct de­
scriptor type. Any violation of these descriptor usage 
rules will cause an exception 13. 
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Figure 4.9. Sample 110 Permission Bit Map 
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Gates provide protected indirect CALLs. One of the 
major uses of gates is to provide a secure method of 
privilege transfers within a task. Since the operating 
system defines all of the gates in a' system, it can 
ensure that all gates only allow entry into a few trust­
ed procedures. 

TASK SWITCHING 

A Vf,3ry important attribute of any multi-tasking/multi­
user operating system is its ability to rapidly switch 
between tasks or processes. The 386 SX Microproc­
essor directly supports this operation by providing a 
task switch instruction in hardware. The task switch 
operation saves the entire state of the machine (all 
of the registers, address space, and a link to the 
previous task), loads a new execution state, per­
forms protection checks, and commences execution 
in the new task. Like transfer of control by gates, the 
task switch operation is invoked by executing an in­
ter-segment JMP or CALL instruction which refers to 
a Task State Segment (TSS), or a task gate descrip­
tor in the GOT or LOT. An INT n instruction, excep­
tion, trap, or external interrupt may also invoke the 
task switch operation if there is a task gate descrip­
tor in thp. Associated lOT descriptor slot. 

The TSS descriptor points to a segment (see Figure 
4.8) containing the entire execution state. A task 
gate descriptor contair)s a TSS selector. The 386 SX 
Microprocessor supports both 286 and 386 SX CPU 
TSSs. The limit of a 386 SX Microprocessor TSS 
must be greater than 64H (2BH for a 286 TSS), and 
can be as large as 16 megabytes. In the additional 
TSS space, the operating system is free to store ad­
ditional information such as the reason the task is 
inactive, time the task has spent running, or open 
files belonging to the task. 

Each task must have a TSS associated with it. The 
current TSS is identified by a special register in the 
386 SX Microprocessor called the Task State Seg­
ment Register (TR). This register contains a selector 
referring to the task state segment descriptor that 
defines the current TSS. A hidden base and limit 
register associated with TSS descriptor are loaded 
whenever TR is loaded with a new selector. Return­
ing from a task is accomplished by the IRET instruc­
tion. When IRET is executed, control is returned to 

the task which was interrupted. The currently exe­
cuting task's state is saved in the TSS and the old 
task state is restored from its TSS. 

Several bits in the flag register and machine status 
word (CRO) give information about the state of a 
task which is useful to the operating system. The 
Nested Task bit, NT, controls the function of the 
IRET instruction. If NT=O the IRET instruction per­
forms the regular return. If NT= 1 IRET performs a 
task switch operation back to the previous task. The 
NT bit is set or reset in the following fashion: 

When a CALL or INT instruction initiates a task 
switch, the new TSS will be marked busy and 
the back link field of the new TSS set to the old 
TSS selector. The NT bit of the new task is set 
by CALL or INT initiated task switches. An in­
terrupt that does not cause a task switch will 
clear NT (The NT bit will be restored after exe­
cution of the interrupt handler). NT may also be 
set or cleared by POPF or IRET instructions. 

The 386 SX Microprocessor task state segment is 
marked busy by changing the descriptor type field 
from TYPE 9 to TYPE OBH. A 286 TSS is marked 
busy by changing the descriptor type field from 
TYPE 1 to TYPE 3. Use of a selector that references 
a busy task state segment causes an exception 13. ' 

The VM (Virtual Mode) bit is used to indicate if a task 
is a Virtual 8086 task. If V~,,1 = 1 than the tasks \A ... i!! 
use the Real Mode addressing mechanism. The vir­
tual 8086 environment is only entered and exited by 
a task switch. 

The coprocessor's state is not automatically saved 
when a task switch occurs. The Task Switched Bit, 
TS, in the CRO register helps deal with the coproces­
sor's state in a multi-tasking environment. Whenever 
the 386 SX Microprocessor switches task, it sets the 
TS bit. The 386 SX Microprocessor detects the first 
use of a processor extension instruction after a task 
switch and causes the processor extension not 
available exception 7. The exception handler for ex­
ception 7 may then decide whether to save the state 
of the coprocessor. 

The T bit in the 386 SX Microprocessor TSS indi­
cates that the processor should generate a debug 
exception when switching to a task. If T = 1 then 
upon entry to a new task a debug exception 1 will be 
generated. 
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INITIALIZATION AND TRANSITION TO 
PROTECTED MODE 

Since the 386 SX Microprocessor begins executing 
in Real Mode immediately after RESET it is neces­
sary to initialize the system tables and registers with 
the appropriate values. The GDT and IDT registers 
must refer to a valid GDT and IDT. The IDT should 
be at least 256 bytes long, and the GDT must con­
tain descriptors for the initial code and data seg· 
ments. 

Protected Mode is enabled by loading CRO with PE 
bit set. This can be accomplished by using the MOV 
CRO, RIM instruction. After enabling Protected 
Mode, the next instruction should execute an inter­
segment JMP to load the CS register and flush the 
instruction decode queue. The final step is to load all 
of the data segment registers with the initial selector 
values. 

An alternate approach to entering Protected Mode is 
to use the built in task·switch to load all of the regis­
ters. In this case the GDT would contain two TSS 
descriptors in addition to the code and data descrip­
tors needed for the first task. The first JMP instruc· 
tion in Protected Mode would jump to the TSS caus­
ing a task switch and loading all of the registers with 
the values stored in the TSS. The Task State Seg· 
ment Register should be initialized to point to a valid 
TSS descriptor. 

4.4 Paging 

Paging is another type of memory management use­
ful for virtual memory multi-tasking operating sys­
tems. Unlike segmentation, which modularizes pro­
grams and data into variable length segments, pag­
ing divides programs into .multiple uniform size 
pages. Pages bear no direct relation to the logical 
structure of a program. While segment selectors can 
be considered the logical 'name' of a program mod­
ule or data structure, a page most likely corresponds 
to only a portion of a module or data structure. 

PAGE ORGANIZATION 

The 386 SX Microprocessor uses two levels of tao 
bles to translate the linear address (from the seg­
mentation unit) into a physical address. There are 
three components to the paging mechanism of the 
386 SX Microprocessor: the page directory, the 
page tables, and the page itself (page frame). All 
memory-resident elements of the 386 SX Microproc· 
essor paging mechanism are the same size, namely 
4K bytes. A uniform size for all of the elements sim­
plifies memory allocation and reallocation schemes. 
since there is no problem with memory fragmenta­
tion. Figure 4.10 shows how the paging mechanism 
works. 

TWO LEVEL PAGING SCHEME 

31 22 12 0 

~ DIRECTORY I TABLE I OFFSET I USER 
LINEAR MEMORY 

ADDRESS 
10} 

I 12 
10 

OFFFFFFH 

31 
ADDRESS 'f 31 't 31 0 

CRO I 

t f-+ CR1 

o 

PAGE TABLE 
CR2 

CR3 ROOT 
DIRECTORY 

CONTROL REGISTERS 

Figure 4.10. Paging Mechanism 
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Figure 4.11. Page Directory Entr~ (Points to Page Table) 
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31 12 11 10 9 8 7 6 5 4 3 2 1 0 

System U R 
PAGE FRAME ADDRESS 31 .. 12 Software 0 0 D A 0 0 - - P 

Defineable S W 

FIgure 4.12. Page Table Entry (Points to Page) 

Page Fault Register 

CR2 is the Page Fault Linear Address register. It 
holds the 32-bit linear address which caused the IR!'lt 
Page Fault detected. . .. - ._._. 

Page Descriptor Base Register 

CR3 is the Page Directory Physical Base Address 
Register. It contains the physical starting address of 
the Page Directory (this value is truncated to a 24-bit 
value ass~ciated with the 386 SX CPU's 16 mega­
byte phYSical memory limitation). The lower 12 bits 
of CR3 ~re always zero to ,ensure that the Page Di-

. rectory IS always page aligned. Loading it with a 
MOV eR3, reg instruction causes the page table en­
try cache to be flushed, as will a task switch through 
a TSS which changes the value of CRO. 

Page Directory 

The Page Directory is 4k bytes long and allows up to 
1024 page directory entries, Each page directory en­
try contains information about the page table and 
the address of the next level of tables, the Page 
Tables., T~e contents of a Page Directory Entry are 
shown In figure 4.11. The upper 10 bits of the linear 
address (A31-A22) are used as an index to select 
the correct Page Directory Entry. 

The page tabla address contains the upper 20 bits 
of a 32-bit physical address that is used as the base 
address for the next set of tables, the page tables. 
The lower 12 bits of the page table address are zero 
so that the page table addresses appear on 4 kbyte 
boundaries. For a 386 DX CPU system the upper 20 
bits will select one of 220 page tables, but for a 
386 SX Microprocessor syst~m the upper 20 bits 
only select one of 212 page tables. Again, this is 
because the 386 SX Microprocessor is limited to a 
24-bit physical address and the upper 8 bits (A24-
A31) are truncated when the address is output on its 
24 address pins. 

Page Tables 

Each Page Table is 4K bytes long and allows up to 
1024 Page table Entries. Each page table entry con­
tains information about the Page Frame and its ad-

dress. The contents of a Page Table Entry are 
shown in figure 4.12. The middle 10 bits of the linear 
address (A21-A12) are used as an index to select 
the correct Page Table Entry. . 

The Page Frame Address contains the upper 20 bits 
of a 32-bit physical address that is used as the base 
address for the Page Frame: The lower 12 bits of the 
Page Frame Address are zero so that the Page 
Frame addresses appear on 4 kbyte boundaries. For 
an 386 DX CPU system the upper 20 bits will select 
one of 220 Page Frames, but for an 386 SX Micro­
processor system the upper 20 bits only select one 
of 212 Page Frames. Again, this is because the 
386 SX Microprocessor is limited to a 24-bit physical 
address space and the upper 8 bits (A24-A31) are 
truncated when the address is output on its 24 ad-
dress pins. . 

Page Directory/Table Entries 

The lower 12 bits of the Page Table Entries and 
Page Directory Entries contain statistical information 
about pages and page tables respectively. The P 
(Present) bit indicates if a Page Directory or Page 
Table entry,can be used in address translation. If 
P = 1, the entry can be used for address translation. 
If P = 0, the entry cannot be used for translation. All 
of the other bits are available for use by the soft­
ware. For example, the i6iiiaiiiiiig 31 bits could be 
used to indicate where on disk the page is stored. 

The A (Accessed) bit is set by the 386 SX CPU for 
both types of entries before a read or write access 
occurs to an address covered by the entry. The D 
(Dirty) bit is set to 1 before a write to an address 
covered by that page table entry occurs. The D bit is 
undefined for Page Directory Entries, When the P, A 
and D bits are updated by the 386 SX CPU, the proc­
essor generates a Read- Modify-Write cycle which 
locks the bus and pievents conflicts ~'Vith other proc­
essors or peripherals. Software which modifies 
these bits should use the LOCK prefix to ensure the 
integrity of the page tables in mUlti-master systems. 

The 3 bits marke~ system software definable in Fig­
ures 4.11 and Figure 4.12 are software definable. 
System software writers are free to use these bits 
for whatever purpose they wish. 
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PAGE LEVEL PROTECTION (R/W, U/S BITS) 

The 386 SX Microprocessor provides a set of pro­
tection attributes for paging systems. The paging 
mechanism distinguishes between two levels of pro­
tection: User, which corresponds to level 3 of the 
segmentation based protection, and supervisor 
which encompasses all of the other protection levels 
(0, 1, 2). Programs executing at Level 0, 1 or 2 by­
pass the page protection, although segmentation­
based protection is still enforced by the hardware. 

The U/S and R/W bits are used to provide User/Su­
pervisor and Read/Write protection for individual 
pages or for all pages covered by a Page Table Di­
rectory Entry. The U/S and R/W bits in the second 
level Page Table Entry apply only to the page de­
scribed by that entry. While the U/S and R/W bits in 
the first level Page Directory Table apply to all pages 
described by the page table pointed to by that direc­
tory entry. The U/S and R/W bits for a given page 
are obtained by taking the most restrictive of the U/ 
Sand R/W from the Page Directory Table Entries 
and using these bits to address the page. 

TRANSLATION LOOKASIDE BUFFER 

The 386, SX Microprocessor paging hardware is de­
signed to support demand paged virtual memory 
systems. However, performance would degrade 
substantially if the processor was required to access 
two levels of tables for every memory reference. To 
solve this problem, the 386 SX Microprocessor 
keeps a cache of the most recently accessed pages, 
this cache is called the Translation Lookaside Buffer 
(TLB). The TLB is a four-way set associative 32-en~ , 
try page table cache. It automatically keeps the most 
commonly used page table entries in the processor. 
The 32-entry TLB coupled with a 4K page size re­
sults in coverage of 128K bytes of memory address­
es. For many common multi-tasking systems, the 
TLB will have a hit rate of greater than 98%. This 
means that the processor will only have to access 
the two-level page structure for less than 2% of all 
memory references. 

PAGING OPERATION 

The paging hardware operates in the following fash­
ion. The paging unit hardware receives a 32-bit lin­
ear address from the segmentation unit. The upper 
20 linear address bits are compared with all 32 en­
tries in the TLB to determine if there is a match. If 
there is a match (i.e. a TLB hit), then the 24-bit phys­
ical address is 'calculated and is placed on the ad­
dress bus. 

If the page table entry is not in the TLB, the 386 SX 
Microprocessor will read the appropriate Page Direc­
tory Entry. If P = 1 on the Page Directory Entry, indi­
cating that the page table is in memory, then the 386 
SX Microprocessor will read the appropriate 

Page Table Entry and set the Access bit. If P= 1 on 
the Page Table Entry, indicating that the page is in 
memory, the 386 SX Microprocessor will update the 
Access and Dirty bits as needed and fetch the oper­
and. The upper 20 bits of the linear address, read 
from the page table, will be stored in the TLB for 
future accesses. If P = 0 for either the Page Directo­
ry Entry or the Page Table Entry, then the processor 
will generate a page fault Exception 14. 

The processor will also generate a Page Fault (Ex­
ception 14) if the memory reference violated the 
page protection attributes. CR2 will hold the linear 
address which caused the page fault. Since Excep­
tion 14 is classified as a fault, CS:EIP will point to the 
instruction causing the page-fault. The 16-bit error 
code pushed as part of the page fault handler will 
contain status bits which indicate the cause of the 
page fault. 

The 16-bit error code is used by the operating sys­
tem to determine how to handle the Page Fault. Fig­
ure 4.13 shows the format of the Page Fault error 
code and the interpretation of the bits. Even though 
the bits in the error code (U/S, W/R, and P) have 
similar names as the bits in the Page Directory/Ta­
ble Entries, the interpretation of the error code bits is 
different. Figure 4.14 indicates what type of access 
caused the page fault. 

15 3 2 1 0 

I+I+H+I+I+H+I~I~H 
Figure 4.13. Page Fault Error Code Format 

U/S: The U/S bit indicates whether the access 
causing the fault occurred when the processor was 
executing in User Mode (UiS = 1) or in Supervisor 
mode (U/S = 0) 

W/R: The W/R bit indicates whether the access 
causing the fault was a Read (W/R = 0) or a Write 
(W/R = 1) 

P: The P bit indicates whether a page fault was 
caused by a not-present page (P = 0), or by a page 
level protection violation (P = 1) 

U = Undefined 

U/S W/R Access Type 

0 0 Supervisor' Read 
0 1 Supervisor Write 
1 0 User Read 
1 1 User Write 

'DeSCriptor table access Will fault with U/S = 0, even If 
the program is executing at level 3. 
Figure 4.14. Type of Access Causing Page Fault 
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OPERATING SYSTEM RESPONSIBILITIES 

When the operating system enters or exits paging 
mode (by setting or resetting bit 31 in the CRO regis­
ter) a short JMP must be executed to flush the 
386 SX Microprocessor's prefetch queue. This en­
sures that all instructions executed after the address 
1T)0de change will generate correct addresses. 

The 386 SX Microprocessor takes care of the page 
address translation process, relieving the burden 
from an operating system in a demand-paged sys­
tem. The operating system is responsible for setting 
up the initial page tables and handling any page 
faults. The operating system also is required to inval­
idate (Le. flush) the TLB when any changes are 
made to any of the page table entries. The operating 
system must reload CR3 to cause the TLB to be 
flushed. . 

Setting up the tables is simply a matter of loading 
CR3 with the address of the Page Directory, and 
allocating space for the Page Directory and the 
Page Tables. The primary responsibility of the oper­
ating system is to implement a swapping policy and 
handle all of the page faults. 

A final concern of the operating system is to ensure 
that the TLB cache matches the information in the 
paging tables. In particular, any time the operating 
systems sets the P (Present) bit of page table entry 
to zero. The TLB must be flushed by reloading CR3. 
Operating systems may want to take advantage of 
the fact that CR3 is stored as part of a TSS, to give 
every task or group of tasks its own set of page 
tables. .. 

4.5 Virtual 8086 Environment 

The 386 SX Microprocessor allows the execution of 
8086 application programs in both Real Mode and in 
the Virtual 8086 Mode. The Virtual 8086 Mode al­
lows the execution of 8086 applications, while still 
allowing the system designer to take full advantage 
of the 386 SX CPU's protection mechanism. 

VIRTUAL 8086 ADDRESSING MECHANISM 

One of the major differences between 386 SX CPU 
Real and Protected modes is how the segment se­
lectors are interpreted. When the processor is exe­
cuting in Virtual 8086 Mode, the segment registers 
are used in a fashion identical to Real Mode. The 
contents of the segment register are shifted left 4 
bits and added to the offset to form the segment 
base linear address. 

The 386 SX Microprocessor allows the operating 
system to specify which programs use the 8086 ad-

dress mechanism and which programs use Protect­
ed Mode addressing on a per task basis. Through 
the use of paging, the one megabyte address space 
of the Virtual Mode task can be mapped to any­
where in the 4 gigabyte linear address space of the 
386 SX Microprocessor. Like Real Mode, Virtual 
Mode addresses that exceed one megabyte will 
cause an exception 13. However, these restrictions 
should not prove to be important, because most 
tasks running in Virtual 8086 Mqde will simply be 
existing 8086 application programs. 

PAGING IN VIRTUAL MODE 

The paging hardware allows the concurrent running 
of multiple Virtual Mode tasks, and provides protec­
tion and operating system isolation. Although it is 
not strictly necessary to have the paging hardware 
enabled to run Virtual Mode tasks, it is needed in 
order to run multiple Virtual Mode tasks or to relo­
cate the address space of a Virtual Mode task to 
physical address space greater than one megabyte. 

The paging hardware allows the 20-bit linear ad­
dress produced by a Virtual Mode program to be 
divided into as many as 256 pages. Each one of ~he 
pages can be located anywhere within the maximum 
16 megabyte physical address space of the 386 SX 
Microprocessor. In addition, since CR3 (the Page Di­
rectory Base Register) is loaded by a task switch, 
each Virtual Mode task can use a different mapping 
scheme to map pages to different physical locations. 
Finally, the paging hardware allows the sharing of 
the 8086 operating system code between multiple 
8086 applications. 

PROTECT!ON AND !/O PERM!S.S!ON B!T MAP 

AI! Virtual ~.~ode programs execute at privilege leve! 
3. As such, Virtual Mode programs are subject to all 
of the protection chec~s defined in Protected Mode. 
This is different than Real. Mode, which implicitly is 
executing at privilege level O. Thus, an attempt to 
execute a privileged instruction in Virtual Mode will 
cause an exception 13 fault. 

The following are privileged instructions, which may 
be executed only at Privilege Level O. Attempting to 
execute these instructions in Virtual 8086 Mode (or 
anytime CPL20) causes an exception 13 fault: 

LlDT; MOV DRn,REG; MOV reg,DRn; 
LGDT; MOV TRn,reg; MOV reg,TRn; 
LMSW; MOV CRn,reg; MOV reg,CRn; 

CLTS; 
HLT; 
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Several instructions, particularly those applying to 
the multitasking and the protection model, are avail­
able only in Protected Mode. Therefore, attempting 
to execute the following instructions in Real Mode or 
in Virtual 8086 Mode generates an exception 6 fault: 

LTR; 
LLDT; 
LAR; 
LSL; 
ARPL; 

STR; 
SLOT; 
VERR; 
VERW; 

The instructions which are 10PL sensitive in Protect­
ed Mode are: 

IN; STI; 
OUT; CLI 
INS; 
OUTS; 
REP INS; 
REP OUTS; 

In Virtual 8086 Mode the following instructions are 
10PL-sensitive: 

INTn; STI; 
PUSHF; CLI; 
POPF; IRET; 

The PUSHF, POPF, and IRET instructions are 10PL­
sensitive in Virtual 8086 Mode only. This provision 
allows the IF flag to be virtualized to the virtual 8086 
Mode program. The INT n software interrupt instruc­
tion is also 10PL-sensitive in Virtual 8086 mode. 
Note that the INT 3, INTO, and BOUND instructions 
are not 10PL-sensitive in Virtual 8086 Mode. 

The liD instructions that directly refer to addresses 
in the processor's liD space are IN, INS, OUT, and 
OUTS. The 386 SX Microprocessor has the ability to 
selectively trap references to specific liD address­
es. The structure that enables selective trapping is 
the 110 Permission Bit Map in the TSS segment (see 
Figures 4.8 and 4.9). The liD permission map is a bit 
vector. The size of the map and its location in the 
TSS segment are variable. The processor locates 
the liD permission map by means of the 110 map 
base field in the fixed portion of the TSS. The 1/0 
map base field is 16 bits wide and contains the off­
set of the beginning of the liD permission map. 

In protected mode when an liD instruction (IN, INS, 
OUT or OUTS) is encountered, the processor first 
checks whether CPL::;; 10PL. If this condition is true, 
the liD operation may proceed. If not true, the proc­
essor checks the I/O permission map (in Virtual 
8086 Mode, the processor consults the map without 
regard for the 10PL). 

Each bit in the map corresponds to an liD port byte 
address; for example, the bit for port 41 is found at 
1/0 map base + 5, bit offset 1. The processor tests 
all the bits that correspond to the liD addresses 
spanned by an liD operation; for example, a double 
word operation tests four bits corresponding to four 
adjacent byte addresses. If any tested bit is set, the 
processor signals a general protection exception. If 
all the tested bits are zero, the liD operations may 
proceed. 

It is not necessary for the liD permission map to 
represent all the liD addresses. liD addresses not 
spanned by the map are treated as if they had one­
bits in the map. The 1/0 map base should be at 
least one byte less than the TSS limit, the last byte 
beyond the liD mapping information must contain 
all1's. 

Because the liD permission map is in the TSS seg­
ment, different tasks can have different maps. Thus, 
the operating system can allocate ports to a task by 
changing the liD permission map in the task's TSS. 

IMPORTANT IMPLEMENTATION NOTE: Beyond 
the last byte of liD mapping information in the liD 
permission bit map must be a byte containing all 1 's. 
The byte of all 1's must be within the limit of the 
386 SX CPU TSS segment (see Figure 4.8). 

Interrupt Handling 

In order to fully support the emulation of an 8086 
machine, interrupts in Virtual 8086 Mode are han­
dlec! in a unique fashion. When running in Virtual 
Mode all interrupts and exceptions involve a privi­
lege change back to the host 386 SX Microproces­
sor operating system. The 386 SX Microprocessor 
operating system determines if the interrupt comes 
from a Protected Mode application or from a Virtual 
Mode program by examining the VM bit in the 
EFLAGS image stored on the stack. 

When a Virtual Mode program is interrupted and ex­
ecution passes to the interrupt routine at level 0, the 
VM bit is cleared. However, the VM bit is still set in 
the EFLAG image on the stack. 

The 386 SX Microprocessor operating system in turn 
handles the exception or interrupt and then returns 
control to the 8086 program. The 386 SX Microproc­
essor operating system may choose to let the 8086 
operating system handle the interrupt or it may emu­
late the function of the interrupt handler. For exam­
ple, many 8086 operating system calls are accessed 
by PUSHing parameters on the stack, and then exe­
cuting an INT n instruction. If the 10PL is set to 0 
then all INT n instructions will be intercepted by the 
386 SX Microprocessor operating system. 

4-445 



inter 386TM SX MICROPROCESSOR 

An 386 SX Microprocessor operating system can 
provide a Virtual 8086 Environment which is totally 
transparent to the application software by intercept­
ing and then emulating 8086 operating system's 
calls, and intercepting IN and OUT instructions. 

Entering and Leaving Virtual 8086 Mode 

Virtual 8086 mode is entered by executing a 32-bit 
IRET instruction at CPL=O where the stack has a 1 
in the VM bit of its EFLAGS image, or a Task Switch 
(at any CPL) to a 386 SX Microprocessor task 
whose 386 SX CPU TSS has a EFLAGS image con­
taining a 1 in the VM bit position while the processor 
is executing in the Protected Mode. POPF does n?t 
affect the VM bit but a PUSHF always pushes a 0 In 
the VM bit. ' 

The transition out of Virtual 8086 mode to protected 
mode occurs only on receipt of an interrupt or ex­
ception. In Virtual 8086 mode, all interrupts and ex­
ceptions vector through the protected mode lOT, 
and enter an interrupt handler in protected mode. As 
part of the interrupt processing the VM bit is cleared. 

Because the matching IRET must occur from level 0, 
, Interrupt or Trap Gates used to field an interrupt or 
exception out of Virtual 8086 mode must perform an 
inter-level interrupt only to level O. Interrupt or Trap 
Gates through conforming segments, or through 
segments with OPL>O, will raise a GP fault with the 
CS selector as the error code. 

Task Switches To/From Virtual 8086 Mode 

Tasks which can execute in Virtual 8086 mode must 
be described bv a TSS with the 386 SX CPU format 
(type 9 or 11 descriptor). A task switch out of virtual 
8085 mods ~NiII oparatc exactly the same as any oth­
er task switch out of a task with a 386 SX CPU TSS. 
All of the programmer visible state, including the 
EFLAGS register with the VM bit set to 1, is stored in 
the TSS. The segment registers in the TSS will con­
tain 8086 segment base values rather than selec-
tors. ' 

A task switch into a task described by a 386 SX CPU 
TSS will have an additional check to determine if the 
incoming task should be resumed, in Virtual 8086 
mode. Tasks described by 286 format TSSs cannot 
be resumed'in Virtual 8086 mode, so no check is 
required there (the FLAGS image in 286 format TSS 
has only the low order 16 FLAGS bits). Before load­
ing the segment register images from a 386 SX CPU 
TSS, the FLAGS image is loaded, so that. the seg­
ment registers are loaded from the TSS Image as 
8086 segment base values. The task is now ready to 
resume in Virtual 8086 mode. 

Transitions Through Trap and Interrupt Gates, ' 
'andlRET 

A task switch is one way to enter or exit Virtual 8086 
mode. The other method is to exit through a Trap or 
Interrupt gate, as part of handling an interrupt, and 
to enter as part of executing an IRET instruction. 
The transition out must use a 386 SX CPU Trap 
Gate (Type 14), or 386 SX CPU Interrupt Gate (Type 
15), which must point to a non-conforming level 0 
segment (OPL=O) in order to permit the trap han­
rll",r to IRFT h~r.k to thA Virtual 8086 oro(]ram. The 
G~te'-~~~t 'p~i~t- to· a non~coriforming level 0 seg­
ment to perform a level switch to level 0 so that the 
matching IRET can change the VM bit. 386 SX CPU 
gates must be used since 286 gates save only the 
low 16 bits of the EFLAGS register (the VM bit will 
not be saved). Also, the 16-bit IRET used to termi­
nate the 286 interrupt handler will pop only the lower 
16 bits from FLAGS, and will not affect the VM bit. 
The action taken for a 386 SX CPU Trap or Interrupt 
gate if an interrupt occurs while the task is executing 
in virtual 8086 mode is given by the following se­
quence: 

1. Save the FLAGS register in a temp to push later. 
Turn off the VM, TF, and IF bits. 

2. Interrupt and Trap gates must perform a level 
switch from 3 (where the Virtual 80136 Mode pro­
gram executes) to level 0 (so IRET can return). 

3. Push the 8086 segment register values onto the 
, new stack, in this order: GS, FS, OS, ES. These 

are pushed as 32-bit quantities. Then load these 4 
registers with null selectors (0). 

4. Push the old 8086 stack pointer onto the new 
stack by pushing the SS register (as 32-bits), then 
pushing the 32-bit ESP register saved above. 

5. Push the 32-bit EFLAGS register saved in step ,. 

6. Push the old e085 instrubtion onto the nS'N stack 
by pushing the CS register (as 32-bits), then push­
ing the 32-bit EIP register. 

7. Load up the new CS:EIP value from the interrupt 
gate, and begin execution of the interrupt routine 
in protected mode. 

The transition out of V86 mode performs a level 
change' and stack switch, in addition to changing 
back to piotected mode. Also aU of the SOSS ssg .. 
ment register images are stored on the sta~k, (be­
hind the SS:ESP image), and then loaded wIth null 
(0) selectors before entering the interrupt handler. 
This will permit the handler to safely save and re­
store the OS, ES, FS, and GS registers as 286 selec­
tors. This is needed so that interrupt handlers which 
don't care about the mode of the interrupted pro­
gram can use the same prologue and epilogue code 
for state saving regardless of whether or not a 'na­
tive' mode or Virtual 8086 Mode program was inter­
rupted. Restoring null selectors to' these registers 
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before executing the IRET will cause a trap in the 
interrupt handler. Interrupt routines which expect or 
return values in the segment registers will have to 
obtain/return values from the 8086 register images 
pushed onto the new stack. They will need to know 
the mode of the interrupted program in order to 
know where to find/return segment registers, and 
also to know how to interpret segment register val­
ues. 

The IRET instruction will perform the inverse of the 
above sequence. Only the extended IRET instruc­
tion (operand size=32) can be used and must be 
executed at level 0 to change the VM bit to 1. 

1. If the NT bit in the FLAGS register is on, an inter­
task return is performed. The current state is 
stored in the current Tss, and the link field in the 
current Tss is used to locate the Tss for the in­
terrupted task which is to be resumed. Otherwise, 
continue with the following sequence: 

2. Read the FLAGS image from ss:8[EsP1 into the 
FLAGS register. This will set VM to the value ac­
tive in the interrupted routine. 

3. Pop off the instruction pointer Cs:EIP. EIP is 
popped first, then a 32-bit word is popped which 
contains the CS value in the lower 16 bits. If 
VM = 0, this CS load is done as a protected mode 
segment load. If VM = 1, this will be done as an 
8086 segment load. 

4. Increment the ESP register by 4 to bypass the 
FLAGS image which was 'popped' in step 1. 

5. If VM = 1, load segment registers Es, OS, Fs, and 
Gs from memory locations ss:[EsP+81, 
55: [ESP + 121, 55: [ESP + 161, and 
ss:[EsP=201, respectively, where the new value 
of ESP stored in step 4 is used. Since VM = 1, 
these are done as 8086 segment register loads. 

Else if VM = 0, check that the selectors in Es, OS, 
F5, and Gs are valid in the interrupted routine. 
Null out inlialid selectors to trap if an attempt is 
made to access through them. 

6. If RPl(Cs»CPl, pop the stack pointer ss:EsP 
from the stack. The ESP register is popped first, 
followed by 32-bits containing 55 in the lower 16 
bits. If VM = 0, 55 is loaded as a 'protected mode 
segment register load. If VM = 1, an 8086 seg­
ment register load is used. 

7. Resume execution of the interrupted routine. The 
VM bit in the FLAGS register (restored from the 
interrupt routine's stack image in step 1) deter­
mines whether the processor resumes the inter­
rupted routine in Protected mode or Virtual 8086 
Mode. 

5.0 FUNCTIONAL DATA 

The 386 SX Microprocessor features a straightfor­
ward functional interface to the external hardware. 
The 386 SX Microprocessor has separate parallel 
buses for data and address. The data bus is 16-bits 
in width, and bi-directional. The address bus outputs 
24-bit address values using 23 address lines and 
two byte enable signals. 

, The 386 SX Microprocessor has two selectable ad­
dress bus cycles: address pipelined and non-ad­
dress pipelined. The address pipelining option al­
lows as much time as possible for data access by 
starting the pending bus cycle before the present 
bus cycle is finished. A non-pipelined bus cycle 
gives the highest bus performance by executing ev­
ery bus cycle in two processor ClK cycles. For maxi­
mum design flexibility, the address pipelining option 
is selectable on a cycle-by-cycle basis. 

The processor's bus cycle is the basic mechanism 
for information transfer, either from system to proc­
essor, or from processor to system. 386 SX Micro­
processor bus cycles perform data transfer in a mini­
mum of only two clock periods. The maximum trans­
fer bandwidth at 16 MHz is therefore 16 Mbytesl 
sec. However, any bus cycle will be extended for 
more than two clock periods if external hardware 
withholds acknowledgement of the cycle. 

The 386 SX Microprocessor can relinquish control of 
its local buses to allow mastership by other devices, 
such as direct memory access (OMA) channels. 
When relinquished, HlOA is the only output pin driv­
en by the 386 SX Microprocessor, providing near­
complete isolation of the processor from its system 
(all other output pins are in a float condition). 

5.1 Signal Description Overview 

Ahead is a brief description of the 386 5X Micro­
processor input and output signals arranged by func­
tional groups. Note the # symbol at the end of a 
signal name indicates the active, or asserted, state 
occurs when the signal is at a lOW Voltage. When 
no # is present after the signal name, the signal is 
asserted when at the HIGH voltage level. 

Example signal: MIIO# - HIGH voltage indicates 
Memory selected 

- lOW voltage indicates 
110 selected 

The Signal descriptions sometimes refer to AC tim­
ing parameters, such as 't25 Reset Setup Time' and 
't26 Reset Hold Time.' The values of these parame­
ters can be found in Table 7.4. 
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CLOCK (CLK2) DATA BUS (015-00) 

CLK2 provides the fundamental timing for the 
386 5X Microprocessor. It is divided by two internally 
to generate the internal processor clock used for in­
struction execution. The internal clock is comprised 
of two phases, 'phase one' al)d 'phase two'. Each 
CLK2 period is a phase of the internal clock. Figure 
5.2 illustrates the relationship. If desired, the phase 
of the internal processor clock can be synchronized 
to a known phase by ensuring the falling edge of the 
RESET signai meets the appiicable setup and hold 
times t25 and t26' 

These three-state bidirectional signals provide the 
general purpose data path between the 386 5X Mi­
croprocessor and other devices. The data bus out­
puts are active HIGH and will float during bus hold 
acknowledge. Data bus reads require that read-data 
setup and hold times t21 and t22 be met relative to 
CLK2 for correct operation. 
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BHE# I' 

.A " 
BLE# ENABLES 

16-BIT(DO_DI5 
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ADDRESS BUS (A23-Ah BHE#, BLE#) 

These three-state outputs provide physical memory 
addresses or 110 port addresses. A23-A16 are LOW 
during 110 transfers except for 110 transfers auto­
matically generated by coprocessor instructions. 
During coprocessor 110 transfers, A22-A16 are driv­
en LOW, and A23 is driven HIGH so that this ad­
dress line can be used by external logic to generate 
the coprocessor select signal. Thus, the 1/0 address 
driven by the 386 SX Microprocessor for coproces­
sor commands is 8000F8H, the I/O addresses driv­
en by the 386 SX Microprocessor for coprocessor 
data are 8000FCH or 8000FEH for cycles to the 
387™ SX. 

The address bus is capable of addressing 16 mega­
bytes of physical memory space (OOOOOOH through 
FFFFFFH), and 64 kilobytes of 1/0 address space 
(OOOOOOH through OOFFFFH) for programmed I/O. 
The address bus is active HIGH and will float during 
bus hold acknowledge. 

The Byte Enable outputs, BHE# and BLE#, directly 
indicate which bytes of the 16-bit data bus are in­
volved with the current transfer. BHE# applies to 
015-08 and BLE# applies to 07-00' If both BHE# 
and BLE# are asserted, then 16 bits of data are 
being transferred. See Table 5.1 for a complete de­
coding of these signals. The byte enables are active 
LOW and will float during bus hold acknowledge. 

BUS CYCLE DEFINITION SIGNALS (W/R#, 01 
C#, MIIO#, LOCK#) 

These three-state outputs define the type of bus cy­
cle being performed: W/R# distinguishes between 

write and read cycles, D/C# distinguishes between 
data and control cycles, M/IO# disti~guishes be­
tween memory and 1/0 cycles, and LOCK# distin­
guishes between locked and unlocked bus cycles. 
All of these signals are active LOW and will float 
during bus acknowledge. 

The primary bus cycle definition signals are W IR #, 
D/C# and M/IO#, since these are the signals driv­
en valid as ADS # (Address Status output) becomes 
active. The LOCK # is driven valid at the same time 
the bus cycle begins, which due to address pipelin­
ing, could be after ADS# becomes active. Exact bus 
cycle definitions, as a function of W/R#, D/C#, and 
M/IO# are given in Table 5.2. 

LOCK # indicates that other system bus masters are 
not to gain control of the system bus while it is ac­
tive. LOCK# is. activated on the CLK2 edge that be­
gins the first locked bus cycle (i.e., it is not active at 
the same time as the other bus cycle definition pins) 
and is deactivated when ready is returned at the end 
of the last bus cycle which is to be locked. The be­
ginning of a bus cycle is determined when READY # 
is returned in a previous bus cycle and another is 
pending (ADS# is active) or the clock in which 
ADS # is driven active if the bus was idle. This 
means that it follows more closely with the write 
data rules when it is valid, but may cause the bus to 
be locked longer than desired. The LOCK # signal 
may be e1<plicitly activated by the LOCK prefix on 
certain instructions. LOCK # is always asserted 
when executing the XCHG instruction, during de­
scriptor updates, and during the interrupt acknowl-
edge sequence. . 

Table 5_1. Byte Enable Definitions 

BHE# BLE# Function 

0 0 Word Transfer 
0 1 Byte transfer on upper byte of the data bus, 015-08 
1 0 Byte transfer on lower byte of the data bus, DrDo 
1 1 Never occurs 

Table 5 2. Bus Cycle Definition 

M/IO# O/C# W/R# Bus Cycle Type Locked? 

0 0 0 Interrupt Acknowledge Yes 
0 0 1 does not occur -
0 1 0 1/0 Data Read No 
0 1 1 1/0 Data Write No 
1 0 0 Memory Code Read No 
1 0 1 Halt: Shutdown: No 

Address = 2 Address = 0 
BHE# = 1 BHE# = 1 
BLE# = 0 BLE# = 0 

1 1 0 Memory Data Read Some Cycles 
1 1 1 Memory Data Write Some Cycles. 
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BUS CONTROL SIGNALS (ADS#, READY#, 
NA#) 

The following signals allow the processor to indicate 
when a bus cycle has begun, and allow other system 
hardware to control address pipelining and bus cycle 
termination. 

Address Status (ADS #) 

This three-state outout indicates that a valid bus cy- . 
cle definition and address (W/R#, b/C#, M/IO#, 
BHE#, BLE# and A23-A1) are being driven at the 
386 SX Microprocessor pins. ADS# is an active 
LOW output. Once ADS# is driven active, valid ad­
dress, byte enables, and definition signals will not 
change. In addition, ADS# will remain active until its 
associated bus cycle begins (when READY # is re­
turned for the previous bus cycle when running pipe­
lined bus cycles). When address pipelining is uti­
lized, maximum throughput is achieved by initiating 
bus cycles when ADS# and READY# are active in 
the same clock cycle. ADS# will float during bus 
hold acknowledge. See sections Non·Pipelined Ad· 
dress and Pipelined Address for additional infor­
mation on how ADS # is asserted for different bus 
states. 

Transfer Acknowledge (READY #) 

This input indicates the current bus cycle is com­
plete, and the active bytes indicated by BHE# and 
BLE# are accepted or provided. When READY# is 
sampled active during a read cycle or interrupt ac­
knowledge cycle, the 386 SX Microprocessor latch­
es the input data and terminates the cycle. When 
READ'll'';;' is samp;ed active dUiing a ~:;:itc cycle, the 
processor terminates the bus cycle. 

READY # is ignored on the first bus state of all bus 
cycles, and sampled each bus state thereafter until 
asserted. READY # must eventually be asserted to 
acknowledge every bus cycle, including Halt Indica­
tion and Shutdown Indication bus cycles. When be­
ing sampled, READY # must always meet setup and 
hold times t19 and t20 for correct operation. 

N~xt Address Request (NA #) 

This is used to request address pipelining. This input 
indicates the system is prepared to accept new val­
ues of BHE#, BLE#, A23-A1, W/R#, D/C# and 
M/IO# from the 386 SX Microprocessor even if the 
end of the current cycle is not being acknowledged 
on READY #. If this input is active when sampled, 
the next address is driven onto the bus, provided the 
next bus request is already pending internally. NA# 
is ignored in CLK cycles in which ADS# or READY # 

is activated. This signal is active LOW and must sat­
isfy setup and hold times t15 and t16 for correct op­
eration. See Pipellned Address and Read and 
Write Cycles for additional information. 

BUS ARBITRATION SIGNALS (HOLD, HLDA) 

This section describes the mechanism by which the 
processor relinquishes control of its local buses 
when requested by another bus master device. See 
Entering and Exiting Hold Acknowledge for addi­
tional information. 

Bus Hold Request (HOLD) 

This input indicates some device other than the 
386 SX Microprocessor requires bus mastership. 
When control is granted, the 386 SX Microprocessor 
.floats A23-A1, BHE#, BLE#, D15-DO, LOCK#, MI 
10#, D/C#, W/R# and ADS#, and then activates 
HLDA, thus entering the bus hold acknowledge 
state. The local bus will remain granted to the re­
questing master until HOLD becomes inactive. 
When HOLD becomes inactive, the· 386 SX Micro­
processor will deactivate HLDA and drive the. local 
bus (at the same time), thus terminating the hold 
acknowledge condition. 

HOLD must remain asserted as long as any other 
device is a local bus master. External pull-up resis­
tors may be required when in the hold acknowledge 
state since none of the 386 SX Microprocessor float­
ed outputs have internal pull-up resistors. See 
Resistor Recommendations for additional informa­
tion. HOLD is not recognized while RESET is active. 
If RESET is asserted while HOLD is asserted, RE­
SET has priority and places the blls into an idle 
state, rather than the hold acknowledge (high-im-
pedance) siaie. . 

HOLD is a level-sensitive, active HIGH, synchronous 
input. HOLD signals must always meet setup and 
hold times t23 and t24 for correct operation. 

Bus Hold Acknowledge (HLDA) 

When. active (HIGH), this output indicates the 386 
SX Microprocessor has relinquished control of iis io­
cal bus in response to an asserted HOLD Signal, and 
is in the bus Hold Acknowledge state. 

The Bus Hold Acknowledge state offers near-com­
plete signal isolation. In the Hold Acknowledge 
state, HLDA· is the only signal being driven by the 
386 SX Microprocessor. The other output Signals or 
bidirectional signals (D15-DO, BHE#, BLE#, A23-
A1, W/R#, D/C#, M/IO#, LOCK# and ADS#) are 
in a high-impedance state so the requesting bus 
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master may control them. These pins remain OFF 
throughout the time that HLDA remains active (see 
Table 5.3». Pull-up resistors may be desired on sev­
eral signals to avoid spurious activity when no bus 
master is driving them. See Resistor Recommen­
dations for additional information. 

, When the HOLD signal is made inactive, the 386 SX 
Microprocessor will deactivate HLDA and drive the 
bus. One rising edge on the NMI input is remem­
bered for processing after the HOLD input is negat­
ed. 

Table 5.3. Output pin State During HOLD 

Pin Value Pin Names 

1 HLDA 
Float LOCK#, M/IO#, D/C#, W/R#, 

ADS#, A23-A1, BHE#, BLE#, 015-00 

In addition to the normal usage of Hold Acknowl­
edge with DMA controllers or master peripherals, 
the near-complete isolation has particular attractive­
ness during system test when test equipment drives 
the system, and in hardware fault-tolerant applica­
tions. 

HOLD Latencies 

The maximum possible HOLD latency depends on 
the software being executed. The actual HOLD la­
tency at any time depends on the current bus activi­
ty, the state of the LOCK # signal (internal to the 
CPU) activated by the LOCK # prefix, and interrupts. ' 
The 386 SX Microprocessor will not honor a HOLD 
request until the current bus operation is complete. 
Table 5.4 shows the types of bus operations that 
can affect HOLD latency, and indicates the types of 
delays that these operations may introduce. When 
considering maximum' HOLD latencies, designers 
must select which of these bus operations are possi­
ble, and then select the maximum latency from 
among them. 

The 386 SX Microprocessor breaks 32-bit data or 
1/0 accesses into 2 internally locked 16-bit bus cy­
cles; the LOCK # signal is not asserted. The 386 SX 
Microprocessor breaks unaligned 16-bit or 32-bit 
data or 1/0 accesses into 2 or 3 internally locked 16-
bit bus cycles. Again, the LOCK # signal is not as­
serted but a HOLD request will not be recognized 
until the end of the entire transfer. 

Wait states affect HOLD latency. The 386 SX Micro- . 
processor will not honor a HOLD request until the 
end of the current bus operation, no matter 

how many wait states are required. Sysfems with 
DMA where data transfer is critical must insure that 
READY # returns sufficiently soon. 

COPROCESSOR INTERFACE SIGNALS 
(PEREQ, BUSY#, ERROR#) 

In the following sections are descriptions of signals 
dedicated to the numeric coprocessor interface. In 
addition to the data bus, address bus, and bus cycle 
definition signals, these following Signals control 
communication between the 386 SX Microprocessor 
and its 387TM SX processor extension. 

Coprocessor Request (PEREQ) 

When asserted (HIGH), this input signal indicates a 
coprocessor request for a data operand to be trans­
ferred tolfrom memory by the 386 SX Microproces­
sor. In response, the 386 SX Microprocessor trans­
fers information between the coprocessor and 
memory. Because the 386 SX Microprocessor has 
internally stored the coprocessor opcode being exe­
cuted, it performs the requested data transfer with 
the correct direction and memory address. 

PEREQ is a level-sensitive active HIGH asynchro­
nous signal. Setup and hold times, t29 and t30, rela­
tive to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. This signal is 
provided with a weak internal pull-down resistor .of 
around 20 K-ohms to ground so that it will not float 
active when left unconnected. 

Coprocessor Busy (BUSY#)' 

When asserted (LOW), this input indicates the co­
processor is still executing an instruction, and is not 
yet able to accept another. When the 386 SX Micro­
processor encounters any coprocessor instruction 
which operates on the numerics stack (e.g. load, 
pop, or arithmetic operation), or the WAIT instruc­
tion, this input is first automatically,sampled until it is 
seen to be inactive. This sampling of the BUSY # 
input prevents overrunning the execution of a previ­
ous coprocessor instruction. 

The FNINIT, FNSTENV, FNSAVE, FNSTSW, 
FNSTCW and FNCLEX coprocessor instructions are 
allowed to execute even if BUSY # is active, since 
these instructions are used for coprocessor initializa­
tion and exception-clearing. 

BUSY # is an active LOW, level-sensitive asynchro­
nous signal. Setup and hold times, t29 and t30, rela-
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tive to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. This pin is pro­
vided with a weak internal pull-up resistor of around 
20 K-ohms to Vcc so that it will not float active when 
left unconnected. 

BUSY # serves an additional function. If BUSY # is 
sampled LOW at the falling edge of RESET, the 386 
SX Microprocessor performs an internal self-test 
(see Bus Activity During and Following Reset. If 
BUSY # is sampled HIGH, no self-test is performed. 

Coprocessor Error (ERROR #) 

When asserted (LOW), this input signal indicates 
that the previous coprocessor instruction generated 
a coprocessor error of a type not masked by the 
coprocessor's control register. This input is automat­
ically sampled by the 386 SX Microprocessor when 
a coprocessor instruction is encountered, and if ac­
tive, ,the 386 SX Microprocessor 'generates excep­
tion 16 to access the error-handling software. 

Several coprocessor instructions, generally those 
which clear the numeric error flags in th!3 coproces­
sor or save coprocessor state, do execute without 
the 386 SX Microprocessor generating exception 16 
even if ERROR# is active. These instructions are 
FNINIT, FNCLEX, FNSTSW, FNSTSWAX, 
FNSTCW, FNSTENV and FNSAVE. 

ERROR# is an active LOW, level-sensitive asyn~ 
chronous signal. Setup and hold times, t29 and tao, 
relative to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. This pin is pro­
vided with a weak internal pull-up resistor of around 
20 K-ohms to Vcc so that it will not float active when 
left unconnected. 

INTERRUPT SIGNALS (INTR, NMI, RESET) 

The following descriptions cover inputs that can in­
terrupt or suspend execution of the processor's cur­
rent instruction stream. 

Maskable Interrupt Request (INTR) 

When asserted, this input indicates a request for in­
terrupt service, which can be masked by the 386 SX 
CPU Flag Register IF bit. Whe.n the 386 SX Micro­
processor responds to the INTR input, it performs 
two interrupt acknowledge bus cycles and, at the 
end of the second, latches an 8-bit interrupt vector 
on D7-DO to identify the source of the interrupt. 

INTR is an active HIGH, level-sensitive asynchro­
nous signal. Setup and hold times, t27 and t28, rela­
tive to the CLK2 signal must be met to guarantee 

recognition at a particular clock edge. To assure rec­
ognition of an INTR request, INTR should reniain ' 
active until the first interrLipt acknowledge bus cycle 
begins. INTR is sampled at the beginning of every 
instruction in the 386 SX Microprocessor's Execu­
tion Unit. In order to be recognized at a particular 
instruction boundary, INTR must be active at least 
eight CLK2 clock periods before the beginning of the 
instruction. If recognized, the 386 SX Microproces­
sor will begin execution of the interrupt. 

Non-Maskable Interrupt Request '(NMI» 

This input indicates a request for interrupt service 
which cannot be masked by software. The non­
maskable interrupt request is always processed ac­
cording to the pointer or gate in slot 2 of the interrupt 
table. Because of the fixed NMI slot assignment; no 
interrupt acknowledge cycles are performed when 
processing NMI. 

NMI is an active HIGH, rising edge-sensitive asyn­
chronous signal. Setup and hold times, t27 and t28, 
relative to the CLK2 signal must be met to guarantee 
recogniti'on at a particular clock edge. To assure rec­
ognition of NMI, it must be inactive for at least eight 
CLK2 periods, and then be active for at least eight 
CLK2 periods before the beginning of the instruction 
boundary in the 386 SX Microprocessor's Execution 
Unit. 

Once 'NMI processing has begun, no additional 
NMI's are processed until after the next IRET in­
struction, which is typically the end of the NMI serv­
ice routine. If NMI is re-asserted prior to that time, 
however, one rising edge on NMI will be remem­
bered for processing after executing the next IRET 
instrUction. ' 

Interrupt Latency 

The time that elapses before an interrupt request is 
serviced (interrupt latency) varies according to sev­
eral factors. This delay must be taken into account 
by the interrupt source. Any of the following factors 
can affect interrupt latency: 

1. If interrupts are masked, an INTR request will not 
be recognized until intsiiupts ai9 isenabled. 

2. If an NMI is currently being serviced,' an incoming 
NMI request will not be recognized until the 
386 SX Microprocessor encounters the IRET in­
struction. 

3. An interrupt request is recognized only on an in­
struction boundary of the 386 SX Microproces­
sor's Execution Unit except for the following cas­
es: 

- Repeat string instructions can be interrupted 
after each iteration. 
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- If the instruction loads the Stack Segment reg­
ister, an interrupt is not processed until after 
the following instruction, which should be an 
ESP. This allows the entire stack pointer to be 
loaded without interruption. 

- If an instruction sets the interrupt flag (enabling 
interrupts), an interrupt is not processed until 
after the next instruction. 

The longest latency occurs when the interrupt re­
quest arrives while the 386 SX Microprocessor is 
executing a long instruction such as multiplication, 
division, or a task-switch in the protected mode. 

4. Saving the Flags register and CS:EIP registers. 

5. If interrupt service routine requires a task switch, 
time must be allowed for the task switch. 

6. If the interrupt service routine saves registers that 
are not automatically saved by the 386 SX Micro­
processor. 

RESET 

This input signal suspends any operation in progress 
and places the 386 SX Microprocessor in a known 
reset state. The 386 SX Microprocessor is reset by 
asserting RESET for 15 or more CLK2 periods (80 or 
more CLK2 periods before requesting self-test). 
When RESET is active, all other input pins are ig­
nored, and all other bus pins are driven to an idle 
bus state as shown in Table 5.5. If RESET and 
HOLD are both active at a point in time, RESET 
takes priority even if the 386 SX Microprocessor was 
in a Hold Acknowledge state prior to RESET active. 

RESET is an active HIGH, level-sensitive synchro­
nous signal. Setup and hold times, t25 and t26, must 
be met in order to assure proper operation of the 
386 SX Microprocessor. _ 

Table 5.5. Pin State (Bus Idle) During Reset 

Pin Name Signal Level During Reset 

ADS# 1 
D15-DO Float 
BHE#, BLE# 0 
A23-A1 1 
W/R# 0 
D/C# 1 
M/IO# 0 
LOCK# . 1 
HLDA 0 

5.2 Bus Transfer Mechanism 

All data transfers occur as a result of one or more 
bus cycles. Logical data operands of byte and word 
lengths may be transferred without restrictions on 

physical address alignment. Any byte boundary may 
be used, although two physical bus cycles are per­
formed as required for unaligned operand transfers. 

The 386 SX Microprocessor address signals are de­
signed to simplify external system hardware. Higher­
order address bits are provided by A23-A1' BHE# 
and BLE# provide linear selects for the two bytes of 
the 16-bit data bus. 

Byte Enable outputs BHE# and BLE# are asserted 
when their associated data bus bytes are involved 
with the present bus cycle, as listed in Table 5.6. 

Table 5.6. Byte Enables and Associated Data 
and Operand Bytes 

Byte Enable 
Associated Data Bus Signals 

Signal 

BLE# Dr Do I I (byte 0 - least significant) 
BHE# D15-D8 (byte 1 - most significant) 

Each bus cycle is composed· of at least two bus 
states. Each bus state requires one processor clock 
period. Additional bus states added to a single bus 
cycle are called wait states. See section 5.4 Bus 
Fun~tional Description. 

5.3 Memory and I/O Spaces 

Bus cycles may access physical memory space or II 
o space. Peripheral devices in the system may ei­
ther be memory-mapped, or lID-mapped, or both. 
As shown in Figure 5.3, physical memory addresses 
range from OOOOOOH to OFFFFFFH (16 megabytes) 
and I/O addresses from OOOOOOH to OOFFFFH (64 
kilobytes). Note the lID addresses used by the auto­
matic lID cycles for coprocessor communication are 
8000F8H to 8000FFH, beyond the address range of 
programmed lID, to allow easy generation of a co­
processor chip select signal using the A23 and MI 
10# signals. 

5.4 Bus Functional Description 

The 386 SX Microprocessor has separate, parallel 
buses for data and address. The data bus is 16-bits 
in width, and bidirectional. The address bus provides 
a 24-bit value using 23 signals for the 23 upper-order 
address bits and 2 Byte Enable signals to directly 
indicate the active bytes. These buses are interpret­
ed and controlled by several definition signals. 

The definition of each bus cycle is give-n by three 
signals: MIIO#, W/R# and D/C#. At the same 
time, a valid address is present on the byte enable 
signals, BHE# and BLE#, and the other address 
signals A23-A1. A status signal. ADS#, indicates 
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FfFFFFH r----, 

PHYSICAL 
MEMORY 

16-MBYlE 

.------. • • I 

• 
• NOT : 
ACCESSIBLE. 

8000FFH r---??-., COPROCESSOR 
8000F8H L.._";===_..J 

(NOTE) ; 

• • • 
NOT : 

• ACCESSIBLE. 
• • I • 
I • 

• • • • 
64 kBYlE PROGRAMMED 

OOFFFFH EJ' '} ACCESSIBLE 

OOOOOOH OOOOOOH I/O SPACE 

NOTE: PHYSICAL MEMORY SPACE I/O SPACE 240187-18 

Since A23 is HIGH during automatic communication with coprocessor, A23 HIGH and MilO;!! LOW can be used to 
easily generate a coprocessor select signal. 

Figure 5.3. Physical Memory and I/O Spaces 

CLK2[ 
(INPUT) 

CYCLE 1 
NON-PIPELINED 

(READ) 

CYCLE 2 
NON-PIPEL1NED 

(READ) 

CYCLE 3 
NON-PIPELINED 

(READ) 

11 T2 11 T2 11 12 

,.11,.2 ,.11,.2 ,.11,.2 ,.11.2 .11.2 .11,.2 .1 

BHEI/,BLEI/.Al-A23, r -I..r--i---\.'--4 __ --\.,,.... __ oIo--~.r­
M/IOI/, D/CII, W/R# L. 

(OUTPUTS) 

AOS#[ 
(OUTPUT) 

NA#[ 
(INPUT) 

READYI/ [ 
(INPUT) 

LOCK# [ 
(OUTPUT) 

DO-DIS [ 
(INPUT DURING READ) 

Fastest non-pipelined bus cycles consist of Tl and T2 

Figure 5.4. Fastest Read Cycles with Non-pipelined Address Timing 
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when the 386 SX Microprocessor issues a new bus 
cycle definition and address. 

Collectively, the address bus, data bus and all asso­
ciated control Signals are referred to simply as 'the 
bus'. When active, the bus performs one of the bus 
cycles below: 

1. Read from memory space 

2. Locked read from memory space 

3. Write to memory space 

4. Locked write to memory space 

5. Read from lID space (or coprocessor) 

6. Write to lID space (or coprocessor) 

7. Interrupt acknowledge (always locked) 

8. Indicate halt, or indicate shutdown 

Table 5.2 shows the encoding of the bus cycle defi­
nition signals for each bus cycle. See Bus Cycle 
Definition Signals for additional information. 

CYCLE 1 
PIPELINED 

(READ) 

When the 386 SX Microprocessor bus is not per­
forming one of the activities listed above, it is either 
Idle or in the Hold Acknowledge state, which may be 
detected externally. The idle state can be identified 
by the 386 SX Microprocessor giving no further as­
sertions on its address strobe output (ADS#) since 
the beginning of its most recent bus cycle, and the 
most recent bus cycle having been terminated. The 
hold acknowledge state is identified by the 386 SX 
Microprocessor asserting its hold acknowledge 
(HLDA) output. 

The shortest time unit of bus activity is a bus state. A 
bus state is one processor clock period (two CLK2 
periods) in duration. A complete data transfer occurs 
during a bus cycle, composed of two or more bus 
states. 

The fastest 386 SX Microprocessor bus cycle re­
quires only two bus'states. For example, three con­
secutive bus read cycles, each consisting of two bus 
states, are shown by Figure 5.4. The bus states in 
each cycle are named T1 and T2. Any memory or II 
o address may be accessed by such a two-state 
bus cycle, if the external hardware is fast enough. 

CYCLE 2 
PIPELINED 

(READ) 

CYCLE 3 
PIPELINED 

(READ) 

T1P T2P T1P T2P T1P T2P 

CLK2[ 
(INPUT) 

BHE#,BLE#,A 1-A23, [ 
M/IO#. D/C#, W/R# 

(OUTPUTS) 

ADS#[ 
(OUTPUT) 

NA#[ 
(INPUT) 

READY# [ 
(INPUT) 

LOCK# [ 
(OUTPUT) 

DO-D15[ 
(INPUT DURING READ) 

~1 1~2 ~1 1~2 ~1 1~2 ~1 1~2 ~1 1~2 ~1 1~2 

Fastest pipelined bus cycles consi~t of T1 P and T2P 

Figure 5.5. Fastest Read Cycles with Pipelined Address Timing 

4-455 

240187-20 



inter 386™ SX MICROPROCESSOR 

Every bus cycle continues until it is acknowledged 
by the external system hardware, using the 386 SX 
Microprocessor READY # input. Acknowledging the 
bus cycle at the end of the first T2 results in the 
shortest bus cycle, requiring only T1 and T2. If 
READY # is not immediately asserted however, T2 
states are repeated indefinitely until the READY # 
input is sampled active. 

The address pipelining option provides a choice of 
bus cycle timings. Pipelined or non-pipelined ad­
dress timing is selectable on a cycle-by-cycle basis 
with the Next Address (NA #) input. 

When address pipelining is selected the address 
(BHE#, BLE# and A23-Al) and definition (W/R#, 
D/C#, M/IO# and LOCK#) of the next cycle are 
available before the end of the current cycle. To sig­
nal their availability, the 386" SX Microprocessor ad-

dress status output (ADS #) is asserted. Figure 5.5 
illustrates the fastest read cycles with pipelined ad­
dress timing. 

Note from Figure 5.5 the fastest bus cycles using 
pipelined address require only two bus states, 
named T1P and T2P. Therefore" cycles with pipe­
lined address timing allow the same data bandwidth 
as non-pipelined cycles, but address-to-data access 
time is increased by one T-state time compared to 
that of a non-pipe lined cycle. 

READ AND WRITE CYCLES 

Data transfers occur as a result of bus cycles, classi­
fied as read or write cycles. During read cycles, data 
is transferred from an external device to the proces­
sor. During write cycles, data is transferred from the 
processor to an external device. 

IDLE I CYCLE 1 
NON-PIPELINED 

(WRITE) 

CYCLE 2 I 
NON-PIPELINED 

(READ) 

CYCLE 3 I 
NON-PIPELINED 

(WRITE) 

IDLE I 
TI 

CYCLE 4 I 
NON-PIPELINED 

(READ) 

IDLE I 
TI 

CLK2 [ 

PROCESSOR ClK [ 

BHE#,BlE#, [ 
A1-A23, 

MIlO #, DIC # , 

W/R# [ 

ADS# [ 

n T1 T2 T1 T2 T1 T2 T1 T2 

NA#[ ~~~~~~~~~~~~~~~~~~~~~~ 
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Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus 
cycle can immediately follow the write cycle. 

Figure 5.6. Various Bus Cycles with Non-Pipellned Address (zero wait states) 
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Two choices of address timing are dynamically se­
lectable: non-pipelined or pipelined. After an idle bus 
state, the processor always uses non-pipelined ad­
dress timing. However the NA# (Next Address) in­
put may be asserted to select pipelined address tim­
ing for the next bus cycle. When pipelining is select­
ed and the 386 SX Microprocessor has a bus re­
quest pending internally, the address and definition 
of the next cycle is made available even before the 
current bus cycle is acknowledged by READY #. 

Terminating a read or write cycle, like any bus cycle, 
requires acknowledging the cycle by asserting the 
READY# input. Until acknowledged, the processor 
inserts wait states into the bus cycle, to allow adjust­
ment for the speed of any external device. External 
hardware, which has decoded the address and bus 
cycle type, asserts the READY # input at the appro­
priate time. 

At the end of the second bus state within the bus 
cycle, READY# is sampled. At that time, 'if external 
hardware acknowledges the bus cycle by asserting 
READY #, the bus cycle terminates as shown in Fig­
ure 5.6. If READY# is negated as in Figure 5.7, the 
386 SX Microprocessor executes another bus state 
(a wait state) and READY # is sampled again at the 
end of that state. This continues indefinitely until the 
cycle is acknowledged by READY # asserted. 

When the current cycle is acknowledged, the 
386 SX Microprocessor terminates it. When a read 
cycle is acknowledged, the 386 SX Microprocessor 
latches the information present at its data pins. 
When a write cycle is acknowledged, the 386 SX 
CPU's write data remains valid throughout phase 
one of the next bus state, to provide write data hold 
time. 

IDLE I CYCLE 1 
NON-PIPELINED 

(READ) 

CYCLE 2 
NON-PIPELINED 

(WRITE) 

I IDLE 

TI 

CYCLE 3 
NON-PIPELINED 

(READ) 

IDLE I 

TI 

CLK2 [ 

PROCESSOR CLK [ 

BHE#,BLE#, [ 
A1-A23, 

MjIO#,DjC# 

WjR# [ 

ADS# [ 

NA# [ 

READY# [ 

TI T1 T2 T1 T2 T2 T1 T2 

LOCK # [ VALID 3 

DO-D1S[ • ----------

T2 
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Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus 
cycle can immediately follow the write cycle. 

Figure 5.7. Various Bus Cycles with Non·Pipelined Address (various number of wait states) 
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Non-Pipellned Address 

Any bus cycle may be performed with non-pipelined 
address timing. For example, Figure 5.6 shows a 
mixture of read and write cycles with non-pipelined 
address timing. Figure 5.6 shows that the fastest 
possible cycles with non-pipe lined address have two 
bus states per bus cycle. The states are named T1 
and T2. In phase one of T1, the address signals and 
bus cycle definition signals are driven valid and, to 
signal their availability, address strobe (ADS#) is 
simultaneously asserted. 

During read or write cycles, the data bus behaves as 
follows. If the cycle is a read, the 386 SX Microproc­
essor floats its data signals to allow driving by the 
external device being addressed. The 386 SX Mi­
croprocessor requires that all data bus pins be 
at a valid logic state (HIGH or LOW) at the end of 
each read cycle. when READY # is asserted. The 
system MUST be designed to meet this require­
ment. If the cycle is a write, data signals are driven 
by the 386 SX Microprocessor beginning in phase 
two of T1 until phase one of the bus state following 
cycle acknowledgment. 

Figure 5.7 illustrates non-pipelined bus cycles with 
one wait state added to Cycles 2 and 3. READY # is 
sampled inactive at the end of the first T2 in Cycles 
2 and 3. Therefore Cycles 2 and 3 have T2 repeated 
again. At the end of the second T2, READY # is 
sampled active. 

When address pipelining is not used, the address 
and bus cycle definition remain valid during all wait 
states. When wait states are added and it is desir­
able to maintain non-pipelined address timing, it is 
necessary to negate NA# during each T2 state ex­
cept the last one, as shown in Figure 5.7 Cycles 2 
and 3. If NA# is sampled active during a T2 other 
than the last one, the next state would be T21 or T2P 
instead of another T2. 

When address pipelining is not used, the bus states 
and transitions are completely illustrated by Figure 
5.8. The bus transitions between four possible 
states, T1, T2, Ti, and T h. Bus cycles consist of T1 
and T2, with T2 being repeated for wait states. Oth­
erwise the bus may be idle, Ti, or in the hold ac­
knowledge state T h. 

HOLD ASSERTED 

ALWAYS 

READY# ASSERTED· 
HOlO NEGATED. 

REQUEST PENDING 

READY# NEGATED. 
NA# 'NEGATED 

Bus States: 
Tl-first clock of a non-pipelined bus cycle (386™ SX CPU drives new address and asserts ADS#). 
T2-subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle. 
Ti-idle state. ' 
Th-hold acknowledge state (386 SX CPU asserts HLDA). 
The fastest bus cycle consists of two states T1 and T2. 
Four basic bus states describe bus operation when not using pipelined address. 

Figure 5.8. Bus States (not using pipelined address) 
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Bus cycles always begin with T1. T1 always leads to 
T2. If a bus cycle is not acknowledged during T2 and 
NA # is inactive, T2 is repeated. When a cycle is 
acknowledged during T2, the following state will be 
T1 of the next bus cycle if a bus request is pending 
internally, or Ti if there is no bus request pending, or 
T h if the HOLD input is being asserted. 

Use of pipelined address allows the 386 SX Micro­
processor to enter three additional bus states not 
shown in Figure 5.8. Figure 5.12 is the complete bus 
state diagram, including pipelined address cycles. 

Pipellned Address 

Address pipelining is the option of requesting the 
address and the bus cycle definition of the next in-

ternally pending bus cycle before the current bus 
cycle is acknowledged with READY # asserted. 
ADS# is asserted by the 386 SX Microprocessor 
when the next address is issued. The address pipe­
lining option is controlled on a cycle-by-cycle basis 
with the NA # input signal. 

Once a bus cycle is in progress and the current ad­
dress has been valid for at least one entire bus 
state, the NA# input is sampled at the end of every 
phase one until the bus cycle is acknowledged. Dur­
ing non-pipelined bus cycles NA # is sampled at the 
end of phase one in every T2. An example is Cycle 2 
in Figure 5.9, during which NA # is sampled at the 
end of phase one of every T2 (it was asserted once 
during the first T2 and has no further effect during 
that bus cycle). 

IDLE CYCLE 1 
NON-PIPElINED 

CYCLE 2 
NON-PIPELINED 

CYCLE 3 
PIPELINED 

CYCLE 4 
PIPELINED 

IDLE 

ClK2 [ 

PROCESSOR ClK [ 

BHE#,BlE#, [ 
Al-A23, 

1oI/IO#,D/C# 

W/R# [ 

ADS# [ 

READY# [ 

LOCK# [ 

00-015 [ 

TI 

(WRITE) 

T1 T2 T1 

(READ) (WRITE) (READ) 

T2 T2P T1P T2P T1P T21 TI 

240187-24 
Following any idle bus state (Til, addresses are non-pipelined. Within non-pipelined bus cycles, NA# is only sampled 
during wait states. Therefore, to begin address plpelining during a group of non-pipelined bus cycles requires a non-pipe­
lined cycle with at least one wait state (Cycle 2 above). 

Figure 5.9. Transltioning to Pipelined Address During Burst of Bus Cycles 
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If NA # is sampled active, the 386 SX Microproces­
sor is free to drive the address and bus cycle defini­
tion of the next bus cycle, and assert ADS#, as 
soon as it has a bus request internally pending. It 
may drive the next address as early as the next bus 
state, whether the current bus cycle is acknowl­
edged at that time or not. 

Regarding the details of address pipelining, the 
386 SX Microprocessor has the following character­
istics: 

1. The next address may appear as early as the bus 
state after NA# was sampled active (see Figures 
5.9 or 5.10). In that case, state T2P is entered 
immediately. However, when there is not an inter­
nal bus request already pending, the next address 
will not be available immediately after NA# is as­
serted and T21 is entered instead of T2P (see Fig-

ClK2 [ 

PROCESSOR ClK [ 

BHE#.BLE#, [ 
Al-23, 

1.4/10#. D/C# 

IDLE 

TI 

W/R# [~~~ 

ADS# [ 

DO-D15 [ 

T1 

CYCLE 1 
NON-PIPELINED 

(WRITE) 

T2 T2P 

ure 5.11 Cycle 3). Provided the current bus cycle 
isn't yet acknowledged by READY # asserted, 
T2P will be entered as soon as the 386 SX Micro­
processor does drive the next address. External 
hardware should therefore observe the ADS# 
output as confirmation the next address is actual­
ly being driven on the bus. 

2. Any address which is validated by a pulse on the 
ADS# output will remain stable on the address 
pins for at least two processor clock periods. The 
386 SX Microprocessor cannot produce a new 
address more frequently than every two proces­
sor clock periods (see Figures 5.9, 5.10, and 
5.11). 

3. Only the address and bus cycle definition of the 
very next bus cycle is available. The pipelining ca­
'pability cannot look further than one bus cycle 
ahead (see Figure 5.11 Cycle 1). 

CYCLE 2 
PIPELINED 

CYCLE 3 
PIPELINED 

CYCLE 4 
PIPELINED 

IDLE 

(READ) (WRITE) (READ) 

T1P T2P T1P T2P T1P T21 T21 TI 

240187-25 
Following any bus state (Ti) the address is always non· pipe lined and NA# is only sampled during wait states. To start 
address pipe lining after an idle state requires a non-pipelined cycle with at least one wait state (cyple 1 above) 
The pipelined cycles (2, 3, 4 above) are shown with various numbers of wait states. 

Figure 5.10. Fastest Transition to Pipelined Address Following Idle Bus State 
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The complete bus state transition diagram, including 
operation with pipelined address is given by Figure 
5.12. Note it is a superset of the diagram for non­
pipelined address only, and the three additional bus 
states for pipe lined address are drawn in bold. 

The fastest bus cycle with pipelined address con­
sists of just two bus states, T1 P and T2P (recall for 
non-pipe lined address it is T1 and T2). T1 P is the 
first bus state of a pipelined cycle. 

CLK2 [ 

PROCESSOR CLK [ 

BHE#,BLE#, [ 
Al-A23, 

1.1/10#, D/C# 

W/R# [ 

ADS# [ 

READY# [ 

LOCK# [ 

DO-DI5 [ 

TIP 

CYCLE 1 
PIPELINED 

(WRITE) 

T2P T2P 

ASSERTING NA# MORE 
THAN ONCE DURING 
ANY CYCLE HAS NO 
ADDITIONAL EFFECTS 

TIP 

CYCLE 2 
PIPELINED 

(READ) 

T2 T2P 

NA# COULD HAVE 
BEEN ASSERTED 

IN TI P IF DESIRED. 
ASSERTION NOW IS 

THE LATEST TIME 
POSSIBLE TO ALLOW 

THE CPU TO ENTER T2P 
STATE TO MAINTAIN 

PIPELINING IN CYCLE 3 

TIP 

CYCLE 3 
PIPELINED 

(WRITE) 

T21 T2P TIP 

Figure 5.11. Details of Address Pipelining During Cycles with Walt States 
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CYCLE 4 
PIPELINED 

(READ) 
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HOLD ASSERTED 

READY# ASSERTED. 

Bus States: 

HOLD NEGATED· 
NO REQUEST 

T1-first clock of a non-pipelined bus cycle (386™ SX CPU 
drives new address and asserts ADS#). 
T2-subsequent clocks of a bus cycle when NA # has not been 
sampled asserted in the current bus cycle. 
T21-subsequent clocks of a,bus cycle when NA# has ,been, 
sampled asserted in the current bus cycle but there is not yet 
an internal bus request pending (386 SX CPU will not drive new 
address or assert ADS#). 
T2P-subsequent clocks of a bus cycle when NA#' has been 
sampled asserted in the current bus cycle and there is an inter­
nal bus request pending (386 SX CPU drives new address and 
asserts ADS#). , 
T1 P-first clock of a pipelined bus cycle. 
Ti-idle state. 
Th-hold ,acknowledge state (386 SX CPU asserts HLDA). 
Asserting NA# for pipelined 'address gives access to three 
more bus states: T21, T2P and T1 P. ' 
Using pipelined address, the fastest bus cycle consists of T1 P 
and T2P. 

READY# NEGATED 

Figure 5.12. Complete Bus States (Including plpelined address) 
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Initiating and Maintaining Pipelined Address 

Using the state diagram Figure 5.12, observe the 
transitions from an idle state, Tj, to the beginning of 
a pipelined bus cycle T1 P. From an idle state, Tj, the 
first bus cycle must begin with T1, and is therefore a 
non-pipelined bus cycle. The next bus cycle will be 
pipelined, however, provided NA# is asserted and 
the first bus cycle ends in a T2P state (the address 
for the next bus cycle is driven during T2P). The fast­
est path from an idle state to a bus cycle with pipe­
lined address is shown in bold below: 

Tb Tb Tb T1 • T2· T2P, T1p· T2P, 
idle non-pipelined pipelined 
states cycle cycle 

T1-T2-T2P are the states of the bus cycle that es­
tablish address pipelining fqr the next bus cycle, 
which begins with T1 P. The same is true after a bus 
hold state, shown below: 

Th, Th, Th, T1 • T2· T2P, T1p. T2P, 
hold acknowledge non-pipelined pipelined 

states cycle cycle 

The transition to pipelined address is shown func­
tionally by Figure 5.10 Cycle 1. Note that Cycle 1 is 
used to transition into pipelined address timing for 
the subsequent Cycles 2, 3 and 4, which are pipe­
lined. The NA # input is asserted at the appropriate 
time to select address pipelining for Cycles 2, 3 and 
4. 

Once a bus cycle is in progress and the current ad­
dress has been valid for one entire bus state, the 
NA# input is sampled at the end of every phase one 
until the bus cycle is acknowledged. Sampling be­
gins in T2 during Cycle 1 in Figure 5.10. Once NA # 
is sampled active during the current cycle, the 
386 SX Microprocessor is free to drive a new ad­
dress and bus cycle definition on the bus as early as 
the next bus state. In Figure 5.10 Cycle 1 for exam­
ple, the next address is driven during state T2P. 
Thus Cycle 1 makes the transition to pipelined ad­
dress timing, since it begins with T1 but ends with 
T2P. Because the address for Cycle 2 is available 
before Cycle 2 begins, Cycle 2 is called apipelined 

bus cycle, and it begins with T1 P. Cycle 2 begins as 
soon as READY # asserted terminates Cycle 1. 

Examples of transition bus cycles are Figure 5.10 
Cycle 1 and Figure 5.9 Cycle 2. Figure 5.10 shows 
transition during the very first cycle after an idle bus 
state, which is the fastest possible transition into ad­
dress pipelining. Figure 5.9 Cycle 2 shows a tran­
sition cycle occurring during a burst of bus cycles. In 
any case, a transition cycle is the same whenever it 
occurs: it consists at least of T1, T2 (NA # is assert­
ed at that time), and T2P (provided the 386 SX Mi­
croprocessor has an internal bus request already 
pending, which it almost always has). T2P states are 
repeated if wait states are added to the cycle. 

Note that only three states (T1, T2 and T2P) are 
required in a bus cycle performing a transition from 
non-pipelined address into pipelined address timing, 
for example Figure 5.10 Cycle 1. Figure 5.10 Cycles 
2, 3 and 4 show that address pipelining can be main­
tained with two-state bus cycles consisting only of 
T1P and T2P. 

Once a pipelined bus cycle is in progress, pipelined 
timing is maintained for the next cycle by asserting 
NA # and detecting that the 386 SX Microprocessor 
enters T2P during the current bus cycle. The current 
bus cycle must end in state T2P for pipelining to be 
maintained in the next cycle. T2P is identified by the 
assertion of ADS #. Figures 5.9 and 5.10 however, 
each show pipelining ending after Cycle 4 because 
Cycle 4 ends in T21. This indicates the 386 SX Micro­
processor didn't have an internal bus request prior 
to the acknowledgement of Cycle 4. If a cycle ends 
with a T2 or T21, the next cycle will not be pipelined. 

Realistically, address pipelining is almost always 
maintained as long as NA# is sampled asserted. 
This is so because in the absence of any other re­
quest, a code prefetch request is always internally 
pending until the instruction decoder and code pre­
fetch queue are completely full. Therefore, address 
pipelining is maintained for long bursts of bus cycles, 
if the bus is available (I.e., HOLD inactive) and NA# 
is sampled active in each of the bus cycles. 
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INTERRUPT ACKNOWLEDGE (INTA) CYCLES 

In response to an interrupt request on the INTR in­
put when interrupts are enabled. the 386 SX Micro­
processor performs two interrupt acknowledge cy­
cles. These bus cycles are similar to read cycles in 
that bus definition signals define the type of bus ac­
tivity taking place. and each cycle continues until ac­
knowledged by READY # sampled active. 

The state of A2 distinguishes the first and second 
interr.upt acknowledge cycles. The byte address 
driven during the first interrupt acknowledge cycle is 
4 (A2a-Aa. A1. SlE# lOW. A2 and SHE# HIGH). 
The byte address driven during the second interrupt 
acknowledge cycle is 0 (A2a-A1. SlE# lOW. and 
SHE# HIGH). 

PREVIOUS I INlERRUPT 

I 
. CYCLE ACKNOWLEDGE 

CYCLE 1 

T2 T1 T2 T2 n 

The lOCK # output is asserted from the beginning 
of the first interrupt acknowledge cycle until the end 
of the second interrupt'acknowledge cycle. Four idle 
bus states,. Ti. are inserted by the 386 SX Microproc­
essor between the two interrupt acknowledge cycles 
for compatibility with spec TRHRl of the 8259A In­
terrupt Controller. 

During both interrupt acknowledge cycles. D15-DO 
float. No data is read at the end of the first interrupt 
acknowledge cycle. At the end of the second inter­
rupt acknowledge cycle. the 386 SX Microprocessor 
will read an external interrupt vector from D7-DO of 
the data bus. The vector indicates the specific inter­
rupt number (from 0-255) requiring service. 

IDLE 

I 
INTERRUPT I IDLE (4 BUS STAlES) ACKNOWLEDGE 

CYCLE 2 

n TI n Tl 'T2 T21 TI 

ClK2[ _ rLfL l1l rm rm rLfL rm rLfL rLfL rm rm rLfL rm 
, -

PROCESSOR ClK [ \.f \.f V V \.f V \.f \.f \.f V \.f V 
BHE#[ ,XX' .XX xx xx .XX .XX IXXX 

,---
BlE#.A 1 ,A3-A23. [ 

M/IO#. D/C#. W/R# X .XX ~XX xXX Xxx xx XX xx 

A2[ X 
V 

IXXX I'< X X xx xx)( XXX)(X .XX IXXX 

lOCK#[ X IXXX 
V V 

~ 
, 

AOS#[ '--- / '--, 
NA#[ X IXXX :XX ~xx xX .XXX IXXXX XX .XX ~ XX xxx 

READY#[ X D<XX)( Xxx Xy w..\ ~x xx xxx xx xx Xy w.. m. 
IGNORED VECTOR 

DO-D7[ • ---_. ---_. ----- --@-- ---_. --------------- -.-.- --0---
IGNORED IGNORED 

DB-D1S[ • ---- ----- ----- --cp-- ---- --------------- ---- --cp---
2401B7-2B 

Interrupt Vector (0-255) is read on 00-07 at end of second interrupt Acknowledge bus cycle. 
Because each Interrupt Acknowledge bus cycle is followed by idle bus states. asserting NA# has no practical effect. 
Choose the approach which is simplest for your system hardware design. 

Figure 5.13. Interrupt Acknowledge Cycles 
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HALT INDICATION CYCLE definition signals shown on page 40, Bus Cycle 
Definition Signals, and an address of 2. The halt 
indication cycle must be acknowledged by READY # 
asserted. A halted 386 SX Microprocessor resumes 
execution when INTR (if interrupts are enabled), NMI 
or RESET is asserted. 

The execution unit halts as a result of executing a 
HL T instruction. Signaling its entrance into the halt 
state, a halt indication cycle is performed. The halt 
indication cycle is identified by the state of the bus 

I CYCLE 1 I 
NON-PIPELINED 

(WRITE) 

T1 T2 

CYCLE 2 I IDLE 
NON-PIPELINED 

(HALT) 

T1 T2 TI 

CLK2[ 

PROCESSOR CLK [ 

TI TI TI 

BHEU. AI.[ 
M/IOU. W/RU 

-hr-:,,:,±~--hr--t---it7I~mI~:md- 386N SX CPU REMAINS HALTED 
'\Qt.:J,I.~t.:J,I..lLlf- UNTIL INTR, NMI OR 

A2-A23.[ 
BLEU.D/CU 

ADSU[ 

NAU[ 

READYU[ 

00-0 [ 

~ RESET IS ASSERTED. 

I I 
-f~~';;;';;";"-T""-+---Pl~~QL.lLl"'lf- 386™ SX CPU RESPONDS TO __ -+-__ +-__ ~ HOLD INPUT WHILE IN 

THE HALT STATE. 

-~f'LOATINGr-- - ----

240187-29 

Figure 5.14. Example Halt Indication Cycle from Non-Pipellned Cycle 
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SHUTDOWN INDICATION CYCLE ENTERING AND EXITING HOLD 
ACKNOWLEDGE 

The 386 SX Microprocessor shuts down as a result 
of a protection fault while attempting to process a 
double fault. Signaling its entrance into the shut­
down state, a shutdown indication cycle is per­
formed. The shutdown indication cycle is identified 
by the state of the bus definition signals shown in 
Bus Cycle Definition Signals and an address of O. 
The shutdown indication cycle must be acknowl-' 
edged by READY # asserted. A shutdown 386 SX 
Microprocessor resumes execution when NMI or 
RESET is asserted. 

The bus hold acknowledge state, T h, is entered in 
response to the HOLD input being asserted. In the 
bus hold acknowledge state, the 386 SX Microproc­
essor floats all outputs or bidirectional signals, ex­
cept for HLDA. HLDA is asserted as long as the 
386 SX Microprocessor remains in the bus hold ac­
knowledge state. In the bus hold acknowledge state, 
all inputs except HOLD and RESET are ignored. 

CLK2[ 

PROCESSOR CLK [ 

CYCLE 1 
PIPELINED 

(READ) 

TIP T2P 

CYCLE 2 
PIPELINED 

(SHumOWN) 

TIP 

I IDLE 

T21 TI TI TI TI 

BHEII, [ -t~,:",::,~r-.,..---tc~~~\7I::'m~~'Ot- 386 TM SX CPU REMAINS SHUTDOWN 
M/ION, W/RII 'Q~~~~:II'.l~~~ UNTIL NMI OR RESET 

- IS ASSERTED. 

BLEII,AI-A23[ I I 
D/CN -4"';';';;;;'4~-+--..I'J~~1P~~~~* 386™SX CPU RESPONDS TO 

ADSN[ 

NAil [ 

READYII[ 

LOCKII[ 

DO-D1S[ 

__ -+-__ +-__ I-_~ HOLD INPUT WHILE IN 
THE SHumOWN STATE. 

Figure 5.15. Example Shutdown Indication Cycle from Non-Plpelined Cycle 
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T h may be entered from a bus idle state as in Figure 
5.16 or after the acknowledgement of the current 
physical bus cycle if the LOCK# signal is not assert­
ed, as in Figures 5.17 and 5.18. 

This exited in response to the HOLD input being 
negated. The following state will be Ti as in Figure 
5.16 if no bus request is pending. The following bus 
state will be T1 if a bus request is internally pending, 
as in Figures 5.17 and 5.18. This exited in response 
to RESET being asserted. 

If a rising edge occurs on the edge-triggered NMI 
input while in T h, the event is remembered as a non­
maskable interrupt 2 and is serviced when This exit­
ed unless the 386 SX Microprocessor is reset before 
This exited. 

RESET DURING HOLD ACKNOWLEDGE 

RESET being asserted takes priority over HOLD be­
ing asserted. If RESET is asserted while HOLD re-

mains asserted, the 386 SX Microprocessor drives 
its pins to defined states'during reset, as in Table 
5.5 Pin State· During Reset, I;lnd performs internal 
reset activity as usual. 

If HOLD remains asserted when RESET is inactive, 
the 386 SX Microprocessor enters the hold acknowl­
edge state before performing its first bus cycle, pro­
vided HOLD is still asserted when the 386 SX Micro­
processor would otherwise perform its first bus cy­
cle. 

BUS ACTIVITY DURING AND FOLLOWING 
RESET 

RESET is the highest priority input signal, capable of 
interrupting any processor activity when it is assert­
ed. A bus cycle in progress can be aborted at any 
stage, or idle states or bus hold acknowledge states 
discontinued so that the reset state is established. 

IDLE 

TI 

I-- HOLD ----I I _ ACKNOWLEDGE _ I 
Th Th Th 

IDLE 

n 

PROCESSOR CLK [ 

HOLD[ 

HLDA[ ~--f 

BHE#,BL.E#, [ ti\~~it.. 
A 1-A23. M/IO# 

D/C#, W/R# 

ADS#[ 

(FLOATING) -·-·I~~ug 

I 
(FLOATING) _.--

NA# [ ~~~~~~~~~~Qj 

NOTE: 

READY#[ ~~~~~jQa~~~~~~ 

LOCK#[ ~..¥.I'""'"lf ••• - (FLOATliG)-••• I,","K.M~ 

00-015 [ -
(FLOATING) 

---------------~---- 240187-31 

For maximum design flexibility the 386TM SX CPU has no internal pullup resistors on its outputs. Your design may require 
an external pullup on ADS;!! and other outputs to keep them negated during float periods. 

Figure 5.16. Requesting Hold from Idle Bus 
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NOTE: 

386TM SX M.ICROPROCESSOR 

CLK2[ 

PROCESSOR CLK[ 

HOLD [ 

HLDA [ 

BHE#.BLE#.A I -A23. [ 
1.1/10#. D/C#. W/R# 

READY# [ 

(NE 

LOCK#[ 

OO-DIS[ • 

Tt 

CYCLE I 
NON-PIPELINED 

(READ) 

T2 

HOLD CYCLE 2 
ACKNOWLEDGE NON-PIPELINED 

(WRITE) 

T2 Th Th Tt T2 

VALID 2 

240187-32 

HOLD is a synchronous input and can be asserted at any CLK2 edge. provided setup and hold (t23 and t24) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency. 

figure 5.17. Requesting Hoid from Active Bus (NAiF inactive) 
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RESET should remain asserted for at least 15 CLK2 
periods to ensure it is recognized throughout the 
386 SX Microprocessor, and at least 80 CLK2 peri­
ods if self·test is going to be requested at the falling 
edge. RESET asserted pulses less than 15 CLK2 . 
periods may not be recognized. RESET pulses less 
than 80 CLK2 periods followed by a self-test may 
cause the self-test to report a failure when no true 
failure exists. 

Provided the RESET falling edge meets setup and 
hold times t25 and t26, the internal processor clock 
phase is defined at that time as illustrated by Figure 
5.19 and Figure 7.7. 

CLK2[ 

PROCESSOR CLK[ 

HOLD [ 

HLDA [ 

BHE#,BLE#,A 1-A23, [ 
IA/IO#, D/C#, W/R# 

ADS# [ 

.T1P 

CYCLE 1 
PIPELINED 

(WRITE) 

T21 

A self-test may be requested at the time RESET 
goes inactive by having the BUSY # input at a LOW 
level as shown in Figure 5.19. The self-test requires 
approximately (220 + 60) CLK2 periods to com­
plete. The self-test duration is not affected by the 
test results. Even if the self-test indicates a problem, 
the 386 SX Microprocessor attempts to proceed 
with the reset sequence afterwards. 

After the RESET falling edge (and after the self-test 
if it was requested) the 386 SX Microprocessor per­
forms an internal initialization sequence for approxi­
mately 350 to 450 CLK2 periods. 

HOLD CYCLE 2 
ACKNOWLEDGE NON-PIPELINED 

(READ) 

'T21 Th Th T1 T2 

NA# [ .LljC~~~~~~oQQ~oQQ~~'ljQ~Q( 

240187-33 

NOTE: 
HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (t23 and t24) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency. 

Figure 5.18. Requesting Hold from Idle Bus (NA# active) 
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CLK2[ 

RESET [ 

CLK(INTERNAL) [ 

PROCESSOR ClK [ 

BUSY# [ 

ERROR# [ 

BHE#.BLE#; 
W /R#. M/IO#. [ 

HLDA 

Al-A23. [ 
D/C#.LOCK# 

NOTES: 

ADS# [ 

NA#[ 

386TM SX MICROPROCESSOR 

INTERNAL 
1----RESET----I---INITIAllzAnON-----~ 
~ 15 ClK2 DURATION IF' 
NOT GOING TO REQUEST 
SElF'-TEST. 

DURING RESET 

DURING RESET 

CYCLE 1 

NON-PIPElINED 
(READ) 

T1 T2 

240187-34 

1. BUSY # should be held stable for B CLK2 periods before and after lhe CLK2 period in which RESET falling edge 
occurs. 
2. If self-test is requested the outputs remain in their reset state as shown here. 

Figure 5.19. Bus Activity from Reset Until First Code Fetch 

4-470 



inter 386TM SX MICROPROCESSOR 

5.5 Self-test Signature 

Upon completion of self-test (if self-test was re­
quested by driving BUSY # LOW at the falling edge 
of RESET) the EAX register will contain a signature 
of OOOOOOOOH indicating the 386 SX Microprocessor 
passed its self-test of microcode and major PLA 
contents with no problems detected. The passing 
signature in EAX, OOOOOOOOH, applies to all revision 
levels. Any non-zero signature indicates the unit is 
faulty. 

5.6 Component and Revision 
Identifiers 

To assist users, the 386 SX Microprocessor after 
reset holds a component identifier and revision iden­
tifier in its OX register. The upper 8 bits of OX hold 
23H as identification of the 386 SX Microprocessor 
(the lower nibble, 03H, refers to the Intel386 OX Ar­
chitecture. The upper nibble, 02H, refers to the sec­
ond member of the Intel386 OX Family). The lower 8 
bits of OX hold an 8-bit unsigned binary number re­
lated to the component revision level. The revision 
identifier will, in general, chronologically track those 
component step pings which are intended to have 
certain improvements or distinction from previous 
steppings. The 386· SX Microprocessor revision 
identifier will track that of the 386 OX CPU where 
possible. 

The revision identifier is intended to assist users to a 
practical' extent. However, the revision identifier val­
ue is not guaranteed to change with every stepping 
revision, or to follow a completely uniform numerical 
sequence, depending on the type or intention of re­
vision, or manufacturing materials required to be 
changed. Intel has sole discretion over these char­
acterfstics of the component. 

Table 5.7. Component and 
Revision Identifier History 

Stepping Revision Identifier 

AO 04H 
B 05H 
C 08H 

5.7 Coprocessor InterfaCing 
The 386 SX Microprocessor provides an automatic 
interface for the Intel 387 SX numeric floating-point 
coprocessor. The 387 SX coprocessor uses an liD 
mapped interface driven automatically by the 386 
SX Microprocessor and assisted by three dedicated 
signals: BUSY#, ERROR# and PEREO. 

As the 386 SX Microprocessor begins supporting a 
coprocessor instruction, it tests the BUSY # and ER­
ROR # signals to determine if the coprocessor can 
accept its next instruction. Thus, the BUSY # and 
ERROR # inputs eliminate the need for any 'pre-
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amble' bus cycles for communication between proc­
essor and coprocessor. The 387TM SX can be given 
its command opcode immediately. The dedicated 
signals provide instruction synchronization, and 
eliminate the need of using the WAIT opcode (9BH) 
for 387TM SX instruction synchronization (the WAIT 
opcode was required when the 8086 or 8088 was 
used with the 8087 coprocessor). 

Custom coprocessors can be included in 386 SX Mi­
croprocessor based systems by memory-mapped or 
liD-mapped interfaces. Such coprocessor interfac­
es allow a completely custom protocol, and are not 
limited to a set of coprocessor protocol 'primitives'. 
Instead, memory-mapped or liD-mapped interfaces 
may use all applicable instructions for high-speed 
coprocessor communication. The BUSY # and ER­
ROR # inputs of the 386 SX Microprocessor may 
also be used for the custom coprocessor interface, if 
such hardware assist is desired. These signals can 
be tested by the WAIT opcode (9BH). The WAIT in­
struction will wait until the BUSY # input is inactive 
(interruptable by an NMI or enabled INTR input), but 
generates an exception 16 fault if the ERROR# pin 
is active when the BUSY # goes (or is) inactive. If 
the custom coprocessor interface is memory­
mapped, protection of the addresses used for the 
interface can be provided with the 386 SX CPU's on­
chip paging or segmentation mechanisms. If the 
custom interface is liD-mapped, protection of the 
interface can be provided with the 10PL (liD Privi­
lege Level) mechanism. 

The 387TM SX numeric coprocessor interface is 1/0 
mapped as shown in Table 5.8. Note that the 
387TM SX coprocessor interface addresses are be­
yond the OH-OFFFFH range for programmed I/O. 
When the 386 SX Microprocessor supports· the 
387TM SX coprocessor, the 386 SX Microprocessor 
automatically generates bus cycles to the coproces­
sor interface addresses. 
Table 5.8. Numeric Coprocessor Port Addresses 

Address In 386TM SX 387TM SX Coprocessor 
CPU I/O Space Register 

8000F8H Opcode Register 
8000FCH/8000FEH* Operand Register 

"Generated as 2nd bus cycle dunng Dword transfer. 

To correctly map the 387TM SX registers to the ap­
propriate liD addresses, connect the CMOO and 
CM01 lines of the 387TM SX as listed in Table 5.9. 

Table 5.9. Connections for CMDO 
and CMD1 Inputs for the 387TM SX 

Signal Connection 

CMOO Connect directly 
to 386™ SX CPU A2 signal 

CM01 Connect to ground. 
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Software Testing for Coprocessor Presence 

When software is used to test for coprocessor 
(387 SX) presence, it should use only the following 
coprocessor opcodes: FINIT, FNINIT, FSTCW mem, 
FSTSW mem and FSTSW AX. To use other coproc­
essor opcodes when a coprocessor is known to be 
not present, first set EM = 1 in the 386 SX CPU's 
CRO register. 

6.0 PACKAGE THERMAL 
SPECIFICATIONS 

The 386 SX Microprocessor is ;specified for opera­
tion when case temperature is within the range of 
0·C-85·C. The case temperature may be measured 
in any environment, to determine whether the 
386 SX Microprocessor is within specified operating 
range. The case temperature should be measured at 
the center of the top surface opposite the pins. 

The ambient temperature is guaranteed as long as 
T e is not violated. The ambient temperature can be 
calculated from the 0je and 0ja from the following 
equations: 

Tj = Te + P*Oje 

Ta = Tj - P*Oja 

Te = Ta + P*[Oja - 0je] 

Values for 0ja and 0je are given in table 6.1 for the 
100 lead fine pitch. 0ja is given at various airflows. 
Table 6.2 shows the maximum T a allowable (without 
excE!eding T d at various airflows. Note that T a can 
ho i",nr"\l.orl fllrthor h\l !OIttat"hinn 'fine' nr a 'ha.at 
.., .... 1111 ..... ""' ........ - ._ ........... "":1 .................... ;:, ,,, .......... , - •• __ .. 

sink' to the 'package. 

7.0 ELECTRICAL SPECIFICATIONS 

The following sections describe recommended elec- ' 
trical connections for the 386 SX Microprocessor, 
and its electrical specifications. 

7.1 Power and Grounding 

The 386 SX Microprocessor is implemented in 
CHMOS III technology and has modest power re­
quirements. However, its high clock frequency and 
47 output buffers (address, data, control, and HLDA) 
can cause power surges as multiple output buffers 
drive new signal levels simultaneously. For clean on­
chip power distribution at high frequency, 14 Vcc 
and 18 Vss pins separatEily feed functional units of 
the 386 SX Microprocessor. 

Power and ground connections must be made to all 
external Vcc and Vss pins of the 386 SX Microproc­
essor. On the circuit board, all Vcc pins should be 
connected on a Vcc plane and all Vss pins should 
be connected on a GND plane. 

POWER DECOUPLING RECOMMENDATIONS 

Liberal decoupling capacitors should be placed near 
the 386 SX Microprocessor. The 386 SX Microproc­
essor driving its 24-bit address bus and 16-bit data 
bus at high frequencies can cause transient power 
surges, particularly when driving large capacitive 
loads. Low inductance capacitors and interconnects 
are recommended for best high frequency electrical 
performance. Inductance can be reduced by short- , 
ening circuit board traces between the 386 SX Mi­
croprocessor and decoupling'capacitors as much as 
possibie . 

Table 6.1. Thermal Resistances rC/Watt) 0Je and OJa. 

0Ja versus Airflow· ft/mln (m/sec) 
Package Ojc 0 200 400 600 800 1000 

(0) (1.01) (2.03) (3.04) (4.06) (5.07) 

100 Lead 
7 33 27 24 21 18 17 

Fine Pitch 

Table 6.2. Maximum T a at various airflows. 

T ArC) versus Airflow· ft/min (m/sec) 
Package Frequency 0 200 400 600 800 1000 

(0) (1.01) (2.03) (3.04) (4.06) (5.07) 

100L PQFP 16MHz 49 58 62 66 70 71 
Fine Pitch 20 MHz 45 55 59 64 68 70 

Max. T A calculated at 5.0V ~nd max Icc. 

4-472 



386TM SX MICROPROCESSOR 

Table 7 1 Recommended Resistor Pull-ups to Vcc .. 
Pin Signal Pull-up Value 

16 ADS# 20 K-Ohm ± 10% 

26 LOCK# 20 K-Ohm ± 10% 

RESISTOR RECOMMENDATIONS 

The ERROR # and BUSY # inputs have internal pull­
up resistors of approximately 20 K-Ohms and the 
PEREQ input has an internal pull-down resistor of 
approximately 20 K-Ohms built into the 386 SX Mi­
croprocessor to keep these signals inactive when 
the 387 SX is not present in the system (or tempo­
rarily ~emoved from its socket). 

In typical designs, the external pull-up resistors 
shown in Table 7.1 are recommended. However, a 
particular design may have reason to adjust the re­
sistor values recommended here, or alter the use of 
pull-up resistors in other ways. 

OTHER CONNECTION RECOMMENDATIONS 

For reliable operation, always connect unused in­
puts to an appropriate signal level. N/C pins should 
always remain unconnected. Connection of N/C, 
pins to Vcc or Vss will result in component mal­
function or Incompatibility with future steppings 
of the 386 SX Microprocessor. 

Particularly when not using interrupts or bus hold (as 
when first prototyping), prevent any chance of spuri­
ous activity by connecting these associated inputs to 
GND: 

Pin 
40 
38 
4 

Signal 
INTR 
NMI 
HOLD 

Purpose 

Lightly pull ADS# inactive during 
386TM SX CPU hold acknowledge 
states 

Lightly pull LOCK # inactive during 
386TM SX CPU hold acknowledge 
states 

If not using address pipelining, connect pin 6, NA # , 
through a pull-up in the range of 20 K-Ohms to Vcc. 

7.2 Maximum Ratings 

Table 7 2 Maximum Ratings .. 
Parameter Maximum Rating 

Storage temperature - 65 ·C to 150 ·C 
Case temperature under bias - 65 ·C to 110 ·C 
Supply voltage with respect 

toVss -.5Vto 6.5V 
Voltage on other pins - .5V to (Vcc + .5)V 

Table 7.2 gives stress ratings only, and functional 
operation at the maximums is not guaranteed. Func­
tional operating conditions are given in section 7.3, 
D.C. Specifications, and section 7.4, A.C. Specifi­
cations. 

Exte~ded exposure to the Maximum Ratings may af­
fect device reliability. Furthermore, although the 
386 SX Microprocessor contains protective circuitry 
to resist damage from static electric discharge, al­
ways take precautions to avoid high static voltages 
or electric fields. 
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7.3 D.C. Specifications 
Functional operating range: Vcc = 5V±10%; TCASE=O·C to 85·C 

Table 7.3. D.C. Characteristics 

Symbol Parameter Min Max Unit Notes 

VIL Input LOW Voltage -0.3 +0.8 V 

VIH Input HIGH Voltage 2.0 Vcc+0.3 V 

VILC CLK2 Input LOW Voltage -0.3 +0.8 V 

VIHC CLK2 Input HIGH Voltage Vcc-0.8 Vcc+0.3 

VOL Output LOW Voltage 
10L =4mA: A23-A1,D15-DO 
10L =5mA: BHE#,BLE#,W/R#, 

D/C#,M/IO#,LOCK#, 
ADS#,HLDA 

VOH Output high voltage 
10H= -1mA: A23-A1,D 
10H= -0.2 mA: A23-A 
10H= ,-0.9mA: BHE#,B 

D/C#,M 

10H= -0.18 rnA: 

III Input leakage cut~en 
(for all pins except 

±15 p.A OVS:VINS:VCC 

PEREa, BUSY # and ER 

IIH 200 p.A VIH=2.4V, Note'1 

IlL -400 p.A VIL~0.45V, Note 2 

1(0 ±15 p.A 0.45V S:VOUTS:VCC 

IcC Supply Current 
CLK2 = 32 MHz 275 rnA Icc typ = 175 rnA, Note 3 
CLK2 = 40 MHz 305 rnA Icc typ = 200 rnA, Note 3 

CIN Input capacitance 10 pF Fc= 1 MHz, Note 4 

COUT Output or 1/0 capacitance 12 pF Fc= 1 MHz, Note 4 

CCLK CLK2 Capacitance 20 pF Fc= 1 MHz, Note 4 

Tested at the minimum operating frequency of the part. 

NOTES: 
1. PEREa input has an internal pull-down resistor. 
2. BUSY# and ERROR# inputs each have an internal pull-up resistor. 
3. Icc max measurement at worst case load, frequency, Vee and temperature. 
4. Not 100% tested. 
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7.4 A.C. Specifications 

. The A.C. specifications given in Table 7.4 consist of 
output delays, input setup requirements and input 
hold requirements. All A.C. specifications are rela­
tive to the CLK2 rising edge crossing the 2.0V level. 

A.C. spec measurement is defined by Figure 7.1. In­
puts must be driven to the voltage levels indicated 
by Figure 7.1 when A.C. specifications are mea­
sured. Output delays are specified with minimum 
and maximum limits measured as shown. The mini­
mum delay times are hold times provided to external 
circuitry. Input setup and hold times are specified 

CLK2[ 

OUTPUTS 

as minimums, defining the smallest acceptable sam­
pling window. Within the sampling window, a syn­
chronous input signal must be stable for correct op­
eration. 

Outputs NA#, W/R#, D/C#, MIIO#, LOCK#, 
BHE#, BLE#, A23-Al and HLDA only'change at 
the beginning of phase one. 015-00 (write cycles) 
only change at the beginning of phase two. The 
READY#, HOLD, BUSY#, ERROR#, PEREa and 
015-00 (read cycles) inputs are sampled at the be­
ginning of phase one. The NA#, INTR and NMI in­
puts are sampled at the beginning of phase two. 

(A 1-A23,BHEH,BLEH, [ 
ADS#,M/IOH,D/C#, 1.5V OU;'~~D n+ 1 

W/R#,LOCKH,HLDA) ----........ ~:....;;"~:....;;,,..;:.;;~....;.;:.;.;..T~ 

OUTPUTS [ 
(00-015) 

INPUTS [ 
(N/A#.INTR,NMI) 

INPUTS 
(READY#,HOLD, [ 

ERRORH,BUSY#, 
PEREO,DC-D1S) 

LEGEND 
A - Maximum Oulput Delay Spec 
B - Minimum Output Delay Spec 
C - Minimum Input Setup Spec 
D - Minimum Input Hold Spec 

3.0V "?""7..,.,"?T"---:.--....... :+-~ 
OV~~~------........ ~~ 

3.0V ~"""f"..--....;.--.... ...+-......-

OV~~~-----""""~~ 
240187-35 

Figure 7.1. Drive Levels and Mea~urement ~oints for A.C. Specifications 
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A.C. SPECIFICATONS TABLES 
Functional operating range: Vcc = 5V±10%; TCASE=O·C to 85·C 

Table 7.4. A.C. Characteristics at 16 MHz 

Symbol Parameter Min Max Unit Figure Notes 

Operating frequency 4 16 MHz Half CLK2 Freq 

t1 CLK2period 31 125 ns 7.3 

t2a CLK2 HIGH time 9 ns 7.3 at2V(3) 

t2b CLK2 HIGH time 5 ns 7.3 at (Vcc-O.8)V(3) 

t3a CLK2 LOW time 9 ns 7.3 at·2V(3) 

t3b CLK2 LOW time 7 ns 7.3 

t4 CLK2 fall time 8 ns O.8)V to O.8V(3) 

t5 CLK2 rise time 8 

t6 A23-A1 valid delay 4 

t7 A23-A1 float delay 4 (Note 1) 

ts BHE#, BLE#, LOCK# 
valid delay CL = 75pF(4) 

t9 BHE#, BLE#, LOCK# 
float delay (Note 1) 

t10 W/R#, M/IO#, D/C#, 
ADS# valid delay 7.5 CL = 75pF(4) 

t11 W/R#, M/IO#, 
ADS# floatd 7.6 (Note 1) 

t12 
ns 7.5 CL = 120pF(4) 

t13 
35 ns 7.6 (Note 1) 

t14 33 ns 7.5 CL = 75pF(4) 

t15 5 ns 7.4 

t16 21 ns 7.4 

t19 READY # setup time 19 ns 7.4 

t20 READY # hold time 4 ns 7.4 

t21 015-00 Read Data 
setup time 9 ns 7.4 

t22 015-00 Read Data 
hold time 6 ns 7.4 

t23 HOLD setup time 26 ns 7.4 

t24 HOLD hold time 5 ns 7.4 

t25 RESET setup time 13 ns 7.7 

t26 RESET hold time 4 ns 7.7 
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Functional operating range: Vcc = 5V ± 10%; T CASE = DoC to 85°C 

Table 7.4. A.C. Characteristics at 16 MHz (Continued) 

Symbol Parameter Min Max Unit Figure Notes 

t27 NMI, INTR setup time 16 ns 7.4 (Note 2) 

t28 NMI, INTR hold time 16 ns 7.4 (Note 2) 

t29 PEREQ, ERROR#, BUSY# 
setup time 16 ns 7.4 (Note 2) 

t30 PEREQ, ERROR #, BUSY # 
hold time 5 ns 7.4 (Note 2) 

Table 7.5. A.C. Characteristics at 20 MHz 

Symbol Parameter Min Max Unit Figure Notes 

Operating Frequency 4 20 MHz Half CLK2 Frequency 

t1 CLK2 period 25 125 ns 7.3 

t2a CLK2 HIGH time 8 ns 7.3 at 2V (Note 3) 

t2b CLK2 HIGH time 5 ns 7.3 at (Vee - 0.8V) (Note 3) .. 
,','-" 

t3a CLK2 LOW time 8 
" 

ns .... 7;,3' at 2V (Note 3) 

t3b CLK2 LOW time 13< .\ '" 
"',' .D~> : 7.3 at 0.8V (Note 3) 

t4 CLK2 fall time " 8 
~~ 

7.3 (Vee - 0.8V) to 0.8V (Note 3) 

t5 CLK2 rise time i'.,;~~ , !(, (!SS, '"7.3 0.8V to (Vee - 0.8V) (Note 3) 

t6 A23-A1 valid delay "".,'»' tiS? 7.5 CL = 120 pF (Note 4) 
.'<., '. t7 A23-A 1 float delay ,~ , : ." 

"~' ns 7.6 (Note 1) 

t8 BHE#, BLE#, LOCK# valid 'delay , , 0 ns 7.5 CL = 75 pF (Note 4) 

t9 BHE #, BLE'#, LOCK #'floa1 delay :.:'. >;f' 32 ns 7.6 (Note 1) 

t10a MilO #, O/C # valid delay .. ,>:. ';"': 6 28 ns 7.5 CL = 75 pF (Note 4) 

t10b W IR #, ADS # valid dela,y ". 
' "~' '", 

6 26 ns 7.5 CL = 75 pF (Note 4) 
,', ..... , " 

t11 W/R#, M/IO#, O/C,.~f'~S# float delay 6 30 ns 7.6 (Note 1) 

t12 015-00 Write Oata:vaJid Delay 4 38 ns 7.5 CL = 120 pF 

t13 015-00 Write Data Float Delay 4. 27 ns 7.6 (Note 1) 

t14 HLOA valid delay 4 28 ns 7.5 CL = 75 pF (Note 4) 

t15 NA # setup time 5 ns 7.4 

t16 NA# hold time 12 ns 7.4 

4-477 



386™ SX MICROPROCESSOR 

Table 7.5. A.C. Characteristics at 20 MHz (Continued) 

Symbol Parameter Min Figure Notes 

t19 READY # setup time 'l' 7.4 

t20 READY # hold time ns 7.4 

t21 015-00 Read Data setup time ns 7.4 

t22 015-00 Read Data hold time ns 7.4 

t23 HOLD setup time ns 7.4 

t24 HOLD hold time ns 7.4. 

t25 RESET setup time ns 7.7 

t26 RESET hold time;,', ns 7.7 

t27' NMI, INTR setup time 16 ns 7.4 (Note 2) 

t28 NMI, INTR hold time 16 ns 7.4 (Note 2) 

t29 PEREa,ERRO 14 ns 7.4 (Note 2) 

t30 PEREa, ER 5 ns 7.4 (Note 2) 

NOTES: 
1. Float condition Qccurs when maximum output current becomes less than ILO in magnitude. Float delay is not 100% 
tested. 
2: These inputs are allowed to be asynchronous ,0 CLK:!. The setup and hold specifications are given for testing purposes, 
to assure recognition within a specific ClK2 period. 
3: These are not tested. They are guaranteed by design characterization. 
4: Tested with CL set at 50 pf and derated to support the indicated distributed capacitive load. See Figures 7.B though 7.10 
for the capacitive derating curve. 

A.C. TEST LOADS A.C. TIMING WAVEFORM$ 

II ~~'I I 
I I _ ... _ r Vcc-:o~8vll ~~\ - -I~ I 

I 
=L~-W-~ 

240187-37 

~----------------------------~ 

240187-36 

Figure 7.2. A.C. Test Loads Figure 7.3. CLK2 Waveform 
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Tx Tx 
</12 </II 

CLK2 [ 

READY# [ ~~~ __ ""'I-__ ~~ 

HOLD [ ~~~~ __ +-__ ~~~ 

00-015 [ 
(INPUT) ~~:ID. __ -+ __ -"~~ 

BUSY#. [ 
ERROR# ~~~ __ ""'I-__ ~~ 

PEREO -

NA# [ 

INTR. [ 
Nt.tl 

Tx 
</II 

Figure 7.4. A.C. Timing Waveforms-Input Setup and Hold Timing 

CLK2 [ 

BHE#.BLE#. [ 
LOCK# 

W/R#.t.t/IO#. [ 
D/C#.ADS# 

Al-A23 [ 

00-015 [ 
(OUTPUT) 

HLDA [ 

Tx 

Figure 7.5. A.C. Timing Waveforms-Output Valid Delay Timing 
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CLK2 [ 

BHE#.BLE#. [ 
LOCK# 

W/R#.M/IO#. [ 
D/C#.ADS# 

Al.-A23 [ 

00-015 [ 

HLDA [ 

386™ SX MICROPROCESSOR 

Th nOR Tl 

(HIGH Z) 

. @ALSO APPLIES TO DATA FLOAT WHEN WRITE 
. CYCLE IS FOLLOWED BY READ OR IDLE 

MAX 

240187-40 

Figure 7.6. A.C. Timing Waveforms-Output Float Delay and HLDA Valid Delay Timing 

-RESET-}··>-----INITIALIZATION SEQUENCE----

CLK2 [ 

RESET [ 

240187-41 

Figure 7.7. A.C. Timing Waveforms-RESET Setup and Hold Timing and Internal Phase 
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nom+6 

..... nom +3 
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:i .., 
0 

nom 

0 
:::; 
~ nom-3 .... 
=> a. .... 
=> 
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240187-42 

Figure 7.8. Typical Output Valid Delay versus 
Load Capacitance at Maximum Operating 

Temperature (Cl = 120 pF) 
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Figure 7.10. Typical Output Valid Delay versus 
Load Capacitance at Maximum Operating 

Temperature (Cl = 50 pF) 
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0 

nom-3 

nom-6 75 100 125 150 

CL (picofarads) 

240187-43 

Figure 7.9. Typical Output Valid Delay versus 
Load Capacitance at Maximum Operating 

Temperature (Cl = 75 pF) 

8 

> 
0 
N 6 I 
> co 
0 
..... 4 
.5 .., 
::lE 
1= .., 2 
VI 
ii: 

8L-__ ~ __ -L __ -L __ ~ 

50 75 100 125 150 

CL (picofarads) 

240187-50 

Figure 7.11. Typical Output Rise Time versus 
Load Capacitance at Maximum Operating 

Temperature 

f..---- 'i1s" 
200 

ICC MEASURED AT TYPICAL Vee AND TEMPERATURE 
o 

4 6 8 10 12 14 16 

FREQUENCY (MHz) 

Figure 7.12. Typical Icc vs Frequency 
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j41·-------- 17.5"--------+l·1 
I-T-------a 

DI-~_-~~~_-=~~~_~---X~~-B~-=L_--~=_--__ ....... 

--------------
4.0" FLEXIBLE --------

1 .. ·----------------26.75"----------------+1 

Po 
1.25" 

240187-48 

Figure 7.13. Preliminary ICETM-386 SX Emulator User Cable with PQFP Adapter 

1---------12.75"--------+1 

DI-~_-~~-=_---~~~_--~X~=-.!B~-~-L_~--=_--__ ....... 
t 

PIN 1 

------

681+-1' ~-----22.0"---------+l·1 

,Fbi it 53 
240187-49 

Figure 7.14. Preliminary ICETM-386 SX Emulator User Cable with OIB and PQFP Adapter 
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7.5 Designing for ICETM·386 SX 
Emulator (Advanced Data) 

The 386 SX CPU's in-circuit emulator product is the 
ICETM-386 SX emulator. Use of the emulator re­
quires the target system to provide a socket that is 
compatible with the ICE-386 SX emulator. The ICE-
386 SX offers a 100-pin fine pitch flat-pack probe for 
emulating user systems. The 100-pin fine pitch flat­
pack probe requires a socket, called the 100-pin 
PQFP, which is available from 3M text-tool (part 
number 2-0100-07243-000). The ICE-386 SX emula­
tor probe attaches to the target system via an adapt­
er which replaces the 386 SX CPU component in the 
target system. Because of the high operating fre­
quency of 386 SX CPU systems and of the 
ICE-386 SX emulator, there is no buffering between 
the 386 SX CPU emulation processor in the ICE-386 
SX emulator probe and the target system. A direct 
result of the non-buffered interconnect is that the 
ICE-386 SX emulator shares the address and data 
bus with the user's system, and the RESET signal is 
intercepted by the ICE emulator hardware. In order 
for the ICE-386 SX emulator to be functional in the 
user's system without the Optional Isolation Board 
(OIB) the designer must be aware of the following 
conditions: 

1. The bus controller must only enable data trans­
ceivers onto the data bus during valid read cycles 
of the 386 SX CPU, other local devices or other 
bus masters. 

2. Before another bus master drives the local pr~c­
essor address bus, the other master must gain 
control of the address bus by asserting HOLD and 
receiving the HLOA response. 

3. The emulation processor receives the RESET sig­
nal 2 or 4 CLK2 cycles later than an 386 SX CPU 
would, and responds to RESET later. Correct 
phase of the response is guaranteed. 

In addition to the above considerations, the 
ICE-386 SX emulator processor module has several 
electrical and mechanical characteristics that should 
be taken into consideration when designing the 386 
SX CPU system. 

Capacitive Loading: ICE-386 SX adds up to 27 pF 
to each 386 SX CPU signal. 

Drive Requirements: ICE-386 SX adds one FAST 
TTL load on the CLK2, control, address, and data 
lines. These loads are within the processor module 
and are driven by the 386 SX CPU emulation proces­
sor, which has standard drive and loading capability 
listed in Tables 7.3 and 7.4. 

Power Requirements: For noise immunity and 
CMOS latch-up protection the ICE-386 SX emulator 
processor module is powered by the user system. 

The circuitry on the processor module draws up to 
1.4A including the maximum 386 SX CPU Icc from 
the user 386 SX CPU socket. 

386 SX CPU Location and Orientation: The 
ICE-386 SX emulator processor module may require 
lateral clearance. Figure 7.12 shows the clearance 
requirements of the iMP adapter. The optional isola­
tion board (OIB), which provides extra electrical buff­
ering and has ·the same lateral clearance require­
ments as Figure 7.13, adds an additional 0.5 inches 
to the vertical clearance requirement. This is illus­
trated in Figure 7.14. 

Optional Isolation Board (OIB) and the CLK2 
speed reduction: Due to the unbuffered probe de­
sign, the ICE-386 SX emulator is susceptible to er­
rors on the user's bus. The OIB allows the ICE-386 
SX emulator to function in user systems with faults 
(shorted signals, etc.). After electrical verification the 
OIB may be removed. When the OIB is installed, the 
user system must have a maximum CLK2 frequency 
of 20 MHz. 

8.0 DIFFERENCES BETWEEN THE 
386 SX CPU AND THE 386 OX 
CPU 

The following are the major differences between the 
386 SX CPU and the 386 OX CPU: 

1. The 386 SX CPU generates byte selects on 
BHE # and BlE # (like the 8086· and 80286) to 
distinguish the upper and lower bytes on its 16-bit 
data bus. The 386 OX CPU uses four byte selects, 
BEO#-BE3#, to distinguish between the different 
bytes on its 32-bit bus. 

2. The 386 SX CPU has no bus sizing option. The 
386 OX CPU can select between either a 32-bit 
bus or a 16-bit bus by use of the BS16# input. 
The 386 SX CPU has a 16-bit bus size. 

3. The NA# pin operation in the 386 SX CPU is 
identical to that of the NA # pin on the 386 OX 
CPU with one exception: the 386 OX CPU NA # 
pin cannot be activated on 16-bit bus cycles 
(where BS16# is LOW in the 386 OX CPU case), 
whereas NA # can be activated on any 386 SX 
CPU bus cycle. 

4. The contents of all 386 SX CPU registers at reset 
are identical to the contents of the 386 OX CPU 
registers at reset, except the OX register. The OX 
register contains a component-stepping identifier 
at reset, i.e. 

in 386 OX CPU, OH = 3 indicates 386 OX CPU 
after reset 

OL = revision number; 

in 386 SX CPU, OH = 23H indicates 386 SX 
after reset CPU 

Ol = revision number. 
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5. The 386 OX CPU uses A31 and MIIO# as selects 
for the numerics coprocessor. The 386 SX CPU 
uses A23 and M/IO# as selects. 

6. The 386 OX CPU prefetch unit fetches code in 
four-byte units. The 386 SX CPU prefetch unit 
reads two bytes as one unit (like the 80286). In 
BS16 mode, the 386 OX CPU takes two consecu~ 
tive bus cycles to complete a prefetch request. If 
there is a data read or write request after the pre­
fetch starts, the 386 OX CPU wiil fetch all four 
bytes before addressing the new request. 

7. Both 386 OX CPU and 386 SX CPU have the 
same logical address space. The only difference 
is that the 386 OX CPU has a 32-bit physical ad­
dress space 'and the 386 SX CPU has a 24-bit 
physical address space. The 386 SX CPU has a 
physical memory address space of up to 16 
megabytes instead of the 4 gigabytes available to 
the 386 OX CPU. Therefore, in 386 SX CPU sys­
tems" the operating system must be aware of this 
physical memory limit and should allocate memo­
ry for applications programs within this limit. If a 
386 OX CPU system uses only the lower 16 
megabytes of physical address, then there will be 
no extra effort required to migrate 386 OX CPU 
software to the 386 SX CPU. Any application 
which uses more than 16 megabytes of memory 
can run on the 386 SX CpU if the operating sys­
tem utilizes the 386 SX CPU's paging mechanism. 
In spite of this difference in physical address 
space, the 386 SX CPU and 386 OX CPU can run 
the same operating systems and applications 
within their respective physical memory con­
straints. 

'9_0 INSTRUCTION SET 

This section describes the instruction set Table 9.1 
lists all instructions along with instruction encoding 
diagrams and clock counts. Further details of the 
instruction encoding are then provided in the follow­
ing sections, which completely describe the encod­
ing structure and the definition of all fields occurring 
within instructions. 

9.1 386 SX CPU Instruction Encoding 
and Clock Count Summary 

To calculate elapsed time for an instruction, multiply 
the instruction clock count, as listed in Table 9.1 be-

low, by the processor clock period (e.g. 62.5 ns for 
an 386 SX Microprocessor operating at 16 MHz). 
The actual clock count of an 386 SX Microprocessor 
program will average 5% more than the calculated 
clock count due to instruction sequences which exe­
cute faster than they can be fetched from memory. 

Instruction Clock Count Assumptions 

1. The instruction has been prefetched, decoded, 
and is ready for execution. 

2. Bus cycles do not require wait states. 

3. There are no local bus HOLD requests delaying 
processor access to the bus. 

4. 1\10 exceptions are detected during instruction ex-
ecution. ' 

5. If an effective address is calculated, it does not 
use two general register components. One regis­
ter, scaling and displacement can be Lised within 
the clock counts shown. However, if the effective 
address calculation uses two general register 
components, add 1 clock to the clock count 
shown. 

Instruction Clock Count Notation 

1. If two clock counts are given, the smaller refers to 
a register operand and the larger refers to a mem­
ory operand. 

2. n = number of times repeated. 

3. m = number of components in the next instruc­
tion executed, where the entire displacement (if 
any) counts as one component, the entire imme­
diate data (if any) counts as one component, and 
all other bytes of the instruction and prefix(es) 
each count as one component. 

Misaligned or 32-Bit Operand Accesses 

- if instructions accesses a misaiigned i6-bit oper­
and or 32-bit operand on even address add: 
2' clocks for read or write 
4 •• clocks for read and write 

- If instructions accesses a 32-bit operand on odd 
address add: ' 
4' clocks for read or write 
8" ,clocks for read and write 

Wait States 

Wait states add 1 clock per wait state to instruction 
execution for each data access. 
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inter 386™ SX MICROPROCESSOR 

Table 9-1. Instruction Set Clock Count Summary 

INSTRUCTION 

GENERAL DATA TRANSFER 

MOV = Move: 

Register 10 Register/Memory 

Register/Memory to Register 

I 

FORMAT 

1000100w mod reg r/ml 

1000101w mod reg r/ml 

Immediate to Register/Memory 1100011 w modOOO rIm I immediate data 

Immediate to Register (short form) 

Memory to Accumulator (short form) 

Accumulator to Memory (short form) 

Register Memory to Segment Register 

Segment Register to Register/Memory 

MOVSX = Move With Sign Extension 

Register From Register/Memory 

MOVZX = Move With Zero Extension 

Register From Register/Memory 

PUSH = Push: 

Register/Memory 

Register (short form) 

Segment Register (ES, CS, SS or OS) 
(short form) 

Segment Register (ES, CS, SS, OS, 
FSor GS) 

Immediate 

PUSHA = Push All 

POP = Pop 

1011 w reg immediate data 

1010000w full displacement 

1010001w full displacement 

10001110 modsreg3 rim I 
10001100 modsreg3 rim I 

I ~" '<, 'J' , I Register/Memory " 1 Ol)~ 1 1 11 "" mod 0 0 0 rim 

Register (short form) • .:>:,/,0,1 0 1 1 reg I 
Segment Register (ES, CS, SS ~> ":1 000 sreg 2 1 1 1 I 

(short form) .~ i ~,:' .. " ::-=======:-' ____ ---, 
Sagment Register (ES, CS, $§;.Or1gSl, I 0 0 0 0 1 1 1 1 I 1 0 sreg 3 0 0 1 I 

FS or GS • .:,,,,, , , 

POPA = Pop All I 01100001 I 
XCHG = Exchange 

Register/Memory With Register I 1000011w I mod reg rim I 
Register With Accumulator (short form) 110010 reg I 
IN = Inpulfrom: 

Fixed Port I 1110010w I port number 

Variable Port I 1 I 1011 Ow I 
OUT = Oulpullo: 

Fixed Port I I I 1001 I w I port number 

Variable Port I 11101 I Iw I 
LEA = Load EA 10 Reglaler I 10001 I 01 I mod reg r/ml 

4-485 

". ,-

'. 

ClkCounl 
Virtual 

8086 Mode 

t26 

t27 

t24 

t25 

CLOCK COUNT 

Real 
Address Protected 
Modear Virtual 
Virtual AddresB 
8086 Mode 
Mode 

2/2 2/2' 

2/4 2/4' 

2/2 2/2' 

2 2 

4' 4' 

2' 2~" 
.... ,,' 

2/5 , 'w~ 
" ,'J 

2/2' \) 2/2 

~ : ,~( 
3/S* 

3/6' 

7/9' 

2 4 

2 4 

2 

, 18 34 

517 719 

6 6 

25 

25 

24 40 

3/5" 3/5" 

3 3 

12' 6*/26-

13' 7'/27' 

10' 4*/24· 

II' 5*/25· 

2 2 

NOTES 

Real 
Address 
Modear 
Virtual 
8086 
Mode 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b,f 

Protected 
Virtual 

Address 
Mode 

h 

h 

h,l,l 

h 

h 

h 

h, i,j 

h,i,j 

f.h 

s/t,m 

s/t,m 

s/~m 

s/~m 



intJ 386TM SX MICROPROCESSOR 

Table 9·1, Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addre .. PrOtected Addre .. Protected 

IlDeleor VIrtual Mode or VIrtual 
Virtual Addreaa Virtual Address 
8086 Mode 8086 MDeIe 
Mode Mode 

SEGMENT CONTROL 

LOS = Load Pointer to OS 11000101 mod reg rIm 7' 26'/28' b h,l,j 

LES = Load Pointer to ES 11000100 mod reg rIm 7' 26'/28' b h,l,j 

LFS = Load pointer to fS 00001111 10110100 mad rag rIm I ~, I\n./Il-t. b " , , 11,',1 

LGS = Load PoInter to OS 00001111 10110101 mod reg rIm I 7' 26'/28' b h,l,j 

LSS = Load Pointer to SS 00001111 10110010 mod reg 'rIm I 7' 26'/28' b h,l,j 

FLAG CONTROL 

CLC = Clear Carry Flag 11111000 2 

CLD = Clear Direction Flag 11111100 

CLI = Clear Interrupt Enable Flag 11111010 m 

CL TS = Clear Task SWitched Flag 00001111 5 

CMC = Complement Cerry Flag 11110101 2 

LAHF = Loed AH Into Flag 10011111 2 

POPF = Pop Flag. 5 b h,n 

PUSHF = Push Flags 4 b h 

SAHF = Store AH Into Flags 3 

STC = Set Carry Flag 2 2 

STD = Set DIrectIon Flag 

STI = Set Interrupt Enable Flag 6 8 m 

ARITHMETIC 
ADD = Add 

I :~::::::: ~,~~: 2 2 

~" ~" h nt:ryl~'1I;II1 ''''''''I~I''''''7 

Memory to Register 6' 6' b h 

Immediate to Register/Mem 217·· 217-- b h 

Immediate to Accumulator 2 2 

ADC = Add With Carry 

Register to Register 000100dw I mod reg rIm I 2 2 

Register to Memory 0001000w I mod reg . rIm I 7" 7" b h 

Memory to Register 0001001w I mod reg rIm I 6' 6' b h 

Immediate to Register/Me'!"ory 100000sw ImodOl0 rIm I Immediate data 217·· 2/7·· b h 

Immediate to Accumulator (short form) 0001010w immediate data 2· 2 

INC = Increment 

ReglsterlMemory l111111w I modOOO rIm I 2/S·· 2/S·· b h 

Register (short form) 101000 reg I 2 2 

SUB = Subtree! 

Register from Register 001010dw I mod reg rIm I 2 2, 
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intJ 386TM SX MICROPROCESSOR 

Table 9-1, Instruction Set Clock Count Summary (Continued) 

INSTRUCTION 

RITHMETIC (Continued) 

agister from Memory 

emory from Register 

mmediate fro'm Register/Memory 

mmediate from Accumulator (short form) 

BB = Subtract with Borrow 

agister from Register 

egister from Memory 

emory from Register 

mmediate from RegisterlMemory 

mmediate from Accumulator (short form) 

EC = Decrement 

agister/Memory 

egister (short form) 

egister with Register 

emory with Register 

egister with Memory 

mmediate with RegisterlMemory 

mmediate with Accumulator (short form) 

EG = Change Sign , 

AA = ASCII Adjuatlor Add 

AS = ASCII Adjust for Subtract 

AA = Decimal Adjustlor Add ,~;.\ 

FORMAT 

100101 OOw ImOdreg r/ml 

10010101 w Imod reg r/ml 

1100000sw Imodl0l r/ml immediate data 

I 0010110w 1 immediate data 

00011 Odw ImOdreg r/ml 

00011 OOw ImOdreg r/ml 

0001101Wlmodreg r/ml 

100000sw ImodOll r/ml immediate data:, 

0001110wl immediate data 
'".' 

11111111 w IregOOl r/mL':,-" 
, "./ 

101001 regl ,;';',,:-: '.' 

\~',' ..... ",,: ,: " 

...... \0..."" 
AS = DeCimal Adjust for SUbt~> "j; '--'-' ___ -'-'--'--' 

"'~ .r , 'r 
UL = MUltlpIY(Unslgn.d)',;>~~~'''' 

ccumulatorwith Regi.ter/~;~* 1'1111011 w ImOd 100 r/ml 

Multiplier-Byte 
-Word 
-Doubleword 

MUL = Integer Mulllply (signed) 

ccumulator with Register/Memory 

MulUplier-Byte 
-Word 
-Doubleword, 

agister with Register/Memory 

Multiplier-Byte 
-Word 
-Doubleword 

11111011 w ImOd 101 r/ml 

I 0000111 1 11 01 0111 1 ImOd reg r/ml 

egister/Memorywith Immediate to Register! 011010 s 1 Imod reg r/ml immediate data 

-Word 
-Doubleword 
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CLOCK COUNT 

Real 
Addr ••• 
Mode or 
Virtual 
8086 
Mode 

7" 

6' 

217·· 

7" 

6' 

217·· 

-, , " 
" " 

-'.' " ~. 

,:'t",>,) 
.' '2/6 

l 
,'", 

2 " 
~ .... ~ 

,,' 
'2 

5' 

6' 

2/5' 

2 

2/6' 

4 

4 

4 

4 

12-17115-20' 
12-25115-28' 

12-41117-46' 

12-17115-20' 
12-25115-28' 
12-41117-46' 

12-17115-20' 
12-25115-28' 
12-41117-46' 

13-26 
13-42 

Protected 
Virtual 

Address 
Mode 

7" 

6' 

217·· 

2 

2 

7·· :.., 

'v~6~'~~ 

"'2)p, 
'> 2 

216 

2 

2 

5' 

6' 

2/5' 

2 

2/6' 

4 

4 

4 

4 

12-17115-20' 
12-25/15-28' 
12-41117-46' 

12-17/15-20' 

1 ~-25/15-28' 
12-41/17-46' 

12-17115-20' 
12-25115-28' 

12-41117-46' 

13-26/14-27 

13-42/16-45 

NOTES 

Real 
Addre •• 
Mode or 
Virtual 
8086 
Mode 

b 

b 

b 

b 

b 

b 

b 

b,d 
b,d 
b,d 

b,d 
b,d 
b,d 

b,d 
b,d 
b,d 

b,d 
b,d 

Protected 
Virtual 

Address 
Mode 

h 

h 

h 

h 

h 

h 

d, h 

d, h 

d, h 

d,h 
d,h 
d,h 

d,h 
d,h 
d,h 

d,h 
d,h 



386TM SX MICROPROCESSOR. 

Table 9·1" Instruction Set Clock Count Summary (Continued) 

CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Addreso Protected 

Mode or Virtual Mode or Virtual 
Virtual Add .... Virtual Addreso 
8086 Mode 8086 Mode 
Mode Mode 

ARITHMETIC (Continued) 
DIV ~ Divide (Unsigned) 

ccumulator by Register/Memory 11 1 1 1 0 1 1 w Imod 1 1 0 rim! 

Divisor-Byie i4ii7 i4;i7 b,e e,h 

-Word 22/25 22/25 b,o o,h 
-Doubloword 38/43 38/43 b,o o,h 

IDIV ~ Integer Divide (Signed) 

Accumulator By Register/Memory 11 1 1 1 0 1 1 w Imod 11 1 rim! 

Divisor-Byte b,o e,h 
-Word b,o o,h 
-DoublolNOrd b,o o,h 

AD ~ ASCII Adjust for Divide 11010101 100001010 ! 19 

AAM ~ ASCII Adjust for. MulUply 17 17 

CBW ~ Convert Byte to Word 110011000 I 3 

CWO ~ Convert Word to Double Word I 10011001 2 2 

LOGIC 

RegisterlMemory by 1 3/7" 317·' b 

RegisterlMemory by CL 317" 317" b 

RegisterlMemory by Immediate Count 317" 3/7" b 

hrough Carry (RCL and RCR) 
:/;~ 

Register IMemory by 1 9/10" 9/10" b 

R~i::'ltlriMtl!UluIY uy CL 9iiO" SiiO" U 

9/10' 9/10' b 

000 
001 ROR 
010 RCL 
011 RCR 
100 SHUSAL 
101 SHR 
lIt SAR 

SHLD ~ Shift Left Double 

Registai/MamoiY by Immediate 100001111 10100100 !mOdieg i/mhmmad G-bit data 3/7" 317" 

Register IMemory by CL 100001111 I 10100101 I mod reg r/ml 317" 317" 

SHRD ~ Shift Right Double 

RegisterlMemory by Immediate 100001111 I 1 0101 100 Imod reg r/mlimmed 8-bit data 317" 317" 

RegisterlMemory by CL 100001111 I 1 0101 101 Imod reg rim! 317"" 317" 

AND ~ And 

Register to Regisler I 001000dw ImOdreg rim! 2 2 
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inter 386TM SX MICROPROCESSOR 

Table 9·1,lnstruction Set Clock Count Summary (Continued) 

INSTRUCTION 

LOGIC (Conlinued) 

Register to Memory 

Memory to Register 

Immediate to Register/Memory 

Immediate to Accumulator (Short Form) 

FORMAT 

0010000 w Imod reg r/ml 

I 0010001 w I mod reg r/ml 

11 OOOOOOw Imod1 00 r/ml immediate data 

1001001 Ow I immediate data 

TEST = And Function to Flags, No Result ,...-____ -, ____ -, 

Register/Memory and Register 11 0000 1 0 w I mod reg rIm I 
Immediate Data and RegisterlMemory 11111011 w ImodOOO r/ml immediate data 

Immediate Data and Accumulator 
(Short Form) 1010100 w I immediate data 

OR = Or 

Register to Register 

Register to Memory 

Memory to Register 

Immediate to RegisterlMemory 

Immediate to Accumulator (Short Form) 

XOR = Exclusive Or 

Register to Register 

Register to Memory 

Memory to Register 

Immediate to RegisterlMemory 

Immediate to Accumulator (Short Form) 

NOT = Invert Register/Memory 

STRING MANIPULATION ,? ,," 

CMPS = Compare Byte Word." ,,/'>:>11010011 w 
/,"·;' ...... l\\·· 

INS = Input Byte/Word frclrij BJ Port 0 1 1 0 1 lOw 

LODS = Load BytelWord to AL/ AX/EAX I 1 0 1 0 1 lOw 

MOVS = Move Byte Word 

OUTS = Output Byte/Word to OX Port 

SCAS = Scan Byte Word 

STOS = Store Byte/Word irom 

AL/AX/EX 

XLA T = Translate String 

REPEATED STRING MANIPULATION 
Repeated by Count in CX or ECX 

REPE CMPS = Compare String 

1010010w 

0110111 w 

1010111 w 

1010101 wi 

11010111 

(Find Non-Match) 11110011 11010011W I 
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t28 

CLOCK COUNT 

Real 
Address Protected 
Mode or Virtual 
Virtual Address 
8086 Mode 
Mode 

7" 7" 

6' 6' 

2/7' 2/7" 

2/5' ,2/5' 

2/S', <.' 2/5' 
',' 

,~' 
~,' . 

2 

7" 7" 

6' 6' 

2 2 

7" 

6' 

2/7" 

2/6" 

10' 

9'/29" 

S' 

7" 

14 8'/28' 

7' 7' 

4' 4' 

S' S' 

NOTES 

Real 
Address Protected 
Mode or Virtual 
Virtual Address 
8086 Mode 
Mode 

b 

b 

b 

b 

h 

b 

b 

b 

b 

b ./t,h,m 

b h 

b h 

b slt,h,m 

b 

b 

b 



inter 386™ SX MICROPROCESSOR 

Table 9-1.lnstruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or Virtual Mode or Virtual 
Virtual Address Virtual Address 
8086 Mode 8086 Mode 
Mode Mode 

REPEATED STRING MANIPULATION (Conlinued) 

REPNE CMPS = Compare String ClkCount 

(Find Match) 11111001011010011Wl 
Virtual 5+90*· 5+90 .... b h 8086 Mode 

REP INS = Input String ! 11110010!0110110wl 13+6n- 7+6n*' s;/t. h, rn 
27+6n' 

REP LODS = Load String 11111001011010110wl 5+60· b h 

REP MOVS = Move String 11111001011010010wl b h 

REP OUTS = Output String 111110010 I0110111Wl b s/t,h,m 

REPE SCAS = Scan String 

(Find Non·AL/ AX/EAX) 111110011 11010111 w I 5+80· 

REPNE SCAS = Scan String 

(Find ALI AX/EAX) 5+80· 

REP STOS = Store String 5+50· 

BIT MANIPULATION 

BSF = Scan Bit Forward 10+3n' 10+3n" b h 

eSR = Scan 81t Reverse 10+30· 10+30·· b h 

BT = Test Bit 

Register/Memory, Immediate 3/6' 3/6' b h 

Register/Memory. Register 3/12· 3/12' b h 

BTC = Test Bit and Complement 

RfJgister/Memory, Immediate 6/S' S/S' h 

Register/Memory, Register S/13' S/13' h 

I BTR = Test Bit and Reset 

RegisterlMemory,lm S/S' SIS' b h 

6/13' S/13' b 

BTS = Test Bit and Set 

Register/Memory, Immediate 100001111110111010lmodl0l r/mlimmed S·bit dat~ SIS' S/S' 

Register/Memory, Register 100001111 110101011 ImOdreg rIm! S/13' S/13' h 

CONTROL TRANSFER 

CALL = Can 

Direct Within Segment I 1 1 1 0 1 0 0 0 I full displacement 7+m* 9+m* b 

Register/Memory 

Indirect Within Segment 111111111 ImodO 1 0 rIm! 7+m*/10+m* 9+ml h,r 

12+m* 

Direct Intersegment 11 0 0 1 1 0 1 0 !unsigned full offset, selector 17+m* 42+m* j,k,r 

NOTE: 
t Clock count shown applies if 1/0 permission allows 1/0 to the port in virtual 8086 mode. If 1/0 bit map denies permission 
exception 13 fault occurs; refer to clock counts for INT 3 instruction, 
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inter 386TM SX MICROPROCESSOR 

Table 9-1.lnstructlon Set Clock Count Summary (Continued) 

INSTRUCTION FORMAT 

ONTROl TRANSFER (Continued) 

rotected Mode Only (Direct Intersegment) 

Via Call Gate to Same Privilege Level 

Via Call Gate to Different Privilege Level, 

(No Parameters) 

Via Call Gate to Different Privilege Level, 

(x Parameters) 

From 286 Task to 286 TSS 
From 286 Task to 386TM SX CPU TSS 

From 286 Task to Virlual8086 Task (386 SX CPU TSS) 

From 386 SX CPU Task to 286 TSS 

From 386 SX CPU Task to 386 SX CPU TSS 

From 386 SX CPU Task to Virlual8086 Task (386 SX CPU TSS) 

ndirect Intersegment 11 1 1 1 1 1 1 1 lmod 0 1 1 r/ml 

rotected Mode Only (Indirect Intersegment) ; '-:'> ,:,>" 
Via Call Gate to Same Privilege Level , ' ", 

Via Call Gate to Different Privilege Level, ' .K';0,:t;/ 
(No Parameters) ,,<~\i. "" 

Via Call Gate to Different Privilege level, \',{-::' '>. ~ ... 

(x Parameters) <;;:~~:'$'& 
From 286 Task to 286 TSS ;;;;:'z..", 
From 286 Task to 386 SX CPU TSS ,~,,, ~ 
From 286 Task to Virlual8086 Task (386 SX CPU T~,~';" 
From 386 SX CPU Task to 288 TSS ,,~, ",V 
From 386 SX CPU Task to 386 SX CPU TSS ~"j;9 
From 386 SX CPU Task to Virlual8086 T~~iI:$X CPU T 

MP = Unconditional Jump ''-(;) 

hort 

irect within Segment 

egisterlMemory Indirect within Seg rim 

irect Intersegment ,J! 'i \\': 101 0 lunsigned full offset, selector 
<.~:, >" ',,~ J,~ 

rotected Mode Only (Direct Int~~t) 

Via Call Gate to Same Priv~!~( 
From 286 Task 10286 TSS'" ~, 

From 286 Task to 386 SX CPU TSS 

From 286 Task to Virlual8086 Task (386 SX CPU TSS) 

From 386 SX CPU Task to 286 TSS 
From 386 SX CPU Task to 386 SX CPU TSS 

From 38&SX CPU Task to Vi~ua18086 Task (386 SX CPU TSS) 

ndirect Intersegment 11 1 1 1 1 1 1 1 Imod 1 0 1 r/ml 

rotected Mode Only (Indirect Intersegment) 

Via Call Gate to Same Privilege Level 

From 286 Task to 286 TSS 

From 286 Task to 386 SX CPU TSS 

From 286 Task to Virlual8086 Task (386 SX CPU TSS) 

From 386 SX CPU Task to 286 TSS 
From 386 SX CPU Task to 386 SX CPO TSS 

From 386 SX CPU Task to Virtual 8086 Task (386 SX CPU TSS) 
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CLOCK COUNT 

Real 
Address 
Mode or 
Virtual 
8086 
Mode 

7+m 

7+m 

Protected 
VIrtual 

Address 
Mode 

64+m 

98+m 

106+8x+m 

285 

",,'~O, 
\' 229 

,:'285 
392 

309 

46+m 

86+m 

102+m 

110+8x+m 

399 

7+m 

7+m 

9+m/14+m 9+m/14+m 

16+m 31+m 

53+m 

395 

17+m 31+m 

49+m 

328 

NOTES 

Real 
Addres. 
Modeor 
Virtual 
8086 
Mode 

b 

b 

Protected 
Virtual 

Address 
Mode 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

hj,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,r 

j,k,r 

h,j,k,r 

h,j,k,r 

h,/,k,r 
h,j,k,r 

h,j,k,r 

h,j,k,r 

h,j,k,r 

h,/,k,r 

h,j,k,r 

h,/,k,r 
h,j,k,r 

h,j,k,r 

h,j,k,r 

h,/,k,r 

h,j,k,r 



386TM SX MICROPROCESSOR 

Table 9-1. Instruction Set Clock Count Summary (Continued) 

INSTRUCTION 

CONTROL TRANSFER (Continued) 
RET ~ Return from CALL: 

Within Segment 

Within Segment Adding Immediate to SP 

Intersegment 

Intersegment Adding Immediate to SP 

Protected Mode Only (RET): 
to Different Privilege Level 

Intersegment 
Intersegment Adding Immediate to SP 

CONDITIONAL JUMPS 

FORMAT 

11000011 

11000010 

11001011 

11001010 

NOTE: Times Are Jump "Taken or Not Taken" 
JO ~ Jump ~n Overflow 

8-Bit Displacement 

Full Displacement 

JNO ~ Jump on Nol Overflow 

8-Bit Displacement 

Full Displacement 

8-B~ Displacement 

Full Displacement 

8-Bit Displacement 

c •• lln; ..... I ....... _ ...... 

1 J~/:~ -~":.::~~' :~·~QUaIlZero 
8·Bit Displacenient 

16-bit displ, 

16-bit displ 

8-bitdispl 

10000100 I full displacement Full Displacement .. " . ..: '.' ,-1.;0:..;0:..;0:...:.0..:.1.,;.1.;1.;1'-1-'.":":';:";:"":":"':'...1 
~ .. , 

JNE/JNZ ~ Jump o~ NO~IINotZer.r:0:....:.. ____ ..,-____ -, 

, 8-B~ Displacement 01110101 8-bitdispl 

Full Displacement 00001111 10000101 I full displacement 

JBE/JNA ~ Jump on Below or EquallNol Above 

8·B!t Disp!acement ! 01110110 8-bitclispl 

Full Displacement 1 00001111 10000110 I full displacement 

JNBE/JA ~ Jump on Nol Below or EquallAbove 

8·Bit Displacement I 01110111 8-bitdispl 

Full Displacement I 00001111 10000111 I full displacement 

JS ~ Jump on Sign 

8-Bit Displacement 01111000 8-bitdispl 

Full Displacement 00001111 10001000 I full displacement 
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CLOCK COUNT 

Real 
Address PrOlecled 
Mode or Virtual 
Virtual Addre •• 
8086 Mode 
Mode 

12+m 

12+m 

36+m 

36+m 

7+mor3 

7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

"7.L~"'''''l 7+mc:"S I' .... ~. ~ 1 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mo,,3 7,+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

NOTES 

Real 
Addre •• Prolected 
Mode or Virtual 
Virtual Addre •• 
8086 Mode 
Mode 

b g, h, r 

b g, h, r 

b g,h,j, k, r 

g,h,j,k, r 

h,j, k,r 
h,j, k, r 
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Table 9-1. Instruction Set Clock Count Summary (Continued) 

INSTRUCTION FORMAT 

CONDITIONAL JUMPS (Continued) 

JNS = Jump on Nat Sign 

8~Bit Displacement 1 01111001 1 a·bitdispl 1 

Full Displacement 1 00001111 1 10001001 I full displacement 

JP/JPE = Jump on Parlty/Parity Even 

8·Bit Displacement I 01111010 1 8.bitdispl 1 

Full Displacement 1 00001111 1 10001010 I full displacement 

JNP/JPO = Jump on Not Parlty/Parlty Odd 

8-Bit Displacement I 01111011 1 8·bitdispl I 

Full Displacement 1 00001111 1 10001011 I full disPla~me~i 
JLlJNGE = Jump on Less/Not Greaterr0::.r=E:!q=ua=I __ -, _____ -, 

8·Bit Displacement I 0 1 1 1 1 1 0 0 1 a·bit displ I ," ','i: ,.. 

Full Displacement 1 00001 1 1 1 1 1 0001 1 0 $ tij";:~lacem&"':.,:· , 

JNLlJGE = Jump on Not Less/GreaterorEqual .,,: ,:.:t?/' '<.' ",:::/ ' 
a-Bit Displacement I 01 1111 01 I ~QJ~ / I :;",Y. \ 

Full Displacement 1 0 0 0 0 1111 1 ;,.:o~~;'~ 0 1 II!!i~celTll!f'll:"', 
:{', 'V ,,...;::,-;-::..:;. '>' ~' 

JLE/JNG = Jump on Less or EquallNotGreater ,"" ," :! '" .":,',,' 

8·Bit Displacement , 0 111,ft 1'&31' 8-bit~" .... "':;' ::~'>:;:'.'-' 
Full Displacement , OIT~0"i.y11 I 1 00011'f'O .. (·:~~:ment 

~-':" "'; ......, ,'<' ,). -: \~,{~~'1> '.> 
JNLE/JG = JUmponNotLessOrEq,UallGNater .j' ,"/ ';"€\;:' ., 

::" # \",>"" -:r (',' 8·Bit Displacement ,. 01 1 1 1 I,M ,. ja.bit"'!Pl ,.: 

FuliDispla~ement , OOQO~I,I'I>' 1.IiCf~"i 111 'fulidisPlacement 

JCXZ = Jump on CX Zero , 11)'01)0 11 :I" i\:bi; displ , 

JECXZ = Jump on ECX Zere ./::J,1tOOOll ,e 8·bit displ , 
,,~~, " " (-

(Address Size Prefix Differentiat~1X'ilsim JECXZ) 

LOOP = Loop CX Times &fi'1I:f" lr-l-l-'-0-0-0-l-0-'-1--8.-bi-t d-iS-P-1 --'1 

~~y 

LOOPZ/LOOPE = Loop with 
'Zero/Equal 

LOOPNZ/LOOPNE = Loop While 
NotZere 

CONDITIONAL BYTE SET 
NOTE: TImes Are Register/Memory 

SETO = Set Byte on OVerflow 

To Register/Memory 

SETNO = Se~ Byte on Not ov.mow 

To Register/Memory 

I 11100001 1 8·bitdispl I 

1",00000 1 a·bitdispl I 

100001111 1,00,0000 ImodOOO rim 1 

100001111 110010001 ImodOOO rim I 

SETB/SETNAE = Set Byte on Below/N;;.ot:.;A"b::;o:,;v"e..:o"'r.:E"'q"'ua,I'-____ -. _____ -, 

ToRegister/Memory I 00001111 I 10010010 1 modOOO rim I 
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CLOCK COUNT 

Real 
Address Protected 
Mode or Virtual 
Virtual Address 
8086 Mode 
Mode 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 
" , 

" 
", 

7+mor3 7+111.;;1"3 

7+mar3 '7+mor3 
.-

~7~;O;3 7+mor3 

:i+mor3 7+mor3 
, 

" '~ . 
1+'riior3 7+mor3 

J 
7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

7+mor3 7+mor3 

9+mor5 9+mor5 

9+mor5 9+mor5 

l1+m l1+m 

l1+m l1+m 

l1+m l1+m 

4/5' 4/5' 

4/5' 4/5' 

4/5' 4/5' 

NOTES 

Real 
Address Protected 
Mode or Virtual 
Virtual Address 
8086 Mode 
Mode 

h 

h 
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Table 9-1.lnstruction Set Clock Count Summary (Continued) 

CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addre.s Protected Addre.s Protected 

Mode or Virtual Modeor Virtual 
Virtual Addre •• Virtual Addre .. 
8086 Mode 8086 Mode 
Mode Mode 

CONDITIONAL SYTE SET (Ccntlnued) 

SETNS = Set Syte on Not·Selow/Above or Equal 

To Register/Memory I 00001111 10010011 I modOOO rIm I 4/5' 4/5' h 

SETE/SETZ = Set Byte on Eqp,.I/Zaro 

To RegisterlMemory 00001111 10010100 I modOOO rIm I 4/5' h 

To Register/Memory 

4/5' 

4/5' .h 

SETS = sat Syte on Sign 

To Register/Memory 4/5' 

SE'mS = sat Byte an Nat Sign 

To Register/Memory 4/5' 4/5' h 

To ReglsterlMemory 4/5' 4/5' 

4/5' 4/5' 

4/5' 4/5' 

4/5' 4/5' • h· 

I SETLE/SETNG = sat B I TQFL 10011110 I mndnnn "m I 4.lS· .415· h ,u_ , 

SETNLE/SETG = Set Byte an Not Le •• or Equal/Greater 

To Register/Memory 1 0000 1 1 1 1 I 10011111 I madOOO rim I 4/5' 4/5' 

ENTER = Enter Procedure 11001000 I 16-blt displacement, 8-bit level 

L=O 10 10 b 
L=l 14 14 b 
L>l 17 + 17+ 

8(n -1) 8(n -1) 

LEAVE = Leave Procedure 11001001 4 4 b 
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Table 9-1.lnstruction Set Clock Count Summary (Continued) 

INSTRUCTION FORMAT 

INTERRUPT INSTRUCTIONS 

INT = Interrupt: 

Type Specified 11001101 type 

Type 3 11001100 

INTO = Interrupt 4 If Overflow Flag Set I 11001110 

If OF = 1 
If OF = 0 

Bound = Interrupt 5 If Detect Value 01100010 I mod reg 
Out 01 Range 

If Out of Range 
If In Range 

Protected Mode Only (INT) 
INT: Type Specified 

Via Interrupt or Trap Gate 
Via Interrupt or Trap Gate 

to Same Privilege Level 
to Different Privilege Level 

From 286 Task to 286 TSS via Task Gate 
From 286 Task to 386TM SX CPU TSS via Task Gate 
From 286 Task to vir! 8086 md via Task Gate 

From vir! 8086 md to 286 TSS via Task G 
From vir! 8086 md to 386TM SX CPU T 

" From vir! 808S md to priv level 0 via T~~, 

'NT: TYPE 3 :/; :) 
Via Interrupt or Trap Gate 

to Same Privilege Level 
Via Interrupt or Trap Gate 

From 286 Task to Vir! 8086 te 
From 386TM SX CPU Task t(i.,~s via Task Gate 
From 386TM SX CPU T.k1l>,~TM SX CPU TSS via Task Gate 
From 386TM SX CPU Ta-;;k to'~ir! 80~6 md via Task Gate 
From vir! 8086 md to 286 TSS via Task Gate 
From vir! 8086 md to 386TM SX CPU TSS via Task Gate 
From vir! B086 md to priv level 0 via Trap Gate or Interrupt Gate 

INTO: 

Via Interrupt or Trap Grate 
to Same Privilege Level 

Via Interrupt or Trap Gate 
to Different Privilege Level 

From 286 Task to 286 TSS via Task Gate 
From 286 Task to 386TM SX CPU TSS via Task Gate 
From 286 Task to vir! 8086 md via Task Gate 
From 386TM SX CPU Task to 286 TSS via Task Gate 
From 386TM SX CPU Task to 386TM SX CPU TSS via Task Gate 
From 386™ SX CPU Task to vir! 8086 md via Task Gate 
From vir! 8086 md to 286 TSS via Task Gate 
From vir! 8086 md to 386TM SX CPU TSS via Task Gate 
From vir! 8086 md to priv level 0 via Trap Gate or Interrupt Gate 

rIm I 
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CLOCK COUNT 

Real 
Addre .. 
Mode or 
Virtual 
8088 
Mode 

37 

33 

35 
3 

Protected 
Virtual 

Addre •• 
Mode 

3 

<l:: ~,\, '1 ..:;G-

~ 
i:i/ 10 

71 
111 
438 
465 
382 
440 
467 
384 
445 
472 
275 

71 

111 
382 
409 
326 
384 
411 
328 
389 
416 
223 

71 

111 
384 
411 
328 

386 OX 
413 
329 
391 
418 
223 

NOTES 

Real 
Addre •• 
Mode or 
Virtual 
8086 
Mode 

b 

b.e 
b.e 

b.e 
b.e 

Protected 
Virtual 

Addre •• 
Mode 

e.g.h.l.k.r 
e.g.h.l. k. r 

g.l.k.r 
g.l.k.r 
9.I.k.r 
g.l.k.r 
g.l.k.r 
g.l. k.r 
g.l. k.r 
g.l.k.r 
g.l. k. r 
g.l. k. r 

g.l.k.r 

g.l. k.r 
g.l.k.r 
g.l. k.r 
9.I.k.r 
g.l. k.r 
g.l.k.r 
g.l.k.r 
g.l.k.r 
g.l.k.r 

g.l.k.r 

g.l.k.r 
g.l. k.r 
g.l.k.r 
g.l.k.r 
g.l.k.r 
g.l. k.r 
g.l. k.r 
g.l.k.r 
g.l.k.r 
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Table 9-1. Instruction Set Clock Count Summary (Continued) 

INSTRUCTION 

INTERRUPT INSTRUCTIONS (Continued) 

BOUND: 

Via Interrupt or Trap Gate 
to Same Privilege Level 

Via Interrupt or Trap Gate 
to Different Privilege Level 

FORMAT 

From 286 Task to 286 TSS via Task Gate 
From 286 Task to 386TM SX CPU TSS via Task Gale 

From 268 Task 10 vir! 8086 Mode via Task Gale 
From 386 SX CPU Task 10 286 TSS via Task Gate 

From 386 SX CPU Task 10 386 SX CPU TSS via Task Gale 
From 386 SX CPU Task 10 vir! 8086 Mode via Task Gate 
From vir! 8086 Mode to 286 TSS via Task Gate 
From vir! 8086 Mode to 386 SX CPU TSS via Task Gale 

From vir! 8086 md 10 priv level 0 via Trap Gale or Interrupl Gale 

INTERRUPT RETURN 

IRET = Interrupt Return 

Protected Mode Only (lRET) 
To the Same Privilege Level,(wHhin task) 
To Different Privilege Level (within task) 

From 286 Task to 286 TSS 
From 286 Task to 386 SX CPU TSS 
From 286 Task to Virtual 8086 Task 
From 286 Task to Vir!ual8086 Mode ( 

From 386 SX CPU Task to 286 TSS 
From 386 SX CPU Task to 386 SX ~Jw 

PROCESSOR CONTROL 

HLT = HALT 

IMOV 

CRO/CR2/CR3 from re 

11001111 

00100010 11 eeereg 

Register From CRO.-3 0000111100100000 lleeereg 

DRO-3 From Register 00001111 00100011 lleeereg 

DR6-7 From Register 00001111 00100011 '11eeereg 

Register from DR6-7 00001111 00100001 l1e~reg 

Regisler from DRO-3 00001111 00100001 II~ereg 

TR6-7 fiOm Registei 00001111 00100110 lieeereg 

Regisler from TR6-7 00001111 00100100 '1le~reg 

NOP = No Operation 10010000 

WAIT=WaltuntiIBUSY# pin I. negated 10011011 
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CLOCK COUNT 

Real 
Addre .. 
Mode or 
Virtual 
8086 
Mode 

5 

10/4/5 

6 

22 

16 

14 

22 

12 

12 

3 

6 

Protected 
Virtual 

Address 
Mode 

71 ' 

398 
223 

42 

86 
285 
318 
287 
113 
324 
328 
377 
113 

10/4/5 

6 

22 

16 

14 

22 

12' 

12' 

3 

6 

NOTES 

Real 
Addre .. 
Mode or 
Virtual 
8086 
Mode 

Protected 
Virtual 

Addre .. 
Mode 

g,j,k,r 

g,),k,r 
g,),k,r 

g,j,k,r 
g,j,k,r 
g,j,k,r 
g,j, k, r 
g,j, k,r, 
g,),k,r 
g,j,k,r 

g,h,j,k,r 

g,h,j, k,r 
g,h,j, k, r 

h,j,k,r 
h,),k,r 

h,l,k,r 

h,j, k,r 
h,l, k,r 

h,l, k,r 
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Table 9-1. Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Addre.s Protected Addre •• Protected 

ModeQr Virtual Mode or Virtual 
Virtual Addre •• Virtual Addres. 
8086 Mode 8086 Mode 
Mode Mode 

PROCESSOR EXTENSION INSTRUCTIONS 

Processor Extension Escape I 11011TTT I modLLL rim I See h 

TIT and LLL bits are opcode 387SX 

information for coprocessor. data sheet for 
clock counts 

PREFIX BYTES 

Addres. Size Prefix I 01100111 I 0 0 

LOCK = Bus Lock Prefix I 11110000 I 0 0 m 

Operand Size Prefix I 01100110 I 0 o .. 

Segment Override Prefix 

I 
' " 

CS: 00101110 0 0 

OS: 00111110 I a' 0 

ES: 00100110 I 
, 

0, 0 

FS: 01100100 I 0 0 

I 
" 

GS: 01100101 '0 0 
.~ '\. ' 

55: 00110110 I 
" .0 0 .\ : 

PROTECTION CONTROL 

ARPL = Adiust Requested Privilege Level .,. ~ " 

I ! mad reg rlml- " , 
From Register/Memory 011000\\' N/A 20/21" a h 

.,' 

LAR = Load Access Rights ' , ,~' 

From Register/Memory I 00001111 I OQilClOQ10 I mOdre!r rim I N/A . 15/16' a g, h,i,p 

LGDT = Load Global Descriptor 

Table Register I 0000111ff'QoooOO'01 linodolo rim I 11" 11" b,c h; I 

LIDT = Load Interrupt Descriptor " ,. 

Table Register I 000011',1'1 I 00000001 I modOl1 rim I 11' 11' b,e h,l 

LLDT = Load Local Descriptor 

" Table Register to , 
I I ImodOl0 rim I Register/Memory : 00001111 00000000 N/A 20/24' a g, h',i,l 

'. 
LMSW = Load Machine Sia\llll Word 

From RegisterlMemory I 00001111 I 00000001 I modl1 0 rim I 10/13 10/13' b,c h,l 

LSL = Load Segment Limit 

From RegisterlMemory I 00001111 I 00000011 I mod reg rim I 
Byte-Granular Limit N/A 20/21' a g,h,i, p 
Page-Granular Limit N/A 25/26' a g, h,i,p 

LTR = Load Task Register 

From RegisterlMemory I 00001111 I 00000000 I modOOl rim I N/A 23/27' a g,h,J,1 

SGDT = Store Global Descriptor 

Table Register I 00001111 I 00000001 I modOOO rim I 9' 9' b, e h 

SlOT = Store Interrupt DeSCriptor 

Table Register I 00001111 I 00000001 I modOOl rim I 9' 9' ,b,e h 

SLOT = Store Local Descriptor Table Register 

To Register/Memory I 00001111 I 00000000 I modOOO rim I N/A 2/2' a h 
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Table 9-1. Instruction Set Clock Count Summary (Continued) 
CLOCK COUNT NOTES 

Real Real 
INSTRUCTION FORMAT Address Protected Address Protected 

Mode or VIrtual Mode or VIrtual 
VIrtual Address VIrtual Addreas 
8086 Mode 8086 Mode 
Mode Mode 

PROTECTION CONTROL (Continued) 

SMSW = Store MachIne 
Status Word I 0000111t I 00000001 ImodtOO rIm I 212' 212' b,o h,l 

STR = Store Task RegIster 

To RegisterlMemory I 00001111 I 00000000 l~od001 rIm I NIA 212' a h 

VERR = VerIfy Read Access 

Register fMemory I 00001111 I 00000000 Imod100 rIm I NIA 10111' a g,h,j,p 

VERW = Verify WrIte Access I 00001111 I 00000000 I modi 01 rIm I NIA 15116' a g,h,l,p 

INSTRUCTION NOTES FOR TABLE 9·1 

Notes a through c apply to Real Address Mode only: 
a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode). 
b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully 
extends beyond the maximum CS, OS, ES, FS or GS limit, FFFFH. Exception 12 fault (stack segment limit violation or not 
present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum SS limit. 
c. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected 
Mode. 

Notes d through g apply to Real Address Mode and Protected Virtual Address Mode: 
d. The 386 SX CPU'uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most 
significant bit in the operand (multiplier).' , 

Clock counts given are minimum to maximum. To calculate actual clocks use the following formula: 
Actual Clock = if m < > 0 then max ([1092 Imll. 3) + b clocks: 

if m = 0 then 3+b clocks 
in this formula, m is the multiplier, and 
b = 9 for register to register, 
b = 12 for memory to register, 
b = 10 for register with immediate to register, 
b = 11 for memory with immediate to register. 

e. An exception may occur, depending on the value of the operand. 
f. LOCK# is automatically asserted, regardless of the presence or absence of the LOCK# prefix, 
g. LOCK# is asserted during descriptor table accesses. ' 

Notes h through r appiy to protected Virtual Address Mode only: 
h. Exception 13 fault (general protection violation) will occur if the memory operand in CS, OS, ES, FS or GS cannot be used 
due to either a segment limit violation or access rights violation. If a stack limit is violated, an exception 12 (stack segment 
limit violation or not present) occurs. 
i. For segment load operations, the CPL, RPL, and OPL must agree with the privilege rules to avoid an exception 13 fault 
(general protection violation). The segment's deSCriptor must indicate "present" or exception 11 (CS, OS, ES" FS, GS not 
present). If the SS registe~ is loaded and a stack segment not present is detected, an exception 12 (stack segment limit 
violation or not present) occurs. 
j. All segment deSCriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCK# to maintain 
descriptor integrity in multiprocessor systems. 
k. JMP, CALL. INTI RET and !RET i.nstructicns referring to another code segment "-.1m causa an exception 13 (gensial 
protection violation) if an applicable privilege rule is violated. 
I. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level). 
m. An exception'13 fault occurs if CPL is greater than IOPL. 
n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are 
updated only if CPL = O. 
O. The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit. 
p. Any violation Of privilege rules as applied to'the selector operand does not cause a protection exception; rather, the zero 
flag is cleared. 
q. If the coprocessor's memory operaod violates a segment limit or segment access rights, an exception 13 fault (general 
protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation 
or not present) will occur if the stack limit is violated by the operand's starting address. 
r. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13 fault 
(general protection violation) will occur. 
sIt. The instruction will execute in s clocks if CPL ,;; IOPL. If CPL > IOPL, the instruction will take t clocks. 
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9.2 INSTRUCTION ENCODING 

9.2.1 Overview 

All instruction encodings are subsets of the general 
instruction format shown in Figure S-1. Instructions 
consist of one or two primary opcode bytes, possibly 
an address specifier consisting of the "mod rIm" 
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if required. 

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The fields define 
such information as direction of the operation, size 
of the displacements, register encoding, or sign ex­
tension. 

Almost all instructions referring to an operand in 
memory have an addressing mode byte following 
the primary opcode byte(s). This byte, the mod rIm 
byte, specifies the address mode to be used. Certain 

encodings of the mod rIm byte indicate a second 
addressing byte, the scale-index-base byte, follows 
the mod rIm byte to fully specify the addressing 
mode. 

Addressing modes can include a displacement im­
mediately following the mod rIm byte, or scaled in­
dex byte. If a displacement is present, the possible 
sizes are S, 16 or 32 bits. 

If the instruction specifies an immediate operand, 
the immediate operand follows any displacement 
bytes. The immediate operand, if specified, is always 
the last field of the instruction. 

Figure 9-1 illustrates several of the fields that can 
appear in an instruction, such as the mod field and 
the rIm field, but the Figure does not show all fields. 
Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes them­
selves. Table 9-2 is a complete list of all fields ap­
pearing in the instruction set. Further ahead, follow­
ing Table 9-2, are detailed tables for each field. 

ITT TT TTTT ITT TTT TTT I mod T TT rIm I ss index base Id321161S1 none data32 I 161s1 none 

( .... _____ Ov7 ____ ~OI ,..1 6 5.3 2 0 1\7 6 5.s 2 0 1\ ____ .....,.,--___ 1 \c .... __ -v-____ I 

opcode 
(one or two bytes) 
(T represents an 

opcodebit.) 

"mod rIm" "s-i-b" 
\c .... __ b_yt_e_-v. __ b_yt_e ___ 1 

register and address 
mode specifier 

address 
displacement 
(4, 2, 1 bytes 

or none) 

Figure 9-1. General Instruction Format 

Table 9-2. Fields within Instructions 

Field Name Description 

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 
d Specifies Direction of Data Operation 
s Specifies if an Immediate Data Field Must be Sign-Extended 
reg General Register Specifier 
mod rIm Address Mode Specifier (Effective Address can be a General Register) 

ss Scale Factor for Scaled Index Address Mode 
index General Register to be used as Index Register 
base General Register to be used as Base Register 
sreg2 Segment Register Specifier for CS, SS, DS, ES 
sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, GS 
tttn For Conditional Instructions, Specifies a Condition Asserted 

. or a Condition Negated 

Note: Table 9-1 shows encoding of individual instructions. 
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immediate 
data 

(4, 2, 1 bytes 
or none) 

Number of Bits 

1 
1 
1 
3 

2 for mod; 
3 for rIm 

2 
3 
3 
2 
3 

4 
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9.2.2 32-Bit Extensions of the 
Instruction Set 

With the 386 SX CPU, the 8086/80186/80286 in­
struction set is extended in two orthogonal direc­
tions: 32-bit forms of all 16-bit instructions are added 
to support the 32-bit data types, and 32-bit address­
ing modes are made available for all instructions ref­
erencing memory. This orthogonal instruction set ex­
tension is accomplished having a Default (D) bit in 
the code segment descriptor, and by having 2 prefix­
es to the instruction set. 

Whether the instruction defaults to operations of 16 
bits or 32 bits, depends on the setting of the D bit in 
the code segment descriptor, which gives the de­
fault length (either 32 bits or 16 bits) for both oper­
ands and effective addresses when executing that 
code segment In the Real Address Mode or Virtual 
8086 Mode, no code segment descriptors are used, 
but a D value of 0 is assumed internally by the 
386 SX CPU when operating in those modes (for 16-
bit default sizes compatible with the 8086/801861 
80286). 

Two prefixes, the Operand Size Prefix and the Effec­
tive Address Size Prefix, allow overriding individually 
the Default selection of operand size and effective 
address size. These prefixes may precede any op­
code bytes and affect only the instruction they pre­
cede. If necessary, one or both of the prefixes may 
be placed before the opcode bytes. The presence of 
the Operand Size Prefix and the Effective Address 
Prefix will toggle the operand size or the effective 
address size, respectively, to the value "opposite" 
from the Default setting. For example, if the default 
operand size is for 32-bit data operations, then pres­
ence of the Operand Size Prefix toggles the instruc­
tion to 16-bit data operation. As another example, if 
the default effective address size is 16 bits. ,ores­
ence of the Effective Address Size prefix toggies the 
instruction to use 32-bit effective address computa­
tions. 

These 32-bit extensions are available in all modes, 
including the Real Address Mode or the Virtual 8086 
Mode. In these modes the default is always 16 bits, 
so prefixes are needed to specify 32-bit operands or 
addresses. For instructions with more than one pre­
fix, the order OT preiixes is unimportant. 

Unless specified otherwise, instructions with 8-bit 
and 16-bit operands do not affect the contents of 
the high-order bits of the extended registers. 

9.2.3 Encoding of Instruction Fields 
Within the instruction are several fields indicating 
register selection, addressing mode and so on. The 
exact encodings of these fields are defined immedi­
ately ahead. 

9.2-3_1 ENCODING OF OPERAND LENGTH (w) 
FIELD 

For any given instruction performing a data opera­
tion, the instruction is executing as a 32-bit operation 
or a 16-bit operation. Within the constraints of the 
operation size, the w field encodes the operand size 
as either one byte or the full operation size, as 
shown in the table below. 

Operand Size Operand Size 
wFleld DUiiiig 15-Blt n ••• ;_ft '21)_Dit 

....... "Ilf "' .. -_ •• 

Data Operations Data Operations 

0 8 Bits 8 Bits 
1 16 Bits 32 Bits 

9_2.3.2 ENCODING OF THE GENERAL 
REGISTER (reg) FIELD 

The general register is specified by the reg field, 
which may appear in the primary opcode bytes, or as 
the reg field of the "mod rim" byte, or as the' rim. 
field of the "mod rim" byte. 

Encoding of reg Field When w Field 
is not Present in Instruction 

Register Selected Register Selected 
reg Field During 16-Bit During 32-Bit 

Data Operations Data Operations 

000 AX EAX 
001 CX ECX 
010 , DX EDX 
011 
100 
101 
101 
101 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

BX 
SP 
--tst' 
SI 
DI 

EBX 
ESP ---t:Dt" 

ESI 
EDI 

Encoding of reg Field When w Field 
is Present in Instruction 

Register Specified by reg Field 
During 16-Bit Data Operations: 

Function of oN Field 

(whenw = 0) (whenw = 1) 

AL AX 
CL CX 
DL DX 
BL BX 
AH SP 
CH BP 
DH SI 
BH DI 

4-500 



intJ 386TM SX MICROPROCESSOR 

Register Specified by reg Field 
During 32-Blt Data Operations 

reg 
Function of w Field 

(whenw = 0) (whenw = 1) 

000 AL EAX 
001 CL ECX 
010 DL EDX 
011 BL EBX 
100 AH ESP 
101 CH EBP 
110 DH ESI 
111 BH EDI 

9.2.3.3 ENCODING OF THE SEGMENT 
REGISTER (sreg) FIELD 

The sreg field in certain instructions is a 2-bit field 
allowing one of the four 80286 segment registers to 
be specified. The sreg field in other instructions is a 
3-bit field, allowing the 386 SX CPU FS and GS seg­
ment registers to be specified. 

2-Bit sreg2 Field 

2-Blt 
Segment 

sreg2Fieid 
Register 
Selected 

00 ES 
01 CS 
10 SS 
11 DS 

3-Bit sreg3 Field 

3-Bit 
Segment 

sreg3Fieid 
Register 
Selected 

000 ES 
001 CS 
010 SS 
011 DS 
100 FS 
101 GS 
110 do not use 
111 do not use 

9.2.3.4 ENCODING OF ADDRESS MODE 

Except for special instructions, such as PUSH or 
POP, where the addressing mode is pre-determined, 
the addressing mode for the current instruction is 
specified by addressing bytes following the primary 
opcode. The primary addressing byte is the "mod 
rIm" byte, and a second byte of addressing informa­
tion, the "s-i-b" (scale-index-base) byte, can be 
specified. 

The s-i-b byte (scale-index-base byte) is specified 
when using 32-bit addressing mode and the "mod 
rim" byte has rim = 100 and mod = 00,01 or 10. 
When the sib byte is present, the 32-bit addressing 
mode is a function of the mod, ss, index, and base 
fields. 

The primary addressing byte, the "mod rim" byte, 
also contains three bits (shown as TTT in Figure 8-1) 
sometimes used as an extension of the primary op­
code. The three bits, however, may also be used as 
a register field (reg). 

W~en calculating an effective address, either 16-bit 
addressing or 32-bit addressing is used. 16-bit ad­
dressing uses 16-bit address components to calcu­
late the effective address, while 32-bit addressing 
uses 32-bit address components to calculate the ef­
fective address. When 16-bit addressing is used, the 
"mod rim" byte is interpreted as a 16-bit addressing 
mode specifier. When 32-bit addressing is used, the 
"mod rim" byte is interpreted as a 32-bit addressing 
mode specifier. 

Tables on the following three pages define all en­
codings of all 16-bit addressing modes and 32-bit 
addressing modes. . 
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intJ 

mod rIm 

00000 
00001 
00010 
00011 
00100 
00101 
00110 
00111 

01000 
01001 
01010 
01011 
01100 
01101 
01110 
01111 

386TM SX MICROPROCESSOR 

Encoding of 16-blt Address Mode with "mod rIm" Byte 

Effective Address 

OS:[BX+SI] 
OS:[BX+OI] 
SS:[BP+SI] 
SS:[BP+OI] 
OS:[SI] 
OS: [01] 
OS:d16 
OS: [BX] 

OS:[BX+SI+d8] 
OS:[BX+ 01 +d8] 
SS:[BP+SI+d8] 
SS: [BP + 01 + d8] 
DS:[SI+ d8] 
OS:[01+d8] 
SS:[BP+ d8] 
OS:[BX+d8] 

4-502 

mod rIm Effective Address 

10000 OS:[BX+SI+d16] 
10001 OS:[BX+01+d16] 
10010 SS:[BP+SI+d16) 
10011· SS:[BP+ 0l+d16) 
10100 OS:[SI+d16) 
10101 OS:[01+d16) 
10110 SS:[BPtd16) 
10111 OS:[BX+d16) 

11000 register-see below 
11001 register-see below 
11010 register-see below 
11 011 register-see below 
11100 register-see below 
11101 register-see below 
11110 register-see below 
11 111 register-see below 

Register Specified by rIm 
During 16-Bit Data Operations 

mod rIm 

11000 
11001 
11010 
11 011 
11100 
...... ". 
II lUI I 
11 110 
11111·1 

Function of w Field 

(whenw=O) 

AL 
CL 
OL 
BL 
AH 
I"'U 
VI' 

OH 
BH 

(whenw =1) 

AX 
CX 
OX 
BX 
SP 
CD 

SI 
01 

. Register Specified by rIm 
During 32-Bit Data Operations 

mod rIm Function of w Field 

(whenw=O) (whenw =1) 

11000 AL EAX 
11001 CL ECX 
11010 OL EOX 
11 011 BL EBX 
11100 AH ESP 
11101 CH EBP 
11110 OH ESI 
11 111 BH EOI 
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Encoding of 32-bit Address Mode with "mod rIm" byte (no "s-i-b" byte present): 

mod rIm Effective Address mod rIm Effective Address 

00000 OS: [EAX] 10000 OS:[EAX + d32] 
00001 OS: [ECX] 10001 OS:[ECX + d32] 
00010 OS:[EDX] 10010 OS: [EOX + d32] 
00011 OS:[EBX] 10011 OS: [EBX + d32] 
00100 s-i-b is present 10100 s-i-b is present 
00101 OS:d32 10101 SS: [ESP + d32] 
00110 OS: [ESI] 10110 OS: [ESI + d32] 
00111 DS:[EDI]. 10111 OS:[EOI+d32] 

01000 OS:[EAX+dB] 11000 register-see below 
01001 OS:[ECX+dS] 11001 register-see below 
01010 OS: [EOX + dS] 11010 register-see below 
01011 OS: [EBX + dB] 11 011 register-see below 
01100 s-i-b is present 11100 register-see below 
01101 SS:[EBP+dB] 11101 register-see below 
01110 OS:[ESI+dS] 11 110 register-see below 
01 111 OS: [EOI + dB] 11 111 register-see below 

Register Specified by reg or rIm 
during 16-Bit Data Operations: 

mod rIm 
function of w field 

(when w=O) (whenw=1) 

11000 AL AX 
11001 CL CX 
11010 OL OX 
11 011 SL BX 
11100 AH SP 
11 101 CH BP 
11 110 OH SI 
11 111 BH 01 

Register Specified by reg or rIm 
during 32-Bit Data Operations: 

mod rIm 
function of w field 

(when w=O) (whenw=1) 

11000 AL EAX 
11001 CL ECX 
11010 OL EOX 
11 011 BL EBX 
11100 AH ESP 
11 101 CH EBP 
11 110 OH ESI 
11 111 BH EOI 
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mod base 

00000 
00001 
00010 
00011 
00100 
00101 
00110 
00.111 

01000 
01001 
01010 
01011 
01100 
01101 
01110 
01 111 

10000 
10001 
10010 
10011 
10100 
10101 
10110 
10111 

NOTE: 

386TM SX MICROPROCESSOR 

Encoding of 32-blt Address Mode ("mod rIm" byte and "s-Iob" byte present): 

Effective Address 

OS: [EAX + (scaled index)) 
OS: [ECX + (scaled index)] 
OS:[EOX + (scaled index)] 
OS: [EBX + (scaled index)] 
SS: [ESP + (scaled index)] 
OS: [d32 + (scaled index)] 
OS: [ES! + (scaled index)] 
OS: [EO I + (scaled index)] 

OS: [EAX + (scaled index) + d8] 
OS: [ECX + (scaled index) + d8] 
OS: [EOX + (scaled index) + d8] 
OS: [EBX + (scaled index) + d8] 
SS: [ESP + (scaled index) + dB] 
SS:[EBP+(scaled index)+dB] 
OS: [ESI + (scaled index) + d8] 
OS: [EOI + (scaled index) + d8] 

OS:[EAX + (scaled index) + d32] 
OS: [ECX + (scaled index) + d32] 
OS: [EOX + (scaled index) + d32] 
OS: [EBX + (scaled index) + d32] 
SS: [ESP + (scaled index) + d32] 
SS: [EBP + (scaled index) + d32] 
OS: [ESI + (scaled index) + d32] 
OS: [EOI + (scaled index) + d32] 

ss Scale Factor 

00 x1 
01 x2 
10 x4 
11 x8 

Index Index Register 

000 EAX 
001 ECX 
010 EOX 
011 EBX 
100 no index reg'· 
101 EBP 
110 ESI 
111 EOI 

··IMPORTANT NOTE: 
When index field is 100, indicating "no index register," then 
ss field MUST equal 00. If index is 100 and ss does not 
equal 00, the effective address is undefined. 

Mod field in "mod rIm" byte; ss, index, base fields in 
"s-i-b" byte. 
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9.2.3.5 ENCODING OF OPERATION DIRECTION 
(d) FIELD 

In many two-operand instructions the d field is pres­
ent to indicate which operand is considered the 
source and which is the destination. 

d Direction of Operation 

0 Register/Memory <- - Register 
"reg" Field Indicates Source Operand; 
"mod r/m" or "mod ss index base" Indicates 
Destination Operand 

1 Register <- - Register/Memory 
"reg" Field Indicates Destination Operand; 
"mod r/m" or "mod ss index base" Indicates 
Source Operand 

9.2.3.6 ENCODING OF SIGN-EXTEND (s) FIELD 

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if 
the size of the immediate data is 8 bits and is being 
placed in a 1S-bit or 32-bit destination. 

Effect on Effect on 
s Immediate Data8 Immediate Data 16132 

o None None 

1 Sign-Extend Data8 to Fill None 
1S-Bit or 32-Bit Destination 

9.2.3.7 ENCODING OF CONDITIONAL TEST 
(tttn) FIELD 

For the conditional instructions (conditional jumps 
and set on condition), tttn is encoded with n indicat­
ing to use the condition (n = 0) or its negation (n = 1), 
and ttt giving the condition to test. 

Mnemonic Condition tttn 

0 Overflow 0000 
NO No Overflow 0001 
BINAE Below/Not Above or Equal 0010 
NB/AE Not Below/Above or Equal 0011 
E/Z Equal/Zero 0100 
NE/NZ Not Equal/Not Zero 0101 
BE/NA Below or EquallNot Above 0110 
NBE/A Not Below or Equal/ Above 0111 
S Sign 1000 
NS Not Sign 1001 
PIPE Parity/Parity Even 1010 
NP/PO· Not Parity/Parity Odd 1011 
L/NGE Less ThanlNot Greater or Equal 1100 
NLIGE Not Less Than/Greater or Equal 1101 
LEING Less Than or Equal/Greater Than 1110 
NLE/G Not Less or Equal/Greater Than 1111 

9.2.3.8 ENCODING OF CONTROL OR DEBUG 
OR TEST REGISTER (eee) FIELD 

For the loading and storing of the Control, Debug 
and Test registers. 

When Interpreted as Control Register Field 

eeeCode Reg Name 

000 CRO 
010 CR2 
011 CR3 

Do not use any other encoding 

When Interpreted as Debug Register Field 

eeeCode Reg Name 

000 DRO 
001 DR1 
010 DR2 
011 DR3 
110 DRS 
111 DR7 

Do not use any other encoding 

When Interpreted as Test Register Field 

eeeCode Reg Name 

110 TRS 
111 TR7 

Do not use any other encoding 
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DATA SHEET REVISION REVIEW 

The following list represents key differences between this and the -001 version of the 386™ SX microproces­
sor data sheet. Please review this summary carefully. ' 

The section significantly revised sin'ce version -002 Is: 
Section 1.0 Figure 1.1 was modified to also give pin names. Table 1.1 was modified to list pin names 

in alphabetical order. 

The sections significantly revised since version -003 are: 
Section 7.3 
Section 7.4 

T ......... I ..... ~ '=' _ ....... &:Ii ........ + .... ,..h", ............. 1 __ ' ..... III,...~ .... + iQ: lAU .... """,t"I "n .AU.,. 
I QUIt;; I.'" IIIVY_IIOY ioU ..,1 IV", I.g .... Iljl,; YQIUg.., Q" IV IY •• 1£0 W.,"'" .. " ..... , •• 

Add 20 MHz A.C. Specifications in Table 7.5. Modified capacitive derating information in 
Tables 7.8 through 7.11. Modified typical Icc vs. frequency in Table 7.12. 
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387TM SX 
MATH COPROCESSOR 

• Interfaces with 386™ SX • Upward Object-Code Compatible from 
Microprocessor 8087 and 80287 

• Expands 386 SX CPU Data Types to • Directly Extends 386 SX CPU 
Include 32-, 64-, 80-Bit Floating Point, Instruction Set to Trigonometric, 
32-, 64-Bit Integers and 18-Digit BCD Logarithmic,· Exponential, and 
Operands Arithmetic Instructions for All Data 

• High Performance 80-Bit Internal Types 

Architecture • Full-Range Transcendental Operations 

• Two to Three Times 8087/80287 for SINE, COSINE, TANGENT, 

Performance at Equivalent Clock Speed ARCTANGENT, and LOGARITHM. 

• Implements ANSI/IEEE Standard 754- • Operates Independently of Real, 

1985 for Binary Floating-Point Protected, and Virtual-8086 Modes of 

Arithmetic the 386 SX Microprocessor 

• Fully compatible with the 387TM Math • Eight 80-Bit Numeric Registers, Usable 

Coprocessor. Implements all 387 NPX as Individually Addressable General 

architectural enhancements over 8087 Registers or as a Register Stack 

and 80287. • Available in a 68-pin PLCC Package 
(see Packaging Specs: Order #231369) 

The Intel 387TM SX Math CoProcessor is an extension to the Intel 386TM microprocessor architecture. The 
combination of the 387 SX with the 386™ SX Microprocessor dramatically increases the processing speed of 
computer application software which utilizes mathematical operations. This makes an ideal computer worksta­
tion platform for applications such as financial modeling and spreadsheets, CAD/CAM, or graphics. 

The 387 SX Math CoProcessor adds over seventy mnemonics to the 386 SX Microprocessor instruction set. 
Specific 387 SX math operations include logarithmic, arithmetic, exponentional, and triginometric functions. 
The 387 SX supports integer, extended integer, floating point and BCD data formats, and fully conforms to the 
ANSI/IEEE floating point standard. 

The 387 SX Math CoProcessor is object code compatible with the 387TM OX and upward object code compati­
ble from the 80287 and 8087 Math Coprocessors. The 387 SX is manufactured with Intel's CHMOS III technol­
ogy and packaged in a 68-pin PLCC package. A low power consumption option allows use in laptop or 
portable applications. . 

I 
sus CONTROL LOGIC I DATA INTERFACE AND CONTROL UNIT I flOATING POINT U~IT 

r.::~----~~;;~~~",~"D~m~£;;~J OATAALIGHWENTANOOPERANDctiECKING 

r-""~~~"...I::::,~"-I 
.'" I 

Figure 0-1. Block Diagram 
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386TM SX Microprocessor Registers I 387™ SX NPX Data Registers 
Tag 

GENERAL REGISTERS SEGMENT REGISTERS Field 
31 16 15 0 15 0 79 78 64 63 0 1 0 

~ 

AX EAX CS RO Sign Exponent Significand 

I AH I AL 
I---

SS 
R1 

I---
EBX BX 

OS 
R2 

I BH I BL 
I--:--

R3 

CX ES I---
ECX R4 

I---I CH I CL FS R5 

EDX 
' DX I ~S I I :~ I I I I B I DH -I DL I 

I 
ESI I· SI 31 0 I 

I : 
E~P 

: I 
I 15 0 47 0 

EDI DI I Control Register I Instruction Pointer (in CPU) I 
I EF~GS' I I I I Status Register Data Pointer (in CPU) 

EBP 

I 
BP I 

I 
Tag Word 

I 
ESP 

I 
SP I 

I 
I 
I 
I 
I 
I 

Figure 1-1. 386TM SX Microprocessor and 387TM SX Math Coprocessor Register Set 

1.0 FUNCTIONAL DESCRIPTION 

The 387TM SX Math Coprocessor Extension (NPX) 
provides arithmetic instructions for a variety of nu­
meric data types. It also executes numerous built-in 
transcendental functions (e.g., tangent, sine, cosine, 
and log functions). The 387 SX NPX effectively ex­
tends the register and instruction set of its CPU for 
existing data types and adds several new data types 
as well. Figure 1-1 shows the model of registers visi­
ble to 386TM SX Microprocessor and 387 SX Math 
Coprocessor applications programs. Essentially, the 
387 SX Math Coprocessor can be treated as an ad­
ditional resource or an extension to the 386 SX Mi­
croprocessor. The 386 SX Microprocessor together 
with a 387 SX NPX can be used as a single unified 
system, the 386 SX Microprocessor and 387 SX 
Math Coprocessor. 

The 387 SX Numerics Coprocessor Extension works 
the same whether the CPU is executing in real-ad­
dress mode, protected mode, or virtual-8086 mode. 
All references to memory for numerics data or status 
information are performed by the CPU, and there­
fore obey the memory-management and protection 
rules of the CPU mode currently in effect. The 387 
SX Numerics Coprocessor Extension merely oper­
ates on instructions and values passed to it by the 

CPU and therefore is not sensitive to the processing 
mode of the CPU. 

In real-address mode and virtual-8086 mode, the 
386 SX Microprocessor and 387 SX Math Coproces­
sor is completely upward compatible with software 
for the 8086/8087 and 80286/80287 real-address 
mode systems. 

In protected mode, the 386 SX Microprocessor and 
387 SX Math Coprocessor is completely upward 
compatible with software for the 80286/80287 pro­
tected mode system. 

In all modes, the 386 SX Microprocessor and 387 
SX Math Coprocessor is completely compatible with 
software for the 386™ Microprocessorl387™ Math 
Coprocessor system. 

The only differences of operation that may appear 
when 8086/8087 programs are ported to the pro­
tected-mode 386 SX Microprocessor and 387 SX 
Math Coprocessor system (not using virtual-8086 
mode) is in the format of operands for the adminis­
trative instructions FLDENV, FSTENV, FRSTOR, 
and FSAVE. These instruction are, normally used 
only by exception handlers and operating systems, 
not by applications programs. 
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2.0 PROGRAMMING INTERFACE 

The 387 SX NPX adds to an 386 SX Microprocessor 
system additional data types, registers, instructions, 
and interrupts specifically designed to facilitate high­
speed numerics processing. To use the 387 SX NPX 
requires no special programming tools, because all 
new instructions and data types are directly support­
ed by the assembler and compilers for high-level 
languages. All 386 Microprocessor development 
tools that support 387 NPX programs can also be 
used to develop software for the 386 SX Microproc­
essor and 387 SX Math Coprocessor. All 8086/8088 
development tools that support the 8087 can also 
be used to develop software for the 386 SX Micro­
processor and 387 SX Math Coprocessor in real-ad­
dress mode or virtual-8086 mode. All 80286 devel­
opment tools that support the 80287 can also be 
used to develop software for the 386 SX Microproc­
essor and 387 SX Math Coprocessor. 

The 387 SX NPX supports all 387 NPX instructions. 
The 386 SX Microprocessor and 387 SX Math Co­
processor supports all the same programs and gives 
the same results as an 386 Microprocessor and 387 
Math Coprocessor. 

All communication between the CPU and the NPX is 
transparent to applications software. The CPU auto­
matically controls the NPX whenever a numerics in­
struction is executed. All physical memory and virtu­
al memory of the CPU are available for storage of 
the instructions and operands of programs that use 
the NPX. All memory addressing modes, including 
use of displacement, base register, index register, 
and scaling, are available for addressing numerics 
operands. 

Section 7 at the end of this data sheet lists by class 
the instructions that the 387 SX NPX adds to the 
instruction set of an 386 SX Microprocessor system. 

2.1 Data Types 

Table 2-1 lists the seven data types that the NPX 
supports and presents the format for each type. Op­
erands are stored in memory with the least signifi­
cant digit at the lowest memory address. Programs 
retrieve these values by generating the lowest ad­
dress. For maximum system performance, all oper­
ands should start at physical-memory addresses 
that correspond to the word size of the CPU; oper­
ands may begin at any other addresses, but will re­
quire extra memory cycles to access the entire oper­
and. 

Internally, the NPX holds all numbers in the extend­
ed-precision real format. Instructions that load oper­
ands from memory automatically convert operands 
represented in memory as 16-, 32-, or 64-bit inte­
gers, 32- or 64-bit floating-point numbers, or 18-digit 
packed BCD numbers into extended-precision real 
format. Instructions that store operands in memory 
perform the inverse type conversion. 

2.2 Numeric Operands 

A typical NPX instruction accepts one or two oper­
ands and produces one (or sometimes two) results. 
In two-operand instructions, one operand is the con­
tents of an NPX register, while the other may be a 
memory location. The operands of some instructions 
are predefined; for example, FSQRT always takes 
the square root of the number in the top stack ele­
mel"]t. 
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Table 2·1. 387TM SX NPX Data Type Representation In Memory 

Datil 
Most Significant Byte = HIGHEST ADDRESSED BYTE 

Format. 
Range Preclalon 

017017 017 017 017 017 017 7 
Word Integer ±104 16 Bits I ,TWO S 

COMPLEMENTI 

15 0 

0&.._ ... 1_ .. ____ 
±1C9 32 Bits ! g~~~~~mtNil UIIV' , II n.VVVI 

31 0 

Long Integer ±1018 64 Bits 

63 

Packed BCD ±1018 18 Digits sl x Id l1 d'b d ' !i d l4 dl3 d ll d t , 

MAGNITUDE 
diU dg d. d, d. d, 

79 72 

Single Precision ±10±38 24 Bits ;1 BIASED I S EXPONENT SIGNIFICAND I 
31 23'- 0 

Ii 

Double Precision ±10±308 53 Bits 51 BIASED I SIGNIFICAND EXPONENT 

63 52'-,. 

Extended ±10±4932 64 Bits 51 BIASED hl SIGNIFICANO 
Precision EXPONENT 

NOTES: 
(1) S = Sign bit (0 = positive, 1 = negative) 
(2) dn = Decimal digit (two per byte) 

79 64 63' 

(3) X = Bits have no significance; NPX ignores when loading, zeros when storing 
(4) it. = Position of implicit binary point 
(5) I = Integer bit of significand; stored in temporary real, implicit in Single and double precision 
(6) Exponent Bias (normalized values): 

Single: 127 (7FH) 
Double: 1023 (3FFH) 
Extended REal: 16383 (3FFFH) 

(7) Packed BCD: (-1)8 (017 .. 00) 
(8) Real: (-1)8 (2E.BIA8) (Fo F1 ... ) 
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2.3 Register Set 

Figure 1-1 shows the 387 SX NPX register set. 
When an NPX is present in a system, programmers 
may use these registers in addition to the registers 
normally available on the CPU. 

2.3.1 DATA REGISTERS 

387 SX NPX computations use the NPX's data regis­
ters. These eight 80-bit registers provide the equiva­
lent capacity of 20 32-bit registers. Each of the eight 
data registers in the NPX is 80 bits wide and is divid­
ed into "fields" corresponding to the NPX's extend­
ed-precision real data type. 

The NPX register set' can be accessed either as a 
stack, with instructions operating on the top one or 
two stack elements, or as individually addressable 
registers. The TOP field in the status word identifies 
the current top-of-stack register. A "push" operation 
decrements TOP by one and loads a value into the 
new top register. A "pop" operation stores the value 
from the current top register and then increments 
TOP by one. The NPX register stack g~ows "down" 
toward lower-addressed registers. 

Instructions may address the data registers either 
implicitly or explicitly. Many instructions operate on 
the register at the TOP of the stack. These instruc­
tions implicitly address the register at which TOP 
points. Other instructions allow the programmer to 
explicitly specify which register to use. This explicit 
register addressing is also relative to TOP. 

15 

TAG (7) TAG (6) TAG (5) TAG (4) 

2.3.2 TAG WORD 

The tag word marks the content of each numeric 
data register, as Figure.2-1 shows. Each two-bit tag 
represents one of the eight data registers. The prin­
cipal function of the tag word is to optimize the 
NPX's performance and stack handling by making it 
possible to distinguish between empty and nonemp­
ty register locations. It also enables exception han­
dlers to identify special values (e.g. NaNs or denor­
mals) in the contents of a stack location without the 
need to perform complex decoding of the actual 
data. 

2.3.3 STATUS WORD 

The 16-bit status word (in the status register) shown 
in Figure 2-2 reflects the overall state of the NPX. It 
may be read and inspected by programs. 

Bit 15, the B-bit (busy bit) is included for 8087 com­
patibility only. It always has the same value as the 
ES bit (bit 7 of the status word); it does not indicate 
the status of the BUSY # output of NPX. 

Bits 13-11 (TOP) point to the NPX register that is 
the current top-of-stack. 

The four numeric condition code bits (Ca-Co) are 
similar to the flags in a CPU; instructions that per­
form arithmetic operations update these bits to re­
flect the outcome. The effects of these instructions 
on the condition code are summarized in Tables 2-2 
through 2-5. 

o 
TAG (3) TAG (2) TAG (1) TAG (0) 

NOTE: • 
The index i of tag(i) is not top-relative. A program typically uses the "top" field of Status Word to determine which tag (i) 
field refers to logical top of stack. 
TAG VALUES: 

00 = Valid 
01 = Zero 
10 = QNaN, SNaN, Infinity, Denormal and Unsupported Formats 
11 = Empty 

Figure 2·1. Tag Word 
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r----------------- BUSY 

r-.....--.------------- TOP OF STACK POINTER 

...-t-+-+---.--.----.-----,------ CONDITION CODE 

ERROR SUMMARY STATUS ________ --'1 
STACK FLAG . 

EXCEPTION FLAGS: 

PRECISION ----------' 

UNDERFLOW -----------' 
OVERFLOW ------------' 

ZERO DIVIDE --------------' 
DENORMALIZED OPERAND ---------------' 

INVALID OPERATION ______________ ---1 

240225-3 
ES is set if any unmasked exception bit is set; cleared otherwise. See Table 2-2 for interpretation of condition code. 
TOP values: 

000 = Register 0 is Top of Stack 
0,01 = Register 1 is Top of Stack 

111 = Register 7 is Top of Stack 
For definitions of exceptions, refer to the section entitled "Exception Handling" 

Figure 2-2_ Status Word 

Bit 7 is the error summary (ES) status bit. This bit is 
set if any unmasked exception bit is set; it is clear 
otherwise. if this bit is set, the ERROR # signai is 
asserted. 

Bit 6 is the stack flag (SF). This bit is used to distin­
guish invalid operations due to stack overflow or un­
derflow from other kinds of invalid operations. When 
SF is set, bit 9 (C1) distinguishes between stack 
overflow (C1 = 1) and underflow (C1 = 0). 

Figure 2-2 shows the six exception flags in bits 5-0 
of the status word. Bits 5-0 are set to indicate that 
the NPX has detected an exception while executing 
an instruction. A later section entitled "Exception 
Handling" explains how they are set and used. 

Note that when a new value is loaded into the status 
word by the FLDENV or FRSTOR instruction, the 
vaiue of ES (bit 7j and its refiection in the S-bit (bit 
15) are not derived from the values loaded from 
memory but rather are dependent upon the values of 
the exception flags (bits 5-0) in the status word ·and 
their corresponding masks in the control word. If ES 
is set in such a case, the ERROR # output of the 
NPX is activated immediately. 
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Table 2-2. Condition Code Interpretation 

Instruction CO(S) I C3(Z) C1 (A) C2(C) 

FPREM, FPREM1 Three least significant bits 
Reduction 

(see Table 2.3) of quotient 
0= complete 

02 00 01 
orO/U# 1 = incomplete 

FCOM, FCOMP, 
FCOMPP, FTST, Result of comparison 

Zero 
Operand is not 

FUCOM, FUCOMP, (see Table 2.4) 
orO/U# 

comparable 
FUCOMPP, FICOM, (Table 2.4) 
FICOMP 

FXAM Operand class Sign Operand class 
(see Table 2.5) orO/U# (Table 2.5) 

FCHS, FABS, FXCH, 
FINCSTP, FDECSTP, 

Zero 
Constant loads, UNDEFINED UNDEFINED 
FXTRACT, FLD, orO/U# 

FILD, FBLD, 
FSTP (ext real) 

FIST, FBSTP, 
FRNDINT, FST, 
FSTP, FADD, FMUL, 

Roundup 
FDIV, FDIVR, UNDEFINED UNDEFINED 
FSUB, FSUBR, orO/U# 

FSCALE, FSORT, 
FPATAN, F2XM1, 
FYL2X, FYL2XP1 

FPTAN, FSIN 
/ 

Roundup Reduction 
FCOS, FSINCOS UNDEFINED orO/U#, 0= complete 

undefined 1 = incomplete 
ifC2 = 1 

FLDENV, FRSTOR Each bit loaded from memory 

FLDCW, FSTENV, 
FSTCW, FSTSW, UNDEFINED 
FCLEX, FINIT, 
FSAVE 

O/U# When both IE and SF bits of status· word are set, indicating a stack exception, this bit 
distinguishes between stack overflow (C1 = 1) and underflow (C1 = 0). 

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is 
complete. When reduction is incomplete the value at the top of the stack is a partial remain-
der, which can be used as input to further reduction. For FPTAN, FSIN, FCOS,and FSIN-
COS, the reudction bit is set if the oeprand at the top of the stack is too large. In this case 
the original operand remains at the to~ of the stack. 

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the 
instruction was upward. 

UNDEFINED Do not rely on finding any specific v~lue in these bits. 
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Table 2-3. Condition Code Interpretation after FPREM and FPREM1 Instructions 

Condition Code 
Interpretation after FPREM and FPREM1 

C2 C3 C1 CO 

Incomplete Reduction: 
1 X X X further interation required 

for complete reduction 

01 00 02 o MOD8 

0 0 0 0 
0 1 0 1 

Complete Reduction: 
1 0 0 2 

0 
1 1 0 3 

CO, C3, C1 contain three least 

0 0 1 4 
significant bits of quotient 

0 1 1 5 
1 0 1 6 
1 1 1 7 

Table 2-4. Condition Code Resulting from Comparison 

.Order C3 C2 CO 

TOP> Operand 0 0 0 
TOP < Operand 0 0 1 
TOP = Operand 1 0 0 
Unordered 1 1 1 

Table 2.5. Condition Code Defining Operand Class 

C3 C2 C1 CO Value at TOP 

0 0 0 0 + Unsupported 
0 0 0 1 + NaN 
n n . n 

I 1 __ •• ___ ..... _-1 

v v V VIIO':)U..,..,UI LOU 

0 0 1 1 - NaN 
0 0 0 + Normal 
0 0 1 + Infinity 
0 1 0 -:- Normal 
0 1 1 1 - Infinity 
1 0 0 0 +0 
1 0 0 1 + Empty 
1 0 1 0 -0 

0 1 - Empty 

I 0 0 + Defiorrnai 
1 0 - Denormal 
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5 1 1 7 0 

RESERVED 

RESERVED· 
ROUNDING CONTROL 
PRECISION CONTROL 

IX>IXIXI {C I ~CIX:XI:I~I~I~I~I~l 

RESERVED 

EXC EPTION MASKS: 
PRECISION 

U NDERFLOW 
OVERFLOW 

Z 
DENORMALIZE 

INVALID 

ERO DIVIDE 
D OPERAND 
OPERATION 

Precision Control 
00-24 bits (single precision) 
01-(reserved) 
10-53 bits (double precision) 
11-64 bits (extended precision) 

• "0" AFTER RESET OR FIN IT; 
CHANGEABLE UPON LOADING THE 
CONTROL WORD (CW). PROGRAMS 
MUST IGNORE THIS BIT. 

Rounding Control 
OO-Round to nearest or even 
01-Round down (toward - 00) 
10-Round up (toward + 00) 
11-Chop (truncate toward zero) 

240225-4 

Figure 2-3. Control Word 
2.3.4 CONTROL WORD 

The NPX provides several processing options that 
are selected by loading a control word from memory 
into the control register. Figure 2-3 shows the format 
and encoding of fields in the control word. 

The low·order byte of this control word configures 
exception masking. Bits 5-0 of the control word 
~ontain individual masks for each of the six excep· 
tlons that the NPX recognizes. 

The high·order byte of the control word configures 
the NPX operating mode, including precision, round· 
ing, and infinity control. 

• The "infinity control bit" (bit 12) is not meaningful 
to the 387 SX NPX, and programs must ignore its 
value. To maintain compatibility with the 8087 
and 80287, this bit can be programmed; however, 
regardless of its value, the 387 SX NPX always 
treats infinity in the affine sense (- 00 < + 00). 
This bit is initialized to zero both after a hardware 
reset and after the FINIT instruction. 
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• The rounding control (RC) bits (bits 11 -10) pro· 
vide for directed rounding and true chop, as well 
as the unbiased round to nearest even mode 
specified in the IEEE standard. Rounding control 
affects only those instructions that perform 
rounding at the end of the operation (and thus 
can generate a precision exception); namely, 
FST, FSTP, FIST, all arithmetic instructions (ex· 
cept FPREM, FPREM1, FXTRACT, FABS, and 
FCHS), and all transcendental instructions. 

• The precision control (PC) bits (bits 9-8) can be 
used to set the NPX internal operating precision 
of the significand at less than the default of 64 / 
bits (extended precision). This can be useful in 
providing compatibility with early generation arith· 
metic processors of smaller precision. PC affects 
only the instructions ADD, SUB, DIV, MUL, and 
SORT. For all other instructions, either the preci· 
sion is determined by the opcode or extended 
precision is used. 
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2.3.5 INSTRUCTION AND DATA POINTERS 

Because the NPX operates in parallel with the CPU, 
any exceptions detected by the NPX may be report­
ed after the CPU has executed the ESC instruction 
which caused it. To allow identification of the failing 
numeric instruction, the 386 SX Microprocessor and 
387 SX Math Coprocessor contains registers that 
aid in diagnosis. These registers supply the address 
of the failing instruction and the address of its nu-
meric memory operand (if appropriate). . 

The instruction and data pointers are provided for 
user-written ellception handlers. These registers are 
actually located in the CPU, but appear to be located 
in the NPX because they are accessed by the ESC 
instructions FLDENV, FSTENV, FSAVE, and 

FRSTOR. Whenever the CPU executes a new ESC 
instruction, it saves the address of the instruction 
(including any prefixes that may be present), the ad­
dress of the operand (if present), and the opcode, 

The instruction and data pointers appear in one of 
four formats depending on the operating mode of 
the CPU (protected mode or real-address mode) 
and depending on the operand-size attribute in ef­
fect (32-bit operand or 16-bit operand), (See Figures 
2-4, 2-5, 2-6, and 2-7.) The ESC instructions 
1:'1 nCI\I\I t:CTCI\I\/ t:CA\lC ~nrl t:CCTf"!'\C ~r.o IIC"Orf 
1 ... __ '.",. _1_ ... ". I _""_. \0&11 .... 111_1_11 "' ..... "",",U\,oI 

to transfer these values between the registers and 
memory. Note that the value of the data pointer is 
undefined if the prior ESC instruction did not have a 
memory operand. 

32·BIT PROTECTED MODE FORMAT 

31 23 15 7 o 

RESERVED CONTROL WORD o 

RESERVED STATUS WORD 4 

RESERVED TAG WORD 8 

, 
IPOFFS'ET C 

00000 I OPCODE 10 .. 0 CSSELECTOR 10 

DATA OPERAND OFFSET 14 

I I rl ___________ R_E_SE~r-V-E-D-----------+--------O-P-E-RA-N-D-r~E-L-E-C_T_O_R ____ ~~118 I 
~I ______________________________________ ~I 

Figure 2-~.lnstruction and Data Pointer Image in Memory, 32-bit Protected-Mode Format 
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31 

15 
16-BIT PROTECTED MODE FORMAT 

7 

CONTROL WORD 

STATUS WORD 

TAG WORD 

IPOFFSET 

CSSELECTOR 

OPERAND OFFSET 

OPERAND SELECTOR 

o 

o 

2 

4 

6 

8 

A 

C 

Figure 2-5. Instruction and Data Pointer Image In Memory, 16-bit Protected-Mode Format 

0000 I 
0000 I 

23 

RESERVED 

RESERVED 

RESERVED 

32-BIT REAL-ADDRESS MODE FORMAT 
15 7 

CONTROL WORD 

STATUS WORD 

TAG WORD 

RESERVED INSTRUCTION POINTER 15 .. 0 

INSTRUCTION POINTER 31 .. 16 I 0 I OPCODE10 .. 0 

RESERVED OPERAND POINTER 15 .. 0 

OPERAND POINTER 31 .. 16 I 0000 00000000 

Figure 2-6. Instruction and Data Pointer Image in Memory, 32-bit Real-Mode Format 

16-BIT REAL-ADDRESS MODE AND VIRTUAL 8086 MODE FORMAT 

15 7 o 

CONTROL WORD o 

STATUS WORD 2 

TAG WORD 4 

INSTRUCTION POINTER 15 .. 0 6 

IP19.16 101 OPCODE10 .. 0 8 

OPERAND POINTER 15 •. 0 A 

DP 19.16 10 I 0 0 0 0 0 0 0 0 000 C 

Figure 2-7. Instruction and Data Pointer Image in Memory, 16-bit Real-Mode Format 
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Table 2-6. CPU Interrupt Vectors Reserved for NPX 

Interrupt 
Cause of Interrupt 

Number 

7 An ESC instruction was encountered when EM or TS of CPU control register zero (CRO) was 
set. EM = 1 indicates that software emulation of the instruction is required. When TS is set, 
either an ESC or WAIT instruction causes interrupt 7. This indicates that the current NPX 
context may not belong to the current task. 

9 In a protected-mode system, an operand of a coprocessor instruction wrapped around an 
addressing limit (OFFFFH for expand-up segments, zero for expand-down segments) and 
spanned inaccessible addressesa. The failing numerics instruction is not restartable. The 
address of the failing numerics instruction and data operand may be lost; an FSTENV does not 
return reliable addresses. The segment overrun exception should be handled by executing an 
FNINIT instruction (i.e. an FINITwithout a preceding WAIT). The exception can be avoided by 
never allowing numerics operands to cross the end of a segment. 

13 In a protected-mode system, the first word of a numeric operand is not entirely within the limit 
of its segment. The return address pushed onto the stack of the exception handler points at the 
ESC instruction that caused the exception, including any prefixes. The NPX has not executed 
this instruction; the instruction pointer and data pointer register refer to a previous, correctly 
executed instruction. 

16 The previous numerics instruction caused an unmasked exception. The address of the faulty 
instruction and the address of its operand are stored in the instruction pointer and data pointer 
registers. Only ESC and WAIT instructions can cause this interrupt. The CPU return address 
pushed onto the stack of the exception handler points to a WAIT or ESC instruction (including 
prefixes). This instruction can be restarted after clearing the exception condition in the NPX. 
FNINIT, FNCLEX, FNSTSW, FNSTENV, and FNSAVE cannot cause this interrupt. 

a. An operand may wrap around an addressing limit when the segment limit is near an addressing limit and the operand is 
near the largest valid address in the segment. Because of the wrap-around, the beginning and ending addresses of such an 
operand will be at oPPosite ends of the segment. There are two ways that such an operand may also span inaccessible 
addresses: 1) if the segment limit is not equal to the addressing limit (e.g. addressing limit is FFFFH and segment limit is 
FFFDH) the operand will span addresses that are not within the segment (e.g. an a·byte operand that starts at valid offset 
FFFCH will span addresses FFFC-FFFFH and OOoo-OOOaH; however addresses FFFEH and FFFFH are not valid, because 
they exceed the limit);. 2) if the operand begins and ends in present and accessible' segments but intermediate' bytes of the 
operand fall in a not-present page or in a segment or page to which the procedure does not have access rights. 

2.4 Interrupt Description 

CPU interrupts are used to report exceptional condi­
tions while executing numeric' programs in either real 
or protected mode. Table 2-6 shows these interrupts 
and their functions. ' 

2.5 Exception Handling 

The NPX detects six different exception conditions 
that can occur during instruction execution. Table 2-
7 lists the exception conditions in' order of prece­
dence, showing for each the cause and the default 
action taken by the NPX if the exception is masked 
by its corresponding mask bit in the control word. 

Any exception that is not masked by the control 
word sets the corresponding exception flag of the 
status word, sets the ES bit of the status word, am;! 
asserts the ERROR # signal. When the CPU at­
tempts to execute another ESC instruction or WAIT, 
exception 16 occurs. The exception condition' must 
be resolved via an interrupt service routine. The re-
turn address pushed onto the CPU stack upon entry , 

to the service routine does not necessarily point to 
the faiiing instruction nor to the foliowing instruction. 
The CPU saves the address of the floatinQ-point in­
struction that caused the exception and the 'address 
of any memory operand required by that instruction. 

2.6 Initialization 

After FNINIT or RESET, the control word contains 
the value 037FH (all exceptions masked, precision 
control 64 bits, rounding to nearest) the same values 
as in an 80287 after RESET. For compatibility with 
the 8087 and 80287, the bit that used to indicate 
infinity control (bit 12) is set to zero; however, re­
gardless of its setting, infinity is treated in the affine 
sense. After FNINIT or RESET, the status word is 
initialized as follows: 

• All exceptions are set to zero. 

• Stack TOP is zero, so that after the first push the 
stack top will be register seven (111 B). 

., The condition code Ca-Co is undefined. 

• The B-bit is zero. 
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Table 2-7. Exceptions 

Exception Cause 
Default Action 

(if exception is masked) 

Invalid Operation on a signalling NaN, unsupported format, Result is a quiet NaN, integer 
Operation indeterminate for (0- 00 ,010, (+ 00) + (- 00), etc.), or indefinite, or BCD indefinte 

stack overflo\oV/underflow (SF is also set) 

Denormalized At least one of the operands is denormalized, i.e., it has Normal processing 
Operand the smallest exponent but a nonzero significand. continues 

Zero Divisor The divisor is zero while the dividend is a noninfinite, Result is 00 
nonzero number 

Overflow The result is too large in magnitude to fit in the specified Result is largest finite 
format value or 00 

Underflow The true result is nonzero but too small to be Result is denormalized 
represented in the specified format, and, if underflow or zero 
exception is masked, denormalization causes ,the loss of 
accuracy. 

Inexact The true result is not exactly representable in the Normal processing 
Result specified format (e.g. 1/3); the result is rounded continues 
(Precision according to the rounding mode. 

The tag w,ord contains FFFFH (all stack locations 
are empty). 

The 386 SX Microprocessor and 387 SX Math Co­
processor initialization software must execute an 
FNINIT instruction (Le an FINIT without a preceding 
WAIT) after RESET. The FNINIT is not strictly re­
quired for the 80287 software, but Intel recommends 
its use to help ensure upward compatibility with oth­
er processors. After a hardware RESET, the ER­
ROR # output is asserted to indicate that a 387 SX 
NPX is present. To accomplish this, the IE and ES 
bits of the status word are set, and the 1M bit in the 
control word is cleared. After FNINIT, the status 
word and the control word have the same values as 
in an 80287 after RESET. 

2.7 8087 and 80287 Compatibility 

This section summarizes the differences between 
the 387 SX NPX and the 80287. Any migration from 
the 8087 directly to the 387 SX NPX must also take 
into account the differences between the 8087 and 
the 80287 as listed in Appendix A. 

Many changes have been designed into the 387 SX 
NPX to directly support the IEEE standard in hard­
ware. These changes result in increased perform­
ance by eliminating the need for software that sup­
ports the standard. 

2.7.1 GENERAL DIFFERENCES 

The 387 SX NPX supports only affine closure for 
infinity arithmetic, not projective closure. 

Operands for FSCALE and FPATAN are no longer 
restricted in range (except for ± 00); F2XM1 and 
FPT AN accept a wider range of operands. 

Rounding control is in effect for FLD constant. 

Software cannot change entries of the tag word to 
values (other than empty) that differ from actual reg­
ister contents. 

After reset, FINIT, and incomplete FPREM, the 387 
SX NPX resets to zero the condition code bits C3-
'Co of the status word. 

In conformance with the IEEE standard, the 387 SX 
NPX does not support the special data formats 
pseudozero, pseudo-NaN, pseudoinfinity, and un­
normal. 

The denormal exception has a different purpose on 
the 387 SX NPX. A system that uses the de normal­
exception handler solely to normalize the denormal 
operands, would better mask the denormal excep­
tion on the 387 SX NPX. The 387 SX NPX automati­
cally normalizes denormal operands when the de­
normal exception is masked. 
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2.7.2 EXCEPTIONS 

A number of differences exist due to changes in the 
IEEE standard and to functional improvements to 
the architecture of the 387 SX NPX: 

1. When the overflow or underflow exception is 
masked, the 387 SX NPX differs from the 80287 
in rounding when overflow or underflow occurs. 
The 387 SX NPX produces results that are con­
sistent with the rounding mode. 

2. When the underflow exception is masked, the 
387 SX NPX sets its underflow flag only if there 
is also a loss of accuracy during denormaliza­
tion. 

3. Fewer invalid-operation exceptions due to de­
normal operands, because the instructions 
FSORT, FDIV, FPREM, and conversions to BCD 
or to integer normalize denormal operands be­
fore proceeding. 

4. The FSORT, FBSTP, and FPREM instructions 
may cause underflow, because they support de­
normal operands. 

5. The denormal exception can occur during the 
transcendental instructions and the FXTRACT 
instruction. 

6. The denormal exception no longer takes prece­
dence over all other exceptions. 

7. When the denormal exception is masked, the 
387 SX NPX automatically normalizes denormal 
operands. The 8087/80287 performs unnormal 
arithmetic, which might produce an un normal re­
sult. 

8. When the operand is zero, the FXTRACT in­
struction reports a zero-divide exception and 
leaves - 00 in ST(1). 

9. The status word has a new bit (SF) that signals 
"a,hen invalid-operation exceptions ars dUG to 
stack underflow or overflow. 

10. FLD extended precision no longer reports denor­
mal exceptions, because the instruction is not 
numeric. 

11. FLD single/double precision when the operand 
is denormal converts the number to extended 
precision and signals the denormalized operand 
exception. When loading a signalling NaN, FLD 
single/double precision signals an invalid-oper­
and exception. 

12. The 387 SX NPX only generates quiet NaNs (as 
on the 80287); however, the 387 SX NPX distin­
g\lishes between quiet NaNs and signaling 
NaNs. Signaling NaNs trigger exceptions when 
they are used as operands; quiet NaNs do not 
(except for FCOM, FIST, and FBSTP which also 
raise IE for quiet NaNs). 

13. When stack overflow occurs during FPT AN and 
overflow is masked, both ST(O) and ST(1) con-

tain quiet NaNs. The 80287/8087 leaves the 
original operand in ST(1) intact. 

14. When the scaling factor is ± 00, the FSCALE 
(ST(O), ST(1» instruction behaves as follows 
(ST(O) and ST(1) contain the scaled and scaling 
operands respectively): 

• FSCALE(O, 00) generates the invalid operation 
exception. 

• FSCALE(finite, - 00) generates zero with the 
same sign as the scaled operand. 

• FSCALE(iiniie, + 00) generates 00 with the 
same sign as the scaled operand; 

The 8087/80287, returns zero in the first case 
and raises the invalid-operation exception ih the 
other cases. 

15. The 387 SX NPX returns signed infinity/zero as 
the unmasked response to massive overflow/ 
underflOW. The 8087 and 80287 support a limit­
ed range for the scaling factor; within this range 
either massive overflow/underflow do not occur 
or undefined results are produced. 

3.0 HARDWARE INTERFACE 

In the following description of hardware interface, 
the # symbol at the end of a signal name indicates 
that the active or asserted state occurs when the 
signal is at a low voltage. When no # is present after 
the Signal name, the Signal is asserted when at the 
high voltage level. 

3.1 Signal Description 

In the following signal descriptions, the 387 SX NPX 
pins are grouped by function as shown by Table 3-1. 
Table 3-1 lists every pin by its identifier, gives a brief 
description of its function, and lists some of its char­
acteristics (Refer to Figure 5-1 and Table 5-1 for pin 
configuration). 

...---CKW=i!J 

SYNCHRONOUS 

CPUCLK2 

ASYNCHRONOUS 

38STMsx CPU 
NUMCLK2 

240225-21 

Figure 3.1~ Asynchronous Operation 
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Table 3-1. Pin Summary 

Pin Function Active Input! Referenced 
Name State Output To ... 

Execution Control 

CPUCLK2 386TM SX Microprocessor CLocK 2 I 
NUMCLK2 NPXCLocK 2 I 
CKM NP~ ClocKing Mode I 
RESETIN System reset High I CPUCLK2 

NPX Handshake 

PEREQ Processor Extension REQuest High a STEN/CPUCLK2 
BUSY# Busy status Low a STEN/CPUCLK2 
ERROR# Error status Low a STEN/NUMCLK2 

Bus Interface 

D15-DO Data pins High 1/0 CPUCLK2 
W/R# Write/Read bus cycle HilLa I CPUCLK2 
ADS# ADdress Strobe Low I CPUCLK2 
READY # Bus ready input Low I CPUCLK2 
READYO# Ready output Low a STEN/CPUCLK2 

Chip/Port Select 

STEN STatus ENable High I CPUCLK2 
NPS1# NPX select #1 Low I CPUCLK2 
NPS2 NPX select #2 High I CPUCLK2 
CMDO# CoMmanD Low I CPUCLK2 

Power and Ground 

Vee System power 
Vss System ground 

All output signals are tristate; they leave floating 
state only when STEN is active. The output buffers 
.of the bidirectional data pins D15-DO are also tri­
state; they leave floating state only during cycles 
when the NPX is selected (Le. when STEN, NPS1 #, 
and NPS2 are all active). 

3.1.1 386™ SX CPU CLOCK 2 (CPUCLK2) 

This input uses the CLK2 signal of the CPU to time 
the bus control logic. Several other NPX signals are 
referenced to the rising edge of this signal. When 
CKM = 1 (synchronous mode) this pin also clocks 
the data interface and control unit and the floating-

, point unit of the NPX. This pin requires MaS-level 
input. The signal on this pin is divided by two to pro­
duce the internal clock signal CLK. 

3.1.2 387™ SX NPX CLOCK 2 (NUMCLK2) 

When CKM = 0 (asynchronous mode) this pin pro­
vides the clock for the data interface and control unit 
and the floating-point unit of the NPX. In this case, 
the ratio of the frequency of NUMCLK2 to the fre­
quency of CPUCLK2 must lie within the range 10:16 
to 14:10. When CKM = 1 (synchronous mode) sig­
mils on this pin are ignored; CPUCLK2 is used in­
stead for the data interface and control unit and the 
floating-point unit. This pin requires MaS-level input. 
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3.1.3 CLOCKING MODE (CKM) 

This pin is a strapping option. When it is strapped to 
Vee (HIGH), the NPX operates in synchronous 
mode; when strapped to Vss (LOW), the NPX oper­
ates in asynchronous mode. These modes relate to 
clocking of the data interface and control unit and 
the floating-point unit only; the bus control logic al­
ways operates synchronously with respect to the" 
CPU. 

3.1.4 SYSTEM RESET (RESETIN) 

A LOW to HIGH transition on this pin causes the 
NPX to terminate its present activity and to enter a 
dormant state. RESETIN must remain active (HIGH) 
for at least 40 NUMCLK2 periods. ' 

The HIGH to LOW transitions of RESETIN must be 
synchronous with CPUCLK2, so that the phase of 
the internal clock of the bus control logic (which is 
the CPUCLK2 divided by two) is the same as the 
phase of the internal clock of the CPU. After RESE­
TIN goes LOW, at least 50 NUMCLK2 periods must 
pass before the first NPX instruction is written into 
the NPX. This pin should be connected to the CPU 
RESET pin. Table 3-1 shows the status of the output 
pins during the reset sequence. After a reset, all out­
put pins return to their inactive states. 
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Table 3-2. Output Pin Status during Reset 

Pin Value Pin Name 

HIGH READYO#, BUSY# 
LOW PEREQ, ERROR # 
Tri-State OFF D15-DO 

3.1.5 PROCESSOR EXTENSION REQUEST 
(PEREQ) 

When active, this pin signals to the CPU that the 
NPX is ready for data transfer to/from its data FIFO. 
When all data is written to or read from the data 
FIFO, PEREQ is deactivated. This signal always 
goes inactive before BUSY # goes inactive. This sig­
nal is referenced to CPUCLK2. It should be connect­
ed to the CPU PEREQ input. 

3.1.6 BUSY STATUS (BUSY#) 

When active, this pin signals to the CPU that the 
NPX is currently executing an instruction. This signal 
is referenced to CPUCLK2. It should be connected 
to the CPU BUSY # pin. 

3.1.7 ERROR STATUS (ERROR#) 

This pin reflects the ES bit of the status register. 
When active, it indicates that an unmasked excep­
tion has occurred. This signal can be changed to 
inactive state only by the following instructions (with­
out a preceding WAIT): FNINIT, FNCLEX, 
FNSTENV, FNSAVE, FLDCW, FLDENV, and 
FRSTOR. This pin is referenced to CPUCLK2. It 
should be connected to the ERROR # pin of the 
CPU. 

3.1.8 DATA PINS (D15-DO) 

These bidirectional pins are used to transfer data 
and opcodes between the CPU and NPX. They are 
normally connected directly to the corresponding 
CPU data pins. HIGH state indicates a value of one. 
DO is the least significant data bit. Timings are refer­
enced to CPUCLK2. 

3.1.9 WRITE/READ BUS CYCLE (W/R#) 

This signal indicates to the NPX whether the CPU 
bus cycle in progress is a read or a write cycle. This 
pin should be connected directly to the CPU's 
W /R # pin. HIGH indicates a write cycle; LOW a 
read cycle. This input is ignored if any of the signals 
STEN, NPS1 #, or NPS2 is inactive. Setup and hold 
times are referenced to CPUCLK2. 

3.1.10 ADDRESS STROBE (ADS#) 

This input, in conjunction with the READY # input, 
indicates when the NPX bus-control logic may sam­
ple W/R# and the chip-select signals. Setup and 
hold times are referenced to CPUCLK2. This pin 
should be connected to the ADS# pin of the CPU. 

3.1.11 BUS READY INPUT (READY#) 

This input indicates to the NPX when a CPU bus 
cycle is to be terminated. It is used by the bus-con­
trol logic to trace bus activities. Bus cycles can be 
extended indefinitely until terminated by READY #. 
This input should be connected to the same signal 
that drives the CPU's READY # input. Setup and 
hold times are referenced to CPUCLK2. 

3.1.12 READY OUTPUT (READYO#) 

This pin is activated at such a time that write cycles 
are terminated after two clocks (except FLDENV 
and FRSTOR) and read cycles after three clocks. In 
configurations where no extra wait states are re­
quired, this pin must directly or indirectly drive the 
READY # input of the CPU. Refer to the section enti­
tled "Bus Operation" for details. This pin is activated 
only during bus cycles that select the NPX. This sig­
nal is referenced to CPUCLK2. 

3.1.13 STATUS ENABLE (STEN) 

This pin serves as a chip select for the NPX. When 
inactive, this pin forces, BUSY#, PEREQ#, ER­
ROR#, and READYO# outputs into floating state. 
D15-DO are normally floating; they leave floating 
state only if STEN is active and additional conditions 
....rn ....... .0+ CTE:'I\.I al~" l"''!III(!oOC' tho ,..hin tn r.cl"'''nni''7.o itC' 
............. " ... _ ........................................ "" .0 ............. ,... ........... ,.,,"";:J.,,-"" ... .... 

other chip-select inputs. STEN makes it easier to do 
on-board testing (using the overdrive method) of 
other chips in systems containing the NPX. STEN 
should be pulled up with a resistor so that it can be 
pulled down when testing. In boards that do not use 
on-board testing. STEN should be connected to 
Vee. Setup and hold times are relative to CPUCLK2. 
Note that STEN must maintain the same setup and 
hold times as NPS1 #, NPS2, and CMDO# (I.e. if 
STEN changes state during an NPX bus cycle, it 
n"l11C't I"'hO'!lnnc ~t"=lto rltlrinn tho. ~~rno ("':1 l.(' norinn O~ 
11"'.1""" \"III""II~"" ........................ ,1~ ... , ........................................ , ............ ..., 

the NPS1 #, NPS2, and CMDO# signals). 

3.1.14 NPX SELECT 1 (NPS1#) 

When active (along with STEN and NPS2) in the first 
period of a CPU bus cycle, this signal indicates that 
the purpose of the bus cycle is to communicate with 
the NPX. This pin should be connected directly to 
the M/IO# pin of the CPU, so that the NPX is select­
ed only when the CPU performs 1/0 cycles. Setup 
and hold times are referenced to CPUCLK2. 
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3.1.15 NPX SELECT 2 (NPS2) 

When active (along with STEN and NPS1 #) in the 
first period of a CPU bus cycle, this signal indicates 
that the purpose of the bus cycle is to communicate 
with the NPX. This pin should be connected directly 
to the A23 pin of the CPU, so that the NPX is select· 
ed only when the CPU issues one of the liD ad- . 
dresses reserved for the NPX (8000F8H, 8000FCH 
or 8000FEH which is treated as 8000FCH by the 
NPX). Setup and hold times are referenced to 
CPUCLK2. 

3.1.16 COMMAND (CMDO#) 

During a write cycle, this signal indicates whether an 
opcode (CMDO# active) or data (CMDO# inactive) 
is being sent to the NPX. During a read cycle, it indio 
cates whether the control or status register (CMDO# 
active) or a data register (CMDO# inactive) is being 
read. CMDO# should be connected directly to the 
A2 output of the CPU. Setup and hold times are ref­
erenced to CPUCLK2. 

3.1.17 SYSTEM POWER (Vee) 

System power provides the + 5V DC supply input. 
All Vee pins should be tied together on the circuit 
board and local decoupling capacitors should be 
used between Vee and Vss· 

3.1.18 SYSTEM GROUND (Vss) 

All Vss pins should be tied together on the circuit 
board and local decoupling capacitors should be 
used between Vee and V ss. 

3.2 System Configuration 

The 387 SX Math Coprocessor is designed to inter­
face with the 386 SX Microprocessor as shown by 
Figure 3-1. A dedicated communication protocol 
makes possible high-speed transfer of opcodes and 
operands between the CPU and NPX. The 387 SX 
NPX is designed so that no additional components 
are required for interface with the CPU. Most control 
pins of the NPX are connected directly to pins of the 
CPU. 

fROM OTHER PERIPHERALS 

\ 
;--+ CKM 

( 
CLOCK 387T101SX NPX CLOCK I 

NUMClK2 
GENERATOR GENERATOR 

I ClK2 r-.-+n (OPTIONAL) 

ClK !-+ CPUClK2 

RESET RESETIN 

t READY# 

WAIT STATE k-
t 

I GENERATOR READYO# (OPTIONAL) I 
HLDA 

387™SX NPX 
386T101SX CPU 

4 RESET o/c# 4 
--+ REAOY# lOCK# 

~ CLK2 BHE#,BLE# 

1.4/10# NPS1# ... NA# A23 NPS2 ... HOLD A22-A3,A1 ~ ... INT# A2 CMDO# ... NMI W/R# W/R# 
STEN 

ADS# ADS# 

015-00 16 015-00 

BUSY# BUSY# 

ERROR# ERROR# 

PEREa PEREa 

Figure 3-1. 386TM SX CPU and 387TM SX NPX System Configuration 
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The interface between the NPX and the CPU has 
these characteristics: 

• The NPX shares the local bus of the 386 SX Mi­
croprocessor. 

• The CPU and NPX share the same reset signals. 
They may also share the same clock input; how­
ever, for greatest performance, an external oscil-
lator may be needed. . 

• The corresponding BUSY #, ERROR #, and PER­
Ea pins are connected together. 

= The NPX NPS1;# and NPS2 inputs art: conneci­
ed to the latched CPU M/IO# and A23 outputs 
respectively. For coprocessor cycles, M/IO# is 
always lOW and A23 always HIGH. 

• The NPX input CMDO is connected to the latched 
A2 output. The 386 SX Microprocessor generates 
~ddress 8000F8H when writing a command and 
address 8000FCH or 8000FEH (treated as 
8000FCH by the 387 SX NPX) when writing or 
reading data .. It does not generate any other ad­
dresses during NPX bus cycles. 

3.3 Processor Architecture 

As shown by the block diagram on the front page, 
the 387 SX NPX is internally divided into three sec­
tions: the bus control logic (BCl), the data interface 
and control unit, and the floating point unit (FPU). 
The FPU (with the support of the control unit which· 
contains the sequencer and other support units) ex­
ecutes all numerics instructions. The data interface 
and control unit is responsible for the data floVv to 
and from the FPU and the control registers, for re­
ceiving the instructions, decoding them, arid se­
quencing the microinstructions, and for handling· 
some of the administrative instructions. The BCL is 
responsible for CPU bus tracking and interface. The 
BCl is the only unit in the NPX that must run syn­
chronously with the CPU; the rest of the NPX can 
run asynchronously with respect to the CPU. 

3.3.1 BUS CONTROL LOGIC 

The BCl communicates solely with the CPU using 
110 bus cycles. The BCl appears to the CPU as a 
special peripheral device. It is special in two re-

spects: the CPU initiates 1/0 automatically when .it 
encounters ESC instructions, and the CPU uses re­
served 1/0 addresses to communicate with the BCL. ' 
The BCl does not communicate directly with memo­
ry. The CPU performs all memory access, transfer­
ring input operands from memory to the NPX and 
transferring outputs from the NPX to memory. 

3.3.2 DATA INTERFACE AND CONTROL UNIT 

The data interface and control unit latches the data 
and, subject to BCL control, directs the data to the 
FIFO or the instruction decoder. The instruction de­
coder decodes the ESC instructions sent to it by the 
CPU and generates controls that direct the data flow 
in the FIFO. It also triggers the microinstruction se­
quencer that controls execution of each instruction. 
If the ESC instruction is FINIT, FClEX, FSTSW, 
FSTSW AX. FSTCW. FSETPM, or FRSTPM. the 
control executes it independently of the FPU and the 
sequencer. The data interface and control unit is the 
one that generates the BUSY #, PEREa, and ER­
ROR# signals that synchronize NPX activities with 
the CPU. 

3.3.3 FLOATING·POINT UNIT 

The FPU executes all instructions that involve the 
register stack, including arithmetic, logical, transcen· 
dental, constant, and data transfer instructions. The 
data path in the FPU is 84 bits wide (68 significant 
bits, 15 exponent bits, and a sign bit) which allows 
internal operand transfers to be performed at very 
high speeds. 

3.4 Bys Cycles 

The pins StEN. NPS1 #; NPS2, CMDO, and W/R# 
identify bus cycles for the NPX. Table 3-3 defines 
the types of NPX pus cycles. -

3.4.1 387TM SX NPX ADDRESSING 

The NPS1 #, NPS2, and CMDO signals allow the 
. NPX to identify which bus cycles are intended for the 

NPX. The NPX responds to 1/0 cycles when the 1/0 
address is SOaOFSH, BOOOFCH or 8000FEH (tieated, 

Table 3-3. Bus Cycle Definition 

STEN NPS1# NPS2 CMDO# W/R# Bus Cycle Type 

0 ·x x x x NPX not selected and all outputs in floating state 
1 1 x x x NPX not selected 
1 x 0 x x NPX not selEicted 
1 0 1 0 

.. 
0 CW orSW read from NPX 

1 0 1 0 1 Opcode write to NPX 
1 0 1 1 0 Data read from NPX 
1 0 1 1 1 Data write to NPX 
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as 8000FCH by the 387 SX NPX). The NPX re­
sponds to 1/0 cycles when bit 23 of the 1/0 address 
is set. In other words, the NPX acts as an 1/0 device 
in a reserved 1/0 address space. 

Because A23 is used to select the 387 SX Numerics 
Coprocessor Extension for data transfers, it is not 
possible for a program running on the CPU to ad­
dress the NPX with an 1/0 instruction. Only ESC in­
structions cause the CPU to communicate with the 
NPX. 

3.4.2 CPU/NPX SYNCHRONIZATION 

The pins BUSY #, PEREa, and ERROR # are used 
for various aspects of synchronization between the 
CPU and the NPX. 

BUSY # is used to synchronize instruction transfer 
from the CPU to the NPX. When the NPX recognizes 
an ESC instruction, it asserts BUSY #. For most ESC 
instructions, the CPU waits for the NPX to deassert 
BUSY # before sending the new opcode. 

The NPX uses the PEREa pin of the CPU to signal 
that the NPX is ready for data transfer to or from its 
data FIFO. The NPX does not directly access mem­
ory; rather, the CPU provides memory access serv­
ices for the NPX. (For this reason, memory access 
on behalf of the NPX always obeys the protection 
rules applicable to the current CPU mode.) Once the 
CPU initiates an NPX instruction that has operands, 
the CPU waits for PEREa signals that indicate when 
the NPX is ready for operand transfer. Once all oper­
ands have been transferred (or if the instruction has 
no operands) the CPU continues program execution 
while the NPX executes the ESC instruction. 

In 8086/8087 systems, WAIT instructions may be 
required to achieve synchronization of both com­
mands and operands. In the 386 SX Microprocessor 
and 387 SX Math Coprocessor systems, however, 
WAIT instructions are required only for operand syn­
chronization; namely, after NPX stores to memory 
(except FSTSW and FSTCW) or load from memory. 
(In 80286/80287 systems, WAIT is required before 
FlDENV and FRSTOR; with the 386 SX Microproc­
essor and 387 SX Math Coprocessor, WAIT is not 
required in these cases.) Used this way, WAIT en­
sures that the value has already been written or read 
by the NPX before the CPU reads or changes the 
value. 

Once it has started to execute a numerics instruction 
and has transferred the operands from the CPU, the 
NPX can process the instruction in parallel with and 
independent of the host CPU. When the NPX de­
tects an exception, it asserts the ERROR# signal, 
which causes a CPU interrupt. 

3.4.3 SYNCHRONOUS OR ASYNCHRONOUS 
MODES 

The internal logic of the NPX (the FPU) can operate 
either directly from the CPU clock (synchronous 
mode) or from a separate clock (asynchronous 
mode). The two configurations are distinguished by 
the CKM pin. In either case, the bus control logic 
(BCl) of the NPX is synchronized with the CPU 
clock. Use of asynchronous mode allows the CPU 
and the FPU section of the NPX to run at different 
speeds. In this case, the ratio of the frequency of 
NUMClK2 to the frequency of CPUClK2 must lie 
within the range 10:16 to 14:10. Use of synchronous 
mode eliminates one clock generator from the board 
design. 

3.4.4 AUTOMATIC BUS CYCLE TERMINATION 

In configurations where no extra wait states are re­
quired, READYO# can drive the CPU's READY# 
input. If this pin is used, it should be connected to 
the logic that ORs all READY outputs from peripher­
als on the CPU bus. READYO# is asserted by the 
NPX only during 1/0 cycles that select the NPX. Re­
fer to Section 4.0 "Bus Operation" for details. 

4.0 BUS OPERATION 

With respect to bus interface, the 387 SX NPX is 
fully synchronous with the CPU. Both operate at the 
same rate, because each generates its internal ClK 
signal by dividing CPUClK2 by two. Furthermore, 
both internal ClK signals are in phase. because they 
are synchronized by the same RESETIN Signal. 

A bus cycle for the NPX starts when the CPU acti­
vates ADS# and drives new values on the address 
and cycle-definition lines. The NPX examines the ad­
dress and cycle-definition lines in the same ClK pe­
riod during which ADS# is activated. This ClK peri­
od is considered the first ClK of the bus cycle. 
During this first ClK period, the NPX also examines 
the RIW # input signal to determine whether the cy­
cle is a read or a write cycle and examines the 
CMDO input to determine whether an opcode, oper­
and, or control/status register transfer is to occur. 

The 387 SX NPX supports both pipelined (Le. over­
lapped) and nonpipelined bus cycles. A nonpipelined 
cycle is.one for which the CPU asserts ADS#' when 
no other NPX bus cycle is in progress. A pipelined 
bus cycle is one for which the CPU asserts ADS# 
and provides valid next-address and control signals 
before the prior NPX cycle terminates. The CPU may 
do this as early as the second ClK period after as­
serting ADS# for the prior cycle. Pipelining increas-
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es the availability of the bus by at least one CLK 
period. The 387 SX NPX supports pipelined bus cy­
cles in order to optimize address pipelining by the 
CPU for memory cycles. 

Bus operation is described in terms of an abstract 
state machine. Figure 4-1 illustrates the states and 
state transitions for NPX bus cycles: 

• TI is the idle state. This is the state of the bus 
logic after RESET, the state to which bus logic' 
returns after every nonpipelined bus cycle, and 
the state to which bus iogic returns after a series 
of pipelined cycles. 

• TFis is the READY#-sensitive state. Different 
types of bus cycles may require a minimum of 
one or two successive T RS states. The bus logic 
remains in TRS state until READY#is sensed, at 
which point the bus cycle terminates. Any number 
of wait states may be implemented by delaying 
READY #, thereby causing additional successive 
TRS states. . 

• T p is the first state for every pipelined bus cycle. 
This state is not used by nonpipelined cycles. 

Note that the bus logic tracks bus state regardless 
of the values on the chip/port select pins. 

The READYO# output of the NPX indicates when 
an NPX bus cycle may be terminated if no extra wait 
states are required. For a" write cycles (except 
those for the instructions FLDENV and FRSTOR), 
READYO# is always asserted during the first TRS 
state, regardless of the number of wait states. For a" 
read cycles and write cycles for FLDENV and 

I IRESETIN 

IA!lS#~ 

READY# 
240225-6 

Figure 4·1. Bus State Diagram . 

FRSTOR, READYO# is always asserted in the sec­
ond T RS state, regardless of the number of wait 
states. These rules apply to both pipelined and non­
pipelined cycles. Systems designers may use 
READYO# in one of the following ways: 

1. Connect it (directly or through logic that ORs 
READY # sigrials from other devices) to the 
READY # inputs of the CPU and NPX . 

2. Use it as one input to a wait-state generator. 

The following sections illustrate different types of 
387 SX NPX bus cycles. Because different instruc­
tions have different amounts of overhead before, be­
tween, and after operand transfer cycles, it is not 
possible to represent in a few diagrams a" of the 
combinations of successive operand transfer cycles. 
The fo"ovving bus-cycle diagrams show memory cy­
cles between NPX operand-transfer cycles. Note 
however that, during FRSTOR, some consecutive 
accesses to the NPX do not have intervening memo­
ry accesses. For the timing relationship between op­
erand transfer cycles . and opcode write or other 
overhead activities, see the figure "Other Parame­
ters" in section 6. 

4.1 Nonpipelined Bus Cycles 

Figure 4-2 illustrates bus activity for consecutive 
nonpipelined bus cycles. . 

At the second clock of the bus cycle, the NPX enters 
the T RS state. During this state, it samples the 
READY # input and stays in this state as long as 
READY # is inactive. 

4. i. i WRiTE CYCLE 

in write cycies, the NPX drives the READYO#.signal 
for one CLK period during the second CLK period of 
the cycle (i.e. the first T RS state); therefore, the fast­
est write cycle takes two CLK periods (see cycle 2 of 
Figure 4-2). For the instructions FLDENV and 
FRSTOR, however, the NPX forces a wait state by 
delaying the activation of READYO# to the second 
T RS state (not shown in Figure 4-2). 

The NPX samples the 015-DO inputs into data 
latches at the falling edge of CLK as long as it stays 
in T RS state. 

When READY # is asserted, the NPX returns to the 
idle state. Simultaneously with the NPX's entering 
the idle state, the CPU may assert ADS # again, sig­
naling the beginning of yet another cycle. 
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CPUClK2 

(ClK) 

CYCLE 1 
NON-PIPElINED 
MEMORY READ 

CYCLE 2 
NON-PIPELINED 

NPX WRITE 

CYCLE 3 
NON-PIPELINED 

NPX READ 

CYCLE 4 
NON-PIPELINED 
MEMORY WRITE 

NPS2, ~--~----~~--~-----rr-~~~----~----~--~~---+----~----~ 
NPS1#, 

CMD~# ~---4----~~--~----~~~~~----~----~---4~--~----~----~ 

W/R# 

ADS# 

READYO# 

DI5-DO ---- --

240225-7 
Cycles 1 & 2 represent part of the operand transfer cycle for instructions involving either 4-byte or a-byte operand loads. 
Cycles 3 & 4 represent part of the operand transfer cycle for a store operation. 
·Cycles 1 & 2 could repeat here or TI states for various non-operand transfer cycles and overhead. 

Figure 4~2. Nonpipelined Read and Write Cycles 

4.1.2 READ CYCLE 

At the rising edge of ClK in the second ClK period 
of the cycle (i.e. the first T RS state), the NPX starts 
to drive the 015-00 outputs and continues to drive 
them as long as it stays in T RS state. 

At least one wait state must be inserted to ensure 
that the CPU latches the correct data. Because the 
NPX starts driving the data bus only at the rising 
edge of ClK in the second clock period of the bus 
cycle, not enough time is left for the data signals to 
propagate and be latched by the CPU before the 
next falling edge of ClK. Therefore, the NPX does 
not drive the REAOYO# signal until the third ClK 
period of the cycle. Thus, if the REAOYO # output 
drives the CPU's READY # input, one wait state is 
automatically inserted. 

Because one wait state is required for NPX reads, 
the minimum length of an NPX read cycle is three 
ClK periods, as cycle 3 of Figure 4-2 shows .. 

When READY # is asserted, the NPX returns to the 
idle state. Simultaneously with the NPX's entering 
the idle state, the CPU may assert AOS# again, sig­
naling the beginning of yet another cycle. The tran­
sition from T RS state to idle state causes the NPX to 
put the tristate 015-00 outputs into the floating 
state, allowing another device to drive the data bus. 

4.2 Pipelined Bus Cycles 

Because all the activities of the NPX bus interface 
occur either during the T RS state or during the tran­
sitions to or from that state, the only difference be­
tween a pipe lined and a nonpipelined cycle is the 
manner of changing from one state to another. The 
exact activities during each state are detailed in the 
previous section "Nonpipelined Bus Cycles". 

When the CPU asserts AOS# before the end of a 
bus cycle, both AOS# and REAOY# are active dur-

4-527 



intJ 387TM SX MATH COPROCESSOR 

CPUCLK2 

(CLK) 

CYCLE 1 
NON-PIPELINED 
MEMORY READ 

CYCLE 2 
PIPELINED 

NPX WRITE 

CYCLE 3 
PIPELINED 

MEMORY READ 

CYCLE 4 
NON-PIPELINED 

NPX WRITE 

NPS2, ~--~----~~--~----~r---~----+-----Pr--~~---4----~ 
NPS1#, 

CMD0# ~--~----~L---+---~~--~----4-----~--~----~--~ 

W/R# 

ADS# 

READYO# 

015-00 ---- ----- --

240225-8 
Cycle I-Cycle 4 represent the operand transfer cycle for an instruction involving a transfer of two 32·bit loads in total. 
The opcode write cycles and other overhead are not-shown. 
Note that the next cycle will be a pipelined cycle if both READY# and ADS# are sampled active at the end of a TRS 
state of the current cycle. 

Figure 4-3. Fastest Transitions to and from Plpelined Cycles 

ing a T RS state. This condition c-auses the NPX to 
change to a different state named T p. One clock 
period after a T p state, the NPX always returns to 
T RS state. In consecutive pipelined cycles, the NPX 
bus logic uses only the T RS and T p states. 

Figure 4·3 shows the fastest transitions into and out 
of the pipelined bus cycles. Cycle 1 in the figure rep­
resents a nonpipelined cycle. (Nonpipelined write 
cycles with only one T RS state (I.e. no wait states) 
are always followed by another nonpipelined cycle, 
because READY # is asserted before the earliest 
possible assertion of ADS# for the next cycle.) 

Figure 4-4 sho\'1s pipe!ined \AJrite and read cycles 
with one additional T RS state beyond the minimum 
required. To delay the assertion of READY # re­
quires external logic. 

4.3 Bus Cycles of Mixed Type 

When the NPX bus logic is in the T RS state, it distin­
guishes between nonpipelined and pipelined cycles 
according to the behavior of ADS# and READY#. 
In a non pipe lined cycle, only READY # is activated, 
and the transition is from T RS state to, idle state. In a 
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CPUClK2 

(ClK) 

CYCLE 1 
PIPELINED WRITE 

NOTE 1 

Tp 

CYCLE 2 
PIPELINED READ 

Tp 

NPS2,~---+----~r---~----~~~-*~--~----+---~-----Tr---~--~ 
NPS1#, 
CMD0# ~ __ -+ ____ ~~ __ ~ ____ ~~~-+~ __ ~ ____ +-__ ~ ____ ~~ __ ~ __ ~ 

WjR# 

ADS# 

READYO# 

READY# 

015-00 CPU ~~ ---- ---- -- NPX 

240225-9 

NOTE: 
1. Cycles between operand write to the NPX and storing result. 

Figure 4-4. Pipelined Cycl~s with Wait States 

pipelined cycle, both READY# and ADS# are ac­
tive, and the transition is first from T AS state to T P 
state, then, after one clock period, back to T AS 
state. 

4.4 BUSY # and PEREQ Timing 
Relationship 

Figure 4-5 shows the activation of BUSY # at the 
beginning of instruction execution and its deactiva-

tion upon completion of the instruction. PEREO is 
activated within this interval. If ERROR # (not shown 
in the figure) is ever asserted, it would be asserted at 
least six CPUCLK2 periods after"the deactivation of 
PEREO and would be deasserted at least six 
CPUCLK2 periods before the deactivation of 
BUSY #. Figure 4·5 also shows that STEN is activat­
ed at the beginning of an NPX bus cycle. 
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OPCODE 
WRITE NOTE " 

NOTE 1 NOTE 2 

1ST OPERAND 
WRITE 

NOTE 3 NOTE I 

NOTES: 240225-10 

1. Instruction dependent 
2. PEREQ is an asynchronous input to the 386TM Microprocessor; it may not be asserted (instruction dependent). 
3. More operand transfers. 
4. Memory read (operand) cycle is not shown. 

Figure 4-5. STEN, BUSY #, and PEREQ Timing Relationships 

5.0 PACKAGE THERMAL 
SPECIFICATIONS 

. The 387 SX Math Coprocessor is specified for oper­
ation when case temperature is within the range of 
O°C-100DC. The case ternptnaiure may be mea .. 
sured in any environment, to determine whether the 
387 SX Math Coprocessor is within specified operat­
ing range. The case temperature should be mea­
sured at the center of the top surface opposite the 
pins. 

The ambient temperature is guaranteed as long as 
T c is not violated. The ambient temperature can be 
calculated from the Bic and Bia from the following 
equations: 

Tj = Tc + P • 8jc 

Ta = Tj - p. 8ja 

Tc = Ta + p. [8ja - 8jcl 

~!I~:S !~r,..~a an~~B~:.~!~ ~~V~~_!~.~a~~,~~~ f~_~~~ 
VU-I,,1'111 I .... ""v. Cja I~ \:tIVOli Gl VQIIUU;:' i:UIIIUW~. I tlUltJ 

5·2 shows the maximum T a allowable (without ex· 
ceeding T c) at various airflows. Note that T a can be 
improved further by attaching 'fins' or a 'heat sink' to 
the package. P is calculated by using the maximum 
hot Icc. 

Table 5-1. Thermal Resistances rC/WaH) Bjc and B/a 

B/a versus Airflow - ft/mln (m/sec) 

Package Blc 0 200 400 600 800 1000 
(0) (1.01) (2.03), (3.04) (4.06) (5.07) 

68-PinPLCC 8 30 25 20 15.5 13 12 
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Table 5-2. Maximum T A at Various Airflows 

T A(OC) versus Airflow - ft/min (m/sec) 

Package 0 200 400 600 800 1000 
(0) (1.01) (2.03) (3.04) (4.06) (5.07) 

68-Pin PLCC 54.7 61.6 68.5 74.6 78.1 79.5 

Max. TA calculated at Max Vcc and Max Icc. 

Figure 5-1 shows the locations of pins on the chip package. Table 5-3 helps to locate pin identifiers in 
Figure 5-1. 
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The term "top view" means "as viewed when mounted in a printed-circuit board". 

Figure 5-1. PLCC Pin Configuration 

Table 5-3. Pin Cross-Reference 

1-n.c. 18-n.c. 35-ERROR# 
2-007 19-000 36-BUSY# 
3-00S 20-001 37- Vec 
4- Vee 21- Vss 38- Vss 
5-Vss 22- Vee 39- Vee 
6-005 23-002 40-STEN 
7-004 24,-008 41-W/R# 
8-003 25- Vss 42- Vss 
9- Vee 2S-Vee 43- Vee 

10-n.c. 27- Vss 44-NPS1# 
11-015 28-009 45-NPS2 
12-014 29-010 46- Vee 
13-Vee 30-011 47-AOS# 
14-Vss 31- Vee 48-CMOO# 
15-013 32- Vss 49-REAOY# 
16-012 33- Vee 50- Vee 
17-n.c. 34- Vss 51-RESETIN 

n.c.-The corresponding pins of the 387TM SX NPX are left unconnected. 
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240225-11 

52-n.c. , 
53-NUMCLK2 
54-CPUCLK2 
55- Vss 
56-PEREQ 
57-REAOYO# 
58- Vee 
59-CKM 
60-Vss 
61- Vss 
62- Vee 
63- Vss 
64- Vee 
65-n.c. 
66- Vss 
67-n.c. 
68-n.c. 
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6.0 ELECTRICAL DATA 

6.1 Absolute Maximum Ratings 

NOTE: 
Stresses above those listed may cause permanent 
damage to the device. This is a stress rating only 
and functional operation of the device at these or 
any other conditions above those indicated in the 

6.2 D.C. Characteristics 

operational sections of this specification is not im­
plied. Exposure to absolute maximum rating condi­

-tions for extended periods may affect device reliabili­
ty. 

Case temperature T e under bias ...... O°C to 100°C 
S~orage temperature ....•...... - 65°C to + 150°C 
Voltage on any pin with respect to ground - 0.5 to 

, Vee+ 0.5V 
Power dissipation ....................... 1.5 Watt 

Table 6·1. D.C. Specifications Te = 0° to 100°C. Vee = 5V ± 10% 

Symbol Parameter Min 

V,l Input LO Voltage -0.3 
V,H Input HI Voltage 2.0 
Vel CPUCLK2 and NUMCLK2 -0.3 

Input LO Voltage 
VCH CPUCLK2 and NUMCLK2 Vce-O.S 

Input HI Voltage 
VOL Output LO Voltage 
VOH Output HI Voltage 2.4 
VOH Output HI Voltage Vee- O.S 
Icc Power Supply Current 

NUMCLK2 = 32 MHz(S) 
NUMCLK2 = 2 MHz(S) 

III Input Leakage Current 
ILO 1/0 Leakage Current 
C,N Input Capacitance 
Co 1/0 or Output Capacitance 
CelK Clock Capacitance 

NOTES: , 
1. This parameter is for all inputs. excluding the clock inputs. 
2. This parameter is measured at IOL as follows: ' 

data = 4.0mA 
AEADYO#, EAAOA#. BUSY#. PEREa = 2.SmA' 

3. This parameter is measured at IOH as follows: 
data = 1.0mA 
READYO#, ERROR#, BUSY#, PEREa = O.SmA 

4. This parameter is measured at IOH as follows: 
data = O.2mA 
READYO#, ERROR#. BUSY#, PEREa = O.12mA 

Max Units Test Conditions 

+O.S V See note 1 
Vee + 0.3 V See note 1 

+O.S V 

Vce+ 0.3 V 

0.45 V See note 2 
V See note 3 
V See note 4 

250 mA Icc typo = 150 mA 
100 mA 
±15 /JoA OV ~ Y,N ~ Vee 
±15 /JoA 0.45V ~ Vo ~ Vee 
10 pF fc = 1MHz 
12 pF fc = 1MHz 
20 pF fc = 1MHz 

S. Icc is measured at steady state, maximum capacitive loading on the outputs, and worst-case D.C. level at the inputs; 
CPUCLK2 at the sarna frequency as NUMCLK2. 

6.3 A.C. Characteristics 

Table 6·2a. Combinations of Bus Interface and Execution Speeds 

Functional Block 80387SX·16 

Bus Interface Unit (MHz) 16 
Execution Unit (MHz) 16 
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Table 6-2b. Timing Requirements of Execution UnitTc = O· to 100· C, Vee = 5V ± 10% 

Pin Symbol Parameter 16 MHz Test Refer to 

Min (ns) Max (ns) Conditions Figure 

NUMCLK2 t1 Period 31.25 500 2.0V 6.2 
NUMCLK2 t2b High Time 5 Vee- 0.8V 
NUMCLK2 t3b Low Time 7 0.8V 
NUMCLK2 t4 Fall Time 8 From Vee-0.8 to 0.8V (Note 1) 
NUMCLK2 t5 Rise Time 8 From 0.8 to Vee-0.8V 

Note: 
1.lf not used (eKM = 1), tie LOW. 

Table 6-2c. Timing Requirements,of Bus Interface Unit Tc = O· to 100· C, Vee = 5V ± 10% 

Pin Symbol Parameter 16 MHz (1.5V) Test Refer to 

Min (ns) Max (ns) CondltlPns Figure 

CPUCLK2 t1 Period 31.25 500 2.0V 6.2 
CPUCLK2 t2b High Time 5 Ve 
CPUCLK2 t3b Low Time 7 O. 
CPUCLK2 t4 Fail Time 
CPUCLK2 t5 Rise Time 

CPUCLK2/ Ratio 10/16 
NUMCLK2 

REAOYO# t7 OutOelay 6.3 
REAOYO# t7 OutOelay 
PEREQ t7 OutOelay 
BUSY# t7 OutOelay 
ERROR# t7 OutOelay 

015-00 t8 6.4 
015-00 t10· 
015-00 t11 
015-00 t12* CL = 120pf 

PEREQ CL = 75pf 6.6 
BUSY# CL = 75pf 
ERROR# CL = 75pf 
REAOYO# CL = 75pf 

AOs# 6.4 
AOs# 
W/R# 
W/R# 

REAOY# 6.4 
REAOY# 
CMOO# 
CMOO# 
NPs1#, 
NPS2 

NPs1#, t17 Hold Time 2 
NPS2 

sTEN t16 Setup Time 21 
sTEN t17 Hold Time 2 

REsETIN t18 Setup Time 13 6.5 
RESETIN t19 Hold Time 4 

NOTES: 
"Float condition occurs when maximum output current becomes less the ILO in magnitude. Float delay is not tested . 

•• Not tested at 25 pf. 
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nom+ 8 ,..---..----,--"""1"---, 

nom+ 6 I-----l--'--+---t-..,.'--I 

nom+ 4 1--==!:-:;-;==+-7fII'~--" 

Typical. Output nom + 2 I--=~'-=~~---t--.~--I 

Delay (ns) nom 

II» 1.5V nom - 2 ..... ~--i,..----io"c.---t----I 

nom- 4 I----l ...... o::...-+---t-----I 

50 100 125 150 

Load Capacitance. CL (pf) 

NOTES: , 
Graphs are not linear outside the CL range shown. 
nom = nominal value given in the AC timing table 
·Typical part under worst-case conditions 

240225~12 

Figure 6-1a. Typical Output Valid Delay vs. Load Capacitance at Max Operating Temperature 

1.0 r---...,.---r----,-~ ... 

81---+---t--7~~'--_I 

Typical. Output 6 1----::Iio""'~"'9---_+--_I 

Slew Time (ns) 
(0.8 H 2.0V) 4' 1-7.c:...---;=~~:::!!.!="f!-!==::L..I 

2 I----l---+---t-----I 

o I~ __ '~I _~~ __ ~ __ ~ 

50 75 1CO 125 

Load Capacitance. CL (pf) 

NOTES: 
Graphs are not linear 'outside the CL range shown. 
·Typical part under worst-case conditions 

150 

26 

22 

Typical. Output 18 

Slew Tlma (ns) 
(0.4 H 3.5V) 14 

10 

/' 
V/ 

V V 
D15 DO // 
/' ,/ 

"'/ 
/~ '" ./ ijEADYO#. PEREa, BUSY#, ERROR# 

6 ,~-~--~--~-~I I 
50 75 !OO 125 150 

Load Capacitance, CL (pf) 

240225-13 

Figure 6-1b. Typical Output Slew Time vs. Load CapaCitance at Max Operating Temperature 
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300 

250 
-;( 

5 200 u _u . 
Ci 150 " '0. 
~ 

10H= -200 u,!.. ~ ~ 
/ ~ k' Unloaded 

V '/' 
100 

50 

4 6 8 10 12 14 16 

Frequency (MHz) 
240225-14 

NOTES: 
Graphs are not linear outside the frequency range shown. 
·Typical part under worst·case conditions. 

Figure 6-1c. Typical Icc vs. Load Capacitance at Max Operating Temperature 

CPUCLK2/NUMCLK2 

i+------t1-----+l rSETUP HOLD 
TIME [TIME 

l.~r---"'\F 3.0V 
INPUTS ...... OV 

240225-15 

Figure 6-2. CPUCLK2INUMCLK2 Waveform and Measurement Points for Input/Output 
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(ClK) (PH2) \", __ (P_H_l)_-J/ ('"'l 

CPUClK2 

(OUTPUTS) 

(ERROR# REFERENCED TO NUt.4ClK2) 
240225-16 

Figure 6-3. Output Signals 

(ClK)\ (PHI) / (PH2) \ (PHI) / (PH2) L 
CPUClK2 

W/R# 

NPS 1 D. NPS2. 
STEN. 

Ct.4DOD 

READYD 

015-00 
{INPUT) 

015-00 
(OUTPUT) 

Figure 6-4. Input and I/O Signals 
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CPUCLK2 

RESET \SSSSS' 

NOTE: 
The second internal processor phase following RESET high to low transition is PH2. 

Figure 6-5. RESET Signal 

STEN 

015-00, PEREQ 
BUSY#,ERROR#,READYO# 

Pin Symbol 

RESETIN t30 

RESETIN t31 

BUSY# t32 

BUSY #, ERROR # t33 

PEREa, ERROR # t34 

READY #, BUSY # t35 

READY # t36 

READY # t37 

Figure 6-6. Float from STEN 

Table 6-3. Other Parameters 

Parameter 

Duration 

RESETIN inactive to 1st opcode write 

Duration 

ERROR # {in)active to BUSY # inactive 

PEREa inactive to ERROR # active 

READY # active to BUSY # active 

Minimum time from opcode write to 
opcode/operand write 

Minimum time from operand write to 
operand write 
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Min Max Units 

40 NUMCLK2 

50 NUMCLK2 

6 CPUCLK2 

6 CPUCLK2 

6 CPUCLK2 

4 4 CPUCLK2 

4 CPUCLK2 
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READY# 

BUSY# 

PEREQ 

ERROR# 

1ST OPCODE 
WRITE NOTE 1 

•• 
1 ST OPERAND 2ND OPERAND 

WRITE WRITE (NOTE 1) 

H 

H 

I 
H 

t35--I---I----iI---I-

• In NUMCLK2's 
•• or last operand 

NOTE: 
1. Memory read (operand) cycle is not shown. 

I 
240225-20 

Figure 6·7. Other Parameters 

7.0 387TM SX NPX EXTENSIONS TO 
THE CPU'S INSTRUCTION SET 

Instructions for the 387 SX NPX assume one of the 
five forms shown in Table 7-1. In all cases, instruc­
tions are at least two bytes long and begin with the 
bit pattern 11 011 S, which identifies the ESCAPE 
class of instruction. Instructions that refer to memory 
operands specify addresses using the CPU's ad­
dressing modes. 

MOD (Mode field) and RIM (RegisterlMemory spec­
ifier) have the same interpretation as the corre­
sponding fields of CPU instructions (refer to Pro­
grammer's Reference Manual for the CPU). SIB 

(Scale Index Base) byte and DISP (displacement) 
are optionally present in instructions that have MOD 
and RIM fields. Their presence depends on the val­
ues of MOD and RIM, as for instructions of the CPU. 

The instruction summaries that follow assume that 
the instruction has been prefetched, decoded, and is 
ready for execution; that bus cycles do not require 
wait states; that there are no local bus HOLD re­
quests delaying processor access to the bus; and 
that no exceptions are detected during instruction 
execution. If the instruction has MOD and RIM fields 
that call for both base and index registers, add one 
clock. 
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Table 7-1. Instruction Formats 

Instruction 

First Byte Second Byte 

OPA 1 MOD 1 I OPS RIM 

MF OPA MOD OPS' RIM 

d P OPA 1 1 OPS' ST(i) 

0 0 1 1 1 1 I OP 

0 1 1 1 1 1 I OP 

15-11 10 9 8 7 6 5 43210 
OP = Instruction opcode, possibly split into two fields OPA and OPB 
MF = Memory Format 

00-32·bit real 
01-32-bit integer 
10-64-bit real 
11-16-bit integer 

d = Destination 
O-Destination is ST(O) 
1-Destination is STeil 

R XOR d = O-Destination (op) Source 
R XOR d = 1-8ource (op) Destination 
*In FSUB and FDIV, the low-order bit of OPB is the R (reversed) bit 
P = POP 

O-Do not pop stack 
1-Pop stack after operation 

ESC = 11011 
STeil = Register stack element i 

000 = Stack top 
001 = Second stack element 

111 = Eighth stack element 
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387TM SX NPX Extension to the 386™ SX Microprocessor Instruction Set 

I Encoding Clock Count Range 
Instruction I Byte I Byte I Optional 32-Blt I 32-Blt I 64-Blt I III-Bit 

0 1 Bytes 2-6 Real Integer Real Integer 
DATA TRANSFER 

FLO = Load.' 

Integer/real memory to ST(O) I ESCMFI I MOD 000 RIM I SIB/DISP 24 49-56 33 61-65 

Lo~g integer memory 10 ST(O) I ESC111 I MOD 101 RIM I SIB/DISP 64-75 

Extended real memory 10 ST(O) I ESCOll I MOD 101 RIM I SIB/DISP 52 

BCD memory to ST(O) I ESClll I MOD 100 RIM I SIB/DISP 274-283 

ST(i) to ST(O) I ESC 001 I 11000ST(i) I 14 

FST = Store 

ST(O) to integer/real memory I ESCMFI I MOD010R/M I SIB/DISP 49 84-98 55 82-95 

ST(O) to ST(i) I ESC 101 I 11010ST(i) I 11 

FSTP = Store and Pop 

ST(O) to integer/real memory I ESCMFI I MOD011 RIM I SIB/DISP 49 84-98 55 82-95 

ST(O) to long integer memory L ESC111 I MOD 111 RIM I SIB/DISP 90-107 

ST(O) to extended real I ESCOll I MOD 111 RIM I SIB/DISP 63 

ST(O) to BCD memory I ESC111 I MODll0R/M I SIB/DISP 522-544 

ST(O) to ST(i) I ESC 101 I 11011 ST(O' I 12 

FXCH = Exchange 

ST(i) and ST(O) I ESC 001 I 11001 ST(i) I 18 

COMPARISON 

FCOM = Compare 

Integer/real memory to ST(O) I ESCMFO I MOD 010 RIM I SIB/DISP 30 60-67 39 71-75 

ST(i) to ST(O) I ESC 000 I 11010ST(i) I 24 

FCOMP = Compare and pop 

Integer/real memory to ST I ESCMFO I MOD011 RIM I SIB/DISP 30 60-67 39 71-75 

ST(i) to ST(O) I ESC 000 I 11011 ST(i) I 26 

FCOMPP = Compare and pop twice 

ST(I) to ST(O) I ESCll0 I 11011001 I 26 

IFTST = Test ST(O) ESC 001 11100100 

ESClo1 . '11100~ 
. 

FUCOM = UnonieI'ed oompare I 
1 

28 .1 
'24 

FUCQMP = Unoniel'ed oompare 
and pop I ESC 101 I 11101 !El! 26 

FUCOUPP = Unordered oompare , 
and pop tyOOa E$C010 11101001 I 26 

FXAM = Examine ST(O) ESC 001 11100101 I 30-38 

CONSTANTS 

FLOZ = Load + 0.0 into ST(O) ESC 001 11101110 20 

FLOI = Load + 1.0 into ST(O) ESC 001 11101000 24 

FLOPI = Load pi into ST(O) ESC 001 11101011 40 

FLOL2T = Load log2(10) into ST(O) ESC 001 11101001 40 

Shaded areas indicate instructions not available in 6067160267. 

NOTE: 
a. When loading single- or double-precision zero from memory, add 5 clocks. 
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387TM SX NPX Extension to the 386TM SX Microprocessor Instruction Set (Continued) 

I Encoding Clock Count Range 

Instruction I Byte I Byte I Optional 32·Blt I 32·Blt I 64·Blt I 16·Blt 
0 1 Bytes 2-6 Real Integer Real Integer 

CONSTANTS (Continued) 

FLDL2E ~ Load log2(e) into ST(O) I ESCOOI I 11101010 I 40 

FLDLG2 = Load IOg'0(2) into ST(O) I ESC 001 I 11101100 I 41 

FLDLN2 ~ Load log.(2) inlo ST(O) I ESC 001 I 11101101 I 41 

ARITHMETIC 

FADD ~ Add 

Integer/real memory with ST(O) I ESCMFO I MOD 000 R/M I SIB/DISP 28-36 61-7!l 37-45 71-85 

STeil and ST(O) I ESCd PO I 11000 ST(I) I 23-31b 

FSUB ~ Subtract 

Integer/real memory with ST(O) I ESCMFO I MOD10RR/M I SIB/DISP 28-36 61-76 36-44 71-83c 

STeil and ST(O) I ESCdPO I 1110 R R/M I 26-34d 

FMUL ~ Multiply 

Integer/real memory with ST(O) I ESCMFO I MOD 001 R/M I SIB/DISP 31-39 65-86 40-65 76-87 

ST(i) and ST(O) I ESCdPO I 11001 R/M I 29-579 

FDIV ~ Divide 

Integer/real memory wilh ST(O) I ESCMFO I M9D 11 R R/M I SIB/DISP 93 124-131' 102 136-1409 

ST(i) and ST(O) I ESCdPO I 1111 RR/M I 88h 

FSQRTI ~ Square root I ESC 001 I 11111010 I 122-129 

FSCALE ~ Scale ST(O) by ST(I) I ESC 001 I 11111101 I 67-86 

FPREM ~ Partial remainder I ESC 001 I 11111000 I 74-155 

FPREM1 "" PartIal remainder 
(IEEE) , I ESC 001 I 11110101 I 1/5:-1,85 

FRNDINT ~ Round ST(O) I ESC 001 I 11111100 I 66-80 
to integer 

FXTRACT ~ Extract components 
oIST(O) I ESC 001 I 11110100 I 70-76 ' 

FABS ~ Absolute value 01 ST(O) I ESC 001 I 11100001 I 22 

FCHS ~ Change sign 01 ST(O) I ESC 001 I 11100000 I 24-25 

Shaded areas indicate instructions not available in 8087/80287. 

NOTES: 
b. Add 3 clocks to the range when d = 1. 
c. Add 1 clock to each range when R = 1. 
d. Add 3 clocks to the range when d = O. 
e. typical = 52 (When d = 0, 46-54, typical = 49). 
f. Add 1 clock to the range when R = 1. 
g. 135-141 when R = 1. 
h. Add 3 clocks to the range when d = 1. 
i. -0 ,;;; ST(O) ,;;; + 00. 
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387TM SX NPX Extension to the 386TM SX Microprocessor Instruction Set (Continued) 

I Encoding 
Instruction 

I Byte I Byte I Optional Clock Count Range 

0 1 Bytes 2-6 

TRANSCENDENTAL 

FCOSk- Cosln,e 01 51(0): l ' esCOOt I . fnl1111 , t, <, 
;~ .le~";7r~ . 

m .. 

FPTANk = Partial tangent of ST(O) I ESC 001 I 11110010 I 191-4971 

FPATAN = Partial arctangent I ESC 001 I 11110011 I 314-487 

FSIHk -Sine of ST(O) I esc 001 I 1'11'1 Hi0 'V <, \' 

122-7711 

FSlNCOSk ,., SIM and c;O$lne ()f ST(O)' V I!:sCO()I I 111110H r '"~ , 1 !M.-!lO!lJ 
F2XMli = 2ST(0) - 1 I ESC 001 I 11110000 I 211-476 

FYL2xm = ST(I) • log2(ST(0» I ESC 001 I 11110001 I 120-538 

FYL2XP1" = ST(I) • IOg2(ST(0) + 1.0) I ESC 001 I 11111001 I 257-547 

PROCESSOR CONTROL 

FINIT = Initialize NPX I . ESCOll I 11100011 I 33 

FSTSW AX = Store status word I ESClll I 11100000 I 13 

FLDCW = Load control word I ESC 001 I MOD 101 RIM I SIB/DISP 19 

FSTCW = Store control word L ESC 101 I MOD 111 RIM I SIB/DISP 15 

FSTSW = Store status word L ESC10l I MOD 111 RIM I SIB/DISP 15 

FCLEX = Clear exceptions I ESC 011 I 11100010 I 11 

FSTENV = Store environment I ESC 001 I MOD 110 RIM I SIB/DISP 103-104 

FLDENV = Load environment I ESC 001 I MOD 100 RIM I SIB/DISP 71 

FSA VE = Save state I ESC 101 I MOD110RIM I SIB/DISP 475-476 

FRSTOR = Restore state I ESC 101 I MOD 100 RIM I SIB/DISP 388 

FINCSTP = Increment stack pOinter I ESC 001 I 11110111 I 21 

FDECSTP = Decrement stack pOinter I ESC 001 I 11110110 I 22 

FFREE = Free ST(i) I ESC 101 I 11000 ST(i) I 18 

FNOP = No operations I ESC 001 I 11010000 I 12 
I I 
Shaded areas indicate instructions not available In 8087/80287. 

NOTES: 
j. These timings hold for operands in the range Ixl < 7r 1 4. For operands not in this range, up to 76 additional clocks may be 
needed to reduce the operand. 
k.O s I ST(O) I < 263. 
I. -1.0 s ST(O) s 1.0. 
m.O s ST(O) < 00, - 00 < ST(I) < + 00. 

n.O s IST(O)I < (2 - SQRT(2))/2, - 00 < ST(I) < + 00. 
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APPENDIX A 
COM·PATIBILITY BETWEEN 
THE 80287 AND THE 8087 

The 80286/80287 operating in Real-Address mode 
will execute 808618087 programs without major 
modification. However, because of differences in the 
handling of numeric exceptions by the 80287 NPX 
and the 8087 NPX, exception-handling routines may 
need to be changed. 

This appendix summarizes the differences between 
the 80287 NPX and the 8087 NPX, and provides 
details showing how 8086/80B7 programs can be 
ported to the B0286/80287. 

1. The NPX signals exceptions through a dedicated 
ERROR# line to the 802B6. The NPX error Signal 
does not pass through an interrupt controller (the 
8087 INT signal does). Therefore, any interrupt­
controller-oriented instructions in numeric excep­
tion handlers for the B086/8087 should be delet­
ed. 

2. The 8087 instructions FENI/FNENI and FDISli 
FNDISI perform no useful function in the B0287. If 
the 80287 encounters one of these opcodes in its 
instruction stream, the instruction will effectively 
be ignored-none of the 80287 internal states will 
be updated. While 80B6/BOB7 containing these 
instructions may be executed on the 
B0286/B02B7, it is unlikely that the exception­
handling routines containing these instructions 
will be completely portable to the B0287. 

3. Interrupt vector 16 must point to the numeric ex­
ception handling routine. 

4. The ESC instruction address saved in the 80287 
includes any leading prefixes before the ESC op­
code. The corresponding address saved in the 
8087 does not include leading prefixes. 

5. In Protected-Address mode, the format of the 
B0287's saved instruction and address pointers is 
different than for the 8087. The instruction op­
code is not saved in Protected mode-exception 
handlers will have to retrieve the opcode from 
memory if needed. 

6. Interrupt 7 will occur iI, the 802B6 when executing 
ESC instructions with either TS (task switched) or 
EM (emulation) of the 80286 MSW set (TS = 1 or 
EM = 1). If TS is set, then a WAIT instruction will 

also cause interrupt 7. An exception handler 
should be included in B0286/80287 code to han­
dle these situations. 

7. Interrupt 9 will occur if the second or subsequent 
words of a floating-point operand fall outside a 
segment's size. Interrupt 13 will occur if the start­
ing address of a numeric operand falls outside a 
segment's size. An exception handler should be 
included in 80286/80287 code to report these 
programming errors. 

B. Except for the processor control instructions, all 
of the 80287 numeric instructions are automati­
cally synchronized by the 80286 CPU-the 8Q286 
automatically tests the BUSY # line from the 
80287 to ensure that the 80287 has completed its 
previous instruction before executing the next 
ESC instruction. No explicit WAIT instructions are 
required to assure this synchronization. For the 
8087 used with 8086 and 8088 processors, ex­
plicit WAITs are required before each numeric in­
struction to ensure synchronization. Although 
808618087 programs having explicit WAIT in­
structions will execute perfectly on the 
80286/80287 without reassembly, these WAIT in­
structions are unnecessary. 

9. Since the 80287 does not require WAIT instruc­
tions before each numeric instruction, the 
ASM286 assembler does not automatically gener­
ate these WAIT instructions. The ASM86 assem­
bler, however, automatically precedes every ESC 
instruction with a WAIT instruction. Although nu­
meric routines generated using the ASM86 as­
sembler will generally execute correctly on the 
80286/80287, reassembly using ASM286 may re­
sult in a more compact code image. 

The processor control instructions for the B02B7 
may be coded using either a WAIT or No-WAIT 
form of mnemonic. The WAIT forms of these in­
structions cause ASM286 to precede the ESC in­
struction with a CPU WAIT instruction, in the iden­
tical manner as does ASM86. 
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HIGH PERFORMANCE CACHE CONTROLLER 

• Improves 386TM SX System • Software Transparent 
Performance • Synchronous Dual Bus Architecture 
- Reduces Average CPU Wait States to - Bus Watching Maintains Cache 

Nearly Zero Coherency 
- Zero Wait State Read Hit 
- Zero Wait State Posted Memory • Maps Full 3.86 SX Address Space 

Writes • Flexible Cache Mapping Policies 
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System Bus More Readily Associative Cache Organization 

• Hit Rates up to 99% . - Supports Non-Cacheable Memory 
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- Simple 386 SX Interface 
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- Part of Intel386TM-Based Compute • Integrates Cache Directory and Cache 
Engine Including 387™ SX Math Management Logic 
Coprocessor and 82370 Integrated • High Speed CHMOS Technology 
System Peripheral - 132-Pin PGA and 132-Lead PQFP 

-16 MHz Operation 

The 82385SX Cache Controller is a high performance peripheral for Intel's 386TM SX Microprocessor. It stores 
a copy of frequently accessed code and data from main memory in a zero wait state local cache memory. The 
82385SX allows the 386 SX Microprocessor to run near its full potential by reducing the average number of 
CPU wait states to nearly zero. The dual bus architecture of the 82385SX allows other masters to access 
system resources while the 386 SX CPU operates locally out of its cache. In this situation, the 82385SX's "bus 
watching" mechanism preserves cache coherency by monitoring the system bus address lines at no cost to 
system or local throughput. 

The 82385SX is completely software transparent, protecting the integrity of system software. High perform­
ance and board space savings are achieved because the 82385SX integrates a cache directory and all. cache 
management logic on one chip. 
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1.0 82385SX FUNCTIONAL 
OVERVIEW 

The B23B5SX Cache Controller is a high perform­
ance peripheral for Intel's 3B6™ SX microproces­
sor. This' chapter provides an overview of the 
B23B5SX, and of the basic architecture and opera­
tion of a 3B6 SX CPU/B23B5SX system. 

1.1 82385SX Overview 

The main function of a cache memory system is to 
provide fast local storage for frequently accessed 
code and data. The cache system intercepts 3B6 SX 
memory references to see if the required data re­
sides in the cache. If the data resides in the cache (a 
hit), it is returned to the 3B6 SX without incurring wait 
states. If the data is not cached (a miss), the refer­
ence is forwarded to the system and the data re­
trieved from main memory. An efficient cache will 
yield a high "hit rate" (the ratio of cache hits to total 
3B6 SX accesses), such that the majority of access­
es are serviced with zero wait states. The net effect 
is that the wait states incurred in a relatively infre­
quent miss are average'd over a large number of ac­
cesses, resulting 'in an average of nearly zero wait 
states per access. Since cache hits are serviced lo­
cally, a processor operating out of its local cache 
has a much lower "bus utilization" which reduces 
system bus bandwidth requirements, making more 
bandwidth available to other bus masters. 

The B23B5SX Cache Controller integrates a cache 
directory and all cache management logic required 
to support an external 16 kbyte cache. The cache 
directory structure is such that the entire physical 
address range of the 3B6 SX is mapped into the 
cache. Provision is made to allow areas of memory 
to be set aside as non-cacheable. The user has two 
cache organization options: direct mapped and 2-
way set associative. Both provide the high hit rates 
necessary to make a large, relatively slow main 
memory array look like fast, zero wait state memory 
to the 3B6 SX. 

A good hit rate is an essential ingredient of a suc­
cessful cache implementation. Hit rate is the mea­
sure of how efficient a cache is in maintaining a copy 
of the most frequently requested code and data. 
However, efficiency is not the only factor for per­
formance consideration. Just as essential are sound 
cache management policies. These policies refer to 
the handling of 3B6 SX writes, preservation of cache 
coherency, and ease of system design. The 
B23B5SX's "posted write" capability allows the ma­
jority of 3B6 SX writes, including most non-cache­
able cycles, to run with zero wait states, and the 
823B5SX's "bus watching" mechanism preserves 

cache coherency with no impact on system perform­
ance. Physically, the B23B5SX ties directly to the 
386 SX with virtually no external logic. 

1.2 System Overview I: Bus Structure 

A good grasp of bus structure of a 3B6 SX CPU I 
B23B5SX system is essential in understanding both 
the B23B5SX and its role in a 3B6 SX system. The 
following is a description of this structure. 

1.2.1 386TM SX LOCAL BUS/82385SX LOCAL 
BUS/SYSTEM BUS 

Figure 1-1 depicts the bus structure of a typical 
3B6 SX system. The "3B6 SX Local Bus" consists of 
the physical 386 SX address, data, and control bus­
ses. The local address and data busses are buffered 
and/or latched to become the "system" address 
and data busses. The local control bus is decoded 
by bus control logic to generate the various system 
bus read and write commands. 

The addition of an B2385SX Cache Controller caus­
es a separation of the 3B6 8X bus into two distinct 
busses: the actual 386 SX local bus and the 
"B23B5SX Local Bus" (Figure 1-2). The 82385SX lo­
cal bus is designed to look like the front end of a 
3B6 SX by providing B23B5SX local bus equivalents 
to all appropriate 386 SX signals. The system ties to 
this "3B6 SX-like" front end just as it would to an 
actual 386 SX. The 386 SX simply sees a fast sys­
tem bus, and the system sees a 386 SX front end 
with low bus bandwidth requirements. The cache 
subsystem is transparent to, both. Note that the 
82385SX local bus is not simply a buffered version 
of the 386 SX bus, but rather is distinct from, and 
able to operate in parallel with the 386 SX bus. Oth­
er masters residing on either the B2385SX local bus 
or system bus are free to manage system resources 
while the 386 SX operates out of its cache. 

1.2.2 BUS ARBITRATION 

The 82385SX presents the "3B6 SX-like" interface 
which is called the 823B5SX local bus. Whereas the 
386 SX provides a Hold Request! Hold Acknowl­
edge bus arbitration mechanism via its HOLD and 
HLDA pins, the 823B5SX provides an equivalent 
mechanism via its BHOLD and BHLDA pins. (These 
signals are described in Section 3.7.) When another 
master requests the B23B5SX local bus, it issues the 
request to the 82385SX via BHOLD. Typically, at the 
end of the current B23B5SX local bus cycle, the 
82385SX will release the 82385SX local bus and ac­
knowledge the request via BHLDA. The 386 SX is of 
course free to continue operating on the 386 SX lo­
cal bus while another master owns the B23B5SX lo­
cal bus. 
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Figure 1-1. 386TM SX System Bus Structure 
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Figure 1-2. 386TM SX and 82385SX System Bus Structure 
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1.2.3 MASTER/SLAVE OPERATION 

The above 82385SX local bus arbitration discussion 
is true when the 82385SX is programmed for "Mas­
ter" mode operation. The user can, however, config­
ure the 82385SX for "Slave" mode operation. (Pro­
gramming is done via a hardware strap option.) The 
roles of BHOLD and BHLDA are reversed for an 
82385SX in slave mode; BHOLD becomes an output 
indicating a request to control the bus, and BHLDA 
becomes an input indicating that a request lias been 
granted. An 82385SX programmed in slave mode 
drives the 82385SX local bus only when it has re­
quested and subsequently been granted bus control. 
This allows multiple 386 SX CPU/82385SX subsys­
tems to reside on the same 82385SX local bus (Fig­
ure 1-3). 

1.2:4 CACHE COHERENCY 

Ideally, a cache contains a copy of the most heavily 
used portions of main memory. To maintain cache 
"coherency" is to make sure that this local copy is 
identical to main memory. In a system where multi­
ple masters can access the same memory, there is 

-SYSTEM ADDRESS BUS 
-WRITE CYCLE INDICATOR 

always a risk that one master will alter the contents 
of a memory location that is duplicated in the local 
cache of another master. (The cache is said to con­
tain "stale" data.) One rather restrictive solution is to 
not allow cache subsystems to cache shared memo­
ry. Another simple solution is to flush the cache any­
time another master writes to system r:nemory. How­
ever, this can seriously degrade system perform­
ance as excessive cache flushing will reduce the hit 
rate of what may otherwise be a highly efficient 
cache. 

The 82385SX preserves cache coherency via "bus 
watChing" (also called snooping), a technique that 
neither impacts performance. nor restricts memory 
mapping .. An 82385SX that is not currently bus mas­
ter monitors system bus cycles, and when a write 
cycle by another master is detected (a snoop), the 
system address is sampled and used to see if the 
referenced location is duplicated in the cache. If so 
(a snoop hit), the corresponding cache entry is inval­
idated, which will force the 386 SX to fetch the up­
to-date data from main memory the neXt time it ac­
cesses this modified location. Figure 1-4 depicts the 
general form of bus watching. 

386™SX 
LOCAL BUS 

..,. __ ... ___ .j82385SX 
• LOCAL BUS 

SYSTEM BUS 

290222-5 

Figure 1-4. 82385SX Bus Watching-Monitor System Bus Write Cycles 
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1.3 System Overview II: 
Basic Operation 

This discussion is an overview of the basic operation 
of a 386 SX CPU/82385SX system. Items discussed 
include the 82385SX's response to all 386 SX cy­
cles, including interrupt acknowledges, halts, and 
shutdowns. Also discussed are non-cacheable and 
local accesses. 

1.3.1 386TM SX MEMORY CODE AND DATA 
READ CYCLES 

1.3.1.1 Read Hits 

When the 386 SX initiates a memory code or data 
read cycle, the 82385SX compares the high order 
bits of the 386 SX address bus with the appropriate 
addresses (tags) stored in its on-chip directory. (The 
directory structure is described in Section 2.1.1) If 
the 82385SX determines that the requested data is 
in the cache, it issues the appropriate control signals 
that direct the cache to drive the requested data 
onto the 386 SX data bus, where it is read by the 
386 SX. The 82385SX terminates the 386 SX cycle 
without inserting any wait states. 

1.3.1.2 Read Misses 

If the 82385SX determines that the requested data 
is not in the cache, the request is forwarded to the 
82385SX local bus and the data retrieved from main 
memory. As the data returns from main memory, it is 
directed to the Sa6 SX and also written into the 
cache. Concurrently, the 82385SX updates the 
cache directory such that the next time this particu­
lar piece of information is requested by the 386 SX, 
the 82385SX will find it in the cache and return it 
with zero wait states. 

The basic unit of transfer between main memory and 
cache memory in a cache subsystem is called the 
line size. In an 82385SX system, the line size is one 
16-bit word. During a read miss, both 82385SX local 
bus byte enables are active. This insures that the 
16-bit entry is written into the cache. (The 386 SX 
simply ignores what it did not request.) In any other 
type of 386 SX cycle that is forwarded to the 
82385SX local bus, the logic levels of the 386 SX 
byte enables are duplicated on the 82385SX local 
bus. 

The 82385SX does not actively fetch main memorY 
data independently of the 386 SX. The 82385SX is 
essentially a passive device which only monitors the 
address bus and activates control Signals. The read 
miss is the only mechanism by which main memory 
data is copied into the cache and validated in the 
cache directory. 

In an isolated read miss, the number of wait states 
seen by the 386 SX is that required by the system 
memory to respond with data plus the cache com­
parison cycle (hit/miss decision). The cache system ' 
must determine that the cycle is a miss before it can 
begin the system memory access. However, since 
misses most often occur consecutively, the 
82385SX will begin 386 SX address pipe lined cycles 
to effectively "hide" the comparison cycle beyond 
the first miss (refer to Section 4.1.3). 

The 82385SX can execute a memory access on the 
82385SX local bus only if it currently owns the bus. If 
not, an 82385SX in master mode will run the cycle 
after the current master releases the bus. An 
82385SX in slave mode will issue a hold request, 
and will run the cycle as soon as the request is ac­
knowledged. (This is true for any read or write cycle 
that needs to run on the 82385SX local bus.) 

1.3.2 386TM SX MEMORY WRITE CYCLES 

The 82385SX's "posted write" capability allows the 
majority of 386 SX memory write cycles to run with 
zero wait states. The primary memory update policy 
implemented in a posted write is the traditional 
cache "write through" technique, which implies that 
main memory is always updated in any memory write 
cycle. If the referenced location also happens to re­
side in the cache (a write hit), the cache is updated 
as well. 

Beyond this, a posted write latches the 386 SX ad­
dress, data, and cycle definition signals, and the 386 
SX local bus is terminated without any wait states, 
even though the corresponding 82385SX local bus' 
cycle is not yet completed, or perhaps not even 
started. A posted write is possible because the 
82385SX's bus state machine, which is almost iden­
tical to the 386 SX bus state machine, is able to run 
82385SX local bus cycles independently of the 
386 SX. The only time the 386 SX sees write cycle 
wait states is when a previously latched (posted) 
write has not yet been completed on the 82385SX 
local bus or during an I/O write (which,is not post­
ed). An 386 SX write can be posted even if the 
82385SX does not currently own the 82385SX local 
bus. In this case, an 82385SX in master mode will 
run the cycle as soon as the current master releases 
the bus, and an 82385SX in slave mode will request 
the bus and run the cycle when the request is ac­
knowledged. The 386 SX is free to continue operat­
ing out of its cache (on the 386 SX local bus) during 
this time. 

1.3.3 NON-CACHEABLE CYCLES 

Non-cacheable cycles fall into one of two catego­
ries: cycles decoded as non-cacheable, and cycles 
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that are by default non-cacheable according to the 
82385SX's design. All non-cacheable cycles are for­
warded to the 82385SX local bus. Non-cacheable 
cycles have no effect on the cache or cache directo­
ry. 

The 82385SX allows the system designer to define 
areas of main memory as non-cacheable. The 
386 SX address bus is decoded and the decode out­
put is connected to the 82385SX's non-cacheable 
access (NCA#) input. This decoding is done in the 
first 386 SX bus state in which the non-cacheab!e 
cycle address becomes available. Non-cacheable 
read cycles resemble cacheable read miss cycles, 
except that the cache and cache directory are unaf­
fected. NCA # defined non-cacheable writes" like 
most writes, are posted. 

The 82385SX defines certain cycles as non-cache­
able without using its non-cacheable access input. 
These include 1/0 cycles, interrupt acknowledge cy­
cles, and halt/shutdown cycles. 1/0 reads and inter­
rupt acknowledge cycles execute as any other non­
cacheable read. 1/0 write cycles are not posted. The 
386 SX is not allowed to continue until a ready signal 
is returned from the system. Halt/Shutdown cycles 
are posted. During a halt/shutdown condition, the 
82385SX local bus duplicates the behavior of the 
386 SX, including the ability to recognize and re­
spond to a SHOLD request. (The 82385SX's bus' 
watching mechanism is functional in this condition.) 

1.3.4386TM SX LOCAL BUS CYCLES 

386 SKLocal Bus Cycles are accesses to resources 
on the 386 SX local bus other than to the 82385SX 
itself. The 82385SX simply ignores these accesses: 
they are neither forwarded to the system nor do they 
affect the cache. The designer sets aside memory 
andlor 1/0 space for local resources by decoding 
the 386 SX address bus and feeding the decode to 
the 82385SX's local bus access (LBA#) input. The 
designer can also decode the 386 SX cycle defini- ' 
tion signals to keep specific 386 SX cycles from be­
ing forwarded to the system. For example, a multi­
processor design may wish to capture and remedy a 
386 SX shutdown locally without having it detected 
by the rest of the system. Note that in such a design, 
the local shutdown cycle must be terminated by lo­
cal bus control logic. The 387 SX Math Coprocessor 
is considered a 386 SX local bus 'resource, but it 
need not be decoded as such by the user since the 
82385SX is able to internally recognize 387 SX ac­
cesses via the MIIO# and A23 pins. 

1.3.5 SUMMARY OF .82385SX RESPONSE TO 
ALL 386™ SX CYCLES 

Table 1-1 summarizes the 82385SX respoflse to all 
386 SX bus cycles, as conditioned by whether or not 
the cycle is decoded as local or non-cacheable. The 

I table describes the impact of each cycle on the 
cache and on the cache directory, and whether or 
not the cycle is forwarded to the 82385SX local bus. 
Whenever the 82385SX local bus is marked "IDLE", 

, it implies that this bus is available to other masters. 

1.3.6 BUS WATCHING 

As previously discussed, the 82385SX "qualifies" a 
386 SX bu,s cycle in the first bus state in which the 
address and cycle definition signals of the cycle be­
come available. The cycle is qualified as read or 
write, cacheable or non-cacheable, etc. Cacheable 
cycles are further classified as hit or miss accQrding 
to the results of the cache comparison, which ac­
cesses the 82385SX directorY and compares'the ap­
propriate directory location (tag) to the current 
386 SX address. If the cycle turns out to be non-, 
cacheable or a 386 SX local bus access, the hit! 
miss decision is ignored. The cycle qualification re­
quires one 386 SX state. Since the fastest 386 SX 
access is two states, the second state can be used 
for bus watching. 

When the 82385SX does not own the system bus, it 
monitors system bus cycles. If another master writes 
into main memory, the 82385SX latches the system 
address and executes a cache look-up to see if the 
altered main memory location resides in the cache. 
If so (a snoop hit), the cache entry is marked invalid 
in the cache directory. Since the directory is at most 
oniy being used every other state to quaiiiy 366 SX 
accesses, snoop look-ups are interleaved between 
386 SX local bus look-ups. The cache directory is 
time multiplexed between the 386 SX address and 
the latched system address. The result is that all 
snoops are caught and serviced without slowing 
down the 386 SX, even when running zero wait state 
hits on the 386 SX local bus. 

1.3.7 CACHE FLUSH 

The 82385SX offers a cache flush input. When acti­
vated, this signal causes the 82385SX to invalidate 
all data which had previously been cached. Specifi­
cally, all tag valid bits are cleared. (Refer to the 
82385SX directory structure in Section 2.1.1.) There-
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Table 1-1. 82385SX Response to 386TM SX Cycles 

386 SX Bus Cycle 
82385SX Response 82385SX Response 

when Decoded when Decoded 
Definition 

as Cacheable as Non-Cacheable 

MIIO# D/C# W/R# 
386SX 

Cache 
Cache 82385SX 

Cache 
Cache 82385SX 

Cycle Directory Local Bus Directory Local Bus 

0 0 0 INTACK N/A - - INTACK - - INT ACK 

0 0 1 UNDEFINED N/A UNDEFINED UNDEFINED 

0 1 0 1/0 READ N/A - - 110 READ - - 1/0 READ 

0 1 1 1/0 WRITE N/A - - 1/0 WRITE - - 1/0 WRITE 

1 0 0 MEMCODE HIT CACHE - IDLE - - MEM 
READ READ CODE 

MISS CACHE DATA MEMCODE READ 

WRITE VALIDATION READ 

.j>. 1 0 1 HALTI N/A - - HALTI - - HALTI 
cJ, SHUTDOWN SHUTDOWN SHUTDOWN 
~ 

1 1 0 MEMDATA HIT CACHE - IDLE - - MEM 
READ READ DATA 

MISS CACHE DATA MEMDATA READ 
- WRITE VALIDATION READ 

1 1 1 MEM DATA HIT CACHE - MEMDATA - - MEM 
WRITE WRITE WRITE DATA 

MISS MEM DATA WRITE - -
WRITE 

NOTES: 
• A dash (-) indicates that the cache and cache directory are unaffected: This table does not reflect how an access affects the LRU bit. 
• An "IDLE" 82385SX Local Bus implies that this bus is available to other masters. 
• The 82385SX's response to 387TM SX accesses is the same as when decoded as a 386 SX Local Bus Access. 
• The only other operations that affect the cache directory are: 
1. RESET or Cache Flush-all tag valid bits cleared. 
2. Snoop Hit-corresponding line valid bit cleared. 

82385SX Response when 
Decoded as a 386SX 

Local Bus Access 

Cache 
Cache 82385SX 

Directory Local Bus 

- - IDLE 

IDLE 

- - IDLE 

- - IDLE 

- - IDLE 

- - IDLE 

- - IDLE 

- - IDLE 
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fore, the cache is empty and subsequent cycles are 
misses until the 386 SX begins repeating the new 
accesses (hits). The primary use of the FLUSH input 

, is for diagnostics and multi-processor support. 

NOTE: 
The use of this pin as a coherency mechanism may 
impact software transparency. 

2.0 82385SX CACHE ORGANIZATION· 

The 82385SX supports two cache organizations: a 
simple direct mapped organization and a slightly 
more complex, higher performance two way set as­
sociative organization. The choice is made by strap­
ping an 82385SX input (2W/O#) either high or low. 
This chapter describes the structure and operation 
of both organizations. 

2.1 Direct Mapped Cache 

2_1.1 DIRECT MAPPED CACHE STRUCTURE 
AND TERMINOLOGY 

Figure 2-1 depicts the relationship between the 
82385SX's internal cache directory, the external 
cache memory, and the 386 SX's physical address 
space. The 386 SX address space can conceptually 

TAG VALID 
BIT , I LINE 

10-BIT VALIa 
TAG + BITS 

SETO 01 !III!!I!!! 

SET 1023 q~ 1111111111 

INTERNAL 
CACHE DIRECTORY 

EXTERNAL 
DATA CACHE 

be thought of as cache "pages" each being 8K 
words (16 Kbytes) deep. The page size matches the 
cache size. The cache can be further divided into 
1024 (0 thru 1023) sets of eight words (8 x 16 bits). 
Each 16-bit word is called a "line". The unit of trans­
fer between the main memory and cache is one line. 

Each block in the external cache has an associated 
19-bit entry in the 82385SX's internal cache directo­
ry. This entry has three components: a 10-bit "tag", 
a "tag valid" bit, and eight "line valid" bits. The tag 
acts as a iliain nleiTiOfy page ilunlbef (10 tag bits 
support 210 pages). For example, if line 9 of page 2 
currently resides in the cache, then a binary 2 is 
stored in, the Set 1 tag field. (For any 82385SX direct 
mapped cache page in main memory, Set 0 consists 
of lines 0-7, Set 1 consists of lines 8-15, etc. Line 9 
is shaded in Figure 2-1.) An important characteristic 
of a direct mapped cache is that line 9 of any page 
can only reside in line 9 of the cache. All identical 
page offsets map to a single cache location. 

The data in a cache set is considered valid or invalid 
depending on the status of its tag valid bit. If clear, 
the entire set is considered invalid. 'If true, an individ­

'ual line within the set is considered valid or invalid 
depending on the status of its line valid bit. 

The 82385SX sees the 386 SX address bus (A 1-
)\.23) as partitioned into three fields: a 10-bit "tag" 

MAIN MENORY 

290222-6 

Figure 2·1. Direct Mapped Cache Organlztlon 
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Figure 2-2. 386TM SX Address Bus Bit Fields-Direct Mapped Organization 

field (A14-A23), a 10-bit "set address" field (A4-
A 13), and a 3-bit "line select" field (A 1-A3). (See 
Figure 2-2.) The lower 13 address bits (A 1-A 13) 
also serve as the "cache address" which directly 
selects one of 8K words in the external cache. 

2.1.2 DIRECT MAPPED CACHE OPERATION 

The following is a description of the interaction be­
tween ,he 386 SX, cache, and cache directory. 

2.1.2.1 Read Hits 

When the 386 SX initiates a memory read cycle, the 
82385SX uses the 10-bit set address to select one 
of 1024 directory entries, and the 3-bit line select 
field to select one of eight line valid bits within the 
entry. The 13-bit cache address selects the corre­
sponding word in the cache. The 82385SX com­
pares the 10-bit tag field (A14-A23 of the 386 SX 
access) with the tag stored in the selected directory 
entry. If the tag and upper address bits match, and if 
both the tag and appropriate line valid bits are set, 
the result is a hit, and the 82385SX directs the 
cache to drive the selected word onto the 386 SX 
data bus. A read hit does not alter the contents of 
the cache or directory. 

2.1.2.2 Read Misses 

A read miss can occur in two ways. The first is 
known as a "line" miss, and occurs when the tag 
and upper address bits match and the tag valid bit is 
set, but the line valid bit is clear. The second is 
called a "tag" miss, and occurs when either the tag 
and upper address bits do not match, or the tag valid 
bit is clear. (The line valid bit is a "don't care" in a 
tag miss.) In both cases, the 82385SX forwards the 
386 SX reference to the system, and as the return­
ing data is fed to the 386 SX, it is written into the 
cache and validated in the cache directory. 

In-a line miss, the incoming data is validated simply 
by setting the previously clear line valid bit. In a tag 
miss, the upper address bits overwrite the previously 

stored tag, the tag valid bit is set, the appropriate 
line valid bit is set, and the other seven line valid bits 
are cleared. Subsequent tag hits with line misses will 
only set the appropriate line valid bit. (Any data as­
sociated with the previous tag is no longer consid­
ered resident in the cache.) 

2.1.2.3 Other Operations That Affect the Cache 
and Cache Directory 

The other operations that affect the cache and/or 
directory are write hits, snoop hits, cache flushes, 
and 82385SX resets. In a write hit, the cache is up­
dated along with main memory, but the directory is 
unaffected. In a snoop hit, the cache is unaffected, 
but the affected line is invalidated by clearing its line 
valid bit in the directory. Both an 82385SX reset and 
cache flush clear all tag valid bits. 

When a 386 SX CPU/82385SX system "wakes up" 
upon reset, all tag valid bits are clear. At this point, a 
read miss is the only mechanism by which main 
memory data is copied into the cache and validated 
in the cache directory. Assume an early 386 SX 
code access seeks (for the first time) line 9 of page 
2. Since the tag valid bit is clear, the access is a tag 
miss, and the data is fetched from main memory. 
Upon return, the data is fed to the 386 SX and simul­
taneously written into line 9 of the cache. The set 
directory entry is updated to show this line as valid. 
Specifically, the tag and appropriate line valid bits 
are set, the remaining seven line valid bits cleared, 
and binary 2 written into the tag. Since code is se­
quential in nature, the 386 SX will likely next want 
line 10 of page 2, then line 11, and so on. If the 
386 SX sequentially fetches the next six lines, these 
fetches will be line misses, and as each is fetched 
from main memory and written into the cache, its 
corresponding line valid bit is set. This is the basic 
flow of events that fills the cache with valid data. 
Only after a piece of data has been copied into the 
cache and validated can it be accessed in a zero 
wait state read hit. Also, a cache entry must have 
been validated before it can be subsequently altered 
by a write hit, or invalidated by a snoop hit. 
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An extreme example of "trashing" is if line 9 of page 
two is an instruction to jump to line 9 of page one, 
which is an instruction to jump back to line 9 of page 
two. Trashing results from the direct mapped cache 
characteristic that all identical page offsets map to a 
single cache location. In this example, the page one 
access overwrites the cached page two data, and 
the page two access overwrites the cached page 
one data. As long as the code jumps back and forth 
the hit rate is zero. This is of course an extreme 
case. The effect of trashing is that a direct mapped 
cache exhibits a slightly reduced overall hit rate as 
compared to a set associative cache of the same 
size. 

2.2 Two Way Set Associative Cache 

2.2.1 TWO WAY SET ASSOCIATIVE CACHE 
STRUCTURE AND TERMINOLOGY 

Figure 2-3 illustrates the relationship between the 
directory, cache, and 386 SX address space. Where· 
as the direct mapped cache is organized as one 
bank of 8K words, the two way set associative 
cache is organized as two banks (A and B) of 4K 
words each. The page size is halved, and the num­
ber of pages doubled. (Note the extra tag bit.) The 
cache now has 512 sets in each bank. (Two banks 
times 512 sets gives a total of 1024. The structure 
can be thought of as two half-sized direct mapped 
caches in p~rallel.) The performance advantage 
over a direct mapped cache is that all identical page 
offsets map to two cache locations instead of one, 
reducing the potential for thrashing. The 82385SX',s 
partitioning of the 386 SX address bus is depicted in 
Figure 2-4. 

2.2.2 LRU REPLACEMENT ALGORITHM 

The two way set associative directory has an addi­
tional feature: the "least recently used" or LRU bit. 
In the event of a read miss, either bank A or bank B 
will be updated with new data. The LRU bit flags the 
candidate for replacement. Statistically, of two 
blocks of data, the block most recently used is the 
block most likely to be needed again in the near 
future. By flagging the least recently used block, the 
82385SX 6iiSUi6S that the cache block iaplaced is 
the least likely to have data needed by the CPU. 

2.2.3 TWO WAY SET ASSOCIATIVE CACHE 
OPERATION 

2.2.3.1 Read Hits 

When the 386 SX initiates a memory read cycle, the 
82385SX uses the 9-bit set address to select one of 

512 sets. The two tags of this set are simultaneously 
compared with A 13-A23, both tag valid bits 
checked, and both appropriate line valid bits 
checked. If either comparison produces a hit, the 
corresponding cache bank is directed to drive the 
selected word onto the 386 SX data bus. (Note that 
both banks will never concurrently cache the same 
main memory location.) If the requested data resides 
in bank A, the LRU bit is pointed toward B. If B pro­
duces the hit, the LRU bit is pointed toward A. 

.-011 ........ ft ___ -II •• : ___ _ 

~.~.".~ n.:Clu IVII;);)!C';) 

As in direct mapped operation, a read miss can be 
either a line or tag miss. Let's start with a tag miss 
example. Assume the 386 SX seeks line 9 of page 2, 
and that neither the A or B directory produces a tag 
match. Assume also, as indicated in Figure 2-3, that 
the LRU bit points to A. As the data returns from 
main memory, it is loaded into offset 9 of bank A. 
Concurrently, this data is validated by updating the 
set 1 directory entry for bank A. Specifically, the up­
per address bits overwite the previous tag, the tag 
valid bit is set, the appropriate line valid bit is set, 
and the other seven line valid bits cleared. Since this 
data is the most recently used, the LRU bit is turned 
toward B. No change to bank B occurs. 

If the next 386 SX request is line 10 of page two, the 
result will be a line miss. As the data returns from 
main memory, it will be written into offset 10 of bank 
A (tag hit/line miss in bank A), and the appropriate 
line valid bit will be set. A line miss in one bank will 
cause the LRU bit to point to the other bank. In this 
example, however, the LRU bit has already been 
turned toward B. 

2.2.3.3 Other Operations That Affect the Cache 
and Cache Directory 

Other operations that affect the cache and cache 
directory are write hits, snoop hits, cache flushes, 
and 82385SX resets. A write hit updates the cache 
along with main memory. If directory A detects the 
hit, bank A is updated. If directory B detects the hit, 
bank B is updated. If one bank is updated, the LRU 
bit is pointed towards the other. 

If a snoop hit, invalidates an entry, fOi example, in 
cache bank A, the corresponding LRU bit is pointed 
toward A. This insures that invalid data is the prime 
candidate for replacement in a read miss. Finally, 
resets and flushes behave just as they do in a direct 
mapped cache, clearing all tag valid bits. 

3.0 82385SX PIN DESCRIPTION 

The 82385SX creates the 82385SX local bus, which 
is a functional 386 SX interface. To facilitate under-
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Figure 2-4. 386T;;,; SA: Address Bus Bit Fieids-Two-Way Set Associative Organization 

standing, 82385SX local bus signals go by the same 
name as their 386 SX equivalents, except that they 
are preceded by the letter "B". The 82385SX local 
bus equivalent to ADS# is BADS#, the equivalent 
to NA # is BNA #, etc. This convention applies to 
bus states as well. For example, BTl P is the 
82385SX local bus state equivalent to the 386 SX 
T1P state. 

3.1 386TM SX CPU/82385SX Interface 
Signals 

These signals form the direct interface between the 
386 SX and the 82385SX. 

3.1.1 386TM SX CPU/82385SX Clock (CLK2) 

CLK2 provides the fundamental timing for a 386 SX 
CPU/82385SX system, and is driven by the ·same 
source that drives the 386 SX CLK2 input. The 

82385SX, like the 386 SX, divides CLK2 by two to 
generate an internal "phase indication" clock. (See 
Figure 3-1.) The CLK2 period whose rising edge 
drives the internal clock low is called PHil, and the 
CLK2 period that drives the internal clock high is 
called PHI2. A PHI1-PHI2 combination (in that or- . 
der) is known as a "T" state, and is the basis for 
386 SX bus cycles. 

3.1.2 386TM SX CPU/82385SX RESET (RESET) 

This input resets the 82385SX, bringing it to an initial 
known state, and is driven by the same source that 
drives the 386 SX RESET input. A reset effectively 
flushes the cache by clearing all cache directory tag 
valid bits. The falling edge of RESET is synchronized 
to CLK2, and used by the 82385SX to properly es­
tablish the phase of its internal clock. (See Figure 
3-2.) Specifically, the second internal phase follow­
ing the falling edge of RESET is PHI2. 

I <1;1 I <1;2 I <1;1 I. <1;2 I 

, CLK2 ~y'--'~r-l_f)L.I 

~~=~~-4~ - --t J-
~ T-STATE ' T-STATE 

290222-10 

Figure 3-1. CLK2 and Internal Clock. 
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Figure 3-2. Reset/Internal Phase Relationship 

3.1.3 386TM SX CPU/82385SX ADDRESS BUS 
(A1-A23), BYTE ENABLES (BHE#, BLE#), 
AND CYCLE DEFINITION SIGNALS 
(M/IO#, D/C#, W/R#, LOCK#) 

The 82385SXdirectly connects to these 386 SX out­
puts. The 386 SX address bus is used in the cache 
directory comparison to see if data referenced by 
386 SX resides in the cache, and the byte enables 
inform the 82385SX as to which portions of the data 
bus are involved in a 386 SX cycle. The cycle defini­
tion signals are decoded by the 82385SX to deter­
mine the type of cycle the 386 SX is executing. 

3.1.4 386TM SX CPU/82385SX ADDRESS 
STATUS (ADS#) AND READY INPUT 
(READYI#) 

ADS#, a 386 SX output, tells the 82385SX that new 
address and cycle definition information is available. 
READYI#, an input to both the 386 SX (via the 
386 SX READY # input pin) and 82385SX, indicates 
the completion of a 386 SX bus cycle. ADS# and 
READYI # are used to track the 386 SX bus state. 

3.1.5 386™ SX NEXT ADDRESS REQUEST 
(NA#) 

This 82385SX output controls 386 SX pipelining. It 
can be tied directly to the 386 SX NA # input, or it 
can be logically "AND"ed with .other 386 SX local 
bus next address requests. . 

3.1.6 READY OUTPUT (READYO#) AND BUS 
READY ENABLE (BRDYEN #) 

The 82385SX directly terminates all but two types of 
386 SX bus cycles with its READYO# output. 
386 SX local bus cycles must be terminated by the 
local device being accessed. This includes devices 
decoded using the 82385SX LBA# signal and 387 
accesses. The other cycles not directly terminated 
by the 82385SX are 82385SX local bus reads, spe-

cifically cache read misses and non-cacheable 
reads. (Recall that the 82385SX forwards and runs 
such cycles on the 82385SX bus.) In these cycles 
the signal that terminates the 82385SX local bus ac­
cess is BREADY # which is gated through to the 
386 SX local bus such that the 386 SX and 82385SX 
local bus cycles are concurrently terminated. 
BRDYEN # is used to gate the BREADY # signal to 
the 386 SX. 

3.2 Cache Control Signals 

These 82385SX outputs control the external 16 KB 
cache data memory. 

3.2.1 CACHE ADDRESS LATCH ENABLE 
(CA~EN) 

This signal controls the latch (typically an F or AS 
series 74373) that resides between the low order 
386 SX address bits .and the cache SRAM address 
inputs. (The outputs of this latch are the "cache ad­
dress" described in the previous chapter.) When 
GALEN is high the latch is transparent. The falling 
edge of GALEN latches the current inputs which re­
main applied to the cache data memory until GALEN 
returns to an active high state. 

3.2.2 CACHE TRANSMIT/RECEIVE (CT/R#) 

This Signal defines the direction of an optional data 
transceiver (typically an F or AS series 74245) be­
tween the cache and 386 SX data bus. When high, 
the transceiver is pointed towards the 386 SX local 
data bus (the SRAMs are output enabled). When 
low, the transceiver points towards the cache data 
memory. A transceiver is required if the cache is de­
signed with SRAMs that lack an output enable con­
trol. A transceiver may also be desirable in a system 
that has a heavily loaded 386 SX' local data bus. 
These devices are not necessary when using 
SRAMs which incorporate an output enable. 
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3.2.3 CACHE CHIP SELECTS (CSO#, CS1#) 

These active low signals tie to the cache SRAM chip 
selects, and individually enable both I?ytes of the 16-
bit wide cache. CSO# enables 00-07 and CS1 # 
enables 08-015. Ouring read hits, both bytes are 
enabled regardless of whether or not the 386 SX 
byte enables are active. (The 386 SX ignores what it 
did not request.) Also, both cache bytes are en~bled 
in a read miss so as to update the cache with a 
complete line (word). In a write hit, only the cache 
b~1es that correspond to active byte ena~les are se= 
lected. This prevents cache data from being corrupt­
ed in a partial word write. 

3.2.4 CACHE OUTPUT ENABLES 
(COEA#, COEB#') 
AND WRITE ENABLES 
(CWEA#, CWEB#) 

COEA # and COEB # . are active ,low signals which 
tie to the cache SRAM or Transceiver output en~ 
abies and respectively enable cache bank A or B. 
The state of OEFOE# (define cache output en.able), 
an 82385SX configuration input, determines the 
functional definition of COEA# and COEB#. 

If OEFOE# = VIL, in a two-way set associative 
cache either COEA# or COEB# is active during 
read hit cycles only, depending on which bank is 
selected. In a direct mapped cache, both are activat­
ed during read hits, so the designer is free to use 
either one. This COEx# definition best suits cache 
SRAMs with output enables. 

If OEFOE# = VIH, COEx# is active during a read 
hit, read miss (cache update) and write hit cycles 
oniy. Tnis COt:x# definition best suits cacne 
SRAMs without output enables. In such systems, 
transceivers are needed and their output enables 
must be active for writing, as well as reading, the 
cache SRAMs. 

CWEA # and CWEB # are active low signals which 
tie to the cache SRAM write enables, and respec­
tively enable cache bank A or B to receive data from 
the 386 SX data bus (386 SX write hit or read miss 
update). In a two-way set associative cache, one or 
the other is enabled in a read miss or write hit. In a 
direct mapped cache, both are activated, so the de-
signer is free to use either one. . 

The various cache co~figurations supported by the 
82385SX are described in Section 4.2.1. 

3.3 386™ SX Local Bus Decode Inputs 

These 82385SX inputs are generated by decoding 
the 386 SX address and cycle definition lines. These 

, active low inputs are sampled at the end of the first 
state in which the address of a new 386 SX cycle 
becomes available. (T1 or first T2P.) 

3.3.1 386™ SX LOCAL BUS ACCESS (LBA#) 

This input identifies a 386 SX access as directed to 
a resource (other than the cache) on the 386 SX 
local bus. (The 387 SX Math Coprocessor is consid­
ered a 386 SX local bus resource, but LBA # need 
not be generated as the 82385SX internally decodes 
387 SX accesses.) The 82385SX simply ignores 
these cycles. They are neither forwarded to the sys­
tem nor do they affect the cache or cache directory. 
Note that LBA # has priority over all other types of 
cycles. If LBA # is asserted, the cycle is interpreted 
as a 386 SX local bus access, regardless of the cy­
cle type or status of NCA #. This allows any 386 SX 
cycle (memory, 110, interrupt acknowledge, etc.) to 
be kept on the 386 SX local bus if desired. 

3.3.2 NON-CACHEABLE ACCESS (NCA#) 

This active low input identifies a 386 SX cycle, as 
non-cacheable. The 82385SX forwards non-cache­
able cycles to the 82385SX local bus and runs them. 
The cache and cache directory are unaffected. 

NCA # allows a deSigner to set aside a portion of 
main memory as non-cacheable. Potential applica­
tions include memory-mapped 1/0 and systems 
where multiple masters access dual ported memory 
via different ,busses. Another possibility makes use 
of the 386 SX O/C# output. The 82385SX by de­
fault implements a unified code and data cache, but 
driving NCA# directly by O/C# creates a data only 
cachE!. !f O/C# !S !!'!vE!!iE!d f!rst, thE! rE!su!t !S a codE! 
only cache. ' 

3.4 82385SX Local Bus Interface 
Signals 

The 82385SX presents an "386 SX-like" front end to 
the system, and the signals discussed in this section 
are 82385SX local bus equivalents to actual 386 SX 
signals. These signals are named with respect to 
their 386 SX counterparts, but with the letter "B" 
appended to the front. 

Note that the 82385SX itself does not have equiva­
lent output signals to the 386 SX data bus (00-015) 
address bus (A 1-A23), and cycle definition signals 
(M/IO#, O/C#, W/R#). The 82385SX data bus 
(BOO-B015) is actually the system side of a latching 
transceiver, and the 82385SX address bus and cycle 
definition signals (BA1-BA23, BM/IO#, BO/C#, 
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BW/R#) are the outputs of an edge-triggered latch. 
. The signals that control this data transceiver and ad­

dress latch are discussed in Section 3.5. 

3.4.1 82385SX BUS BYTE ENABLES 
(BBHE#, BBLE#) 

BBHE# and BBLE# are the 82385SX local bus 
equivalents to the 386 SX byte enables. In a cache 
read miss, the 82385SX drives both signals low, re­
gardless of whether or not the 386 SX byte enables 
are active. This insures that a complete line (word) is 
fetched from main memory for the cache update. In 
all other 82385SX local bus cycles, the 82385SX du­
plicates the logic levels of the 386 SX byte enables. 
The 82385SX tri-states these outputs when it is not 
the current bus master. 

3.4.2 82385SX BUS LOCK (BLOCK #) 

BLOCK# is the 82385SX local bus equivalent to the 
386 SX LOCK # output, and distinguishes between 
locked and unlocked cycles. When the 386 SX runs 
a locked sequence of cycles (and LBA # is negated), 
the 82385SX forwards and runs the sequence on 
the 82385SX local bus, regardless of whether any 
locations referenced in the sequence reside in the 
cache. A read hit will be run as if it is a read miss, but 
a write hit will update the cache as well as being 
completed to system memory. In keeping with 
386 SX behavior, the 82385SX does not allow an­
other master to interrupt the sequence. BLOCK# is 
tri-stated when the 82385SX is not the current bus 
master. 

3.4.3 82385SX BUS ADDRESS STATUS 
(BADS#) 

BADS# is the 82385SSX local bus equivalent of 
ADS #, and indicates that a valid address (BA 1-
BA23, BBHE#, BBLE#) and cycle definition (BMI 
10#, BW/R#, BD/C#) are available. It is asserted 
in BT1 and BT2P states, and is tri-stated when the 
82385SX does not own the bus. 

3.4.4 82385SX BUS READY INPUT (BREADY#) 

82385SX local bus cycles are terminated by 
BREADY #, just as 386 SX cycles are terminated by 
the 386 SX READY #. input. In 82385SX local bus 
read cycles, BREADY # is gat~d by BRDYEN # onto 
the 386 SX local bus, such that it terminates both 
the 386 SX and 82385SX local bus cycles. 

3.4.5 82385SX BUS NEXT ADDRESS REQUEST 
(BNA#) 

BNA # is the 82385SX local bus equivalent to the 
386 SX NA # input, and indicates that the system is 

prepared to accept a pipe lined address and cycle 
definition. If BNA # is asserted and the new cycle 
information is available, the 82385SX begins a pipe­
lined cycle on the 82385SX local bus. 

3.5 82385SX Bus Data Transceiver and 
Address Latch Control Signals 

The 82385SX data bus is the system side of a latch­
ing transceiver (typically for F or AS series 74646), 
and the B2385SX address bus and cycle definition 
signals are the outputs of an edge-triggered latch (F 
or AS series 74374). The following is a discussion of 
the 82385SX outputs that control these devices. An 
important characteristic of these signals and the de­
vices they control is that they ensure that BDO­
BD15, BA1-BA23, BM/IO#, BD/C# and BW/R# 
reproduce the functionality and timing behavior of 
their 386 SX equivalents. 

3.5.1 LOCAL DATA STROBE (LDSTB), DATA 
OUTPUT ENABLE (DOE #), AND BUS 
TRANSMIT IRECEIVE (BT IR #) 

These signals control the latching data transceiver. 
BT IR # defines the transceiver direction. When 
high, the transceiver drives the 82385SX data bus in 
write cycles. When low, the transceiver drives the 
386 SX data bus in 82385SX local bus read cycles. 
DOE # enables the transceiver outputs. 

The rising edge of LDSTB latches the 386 SX data 
bus in all write cycles. The interaction of this signal 
and the latching transceiver is used to perform the 
82385SX's posted write capability. 

3.5.2 BUS ADDRESS CLOCK PULSE (BACP) 
AND BUS ADDRESS OUTPUT ENABLE 
(BAOE#) 

These signals control the latch that drives BA 1-
BA23, BM/IO#, BW/R#, and BD/C#. In any 
386 SX cycle that is forwarded to the 82385SX local 
bus, the rising edge of BACP latches the 386 SX 
address and cycle definition signals. BAOE # en­
ables the latch outputs when the 82385SX is the 
current bus master and disables them otherwise. 

3.6 Status and Control Signals 

3.6.1 CACHE MISS INDICATION (MISS#) 

This output accompanies cacheable read and write 
miss cycles. This signal transitions to its active low 
state when the 82385SX determines that a cache­
able 386 SX access is a miss. Its timing behavior 
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follows that of the 82385SX local bus cycle defini­
tion signals (BM/IO#, BD/C#, BW/R#) so that it 
becomes available with BADS# in BT1 or the first 
BT2P. MISS# is floated when the 82385SX does 
not own the bus, such that multiple 82385SX's can 
share the same node in multi-cache systems. (As 
discussed in Chapter 7, this signal also serves Ii re­
served function in testing the 82385SX.) 

3.6.2 WRITE BUFFER STATUS (WSS) 

The ;aiching daia iransceiver is aiso known as the 
"posted write buffer". WBS indicates that this buffer 
contains data that has not yet been written to the 
system even though the 386 SX may have begun its 
next cycle. It is activated when 3~6 SX data is 
latched, and deactivated when the corresponding 
82385SX local bus write cycle is completed 

, (BREADY#). (As discussed in Chapter 7, this signal 
also serves a reserved function in testing the 
82385SX.) 

WBS can serve several functions. In multi-processor 
applications, it can act as a coherency mechanism 
by informing a bus arbiter that it should let a write 
cycle run on the system bus so that main memory 
has the latest data. If any other 82385SX cache sub­
systems are on the bus, they will monitor the cycle 
via their bus watching mechanisms. Any 82385SX 
that detects a snoop hit will invalidate the corre­
sponding entry in its local cache. 

3.6.~ CACHE FLUSH (FLUSH) 

When activated, this signal causes the 82385SX to 
clear all of its directory tag valid bits, effectively 
flushing the cache. (As discussed in Chapter 7, this 
signal also serves a reserved function in testing the 
82385SX,) The primary use of the FLUSH input is for 
diagnostics and multi-processor support. The use of 
this pin as a coherency mechanism may impact soft­
ware transparency. 

The FLUSH input must be held active for at least 4 
CLK (8 CLK2) cycles to complete the flush se­
quence. If ,FLUSH is still active after 4 CLK cycles, 
any accesses to the cache will be misses and the 
cache will not be updl!lted (since FLUSH is active). 

3_7 Bus Arbitration Signals 
(BHOLD and BHLDA) 

In master mode, BHOLD is an input that indicates a 
request by a slave device for bus ownership. The 

82385SX acknowledges this request via its BHLDA 
output. (These signals function identically to the 
386 SX HOLD and HLDA signals.) 

The roles of BHOLD and BHLDA are reversed for an 
82385SX in slave mode. BHOLD is now an output 
indicating a request for bus ownership, and BHLDA 
an input indicating that the request has been grant­
ed. 

3.8 Coherency (Bus Watching) 
Support Signals 
(SA 1-SA23, SSTB #, SEN) 

These signals form the 82385SX's bus watchil')g in­
terface. The Snoop Address Bus. (SA 1 :....SA23) con­
nects to the system address lines if masters reside 
at both the system and 82385SX local bus levels, or 
the 82385SX local bus address lines if masters re­
side only at the 82385SX local bus level. Snoop 
Strobe (SSTB#) indicates that a valid address is on 
the snoop address inputs. Snoop Enable (SEN) indi­
cates that the cycle is a write. In a system with mas­
ters only at the 82385SX local bus level, SA 1-SA23, 
SSTB#, and SEN can be driven respectively by 
BA1-BA23, BADS#, and BW/R#without any sup-
port circuitry. . 

3.9 Configuration Inputs . 
(2W/D#, M/S#, DEFOE#) 

These signals select the configurations supported 
by the 82385SX. They are hardware strap options 
and must not be changed dynamically. 2W/D# (2-
Way/Direct Mapped Select) selects a two-way set 
~Qc::.n,..iatiuc t"al"h.o. ,.,hon +iorl hi"h I"\r 00 .... ir"',... 

;;PP~d·~~ch;~hen·ti~d 'lo~~Mis# "(M-;;st;r/S'i;~; 
Seleci) chooses beiween master mode (MiS# high; 
and slave mode (M/S# low). DEFOE# defines the 
functionality of the 82385SX cache output enables 
(COEA# and COEB#). DEFOE# allows the 
82385SX to interface to SRAMs with output enables 
(DEFOE # low) or to SRAMs requiring transceivers 
(DEFOE# high). 

3.10 Reserved Pins (RES) 

Some pins on the 82385SX are reserved for internal 
testing and future cache features. To assure com­
patibility and functionality, these reserved pins must 
be configured as shown in Table 3.10.1. 
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Table 3 10.1. Reserved Pin Connections 

PGA PQFP 
Logic Level Pin Location Pin Location 

A12 1 High 
A13 131 High 
B10 7 High 
B11 3 High 
B12 132 High 
C10 4 High 
C11 2 High 
G13 117 High 
H12 110 High 
J3 60 High 
J14 109 High 
K1 5B High 
K2 59 High 
K3 62 High 
L1 61 High 
L2 63 High 
L3 64 High 
L12 100 No Connect 
L14 102 High 
M13 101 No Connect 
N6 75 No Connect 
P5 76 No Connect 

4.0 386 SX LOCAL BUS INTERFACE 

The following is a detailed description of how the 
B23B5SX interfaces to the 3B6 SX and to 3B6 SX 
local bus resources. Items specifically addressed 
are the interfaces to the 3B6 SX, the cache SRAMs, 
and the 3B7 SX .Math Coprocessor. 

The many timing diagrams in this and the next chap­
ter provide insight into the dual pipelined bus struc­
ture of a 3B6 SX CPU/B23B5SX system. It's impor­
tant to realize, however, that one need not know 
every possible cycle combination to use the 
82385SX. The interface is simple, and the dual bus 
operation invisible to the 386 SX and system. To 
facilitate discussion of the timing diagrams, . several 
conventions have been adopted. Refer to Figure 
4·2A, and note that 3B6 SX bus cycles, 3a6 SX bus 
states, and B23B5SX bus states are identified along 
the top. All states can be identified by the "frame 
numbers" along the bottom. The cycles in Figure 
4-2A include a cache read hit (CRDH), a cache read 
miss (CRDM), and a write (WT). WT represents any 
write, cacheable or not. When necessary to distin­
guish cacheable writes, a write hit goes by CWTH 
and a write miss by CWTM. Non-cacheable system 
reads go by SBRD. Also, it is assumed that system 
bus pipelining occurs even though the BNA # signal 
is not shown. When the system pipeline begins is a 
function of the system bus controller. 
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3B6 SX bus cycles can be tracked by ADS# and 
READYI#, and 823B5SX cycles by BADS# and 
BREADY #. These four signals are thus a natural 
choice to help track parallel bus activity. Note in the 
timing diagrams that 3B6 SX cycles are numbered 
using ADS# and READYI#, and B23B5SX cycles 
using BADS# and BREADY#. For example, when 
the address of the first 3B6 SX cycle,becomes avail­
able, the corresponding assertion of ADS# is 
marked "1", and the READYI# pulse that termi­
nates the cycle is marked "1" as well. Whenever a 
3B6 SX cycle is forwarded to the system, its number 
is forwarded as well so that the corresponding 
B23B5SX bus cycle can be tracked by BADS# and 
BREADY#. 

The "N" value in the timing diagrams is the assumed 
number of main memory wait states inserted in a 
non-pipelined B2385SX bus cycle. For example, a 
non-pipelined access to N = 2 memory requires a to­
tal of four bus states, while a pipelined access re­
quires three. (The pipeline advantage effectively hid­
es one main memory wait state.) 

4.1 Processor Interface 

This section presents the 386 SX CPU/B23B5SX 
hardware interface and discusses the interaction 
and timing of this interface. Also addressed is how to 
decode the 3B6 SX address bus to generate the 
B23B5SX inputs LBA # and NCA #. (Recall that 
LBA# allows memory and/or I/O space to be set 
aside for 3B6 SX local bus resources; and NCA# 
allows system memory to be set aside as non­
cacheable.) 

4.1.1 HARDWARE INTERFACE 

Figure 4-1 is a diagram of a 386 SX ,CPU/823B5SX 
system, which can be thought of as three distinct 
interfaces. The first is the 3B6 SX CPl)/82385SX in­
terface (including the Ready Logic). The second is 
the cache interface, as depicted by the cache con­
trol bus in the upper left corner of Figure 4-1. The 
third is the B23B5SX bus interface, which includes 
both direct connects and Signals that control the 
74374 address/cycle definition latch and 74646 
latching data transceiver. (The B23B5SX bus inter­
face is the subject of the next chapter.) 

As seen in Figure 4-1, the 386 SX CPU/B23B5SX 
interface is a straightforward connection. The only 
necessary support logic is that required to sum all 
ready sources. 
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4.1.2 READY GENERATION 

Note in Figure 4-1 that the ready logic consists of 
two gates. The upper three-input AND gate (shown 
as a negative logic OR) sums all 386 SX local bus 
ready sources. One such source is the 82385SX 
READYO # output, which terminates read hits and 
posted writes. The output of this gate drives the 
386 SX READY # input and is monitored by the 
82385SX (via READYI#) to track the 386 SX bus 
state. 

When the 82385SX forwards a 386 SX read cycle to 
the 82385SX bus (cache read miss or non-cache­
able read), it does not directly terminate the cycle via 
READYO#. Instead, the 386 SX and 82385SX bus 
cycles are concurrently terminated by a system 
ready source. This is the purpose of the additional 
two-input OR gate (negative logic AND) in Figure 
4-1. When the 82385SX forwards a read to the 
82385SX bus, it asserts BRDYEN # which enables 
the system ready signal (BREADY#) to directly ter­
minate the 386 SX bus cycle. 

Figure 4-2A and 4-2B illustrate the behavior of the 
signals involved in ready generation. Note in cycle 1 
of Figure 4-2A that the 82385SX READYO# directly 
terminates the hit cycle. In cycle 2, READYO# is not 
activated. Instead the 82385SX BRDYEN# is acti­
vated in BT2, BT2P, or BT21 states such that 
BREADY # can concurrently terminate the 386 SX 
and 82385SX bus cycles (frame 6). Cycle 3 is a post­
ed write. The write data becomes available in T1 P 
(frame 7), and the address, data, and cycle definition 
of the write are latched in T2 (frame 8). The 386 SX 
cycle is terminated by READYO# in frame 8 with no 
wait states. The 82385SX, however, sees the write 
cycle through to completion on the 82385SX bus 
where it is terminated in frame 10 by BREADY#. In 
this case, the BREADY # signal is not gated through 
to the 386 SX. Refer to Figures 4-2A and 4-2B for 
clarification. 

4.1.3 NA# AND 386 SX LOCAL BUS 
PIPELINING ' 

Cycle 1 of Figure 4-2A is a typical cache read hit. 
The 386 SX address becomes available in Tt, and 
the '82385SX uses this address to determine if the 
referenced data resides in the cache. The cache 
look-up is completed and the cycle qualified as a hit 
or miss in T1. If the data resides in the cache, the 
cache is directed to drive the 386 SX data bus, and 
the 82385SX drives its READYO# output so the cy­
cle can be terminated at the end of the first T2 with 
no wait states. 

Although cycle 2 starts out like cycle 1, at the end of 
T1 (frame 3), it is qualified as a miss and forwarded 
to the 82385SX bus. The 82385SX bus cycle begins 

one state after the 386 SX bus cycle, implying a one 
. wait state overhead associated with cycle 2 due to 
the look-up. When the 82385SX encounters the 
miss, it immediately asserts NA#, which puts the 
386 SX into pipelined mode. Once in pipelined 
mode, the 82385SX is able to qualify a 386 SX cycle 
using the 386 SX pipelined address and control sig­
nals. The result is that the cache look-up state is 
hidden in all but the first of a contiguous sequence 
of read misses. This is shown in the first two cycles, 
both read misses, of Figure 4~2B. The CPU sees the 
look-up state in the first cycle, but not in the second. 
In fact, the second miss requires a total of only two 
states, as not only does 386 SX pipelining hide the 
look-up state, but system pipelining hides one of the 
main memory wait states. (System level pipelining 
via BNA# is discussed in the next chapter.) Several 
characteristics of the 82385SX's pipelining of the 
386 SX are as follows: 

- The above discussion applies to all system 
reads, not just cache read misses. 

- The 82385SX provides the fastest possible 
switch to pipelining, T1-T2-T2P. The exception to 
this is when a system read follows a posted 
write. In this case, the sequence is T1-T2-T2-
T2P. (Refer to cycle 4 of Figure 4-2A.) The num­
ber of T2 states is dependent on the number of 
main memory wait states. 

- Refer to the read hit in Figure 4-2A (cycle 1), and 
note that NA # is actually asserted before the 
end of T1, before the hit/miss decision is made. 
This is of no consequence since even though 
NA# is sampled active in T2, the activation of 
READYO# in the same T2 renders NA# a 
"don't care". NA# is asserted in this manner to 
meet 386 SX timing requirements and to insure 
the fastest possible switch to pipelined mode. 

- All read hits and the majority of writes can be 
serviced by the 82385SX with zero wait states in 
non-pipelined mode, and the 82385SX accord­
ingly attempts to run all such cycles in non-pipe­
lined mode. An exception is seen in the hit cycles 
(cycles 3 and 4) of Figure 4-2B. The 82385SX 
does not know soon enough that cycle 3 is a hit, 
and thus sustains the pipeline. The result is that 
three sequential hits are required before the 
386 SX is totally out of pipelined mode. (The 
three hits look like T1P-T2P, T1P-T2, T1-T2.) 
Note that this does not occur if the number of 
main memory wait states is equal to or greater 
than two. 

As far as the design is concerned, NA# is generally 
tied directly to the 386 SX NA # input. However, oth­
er local NA# sources may be logically "AND"ed 
with the 82385SX NA# output if desired. It is essen­
tial, however, that no device other than the 82385SX 
drive the 386 SX NA# input unless that device re-
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sides on the 386 SX local bus in space decoded via 
~BA #. If desired. the 82385SX NA # output can be 
Ignored and the 386 SX NA# input tied high. The 
386 SX NA # input should never be tied low. which 
would always keep it active. 

4.1.4 LBA# AND NCA# GENERATION 

The 82385SX inputs signals LBA# and NCA# are 
generated by decoding the' 386 SX address (A 1-
A23) and cycle definition (W/R#. DIG;;. M/!O#) 
Unes. The 82385SX samples them at the end of the 
first state in which they become available which is 
either T1 or the first T2P cycle. The decod~ configu­
ration and timings are illustrated respectively in' Fig· 
ures 4·3A and 4-3B. 

4.2 Cache Interface 

The following is a description of the external data 
cache and 82385SX cache interface. 

386TIII sx 

4.2.1 CACHE CONFIGURATIONS 

The 82385SX controls the cache memory via the 
control signals shown in Figure 4-1. These signals 
drive one of four P9ssible cache configurations. as 
depicted in Figures 4·4A through 4-40. Figure 4-4A 
shows a direct mapped 'cache organized as 8K . 
words. The likely design choice is two 8K x 8 
SRAMs. Figure 4-4B depicts the same cache memo­
ry but with a data' transceiver between the cache 
and 386 SX data bus. In this configuration. CT/R# 
controis the transceiver direction. COEA # drives the 
transceiver output enable (COEB # could also be 
used). and OEFOE# is strapped high. A data buffer 
is required if the chosen SRAM does not have a 
separate output enable. Additionally. buffers may be 
used to ease SRAM timing requirements or in a sys­
tem with a heavily loaded data bus. (Guidelines for 
SRAM selection are included in Chapter 6.) 

Figure 4-4C depicts a two-way set associative cache 
organized as two banks (A and B) of 4K words each. 
The likely design choice is eight 4K x 4 SRAMs. Fi­
nally. Figure 4-40 depicts the two-way organization 
with data buffers between the cache memory and 
data bus. . 

82385SX 
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4.2.2 CACHE CONTROL ••• DIRECT MAPPED 

Figure 4·5A illustrates the timing of cache read and 
write hits, while Figure 4-58 illustrates cache up­
dates. In a read hit, the cache output enables are 
driven from the beginning of T2 (cycle 1 of Figure 
4-5A). If at the end of T1 the cycle is qualified as a 
cacheable read, the output enables are asserted on 
the assumption that the cycle will- be a hit. (Driving 
the output enables before. the actual hit/miss deci­
sion is made eases SRAM timing requirements.) 

Cycle 1 of Figure 4-58 illustrates what happens 
when the assumption of a hit turns out to be wrong. 
Note that the output enables are asserted at the be­
ginning of of T2, but then disabled at the end of T2. 
Once the output enables are inactive, the 82385SX 
turns the transceiver around (via CT fR #) and drives 
the write enables to begin the cache updatEi cycle. 
Note in Figure 4-58 that once the 386 SX is in pipe­
lined mode, the output enables need not be driven 
prior to a hit/miss decision, since the decision is 
made earlier via the pipelined address information. 
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One consequence of driving the output enables low 
in a miss before the hit/miss decision is made is that 
since the cache starts driving the 386 SX data bus, 
the 82385SX cannot enable the 74646 transceiver 
(Figure 4-1) until after the cache outputs are dis­
abled. (The timing of the 74646 control signals is 
described in the next chapter.) The result is that the 
74646 cannot be enabled soon enough to support 
N = 0 main memory ("N" was defined in Section 4.0 
as the number of non-pipelined main memory wait 
states). This means that memory which can run with 
zero wait states in a non-pipe!ined cycle should not 
be mapped into cacheable memory. This should not 
present a problem, however, as a main memory sys­
tem built with N = 0 memory has no need of a cache. 
(The main memory is as fast as the cache.) Zero 
wait state memory can be supported if it is decoded 
as non-cacheable. The 82385SX knows that a cycle 
is non-cacheable in time not to drive the cache out­
put enables, and can thus enable the 74646 sooner. 

In a write hit, the 82385SX only updates the cache 
bytes that are meant to be updated as directed by 
the 386 SX byte enables. This prevents corrupting 
cache data in partial doubleword writes. Note in Fig­
ure 4-5A that the appropriate bytes are selected via 
the cache byte select lines CSO# and CS1 #. In a 
read hit, both select lines are driven as the 386 SX 
will simply ignore data it does not need. Also, in a 
cache update (read miss), both selects are active in 
order to update the cache with a complete line 
(word). 

4.2.3 CACHE CONTROL . .. 
TWO-WAY SET ASSOCIATIVE 

Figures 4-6A and 4-6B illustrate the timing of cache 
read hits, write hits, and updates ror a two-way set 
associative cache. (Note that the cycle sequences 
are the same as those in Figure 4-5A and 4-5B.) In a 
cache read hit, only one bank on the other is en­
abled to drive the 386 SX data bus, so unlike the 
control of a direct mapped cache, the appropriate 
cache output enable cannot be driven until the out­
come of the hit/miss decision is known. (This im­
plies stricter SRAM timing requirements for a two­
way set associative cache.) In write hits and read 
misses, only one bank or tl1e other is updated. 

4.3 387 SX Interface 

The 387 SX Math Coprocessor interfaces to the 386 
SX just as it would in a system without an 82385SX. 
The 387 SX READYO# output is logically "AND"ed 
along with all other 386 SX local bus ready sources 
(Figure 4-1), and the output is fed to the 387 SX 
READY#, 82385SX READYI#, and 386 SX 
READY # inputs. 

The 386 SX uniquely addresses the 387 SX by driv­
ing M/IO# low and A23 high. The 82385SX de­
codes this internally and treats 387 SX accesses in 
the same way it treats 386 SX cycles in which LBA # 
is asserted, it ignores them. 

5.0 82385SX LOCAL BUS AND 
SYSTEM INTERFACE 

The 82385SX system interface is the 82385SX Lo­
cal Bus, which presents a "386 SX-like" front Ami to 
the system. The system ties to it just as it would to a 
386 Sx. Although this 386 SX-like front end is func­
tionally equivalent to a 386 SX, there are timing dif­
ferences which can easily be accounted for in a sys­
tem design. 

The following is a description of the 82385SX sys­
tem interface. After presenting the 82385SX bus 
state machine, the 82385SX bus signals are de­
scribed, as are techniques for accommodating any 
differences between the 82385SX bus and 386 SX 
bus. Following this is a discussion of the 82385SX's 
condition upon reset. 

5.1 The 82385SX Bus State Machine 

5.1.1 MASTER MODE 

Figure 5-1A illustrates the 82385SX bus state ma­
chine when the 82385SX is programmed in master 
mode. Note that it is almost identical to the 386 SX 
bus state machine, only the bus states are 82385SX 
bus states (BT1 P, BTH, etc.) and the state tran­
sitions are conditioned by 82385SX bus inputs 
J'nll.l A ..JJ. nl 1r'\1 n _"'_ \ \., .... _ .. ____ " ___ ...1: __ ....................... " 
\01'1"71" LJI IVL.LI, O~V'I' "Yll01~a..:t a. t-'0IIUIII~ 10"'lUV·.~:t\ 

to the 386 SX state machine indicates that the 
386 Sx execution or prefetch unit needs bus access, 
a pending request to the 82385SX state machine 
indicates that a 386 SX bus cycle needs to be for­
warded to the system (read miss, non-cacheable 
read, write, etc.). The only difference between the 
state machines is that the 82385SX does not imple­
ment a direct BT1 P-BT2P transition. If BNA # is as­
serted in BT1 P, the resulting state sequence is 
BT1 P-BT21-BT2P. The 82385SX's ability to sustain a 
pipeline is not affected by the lack of this tiansition. 

5.1.2 SLAVE MODE 

The 82385SX's slave mode state machine (Figure 
5-1 B) is similar to the master mode machine except 
that now transitions are conditioned by BHLDA rath­
er than BHOLD. (Recall that in slave mode, the roles 
of BHOLD and BHLDA are reversed from their mas­
ter mode roles.) Figure 5-2 clarifies slave mode state 
machine operation. Upon reset, a slave mode 
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inter 82385SX 

82385SX enters the BTH state. When the 386 SX of 
the slave 82385SX subsystem has a cycle that 
needs to be forwarded to the system, the 82385SX 
moves to BTl and issues a hold request via BHOLD. 
It is important to note that a slave mode 82385SX 
does not drive the bus in a BTl state. When the mas­
ter or bus arbiter returns BHLDA, the slave 82385SX 
enters BT1 and runs the cycle. When the cycle is 
completed, and if no additional requests are pend­
ing, the 82385SX moves back to BTH and disables 
BHOLD. 

If, while a slave 82385SX is running a cycle, the 
master or arbiter drops BHLDA (Figure 5-2B), the 
82385SX will complete the current cycle, move to 
BTH and remove the BHOLD request. If the 
82385SX still had cycles to run when it was kicked 
off the bus, it will immediately assert a new BHOLD 
and move to BTl to await bus acknowledgement. 
Note, however, that it will only move to BTl if BHLDA 
is negated, insuring that the handshake sequence is 
completed. 

BHOLD ASSERTED 

r-Q-------"'~I+-----___. El Q El Q 
... ~ ~~ ~~ 
... LLlL&.I &..I ..... 
en BHOLD NEGATED VI VI VI VI 

~ • REQUEST PENDING ~ ~ ~ ~ 
=-=0 ~c 9 >-1 >...1 

o BREADY # ASSERTED. !;i ~ !;i ~ 
iii (BLOCK # ASSERTED + BHOLD NEGATED). ~ '!' ~ '!' 

• NO REQUEST 
RESET ASSERTED 

~:n 
~ ~ ___ .... ""!_ .... acl-___ = ____ -+I ALWAYS 

z ~ REQUEST PENDING. ~~ ... ------+----....... ~~-__, BT1P 

~!il BHOLD NEGATED BREADY # ASSERTED. + 13;, § 
iii· (BLOCK # ASSERTED+BHOLD NEGATED). Effi~~ ~ 

• REQUEST PENDING BREADY # NEGATED g ~ ~!, :Jl 
• B,NA 1/ NEGATED '" Q « >- ~ 

~5:~ ". -a ~gs ~ 0 

L-_-,~~~_~ __ ~_~m ~ 

BREADY # ASSERTED 
• BHOLD NEGATED 

• REQUEST PENDING 

L------------------i ~ .... __ ~ __ - ___ = __ -----------------' ........ ..!------, (!) coo (!) -. 

BREADY # ASSERTED El z El I!! I!! I!! ~ "" 
• BHOLD NEGATED !;;: ~ !;;: ~ ffi ~ i3 ~ 

• NO REQUEST ~ ~ ~ ... VI ... a.. ~ 
BREADY # NEGATED ""I;; Q !, ~ ~ I;; ll\ 

·(NO REQUEST+ ~~5 ~!5~ 
BHOLD ASSERTED) ~ 8 iii « z :I: 0 

.-....'------' ~ ': • ~ c: : ~ 

BREADY # NEGATED 
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Figure 5-1A. 82385SX Local Bus State Machine-Master Mode 
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Figure 5·1B. 82385SX Local Bus State Machine-Slave Mode 
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82385SX 

BTH BTl BTl BTl BT2 BT2 BTH BTH 

BHOlD 

BHlDA +-t---+r.I 
290222-27 

A. Normal Slave Mode Sequence 

BTH BTl BTl BTl . BT2 BT2 BTl BT2 BT2 BTH BTl BTl BTl BTl BTl 

1/// 1\\\ 1/// 

8~3=rrASFERTS 1/// 1\\\ BHOlD 1/// 

BHOlD 

BHlDA 

t 1 I 1 
ARBITER 

DROPS BHlDA 
290222-28 

B. Sequence of Events if Master or Arbiter Drops BHLDA 

Figure 5-2. BHOLD/BHLDA-Slave Mode 

There are several cases in which a slave 82385SX 
will not immediately release the bus if BHLDA is 
dropped. For example, if BHLDA is dropped during a 
BT2P state, the 82385SX has already committed to 
the next system bus pipelined cycle and will execute 
it before releasing the bus. Also, the 82385SX will 
complete a sequence of locked cycles before re­
leasing the bus. This should not present any prob­
lems, as a properly designed arbiter will not assume 
that the 82385SX has released the bus until it sees 
BHOLD become inactive. 

5.2 The 82385SX Local Bus 

The 82385SX bus can be broken up into two groups 
of signals: those which have direct 386 SX counter­
parts, and additional status and control signals pro­
vided by the 82385SX. The operation and interaction 
of all 82385SX bus signals are depicted in Figures 
5-3A through 5-3L for a wide variety of cycle se-· 
quences. These diagrams serve as a reference for 
the 82385SX bus discussion and provide insight into 
the dual bus operation of the 82385SX. 

4-577 



386™ SX CYCLE I 
386™ SX BUS STATE 
82385SX BUS STATE 

ClK2 

ClK 

AOS# 

REAOYI# 

BREAOY# 

NA# 

BACP 

BAOEN 

DOE# 

FRAME 
NUMBER 

386 TM SX CYCLE I 
386™ SX BUS STATE 
82385SX BUS STATE 

ClK2 

ClK 

REAOYI# 

BAOS# 

BREAOY# 

NA# 

BACP 

DOER 

MISS# 

FRAME 
NUMBER 

T1 
BTl 

Tl 
BTl 

82385SX 

SBRO 
SBRO I SBRO SBRO 

I I I ~i, I T2P T1P I T2P T1P I T2P TIP T2P I T2P T2P 
BT2 BT1 BT2 BT1 BT2 BTH BTH BT1 BT2 

3 4 7 8 10 11 12 13 14 15 16 

290222-29 

Figure 5-3A. Consecutive SBRD Cycles-(N = 0) 
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Figure 5-3B. Consecutive CRDM Cycles-(N = 1) 
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Figure 5-3C. SBRD, CRDM, S~RD-(N = 2) 
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Figure 5-30. SBRD Cycles Interleaved with BTH States-(N = 1) 
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Figure 5-3F. SBRD, WT, SBRD, CRDH-(N = 1) 
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Figure 5-3G.lnterleaved WT/CRDH Cycles-{N = 1) 
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Figure 5-3H. WT, WT, CRDH-(N = 1) 
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Figure 5-31. WT, WT, SBRD-(N = 1) 
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Figure 5-3J. Consecutive Write Cycles-{N = 1) 
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Figure 5-3K. LOCK # IBLOCK # in Non-Cacheable or Miss Cycles-{N = 1) 
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Figure 5-3L. LOCK # IBLOCK # in Cache Read Hit Cycle-(N = 1) 

5.2.1 82385SX BUS COUNTERPARTS TO 
386TM SX SIGNALS 

The following sections discuss the signals presented 
on the 82385SX local bus which are functional 
equivalents to the signals present at the 386 SX lo­
cal bus. 

5.2.1.1 Address Bus (BA 1-BA23) 
and Cycle Definition Signals 
(BM/IO#, BD/C#, BW/R#) 

These signals are not driven directly by the 
82385SX, but rather are the outputs of the 74374 
address/cycle definition latch. (Refer to Figure 4-1 
for the hardware interface.) This latch is controlled 
by the 82385SX BACP and BAOE # outputs. The 
behavior and timing of these outputs and the latch 
they control (typically F or AS series TTL) ensure 
that BA1-BA23, BM/IO#, BW/R#, and BD/C# are 
compatible in timing and function to their 386 SX 
counterparts. 

The behavior of BACP can be seen in Figure 5-3B, 
where the rising edge of BACP latches and forwards 
the 386 SX address and cycle definition signals in a 
BT1 or first BT2P state. However, the 82385SX 
need not be the current bus master to latch the 
386 SX address, as evidenced by cycle 4 of Figure 
5-3A. In this case, the address is latched in frame 8, 
but not forwarded to the system (via BAOE#) until 
frame 10. (The latch and output enable functions of 
the 74374 are independent and invisible to one an­
other.) 

Note that in frames 2 and 6 the BACP pulses are 
marked "False". The reason is that BACP is issued 
and the address latched before the hit/miss deter­
mination is made. This ensures that should the cycle 
be a miss, the 82385SX bus can move directly into 
BT1 without delay. In the case of a hit, the latched 
address is simply never qualified by the assertion of 
BADS #. The 82385SX bus stays in BTl if there is no 
access pending (new cycle is a hit) and no bus activ­
ity. It will move to and stay in BT21 if the system has 
requested a pipelined cycle and the 82385SX does 
not have a pending bus access (new cycle is a hit). 
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5.2.1.2 Oata Bus (BOO-B015) 

The 82385SX data bus is the system side of the 
74646 latching transceiver. (See Figure 4-1.) This 
device is controlled by the 82385SX outputs lDSTB, 
DOE#, and BT/R#. lDSTB latches data in write 
cycles, DOE # enables the transceiver outputs, and 
BT IR # controls the transceiver direction. The inter­
action of these signals and the transceiver is such 
that BDO-BD15 behave just like their 386 SX coun­
terparts. The transceiver is configured such that 
data now in write cycles (A to 8) is latched, and data 
flow in read cycles (B to A) is flow-through. 

Although BDO-BD15 function just like their 386 SX 
counterparts, th!'lre is a timing difference that must 
be accommodated for in a system design. As men­
tioned above, the transceiver is transparent during 
read cycles" so the transceiver propagation delay 
must be added to the 386 SX data setup. In addition, 
the cache SRAM setup must be accommodated for 
in cache read miss cycles. 

For non-cacheable reads the data setup is given by: 

Min BOO-B015 _ 386SXMin 74646B-to-A 
ReadOataSetup - OataSetup + MaxPropagationOelay 

The required BDO-BD15 setup in a cache read miss 
is given by: 

Min BOO-B015 74646B-to-A CacheSRAMMin 
ReadOataSetup = MaxPropagationOelay + Write Setup 

+ One CLK2 _ 82385SX CWEA# or 
Period CWEB# Min Oelay 

If a data buffer is located between the 386 SX data 
bus and the cache SRAMs, then its maximum propa­
gation deiay must be added to the above formuia as 
well. Adesign analysis should be 'completed for ev­
ery new design to determine actual margins. 

A design can accommodate the increased data set­
up by choosing appropriately fast main ,memory 
DRAMs and data buffers. Alternatively, a designer 
may deal with the longer setup by inserting an extra 
wait state into cache read miss cycles. If an addition­
al state is to be inserted, the system bus controller 
should sample the 82385SX MISS# output to distin­
quish read misses from cycles that do not require 
the longer setup. Tips on using the 82385SX MISS# 
signal are presented later in this chapter. 

The behavior of lDSTB, DOE #, and BT IR # can be 
understood via Figures 5-3A through 5-3L. Note that 
in cycle 1 of Figure 5-3A (A non-cacheable system 
read), DOE # is activated midway through BT1, but 
in cycle 1 of Figure 5-3B (a cache read miss), DOE # 
is not activated until midway through BT2. The rea-

son is that in a cacheable read cycle, the cache 
SRAMs are enabled to drive the 386 SX data bus 
before the outcome of the hit/miss decision (in an­
ticipation of a hit.) In cycle 1 of Figure 5-3B, the as­
sertion of DOE # must be delayed until after the 
82385SX has disabled the cache output buffers. The 
result is that N = 0 main memory should not be 
mapped into the cache. 

5.2.1.3 Byte Enables (BBHE#, BBLE#) 

These outputs are driven directly by the 82385SX, 
and are completely compatible in timing and function 
with their 386 SX counterparts. When a 386 SX cy­
cle is forwarded to the 82385SX bus, the 386 SX 
byte enables are duplicated on BBHE # and 
BBlE #. The one exception is a cache read miss, 
during which BBHE# and BBlE# are both active 
regardless of the status of the 386 SX byte enables. 
This ensures that the cache is updated with a valid 
16-bit entry. 

5.2.1.4 Address St~tus (BAOS#) 

BADS # is identical in function and timing to its 
386 SX counterpart. It is asserted in BT1 and BT2P 
states, and indicates that valid address and cycle 
definition (BA1-BA23, BBHE#, BBlE#, BMIIO#, 
BW/R#, BD/C#) information is available on the 
82385SX bus. 

5,2.1.5 Ready (BREAOY#) 

The 82385SX BREADY # input terminates 82385SX 
bus cycles just as the 386 SX READY # input termi­
nates 386 SX bus cycles. The behavior of 
t:!Hi:ADY # is the same as that of READY"", but 
note in the AC timing specifications that a cache 
read miss requires a longer BREADY # setup than 
do other cycles. This must be accommodated for in 
ready logic design. , 

5.2.1.6 Next Address (BNA#) 

BNA # is identical in function and timing to its 
386 SX counterpart. Note that in Figures 5-3A 
through 5-3L, BNA# is assumed asserted in every 
BT1 P or first BT2 state. Along with the 82385SX's 
pipelining of the 386 SX, this ensures that the timing 
diagrams accurately reflect the full pipelined nature 
of the dual bus structure. 

5.2.1.7 Bus Lock (BLOCK#) 

The 386 SX flags a locked sequence of cycles by 
asserting lOCK #. During a locked sequence, the 
386 SX does not acknowledge hold requests, so the 
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sequence executes without interruption by another 
master. The 82385SX forces all locked 386 SX cy­
cles to run on the 82385SX bus (unless LBA# is 
active), regardless of whether or not the referenced 
location resides in the cache. In addition, a locked 
sequence of 386 SX cycles is run as a locked se­
quence on the 82385SX bus; BLOCK # is asserted 
and the 82385SX does not allow the sequence to be 
interrupted. Locked writes (hit or miss) and locked 
read misses affect the cache and cache directory 
just as their unlocked counterparts do. A locked read 
hit, however, is handled differently. The read is nec­
essarily forced to run on the 82385SX local bus, and 
as the data returns from main memory, it is "re-cop­
ied" into the cache. (See Figure 5-3L.) The directory 
is not changed as it already indicates that this loca­
tion exists in the cache. This activity is invisible to 
the system and ensures that semaphores are prop­
erly handled. 

BLOCK # is asserted during locked 82385SX bus 
cycles just -as LOCK # is asserted during locked 
386 SX cycles. The BLOCK# maximum valid delay, 
however, differs from that of LOCK #, and this must 
be accounted for in any Circuitry that makes use of 
BLOCK #. The difference is due to the fact that 
LOCK #, unlike the other 386 SX cycle definition sig­
nals, is not pipelined. The situation is clarified in Fig­
ure 5-3K. In cycle 2 the state of LOCK# is not 
known before the corresponding system read starts 
(Frame 4 and 5). In this case, LOCK# is asserted at 
the beginning of T1 P, and the delay for BLOCK # to 
become active is the delay of LOCK # from the 
386 SX plus the propagation delay through the 
82385SX. This occurs because T1 P and the corre­
sponding BT1 P are concurrent (Frame 5). The result 
is that BLOCK # should not be sampled at the end 
of BT1 P. The first appropriate sampling point is mid­
way through the next state, as shown in Frame 6. In 

Figure 5-3L, the maximum delay for BLOCK# to be­
come valid in Frame 4 is the same as the maximum 
delay for LOCK # to become valid from the 386 SX. 
This is true since the pipelining issue discussed 
above does not occur. 

The 82385 should negate BLOCK# after: 
BREADY # of the last 82385 Locked Cycle was as­
serted AND LOCK# turns inactive. 

This means that in a sequence of cycles which be­
gins with a 82385 Locked Cycle and goes on with all 
the possible Locked Cycles (other 82385 cycles, 
idles, and local cycles), while LOCK# is continuous­
ly active, the 82385 will maintain BLOCK# active 
continuously. Another implication is that in a Locked 
Posted Write Cycle followed by non-locked se­
quence, BLOCK# is negated one CLK after 
BREADY # of the write cycle. In other 82385 Locked 
Cycles, followed by non-locked sequences, 
BLOCK # is negated one CLK after LOCK # is nega­
ted, which occurs two CLKs after BREADY # is as­
serted. In the last case BLOCK # active moves by 
one CLK to the non-locked sequence. 

The arbitration rules of Locked Cycles are: 

MASTER MODE: 

BHOLD input Signal is ignored when BLOCK # or 
internal lock (16-bit non-aligned cycle) are active. 
BHLDA output signal remains inactive, and BAOE# 
output signal remains active at that time interval. 

SLAVE MODE: 

The 82385 does not relinquish the system bus if 
BLOCK # or internal lock are active. The BHOLD 
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output signal remains active when BLOCK # or inter­
nal lock is active plus one ClK. The BHlOA input 
signal is ignored when BLOCK # or the internal lock 

" is active plus one ClK. This means the 82385 slave 
does not respond to BHlOA inactivation. The 
BAOE # output signal remains active during the 
same time "interval. 

5.2.2 ADDITIONAL 82385SX BUS SIGNALS 

The 82385SX bus provides two status outputs and 
one control input that are unique to cache operation 
and thus have no 386 SX counterparts. The outputs 
are MISS# and WBS, and the input is FLUSH. 

5.2.2.1 Cache Read/Write Miss Indication 
(MISS#) 

MISS# can be thought of as an extra 82385SX bus 
cycle definition signal similar to BM/IO#, BW/R#, 
and BO/C#, that distinguishes cacheable read and 
write misses from other cycles. MISS#, like the oth­
er definition Signals, becomes valid with BAOS# 
(Bn or first BT2P). The behavior of MISS# is illus­
trated in Figures 5-3B, 5-3C, and 5-3J. The 82385SX 
floats MISS# when another master owns the bus, 
allowing multiple 82385SXs to share the same node 
in multi-cache systems. MISS# should thus be light­
ly pulled up (- 20K) to keep it negated during hold 
(BTH) states. 

MISS# can serve several purposes. As discussed 
previously, the BOO-B015 and BREAOY# setup 
times in a cache read miss are longer than in other 
cycles. A bus controller can distinguish these cycles 
by gating MISS# with BW/R#. MISS# may also 
prove usafu! !n gathering 82385S)( system perform· 
ance data. 

5.2.2.2 WRITE BUFFER STATUS (WBS) 

WBS is activated when 386 SX write cycle data is 
latched into the 74676 latching transceiver (via 
lOSTB). It is deactivated upon completion of the 
write cycle on the 82385SX bus when the 82385SX 
sees the BREADY # Signal. WBS behavior is iIIus- " 
trated in Figures 5-3F through 5-3J, and potential 
applications are discussed in Chapter 3. 

FLUSH is an 8238SSX input which is used to reset 
all tag valid bits within the cache directory. The 
FLUSH input must be kept active for at least 4 Cll<; 
(8 ClK2) periods to complete the directory flush. 
Flush is generally used in diagnostics but can also 
be used in applications where snooping cannot 
guarantee coherency. 

5.3 Bus Watching (Snoop) Interface 

The 8238SSX's bus watching interface consists of 
the snoop address (SA 1 -SA23)", snoop strobe 
(SSTB #), and snoop enable (SEN) inputs. If mas­
ters reside at the system bus level, then the SA 1-
SA23 inputs are connected to the system address 
lines and SEN to the system bus memory write com­
mand. SSTB # indicates that a valid address is pres­
ent on the system bus. Note that the snoop bus in­
puts are synchronous, so care must be taken to en­
sure that they are stable during their sample win­
dows. If no master resides beyond the 82385SX bus 
level, them SA1-SA23, SEN and SSTB# can re­
spectively tie directly to BA1-BA23, .sW/R#, and 
BAOS#. However,it is recommended that SEN be 
driven by the logical "ANO" of BW/R# and BMI 
10# so as to prevent I/O writes from unnecessarily 
invalidating cache data. 
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When the 82385SX detects a system write by anoth­
er master, it internally latches SA 1-SA23 and runs a 
cache look-up to see if the altered main memory 
location is duplicated in the cache. If yes (a snoop 
hit), the line valid bit associated with that cache en­
try is cleared. An important feature of the 82385SX 
is that even if the 386 SX is running zero wait state 
hits out of the cache, all snoops are serviced. This is 
accomplished by time multiplexing the cache direc­
tory between the 386 SX address and latched sys­
tem address. If the SSTB # signal occurs during an 
82385SX comparison cycle (for the 386 SX), the 
386 SX cycle has the highest priority in accessing 
the cache directory. This takes the first of the two 
386 SX states. The other state is then used for the 
snoop comparison. This worst case example, depict­
ed in Figure 5-4, shows the 386 SX running zero wait 
state hits on the 386 SX local bus, and another mas­
ter running zero wait state writes on the 82385SX 
bus. No snoops are missed, and no performance 
penalty incurred. 

5.4 Reset Definition 

Table 5-1 summarizes the states of all 82385SX out­
puts during reset and initialization. A slave mode 
82385SX tri-states its "386 SX-like" front end. A 
master mode 82385SX emits a pulse stream on its 
BACP output. As the 386 SX address and cycle defi-

. nition lines reach their reset values, this stream will 
latch the reset values through to the 82385SX bus. 

CLK.BCLK 

ADS# 

386 n.t SX ADDRESS 

SSTBII (BADS/I) 

8238SSXL ADDRESS 

SEN (B/WRII) 

T1 
BTl 

T2 
BT2 

Table 5-1. Pin State during RESET and Initialization 
Signal Level during 

Output RESET and Initialization 
Name Master Mode Slave Mode 

NA# High High 

READYO# High High 

BRDYEN# High High 

CALEN High High 

CWEA#-CWEB# High High 

CSO#, CS1# Low Low 

CT/R# High High 

COEA#-COEB# High High 

BAbS# High HighZ 

BBHE#, BBLE# 386 BE# HighZ 

BLOCK# High HighZ 

MISS# High HighZ 

BACP Pulse(1) Pulse 

BAOE# Low High 

BT/R# Low Low 

DOE# High High 

LDSTB Low Low 

BHOLD - Low 

BHLDA Low -
WBS Low Low 

NOTE: 
1. In Master Mode, BAOE# is low and BACP emits a pulse 
stream during reset. As the 386 SX address and cycle defi­
nition Signals reach their reset values, the pulse stream on 
BACP will latch these values through to the 82385 SX local 
bus. 

TI 
BTl 

T2 
BT2 

Tl 
BTl 

CACHE DrR. ADDR • ....,--,'-=~;;;;..::~'\.,,;=~.;.::.;.-'~~;.;....F..::.;;."' ......... """'":"....;;-.J' ..... --I 

290222-41 

Figure 5.4. Interleaved Snoop and 80386 Accesses to the Cache Directory 
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6.0 82385SX SYSTEM DESIGN 
CONSIDERATIONS 

6.1 Introduction 

This chapter discusses techniques which should be 
implemented in an 82385SX system. Because of the 
high frequencies and high performance nature of the 
386 SX CPU/82385SX system, good design and lay­
out techniques are necessary. It is always recom-___ -1_..1 ... ___ .4: ________ 1_"_ .... __ : _____ I~._: __ z 
III'CIIU'O'~ LV .,n::::IIIIUIIII a ,",VIIII-'I'IO'L'CI U'V""!::III aIIOl'1"'." VI 

new system designs. 

6.2 Power and Grounding 

6.2.1 POWER CONNECTIONS 

The 82385SX utilizes 8 power (Ved and 10 ground 
(Vss) pins. All Vee and Vss pins must be connected 
to their appropriate plane. On a printed circuit board, 
all Vee pins must be connected to the power plane 
and all Vss pins must be connected to the ground 
plane. 

6.2.2 POWER DECOUPLING 

Although the 82385SX itself is generally a "passive" 
device in that it has a few output Signals, the cache 
subsystem as a whole is quite active. Therefore, 
many decoupling capacitors should be placed 
around the 82385SX cache subsystem. 

Low inductance capacitors and interconnects are 
recommended for best high frequency electrical per­
formance. Inductance can be redllced by s!1ortElning 
circuit board traces between the decoupling capaci­
tOiS and thaii i6SPective devices as much as possi­
ble. Capacitors specifically for PGA packages are -
also commercially available, for the lowest possible 
inductance. . 

6.2.3 RESISTOR RECOMMENDATIONS 

Because of the dual structure of the 82385SX sub­
system (386 SX Local Bus and 82385SX Local Bus), 
any signals which are recommended to be pulled up 
will be respective to one of the busses. The follow­
ing sections will discuss signals for both busses. 

6.2.3.1 386 SX LOCAL BUS 

For typical designs, the pullup resistors shown in Ta­
ble 6-1 are recommended. This table correlates to 
Chapter 7 of the 386 SX Data Sheet. However, par­
ticular designs may have a need to differ from the 
listed values. Design analysis is recommended to 
determine specific requirements. 

6.2.3.2 82835SX Local Bus 

Pullup resistor' recommendations for the 82385SX 
Local Bus signals are shown in Table 6-2. Design 
analysis is necessary to determine if deviations to 
the typical values given are ne.eded.. . 

Table 6·1. Recommended Resistor Pullups 
to Vee (386™ SX Local Bus) . 

I
. Pin and 1 Pullup 1 Purpose 

Slana I Value ' -
ADS# 20 Kn. ±10%. Lightly Pull ADS# 
PGA E13 Negated for 386 SX 
POFP 123 Hold States 

LOCK# 20 Kn. ±10% Lightly Pull LOCK # 
PGAF13 Negated for 386 SX 

POFP 118 Hold States 

Table 6·2. Recommended Resistor Pullups 
to Vee (82385SX Local Bus) 

, Signal Pullup 
Purpose 

and Pin Value 

BADS# 20 Kn. ±10% Lightly Pull BADS# 
PGAN9 Negated for 
POFP89 82385SX Hold 

States 

BLOCK # 20 Kn. ± 10% Lightly Pull 
PGAP9 BLOCK# Negated 

POFP 86 for B23B5SX Hold 
States 

MISS# 20 Kn. ±10% Lightly Pull MISS# 
PGAN8 Negated for 

I POFPB5 I B23B5SX Hold 
, States , 

6.3 82385SX Signal Connections 

6.3.1 CONFIGURATION INPUTS 

The 82835 configuration signals (M/S#, 2W/D#, 
DEFOE#) must be connected (pulled up) to the ap­
propriate logic level for the system design. There is 
also a reserved B23B5SX input which must be tied to 
the appropriate level. Refer to Table 6·3 for the sig­
nals and their required logic level. 
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Table 6-3. 82385SX Configuration 
Inputs Logic Levels 

Pin and Logic Purpose 
Signal Level 

M/S# High Master Mode Operation 
PGAB13 Low Slave Mode Operation 
PQFP 124 

2W/D# High 2-Way Set Associative 
PGAD12 Low Direct Mapped 
PQFP 127 

Reserved High Must be tied to Vee via 
PGAL14 a pull-up for proper 
PQFP 102 functionality 

DEFOE# N/A Define Cache Output 
PGAA14 Enable. Allows use of 
PQFP 128 anySRAM. 

NOTE: 
The listed 82385SX pins which need to be tied high should 
use a pull-up resistor in the range of 5 KO to 20 KO. 

6.3.2 CLK2 and RESET 

The 82385SX has two inupts to which the 386 SX 
CLK2 signal must be connected. One is labeled 
CLK2 (82385SX pin C13) and the other is labeled 
BCLK2 (82385SX pin L 13). These two inputs must 
be tied together on the printed circuit board. 

The 82385SX also has two reset inputs. RESET 
(82385SX pin 013) and BRESET (82385SX pin K12) 

, must be connected on the printed circuit board. 

6.4 Unused Pin Requirements 

For reliable operation, ALWAYS connect unused in­
puts to a valid logic level. As is the case with most 
other CMOS processes, a floating input will increase 
the current consumption of the component and give 
an indeterminate state to the component. 

6.5 Cache SRAM Requirements 

The 82385SX offers the option of using SRAMs with 
or without an output enable pin. This is possible by 
inserting a transceiver between the SRAMs and the 
386 SX local data bus and strapping DEFOE # to the 
appropriate logic level for a given system configura­
tion. This transceiver may also be desirable in a sys­
tem which has a very heavily loaded 386 SX local 
data bus. The following sections discuss the SRAM 
requirements for all cache configurations. 

6.5.1 CACHE MEMORY WITHOUT 
TRANSCEIVERS 

As discussed in Section 3.2, the 82385SX presents 
all of the control signals necessary to access the 
cache memory. The SRAM chip selects, write en­
ables, and output enables are driven directly by the 
82385SX. Table 6-4 lists the required SRAM specifi­
cations. These specifications allow for zero margins. 
They should be used as guides for the actual system 
design. 

Table 6-4. SRAM Specs for Non-Buffered Cache Memory 

SRAM Spec Requirements 

Direct Mapped 2-Way Set Associative 
16 MHz 20 MHz 16 MHz 20 MHz 

Read Cycle Requirements 
Address Access (MAX) 64ns 44 ns 62 ns 42 ns 
Chip Select Access (MAX) 76 56 76 56 
OE# to Data Valid (MAX) 25 19 19 14 
OE # to Data Float (MAX) 20 20 20 20 

Write Cycle Requirements 
Chip Select to End of Write (MIN) 40 30 40 30 
Address Valid to End of Write (MIN) 58 42 56 40 
Write Pulse Width (MIN) 40 30 40 30 
Data Setup (MAX) - - - -
Data Hold (MIN) 4 4 4 4 
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6.5.2 CACHE MEMORY WITH TRANSCEIVERS 

To imp)ement an 82385SX subsystem using cache 
memory transceivers, COEA # or COES # must be 
used as output enable signals for the transceivers 
and DEFOE # must be appropriately strapped for 
proper COEx# functionality (since the cache SRAM 
transceivers must be enabled for writes as well as 
reads). DEFOE# must be tied high when using 
cache SRAM transceivers. In a 2-way set associa­
tive organization, COEA # enables the transceiver 
for bank A and COEB# enables the bank S trans­
ceiver. A direct mapped cache may use either 
COEA# or COES# to enable the transceiver. Table 
6-5 lists the required SRAM specifications. These 
specifications allow for zero margin. They should be 
used as guides for the actual system design. 

7.0 SYSTEM TEST CONSIDERATIONS 

7.1 Introduction 

Power On Self Testing (POST) is performed by most 
systems after a reset. This chapter discusses the 
requirements for properly testing an 82385SX based 
system after power up. 

7.2 Main Memory (DRAM) Testing 

Most systems perform a memory test by writing a 
data pattern and then reading and comparing the 

data. This test may also be used to determine the 
total available memory within the system. Without 
properly taking into account the 82385SX cache 
memory, the memory test can give erroneous re­
sults. This will occur if the cache responds with read 
hits during the memory test routine. 

7.2.1 MEMORY TESTING ROUTINE 

In order to properly test main memory, the test rou­
tine must not read from the same block consecutive­
ly. FOi instance, if the t6St ioutin6 wiites a data pat­
tern to the first 16 Kbytes of memory (0000-
3FFFH), reads from the same block, writes a new 
pattern to the same locations (0000-3FFFH), and 
read the new pattern, the second pattern tested 
would have had data returned from the 82385SX 
cache memory. Therefore, it is recommended that 
the test routine work with a memory block of at least 
32 Kbytes. This will guarantee that no 16 Kbyte 
block will be read twice consecutively. 

7.3 82385SX Cache Memory Testing 

With the addition of SRAMs for the cache memory, it 
may be desirable for the system to be able to test 
the cache SRAMs during system diagnostics. This 
requires the test routine to access only the caclie 
memory. The requirements for this routine are based 
on where it resides within the memory map. This can 

Table 6-5. SRAM Specs for Buffered Cache Memory 

SRAM Spec Requirements 

Direct Mapped 
16 MHz 20 MHz 

Read Cycle Requirements 
Address Access (MAX) 57 ns 37 ns 
Chip Select Access (MAX) 68 48 
OE # to Data Valid (MAX) N/A N/A 
OE# to Data Float (MAX) N/A N/A 

Write Cycle Requirements 
Chip Select to E.nd of Write (MIN) 40 30 
Address Valid to End of Write (MiN) 58 42 
Write Pulse Width (MIN) 40 30 
Data Setup (MAX) 25 15 
Data Hold (MIN) 3 3 
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be broken into two areas: the routine residing in 
cacheable memory space or the routine residing in 
either non-cacheable memory or on the 386 SX lo­
cal bus (using the lBA# input). 

7.3.1 TEST ROUTINE IN THE NCA# OR LBA# 
MEMORY MAP 

In this configuration, the test routine will never be 
cached. The recommended method is code which 
will access a single 16 Kbyte block during the test. 
Initially, a 16 Kbyte read (assume 0000-3FFFH) 
must be executed. This will fill the cache directory 
with the address information which will be used in 
the diagnostic procedure. Then, a 16 Kbyte write to 
the same address locations (0000-3FFFH) will load 
the cache with the desired test pattern (due to write 
hits). The comparison can be made by completing 
another 16 Kbyte read (same locations, 0000-
3FFFH). which will be cache read hits. Subsequent 
writes and reads to the same addresses will enable 
various patterns to be tested. 

7.3.2 TEST ROUTINE IN CACHEABLE MEMORY 

In this case, it must be understood that the diagnos­
tic routine must reside in the cache memory before 
the actual data testing can begin. Otherwise, when 
the 386 SX performs a code fetch, a location within 
the cache memory which is to be tested will be al­
tered due to the read miss (code fetch) update. 

The first task is to load the diagnostic routine into 
the top of the cache memory. It must be known how 
much memory is required for the code as the rest of 
the cache memory will be tested as in the earlier 
method. Once the diagnostics have been cached 
(via read updates), the code will perform the same 
type of read/write/read/compare as in the routine 
explained in the above section. The difference is 
that now the amount of cache memory to be tested 
is 16 Kbytes minus the length of the test routine. 

7.4 82385SX Cache Directory Testing 

Since the 82385SX does not directly access the 
data bus, it is not possible to easily complete a com­
parison of the cache directory. (The 82385SX can 
serially transmit its directory contents. See Section 
7.5.) However, the cache memory tests described in 
Section 7.3 will indicate if the directory is working 
properly. Otherwise, the data comparison within the 
diagnostics will show locations which fail. 

There is a slight possibility that the cache memory 
comparison could pass even if locations within the 
directory gave false hit/miss results. This could 
cause the comparison to always be performed to 
main memory instead of the cache and give a proper 

comparison to the 386 SX. The solution here is to 
use the MISS# output of the 82385SX as an indica­
tor to a diagnostic port which can be read by the 
386 SX. It could also be used to flag an interrupt if a 
failure occurs. 

The implementation of these techniques in the diag­
nostics will assure proper functionality of the 
82385SX subsystem. 

7.5 Special Function Pins 

As mentioned in Chapter 3, there are three 82385SX 
pins which have reserved functions in addition to 
their normal operational functions. These pins are 
MISS#, WBS, and FLUSH. 

As discussed previously, the 82385SX performs a 
directory flush when the FLUSH input is held active 
for at least 4 ClK (8 ClK2) cycles. However, the 
FLUSH pin also serves as a diagnostic input to the 
82385SX. The 82385SX will enter a reserved mode 
if the FLUSH pin is high at the falling edge of RE­
SET. 

If, during normal operation, the FLUSH input is ac­
tive for only one ClK (2 ClK2) cycle/s, the 82385SX 
will enter another reserved mode. Therefore it must 
be guaranteed that FLUSH is active for at least the 4 
ClK (8 ClK2) cycle specification. 

WBS and MISS# serve as outputs in the 82385SX 
reserved modes. 

8.0 MECHANICAL DATA 

8.1 Introduction 

This chapter discusses the physical package and its 
connections in detail. 

8.2 Pin Assignment 

The 82385SX PGA pinout as viewed from the top 
side of the component is shown by Figure 8-1. Its 
pinout as viewed from the Pin side of the component 
is shown in Figure 8-2. 

The 82385SX Plastic Quad Flat Pack (PQFP) pinout 
from the top side of the component is shown by Fig­
ure 8-3. 

Vee and Vss connections must be made to multiple 
Vee and Vss (GND) pins. Each Vee and Vss must 
be connected to the appropriate voltage level. The 
circuit board should include Vee and GND planes for 
power distribution and all Vee and Vss pins must be 
connected to the appropriate plane. 
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P N L K H G F E D C B A 

o 0 0 0 0 0 0 0 0 0 '0 0 0 0 
Vee VSS Vee RES RES A21 AlB A17 AI. All AB Vee VSS AS 

2 0 o o o o b o o o o o o o o 
Vss VSS A23 RES RES A22 A20 A16 A13 AID A7 A6 A2 SAl 

3 0 o o o o o o o o o o o o o 
Vee NA# READYO# RES RES RES A19 AIS A12 A9 A4 A3 Al SA2 

4 0 o o o o o 
Vss CALEN LDSTB SA3 SA4 SA6 

S 0 0 0 o 0 b 
RES CT/R# CSO# SAS SA9 SAB 

6 0 o o o o o 
CWEB # RES CSI # SA7 SAID SA12 

7 0 o o o 00 
COEA# CWEA# COEB# SAIl SAl. SA13 

B 0 o o o o o 
BRDYEN # MISS # WBS SA17 SA15 SA16 

9 0 o o o o o 
BLOCK # BADS # BAOE # SA21 SAIB SA19 

10 0 o o o o o 
BACP BT/R # DOE # RES RES SA20 

11 0 o o o o o 
Vee BHOLD BHLDA RES RES SA22 

12 0 o o o o o o o o o o 00, 0 
Vss BBHE# BBLEN RES BRESET SEN RES NCA# D/CN FLUSH 2W/DN SA23 RES RES 

13 0 o o o o o o o o 0 o o 
Vee Vee . RES BCLK2 BREADY# SSTBe BHE# RES LOCKH ADSH RESET CLK2 MIS # RES 

14 O' 0 o o 0 0 00 0 0 0 0 o 0 
VSS Vss Vss RES BNA# RES LBAN BLE# WiRe M/IOH READYIH Vee vss DErOE# 

290222-42 

Figure 8-1. 82385SX PGA Pinout-View from TOP Side 
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/ 
.0 

AS 

2. 0 
SAl 

3 0 
SA2. 

4 0 

B C 

o 0 
VSS Vee 

o o 
A2. A6 

o o 
Al A3 

o o 
SA6 SA4 SA3 

5 0 o o 
SAS SA9 SAS 

6 0 o o 
SAl2. SA10 SA7 

7 0 o o 
SA13 SA14 SAll 

8 0 o o 
SA16 SA1S SA17 

9 0 o o 
SA19 SA18 SA2.1 

10 0 o o 
SA2.0 RES RES 

II 0 o o 

D 

o 
AS 

o 
A7 

o 
A4 

, 82385SX 

E f G H K l N P 

o 0 0 0 0 0 0 000 
All A14 A17 A18 A2.1 RES RES Vee VSS Vee 

o o o o o o o o o o 
Al0 AI3 AI6 A2.0 A2.2. RES RES A2.3 VSS VSS 

o o o o o o o o o o 
A9 AI2. A1S A19 RES RES RES READYO# NA# Vee 

o o o 
LDSTB CAlEN Vss 

METAL LID o o o 
CSO # CT/R # RES 

o o o 
CSI # RES CWEB# 

o o o 
COEB # CWEA # COEA # 

o o o 
WBS MISS # BRDYEN # 

o o o 
BADE # BADS # BLOCK # 

o o o 
DOE # BT /R # BACP 

o o o 
SA2.2. .RES RES '--_________________ ---' BHlDA BHOlD Vee 

12. o o o 0 0 0 0 o 000 o 0 o 
RES RES SA2.3 2W/D# flUSH D/C# NCA# RES SEN BRESET RES BBlE# BBHE# VSS 

13 0 o o o o o o o o o o o o o 
RES M/S# ClK2. RESET ADS# lOeK# RES BHE# SSTB# BREADY# BClK2. RES Vee Vee 

14 o 0 o 0 0 0 o o o o o o o o 
DEfOE # VSS Vee READYI# M/IO# W/R# BlE# lBAI! RES BNA# RES Vss Vss VSS 

290222-43 

Figure 8-2. 82385SX PGA Pinout-View from PIN Side 
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82385SX 

82385SX 

132-LEAD 

PLASTIC QUAD FLAT PACK (PQFP) 

(TOP VIEW) 

Figure 8·3. 82385SX PQFP Pinout-View from TOP Side 
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Table 8·1. 82385SX Pinout-Functional Grouping 

PGA PQFP Signal PGA PQFP Signal PGA PQFP Signal PGA PQFP Signal 

M2 65 A23 G12 114 NCA# N3 67 NA# N5 70 CT/R# 
J2 57 A22 H14 113 LBA# 
J1 56 A21 014 122 READYI# E12 124 FLUSH P8 83 BRDYEN# 
H2 55 A20 M3 66 READYO# M8 84 WBS K13 105 BREADY# 
H3 54 A19 N8 85 MISS# P10 91 BACP 
H1 53 A18 C12 130 SA23 A14 128 DEFOE# M9 90 BAOE# 
G1 52 A17 A11 8 SA22 B13 129 M/S# N10 93 BT/R# 
G2 49 A16 C9 9 SA21 012 127 2W/D# 
G3 48 A15 A10 10 SA20 M10 92 DOE# A12 1 RESERVED 
F1 47 A14 A9 11 SA19 M4 68 LDSTB A13 2 RESERVED 
F2 46 A13 B9 12 SA18 B10 3 RESERVED 
F3 45 A12 C8 13 SA17 N11 97 BHOLD B11 4 RESERVED 
E1 44 A11 A8 14 SA16 M11 94 BHLDA B12 7 RESERVED 
E2 43 A10 B8 15 SA15 C10 58 RESERVED 
E3 42 A9 B7 18 SA14 B1 5 Vss C11 59 RESERVED 
01 41 A8 A7 19 SA13 B14 16 Vss G13 60 RESERVED 
02 40 A7 A6 20, SA12 M14 27 Vss H12 61 RESERVED 
C2 39 A6 C7 21 SA11 N1 50 Vss J3 62 RESERVED 
A1 38 A5 B6 22 SA10 N2 71 Vss J14 63 RESERVED 
03 37 A4 B5 23 SA9 N14 79 Vss K1 64 RESERVED 
C3 36 A3 A5 24 SA8 P2 87 Vss K2 75 RESERVED 
B2 35 A2 C6 25 SA7 P4 95 Vss K3 76 RESERVED 
B3 34 A1 A4 26 SA6 P12 115 Vss L1 100 RESERVED 
G14 112 BLE# C5 29 SA5 P14 - Vss L2 101 RESERVED 
H13 111 BHE# B4 30 SA4 L3 102 RESERVED 

C4 31 SA3 N9 89 BADS# L12 109 RESERVED 
C13 126 CLK2 A3 32 SA2 M12 98 BBLE# L14 110 RESERVED 
013 125 RESET A2 33 SA1 N12 99 BBHE# M13 117 RESERVED 
K12 104 BRESET J12 107 SEN# P9 86 BLOCK# N6 131 RESERVED 
L13 103 BCLK2 J13 108 SSTB# P5 132 RESERVED 

K14 106 BNA# 
F14 119 W/R# C1 6 Vee 
F12 120 D/C# C14 17 Vee N4 69 CALEN 
E14 121 MIIO# M1 28 Vee P7 81 COEA# 
F13 118 LOCK # N13 51 Vee M7 82 COEB# 
E13 123 ADS# P1 72 Vee N7 77 CWEA# 

P3 80 Vee P6 78 CWEB# 
P11 88 Vee M5 73 CSO# 
P13 96 Vee M6 74 CS1# 
- 116 Vee 
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8.3 Package Dimensions and 
Mounting 

. These come in a choice of terminals such as solder­
tail, surface mount, or wire wrap. 

The 82385SX PGA package is a 132-pin ceramic 
Pin Grid Array. The pins are arranged 0.100 inch 
(2.54 mm) center-to-center, in a 14 x 14 matrix, 
three rows around. 

The 82385SX PQFP is a 132-lead Plastic Quad 
Flat Pack. The pins are "fine pitch", 0.025 inches 
(0.635 mm) center to center. . 

A wide variety of available PGAsockets allow low 
insertion force or zero insertion force mounting. 

The PQFP device is intended to be surface mounted 
directly to the printed board alt!1ough sockets are 
available for this device .. 

·@@@@@@I'@@@@@@@ 
2 @@@@@@@@@@@@@@ 
3 @@@l@@@@'@@@@@l@@ 
4 @@@ @@@ 
5 @@@ , @@'@ 

6 @@@ I @@@ 

7 @@@ +. @@@ 
8 -@@@ -- . -- @@@ 

9 @@@ I @@@ 
10 @@@ @@@ 
11 @@@ @@@ 
12 @@@l@@@@,@@@@ @@ 
13 @ @ @ @ @ @ (e)1(e) (it) (it) @ @ @ @ 

1411@ ~ ~ @ @@ @!@ @ @@ @ @ @ II 
C D E f G H J K L M N P Ii .020 (0.508) .020 -I 

MIN TYP (0.508) 
.070 (1.777) DIA 
TYP BRAZE PAD . 

1------1.450 (36.802) • 

.725 (18.401) 

.650 (16.497) 

.550 (13.959) 

.450 (11.421) 

.350 (8.883) 

.250 (6.345) 
;150 (3.807) 
.050 (1.269) 

0, 

SWEDGE:PIN 
STANDOff 
(4) PLACES 

.001 (0.025) R 
MIN TYP 

.018 (0.47) -, ==C~ 
DlATYP L~ 

f:iJ' .~ 
.165 (4.189) 

.110(2.792) 

290222-44 

Figure 8-3.1. 132-Pin PGA Package Dimensions 
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mm (inch) 

mm (inch) 

mm (inch) 

82385SX 

~ 2.22 (.2BB)@) C A®-B® D® 
A 

rBASE PLANE 

I-Al 

c- SEATING PLANE 
o 2.111 (.BB4) 

Figure 8-3.2. Principal Dimensions and Datums 

ri~· 
~ 2.25 "B1B)@) C A®-B® D®lA,. 
-L • BlI2 MM/MM (IN/IN) A-B 

Dl 
~ 2.25 (.1112)@) C A®-B® D®lA,. 

I-LI .11112 MM/MM (IN/IN) A-B 

_~11111111111. t 
3.81 (.1511) MAX TYP 

E2 Ell 

, 
rSEE DETAIL M 
) 

'-' - I- 1. 91 (. B75) MAX TYP 

~ IL25 (.lI1ll)@) C A®-B® D® 
-L .11112 MM/MM (IN/IN) D 

~ IB.25 Ul2l@)ICIA®-B®ID®lA 
-L1.lIl12 MM/MM (IN/IN) IDI 

Figure 8-3.3. Molded Details 

SEE DETAIL L 

4--I+--SEE DETAIL J 

t---- 03/E3 -----l 

1-----04/E4 -----I 

f------O/E -----I 

290222-58 

290222-59 

290222-60 

Figure 8-3.4. Terminal Details 
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mm (inch) 

mm (inch) 

82385SX 

I $11l.13 (.IlB5)@ Ie IA®-B® ID® ~ 

AAB.41 

~." 

1l.31 (.1l12)-I1-
1l.21l (.IlIlS) 

LB1b) 
I. BlIS) 

11.211 (.IIlIS) 
L.JIIo--rr 11.14 (.11115) 

S LiEG. 
II DEB. 

Figure 8-3.5. Typical Lead 

f 
1.32 (.1152) 
1.22 LB48) ~ 

1l.911 <'.1l35) MIN. 

2.113 (.1l8Bl 
1.93 (,1171.) 

--~---D2----~ 

Figure 8-3.6. Detail M 
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PLASTIC QUAD ~LAT ~ACK 

Letter or 
Symbol 

A 

A1 

DIE 

D1/E1 

D2/E2 

D3/E3 

L1 

N 

Tab!e 8-3.1. Symbol List for P!astie Quad F!at Pack 

Description of Dimensions 

Package height: distance 
from seating plane to 
highest point of body 

Standoff: Distance from 
seating plane to base plane 

Overall package dimension: 
lead tip to lead tip 

Plastic body dimension 

Bumper Distance 

Footprint 

Foot length 

Total number of leads 

NOTES: 
1. All dimensions and tolerances conform to ANSI Y14.5M· 
1962. 
2. Datum plane ·H· located at the mold parting line and 
coincident with the bottom of the lead where lead exits 
plastic body. 
3. Datums A-B and -0- to be determined where center 
leads exit plastic body at datum plane -H-. 
4. ContrOlling DimE1nsion, Inch. . 
5. Dimensions 01, 02, E1 and E2 are measured at the 
mold parting line and do not include mold protrusion. Al­
lowable mold protrusion of 0.16 mm (0.007 in) per side. 
6. Pin 1 identifier is located within one of the two zones 
indicated. 
7. Measured at datum plane -H-. 
8. Measured at seating plane datum -Co. 
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Symbol 

N 

A 

A1 

D,E 

D1, E1 

D2,E2 

D3,E3 

L1 

Issue 

82385SX 

Table 8-3.2. PQFP Dimensions and Tolerances 

Intel Case Outline Drawings Intel Case Outline Drawings 
Plastic Quad Flat Pack Plastic Quad Flat Pack 

0.025 Inch Pitch 0.64 mm Pitch 

Description Min Max Symbol Description Min Max 

Leadcount 132 N Leadcount 132 

Package Height 0.160 0.170 A Package Height 4.06 4.32 

Standoff 0.020 0.030 A1 Standoff 0.51 0.76 

Terminal Dimension 1.075 1.085 D,E Terminal Dimension 27.31 27.56 

Package Body 0.947 0.953 D1, E1 Package Body 24.05 24.21 

Bumper Distance 1.097 1.103 D2, E2 Bumper Distance 27.86 28.02 

Lead Dimension 0.800 REF D3,E3 Lead Dimension 20.32 REF 

Foot Length 0.020 

IWS Preliminary 1/15/87 

0.030 L1 Foot Length 0.51 

Issue IWS Preliminary 1/15/87 

MEASURE PGA CASE TEMPERATURE 
AT CENTER OF TOP SURFACE 

290222-45 

Figure 8-3.7. Measuring 82385SX PGA Case Temperature 
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Table 8-3.3. 82385SX PGA Package Typical Thermal Characteristics 

Thermal Reslstance-°C/Watt 

Alrflow-f3/mln (m3/sec) 

Parameter 0 50 100 200 400 600 800 
(0) (0.25) (0.50) (1.01) (2.03) (3.04) (4.06) 

(J Junction-to-Case 2 2 2 2 2 2 2 
(Case Measured as Figure 8-3.7) 

a roo,..,..,.. ."" ,,_"'; .... "+ v VCloi:n;;;-,,,,-n"'U''QI'' 19 H! 17 15 12 10 9 
(No Heatsink) 

(J Case-io-Ambient 16 15 14 12 9 7 6 
(with Omnidirectional Heatsink) 

(J Case-to-Ambient 15 14 13 11 8 6 5 
(with Unidirectional Heatsink) 

NOTES: 
1. Table 8-3.4 applies to S2385SX PGA plugged into socket or soldered directly onto board. 
2. OJA = OJC + 0CA. 
3. OJ.CAP = 4"C/W (approx.) 

OJ.PIN = 4"C/W (inner pins) (approx.) 
OJ.PIN = S"C/W (outer pins) (approx.) 

.8Ja 

8JPlnrr 
8Jc 

8J cap I 
UU 

I 

UUU 
290222-46 

Table 8-3.3. 82385 PQFP Package Typical Thermal Characteristics 

~'--'----------------------~----------------~ 
Thermal ResistaiiC6-°C/V/aH 

Alrflow-f3/min (m3/sec) 

Parameter 0 50 

'~ 
400 

(0) (0.25) (0.50) . 1) (2.03) 

(J Junction-to-Case 
(Case Measured as Figure 8-3.7) 

~-8 Case-to-Ambient , 

(No Heatsink) 

(J Case-to-Ambient 

~" (with Omnidirectional Heatsink) 

(J Case-to-Ambient 
.~ ~ (with Unidirectional Heatsink) 

NOTES: 
1. Table 8-3.3 applies to S23S5SX PQFP plugged into socket or soldered directly onto board. 
2. OJA = OJC + 0CA· . 
3. OJ.cAP = 4"C/W (approx.) 

OJ.PIN = 4"C/W (inner pins) (approx.) 
0J.PIN = S"C/W (outer pins) (approx.) 
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8.4 Package Thermal Specification 

The case temperature should be measured at the 
center of the top surface as in Figure 8-3.7 for PGA 
or Table 8-3.3 for PQFP. The case temperature may 
be measured in any environment to determine 
whether or not the 82385SX is within the specified 
operating range. 

9.0 ELECTRICAL DATA 

9.1 Introduction 
\ 

This chapter presents the A.C. and D.C specifica­
tions for the 82385SX. 

9.2 Maximum Ratings 

Storage Temperature .......... - 65°C to + 150°C 

Case Temperature under Bias ... - 65°C to + 110°C 

Supply Voltage 
with Respect to VSS ........... -0.5V to +6.5V 

Voltage on Any Other Pin .... -0.5V to Vcc + 0.5V 

NOTE: 
Stress above those listed may cause permanent 
damage to the device. This is a stress rating only 
and functional operation at these or any other con­
ditions above those listed in the operational sec­
tiMs of this specification is not implied. 

Exposure to absolute maximum rating conditions for 
extended periods may affect device reliability. Al­
though the 82385SX contains protective circuitry to 
resist damage from static electric discharges, al­
ways take precautions against high static voltages 
or electric fields. 

9.3 D.C. Specifications TCASE = O°Cto +B5°C;Vcc = 5V ±5%;Vss = OV 

Table 9·1. D.C. Specifications (16 MHz and 20 MHz) 

Symbol Parameter Min Max Unit Test Condition 

Vil Input Low Voltage -0.3 O.B V (Noe 1) 

VIH Input High Voltage 2.0 Vcc + 0.3, V 

VCl CLK2, BCLK2 Input Low -0.3 O.B V (Note 1) 

VCH CLK2, BCLK2 Input High VCC - 0.8 VCC"+ 0.3 V 

VOL Output Low Voltage 0.45 V IOl = 4mA 

VOH Output High Voltage 2.4 V IOH = -1 mA 

IcC Power Supply Current 275 mA (Note 2) 

III Input Leakage Current ±15 JkA OV < VIN < Vce 

ILO Output Leakage Current ±15 JkA 0.45V < VOUT < Vce 

CIN Input Capacitance 10 pF (Note 3) 

CClK CLK2 Input Capacitance 20 pF (Note 3) 

NOTES: 
1. Minimum value is not 100% tested. 
2. Icc is specified with inputs driven to CMOS levels. Icc may be higher if driven to TTL levels. , 
3. Sampled only. 
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9.4 A.C. Specifications 

The A.C. specifications given in the following tables 
consist of output delays and input setup require­
ments. The A.C. diagram's purpose is to illustrate 
the clock edges from which the timing parameters 
are measured. The reader should not infer any other 
timing relationships from them. For specific informa­
tion on timing relationships between signals, refer to 
the appropriate functional section. 

.6. r.. Qru!II'" rnOOQllr.orru:!ont il! rf.o.fin.o.rf In Cinllr.o 0_1 1"_ 
, ... _ ....... """" ••• ""'_ ................... 11 •• "'" .......... ,.""_ III I ItJ ............. I •• 1. 

puts must be driven to the levels shown when A.C. 
specifications are measured. 82385SX output delays 

CLK2 [ 2V 

are specified with mlntmum and maximum limits, 
which are measured as shown. 82385SX input setup 
and hold times are specified as minimums. and de­
fine the smallest acceptable sampling window. With­
in the sampling window, a synchronous input signal 
must be stable for correct 82385SX operation. 

9.4.1 FREQUENCY DEPENDENT SIGNALS 

The 82385SX has signals whose output valid delays 
are dependent on the clock frequency. These sig­
nais are marked in the A.C. Speciiication Tabies with 
a Note 1. 

3.0V ---.... -~;m~~;:...--+--

3.0V ~~.....;--+--_ ........ 

LEGEND: 
A-Maximum output deh:iY speci1icatiuii 
B-Minimum output delay specification 
C-Minimum inpui seiup speciiicaiion 
D-Minimum input hold specificati9n 

NOTES: 

NOTE 2 

1. Under rated loading 82385SX output (tr and t,) is typically s: 4.0 ns from 0.8V to 2.0V. 
2. Input waveforms have t,. s: 2.0 ns from 0.8V to 2.0V. . 

Fig~re 9-1. Drive Levels and Measurement Points for A.C. Specification 

4-604 

290222-47 



inter 82385SX 

A.C. SPECIFICATION TABLES 
Functional operating range: Vee = 5V ±5%; TeASE = DoC to +85°C 

Table 4.1. A.C. Specifications at 16 MHz 

Symbol Parameter Min Max Units Notes 

t1 Operating Frequency 15.4 16 MHz 

t2 CLK2, BCLK2 Period 31.25 32.5 ns 

t3a CLK2, BGLK2 High Time @ 2V 10 ns 

t3b GLK2, BCLK2 High Time @ 3.7V 7 ns 3 

t4a GLK2, BCLK2 Low Time @ 2V 10 ns 

t4b GLK2, BGLK2 Low Time @ 0.8V 7 ns 3 

t5 GLK2, BGLK2 Fall Time 8 ns 3,9 

t6 CLK2, BCLK2 Rise Time 8 ns 3,9 

t7a A4-A12 Setup Time 30 ns 1 

t7b LOCK # Setup Time 19 ns 1 

t7c BLE #, BHE # Setup Time 21 ns 1 

t7d A1-A3, A13-A23 Setup Time 23 ns 1 

t8 A1-A23, BLE#, BHE#, LOCK# Hold 3 ns 

t9a M/IO#, D/C# Setup Time 30 ns 1 

t9b W/R# Setup Time 30 ns 1 

t9c ADS# Setup Time 30 ns 1 

t10 M/IO#, D/C#, W/R#, ADS# Hold Time 5 ns 

t11 READYI# Setup Time 19 ns 1 

t12 READYI # Hold Time 4 ns 

t13a1 NCA# Setup Time (See t55b2) 27 ns 6 

t13a2 NCA# Setup Time (See t55b3) 20 ns 6 

t13b LBA # Setup Time 16 ns 

t14a NGA # Hold Time 4 ns 

t14b LBA# Hold Time 4 ns 

t15 RESET, BRESET Setup Time 13 ns 

t16 RESET, BRESET Hold Time 4 ns 

t17 NA# Valid Delay 12 42 ns 1 (25 pF Load) 

t18 READYO# Valid Delay 3 31 ns 1 (25 pF Load) 

t19 BRDYEN # Valid Delay 3 31 ns 

t21a1 CALEN Rising, PHI1 3 30 ns 

t21a2 GALEN Falling, PHI1 3 30 ns 

t21a3 GALEN Falling in T1 P, PHI2 3 30 ns 

t21b CALEN Rising Following CWTH 3 39 ns 1 

t21c GALEN Pulse Width 10 ns 

t21d GALEN Rising to CS# Falling 13 ns 
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A.C. SPECIFICATION TABLES (Continued) 
Functional operating range: Vcc = 5V ±5%; TeAsE = O·C to +85·C 

Table 4.1. A.C. Specifications at 16 MHz (Continued) 

Symbol Parameter Min Max Units Notes 

t22a1 CWEx# Falling, PHI1 (CWTH) 4 31 ns 1 

t22a2 CWEX# Falling, PHI2 (CRDM) 4 31 . ns 1 

t22b CWEx# Pulse Width 40 ns 1,2 

t22ci GWEx# Rising, PHii (GVVTH) 4 3i ns i 

t22c2 CWE~~Rising, PHI2 (CRDM) 4' 31 ns 1 

t23a1 CS1 #, CS2# Rising, PHI1 (CRDM) 6 41 ns 1 

t23a2 CS1 #, CS2# Rising, PHI2 (CWTH) 6 41 ns 1 

t23a3 CS1 #, CS2 # Falling, PHI1 (CWTH) 6 41 ns 1 

t23a4 CS1 #, CS2 # Falling, PHI2 (CRDM) 6 41 ns 1 

t24a1 CTfR# Rising, PHI2 (CRDH) 6 43 ns 1 

t24a2 CTfR# Falling, PHI1 (CRDH) 6 43 ns 1 

t24a3 CT fR # Falling, PHI2 (CRDH) 6. 43 ns 1 

t25a COEA#, COEB# Falling (Direct) 4 33 ns (25 pF Load) 

t25b COEA#, COEB# Falling (2·Way) 4 34 ns 1 (25 pF Load) 

t25c1 COEx# Rising Delay @ T CASE = OC 4 20 ns (25 pF Load) 

t25c2 COEx# Rising Delay@TcAsE = TMAX 4 20 ns (25 pF Load) 

t23b COEx# Falling to CSx# Rising 0 ns 

t25d CWEx# Falling to COEx# Falling or 0 10 ns (25 pF Load) 
CWEx# Rising to COEx# Rising 

t26 CSO#,CS1# FallingtoCWEx# Rising 40 ns 1,2 

127 CWEx# Faiiing to CSO#, CS i # Faiiing 0 ns 

+"lDft ""\AIr= .. ,4L 0: ... = __ .. .- r'"AI t=f\1 c: ... : __ n ns "'"Vel V,YL.,I\7r 11I"1I1~ LV VI"\L..L-I'\II l'I;:tIlI~ V 

t28b CWEx # Rising to CSO #, csa Falling 0 ns 

t31 SA(1-23) Setup Time 25 ns 

t32 SA(1-23) Hold Time 3 ns 

t33 BADS# Valid Delay 4 33 ns 1 

t34 BADS # Float Delay 4 33 ns 3 

t35 BNA# Setup Time 11 ns 

t36 BNA # Hold Time 15 ns 

t37 BREADY # Setup Time 31 ns 1 

t38 BREADY # Hold Time 4 ns 

t40a BACP Rising Delay 0 26 ns 

t40b BACP Falling Delay 0 28 ns 

t41 BAOE# Valid Delay 3 23 ns 
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A.C. SPECIFICATION TABLES (Continued) 
Functional operating range: Vcc = 5V ±5%; TCASE = O·C to +85·C 

Table 4.1. A.C. Specifications at 16 MHz (Continued) 

Symbol Parameter Min Max Units Notes 

t43a BT/R# Valid Delay 2 27 ns 

t43b1 DOE# Falling Delay 2 30 ns 

t43b2 DOE # Rising Delay @ T CASE = OC 3 23 ns 

t43b3 DOE # Rising Delay @ T CASE = T MAX 3 26 ns 

t43c LDSTB Valid Delay 2 33 ns 

t44a SEN Setup Time 15 ns 

t44b SSTB # Setup Time 15 ns 

t45 SEN, SSTB# Hold Time 5 ns 

t46 BHOLD Setup Time 26 ns 

t47 BHOLD Hold Time 5 ns 

t48 BHLDA Valid Delay 3 33 ns 

t55a BLOCK# Valid Delay 3 36 ns 1,5 

t55b1 BBxE# Valid Delay 3 36 ns 1,7 

t55b2 BBxE# Valid Delay 3 36 ns 1,7 

t55b3 BBxE# Valid Delay 3 43 ns 1,7 

t55c LOCK# Falling to BLOCK# Falling 0 36 ns 1,5 

t56 MISS# Valid Delay 3 43 ns 1 

t57 MISS #, BBxE #, BLOCK # Float Delay 4 40 ns 3 

t58 WBS Valid Delay 3 39' ns 1 

t59 FLUSH Setup Time 21 ns 

t60 FLUSH Hold Time 5 ns 

t61 FLUSH Setup to RESET Low 31 ns 

t62 FLUSH Hold from RESET Low 31 ns 
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A.C. SPECIFICATION TABLES 
Functional operating range: Vee = 5V ±5%; TeASE = O·C to +85·C 

A.C. Specifications at 20 MHz 

Symbol Parameter Min Max Units Notes 

t1 Operating Frequency 15.4 20 MHz 

t2 CLK2, BCLK2 Period 25 32.5 ns 

t3a CLK2, BCLK2 High Time @ 2V 10 ns 

t3b CLK2, BCLK2 High Time @ 3.7V 7 ns 3 

t4a CLK2, BCLK2 Low Time @ 2V 10 ns 

t4b CLK2, BCLK2 Low Time @ 0.8V 7 ns 3 

t5 CLK2, BCLK2 Fall Time 8 ns 3,9 

t6 CLK2, BCLK2 Rise Time 8 ns 3,9 

t7a1 A4-A 12 Setup Time 20 ns 1 

t7a2 A1-A3, A13-A19, A21-A23 Setup Time 18 ns 1 

t7a3 A20 Setup Time 16 ns 1 

t7b LOCK # Setup Time 16 ns 1 

t7c BLE#, BHE# Setup Time 18 ns' 1 

t8 A1-A23, BLE#,BHE#, LOCK# Hold 3 ns 

t9a MilO #, D/C # Setup Time 20 ns 1 

t9b W/R# Setup Time 20 ns 1 

t9c ADS# Setup Time 22 ns 1 

t10 M/IO#, D/C#, W/R#, ADS# Hold Time 5 ns 

t11 READYI # Setup Time 12 ns 1 

t12 READYI# Hold Time 4 ns 

I t13a1 INCA # Setup Time (See t55b2) 21 ns I 6 

t13a2 NCA # Setup Time (See t55b3) 16 ns 6 

t13b LBA# Setup Time 10 ns 

t14a NCA # Hold Time 4 ns 

t14b LBA # Hold Time 4 ns 

t15 RESET, BRESET Setup Time 12 ns 

t16 RESET, BRESET Hold Time 4 os I 

t17 NA# Valid Delay 12 34 ns 1 (25 pF Load) 

t18 READYO# Valid Delay 3 26 ns 1 (25 pF Load) 

t19 BRDYEN # Valid Delay 3 26 ns 

t21a1 CALEN Rising, PHI1 3 24 ns 

t21a2 CALEN Falling, PHI1 3 24 ns 

t21a3 CALEN Falling in T1 P, PHI2 3 24 ns 

t21b CALEN Rising Following CWTH 3 34 ns 1 

t21c CALEN Pulse Width 10 ns 
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A.C. SPECIFICATION TABLES (Continued) 
Functional operating range: Vee = 5V ±5%; TeAsE = O°C to +85°C 

A.C. Specifications at 20 MHz (Continued) 

Symbol Parameter Min Max Units Notes 

t21d CALEN Rising to CS# Falling 13 ns 

t22a1 CWEx# Falling, PHI1 (CWTH) 4 27 ns 1 

t22a2 CWEx# Falling, PHI2 (CRDM) 4 27 ns 1 

t22b CWEx # Pulse Width 30 ns 1,2 

t22c1 CWEx# Rising, PHI1 (CWTH) 4 27 ns 1 

t22c2 CWEx# Rising, PHI2 (CRDM) 4 27 ns 1 

t23a1 CS1 #, CS2# Rising, PHI1 (CRDM) 6 37 ns 1 

t23a2 CS1 #, CS2# Rising, PHI2 (CWTH) 6 37 ns 1 

t23a3 CS1 #, CS2# Falling, PHI1 (CWTH) 6 37 ns 1 

t23a4 CS1 #, CS2# Falling, PHI2 (CRDM) 6 37 ns 1 

t24a1 CT fR # Rising, PHI2 (CRDH) 6 38 ns 1 

t24a2 CTfR# Falling, PHI1 (CRDH) 6 38 ns 1 

t24a3 CT fR # Falling, PHI2 (CRDH) 6 38 ns 1 

t25a COEA#, COEB# Falling (Direct) 4 22 ns (25 pF Load) 

t25b COEA#, COEB# Falling (2-Way) 4 24.5 ns 1 (25 pF Load) 

t25c COEx # Rising Delay 5 17 ns (25 pF Load) 

CACHE SRAM WRITE CYCLES 

t23b COEx# Falling to CSx# Rising 0 ns 8 

t25d CWEx# Falling to COEx# Falling or 0 10 ns B (25 pF Load) 
CWEx# Rising to COEx# Rising 

t26 CSO #, CS1 # Falling to CWEx # Rising 30 ' ns 1,2 

. t27 CWEx# Falling to CSO#, CS1 # Falling 0 ns 

t28a CWEx# Rising to CALEN Rising 0 ns 

t28b CWEx# Rising to CSO#, CS1 # Falling 0 ns 

t31 SA(1-23) Setup Time 19 ns 

t32 SA(1-23) Hold Time 3 ns 

t33 BADS# Valid Delay 4 28 ns 1 

t34 BADS# Float Delay 4 30 ns 3 

t35 BNA# Setup Time 9 ns 

t36 BNA # Hold time 15 ns 

t37 BREADY # Setup Time 26 ns 1 

t38 BREADY # Hold Time '4 ns 

t40a BACP Rising Delay 0 20 ns 

t40b BACP Falling Delay 0 22 ns 
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A.C. SPECIFICATION TABLES (Continued) 
Functional operating range: Vcc = 5V ±5%; TCASE = O·C to +85·C 

A.C. Specifications at 20 MHz (Continued) 

Symbol Parameter Min Max Units Notes 

t41 BAOE# Valid Delay 3 18 ns 

t43a BT/R# Valid Delay 2 19 ns 

t43b1 DOE # Falling Delay 2 23- ns 

t43b2 DOE # Rising Delay @ T CASE = OC 4 17 ns 

t43b3 DOE # Rising belay @ T CASE = T MAX 4 19 ns 

t43c LDSTB Valid Delay 2 26 ns 

t44a SEN Setup Time 11 ns 

t44b SSTB# Setup Time 11 ns 

t45 SEN, SSTB# Hold Time 5 ns , 

t46 BHOLD Setup Time 17 ns 

t47 BHOLD Hold Time 5 ns 

t48 BHLDA Valid Delay 3 28 ns 

t55a BLOCK# Valid Delay 3 30 ns 1,5 

t55b1 BBxE# Valid Delay 3 30 ns 1,7 

t55b2 BBxE # Valid Delay 3 30 ns 1,7 

t55b3 BBxE # Valid Delay 3 36 ns 1,7 

t55c LOCK# Falling to BLOCK# Falling 0 30 ns 1,5 

t56 MISS# Valid Delay 3 35 ns 1 

t57 MISS #, BBxE #, BLOCK # Float Delay 4 32 ns 3 

t58 WBS Valid Delay 3 37 ns 1 

t59 FLUSH Setup Time 16 ns 

taO FLUSH Hold Time 5 ns 

t61 FLUSH Setup to RESET Low 26 ns 

ta2 FLUSH Hold from RESET Low 26 ns 

82385SX A.C. Specification Notes: 
1. Frequency dependent specifications. 
2. Used for cache data memory (SRAM) specifications. 
3. This parameter is sampled, not 100% tested. Guaranteed by design. 
5. BLOCK .. delay is either from 8PHI1 or from 388 LOCK # . Refer to Figures S·3K and S·3L in the B238SSX data shcet. 
6. NCA# setup time is now specified to the rising edge of BPHI2 in the state after 386 SX addresses become valid (either 
the state after the first T2 or after the first T2P). 
7. BBxE# Valid Delay is a function of NCA# setup. 

SBxE# valid delay: 
t5Sb1 For cacheable system bus accesses 
tSSb2 For NCA#-setup < t13al 
t55b3 For 113a2 < NCA# setup < 113al 

B. t23b and-t25d are only valid specifications when DEFOE# = Vcc'- Otherwise. if DEFOE# = Vss. COEx# is never 
asserted during cache SRAM write cycles. If DEFOE# = Vss. t23b and t25d are Not Applicable. 
9. t5 is measured from 0.8V to 3.7V. t6 is measured from 3.7V to 0.8V. 
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2.0V 

82385~X~ 
OUTPUT ..L 

. ~Cl 

290222-49 

Figure 9·3. A.C. Test Load 

290222-48 

Figure 9·2. CLK2, BCLK2 Timing 

386TM SX Interface Parameters 

PHI2 PHI1 PHI2 PHil 

CLK2 

CLK 

Al-A23~~~~~------~---____________ +-_______________ ~ ___ ~~~~~ 
BHE#. BlE# ...l~~"'IiUI---------I--------------+---------------+---__ p.~~~ lOCK# 

W/R#~~~~r-______ +-____________ -+ _______________ +-___ ~~~~~ 
11./10# ...l~~~Uf--------+---------------+-------------+------!".Io.~~~ D/C# 

READYI# 

OUTPUT DELAYS 

PHI2 PHil PHI2 PHI1 

CLK2 

CLK 

NA# ___ ~ _______________ -r _______________ ~"'~~~ ___ ~ _________ __ 

READYO# ___ ~ ____________ ~~~"~~ ___ +-______ -r ______ ~ _________ __ 

BRD~N# __ ~ ____________ ~~~~~~ ___ +-______ + ______ I-_________ __ 

290222,.50 
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TI,lP 

I PHI1 : PHI2 

CLK2 

CALEN 
-1"""""" 

82385SX 

Cache Write Hit Cycle 

T2 

I PHil : PHI2 

CSH -+----;.-""""'~OUI 

CWEH 

CT/RH 

(i) •• This would be 21 B if previous bus cycle was Cache Write Hit cycle. 

I PHil 

Cache Read Miss (Cache Update Cycle) 

TIP T2P 

I PHil : PHI2 I PHI1 ': PHI2 I PHil 

CLK2 

CALEN -,"'''''''''" 

CS# -+-"""'1""";'; 

: PHI2 

TIP 

: PHI2 

I ' 
23 MI!:!_ ...... :--2,2AMA,X~ __ ...... '-2.2A MAX ~ 
I ,U.A M''',~ .L ll,. ;U.A M''''--:L .JJ I :: f~~1:lUBr"'~"'Il"'?/}~I---;---"""'1 

(i) •. This would be 21 B if previous bus cycle was Cache Write Hit cycle. 

4-612 

290222-52 

290222-53 



PHil 

CLK2 

CALEN (T1) _+",.I..t.~ 

CS# 

82385SX 

Cache Read Cycle 

T1, T1 P 
PHI2 PHil 

CT/R# _+-____ -.,._ ...... __ """"'.l..t.J..,J;+_'" 

COE# --+-------~-------_W~~ 

T2, T2P 
PHI2 PHil 

(DIRECT MAPPED) '\..li"'~---i----------i''"'-'J 

COE# 
(2WAY) 

CALEN 
(T 1 P) ->I'-'-IJ..!.'J 

CD'. This would be 21 B if previous bus cycle was Cache Write Hit cycle. 

System Bus Interface Parameters 

BPHI2 BPHI1 BPHI2 

BCLK2 

BCLK 

SA1-SA23 

BPHII 

290222-54 

~~ .. ~~-~-------+-----~--~~~~ 
BNA# 

BREADY# 

SEN 
SSTB# 

BHOLD 
(MASTER CON FIG.) 

BHLDA 
(SLAVE CON FIG.) 

CD'. This would be 21 B if previous bus cycle was Cache Write Hit cycle. 
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System Bus Interface Parameters (Continued) 

OUTPUT DELAYS 

BCLK2 -
BCLK -

DAnC'll DD ~ .. 
... ,... ....... 7T' ..... ~IT 

BLOC 
MIS 

K# 
S# 

(VALID DEL AY) 

E# 
K# 

BADS#.BB 
BLOC 

MIS S# 

FLOAT DEL AY 

LD BHO 
(SLAVE CONF IG.) 

BS BHLDA.W 
(MASTER CONF IG.) 

BACP. BAO E# 

BPHI2 

r-\ 

I 

BT/R#.DOE# I 

LDSTB 

BACP 

DOE# 

BPHl1 

~ ~ 

~ If 

33 
55 

1--56-

~I/IX 

34 
1--57-

~I/IX 

1--51-

~I/IX 

48 
-58-

XI//IX 

40 
-41-

XII/IX 

-43A ...... ~43A--I 
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82385SX 

APPENDIX A 

82385 SX Signal Summary 

Signal 
Signal Function 

ActIve Input! Trl-State 
Group/Name State Output Output? 

386 SX iNTERFACE 

RESET 386 SX Reset High I -
A1-A23 386 SX Address Bus High I -
BHE#, BLE# 386 SX Byte Enables Low I -
CLK2 386 SX Clock - I -
READYO# Ready Output Low 0 No. 

BRDYEN# Bus Ready Enable Low 0 No 

READYI# 386 SX Ready Input Low I -
ADS# 386 SX Address Status Low I -
MIIO# 386 SX Memory / I/O Indication - I -
W/R# 386 SX Write/Read Indication - I -
D/C# 386 SX Data/Control Indication - I -
LOCK # 386 SX Lock Indication Low I -
NA# 386 SX Next Address Request Low 0 No 

CACHE CONTROL 

CALEN Cache Address Latch Enable High 0 No 

CT/R# Cache Transmit/Receive - 0 No 

CSQ#,CS1# I . Cache Chip Selects Low o No 

COEA#, COEB# i Cache Output Enables i Low i 0 i No 

CWEA#, CWEB# Cache Write Enables Low 0 No 

LOCAL DECODE 

LBA# 386 SX Local Bus Access Low I -
NCA# Non-Cacheable Access Low I -
STATUS AND CONTROL 

MISS# Cache Miss Indication Low 0 Yes 

WBS Write Buffer Status High 0 No 

FLUSH Cache Flush High I -
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82385SX Signal Summary (Continued) 

Signal 
Signal Function 

Active Input! Tri-State 
Group/Name State Output Output? 

82385SX INTERFACE 

BREADY# 82385SX Ready Input Low I -
BNA# 82385SX Next Address Request Low I -
BLOCK# 82385SX Lock Indication Low 0 Yes 

BADS# 82385SX Address Status Low 0 Yes 

BBHE#, BBLE# 82385SX Byte Enables Low 0 yes 

OAT AI AOOR CONTROL 

LDSTB Local Data Strobe Pos.Edge 0 No 

DOE# Data Output Enable Low 0 No 

BT/R# Bus Transmit/Receive - 0 No 

BACP Bus Address Clock Pulse Pos.Edge 0 No 

BAOE# Bus Address Output Enable Low 0 No 

CONFIGURATION 

2W/D# 2-Way/Direct Map Select - I -
M/S# Master/Slave Select - I -
DEFOE# Define Cache Output Enable - I -
COHERENCY 

SA1-SA23 Snoop Address Bus High I -
SSTB# Snoop Strobe Low I -
SEN Snoop Enable High I -
ARBITRATION 

BHOLD Hold High - I/O No 

BHLDA Hold Acknowledge High I/O No 
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82380 
HIGH PERFORMANCE 32-BIT DMACONTROLLER WITH 

INTEGRATED SYSTEM SUPPORT PERIPHERALS 
High Performance 32-Bit DMA • Programmable Wait State Generator 
Controller - 0 to 15 Wait States Pipelined 
- 50 MBytes/sec Maximum Data -1 to 16 Wait States Non-Pipelined 

Transfer Rate at 25 MHz • DRAM Refresh Controller 
- 8 Independently Programmable 

Channels • 80386 Shutdown Detect and Reset 

20-Source Interrupt Controller 
C~ntre! 
- Software/Hardware Reset 

-Individually Programmable Interrupt 
Vectors • High Speed CHMOS III Technology 

-15 External, 5 Internal Interrupts • 132-Pin PGA Package 
- 82C59A Superset • Optimized for use with the 80386 
Four 16-Bit Programmable Interval Microprocessor 
Timers - Resides on Local Bus .for Maximum 
- 82C54 Compatible Bus Bandwidth 

The 82380 is a multi-function support peripheral that integrates system functions necessary in an 80386 
environment. It has eight channels of high performance 32-bit DMA with the most efficient transfer rates 

. possible on the 80386 bus. System support peripherals integrated into the 82380 provide Interrupt Control, 
Timers, Wait State generation, DRAM Refresh Control, and System Reset logic. 

The 82380's DMA Controller can transfer data between devices of different data path widths using a single 
channel. Each DMA channel operates independently in any of several modes. Each channel has a temporary 
data storage register for handling non-aligned data without the need for external alignment logic. 

80386 LOCAL BUS 

~"-DII 

8-CHANNEL 
DMA 

CONTROLLER 

·TIMER 0 

TIMER 1 

TIMER 2 

TIMER 3 

- - - - - - - - - - - - -:- - - - - - - - - - - - _. 290128-1 

82380 Internal Block Diagram 
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inter 82380 

1.0 FUNCTIONAL OVERVIEW 

The 82380 contains several independent functional 
modules. The following is a brief discussion of the 
components and features of the 82380. Each mod­
ule has a corresponding detailed section later in this 
data sheet. Those sections should be referred to for 
design and programming information. 

1.1 82380 Architecture 

The 82380 is comprised of several computer system 
functions that are normally found in separate LSI 
and VLSI components. These include: a high-per­
formance, eight-channel, 32-bit Direct Memory Ac­
cess Controller; a 20-level Programmable Interrupt 
Controller which is a superset of the 82C59A; 'four 
16-bit Programmable Interval Timers which are func­
tionally equivalent to the 82C54 timers; a DRAM Re­
fresh Controller; a Programmable Wait State Gener­
ator; and system reset logic. The interface to the 
82380 is optimized for high-performance operation 
with the 80386 microprocessor. 

The 82380 operates directly on the 80386 bus. In 
the Slave mode, it monitors the state of the proces-

sor at all times and acts or idles according to the 
commands of the host. It monitors the address pipe­
line status and generates the programmed number 
of wait states for the device being accessed. The 
82380 also has logic to reset the 80386 via hard­
ware or software reset requests and processor shut­
down status. 

After a system reset, the 82380 is in the Slave 
mode. It appears to the system as an liD device. It 
becomes a bus master when it is performing DMA 
transfers. . 

To maintain compatibility with existing software, the 
registers within the 82380 are accessed as bytes. If 
the internal logic of the 82380 requires a delay be­
fore another access by the processor, wait states 
are automatically inserted into the access cycle. 
This allows the programmer to write initialization rou­
tines, etc. without regard to hardware recovery 
times. 

Figure 1-1 shows the basic architectural compo­
nents of the 82380. The following sections briefly 
discuss the architecture and function of each of the 
distinct sections of the 82380. 

80386 LOCAL BUS 

I 
I 

HOLD HOLDA _ INTERNAL BUS 
• . ARBITRA nON 

CLK2 -L-. AND CONTROL 
I 

READY# 
READYO# 

WSCO 
WSC1~~~ ______ ~ 

TOUT1/REF# 

lSIRQ# , 

INT 
I 
I 

RESET -.- CPU 
CPURST RESET 

DREQO 
• • 
• 

DREQ7 

EDACKO 

EDACKl 

EDACK2 

EOP# 

.--."_---.-- TOUT2# 
1------1 

TOUT3# 

" ___________________ __ L ___ ..::._:::.:.. ___ .....; .. _ CLKIN 

Figure 1-1_ Architecture of the 82380 
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1.1.1 DMA CONTROLLER 

The 82380 contains a high·performance, 8·channel, 
. 32·bit DMA controller. It is capable of transferring 

any combination of bytes, words, and double words. 
The addresses of both source and distination can be 
independently incremented, decremented or held 
constant, and cover the entire 32-bit physical ad­
dress space of ,he 80386. It can disassemble and 
assemble misaligned data via a 32-bit internal tem­
porary data storage register. Data transferred be­
tween devices of different data path widiils can aiso 
be assembled and disassembled using the internal 
temporary data storage register. The DMA Controller 
can also transfer aligned data between I/O and 
memory on the 'fly, allowing data transfer rates up to 
32 megabytes per second for an 82380 operating at 
16 MHz. Figure 1-2 illustrates the functional compo­
nents of the DMA Controller. 

There are twenty-four general status and command 
registers in the 82380 DMA Controller. Through 
these registers any of the channels may be pro­
grammed into any of the possible modes. The oper­
ating modes of anyone channel are independent of 
the operation of the other channels. 

Each channel has three programmable registers 
which determine the location and amount of data to 
be transferred: 

Byte Count Register-Number of bytes to trans­
fer. (24-bits) 

Requester Register-Address of memory or pe­
ripheral which i~ requesting DMA service. (32-
bits) 

Target Register-Address of peripheral or mem­
ory which will be accessed. (32-bits) 

There are also port addresses which, when ac­
cessed, cause the 82380 to peifoim specific func­
tions. The actual data written does not matter, the 
act of writing to the specific address causes the 
command to be executed. 'The commands which op­
erate in this mode are: Master Clear, Clear Terminal 
Count Interrupt Request, Clear Mask Register, and 
Clear Byte Pointer Flip-Flop. 

DMA transfers can be done between all, combina­
tions of memory and I/O; memory-to-memory, mem­
ory-to-I/O, I/O-to-memory, and I/O-to-I/O. DMA 
,service can be requested through software and lor 
hardware. Hardware DMA acknowledge signals are 
available for all channels (except channel 4) through 
an encoded 3-bit· DMA acknowledge bus 
(EDACKO-2). 

HOLD~ CONTROL/STATUS REGISTERS CHANNEL REGISTERS 
HLDA 

DREQO 
DREQI 
DREQ2 
DREQ3 
DREQ4 
DREQS 
DREQ6 
DREQ7 

::::::t DMA I , REQUEST 
----. ARBITRATION 
----. LOGIC 

=: 

COMMAND REGISTER I 

COMMAND REGISTER II 

MODE REGISTER I 

MODE REGISTER II 

SOnwARE: RE:QUE:ST 
REGISTER 

MASK REGISTER 
STATUS REGISTER 

BUS SIZE REGISTER 

CHAINING REGISTER 

BASE CURRENT TEMPORARY 
BYTE COUNT BYTE COUNT REGISTER 

BASE CURRENT 
REQUESTER REQUESTER 

ADDRESS ADDRESS 

BASE CI)RRENT 
TARGET TARGET 

ADDRESS ADDRESS 

CHANNEL 1 (SAME AS CH 0) 
CHANNEL 2 (SAME AS CH 0) 
CHANNEL 3 (SAME AS CH 0) 

I "LOWER" GROUP or CHANNELS 

EDACKO +--

EDACKI ........:- PROCESS 
CONTROL 

EDACK2 +--

EOP# .......... 
I "UPPER" GROUP or CHANNELS 

CHANNEL 4 (SAME AS CH 0) 
CONTROL/STATUS CHANNEL S (SAME AS CH 0) 
(SAME AS 

CHANNEL 6 (SAME AS CH 0) LOWER GROUP) 
CHANNEL 7 (SAME AS CH 0) 

Figure 1-2. 82380 DMA Controller 
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The 82380 DMA controller transfers blocks of data 
(buffers) in three modes: Single Buffer, Buffer Auto­
Initialize, and Buffer Chaining. In the Single Buffer 
Process, the 82380 DMA Controller is programm.ed 
to transfer one particular block of data. Successive 
transfers then require reprogramming of the DMA 
channel. Single Buffer transfers are useful in sys­
tems where it is known at the time the transfer be­
gins what quantity of data is to be transferr~d, and 
there is a contiguous block of data area available. 

The Buffer Auto-Initialize Process allows the same 
data area to be used for successive DMA transfers 
without having to reprogram the channel. 

The Buffer Chaining Process allows a program to 
specify a list of buffer transfers to be executed. The 
82380 DMA Controller, through interrupt routines, is 
reprogrammed from the list. The channel is repro­
grammed for a new buffer before the current buffer 
transfer is complete. This pipelining of the channel 
programming process allows the system to allocate 
non-contiguous blocks of data storage space, and 
transfer all of the data with one DMA process. The 
buffers that make up the chain do not have to be in 
contiguous locations. 

Channel priority can be fixed or rotating. Fixed priori­
ty allows the programmer to define the priority of 
DMA channels based on hardware or other fixed pa­
rameters. Rotating priority is used to provide periph­
erals access to the bus on a shared basis. 

With fixed priority, the programmer can set any 
channel to have the current lowest priority. This al-

CONTROL H-.... 
LOGIC 

elKIN 

lows the user to reset or manually rotate the priority 
schedule without reprogramming the command reg­
isters. 

1.1.2 PROGRAMMABLE INTERVAL TIMERS 

Four 16·bit programmable interval timers reside 
within the 82380. These timers are identical in func­
tion to the timers in the 82C54 Programmable Inter­
val Timer. All four of the timers share a common 
clock input which can be independent of the system 
clock. The timers are capable of operating in six dif­
ferent modes. In all of the modes, the current count 
can be latched and read by the 80386 at any time, 
making these very versatile event timers. Figure 1-3 
shows the functional components of the Program­
mable Interval Timers. 

The outputs of the timers are directed to key system 
functions, making system design simpler. Timer 0 is 
routed directly to an interrupt input and is not avail­
able externally. This timer would typically be used to 
generate time-keeping interrupts. . 

Timers 1 and 2 have outputs which are available for 
general timer/counter purposes as well as special 
functions. Timer 1 is routed to the refresh control 
logic to provide refresh timing. Timer.2 is conne?ted 
to an interrupt request input to prOVide other timer 
functions. Timer 3 is a general purpose timer/coun­
ter whose output is available to external hardware. It 
is also connected internally to the interrupt request 
which defaults to the highest priority (I ROO). 

TOUTO (INTERNAL) 

TIMER 0 

TIMER 1 TOUT1 

TIMER 2 TOUT2# 

TIMER 3 TOUT3# 
290128-4 

Figure 1-3. Programmable Interval Timers-Block Diagram 
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1.1.3 INTERRUPT CONTROLLER 

The 82380 has the equivalent of three enhanced 
82C59A Programmable Interrupt Controllers. These 
controllers can all be operated in the Master mode, 
but the priority is always as if they were cascaded. 
There are 15 interrupt request inputs provided for 
the user, all of which can be inputs from external 
slave interrupt controllers. Cascading 82C59As to 
these request inputs allows a possible total of 120 
external interrupt requests. Figure 1-4 is a block dia~ 
_____ .I: ... t.._ nnnnn 1_.&. ___ •• _.1. ,... __ ... __ 11 __ 

~Ictlll UI LlI'=' o.c~ov II 1Lt:;\ii1I UI"'L \.IVllllUII~I. 

Each of the interrupt request inputs can be individu­
ally programmed with its own interrupt vector, allow­
ing more flexibility in interrupt vector mapping than 
was available with the 82C59A. An interrupt is pro­
vided to alert the system that an attempt is being 

IRQO# 
IRQ1# 
IRQ2# 
IRQ3# 
IRQ4# 
IRQ5# 
IRQ6# 
IRQ7# 

DATA (0-7) 

.. .. 

made to program the vectors in the method of the 
82C59A. This provides compatibility of existing soft-. 
ware that used the 82C59A or 8259A with neiN de­
signs using the 82380. 

In the 'event of an unrequested or otherwise errone­
ous interrupt acknowledge cycle; the 82380 Interrupt 
Controller issues a default vector. This vector, pro­
grammed by the system software, will alert the sys-

. tem of unsolicited interrupts of the 80386. 

,.. .... _ .t •• __ ... : ___ _ .t. ....... _ nnnnn 1_ ... _ ...... _.1. "' __ ..... _11_ ... _ .. _ 
lilt;:; IUII\.rLlUII~ VI LlIC U.ti:.\JIUU IIILt:lllUI-JL VUIILIUIIW'I Qlt;; 

identical to the 82C59A, except in regards to pro­
gramming the interrupt vectors as mentioned above. 
Interrupt request inputs are programmable as either 
edge or level triggered and are software maskable. 
Priority can be either fixed or rotating and interrupt 
requests can be nested: 

11'("".) 

IRQ4 
IRQ5 

IRQ6 
IRQ7 

...--___ .INTERRUPT 
TO HOST 

IN­
SERVICE 

REG. 

.. 
DATA (0-.7)" 

INDIVIDUALLY PROGRAMMABLE 
VECTOR BANK 

.--------------------------------82380 ENHANCEMENT OVER THE 82C59A 
2901~8-5 

Figure 1-4.82380 Interrupt Controller-Block Diagram 
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Enhancements are added to the 82380 for cascad­
ing external interrupt controllers. Master to Slave 
handshaking takes place on the data bus, instead of 
dedicated cascade lines. 

1.1.4 WAIT STATE GENERATOR 

The Wait State Generator is a programmable 
READY generation circuit for the 80386 bus. A pe­
ripheral requiring wait states can request the Wait 
State Generator to hold the processor's READY in­
put inactive for a predetermined number of bus 
states. Six different wait state counts can be pro­
grammed into the Wait State Generator by software; 
three for memory accesses and three for 1/0 ac­
cesses. A block diagram of the 82380 Wait State 
Generator is shown in Figure 1-5. 

The peripheral being accessed selects the required 
. wait state count by placing a code on a 2-bit wait 

state select bus. This code along with the M/IO# 
signal from the bus master is used to select one of 
six internal 4-bit wait state registers which has been 
programmed with the desired number of wait states. 
From zero to fifteen wait states can be programmed 
into the wait state registers. The Wait State Genera­
tor tracks the state of the processor or current bus 
master at all times, regardless of which device is the 
current bus master and regardless of whether or not 
the Wait State Generator is currently active. 

The 82380 Wait State Generator is disabled by mak­
ing the select inputs both high. This allows hardware 
which is intelligent enough to generate its own ready 
signal to be accessed without penalty. As previously 

mentioned, deselecting the Wait State Generator 
does not disable its ability to determine the proper 
number of wait states due to pipeline status in sub­
sequent bus cycles. 

The number of wait states inserted into a pipelined 
bus cycle is the value in the selected wait state reg­
ister. If the bus master is operating in the non-pipe­
lined mode, the Wait State Generator will increase 
the number of wait states inserted into the bus cycle 
by one. 

On reset, the Wait State Generator's registers are 
loaded with the value FFH, giving the maximum 
number of wait states for any access in which the 
wait state select inputs are active. -

1.1.5 DRAM REFRESH CONTROLLER 

The 82380 DRAM Refresh Controller consists of a 
24-bit refresh address counter and bus arbitration 
logic. The output of Timer 1 is used to periodically 
request a refresh cycle. When the controller re­
ceives the request, it requests access to the system 
bus through the HOLD signal. When bus control is 
acknowledged by the processor or current bus mas­
ter, the refresh controller executes a memory read 
operation at the address currently in the Refresh Ad­
dress Register. At the same time, it activates a re­
fresh Signal (REF #) that the memory uses to force a 
refresh instead of a normal read. Control of the bus 
is transferred to the processor at the completion of 
this cycle. Typically a refresh cycle will take six clock 
cycles to execute on an 80386 bus. 

INTERNAL WAIT STATE 
REQUIREMENT 

0403 DO 

MEMORY 0 I/O 0 
wsco 

WSCI 

1.1/10# 

REGISTER 
SELECT 
LOGIC 

MEMORY 1 I/O 1 

MEMORY 2 I/O 2 

(RESERVED) REFRESH 

PROGRAMMABLE WAIT STATE 
REGISTERS 

WAIT STATE 
COUNTER 

Figure 1-5. 82380 Wait State Generator-Block Diagram 
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The 82380 DRAM Refresh Controller has the high­
est priority when requesting bus access and will in­
terrupt any active DMA process. This allows large 
blocks of data to be moved by the DMA controller 
without affecting the refresh function. Also the DMA 
controller is not required to completely relinquish the 
bus, the refresh controller simply steals a bus cycle 
between DMA accesses. 

The amount by which the refresh address is incre­
mented is programmable to allow for different bus 
'Nidths and memory bank arrangements. 

1.1.6 CPU RESET FUNCTION 

The 82380 contains a special reset function which 
can respond to hardware reset signals from the 
82384, as well as a software reset command. The 
circuit will hold the 80386's RESET line active while 
an external hardware reset signal is present at its 
RESET input. It can also reset the 80386 processor 
as the result of a software command. The software 
reset command causes the 82380 to hold the proc­
essor's RESET line active for a minimum of 62 CLK2 
cycles; enough time to allow an 80386 to re-initialize. 

The 82380 can be programmed to sense the shut­
down detect code on the status lines from the 
80386. If the Shutdown Detect function is enabled, 
the 82380 will automatically reset the processor. A 
diagnostic register is available which can be used to 
determine the cause of reset. 

1.1.7 REGISTER MAP RELOCATION 

After a hardware reset, the internal registers of the 
82380 are located in I/O space beginning at port 
address OOOOH. The map of the 82380's registers is 
....... I"" ........ + ... hl,... .,i.... .... ........ 4=+ ... ,.. .............................. ,.. .... "" T ......... ....I .... , ..... 1+ 
...... VuQI.ClUI .... Yla a "VILvvaIO ,",VIIIII I ell IY. Illv \.AOIQU'I,. 

mapping places the 82380 between I/O addresses 
OOOOH and OODBH. The relocation register allows 
this map to be moved to any even 256-byte bounda­
ry in the processor's 16-bit I/O address space or any 
even 16-Mbyte boundary in the 32-bit memory ad­
dress space. 

1.2 Host Interface 

The 82380 is designed to operate efficiently on the 
local bus of an 80386 microprocessor. The control 

signals of the 82380 are identical in function to 
those of the 80386. As a slave, the 82380 operates 
with all of the features available on the 80386 bus. 
When the 82380 is in the Master mode, it looks iden­
tical to the 80386 to the connected devices. 

The 82380 monitors the bus at all times, and deter­
mines whether the current bus cycle is a pipelined or 
non-pipelined access. All of the status signals of the 
processor are monitored. 

The ",,"t,.,,1 C"t.."fllC" <':ton'" rI~+,", r""ir-fru'r> ""i+hi"" .h ..... 
• ....... ........ 11 ....... '1, ... n.~'''''~, ,"-,,'IU UYU.4 I"'~I..,L .... I.., .. ".1,.'"11 Ulv 

82380 are located at fixed addresses relative to 
each other, but the group can be' relocated to. either 
memory or I/O space and to different locations with­
in those spaces. 

Asa Slave device, the 82380 monitors the control/ 
status lines of the CPU. The 82380 will generate all 
of the wait states it needs whenever it is accessed. 
This allows the programmer the freedom of access­
ing 82380 registers without having to insert NOPs in 
the program to wait for slower 82380 internal regis­
ters. 

The 82380 can determine if a current bus cycle is a 
pipelined or a non-pipelined cycle. It does this by 
monitoring the ADS# and READY # signals and 
thereby keeping track of the current state of the 
80386. 

As a bus master, the 82380 looks like an 80386 to 
the rest of the system. This enables the designer 
greater flexibility in systems which include the 
823~O. The designer does not have to alter the inter­
faces of any peripherals designed to operate with 
the 80386 to accommodate the 82380. The 82380 
\Alill QI"'''''occ aon\l no,.inhcr!:llle: I'\n tho hilC in tho. con'u:" ••••• ------ _. OJ .--""'" ._. -''''' ..... _ •• - _ ......... ~""" ................. 

manner as the 80386, including recognizing pipe­
iined bus cycies . 

The 82380 is accessed as an 8-bit peripheral. This is 
done to maintain compatibility with existing system 
architectures and software. The 80386 places the 
data of all 8-bit accesses either on D (0-7) or D (8-
15). The 82380 will only accept data on these lines 
when in the Slave mode. When in the Master mode, 
the 82380 is a full 32-bit machine, sending and re­
ceiving data in the same manner as the 80386. 
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1.3 IBM PC* System Compatibility 

The 82380 is an 80386 companion device designed 
to provide an enhancement of the system functions 
common to most small computer systems. It is mod­
eled after and is a superset of the Intel peripheral 
products found in the IBM PC, PC-AT, and other 
popular small computers. 

2.0 80386 HOST INTERFACE 

The 82380 contains a set of interface signals to op­
erate efficiently with the 80386 host processor. 
These signals were designed so that minimal hard­
ware is needed to connect the 82380 to the 80386. 

Figure 2-1 depicts a typical system configuration 
with the 80386 processor. As shown in the diagram, 
the 82380 is designed to interface directly with the 
80386 bus. 

'IBM PC and IBM PC-AT are registered trademarks of Inter­
national Business Machines Inc. 

Since the 82380 is residing on the opposite side of 
the data bus transceiver (with respect to the rest of 
the peripherals in the system), it is important to note 
that the transceiver should be controlled so that 
contention between the data bus transceiver and 
the 82380 will not occur. In order to do this, port 
address decoding logic should be included in the di­
rection and enable control logic of the transceiver. 
When any of the 82380 internal registers is read, the 
data bus transceiver should be disabled so that only 
the 82380 will drive the local bus. 

This section describes the basic bus functions of the 
82380 to show how this device interacts with the 
80386 processor. Other signals which are not direct­
ly related to the host interface will be discussed in 
their associated functional block description. 

FROM OTHER 
PERIPHERALS 

CLOCK GENERATOR I RESET 
CLK2 I 

T 
CLK2 

+ + AOS# 

AOS# CLK2 82380 

RESET CPURST 

~ OPTIONAL: r--
REAOY# 11 WAIT STATE READYO# 

LOGIC 
80386 READY# 

HOLD HOLD 

HLOA HLDA 

INT INT 

NA# NA# 

o/c# O/C# 

W/R# W/R# 

M/IO# M/IO# 

8EO-3#, A " 8EO-3#, 
A2-A31 

~ I I I ~ 
A2-A31 

00-031 00-031 
'I 

~JJ 
TO BUS TO BUS 

CONTROLLER BUFFERS 
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Figure 2-1. 80386/82380 System Configuration 
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2.1 Master and Slave Modes 

At any time, the 82380 acts as either a Slave device 
or a Master device in the system. Upon ,reset, the 
82380 will be in the Slave Mode. In this mode, the 
80386 processor can read/write into the 82380 in­
ternal registers. Initialization information may be pro­
grammed into the 82380 during Slave Mode. 

When OMA service (including ORAM Refresh Cycles 
generated by the 82380) is requested, the 82380 will 
.. __ •• .-....... __ ........... Lo. ___ •• __ ...... __ ... ___ & ...... 1 .... $. ....... .-: ont'Jot:!-
Iv"tU'li:i'~l QIIU ;,uU""'C''''IUCIILl1 ~'II:i'l ,",urnlVI VI LI.e' uv~uu 

local bus. This is done through the HOLO and HLOA 
(Hold Acknowledge) signals. When the 80386 proc­
essor responds by asserting the HLOA signal, the 
82380 will switchintq Master Mode and perform 
OMA transfers. In this mode, the 82380 is the bus 
master of the system. It can read/write data from/to 
memor.y and peripheral devices. The,82380 will re­
turn to the Slave Mod!,! upon completion of OMA 
transfers, or when HLOA is negated. 

2.2 80386 Interface Signals 

As mentioned in the Architecture section, the Bus 
Interface module of the 82380 (see Figure 1-1) con­
tains signals that are directly connected to the 
80386 host processor. This' module has separate 
32-bit Oata and Address busses. Also, it has addi­
tional control signals to support different bus opera­
tions on the system. By residing on the 80386 local 
bus, the 82380 shares the same address, data and 
control lines with the processor. The following sub­
sections discuss the signals which interface to the 
80386 host processor. 

2.2.1 CLOCK (CLK2) 

The CLK2 input provides fundamental timing for the 
82380. It is divided by two internally to generate the 
82380 internal clock. Therefore, CLK2 should be 
driven with twice the 80386's frequency, In order to 
maintain synchronization with the 80386 host proc­
essor, the 82380 and the 80386 should share a 
common clock source. 

The internal clock consists of two phases: PHil and 
DUI'l I:'o,...h 1""'1 1t'I) ru" ... ri",1"1 ir'O .." nhocoo 1"\1 th,... intnpl"to"1 
I • II~. _"",,VII _""'IIo&" 1"""'11""' .... I~ '" 1"'11"' ....... v. "'I"'" ",,, ... IIIUI 

clock. PHI2 is usually used to sample input and set 
up internal Signals and PHil is for latching internal 
data. Figure 2-2 illustrates the relationship of CLK2 
and the 82380 internal clock signals. TheCPURST 
signal generated by the 82380 guarantees that the 
80386 will wake up in phase with PHil. 

2.2.2 DATA BUS (DO-Cal) 

This 32-bit three-state bidirectional bus provides a 
general purpose data path between the 82380 and 
the system. These pins are tied directly to the corre­
sponding Oata Bus pins of the 80386 local bus. The 
Oata Bus is also used for interrupt vectors generated 
by the 82380 in the Interrupt Acknowledge cycle. 

Ouring Slave lie operations, the 82380 expects a 
single byte to be written or read. When the 80386 
host processor writes into the 82380, either 00-07 
or 08-015 will be latched into the 82380, depend­
ing upon how the Byte Enable (BEO#-BE#3) sig­
nals are driven. The 82380 does not need to look at 
016-031 since the 80386 duplicates the single byte 

I 82380 CLOCK PERIOD 82380 CLOCK PERIOD 82380 CLOCK PERIOD 

I 
CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD 

01 I 02 01 I 02 01 I 02 

CLK2 

I 
PHlli \ \ \ 

PHI2\ I I I 
I 

290128-8 

Figure 2·2. CLK2 and 82380 Internal Clock 
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data on both halves of the bus. When the 80386 
host processor reads from the 82380, the single 
byte data will be duplicated four times on the Data 
Bus; i.e., on DO-D7, D8-D15, D16-D23 and D24-
D31. 

During Master Mode, the 82380 can transfer 32-, 16-, 
and 8-bit data between memory (or 110 devices) and 
110 devices (or memory) via the Data Bus. 

2.2.3 ADDRESS BUS (A31-A2) 

These three-state bidirectional signals are connect­
eddirectly to the 80386 Address Bus. In the Slave 
Mode, they are used as input signals so that the 
processor can address the 82380 internal ports/reg­
isters. In the Master Mode, they are used as output 
signals by the 82380 to address memory and periph­
eral devices. The Address Bus is capable of ad­
dressing 4 G-bytes of physical memory space 
(OOOOOOOOH to FFFFFFFFH), and 64 K-bytes of 1/0 
addresses (OOOOOOOOH to OOOOFFFFH). 

2.2.4 BYTE ENABLE (BE3#-BEO#) 

These bidirectional pins select specific byte(s) in the 
double word addressed by A31-A2. Similar to the 
Address Bus function, these signals are used as in­
puts to address internal 82380 registers during 
Slave Mode operation. During Master Mode opera­
tion, they are used as outputs by the 82380 to ad­
dress memory and 1/0 locations. 

NOTE: 

In addition to the above function, BE3# is used 
to enable a production test mode and must be 
LOW during reset. The 80386 processor will au­
tomatically hold BE3# LOW during RESET. 

The definitions of the Byte Enable signals depend 
upon whether the 82380 is in the Master or Slave 
Mode. These definitions are depicted in Table 2-1. 

Table 2-1. Byte Enable Signals 

As INPUTS (Slave Mode): 

BE3#-BEO# Implied A 1, AO 
Data Bits Written 

to 82380· 

. XXXO 00 PO-D7 
XX01 01 D8-D15 
X011 10 DO-D7 
X111 11 D8-D15 

X-DON'T CARE 
'During READ, data will be duplicated on 00-07, 08-015, 016-023, and 024-031. 
During WRITE, the 80386 host processor duplicates data on 00-015, and Ol6-031, so that the 82380 
is concerned only with the lower half of the Data Bus. 

As OUTPUTS (Master Mode): 

Byte to be Accessed 
Logical Byte Presented On 

BE3#-BEO# Data Bus During WRITE Only· 
Relative to A31-A2 

024-31 016-23 08-15 00-7 

1110 
1101 
1011 
0111 
1001 
1100 
0011 
1000 
0001 
0000 

U = Undefined 
A = Logical 00-07 
B = Logical 08-015 
C = Logical 016-023 
o = Logical 024-031 

0 
1 
2 
3 
1,2 
0, 1 
2,3 
0,1,2 
1,2,3 
0,1,2,3 

U U U 
U U A 
U A U 
A U A 
U B A 
U U B 
B A B 
U C B 
C B A 
D C B 

• Actual number of bytes accessed depends upon the programmed data path width. 
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2.2.5 BUS CYCLE DEFINITION SIGNALS (D/C#, 
W/R#" MIIO#) 

These three·state bidirectional signals define the 
type of bus cycle being performed. W/R# dist~n­
guishes between write and read cycles. D/C# dls~ 
tinguishes between processor data and control cy­
cles. MIIO# distinguishes between memory and I/O 
cycles. 

Durino Slave Mode. these siQnals are driven by the 
a0386 host processor; during-Master Mode, they are 
driven by the 82380. In either mode, these signa~s 
will be valid when the Address Status (ADS#) IS 

driven LOW. Exact bus cycle definitions are given in 
Table 2-2. Note that some combinations are recog­
nized as inputs, but not generated as outputs. In the 
Master Mode, D/C# is always HIGH. 

2~2.6 ADDRESS STATUS (ADS # ) 

This bidirectional signal indicates that a valid ad­
dress (A2-A31, BEO#-BE3#) and bus cycle defini­
tion (W/R#, D/C#, MIIO#) is being driven on the 
bus. In the Master Mode, it is driven by the 82380 as 
an output. In the Slave Mode, this Signal is moni­
tored as an input by the 82380. By the current and 
past status of ADS# and the READY# input, the 
82380 is able to determine, during Slave Mode, if the 
next bus cycle is a pipelined address cycle. ADS# is 
asserted during T1 and T2P bus states (see Bus 
State Definition). 

Note that during the ,idle states at the beginning and 
the end of a DMA process, neither the 80386 nor the 
82380 is driving the ADS# signal; i.e., the signal is 
I ~ 1.1. 11 __ & _ -' ,.. .... _ ... _~_._ a.:,., : .... "''''rtl'lln+ tn IIC!O a nllll..lln 
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resistor (approximately '10 Kn) on the ADS# signal. 

2_2_7 TRANSFER ACKNOWLEDGE (READY#) 

This input indicates that the current bus cycle is 
complete. In the Master Mode, assertion of this sig-

nal indicates the end of a DMA bus cycle. In the 
Slave Mode, the 82380 monitors this input and 
ADS # to detect a pipelined address cycles. This sig­
nal should be tied directly to the READY # input of 
the 80386 host processor. 

2.2.8 NEXT ADDRESS REQUEST (NA #) , 

This input is used to indicate to the 82380 in the 
Master Mode that the system is requesting address 
ninalininn WhAn rlriven LOW bv either memory or 
p;riph'~~;i ci~~Ic;~s during Master Mode, it indicates 
that the system is prepared to accept a new address 
and bus cycle definition signals from the 82380 be­
fore tlie end of the current bus cycle. If this input is 
active when sampled by the 82380, the next address 
is driven onto the bus, provided a bus request is 
already pending internally. 

This input pin is monitored only in the Master Mode. 
In the Slave Mode, the 82380 uses the ADS# and 
READY # signals to determine address pipelining 
cycles, and NA # will be ignored. 

2.2.9 RESET (RESET, CPURSn 

RESET 

This synchronous input suspends any operation in 
progress and places the 82380 in a known initial 
state. Upon reset, the 82380 will be in the Slave 
Mode waiting to be initialized by the 80386 host 
processor. The 82380 is reset by asserting RESET 
for 15 or more CLK2 periods. When RESET is as­
serted all other input pins are ignored, and all other 
bus pi~s are driven to an idle bus state as shown in 
Tabie 2-5. Tilt;, 62380 will oet6iiiiiii8 the phase of its 
internal clock following RESET gOing inactive. 

Table 2·2 Bus Cycle Definition 

MilO # D/C# W/R# As INPUTS As OUTPUTS 

0 0 0 Interrupt NOT GENERATED 
Acknowledge 

0 0 1 UNDEFINED NOT GENERATED 
0 1 0 I/O Read I/O Read 
0 1 1 I/O Write I/O Write 
1 0 0 UNDEFINED NOT GENERATED 
1 0 1 HALT if NOT GENERATED 

BE(3-0) # = X011 
SHUTDOWN if 
, BE (3-0)# = XXXO 

1 1 0 ' Memory Read Memory Read 
1 1 1 Memory Write Memory Write 
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Table 2·3. Output Signals Following RESET 

Signal Level 

A2-A31, 00-031, BEO#-BE3# Float 
D/C#, W/R#, M/IO#, ADS# Float 
READYO# '1' 
EOP# '1' (Weak Pull-UP) 
EDACK2-EDACKO '100' 
HOLD '0' 
INT UNDEFINED· 
TOUT1/REF#, TOUT2#/IRQ3#, TOUT3# UNDEFINED· 
CPURST '0' 

... . 'The Interrupt Controller and Programmable Interval Trmer are rnr~alrzed by software commands . 

RESET is level-sensitive and must be synchronous 
to the CLK2 signal. Therefore, this RESET input 
should be tied to the RESET output of the Clock 
Generator. The RESET setup and hold time require­
ments are shown in Figure 2.3. 

CPURST 

This output signal is used to reset the 80386 host 
processor. It will go active (HIGH) whenever one of 
the following events occurs: a) 82380's RESET input 
is active; b) a software RESET command is issued 
to the 82380; or c) when the 82380 detects a proc­
essor Shutdown cycle and when this detection fea­
ture is enabled (see CPU Reset and Shutdown De­
tect). When activated, CPURST will be held active 
for 62 CLK2 periods. The timing of CPURST is such 
that the 80386 processor will be in synchronization 
with the 82380. This timing is shown in Figure 2-4. 

CLK2 

RESET 

T30·RESET Hold Time 
T31·RESET Setup Time 

2.2.10 INTERRUPT our (INT) 

This output pin is used to signal the 80386 host 
processor that one or more interrupt requests (either 
internal or external) are pending. The processor is 
expected to respond with an Interrupt Acknowledge 
cycle. This signal should be connected directly to 
the Maskable Interrupt Request (INTR) input of the 
80386 host processor. 

2.3 82380 Bus Timing 

The 82380 internally divides the CLK2 signal by two 
to generate its internal clock. Figure 2-2 shows the 
relationship of CLK2 and the internal clock. The in­
ternal clock consists of two phases: PHI1 and PHI2. 
Each CLK2 period is a phase of the internal clock. In 
Figure 2-2, both PHI1 and PHI2 of the 82380 internal 
clock are shown. 

'290128-9 

Figure 2-3. RESET Timing 

CLK2 

CPURST 

T33·CPU Reset from CLK2 

Figure 2·4. CPURST Timing 
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Figure 2·2. CLK2 and 82380 Internal Clock 

In the 82380, whether it is in the Master or Slave 
Mode, the shortest time unit of bus activity is a bus 
state. A bus state, which . is also referred as a 
'T-state', is defined as one 82380 PHI2 clock period 
(i.e., two CLK2 periods). Recall in Table 2-2, there 
are six different types of bus cycles in the 82380 as 
defined by the MIIO#, D/C# and W/R# signals. 
Each of these bus cycles is composed of two or 
more bus states. The length of a bus cycle depends 
on when the READY # input is asserted (i.e., driven 
LOW). 

2.3.1 ADDRESS PIPELINING 

The 82380 supports Address Pipelining as an option 
in both the Master and Slave Mode. This feature typ­
ically allows a memory or peripheral device to oper­
ate with one less wait state than would otherwise be 
required. This is possible because during a pipelined 
cycle, the address and bus cycle definition of the 
next eye;..:; win be g6ii6iatsd by the bus master \A!hHe 
waiting for the end of the current cycle to be ac­
knowledged. The pipeiined bus is especiaiiy wei! 
suited for interleaved memory environment. For 16 
MHz interleaved memory designs with 100 ns ac­
cess time DRAMs, zero wait state memory accesses 
can be achieved when pipelined addressing is se-
lected. ' 

In. the Master Mode, the 82380 is capable of initiat­
ing, on a cycle-by-cycle basis, either a pipelined or 
non-pipeli(1ed access depending upon the state of 
the NA # input. If a pipelined cycle is requested (indi­
cated by NA# being driven LOW), the 82380 will 

drive the address and bus cycle definition of the next 
cycle as soon as there is· an internal bus request 
pending. 

In the Slave Mode, the 82380 is constantly monitor­
ing the ADS # and READY # signals on the proces­
sor local bus to determine if the current bus cycle is 
a pipelined cycle. If a pipelined cycle is detected, the 
82380 will request one less wait state from the proc" 
essor if the Wait State Generator feature is selected. 
On the other hand, during an 82380 internal register 
access in a pipelined cycle, it will make use of the 
advance address and bus cycle information. In all 
cases, Address Pipelining will result in a savings of 
one wait state. 

2.3.2 MASTER MODE BUS TIMING 

When the 62380 is in the Master Mode, it will be in 
one of six bus states. Figure 2-5 shows the complete 
bus stat!'.! diagram of the Master Mode, including 
pipelined address states. As seen in the figure, the 
82380 state diagram is veri similar to that of the 
80386. The major difference is that in the 82380, 
there is no Hold state. Also, in the 82380, the condi­
tions for some state transitions depend upon wheth-
er it is the end of a DMA process*. . 

NOTE: 
*The term 'end of a DMA process' is loosely de­
fined here. It depends on the DMA modes of oper­
ation as well as the state of the EOP # and DREQ 
inputs. This is explained in detail in section 3-DMA 
Controller. 
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The 82380 will enter the idle state, Ti, upon RESET 
and whenever the internal address is not available at 
the end of a DMA cycle or at the end of a DMA 
process. When address pipelining is not used (NA # 
is not asserted), a new bus cycle always begins with 
state T1. During T1, address and bus cycle definition 
signals will be driven on the bus. T1 is always fol­
lowed by T2. 

If a bus cycle is ·not acknowledged (with READY #) 
during T2 and NA# is negated, T2 will be repeated. 
When the end of the bus cycle is acknowledged dur­
ing T2, the following state will be T1 of the next bus 
cycle (if the internal address latch is loaded and if 
this is not the end of the DMA process). Otherwise, 
the Ti state will be entered. Therefore, if the memory 
or peripheral accessed is fast enough to respond 
within the first T2, the fastest non-pipe lined cycle will 
take one T1 and one T2 state. 

Use of the address pipelining feature allows the 
82380 to enter three additional bus states: T1 P, 
T2P, and T2i. T1 P is the first bus state of a pipelined 
bus cycle. T2P follows T1 P (or T2) if NA # is assert­
ed when sampled. The 82380 will drive the bus with 
the address and bus cycle definition signals of the 
next cycle during T2P. From the state diagram, it can 
be seen that after an idle state Ti, the first bus cycle 
must begin with T1, and is therefore a non-pipelined 
bus cycle. The next bus cycle can be pipelined if 
NA # is asserted and the previous bus cycle ended 
in a T2P state. Once the 82380 is in a pipe lined 
cycle and provided that NA # is asserted in subse­
quent cycles, the 82380 will be switching between 
T1 P and T2P states. If the end of the current bus 
cycle is not acknowledged by the READY # input, 
the 82380 will extend the cycle by adding T2P 
states. The fastest pipelined cycle will consist of one 
T1 P and one T2P state. . 

NA# Asserted. [Not ADAV + End of DMA] 

Not ADAV. READY# Negated 
290128-12 

NOTE: 
ADAV-Internal Address Available 

Figure 2-5. Master Mode State Diagram 
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The 82380 will enter state T2i when NA# is assert­
ed and when one of the following two conditions 
occurs. The first condition is when the 82380 is in 
state T2. T2i will be entered if READY # is not as­
serted and there is no next address available. This 
situation is similar to a wait state. The 82380 will stay 
in T2i for as long as this condition exists. The sec­
ond condition which will cause the 82380 enter T2i is 
when the 82380 is in state T1 P. Before going to 

TI T2 

CLK2 

PHI2 

ADDRESS 
AND CONTROL --< X 

DATA c:::J (READ) 

DATA ( (WRITE) 

TI 

X 

state T2P, the 82380 needs to wait in state T2i until 
the next address is available. Also, in both cases, if 
the DMA process is complete, the 82380 will enter 
the T2i state in order to finish the current DMA cycle. 

Figure 2-6 is a timing diagram showing non-pipelined 
bus accesses in the Master Mode. Figure 2-7 shows 
the timing of pipelined accesses in the Master Mode. 

T2 T2 TI T2 . 

X 
c:::J C 

X 
NA# XXXXXXXXXXXXXXX 'WOOOOOOOOOOOOO \ 

READY# XXXXXXXXXXXXXXX tgXXXXXXXXY WX\,,~_~MXXXXXA~IWloIi~""_ 
I 0 WAIT STATE 1 WAIT STATE 0 WAIT STATE 

290128-13 

Figure 2-6. Non-Pipelined Bus Cycles 

TIp T2p TIp T2p T2p I TIp T2p 

ADS# ~ \ I , I '--
ADDRESS X X c:: AND CONTROL 

NA#~ ~ lXXXXXXXXXXXXXX .()()()()()()() 

DATA c:::J c:::J C 
(READ) ----~ 

DATA --"""X X X 
(WRITE) ----1.'-. _____ --1.. . . 

290128-14 

Figure 2-7. Pipellned Bus Cycles 
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2.3.3 SLAVE MODE BUS TIMING 

Figure 2-8 shows the Slave Mode bus timing in both 
pipelined and non·pipelined cycles when the 82380 
is being accessed. Recall that during Slave Mode, 
the 82380 will constantly monitor the ADS# and 
READY # signals to determine if the next cycle is 
pipelined. In Figure 2-8, the first cycle is non-pipe­
lined and the second cycle is pipelined. In the pipe­
lined cycle, the 82380 will start decoding the ad-

SLAVE 
CYCLE 

CLK2 

PHI2 

NON-PIPELINED 
CYCLE 

dress and bus cycle signals one bus state earlier 
than in a non-pipelined cycle. 

The READY # input signal is sampled by the 80386 
host processor to determine the completion of a bus 
cycle. This occurs during the end of every T2 and 
T2P state. Normally, the output of the 82380 Wait 
State Generator, READYO#, is directly connected 
to the READY # input of the 80386 host processor 
and the 82380. In such case, READYO# and 
READY # will be identical (see Wait State Genera­
tor). 

A(2-31) 
BE(0-3)# ?OI"",;iV"----t----t-V-----i ~--I-----+ ..... ,.---·n·--__I 

M/IO# ~~~,'----_f------1f_''---~ ~--+-----+_'.'---~ ~--....., 
D/c#.w/R# 

ADS# 

READYO# __ -+", 
(TWO OR MORE WAIT STATES) 

READY# 

0(0-31) 
(READ) 

0(0-15) 
(WRITE) 

NOTE: 

m.. .( :x xx xx [T 

(ONE OR MORE WAIT STATES) 

'\Xx .xx ~ .(x .X .X .xx.x v 
"t. , 

, , 
X 

NA# is shown here only for timing reference. It is not sampled by the 82380 during Slave Mode. 

, 

, 

290128-15 

When the 82380 registers are accessed, it will take one or more wait states in pipelined and two or more wait states in 
non-pipelined cycle to complete the internai' access. 

Figure 2-8_ Slave Read/Write Timing 
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3.0 DMA Controller 

The 82380 DMA Controller is capable of transferring 
data between any combination of memory andlor 
lID, with any combination (8-,16-, or 32-bits) of data 
path widths. Bus bandwidth is optimized through the 
use of an internal temporary register which can dis­
assemble or assemble data to or from either an 
aligned or a non-aligned destination or source. Fig-

ure 3-1 is a block diagram of the 82380 DMA Con­
troller. 

The 82380 has eight channels of DMA. Each chan­
nel operates independently of the others. Within the 
operation of the individual channels, there are many 
different modes of data transfer available. Many of 
the operating modes can be intermixed to provide a 
very versatile DMA controller. 

HOLD +-----.., 
HLDA 

CONTROL/STATUS REGISTERS' CHANNEL REGISTERS 

I 
DREQO 
DREQ1 
DREQ2 
DREQ3 
DREQ4 
DREQ5 
DREQ6 
DREQ7 

EDACKO 

EDACK1 

EDACK2 

EOP# 

::::: 
::::: 
=: 
::::: 
+---
+---
+---
..-.-. 

~ COMMAND REGISTER I BASE CURRENT TEMPORARY 
COMMAND REGISTER n BYTE COUNT BYTE COUNT REGISTER 

MODE REGISTER I BASE CURRENT 
REQUESTER REQUESTER 

DMA MODE REGISTER n ADDRESS ADDRESS 
CHANNEL 0 

REQUEST SOFTWARE REQUEST BASE CURRENT ARBITRATION REGISTER TARGET TARGET 
LOGIC 

MASK REGISTER ADDRESS ADDRESS 

STATUS REGISTER CHANNEL 1 (SAME AS CH 0) 

BUS SIZE REGISTER CHANNEL 2 (SAME AS CH 0) 
CHAINING REGISTER CHANNEL 3 (SAME AS CH 0) 

I "LOWER" GROUP OF CHANNELS 

PROCESS 
CONTROL 

I • "UPPER" GROUP OF CHANNELS 

CHANNEL 4 (SAME AS CH 0) 
CONTROL/STATUS CHANNEL 5 (SAME AS CH 0) 
(SAME AS 
LOWER GROUP) CHANNEL 6 (SAME AS CH 0) 

CHANNEL 7 (SAME AS CH 0) 

Figure 3-1. 62380 OMA CunifOilef SIOiik Diagram 
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3.1 Functional Description 

In describing the operation of the 82380's DMA Con­
troller, close attention to terminology is required. Be­
fore entering the discussion of the function of the 
82380 DMA Controller, the following explanations of 
some of the terminology used herein may be of ben­
efit. First, a few terms for clarification: 

DMA PROCESS-A DMA process is the execution 
of a programmed DMA task from beginning to end. 
Each DMA process requires initial programming by 
the host 80386 microprocessor. 

BUFFER-A contiguous block of data. 

BUFFER TRANSFER-The action required by the 
DMA to transfer an entire buffer. 

DATA TRANSFER-The DMA action in which a 
group of bytes, words, or double words are moved 
between devices by the DMA Controller. A data 
transfer operation may involve movement of one or 
many bytes. 

BUS CYCLE-Access by the DMA to a single byte, 
word, or double word. 

Each DMA channel consists of three major compo­
nents. These components are identified by the con­
tents of programmable registers which define the 
memory or 1/0 devices being serviced by the DMA. 
They are the Target, the Requester, and the Byte 
Count. They will be defined generically here and in 
greater detail in the DMA register definition section. 

The Requester is the device which requires service 
by the 82380 DMA Controller, and makes the re­
quest for service. All of the control signals which the 
DMA monitors or generates for specific channels 
are logically related to the Requester. Only the Re­
quester is considered capable of initiating or termi­
nating a DMA process. 

The Target is the device with which the Requester 
wishes to communicate. As far as the DMA process 
is concerned, the Target is a slave which is incapa­
ble of control over the process. 

The direction of data transfer can be either from Re­
quester to Target or from Target to Requester; i.e., 
each can be either a source or a destination. 

The Requester and Target may each be either 1/0 
or memory. Each has an address associated with it -
that can be incremented, decremented, or held con­
stant. The addresses are stored in the Requester 
Address Registers and Target Address Registers, 

respectively. These registers have two parts: one 
which contains the current address being used in the 
DMA process (Current Address Register), and one 

. which holds the programmed base address (Base 
Address Register). The contents of the Base Regis­
ters are never changed by the 82380 DMA Control­
ler. The Current Registers are incremented or decre­
mented according to the progress of the DMA pro­
cess. 

The Byte Count is the component of the DMA pro­
cess which dictates the amount of data which must 
be transferred. Current and Base Byte Count Regis­
ters are provided. The Current Byte Count Register 
is decremented once for each byte transferred by 
the DMA process. When the register is decremented 
past zero, the Byte Count is considered 'expired' 
and the process is terminated or restarted, depend­
ing on the mode of operation of the channel. The 
point at which the Byte Count expires is called 'Ter­
minal Count' and several status signals are depen­
dent on this event. 

Each channel of the 82380 DMA Controller also 
contains a 32-bit Temporary Register for use in as­
sembling and disassembling non-aligned data. The 
operation of this register is transparent to the user, 
although the contents of it may affect the timing of 
some DMA handshake sequences. Since there is 
data storage available for each channel, the DMA 
Controller can be interrupted without loss of data. 

The 82380 DMA Controller is a slave on the bus until 
a request for DMA service is received via either a 
software request command or a hardware request 
signal. The host processor may access any of the 
controllstatus or channel registers at any time the 
82380 is a bus slave. Figure 3-2 shows the flow of 
operations that the DMA Controller performs. 

At the time a DMA service request is received, the 
DMA Controller issues a bus hold request to the 
host processor. The 82380 becomes the bus master 
when the host relinquishes the bus by asserting a 
hold acknowledge signal. The channel to be serv­
iced will be the one with the highest priority at the 
time the DMA Controller becomes the bus master. 
The DMA Controller will remain in control of the bus 
until the hold acknowledge signal is removed, or un­
til the current DMA transfer is complete. 

While the 82380 DMA Controller has control of the 
bus, it will·perform the required data transfer(s). The 
type of transfer, source and destination addresses, 
and amount of data to transfer are programmed in 
the control registers of the DMA channel which re­
ceived the request for service. 
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Figure 3-2. Flow of DMA Controller Operation 

82380 

At completion of the DMA process, the 82380 will 
- remove the bus hoid request. At this time the 82380 

becomes a slave again, and the host returns to be-­
ing a master. If there are other DMA channels with 
requests pending, the controller will again assert the 
hold request signal and restart the bus arbitration 
and switching process. \ . 

3.2 -Interface Signals 

ThArA ArA fnllrtAAn r.nntrnl l'linnAIl'l rlArlir.AtAri tn thA 
[)M;':p~~cess. They i':;clud~ -eTghtDMACha~nel Re~ 
quests (DREQn), three Encoded DMA Acknowledge 
signals (EDACKn), Processor Hold and Hold Ac­
knowledge (HOLD, HLDA), and End-Of-Process 
(EOP#). The DREQn inputs and EDACK(0-2) out­
puts are handshake signals to the devices requiring 
DMA service. The HOLD output and HLDA input are 
handshake signals to the host processor. Figure 3-3 
shows these signals and how they interconnect be­
tween the 82380 DMA Controller, and the Requester 
and Target devices. 

END or" PROCESS 

-290128-18 

Figure 3·3. Requester, Target, and DMA Controller Interconnection 
(2-Cycle Configuration) 
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3.2.1 DREQn and EDACK(O-2) 

These signals are the handshake signals between 
the peripheral and the 82380. When the peripheral 
requires DMA service, it asserts the DREQn signal 
of the channel which is programmed to perform the . 
service. The 82380 arbitrates the DREQn against 
other pending requests and begins the DMA pro­
cess after finishing other higher priority processes. 

When the DMA service for the requested channel is 
in progress, the EDACK(0-2) signals represent the 
DMA channel which is accessing the Requester. 
The 3-bit code on the EDACK(0-2) lines indicates 
the number of the channel presently being serviced. 
Table 3-2 shows the encoding of these signals. Note 
that Channel 4 does not have a corresponding hard­
ware acknowledge. 

The DMA acknowledge (EDACK) signals indicate 
the active channel only during DMA accesses to the 
Requester. During accesses to the Target, 
EDACK(0-2) has the idle code (100). EDACK(0-2) 
can thus be used to select a Requester device dur­
ing a transfer. 

Table 3-2_ EDACK Encoding During 
a DMA Transfer 

EDACK2 EDACK1 EDACKO Active Channel 

0 0 0 0 
0 0 1 1 
0 1 0 2 
0 1 1 3 
1 0 0 Target Access 
1 0 1 5 
1 1 0 6 
1 1 1 7 

DREQn can be programmed as either an Asynchro­
nous or Synchronous input. See section 3.4.1 for de­
tails on synchronous versus asynchronous operation 
of this pin. 

The EDACKn signals are always active. They either 
indicate 'no acknowledge' or they indicate a bus ac­
cess to the requester. The acknowledge code is ei­
ther 100, for an idle DMA or during a DMA access to 
the Target, or 'n' during a Requester access, where 
n is the. binary value representing the channel. A 
simple 3-line to 8-line decoder can be used to pro­
vide discrete acknowledge signals for the peripher­
als. 

3.2.2 HOLD and HLDA 

The Hold Request (HOLD) and Hold Acknowledge 
(HLDA) signals are the handshake signals between 

the DMA Controller and the host processor. HOLD is 
an output from the 82380 and HLDA is an input. 
HOLD is asserted by the DMA Controller when there 
is a pending DMA request, thus requesting the proc­
essor to give up control of the bus so the DMA pro­
cess can take place. The 80386 responds by assert­
ing HLDA when it is ready to relinquish control of the 
bus. 

The 82380 will begin operations on the bus one 
clock cycle after the HLDA signal goes active. For 
this reason, other devices on the bus should be in 
the slave mode when HLDA is active. 

HOLD and HLDA should not be used to gate or se­
lect peripherals requesting DMA service. This is be­
cause of the use of DMA-like operations by the 
DRAM Refresh Controller. The Refresh Controller is 
arbitrated with the DMA Controller for control of the 
bus, and refresh cycles have the highest priority. A 
refresh cycle will take place between DMA cycles 
without relinquishing bus control. See section 3.4.3 
for a more detailed discussion of the interaction be­
tween the DMA Controller and the DRAM Refresh 
Controller. 

3.2.3 EOP# 

EOP# is a bi-directional signal used to indicate the 
end of a DMA process. The 82380 activates this as 
an output during the T2 states of the last Requester 
bus cycle for which a channel is programmed to exe­
cute. The Requester should respond by either with­
drawing its DMA request, or interrupting the host 
processor to indicate that the channel needs to be 
programmed with a new buffer. As an input, this sig­
nal is used to tell the DMA Controller that the periph­
eral being serviced does not require any more data 
to be transferred. This indicates that the current 
buffer is to be terminated. 

EOP# can be programmed as either an Asynchro­
nous or a Synchronous input. See section 3.4.1 for 
details on synchronous v~rsus asynchronous opera­
tion of this pin. 

3.3 Modes of Operation 

The 82380 DMA Controller has many independent 
operating functions. When designing peripheral in­
terfaces for the 82380 DMA Controller, all of the 
functions or modes must be considered. All of the 
channels are independent of each other (except in 
priority of operation) and can operate in any of the 
modes. Many of the operating modes, though inde­
pendently programmable, affect the operation of 
other modes. Because of the large number of com-
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binations possible, each programmable mode is dis­
cussed here with its affects on the operation of other 
modes. The entire list of possible combinations will 
not be presented. 

Table 3-1 shows the categories of DMA features 
available in the 82380. Each of the five major cate­
gories is independent of the others. The sub-catego­
ries are the available modes within the major func­
tion or mode category. The following sections 
explain each mode or function and its relation to oth­
er features. 

Table 3-1. DMA Operating Modes 

I. Target/Requester Definition 

a. Data Transfer Direction 

b. Device Type 

c. Increment/Decrement/Hold 

II. Buffer Processes 

a. Single Buffer Process 

b. Buffer Auto-Initialize Process 

c. Buffer Chaining Process 

iiI. Data Transfer/Handshake Modes 

a. Single Transfer Mode 

b. Demand transfer Mpde 

c. Block Transfer Mode 

d. Cascade Mode 

IV. Priority Arbitration 

a.Fixed 

b. Rotating 

c. Programmable Fixed 

V. Bus Operation 

a. F!y-By (Sing!e-Cyc!e)!Two-Cyc!e 

b. Data Path Width 

c. Read, Write, or Verify Cycles 

3.3.1 TARGET/REQUESTER DEFINITION 

All DMA transfers involve three devices: the DMA 
Controller, the Requester, and the Target. Since the 
devices to be accessed by the DMA Controller vary 
widely, the operating characteristics of the DMA 
Controller must be tailored to the Requester and 
Target devices. 

The Requester can be defined as either the source 
or the destination of the data to be transferred. This 
is done by specifying a Write or a Read transfer, 
respectively. In a Read transfer, the Target is the 
data source" and the Requester is the destination for 

the data. In a Write transfer, the Requester is the 
source and the Target in the destination. 

The Requester and Target addresses can each be 
independently programmed to be incremented, dec­
remented, or held constant. As an example, the 
82380 is capable of reversing a string or data by 
having a Requester address increment and the Tar­
get address decrement in a. memory-to-memory 
transfer. 

3.3.2 BUFFER TRANSFER PROCESSES 

The 82380 DMA Controller allows three programma­
ble Buffer Transfer Processes. These processes de­
fine the logical way in which a buffer of data is ac­
cessed by the DMA. 

The three Buffer Transfer Processes include the Sin­
gle Buffer Process, the Buffer Auto-Initialize Pro­
cess, and the Buffer Chaining Process. These pro­
cesses require special programming considerations. 
See the DMA Programming section for more details 
on setting up the Buffer Transfer Processes. 

Single Buffer Process 

The Single Buffer Process allows the DMA channel 
to transfer only one buffer of data. When the buffer 
has been completely transferred (Current Byte 
Count decremented past zero or EOP# input ac­
tive), the DMA process ends and the channel be­
comes idle. In order for that channel to be used 
again, it must be' reprogrammed. 

The single Buffer Process is usually used when the 
____ ._ ... _~ -II_.&._ ... _ L._ ..... ___ 4:_ ...... _..J :_ 1. .. __ ••• __ ... __ ... 1 ... 

CtIIIUUII~ UI UClLct LV LJ'CJ Llctl'''It;llvU 1\:11 "IIV"I. 'lC'l\ct"'''1r 

and it is also know!) that there is not likely to be any 
data to follow before the operating system can 
reprogram the channel. 

Buffer Auto-Initialize Process 

The Buffer Auto-Initialize Process allows multiple 
groups of data to be transferred to or from a single 
buffer. This process" does not require reprogram­
ming. The Current Registers are automatically repro­
grammed from the ,Base Registers when the current 

. process is terminated, either by an expired Byte 
Count or by an external EOP # signal. The data 
transferred will always be between the same Target 
and Requester. 

The auto-initialization/process-execution cycle is re­
peated, with a HOLD/HLDA re-arbitration, until the 
channel is either disabled or re-programmed. 
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Buffer Chaining Process 

The ·Buffer Chaining Process is useful for transfer-
. ring large quantities of data into non-contiguous 
buffer areas. In this process, a single channel is 
used to process data from several buffers, while 
having to program the channel only once. Each new 
buffer is programmed in a pipelined operation that 
provides the new buffer information while the old 
buffer is being processed. The chain is created by 
loading new buffer information while the 82380 DMA 
Controller is processing the Current Buffer. When 
the Current Buffer expires, the 82380 DMA Control­
ler automatically restarts the channel using the new 
buffer information. 

Loading the new buffer information is done by an 
interrupt routine which is requested by the 82380. 
Interrupt Request 1 (IRQ1) is tied internally to the 
82380 DMA Controller for this purpose. IRQ1 is gen­
erated by the 82380 when the new buffer informa­
tion is loaded into the channel's Current Registers, 
leaving the Base Registers 'empty'. The interrupt 
service routine loads new buffer information into the 
Base Registers. The host processor is required to 
load the information for another buffer before the 
current Byte Count expires. The process repeats un­
til the host programs the channel back to single buff­
er operation, or until the channel runs out of buffers. 

The channel runs but of buffers when the Current 
Buffer expires and the Base Registers have not yet 
been loaded with new buffer information. When this 
occurs, the channel must be reprogrammed. 

If an external EOP# is encountered while executing 
a Buffer Chaining Process; the current buffer is con­
sidered expired and the new buffer information is 
loaded into the Current Registers. If the Base Regis­
ters are 'empty', the chain is terminated. 

The channel uses the Base Target Address Register 
as an indicator of whether or not the B·ase Registers 
are full. When the most significant byte of the Base 
Target Register is loaded, the channel considers all 
of the Base Registers loaded, and removes the in­
terrupt request. This requires that the other Base 
Registers (Base Requester Address, Last Byte 
Count) must be loaded before the Base Target Ad­
dress Register. The reason for implementing the re-

loading process this way is that, for most applica­
tions, the Byte Count and the Requester will not 
change from one buffer to the next, and therefore do 
not need to be reprogrammed. The details of pro­
gramming the channel for the Buffer Chaining Pro­
cess can be found in the section of DMA program­
ming. 

3.3.3 DATA TRANSFER MODES 

Three Data Transfer modes are available in the 
82380 DMA Controller. They are the Single Transfer, 
Block Transfer, and Demand Transfer Modes. 
These transfer modes can be used in conjunction 
with anyone of three Buffer Transfer modes: Single 
Buffer, Auto-Initialized Buffer, and Buffer Chaining. 
Any Data Transfer Modes can be·used under any of 
the Buffer Transfer Modes. These modes are inde­
pendently available for all DMA channels. 

Different devices being serviced by the DMA Con­
troller require different handshaking sequences for 
data transfers to take place. Three handshaking 
modes are available on the 82380, giving the de­
signer the opportunity to use the DMA Controller as 
efficiently as possible. The speed at which data can 
be presented or read by a device can affect the way 
a DMA controller uses the host's bus, thereby affect­
ing not only data throughput during the DMA pro­
cess, but also affecting the host's performance by 
limiting its access to the bus. 

Single Transfer Mode 

In the Single Transfer Mode, one data transfer to or 
from the Requester is performed by the DMA Con­
troller at a time. The DREQn input is arbitrated and 
the HOLD/HLDA sequence is executed for each 
transfer. Transfers continue in this manner until the 
Byte Count expires, or until EOP# is sampled active. 
If the DREQn input is held active continuously, the 
entire DREQ-HOLD-HLDA-DACK sequence is re­
peated over and over until the programmed number 
of bytes has been transferred. Bus control is re­
leased to the host between each transfer. Figure 3-4 
shows the logical flow of events which make up a 
buffer transfer using the Single Transfer Mode. Re­
fer to section 3.4 for an explanation of the bus con­
trol arbitration procedure. 
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INITIALIZE BUFFER 

END OF BUFFER 
290128-19 

Figure 3-4. Buffer Transfer in 
Single Transfer Mode 
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The Single Transfer Mode is used for devices .which 
require complete handshake cycles with each data 
access. Data is transferred to or from the Requester 
only when the Requester is ready to perform the 
transfer. Each transfer requires the entire DREQ· 
HOLD-HLDA-DACK handshake cycle. Figure 3·5 
shows the timing of the Single Transfer Mode cy­
cles. 

Block Transfer Mode 

In the Block Transfer Mode, the DMA process is ini­
tiated by a DMA request and continues until the Byte 
count expires, or until EOP# is activated by the Re· 
quester. The DREQn signal need only be held active 
until the first Requester access. Only a refresh cycle 
will interrupt the block transfer process. 

Figure 3·6 illustrates the operation of the DMA duro 
ing the Block Transfer Mode. Figure 3-7 shows the 
timing of the handshake signals during Block Mode 
Transfers. 

Ti T1 T2 TI 

A(2-31) -+---+--""''r-' 
BE(~.-,~2~ :xxXXgXJ~~XXgx:~~--+----t==j==:j --------

EDACK~~:~~ I I 100 I I t n I * 100 I 

~::~t:t 
290128-20 

Figure 3-5. DMA Single Transfer Mode 
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Figure 3-6. Buffer Transfer in 
Block Transfer Mode 
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Demand Transfer Mode 

The Demand Transfer Mode provides the most flex­
ible handshaking procedures during the DMA pro­
cess. A Demand Transfer is initiated by a DMA re­
quest. The process continues until the Byte Count 
expires, or an external EOP# is encountered. If the 
device being serviced (Requester) desires, it can in­
terrupt the DMA process by de-activating the 
DREQn line. Action is taken· on the condition of 
DREQn during Requester accesses only. The ac­
cess during which DREQn is sampled inactive is the 
last Requester access which will be performed dur­
ing the current transfer. Figure 3-8 shows the flow of 
events during the transfer of a buffer in the Demand 
Mode. 

T1 T2 T1 T2 TI Tx Tx 

290128-22 

Figure 3-7. Block Mode Transfers 
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INITIALIZE BUffER 

END Of BUfFER 
290128-23 

Figure 3-8. Buffer Transfer in 
Demand Transfer Mode 

When the DREQn line goes inactive, the DMA con­
troller will complete the current transfer, including 
any necessary accesses to the Target, and relin­
quish control-of the bus to the host. The current.pro~ 
cess information is saved (byte count, Requester 
and Target addresses, and Temporary Register). 
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The Requester can restart the transfer process by 
reasserting DREQn. The 82380 will arbitrate the re­
quest with other pending requests and begin the 
process where it left off. Figure 3-9 shows the timing 
of handshake signals during Demand Transfer Mode 
operation. . 

Using the Demand Transfer Mode allows peripherals, 
to access memory in small, irregular bursts without 
wasting bus control time. The 82380 is designed to 
give the best possible bus control latency in the De­
mand Transfer Mode. Bus coniroi iaiency is deiined 
here as the time from the last active bus cycle of the 
previous bus master to the first active bus cycle of 
the new bus master. The 82380 DMA Controller will 
perform its first bus access cycle two bus states af­
ter HLDA goes active. In the typical configuration, 
bus control is returned to the host one bus state 
after the DREQn goes inactive. 

There are two cases where there may be more than. 
one bus state of bus control latency at the end of a 
transfer. The first is at the end of an Auto-Initialize 
process, and the second is at the end of a process 
where the source is the Requester and Two-Cycle 
transfers are used. ' ' 

When a Buffer Auto-Initialize Process is complete, 
the 82380 requires seven bus states to reload the 

T1 T2 T1 T2 Ti Tx Tx 

.. \ 

.. \ 

oo \ 

~ .. ----' -----~ 

noon r-h 
I I 

I I 
oo 

I I I 
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Figure 3-9. Demand Mode Transfers 
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Current Registers from the Base Registers of the 
Auto-Initialized channel. The reloading is done while 
the 82380 is still the bus master so that it is prepared 
to service the channel immediately after relinquish­
ing the bus, if necessary. 

In the case where the Requester is the source, and 
Two-Cycle transfers are being used, there are two 
extra idle states at the end of the transfer process. 
This occurs due to housekeeping in the DMA's inter­
nal pipeline. These two idle states are present only 
after· the very last Requester access, before the 
DMA Controller de-activates the HOLD signal. 

3.3.4 CHANNEL PRIORITY ARBITRATION 

DMA channel priority can be programmed into one 
of two arbitration methods: Fixed or Rotating. The 
four lower DMA channels and the four upper DMA 
channels operate as if they were two separate DMA 
controllers operating in cascade. The lower group of 
four channels (0-3) is always prioritized between 
channels 7 and 4 of the upper group of channels (4-
7). Figure 3-10 shows a pictorial representation of 
the priority grouping. 

The priority can thus be set up as rotating for one 
group of channels and fixed for the other, or any 
other combination. While in Fixed Priority, the pro­
grammer can also specify which channel has the 
lowest priority. 

I 
CHANNEL 7 
CHANNEL 6 I 
CHANNEL 5 
CHANNEL 4 

CHANNEL 3 

PHANTOM - CHANNEL 2 

l' 
CHANNEL 1 
CHANNEL 0 

1 
290128-25 

Figure 3·10. DMA Priority Grouping 

The 82380 DMA Controller defaults to Fixed Priority. 
Channel 0 has the highest priority, then 1, 2, 3, 4, 5, 
6, 7. Channel 7 has the lowest priority. Any time the 
DMA Controller arbitrates DMA requests, the re­
questing channel with the highest priority will be 
serviced next. 

Fixed Priority can be entered into at any time by a 
software command. The priority levels in effect 

after the mode switch are determined by the current 
setting of the Programmable Priority. 

Programmable Priority is available for fixing the prior­
ity of the DMA channels within a group to levels oth­
er than the default. Through a software command, 
the channel to have the lowest priority in a group 
can be specified. Each of the two groups of four 
channels can have the priority fixed in this way. The 
other channels in the group will follow the natural 
Fixed Priority sequence. This mode affects only the 
priority levels while operating with Fixed Priority. 

For example, if channel 2 is programmed to have the 
lowest priority in its group, channel 3 has the highest 
priority. In descending order, the other channels 
would have the following priority: (3, 0, 1, 2), 4, 5, 6, 
7 (channel 2 lowest, channel 3 highest). If the upper 
group were programmed to have channel 5 as the 
lowest priority channel, the priority would be (again, 
highest to lowest): 6, 7, (3, 0, 1, 2), 4, 5. Figure 3-11 
shows this example pictorially. The lower group is 
always prioritized as a fifth channel of the upper 
group (between channels 4 and 7). 

CHANNEL 6 
CHANNEL 7 
PHANTOM --

CHANNEL 4 
CHANNEL 5 

CHANNEL 3 
CHANNEL 0 
CHANNEL 1 
CHANNEL 2 

High Priority 

Low Priority 

290128-26 

Figure 3·11. Example of Programmed Priority 

The DMA Controller will only accept Programmable 
Priority commands while the addressed group is op­
erating in Fixed Priority. Switching from Fixed to Ro­
tating Priority preserves the current priority levels. 
Switching from Rotating to Fixed Priority returns the 
priority levels to those which were last programmed 
by use of Programmable Priority. 

Rotating Priority allows the devices using DMA to 
share the system bus more evenly. An individual 
channel does not retain highest priority after being 
serviced, priority is passed to the next highest priori­
ty channel in the group. The channel which was 
most recently serviced inherits the lowest priority. 
This rotation occurs each time a channel is serviced. 
Figure 3-12 shows the sequence of events as priori­
ty is passed between channels. Note that the lower 
group rotates within the upper group, and that serv­
icing a channel within the lower group causes rota­
tion within the group as well as rotation of the upper 
group. 
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10 1 2 3 4 5 6 7 -default (highest to lowest) 

DREQ2 and DREQ6-process channel 2 

6 7 ·1 2 1 -channel 2 drops to lowest priority within group. 
'-----'-----J'----L-----l Lower group drops to lowest priority within upper group. 

2(Double Rotation) 

3 o 

DREQ6 (still) and DREQ7-process channel 6 

l2J I 3 I 0 I 1 I 2 I I 4 1 5·1 6 1 -channel 6 drops to lowest priority within group 

DREQ7 (still) and DREQO-process channel 7 

1 3 1 0 1 1 1 2 1 1 4 1 5 I 6 1 7 1 -channel 7 drops to lowest priority within group 

DREQO (still) and DREQ1-process channel 0 

1 4 1 5 1 6 1 7 I 11 1 2 1 3 1 0 I -channel 0 drops to lowest priority within group (Double Rotation) 

DREQ1 (still)-process channel 1 

-channel 1 drops to lowest priority within group 

FIgure 3-12. RotatIng Channel Priority. Lower and Upper 
groups are programmed for the Rotating Priority Mode. 
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3.3.5 COMBINING PRIORITY MODES 

Since the DMA Controller operates as two four­
channel controllers in cascade, the overall priority 
scheme of all eight channels can take on a variety of 
forms. There are four possible combinations of prior-

High Low 

I 0 I 2 3 4 5 6 

High Low 

I 4 I 5 6 7 0 2 

High Low 

[2] 0 2 3 4 5 

High 

4 I 5 6 7 0 2 

CASE 1 0-3 Fixed Priority, 4-7 Rotating Priority 

High 

I 0 I 2 3 4 5 6 

High 

I 3 I 0 2 4 5 6 

High 

I 3 I 0 2 4 5 6 

High 

I 2 I 3 0 4 5 6 

CASE 2 0-3 Rotating Priority, 4-7 Fixed Priority 

ity modes between the two groups of channels: 
Fixed Priority only (default), Fixed Priority upper 
group/Rotating Priority lower group, Rotating Priority 
upper group/Fixed Priority lower group, and Rotating 
Priority only. Figure 3-13 illustrates the operation of 
the two combined priority methods. 

7 -Default priority 

3 After servicing channel 2 

6 -After servicing channel 6 

Low 

3 -After servicing channel 1 

Low 

7 Default priority 

Low 

7 ,After servicing channel 2 

Low 

7 After servicing channel 6 

Low 

7 After servicing channel 1 

Figure 3-13. Combining Priority Modes 
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3.3.6 BUS OPERATION 

Data may be transferred by the DMA Controller us­
ing two different bus cycle operations: Fly-By (one­
cycle) and Two-Cycle. These bus handshake meth­
ods are selectable independently for each channel 
through a command register. Device data path 
widths are independently programmable for both 
Target and Requester. Also selectable through soft­
ware is the direction of data transfer. All of these 
parameters affect the operation of the 82380 on a 
h, ..... " •• ,..1,... ................ ""' •• ""1,.. ........ ,..i... . 
uU~-"I"'v .." UU,;ot-"'1"'lw UQ.;;;JI,;ot. 

3.3.6.1 Fly-By Transfers 

The Fly-By Transfer Mode is the fastest and most 
efficient way to use the 82380 DMA Controller to 
transfer data. In this method of transfer, the data is 
written to the destination device at the same time it 
is read from the source. Only one bus cycle is used 
to accomplish the transfer. 

In the Fly-By Mode, the DMA acknowledge signal is 
used to select the Requester. The DMA Controller 
simultaneously places the address of the Target on 
the address bus. The state of M/IO# and W/R# 
during the Fly-By transfer cycle indicate the type of 
Target and whether the target is being written to or 
read from. The Targe~'s Bus Size is used as an in­
crementer for the Byte Count. The Requester ad­
dress registers are ignored during Fly-By transfers. 

Note that memory-to-memory transfers cannot be 
done using the Fly-By Mode. Only one memory or 
I/O address is generated by the DMA Controller at a 
time during Fly-By transfers. Only one of the devices 
being accessed can be selected by an address. 
Also, the Fly-By method of data transfer limits the 
hardware to accesses of devices with the same data 
bus width. The Temporary Registers are not affect­
ed in the Fly-By Mode. 

Fly-By transfers also require that the data paths of 
the Target and Requester be directly connected. 
This requires that successive Fly-By accesses be to 
doubleword boundaries, or that the Requester be 
capable of switching its connections to the data bus. 

3.3.6.2 Two-Cycle Transfers 

Two-Cycle transfers can also be performed by the 
82380 DMA Controller. These transfers require at 
least two bus cycles to execute. The data being 
transferred is read into the DMA Controller's Tempo­
rary Register during the first bus cycle(s). The sec­
ond bus cycle is used to write the data from the 
Temporary Register to the destination. 

If the addresses of the data being transferred are 
not word or doubleword aligned, the 82380 will rec­
ognize the situation and read and write the data in 
groups of bytes, placing them always at the proper 
destination. This process of collecting the desired 
bytes and putting them together is called 'byte as­
sembly'. The reverse process (reading from aligned 
locations and writing to non-aligned locations) is 
called 'byte disassembly'. 

The assembly/disassembly process takes place 
+.,.. ................ ,.. ..... + + .... + ........ ....... 1+........... h •• + ................... 1 •• ""' .................. 
LIClllo:Jl-'al'IIiJIIL LV "llv o:JVI L"WQI v, UUI. vall UIIiI U'O' UVII...., 

while using the Two-Cycle transfer method. The 
82380 will always perform the assembly/disassem­
bly process as necessary for the current data trans­
fer. Any data path widths for either the Requester or 
Target can be used in the Two-Cycle Mode. This is 
very convenient for interfacing existing 8- and 16-bit . 
peripherals to the 80386's 32-bit bus. 

The 82380 DMA Controller always attempts to fill 
the Temporary Register from the source before writ­
ing any data to the destination. If the process is ter­
minated before the Temporary Register is filled (TC 
or EOP #), the 82380 will write the partial data to the 
destination. If a process is temporarily suspended 
(such as when DREQn is de-activated during a de­
mand transfer), the contents of a partially filled Tem. 
porary Register will be stored within the 82380 until 
the process is restarted. 

For example, if the source is specified as an 8-bit 
device and the destination as a 32-bit device, there 
will be four reads as necessary from the 8-bit source 
to fill the Temporary Register. Then the 82380 will 
write the 32-bit contents to the destination. This cy­
cle will repeat until the process is terminated o~ sus~ 
n~n"''''''''''' ......... ,U .... U. 

Note that for a Singie-Cycie transfer niode of opera­
tion (see section 3.3.3), the internal circuitry of the 
DMA Controller actually executes single transfers by 
removing the DREQ from the internal arbitration. 
Thus single transfers from an 8-bit requester to a 32-
bit target will consist of four complete and indepen­
dent 8-bit requester cycles, between which bus con­
trol is released and re-requested. Finally, the 32-bit 
data will be transferred to the target device from the 
temporary register before the fifth requester cycle. 

With Two-Cycle transfers, . the devices that the 
82380 accesses can reside at any address within 
I/O or memory space. The device must be able to 
decode the byte-enables (BEn #). Also, if the device 
cannot accept data in byte quantities, the program­
mer must take care not to allow the DMA Controller 
to access the device on any address other than the 
device boundary. 
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3.3.6.3 Data Path Width and Data Transfer Rate 
Considerations 

The number of bus cycles used to transfer a single 
'word' of data is affected by whether the Two-Cycle 
or the Fly-By (Single-Cycle) transfer method is used. 

The number of bus cycles used to transfer data di­
rectly affects the data transfer rate. Inefficient use of 
bus cycles will decrease the effective data transfer 
rate that can be obtained. Generally, the data trans­
fer rate is halved by using Two-Cycle transfers in­
stead of Fly-By transfers. 

The choice of data path widths of both Target and 
Requester affects the data transfer rate also. During 
each bus cycle, the largest pieces of data possible 
should be transferred. 

The data path width of the devices to be accessed 
must be programmed into the DMA controller. The 
82380 defaults after reset to 8-bit-to-8-bit data trans­
fers, but the Target and Requester can have differ­
ent data path widths, independent of each other and 
independent of the other channels. Since this is a 
software programmable function, more discussion of 
the uses of this feature are found in the section on 
programming. 

3.3.6.4 Read, Write, and Verify Cycles 

Three different bus cycle types may be used in a 
data transfer. They are the Read, Write, and Verify 
cycles. These cycle types dictate the way in which 
the 82380 operates on the data to be transferred. 

A Read Cycle transfers data from the Target to the 
Requester. A Write Cycle transfers data from the 
Requester to the target. In a Fly-By transfer, the ad­
dress and bus status signals indicate the access 
(read or write) to the Target; the access to the Re­
quester is assumed to be the opposite. 

The Verify Cycle is used to perform a data read only. 
No write access is indicated or assumed in a Verify 
Cycle. The Verify Cycle is useful for validating block 
fill operations. An external comparator must be pro­
vided to do any comparisons on the data read. 

3.4 Bus Arbitration and Handshaking 

Figure 3-14 shows the flow of events in the DMA 
request arbitration process. The arbitration se-

quence starts when the Requester asserts a DREQn 
(or DMA service is requested by software). Figure 
3-15 shows the timing of the sequence of events 
following a DMA request. This sequence is executed 
for each channel that is activated. The DREQn sig­
nal can be replaced by a software DMA channel re­
quest with no change in the sequence. 

80386 ASSERTS HOLD ACKNOWLEDGE 

82380 ARBITRATES PENDING REQUESTS 

82380 PERFORMS HIGHEST PRIORITY 
TRANSFER (SEE DATA TRANSFER MODES) 

82380 DE-ASSERTS HOLD REQUEST 

290128-27 

Figure 3-14. Bus Arbitration and DMA Sequence 

After the Requester asserts the service request, the 
82380 will request control of the bus via the HOLD 
signal. The 82380 will always assert the HOLD sig­
nal one bus state after the service request is assert­
ed. The 80386 responds by asserting the HLDA sig­
nal, thus releasing control of the bus to the 82380 
DMA Controller. 

Priority of pending DMA service requests is arbitrat­
ed during the first state after HLDA is asserted by 
the 80386. The next state will be the beginning of 
the first transfer access of the highest priority pro-
cess. . 
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When the 82380 DMA Controller is finished with its 
current bus activity, it returns control of the bus to 
the host processor. This is done by driving the 
HOLD signal inactive. The 82380 does not drive any 
address or data bus signals after HOLD goes low. It 
enters the Slave Mode until another DMA process is 
requested. The processor acknowledges that it has 
regained control of the bus by forcing the HLDA sig­
nal inactive. Note that the 82380's DMA Controller 
will not re-request control of the bus until the entire 
HOLD/HLDA handshake sequence is complete. 

The 82380 DMA Controller will terminate a current 
DMA process for one of three reasons: expired byte 
count, end-of-process command (EOP# activated) 
from a peripheral, or de-activated DMA request sig­
nal. In each case, the controller will de-assert HOLD 
immediately after completing the data transfer in 
progress. These three methods of process termina­
tion are illustrated in Figures 3-16, 3-19, and 3-18, 
respectively. 

Tx Tx 

ClK2 

ClK 

DREOn 

HOLD _-+ ___ -+' 

TI 

An expired byte count indicates that the current pro­
cess is complete as programmed and the channel 
has no further transfers to process. The channel 
must be restarted according to the currently pro­
grammed Buffer Transfer Mode, or reprogrammed 
completely, including a new Buffer Transfer Mode. 

If the peripheral activates the EOP# signal, it is indi­
cating that it will not accept or deliver any more data 
for the current buffer. The 82380 DMA Controller 
considers this as a completion of the channel's cur­
reni process and inierpreis ihe condition the same 
way as if the byte count expired. 

The action taken by the 82380 DMA Controller in 
respons~ to a de-activated DREOn signal depends 
on the Data Transfer Mode of the channel. In the 
Demand Mode, data transfers will take place as long 
as the DREOn is active and the byte count has not 
expired. In the Block Mode, the controller will com­
plete the entire block transfer without relinquishing 

Ti T1 T2 T1 

HlDA 

A(2-31);ii~~~~~iiix~~~~;;:~:-+-----1c:::::t:::::~:::: BE(0-3)# .t:. 
M/IO# 

EDACK(0-2) --+---+---1~0~0+----+---W----n+---'""\I.,....--

ADS# xMxxxxxx~xxxxx~ I i ~,......-i 
READY# xxXkXXXXXh;;xxxiXxxxxxxkxxxxJxxxxxxixxxn 1= 

290128-28 
NOTE: 

, Channel priority resolution takes place during the bus state before HLDA is asserted, allowing the DMA Controller to 
respond to HLDA without extra idle bus states. ' 

Figure 3-15. Beginning of a DMA process 
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the bus, even if DREOn goes inactive before the 
transfer is complete. In the Single Mode, the control­
ler will execute single data transfers, relinquishing 
the bus between each transfer, as long as DREOn is 
active. 

Normal termination of a DMA process due to expira­
tion of the byte count (Terminal Count-TC) is shown 

Single 
Buffer Process: or Chaining-

Base Empty 

Event 

Terminal Count True X 
EOP# Input X 0 

Results 

Current Registers - -
Channel Mask Set Set 
EOP# Output 0 X 
Terminal Count Status Set Set 
Software Request CLR CLR 

in Figure 3-16. The condition of DREOn is ignored 
until after the process is terminated. If the channel is 
programmed to auto-initialize, HOLD will be held ac­
tive for an additional seven clock cycles while the 
auto-initialization takes place. 

Table 3-3 shows the DMA channel activity due to 
EOP# or Byte Count expiring (Terminal Count). 

Auto- Chaining-
Initialize Base Loaded 

True X True X 
X 0 X 0 

Load Load Load Load 

- - - -
0 X 1 X 

Set . Set - -
CLR CLR - -

Table 3-3. DMA Channel Activity Due to Terminal Count or External EOP# 

T2 T1 T2 n Tx Tx Tx 

ClK2 

ClK 

DREQn .... ________ ~Xx~~xx~x~x~X~x~x~x~x~x¥x¥X¥X¥X¥X¥XX¥¥A~ ________________ ___ 
HOLD 

HlDA 

ADS# -.J 
EOP# 

READY# XXXXXXXXXA 

\~------------------------
11 I \ 

- BYTE COUNT~EX~P~IR~E~S-:(T~C~)---------

\~---~~~~---------------------­
'---zz-l 

4xxxxxxxxxxxxxXXXXXXXXXX 
290128-29 

Figure 3-16. Termination of a DMA Process Due to Expiration of Current Byte Count 
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The 82380 always relinquishes control of the bus 
between channel services. This allows the hardware 
designer the flexibility to externally arbitrate bus hold 
requests, if desired. If another DMA request is pend­
ing when a higher priority channel service is com­
pleted, the 82380 will relinquish the bus until the 
hold acknowledge is inactive. One bus state after 
the HLDA signal goes inactive, the 82380 will assert 
HOLD again. This is illustrated in Figure 3-17. 

3A 1 SYNCHRONOUS AND ASYNCHRONOUS 
SAMPLING OF DREQn AND EOP# 

As an indicator that a DMA service is to be started, 
DREOn is always sampled asynchronously. It is 
sampled at the beginning of a bus state and acted 
upon at the end of the state. Figure 3-15 illustrates 
the start of a DMA process due to a DREOn input. 

The DREOn and EOP# inputs can be programmed 
to be sampled either synchronously or asynchro­
nously to signal the end of a transfer. 

The synchronous mode affords the Requester one 
bus state of extra time to react to an access. This 
means the Requester can terminate a process on 
the current access, without losing any data. The 
asynchronous mode requires that the input Signal be 
presented prior to the beginning of the last state of 
the Requester access. 

ClK2 

ClK 

The timing relationships of the DREOn and EOP# 
signals to the termination of a DMA transfer are 
shown in Figures 3-18 and 3-19, Figure 3-18 shows 
the termination of a DMA transfer" due to inactive 
DREOn. Figure 3-19 shows the termination of a 
DMA process due' to an active EOP# input. 

In the Synchronous Mode, DREOn and EOP# are 
sampled at the end of the last state of every Re­
quester data transfer cycle. If EOP# is active or 
DREOn is inactive at this time, the 82380 recognizes 
this access to the Requester as the iast ire:1flsitJr. AL 
this point, the 82380 completes the transfer in prog­
ress, if necessary, and returns bus control to the 
host. 

In the asynchronous mode, the inputs are sampled 
at the beginning of every state of a Requester ac­
cess. The 82380 waits until the end of the state to 
act on the input. 

DREOn and EOP# are sampled at the latest possi­
ble time when the 82380 can determine if another 
transfer is required. In the Synchronous Mode, 
DREOn and EOP# are sampled on the trailing edge 
of the last bus state before another data access cy­
cle begins. The Asynchronous Mode requires that 
the signals be valid one clock cycle earlier. ' 

LOWER PR!OR!TY DREQc \ 
-~--------------~-------------

HIGHER PRIORITY DREOb 11/111/1/11///11 

HOLD \~--------_~I~--------­
\'-----~~S~ HlDA' 1 

-- CHANNEL A~ I. CHANNEL B--
290128-30 

Figure 3-17. Switching between Active DMA Channels 
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T2 T1 T2 n Tx Tx 

ClK2 

ClK 

AOS# 

REAOY# 

OREQn 
(ASYNCHRONOUS) 

OREQn 
(SYNCHRONOUS) 

4 I 

HOLD 

HlOA 

Figure 3-18. Termination of a DMA Process Due to De-Asserting DREQn 
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ClK 

AOS# 

EOP# 
(ASYNCHRONOUS) 

EOP# 
(SYNCHRONOUS) 

T2 T1 T2 n Tx Tx 

Tx 

290128-31 

Tx 

::~: -+----!---+--+-~~4,Hr---+-I--+---
290128-32 

Figure 3-19. Termination of a DMA Process Due to an External EOP# 
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While in the Pipeline Mode, if the NA# signal is sam­
pled active during a transfer, the end of the state 
where NA# was sampled active is when the 82380 
decides whether to commit to another transfer. The 
device must de-assert DREQn or ass.ert EOP# be­
fore NA# is asserted, otherwise the 82380 will com­
mit to another, possibly undesired, transfer. 

Synchronous DREQn. and EOP # sampling allows 
the peripheral to prevent the next transfer from oc­
curring by de-activating DREQn or asserting EOP # 
during the current Requester access, before the 
82380 DMA Controller commits itself to another 
transfer. The DMA Controller will not perform the 
next transfer if it has not already begun the bus cy­
cle. Asynchronous sampling allows less stringent 
timing requirements than the Synchronous Mode, 
but requires that the DREQn signal-be valid at the 
beginning of the next to last bus state of the current 
Requester access. 

Using the Asynchronous Mode with zero wait states 
can be very difficult. Since the addresses and con­
trol signals are driven by. the 82380 near half-way, 

through the first bus state of a transfer, and the 
Asynchronous Mode requires that DREQn be active 
before the end of the state, the peripheral being ac­
cessed is required to present DREQn only a few 
nanoseconds after the control information is avail­
able. This means that the peripheral's control logic 
must be extremely fast (practically non-causal). An 
alternative is the Synchronous Mode. 

3.4.2 ARBITRATION OF CASCADED MASTER 
REQUESTS 

The Cascade Mode allows another DMA-type de­
vice to share the bus by arbitrating its bus accesses 
with the 82380's. Seven of the eight DMA channels 
(0-3 and 5-7) can be connected to a cascaded de­
vice. The cascaded device requests bus control 
through the DREQn line of the channel which is pro­
grammed to operate in Cascade Mode. Bus hold ac­
knowledge is signaled to the cascaded device 
through the EDACK lines. When the EDACK lines 
are active with the code for the requested cascade 
channel, the bus is available to the cascaded master 
device. 

80386 82380 BUS 

HOLD HOLD 

HLDA i---+jHLDA 

MASTER 0 
DREQoH----------IHOLD REQUEST 

EDACKO 
EDACKI 
EDACK2 

o 

C LATCHED 
DECODER 7 

HOLD ACKNOWLEDGE 

HOLD ACKNOWLEDGE 
BUS 

I I MASTER n 

L==~D~RE~Q~nt.+--------,.IHOLD REQUEST 
I 

Figure 3-20. Cascaded Bus Master 
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A Cascade cycle begins the same way a regular 
DMA . cycle begins. The requesting bus master as­
serts the DREQn line on the 82380. This bus control 
request arbitrated as any other DMA request would 
be. If any channel receives a DMA request, the 
82380 requests control of the bus. When the host 
acknowledges that it has released bus control, the 
82380 acknowledges to the requesting master that it 
may access the bus. The 82380 enters an idle state 
until the new master relinquishes control. 

A cascade cycle will be terminated by one of two 
events: DREQn going inactive, or HLDA going inac­
tive. The normal way to terminate the cascade cycle 

is for the cascaded master to drop the DREQn sig­
nal. Figure 3-21 shows the two cascade cycle termi­
nation sequences. 

The Refresh Controller may interrupt the cascaded 
master to perform a refresh cycle. If this occurs, the 
82380 DMA Controller will de-assert the EDACK sig­
nal (hold acknowledge to cascaded master) and wait 
for the cascaded master to remove its hold request. 
When the 82380 regains bus control, it will perform 
the refresh cycle in its normal fashion. After the re­
fresh cycle has been completed, and if the cascad­
ed device has re-asserted its request, the 82380 will 
return control to the cascaded master which was in­
terrupted. 

OREOn \~--------------------------------------
EOACK ____ ~n~ __________ ~X~ __________ ~10~0~ ______________ __ 

HOLD ,~-----------------------------
290128-34 

HLOA ,'---------
Cascade cycle termination by DREQn inactive 

HLOA \~---------------------------------------
EOACK ______ ~n~ ________ --JX~ ______ ~I~OO~ ________________ __ 

OREOn \\\\\\ 

290128-35 
HOLD \~--------

Cascade cycle termination by HLDA inactive 

Figure 3-21. Cascade Cycle Termination 
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The 82380 assumes that it is the only device moni­
to.ring the HLDA Signal. If the system designer 
wishes to place other devices on the bus as bus 
masters, the HLDA from the processor must be in­
tercepted before presenting it to the 82380. Using 
the Cascade capability of the 82380 DMA Controller 
offers a much better solution. 

3.4.3 ARBITRATION OF REFRESH REQUESTS 

The arbitration of refresh reauests bv the DRAM Re­
fresh Controller is slightly different from normal DMA 
channel request arbitration. The 82380 DRAM Re­
fresh Controller always has the highest priority of 
any DMA process. It also can interrupt a process in 
progress. Two types of processes in progress may 
be encountered: normal DMA, and bus master cas­
cade. 

In the event of a refresh request during a normal 
DMA process, the DMA Controller will complete the 
data transfer in progress and then execute the re­
fresh cycle before continuing with the' current DMA 
process. The priority of the interrupted process is 
not lost. If the data transfer cycle interrupted by the 
Refresh Controller is the last of a DMA process, the 
refresh cycle will always be executed before control 
of the bus is transferred back to the host. 

When the Refresh Controller request oc~urs during 
a cascade cycle, the Refresh Controller must be as­
sured that the cascaded master device has relin­
quished control of the bus before it can execute the 
refresh cycle. To do this, the DMA Controller drops 
the EDACK signal to the cascaded master and waits 
for the corresponding DREQn input to go inactive. 
By dropping the DREQn signal, the cascaded mas­
ter relinquishes the bus. The Refresh Controller then 
performs the refresh cycle. Control of the bus is re­
turned to the cascaded master if DREQn returns to 
an active state before the end of the refresh cycle, 
otherwise control is passed to the processor and the 
cascaded master loses its priority. . 

3.5 DMA Controller Register Overview 

The 82380 DMA Controller contains 44 registers 
which are accessable to the host processor. Twen­
ty-four of these registers contain the device ad­
dresses and data counts for the individual DMA 
channels (three per channel). The remaining regis­
ters are control and status registers for initiating and 
monitoring the operation of the 82380 DMA Control­
ler. Table 3-4 lists the DMA Controller's registers 
and their accessability. 

Register Name Access 

Control/Status Register-One Each Per 
Group 

Command Register I Write Only 
Command Register II Write Only 
Mode Register I Write Only 
Mode Register II Write Only' 
Software Request Register Read/Write . 
Mask Set-Reset Register Write Only 
Mask Read-Write Register Read/Write 
Status Register Read Only 
Bus Size Register Write Only 
Chaining Register Read/Write 

Channel Registers-One Each Per Channel 

Base Target Address Write Only 
Current Target Address Read Only 
Base Requester Address Write Only 
Current Requester Address Read Only 
Base Byte Count Write Only 
Current Byte Count Read Only 

Table 3·4. DMA Controller Registers 

3.5.1 CONTROL/STATUS REGISTERS 

The following registers are available to the host 
processor for programming the 82380 DMA Control­
ler into its various modes and for checking the oper­
ating status of the DMA processes. Each set of four 
DMA channels has one of each of these registers 
associated with it. 

Command Register I 

Enables or 'disables the DMA channels as a group. 
Sets the Priority Mode (Fixed or Rotating) of the 
group. This write-only register is cleared by a hard­
ware reset, defaulting to all channels enabled and 
Fixed Priority Mode. 

Command Register II 

Sets the sampling mode of the DREQn and EOP# 
inputs. Also sets the lowest priority channel for the 
group in the Fixed Priority Mode. The functions pro­
grammed through Command Register II default after 
a hardware reset to: asynchronous DREQn and 
EOP#, and channels 3 and 7 lowest priority. 

Mode Register I 

Mode Register I is identical in function to the Mode 
register of the 8237 A. It programs the following func­
tions for an individually selected channel: 
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Type of Transfer-read, write, verify 
Auto-Initialize-enable or disable 
Target Address Count-increment or 
decrement 
Data Transfer Mode-demand, Single, block, 
cascade 

Mode Register I functions default to the following 
after reset: verify transfer, Auto-Initialize disabled, In­
crement Target address, Demand Mode. 

Mode Register II 

Programs the following functions for an individually 
selected channel: 

Target Address Hold-enable or disable 
Requester Address Count-increment or 
decrement 
Requester Address Hold-enable or disable 
Target Device Type-I/O or Memory 
Requester Device Type-I/O or Memory 
Transfer Cycles-Two-Cycle or Fly-By 

Mode Register II functions are defined as follows 
after a hardware reset: Disable Target Address Hold, 
Increment Requester Address, Target (and Re­
quester) in memory, Fly-By Transfer Cycles. Note: 
Requester.Device Type ignored in Fly-By Transfers. 

Software Request Register 

The DMA Controller can respond to service requests 
which are initiated by software. Each channel has an 
internal request status bit associated with it. The 
host processor can write to this register to set or 
reset the request bit of a selected channel. 

The status of the group's software DMA service re­
quests can be read from this register as well. Each 
request bit is cleared upon Terminal Count or exter­
nal EOP#. 

The software DMA requests are non-maskable and· 
subject to priority arbitration with all other software 
and hardware requests. The entire register is 
cleared by a hardware reset. 

Mask Registers 

Each channel has associated with it a mask bit 
which can be set/reset to disable/enable that chan­
nel. Two methods are available for setting and clear­
ing the mask bits. The Mask Set/Reset Register is a 
write-only register which allows the host to select an 
individual channel and either set or reset the mask 
bit for that channel only. The Mask Read/Write Reg­
ister is available for reading the mask bit status and 
for writing mask bits in groups of four. 

The mask bits of a group may be cleared in one step 
by executing the Clear Mask Command. See the 
DMA Programming section for details. A hardware 
reset sets all of the channel mask bits, disabling all 
channels. ' 

Status Register 

The Status register is a read-only register which con­
tains the Terminal Count (TC) and Service Request 
status for a group. Four bits indicate the TC status 
and four bits indicate the hardware request status 
for the four channels in the group. The TC bits are 
set when the Byte Count expires, or when an exter­
nal EOP # is asserted. These bits are cleared by 
reading from the Status Register. The Service Re­
quest bit for a channel indicates when there is a 
hardware DMA request (DREQn) asserted for that 
channel. When the request has been removed, the 
bit is cleared. 

Bus Size Register 

This write-only register is used to define the bus size 
of the Target and Requester of a selected channel. 
The bus sizes programmed will be used to dictate 
the sizes of the data paths accessed when the DMA 
channel is active. The values programmed into this 
register affect the operation of the Temporary Regis­
ter. Any byte-assembly required to make the trans­
fers using the specified data path widths will be done 
in the Temporary Register. The Bus Size register of 
the Target is used as an increment/decrement value 
for the Byte Counter and Target Address when in 
the Fly-By Mode. Upon reset, all channels default to 
S-bit Targets and S-bit Requesters. 

Chaining Register 

As a command or write register, the Chaining regis­
ter is used to enable or disable the Chaining Mode 
for a selected channel. Chaining can either be dis­
abled or enabled for an individual channel, indepen­
dently of the Chaining Mode status of other chan­
nels. After a hardware reset, all channels default to 
Chaining disabled. 

When read by the host, the Chaining Register pro­
vides the status of the Chaining Interrupt of each of 
the channels. These interrupt status bits are cleared 
when the new buffer information has been loaded. 

3.5.2 CHANNEL REGISTERS 

Each channel has three individually programmable 
registers necessary for the DMA process; they are 
the Base Byte Count, Base Target Address, and 
Base Requester Address registers. The 24-bit Base 
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Byte Count register contains the number of bytes to 
be transferred by the channel. The 32-bit Base Tar­
get Address Register contains the beginning ad­
dress (memory or 1/0) of the Target device. The 32-
bit Base Requester Address register contains the 
base address (memory or 1/0) of the device which is 
to request DMA servipe. 

Three more registers for each DMA channel exist 
within the DMA Controller which are directly related 
to the registers mentioned above. These registers 
contain the CUii6iit status of the Dtv1A process. They 
are the Current Byte Count register, the Current Tar­
get Address, and the Current Requester Address. It 
is these registers which are manipulated (increment­
ed, decremented, or held constant) by the 82380 
DMA Controller during the DMA process. The Cur­
rent registers are loaded from the Base registers. 

The Base registers are loaded when the host proc­
essor writes to the respective channel register ad­
dresses. Depending on the mode in which the chan­
nel is operating, the Current registers are typically 
loaded in the same operation. Reading from the 
channel register addresses yields the contents of 
the corresponding Current register. 

To maintain compatibility with software which ac­
cesses an 8237 A, a Byte Pointer Flip-Flop is used to 
control access to the upper and lower bytes of some 
words of the Channel Registers. These words are 
accessed as byte pairs at single port addresses. The 
Byte Pointer Flip-Flop acts as a one-bit pointer 
which is toggled each time a qualifying Channel 
Register byte is accessed. It always points to the 
next logical byte to be accessed of a pair of bytes. 

The Channel rcg::;tcr:; 3rs arranged as paiis of 
words, each pair with its own port address. Address­
ing the port with the Byte Pointer Fiip-Fiop reset ac­
cesses the least significant byte of the pair. The 
most significant byte is accessed when the Byte 
Pointer is set. 

For compatibility with existing 8237 A designs, there 
is one exception to the above statements about the 
Byte Pointer Flip-Flop. The third byte (bits 16-23) of 
the Target Address is accessed through its own port 
address. The Byte Pointer Flip-Flop is not"affected 
by any accesses to this byte. 

The upper eight bits of the Byte Count Register are 
cleared when the least significant byte of the regis­
ter is loaded. This provides compatibility with soft­
ware which accesses an 8237 A. The 8237 A has 
16-bit Byte Count Registers. 

3.5.3 TEMPORARY REGISTERS 

Each channel has a 32-bit Temporary Register used 
for temporary data storage during two-cycle DMA 
transfers. It is this register in which any necessary 
byte assembly and disassembly of non-aligned data 
is performed. Figure 3-22 shows how a block of data 
will be moved between memory locations with differ­
ent boundaries. Note that the order of the data does 
not change. 

SOURCE 

20H 

DESTINATION 

21H 

22H 

23H 

24H 

25H 

26H 

27H 

A 

B 

C 

D 

E 

F 

G 

50H 

51H 

52H 

53H 

54H 

55H 

56H 

57H 

.58H 

59H 

5AH 
Target = source = 00000020H 
Requester = destination = 0000OO53H 
Byte Count = 00OO06H 

A 

B 

C 

D 

E 

F 

G 

Figure 3-22. Transfer of Data between Memory 
Locations with Different Boundaries. This will be 

the result, independent of data path width. 

If the destination is the Requester and an early pro­
cess termination has been indicated by the EOP # 
sianal ar DREOn inactive in the Demand Mode, the 
Temporary Register is not affected. If data remains 
in the Temporary Register due to differences in data 
path widths of the Target and Requester, it will not 
be transferred or otherwise lost, but will be stored for 
later transfer. 

If the destination is the Target and the EOP # signal 
is sensed active during the Requester access of a 
transfer, the DMA Controller will complete the trans­
fer by sending to the Target whatever information is 
in the Temporary Register at the time of process 
termination. This implies that the Target could be 
accessed with partial data. For this reason it is ad­
visable to have an 1/0 device designated as a Re­
quester, unless it is capable of handling partial data 
transfers. 
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3.6 DMA Controller Programming 

Programming a DMA Channel to perform a needed 
DMA function is in general a four step process. First 
the global attributes of the DMA Controller are pro­
grammed via the two Command Registers. These 
global attributes include: priority levels, channel 
group enables, priority mode, and DREQn/EOP# in­
put sampling. 

The second step involves setting the operating 
modes of the particular channel. The Mode Regis­
ters are used to define the type of transfer and the 
handshaking modes. The Bus Size Register and 
Chaining Register may also need to be programmed 
in this step. 

The third step is setting up the channel is to load the 
Base Registers in accordance with the needs of the 
operating modes chosen in step two. The Current 
Registers are automatically loaded from the Base 
Registers, if required by the Buffer Transfer Mode in 
effect. The information loaded and the order in 
which it is loaded depends on the operating mode. A 
channel used for cascading, for example, needs no 
buffer information and this step can be skipped en­
tirely. 

The last step is to enable the newly programmed 
channel using one of the Mask Registers. The chan­
nel is then available to perform the desired data 
transfer. The status of the channel can be observed 
at any time through the Status Register, Mask Reg­
ister, Chaining Register, and Software Request reg­
ister. 

Once the channel is programmed and enabled, the 
DMA process may be initiated in one of two ways, 
either by a hardware DMA request (DREQn) or a 
software request (Software Request Register). 

Once programmed to a particular Process/Mode 
configuration, the channel will operate in that config­
uration until programmed otherwise. For this reason, 
restarting a channel after the current buffer expires 
does not require complete reprogramming of the 
channel. Only those parameters which have 
changed need to be reprogrammed. The Byte Count 

Register is always changed and must be repro­
grammed. A Target or Requester Address Register 
which is incremented or decremented should be re­
programmed also. 

3.6.1 BUFFER PROCESSES 

The Buffer Process is determined by the Auto-Initial­
ize bit of Mode Register I and the Chaining Register. 
If Auto-Initialize is enabled, Chaining should not be 
used. 

3.6.1.1 Single Buffer Process 

. The Single Buffer Process is programmed by dis­
abling Chaining via the Chaining Register and pro~ 
gramming Mode Register I for non-Auto-Initialize. 

3.6.1.2 Buffer Auto-Initialize Process 

Setting the Auto-Initialize bit in Mode Register I is all 
that is necessary to place the channel in this mode. 
Buffer Auto-Initialize must not be enabled simulta­
neous to enabling the Buffer Chaining Mode as this 
will have unpredictable results. 

Once the Base Registers are loaded, the channel is 
ready to be enabled. The channel will reload its Cur­
rent _ Registers from the Base Registers each time 
the Current Buffer expires, either by an expired Byte 
Count or an external EOP#. 

3.6.1.3 Buffer Chaining Process 

The Buffer Chaining Process is entered into from the 
Single Buffer Process. The -Mode Registers should 
be programmed first, with all of the Transfer Modes 
defined as if the channel were to operate in the Sin­
gle Buffer Process. The channel's Base and Current 
Registers are then loaded. When the channel has 
been set up in this way, and the chaining interrupt 
service routine is in place, the Chaining Process can 
be entered by programming the Chaining Register. 
Figure 3.23 illustrates the Buffer Chaining Process. 

An interrupt (lRQ1) will be generated immediately af­
ter the Chaining Process is entered, as the channel 
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then perceives the Base Registers as empty and in 
need of reloading. It is important to have the inter­
rupt service routine in place at the time the Chaining 
Process is entered into. The interrupt request is re­
moved when the most significant byte of the Base 
Target Address is loaded. 

The interrupt will occur again when the first buffer 
expires and the Current Registers are loaded from 
the Base Registers. The cycle continues until the 
Chaining Process is disabled, or the host fails to re­
spond to IRQ1 befoie the CUfrent Buffer expirtts. 

INSTALL IRQl INTERRUPT SERVICE ROUTINE 

SET THE CHANNEL TO NON-CHAINING PROCESS 

PROGRAM THE MODE REGISTERS 

LOAD BASE REGISTERS FOR FIRST BUFFER 

SET THE CHANNEL TO CHAINING PROCESS 

(IRQ 1 WILL BE ACTIVATED) 

ENABLE INTERRUPT 

(IRQ 1 WILL NEED SERVICE­
LOAD BASE REGISTERS) 

ENABLE THE CHANNEL 

F'~O~ TH!S POINT. THE HOST CAN PERFORM A~Q!HER 
TASK. THE INTERRUPT SERVICE ROUTINE LEFT BEHIND 

WILL MAINTAIN THE CHANNEL. 

290128-36 

Figure 3-23. Flow of Events in the 
Buffer Chaining Process 

Exiting the Chaining Process can be done by reset­
ting the Chaining Mode Register. If an interrupt is 
pending for the channel when the Chaining Register 
is reset, the interrupt request will be removed. The 

_ Chaining Process can be temporarily disabled by 
setting the channel's Mask bit in the Mask Register. 

The interrupt service routine for IRQ1 has the re­
sponsibility of reloading the Base Register as neces­
sary. It should check the status of the channel to 
determine the cause of channel expiration, etc. It 
shouid aiso have access to operating system injor­
mation regarding the channel, if any exists. The 
IRQ1 service routine should be capable of determin­
ing whether the chain should be continued or termi­
nated and act on that information .. 

3.6.2 DATA TRANSFER MODES 

The Data Transfer Modes are selected via Mode 
Register I. The Demand, Single, and Block Modes 
are selected by bits 06 and 07. The individual trans­
fer type (Fly-By vs Two-Cycle, Read-Write-Verify, 
and 1/0 vs Memory) is programmed through both of 
the Mode registers. 

3.6.3 CASCADED BUS MASTERS 

The Cascade Mode is set by writing ones to 07 and 
06 of Mode Register I. When a channel is pro­
grammed to operate in the Cascade Mode, all of the 
other modes associated with Mode Registers I and II 
are ignored. The priority and OREQn/EOP# defini­
tions of the Command Registers will have the same 
effect on the channel's operation as any other 
mode. 

3.6.4 SOFTWARE COP.1MANDS 

There are five port addresses which, when written 
to, command certain operations to be performed by 
the 82380 OMA Controller. The data written to these 
locations is not of consequence, writing to the loca­
tion is all that is necessary to command the 82380 to 
perform the indicated function. Following are de­
scriptions of the command function. 
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Clear Byte Pointer Flip-Flop-location OOOCH 

Resets the Byte Pointer Flip-Flop. This command 
should be performed at the beginning of any access 
to the channel registers in order to be assured of 
beginning at a predictable place in the register pro­
gramming sequence. 

Master Clear-location OOODH 

All DMA functions are set to their default states. This 
command is the equivalent of a hardware reset to 
the DMA Controller. Functions other than those in 
the DMA Controller section of the 82380 are not af­
fected by this command. 

Clear Mask 
Register -Channels 0-3-location OOOEH 

Channels 4-7-location OOGEH 

Channel Registers 
Channel 

Register Name 

Channel a Target Address 

Byte Count 

Requester Address 

Channel 1 Target Address 

Byte Count 

Requester Address 

This command simultaneously clears the Mask Bits 
of all channels in the addressed group, enabling all 
of the channels in the group. 

Clear TC Interrupt Request-location 001 EH 

This command resets the Terminal Count Interrupt 
Request Flip-Flop. It is provided to allow the pro­
gram which made a software DMA request to ac­
knowledge that it has responded to the expiration of 
the requested channel(s). 

3.7 Register Definitions 

The following diagrams outline the bit definitions and 
functions of the 82380 DMA Controller's Status and 
Control Registers. The function and programming of 
the registers is covered in the previous section on 
DMA Controller Programming. An entry of 'X' as a bit 
value indicates "don't care." 

(Read Current, Write Base) 
Address Byte Bits 

(Hex) Pointer Accessed 

00 a 0-7 
1 8-15 

87 x 16-23 
10 a 24-31 
01 a 0-7 

1 8-15 
11 a 16-23 
90 a 0-7 

1 8-15 
91 a 16-23 

1 24-31 

02 a 0-7 
1 8-15 

83 x 16-23 
12 a 24-31 
03 a 0-7 

1 8-15 
13 a 16-23 
92 a 0-7 

1 8-15 
93 a 16-23 

1 24-31 
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Channel Registers (Read Current, Write Base) 
Register Name :. Address Byte Bits Channel (Hex) Pointer Accessed 

Channel 2 Target Address 04 0 0-7 
1 8-15 

81 x 16-23 
14 0 24-31 

Byte Count 05 0 0-7 
1 8-15 

i5 0 ,.,.. n,.. 
IO-t:;.~ 

Requester Address 94 0 0-7 
1 8-15 

95 0 16-23 
1 24-31 

Channel 3 Target Address 06 0 0-7 
1 8-15 

82 x 16-23 
16 0 24-31 - Byte Count 07 0 0-7 

1 8-15 
17 0 16-23 

Requester Address 96 0 0-7 
1 8-15 

97 0 16-23 
1 24-31 

Channel 4 Target Address CO 0 0-7 
1 8-15 

8F x 16-23 
DO 0 24-31 

Byte Count C1 0 0-7 
1 8-15 

01 0 16-23 
Requester Address 98 0 0-7 

8-15 
99 0 16-23 

1 24-31 

Channel 5 Target Address C2 0 0-7 
1 8-15 

8B x 16-23 
02 0 24-31 

Byte Count C3 0 0-7 
1 8-15 

03 0 16-23 
Requester Address 9A 0 0-7 

1 8-15 
9B 0 16"-23 

24-31 
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Channel Registers (Read Current, Write Base) 

Channel Register Name Address Byte 
(Hex) Pointer 

Channel 6 Target Address C4 0 
1 

89 x 
04 0 

Byte Count C5 0 
1 

05 0 
Requester Address 9C 0 

1 
90 0 

1 

Channel 7 Target Address C6 0 
1 

8A x 
06 0 

Byte Count C7 0 
1 

07 0 
Requester Address 9E 0 

1 
9F 0 

1 

Command Register I (Write Only) 

Port Address-Channels 0-3--0008H 
Channels 4-7--00C8H 

07 06 05 04 03 02 01 DO 

xlxlxlplxlMlxlxl 
II.----GROUP MASK 

o = ENABLE CHANNELS 
1 = DISABLE CHANNELS 

L-------PRIORITY 
o = rlXEO PRIORITY 

Bits 
Accessed 

0-7 
8-15 
16-23 
24-31 
0-7 
8-15 
16-23 

0-7 
8-15 
16-23 

·24-31 

0-7 
8-15 
16-23 
24-31 
0-7 
8-15 
16-23 

0-7 
8-15 
16-23 
24-31 

1 = ROTATING PRIORITY 
290128-37 

Command Register II (Write Only) 

Port Addresses-Channels 0-3-001 AH 
Channels 4-7-000AH 

07 06 05 D4 03 02 01 DO 

101010101~1~1~1~1 

~OREQn SAMPLING 
EOPR SAMPLING 

o = ASYNCHRONOUS 
1 = SYNCHRONOUS 

LOW PRIORITY LEVEL SET 
00 = CHANNEL 0(4) LOW~T 
01 = CHANNEL 1 (5~ LOWEST 
10= CHANNEL 2~6 LOWEST 
11 = CHANNEL 3 7 LOW~T 
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Mode Register I (Write Only) 

Port Addresses-Channels 0-3-{)OOBH 
Channels 4-7-{)OCBH 

07 06 05 04 03 02 01 DO 

Bl I BO I Tl I AI I T1 I TO ciI:O§] . 
~1,....J""'I~-rI....L""TI""'"TI..L."I~-rLL....L""T-I CHANNE~ SE~ECT 

00 = CHANNE~ ? s:? 
I I fJ ~ g~!~~~t 23' r76~ 

11 = CHANNE~ ( ) 
1-.--1"-____ TRANsrER TYPE 

00 = VERIFY 
01 =WRITE 
10=READ 
11 =I~~EGA~ 
xx Ir IN CASCADE MODE 

"-----:----- AUTg-;!~\Y~h~E~ 1 = ENAB~E 

"----------- TARGET INCREMENT/DECREMENT 
0= INCREMENT 'TARGET 
1 = DECREMENT TARGET' 
X Ir TARGET HO~D ENAB~ED 

"---1"-____________ DAT~~A~ESJI~DM~86E 

01 =' SING~E TRANsrER MODE 
10 = B~OCK MODE 
11 = CASCADE MODE 

• Target and Requester DECREMENT is allowed only for byte transfers. 

Mode Register" (Write Only) 

Port Addresses-Channels 0-3-{)01 BH 
Channels 4-7-{)ODBH 

07 06 05 04 

rvlonlTniDul -. , .. - , .- , .... I 

03 02 01 DO 

DI I TI.I I r.1 I r.n I 
T I "j" I L~L r.~ANNrt srlrCT C " SEE "MODE REGISTER I 

• TARGET HO~D 
o = INCREMENT/DECREMENT 
1 =HO~D 

REQUESTER INCREMENT o = INCREMENT 
1 = DECREMENT' 
X Ir REQUESTER HO~D ENAB~ED 

REQ~~;U:lR~a~~T/DECREMENT 
1 =HO~D 

'----------- TAR~EJ3~:r:fyTYPE 
1 ~ INPUT/OUTPUT 

'------------- REQ~~~~8gICE TYPE 

1 = INPUT/OUTPUT 

"--------------- TRA~~5~{!8}gE (RY-BY) 
1 = lWO-CYC~E 

• Target and Requester DECREMENT is allowed only for byte transfers. 
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Software Request Register (Read/Write) . 

Port Addresses-Channels 0-3-0009H 
Channels 4-7-00C9H 

Write Format: 

Read Format: 

CHANNEL 0(4) REQUEST 
L----CHANNEL 1 (5) REQUEST 

L-----CHANNEL 2(6) REQUEST 
L-------CHANNEL 3(7) REQUEST 

Mask Set/Reset Register Individual Channel Mask (Write Only) 

Port Addresses-Channels 0-3-000AH 
Channels 4-7-00CAH 

07 06 05 04 03 02 01 DO 

X I x I x I x I x I M I Cl CO 

L---''--_ CHANNEL SELECT 
SEE MODE REGISTER I 

L-____ MASK SET BIT 
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o = CLEAR MASK (ENABLE) 
1 = SET MASK (DISABLE) 
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Mask Read/Write Register Group Channel Mask (Read/Write) 

Port Addresses-Channels 0-3-000FH 
Channels 4-7-00CFH 

07 06 05 04 

X X X x 

03 02 01 DO 

I M31 M21 Ml 

M[LCHANNEL 0(4) MASK BIT I I CHANNEL 1 (5) MASK BIT 

I I CHANNEL 2 (6) MASK BIT 
CHANNEL 3 (7) MASK BIT 

MASK BIT = 0 -CHANNEL ENABLE 
= 1 -CHANNEL DISABLE 

290128-44 

Status Register Channel Process Status (Read Only) 

Port Addresses-Channels 0-3-000SH 
Channels 4-7-00CSH 

07 06 05 04 03 02 01 DO 

I R3 I R2 I Rl I RO I TC31 TC21 TCI I TCO I 

I I 
L...- CHANNEL 0(4) EXPIRED I=EXPIRED 

CHANNEL 1 (5) EXPIRED 

BIl!,; Size Register Set Data Path Width (Write Only) 

[') ......... Ito ..... ". ...... ,.. ............... ~h ............... I~ n 13 nniC:U 
r VI" nuul ~~~t:i.,,-vIIa.IIII'W'I,;t ",,-v-v,,", 1"-,, I 

Channels 4-7-00DSH 

07 06 05 04 03 02 01 

CHANNEL 2 (6) EXPIRED 
CHANNEL 3 (7) EXPIRED 

CHANNEL 0(4) REQUEST I=REQUEST 
CHANNEL 1 (5) REQUEST PENDING 
CHANNEL 2 (6) REQUEST 
CHANNEL 3 (7) REQUEST 

DO 

IRBSllRBSOI TBS11TBSOI 0 I 0 I Cl I CO I 

I I 
CHANNEL SELECT 

SEE MODE REGISTER I 

TARGET BUS SIZE 

290128-45 

REQUESTER BUS SIZE 
290128-46 

Bus S,ze EncodIng: 
00 = Reseoved by Intel 10 = IS-bit Bus 
01 = 32-biI Bus 11 = B-bit Bus 
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Chaining Register (Read/Write) 

Port Addresses-Channels 0-3-0019H 
Channels 4-7-00D9H 

Write Format: Set Chaining Mode 

07 06 05 04 

o I o I o I o I 
03 02 01 00 

o I CH I C1 CO 

0-. ....... '--- CHANNEL SELECT 
SEE MOOE REGISTER I I 1.-____ CHAINING ENABLE BIT 

Read Format: Channel Interrupt Status 

0= OISABLE CHAINING MOOE 
1 = ENABLE CHAINING MOOE 

290128-47 

07 06 05 04 03 02 01 DO 

CHANNEL 0 (4) BASE EMPTY 
.... _-- CHANNEL 1 (5) BASE EMPTY 

'------ CHANNEL 2 (6) BASE EMPTY 
L-______ CHANNEL 3 (7) BASE EMPTY 

290128-48 

3.8 8237 A Compatibility 

The register arrangement of the 82380 DMA Con­
troller is a superset of the 8237A DMA Controller. 
Functionally the 82380 DMA Controller is very differ­
ent from the 8237 A. Most of the functions of the 
8237 A are performed also by the 82380. The follow­
ing discussion points out the differences between 
the 8237A and the 82380. 

The 8237 A is limited to transfers between I/O and 
memory only (except in one special case, where two 
channels can be used to perform memory-to-memo­
ry transfers). The 82380 DMA Controller can transfer 
between any combination of memory and I/O. Sev­
eral other features of the 8237 A are enhanced or 
expanded in the 82380 and other features are add­
ed. 

The 8237A is an 8-bit only DMA device. For pro­
gramming compatibility, all of the 8-bit registers are 
preserved in the 82380. The 82380 is programmed 
via 8-bit registers. The address registers in the 
82380 are 32-bit registers in order to support the 

80386's 32-bit bus. The Byte Count Registers are 
24-bit registers, allowing support of larger data 
blocks than possible with the 8237 A. 

All of the 8237 A's operating modes are supported 
by the 82380 (except the cumbersome two-channel 
memory-to-memory transfer). The 82380 performs 
memory-to-memory transfers using only one chan­
nel. The 82380 has the added features of buffer 
pipelining (Buffer Chaining Process), programmable 
priority levels,· and Byte Assembly. 

The 82380 also adds the feature of address regis­
ters for both destination and source. These address­
es may be incremented, decremented, or held con­
stant, as required by the application of the individual 
channel. This allows any combination of destination 
and source device. 

Each DMA channel has associated with it a Target 
and a Requester. In the 8237A, the Target is the 
device which can be accessed by the address regis­
ter, the Requester. is the device which is accessed 
by the DMA Acknowledge signals and must be an 
I/O device. 
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4.0 Programmable Interrupt 
Controll~r (PIC) 

4.1 . Functional Description 

The 82380 Programmable Interrupt Controller (PIC) 
consists of three enhanced 82C59A Interrupt Con-

I toilers. These three controllers together provide 15 
external and 5 internal interrupt request inputs. Each 
external request input can be cascaded with an ad­
ditionai 62C59A siave coiieciur. This scheme allows 
the 82380 to support a maximum of 120 (15 x 8) 
external-interrupt request inputs. 

Following one or more interrupt requests,the 82380 
PIC issues an interrupt signal to the 80386. When 
the 80386 host processor responds with an interrupt 
acknowledge signal, the PIC will arbitrate between 
the pending interrupt requests and place the inter­
rupt vector associated with the highest priority pend­
ing request on the data bus. 

The major enhancement in the 82380 PIC over the 
82C59A is that each of the interrupt request inputs 

IR016# 
IR017# 
IR01S# 
IR019# 
IR020# 
IR021# 
IRQ22# 
IRQ23# 

can be individually programmed with its own inter­
rupt vector, allowing more flexibility in interrupt vec­
tor mapping. 

4.1.1 INTERNAL BLOCK DIAGRAM 

The block diagram of the 82380 Programmable In­
terrupt Controller is shown in Figure 4-1. Internally, 
the PIC consists of three 82C59A banks: A, Band C. 
The three banks are cascaded to one another: C is 
cascaded to B,· B is cascaded to A. The INT output 
of Bank A is used externally to interrupt the 80386. 

I 

Bank A has nine interrupt request inputs (two are 
unused), and Banks Band C have eight interrupt 
request inputs. Of the fifteen external interrupt re­
quest inputs, two are shared by other functions. Spe­
cifically, the Interrupt Request 3 input (IRQ3#) can 
be used as the Timer 2 output (TOUT2#). This pin 
can be used in three different ways: IRQ3 # input 
only, TOUT2# output only, or using TOUT2# to 
generate an IRQ3# interrupt request. Also, the In­
terrupt Request 9 input (IRQ 9#) can be used as 
DMA Request 4 input (DREQ4). Typically, only 
IRQ9 # or DREQ4 can be used afa time . 

.... 0 

~ 
1 

~ INTERRUPT 
~ ~ 4 BANK 

5 C 
~ 6 

7 

INT 

E-CC TOUT3# (IROO#) 0 
CHAINING (IRQ1H) 1 

Rsp ICW2 (IRQ 1.5#) 1.5 
(lRQ2#) 2 INTERRUPT 

TOUT2#/IRQ3#---" 3 BANK INT 
(OUTPUT) WEAK PULL-UP SW Req TC (IRQ4#) 4 A 

NOT USED 5 
NOT USED 6 

DEFAULT (IRQ7#) ~7 ___ _ 
290128-49 

NOTE: 
Masking IRQ1.5# also masks IRQ2# 

Figure 4-1. Interrupt Controller Block Diagram 
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4.1.2 INTERRUPT CONTROLLER BANKS 

All three banks are identical, with the exception of 
the IRQ1.5 on Bank A. Therefore, only one bank will 
be discussed. In the 82380 PIC, all external requests 
can be cascaded into and. each interrupt controller 
bank behaves like a master. As compared to the 
82C59A, the enhancements in the banks ~re: 

- All interrupt vectors are individually programma­
ble. (In the' 82C59A, the vectors must be pro­
grammed in eight consecutive interrupt vector lo­
cations.) 

IROO# 
IR01# 
IR02# 
IR03# 
IR04# 
IROS# 
IR06# 
IR07# 

WR-----. 

DATA (0-7) 

- The cascade address is provided on the Data 
Bus (00-07). (In the 82C59A, three dedicated 
control Signals (CASO, CAS1, CAS2) are used for 
master/slave cascading.) 

The block diagram of a bank is shown in Figure 4-2. 
As can be seen from this figure, the bank consists of 
six major blocks: the Interrupt Request Register 
(IRR), the In-Service Register (ISR), the Interrupt 
Mask Register (IMR), the Priority Resolver (PR), the 
Vector Register (VR), and the Control Logic. The 
functional description of each block follows. 

...-___ .. INTERRUPT 
TO HOST 

PRIORITY 
RESOLVER 

& 
CONTROL 

LOGIC 

IROO 
IROl 
IR02 
IR03 
IR04 
IROS 
IR06 
IR07 

IN­
SERVICE 

REG. 

DATA (0-7) 

INDIVIDUALLY PROGRAMMABLE 
VECTOR BANK ._-------------------------------

82380 ENHANCEMENT OVER THE 82CS9A 
290126-50 

Figure 4·2. Interrupt Bank Block Diagram 
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INTERRUPT REQUEST (IRR) AND IN-SERVICE 
REGISTER (ISR) 

:he interrupts at the Interrupt Request (IRQ) input 
lines are handled by two registers in cascade, the 
Interrupt Request Register (IRR) and the In-Service 
Register (ISR). The IRR is used to store all interrupt 
levels which are requesting service; and the ISR is 
used to store all interrupt levels which are being 
serviced. 

PRIORITY RESOLVER (PR) 

This logic block determines the priorities of the bits 
set in the IRR. The highest priority is selected and 
strobed into the corresponding bit of the ISR during 
an Interrupt Acknowledge cycle. 

INTERRUPT MASK REGISTER (IMR) 

:he IMR stores the bits which mask the interrupt 
lines to be masked (disabled). The IMR operates on 
the IRR. Masking of a higher priority input will not 
affect the interrupt request lines of lower priority. 

VECTOR REGISTERS (VR) 

This block contains a set of Vector Registers, one 
for each interrupt request line, to store the pre-pro­
wammed interrupt vector number. The correspond­
Ing vector number will be driven onto the Data Bus 
of the 82380 during the Interrupt Acknowledge cy­
cle. 

CONTROL LOGIC 

The Control Logic coordinates the overall operations 
of the other internal h!n"!<,, within th'" ,,"m'" h .. nk 
This logic will drive th~ I~t~~r~-pt' o-utP~t ~ig~~1 (INT) 
I-)IGH when oile or inore unmasked interrupt inputs 
are active (LOW). The INT output signal goes direct­
ly to the 80386 (in Bank A) or to another bank to 
which this bank is cascaded (see Figure 4-1). Also, 
this logic will recognize an Interrupt Acknowledge 
c~cle (via MlIO#, D/C# and W/R# signals). During 
thiS bus cycle, the Control Logic will enable the cor­
responding Vector Register to drive the interrupt 
vector onto the Data Bus. 

In Bank A, the Control Logic is also responsible for 
handling the special ICW2 interrupt request input 
(lRQ1.5#). 

4.2 Interface Signals 

4.2.1 INTERRUPT INPUTS 

There are 15 external Interrupt Request inputs and 5 
internal Interrupt Requests. The external request in­
puts are: IRQ3#, IRQ9#, IRQ11 # to IRQ23#. They 
are shown in bold arrows in Figure 4-1. All IRQ in­
puts are active LOW and they can be programmed 
(via a control bit in the Initialization Command Word 
1 (ICW1)) to be either edge-triggered or level-trig­
gered. In order to be recognized as a valid interrupt 
request, the interrupt input must be active (LOW) un­
til the first INTA# cycle (see Bus Functional De­
scription). 

Note that all 15 external Interrupt Request inputs 
have weak internal pull-up resistors. 

As mentioned earlier, an 82C59A can be cascaded 
to each external interrupt input to expand the inter­
rupt capacity to a maximum of 120 levels. Also, two 
of the interrupt inputs are dual functions: IRQ3# can 
be used as Timer 2 output (TOUT2#) and IRQ9# 
can be used as DREQ4 input. IRQ3# is a bidirec­
tional dual function pin. This interrupt request input is 
wired-OR with the output of Timer 2 (TOUT2#). If 
only IRQ3 # function is to be used, Timer 2 should 
be programmed so that OUT2 is LOW. Note that 
TOUT2 # can also be used to generate an interrupt 
request to IRQ3# input. 

The five internal interrupt requests serve special 
system functions. They are shown in Table 4-1. The 
following paragraphs describe these interrupts. 

Table 4-1. 82380 Internal Interrupt Requests 

I Interrupt Request I Interrupt Source 

IRQO# Timer 3 Output (TOUT3#) 
IRQ8# Timer 0 Output (TOUTO#) 
IRQ1# DMA Chaining Request 
IRQ4# DMA Terminal Count 
IRQ1.5# ICW2 Written 

TIMER 0 AND TIMER 3 INTERRUPT REQUESTS 
[IRQO#] 

IRQ8# and IRQO# interrupt requests are initiated 
by the output of Timers 0 and 3, respectively. Each 
of these requests is generated by an edge-detector 
flip-flop. The flip-flops are activated by the following 
conditions: 

Set- Rising edge of timer output (TOUT); 

Clear- Interrupt acknowledge for this request; 
OR Request is masked (disabled); OR 
Hardware Reset. 
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CHAINING AND TERMINAL COUNT INTERRUPTS 
[IRQ1#) 

These interrupt requests are generated by the 
82380 DMA Controller. The chaining request 
(IRQ1 #) indicates that the DMA Base Register is 
not loaded. The Terminal Count request (IRQ4#) in­
dicates that a software DMA request was cleared. 

ICW2 INTERRUPT REQUEST [IRQ1.5#) 

Whenever an Initialization Control Word 2 (ICW2) is 
written to a Bank, a speciallCW2 interrupt request is 
generated. The interrupt will be cleared when the 
newly programmed ICW2 Register is read. This in­
terrupt request is in Bank A at level 1.5. This inter­
rupt request is internally ORed with the Cascaded 
Request from Bank B and is always assigned a high­
er priority than the Cascaded Request. 

This special interrupt is provided to support compati­
bility with the original 82C59A. A detailed description 
of this interrupt is discussed in the Programming 
section. 

DEFAULT INTERRUPT [IRQU) 

During an Interrupt Acknowledge cycle, if there is no 
active pending request, the PIC will automatically 

PREVIOUS 
CYCLE 

ClK 

READY# 

INTERRUPT ACKNOWLEDGE 
CYCLE 1 (5 WAIT STATES) 

generate a default vector. This vector corresponds 
to the IRQ? # vector in Bank A. 

4-2_2 INTERRUPT OUTPUT (I NT) 

The INT output pin is taken directly from bank A. 
This signal should be tied to the Maskablelnterrupt 
Request (INTR) of the 80386. When this Signal is 
active (HIGH), it indicates that one or more internal! 
external interrupt requests are pending. The 80386 
is expected to respond with an interrupt acknowl­
edge cycle. 

4.3 Bus Functional Description 

The INT output of bank A will be activated as a result 
of any unmasked interrupt request. This may be a 
non-cascaded or cascaded request. After the PIC 
has driven the INT signal HIGH, 80386 will respond 
by performing two interrupt acknowledge cycles. 
The timing diagram in Figure 4-3 shows a typical in­
terrupt acknowledge process between the 82380 
and the 80386 CPU. 

IDLE 
(4 BUS STATES) 

INTERRUPT ACKNOWLEDGE 
CYCLE 2 (5 WAIT STATES) 

T2 T2 T2 T2 

SEE NOTE 

00-07 ~--+--i--~--+--i--~~~~~~--+--1~-t--+-~~-t--1---~:f~~~-
SEE NOTE 

NOTE: - . 
What is actually driven on the Data Bus depends on if the current interrupt request IS a Slave Request. 

NON-SLAVE REQUEST 
SLAVE REQUEST 

• Slave will place a vector at this time. 

INTACycle 1 
OOH 
Slave Address 

INTA Cycle 2 
Vector 
High Impedance' 

Figure 4·3. Interrupt Acknowledge Cycle 
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After activating the INT signal, the 82380 monitors 
the status lines (M/IO#, D/C#, W/R#) and waits 
for the 80386 to initiate the first interrupt acknowl­
edge cycle. In the 80386 environment, two succes~ 
sive interrupt acknowledge cycles (INTA) marked by 
M/IO# = LOW, D/C# = LOW, and W/R# = 
LOW are performed. During the first INTA cycle, the 
PIC will determine the highest priority request. As­
suming this interrupt input has no external Slave 
Controller cascaded to it, the 82380 will drive the 
Data Bus with OOH in the first INTA cycle. During the 
second INTA cycle, the 82380 PIC ~\'i!! drive the 
Data Bus with the corresponding preprogrammed in­
terrupt vector. 

If the PIC determines (from the ICW3) that this inter­
rupt input has an external Slave Controller cascaded 
to it it will drive the Data Bus with the specific Slave 
Cas~ade Address (instead of OOH) during the first 
INTA cycle. This Slave Cascade Address is the pre­
programmed content in the corresponding Vector 
Register. This means that no Slave Address should 
be chosen to be OOH. Note that the Slave Address 
and Interrupt Vector are different interpretations of 
the same thing. They are both the contents of the 
programmable Vector Register. During the second 
INTA cycle, the Data Bus will be floated so that the 
external Slave Controller can drive its interrupt vec­
tor on the bus. Since the Slave Interrupt Controller 
resides on thE! system bus, bus transceiver enable 
and direction control logic must take this into consid­
eration. 

In order to have a successful interrupt service, the 
interrupt request input must be held active (LOW) 
until the beginning of the first interrupt acknowledge 
cycle. If there is no pending int~rrupt request when 
thG first ~NTl\ cyc!c is generated, the PIC wil! gener .. 
ate a default vector, which is the IRQ7 vector (bank 
A ievei 7). 

According to the Bus Cycle definition of the 80386, 
there will be four Bus Idle States between the two 
interrupt acknowledge cycles. These idle bus cycles 
will be initiated by the 80386. Also, during each inter­
rupt acknowledge cycle, the internal Wait State Gen­
erator of the 82380 will automatically generate the 
required number of wait states for internal delays. 

4.4 Mode of Operation 

A variety of modes and commands are available for 
controlling the 82380 PIC. All of them are program­
mable; that is, they may be changed dynamically un­
der software control. In fact, each bank can be pro­
grammed individually to operate in different modes. 
With these modes and commands, many possible 

configurations are conceivable, giving the user 
enough versatility for almost any interrupt controlled 
application. 

This section is not intended to show how the 82380 
PIC can be programmed. Rather, it describes the 
operation in different modes. 

4.4.1 END·Of-INTERRUPT 

Upon completion of an interrupt service routine, the 
interrupted bank needs to be notified so lis lSR caii 
be updated. This allows the PIC to keep track of 
which interrupt levels are in the process of being 
serviced and their relative priorities. Three different 
End-Of-Interrupt (EO I) formats are available. They 
are: Non-Specific EOI Command, Specific EOI Com­
mand, and Automatic EOI Mode. Selection of which 
EOI to use is· dependent upon the interrupt opera­
tions the user wishes to perform. 

If the 82380 is' NOT programmed in the Automatic 
EOI Mode, an EOI command must be issued by the 
80386 to the specific 82380 PIC Controller Bank. 
Also, if this controller bank is cascaded to another 
internal bank, an EOI command must also be sent to , 
the bank to which tnis bank is cascaded. For exam­
ple, if an interrupt request of Bank C in the 82380 
PIC is serviced, an EOI should be written into Bank 
C, Bank B and Bank A. If the request comes from an 
external interrupt control,ler cascaded to Bank C, 
then an EOI should be written into the external con­
troller as well. 

NON-SPECIFIC EOI COMMAND 

A Non-Specific EOI command sent from the 80386 
•. •• ---- ........ _ •. __ ,.1. __ ... _ •• 1... __ ____ .: __ ... _ •• 

lets tne ot:~ou 1"""1\..1 UtUl1\ I\IIUVV Wllwll a. "''CIYI'''~ IVU-

tine has been completed, without specification of its 
exact interrupt level. The respective interrupt bank 
automatically determines the interrupt level and re-

. sets the correct bit in the ISA. 

To take advantage of the Non-Specific EOI, t~e in~ 
terrupt bank must be in a mode of operation in which 
it can predetermine its in-service routine levels. For 
this reason, the Non-Specific EOI command should 
only be used when the most recent level acknowl­
edged and serviced is always the highest piiority lav­
el (Le., in the Fully Nested Mode structure to be de­
scribed below). When the interrupt bank receives a 
Non-Specific EOI command, it simply rese~s the 
highest priority ISR bit to indicate that the highest 
priority routine in service is finished. 

,Special consideration should be taken when decid­
ing to use the Non-Specific EOI command. Here are 
two operating conditions in which it is best NOT 
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used since the Fully Nested Mode structure will be 
destroyed: 

- Using the Set Priority command within an inter­
rupt service routine. 

- Using a Special Mask Mode. 

These conditions are covered in more detail in their 
own sections, but are listed here for reference. 

SPECIFIC EOI COMMAND 

Unlike a Non-Specific EOI command which automat­
ically resets the highest priority ISR bit, a Specific 
EOI command specifies an exact ISR bit to be reset. 
Anyone of the IRQ levels of an interrupt bank can 
be specified in the command. 

The Specific EOI command is needed to reset the 
ISR bit of a completed service routine whenever the 
interrupt bank is not able to automatically determine 
it. The Specific EOI command can be used in all 
conditions of operation, including those that prohibit 
Non-Specific EOI command usage mentioned 
above. 

AUTOMATIC EOI MODE 

When programmed in the Automatic EOI Mode, the 
80386 no longer needs to issue a command to notify 

. the interrupt bank it has completed an interrupt rou­
tine. The interrupt bank accomplishes this by per­
forming a Non-Specific EOI automatically at the end 
of the second INTA cycle. 

Special consideration should be taken when decid­
ing to use the Automatic EOI Mode because it may 
disturb the Fully Nested Mode structure. In the Auto­
matic EOI Mode, the ISR bit of a routine in service is 
reset right after it is acknowledged, thus leaving no 
deSignation in the ISR that a service routine is being 
executed. If any interrupt request within the same 
bank occurs during this time and interrupts are en­
abled, it will get serviced regardless of its priority. 

Therefore, when using this mode, the 80386 should 
keep its interrupt request input disabled during exe­
cution of a service routine. By doing this, higher pri­
ority interrupt levels will be serviced only after the 
completion of a routine in service. This guideline re­
stores the Fully Nested Mode structure. However, in 
this scheme, a routine in service cannot be interrupt­
ed since the host's interrupt request input is dis­
abled. 

4.4.2 INTERRUPT PRIORITIES 

The 82380 PIC provides various methods for arrang­
ing the interrupt priorities of the interrupt request in­
puts to suit different applications. The following sub­
sections explain these methods in detail. 

4.4.2.1 Fully Nested Mode 

The Fully Nested Mode of operation is a general pur­
pose priority mode. This mode supports a multi-level 
interrupt structure in which all of the Interrupt Re­
quest (IRQ) inputs within one bank are arranged 
from highest to lowest. 

Unless otherwise programmed, the Fully Nested 
Mode is entered by default upon initialization. At this 
time, IRQO# is assigned the highest priority (priority 
= 0) and IRQ7 # the lowest (priority = 7). This de­
fault priority can be changed, as will be explained 
later in the Rotating Priority Mode. 

When an interrupt is acknowledged, the highest pri­
ority request is determined from the Interrupt Re­
quest Register (IRR) and its vector is placed on the 
bus. In addition, the corresponding bit in the In-Serv­
ice Register (ISR) is set to deSignate the routine in 
service. This ISR bit will remain set until the 80386 
issues an End Of Interrupt (EOI) command immedi­
ately before returning from the service routine; or 
alternately, if the Automatic End Of Interrupt (AEOI) 
bit is set, the ISR bit will be reset at the end of the 
second INTA cycle. 
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While the ISR bit is set, all further interrupts of the 
same or lower priority are inhibited. Higher level in­
terrupts can still generate an interrupt, which will be 
acknowledged only if the 80386 internal interrupt en­
~bl.e flip-flop has been re-enabled (through software 
Inside the current service routine). . . 

4.4.2.2 Automatic Rotation-Equal Priority 
Devices 

Automatic rotation of oriorities serves in aoolications . 
w~e~e th~ interrupting devices are· of equal priority 
within an Interrupt bank, In this kind of environment, 
once a device is serviced, all other equal priority pe­
ripherals should be given a chance to be serviced 
before the original device is serviced again. This is 
accomplished by automatically assigning a device 
the lowest priority after being serviced. Thus, in the 
worst case, the device would have to wait until all 
other peripherals connected to the same bank are 
serviced before it is serviced again. 

There are two methods of accomplishing automatic 
rotation. One is used in conjunction with the Non­
Specific EOI command and the other is used with 

the Automatic EOI mode. These two methods are 
discussed below. 

ROTATE ON NON-SPECIFIC EOI COMMAND 

When the Rotate On Non-Specific EOI command is 
issued, the highest ISR bit is reset as in a normal 
Non-Specific EOI command. However, after it is re­
~et, the corresponding Interrupt Request (IRQ) level 
IS assigned the lowest priority. Other IRQ priorities 
rotate to conform to the Fully Nested Mode based 
on the newiy assigned low prioriiy. 

Figure 4-4 shows how the Rotate On Non-Specific 
EOI command affects the interrupt priorities. As­
sume the IRQ priorities were assigned with IRQO the 
highest and IRQ7 the lowest. IRQ6 and IRQ4 are 
already in service but neither is completed. Being 
the higher priority roLitine, IRQ4 is necessarily the 
routine being executed. During the IRQ4 routine, a 
rotate on Non-Specific EOI command is executed. 
When this happens, Bit 4 in the ISR is reset. IRQ4 
then becomes the lowest priority and IRQ5 becomes 
the highest. 

157 156 ISS 154 153 152 151 ISO 

ISR STATUS (BEfORE 
PRIORITY J-.....,f---I--+""':'-j-"':"+-=-4--=-+--=-I COMMAND) 

LOWEST PRIORITY HIGHEST PRIORITY 
290126-52 

157 156 ISS 154 153 152 151 ISO 

ISR STATUS (AFTER 
PRIORITY t-.....,f---I--+""':'-j-"':"4--=-4--=-+-..:....J COMMAND) 

HIGHEST PRIORITY LOWEST PRIORITY 
290126-53 

Figure 4-4. Rotate On Non-Specific EOI Command 

4-672 



82380 

ROTATE ON AUTOMATIC EOI MODE 

The Rotate On Automatic EOI Mode works much 
like the Rotate On Non-Specific EOI Command. The 
main difference is that priority rotation is done auto­
matically after the second INTA cycle of an interrupt 
request. To enter or exit this mode, a Rotate-On-Au­
tomatic-EOI Set Command and Rotate-On-Automat­
ic-EOI Clear Command is provided. After this mode 
is entered, no other commands are needed as in the 
normal Automatic EOI Mode. However, it must be 
noted again that when using any form of the Auto­
matic EOI Mode, special consideration should be 
taken. The guideline presented in the Automatic EOI 
Mode also applies here. 

4.4.2.3 Specific Rotation-5pecific Priority 

Specific rotation gives the user versatile capabilities 
in interrupt controlled operations. It serves in those 
applications in which a specific device's interrupt pri­
ority must be altered. As opposed to Automatic Ro­
tation which will automatically set priorities after 
each interrupt request is serviced, specific rotation is 
completely user controlled. That is, the user selects 
which interrupt level is to receive the lowest or the 
highest priority. This can be done during the main 

program or within interrupt routines. Two specific ro­
tation commands are available to the user: Set Prior­
ity Command and Rotate On Specific EOI Com­
mand. 

SET PRIORITY COMMAND 

The Set Priority Command allows the programmer to 
assign an IRO level the lowest priority. All other in­
terrupt levels will conform to the Fully Nested Mode 
based on the newly assigned low priority. 

ROTATE ON SPECIFIC EOI COMMAND 

The Rotate On Specific EOI Command is literally a 
combination of the Set Priority Command and the 
Specific EOI Command. Like the Set Priority Com­
mand, a specified IRO level is assigned lowest priori­
ty. Like the Specific EOI Command, a specified level 
will be reset in the ISA. Thus, this command accom­
plishes both tasks in one single command. 

4.4.2.4 Interrupt Priority Mode Summary 

In order to simplify understanding the many modes 
of interrupt priority, Table 4-2 is provided to bring out 
their summary of operations. 

Table 4-2. Interrupt Priority Mode Summary 

Intern~pt Operation Effect On Priority After EOI 
Priority Mode Summary Non-Specific! Automatic Specific 

Fully-Nested Mode IROQ#-Highest Priority No change in priority. Not Applicable. 
IR07#-Lowest Priority Highest ISR bit is reset. 

Automatic Rotation Interrupt level just serviced Highest ISR bit is reset and the Not Applicable. 
(Equal Priority Devices) is the lowest priority. Other corresponding level becomes the 

priorities rotate to conform lowest priority. 
to Fully-Nested Mode. 

Specific Rotation User specifies the lowest Not Applicable. As described under 
(Specific Priority priority level. Other priorities 'Operation Summary'. 
Devices) rotate to conform to Fully-

Nested Mode. 
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4.4.3 INTERRUPT MASKING· 

V,A·,NTERRUPT MASK REGISTER 

Each bank in the 82380 PIC has an Interrupt Mask 
Register (IMR) which enhances interrupt control ca­
pabilities. This IMR allows individual IRQ masking. 
When an IRQ is masked, its interrupt request is dis­
abled until it is unmasked. Each bit in the 8-bit IMR 
disables one interrupt channel if it is set (HIGH) .. Bit 
o masks IRQO, Bit 1 masks IRQ1 and so forth. 
Masking an iRQ channei wiii oniy disabie the corre­
sponding channel and does not affect the others op­
erations .. 

The IMR acts only on the output of the IRA. That is, 
if an interrupt occurs while its IMR bit is set, this 
request is not 'forgotten'. Even with an IRQ input 
masked, it is still possible to set the.lRR. Therefore, 
when the IMR bit is reset, an interrupt request to the 
80386 will then be generated, providing that the IRQ 
request remains active. If the IRQ request is re­
moved before the IMR is reset, the Default Interrupt 
Vector (Bank A, level 7) will be generated during the 
interrupt acknoY(ledge cycle. 

SPECIAL MASK MODE 

In the Fully Nested Mode, all IRQ levels of lower 
priority than the routine in service are inhibited. How­
ever, in some applications, it may be desirable to let 
a lower priority interrupt request to interrupt the rou­
tine in service. One method to achieve this is by 
using the Special Mask Mode. Working in conjunc­
tion with the IMR, the Special Mask Mode enables 
interrupts from all levels except the level in service. 
This is usually done inside an interrupt service rou­
tine by masking the ievei thai is ill :Stjlvi(;tj anci then 
issuing the Special Mask Mode Command. Once the 
Special Mask Mode is enabled, it remains in effect 
until it is disabled. 

4.4.4 EDGE OR LEVEL INTERRUPT 
TRIGGERING 

Each bank in the 82380 PIC can be programmed 
independently for either edge or level senSing for the 
interrupt request signals. Recall that all IRQ inputs 
are active LOW. Therefore, in the edge triggered 
mode, an active edge is defined as an input tran­
sition from an inactive (HIGH) to active (LOW) state. 
The interrupt input may remain active without gener­
ating another interrupt. During level triggered mode, 
an interrupt request will be iecognized by an activs 
(LOW) input, and there is no need for edge detec­
tion. However, the interrupt request must be re­
moved before the EOI Command is issued, or the 
80386 must be disabled to prevent a second false 
interrupt from occurring. 

In either modes, the interrupt request input must be 
active (LOW) during the first INTA cycle in order to 
be recognized. Otherwise, the Default Interrupt Vec­
tor will be generated at level 7 of Bank A. 

4.4.5 INTERRUPT CASCADING 

As mentioned previously, the 82380 allows for exter­
nal Slave interrupt controllers to be cascaded to any 
of its external interrupt request pins. The 82380 PIC 

. indicates that a external Slave Controller is to be 
serviced by putting the contents of the Vector Regis­
ter associated with the particular request on the 
80386 Data Bus during the first INTA cycle (instead 
of OOH during a non-slave service). The external log­
ic should latch the vector on the Data Bus using the 
INTA status signals and use it to select the external 
Slave Controller to be serviced (see Figure 4-5). The 
selected Slave will then respond to the second INTA 
cycle and place its vector on the Data Bus. This 
method requires that if external Slave Controllers 

R POSITIVE 
EDGE 

MASTER/SLAVE 
82380 0(0 _ 7) FLIP-FLOP CAS(O -7) 

~ IN OUT f-+ TO SLAVE 
8259's 

ii, eLK 

DATA BUS . I . INTA# ~ 
(FROM BUS CONTROLLER) ~ 

LATCH HERE 
290128-54 

Figure 4·5. Slave Cascade Address Capturing 
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are used in the system, no vector should be pro­
grammed to OOH. 

Since the external Slave Cascade Address is provid­
ed on the Data Bus during INTA cycle 1, an external 
latch is required to capture this address for the Slave 
Controller. A simple scheme is depicted in Figure 
4-5. 

4.4.5.1 Special Fully Nested Mode 

This mode will be used where cascading is em­
ployed and the priority is to be conserved within 
each Slave Controller. The Special Fully Nested 
Mode is similar to the 'regular' Fully Nested Mode 
with the following exceptions: 

- When an interrupt request from a Slave Control· 
ler is in service, this Slave Controller is not 
locked out from the Master's priority logic. Fur­
ther interrupt requests from the higher priority 
logic within the Slave Controller will be recog­
nized by the 82380 PIC and will initiate interrupts 
to the 80386. In comparing to the 'regular' Fully 
Nested Mode, the Slave Controller is masked out 
when its request is in service and no higher re­
quests from the same Slave Controller can be 
serviced. 

- Before exiting the interrupt service routine, the 
software has to check whether the interrupt serv­
iced was the only request from the Slave Con­
troller. This is done by sending a Non-Specific 
EOI Command to the Slave Controller and then 
reading its In Service Register: If there are no' 
requests in the Slave Controller, a Non-Specific 
EOI can be sent to the corresponding 82380 PIC 
bank also. Otherwise, no EOI should be sent. 

4.4.6 READING INTERRUPT STATUS 

The 82380 PIC provides several ways to read differ­
ent status of each interrupt bank for more flexible 
interrupt control operations. These include polling 
the highest priority pending interrupt request and 
reading the contents of different interrupt status reg­
isters. 

4.4.6.1 Poll Command 

The 82380 PIC supports status polling operations 
with the Poll Command. In a Poll Command, the 

pending interrupt request with the highest priority 
can be determined. To use this command, the INT 
output is not used, or the 80386 interrupt is disabled. 
Service to devices is achieved by software using the 
Poll Command. 

This mode is useful if there is a routine command 
common to several levels so that the INTA se­
quence is not needed. Another application is to use 
the Poll Command to expand the number of priority 
levels. 

Notice that the ICW2 mechanism is not supported 
for the Poll Command. However, if the Poll Com­
mand is used, the programmable Vector Registers 
are of no concern since no INTA cycle will be gener­
ated. 

4.4.6.2 Reading Interrupt Registers 

The contents of each interrupt register (IRR, ISR, 
and IMR) can be read to update the user's program 
on the present status of the 82380 PIC. This can be 
a versatile tool in the decision making process of a 
service routine, giving the user more control over 
interrupt operations. 

The reading of the IRR and ISR contents can be 
performed via the Operation Control Word 3 by us­
ing a Read Status Register Command and the con­
tent of IMR can be read via a simple read operation 
of the register itself. 

4.5 Register Set Overview 

Each bank of the 82380 PIC consists of a set of 8-bit 
registers to control its operations. The address map 
of all the registers is shown in Table 4-3. Since all 
three register sets are identical in functions, only 
one set will be described. 

Functionally, each register set can be divided into 
five groups. They are: the four Initialization Com­
mand Words (ICW's), the three Operation Control 
Words (OCW's), the Poll/Interrupt Request/In-Serv­
ice Register, the Interrupt Mask Register, and the 
Vector Registers. A description of each group fol­
lows. 
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Table 4~3. Interrupt Controller Register Address Map 

Port 
Access Register Description Address 

20H Write Bank B ICW1, OCW2, or OCW3 
Read Bank B Poll, Request or In-Service 

Status Register 
21H Write Bank B ICW2, ICW3, ICW4, OCW1 

Read Bank B Mask Register 
22H Read Bank B ICW2 
28H Read/Write IR08 Vector Register 
29H Read/Write IR09 Vector Register 
2AH Read/Write Reserved 
2BH Read/Write IR011 Vector Register 
2CH Read/Write IR012 Vector Register 
2DH Read/Write IR013 Vector Register 
2EH Read/Write IR014 Vector Register 
2FH Read/Write IR015 Vector Register 

AOH Write Bank C ICW1, OCW2, or OCW3 
Read Bank C Poll, Request or In-Service 

Status Register 
A1H Write Bank C ICW2; ICW3, ICW4, OCW1 

Read Bank C Mask Register 
A2H Read BankC ICW2 
A8H Read/Write IR016 Vector Register 
A9H Read/Write IR017 Vector Register 
AAH Read/Write IR018 Vector Register 
ABH Read/Write IR019 Vector Register 
ACH Read/Write IR020 Vector Register 
ADH Read/Write IR021 Vector Register 
AEH Read/Write IR022 Vector Register 
AFH Read/Write IR023 Vector Register 

I 30H Write Bank A ICW1, OCW2, or OCW3 
Read Bank A Poll, Request or In-Service 

Status Register 
31H Write Bank A ICW2, ICW3, ICW4, OCW1 

Read Bank A Mask Register 
32H Read Bank ICW2 
38H Read/Write IROO Vector Register 
39H Read/Write IR01 Vector Register 
3AH Read/Write IR01.5 Vector Register 
38H Read/'vVriie IRQ3 Vector Register 
3CH Read/Write IRQ4 Vector Register 
3DH Read/Write Reserved 
3EH Read/Write Reserved 
3FH Read/Write IR07 Vector Register 
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4.5.1 INITIALIZATION COMMAND WORDS (ICW) . 

Before normal operation can begin, the 82380 PIC 
must be brought to a known state. There are four 
8-bit Initialization Command Words in each interrupt 
bank to setup the necessary conditions and modes 
for proper operation. Except for the second common 
word (ICW2) which is a read/write register, the other 
three are write-only registers. Without going'into de­
tail of the bit definitions of the command words, the 
following subsections give a brief description of what 
functions each command word controls. 

ICW1 

The ICW1 has three major functions. They are: 

- To select between the two IRQ input triggering 
modes (edge-or level-triggered); 

- To designate whether or not the interrupt bank is 
to be used alone or in the cascade mode. If the 
cascade mode is desired, the interrupt bank will 
accept ICW3 for further cascade mode program­
ming. Otherwise, no ICW3 will be accepted; 

- To determine whether or not ICW4 will be issued; 
that is, if any of the ICW4 operations are to be 
used. 

ICW2 

ICW2 is provided for compatibility with the 82C59A 
only. Its contents do not affect the operation of the 
interrupt bank in any way. Whenever the ICW2 of 
any of the three banks is written into, an interrupt is 
generated from Bank A at level 1.5. The interrupt 
request will be cleared after the ICW2 register has 
been read by the 80386. The user is expected to 
program the corresponding vector register or to use 
it as an indicator that an attempt was made to alter 
the contents. Note that each ICW2 register has dif­
ferent addresses for read and write operations. 

ICW3 

The interrupt bank will only accept an ICW3 if pro­
grammed in the external cascade mode (as indicat­
ed in ICW1). ICW3 is used for specific programming 
within the cascade mode. The bits in ICW3 indicate 
which interrupt request inputs have a Slave cascad­
ed to them. This will subsequently affect the inter­
rupt vector generation during the interrupt acknowl­
edge cycles as described previously. 

ICW4 

The ICW4 is accepted only if it was selected in 
ICW1. This command word register serves two func­
tions: 

- To select either the Automatic EOI mode or soft­
ware EOI mode; 

- To select if the Special Nested mode is to be 
used in conjunction with the cascade mode. 

4.5.2 OPERATION CONTROL WORDS (OCW) 

Once initialized by the ICW's, the interrupt banks will 
be operating in the Fully Nested Mode by default 
and they are ready to accept interrupt requests. 
However, the operations of each interrupt bank can 
be further controlled or modified by the use of 
OCW's. Three OCW's are available for programming 
various modes and commands. Note that all OCW's 
are 8-bit write-only registers. 

The modes and operations controlled by the OCW's 
are: 

- Fully Nested Mode; 
- Rotating Priority Mode; 
- Special Mask Mode; 
- Poll Mode; 
- EOI Commands; 
- Read Status Commands. 

OCW1 

OCW1 is used solely for masking operations. It pro­
vides a direct link to the Interrupt Mask Register 
(IMR). The 80386 can write to this OCW register to 
enable or disable the interrupt inputs. Reading the 
pre-programmed mask can be done via the Interrupt 
Mask Register which will be discussed shortly. 

OCW2 

OCW2 is used to select End-Of-Interrupt, Automatic 
Priority Rotation, and Specific Priority Rotation oper­
ations. Associated commands and modes of these 
operations are selected using the different combina­
tions of bits in OCW2. 

Specifically, the OCW2 is used to: 

- Designate an interrupt level (0-7) to be used to 
reset a specific ISR bit or to set a specific priori­
ty. This function can be enabled or disabled; 

- Select which software EOI command (if any) is to 
be executed (Le., Non-Specific or Specific EOI); 

- Enable one of the priority rotation operations 
(Le., Rotate On Non-Specific EOI, Rotate On Au­
tomatic EOI, or Rotate on Specific EOI). 

OCW3 

There are three main categories of operation that 
OCW3 controls. That are summarized as follows: 
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- To select and execute the Read Status Register 
Commands, either reading the Interrupt Request 
Register (IRR) or the In-Service Register (ISR); 

- To issue the Poll Command. The Poll Command 
will override a Read Register Command if both 
functions are enabled simultaneously; 

- To set or reset the Special Mask Mode. 

4.5.3 POLL/INTERRUPT REQUEST/IN"SERVICE 
STATUS REGISTER 

As the name implies, this 8-bit read-only register has 
multiple functions. Depending on the command is­
sued in the OCW3, the content of this register re­
flects the result of the command executed. For a 
Poll Command, the register read contains the binary 
code of the highest priority level requesting service 
(if any). For a Read IRR Command, the register con­
tent will show the current pending interrupt re­
quest(s). Finally, for a Read ISR Command, this reg­
ister will specify all interrupt levels which are being 
serviced. 

4.5.4 INTERRUPT MASK REGISTER (IMR) 

This is a read-only 8-bit register which, when read, 
will specify all interrupt levels within the same bank 
that are masked. 

4.5.5 VECTOR REGISTER (VR) 

Each interrupt request input has an 8-bit read/write 
programmable vector register associated with it. The 
registers should be programmed to contain the inter­
rupt vector for the corresponding request. The con­
teiits of the Vectoi Registei ,will be placed Oii the 
Data Bus during the INTA cycles as described previ­
ously. 

4.6 Programming 

Programming the 82380 PIC is accomplished by us­
ing two types of command words: ICW's and 
OCW's. All modes and commands explained in the 
previous sections are programmable using the 
ICW's and· OCW's. The ICW's are issued from the 
80386 in a sequential format and are used to setup 
the banks in the 82380 PIC in an initial state of oper­
ation. The OCW's are issued as needed to. vary and 
control the 82380 PIC's operations. 

Both ICW's and OCW's are sent by the 80386 to the 
interrupt banks via the Data Bus. Each bank distin­
guishes between the different ICW's and OCW's by 
the I/O address map, the sequence they are issued 
(ICW's only), and by some dedicated bits among the 
ICW's and OCW's. 

. All three interrupt banks are programmed in a similar 
way. Therefore, only a single bank will be described. 

4.6.1 INITIALIZATION (ICW) 

Before normal operation can begin, each bank must 
be initialized by programming a sequence of two to 
four bytli's written into the ICW's. 

Figure 4-6 shows the initialization flow for an inter­
rupt bank. Both ICW1 and ICW2 must be issued for 
any form of operation. However, ICW3 and ICW4 are 
used only if designated in ICW1. Once initialized, if 
any programming changes within the ICW's are to 
be made, the entire ICW sequence must be repro­
grammed, not just an individual ICW. 

Note that although the ICW2's in the 82380 PIC do 
not affect the Bank's operation, they still must be 
programmed in order to preserve the compatibility 
with the 82C59A. The contents programmed are not 
relevant to the overall operations of the interrupt 
banks. Also, whenever one of the three ICW2's is 
programmed, an interrupt level 1.5 in Bank A will be 
generated. This interrupt request will be cleared 
upon reading of the ICW2 registers: Since the three 
ICW2's share the same interrupt level and the sys­
tem may not know the origin of the interrupt, all three 
ICW2's must be read. 

However, it is not necessary to provide an interrupt 
service routine for the ICW2 interrupt. One way to 
avoid this is as follows. At the beginning of the initial­
ization of the interrupt banks, the 80386 interrupt 
should be disabled. After each ICW2 register write 
operation is performed during the initialization, the 
corresponding ICW2 register is read. This read oper­
ation will clear the interrupt request of the 82380. At 
the end of the initialization, the 80366 interrupt is re­
enabled. With this method, the 80386 will not detect 
the ICW2 interrupt request, thus eliminating the need 
of an interrupt service routine. 

Certain internal setup conditions occur automatically 
within the interrupt bank after the first ICW (ICW1) 
has been issued. They are: . 

- The edge sensitive circuit is reset, which means 
. that following initialization, an interrupt request 
input must make a HIGH-to-LOW transition to 
generate an interrupt; 

- The Interrupt Mask Register (IMR) is cleared; 
that is, all interrupt inputs are enabled; 

- IRQ7 input of each bank is assigned priority 7 
(lowest); 

- Special Mask Mode is cleared and Status Read 
is set to IRR; 

- If no ICW4 is needed, then no Automatic-EOI is 
selected. 
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'ICW2 vector address must be programmed now. 

(ICW2 INTERRUPT GENERATED) 

(ALLOW SERVICING 
OF ICW2 INTERRUPT) 

290128-55 

Other vector addresses may be programmed via ICW2 interrupt service routine. 

Figure 4·6. Initialization Sequence 

4.6.2 VECTOR REGISTERS (VR) 

Each interrupt request input has a separate Vector 
Register. These Vector Registers are used to store 
the pre-programmed vector number .corresponding 
to their interrupt sources. In order to guarantee prop­
er interrupt handling, all Vector Registers must be 
programmed with the predefined vector numbers. 
Since an interrupt request will be generated whenev· 
er an ICW2 is written during the initialization se· 
quence, it is important that the Vector Register of 
IRQ1.5 in Bank A should be initialized and the inter­
rupt service routine of this vector is set up before the 
ICW's are written. 

4.6.3 OPERATION CONTROL WORDS (OCW) 

After the ICW's are programmed, the operations of 
each interrupt controller bank can be changed by 
writing into the OCW's as explained before. There is 
no special programming sequence required for the 
OCW's. Any OCW may be written at any time in or­
der'to change the mode of or to per.orm certain op­
erations on the interrupt banks. 

4.6.3.1 Read Status and Poll Commands (OCW3) 

Since the reading of IRR and ISR status as well as 
the result of a Poll Command are available on the 
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same read-only Status Register, a special Read 
Status/Poll Command must be issued before the 
Pollllnterrupt Request/In-Service Status Register is 
read. This command can be specified by writing the 
required control word into OCW3. As mentioned ear­
lier, if both the Poll Command and the Status Read 
Command are enabled simultaneously, the Poll 
Command will override the Status Read. That is, af­
ter the command execution, the Status Register will 
contain the result of the Poll Command. 

i'-Joie ihai for reading iRR and iSR, ihere is no need 
to issue a Read Status Command to the OCW3 ev­
ery time the IRR or ISR is to be read. Once a Read 

4.7 Register Bit Definition 

INITIALIZATION COMMAND WORD 1 (ICW1) 

07 06 05 04 03 

Status Command is received by the interrupt bank, it 
'remembers' which register is selected. However, 
this is not true when the Poll Command is used. 

In the Poll Command, after the OCW3 is written, the 
82380 PIC treats the next read to the Status Regis­
ter as an interrupt acknowledge. This will set the ap­
propriate IS bit if there is a request and read the 
priority level. Interrupt Request input status remains 
unchanged from the Poll Command to the Status 
Read. 

In addition to the above read commands, the Inter­
rupt Mask Register (IMR) can also be read. When 
read, this register reflects the contents of the pre­
programmed OCW1 which contains information on 
which interrupt request(s) is(are) currently disabled. 

02 01 DO 

I x I x I x I 1 I LTIM I X I SNGL I IC4 I 

o - EDG~ TRIGGERED 0 - NO~ICW4 NEEDED 
1 - LEVEL TRIGGERED 1 - ICW4 NEEDED 

0- EXTERNAL CASCADE 
(ICW3 NEEDED) 

1 - NO EXTERNAL CASCADE 
(ICW3 NOT NEEDED) 

,INITIALIZATION COMMAND WORD 2 (ICW2) 

CONTENT IS NOT RELEVANT TO THE ACTUAL 
OPERATION OF THE BANK BUT CAN BE READ 
BY THE INTERRUPT SERVICE ROUTINE TO 
DETERMINf: WHERE THE INTERRUPT VECTORS 
OF EACH BANK START. 
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INITIALIZATION COMMAND WORD 3 (ICW3) 
ICW3 for Bank A: 

07 06 05 04 03 02 01 DO 

o I 

ICW3 for Bank B: 

07 06 05 04 03 02 01 DO 

15151514151315121 5111 x I 59 I 0 I 
I II II I 

L.... 0 - NO CASCADED REQUEST TO lRQn 
1 - THERE IS A CASCADED REQUEST 

CONNECTED TO IRQn (I .•. THE 
CORRESPONDING INTERRUPT 
REQUEST INPUTS) 

ICW3 for Bank C: 

07 06 05 04 03 02 01 00 

1 523 1 522 1 5211520 15191 SIS I 5171 516 1 

I I I I I I I I 

INITIALIZATION COMMAND WORD 4 (ICW4) 

4 0 - NO CASCADED REQUEST TO IRQn 
1 - THERE IS A CASCADED REQUEST 

CONNECTED TO IRQn . 

07 06 05 04 03 02 01 DO 

I 0 I 0 I 0 ISFN~I x I x I AEol1 x I 
I 0 = NOR~AL EOI 
~ 1 =AUTOMATIC EOI 

OPERATION CONTROL WORD 1 (OCW1) 

07 06 05 04 03 02 01 DO 
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OPERATION CONTROL WORD 2 (OCW2) 

D7 D6 D5 D4 D3 D2 Dl DO 

R I SL I EOI 

I I I 
o L2 'E" I L"",,,,,,, 

TO BE ACTED UPON 

o 

0 0 
0, 1 
1 0 
1 0 
0 0 
1 1 
1 1 
0 1 

1 
1 
1 
0 
0 
1 
0 
0 

NON-SPECIFIC EOI COMMAND 
SPECIFIC EOI COMMAND(L2-LO USED) 
ROTATE ON NON-SPECIFIC EOI 
ROTATE ON AUTO-EOI MODE (SET) 
ROTATE ON AUTO-EOI MODE (CLEAR) 
ROTATE ON SPECIFIC EOI (L2-LO USED) 
SET PRIORllY (L2-LO USED) 
NO OPERATION 

OPERATION CONTROL WORD 3 (OCW3) 

D7 D6 D5 D4 D3 P2 Dl DO 

ESMM SMM RIS 
o 0 NO ACTION o NO ACTION 
o 1 NO ACTION 1 - POLL COMMAND 1 NO ACTION 

290128-:60 

1 0 RESET SPECIAL MASK 0 - NO POLL COMMAND o READ IR REG. (STATUS) 
1 1 SET SPECIAL MASK 1 READ IS REG. (STATUS) 

290128-61 

ESMM-Enable Special Mask Mode. When this bit is set to 1, it enables the SMM bit to set or reset the Special Mask 
Mode. When this bit is set to 0, SMM bit becomes don't care. 

SMM-Special Mask Mode. If ESMM = 1 and SMM = I, the interrupt controller bank will enter SpeCial Mask Mode. If 
ESMM = 1 and SMM = 0, the bank will revert to normal mask mode. When ESMM = 0, SMM has no effect. 

Poll/lnteiiLipt Reqi.iest/ln~SerY;Ce Status Regislei 

POLL COMMAND STATUS 

07 D6 D5 D4 D3 D2 Dl DO 

0- NO PENDING INTERRUPT 
1 - PENDING INTERRUPT 
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INTERRUPT REQUEST STATUS 

07 06 05 04 03 02 01 DO 

IIRQ711RQ611RQ511RQ411RQ311RQ211RQ111RQO I 
IF IRQ BIT IS: 0 - NO REQUEST 

1 - REQUEST PENDING 
290128-63 

NOTE: 
Although all Interrupt Request inputs are active LOW, the internal logical will invert the state of the pins so that when 
there is a pending interrupt request at the input, the corresponding IRQ bit will be set to HIGH in the Interrupt Request 
Status register. 

IN-SERVICE STATUS VECTOR REGISTER (VR) 

07 06 05 04 03 02 01 DO 

IIS7 IIS6 IIS5 1154 1153 1152 I 151 1 150 I 
IF" IS" BIT IS: 0 - NOT IN-SERVICE 

1 - REQUEST IS IN-SERVICE 8-BIT VECTOR NUMBER 
290128-64 290128-65 

4.8 Register Operational Summary 

For ease of reference, Table 4-4 gives a summary of the different operating modes and commands with their 
corresponding registers. 

Table 4-4 Register Operational Summary 

Operational Command 
Bits 

Description Words 

Fully Nested Mode OCW-Default -
Non-specific EOI Command OCW2 EOI 
Specific EOI Command OCW2 SL,EOI, 

LO-L2 
Automatic EOI Mode ICW1,ICW4 IC4,AEOI 
Rotate On Non-Specific OCW2 EOI 

EOICommand 
Rotate On Automatic OCW2 R,SL, EOI 

EOI Mode 
Set Priority Command OCW2 LO-L2 
Rotate On Specific OCW2 R, SL, EOI 

EOICommand 
Interrupt Mask Register OCW1 MO-M7 
Special Mask Mode OCW3 ESMM,SMM 
Level Triggered Mode ICW1 LTIM 
Edge Triggered Mode ICW1 LTIM 
Read Register Command, IRR OCW3 RR, RIS 
Read Register Command, ISR OCW3 RR, RIS 
Red IMR IMR MO-M7 
Poll Command OCW3 P 
Special Fully Nested Mode ICW2,ICW4 IC4,SFNM 
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5.0 PROGRAMMABLE INTERVAL 
TIMER 

5.1 Functional Description 

The 82380 contains four independently Programma­
ble Interval Timers: Timer 0-3. All four timers are 
functionally compatible to the Intel 82C54. The first 
thre~ timers (Timer 0-2) have specific functions. 
The fourth timer, Timer 3, is a general purpose timer. 
T_L..I ... ,::: ....... __ : ... +_ ...... _ , ........... : ___ ,..OJ __ ...... +:........... A h.i",,", 
I aU11tJ OJ-I U0I-'", .. Lo::J 1110 IUII""'UII~ VI QQ."",. UIIIQI. n "'I,g, 
description of each timer's function follows. 

Timer 

0 

1 

Table 5·1. Programmable 
Interval Timer Functions 

Output Function 

IROS Event Based 
IR08 Generator 

TOUT1/REF# Gen. Purpose/DRAM , Refresh Req. 
2 TOUT2#/IR03# Gen. Purpose/Speaker 

OutlIR03# 
3 TOUT3# Gen. Purpose/IRaO 

Generator 

DATA BUFFER 
4 

8-BIT 
~ &: COUNTER 0 

INTERNAL BUS 
LOGIC 

I I I I 

TIMER 0- Event Based IROS Gen'erator 

Timer 0 is intended to be used as an Event Counter. 
Thl;! output of this timer will generate an Interrupt 
Request 8 (IR08) upon a rising edge of the timer 
output (TOUTO). Typically, this timer is used to im­
plement a time-of-day clock or system tick. The Tim­
er 0 output is not available as an external signal. 

TIMER 1-General Purpose/DRAM Refresh 
Request 

The output of Timer 1, TOUTI, can be used as a 
general purpose timer or as a DRAM Refresh Re­
quest signal. The rising edge of this output creates a 
DRAM refresh request to the 82380 DRAM Refresh 
Controller. Upon reset, the Refresh Request func­
tion is disabled, and the output pin is the Timer 1 
output. 

TIMER 2-General Purpose/Speaker OutlIR03# 

The Timer 2 output, TOUT2 #, could be used to sup­
port tone generation to an external speaker. This pin 
is a bidirectional signal. When used as an input, a 
logic LOW asserted at this pin will generate an Inter­
rupt Register 3 (IR03#) (see Programmable Inter-
rupt Controller). . 

OUTO .If EDGE L 
'I DETECTOR I 

OUT1. .1 r mllr 1 .I 

IR08 
(INTERNAL) 
BANK B 

4 ~ 4 ~ I COUNTER I ... 14----.' 1 
, REr RESH I I ~ DETECTOR n CONTROLLER I 

IREF'# 

GATE-1-..... 
CONTROL 

WORD 
REGISTER I 

CONTROL 
WORD 

REGISTER II 

, . , 

COUNTER 3 

CLKIN 

2-TO-I 
L.....::?::!'!+II MUX 

OPEN COLLECTOR 

TOUTI/REF# 

IROO 
t----+(INTERNAL) 

..... _-_... BANK A 

~)-----.TOUT3# 

290128-66 

Figure 5·1. Block Diagram of Programmable Interval Timer 
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TIMER 3-General Purpose/Interrupt Request 0 
Generator 

The output of Timer 3 is fed to an edge detector and 
generates an Interrupt Request 0 (IROO) in the 
82380. The inverted output of this timer (TOUT3#) 
is also available as an external signal for general 
purpose use. 

5.1.1 INTERNAL ARCHITECTURE 

The functional block diagram of the Programmable 
Interval Timer section is shown in Figure 5-1. Follow­
ing is a description of each block. 

DATA BUFFER & READ/WRITE'LOGIC 

This part of the Programmable Interval Timer is used 
to interface the four timers to the 82380 internal bus. 
The Data Buffer is for transferring commands and 
data between the 8-bit internal bus and the timers. 

GATEn 
eLK n OUT n 

The Read/Write Logic accepts inputs from the inter­
nal bus and generates signals to control other func­
tional blocks within the timer section. 

CONTROL WORD REGISTERS I & II 

The Control Word Registers are write-only registers. 
They are used to control the operating modes of the 
timers. Control Word Register I controls Timers 0, 1 
and 2, and Control Word Register II controls Timer 
3. Detailed description of the Control Word Regis­
ters will be included in the Register Set Overview 
section. 

COUNTER 0, COUNTER 1, 
COUNTER 2, COUNTER 3 

Counters 0, 1, 2, and 3 are the major parts of Timers 
0, 1, 2, and 3, respectively., These four functional 
blocks are identical in operation, so only a single 
counter will be described. The internal block dia­
gram of one counter is shown in Figure 5-2. 

290128-67 

Figure 5-2. Internal Block Diagram of A Counter 
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The four counters share a common clock input 
(ClKIN), but otherwise are fully independent. Each 
counter is programmable to operate in a different 
Mode. 

Although the Control Word Register is shown in the 
Figure 5-2, it is not part of the counter itself. Its pro­
grammed contents are used to control the opera-

- tions of the counters. 

The Status Register, when latched, contains the cur-
ront ,...nntontQ: nf thQ r.nntrnl \A/nrn RoniCl:tor ann ._ .... __ .... _ .... _ .......... ___ ..... _ ••• _._ ,0 ._~._ ........ ...... _ 

status of the output and Null Count Flag (see Read 
Back Command). 

The Counting Element (CE) is the actual counter. It 
is a 16-bit presettable synchronous down counter. 

The Output latches (Ol) contain two 8-bit latches 
(OlM and Oll). Normally, these latches 'follow' the 
content of the CE. OlM contains the most signifi­
cant byte of the counter and Oll contains the least 
significant byte. If the Counter latch Command is 
sent to the counter, Ol will latch the present count 
until read by the 80386 and then return to follow the 
CE. One latch at a time is enabled by the timer's 
Control logic to drive the internal bus. This is how 
the 16-bit Counter communicates over the 8-bit in­
ternal bus. Note that CE cannot be read. Whenever 
the count is read, it is one of the Ol's that is being 
read, 

When a new count is written into the counter, the 
value will be stored in the Oount Registers (CR), and 
transferred to CE. The transferring of the contents 
from CR's to CE is defined as 'loading' of the coun­
ter. The Count Register contains two 8-bit registers: 
r.RM (whi"h "nnt .. in" tho:> mn"t "innifi" .. nt hvt",l .. nrl ' 

CRL' (~hi~h ·c~~i~i~·~-th~ I~~;t-~i~i~ifi~~~t ·bYt~)~ 'si~~ 
lar to the OL's, the Control Logic allows one register 
at a time to be loaded from the 8-bit internal bus. 
However, both bytes are transferred from the CR's 
to the CE simultaneously. Both CR's are cleared 
when the Counter is programmed. This way, if the 
Counter has been programmed for one byte count 
(either the most significant or the least significant 
byte only), the other byte will be zero. Note that CE 
cannot be written into directly. Whenever a count is 
written, it is the CR that is being written. 

As shown in the diagram, the Control logic consists 
of three signals: ClKIN, GATE, and OUT. ClKIN 
and GATE will be discussed in detail in the section 
that follows. OUT is the internal output of the coun­
ter. The external outputs of some timers (TOUT) are 
the inverted version of OUT (see TOUT1, TOUT2#, 
TOUT3#). The state of OUT depends on the mode 
of operation of the timer. 

5.2 Interface Signals 

5.2.1 elKIN 

ClKIN is an input signal used by all four timers for 
internal timing reference. This signal can be inde­
pendent of the 82380 system clock, ClK2. In the 
following discussion, each 'ClK Pulse' is defined as 
the time period between a rising edge and a falling 
edge, in that order, of ClKIN. 

During the rising edge of ClKIN, the state of GATE 
is sampled. All new counts are loaded and counters 
are decremented on the falling edge of ClKIN. 

Please note that there are restrictions on the ClKIN 
signal during WRITE cycles to the 82380 timer unit. 
Refer to the appendix of this data manual for details 
on this issue. 

5.2.2 TOUT1, TOUT2#, TOUT3# 

TOUT1, TOUT2 # and TOUT3 # are the external 
output signals of Timer 1, Timer 2 and Timer 3, re­
spectively. TOUT2# and TOUT3# are the inverted 
signals of their respective counter outputs, OUT. 
There is no external output for Timer O. 

If Timer 2 is to be used as a tone generator of a 
speaker, external buffering must be used to provide 
sufficient drive capability. 

The Outputs of Timer 2 and 3 are dual function pins. 
The output pin of Timer 2 (TOUT2#/IR03#), which 
is a bidirectional open-collector signal, can also be 
used as interrupt request input. When the interrupt 
f"n"tinn i" ",n .. hl",rI (thrnllnh th", Prnnr .. mm .. hl", In_ 

t~~~~pt·C;;nt~~i1;~i.-a LOW~~ thi~ i~pJi;';i·li·g;~~r~t~ 
an Interrupt Request 3# to the 82380 Piogramma­
ble Interrupt Controller. This pin has a weak internal 
pull-up resistor. To use the IRQ3# function, Timer 2 
should be programmed so that OUT2 is lOW. Addi­
tionally, OUT3 of Timer 3 is connected to an edge 

, detector which will generate an Interrup~ Request 0 
(IROO) to the 82380 after the riSing edge of OUT3 
(see Figure 5-1). 

5.2.3 GATE 

GATE is not an externally controllable signal. Rath­
er, it can be software controlled with the Internal 
Control Port. The state of GATE is always sampled 
on the rising edge of ClKIN. Depending on the 
mode of operation, GATE is used to enable/disable 
counting or trigger the start of an operation. 

For Timer 0 and 1, GATE is always enabled (HIGH). 
For Timer 2,and 3, GATE is connected to Bit 0 and 
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6, respectively, of an Internal Control Port (at ad­
dress 61 H) of the 82380. After a hardware reset, the 
state of GATE of Timer 2 and 3 is disabled (lOW). 

5.3 Modes of Operation 

Each timer can be independently programmed to 
operate in one of six different modes. Timers are 
programmed by writing a Control Word into the con­
trol Word Register followed by an Initial Count (see 
Programming). 

The following are defined for use in describing the 
different modes of operation. 

ClK Pulse-A rising edge, then a falling edge, in 
that order of ClKIN. 
Trigger-A rising edge of a timer's GATE input. 
Timer/Counter loading-The transfer of a count 
from Count Register (CR) to Count Element (CE). 

Note that figures 5-3 through 5-8 show the logical 
outputs of the timer units, OUT x. This Signal polarity 
does not reflect that of the TOUT x signals. See the 
first paragraph of Section 5.2.2. 

5.3.1 MODE D-INTERRUPT ON TERMINAL 
COUNT 

Mode 0 is typically used for event counting. After the 
Control Word is written, OUT is initially lOW, and will 
remain lOW until the counter reaches zero. OUT 
then goes HIGH and remains HIGH until a new 
count or a new Mode 0 Control Word is written into 
the counter. 

In this mode, GATE = HIGH enables counting; 
GATE = lOW disables counting. However, GATE 
has no effect on OUT. 

After the Control Word and initial count are written to 
a timer, the initial count will be loaded on the next 
ClK pulse. This ClK pulse does not decrement the 

count, so for an initial count of N, OUT does not go 
HIGH until N + 1 ClK pulses after the initial count is 
written. 

If a new count is written to the timer, it will be loaded 
on the next ClK pulse and counting will continue 
from the new count. If a two-byte count is written, 
the following happens: 

1. Writing the first byte disables counting, OUT is set 
lOW immediately (Le., no ClK pulse required). 

2. Writing the second byte allows the new count to 
be loaded on the next ClK pulse. 

This allows the counting sequence to be synchroniz­
ed by software. Again, OUT does not go HIGH until 
N + 1 ClK pulses after the new count of N is writ­
ten. 

If an initial count is written while GATE is lOW, the 
counter will be loaded on the next ClK pulse. When 
GATE goes HIGH, OUT will go HIGH N ClK pulses 
later; no ClK pulse is needed to load the counter as 
this has already been done. 

5.3.2 MODE 1-GATE RETRIGGERABLE 
ONE-SHOT 

In this mode, OUT will be initially HIGH. OUT will go 
lOW on the ClK pulse following a trigger to start the 
one-shot operation. The OUT signal will then remain 
lOW until the timer reaches zero. At this point, OUT 
will stay HIGH until the next trigger comes in. Since 
the state of GATE Signals of Timer 0 and 1 are inter­
nally set to HIGH. 

After writing the Control Word and initial count, the 
timer is considered 'armed'. A trigger results in load­
ing the timer and setting OUT lOW on the next ClK 
pulse. Therefore, an initial count of N will result in a 
one-shot pulse width of N ClK cycles. Note that this 
one-shot operation is retriggerable; Le., OUT will re­
main lOW for N ClK pulses after every trigger. The 
one-shot operation can be repeated without rewrit­
ing the same count into the timer. 

If a new count is written to the timer during a one­
shot operation, the current one-shot pulse width will 
not be affected until the timer is retriggered. This is 
because loading of the new count to CE will occur 
only when the one-shot is triggered. 
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CW=10 LSB-4 

WRITELJU 

CLK 

OATE 

OUT ::---1' 
•• I ~ II o I 0 0 0 I 0 I FF I FF I 
•• I .. 4 I 3 2 1 I 0 I FF I FE I 

CW-10 LSB-3 

WRITE 
LJU 

CLK 

OATE 

OUT~ , 
I N I N I N I N I 0 I ~ I : I 0 I~ I 0 I ~~ I 3 2 0 

WRITE 

CLK 

OATE 

OUT ==' 
.1 N 1 N I N N 0 0 0 0 0 I ~~ I . 3 c C i ii I rr I 

290128-68 

NOTES: 
The following conventions apply to all mode timing diagrams. 
1. Counters are programmed for binary (not BCD) counting and for reading/writing least significant byte (LSB) only. 
2. The counter is always selected (CS always low). 
3. CW stands for "Control Word"; CW = 10 means a control word of 10, Hex is written to the counter. 
4. LSB stands for "least significant byte" of count. 
5. Numbers below diagrams are count values. 

The lower number is the least significant byte. 
The upper number is the most significant byte. Since the counter is programmed io read/write LSB only, the 
most significant byte cannot be read. 
N stands for an undefined count. 
Vertical lines show transitions between count values. 

Figure 5-3. Mode 0 
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CW=12 LSB=3 

WRITE l..JU------------'---

ClK 

GATE ------in---------~n-----

OUT~ 

INININININI~lg 

CW=12 LSB=3 

o 
1 

WRITE L..fLj--------------

CLK 

GATE -------1n ----1n----------

OUT =.J '--____ ....,,1 
INININININI~lgl~ 

WRITE 

ClK 

o 
3 

o 
2 ~ I ~ I 

GATE -------1n --------;.(T-----
OOT =.J 

I N I N I N I N I N I g I ~ I ~ I == I =~ I ~ 
Figure 5·4. Mode 1 

o 
3 

290128-69 

5.3.3 MODE 2-RATE GENERATOR count of N, the sequence repeats every N ClK cy­
cles. 

This mode is a divide·by-N counter. It is typically 
used to generate a Real Time Clock interrupt. OUT 
will initially be HIGH. When the initial count has dec· 
remented to 1, OUT goes lOW for one ClK pulse, 
then OUT goes HIGI-j again. Then the timer reloads 
the initial count and the process is repeated. In other 
words, this mode is periodic since the same se­
quence is repeated itself indefinitely. For an initial 

Similar to Mode 0, GATE = HIGH enables counting, 
where GATE = lOW disables counting. If GATE 
goes lOW during an output pulse (lOW), OUT is set 
HIGH immediately. A trigger (rising edge on GATE) 
will reload the timer with the initial count on the next 
ClK pulse. Then, OUT will go lOW (for one ClK 
pulse) N ClK pulses after the new trigger. Thus, 
GATE can be used to synchronize the timer. 
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CW=14 lSB=3 

WRITE LJU,......-----------------------

ClK 

GATE ------------------------------------

OUT 

o 
3 

o 0 
2 1 

o 
3 

o 
2 

o 0 
1 3 

CW = 14 lSB = 3,...... ______________________ _ 

WRITE LJU 
ClK 

GATE LJ 
OUT =:J LJ 

ININININI~I~I~I~ ~I~I~I 

r-__ -,~B=5_~ ____________ _ 

WRITE 

ClK 

GATE --~--------------------------------

OUT =.:J u 
NI,N,IN,I",lo 1 0 10 10 10 

I 4 I 3 I 2 I 1 I 5 
o 0 
4 3 

A GATE transition should not occur one clock prior to terminal count. 

Figure 5-5. Mode 2 

290128-70 

After writing a Control Word and initial count, the 
timer will be loaded on the next ClK pulse. OUT 
goes lOW (for the ClK pulse) N ClK pulses after 
the initial·count is written. This is another way the 
timer may be synchronized by software. 

the timer will be loaded with the new count on the 
next ClK pulse after the trigger, and counting will 
continue with the new count. 

Writing a newcoimt while counting does not affect 
the current counting s.equence because the new 
count will not be loaded until the end of the current 
counting cycle. If a trigger is received after writing a . 
new count but before the end of the current period, 

5.3.4 MODE 3-SQUARE WAVE GENERATOR 

Mode 3 is typically used for Baud Rate generation. 
Functionally, this mode is similar to Mode 2 except 
for the duty cycle of OUT. in this mode, OUT will be 
initially HIGH. When half of the initial count has ex­
pired, OUT goes low for the remainder of the count. 
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The counting sequence will be repeated, thus this 
mode is also periodic. Note that an initial count of N 
results in a square wave with a period of N ClK 
pulses. 

The GATE input can be used to synchronize the tim­
er. GATE = HIGH enables counting; GATE = lOW 
disables counting. If GATE goes lOW while OUT is 
lOW, OUT is set HIGH immediately (i.e., no elK 
pulse is required). A trigger reloads the timer with the 
initial count on the next ClK pulse. 

After writing a Control Word and initial count, the 
timer will be loaded on the next ClK pulse. This al­
lows the timer to .be synchronized by software. 

Writing a new count while counting does not affect 
the current counting sequence. If a trigger is re­
ceived after writing a new count but before the end 
of the current half-cycle of the square wave, the tim­
er will be loaded with the new count on the next ClK 

cw_,. LSI.4 

pulse and counting will continue from the new count. 
Otherwise, the new count will be loaded at the end 
of the current half-cycle. 

There is a slight difference in operation depending 
on whether the initial count is EVEN or ODD. The 
following description is to show exactly how this 
mode is implemented. 

EVEN COUNTS: 

OUT is initially HIGH. The initial count is loaded on 
one ClK pulse and is decremented by two on suc­
ceeding ClK pulses. When the count expires (decre­
mented to 2), OUT changes to lOW and the timer is 
reloaded with the initial count. The above process is 
repeated indefinitely. 

. ODD COUNTS: 

OUT is initially HIGH. The initial count minus one 
(which is an even number) is loaded on one ClK 

WRITE LJUr----------------

ClK 

QATE -------------------

OUT 

CW=I. LSaaS ______________ _ 

WRITELJU 

ClK 

QATE -------------------

OUT 

cw.,s LSB ... 4 WRITE LJUr-------------

ClK 

GATE 

OUT 

290128-71 

NOTE: 
A-GATE transition should not occur one clock prior to terminal count. 

Figure 5-6_ Mode 3 
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pulse and is decremented by two on succeeding 
elK pulses. One elK pulse after the count expires 
(decremented to 2), OUT go",s lOW and the timer is 
loaded with the initial count minus one again. Suc­
ceeding elK pulses decrement the count by two. 
When the count expires, OUT goes HIGH immedi­
ately and the timer is reloaded with the initial count 
minus one. The above process is repeated indefi­
nitely. So for ODD counts, OUT will be HIGH for (N 
+ 1)/2 counts and lOW for (N - 1)/2 counts. 

5.3.5 MODE 4-INITIAL COUNT TRIGGERED 
STROBE 

This mode allows a strobe pulse to be generated by 
writing an Initial count to the timer. Initially, OUT will 

be HIGH. When a new initial count is written into the 
timer, the counting sequence will begin. When the 
initial count expires (decremented to 1), OUT will go 
lOW for one elK pulse and then go HIGH again. 

Again, GATE = HIGH enables counting while GATE 
= lOW disables counting. GATE has no. effect on 
OUT. 

After writing the Control Word and initial count, the 
timer will be loaded on the next elK pulse. This elK 
pulse does not decrement the count, so for an initiai 
count of N, OUT does not strobe lOW until N + 1 
elK pulses after initial count is written. 

If a new count is written during counting, it will be 
loaded in the next elK pulse and counting will con­
tinue from the new count. 

CW.18 .lSB=3 ____________ _ 

WRITE L.n---1 
ClK 

GATE 

OUT =.::J 
ININININI: o 

2 

u 
°IOIFFIFFIFFI ·1 0 FF FE FD 

CW.18 lSB=3,...... ___________ _ 

WRITE """1-.JL.J 
........................ ,..,,..,,..,,..,,..,,-

ClK..JUUUUUUUUUU 

GATE ______ ---1 

OUT =.:J 
ININININI:I:I: ~I~I~I==I 

WRITE 

ClK 

GATE 

OUT~ 

I N I N I N I N I : I ~ I ~ I ~ 
Figure 5·7. Mode 4 
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If a two-byte count is written, the following will occur: 

1. Writing the first byte has no effect on counting. 

2. Writing the second byte allows the new count to 
be loaded on the next ClK pulse. 

OUT will strobe lOW N + 1 ClK pulses after the 
new' count of N is written. Therefore, when the 
strobe pulse will occur after a trigger depends on the 
value of the initial count loaded. 

5.3.6 MODE 5-GATE RETRIGGERABLE 
STROBE 

Mode 5 is very similar to Mode 4 except the count 
sequence is triggered by the GATE signal instead of 

CW:1A lSB=3 

by writing an initial count. Initially, OUT will be HIGH. 
Counting is triggered by a rising edge of GATE. 
When the initial count has expired (decremented to 
1), OUT will go lOW for one ClK pulse and then go 
HIGH again. 

After loading the Control Word and initial count, the 
Count Element will not be loaded until the ClK pulse 
after a trigger. This ClK pulse does not decrement 
the count. Therefore, for an initial count of N, OUT 
does not strobe lOW until N + 1 ClK pulses after a 
trigger. 

WRITE LJL-.l..-------------
ClK 

GATE -------1 rr--------lrc= 
OUT 

I N I N I N I N I N I ~ 

CW=IA lSB=3r-_____________ _ 

WRITE LJL-.l 
ClK 

GATE - - - - - - - - -1 fI:l[\ - - - - - - - - - - - -

OUT~ Ll 
ININ I NINININI~ I ~ o I 0 I FF I 1 .0 FF 

WRITE 

ClK 

GATE --------vr---------"\n-----

OUT =.:J U 
I N I NI N I N I N I ~ I ~ I ~ I ~ I ~~ I ~~ I ~ 

Figure 5-8_ Mode 5 
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SUMMARY OF GATE OPERATIONS 

Mode 
GATE LOW or 

Going LOW 

0 Disable Count' 
1 No Effect 

2 1. Disable Count 
2. Sets Output HIGH 

Immediately 
3 1. Disable Count 

2. Sets Output HIGH 
Immediately 

4 Disable Count 
5 No Effect 

The counting sequence is retriggerable. Every trig­
ger will result in the timer being loaded with the initial 
count on the next ClK pulse .. 

If the new count is written during counting, the cur­
rent counting sequence will not be affected. If a trig­
ger occurs after the new count is written but before 
the current count expires, the timer will be loaded 
with the new count on the next ClK pulse and a new 
count sequence will start from there. 

5.3.7 OPERATION COMMON TO ALL MODES 

5.3.7.1 GATE 

The GATE input is always sampled on the rising 
edge of ClKIN. In Modes 0, 2, 3 and 4, the GATE 
input is level sensitive. The logic leve! is samph:~d on 
the rising edge of ClKIN. In Modes 1, 2, 3 and 5, the 
GATE input is riSing edge sensitive. In these modes, 
a rising edge of GATE (trigger) sets an edge sensi­
tive flip-flop in the timer. The flip-flop is reset imme­
diately after it is sampled. This way, a trigger will be 
detected no matter when it occurs; i.e., a HIGH logic 
level does not have to be maintained until the next 
rising edge of ClKIN. Note that in Modes 2 and 3, 
the GATE input is both edge and level sensitive. 

5.3.7.2 Counter 

New counts are loaded and counters are decre­
mented on the falling edge of ClKIN. The largest 
possible initial count is O. This is equivalent to 2· ·16 
for binary counting and 10·'4 for BCD counting: 

Note that the counter does,not stop when it reaches 
zero. In Modes 0, 1, 4, and 5,' the counter 'wraps 

GATE Rising 
GATE 
HIGH 

No Effect Enable Count 
1. Initiat$ Count No Effect 
2. Reset Output 

After Next Clock 
Initiate Count Enable Count 

Initiate Count Enable Count 

No Effect Enable Count 
Initiate Count No Effect 

around' to the highest count: either FFFF Hex for 
binary counting or 9999 for BCD counting, and con­
tinues counting. Modes 2 and 3 are periodic. The 
counter reloads itself with the initial count and con­
tinues counting from there. 

The minimum and maximum initial count in each 
counter depends on the mode of operation. They 
are summarized below. 

Mode Min Max 

0 1 0 
1 1 0 
2 2 0 
3 2 0 
4 1 0 
5 1 0 

5.4 Register Set Overview 

The Programmable Interval Timer module of the 
82380 contains a set of six registers. The port ad­
d'ress map of these registers is shown in Table 5-2. 

Table 5-2. Timer Register Port Address Map 

Port Address Description 

~OH Counter 0 Register (read/write) 
41H Counter 1 Register (read/write) 
42H Counter 2 Register (read/write) 
43H Control Word Register I 

(Counter 0, 1 & 2) (write-only) 

44H Counter 3 Register (read/write) 
45H Reserved 
46H Reserved 
47H Control Word Register II 

(Counter 3) (write-only) 
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5.4.1 COUNTER 0, 1, 2, 3 REGISTERS 

These four 8-bit registers are functionally identical. 
They are used to write the initial count value into the 
respective timer. Also, they can be used to read the 
latched count value of a timer. Since they are 8-bit 
registers, reading and writing of the 16-bit initial 
count must follow the count format specified in the 
Control Word Registers; Le., least significant byte 
only, most significant byte only, or least significant 
byte then most significant byte (see Programming). 

5.4.2 CONTROL WORD REGISTER I & II 

There are two Control Word Registers associated 
with the Timer section. One of the two registers 
(Control Word Register I) is used to control the oper­
ations of Counters 0, 1, and 2 and the other (Control 
Word Register II) is for Counter 3. The major func­
tions of both Control Word Registers are listed be­
low: 

- Select the timer to be programmed. 

- Define which mode the selected timer is to oper-
ate in. 

- Define the count sequence; Le., if the selected 
timer is to count as a Binary Counter or a Binary 
Coded Decimal (BCD) Counter. 

- Select the byte access sequence during timer 
read/write operations; Le., least significant byte 
only, most significant byte only, or least signifi­
cant byte first, then most significant byte. 

Also, the Control Word Registers can be pro­
grammed to perform a Counter latch Command or a 
Read Back Command which will be described later. 

5.5 Programming 

5.5.1 INITIALIZATION 

Upon power-up or reset, the state of all timers is 
undefined. The mode, count value, and output of all 
timers are random. From this point on, how each 
timer operates is determined solely by how it is pro­
grammed. Each timer must be programmed before it 
can be used. Since the outputs of some timers can 
generate interrupt signals to the 82380, all timers 
should be initialized to a known state. 

Timers are programmed by writing a Control Word 
into their respective Control Word Registers. Then, 
an. Initial Count can be written into the correspond-

ing Count Register. In general, the programming pro­
cedure is very flexible. Only two conventions need to 
be remembered: 
1. For each timer, the Control Word must be written 

before the initial count is written. 

2. The 16-bit initial count must follow the count for­
mat specified in the Control Word (least signifi­
cant byte only, most significant byte only, or least 
significant byte first, followed by most significant 
byte). 

Since the two Control Word Registers and the four 
Counter Registers have separate addresses, and 
each timer can be individually selected by the appro­
priate Control Word Register, no special instruction 
sequence is required. Any programming sequence 
that follows the conventions above is acceptable. 

A new initial count may be written to a timer at any 
time without affecting the timer's programmed mode 
in any way. Count sequence will be,affected as de­
scribed in the Modes of Operation section. Note that 
the new count must follow the programmed count 
format. 

If a timer is previously programmed to read/write 
two-byte counts, the following precaution applies. A 
program must not transfer control between writing 
the first and second byte to another routine which 
also writes into the same timer. Otherwise, the 
read/write will result in incorrect count. 

Whenever a Control Word is written to a timer, all 
control logic for that timer(s) is immediately reset 
(Le., no ClK pulse is required). Also, the corre­
sponding output pin, TOUT(#), goes to a known ini­
tial state. 

5.5.2 READ OPERATION 

Three methods are available to read the current 
count as well as the status of each timer. They are: 
Read Counter Registers, Counter latch Command 
and Read Back Command. Following is a descrip­
tion 'of these methods. 

READ COUNTER REGISTERS 

The current count of a timer can be read by perform­
ing a read operation on the corresponding Counter 
Register. The only restriction of this read operation 
is that the ClKIN of the timers must be inhibited by 
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using external logic. Otherwise, the count may be in 
the process of changing when it is read, giving an 
undefined result. Note that since all four timers are 
sharing the same CLKIN signal, inhibiting CLKIN to 
read a timer will unavoidably disable the other timers 
also. This may prove to be impractical. Therefore, it 
is suggested that either the Counter Latch Com­
-mand or the Read Back Command be used to read 
the current count of a timer. 

Another alternative is to temporarily disable a timer -
before reading its Counter Register by using the 
GATE input. Depending on the mode of operation, 
GATE = LOW will disable the counting operation. 
However, this option is available on Timer 2 and 3 
only, since the GATE signals of the other two timers 
are internally enabled all the time. 

COUNTER LATCH COMMAND 

A Counter Latch Command will be executed when­
ever a special Control Word is written into a Control 
Word Register. Two bits written into the Control 
Word Register distinguish this command from a 'reg­
ular' Control Word (see Register Bit Definition). Also, 
two other bits in the Control Word will select which 
counter is to be latched. 

Upon execution of this command, the selected 
counter's Output Latch (OL) latches the count at the 
time the Counter Latch Command is received. This 
count is held in the latch until it is read by the 80386, 
or until the timer is reprogrammed. The count is then 
unlatched automatically and the OL returns to 'fol­
lowing' the Counting Element (CE). This allows read­
ing the contents of the counters 'on the fly' without 
affecting counting in progress. Multiple Counter 
Latch Commands may be used to iatch mUlti ihan 
one counter. Each latched count is held until it is 
read. Counter Latch Commands do not affect the 
programmed mode of the timer in any way. 

If a counter is latched, and at some time later, it is 
latched again before the prior latched count is read, 
the second Counter Latch Command is ignored. The 
count read will then be the count at the time the first 
command was issued. 

In any event, the iatched count musi be read ac­
cording to the programmed format. Specifically, if 
the timer is programmed for two-byte counts, two 
bytes must be read. However, the two bytes do not 
have to be read right after the other. Read/write or 
programming operations.of other timers may be per­
formed between them. 

Another feature of this Counter Latch Command is 
that read and write operations of the same timer 
may be interleaved. For example, if the timer is pro­
grammed for two-byte counts, the following se­
quence is valid. 

1. Read least significant byte. 

2. Write new least significant byte. 

3. Read most significant byte. 

4. Write new most significant byte. 

If a timer is programmed to read/write two-byte 
counts, the following precaution applies. A program 
must not transfer control between reading the first 
and second byte to another routine which also reads 
from that same timer. Otherwise, an incorrect count 
will be read. 

READ BACK COMMAND 

The Read Back Command is another special Com­
mand Word operation which allows the user to read 
the current count value and/or the status of the se­
lected timer(s). Like the Counter Latch Command, 
two bits in the Command Word identify this as a 
Read Back Command (see Register Bit Definition). 

The Read Back Command may be used to latch 
multiple counter Output Latches (OL's) by selecting 
mote than one timer within a Command Word. This 
single command is functionally equivalent to several 
Counter Latch Commands, one for each counter to 
be latched. Each counter's latched count will be 
held until it is read by the 80386 or until the timer is 
reprogrammed. The counter is automatically u~­
latched when read, but other counters remain 
latched until they are read. If multiple Read Back 
commands are issued to the same timer without 
readina the count. all but the first are iQnored; i.e., 
the count read wili correspond to the very first Read 
Back Command issued. 

As mentioned previously, the Read Back Command 
may also be used to latch status information of the 
selected timer(s). When this function is enabled, the 
status of a timer can be read from the Counter Reg­
ister after the Read Back Command is issued. The 
status information of a timer includes the following: 

1. Mode of timer: 

This allows the user to check the mode of opera­
tion of the timer last programmed. 

2. State of TOUT pin of the timer: 

This allows the user to monitor the counter's out­
pot pin via software, possibly eliminating some 
hardware from a system. 
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3. Null Count/Count available: 

The Null Count Bit in the status byte indicates if 
the last count written to the Count Register (CR) 
has been loaded into the Counting Element (CE). 
The exact time this happens depends on the 
mode of the timer and is described in the Pro­
gramming section. Until the count is loaded into 
the Counting Element (CE), it cannot be read from 
the timer. If the count is latched or read before 
this occurs, the count value will not reflect the 
new count just written. 

If multiple status latch operations of the timer(s) are 
performed without reading the status, all but the first 
command are ignored; i.e., the status read in will 
correspond to the first Read Back Command issued. 

Both the current count and status of the selected 
timer(s) may be latched simultaneously by enabling 
both functions in a single Read Back Command. 
This is functionally the same as issuing two separate 
Read Back Commands at once. Once again, if multi­
ple read commands are issued to latch both the 
count and status of a timer, all but the first command 
will be ignored. . 

If both count and status of a timer are latched, the 
first read operation of that timer will return the 
latched status, regardless of which was latched first. 
The next one or two (if two count bytes are to be 
read) read operations return the latched count. Note 
that subsequent read operations on the Counter 
Register will return the unlatched count (like the first 
read method discussed). 

5.6 Register Bit Definitions 

COUNTER 0,1,2,3 REGISTER (READ/WRITE) 

Port Address Description 

40H Counter 0 Register (read/write) 
41H Counter 1 Register (read/write) 
42H Counter 2 Register (read/write) 
44H Counter 3 Register (read/write) 
45H Reserved 
46H Reserved 

07 I 06 I 05 I 04 I 03 I 02 I 01 I o~ 
L lSB OF" COUNT BYTE 

~----------------------------MSBOF"COUNTBYTE 
290128-74 
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Note that these 8-bit registers are for writing and 
reading of one byte of the 16-bit count value, either 
the most significant or the least significant byte. 

CONTROL WORD REGISTER II 

07 06 ·05 04 03 02 01 DO 
CONTROL WORD REGISTER I & II (WRITE-ONLY) 

Port Address Description 

43H Control Word Register I 
(Counter 0, 1, 2) (write-only) 

47H Control Word Register II 
(Counter 3) (write-only) 

CONTROL WORD REGISTER I 

SELECT COUNTER: 
DO SELECT COUNTER 3 
01 RESERVED 

;~ :~~R~;gK COMMANDl 
rOR COUNTER 3 

READ/WRlrE: 
DO COUNTER LATCH COMMAND 
01 READ/WRITE LSB BYTE ONLY 
10 READ/WRITE MSB BYTE ONLY 

o - 16-BIT BINARY 
COUNTER 

1 - BCD COUNTER 
(~ DECADES) 

l 

07 06 05 04 03 02 01 DO 11 READ/WRITE LSB. THEN MSB BYTE 

MODE: 
000 MODE 0 
001 MODE 1 
Xl0 MODE 2 
XII MODE 3 
100 MODE 4 
101 MODE 5 

290128-76 

SELECT COUNTER: 
00 SELECT COUNTER 0 
01 SELECT COUNTER 1 
1 0 SELECT COUNTER 2 

0- 16-BIT BINARY 
COUNTER 

COUNTER LATCH COMMAND FORMAT 
(Write to Control Word Register) 

11 READ BACK COMMAND 
rOR COUNTER 0-2 

READ/WRITE: 
DO COUNTER LATCH COMMAND 
01 READ/WRiTE LSB BYTE ONLY 
10 READ/WRITE MSB BYTE ONLY 

1 - BCD COUNTER 
(4 DECADES) 

07 06 

1'$1 
05 04 

0 0 

11 READ/WRITE LSB. THEN MSB BYTE 

MODE: 
000 MODE 0 
001 t.tODE 1 
Xl0 MODE 2 
XII MODE 3 
100 MODE 4 
101 MODE 5 

DO COUNTER 0 (OR 3) 
01 COUNTER 1 

280128-75 10 COUNTER 2 

i j 

IModel Timer 
--- - ---

0 1 2 

0 
1 NA NA <D 
2 
3 
4 
5 NA NA <D 

3 

<D 

<D 

Gate 
Trlaaer --

Edge Level 

x 
X 
X X 
X X 

X 
X 

<D = Must use Port 61 to generate ../ edge. 
NA = Not Applicable 

11 READ BACK COMMAND 

Interrupt on Terminal Count 
Gate Retriggerable One Shot 
Rate Generator 
Square Wave Generator 
Initial Count Triggered Strobe 
Gate Retriggerable Strobe 
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READ BACK COMMAND FORMAT 
(Write to Control Word Register) 

07 06 05 

0- LATCH COUNT 
1 - DO NOT LATCH 

COUNT 

04 03 02 01 DO 

0- COUNTER NOT 
SELECTED 

0- LATCH STATUS 
1 - DO NOT LATCH 

STATUS 

1 - COUNTER IS 
SELECTED 

290128-78 

STATUS FORMAT 
(Returned from Read Back Command) 

07 06 05 04 03 02 01 DO 

0- COUNT AVAILABLE 
FOR READING COUNTER 

MODE 1 - NULL COUNT 

6.0 WAIT STATE GENERATOR 

6.1 Functional Description 

The 82380 contains a programmable Wait State 
Generator which can generate a pre-programmed 
number of wait states during both CPU and DMA 
initiated bus cycles. This Wait State Generator is ca­
pable of generating 1 to 16 wait states in non-pipe-

290128-79 

lined mode, and 0 to 15 wait states in pipelined 
mode. Depending on the bus cycle type and the two 
Wait State Control inputs (WSC 0-1), a pre-pro­
grammed number of wait states in the selected Wait 
State Register will be generated. 

The Wait State Generator can also be disabled to 
allow the use of devices capable of generating their 
own READY # signals. Figure 6-1 is a block diagram 
of the Wait State Generator. 
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6.2 Interface Signals 

The following describes the interface signals which 
affect the operation of the Wait State Generator. 
The READY #, WSCO and WSC1 signals are inputs. 
READYO # is the ready output signal to the host 
processor. 

6.2.1 READY # 

READY # is an active LOW input signa! which indi­
cates to the 82380 the completion of a bus cycle. In 
the Master mode (e.g., 82380 initiated DMA trans­
fer), this signal is monitored to determine whether a 
peripheral or memory needs wait states inserted in 
the current bus cycle. In the Slave mode, it is used 
(together with the ADS # signal) to trace CPU bus 
cycles to determine if the current cycle is pipelined. 

6.2.2 READYO# 

READYO# (Ready Out#) is an active LOW output 
signal and is the output of the Wait State Generator. 
The number of wait states generated depends on 
the WSC(0-1) inputs. Note that special cases are 

handled for access to the 82380 internal registers 
and for the Refresh cycles. For 82380 internal regis­
ter access, READYO# will be delayed to take into 
account the command recovery time of the register. 
One or more wait states will be generated in a pipe­
lined cycle. During refresh, the number of wait states 
will be determined by the preprogrammed value in 
the Refresh Wait State Register. 

In the simplest configuration, READYO# can be 
connected to the READY # input of the 82380 and 
the 80386 CPU. This is, however, not aiways the 
case. If external circuitry is to control the READY # 
inputs as well, additional logic will be required (see 
Application Issues). ' 

6.2.3 WSC(O-1) 

These two Wait State Control inputs select one of 
the three pre-programmed 8-bit Wait State Registers 
which determines the number of wait states to be 
generated. The most significant half of the three 
Wait State Registers corresponds to memory ac­
cesses, the least significant half to 110 accesses. 
The combination WSC(0-1) = 11 disables the Wait 
State Generator. 

INTERNAL WAIT STATE 
REQUIREMENT 

0403 

MEMORY 0 I/O 0 
WSCO 

WSCI 

M/IOH 

REGISTER 
SELECT 
LOGIC 

MEMORY 1 I/O 1 

MEMORY 2 I/O 2 

(RESERVED) REFRESH 

PROGRAMMABLE WAIT STATE 
R£GISTERS 

WAIT STATE 
COUNTER 

Figure 6·1. Wait State Generator Block Diagram 
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11 T2 T2 Tl T2 T2 T2 

ClK2 

ClK 
A(2- 31) 

M/IO# 
BE(O- 3)# 

WSC(O-1) ~~!Hle$!!:=)-t---+EHm~K=)-+---+---+ 
ADS# 

READYO# 

TWO WAIT STATES 
290128-81 

Figure 6-2. Wait States in Non·Pipelined Cycles 

6.3 Bus Function 

6.3.1 WAIT STATES IN NON·PIPELINED CYCLE 

The timing diagram of two typical non-pipelined cy­
cles with 82380 generated wait states is shown in 
Figure 6·2. In this diagram, it is assumed that the 
internal registers of the 82380 are not addressed. 
During the first T2 state of each bus cycle, the Wait 
State Control and the M/IO# inputs are sampled to 
determine which Wait State Register (if any) is se­
lected. If the WSC inputs are active (Le., not both are 
driven HIGH), the pre-programmed number of wait 
states corresponding to the selected Wait State 
Register will be requested. This is done by driving 
the READYO# output HIGH during the end of each 
T2 state. 

The WSC(0-1) inputs need only be valid during the 
very first T2 state of each non-pipelined cycle. As a 
general rule, the WSC inputs are sampled on the 

rising edge of the next clock (82384 ClK) after the 
last state when ADS# (Address Status) is asserted. 

The number of wait states generated depends on 
the type of bus cycle, and the number of wait states 
requested. The various combinations are discussed 
below. 

1. Access the 82380 internal registers: 2 to 5 wait 
states, depending upon the specific register ad­
dressed. Some back-to-back sequences to the In­
terrupt Controller will require 7 wait states. 

2. Interrupt Acknowledge to the 82380: 5 wait 
states. 

3. Refresh: As programmed in the Refresh Wait 
State Register (see Register Set Overview). Note 
that if WSC(0-1) = 11, READYO# will stay inac­
tive. 

4. Other bus cycles: Depending on WSC(0-1) and 
MIIO# inputs, these inputs select a Wait State 
Register in which the number of wait states will be 
equal to the pre-programmed wait state count in 
the register plus 1. The Wait State Register selec­
tion is defined as follows (Table 6-1). 
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"Table 6-1. Walt State Register Selection Note that during HALT and SHUTDOWN, the num­
ber of wait states will depend on the WSC(0-1) in­
puts, wh.ich will select the memory half of one of the 
Wait State Registers (see CPU Reset and Shutdown 
Detect). 

M/IO# WSC(1-0) Register Selected 

0 00 WAIT REG 0 (liD half) 
0 01 WAIT REG 1 (liD half) 
0 10 WAIT REG 2 (liD half) 
1 00 WAIT REG 0 (MEM half) 6.3.2 WAIT STATES IN PIPELINED CYCLE 
1 01 WAIT REG 1 (MEM half) 
1 10 WAIT REG 2 (MEM half) 
X 11 Wait State Gen. Disabled 

The Wait State' Control signals, WSC(0-1), can be 
generated with the address decode and the Read/ 
Write control signals as shown in Figure 6·3. 

The timing diagram of two typical pipelined cycles 
with 82380 generated wait states is shown in Figure 
6-4. Again, in this diagram, it is assumed that the 
82380 internal registers are not addressed. As de­
fined in the timing of the 80386 processor, the Ad­
dress (A 2-31), Byte Enable (BE 0-3), and other 
control signals (MIIO#, ADS#) are asserted one 
T state earlier than in a non-pipelined cycle; i.e., they 
are asserted at T2P. Similar to the non-pipelined 
case, the Wait State Control (WSC) inputs are sam­
pled in the middle of the state after the last state 
when the ADS# signal is asserted. Therefore, the 
WSC inputs should be asserted during the T1 P state 
of each pipelined cycle (which is one T state earlier 
than in the non-pipelined cycle). 

ADDRESS DECODEtl " 
lOGIC WSC (0 - 1) 

W/R# 

290128-82 

Figure 6-3. WSC(O-1) Generation 

ClK2 

ClK 

A(2-31) 
M/IO# 

BE(O- 3)# 
WSC(O-I) 

ADS# 

TIp T2 T2p TIp T2 T2 T2p 

READY# I 4xxxxxXxAA' I, 1,,....""'**>'I'Iftl""I7a"--I----h1 '",, __ +-

! 1,-----+"I,,..--+!--+----h! '---+ READYO# 

ONE WAIT STATE TWO WAIT STATES 

"Figure 6-4. Walt State in Pipelined Cycles 
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The number of wait states generated in a pipelined 
cycle is selected in a similar manner as in the non­
pipelined case. discussed in the previous section. 
The only difference here is that the actual number of 
wait states generated will be one less than that of 
the non-pipelined cycle. This is done automatically 
by the Wait State Generator. 

6.3.3 EXTENDING AND EARLY TERMINATING 
BUS CYCLE 

The 82380 allows external logic to either add wait 
states or cause early termination of a bus cycle by 
contrOlling the READY # input to the 82380 and the 
host processor. A possible configuration is shown in 
Figure 6-5. 

The EXT. RDY # (External Ready) signal of Figure 
6-5 allows external devices to cause early termina­
tion of a bus cycle. When this signal is asserted 
LOW, the output of the circuit will also go LOW 
(even though the READYO# of the 82380 may still 

be HIGH). This output is fed to the READY # input of 
the 80386 and the 82380 to indicate the completion 
of the current bus cycle. 

Similarly, the EXT. NOT READY (External Not 
Ready) Signal is used to delay the READY # input of 
the processor and the 82380. As long as this signal 
is driven HIGH, the output of the circuit will drive the 
READY # input HIGH. This will effectively extend the 
duration of a bus cycle. However, it is important to 
note that if the two-level logic is not fast enough to 
satisfy the READY # setup time, the OR gate should 
be eliminated. Instead, the 82380 Wait State Gener­
ator can be disabled by driving both WSC(0-1) 
HIGH. In this case, the addressed memory or 1/0 
device should activate the external READY # input 
whenever it is ready to terminate the current bus 
cycle. 

Figure 6-6 and 6-7 show the timing relationships of 
the ready signals for the early termination and exten­
sion of the bus cycles. Section 6.7, Application Is­
sues, contains a detailed timing analysis of the ex­
ternal circuit. 

80386 

EXTERNAL READY# 
(EARLY TERMINATION) 

82380 

ClK2 

ClK 
A(2-31) 

M/IO# 
BE(O- 3)# 

ADS# 

READYO# 

READY# 

READYO# 

L..;.. ____ ...;.._~ READY# 

'-------' 290128-84 

Figure 6-5. External 'READY' Control Logic 

T1 T2 T1 T2 T2 T2 Tx 

o WAIT STATES TWO WAIT STATES 

290128-85 

Figure 6-6. Early Termination of Bus Cycle By 'READY #' 
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T1 T2 T2 T2 T2 Tx Tx 

ClK2 

elK 

A(2- 31) 
M/IO# 

BE(O- 3)# 

ADS# 

I 

READY# 

I, ~ I I· READYO# 

290128-86 

Figure 6-7. Extending Bus Cycle by 'READY#' 

Due to the following implications, it should be noted WAIT STATE REGISTER 0, 1,2 
that early termination of bus cycles-in which 82380 
internal registers are accessed is not recommended. 

1. Erroneous data may be read from or written into 
the addressed register. 

2. The 82380 must be allowed to recover either be­
fore HLDA (Hold Acknowledge) is asserted or be­
fore another bus cycle into an 82380 internal reg­
ister is initiated. 

The recovery time, in bus periods, equals the re­
maining wait states that were avoided plus 4. 

6.4 Register Set Overview 

Altogether, there are four 8-bit internal registers as­
sociated with the Wait State Generator. The port ad­
dress map of these registers is shown below in Ta­
ble 6-2. A detailed description of each follows. 

Table 6·2. Register Address Map 

Port Address Description 

72H Wait State Reg 0 (read/write) 
73H Wait State Reg 1 (read/write) 
74H Wait State Reg 2 (read/write) 
75H Ref. Wait State Reg (read/write) 

These three 8-bit read/write registers are functional­
ly identical. They are used to store the pre-pro­
grammed wait state count. One half of each register 
contains the wait state count for I/O accesses while 
the other half contains the count for memory ac­
cesses. The total number of wait states generated 
will depend on the type of bus cycle. For a non-pipe­
lined cycle, the actual number of wait states request­
ed is equal to the wait state count plus 1. For a 
pipelined cycle, the number of wait states will be 
equal to the wait state count in the selected register. 
Therefore, the Wait State Generator is capable of 
generating 1 to 16 wait states in non-pipelined 
mode, and 0 to 15 wait states in pipelined mode. 

Note that the minimum wait state count in each reg­
ister is O. This is equivalent to 0 wait states for a 
pipelined cycle and 1 wait state for a non-pipelined 
cycle. . 

REFRESH WAIT STATE REGISTER 

Similar to the Wait State Registers discussed above, 
this 4-bit register is used to store the number of wait 
states to be generated during the DRAM refresh cy­
cle. Note that the Refresh Wait State Register is not 
selected by the WSC inputs. It will automatically be 
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chosen whenever a DRAM refresh cycle occurs. If 
the Wait State Generator is disabled during the re­
fresh cycle (WSC(0-1) = 11), READYO# will stay 
inactive and the Refresh Wait State Register is ig­
nored. 

6.5 Programming 

Using the Wait State Generator is relatively straight­
forward. No special programming sequence is re­
quired. In order to ensure the expected number of 
wait states will be generated when a register is se-

. lected, the registers to be used must be pro­
grammed after power-up by writing the appropriate 
wait state count into each register. Note that upon 
hardware reset, all Wait State Registers are initial­
ized with the value FFH, giving the maximum num­
ber of wait states possible. Also, each register can 
be read to check the wait state count previously 
stored in the register. 

6.6 Register Bit Definition 

WAIT STATE REGISTER 0,1,2 

Port Address Description 

72H Wait State Register 0 (read/write) 
73H Wait State Register 1 (read/write) 
74H Wait State Register 2 (read/write) 

II 07 I 06 I 05 I 04 I 03 I 02 I 01 I DO I 

I I I I 1/0 WAIT 
STATE COUNT 

L-___ ---L-+ MEMORY WAIT STATE COUNT 

290128-87 

REFRESH WAIT STATE REGISTER 

Port Address: 75H (Read/Write) 

L--L_.L.---L-+ REFRESH WAIT 
STATE COUNT 

290128-88 

6.7 Application Issues 

6.7.1 EXTERNAL 'READY' CONTROL LOGIC 

As mentioned in section 6.3.3, wait state cycles gen­
erated by the 82380 can be terminated early or ex­
tended longer by means of additional external logic 
(see Figure 6-5). In order to ensure that the 
READY # input timing requirement of the 80386 and 
the 82380 is satisfied, special care must be taken 
when designing this external control logic. This sec­
tion addresses the design requirements. 
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A simplified block diagram of the external logic along 
with the READY # tiiming diagram is shown in Figure, 
6-8. The purpose is to determine the maximum delay 
time allowed in the external control logic in order to 
satisfy the READY # setup time. 

First, it will be assumed that the 80386 is running at 
16 MHz (i.e., CLK2 and 32 MHz). Therefore, one bus 
state (two CLK2 periods) will be equivalent to 62.5 
nsec. According to the AC specifications of the 

82380, the maximum delay time for valid READYO# 
signal is 31 ns after the rising edge of CLK2 in the 
beginning of T2 (for non-pipelined cycle) or T2P(for 
pipelined cycle). Also, the minimum READY # setup 
time of the 80386 and the 82380 should be 20 ns 
before the rising edge of CLK2 at the beginning of 
the next bus state. This limits the total delay time for 
the external READY # control logic to be 11 ns 
(62.5-31-21) in order to meet the READY# setup 
timing requirement. 

EXT. READY# EXT. NOT READY 

80386-16· 
82380 

READY I. READY# 

I 
CONTROL 

1 
READYO# 

LOGI.C 

READY# 

~--------------A----------------~ 

CLK2 

READYO# __ ~ ________________ ~-,~ ________ ~ ____ -+ __ ___ 

A = PHil + PHI2 = 62.5 ns 
8 = Maximum READYO# Valid Delay = 31 ns 
C = READY# Set-up Time = 21 ns 
D = Maximum Ready Control Logic Delay = A - 8 - C = 11 ns 

Figure 6-8. 'READY' Timing Consideration 
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7.0 DRAM REFRESH CONTROLLER 

7.1 Functional Description 

The 82380 DRAM Refresh Controller consists of a 
24-bit Refresh Address Counter and Refresh Re­
quest logic for DRAM refresh operations (see Figure 
7-1). TIMER 1 can be used as a trigger signal to the 
DRAM Refresh Request logic. The Refresh Bus Size 
can be programmed ·to be 8-,. 16-, or 32-bit wide. 
Depending on the Refresh Bus Size, the Refresh 
Address Counter will be incremented with the appro­
priate value after every refresh cycle. The internal 
logic of the 82380 will give the Refresh operation the 
highest priority. in the bus control arbitration process. 
Bus control is not released and re-requested if the 
82380 is already a bus master. 

oun T 
(lNT ERNAL) DRAM 

REfRESH 
CONTROLLER 

7.2 Interface Signals 

7.2.1 TOUT1/REF# 

The dual function output pin of TIMER 1 (TOUT11 
REF#) can be programmed to generate DRAM Re­
fresh signal. If this feature is enabled, the rising edge 
of TIMER 1 output (TOUT1) will trigger the DRAM 
Refresh Request logic. After some delay for gaining 
access of the bus, the 82380 DRAM Controller will 
generate a DRAM Refresh signal by driving REF# 
output LOW. This signal is cleared after the refresh 
cycle has taken place, or by a hardware reset. 

If the DRAM Refresh feature is disabled, the 
TOUT1/REF # output pin is simply the TIMER 1 out­
put. Detailed information of how TIMER 1 operates 
is discussed in section 6-Programmable Interval 
Timer, and will not be repeated here. 

INTERNAL 
DMA 

HAND~HAKE DMA 
CONTROLLER H EDGE ~ DETECTOR 

I 
ARBITRATION 

24-BIT -~ 
ADDRESS LOGIC 

COUNTER 

I TO DMA 

I 
24- BIT 

CONTROLLER 

REfRESH 
(INTERNAL) 

REf# 
2-TO-l ADDRESS 1 MUX 

Toun 
o select TOUT1/REf# 

t 
REfRESH ENABLE (INTERNAL) 

290128-90 

Figure 7-1. DRAM Refresh Controller 
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7.3 Bus Function 

7.3.1 ARBITRATION 

In order to ensure data integrity of the DRAMs, the 
82380 gives the DRAM Refresh signal the highest 
priority in the arbitration logic. It allows DRAM Re­
fresh to interrupt a DMA in progress in order to per­
form the DRAM Refresh cycle. The DMA service will 
be resumed after the refresh is done. 

In case of a DRAM Refresh during a DMA process, 
the cascaded device will be requested to get off the 
bus. This is done by deasserting the EDACK signal. 
Once DREQn goes inactive, the 82380 will perform 
the refresh operation. Note that the DMA controller 
does not completely relinquish the system bus dur­
ing refresh. The Refresh Generator simply 'steals' a 
bus cycle between DMA accesses. 

Figure 7-2 shoWs the timing diagram of a Ref!esh 
Cycle. Upon expiration of TIMER 1, the 82380 will try 
to take control of the system bus by asserting 
HOLD. As soon as the 82380 see HlDA go active, 
the DRAM Refresh Cycle will be carried out by acti­
vating the REF # signal as well as the refresh ad­
dress and control signals on the system bus (Note 

Tx Tx 

CLK2 

eLK 

HOLD +----f 

HLDA +-----1----f~ 
10 1#')'-'2"'* U ,.,..,,, 
"'\""'-""'11 m,lvtf 

D/e# 8E(0-3)# W/R# 

TI 

that REF# will not be active until two ClK periods 
after HlDA is asserted). The address bus will con­
tain the 24-bit address currently in the Refresh Ad­
dress Counter. The control signals are driven the 
same way as in a Memory Read cycle. Thi~ 'rea~' 
operation is complete when the READY # signal IS 
driven lOW. Then, the 82380 will relinquish the bus 
by de-asserting HOLD. Typically, a Refresh Cycle 
without wait states will take five bus states to exe­
cute. If 'n' wait states are added, the Refresh Cycle 
will last for five plus 'n' bus states. 

How often the Refresh Generation will initiate a re­
fresh cycle depends on the frequency of ClKIN as 
well as TIMER1's programmed mode of operation. 
For this specific application, TIMER1 should be pro­
grammed to operate in Mode 2 or 3 to generate a 
constant clock rate. See section 6-Programmable 
Interval Timer for more information on programming 
the timer. One DRAM Refresh Cycle will be generat­
ed each time TIMER 1 expires (when TOUT1 chang­
es to lOW to HIGH). 

The Wait State Generator can be used to insert wait 
states during a refresh cycle. The 82380 will auto­
matically insert the desired number of wait states as 
programmed in the Refresh Wait State Register (see 
Wait State Generator). 

TI n T2 TI 

1'-
Toun ~ " \.\\\\ ,\\ 

REF# 

READY# ~ 
I I I I 

ADS# xxx 
I I " 1 I 

290128-91 

·NOTE: 
A24-A31 = 1 during Refresh cycle. 

Figure 7-2. 82380 Refresh Cycle 
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7.4 Modes of Operation 

7.4.1 WORD SIZE AND REFRESH ADDRESS 
COUNTER 

The 82380 supports 8·, 16- and 32-bit refresh cycle. 
The bus width during a refresh cycle is programma­
ble (see Programming). The bus size can be pro­
grammed via the Refresh Control Register (see Reg­
ister Overview). If the DRAM bus size is 8-, 16-, or 
32-bits, the Refresh Address Counter will be incre­
mented by 1, 2, or 4, respectively. 

The Refresh Address Counter is cleared by a hard­
ware reset. 

7.5 Register Set Overview 

The Refresh Generator has two internal registers to 
control its operation. They are the Refresh Control 
Register and the Refresh Wait State Register. Their 
port address map is shown in Table 7-1 beiow. 

Port Address Description 

1CH Refresh Control Reg. (read/write) 
75H Ref. Wait State Reg. (read/write) 

Table 7-1. Register Address Map 

The Refresh Wait State. Register is not part of the 
Refresh Generator. It is only used to program the 
number of wait states to be inserted during a refresh 
cycle. This register is discussed in detail in section 7 
(Wait State Generator) and will not be repeated 
here. 

REFRESH CONTROL REGISTER 

This 2-bit register serves two functions. First, i~ is 
used to enable/disable the DRAM Refresh function 
output. If disabled, the output of TIMER 1 is simply 
used as a general purpose timer. The second fu~c­
tion of this register is to program the DRAM bus s~ze 
for the refresh operation. The programmed bus size 
also determines how the Refresh Address Counter 
will be incremented after each refresh operation. 

7.6 Programming 

Upon hardware reset, the DRAM Refresh function is 
disabled (the Refresh Control Register is cleared). 
The following programming steps are needed before 
the Refresh Generator can be used. Since the rate 
of refresh cycles depends on how TIMER 1 is pro­
grammed, this timer must be initialized with the de­
sired mode of operation as well as the correct re­
fresh interval (see Programming Interval Timer). 

Whether or not wait states are to be generated dur­
ing a refresh cycle, the Refresh Wait State Register 
must also be programmed with the appropriate val­
ue. Then, the DRAM Refresh feature must be en­
abled and the DRAM bus width should be defined. 
These can be done in one step by writing the appro­
priate control word into the Refresh Control Register 
(see Register Bit Definition). After thes~ steps are 
done, the refresh operation will automatically be in­

voked by the Refresh Generator upon expiration of 
Timer 1. 

In addition to the above programming steps, it 
should be noted that after reset, although the 
TOUT1 /REF # becomes the Timer 1 output, the 
state of this pin is undefined. This is because the 
Timer module has not been initialized yet. Therefore, 
if this output is used as a DRAM Refresh signal, this 
pin should be disqualified by extern.al logic un~il the 
Refresh function is enabled. One simple solullon IS 

to logically AND this output with HLDA, since HLDA 
should not be active after reset. 

7.7 Register Bit Definition 

REFRESH CONTROL REGISTER 
Port Address: 1CH (Read/Write) 

00 REF. DISABLE 
01 BUS SIZE=32 
10 BUS SIZE=)6 
11 BUS SIZE = 8 

290128-92 

8.0 RELOCATION REGISTER AND 
ADDRESS DECODE 

8.1 Relocation Register 

All the integrated peripheral devices in the 82380 
are controlled by a set of internal registers. These 
registers span a total of 256 consecutive address 
locations (although not all the 256 locations are 
used). The 82380 provides a Relocation Register 
which allows the user to map this set of internal reg­
isters into either the memory or 1/0 address space. 
The function of the Relocation Register is to define 
the base address of the internal register set of the 
82380 as well as if the registers are to be memory­
or I/O-mapped. The format of the Relocation Regis­
ter is depicted in Figure 8-1. 
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07 06 05 04 03 02 01 00 

FOR I/O MAPPED: 1.15-1.9 
FOR MEMORY MAPPED: 1.31-1.25 

o - I/O MAPPED 
1- MEMORY 

MAPPEO 

290126-82 

Figure 8-1. Relocation Register 

Note that the Relocation Register is part of the inter· 
nal register set of the 82380. It has a port address of 
7FH. Therefore, any time the content of the Reloca· 
tion Register is changed, the physical location of this 
register will also be moved. Upon reset of the 82380" 
the content of the Relocation Register will be 
cleared. This implies that the 82380 will respond to 
its 1/0 addresses in the range of OOOOH to OOFFH. 

8.1.1 I/O-MAPPED 82380 

As shown in the figure, Bit 0 of the Relocation Regis­
ter determines whether the 82380 registers are to be 
memory-mapped or I/O-mapped. When Bit 0 is set 
to '0', the 82380 will respond to 1/0 Addresses. Ad­
dress signals BEO#-BE3#, A2-A7 will be used to 
select one of the internal registers to be accessed. 
Bit 1 to Bit 7 of the Relocation Register will corre­
spond to A9 to A 15 of the Address bus, respectively. 
Together with A8 implied to be '0', A15 to A8 will be 
fully decoded by the 82380. The following shows 
how the 82380 is mapped into the 1/0 address 
space. 

Exarnple 

Reiocation Register = 11001110 (OCEH) 

82380 will respond to 1/0 address range from 
OCEOOH to OCEFFH. 

Therefore, this 1/0 mapping mechanism allows the 
82380 internal registers to be located on any even, 
contiguous, 256 byte boundary of the system 1/0 
space. 

Port Address: 7FH (Read/Write) 

8.1.2 MEMORY-MAPPED 82380 

When Bit 0 of the Relocation Register is set to '1', 
the 82380 will respond to memory addresses. Again, 
Address signals BEO#-BE3#, A2-A7 will be used 
to select one of the internal registers to be ac­
cessed. Bit 1 to Bit 7 of the Relocation Register will 
correspond to A25-A31, respectively. A24 is as­
sumed to be '0', and A8-A23 are ignored. Consider 
the following example. 

Example 

Relocation Register = 10100111 (OA 7H) 

The 82380 will respond to memory addresses in 
the range of OA6XXXXOOH to OA6XXXXFFH 
(where 'X' is don't care). 

This scheme implies that the internal register can be 
located in any even, contiguous, 2""24 byte page of 
the memory space. 

8.2 Address Decoding 

As mentioned previously, the 82380 internal regis­
ters do not occupy the entire contiguous 256 ad­
dress locations. Some of the locations are 'unoccu­
pied'. The 82380 always decodes the lower 8 ad­
dress bits (AO-A7) to determine if anyone of its 
registers is being accessed. If the address does not 
correspond to any of its registers, the 82380 will not 
respond. This allows external devices to be located 
within the 'holes' in the 82380 address space. Note 
that there are several unused addresses reserved 
for future Intel peripheral devices. 

9.0 CPU RESET AND SHUTDOWN 
DETECT 

The 82380 will activate the CPURST signal to reset 
the host processor when one of the following condi­
tions occurs: 

- 82380 RESET is active; 

- 82380 detects a 80386 Shutdown cycle (this fea-
ture can be disabled); 

- CPURST software command is issued to 80386, 

Whenever the CPURST signal is activated, the 
82380 wiii reset its own internai Siave-Bus state ma­
chine. 

9.1 Hardware Reset 

Following a hardware reset, the 82380 will assert its 
CPURST output to reset the host processor. This 
output will stay active for as long as the RESET input 
is active. During a hardware reset, the 82380 internal 
registers will be initialized as defined in the corre-

,sponding functional descriptions. ' 

9.2 Software Reset 

CPURST can be generated by writing the following 
bit pattern into 82380 register location 64H. 

D7 DO 

1 ' X X X o 
x = Don't Care 
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The Write operation into this port is considered as 
an 82380 access and the internal Wait State Gener­
ator will automatically determine the required num­
ber of wait states. The CPURST will be active follow­
ing the completion of the Write cycle to this port. 
This signal will last for 62 CLK2 periods. The 82380 
should not be accessed until the CPURST is deacti­
vated. 

This internal port is Write-Only and the 82380 will 
not respond to a Read operation to this location. 
Also, during a CPU software reset command, the 
82380 will reset its Slave-Bus state machine. How­
ever, its internal registers remain unchanged. This 
allows the operating system to distinguish a 'warm' 
reset by reading any 82380 internal register previ­
ously programmed for a non-default value. The Diag­
nostic registers can be used or this purpose (see 
Internal Control and Diagnostic Ports). 

9.3 Shutdown Detect 

The 82380 is constantly monitoring the Bus Cycle 
Definition signals (MIIO#, D/C#, R/W#) and is 
able to detect when the 80386 executes a Shutdown 
bus cycle. Upon detection of a processor shutdown, 
the 82380 will activate the CPURST output for 62 
CLK2 periods to reset the host processor. This sig­
nal is generated after the Shutdown cycle is termi­
nated by the READY # signal. 

Although the 82380 Wait State Generator will not 
automatically respond to a Shutdown (or Halt) cycle, 
the Wait State Control inputs (WSCO, WSC1) can be 
used to determine the number of wait states in the 
same manner as other non-82380 bus cycle. 

This Shutdown Detect feature can be enabled or dis­
abled by writing a control bit in the Internal Control 
Port at address 61 H (see Internal Control and Diag-

Port Address: 61 H (Write Only) 

nostic Ports). This feature is disabled upon a hard­
ware reset of the 82380. As in the case of Software 
Reset, the 82380 will reset its Slave-Bus state ma­
chine but will not change any of its internal register 
contents. 

10.0 INTERNAL CONTROL AND 
DIAGNOSTIC PORTS 

10.1 Internal Control Port 

The format of the Internal Control Port of the 82380 
is shown in Figure 10.1. This Control Port is used to 
enable/disable the Processor Shutdown Detect 
mechanism as well as controlling the Gate inputs of 
the Timer 2 and 3. Note that this is a Write-Only port. 
Therefore, the 82380 will not respond to a read op­
eration to this port. Upon hardware reset, this port 
will be cleared; i.e., the Shutdown Detect feature 
and the Gate inputs of Timer 2 and 3 are disabled. 

10.2 Diagnostic Ports 

Two 8-bit read/write Diagnostic Ports are provided 
in the 82380. These are two storage registers and 
have no effect on the operation of the 82380. They 
can be used to store checkpoint data or error codes 
in the power-on sequence and in the diagnostic 
service routines. As mentioned in CPU RESET AND 
SHUTDOWN DETECT section, these Diagnostic 
Ports can be used to distinguish between 'cold' and 
'warm' reset. Upon hardware reset, both Diagnostic 
Ports are cleared. The address map of these Diag­
nostic Ports is shown in Figure 10-2. 

Port Address 

Diagnostic Port 1 (Read/Write) 80H 
Diagnostic Port 2 (Read/Write) 88H 

Figure 10-2. Address Map of Diagnostic Ports 

07 06 OS 04 03 02 01 00 

290128-93 

Figure 10-1. Internal Control Port 
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11.0 INTEL RESERVED 1/0 PORTS tion may occur if any peripheral· is assigned to the 
same address location. 

There are eleven· I/O ports in the 82380 address 
space which are reserved for Intel future peripheral 

12.0 MECHANICAL DATA device use only. Their address locations are: 2AH, 
30H, 3EH, 45H, 46H, 76H, 77H, 70H, 7EH, CCH 
and COHo These addresses should not be used in 12.1 IntrodLJction 
the system since the 82380 may respond to readl 
write operations to these locations and bus conten- In this section, the physical package and it$ connec-

tions are described in detail. 

P N M K H G E 0 C B A 

01 01 

Vee Vss EDACKI BEO# BE1# A3 AS A8 A9 A12 Vee Vss Vee Vss 

02 02 

Vee Vss INT EOACK2 AOS# BE3# A4 A7 Al0 A13 AIS AI7 AI9 Vee 

03 03 

OREQS OREQ7 HLOA EOACKO EOP# BE2# A2 A6 All AI4 AI6 AI8 A21 Vss 

04 04 

OREQ3 NA# OREQ6 A20 A22 Vee 

05 
..,. 

05 

OREQI OREQ2 OREQ4/IRQ9# A23 A24 A25 

06 06 

IRQ23# IRQ22# OREQO A26 A27 A28 

07 07 

IROI9# IR020# IR021# A30 A29 A31 

08 08 

IROIS# IROI6# IR017# . 015 023 031 

09 
~ ~ 

09 

I !R:5# 
IDni AJI. IDn1'ZJL D22 D~C n"7 
""'C'"TTr "· .. ·~rr 

H) ~ 

10 

IR011# IROI2# WSCI 013 06 014 

11 11 

WSCO CLKIN REAOY# 028 021 029. 

12 12 

Vee RESET CPURST O/C# W/R# HOLD REAOYO# 017 010 03 027 012 05 Vee 

13 13 

Vss TOUT2#/IRQ3j!TOUT3# 1.1/10# TOUTI/REr# 024 016 09 02 026 019 04 020 Vss 

14 14 

Vee Vss Vee Vss 08 00 01 CLK2 025 018 011 Vee Vss Vee 

P N 1.1 L K H G E 0 C B A 

290128-94 

Figure 12.1.82380 PGA Pinout-View from TOP side 
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12.2 Phl Assignment 

The 82380 pinout as viewed from the top side of the 
component is shown in Figure 12.1. Its pinout as 
viewed from the pin side of the component is shown 
in Figure 12.2. 

A B C o E F G 

01 1'0 o o o o o o 
Vss Vee Vss Vee A12 A9 A8 

02 0 o o o o o o 
Vee A19 A17 A15 A13 Al0 A7 

03 0 o o o o o o 
Vss A21 A18 A16 A14 All A6 

04 0 o o 
Vee A22 A20 

Vee and GND connections must be made to multi· 
pie Vee and Vss (GND) pins. Each Vee and Vss 
MUST be connected to the appropriate voltage lev· 
el. The circuit board should include Vee and GND 
planes for power distribution and all Vee pins must 
be connected to the appropriate plane. 

H K M N P 

o o o o o o o 01 

A5 A3 BEl # BEO# EOACKI. Vss Vee 

o o o o o o o 02 

A4 BE3# ADS# EOACK2 INT Vss Vee 

o o o o o o o 03 

A2 BE2# EOPH EOACKO HLOA ORE07 OREOS 

o o o 04 
ORE06 NA# ORE03 

METAL LID 
05 0 o o 

A25 A24 A23 

06 0 0 0 
A28 A27 A26 

07 0 o o 
A31 A29 A30 

08 0 o o 
031 023 015 

09 0 
07 

10 0 
014 

11 0 

o o 
030 022 

o o 
06 013 

o o 

o o o 
ORE04/ DRE02 DREOI 
IR09H 

05 

o 0 0 06 
DREQO IRQ22# IR023# 

0, 0 o '07 

IR021 # IR020# IROI9# 

o o o 08 

IROI7# IROI6# IROI8# 

o o o 09 

IROI3# IROI4# IROI5# 

o o o 10 

WSCI IROI2# IROll# 

o o o 11 
029 021 028'--_________________ ---'REAOY# eLKIN WSCO 

12 o o o o o o 
Vee 05 012 027 03 010 

13 0 o o o o o 
Vss 020 04 019 026 02 

14 0 o o o o o 

o o o 
017 REAOYO# HOLD' 

o o o 

o 
W/R# 

o 

o o o o 
O/C# CPURST RESET Vee 

o o o o 
09 016 024 TOUTI/REF# M/lO# TOUT3# T0UT2#/lRQ3# Vss 

o o o o o o o o 

12 

13 

14 

Vee Vss Vee 011 018 025 CLK2 01 DO DB Vss Vee Vss Vee 

A B C o F G H K M N P 
290128-95 

Figure 12.2.82380 PGA Pinout-View from PIN side 
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-Pin/Signal 

A7 
C7 
87 
A6 
86 
C6 
A5 
65 
CS 
84 
83 
C4 
82 
C3 
C2 
03 
02 
E3 
E2 
E1 
F3 
F2 
F1 
G1 
G2 
G3 
H1 
H2 
J1 
H3 
J2 
J3 
KI 
L1 

A31 
A30 
A29 
A2S 
A27 
A26 
A25 
A24 
A23 
A22 
A21 
A20 
A19 
A1S 
A17 
A16 
A1S 
A14 
A13 
A12 
A11 
A10 
Af3 
AS 
A7 
A6 
AS 
A4 
A3 
A2 
8E3# 
8E2# 
BEI# 
8EO# 

82380 

- Table 12·1.82380 PGA Pinout-Functional Grouping 

Pin/Signal 

AS 
89 
A11 
C11 
012 
E13 
F14 
J13 
8S 
C9 
811 
813 
013 
E14 
G12 
H13 
CS 
A10 
C10 
C12 
014 
F12 
G13 
K14 
A9 
810 
812 
C13 
E12 
F13 
H14 
J14 

N12 
M12 

031 
030 
029 
02S 
027 
026 
025 
D24 
023 
022 
021 
020 
019 
-01S 
017 
016 
01S 
014 
013 
012 
011 
010 
09 
OS 
07 
06 
OS 
04 
03 
02 
01 
DO 

RESET 
CPURST 

P12 
M14 
P1 
P2 
P14 
01 
C14 
81 
A2 
A4 
A12 
A14 

G14 
L12 
K12 
l13 
K2 
N4 
J12 
M3 
M6 
PS 
NS 
P4 
M5 
P3 
M4 
N3 

K3 
l3 ... 
IVII 

l2 

Pin/Signal 

Vee L14 
Vee A1 
Vee P13 
Vee N1 
Vee N2 
Vee C1 
Vee A3 
Vee 814 
Vee A13 
Vee N14 
Vee 
Vee P6 

N6 
ClK2 M7 
O/C# N7 
W/R# P7 
M/lO# PS 
AOS# MS. 
NA# NS 
HOLD P9 
HlOA N9 
OREQO M9 
OREQ1 N10 
OREQ2 P10 
OREQ3 M2 
DR EQ4/1RQ9# 
OREQS N11 
OREQ6 , K13 
OREQ7 N13 

M13 
EOP# M11 
EOACKO H12 
EDACK1 
EO.ACK2 M10 
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Pin/Signal 

Vss 
Vss 
Vss 
Vss 
Vss 

-Vss 
Vss 
yss 
Vss 
Vss 

IRQ23 # 
IRQ22# 
IRQ21 # 
IRQ29# 
IRQ19# 
IRQ1S# 
IRQ17# 
IRQ16# 
IRQ1S# 
IRQ14# 
IRQ13# 
IRQ12# 
IRQ11 # 
INT 

ClKIN 
TOUT1/REF# 
TOUT2# /lRQ3 # 
TOUT3# 
REAOY# 
REAOYO# 

WSC1 



82380 

12.3 Package Dimensions and 
Mounting 

The 82380 package is a 132-pin ceramic Pin Grid 
Array (PGA). The pins are arranged 0.100 inch (2.54 
mm) center-to-center, in a 14 x 14 matrix, three rows 
around. 

A wide variety of available sockets allow low inser­
tion force or zero insertion force mountings, and a 
choice of terminals such as soldertail, surface 
mount, or wire wrap. Several applicable sockets are 
listed in Figure 12-4. . 

'"' '"' -;n r;)' N en r::-
'" ..... It') '" CD 0 .... ... "I; '" .... 
~ ... '" ... ..; .,; 
.:::. e e e .:::. .:::. .:::. 

C IN DI POSITION 

·@@@@@@I'@@@@@@@ 
2 @@@@@@@@@@@@@@ 
3 @@i>@@@@'@@@@i>@@ 
4 @@@ @@@ 
5 @@@ , @@@ 
6 @@@ I @@@ 

7 @@@ + @@@ 
8, -@@@ -- -- @@@ 

9 @@@ I @@@ 
10 @@@ @@@ 
11 @@@ @@@ 
12 @@li>@@@@,@@@@ @@ 
13 @@@@@@@I@@@@@@@ 
14 @@@@@@@,@@@@@@@ 

;:; .... 
oci 
.:::. 
It') 
('oj 

": 

J K L 
M N P Ii .020 -I 
(0.508) • 

.725 (18.401) 

.650 (16.497) 

.550 (13.959) 

.450 (11.421) 

.350 (8.883) 

.250 (6.345) 

.150 (3.807) 

.050 (1.269) 
o 

SWEDGE PIN 
STANDOFF 
(4) PLACES 

.057(1.269) ll­
MAX lYP 

.001 (0.025) R 
MIN lYP 

.018 (0.47) ...,. 
DIA lYP L =~tt1' 

'165(4'189~1 ~I 
.110(22 
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Figure 12.3. 132-Pin Ceramic PGA Package Dimensions 
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• Low insertion force (LlF) soldertail 
55274-1 

• Amp tests indicate 50% reduction in insertion 
force compared to machined sockets 

Other socket options 
• Zero insertion force (ZIF) soldertail 
55583-1 

• Zero insertion force (ZIF) Bum-in version 
55573-2 . 

Amp Incorporated . 
(Harrisburg, PA 17105 U.S.A. 
Phone 717-564-0100) 

82380 

290128-97. 
Cam handle locks in low profile position when substrate is installed 
(handle UP for open and DOWN for closed positions) 

Peel-A-WayTM Mylar and Kapton 
Socket Terminal Carriers 

• Low insertion force surface mount 
CSI32-37TG 

• Low insertion force soldertail 
CSI32-01TG· 

• Low insertion force wire-wrap 
CS132-02TG (two level) 
CS132-03TG (three-level) 

• Low insertion force press-fit 
CS132-05TG 

A!!'!e!'!~ !nterconnectlon! 
(5 Division Street 
Warwick, RI 02818 U.S.A. 
Phone 401-885-0485) 

Peel-A-Way Carrier No. 132; 
Kapton Carrier is KS 132 
Mylar Carrier is MS132 

Molded Plastic Body KS132 
is shown below: 

I FOOT PRINT NO. 1121 

C 
--11-.'00"'" 
'4.,4.,ROWI 

290128-98 

courtesy Amp Incorporated 

IOLDIRTAlL~ LOWPRQlllLE~ .... m ... 

II B. G I .!:!! . ,. ., . :til 

L ." . , .n • 
~ :!!!.DlA. ~ . ~.~~ .... .- ~A. .... ~ _.-

Will. WIIAP .G2/.m IIOlDI'IiTAlL...D IW"'&CI! IInUNTINft..M 

-JIRl..A.W"''I I~"I I ~I T 

~,. U ..!.!!. .,. 
!I!.~ 
.. ILIYIL ..!l!. 
,...... .121 

:iii ......... ,--I. 
U :. r-

290128-99 
courtesy Advanced Interconnections 
(Peel-A-Way Terminal Carriers 
U.S. Patent No. 4442938) 

Figure 12-4. Several Socket Options for 132-pln PGA 
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• Low insertion force socket soldertail 
(for production use) 
2XX-6576-00-330B (new style) 
2XX-6003-00-3302 (older style) 

• Zero insertion force soldertail 
(for test and burn-in use) 
2XX-6568-00-3302 

Textool Products 
E;lectronlc Products Division/3m 
(1410 West Pioneer Drive 
Irving. Texas 75601 U.S.A. 
Phone 214-259-2676) 

•• --------•• C> 

ii-------~ ~ ~ 
: : I I If) 

II : : 
:: I!~ 
II :'W 0 

...... ------.l~ 
~--------.. 
I UI '--_______ 1 I 

courtesy Textoll Products/3M 

I 

~ 
Ii. 
I 

29012B-AO 

Figure 12-4. Several Socket Options for 132-pln PGA (Continued) 

12.4 Package Thermal Specification 

The 82380 is specified for operation when case tem­
perature is within the range of O·C - 85·C. The case 
temperature may be measured in any environment, 

to determine whether the 82380 is within the speci­
fied operating range. 

The PGA case temperature should be measured at 
the center of the top surface opposite the pins, as in 
Figure 12.5. 

MEASURE PGA CASE TEMPERATURE 
AT CENTER OF TOP SURFACE 

290128-A1 

Figure 12.5. Measuring 82380 PGA Case Temperature 
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Thermal Reslstance-·C/Watt" 

Alrflow-f3/min (m3/sec) 

Parameter 0 50 100 200 400 600 800 
(0) (0.25) (0;50) (1.01) (2.03) (3.04) (4.06) 

6 Junction-to-Case 2 2 2 2 2 2 2 
(case measured 
as Fig. 6.4) 

6 Case-to-Ambient 19 18 17 15 12 10 9 
(no heatsink) 

6 Case-to-Ambient 16 15 14 12 9 7 6 
(with omnidirectional 
heatsink) 

6 Case-to-Ambient 15 14 13 11 8 6 5 
(with unidirectional -
heatsink) 

NOTES: 290128-A2 

1. Table 12-6" applies to 82380 PGA plugged into socket or soldered 
directly into board. 
2. OJA = OJC + 0CA· 
3. OJ.CAP = 4°C/W (approx.) 

0J.PIN = 4°C/W (inner pins) (approx.) 
0J.PIN = 8°C/W (outer pins) (approx.) 

Fi~ure 12-6. 82380 PGA Package Typical Thermal Characteristics 

13.0 ELECTRICAL DATA 

13.1 Power and Grounding 

The large number of output buffers (address, data 
and control) can cause power surges as multiple 
_ ..... _ ..... "", • .LI: ___ -1 .. : •• ___ .0. _: ___ 1 1_ •• _1 __ =_ ...... ___ ...... _ 
VUL..,UI. UUllwl~ UIIYt:; I ICYV' ~1\:IIIClI It::Yt::I~ "IIIIUILCtllt::UU.,,,, 

Iy. The 22 Vcc and Vss pins of the 82380 each feed 
separate functional units to minimize switching in­
duced noise effects. All V CC pins of the 82380 must 
be connected on the circuit board. 

13.2 Power Decoupling 

Liberal decoupling capacitance should be" placed 
close to the 82380. The 82380 driving its 32-bit par­
allel address and data buses at high frequencies can 
cause transient power surges when driving large ca­
pacitive loads. Low inductance capacitors and inter-

connects are recommended for the best reliability at 
high frequencies. Low inductance capacitors are 
available specifically for Pin Grid Array packages. 

13.3 Unused Pin Recommendations 
1:',.., ....... H .... hl ...................... ;,..,.... It. I \AIIt. VC! " .................... + I ..... .... _A ; .... 
I UI I gll"'U''"'' "'1-"""'1 ",I..VI I, r\ ..... ., n I v ""''''.II Ig':'L ""IU~gU 11'-

puts to a valid logic level. As is the case with most 
other CMOS processes, a fioating input wiii increase 
the current consumption of the component and give 
an indeterminate state to the component. 

13.4 ICE-3S6 Support 

The 82380 specifications provide sufficient drive ca­
pability to support the ICE386. On the pins that are 
generally shared be ...... een the 80386 and the 82380, 
the additional loading represented by the ICE386 
was allowed for in the design of the 82380. 
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13.5 Maximum Ratings 

Storage Temperature .......... - 65·C to + 150·C 
Case temperature Under Bias ... - 65·C to + 11 O·C 
Supply Voltage with Respect 

to Vss ....................... -0.5V to +6.5V 
Voltage on any other Pin ..... -0.5V to Vee- +0.5V 

NOTE: 
Stress above those listed above may cause perma­
nent damage to the device. This is a stress rating 

13.6 D.C. Specifications 

TeAsE = O·C to B5"C; Vee = 5V ±5%; Vss = OV. 

only and functional operation at these or any other 
conditions above those listed in the operational 
sections of this specification is not implied. 

Exposure to absolute maximum rating conditions for 
extended periods may affect device reliability. Al­
though the B23BO contains protective circuitry to re­
set damage from static electric discharges, always 
take precautions against high static voltages or elec­
tric fields. 

Table 13-1. 

Symbol Parameter Min Max. Unit Notes 

Vil Input Low Voltage -0.3 O.B V (Note 1) 

VIH . Input High Voltage 2.0 Vee + 0.3 V 

Vile CLK2 Input Low Voltage -0.3 O.B (Note 1) 

VI He CLK2 Input High Voltage Vee - O.B Vee + 0.3 V 

VOL OutPlit Low Voltage 
IOl = 4mA: A2-A31, 

00-031 0.45 V 
IOl = 5 mA: All Others 0.45 V 

VOH Output High Voltage 
IOH = -1 mA: A2-A31, 

00-031 2.4 V 
IOH = - 9.9 mA: All Others 2.4 V 

III Input Leakage Current for 
all ins except: 

IRQ11 #-IRQ23#, 
TOUT2/IRQ3#, EOP#, OREQ4 ±15 p.A OV<VIN<Vee 

ILl1 Input Leakage Current for 
pins: IRQ11 #-IRQ23#, 
TOUTU/IRQ3#, EOP#, OREQ4 10 -300 p.A OV<VIN<Vee 

(Note 3) 

IlO Output Leakage Current ±15 p.A 0.45 <VOUT <Vee 

lee Supply Current 300 mA CLK2 = 32 MHz 
325 mA = 40 MHz 

(Note 4) 

(CAP) Capacitance (Input/IO) 12 pF fc = 1 MHz 
(Note 2) 

CCLK CLK2 CapaCitance 20 pF fc = 1 MHz 
(Note 2) 

NOTES: 
1. Minimum value is not 100% tested. 
2. Sampled only. 
3. These pins have internal pullups on them. 
4. Icc is specified with inputs driven to eMOS levels. Icc may be higher if driven to TTL levels. 
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13.6 D.C. Specifications (Continued) 
T CASE = O°C to 85°C; Vcc = 5V ± 5%; VSS = OV. 

Table 13-2.82380-25 D.C. Specifications 

Symbol Parameter Min Max Unit Notes 

VIL Input Low Voltage -0.3 0.8 V (Note 1) 

VIH Input High Voltage 2.0 Vcc + 0.3 V 

VILC CLK2 Input Low Voltage -0.3 0.8 V (Note 1) 

\/ ... - rl I.('? Innllt l-linh \Il'\lt~"o \/_- - "" \/ ____ ...L n'l V -Inl.,..r -_. , ................. ~ .... " ........ ~ ..... OlJlJ v.v .vv ' ",.11.,1 

VOL Output Low Voltage 
IOL = 4 mA: A2-A31, 00-031 0.45 V 
IOL = 5 mA: All Others 0.45 V 

VOH Output High Voltage 
IOH = -1 mA: A2-A31, 00-031 2.4 V 
IOH = -0.9 mA: All Others 2.4 V 

lu Input Leakage Current ±15 /LA 
All Inputs except: IRQ11 #-
IRQ23#, EOP#, TOUT2/IRQ3#, 
OREQ4 

IU1 Input Leakage Current 10 -300 /LA 0< VIN < Vec 
Inputs: IRQ11 # -IRQ23 #, (Note 3) 
EOP#, TOUT2/IRQ3#, OREQ4 

ILO Output Leakage Current ±15 /LA 0< VIN < Vcc 

Icc Supply Current (CLK2 = 50 MHz) 375 mA (Note 4) 

CI Input Capacitance 12 pF (Note 2) 

CCLK CLK2 Input Capacitance 20 pF (Note 2) 

NOTES: 
1. Minimum value is not 100% tested . 

. 2. ff" = 1 MHz: Samoled onlv. 
3. These pins have weak internal pullups. They should not be left floating. 
4. 1f'1"' i5; ~mecified with innlJt~ nrivAn to (,;MOS IAVAI~_ Ann nlJtnllt~ ririvinn CM()~ Ins:ui~_ 11"'1" mAV hA hinhAr if innllt~ ArA rlrivAn 
to iTLle~els, or if outpuis- ~-r~ drivi~g-TII-IOads.-· -- -. --- -~ -- -----vv--, - -~-.---- - - -.-
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13.7 A.C. Specifications 

The A.C. specifications given in the following tables 
consist· of output delays and input setup require­
ments. The A.C. diagram's purpose is to illustrate 
the clock edges from which the timing parameters 
are measured. The reader should not infer any other 
timing relationships from them. For specific informa­
tion on timing relationships between signals. refer to 
the appropriate functional section. . 

CLK2 [ 2V 

OUTPUTS 
(A2-A31. D/CH. 

8EOH-8E3H. ADSH. 
M/IOH. W/RH •. 

RDYOH.LOCKH. HOLD 

LEGEND: 

OUTPUTS [ 
(DO-D31) 

INPUTS [ 
(NAH) 

INPUTS 
(READYH.HLDA. [ 

A2-A31.DO-D31) 
IROxH.ADSH 

®-maximum oulput delay spec 

~inimum output delay spec 
©-minimum input setup spec 
IQJ-minimum input hold spec 

NOTES: 

---411 . 

1. Input waveforms have tr s; 2.0 IJs from 0.8V to 2.0V. 

A.C. spec measurement is defined in Figure 13.1. 
Inputs must be driven to the levels shown when A.C. 
specifications are measured. 82380 output delays 
are specified with minimum and maximum limits. 
which are measured as shown. The minimum 82380 
output delay times are hold times for external circuit­
ry. 82380 input setup and hold times are specified as 
minimums and define the smallest acceptable sam­
pling window. Within the sampling window. a syn-

. chronous input signal must be stable for correct 
82380 operation. 

Tx 

VALID 
1.5V OUTPUT n+ 1 

290128-83 

2. Under rated loading (120 pF) 82380 output tr. tf is typically s; 4.0 ns from O.8V to 2.0V. 

Figure 13·1. Drive Levels and Measurement Points for A.C. Specification 
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A.C. SPECIFICATION TABLES 

Functional Operating Range: Vee = 5V ±5%; TCASE = O°C to +85°C 

Table 13-3.82380 A.C. Characteristics 

Symbol 

t1 

t2a 

t2b 

t3a 

t3b 

t4 

t5 

t6 
t7 

t8 
t9 

t10 
t11 
t12 
t13 

t14 
t15 
t16 
t17 ... 

t18 
t19 

t20 
t21 

Parameter 

Operating Frequency 

CLK2 Period 

CLK2 High Time 

CLK2 High Time 

CLK2 Low Time 

CLK2 Low Time 

CLK2 Fall Time 

CLK2 Rise Time 

A (2-31), BE (0-3) #, 
EDACK (0-2)' 
Valid Delay 
Float Delay 

A (2-31), BE (0-3) # 
Setup Time 
Hold Time 

W/R#, M/IO#, D/C#, 
Valid Delay 
Float Delay 
Setup Time , 
Hold Time 

ADS# Valid Delay 
Float Delay 
Setup Time 
I-InlriTimo 0'_'_ ••••• _ 

Slave Mode-
0(0-31) Read 

Valid Delay 
Float Delay 

Slave Mode-
0(0-31) Write 

Setup Time 
Hold Time 

82380-16 

Min 

4MHz 

31 ns 

9 

5 

9 

7 

4 
4 

6 
4 

6 
4 
6 
4 

6 
4 

21 
A 

3 
6 

31 
26 

Max 

16MHz 

125ns 

8 

8 

36 
40 

33 
35 

33 
35 

46 
35 

4-722 

82380-20 

Min 

4MHz 

25ns 

8 

5 

8 

6 

4 
4 

6 
4 

6 
4 
6 
4 

6 
4 
15 
A 

4 
6 

29 
26 

Max 

20 MHz 

125 ns 

8 

8 

30 
32 

28 
30 

28 
30 

46 
29 

Notes 

Half CLK2 Frequency 

at2.0V 

at (Vcc-0.8)V 

at2.0V 

atO.8V 

(Vcc-0.8)V to 0.8V 

0.8V to (Vcc-0.8)V 

'CL = 120 pF 
(Note 1) 

CL = 75pF 
(Note 1) 

CL = 75 pF 

CL = 120pF 
(Note 1) 
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A.C. SPECIFICATION TABLES (Continued) 

Functional Operating Range: Vee = 5V ±5%; TeASE = O°C to +85°C. 

Table 13-3. 82380 A.C. Characteristics (Continued) 

Symbol Parameter 
82380·16 82380·20 

Notes 
Min Max Min Max 

Master Mode-
0(0-31) Write 

t22 Valid Delay 4 48 4 38 CL = 120 pF 
t23 Float Delay 4 35 4 27 (Note 1) 

Master Mode-
0(0-31) Read 

t24 Setup Time 11 11 
t25 Hold Time 6 6 

t26 READY # Setup Time 21 12 
t27 Hold Time 4 4 

t28 WSC (0-1) Setup 6 6 
t29 Hold 21 21 

t31 RESET Setup Time 1-3 12 
t30 Hold Time 4 4 

t32 READYO# Valid Delay 4 31 4 28 CL = 25 pF 

t33 CPU Reset From CLK2 2 18 2 16 CL = 50pF 

t34 HOLD Valid Delay 5 33 5 30 CL = 100 pF 

t35 HLDA Setup Time . 21 17 
t36 Hold Time 6 6 

t37a EOP# Setup Time 21 17 Synch. EOP 

t38a EOP# Hold Time 4 4 

t37b EOP# Setup Time 11 11 Asynch. EOP 

t38b EOP# Hold Time 11 11 

t39 EOP# Valid Delay 5 38 5 30 CL = 100 pF ('1'->'0') 

t40 EOP# Float Delay 5 40 5 32 

t41a DREQ Setup Time 21 19 Synchronous DREQ 
t42a Hold Time 4 4 

t41b DREQ Setup Time 11 11 Asynchronous DREQ 
t42b Hold Time 11 11 

t43 INT Valid Delay 500 500 From IRQ Input 
CL = 75pF 

t44 NA # Setup Time 11 ' 10 
t45 Hold Time 15 15 
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A.C. SPECIFICATION TABLES (Continued) 

Functional Operating Range: Vee = 5V ±5%; TeASE = O°C to + 85°C. 

, Table 13-3.82380 A.C. Characteristics (Continued) 

Symbol Parameter 82380-16 82380-20 Notes 
Min Max Min Max 

t46 ClKIN Frequency OMHz 10MHz o MHz 10MHz 

t47 ClKIN High Time 30 30 At 1.5V 

t48 ClKIN low Time 50 50 AH,5V 

t49 ClKIN R'ise Time 10 10 0.8Vt02.0V 

t50 ClKIN Fall Time 10 10 2.0VtoO.BV 

t51 TOUT1/REF# Valid 4 36 4 30 From ClK2, Cl = 25 pF 

t52 TOUT1/REF# Valid 3 93 3 93 From ClKIN, Cl = 120 pF 

t53 TOUT2# Valid Delay 3 93 3 93 From ClKIN, Cl = 120 pF 
(Falling Edge Only) 

t54 TOUT2# Float Delay 3 40 3 40 From GlKIN (Note 1) 

t55 TOUT3# Valid Delay 3 93 3 93 From ClKIN, Cl = 120 pF 

NOTE: , 
1. Float condition occurs when the maximum output current becomes less than ILO in magnitude. Float delay is not tested. 
For testing purposes, the float condition occurs when the dynamic output driven voltage changes with current loads. 

Functional Operating Range: Vee = 5V ±5%; TeASE = O°C to +85°C. 

A.C. timings are tested at 1.5V thresholds; except as noted. 

Table 13-4.82380-25 A.C. Characteristics 

Symbol Parameter 82380-25 

Min I Max 

Operating Frequency 1/(t1a x 2) 4 I 25 

t1 ClK2Period 20 125 

12a ClK2 High Time 7 
t2b ClK2 High Time 4 
t3a ClK2 low Time 7 
t3b ClK2 low Time 4 
t4 ClK2 Fall Time 7 
t5 ClK2 Rise Time 7 

t6 A2-A31, BEO#-BE3# 4 20 
EDACKO-EDACK3 Valid Delay 

t7 A2-A31, BEO#-BE3# 4 27 
EDACKO-EDACK3 Float Delay 

t8 A2-A31, BEO#.:.BE3# Setup Time 6 
t9 A2-A31, BEO#-BE3# Hold Time 4 

t10 W/R#, M/IO#, D/C# Valid Delay ~ 20 
t11 W/R#, M/IO#, D/C# Float Delay 4 29 
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Unit Notes 

MHz 

ns 

ns at2.0V 
ns at3.7V 
ns at2.0V 
ns alO.8V 
ns 3.7VtoO.8V 
ns 0.8Vt03.7V 

ns 50 pF load 

ns 50 pF load 

ns 
ns 

ns 50 pF load 
ns 50 pF load 



inter 82380 

A.C. SPECIFICATION TABLES (Continued) 

Functional Operating Range: Vee = 5V ±5%; TeASE = O°C to +85°C. 

A.C. timings are tested at 1.5V thresholds; except as noted. 

Table 13·4.82380·25 A.C. Characteristics (Continued) 

Symbol Parameter 82380-25 

Min Max 

t12 W/R#, MIIO#, O/C# Setup Time 6 
t13 W/R#, M/IO#, O/C# Hold Time 4 

t14 AOS# Valid Delay - 4 19 
t15 AOS# Float Delay 4 29 

t16 ADS # Setup Time 12 
t17 AOS# Hold Time 4 

t18 Slave Mode 00-031 Read Valid 4 31 
t19 Slave Mode 00-031 Read Float 6 21 

t20 Slave Mode 00-031 Write Setup 20 
t21 Slave Mode 00-031 Write Hold 20 

t22 Master Mode 00-031 Write Valid 8 27 
t23 Master Mode 00-031 Write Float 4 19 

t24 Master Mode 00-031 Read Setup 7 
t25 Master Mode 00-031 Read Hold 4 

t26 READY # Setup Time 9 
t27 READY # Hold Time 4 

t28 WSCO-WSC1 Setup Time 6 
t29 WSCO-WSC1 Hold Time 15 

t30 RESET Hold Time 4 
t31 RESET Setup Time 9 

t32 REAOYO# Valid Delay 3 21 

t33 CPURST Valid Delay 2 14 

t34 HOLD Valid Delay 4 22 

t35 HLOA Setup Time 17 
t36 HLOA Hold Time 4 

t37a EOP # Setup (Synchronous) 13 
138a EOP # Hold (Synchronous) 4 

t37b EOP# Setup (Asynchronous) 10 
t38b EOP # Hold (Asynchronous) 10 

t39 EOP# Valid Delay 4 21 
t40 E0P# Float Delay 4 21 

t41a OREQ Setup (Synchronous) 17 
t42a OREQ Hold (Synchronous) 4 

t41b OREQ Setup (Asynchronous) 10 
t42b OREQ Hold (Asynchronous) 10 

t43 INT Valid Delay from IRQn 500 
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Unit Notes 

ns 
ns 

ns 50 pF Load 
ns 50 pFLoad 

ns 
ns 

ns 50 pF Load 
ns 50 pF Load 

ns 
ns 

ns 50 pF Load 
ns 50pF Load 

ns 
ns 

ns 
ns 

ns 
ns 

ns 
ns 

ns 25 pF Load 

ns 50pF Load 

ns 50pF Load 

ns 
ns 

ns 
ns 

ns 
ns 

ns 50 pF Load 
ns 50 pF Load 

ns 
ns 

ns 
ns 

ns 50 pF Load 
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A.C. SPECIFICATION TABLES (Continued) 

Functional Operating Range: Vee = 5V ±5%; TeAsE = O°C to +85°C. 

A.C. timings are tested at 1.5V thresholds; except as noted. , 

Table 13-4.82380-25 A.C. Characteristics (Continued) 

Symbol Par~meter 
82380-25 Unit Notes 

Min Max 

t44 NA# Setup Time 7 ns 
t45 NA# Hold'Time 8 ns 

t46 ClKIN Frequency 0 10 MHz 
t47 ClKIN High Time 30 ns 2.0V 
t48 ClKIN low Time SO ns 0.8V 
t49 ClKIN Rise Time 10 ns 0.8Vt03.7V 
tSO ClKIN Fall Time 10 ns 3.7VtoO.8V 

TOUn/REF # Valid Delay 
,tS1 from ClK2 (Refresh) . 4 20 ns 50pF load 
tS2 from ClKIN (Timer) 3 90 ns SOpF load 

tS3 TOUT2# Valid Delay 3 90 ns SOpF load 
(Falling Edge Only) 

tS4 TOUTU Float Delay 3 37 ns 50pF load 

t55 TOUT3 # Valid Delay 3 90 ns 50pF load 

823800----, 
OUTPUT ...L 

~CL 
290128-A4 

1---('1 r---i 

Figure 13-2. A.C. Test Load 

I 290128-AS 

Figure 13-3: CLK2 Timing 
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CLK2 

I PHil I PHI2 PHil PHI2 . PHil I PHI2 

~ ~ ~ ~ 
I+- T8 ..... -- T9 ...... 

A(2 - 31). BE(O - 3}# 

.... T12 ..... --T13 ...... 

W/R#. M/IOH. O/CH 

.... T26 ..... --T27-

REAOY# 

.... T16---T17-

AOS# 

.... T3S--T3S-

HLOA 

.... T24-r--T2S-

0(0- 31} (OMA Read) 

.... T20-I--T21-

O(O-31} (CPU Write) 

.... T37-!--T38-

EOP# 

.... T41-!--T42 ..... 

OREQ(O-7} 

!-T44 .... ~ 
NA# 

!-T28 ...... E!. 
WSC(O-I) 

290128-AS 

Figure 13-4. Input Setup and Hold Timing 

Tx 

CLK2 PHil I PHI2 I . PHil I PHI2 

~ , 
RESET _____ ~~:j,-.:..::-'-I 

Tx 
PHI2 I PHil I. PHI2 

CLK2 

r- T33 MIN. 
CPURST ------------1~~'ft\ 

I-- T33 MAX. 
290128-A7 

Figure 13-5. Reset Timing 

4-727 



inter 

CLK2 

A(2 - 31). BE(O- 3)# 
VALID DELAY 

A(2- 31). BE(O - 3)# 
EDACK(O- 2) 
VALID DELAY 

A(2 - 31). BE(O - 3)# 
EOACK(O- 2) 
FLOAT DELAY 

AOS# 
VALID DELAY 

AOS# 
VALID DELAY 

AOS# 
FLOAT DELAY 

HOLD 

CLK2 

82380 

Tx Tx Tx I' PHil I PHI2 PHil I PHI2 I PHil I PHI2 

~~ 
I-- T6Mln 

m-- T6Max 
I-- T6Mln 

.xxx 
1-

T6Max - T7Mln 
1-
lAM. 

T7Max 

- T14Mln 

,XXX 

T14Max - T14Mln 

,XU 
T14Max - T15Mln 

OOOC 
T15Max 

r-- T34Mln 

T34Max 
290128-A8 

Figure 13-6. Address Output Delays 

IX Tx 
PHil PHI2 PHil, PHI2 PHil PHI2 

0(0-31) (CPU Read) -~----t:~~S~~~::t:::i;;~~:::_---

0(0-31) (Orna Write) -----------------+-~~~~::::::::: 

0(0-31) (Oma Write) ________________ -+-_~::ICI~'----------

0(0-31) (Oma Write) ________________ +_~M~----------

-----'T23Max 
290128-A9 

Figure 13·7. Data Bus Output Delays 
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PHil PHI2 PHil PHI2 PHil PHI2 

ClK2 

W/R#. IA/IO#.D/C# ----------1:~~~tr;0Mc;;;_-----------

W/R#. IA/IO#.D/C# ==========!~OO~~-------------

W/R#. IA/IO#.D/C# ----------+-100~~============: 

R~~O# ___________________ ~~~~~~--------------------------

EOP# 

EOP# 

REF# ___________ ~~~~~------------------

290128-80 

Figure 13-8. Control Output Delays 

ClKIN 

TOUT1 __________________ ~~~~~~~--------------------------------

TOUT2# -----------------r-"""rft\ 

TOUT2# __________ ~ 

TOUT3# __________ I-'I~~I'_-----------------
J4---~T55IAQX 

290128-81 

Figure 13-9. Timer Output Delays 
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Port Address (HEX) 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
08 
OC 

.00 
OE 
OF 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
1A 
18 
1C 
1E 
20 

21 

22 
28 
29 
2A 
28 
2C 
20 
2E 
2F 

82380 

APPENDIX A 
Ports Listed. by Address 

Description 

Read/Write DMA Channel 0 Taraet Address. AO-A 15. 
Read/Write DMA Channel 0 8yt; Count, 80':"815 
Read/Write DMA Channel 1 Target Address, AO-A 15 
Read/Write DMA Channel 1 8yte Count, 80-815 
Read/Write DMA Channel 2 Target Address, AO-A 15 
Read/Write DMA Channel 2 8yte Count, 80-815 
Read/Write DMA Channel 3 Target Address, AO-A 15 
. Read/Write DMA Channel 3 8yte Count, 80-815 
Read/Write DMA Channel 0-3 Status/Command I Register 
Read/Write DMA Channel 0-3 Software Request Register 
Write DMA Channel 0-3 Set-Reset Mask Register 
Write DMA Channel 0-3 Mode Register I 
Write Clear 8yte-Pointer FF 
Write DMA Master-Clear 
Write DMA Channel 0-3 Clear Mask Register 
Read/Write DMA Channel 0-3 Mask Register 
Read/Write DMA Channel 0 Target Address, A24-A31 
Read/Write DMA Channel 0 8yte Count, 816-823 
Read/Write DMA Channel 1 Target Address, A24-A31 
Read/Write DMA Channel 1 Byte Count, 816-823 
Read/Write DMA Channel 2 Target Address, A24-A31 
Read/Write DMA Channel 2 Byte Count, 816-823 
Read/Write DMA Channel 3 Target Address, A24-A31 
Read/Write DMA Channel 3 8yte Count, 816-B23 
Write DMA Channel 0-3 Bus Size Register 
Read/Write DMA Channel 0-3 Chaining Register 

. Write DMA Channel 0-3 Command Register II 
Write DMAChannel 0-3 Mode Register II 
Read/Write Refresh Control Register 
Reset Software Request Interrupt 
Write Bank 8 ICW1, OCW2, or OCW3 
Read 8ank 8 Poll, Interrupt Request or In-Service 

Status Register 
Write Bank B ICW2, ICW3, ICW4 or OCW1 
Read 8ank 8 Interrupt Mask Register . 
Read Bank B ICW2 
Read/Write IRQ8 Vector Register 
Read/Write IRQ9 Vector Register 
Reserved 
Read/Write IRQ11 Vector Register 
Read/Write IRQ12 Vector Register 
Read/Write IRQ13 Vector Register 
Read/Write IRQ14 Vector Register 
Read/Write IRQ15 Vector Register 
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APPENDIX A-Ports Listed by Address (Continued) 

Port Address (HEX) 

30 

31 

32 
38 
39 
3A 
3B 
3C 
3D 
3E 
3F 
40 
41 
42 
43 
44 
45 
46 
47 
61 
64 
72 
73 
74 
75 
76 
77 
7D 
7E 
7F 
80 
81 
82 
83 
87 
88 
89 
8A 
88 
8F 

Description 

Write Bank A ICW1, OCW2 or OCW3 
Read 8ank A Poll, Interrupt Request or In-Service 

Status Register 
Write Bank A ICW2, ICW3, ICW4 or OCW1 
Read Bank A Interrupt Mask Register 
Read Bank A ICW2 
Read/Write IRQO Vector Register 
Read/Write IRQ1 Vector Register 
Read/Write IRQ1.5 Vector Register 
Read/Write IRQ3 Vector Register 
Read/Write IRQ4 Vector Register 
Reserved 
Reserved 
Read/Write IRQ7 Vector Register 
Read/Write Counter 0 Register 
Read/Write Counter 1 Register 
Read/Write Counter 2 Register 
Write Control Word Register I-Counter 0, 1, 2 
Read/Write Counter 3 Register 
Reserved 
Reserved 
Write Word Register II-Counter 3 
Write Internal Control Port 
Write CPU Reset Register (Data-1111 XXXOH) 
Read/Write Wait State Register 0 
Read/Write Wait State Register 1 
Read/Write Wait State Register 2 
Read/Write Refresh Wait State Register 
Reserved 
Reserved 
Reserved 
Reserved' 
Read/Write Relocation Register 
Read/Write Internal Diagnostic Port 0 
Read/Write DMA Channel 2 Target Address, A16-A23 
ReadiWrite DMA Channel 3 Target Address, A 16-A23 
Read/Write DMA Channel 1 Target Address, A 16-A23 
Read/Write DMA Channel 0 Target Address, A 16-A23 
Read/Write Internal Diagnostic Port 1 
Read/Write DMA Channel 6 Target Address, A 16-A23 
Read/Write DMA Channel 7 Target Address, A 16-A23 
Read/Write DMA Channel 5 Target Address, A16-A23 
Read/Write DMA Channel 4 Target Address, A16-A23 
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APPENDIX A-Ports Listed by Address (Continued) 

Port Address (HEX) 

90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
9A 
98 
9C 
9D 
9E 
9F 
AO 

A1 

A2 
A8 
A9 
AA 
A8 
AC 
AD 
AE 
AF 
CO 
C1 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 
CA 
C8 
CC 
CD 
CE 
CF 

Description 

Read/Write DMA Channel 0 Requester Address, AO-A 15 
Read/Write DMA Channel 0 Requester Address, A16-A31 
Read/Write DMA Channel 1 Requester Address, AO-A15 
Read/Write DMA Channel 1 Requester Address, A16':'A31 
Read/Write DMA Channel 2 Requester Address, AO-A15 
Read/Write DMA Channel 2 Requester Address, A16-A31 
Read/Write DMA Channel 3 Requester Address, AO-A15 
ReadiWrite DMA Channei 3 Requesier Address, Ai6-AS1 
Read/Write DMA Channel 4 Requester Address, AO-A 15 
Read/Write DMA Channel 4 Requester Address, A16-A31 
Read/Write DMA Channel 5 Requester Address, AO-A15 
Read/Write DMA Channel 5 Requester Address, A16-A31 
Read/Write DMA Channel 6 Requester Address, AO-A15 
Read/Write DMAChannel6 Requester Address, A16-A31 
Read/Write DMA Channel 7 Requester Address, AO-A15 
Read/Write DMA Channel 7 Requester Address, A 16-A31 
Write 8ank C ICW1, OCW2 or OCW3 
Read Bank C Poll, Interrupt Request or In-Service 

Status Register 
Write 8ank C ICW2, ICW3, ICW4 or OCW1 
Read Bank C Interrupt Mask Register 
Read 8ank C ICW2 
Read/Write IR016 Vector Register 
Read/Write IR017 Vector Register 
Read/Write IR018 Vector Register 
Read/Write IR019 Vector Register 

. Read/Write IR020 Vector Register 
Read/Write IR021 Vector Register 
Read/Write IR022 Vector Register 
Read/Write IR023 Vector Register 
Read/Write DMA Channel 4 Target Address. AO.:.A 15 
Read/Write DMA Channel 4 8yte Count, BO-815 
ReadiWrite DMA Channei 5 iarget Address, AO-A 15 

. Read/Write DMA Channel 5 8yte Count, BO-B15 
Read/Write DMA Channel 6 Target Address, AO':'A 15 
Read/Write DMA Channel 6 8yte Count, 80-815 
Read/Write DMA Channel 7 Target Address, AO-A 15 
Read/Write DMA Channel 7 Byte Count, 80-815 
Read DMA Channel 4-7 Status/Command I Register 
Read/Write DMA Channel 4-7 Software Request Register 
Write DMA Channel 4-7 Set-Reset Mask Register 
Write DMA Channel 4-7 Mode Register I 
Reserved 
Reserved 
Write DMA Channel 4-7 Clear Mask Register 
Read/Write DMA Channel 4-7 Mask Register 
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APPENDIX A-Ports Listed by Address (Continued) 

Port Address (HEX) 

DO 
D1 
D2 
D3 
D4 
D5 
D6 
D7 
D8 
D9 
DA 
D8 

Description 

Read/Write DMA Channel 4 Target Address, A24-A31 
Read/Write DMA Channel 4 8yte Count, 816-823 
Read/Write DMA Channel 5 Target Address, A24-A31 
Read/Write DMA Channel 5 8yte Count, 816-823 
Read/Write DMA Channel 6 Target Address, A24-A31 
Read/Write DMA Channel 6 8yte Count, 816-823 
Read/Write DMA Channel 7 Target Address, A24-A31 
Read/Write DMA Channel 7 8yte Count, 816-823 
Write DMA Channel 4-7 8us Size Register 
Read/Write DMA Channel 4-7 Chaining Register 
Write DMA Channel 4-7 Command Register II 
Write DMA Channel 4-7 Mode Register II 
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Port Address (HEX) 

OD 
OC 

08 
C8 
1A 
DA 

OB 
CB 
1B 
DB 

09 
C9 
1E 

OE 
CE 
OF 
CF 
OA 
CA 

18 
D8 

i9 
D9 

00 
87 
10 
01 
11 
90 
91 

02 
83 
12 
03 
13 
92 
93 

82380 

APPENDIX B 
Ports Listed by Function 

Description 

DMA CONTROLLER 
Write DMA Master-Clear 
Write DMA Clear Byte-Pointer FF 

Read/Write DMA Channel 0-3 Status/Command I Register 
Read/Write DMA Channel 4-7 Status/Command I Register 

. Write DMA Channel 0-3 Command Register II 
Write DMA Channel 4-7 Command Register II 

Write DMA Channel 0-3 Mode Register I 
Write DMA Channel 4-7 Mode Register I 
Write DMA Channel 0-3 Mode Register II 
Write DMA Channel 4-7 Mode Register II 

Read/Write DMA Channel 0-3 Software Request Register 
Read/Write DMA Channel 4-7 Software Request Register 
Reset Software Request Interrupt 

Write DMA Channel 0-3 Clear Mask Register 
Write DMA Channel 4-7 Clear Mask Register 
Read/Write DMA Channel 0-3 Mask Register 
Read/Write DMA Channel 4-7 Mask Register 
Write DMA Channel 0-3 S~t-Reset Mask Register 
Write DMA Channel 4-7 Set-Reset Mask Register 

Write DMA Channel 0-3 Bus Size Register 
Write DMA Channel 4-7 Bus Size Register 
_ • " •• _0. __ ..... _1 _____ I,.. ",....L._~_: __ " __ l_.l. __ 

ntU:::lUI vvrutf UIVII"\ vi U:lIII It:IIl v-" vi U:LII III l'=t nt::'=:II:J;LCI 

Read/Write DMA Channel 4-7 Chaining Register 

Read/Write DMA Channel 0 Target Address, AO-A 15 
Read/Write DMA Channel 0 Target Address, A 16-A23 
Read/Write DMA Channel 0 Target Address, A24-A31 
Read/Write DMA Channel 0 Byte Count, BO-B 15 
Read/Write DMA Channel 0 Byte Count, B16-B23 
Read/Write DMA Channel 0 Requester Address, AO-A 15 
Read/Write DMA Channel 0 Requester Address, A16-A31 

Read/Write DMA Channel 1 Target Address, AO-A 15 
Read/Write DMA Channel 1 Target Address, A 16-A23 
Read/Write DMA Channel 1 Target Address, A24-A31 
Read/Write DMA Channel 1 Byte Count, BO-B15 
Read/Write DMA Channel 1 Byte Count, B16-B23 
Read/Write DMA Channel 1 Requester Address, AO-A 15 
Read/Write DMA Channel 1 Requester Address, A16-A31 
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APPENDIX B-Ports Listed by Function (Continued) 

Port Address (HEX) 

04 
81 
14 
05 
15 
94 
95 
OS 
82 
1S 
07 
17 
9S 
97 

CO 
8F 
DO 
C1 
01 
98 
99 

C2 
8B 
02 
C3 
03 
9A 
9B 

C4 
89 
04 
C5 
05 
9C 
90 
CS 
8A 
OS 
C7 
07 
9E 
9F 

Description. 

DMA CONTROLLER 

Read/Write OMA Channel 2 Target Address, AO-A 15 
Read/Write OMA Channel 2 Target Address, A 1S-A23 
Read/Write OMA Channel 2 Target Address, A24-A31 
Read/Write OMA Channel 2 Byte Count, BO-B15 
Read/Write OMA Channel 2 Byte Count, B 1S-B23 

. Read/Write OMA Channel 2 Requester Address, AO-A 15 
Read/Write OMA Channel 2 Requester Address, A 1S-A31 

Read/Write OMA Channel 3 Target Address, AO-A 15 
Read/Write OMA Channel 3 Target Address, A 1S-A23 
Read/Write OMA Channel 3 Target Address, A24-A31 
Read/Write OMA Channel 3 Byte Count, BO-B15 
Read/Write OMA Channel 3 Byte Count, B1S-B23 
Read/Write OMA Channel 3 Requester Address, AO-A 15 
Read/Write OMA Channel 3 Requester Address, A1S-A31 

Read/Write OMA Channel 4 Target Address, AO-A15 
Read/Write OMA Channel 4 Target Address, A 1S-A23 
Read/Write DMA Channel 4 Target Address, A24-A31 
Read/Write DMA Channel 4 Byte Count, BO-B15 
Read/Write DMA Channel 4 Byte Count, B1S-B23 
Read/Write DMA Channel 4 Requester Address, AO-A15 
Read/Write DMA Channel 4 Requester Address, A1S-A31 

Read/Write DMA Channel 5 Target Address, AO-A 15 
Read/Write DMA Channel 5 Target Address, A1S-A23 
Read/Write DMA Channel 5 Target Address, A24-A31 
Read/Write DMA Channel 5 Byte Count, BO-B15 
Read/Write OMA Channel 5 Byte Count, B1S-B23 
Read/Write DMA Channel 5 Requester Address, AO-A 15 
Read/Write OMA Channel 5 Requester Address, A1S-A31 

Read/Write DMA ChannelS Target Address, AO-A 15 
Read/Write OMA Channel S Target Address, A 1S-A23 
Read/Write DMA ChannelS Target Address, A24-A31 
Read/Write DMA ChannelS Byte Count, BO-B15 
Read/Write OMA Channel S Byte Count, B 1S-B23 
Read/Write OMA Channel S Requester Address, AO-A 15 
Read/Write DMA Channel S Requester Address, A 1S-A31 

Read/Write OMA Channel 7 Target Address, AO-A15 
Read/Write DMA Channel 7 Target Address, A1S-A23 
Read/Write OMA Channel 7 Target Address, A24-A31 
Read/Write DMA Channel 7 Byte Count, BO-B15 
Read/Write DMA Channel 7 Byte Count, B1S-B23 
Read/Write DMA Channel 7 Requester Address, AO-A 15 
Read/Write DMA Channel 7 Requester Address, A1S-A31 
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APP~NDIX B-Ports Listed by Function (Continued) 

Port Address (HEX) 

20 

21 

22 
28 
29 
2A 
2B 
2C 
20 
2E 
2F 

AO 

A1 

A2 
A8 
A9 
AA 
AB 
AC 
AD 
AE· 
AF 
"n 
"'''' 

31 

32 
38 
39 
3A 
3B 
3C 
3D 
3E 
3F 

Description 

INTERRUPT CONTROLLER 

Write Bank B ICW1, OCW2, or OCW3 
Read Bank B Poll, Interrupt Request or In-Service 

Status Register 
Write Bank BICW2, ICW3, ICW4 or OCW1 
Read Bank B Interrupt Mask Register 
Read Bank B IC'."J2 
Read/Write IR08 Vector Register 
Read/Write IR09 Vector Register 
Reserved 
Read/Write IR011 Vector Register 
Read/Write IR012 Vector Register 
Read/Write IR013 Vector Register 
Read/Write IR014 Vector Register 
Read/Write IR015 Vector Register 
Write Bank C ICW1, OCW2 or OCW3 
Read Bank C Poll, Interrupt Request or In-Service 

Status Register 
Write Bank C ICW2, ICW3, ICW4 or OCW1 
Read Bank C Interrupt Mask Register 
Read Bank C ICW2 
Read/Write IR016 Vector Register 
Read/Write IR017 Vector Register 
Read/Write IR018 Vector Register 
Read/Write IR019 Vector Register 
Read/Write IR020 Vector Register 
Read/Write IR021 Vector Register 
Read/Write IR022 Vector Register 
Read/Write IR023 Vector Register 
IAMto C"'nil IJ. 1('1/1/1 n~\.v!l nr n~wq ...... 11 .. .., _ ........ , ••• _ •• 'I __ •• __ • __ ... w 

Read Bank APolI; Interrupt Request oor In-Service 
Status Register 

Write Bank A ICW2, ICW3, ICW4 or OCW1 
Read Bank A Interrupt Mask Register 
Read Bank A ICW2 
Read/Write IROO Vector Register 
Read/Write IR01 Vector Register 
Read/Write IR01.5 Vector Register 
Read/Write IR03 Vector Register 
Read/Wiita IR04 Vector Register 
Reserved 
Reserved 
Read/Write IR07 Vector Register 
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APPENDIX B-Ports Listed by Function (Continued) 

Port Address (HEX) Description 

PROGRAMMABLE INTERVAL TIMER 

40 Read/Write Counter 0 Register 
41 Read/Write Counter 1 Register 
42 Read/Write Counter 2 Register 
43 Write Control Word Register I-Counter 0, 1, 2 
44 Read/Write Counter 3 Register 
47 Write Word Register II-Counter 3 

64 

72 
73 
74 
75 

CPU RESET 
Write CPU Reset Register (Data-1111 XXXOH) 

WAIT STATE GENERATOR 

Read/Write Wait State Register 0 
Read/Write Wait State Register 1 
Read/Write Wait State Register 2 
Read/Write Refresh Wait State Register 

DRAM REFRESH CONTROLLER 

1 C Read/Write Refresh Control Register 

INTERNAL CONTROL AND DIAGNOSTIC PORTS 

61 Write Internal Control Port 
80 Read/Write Internal Diagnostic Port 0 
88 Read/Write Internal Diagnostic Port 1 

.7F 

2A 
3D 
3E 
45 
46 
76 
77 
7D 
7E 
CC 
CD 

RELOCATION REGISTER 

Read/Write Relocation Register 

INTEL RESERVED PORTS 

Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 
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APPENDIX C 
Pin Descriptions 

The 82380 provides all of the signals necessary to 
interface it to an 80386 processor. It has separate 
32-bit address and data buses. it also has a set of 
control signals to support operation as a bus master 
or a bus slave. Several special function signals exist 
on the 82380 for interfacing the system support pe­
ripherals to their respectiv.e system counterparts. 
Following are the definitions of the individual pins of 
the 82380. These brief descriptions are provided as 
a reference. Each signal is further defined within the 
sections which describe the associated 82380 func­
tion. 

A2-A31 I/O ADDRESS BUS 

This is the 32-bit address bus. The addresses are 
doubleword memory and I/O addresses. These are 
three-state signals which are active only during Mas­
ter mode. The address lines should be connected 
directly to the 80386's local bus. 

BEO# I/O BYTE-ENABLE 0 

BEO# active indicates that data bits DO-D7 are be­
ing accessed or are valid. It is connected directly to 
the 80386's BEO#. The byte enable signals are ac­
tive outputs when the 82380 is in tne Master mode. 

61:.1# iiO B·yTE-ENABLE i 

BE1 # active indicates that data bits D8-D15 are 
being accessed or are valid. It is connected directly 
to the 80386's BE1 #. The byte enable signals are 
active only when the 82380 is in the Master mode. 

BE2# I/O BYTE-ENABLE 2 

BE2# active indicates that data bits D15-D23 are 
being accessed or are valid. It is connected directly 
to the 80386's BE2#. The byte enable signals are 
active only when the 82380 is in the Master mode. 

BE3# I/O BYTE-ENABLE 3 

BE3# active indicates that data bits D24-D31 are 
being accessed or are valid. The byte enable signals 
are active only, when the 82380 is in the Master 
mode. This pin should be connected directly to the 
80386's BE3#. This pin is used for factory testing 
and must be low during reset. The 80386 drives . 
BE3 # low during reset. 

DO-D31 I/O DATA BUS 

This is the 32-bit data bus. These pins ait; active 
outputs during interrupt acknowledges, during Slave 
accesses, and when the 82380 is in the Master 
mode. 

CLK2 PROCESSOR CLOCK 

This pin must be connected to CLK2. The 82380 
monitors the phase of this clock in order to remain 
synchronized with the 80386. This clock drives all of 
the internal synchronous circuitry. 

D/C# I/O DATA/CONTROL 

D/C# is used to distinguish between 80386 control 
cycles and DMA or 80386 data access cycles. It is 
active as an output only in the Master mode. 

W/R# liD WRITE/READ 

W fR # is used to distinguish between write and read 
cycles. It is active as an output only in the Master 
mode. 

MIIO# liD MEMORY/IO 

MiiO# is used 10 distinguish betn66ii ffiaffiCi,j and 
10 accesses. It is' active as an output only in the 
Master mode. 

ADS# I/O ADDRESS STATUS 

This signal indicates presence of a valid address on 
the address bus. It is active as output only in the 
Master mode. ADS # is active, during the first T -state 
where addresses and control signals are valid. 

NA# NEXT ADDRESS 

Asserted by a peripheral or memory to begin a pipe­
lined address cycle. This pin is monitored only while ' 
the 82380 is in the Master mode. In the Slave mode, 
pipelining is determined by the current and past 
status of the ADS# and READY# signals. 
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HOLD o HOLD REQUEST 

This is an active-high signal to the 80386 to request 
control of the system bus. When control is granted, 
the 80386 activates the hold acknowledge signal 
(HlDA). 

HlDA HOLD ACKNOWLEDGE 

This input signal tells the DMA controller that the 
80386 has relinquished control of the system bus to 
the DMA controller. 

DREQ (0-3, 5-7) DMA REQUEST 

The DMA Request inputs monitor requests from pe­
ripherals requiring DMA service. Each of the eight 
DMA channels has one DREQ input. These active­
high inputs are internally synchronized and priori­
tized. Upon reset, channel 0 has the highest priority 
and channel 7 the lowest. 

DREQ4/IRQ9# 
QUEST 

DMAIINTERRUPT RE-

This is the DMA request input for channel 4. It is also 
connected to the interrupt controller via interrupt re­
quest 9. This internal connection is available for 
DMA channel 4 only. The interrupt input is active low 
and can be programmed as either edge of level trig­
gered. Either function can be masked by the appro­
priate mask register. Priorities of the DMA channel 
and the interrupt request are not related but follow 
the rules of the individual controllers. 

Note that this pin has a weak internal pull-up. This 
causes' the interrupt request to be inactive, but the 
DMA request will be active if there is no external 
connection made. Most applications will require that 
either one or the other of these functions be used, 
but not both. For this reason, it is advised that DMA 
channel 4 be used for transfers where a software 
request is more appropriate (such as memory-to­
memory transfers). In such an application, DREQ4 
can be masked by software, freeing IRQ9# for other 
purposes. 

EOP# I/O END OF PROCESS 

As an output, this signal indicates that the current 
Requester access is the last access of the currently 
operating DMA channel. It is activated when Termi­
nal Count is reached. As an input, it signals the DMA 
channel to terminate the current buffer and proceed 
to the next buffer, if one is available. This signal may 
be programmed as an asynchronous or synchro­
nousinput. 

EOP# must be connected to a pull-up resistor. This 
will prevent erroneous external requests for termina­
tion of a DMA process. 

EDACK (0-2) 0 ENCODED DMA ACKNOWL­
EDGE 

These signals contain the encoded acknowledge­
ment of a request for DMA service by a peripheral. 
The binary code formed by the three signals indi­
cates which channel is active. Channel 4 does not 
have a DMA acknowledge. The inactive state is indi­
cated by the code 100. During a Requester access, 
EDACK presents the code for the active DMA chan­
nel. During a Target access, EDACK presents the 
inactive code 100. 

IRQ (11-23)# INTERRUPT REQUEST 

These are active low interrupt request inputs. The 
inputs can be programmed to be edge or level sensi­
tive. Interrupt priorities are programmable as either 
fixed or rotating. These inputs have weak internal 

. pull-up resistors. Unused interrupt request inputs 
should be tied inactive externally. 

INT o INTERRUPT OUT 

INT signals the 80386 that an interrupt request is 
pending. 

ClKIN TIMER CLOCK INPUT 

This is the clock input signal to all of the 82380's 
programmable timers. It is independent of the sys­
tem clock input (ClK2). 

TOUT1/REF# 0 TIMER 1 OUTPUT/REFRESH 

This pin is software programmable as either the di­
rect output of Timer 1, or as the indicator of a refresh 
cycle in progress. As REF#, this signal is active dur­
ing the memory read cycle which occurs during re­
fresh. 

TOUT2#/lRQ3# I/O TIMER 2 OUTPUT/IN­
TERRUPT REQUEST3 

This is the inverted output of Timer 2. It is also con­
nected directly to interrupt request 3. External hard­
ware can use IRQ3# if Timer 2 is programmed as 
OUT = 0 (TOUTU = 1) 

TOUT3# o TIMER 3 OUTPUT 

This is the inverted output of Timer 3. 
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READY# READY INPUT 

This active-low input indicates to the 82380 that the 
current bus cycle is complete. READY is sampled by 
the 82380 both while it is in the Master mode, and 
while it is in the Slave mode. 

WSC (0-1) WAIT STATE CONTROL 

WSCO AND WSC1 are inputs used by the Wait-State 
Generator to determine the number of wait states 
ronl.iran h" tho ,...llrrontl" O""""OC'C"CU .. .f mornn.", nr 1/("\ ..... '1 ............. "';1 .......................... , ""' ............ ..., ... 710.' ............ ,'v'l VI .,_. 

The binary code on these ins, combined with the MI 
10# signal, selects an internal register in which a 
wait-state count is stored. The combination WSC = 
11 disables the wait-state generator. 

READYO# o READY OUTPUT 

This is the synchronized output of the wait-state 
generator. It is also valid during 80386 accesses to 
the 82380 in the Slave Mode when the 82380 re­
quires wait states. READYO# should feed directly 
the 80386's READY # input. 

RESET RESET 

This synchronous input serves to initialize the state 
of the 82380 and provides basis for the CPURST 
output. RESET must be held active for at least 15 
CLK2 cycles in order to guarantee the state of the 
82380. After Reset, the 82380 is in the Slave mode 
with all outputs except timers and interrupts in their 
inactive states. The state of the timers and interrupt 
controller must be initialized through software. This 
input must be active for the entire time required by 
+hn an'lDt::: fn 1'111 ........... + ..... ,.. ..... ,.. ... ,.. .... ,.. ....... + 
U'V .... '-'\,1 ........ 'v ~ .... t;"(,4II .. vv ~IVtJ .... 1 1'I;io~u ... 

CPURST o CPU RESET 

CPURST provides a synchronized reset signal for 
the CPU. It is activated in the event of a software 
reset command, an 80386 shut-down detect, or a 
hardware reset via the RESET pin. The 82380 holds 
CPURST active for 62 clocks in response to either a 
software reset command or a shut-down detection. 
Otherwise CPURST reflects the RESET input. 

Vee +5V input power 
Vss Ground 

Table C-1. Wait-State Select Inputs 

Port Wait-State Registers Select Inputs 
Address 07 04 03 DO WSC1 WSCO 

72H Memory 0 1100 0 0 
73H Memory 1 1101 0 1 
74H Memory 2 1/02 1 1 

DISABLED 1 1 

MIIO# 1 0 
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APPENDIX D 
82380 System Notes 

82380 TIMER UNIT SYSTEM' NOTES 

The 82380 DMA controller with Integrated System 
Peripherals is functionally inconsistent with the data 
sheet. This document explains the behavior of the 
82380 Timer Unit and outlines subsequent limita­
tions of the timer unit. This document also provides 
recommended workarounds. 

Overview 

There are two areas in which the 82380 timer unit 
exhibits non-specified behavior: 

1. Mode 0 operation 

2. Write Cycles to the 82380 Timer Unit 

1.0 MODE 0 OPERATION 

1.1 Description 

For Mode 0 operation, the 82380 timer is specified 
as follows in the Intel 1989 Microprocessor and Pe­
ripheral Handbook Vol. I Page 4-240: 

"1. Writing the first byte disables counting, OUT 
is set LOW immediately ... " 

Due to mode, 0 errata, this should read as follows: 

"1. Writing the first byte sets OUT LOW immedi­
ately. If the counter has not yet expired, writing . 
the first byte also disables counting. However, if 
the counter has expired, writing the first count 
does not disable counting, although OUT still 
behaves correctly (set LOW immediately)." 

1.2 Consequences 

Software errors will occur if algorithms depend on 
the 82380 timer unit to stop counting after writing 
the first byte. Thus, software that is based on the 
8254 core will not function reliably on'the 82380 tim­
er unit. , 

Note, however, that the external signal of the timer 
behaves correctly. 

1.3 Solution 

As long as software algorithms are aware of this be­
havior, there should be no problems, as the external 
Signal behaves correctly. 

1.4 Long Term Plans 

Currently, Intel has no plans to fix this behl;lvior of 
the 82380 timer unit. 

2.0 WRITE CYCLES TO THE 82380 
TIMER UNIT 

This errata applies only to SLAVE WRITE cycles to 
the 82380 timer unit. During these cycles, the data 
being written into the 82380 timer unit may be cor­
rupted if CLKIN is not inhibited during a certain "win­
dow" of the write cycle. 

2.1 Description 

Please refer to Figure 1. 

During write cycles to the 82380 timer unit, the 
82380 translates the 386DX interface signals such 
as ADS#, W/R#, MIIO#, and D/C#. into s.~ve~al 
iiiieiiial signals that contfoi the uJJer"aburl oi ule In .. 
ternal sub-blocks (e.g., Timer Unit). 

The 82380 timer unit is controlled by such internal 
signals. These internal signals are generated and 
sampled with respect to two separate clock signals: 
CLK2 (the system clock) and CLKIN (the 82380 tim­
er unit clock). 

Since the ClKIN and CLK2 clock signals are used 
internally to generate control signals for the inter­
face to the timer unit, some timing parameters must 

'be met in order for the interface 'logic to function 
properly. 

Those timing parameters are met by inhibiting the 
CLKIN signal for a specific window during Write Cy­
cles to the 82380 Timer Unit. 

'The CLKIN Signal must be inhibited using external 
logic, as the GATE function of the 82380 timer unit is 
not guaranteed to totally inhibit CLKIN. 
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2.2 Consequences 

This ClKIN inhibit circuitry guarantees proper write 
cycles to the 82380 timer unit. 

Without this solution, write cycles to the 82380 timer 
unit could place corrupted data into the timer unit 
registers. This, in turn, could yield inaccurate results 
and improper timer operation. 

The proposed solution would involve a hardware 
modification for existing systems. 

2.3 Solution 

A timing waveform (Figure 2) shows the specific win­
dow during which ClKIN must be inhibited. Please 
note that ClKIN must only be inhibited during the 
window shown in Figure 2. This window is defined by 
two AC timing parameters: 

fa = 9 ns 

module Timer_82380_Fix 

The proposed solution provides a certain amount of 
system "guard band" to make sure that this window 
is avoided. 

PAL equations for a suggested workaround are also 
included. Please refer to the comments in the PAL 
codes for stated assumptions of this particular work­
around. A state diagram (Figure 3) is provided to 
help clarify how this PAL is designed .. 

Figure 4 shows how this PAL would fit into a system 
workaround. In order to show the effect of this work­
around on the ClKIN signal, Figure 5 shows how 
ClKIN is inhibited. Note that you must still meet the 
ClKIN AC timing parameters (e.g., 47 (min), 48 
(min» in order for the timer unit to function properly. 

Please note that this workaround has not been test­
ed. It is provided as a suggested solution. Actual 
solutions will vary from system to system. 

2.4 Long Term Plans 

Intel has no plans to fix this behavior in the 82380 
timer unit. 

flag '-r2',' -q2' , '-fl', '-t4', '-wl,3,6,5,4, 16, 7 ,12,17,18,15,14' 
title '82380 Timer Unit CLKIN " 

INHIBIT, signal PAL Solution' 
Timer_Unit_Fix device 'P16R6'; 

"This PAL inhibits the eLKIN Signal (that comes from an oscillator) 
"during Slave Writes ·to the 82380 Timer unit. 

"ASSUMPTION: 

"NOTE: 

This PAL assumes that an external system address 
decoder provides a Signal to indicate that an 82380 
Timer Unit access is taking place. This input 
Signal is called TMR in this PAL. This PAL also 
assumes that this TMR Signal occurs during a 
specific T-State. Please see Figure 3 of this 
document to see when this Signal is expected to 
be active by this PAL. 

This PAL does not support pipelined 82380 SLAVE 
cycles. 

"(c) Intel Corporation 1989. This PAL is provided as a proposed 
"method of solving a certain 82380 Timer Unit problem. This PAL 
"has not been tested or validated. Please validate this solution 
"for your system and application. 
" 
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"Input Pins" 

CLK2 pin 
RESET pin 
TMR pin 

!RDY pin 
!ADS pin' 

CLK pin 
W_R pin 
ncl pin 
nc3 pin 
GNDa pin 
GNDb pin 
CLKIN_IN pin 

"Output Pins· 

Q_O pin 

CLKIN_OUT pin 
INHIBIT pin 
SO pin 
Sl pin 

"Declarations" 

Valid_ADS = ADS &: CLK 

1; 
2; 
3; 

4; 
5 
6 
7 
8 
9 

10 
11 
12 

18 ; 

17; 
16 ; 
15 ; 
14; 

82380 

"System Clock 
"Microprocessor RESET signal 
"Input from Address Decoder, indicating 
"an access to the timer unit of the 
"82380. 
"End of Cycle indicator 
"Address and control strobe 
·PHI2 clock 
·Wl'itl'!/Read Signal" 
"No Connect 0" 
"No Connect I" 
·Tied to ground, documentation only 
"Output enable, documentation only 
"Input-CLKIN directly from oscillator 

"Internal signal only, fed back to 
"PAL logic" 
"CLKIN signal fed to 82380 .Timer Unit 
"CLKIN Inhibit signal 
"Unused State Indicator Pin 
"Unused State Indicator Pin 

Valid_RDY = RDY &: CLK 

"ADS# sampled in PHIl of 386DX T-State 

"RDY# sampled in PHIl of 386DX T-State 

Timer_Acc = TMR &: CLK "Timer Unit Access, as provided by 
"external Address' Decoder n 

State_Diagram [INHIBIT, 51, SO] 

state 000: 

state 001: 

state 010: 

state 110: 

if RESET then 000 

else 000; 

if RESET then 000 
else if Timer_Acc then 010 
else if !Timer_Acc then 000 
else 001; 

if RESET then 000 
else if CLK then 110 
else 010; 

if RESET then 000 
else if eLK then III 
else 110; 
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state 111: 

state 011: 

state 100: 

state 101: 

EQUATIONS 

if RESET then 000 
else if CLK then 011 
else 111; 

if RESET then 000 

82380 

else if Valid_RDY then 000 
else 011; 

if RESET then 000 
else 000; 

if RESET then 000 
else 000; 

Q_O := CLKIN_IN ; "Latched incoming clock. This signal is used 
"internally to ,feed into the MUX-ing logic" 

CLKIN_OUT := (INHIBIT Be CLKIN_OUT Be !RESET) 
+( !INHIB.IT Be Q_O Be !RESET); 

"Equation,for CLKIN_OUT. This 
"feeds directly,to the 82380 Timer Unit." 

END 

Page 1 

ABEL (tm) 3.10 - Document Generator 3~-June 89 03:17 
PM 
82380 Timer Unit CLKIN 

INHIBIT signal PAL Solution 
Equations for Module Timer_82380_Fix 

- Reduced Equations: 

!INHIBIT := (!CLK Be !INHIBIT # CLK Be SO # RESET # !Sl); 

!Sl := (RESET 
# INHIBIT Be !Sl 
# CLK Be !INHIBIT Be !-RDY Be SO Be Sl 
# !CLK Be !Sl 
# !Sl Be !TMR 
# ISO Be !Sl); 

ISO ._ (RESET 
# INHIBIT Be !Sl 
# CLK Be !INHIBIT Be ! - RDY Be Sl 
# !CLK Be ISO 
# !INHIBIT Be ISO Be Sl 

, # SO Be !Sl 
# !Sl Be !W_R 
# -ADS Be !Sl); 

4-745 



82380 

!CLKIN_OUT := (RESET # !CLKIN_OUT & INHIBIT # !INHIBIT & !Q_O); 

Page 2 

ABEL(tm) 3.10 - Document Generator 30-June 89 03:17 
PM 
82380 Timer Unit CLKIN 

INHIBIT signal PAL Solution 

ClK2 

RESET 

TIIlR 

ROY 

ADS 

ClK 

W_R 

ncl 

nc3 

GNOa 

end of module Timer_82380_Fix 

P16R6 

.---+l~11I1 

Q_O 

ClKIN_OUT 

INHIBIT 

SO 

SI 

cs ViR Rii and 

290128-B7 

82380 

I 

I ClK2 

ADS 

W/R 
M7iO 

0 x ather Internal signals 
ID 
c: 
'" 

ROY .:::::. .., .. , '--

ClKIN ---- ..... TIIIlER 

UNIT 

00-07· 
... .. ... 1 
... ... ... Internal Data Bus 

290128-B8 

Figure 1. Translation of 386DX Signals to Intern!ll82380 Timer Unit Signals 
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[INHIBIT, S1, SO] 

(INHIBIT) 

Figure 3. State Diagram for Inhibit Signal 

NOTE: 

I CLK2/ClK I 
CIRCUIT 

ClK2 ClK 

386DX™ 
1 

ClK2 
6 

RESET 
2 

ROY 
4 

ADS 
5 

WJR 7 

r-4 
ADDR DECODER 

TMR 
r---

TIMER-PAL 
16R8 

ClK2 
ClK 
RESET 
ROY 
ADS 

WJR 
TMR ClKIN 

This solution does not support pipelined 82380 SLAVE Cycles. 

17 

"""CLKiN 

., 

290128-Cl 

L 82380 

ClK2 

ClKIN 

F,lgure 4. System with 82380 Timer Unit "Inhibit", Circuitry 
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Figure 5(a)o Inhibited ClKIN in an 82380 Timer Unit and ClKIN Minimum HIGH Time 

4-749 



intJ 82380 

""' ""' Ii "0 "'C 

.!: 
Q) 

0) .~ 
·c Q) 

0 "'C 
'-' '-' 

z z 
52 52 
...J ...J 
() () 

. Figure 5(b). Inhibited ClKIN In an 82380 Timer Unit and ClKIN Minimum lOW Time 
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82380 DATA SHEET REVISION HISTORY 

Changes in this revision: 

Figure 4-1: Added details about IRQ3# "and IRQ2#/IRQ1.5#. 

Section 5.2.1: Added note referring reader to Appendix D (System Notes). 

Table 13-2: Changed VIHC MIN to Vcc - 0.8V. 

Figure 13-1: Changed signal names to reflect accurate drive levels and measurement points for those sig­
nals. 

Appendix D: Added this appendix to explain the restrictions on the ClKIN signal of the 82380 Timer Unit. 
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376™ HIGH PERFORMANCE 
32-BIT EMBEDDED PROCESSOR 

• Full 32-Bit Internal Architecture 
-8-,16-, 32-Bit Data Types 
- 8 General Purpose 32-Bit Registers 
- Extensive 32-Blt Instruction Set 

• High Performance .16-Bit Data Bus 
-16 MHz CPU Clock 
- Two-Clock Bus Cycles 
- i6 NibytesiSec Bus Bandwidth 

• 16 Mbyte Physical Memory Size 

• High Speed Numerics Support with the 
80387SX 

• Low System Cost with the 82370 
Integrated System Peripheral 

• On-Chip Debugging Support Including 
Break Point Registers 

INTRODUCTION 

. • Complete Intel Development Support 
- C, PL/M, Assembler 
-ICETM-376, In-Circuit Emulator 
- iRMKTM Real Time Kernel 
- iSDMTM. Debug Monitor 
- DOS Based Debug· 

• Extensive Third-Party Support: 
- Languages: C, pascai, FORTRAN, 

BASIC and ADA * 
-Hosts: VMS·, UNIX*, MS-DOS·, and 
. Others 
- Real-Time Kernels 

• High Speed CHMOS Technology 

• Available in 100 Pin Plastic Quad Flat­
Pack Package and 88-Pin Pin Grid Array. 

(See Packaging Outlines and Dimensions #231;369) 

The 376 32-bit embedded processor is designed for high performance embedded systems. It provides the 
. performance benefits of a highly pipelined 32-bit internal architecture with the low system cost associated with 

16-bit hardware systems. The 80376 is based on the 80386 and offers a high degree of compatibility with the 
80386. All 80386 32-bit programs not dependent on paging can be executed on the 80376 and all 80376 
programs can be executed on the 80386. All 32-bit 80386 language translators can be used for software 
development. With proper support software, any 80386-based computer can be used to develop and test 
80376 programs. In addition, any 80386-based PC-AT* compatible computer can be used for hardware proto­
typing for designs based on the 80376 and its companion product the 82370. 

I 

.... 

Execution Unit 

1 32-BIt Rogbtors I 

I 64-BIt Barrol I Shifter 

Multiply/DIvide 

ALU 

I : 
Decoder 

'- Instruction 
Queue 

...... 

~ 

MMU 

Protection 

Segment 
Registers 

Segment 
TransIstor 

I I Bus Interlace 
32-Blt Data Path Unit 

I I 
Prelotch 
Queue 

Pref,tchar 

Prefetch Unit 

80376 Mlcroarchitecture 

Intel, iRMK, ICE, 376, 386, Intel386, iSDM, Intel1376 are trademarks of Intel Corp. 
'UNIX is a registered trademark of AT&T. 
ADA is a registered trademark of the U.S. Government, Ada Joint Program Office. 
PC-AT is a regit:tered trademark of IBM Corporation. 
VMS is a trademark of Digital Equipment Corporation. 
MS-DOS is.a trademark of MicroSoft Corporation. 
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80376 

1.0 PIN DESCRIPTION 

Address 

Al 18 
A2 51 
As 52 
A4 53 
As 54 
Ae 55 
A7 56 
As 58 
Ag 59 
Al0 60 
A11 61 
A12 62 
A13 64 
A14 65 
A1S 66 
AlB 70 
A17 72 
A1S 73 
A19 74 
A20 75 
A2l 76 
A22 79 
A23 80 

DO 
VSS 

HLDA 
HOLD 

Vss 
NAN 

READYN 
vee 
vee 
Vee 
Vss 
Vss 
vss 
Vss 

CLK2 
ADSN 
SLEN 

AI 
SHE# 

HC 
Vee 
Vss 

M/ID# 
D/CN 
W/R# 

coo 0 o ..... C'! tnOtf)"It'U')tt)C'I wen-_N VlO~""'lIllD"" ucocn ___ cnU ___ NN cncnN 
CC»CCCCC>CCCCC»COO«»< 

Figure 1.1.80376 100·Pin Quad Flat·Pack Pin Out (Top View) 

Table 1.1. 100-Pin Plastic Quad Flat-Pack Pin Assignments 

Data Control N/C 

DO 1 AOS# 16 20 
01 100 BHE# 19 27 
02 99 BLE# 17 28 
03 96 BUSY# 34 29 
04 95 CLK2 15 30 
Os 94 O/C# 24 31 
De 93 ERROR# 36 43 
07 92 HLDA 3 44 
Os 90 HOLD 4 45 
Og 89 INTR 40 46 
010 88 LOCK# 26 47 
011 87 M/IO# 23 
012 86 NA# 6 
013 83 NMI 38 
014 82 PEREQ 37 
015 81 REAOY# 7 

RESET 33 -
W/R# 25 
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A20 
AI9 
AlB 
AI7 
Vee 
AI6 
Vee 
Vss 
Vss 
AIS 
AI4 
AI3 
Vss 
AI2 
All 
AID 
A9 
AB 
Vee 
A7 
A6 
AS 
A4 
A3 
A2 

240182-52 

Vee Vss 
8 2 
9 5 
10 11 
21 ' 12 
32 13 
39 14 
42 22 
48 35 
57 41 
69 49 
71 50 
84 63 
91 67 
97 68 

77 
78 
85 
98 
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Top View Bottom View. 
(Component Side) (Pin Side) 

I 0 0 0 0 0 0 0 0 0 0 0 0 0 I 01 1'0 0 0 0 0 0 0, 0 0 0 0 0 0 01 
Vee Vss HIe AI ADS, READY, HOLD 00 02 Vss Vee V" Vee Vee V" Vee V" ., .. HOLD READYI ADS, AI HIe V" Vee 

2 0 0 0 0 0 0 0 '0 0 0 0 0 0 2 02 0 0 0 0 0 0 0 0 0 0 0 0 0 02 

V" Vee 1.4/10, SHE, BlE, coo HAl HLOA ., D3 Vss Vee V" Vss Vee V" '. '1 HLDA HAl COO BlE, BHEIF 11/10, Vee V" 
3 0 0 0 0 3 03 0 0 0 0 03 

Vee ole, .. vee vee 0, 'Itl vee , 0 0 0 0 , o. ,0 0 0 0 
Yss W/RI os .5 ., 0, w/RI Vss · 0 0 0 0 • 0 0 0 0 o. 
Vee LOCK, 07 •• .. .., LOCK, Yee 

v v v v -- --
vss RtsET 09 .,0 0" " RESET Vss 

7 0 0 0 0 7 07 0 0 0 0 07 

PEREO BUSYI .11 '12 0" '" BUSY, PEREa 

• 0 0 0 0 • o. 0 0 0 0 O. 

ERROR, NMI .13 0" 0" 0" Nt.l1 ERROR, 

• 0 0 0 0 • o. 0 0 0 0 o. 
V" INTR .IS "" A" 0" IHTR V" 

10 0 0 0 0 10 0 0 0 0 10 

Vee A2 A2I A22 A" A" A, Vee 

" 0 0 0 0 II II 0 0 0 0 
Vss .... Vss vee vee v" A, V" 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 12 12 0 0 0 0 0 0 0 0 0 0 0 0 0 12 

Vss A4 AS A7 A, AIO m AIS AI7 AlB A20 Vee V" V" Vee A" All A" A" A" A" .. A7 A. A, V" 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 13 0 0 0 0 0 0 0 0 0 0 0 0 0 13 

Vee V" Vee •• A. All AI2 A" AIO AI9 Vee V" Vee Vee V" Vee A" All A" A" A" .. .. Vee Vss Vee 

240182-49 240182-2 

Figure 1.2. 80376 88-Pln Grid Array Pin Out 

Table 1.2. 88-Pln Grid Array Pin Assignments 

Pin Label Pin Label Pin Label Pin Label 
2H CLK2 120 A1S 2L MIIO# 11A Vee 
98 015 12E A17 5M LOCK # 13A Vee 
SA 014 13E A16 1J AOS# 13C Vee 
88 013 12F A15 1H REAOY# 13L Vee 
7A D12 13F A14 2G NA# iN Vee 
78 011 12G A13 1G HOLO 13N Vee 
6A 13G 2F HLOA 118 Vss 
OD US 1;'11 1\11 (I'll t"t:Ht:y 0<:'-' vss 
5A Os 12H Al0 7M 8USY# 10 Vss 
58 07 13J As 8N ERROR # 1M Vss 
48 06 12J As 9M INTR 4N Vss 
4A 05 12K A7 8M NMI 9N Vss 
38 04 13K A6 6M RESET 11N Vss 
20 03 12L A5 28 Vee 2A Vss 
iE 02 12M ~ 128 Vee 12A Vss 
2E 01 11M A3 1C Vee 18 Vss 
iF 00 10M A2 2M Vee 138 Vss 
9A A23 1K Al 3N Vee 13M Vss 
10A A22 2J 8LE# 5N Vee 2N Vss 
108 A21 2K BHE# iON Vee 6N Vss 
12C A20 4M W/R# 1A Vee 12N Vss 
130 A1S 3M O/C# 3A Vee 1L N/C 
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The following table lists a brief description of each pin on the 80376. The following definitions are used in 
these descriptions: 

# The named signal is active LOW. 
I Input signal. 
o Output signal. 
1/0 Input and Output signal. 

No electrical connection. 

Symbol Type Name and Function 

CLK2 I CLK2 provides the fundamental timing for the 80376. For additional 
information see Clock in Section 4.1. 

RESET I RESET suspends any operation in progress and places the 80376 in a 
known reset state. See Interrupt Signals in Section 4.1 for additional 
information. 

015-0 0 1/0 DATA BUS inputs data during memory, 1/0 and interrupt acknowledge 
read cycles and outputs data during memory and I/O write cycles. See 
Data Bus in Section 4.1 for additional information. 

A23-A1 0 ADDRESS BUS outputs physical memory or port I/O addresses. See 
Address Bus in Section 4.1 for additional information. 

W/R# 0 WRITE/READ is a bus cycle definition pin that distinguishes write 
cycles from read cycles. See Bus Cycle Definition Signals in Section 
4.1 for additional information. 

O/C# 0 DATA/CONTROL is a bus cycle definition pin that distinguishes data 
cycles, either memory or 1/0, from control cycles which are: interrupt 
acknowledge, halt, and instruction fetching. See Bus Cycle Definition 
Signals in Section 4.1 for additional information. 

MIIO# 0 MEMORY I/O is a bus cycle definition pin that distinguishes memory 
cycles from input! output cycles. See Bus Cycle Definition Signals in 
Section 4.1 for additional information. 

LOCK # 0 BUS LOCK is a bus cycle definition pin that indicates that other 
system bus masters are denied access to the system bus while it is 
active. See Bus Cycle Definition Signals in Section 4.1 for additional 
information. 

AOS# 0 ADDRESS STATUS indicates that a valid bus cycle definition and 
address (W/R#, O/C#, MIIO#, BHE#, BLE# and A23-A1) are being 
driven at the 80376 pins. See Bus Control Signals in Section 4.1 for 
additional information: 

NA# I NEXT ADDRESS is used to request address pipelining. See Bus 
Control Signals in Section 4.1 for additional information. 

REAOY# I BUS READY terminates the bus cycle. See Bus Control Signals in 
Section 4.1 for additional information. 

BHE#, BLE# 0 BYTE ENABLES indicate V'!hich data bytes of the data bus take part in 
a bus cycle. See Address Bus in Section 4.1 for additional 
information. 

HOLD I BUS HOLD REQUEST input allows another bl,ls master to request 
control of the local bus. See Bus Arbitration Signals in Section 4.1 
for additional information. 
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Symbol Type Name and Function 
HLDA 0 BUS HOLD ACKNOWLEDGE output indicates that the 80376 has 

surrendered control of its local bus to another bus master. See Bus 
Arbitration Signals in Section 4.1 for additional information. 

INTR I INTERRUPT REQUEST is a maskable input that signals the 80376 to 
suspend execution of the current program and execute an interrupt 
acknowledge function. See Interrupt Signals in Section 4.1 for 
additional information. 

NMI I' NON-MASKABLE INTERRUPT REQUEST is a non-maskable input 
that signals the 80376 to suspend execution of the current program 
and execute an interwpt acknowledge function. See Interrupt Signals 
in Section 4.1 for additional information. 

BUSY# I BUSY signals a busy condition from a processor extension. See 
Coprocessor Interface Signals in Section 4.1 for additional 
information. . 

ERROR# I ERROR signals an error condition from a processor extension. See 
Coprocessor Interface Signals in Section 4.1 for additional 
information. 

PEREQ I PROCESSOR EXTENSION REQUEST indicates that the processor 
extension has data to be transferred by the 80376. See Coprocessor 
Interface Signals in Section 4.1 for additional information. 

N/C - NO CONNECT should always remain unconnected. Connection of a 
N/C pin may cause the processor to malfunction or be incompatible 
with future steppings of the 80376. ' 

Vee I SYSTEM POWER provides the + 5V nominal D.C. supply input. 

Vss I SYSTEM GROUND provides OV connection from which all inputs and 
outputs are measured. 

2.0 ARCHITECTURE OVERVIEW sists of the execution unit and instruction unit. The 
execution unit contains the eight 32-bit general reg­
isters which are used for both address calculation 
and data operations and a 64-bit barrel shifter used 
to speed shift, rotate, multiply, and divide operations. 
The instruction unit decodes the instruction opcodes 
and stores them in the decoded instruction queue 
for immediate use by the execution unit. 

The 80376 supports the protection mechan.isms 
needed by sophisticated multitasking embedded 
systems and real-time operating systems. The use 
of these' protection mechanisms is completely op­
tional .. For embedded applications not needing pro­
tection, the 80376 can easilv be configured to pro­
vide a 16 Mbyte physical address space. 

Instruction pipelining, high bus bandwidth, and a 
very high performance ALU ensure short average 
instruction execution times and high system 
throughput. The 80376 is capable of execution at 
sustained rates of 2.5-3.0 million instructions per 
second. 

The 80376 offers on-chip testability and debugging 
features. Four break point registers allow conditional 
or unconditional break point traps on code execution 
or data accesses for powerful debugging of even 
ROM based systems. Other testability features in­
clude self-test and tri-stating of output buffers during 
RESET. 

The Intel 80376 embedded processor consists of a 
central processing unit, a memory management unit 
and a bus interface. The central processing unit con-

The Memory Management Unit (MMU) consists of a 
segmentation and protection unit. Segmentation ai­
lows the managing of the logical address space by 
providing an extra addressing component, one that 
allows easy code and data relocatability, and effi­
cient sharing. 

The protection unit provides four levels of protection 
for isolating and protecting applications and the op­
erating system from each other. The hardware en­
forced protection allows the design of systems with 
a high degree of integrity and simplifies debugging. 

Finally, to facilitate high performance system hard­
ware designs, the 80376 bus interface offers ad­
dress pipelining and direct Byte Enable signals for 
each byte of the data bus. 
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2.1 Register Set 

The 80376 has twenty-nine registers as shown in Figure 2.1. These registers are grouped into the following six 
categories: 
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Figure 2.1. 80376 Base Architecture. Registers 
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General Registers: The eight 32-bit general pur­
pose registers are used to contain arithmetic and 
logical operands. Four of these (EAX. EBX. ECX and 
EDX) can be used either in their entirety as 32-bit 
registers. as 16-bit registers. or split into pairs of 
separate 8-bit registers. 

Segment Registers: Six 16-bit special purpose reg­
isters select. at any given time. the segments of 
memory that are immediately addressable for code. 
stack. and data. 

Flags and Instruction Pointer Registers: These 
two 32-bit special purpose registers in Figure 2.1 
record or control certain aspects of the 80376 proc­
essor state. The EFLAGS register includes status 
and control bits that are used to reflect the outcome 
of many instructions and modify the semantics of 
some instructions. The Instruction Pointer. called 
EIP. is 32 bits wide. The Instruction Pointer controls 
instruction fetching and the processor automatically 
,increments it after executing an instruction. 

Control Register: The 32-bit control register. CRO. 
is used to control Coprocessor Emulation. 

SPECIAL FIELDS: 

System Address Registers: These four special 
registers reference the tables or segments support­
ed by the 80376/80386 protection model. These ta­
bles or segments are: 

GDTR (Global Descriptor Table Register). 
IDTR (Interrupt Descriptor Table Register). 
LDTR (Local Descriptor Table Register). 
TR'(Task State Segment Register). 

Debug Registers: The six programmer accessible 
debug ragistsrs provide on-chip support for debug­
ging. The use of the debug registers is described in 

, Section 2.11 Debugging Support. 

EFLAGS REGISTER 

The flag Register is a 32-bit register named 
EFLAGS. The defined bits and bit fields within 
EFLAGS. shown in Figure 2.2. control certain opera­
tions and indicate the status of the 80376 processor. 
The function of the flag bits is given in Table 2.1. 

STATUS FLAGS: 
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I/O PRIVILEGE LEVEL ---------.., 
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r---- PARITY 
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I I I I I L...--I - TRAP 
• INTERRUPT 

....... -----DIRECTION 

CONTROL FLAGS 

L...------------RESUME 
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Figure 2.2. Status and Control Register Bit Functions 
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Table 2.1. Flag Definitions 

Bit Position Name Function 
0 CF Carry Flag-Set on high-order bit carry or borrow; cleared otherwise. 
2 PF Parity Flag-Set if low-order 8 bits of 'result contain an even number 

of 1-bits; cleared otherwise. 
4 AF Auxiliary Carry Flag-Set on carry from or borrow to the low order 

four bits of AL; cleared otherwise. 
6 ZF Zero Flag-Set if result is zero; cleared otherwise. 
7 SF Sign Flag-Set equal to high-order bit of result (0 if positive, 1 if 

negative). 
8 TF Single Step Flag-Once set, a single step interrupt occurs after the 

next instruction executes. TF is cleared by the single step interrupt. 
9 IF Interrupt-Enable Flag-When set, external interrupts signaled on the 

INTR pin will cause the CPU to transfer control to an interrupt vector 
specified location. 

10 OF Direction Flag-Causes string instructions to auto-increment (default) 
the appropriate index registers when cleared. Setting OF causes auto-
decrement. 

11 OF Overflow Flag-Set if the operation resulted in a carry/borrow into 
the sign bit (high-order bit) of the result but did not result in a 
carry/borrow out of the high-order bit or vice-versa. 

12,13 10PL 1/0 Privilege Level-Indicates the maximum CPL permitted to 
execute I/O instructions without generating an exception 13 fault or 
consulting the I/O permission bit map. It also indicates the maximum 
CPL value allowing alteration of the IF bit. 

14 NT Nested Task-Indicates that the execution of the current task is 
nested within another task (see Task Switching). 

16 RF Resume Flag-Used in conjunction with debug register breakpoints. It 
is checked at instruction boundaries before breakpoint processing. If 
set, any debug fault is ignored on the next instruction. It is reset at the 
successful completi,on of any instruction except IRET, POPF, and 
those instructions causing task switches. 

CONTROL REGISTER 

The 80376 has a 32-bit control register called CRO that is used to control coprocessor emulation. This register 
is shown in Figures, 2.1 and 2.2. The defined CRO bits are described in Table 2.2. Bits 0, 4 and 31 of CRO 
have fixed values in the 80376. These values cannot be changed. Programs that load CRO should always load 
bits 0, 4 and 31 with values previously there to be compatible with the 80386. 

Table 2.2. CRD Definitions 

Bit Position Name Function 
1 MP Monitor Coprocessor Extension-Allows WAIT instructions to cause 

a processor extension not present exception (number 7). 
2 EM Emulate Processor Extension-When set, this bit causes a 

processor extension not present exception (number 7) on ESC 
instructions to allow processor extension emulation. 

3 TS Task Switched-When set, this bit indicates the next instruction using 
a processor extension will cause exception 7, allowing software to test 
whether the current processor extension context belongs to the 
current task (see Task Switching). 
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2.2 Instruction Set 

The instruction set is divided into nine categories of 
operations: 

Data Transfer 
Arithmetic 
Shift/Rotate 
String _ Manipulation 
Bit Manipulation 
Control Transfer 
High Levei Language Support 
Operating System Support 
Processor Control 

These 80376 processor instructions are listed in Ta­
ble 8.1 -80376 Instruction Set and Clock Count 
Summary. 

All 80376 processor instructions operate on either 0, 
1, 2 or 3 operands; an operand resides in a register, 
in the in$truction itself, or in memory. Most zero op­
erand instructions (e.g. CLI, STI) take only one byte. 
One operand instructions generally are two bytes 
long. The average instruction is 3.2 bytes long. 
Since the 80376 has a 16-byte prefetch instruction 
queue an average of 5 instructions can be pre­
fetched. The use of two operands permits the follow­
ing types of common instructions: 

Register to Register 
Memory to Register 
Immediate to Register 
Memory to Memory 
Register to Memory 
Immediate to Memory 

The'op6~aiids aie e;!hcr 8"" 15- or 32-bit tong. 

2.3 Memory Organization 

Memory on the 80376 is divided into 8-bit quantities 
(bytes), 16-bit quantities (words), and 32-bit quanti­
ties (dwords). Words are stored in two consecutive 
bytes in memory with the low-order byte at the low­
est address. Dwords are stored in four consecutive 
bytes in memory with the low-order byte at the low­
est address. The address of a word or Dword is the 
byte address of the low-order byte. For maximum 
performance word and dword values should be at 
even physica.l addresses, 

In addition to these basic data types the 80376 proc­
essor supports segments. Memory can be divided 
up into one or more variable length segments, which 
can be shared between programs. 

ADDRESS SPACES 

The 80376 has three types of address spaces: 
logical. linear, and physical. A logical address 
(also known as a virtual address) consists of a se­
lector and an offset. A selector is the contents of a 
segment register. An offset is formed by summing all 
of the addressing components (BASE, INDEX, and 
DISPLACEMENT), discussed in Section 2.4 
Addressing Modes. into an effective address. 

Every selector has a logical base address asSociat­
ed with it that can be up to 32 bits in length. This 32-
bit logical base address is added to either a 32-bit 
offset address or a 16-bit offset address (by using 
the address length prefix )to form a final 32-bit 
linear address. This final linear address is then trun­
cated so that only the lower 24 bits of this address 
are used to address the 16 Mbytes physical memory 
address space. ih€t iuyl\iii; ~iise addi6ss is storsd 
in one of two operating system tables (i.e. the Local 
Descriptor Table or Global Descriptor Tabiej. 

Figure 2.3 shows the relationship between the vari­
ous address spaces. 
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EFFECTIVE ADDRESS CALCULATION 
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Figure 2.3. Address Translation 

SEGMENT REGISTER USAGE 

The main data structure used to organize memory is 
the segment. On the 80376, segments are variable 
sized blocks of linear addresses which have 'certain 
attributes associated with them. There are two main 
types of segments, code and data. The simplest use 
of segments is to have one code and data segment. 
Each segment is 16 Mbytes in size overlapping each 
other. This allows code and data to be directly ad­
dressed by the same offset. 

In order to provide compact instruction encoding 
and increase processor performance, instructions 
do not need to explicitly specify which segment reg-
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ister is used. The segment register is automatically 
chosen according to the rules of Table 2.3 (Segment 
Register Selection Rules). In general, data refer­
ences use the selector contained in the OS register, 
stack references use the SS register and instruction 
fetches use the CS register. The contents of the In­
struction Pointer provide the offset. Special segment 
override prefixes allow the explicit use of a given 
segment register, and override the implicit rules list­
ed in Table 2.3. The override prefixes also allow the 
use of the ES, FS and GS segment registers. 

There are no restrictions regarding the overlapping 
of the base addresses of any segments. Thus, all 6 
segments could have the base address set to zero. 
Further details of segmentation are discussed in 
Section 3.0 Architecture. 



80376 

Table 2.3. Segment Register Selection Rules 

Type of 
Memory Reference 

Code Fetch 

Destination of PUSH, PUSHF,INT, 
CALL, PUSH A Instructions 

Sourc;e of POP, POPA, POPF, IRET, 
RET Instructions 

Destination of STOS, 
MOVS, REP ST05, 
REP MOVS Instructions 
(01 is Base Register) 

Other Data References, 
with Effective Address 
Using Base Register of: 

[EAX] 
[EBX] 
[ECX] 
[EDX] 
[ESI] 
[EDI] 
[EBP] 
[ESP] 

2.4 Addressing Modes 

The 80376 provides a total of 8 addressing modes 
for instructions to specify operands. The, addressing 
modes are optimized to allow the efficient execution 
of high level'languages such as C and FORTRAN, 
and they cover the vast majority of data references 
needed by high-level languages. 

Two of the addressina modes provide for instruc­
tions that operate on -register or immediate oper­
ands: 

Register Operand Mode: The operand is located in 
one of the 8-, 16- or 32-bit general registers. 

Immediate Operand Mod,e: The operand is includ­
ed in the instruction as part of the opcode. 

The remaining 6 modes provide a mechanism for 
specifying the effective address of an operand. The 
linear address consists of two components: the seg-

Implied (Default) Segment Override 
Segment Use Prefixes Possible 

CS None 

55 None 

5S None 

'ES None 

OS CS, 5S, ES, F5, GS 
OS CS, 55, ES, F5, G5 
OS C5, 5S, E5, FS, GS 
OS CS, 55, E5, F5, GS 
OS CS, 5S, E5, FS, GS 
OS C5, 55, E5, F5, G5 
S5 C5, 5S, E5, F5, G5 
5S CS, 5S, E5, FS, G5 

ment base address and an effective address. The 
effective address is calculated by summing any 
combination of the following three address elements 
(see Figure 2.3): 

DISPLACEMENT: an 8-,' 16- or 32-bit immediate val­
ue following the instruction. 

BASE; The contt;iiits of any gensra! purpose regis­
ter. The base registers are generally used by compil­
ers to point to the start of the iocai variabie area. 
Note that if the Address Length Prefix is used, only 
BX and BP can be used as a BASE register. 

INDEX: The contents of any general purpose regis­
ter except for E5P. The index registers are used to 
access the elements of an array, or a string of char­
acters. The index register's value can be multiplied 
by a scale factor, either 1, 2, 4 or 8. The scaled index 
is especially useful for accessing arrays or struc­
tures. Note ,that if the Address Length Prefix is 
used, no Scaling is available and only the registers 
SI and 01 can be used to INDEX. 
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Combinations of these 3 components make up the 6 
additional addressing modes. There is no perform­
ance penalty for using any of these addressing com­
binations, since the effective address calculation is 
pipelined with the execution of other instructions. 
The one exception is the simultaneous use of BASE 
and INDEX components which requires one addi­
tional clock. 

As shown in Figure 2.4, thl'3 effective address (EA) of 
an operand is calculated according to the following 
formula: 

EA = BASERe.flister + (INDEXRegisterXscaling) + 
DISPLACEMENT 

1. Direct Mode: The operand's offset is contained 
as part of the instruction as an 8-, 16- or 32-bit 
DISPLACEMENT. 

SEGMENT REGISTER 

SS 
GS 

FS 
ES 

DS 
-cs 

2. Register Indirect Mode: A BASE register con­
tains the address of the operand. 

3. Based Mode: A BASE register's contents is add­
ed to a DISPLACEMENT to form the operand's 
offset. 

4. Scaled Index Mode: An INDEX register's con­
tents is multiplied by a SCALING factor which is 
added to a DISPLACEMENT to form the oper­
and's offset. 

5. Based Scaled Index Mode: The contents of an 
INDEX register is multiplied by a SCALING factor 
and the result is added to the contents of a BASE 
register to obtain the operand's offset 

6. Based Scaled Index Mode with Displacement: 
The ,contents of an INDEX register are multiplied 
by a SCALING factor, and the result is added to 
the contents of a BASE register and a DISPLACE­
MENT to form the operand's offset. 
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Figure 2.4. Addressing Mode Calculations 
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GENERATING 16-BIT ADDRESSES biers. The Operand Length and Address Length Pre­
fixes can be applied separately or in combination to 

The 80376 executes code with a default length for 
operands and addresses of 32 bits. The 80376 is 
also able to execute operands and addresses of 16 
bits. This is specified through the use of override 
prefixes. Two prefixes, the Operand Length Prefix 
and the Address Length Prefix, override the de· 
fault 32·bit length on an individual instruction basis. 
These prefixes are automatically added by assem· 

any instruction. . 

The 80376 normally executes 32-bit code and uses 
either 8- or 32·bit displacements, and any register 
can be used as based or index registers. When exe· 
cuting 16-bit code (by prefix overrides), the displace· 
ments are either 8 or 16 bits, and the base and index 
register conform to the 16·bit model. Table 2.4 illus­
trates the differences. 

Table 2.4. BASE and INDEX Registers for 16- and 32-Blt Addresses 

16-Blt Addressing 32-Blt Addressing 

BASE REGISTER BX,BP Any 32·Bit GP Register 

INDEX REGISTER SI,OI Any 32·Bit GP Register 
except ESP 

SCALE FACTOR None 1,2,4,8 

OISPLACMENT 0,8,16 Bits 0,8,32 Bits 

2.5 Data Types 

The 80376 supports all of the data types commonly used in high level languages: 

Bit: 

Bit Field: 

Bit String: 

Byte: 

Unsigned Byte: 

Integer (Word): 

Long Integer (Double Word): 

Unsigned Integer (Word): 

Unsigned Long Integer 
(Double Word): 

Signed Quad Word: 

Unsigned Quad Word: 

Pointer: 

Long Pointer: 

Char: 

String: 

BCD: 

Packed BCD: 

A single bit quantity. 

A group of up to 32 contiguous bits, which spans a maximum of four 
bytes. ' 

A set of contiguous bits, on the 80376 bit strings can be up to 16 Mbits 
long. 

A signed 8·bit quantity. 

An unsigned 8-bit quantity. 

A signed 16·bit quantity. 

A signed 32-bit quantity. All operations assume a 2's complement 
representation. 
An unsigned 16-bit quantity. 

An unsigned 32-bit quantity. 

A signed 64·bit quantity. 

An unsigned 64-bit quantity. 

A 16· or 32·bit offset only quantity which indirectly references another 
memory location. 

A full pointer which consists of a 16·bit segment selector and either a 
16· or 32·bit offset. 

A byte representation of an ASCII Alphanumeric or control character. 

A contiguous sequence of bytes, words or dwords. A string may 
contain between 1 byte and 16 Mbytes. 

A byte (unpacked) representation of decimal digits 0-9. 

A byte (packed) representation of two decimal digits 0-9 storing one 
digit in each nibble. 



intJ 80376 

When the 80376 is coupled with a numerics Coprocessor such as the 80387SX then the following 
common Floating Point types are supported. 

Floating Point: A signed 32-, 64- or 80-bit real number representation. Floating point 
numbers are supported by the 80387SX numerics coprocessor. 

Figure 2.5 illustrates the data types supported by the 80376 processor and the 80387SX coprocessor. 
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2.6 1/0 Space 

The 80376 has two distinct physical address 
spaces: physical memory and 110. Generally, pe­
ripherals are placed in liD space although the 
80376 also supports memory-mapped peripherals. 
The liD space consists of 64 Kbytes which can be 
divided into 64K 8-bit ports, 32K 16-bit ports, or any 
combination of ports which add to no more than 64 
Kbyt~s. The M/IO# pin acts as an additional ad­
dress line, thus allowing the system designer to easi­
!y determine 'Nhich address space the processor is 
accessing. Note that the I/O address refers to a 
physical address. 

The liD ports are accessed by the IN and OUT in­
structions, with the port address supplied as an im­
mediate 8-bit constant in the instruction or in the DX 
register. All 8-bit and 16-bit port addresses are zero 
extended on the upper address lines. The 110' in­
structions cause the M/IO# pin to be driven LOW. 
liD port addresses 00F8H through OOFFH are re­
served for use by Intel. 

2.7 Interrupts and Exceptions 

Interrupts and exceptions alter the normal program 
flow in order to handle external events, report errors 
or exceptional conditons. The difference between in­
terrupts and exceptions is that interrupts are used to 
handle asynchronous external events while excep­
tions handle instruction faults. Although a program 
can generate a softWare interrupt via an INT N in­
struction, the processor treats software interrupts as 
exceptions. 

Hardware interruots occur as the result of an exter­
nal event and are classified into two types: maskable 
or ncn-maskable. Interrupts are serviced after the 
execution of the current instruction. After the inter­
rupt handler is finished servicing the interrupt, exe­
cution proceeds with the instruction immediately 
after the interrupted instruction. 

Exceptions are classified as faults, traps, or aborts 
depending on the way they are reported, and wheth­
er or not restart of the instruction causing the excep­
tion is suported. Faults are exceptions that are de­
tected and serviced before the execution of the 
faulting instruction. Traps are exceptions that are 
reported immediately after the execution of the in­
struction which caused the problem. Aborts are ex­
ceptions which do not permit the precise location of 
the instruction causing the exception to be deter­
mined. Thus, when an interrupt service routine has 
been completed, execution proceeds from the in-

struction immediately following the interrupted in­
struction. On the other hand the return address from 
an exceptionlfault routine will always point at the 
instruction causing the exception and include any 
leading instruction prefixes. Table 2.5 summarizes 
the possible interrupts for the 80376 and shows 
where the return address points to. ' 

The 80376 has the ability to handle up to 256 differ­
ent interrupts/exceptions. In order to service the in­
terrupts, a table with up to 256 interrupt vectors 
must ,be defined. The interrupt vectors are simply 
pointers to the appropriate interrupt service routine. 
The interrupt vectors are 8-byte quantities, which are 
put in an Interrupt Descriptor Table. Of the 256 pos­
sible interrupts, 32 are reserved for use by Intel and 
the remaining 224 are free to be used by the system 

, designer. 

INTERRUPT PROCESSING 

When an interrupt occurs the following actions hap­
pen. First, the current program address and the 
Flags are saved on the stack to allow resumption of 
the interrupted program. Next, an 8-bit vector is sup­
plied to the 80376 which identifies the appropriate 
entry in the interrupt table. The table contains either 
an Interrupt Gate, a Trap Gate or a Task Gate that 
will point to an interrupt procedure or task. The user 
supplied interrupt service routine is executed. Final­
ly, when an IRET instruction is executed the old 
processor state is restored and program execution 
resumes at the appropriate instruction. 

The 8-bit interrupt vector is supplied to the 80376 in 
several different ways: exceptions supply the inter­
rupt vector internally; software INT instructions con­
tain Oi imply the v8CtCi; maskab!c hard':.'arc inter­
rupts supply the 8-bit vector via the interrupt ac­
knowiedge bus sequence. Non-Maskabie hardware 
interrupts are assigned to interrupt vector 2. 

Maskable Interrupt 

Maskable interrupts are the most common way to 
respond to asynchronous external hardware events. 
A hardware interrupt occurs when the INTR is pulled 
HIGH and the Interrupt Flag bit (IF) is enabled. The' 
processor only responds to interrupts between in­
structions (string instructions have an "interrupt win­
dow" between memory moves which a!lows inter-

, rupts during long string moves). When an interrupt 
occurs the processor reads an 8-bit vector supplied 
by the hardware which identifies the source of the 
interrupt (one of 224 user' defined interrupts). 
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Table 2.5. Interrupt Vector Assignments 

Instruction Which 
Return Address 

Function 
Interrupt 

Can Cause 
Points to 

Type 
Number 

Exception 
Faulting 

Instruction 

Divide Error 0 DIV,IDIV Yes FAULT 

Debug Exception 1 Any Instruction Yes TRAP' 

NMllnterrupt 2 INT20rNMI No NMI 

One-Byte Interrupt 3 INT No TRAP 

Interrupt on Overflow 4 INTO No TRAP 

Array Bounds Check 5 BOUND Yes FAULT 

Invalid OP-Code 6 Any Illegal Instruction Yes FAULT 

Device Not Available 7 ESC, WAIT Yes FAULT 

Double Fault 
8 

Any Instruction That Can ABORT 
Generate an Exception 

Coprocessor Segment Overrun 9 ESC No ABORT 

InvalidTSS 10 JMP, CALL, IRET, INT Yes FAULT 

Segment Not Present 11 Segment Register Instructions Yes FAULT 

Stack Fault 12 Stack References Yes FAULT 

General Protection Fault 13 Any Memory Reference Yes FAULT 

Intel Reserved 14-15 - - -
Coprocessor Error 16 ESC,WAIT Yes FAULT 

Intel Reserved 17-32 

Two-Byte Interrupt 0-255 INTn No TRAP 
'Some debug exceptions may report both traps on the previous instruction, and faults on the next instruction. 

Interrupts through Interrupt Gates automatically re­
set IF, disabling INTR requests. Interrupts through 
Trap Gates leave the state of the IF bit unchanged. 
Interrupts through a Task Gate change the IF bit a:c­
cording to the image of the EFLAGs register in the 
task's Task State Segment (TSS). When an IRET 
instruction is executed, the original state of the IF bit 
is restored. 

tion is executed or the processor is reset. If NMI 
occurs while currently servicing an NMI, its presence 
will be saved for serviCing after executing the first 
IRET instruction. The disabling of INTR requests de­
pends on the gate in IDT location 2. 

Non·Maskable Interrupt 

Non-maskable interrupts provide a method of servic­
ing very high priority interrupts. When the NMI input 
is pulled HIGH it causes an interrupt with an internal­
ly supplied vector value of 2. Unlike a normal hard­
ware interrupt no interrupt acknowledgement se­
quence is performed for an NMI. 

While executing the NMI servicing procedure, the 
80376 will not service any further NMI request, or 
INT requests, until an interrupt return (I RET) instruc-

Software Interrupts 

A third type of interrupti exception for the 80376 is 
the software interrupt. Ari INT n instruction causes 

. the processor to execute the interrupt service rou­
tine pointed to by the nth vector in the interrupt table. 

A special case of the two byte software interrupt 
INT n is the one byte INT 3, or breakpoint interrupt. 
By inserting this one byte instruction in a program, 
the user can set breakpoints in his program as a 
debugging tool. 
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A final type of software interrupt, is the single step 
interrupt. It is discussed in Single-Step Trap (page 
22). 

INTERRUPT AND EXCEPTION PRIORITIES 

Interrupts are externally-generated events. Maska­
ble Interrupts (on the INTR input) .and Non-Maskable 
Interrupts (on the NMI input) are recogniZed at in­
struqtion boundaries. When NMI and maskable 
INTR are both recognized at the same instruction 
boundary, the 80376 invokes the NMI service rou­
tine first. If, after the NMI service routine has been 
invoked, maskable interrupts are still enabled, then 
the 80376 will invoke the appropriate interrupt serv­
ice routine. 

As the 80376 executes instructions, it follows a con­
sistent cycle in checking for exceptions, as shown in 
Table 2.6. This cycle is repeated as each instruction 
is executed, and occurs in parallel with instruction 
decoding and execution. 

INSTRUCTION RESTART 

The 80376 fully supports restarting all instructions 
'after faults. If an exception is detected in the instruc­
tion to be executed (exception categories 4 through 
9 in Table 2.6), the 80376 device invokes the appro­
priate exception service routine. The 80376 is in a 
state that permits restart of the instruction. 

DOUBLE FAULT 

A Double fault (exception 8) results when the proc­
essor attempts to invoke an exception service rou­
tine for the segment exceptions (10, 11, 12 or 13), 
but in the process of doing so, detects an' exception. 

2.8 Reset and Initialization 

When the processor is Reset the registers have the 
va!tJl3s shown in Table 2.7. The 80376 will then start 
executing instructions near the top of physical mem­
ory, at location OFFFFFOH. A short JMP should be 
executed within the segment defined for power-up 
(see Table 2.7). The GOT should then be initialized 
for a start-up data and code segment followed by a 
far JMP that will load the segment descriptor cache 
with the new descriptor values. The lOT table, after 
reset, is located at physical address OH, with a limit 
of 256 entries. 

RESET forces the 80376 to terminate all execution 
and local bus activity. No instruction execution or 
bus activity will occur as long as Reset is active. 
Between 350 and 450 CLK2 periods after Reset be­
comes inactive, the 80376 will start executing in­
structions at the top of physical memory. 

Table 2.6. Sequence of Exception Checking 

Consider the case of the 80376 having just completed an instruction. It then performs the following checks 
before reachina the Doint where the next instruction is completed: , 

I 1. Check for ~xce~tion 1 Traps from the instruction just completed (single-step via Trap Flag, or Data 
Breakpoints set in the Debug Registers). 

2. Check for externa' NMI and INTR. 

3. Check for Exception 1 Faults in the next instruction (Instruction Execution Breakpoint set in the 
Debug Registers for the next instruction). 

4. Check for Segmentation Faults that prevented fetching the entire next instruction (exceptions 11 or 
1~ . 

5. Check for Faults decoding the next instruction (exception 6 if illegal opcode; or exception 13 if 
instruction is longer than 15 bytes, or privilege violation (i.e. not at IOPL or at CPL = 0). 

6.lf WAIT' opcode,check if TS = 1 and MP = 1 (exception 7 if both are 1). 

7. If ESCape opcode for numeric coprocessor, check if EM = 1 or TS = 1 (exception 7 if either are 1). 

8. If WAIT opcode or ESCape opcode for numeric coprocessor, check ERROR# input Signal (excep­
tion 16 if ERROR# input is asserted). 

9. Check for Segmentation Faults that prevent transferring the entire memory quantity (exceptions 11, 
12, 13). 
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Table 2.7. Register Values after Reset 

Flag Word (EFLAGS) uuuuOO02H (Note 1) 

Machine Status Word (CRO) uuuuuuu1H (Note 2) 

Instruction Pointer (EIP) OOOOFFFOH 

Code Segment (CS) FOOOH (Note 3) 

Oata Segment (OS) OOOOH (Note 4) 

Stack Segment (SS) OOOOH 

Extra Segment (ES) OOOOH (Note 4) 

Extra Segment (FS) OOOOH 

Extra Segment (GS) OOOOH 

EAX Register OOOOH (Note 5) 

EOX Register Component and Stepping 10 (Note 6) 

All Other Registers Undefined (Note 7) 

NOTES: 
1. EFLAG Register. The upper 14 bits of the EFLAGS register are undefined, all defined 
flag bits are zero. 
2. CRO: The defined 4 bits in the CRO is equal to 1 H. 
3. The Code Segment Register (CS) will have its Base Address set to OFFFFOOOOH and 
Limit set to OFFFFH. 
4. The Data and Extra Segment Registers (OS and ES) will have their Base Address set 
to OOOOOOOOOH and Limit set to OFFFFH. 
5. If self-test is selected, the EAX should contain a 0 value. If a value of 0 is not found 
the self-test has detected a flaw in the part. 
6. EDX register always holds component and stepping identifier. 
7. All unidentified bits are Intel Reserved and should not be used. 

2.9 Initialization 

Because the 80376 processor starts executing in protected mode, certain precautions need be taken during 
initialization. Before any far jumps can take place the GOT and/or LOT tables need to be setup and their 
respective registers loaded. Before interrupts can be initialized the lOT table must be setup and the 10TR must 
be loaded. The example code is shown below: 

**************************************************************** 

This is an example of startup code to put either an 80376, 
80386SX or 80386 into flat mode. All of memory is treated as 
simple linear RAM. There are no interrupt routines. The 
Builder creates the GDT-alias and IDT-alias and places them, 
by default, in GDT[l] and GDT[2]. Other entries in the GDT 
are specified in the Build,file. After initialization it jumps 
to a C startup routine. To.use this template, change this jmp 
address to that of your code, or make the label of your code 
"c_startup". 

This code was assembled and built using version 1.2 of the 
Intel RLL utilities and Intel 386ASM assembler. 

*** This code was 'tested *** 

**************************************************************** 
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NAME FLAT name of the object module 

EXTRN c_startup:near this is the label jmped to after init 

pe_flag equ 1 
data_selc equ 20h assume code is GDT[3] , data GDT[4] 

SEGMENT ER PUBLIC USE32 ; Segment base at Offffff80h 

PUBLIC GDT_DESC 

gdLdesc dq ? 

PUBLIC START 

start: 
cld 
smsw bx 
test bl,l 
jnz pestart 

realstart 
db 66h 
mov eax,offset gdt_desc 
xor ebx,ebx 
mov bh,ah 
move bl,al 
db 67h 
db 66h 
19dt cs: [ebx] 
smsw ax 
or al,pe_flag 
lmsw ax 
jmp next 

pestart: 
mov ebx,offset gdt_desc 
xor eax,eax 
mov aX,bx 
19dt cs:[eax] 
xor eox,eox 
mov bl,data_selc 
mov dS,bx 
mov ss,bx 
mov eS,bx 
mov fs,bx 
mov gS,bx 
jmp pejump 

next: 
xor ebx,ebx 
mov bl,data_selc 
mov ds,ox 
mov ss,bx 
mov eS,bx 
mov fS,bx 
mov gs,bx 
db 66h 

pejump: 
jmp far ptr c_startup 

org 70h 
jmp short start 

INIT_CODE ENDS 
END 

clear direction flag 
check for processor (80376) at reset 
use SMSW rather than MOV for speed 

is an 80386 and in real mode 
force the next operand into 32-bit mode. 
move address of the GDT descriptor into eax 
clear ebx 
load 8 bits of address into bh 
load 8 bi.ts of address into bl 

use the 32-bit form of LGDT to load 
the 32-bits of address into the GDTR 
go into protected mode (set PE bit) 

flush prefetch queue 

lower portion of address only 

GDT[3] 

initialize data selectors 
GDT[3] 

for the 80386, need to make a 32-bit jump 

but the 80376 is already 32-bit. 

only if segment base is at Offffff80h 
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This code should be linked into your application for boot loadable code. The following build file illustrates how 
this is accomplished. 

FLAT; -- build program id 

SEGMENT 

GATE 

*segments (dpl=O), 
_phantom_code_ (dpl=O), 
_phantom_data_ (dpl=O), 
init_code (base=OffffffSOh); 

g13 (entry=13, dpl=O, trap), 
i32 (entry=32, dpl=O, interrupt), 

TABLE 
create GDT 

GDT (LOCATION = GDT_DESC, 

ENTRY = (3:_phantom_code_, 
4:_phantom_data_, 
5:code32, 

) ; 
TASK 

MAIN_TASK 
( 

6:data, 
7:iniLcode) 

DPL = 0, 
DATA = DATA, 

CODE = main, 

STACKS = (DATA), 

NO INTENABLED, 
PRESENT 

) ; 

MEMORY 

Give all user segments a DPL of O. 
These two segments are created by 
the builder when the FLAT control is used. 
Put startup code at the reset vector area. 

trap gate disables interrupts 
interrupt gates doesn't 

In a buffer starting at GDT_DESC, 
BLD3S6 places the' GDT base and 
GDT limit values. Buffer must be 
6 bytes long. The base and limit 
values are places in this buffer 
as two bytes of limit plus 
four bytes of base in the format 
required for use by the LGDT 
instruction. 

Explicitly place segment 
-- entries into the GDT. 

Task privilege level is O. 
Points to a segment that 
indicates initial DS value. 
Entry point is main, which 
must be a public id. 

Segment id points to stack 
segment. Sets the initial SS:ESP. 
Disable interrupts. 
Present bit in TSS set to 1. 

(RANGE = (EPROM = ROM(OffffSOOOh •• Offffffffh), 
DRAM = RAM(O •• Offffh)), 

ALLOCATE = (EPROM = (MAIN_TASK))); 

END 

asm386 flatsim.a3S debug 
asm3S6 application.a3S debug 
bnd3S6 application.obj,flatsim.obj nolo debug oj (application.bnd) 
bld3S6 appl1cation.bnd bf (flatsim.bld) bl flat 

Commands to assemble and build a boot-Ioadable application named "application.a3S". The initialization code 
is called "flatsim.a3S". and build file is called "application.bld". 
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2.10 Self-Test 

The 8037!), like the 80386, has the capability to per­
form a self-test. The self-test checks the function of 
all of the Control ROM and most of the non-random 
logic of the part. Approximately one-half of the 

. 80376 can be tested during self-t~st. 

Self-Test is initiated on the 80376 when the RESET 
pin transitions from HIGH to LOW, and the BUSY # 
pin is LOW. The self-test takes about 220 clocks, or 
approximately 33 ms with a '6 MHz 80376 proces­
sor. At the completion of self-test the processor per­
forms reset and begins normal operation. The part 
has successfully passed self-test if the contents of 
the EAX register is zero. If the EAX register is not 
zero then the self-test has detected a flaw in the 
part. If self-test is not selected after reset, EAX may 
be non-zero after reset. 

DEBUG REGISTERS 

2.11 Debugging Support 

The 80376 provides several features which simplify 
the debugging process. The three categories of on­
chip debugging aids are: 

1. The code execution breakpoint opcode (OCCH) . 

2. The single-step capability provided by the TF bit 
in the flag register, and 

3. The code and data breakpoint capability provided 
by the Debug Registers DRO-3, DR6, and DR7, 

BREAKPOINT INSTRUCTION 

A single-byte software interrupt (Int 3) breakpoint in­
struction is available for use by software debuggers. 
The breakpoint opcode is OCCh, and generates an 
exception 3 trap when executed. 

BREAKPOINT 0 DEBUG rAULT/TRAP --------------------, 

BREAKPOINT 1 DEBUG rAuLT/TRAP ------------------, 

BREAKPOINT 2 DEBUG rAULT/TRAP -----------------, 

BREAKPOINT 3 DEBUG rAULT/TRAP -------'---------, 

REGISTER ACCESS rAULT -----, 

SINGLE-STEP DEBUG TRAP ----, 

o 
240182-9 

LOCAL EXACT BREAKPOINT MATCH --------, 

GLOaAL C:XACI D~EAi\rOi"i MAiCii -------, 

GLOBAL DEBUG REGISTER ACCESS DETECT 

BREAKPOINT 
..--___ -'-___ ..., CONTROL 

240182-10 

~ - INTEL RESERVED DO NOT USE 
240182-5 

Figure 2.6. Debug Registers 
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SINGLE·STEP TRAP 

If the single-step flag (TF, bit 8) in the EFLAG regis­
ter is found to be set at the end of an instruction, a 
single-step exception occurs. The single-step ex­
ception is auto vectored to exception number 1. 

The Debug Registers are an advanced debugging 
feature of the 80376. They allow data access break­
points as well as code execution breakpoints. Since 
the breakpoints are indicated by on-chip registers, 
an instruction execution breakpoint can be placed in 
ROM code or in code shared by several tasks, nei­
ther of which can be supported by the INT 3 break­
point opcode. 

The 80376 contains six Debug Registers, consisting 
of four breakpoint address registers and two break­
point control registers. Initially after reset, break­
points are in the disabled state; therefore, no break­
points will occur unless the debug registers are 
programmed. Breakpoints set up in the Debug 
Registers are auto-vectored to exception 1. 
Figure 2.6 shows the breakpoint status and control 

. registers. 

48/32 BIT POINTER 

16 

ACCESS RIGHTS 

LIMIT 

BASE ADDRESS 

SEGMENT 
DESCRIPTOR 

24 

32 

3.0 ARCHITECTURE 

The Intel 80376 Embedded Processor has a physi­
cal address space of 16 Mbytes (224 bytes) and al­
lows the running of virtual memory programs of al­
most unlimited size (16 Kbytes x 16 Mbytes or 
256 Gbytes (238 bytes)). In addition the 80376 pro­
vides a sophisticated memory management and a 
hardware-assisted protection mechanism. 

3.1 Addressing Mechanism 

The 80376 uses two components to form the logical 
address, a 16-bit selector which determines the lin­
ear base address of a segment, and a 32-bit effec­
tive address. The selector is used to specify an 
index into an operating system defined table (see 
Figure 3.1). The table contains the 32-bit base ad­
dress of a given segment. The linear address is 
formed by adding the base address obtained from 
the table to the 32-bit effective address. This value 
is truncated to 24 bits to form the physical address, 
which is then placed on the address bus. 

MEMORY OPERAND 

SEGMENT BASE 
ADDRESS 

SEGMENT LIMIT 

SELECTED 
SEGMENT 

240182-11 

Figure 3.1. Address Calculation 
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3.2 Segmentation 

Segmentation is one method of memory manage­
ment and provides the basis for protection in the 
80376. Segments are used to encapsulate regions 
of memory which have common attributes. For ex­
ample, all of the code of a given program could be 
contained in a segment, or an operating system ta­
ble may reside in a segment. All information about 
each segment, is stored in an 8-byte data structure 
called a descriptor. All of the descriptors in a system 
are contained in tables recognized by hardware. 

TERMINOLOGY 

The following terms are used throughout the discus­
sion of descriptors, privilege levels and protection: 

PL: Privilege Level-One of the four hierarchical 
privilege levels. Level 0 is the most privileged 
level and level 3 is the least privileged. 

RPL: Requestor Privilege Level-The privilege 
level of the original supplier of the selector. 
RPL is determined by the least two significant 
bits of a selector. 

DPL: Descriptor Privilege Level-This is the least 
privileged level at which a task may access 

,that descriptor (and the segment associated 
with that descriptor). Descriptor Privilege Lev­
el is determined by bits 6:5 in the Access 
Right Byte of a descriptor. 

CPL: Current Privilege Level-The privilege level 
at which a task is currently executing, which 
equals the privilege level of the code seg­
ment being executed. CPL can also be deter-' 
mined by examining the lowest 2 bits of the 
CS iegister. except for cO~lformiilg code seg .. 
ments. 

EPL: Effective Privilege Level-The effective 
privilege level is the least privileged of the 
RPL and the DPL. EPL is the numerical maxi­
inum of RPL and DPL. 

Task: One instance of the execution of a program. 
Tasks are also referred to as processes. 

DESCRIPTOR TABLES 

The descriptor tables define all of the segments 
which are used in an 80376 system. There are three 
types of tables on the 80376 which hold descriptors: 
the Global Descriptor Table, Local Descriptor Table, 
and the Interrupt Decriptor Table. All of the tables 
are variable length memory arrays, they can range.in 
size between 8 bytes and 64 Kbytes. Each table can 
hold up to 8192 8-byte descriptors. The upper 13 
bits of a selector are used as an index into the de­
scriptor table. The tables have registers associated 
with them which hold the 32-bit linear base address, 
and the 16-bit limit of each table.· 

Each of the tables have a register associated with it: 
GDTR, LDTR and IDTR; see Figure 3.2. The LGDT, 
LLDT and L1DT instructions load the base and limit 
of the Global, Local and Interrupt Descriptor Tables 
into the appropriate register. The SGDT, SLDT and 
SIDT store these base and limit values. These are 
privileged instructions. 

----- .. -----.--
15 0 15 0 

II nT nC"C:I'"D I I I 
LDTR I sELEcToR" I i LDT LIMIT 

I LDT BASE 
LINEAR ADDRESS 

15 0 

I·IDT LIMIT 
32 

PROGRAM INVISIBLE , AUTOMATICALLY LOADED 

IIDT BASE 
FROM LDT DESCRIPTOR 

IDTR LINEAR ADDRESS .. -------------. 
31 0 

15 0 

I GDT LIMIT 

I GDT BASE 
GDTR LINEAR ADDRESS 

31 0 
240182-12 

Figure 3.2. Descriptor Table Registers 

Global Descriptor Table 

The Global Descriptor Table (GDT) contains de­
scriptors which are possibly available to all of the 
tasks in a system. The GDT can contain any type of 
segment descriptor except for interrupt and trap de-
,..,..rl .... +"' .. ~ CunnI an'l7Q ~\let~"' """ntoina CII nnT 6. 
~"'II"''''I~ ............. , .... .., ..... .., "'1 .... ' .... '1 ................. 1 ........ __ ..• I 
simple 80376 system contains only 2 entries in the 
GOT; a code and a data descriptor. For maximum 
performance, descriptor tables should begin on 
even addresses. 

The first slot of the Global Descriptor Table corre­
sponds to the null selector and is not used. The null 
selector defines a null pointer value. 

Local Descriptor Table 

LDTs contain descriptors which are associated ·with 
a given task. Generally, operating systems are de­
signed so that each task has a separate LDT. The 
LDT may contain only code, data, stack, task gate, 
and call gate descriptors. LDTs provide a mecha­
nism for isolating a given task's code and data seg­
ments from the rest of the operating system, while 
the GDT contains descriptors for segments which 
are common to all tasks. A segment cannot be ac­
cessed by a task if its segment descriptor does not 
exist in either the current LDT or the GDT. This pro-
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vides both isolation and protection for a task's seg­
ments, while still allowing global data to be shared 
among tasks. 

Unlike the 6-byte GDT or IDT registers which contain 
a base address and limit, the visible portion of the 
LDT register contains only a 16-bit selector. This se­
lector refers to a Local Descriptor Table descriptor in 
the GDT (see Figure 2.1). 

INTERRUPT DESCRIPTOR TABLE 

The third table needed for 80376 systems is the In­
terrupt Descriptor Table. The IDT contains the de­
scriptors which point to the location of up to 256 
interrupt service routines. The IDT may contain only 
task gates, interrupt gates and trap gates. The IDT 
should be at least 256 bytes in size in order to hold 
the descriptors for the 32 Intel Reserved Interrupts. 
Every interrupt used by a system must have an entry 
in the IDT. The IDT entries are referenced by INT 
instructions, external interrupt vectors, and excep­
tions. 

DESCRIPTORS 

The object to which the segment selector points to 
is called a descriptor. Descriptors are eight-byte 
quantities which contain attributes about a given 
region of linear address space. These attributes in­
clude the 32-bit logical base address of the seg-

31 

ment, the 20-bit length and granularity of the seg­
ment, the protection level, read, write or execute 
privileges, and the type of segment. All of the attri­
bute information about asegmerit is contained in 12 
bits in the segment descriptor. Figure 3.3 shows the 
general format of a descriptor. All segments on the 
the 80376 have three attribute fields in common: the 
Present bit (P), the Descriptor Privilege Level bits 
(DPL) and the Segment bit (S). P= 1 if the segment 
is loaded in physical memory, if P = 0 then any 
attempt to access the segment causes a not present 
exception (exception 11). The DPL is a two-bit field 
which specifies the protection level, 0-3, associated 
with a segment. 

The 80376 has two main categories of segments: 
system segments, and non-system segments (for 
code and data). The segment bit, S', determines if a 
given segment is a system segment, a code seg­
ment or a data segment. If the S bit is 1 then the 
segment is either a code or data segment, if it is 0 
then the segment is a system segment. 

Note that although the 80376 is limited to a 
16-Mbyte Physical address space (224), its base ad­
dress allows a segment to be placed anywhere in a 
4-Gbyte linear address space. When writing code for 
the 80376, users should keep code portability to an 
80386,processor (or other processors with a larger 
physical address space) in mind. A segment base 
address can be placed anywhere in this 4-Gbyte lin­
ear address space, but a physical address will be 

o BYTE 
ADDRESS 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 o 

BASE A LIMIT 
31 ... 24 G 1 o V 19 ... 16 L 

BASE Base Address of the segment 
LIMIT The length of the segment ' 

P DPL 

I 

P Present Bit 1 = Present 0 = Not Present 
DPL Descriptor Privilege Level 0-3 

S TYPE A 

I I 

5 Segment Descriptor: 0 = System Descriptor, 1 = Code or Data Descriptor 
TYPE Type of Segment 
A Accessed Bit 
G Granularity Bit 1 = Segment length is 4 Kbyte Granular 

o = Segment length is byte granular 
o Bit must be zero (0) for compatibility with future processors 
AVL Available field for user or as 

Figure 3.3. Segment Descriptors 

31 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 

BASE A ACCESS 
G 1 0 V LIMIT RIGHTS 31 ... 24 L 19 ... 16 BYTE 

BASE +4 
23 ... 16 

o 
o 

BASE 
23 ... 16 +4 

G Granularity Bit 1 = Segment length is 4 Kbyte granular 
o = Segment length is byte granular 

o Bit must be zero (0) for compatibility with future processors 
AVL Available field for user or as 

Figure 3.4. Code and Data Descriptors 
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Table 3.1. Access Rights Byte Definition for Code and Data Descriptors 

Bit 
Name Function 

Position 

7 Present (P) P=1 Segment is mapped into physical memory. 
p=o No mapping to physical memory exits 

6-5 Descriptor Privilege Segment privilege attribute used in privilege tests. 
Level (DPL) 

4 Segment S=1 Code or Data (includes stacks) segment descriptor 
Descriptor (S) S=O System Segment Descriptor or Gate Descriptor 

3 Executable (E) E=O Descriptor type is data segment: 

} 
If 

2 Expansion ED = 0 Expand up segment, offsets must be ~ limit. Data 
Direction (ED) ED = 1 Expand down segment, offsets must be > limit. Segment. 

1 Writable (W) W = 0 Data segment may not be written into. (S = 1, 
W= 1 Data segment may be written into. E = 0) 

3 Executable (E) E = 1 Descriptor type is code segment: 

} 
If 

2 Conforming (C) C=1 Code segment may only be executed when ,Code 
CPL ::?: DPL and CPL remains unchanged. Segment 

1 Readable (R) . R=O Code segment may not be read. (S =1, 
R=1 Code segment may be read. E = 1) 

0 Accessed (A) A=O Segment has not been accessed. 
A=1 Segment selector has been loaded .into segment register 

or used by selector test instructions. 

generated that is a truncated version of this linear 
address. Truncation will be to the maximum number 
of address bits. It is recommended to place EPROM 
at the highest physical address and DRAM at the 
lowest physical addresses. 

Code and Data Descriptors (S= 1) 

Fioure 3.4 shows the aeneral format of a code and 
data descriptor and Table 3.1 illustrates how the bits 
in the Access Right 8,10 arc interpreted. 

Code and data segments have several· descriptor 
fields in common. The accessed bit, A, is set when­
ever the processor accesses a descriptor. The gran­
ularity bit, G, specifies if a segment length is 1-byte­
granular or 4-Kbyte-granular. Base address bits 
31-24, which are normally found in 80386 descrip­
tors, are not made externally available on the 80376. 
They do not affect the operation of the 80376. The 
A31-A24 field should be set to allow an 80386 to 
correctly execute with EPROM at the upper 4096 
Mbytes of physical memory. 

System Descriptor Formats (S = 0) 

System segments describe information about oper­
ating system tables, tasks, and gates. Figure 3.5 
shows the general format of system segment de­
scriptors, and the various types of system segments. 

80376 system descriptors (which are the same as 
80386 descriptor types 2, 5, 9, B, C, E and F) contain 
a 32-bit logical base address and a 20-bit segment 
limit. 

Selector Field5 

A selector has three fields: Local or Global Descrip­
tor Table Indicator (TI), Descriptor Entry Index (In­
dex), and Requestor ( the selector's) Priviiege Level 
(RPL) as shown in Figure 3.6. The TI bit selects ei­
ther the Global Descriptor Table or the Local De­
scriptor Table. The Index selects one of BK descrip­
tors in the appropriate descriptor table. The RPL bits 
allow high speed testing of the selector's privilege 
attributes. 

Segment Descriptor Cache 

In addition to the selector value, every segment reg­
ister has a segment descriptor cache register asso­
ciated with it. Whenever a segment register'S con­
tents are changed, the B-byte descriptor associated 
with that selector is automatically loaded (cached) 
on the chip. Once loaded, all references to that seg­
ment use the cached descriptor information instead 
of reaccessing the descriptor. The contents of the 
descriptor cache are not visible to the programmer. 
Since descriptor caches only change when a seg­
ment register is changed, programs which modify 
the descriptor tables must reload the appropriate 
segment registers after changing a descriptor's 
value. 
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31 16 o 
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23 ... 16 
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3 Reserved B Busy 80376/80386 TSS , 
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6 Reserved E 80376/80386 Interrupt Gate 
7 Reserved F 80376/80386 Trap Gate 

Figure 3.5. System Descriptors 
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Figure 3.6. Example Descriptor Selection 

3.3 Protection 

The 80376 offers extensive protection features. 
These protection features are particularly useful in 
sophisticated embedded applications which use 
multitasking real-time operating systems. For sim­
pler embedded applications these protection capa­
bilities can be easily bypassed by making all applica­
tions run at privilege level (PL) O. 

RULES OF PRIVILEGE 

The 80376 controls access to both data and proce-' 
dures between levels of a task, according to the fol­
lowing rules. 

-Data stored in a segment with privilege level p 
can be accessed only by code executing at a 
privilege level at least as privileged as p. 

-A code segment/procedure with privilege level p 
can only be called by a task executing at the 
same or a lesser privilege level than p. 

PRIVILEGE LEVELS 

At any point in time, a task on the 80376 always 
executes at one of the four privilege levels. The Cur­
rent Privilege Level (CPL) specifies what the task's 
privilege level is. A task's CPL may only be changed 
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by control transfers through gate descriptors to a 
code s~gm.ent with a different privilege level. Thus, 
an application program running at PL = 3 may call an 
operating system routine at PL= 1 (via a gate) which 
would cause the task's CPL to be set to 1 until the 
operating system routine was finished. 

Selector Privilege (RPL) 

The privilege level of a selector is specified by the 
RPL field. The selector's RPL is onlv used to estab­
lish a less trusted privilege level than the current 
pri~ilege I~vel of the task for the use of a segment. 
ThiS level IS called the task's effective privilege level 
(EPL). The EPL is defined as being the least privi­
leged (numerically larger) level of a task's CPL and a 
selector's RPL. The RPL is most commonly used to 
verify that pointers passed to an operating system 
procedure do not access data that is of higher privi­
I~ge than th~ ~rocedure that originated the pointer. 
Since the onglnat.or of a selector can specify any 
~PL value, the Adjust RPL (ARPL) instruction is pro­
vided to force the RPL bits to the originator's CPL. 

1/0 Privilege 

The I/O privilege level (IOPL) lets the operating sys­
tem code executing at CPL = 0 define the least privi­
leged level at which I/O instructions can be used. An 
exception 13 (General Protection Violation) is gener­
ated if an I/O instruction is attempted when the CPL 
of the task is less privileged than the 10PL. The 
~OPL is stored in bits 13 and 14 of the EFLAGS reg­
Ister. The following instructions cause an exception 
13 if the CPL is greater than 10PL: IN, INS, OUT, 
OUTS, STI, CLI and LOCK prefix. 

There are basically two types of segment acces­
sess: those involving code segments such as con­
trol transfers, and those involving data accesses. 
Oeter~ining the ability of a task to access a seg­
ment Involves the type of segment to be accessed 
the instruction used, the type of descriptor.used and 
CPL, RPL, and OPL as described above. 

Any time an instruction loads a data segment regis­
ter (OS, ES, FS, GS) the 80376 makes protection 
validation checks. Selectors loaded in the OS ES 
FS, GS registers must refer only to data segm~nt 0; 
readable code segments. 

Finally the privilege validation checks are performed. 
The CPL is compared to the EPL and if the EPL is 
more privileged than the CPL, an exception 13 (gen­
eral protection fault) is generated. 

T.he ruies regarding the siacK segmeni are sligiiily 
different than those involving data segments. In­
structions that load selectors into SS must refer to 
data' segment deSCriptors for writeable data seg­
ments. The OPL and RPL must equal the CPL of all 
other descriptor types or a privilege level violation 
will cause an exception 13. A stack not present fault 
causes an exception 12. 

PRIVILEGE LEVEL TRANSFERS 

Inter-segment control transfers occur when a selec­
tor is loaded in the CS register. For a typical system 
most of these transfers are simply the result of a call 
or a jump to another routine. There are five types of 
control transfers which are summarized in Table 3.2. 
Many of these transfers result in a privilege level 
transfer. Changing privilege levels is done only by 
control transfers, using gates, task switches, and in­
terrupt or trap gates. 

Control transfers can only occur if the operation 
which loaded the selector references the correct de­
scriptor type. Any violation of these descriptor usage 
rules will cause an exception 13. 

CALL GATES 

Gates provide protected indirect CALLs. One of the 
major uses of gates is to provide a·secure method of 
privilege tr~nsfers within a task. Since the operating 
system defines all of the gates in a system, it can 
ensure that all gates only allow entry into a few trust­
ed procedures. 

4-778 



80376 

Table 3.2. Descriptor Types Used for Control Transfer 

Control Transfer Types 

Intersegment within the same privilege level 

Intersegment to the same or higher privilege level 
Interrupt within task may change CPL 

Intersegment to a lower privilege level 
(changes task CPL) 

Task Switch 

'NT (Nested Task bit of flag register) = 0 
"NT (Nested Task bit of flag register) = 1 

Operation Types 

JMP, CALL, RET, IRET' 

CALL 

Interrupt Instruction, 
Exception, External 
Interrupt 

RET,IREP 

CALL,JMP 

CALL,JMP 

IREP' 
I nterrupt Instruction, 
Exception, External 
Interrupt 
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TASK SWITCHING 

A very important attribute of any mUlti-tasking oper­
ating system is its ability to rapidly switch between 
tasks or processes. The 80376 directly supports this 
operation by providing a task switch instruction in 
hardware. The 80376 task switch operation saves 
the entire state of the machine (all of the registers, 
address space, and a link to the previous task), 
loads a new execution state, performs protection 
checks, and commences execution in the new task. 
Like transfer of control by gates, the task switch op­
eration is invoked by executing an inter-segment 
JMP or CALL instruction which refers to a Task 
State Segment (TSS) , or a task gate descriptor in 
the GOT or LOT. An INT n instruction, exception, 
trap or external interrupt may also invoke the task 
switch operation if there is a task gate descriptor in 
the associated lOT descriptor slot. For simple appli­
cations, the TSS and task switching may not be 
used. The TSS or task switch will not be used or 
occur if no task gates are present in the GOT, LOT 
or lOT. 

The TSS descriptor points to a segment (see Figure 
3.7) containing the entire 80376 execution state. A 
task gate descriptor contains a TSS selector. The 
limit of an 80376 TSS must be greater than 64H, and 
can be as large as 16 Mbytes. In the additional TSS 
space, the operating system is free to store addition­
al information as the reason the task is inactive, the 
time the task has spent running, and open files be­
longing to the task. For maximum performance, TSS 
should start on an even address. 

Each Task must have a TSS associated with it. The 
current TSS is identified by a special register in the 
80376 called the Task State Segment Register (TR). 
This register contains a selector referring to the task 
state segment descriptor that defines the current 
TSS. A hidden base and limit register associated 
with the TSS descriptor is loaded whenever TR is 
loaded with a new selector. Returning from a task is 
accomplished by the IRET instruction. When IRET is 
executed, control is returned to the task which was 

interrupted. The current executing task's state is 
saved in the TSS and the old task state is restored 
from its TSS. 

Several bits in the flag register and CRO register give 
information about the state of a task which is useful 
to the operating system. The Nested Task bit, NT, 
controls the function of the IRET instruction. If NT = 
o the IRET instruction performs the regular return. If 
NT = 1, IRET performs a task switch operation 
back to the previous task. The NT bit is set or reset 
in the following fashion: 

When a CALL or INT instruction initiates a task 
switch, the new TSS will be marked busy and 
the back link field of the new TSS set to the old 
TSS selector. The NT bit of the new task is set 
by CALL or INT initiated task switches. An inter­
rupt that does not cause a task switch will clear 
NT (The NT bit will be restored after execution 
of the interrupt handler). NT may also be set or 
cleared by POPF or IRET instructions. 

The 80376 task state segment is marked busy by 
changing the descriptor type field from TYPE 9 to 
TYPE OBH. Use of a selector that references a busy 
task state segment causes an exception 13. 

The coprocessor's state is not automatically saved 
when a task switch occurs. The Task Switched Bit, 
TS, in the CRO register helps deal with the coproces­
sor's state in a multi-tasking environment. Whenever 
the 80376 switches tasks, it sets the TS bit. The 
80376 detects the first use of a processor extension 
instruction after a task switch and causes the proc­
essor extension not available exception 7. The ex­
ception handler for exception 7 may then decide 
whether to save the state of the coprocessor. 

The T bit in the 80376 TSS indicates that the proc­
essor should generate a debug exception when 
switching to a task. If T = 1 then upon entry to a 
new task a debug exception 1 will be generated. 

31302928272625242322212019181716151413121110987 6 5 432 1 0 

31 

63 

95 

127 

1 1 1 1 o 1 1 

0 0 1 0 0 o 1 

1 1 1 1 1 1 1 

o 0 000 o 0 

~ 

0 000 o 1 1 1 1 o 1 o 0 

1 1 1 o 0 1 0 1 o 1 1 1 1 

1 1 1 1 1 1 1 1 ·1 1 1 1 1 

000 o 0 0 0 0 0 o 0 0 0 

etc. 

1 1 0 o 0 0 0 0 0 0 1 1 

1 1 0 0 1 1 1 1 1 0 0 1 

1 1 1 1 1 1 1 1 1 1 1 1 

0 o 0 o 0 0 0 0 0 o 0 0 

1 1 1 1 1 1 1 1 

~ 
240182-15 

liD Ports Accessible 2 ..... 9,12, 13, 15, 20 -+ 24,27,33,34.40,41,48,50,52,53,58 ....,. 60,62,63,96 -+ 127 
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PROTECTION AND I/O PERMISSION BIT MAP 

The 1/0 instructions that directly refer to addresses 
in the proc'essor's 1/0 space are IN, INS, OUT and 
OUTS. The 80376 has the ability to selectively trap 
references to specific 1/0 addresses. The structure 
that enables selective trapping is the //0 Permis­
sion Bit Map in the TSS segment (see Figures 3.7 
and 3.8). The 1/0 permission map is a bit vector. 
The size of the map and its location in the TSS seg­
ment are variable. The processor locates the 1/0 
permission map by means of the iiO map iJase fieid 
in the fixed portion of the TSS. The 1/0 map base 
field is 16 bits wide and contains the offset of the 
beginning of the I/O permission map. 

If an 1/0 instruction (IN, INS, OUT or OUTS) is en­
countered, the processor first checks whether 
CPL ~ 10PL. If this condition is true, the 1/0 opera­
tion may proceed. If not true, the processor checks 
the 1/0 permission map. 

Each bit in the map corresponds to an 1/0 port byte 
address; for example, the bit for port 41 is found at 
I/O map base + 5 linearly, (5 x 8 = 40), bit offset 
1. The processor tests all the bits that correspond to 
the 1/0 addresses spanned by an 1/0 operation; for 
example, a double word operation tests four bits cor­
responding to four adjacent byte addresses~ If any 
tested bit is set, the processor Signals a general pro­
tection exception. If all the tested bits are zero, the 
1/0 operations may proceed. 

It is not necessary for the 1/0 permission map to 
represent all the 1/0 addresses. 1/0 addresses not 
spanned by the map are treated as if they had one­
bits in the map. The 1/0 map base should be at 
least one byte less than the TSS limit and the last 
byte beyond the 1/0 mapping information must con­
tain all1's. 

Because the 1/0 permission map is in the TSS seg­
ment, different tasks can have different maps. Thus, 
the operating system can allocate ports to a task by 
changing the I/O peirllissioii map iii the task's TSS. 

IMPORTANT IMPLEMENTATION NOTE: 
Beyond the last byte of I/O mapping information in 
the 1/0 permission bit map must be a byte contain­
ing all 1's. The byte of all 1's must be within the 
limit of ' the 80376's TSS segment (see Figure 3.7). 

4.0 FUNCTIONAL DATA 

The Intel 80376 embedded processor features a 
straightforward functional interface to the external 
hardware. The 80376 has separate parallel buses 
for data and address. The data bus is 16 bits in 
width, and bidirectional. The address bus outputs 
24-bit address values using 23 address ,lines and 
two-byte enable Signals. 

The 80376 has two selectable address bus cycles: 
pipelined and non-pipelined. The pipelining option 
allows as much time as possible for data access by 
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starting the pending bus cycle before the present 
bus cycle is finished. A non-pipelined bus cycle 
gives the highest bus performance by executing ev­
ery bus cycle in two processor clock cycles. For 
maximum design flexibility, the address pipelining 
option is selectable on a cycle-by-cycle basis. 

The processor's bus cycle is the basic mechanism 
for information transfer, either from system to proc­
essor, or from processor to system. 80376 bus cy­
cles perform data transfer in a minimum of only two 
clock periods. On a 16-bit data bus, the maximum 
80376 transfer bandwidth at 16 MHz is therefore 
16 Mbytes/sec. However, any bus cycle will be ex­
tended for more than two clock periods if external 
hardware withholds acknowledgement of the cycle. 

The 80376 can relinquish control of its local buses 
to allow mastership by other devices, such as direct 
memory access (DMA) channels. When relin­
quished, HLDA is the only output pin driven by the 
80376, providing near~complete isolation of the 
processor from its system (all other output pins are 
in a float condition). 

4.1 Signal Description Overview 

Ahead is a brief description of the 80376 input and 
output signals arranged by functional groups. Note 
the # symbol at the end of a signal name indicates 
the active, or asserted, state occurs when the signal 
is at a LOW voltage. When no # is present after the 
signal name, the signal is asserted when at the 
HIGH voltage level. 

Example signal: M/IO#-HIGH voltage indicates 
Memory selected 

-LOW voltage indicates 
I/O selected 

The signal descriptions sometimes refer to A.C. tim­
ing parameters, such as "t25 Reset Setup Time" and 
"t26 Reset Hold Time." The values of these parame­
ters can be found in Table 6.4. 

CLOCK (CLK2) 

CLK2 provides the fundamental timing for the 
80376. It is divided by two internally to generate the 
internal processor clock used for instruction execu­
tion. The internal clock is comprised of two 

PROCESSOR CLOCK PROCESSOR CLOCK 
PERIOD 

CLK2[ 

INTERNAL [ 
PROCESSOR CLOCK 

PERIOD . 

CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD 
"1 "2 "1 "2 

62.5 NS MIN. 
(16 MHz MAX) 

Figure 4.2. CLK2 Signal and Internal Processor Clock 
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phases, "phase one" and "phase two". Each CLK2 
period is a phase of the internal clock. Figure 4.2 
illustrates the relationship. If desired, the phase of 
the internal processor clock can be synchronized to 
a known phase by ensuring the falling edge of the 
RESET signal meets the applicable setup and hold 
times t25 and t26. 

DATA BUS (015-00) 

These three-state bidirectional siQnals provide the 
general purpose data path between the- 80376 and 
other devices. The data bus outputs are active HIGH 
and will float during bus hold acknowledge. Data bus 
reads require that read-data setup and hold times 
t21 and t22 be met relative to CLK2 for correct oper­
ation. 

ADDRESS BUS (BHE#, BLE#, A23-A1) 

These three-state outputs provide physical memory 
addresses or 1/0 port addresses. A23-A16 are LOW 
during 1/0 transfers except for 1/0 transfers auto­
matically generated by coprocessor instructions. 

During coprocessor I/O transfers, A22-A16 are driv­
en LOW, and A23 is driven HIGH so that this ad­
dress line can be used by external logic to generate 
the coprocessor select signal. Thus, the 1/0 address 
driven by the 80376 for coprocessor commands is 
8000F8H, and the 1/0 address driven by the 80376 
processor for coprocessor data is 8000FCH or 
8000FEH. 

The address bus is capable of addressing 16 Mbytes 
of physical memory space (OOOOOOH through 
OFFFFFFH), and 64 Kbyie:s Or iiO addre:s:s :space 
(OOOOOOH through OOFFFFH) for programmed 1/0. 
The address bus is active HIGH and will float during 
bus hold acknowledge. 

The Byte Enable outputs BHE# and BLE# directly 
indicate which bytes of the 16-bit data bus are in­
volved with the current transfer. BHE# applies to 
015-08 and BLE# applies to 07-00. If both BHE# 
and BLE # are asserted, then 16 bits of data. are 
being transferred. See-Table 4.1 for a complete de­
coding of these signals. The byte enables are active 
LOW and will float during bus hold acknowledge. 

Table 4.1. Byte Enable Definitions 

BHE# BLE# Function 

0 0 Word Transfer 

0 1 Byte Transfer on Upper Byte of the Data Bus, 015-08 

1 0 Byte Transfer on Lower Byte of the Data Bus, 07-00 

1 1 Never Occurs 
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BUS CYCLE DEFINITION SIGNALS 
(W/R#, D/C#, M/IO#, LOCK#) 

These three-state outputs define the type of bus cy­
cle being performed: W/R# distinguishes between 
write and read cycles, D/C# distinguishes between 
data and control cycles, M/IO# distinguishes be­
tween memory and 1/0 cycles, and LOCK# distin­
guishes between locked and unlocked bus cycles. 
All of these signals are active LOW and will float 
during bus acknowledge. 

The primary bus cycle definition signals are W/R#, 
D/C# and MIIO#, since these are the signals driv­
en valid as ADS# (Address Status output) becomes 
active. The LOCK # signal is driven valid at the same 
time the bus cycle begins, which due to address 
pipelining, could be after ADS# becomes active. Ex­
act bus cycle definitions, as a function of W/R#, 
D/C# and M/IO# are given in Table 4.2. 

LOCK # indicates that other system bus masters are 
not to gain control of the system bus while it is ac­
tive. LOCK # is activated on the CLK2 edge that be­
gins the first locked bus cycle (Le., it is not active at 
the same time as the other bus cycle definition pins) 
and is deactivated when ready is returned to the end 
of the last bus cycle which is to be locked. The be­
ginning of a bus cycle is determined when READY # 
is returned in a previous bus cycle and another is 
pending (ADS# is active) or the clock in which 
ADS# is driven active if the bus was idle. This 
means that it follows more closely with the write 
data rules when it is valid, but may cause the bus to 
be locked longer than desired. The LOCK # signal 
may be explicitly activated by the LOCK prefix on 
certain instructions. LOCK # is always asserted 
when executing the XCHG instruction, during de­
scriptor updates, and during the interrupt acknowl­
edge sequence. 

BUS CONTROL SIGNALS 
(ADS#, READY#, NA#) 

The following signals allow the processor to indicate 
when a bus cycle has begun, and allow other system 
hardware to control address pipe lining and bus cycle 
termination. 

Address Status (ADS#) 

This three-state output indicates that a valid bus cy­
cle definition and address (W/R#, D/C#, MIIO#, 
BHE#, BLE# and A23-Al) are being driven at the 
80376 pins. ADS# is an active LOW output. Once 
ADS # is driven active, valid address, byte enables, 
and definition signals will not change. In addition, 
ADS # will remain active until its associated bus cy­
cie begins (when READY # is returned for the previ­
ous bus cycle when running pipelined bus cycles). 
ADS # will float during bus hold acknowledge. See 
sections Non-Pipelined Bus Cycles (page 43) and 
Pipelined Bus Cycles (page 45) for additional infor­
mation on how ADS # is asserted for different bus 
states. 

Transfer Acknowledge (READY #) 

This input indicates the current bus cycle is com­
plete, and the active bytes indicated by BHE# and 
BLE# are accepted or provided. When READY# is 
sampled active during a read cycle or interrupt ac­
knowledge cycle, the 80376 latches the input data 
and terminates the cycle. When READY # is sam­
pled active during a write cycle, the processor termi­
nates the bus cycle. 

Table 4.2. Bus Cycle Definition 

M/IO# D/C# W/R# Bus Cycle Type Locked? 

0 0 0 INTERRUPT ACKNOWLEDGE Yes 

0 0 1 Does Not Occur -
0 1 0 1/0 DATA READ No 

0 1 1 1/0 DATA WRITE No 

1 0 0 MEMORY CODE READ No 

1 0 1 HALT: SHUTDOWN: No 
Address = 2 Address = 0 
BHE# = 1 BHE# = 1 
BLE# = 0 BLE# = 0 

1 1 O. MEMORY DATA READ Some Cycles 

1 1 1 MEMORY DATA WRITE Some Cycles 
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READY # is ignored on the first bus state of all bus 
cycles, and sampled each bus state thereafter until 
asserted. READY # must eventually be asserted tp 
acknowledge every bus cycle, including Halt Indica­
tion and Shutdown Indication bus cycles. When be­
ing sampled, READY # must always meet setup and 
hold times t19 and t20 for correct operation. 

Next Address Request (NA #) 

This is used to request pipelining. This input indi­
cates the system is piepan:~d to accept iieW' values 
of BHE#, BLE#, A23-A1, W/R#, D/C# and 
M/IO# from the 80376 even if the end of the current 
cycle is not being acknowledged on READY #. If this 
input is active when sampleq, the next bus cycle's 
address and status signals are driven onto the bus, 
provided the next bus request is already pending in­
ternally. NA # is ignored in clock cycles in which 
ADS# or READY# is activated. This signal is active 
LOW and must satisfy setup and hold times t15 and 
t16 for correct operation. See Pipelined Bus Cycles 
(page 45) and Read and Write Cycles (page 42) for 
additional information. 

BUS ARBITRATION SIGNALS (HOLD, HLDA) 

This section describes the mechanism by which the 
processor relinquishes control of its local buses 
when requested by another bus master device. See 
Entering and Exiting Hold Acknowledge (page 
52) for additional information. 

Bus Hold Request (HOLD) 

This input indicates some devic,e other than the 
80376 requires bus mastership. When control is 
Yfanteu. the 60376 iioaLs -M23-A1t BHE#, BLE#, 
015-00, LOCK#, M/IO#, D/C#, W/R# and 
ADS#, and then activates HLDA, thus entering the 
bus hold acknowledge state. The local bus will re­
main granted to the requesting master until HOLD 
becomes inactive. When HOLD becomes inactive, 
the 80376 will deactivate HLDA and drive the local 
bus (at the same time), thus terminating the hold 
acknowledge condition. 

HOLD must remain asserted as long as any other 
device is a local bus master. External pull-up resis­
tors may be required when in the hold acknowledge 
state since none of the 80376 floated outputs have 
internal pull-up resistors. See Resistor Recommen­
dations (page 59) for additional information. HOLD 
is not recognized while RESET is active but is recog­
nized during the time between the high-to-Iow tran­
sistion of RESET and the first instruction fetch. If 
RESET is asserted while HOLD is asserted, RESET 
has priority and places the bus into an idle state, 
ra~her than the hold acknowledge (high-impedance) 
state. 

HOLD is a level-sensitive, active HIGH, synchronous 
input. HOLD signals must always' meet setup and 
hold times t23 and t24 for correct operation. 

Bus Hold Acknowledge (HLDA) 

When active (HIGH), this output indicates the 80376 
has relinquished control of its local bus in response 
to an asserted HOLD Signal, and is in the bus Hold 
Acknowledge state. 

The Bus Hold Acknowledge state offers near-com­
plete signal isolation. In the Hold Acknowledge 
state, HLDA is the only Signal being driven by the 
80376. The other output signals or bidirectional sig­
nals (015-00, BHE#, BLE#, A23-A1, W/R#, 
D/C#, M/IO#, LOCK# andADS#) are in a high­
impedance state so the requesting bus master may 
control them. These pins remain OFF throughout the 
time that HLDA remains active (see Table 4.3). Pull­
up resistors may be desired on several signals to 
avoid spurious activity when no bus master is driving 
them. See Resistor Recommendations (page 59) 
for additional information. 

When the HOLD signal is made inactive, the 80376 
will deactivate HLDA and drive the bus. One rising 

, edge on the NMI input is remembered for processing 
after the HOLD input is negated. 

Table 4.3. Output Pin State during HOLD 

Pin Value Pin Names 

1 HLDA 
Float LOCK#, M/IO#, D/C#, W/R#, 

ADS#, A23-A1, BHE#, BLE#, 
015-00 

In addition to the normal usage of Hold Acknowl­
edge with DMA controllers or master· peripherals, 
the near-complete isolation has particular attractive­
ness during system test when test equipment drives 
the system, and in hardware-fault-tolerant applica­
tions. 

Hold Latencies 

The maximum possible HOLD latency depends on 
the software being executed. The actual HOLD la­
tency at any time depends on the current bus activi­
ty, the state of the LOCK# signal (internal to the 
CPU) activated by the LOCK # prefix, and interrupts. 
The 80376 will not honor a HOLD request until the 
current bus operation is complete. Table 4.4 shows 
the types of bus operations that can affect HOLD 
latency, and indicates the types of delays that 

4-786 



80376 

these operations may introduce. When considering 
maximum HOLD latencies, designers must select 
which of these bus operations are possible, and 
then select the maximum latency form among them. 

The 80376 breaks 32-bit data or 1/0 accesses into 2 
internally locked 16-bit bus cycles; the LOCK # sig­
nal is not asserted. The 80376 breaks unaligned 
16-bit or 32-bit data or 1/0 accesses into 2 or 3 inter­
nally locked i6-bit bus cycles. Again the LOCK # 
signal is not asserted but a HOLD request will not be 
recognized until the end of the entire transfer. 

Wait states affect HOLD latency. The 80376 will not 
honor a HOLD request until" the end of the current 
bus operation, no matter how many wait states are 
required. Systems with DMA where data transfer is 
critical must insure that READY # returns sufficiently 
soon. 

COPROCESSOR INTERFACE SIGNALS 
(PEREO, BUSY #, ERROR #) 

In the following sections are descriptions of signals 
dedicated to the numeric coprocessor interface. In 
addition to the data bus, address bus, and bus cycle 
definition signals, these following signals control 
communication between the 80376 and the 
80387SX processor extension. 

Coprocessor Request (PEREO) 

When asserted (HIGH), this input signal indicates a 
coprocessor request for a data operand to be trans­
ferred tolfrom memory by the 80376. In response, 
the 80376 transfers information between the co­
processor and memory. Because the 80376 has in­
ternally stored the coprocessor opcode being exe­
cuted, it performs the requested data transfer with 
the correct direction and memory address. 

PEREa is a level-sensitive active HIGH asynchro­
nous signal. Setup and hold times, t29 and t30, rela­
tive to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. This signal is 
provided with a weak internal pull-down resistor of 
around 20 Kn. to ground so that it will not float active 
when left unconnected. 

Coprocessor Busy (BUSY #) 

When asserted (LOW), this input indicates the co­
processor is still executing an instruction, and is not 
yet able to accept another. When the 80376 en­
counters any coprocessor instruction which oper­
ates on the numerics stack (e.g. load, pop, or arith­
metic operation), or the WAIT instruction, this input 
is first automatically sampled until it is seen to be 
inactive. This sampling of the BUSY # input prevents 
overrunning the execution of a previous coprocessor 
instruction. 

The F(N)INIT, F(N)CLEX coprocessor instructions 
are allowed to execute even if BUSY # is active, 
since these instructions are used for coprocessor 
initialization and exception-clearing. 

BUSY # is an active LOW, level-sensitive asynchro­
nous signal. Setup and hold times, t29 and t30, rela­
tive to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. This pin is pro­
vided with a weak internal pull-up resistor of around 
20 Kn. to Vee so that it will not float active when left 
unconnected. 

BUSY # serves an additional function. If BUSY # is 
sampled LOW at the falling edge of RESET, the 
80376 processor performs an internal self-test (see 
Bus Activity During and Following Reset on page 
54). If BUSY # is sampled HIGH, no self-test is per­
formed. 

Coprocessor Error (ERROR #) 

When asserted (LOW), this input signal indicates 
that the previous coprocessor instruction generated 
a coprocessor error of a type not masked by the 
coprocessor's control register. This input is automat­
ically sampled by the 80376 when a coprocessor 
instruction is en~untered, and if active, the 80376 
generates exception 16 to access the error-handling 
software. _ 

Several coprocessor instructions, generally those . 
which clear the numeric error flags in the coproces­
sor or save coprocessor state, do execute without 
the 80376 generating exception 16 even if ER­
ROR # is active. These instructions are FNINIT, 
FNCLEX, FNSTSW, FNSTSWAX, FNSTCW, 
FNSTENV and FNSAVE. 
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ERROR # is an active LOW, level-sensitive asyn­
chronous signal. Setup and hold times t29 and tao, 
relative to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. This pin is pro­
vided with a weak internal pull-up resistor of around 
20 K!l to Vee so that it will not float active when left 
unconnected. 

INTERRUPT SIGNALS (INTR, NMI, RESET) 

The following descriptions cover inpuis that can in­
terrupt or suspend execution of the processor's cur­
rent instruction stream. 

Maskable Interrupt Request (INTR) 

When asserted, this input indicates a request for in­
terrupt service, which can be masked by the 80376 
Flag Register IF bit. When the 80376 responds to 
the INTR input, it performs two interrupt acknowl­
edge bus cycles and, at the end of the second,­
latches an 8-bit interrupt vector on D7-DO to identify 
the source of the interrupt. 

INTR is an active HIGH, level-sensitive asynchro­
nous signal. Setup and hold times, t27 and t28, rela­
tive to the CLK2 Signal must be met to guarantee 
recognition at a particular clock edge. To assure rec­
ognition of an INTR request, INTR should remain 
active until the first interrupt acknowledge bus cycle 
begins. INTR is sampled at the beginning of every 
instruction. In order to be recognized at a particular 
instruction boundary, INTR must be active at least 
eight CLK2 clock periods before the beginning of the 
execution of the instruction. If .recognized, the 80376 
wiU begin exe'cution of the interrupt. 

Non-Maskable Interrupt Request (NMI) 

This input indicates a request for interrupt service 
which cannot be masked by software. The non­
maskable interrupt request is always processed ac­
cording to the pointer or gate in slot 2 of the interrupt 
table. Because of the fixed NMI slot assignment, no 
interrupt acknowledge cycles are performed when 
processing NMI. 

NMI is an active HIGH, rising edge-sensitive asyn­
chronous Signal. Setup and hold times, t27 and t28, 
relative to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. To assure rec­
ognition of NMI, it must be inactive for at least eight 
CLK2 periods, and then be active for at least eight 
CLK2 periods before the beginning of the execution 
of an instruction. 

Once NMI processing has begun, no additional 
NMl's are processed until after the next IRET in­
struction, which is typically the end of the NMI serv-

ice routine. If NMI is re-asserted prior to that time, 
however, one rising edge on NMI will be remem­
bered for processing after executing the next IRET 
instruction. 

Interrupt Latency 

The time that elapses before an interrupt request is 
serviced (interrupt latency) varies according to sev­
eral factors. This delay must be taken into account 
by the internJpt source. Any of the following factors 
can affect interrupt latency: 

1. If interrupts are masked, and INTR request will 
not be recognized until interrupts are reenabled. 

2. If an NMI is currently being serviced, an incoming 
NMI request will not be recognized until the 80376 
encounters the IRET instruction. 

3. An interrupt request is recognized only on an in­
struction boundary of the 80376 Execution' Unit 
except for the following cases: 

- Repeat string instructions can be interrupted 
after each iteration. 

- If the instruction loads the Stack Segment reg­
ister, an interrupt is not processed until after 
the following instruction, which should be an 
ESP load. This allows the entire stack pointer 
to be loaded without interruption. 

- If an instruction sets the interrupt flag (enabling 
interrupts), an interrupt is not processed until 
after the next instruction. 

The longest latency occurs when the interrupt re­
quest arrives while the 80376 processor is exe­
cuting a long instruction such as multiplication, di­
vision or a task-switch. 

4. Saving the Flags register and CS:EiP registers. 

5. If interrupt service routine requires a task switch, 
time must be allowed for the task switch. 

6. If the interrupt service routine saves registers that 
are not automatically saved by the 80376. 

RESET. 

This input signal suspends any operation in progress 
and places the 80376 in a known reset state. The 
80376 is reset by asserting RESET for 15 or more 
CLK2 periods (80 or more CLK2 periods before re­
questing self-test). When RESET is active, all other 
input pins are ignored, and all other bus pins are 
driven to an idle bus state as shown in Table 4.5. If 
RESET and HOLD are both active at a point in time, 
RESET takes priority even if the E!0376 was in a 
Hold Acknowledge state prior to RESET active. 

RESET is an active HIGH, level-sensitive synchro­
nous signal. Setup and hold times, t25 and t26, must 
be met in order to assure proper operation of the 
80376. 
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Table 4.5. Pin State (Bus Idle) during RESET 

Pin Name Signal Level during RESET 

AOS# 1 

015-0 0 Float 

BHE#, BLE# 0 

A23-A1 1 

W/R# 0 

O/C# 1 

MIiO# 0 

LOCK# 1 

HLOA 0 

4.2 Bus Transfer Mechanism 

All data transfers occur as a result of one or more 
bus cycles. Logical data operands of byte and word 
lengths may be transferred without restrictions on 
physical address alignment. Any byte boundary may 
be used, although two physical bus cycles are per· 
formed as required for unaligned operand transfers. 

The 80376 processor address signals are designed 
to simplify external system hardware. BHE# and 
BLE# provide linear selects for the-two bytes of the 
16-bit data bus. 

Byte Enable outputs BHE# and BLE# are asserted 
when their associated data bus bytes are involved 
with the present bus cycle, as listed in Table 4.6. 

Table 4.6. Byte Enables and Associated 
Data and Operand Bytes 

Byte Enable Associated Data Bus Signals 

BHE# 015-08 (Byte 1-Most Significant) 
BLE# 07-00 (Byte O-Least Significant) 

Each bus cycle is composed of at least two bus 
states. Each bus state requires one processor clock 
period. Additional bus states added to a single bus 
cycle are called wait states. See Bus Functional 
Description (page 39) for additional information. 

4.3 Memory and 1/0 Spaces 

Bus cycles may access physical memory space or 
1/0 space. Peripheral devices in the system may ei­
ther be memory-mapped, or I/O-mapped, or both. 
As shown in Figure 4.3, physical memory addresses 
range from OOOOOOH to OFFFFFFH (16 Mbytes) and 
I/O addresses from OOOOOOH to OOFFFFH 
(64 Kbytes). Note the 1/0 addresses used by the 
automatic 110 cycles for coprocessor communica­
tion are 8000F8H to 8000FFH, beyond the address 
range of programmed 1/0, to allow easy generation 
of a coprocessor chip select signal using the A23 
and M/IO# signals. 

OPERAND ALIGNMENT 

With the flexibility of memory addressing on the 
80376, it is possible to transfer a logical operand 
that spans more than one physical Oword or word of 
memory or I/O. Examples are 32-bit Oword or 16-bit 
word operands beginning at addresses not evenly 
divisible by 2. 

Operand alignment and size dictate when multiple 
bus cycles are required. Table 4.6a describes the 
transfer cycles generated for all combinations of log­
ical operand lengths and alignment. 

Table 4.6a. Transfer Bus Cycles 
for Bytes, Words and Dwords 

Byte-Length of Logical Operand 

1 
Physical Byle 
IAddress in xx 00 
Memory 

. (Low-Order 
Bits) 

!Transfer 
. Cycles 

b w 

Key: b = byte transfer 
w = word transfer 

01 

Ib, 
hb 

I = low-order portion 
m = mid-order portion 
x = don't care 
h = high·order portion 

2 4 

10 11 00 01 10 

w hb, Iw, hb, hw, 
I,b hw lb. Iw 

mw 

11 

mw, 
hb, 
Ib 
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FFFFFFH _--..... 

PHYSICAL 

~ W,!d 

~ 
~ggg;~~ I =---=1- COPROCESSOR 

16-MBYTE (NOTE) W.h : 
~ /NOT~ 

~ :~ 
OOFFFFH B} ACCESSIBLE 

64 kBYTE PROGRAMMED 
OOOOOOH OOOOOOH . . I/o SPACE 

PHYSICAL MEMORY SPAC~ . I/o SPACE 
240182-18 

NOTE: 
Since A23 is HIGH during automatic communication with coprocessor, A23 HIGH and MilOii' LOW can be used to easily 
generate a coprocessor select signal. . . 

Figure 4.3; Physical Memory and I/O Spaces . 

4.4 Bus Functional Description 

The 80376 has separate, parallel buses for data and 
address. The data bus is 16 bits in width, and bidi­
rectional. The address .bus .provides a 24-bit value 
using 23 signals for the 23 upper-order address bits 
and 2 Byte Enable signals to directly indicate the 
active bytes. These buses are interpreted and con­
trolled by several definition signals. 

The definition of each bus cycle is given by three 
signals: MIIO#, W/R# and D/C#. At the same 
time, a valid address is present on the byte enable 
signals, BHE # and BLE #, and the other address 
signals A23-Al' A status signal, ADS#, indicates 
when the 80376 issues Ii. new bus cycle definition 
and address. 

Collectively, the address bus, data bus and all asso­
ciated control signals are referred to simply as "the 
bus". When active, the bus performs one of the bus 
cycles below: 

1. Read from memory space 

2. Locked read from memory space 

3. Write to memory space 

4. Locked write to memory space 

5. Read from 110 space (or coprocessor) 

6. Write to 110 space (or coprocessor) 

7. Interrupt acknowledge (always locked) 

8. Indicate halt, or indicate shutdown 

Table 4.2 shows the encoding of the bus cycle defi­
nition signals for each bus cycie. See Bus Cyeie 
Definition Signals (page 35) for additonal informa­
tion. 

When the 80376 bus is not performing one of the 
activities .listed above, it is either Idle or in the Hold 
Acknowledge state, which may be detected by ex­
ternal circuitry. The idle state can be identified by the 
80376 giving no further assertions on its address 
strobe output (ADS#) since the beginning of its 
most recent bus cycle, and the most recent bus cy­
cle having been terminated. The hold acknowledge 
state is identified by the 80376 asserting its hold ac­
knowledge (HLDA) output. 

The shortest time unit of bus activity is a bus state. A 
bus state is one processor clock period (two CLK2 
periods) in duration. A complete data transfer occurs 
during a bus cycle, composed of two or more bus 
states. 

4-790 



80376 

CYCLE 1 
NON-PIPELINED 

(READ) 

CYCLE 2 
NON-PIPELINED 

(READ) 

CYCLE 3 
NON-PIPELINED 

(READ) 

T1 T2 T1 T2 T1 T2 

r/>1 1r/>2 r/>1 1r/>2 r/>1 1r/>2 r/>1 1r/>2 r/>1 1r/>2 r/>1 1r/>2 r/>1 

CLK2[ 
(iNPUT) 

BHEH,BLEH,Al-A23 [ 
M/IOH, D/CH, W/RH 

(OUTPUTS) 

ADSH[ 
(OUTPUT) 

NAH[ 
(INPUT) 

READYH [ 
(INPUT) 

LOCKH [ 
(OUTPUT) 

DO-D1S[ 
(INPUT DURING READ) 

240182-19 

Figure 4.4, Fastest Read Cycles with Non-Pipelined Timing 

The fastest 80376 bus cycle requires only two bus 
states. For example, three consecutive bus read cy­
cles, each consisting of two bus states, are shown 
by Figure 4.4. The bus states in each cycle are 
named T1 and T2. Any memory or 110 address may 
be accessed by such a two-state bus cycle, if the 
external hardware is fast enough. 

Every bus cycle continues until it is acknowledged 
by the external system hardware, using the 80376 
READY # input. Acknowledging the bus cycle at the 
end of the first T2 results in the shortest bus cycle, 
requiring only T1 and T2. If READY # is not immedi­
ately asserted however, T2 states are repeated in­
definitely until the READY # input is sampled active. 

The pipelining option provides a choice of bus cycle 
timings. Pipelined or· non-pipe lined cycles are 

selectable on a cyc\e-by-cycle basis with the Next 
Address (NA #) input. 

When pipelining is selected the address (BHE#, 
BLE# and A23-A1) and definition (W/R#, D/C#, 
MIIO# and LOCK#) of the next cycle are available 
before the end of the current cycle. To signal their 
availability, the 80376 address status output (ADS#) 
is asserted. Figure 4.5 illustrates the fastest read cy­
cles with pipelined timing. 

. Note from Figure 4.5 the fastest bus cycles using 
pipelining require only two bus states, named T1P 
and T2P. Therefore pipelined cycles allow the same 
data bandwidth as non-pipe lined cycles, but ad­
dress-to-data access time is increased by one 
T-state time compared to that of a non-pipelined cy­
cle. 
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CYCLE 1 
PIPELINED 

(READ) 

CYCLE 2 
pjPELINED 

(READ) 

CYCLE 3 
PIPELINED 

(READ) 

TlP T2P TlP T2P TlP T2P 

1/1 1 11/1 2 1/1 1 11/1 2 1/1 1 11/1 2 1/1 1 11/1 2 1/1 1 11/1 2 1/1 1 1.,2 
CLK2[ 

(INPUT) 

BHE#,BLE#,A l-A23 r 
M/!O#, D!eN, W!R# 

(OUTPUTS) L. 

ADS#[ 
(OUTPUT) 

NAN [ 
(INPUT) 

READY# [ 
(INPUT) 

LOCKN [ 
(OUTPUT) 

DO-DIS [ 
(INPUT DURING READ) 

240182-20 

Figure 4.5. Fastest Read Cycles with Pipelined Timing 

READ AND WRITE CYCLES 

. Data transfers occur as a result of bus cvcles. classi· 
fied as read or write cycles. During read· cycles, data 
is transferred fiom an a:dsinal ds'.'ice to the proces .. 
sor. During write cycles, data is transferred from the 
processor to an externa~ device. 

Two choices of bus cycle timing are dynamically se· 
lectable: non-pipe lined or pipelined. After an,idle bus 
state, the processor always uses non-pipelined tim­
ing. However the NA# (Next Address) input may be 
asserted to select pipelined timing for the next bus 
cycle. When pipelining is selected and the 80376 
has a bus request pending internally, the address 
and definition of the next cycle is made available 
even before the current bus cycle is acknowledged 
by READY#. 

Terminating a read or write cycle, like any bus cycle, 
requires acknowledging the. cycle by asserting the 
READY # input. Until acknowledged, the processor 
inserts wait states into the bus cycle, to allow adjust-

ment for the speed of any external device. External 
hardware, which has decoded the address and bus 
cycle type,' asserts the READY # input at the appro-
priate time. ' 

At the end of the second bus state within the bus 
cycle, READY # is sampled. At that time, if external 
hardware acknowledges the bus cycle by asserting 
READY #, the bus cycle terminates as shown in Fig­
ure 4.6. If READY# is negated as in Figure 4.7, the 
80376 executes another bus state (a wait state) and 
READY # is sampled again at the end of that state. 
This continues indefinitely until the cycle is aCknowl­
edged by READY # asserted. 

When the current cycle is acknowledged, the 80376 
terminates it. When a read cycle is acknowledged, 
the 80376 latches the information present at its data 
pins. When a write cycle is acknowledged, the write 
data of the 80376 remains valid throughout phase 
one of the next bus state, to provide write data hold 
time. 
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IDLE I CYCLE 1 
NON-PIPELINED 

(WRITE) 

CYCLE 2 I 
NON-PIPELINED 

(READ) 

CYCLE 3 I 
NON-PIPELINED 

(WRITE) 

IDLE I 

Ti 

CYCLE 4 I 
NON-PIPELINED 

(READ) 

IDLE I 
Ti n T1 T2 T1 T2 T1 T2 T1 T2 

CLK2 [ 

PROCESSOR CLK [ 

BHE N.BLE N. [ 
Al-A23. 

IA/ION.D/CN 

W/RN [ 

ADSN [ 

NAN [ 

READYN [ 

LOCKN [ 

DO-D1S[ 
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Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus 
cycle can immediately follow the write cycle. 

Figure 4.6. Various Non-Pipelined Bus Cycles (Zero Waii States) 

Non-Pipelined Bus Cycles 

Any bus cycle may be performed with non·pipelined 
timing. For example. Figure 4.6 shows a mixture of 
non-pipe lined read and write cycles. Figure 4.6 
shows that the fastest possible non-pipelined cycles 
have two bus states per bus cycle. The states are 
named T1 and T2. In phase one of T1, the address 
signals and bus cycle definition signals are driven 
valid and, to signal their availability. address strobe 
(ADS#) is simultaneously asserted. 

During read or write cycles. the data bus behaves as 
follows. If the cycle is a read. the 80376 floats its 
data signals to allow driving by the external device 
being addressed. The 80376 requires that all data 
bus pins be at a valid logic state (HIGH or LOW) 
at the end of each read cycle, when READY # Is 
asserted. The system MUST be designed to 
meet this requirement. If the cycle is a write, data 
Signals are driven by the 80376 beginning in phase 
two of T1 until phase one of the bus state following 
cycle acknowledgement. 
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IDLE I CYCLE 1 
NON-PIPELINED 

(READ) 

CYCLE 2 
NON-PIPELINED 

(WRITE) 

IDLE I 
Ti 

CYCLE 3 
NON-PIPELINED 

(READ) 

IDLE I 
n 

CLK2 [ 

PROCESSOR CLK [ 

BHEII.BLEII .... 
A1-A23. L 

M/IO II. D/CII 

n T1 T2 

W/RII [' ~~~-4--'/( 

ADS 11'[ 

NAil [ 

READYII [ 

LOCK II [ 

DD-D1S[ 

T1 T2 T2 T1 T2 T2 
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Idle states are shown here for diagram variety only. Write cycles are not always fOllowed by an idle state. An active bus 
cycle can immediately follow-the write cycle. 

Figure 4.7. Varl~us Non-Pipellned Bus Cycles (Various Number of Walt States) 

Figuie 4.7 iUustiatas non-pipelined bus cycles with 
one wait state added to Cycles 2 and 3. READY # is 
sampled inactive at the end of the first T2 in Cycles 
2 and 3. Therefore Cycles 2 and 3 have T2 repeated 
again. At the end of the second T2, READY # is 
sampled active. 

When address pipelining' is not used, the address 
and bus cycle definition remain valid during all wait 
states. When wait states are added and it is desir­
able to maintain non-pipe lined timing. it is necessary 
to negate NA# during each T2 state except the 

last one, as l'lhown in Figure 4.7. Cycles 2 and 3. If 
NA # is sampled active during a T2 other than the 
last uiie, the iiext state \A:ou!d be T2! or T2P instead 
of another T2. 

When address pipelining is not used, the bus states 
and transitions are completely illustrated by Figure 
4.8. The bus transitions between four possible 
states, T1, T2, Ti, and T h. Bus cycles consist of T1 
and T2, with T2 being repeated for wait states. Oth­
erwise the bus may be idle, Ti, or in the hold ac-
knowledge state T h. -
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HOLD ASSERTED 

ALWAYS 

REQUEST PENDING. 
HOLD NEGATED READY# ASSERTED. 

HOLD NEGATED. 
REQUEST PENDING 

READY# NEGATED. 
NAnlEGATED 

240182-23 

Bus States: 
T1-first clock of a non-pipelined bus cycle (80376 drives new address and asserts ADS#). 
T2-subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle. 
Ti-idle state. 
Th-hold acknowledge state (80376 asserts HLDA). 
The fastest bus cycle consists of two states: T1 and T2. 
Four basic bus states describe bus operation when not using pipelined address. 

Figure 4.8. 80376 Bus States (Not Using Plpelined Address) 

Bus cycles always begin with T1. T1 always leads to 
T2. If a bus cycle is not acknowledged during T2 and 
NA# is inactive, T2 is repeated. When a cycle is 
acknowledged during T2, "the following state will be 
T1 of the next bus cycle if a bus request is pending 
internally, or Ti if there is no bus request pending, or 
T h if the HOLD input is being asserted. 

Use of pipelining allows the 80376 to enter three 
additional bus states not shown in Figure 4.8. Figure 
4.12 on page 49 is the complete bus state diagram, 
including pipelined cycles. 

Pipellned Bus Cycles 

Pipelining is the option of requesting the address 
and the bus cycle definition of the next inter-

nally pending bus cycle before the current bus cycle 
is acknowledged with READY # asserted. ADS # is 
asserted by the 80376 when the next address is is­
sued. The pipelining option is controlled on a cycle­
by-cycle basis with the NA # input signal. 

Once a bus cycle is in progress and the current ad­
dress has been valid for at least one entire bus 
state, the NA # input is sampled at the end of every 
phase one until the bus cycle is acknowledged. Dur­
ing non-pipelined bus cycles NA# is sampled at the 
end of phase one in every T2. An example is Cycle 2 
in Figure 4.9, during which NA# is sampled at the 
end of phase one of every T2 (it was asserted once 
during the first T2 and has no further effect during 
that bus cycle). 
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FOllowing any idle bus state (Ti), bus cycles are non-pipelined. Within non-pipelined bus cycles, NA# is only sampled 
during wait states. Therefore, to begin pipelining during a group of non-pipelined bus cycles requires a non-pipelined 
cycle with at least one wait state (Cylcle 2 above). . 

;:iyui6 4.S. Traiisitloiiiii; to Pipalihln; durIn; Bur:t of e~e CyeJee 

If NA# is sampled active, the 80375 is fra~ to drive 
the address and bus cycle definition of the next bus 
cycle, and assert ADS#, as soon as it has a bus 
request internally pending. It may drive the next ad­
dress as early as the next bus state, whether the 
current bus cycle is acknowledged at that time or 
not. 

Regarding the details of pipelining, the 80376 has 
the following ChEtracteristics: 

1. The next address and status may appear as early 
as the bus state after NA# was sampled active 
(see Figures 4.9 or 4.10); In that case, state T2P 
is entered immediately. However, when there is 
not an internal bus request already pending, the 
next address and status will not be available im­
mediately after NA# is asserted and T21 is en­
tered instead of T2P (see Figure 4.11 Cycle 3). 
Provided the current bus cycle isn't yet acknow-

!edged by READY # asserted, T2P wi!! be entered 
as soon as the 80376 does drive the next address 
and status. External hardware should therefore 
observe the ADS # output as confirmation the 
next address and status are actually being driven 
on the bus. 

2. Any address and status which are validated by a 
pulse on the 80376 ADS# output will remain sta­
ble on the address pins for at least two processor 
clock periods. The 80376 cannot produce a new 
address and status more frequently than every 
two processor clock periods (see Figures 4.9, 
4.10 and 4.11). . 

3. Only the address and bus cycle definition of the 
very next. bus cycle is available. The pipelining ca­
pability cannot look further than one bus cycle 
ahead (see Figure 4.11, Cycle 1). 
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Following any idle bus state (Ti) the bus cycle is always non-pipelined and NA# is only sampled during wait states. To 
start. address pipe lining after an idle state requires a non-pipelined cycle with at least one wait state (cycle 1 above). 
The pipe lined cycles (2. 3. 4 above) are shown with various numbers of wait states. 

Figure 4.10 •. Fastest Transition to Pipelined Bus Cycle Following Idle Bus State 

The complete bus state transition diagram, including 
pipelining is given by Figure 4.12. Note it is a super­
set of the diagram for non-pipelined only, and the 
three additional bus states for pipelining are drawn 
in bold. 

The fastest bus cycle with pipelining consists of just 
two bus states, T1 P and T2P (recall for non-pipe· 
lined it is T1 and T2). T1 P is the first bus state of a 
pipe lined cycle. 

Initiating and Maintaining Pipelined Bus Cycles 

Using the state diagram Figure 4.12, observe the 
transitions from an idle state, Tj, to the beginning of 

a pipelined bus cycle T1 P. From an idle state, Ti, the 
first bus cycle must begin with T1, and is therefore a 
non-pipelined bus cycle. The next bus cycle will be 
pipelined, however, provided NA # is asserted and 
the first bus cycle ends in a T2P state (the address 
and status for the next bus cycle is driven during 
T2P). The fastest path from an idle state to a pipe­
lined bus cycle is shown in bold below: 

idle non·pipelined 
states cycle 

T1P-T2P, 

pipelined 
cycle 
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T1-T2-T2P are the states of the bus cycle that es­
tablishes address pipelining for the next bus cycle, 
which begins with T1 P. The same .is true after a bus 
hold state, shown below: 

The transition to pipelined address is shown func­
tionally by Figure 4.10. Cycle 1. Note that Cycle 1 is 
used to transition into pipelined address timing. for 
the subsequent Cycles 2, 3 and 4, which are pipe­
lined. The NA# input is asserted at the appropriate 
time to select address pipelining for Cycles 2, 3 and 
4. 

T1-T2-T2P, 

hold aknowledge non-pipelined 
states cycle 

T1P-T2P, 

pipelined 
cycle Once a bus cycle is in progress and the current ad­

dress and status has been valid for one entire bus 
state, the NA # input is sampled at the end of every 
phase one until the bus cycle is acknowledged. ' 
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T1-first clock of a non-pipelined bus cycle (80376 drives new address, status and asserts ADS#). 
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T2-subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle. 
T21-subsequent clocks of a bus cycle when NA# has been sampled asserted in the current bus cycle but there is not 
yet an internal bus request pending (80376 will not drive new address, status or assert ADS#). 
T2P-subsequent clocks of a bus cycle when NA# has been sampled asserted in the current bus cycle and there is an 
internal bus request pending (80376 drives new address, status and asserts ADS#). 
T1 P-first clock of a pipelined bus cycle. 
Ti--idle state. 
Th-hold acknowledge state (80376 asserts HLDA). 
Asserting NA# for pipelined bus cycles gives access to three more bus states: T21, T2P and T1P. 
Using pipelining the fastest bus cycle consists of T1 P and T2P. 

Figure 4_12. 80376 Processor Complete Bus States (Including Pipelining) 
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Sampling begins in T2 during Cycle 1 in Figure 4.10. 
Once NA# is sampled active during the current cy­
cle, the 80376 is free to drive a new address and bus 
cycle definition on the bus as early as the next bus 
state. In Figure 4.10, Cycle 1 for example, the next 
address and status is driven during state T2P. Thus 
Cycle 1 makes the transition to pipelined timing, 
since it begins with T1 but ends with T2P. Because 
the address for Cycle 2 is available before Cycle 2 
begins, Cycle 2 is called a pipelined bus cycle, and it 
begins with T1 P. Cycle 2 begins as soon as 
READY:# asseiled terminates Cycle 1. 

Examples of transition bus cycles are Figure 4.10, 
Cycle 1 and Figure 4.9, Cycle 2. Figure 4.10 shows 
transition during the very first cycle after an idle bus 
state, which is the fastest possible transition into ad­
dress pipelining. Figure 4.9, Cycle 2 shows a tran­
sition cycle occurring during a burst of bus cycles. In 
any case, a transition cycle is the same whenever it 
occurs: it consists at least of T1, T2 (NA # is assert­
ed at that time), and T2P (provided the 80376 has an 
internal bus request already pending, which it almost 
always has). T2P states are repeated if wait states 
are added to the cycle. 

Note that only three states (T1, T2 and T2P) are 
required in a bus cycle performing a transition from 
non-pipe lined into pipe lined timing, for example Fig­
ure 4.10, Cycle 1. Figure 4.10, Cycles 2, 3 and 4 
show that pipelining can be maintained with two­
state bus cycles consisting only of T1 P and T2P. 

Once a pipelined bus cycle is in progress, pipelined 
timing is maintained for the next cycle by asserting 
NA# and detecting that the 80376 enters T2P dur­
ing the current bus cycle. The current bus cycle must 
end iii state T2P fOi pipelining to be maintained in 
the next cycle. T2P is identified by the assertion of 
ADS#. Figures 4.9 and 4.;0 however, each show 

pipelining ending after Cycle 4 because Cycle 4 
ends in T21. This indicates the 80376 didn't have an 
internal bus request prior to the acknowledgement 
of Cycle 4. If a cycle ends with a T2 or T21, the next 
cycle will not be pipelined. 

Realistically, pipelining is almost always maintained 
as long as NA# is sampled asserted. This is so be­
cause in the absence of any othe~ request, a code 
prefetch request. is always internally pending until 
the instruction decoder and code prefetch queue are 
complately fu!!. Therefore pipe!ining is maintained 
for long bursts of bus cycles, if the bus is available 
(Le., HOLD inactive) and NA.# is sampled active in 
each of the bus cycles. 

INTERRUPT ACKNOWLEDGE (INTA) CYCLES 

In repsonse to an interrupt request on the INTR in­
put when interrupts are enabled, the 80376 performs 
two interrupt acknowledge cycles. These bus cycles 
are similar to read cycles in that bus definition sig­
nals define the type of bus activity taking place, and 
each cycle continues until acknowledged by 
READY # sampled active. 

The state of A2 distinguishes the first and second 
interrupt acknowledge cycles. The byte address 
driven during the first interrupt acknowledge cycle is 
4 (A23-A3, A1, BLE# LOW, A2 and BHE# HIGH). 
The byte address driven during the second interrupt 
acknowledge cycle is 0 (A23-A1, BLE# LOW and 
BHE# HIGH). 

The LOCK # output is asserted from the beginning 
of the first interrupt acknowledge cycle until the end 
of the second interrupt acknowledge cycle. Four idle 
bus states, Ii, are inserted by the 80376 between 
the two interrupt acknowledge cycles for compatibil­
ity with the interrupt specification T RHRL of the 
8259A Interrupt Controller and the 82370 Integrated 
Peripheral. 
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Interrupt Vector (0-255) is read on 00-07 at end of second Interrupt Acknowledge bus cycle. 
Because each Interrupt Acknowledge bus cycle is followed by idle bus states, asserting NA# has no practical effect. 
Choose the approach which is simplest for your system hardware design. 

Figure 4.13. Interrupt Acknowledge Cycles 

During both interrupt acknowledge cycles, 015-00 
float. No data is read at the end of the first interrupt 
acknowledge cycle. At the end of the second inter­
rupt acknowledge cycle, the 80376 will read an ex­
ternal interrupt vector from 07-00 of the data bus. 
The vector indicates the specific interrupt number 
(from 0-255) requiring service. 
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HALT INDICATION CYCLE 

The 80376 execution unit halts as a result of execut­
ing a HL T instruction. Signaling its entrance into the 
halt state, a halt indication cycle is performed. The 
halt indication cycle is identified by the state of the 
bus definition signals shown on page 34, Bus Cycle 
Definition Signals, and a byte address of 2. The 
halt indication cycle must be acknowledged by 
READY # asserted. A halted 80376 resumes execu­
tion when INTR (if interrupts are enabled), NMI or 
RESET is asserted. 
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Figure 4.14. Example Halt Indication Cycle fro":, Non·Pipelined Cycle 

SHUTDOWN INDICATION CYCLE 

The 80376 shuts down as a re.sult of a protection 
fault while attempting to process a double fault. Sig­
naling its entrance into the shutdown state, a shut­
down indication cycle is performed. The shutdown 
indication cycle is identified by the state of the bus 
definition signals shown on page 34 Bus Cycle Def· 
Inition Signals and a byte address of O. The shut­
down indication cycle must be acknowledged by 
READY"" asserted. A shutdown 80376 resumes ex­
ecution when NMI or RESET is asserted. 

ENTERING AND ExiTiNG HOLD 
ACKNOWLEDGE 

The bus hold acknowledge state, T h' is entered in 
response to the HOLD input being asserted. In the 
bus hold acknowledge state, the 80376 floats all 
outputs or bidirectional signals, except for HLDA. 
HLDA is asserted as long as the 80376 remains in 
the bus hold acknowledge state. In the bus hold ac­
knowledge state, all inputs except HOLD and RE­
SET are ignored. 
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Figure 4.15. Example Shutdown Indication Cycle from Non-Pipelined Cycle 

T h may be entered from a bus idle state as in Figure 
4.16 or after the acknowledgement of the current 
physical bus cycle if the LOCK # signal is not assert­
ed, as in Figures 4.17 and 4.18. 

This exited in response to the HOLD input being 
negated. The following state will be Tj as in Figure 
4.16 if no bus request is pending. The following bus 

state will be T1 if a bus request is internally pending, 
as in Figures 4.17 and 4.18. This exited in response 
to RESET being asserted. 

If a rising edge occurs on the edge-triggered NMI 
input while in T h, the event is remembered as a non­
maskable interrupt 2 and is serviced when This exit­
ed unless the 80376 is reset before This exited. 
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NOTE: 
For maximum design flexibility the 80376 has no internal pull-up resistors on its outputs. Your design may require an 
external pull up on ADS# and other 80376 outputs to keep them negated during float periods. 

Figure 4.16. Requesting Hold from Idle Bus 

RESET DURING HOLD ACKNOWLEDGE 

RESET being asserted takes priority over HOLD be­
ing asserted. If RESET is asserted while HOLD re­
mains asserted, the 80376 drives its pins to defined 
states during reset, as in Table 4.5, Pin State Dur­
ing Reset, and performs internal reset activity as 
usual. 

If HOLD remains asserted when RESET is inactive, 
the 80376 enters the hold acknowledge state before 
performing its first bus cycle, provided HOLD is still 
asserted when the 80376 processor would other-

wise perform its first bus cycle. If HOLD remains as­
serted when RESET is inactive, the BUSY IF inpu~ is 
still sampled as usual to determine whether a self 
test is being requested. 

BUS ACTIVITY DURING AND FOLLOWING 
RESET 

RESET is the highest priority input signal, capable of 
interrupting any processor activity when it is assert­
ed. A bus cycle in progress can be aborted at any 
stage, or idle states or bus hold acknowledge states 
discontinued so that the reset state is established. 
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HOLD is a synchronous input and can be asserted at any CLK2 edge. provided setup and hold (t23 and t24) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency. 

Figure 4.17. Requesting Hold from Active Bus (NA # Inactive) 

RESET should remain asserted for at least 15 CLK2 
periods to ensure it is recognized throughout the 
80376. and at least 80 CLK2 periods if a 80376 self­
test is going to be requested at the falling edge. RE­
SET asserted pulses less than 15 CLK2 periods may 
not be recognized. RESET pulses less than 80 CLK2 

periods followed by a self-test may cause the self­
test to report a failure when no true failure exists. 

Provided the RESET falling edge meets setup and 
hold times t25 and t26. the internal processor clock 
phase is defined at that time as illustrated by Figure 
4.19 and Figure 6.7. 

4-805 



intJ 80376 

CLK2[ 

PROCESSOR CLK [ 

HOLD [ 

HLDA[ 

BHE#. BLE#. Al-A23. [ 
1.1/10#. D/C#. W/R# 

ADS#[ 

TIP 

CYCLE 1 
PIPELINED 

(WRITE) 

T21 T21 

HOLD CYCLE 2 
ACKNOWLEDGE NON-PIPELINED 

(READ) 

Th Th TI T2 

NA# [ ~"'..Qj'l~~~~~~~~~~~~ 

240182-33 

NOTE: 
HOLD is a synchronous input and can be asserted at any CLK2 edge. provided setup and hold (t23 and t241 require­
ments are met. This waveform is useful for determining Hold Acknowledge latency. 

Flg'ure 4.18. Requesting Hold from Idle Bus (NA# Active) 

An 80376 self-test may be requested at the time RE­
SET goes inactive by having the BUSY # input at a 
LOW level as shown in Figure 4.19. The self-test 
requires (220 + approximately 60) CLK2 periods to . 
complete. The self-test duration is not affected by 
the test results. Even if the self-test indicates a 

problem, the 80376 attempts to proceed with the 
reset sequence afterwards. 

After the RESET falling edge (and after the self-test 
if it was requested) the 80376 performs an internal 
initialization sequence for approximately 350 to 450 
CLK2 periods. 
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NOTES: 
1. BUSY# should be held stable for 8 CLK2 periods before and after the CLK2 period in which RESET falling edge 
occurs. 
2. If self·test is requested. the 80376 outputs remain in their reset state as shown here. 

Figure 4.19. Bus Activity from Reset until First Code Fetch 

4.5 Self-Test Signature 

Upon completion of self·test (if self·test was reo 
quested by driving BUSY # LOW at the falling edge 
of RESET) the EAX register will contain a signature 
of OOOOOOOOH indicating the 80376 passed its self· 
test of microcode and major PLA contents with no 
problems detected. The passing signature in EAX. 
OOOOOOOOH. applies to all 80376 revision levels: Any 
non-zero signature indicates the 80376 unit is faulty. 

4.6 Component and Revision 
Identifiers 

To assist 80376 users, the 80376 aft~r reset holds a 
component identifier and revision identifier in its OX 
register. The upper 8 bits of OX hold 33H as identifi­
cation of the 80376 component. (The lower nibble, 
03H. refers to the Intel386™ architecture. The up· 
per nibble, 30H, refers to the third' member of the 
Intel386 family). The lower 8 bits of OX hold an 
8·bit unsigned binary number related to the 
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component revision level. The revision identifier will, 
in general, chronologically track those component 
steppings which are intended to have certain im­
provements or distinction from previous steppings. 
The 80376 revision identifier will track that of the 
80386 where possible. 

The revision identifier is intended to assist 80376 
users to a practical extent. However, the revision 
identifier value is not guaranteed to change with ev­
ery stepping revision, or to follow a completely uni­
form numericai sequence, depending on the type or 
intention of revision, or manufacturing materials re­
quired to be changed. Intel has sole discretion over 
these characteristics of the component. 

Table 4.7. Component and 
Revision Identifier History 

B0376 Stepping Name Revision Identifier 

AO 05H 

4.7 Coprocessor Interfacing 

The 80376 provides an automatic interface for the 
Intel 80387SX numeric floating-point coprocessor. 
The 80387SX coprocessor uses an 1/0 mapped in­
terface driven automatically by the 80376 and as­
sisted by three dedicated signals: BUSY #, ER­
ROR # and PER EO. 

As the 80376 begins supporting a coprocessor in­
struction, it tests the BUSY # and ERROR # signals 
to determine if the coprocessor can accept its next 
instruction. Thus, the BUSY # and ERROR # inputs 
eliminate the need for anv "oreamble" bus cvcles 
for communication between processor and coproc­
eSSOi. The S0387SX can be given its command op­
code immediately. The dedicated signals provide in­
struction synchronization, and eliminate the need of 
using the 80376 WAIT opcode (9BH) for 80387SX 
instruction synchronization (the WAIT opcode was 
required when the 8086 or 8088 was used with the 
8087 coprocessor). 

Custom coprocessors can be included in 80376 
based systems by memory-mapped or I/O-mapped 
interfaces. Such coprocessor interfaces allow a 
completely custom protocol, and are not limited to a 
set of coprocessor protocol "primitives". Instead, 
memory-mapped or I/O-mapped interfaces may use 
all applicable 80376 instructions for high-speed co­
processor communication. The BUSY # and 

ERROR # inputs of the 80376 may also be used for 
the custom coprocessor interface, if such hardware 
assist is desired. These signals can be tested by the. 
80376 WAIT opcode (9BH). The WAIT instruction 
will wait until the BUSY # input is inactive (interrupta­
ble by an NMI or enabled INTR input), but generates 
an exception 16 fault if the ERROR # pin is active 
when the BUSY # goes (or is) inactive. If the custom 
coprocessor interface is memory-mapped, protec­
tion of the addresses used for the interface can be 
provided with the segmentation mechanism of the 
80376. if the custom interface is iiO-mapped, pro­
tection of the interface can be provided with the 
80376 10PL (liD Privilege Level) mechanism. 

The 80387SX numeric coprocessor interface is liD 
mapped as shown in Table 4.8. Note that the 
80387SX coprocessor interface addresses are be­
yond the OH-OFFFFH range for programmed 1/0. 
When the 80376 supports the 80387SX coproces­
sor, the 80376 automatically generates bus cycles to 
the coprocessor interface addresses. 

Table 4.B Numeric Coprocessor Port Addresses 

Address in B0376 B03B7SX 
1/0 Space Coprocessor Register 

8000F8H Opcode Register 
8000FCH Operand Register 
8000FEH Operand Register 

SOFTWARE TESTING FOR COPROCESSOR 
PRESENCE 

When software is used to test coprocessor 
(80387SX) presence, it should use only the following 
coprocessor opcodes: FNINIT, FNSTCW and 
FNSTSW. To use other coprocessor opcodes when 
a coprocessor is known to be not present, first set 
EM = 1 in the 80376 CRO register. 

5.0 PACKAGE THERMAL 
SPECIFICATIONS 

The Intel 80376 embedded processor is specified 
for operation when case temperature is within the 
range of 0·C-115·C for the ceramic 88-pin PGA 
package, and 0·C-110·C for the 100-pin plastic 
package. The case temperature may be measured 
in any environment, to determine whether the 80376 
is within specified operating range. The case tem­
perature should be measured at the center of the 
top surface. 
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The ambient temperature is guaranteed as long as 
T c is not violated. Th'e ambient temperature can be 
calculated from the Bjc and Bja from the following 
equations: 

TJ = Te + POOle 

TA = Tj - P*Oja 

Tc = Ta + PO[Oja - 0id 

Values for Bja and Bjc are given in Table 5.1 for the 
100-lead fine pitch. Bja is given at various airflows. 
Table 5.2 shows the maximum T a allowable (without 
exceeding T c> at various airflows. Note that T a can 
be improved further by attaching "fins" or a "heat 
sink" to the package. P is calculated using the maxi­
mum hot Icc. 

Table 5_1. 80376 Package Thermal 
Characteristics Thermal Resistances 

eC/Watt) Bje and BJB 

BiB Versus Airflow-ft/min (m/sec) 

Package Bte 0 200 400 600 800 1000 
(0) (1.01) (2.03) (3.04) (4.06) (5.07) 

100-Lead 7 33 27 24 21 18 17 
Fine Pitch 

88-Pin 2 25 20 17 14 12 11 
PGA 

Assuming Icc hot of 360 rnA, Vee of 5.0V, and a 
TeASE of 11 O·C for plastic and 115·C for the 88-Pin 
PGA Package: 

Table 5.2. 80376 
Maximum Allowable Ambient 

Temperature at Various Airflows 

T A("C) vs Airflow-ft/min (m/sec) 

Package BJe 0 200 400 600 800 1000 
(0) (1.01) (2.03) (3.04) (4.06) (5.07) 

100-Lead 7 63 74 79 85 91 92 
Fine Pitch 

88-Pin 2 74 83 88 93 97 99 
PGA 

6.0 ELECTRICAL SPECIFICATIONS 

The following sections describe recommended elec­
trical connections for the 80376, and its electrical 
specifications. 

6.1 Power and Grounding 

The 80376 is implemented in CHMOS III technology 
and has modest power requirements. However, its 
high clock frequency and 47 output buffers (address, 
data, contror, and HLDA) can cause power surges 
as multiple output buffers drive new signal levels 
simultaneously. For clean on-chip power distribution 
at high frequency, 14 Vee and 18 VSS pins separate­
ly feed functional units of the 80376. 

Power and ground connections must be made to all 
external Vee and GND pins of the 80376. On the 
circuit board, all Vee pins should be connected on a 
Vee plane and all VSS pins should be connected on 
a GND plane. 

POWER DECOUPLING RECOMMENDATIONS 

Liberal decoupling capacitors should be placed near 
the 80376. The 80376 driving its 24-bit address bus 
and . 16-bit data bus at high frequencies can cause 
transient power surges, particularly when driving 
large capacitive loads. Low inductance capacitors 
and interconnects are recommended for best high 
frequency electrical performance. Inductance can 
be reduced by shortening circuit board traces be­
tween the 80376 and decoupling capacitors as 
much as possible. 

RESISTOR RECOMMENDATIONS 

The ERROR # and BUSY # inputs have internal pull­
up resistors of approximately 20 KO and the PEREO 
input has an internal pull-down resistor of approxi­
mately 20 KO built into the 80376 to keep these 
signals inactive when the 80387SX is not present in 
the system (or temporarily removed from its socket). 
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In typical designs, the external pull-up resistors 
shown in Table 6.1 are recommended. However, a 
particular design may have reason .to adjust the re­
sistor values recommended here, or alter the use of 
pull-up resistors in other ways. 

Pin Signal 

16 ADS# 

Table 6.1. Recommended 
Resl!Jtor Pull-Ups to Vee 

Pull-Up Value Purpose 

20K!l ± 10% Lightly Pull ADS# 
Inactive during 80376 
Hold Acknowledge 
States 

26 LOCK# 20K!l ± 10% Lightly Pull LOCK # 
Inactive during 80376 
Hold Acknowledge 
States 

OTHER CONNECTION RECOMMENDATIONS 

For reliable operation, always connect unused in­
puts to an appropriate signal level. N/C pins should 
always remain unconnected. Connection of N/C 
pins to Vee or Vss will result In incompatibility 
with future stepplngs of the 80376. 

Particularly when not using interrupts or bus hold (as 
when first prototyping), prevent any chance of spuri­
ous activity by connecting these associated inputs to 
GND: 

-INTR 
-NMI 

. ~HOLD 

If not using address pipelining connect the NA # pin 
to a pull-up resistor in the range of 20 K!l to Vee. 

6.2 Absolute Maximum Ratings 
Table 6.2. Maximum Ratings 

Parameter Maximum Rating . 

Storage Temperature - 65·C to + 150·C 

Case Temperature - 65·C to + 120·C 
under Bias 

Supply Voltage with -0.5V to + 6.5V 
Respect to Vss 

Voltage on Other Pins -0.5V to (Vee + 0.5)V 

Table 6.2 gives a stress ratings only, and functional 
operation at the maximums is not guaranteed. Func­
tional operating conditions are given in Section 6.3, 
D.C. Specifications, and Section 6.4, A.C. Specifi­
cations. 

Extended exposure to the Maximum Ratings may af­
fect device reliability. Furthermore, although the 
80376 contains protective circuitry to resist damage 
from sta~ic electric discharge, always take precau­
tions to avoid high static voltages or electric fields. 
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6.3 D.C. Specifications 

ADVANCE INFORMATION SUBJECT TO CHANGE 
Table 6.3: 80376 D.C. Characteristics 

Functional Operating Range: Vee = 5V ±10%; TeASE = ODC to 115DC 88-pin PGA, TeASE = ODC to 110DC 
100-pin plastic 

Symbol 

IOL = 4mA: 

IOL = 5mA: 

VOH 

IOH = -1 mA: 

IOH = - 0.2 mA: 

Parameter 

Input LOW Voltage 

Input HIGH Voltage 

CLK2 Input LOW Voltage 

CLK2 Input HIGH Voltage 

Output LOW Voltage 

BHE#, BLE#, W/R#, 
D/C#, MIIO#, LOCK#, 
ADS#,HLDA 

Output High Voltage 

IOH = -0.9 mA: BHE#, BLE#, W 
D/C#, MIIO# 

IOH = -0.18 mA: 

III 

* 

lee 

COUT 

NOTES: 

ADS#, HLD 

Input Leakage Current 
(Busy# and ERROR# Pins) 

Output Leakage Current 

Supply Current 
at HOT 

Input Capacitance 

Output or 1/0 Capacitance 

CLK2 Capacitance 

1. Tested at the minimum operating frequency of the part. 
2. PEREa input has an internal pull·down resistor. 

Min 

-0.3 

2.0 

-0.3 

Vee - 0.8 

3. BUSY# and ERROR# inputs each have an internal pull-up resistor. 

Max Unit 

+0.8 V(1) 

Vee +0.3 V(1'Fh 

V(1) 

V(1) 

±15 p.A,OV ::;; VIN ::;; Ved1) 

200 p.A, VIH = 2.4V(l, 2) 

-400 p.A, VIL = 0.45V(3) 

±15 p.A, 0.45V ::;; VOUT ::;; Vee(l) 

400 mA(4) 

360 mA(6) 

10 pF, Fe = 1 MHz(5) 

12 pF, Fe = 1 MHz(5) 

20 pF, Fe = 1 MHz(5) 

4. Icc max measurement at worse case frequency, Vee and temperature (O'C). 
5. Not 100% tested. 
6. Icc HOT max measurement at worse case frequency, Vcc and max temperature. 
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6.4 A.C. Specifications 

ADVANCE INFORMATION SUBJECT TO CHANGE 
Table 6.4. 80376 A.C. Characteristics at 16 MHz 

Functional Operating Range: Vee = 5V ±10%; TeAsE = O°C to 115°C for 88-pin PGA, O°C to 110°C for 
100-pin plastic 

Symbol Parameter Min Max Unit Figure Notes 

Operating Frequency 4 16 MHz Half CLK2 Freq 

t1 CLK2 Period 31 125 ns 6.3 :/. .-

t2a CLK2 HIGH Time 9 ns 

t2b CLK2 HIGH Time 5 - 0.8)V(3) 

tSa CLK2 LOW Time 9 

tSb CLK2 LOW Time 7 

4 CLK2 Fall Time 

t5 CLK2 Rise Time 0.8V to (Vee-0.8)(S) 

t6 A2S-A1 Valid Delay 

t7 A2S-A1 Float Delay 

ts BHE#, BLE#, LOCK# 
Valid Delay 

t9 BHE#, BLE#, LOCK# (1) 

Float Delay 

t10 W/R#, M/IO#, 01 6.5 CL = 75 pF(4) 
ADS# Valid Del 

t11 W/R#, Mil ns 6.6 (1) 

ADS# FI 

t12 40 ns 6.5 CL = 120 pF(4) 

t1S 4 35 ns 6.6 (1) 

t14 6 33 ns 6.6 CL = 75 pF(4) 

t15 NA# Setup Time 5 ns 6.4 

t16 NA# Hold Time 21 ns 6.6 

t19 READY # Setup Time 19 ns 6.4 

t20 READY # Hold Time 4 ns 6.4 

t21 Setup Time 015-00 Read Data 9 ns 6.4 

t22 Hold Time 015-00 Read Data 6 ns 6.4 

t2S HOLD Setup Time 26 ns 6.4 

t24 HOLD Hold Time 5 ns 6.4 

t25 RESET Setup Time 13 ns 6.7 

t26 RESET Hold Time 4 ns 6.7 

NOTE: 
The SOS76 does not have t17 or t18 timing specifications. 

4-813 



inter 80376 

Table 6.4. 80376 A.C. Characteristics at 16 MHz 
Functional Operating Range: Vcc = 5V ±10%; TCASE = O·C to 115·C for 80-pin PGA, O·C to 110·C for 
100-pin plastic (Continued) 

Symbol Parameter Min Mal(,j(-~ Unit Figure Notes 

t27 NMI, INTR Setup Time 16 ~'"f'<~.r {~"ns 6.4 (2) 

t28 NMI, INTR Hold Time 16 
"" 

\~'> ,z6';' ns 6.4 (2) 

t29 PEREQ,ERROR#,BUSY# ~Z0' e;:,':'> 6.4 (2) 1&i:, ' 4:,- ,~ ns 
Setup Time ~'k ""i"",,~ .' ~ ~ .. ,;'<";;;' 

tao PEREQ,ERROR#,BUSY#c~~ 
~"\>" _ .(,'~ '-'v. "f " 6_4 ,." 
~ ~~"'>.,,, flS ,-, 

Hold Time " 't& ~'t~:; ~" 
.v 

NOTES: ~.",,;i<y~~'<; , 
1. Float condition occurs \\(hen maximu t:+r)~'4iecomes less than ILO in magnitude. Float delay is not 100% 
tested. '\ ~~ 
2. These inputs are allowed to be as}lnchr 0 CLK2. The setup and hold specifications are given for testing purposes, 
to assure recognition within a specific CL od, 
a, These are not tested. TheY,are guarante d by design characterization. 
4. Tested with CL set to 50 pF and derated to support the indicated distributed capacitive load. See Figure 6.S for the 
capacitive derating curve. 

A.C. TEST LOADS A.C. TIMING WAVEFORMS 

803760-----, 
OUTPUT ..l.. 

~CL=50PF 

240182-36 

Figure 6.2. A.C. Test Loads 

, , 

Tx Tx 

CLK2 [ 

READY# [ ~~IA. __ + __ oIWo~ 

HOLD [ ~~IIUo. __ +-__ .r.w.~ 

DO-DIS [ 
(INPUT) ~>.>.>.lIlUo. __ +-__ .r.w.~ 

NA# [ 

INTR. [ 
NIII 

240182-37 

Figure 6.3. CLK2 Waveform 

Tx 

240182-38 

Figure 6.4. A.C. Timing Waveforms-Input Setup and Hold Timing 
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CLK2 [ 

BHEH. BLEH. [ 
LOCKH 

W/RH.M/IOH. [ 
D/CH.ADSH 

A1-A23 [ 

00-015 [ 
(OUTPUT) 

HLDA [ 

80376 

Tx 

Figure 6.5. A.C. Timing Waveforms-Output Valid Delay Timing 

CLK2 [ 

BHE H. BLE H. [ 
LOCKH 

W/RH. M/IOH. [ 
D/CH.ADSH 

A1-A23 [ 

00-015 [ 

HLDA [ 

1/11 
Th nOR T1 

1/12 1/12 

(HIGH Z) 

@ALSO APPLIES TO DATA FLOAT WHEN WRITE 
CYCLE IS FOLLOWED BY READ OR IDLE 

240182-39 

MAX 

240182-40 

Figure 6.6. A.C. Timing Waveforms-Output Float Delay and HLDA Valid Delay Timing 
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-RESET-·I-----

CLK2 [ 

RESET [ 

240182-41 
The second internal processor phase following RESET high-to-Iow transition (provided t25 and t26 are met) is <1>2. 

F!gure 5.? A.C. Tim!!"!g Waveforms-RESET Set!.!p and Hold Timing, and Int6ma! Phase 

Typical Capacitive Derating 
25 

~ 20 

~ 15 
c 

~ 10 

!:i 
§ 5 

--Low to High 
X-High to Low 

o 

~ 

~ ~ ~ 
,.., 

~ 

25 50 75 100 125 150 

CAPACITIVE LOAD (pFJ 

240182-42 

Figure 6.B. Capacitive Derating Curve 

Typical Slew Rates at TTL Levels 
:!p.SV to 2.0V and 2.0V to O.SY) . 

20 I I I I I I I 
! 151 I I I I I I 

'lwe 
--Low to High· 
X-High to Low 

25 50 75 100 125 150 

CAPACITANCE 

240182-44 

Figure 6.10. TTL Level Slew 
Rates for Output Buffers 
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Typical Slew Rates 
at CMOS Levels 
3O..---....,.-,r--,---,---r--, 

25r--r~r-~~-+--1 

25 50 75 100 125 150 

CAPACITANCE 

240182-43 

Figure 6.9. CMOS Level Slew 
Rates for Output Buffers 

ICC MEASURED AT WORST CASE Vee AND TEMPERATURE 
D~_~ __ -L __ L-_~_~-L_~ 

4 8 10 12 14 16 

FREQUENCY (MHz) 

240182-45 

Figure 6.11. Typical Icc vs Frequency 
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6.5 Designing for ICETM-376 Emulator 
(Advanced Data) 

The 376 ·embedded processor in-circuit emulator 
product is the ICE-376 emulator. Use of the emula­
tor requires the target system to provide a socket 
that is compatible with the ICE-376 emulator. The 
B0376 offers two different probes for emulating user 
systems: an BB-pin PGA probe and a 100-pin fine 
pitch flat-pack probe. The 100-pin fine pitch flat­
pack probe requires a socket, called the 100-pin 
PQFP, which is available from 3-M text-tool (part 
number 2-0100-07243-000). The ICE-376 emulator 
probe attaches to the target system via an adapter 
which replaces the B0376 component in the target 
system. Because of the high operating frequency of 
B0376 systems and of the ICE-376 emulator, there is 
no buffering between the B0376 emulation proces­
sor in the ICE-376 emulator probe and the target 
system. A direct result of the non-buffered intercon­
nect is that the ICE-376 emulator shares the ad­
dress and data bus with the user's system, and the 
RESET signal is intercepted by the ICE emulator 
hardware. In order for the ICE-376 emulator to be 
functional in the user's system without the Optional 
Isolation Board (OIB) the designer must be aware of 
the following conditions: 

1. The bus controller must only enable data trans­
ceivers onto the data bus during valid read cycles 
of the B0376, other local devices or other bus 
masters. 

2. Before another bus master drives the local proc­
essor address bus, the other master must gain 
control of the address bus by asserting HOLD and 
receiving the HLDA response. 

3. The emulation processor receives the RESET sig­
nal 2 or 4 CLK2 cycles later than an B0376 would, 
and responds to RESET later. Correct phase of 
the response is guaranteed. 

In addition to the. above considerations, the ICE-376 
emulator processor module has several electrical 
and mechanical characteristics that should be taken 
into consideration when designing the B0376 sys­
tem. 

Capacitive Loading: ICE-376 adds up to 27 pF to 
each B0376 signal. . 

Drive Requirements: ICE-376 adds one FAST TTL 
load on the CLK2, control, aqdress, and data lines. 
These loads are within the processor module and 
are driven by the B0376 emulation processor, which 
has standard drive and loading capability listed in 
Tables 6.3 and 6.4. 

Power Requirements: For noise immunity and 
CMOS latch-up protection the ICE-376 emulator 
processor module is powered by the user system. 
The circuitry on the processor module draws up to 
1.4A including the maximum B0376 IcC from the 
user B0376 socket. 

80376 Location and Orientation: The ICE-376 em­
ulator processor module may require lateral clear­
ance. Figure 6.12 shows the clearance requirements 
of the iMP adapter and Figure 6.13 shows the clear­
ance requirements of the BB-pin PGA adapter. The 

1--------- 17.5" ---------1>1 
1--_---...,\ 

4.0" Do 

00 ~ ................................ -J 

------
FLEXIBLE 

- -=:::: :. -::::::::::--=-=--
FLEXIBLE 

0--1-10 ------------26.75" -------------1>, 
c~~--~========~srs-========~b~=It~~' 

r= = e==;u, 
1.25" 

Figure 6.12. Preliminary ICETM·376 Emulator User Cable with PQFP Adapter 
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" 

" 

~ 
flEX­
IBLE 
~ 

PIN 1 

1. 
~ 
lihJiJ 

240182-50 

Figure 6.13. Preliminary ICETM-376 Emulator User Cable with SS-Pin PGA Adapter 

optional isolation board (OIB), which provides extra 
electrical buffering and has the same lateral clear­
ance requirements as Figures 6.12 and 6.13, adds 
an additional 0.5 inches to the vertical clearance re­
quirement. This is illustrated in Figure 6.14. 

Optional Isolation Board (OIB) and the CLK2 
speed reduction: Due to the unbuffered probe de­
sign, the ICE-376 emulator is susceptible to errors 

on the user's bus. The OIB allows the ICE-376 emu­
lator to function in user systems with faults (shorted 
Signals, etc.). After electrical verification the OIB 
may be removed. When the OIB is installed, the user 
system must have a maximum CLK2 frequency of 20 
MHz. 

On 1+-1 

0 
--12.75"-----1'1 ~:.:~ 

I I II -----------==----~ ll"'l-------=---=--:.--~------...... -----::~--...I11 rirx- 'ik~ 
I I I II _ =---=~l=~Xl_~-l~ __ _ ii _-=-:.--=-== _ flEXIBLE =-=-=- I ~ 
~ ___ --'I I f PI~ 1 

1-----------------22.0"----------------+1 

240182-51 

Figure 6.14. Preliminary ICETM-376 Emulator User Cable with OIB and PQFP Adapter 
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7.0 DIFFERENCES BETWEEN THE 
80376 AND THE 80386 

The following are the major differences between the 
80376 and the 80386. 

1. The 80376 generates byte selects on BHE # and 
BLE# (like the 8086 and 80286 microprocessors) 
to distinguish the upper and lower bytes on its 
16-bit data bus. The 80386 uses four-byte selects, 
BEO#-BE3#, to distinguish between the differ­
ent bytes on its 32-bit bus. 

2. The 80376 has no bus sizing option. The 80386 
can select between either a 32-bit bus or a 16-bit 
bus by use of the BS16# input. The 80376 has a 
16-bit bus size. 

3. The NA# pin operation in the 80376 is identical to 
that of the NA # pin on the 80386 with one excep­
tion: the NA# pin of the 80386 cannot be activat­
ed on 16-bit bus cycles (where BS16# is LOW in 
the 80386 case), whereas NA# can be activated 
on any 80376 bus cycle. 

4. The contents pf all 80376 registers at reset are 
identical to the contents of the 80386 registers at 
reset, except the OX register. The OX register 
contains a component-stepping identifier at reset, 
i.e. 

in 80386, after reset OH = 3 indicates 80386 
OL = revision number; 

in 80376, after reset OH = 33H indicates 80376 
OL = revision number. 

5. The 80386 uses A31 and M/IO# as a select 
for numerics coprocessor. The 80376 uses the 
A23 and MIIO# to select its numerics coproc­
essor. 

6. The 80386 prefetch unit fetches code in four­
byte units. The 80376 prefetch unit reads two 
bytes as one unit (like the 80286 microproces­
sor). In BS16# mode, the 80386 takes two 
consecutive bus cycles to complete a prefetch 
request. If there is a data read or write request 
after the prefetch starts, the 80386 will fetch 
all four bytes before addressing the new re­
quest. 

7. The 80376 has no paging mechanism. 

8. The 80376 starts executing code in what corre­
sponds to the 80386 protected mode. The 80386 
starts execution in real mode, which is then used 

. to enter protected mode. 

9. The 80386 has a virtual-86 mode that allows the 
execution of a real mode 8086 program as a task 
in protected mode. The 80376 has no virtual-86 
mode. 

10. The 80386 maps a 48-bit logical address into a 
32-bit physical address by segmentation and 
paging. The 80376 maps its 48-bit logical ad­
dress into a 24-bit physical address by segmen­
tation only. 

11. The 80376 uses the 80387SX numerics coproc­
essor for floating point operations, while the 
80386 uses the 80387 coprocessor. 

12. The 80386 can execute from 16-bit code seg­
ments. The 80376 can only execute from 32-bit 
code Segments. 

8.0 INSTRUCTION SET 

This section describes the 376 embedded processor 
instruction set. Table 8.1 lists all instructions along 
with instruction encoding diagrams and clock 
counts. Further details of the instruction encoding 
are then provided in the following sections, which 
completely describe the encoding structure and the 
definition of all fields occurring within 80376 instruc­
tions. 

8.1 80376 Instruction Encoding and 
Clock Count Summary 

To calculate elapsed time for an instruction, multiply 
the instruction clock count, as listed in Table 8.1 be­
low, by the processor clock period (e.g. 62.5 ns for 
an 80376 operating at 16 MHz). The actual clock 
count of an 80376 program will average 10% more 
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than the calculated clock count due to instruction 
sequences which execute faster than they can be 
fetched from memory. 

Instruction Clock Count Assumptions: 
1. The instruction has been prefetched, decoded, 

and is ready for execution. 

2. Bus cycles do not require wait states. 

3. There are no local bus HOLD requests delaying 
. procGsscr acess to the bus. 

4:No exceptions are detected during instruction ex­
ecution. 

5. If an effective address is calculated, it does not 
use two general register components. One regis­
ter, scaling and displacement can be used within 
the clock counts showns. However, if the effec­
tive address calculation uses two general register 
components, add 1 clock to the clock count 
shown. 

6. Memory reference instruction accesses byte or 
aligned 16-bit operands. 

Instruction Clock Count Notation 
- If two clock counts are given, the smaller refers to 

a register operand and the larger refers to a 
memory operand. 

-n = number of times repeated. 

-m = number of components in the next instruc-
tion executed, where the entire displacement (if 
any) counts as one component, the entire im­
mediate data (if any) counts as one component, 
and all other bytes of the instruction and pre­

'fix(es) each count as one component. 

Misaligned or ~2-Bit Operand Accesses: 
- If instructions accesses a misaligned 16-bit oper­

and or 32-bii operand Oii eveii address add: 
2* clocks for read or write. 

4 *. clocks for read and write. 

- If instructions accesses a 32-bit operand on odd 
address add: 

4 • clocks for read or write. 

S"' clocks for read and write. 

Wait States: 

Wait states add 1 clock per wait state to instruction 
execution for each data access. . 
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Table B.1. B0376 Instruction Set Clock Count Summary 

Clock 
Number 

Instruction Format Counts of Data Notes 
Cycles 

GENERAL DATA TRANSFER 
MOV ~ Move: 

Register to Register/Memory 1000100w mod reg rim I 2/2' 0/1' a 

Register/Memory to Register 1000101w mod reg r/ml 2/4· * 0/1' a 

Immediate to Register/Memory 110001 t w modOOO rim I immediate data a 

Immediate to Register (Short Form) 11011 w reg immediate data 2 

Memory to Accumulator (Short Form) 1010000w full displacement I' a 

Accumulator to Memory (Short Form) tOl000lw full displacement I' a 

Register/Memory to Segment Register 10001110 mad sreg3 rim I 0/6' a,b,c 

Segment Register to Register/Memory 10001100 modsreg3 rim I 0/1' a 

MOVSX ~ Move with Sign Extension 

Register from Register/Memory 0/1' a 

MOVZX ~ Move with Zero Extension 

Register from Register/Memory 0/1' a 

PUSH ~ Push: 

Register/Memory 7/9' 2/4· a 

Register (Short Form) 4 a 

Segment Register (ES, es, SS or OS) 4 2 a 

Segment Register (FS or GS) 
4 2 a 

Immediate 4 2 a 

PUSHA ~ Push All 34 16 a 

POP ~ Pop 

* Register/Memory 719' 2/4' a 

Register (Short Form) 6 2 a 

25 6 a,b,c 

Segment Register (FS or GS) 
0000111t 10sreg3001 25 6 a, b,c 

POPA ~ Pop All 01100001 40 16 a 

XC!lG ~ Exchange 

Register/Memory with Register 1000011w I mad reg rim I 3/5·· 0/2" a,m 

Register with Accumulator (Short Form) 110010 reg I 3 0 

IN ~ Input from: 

Fixed Port 1110010w port number 6' I' f,k 

26' I' f,1 

Variable Port 1110110w 7' I' f,k 

27' I' f,1 

OUT ~ Outpulto: 

Fixed Port 1110011w port number 4' I' f,k 

24' I' f,1 

Variable Port 1110111w 5' I' f,k 

26' I' f,1 

LEA ~ Load EA to Register 10001101 I mod reg rim I 2 
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Table 8.1. 80376 Instruction Set Clock Count Summary (Continued) 

Clock Number 
Instruction Format Counts otData Notes 

Cycles 

SEGMENT CONTROL 

LOS = Load Pointer to OS 11000101 I mod reg rim 26' 6' a,b,c 

LES = Load Pointer to ES 11000100 I mad reg rim 26' 6' a,b,c 

LFS = Load Pointer to FS 00001111 I 10110100 mod reg rim I 6' ,a,b,c 

LGS = Load Pointer to GS 00001111 I 10110101 mod reg rim I a,b,c 

LSS = Load Pointer to SS r;oOOlll1 I 10110010 mad rag rim I a,'b,c 

FLAG CONTROL 

CLC = Clear Carry Flag 11111000 

CLO = Clear Direction Flag 11111100 

CLI = Clear Interrupt Enable Flag 

CL TS = Clear Task Switched Flag e 

CMC = Complement Carry Flag 

LAHF = Load AH Into Flag 

POPF = Pop Flags 7 8,g 

PUSHF = Push Flegs a 

SAHF = Store AH Into Flags 3 

STC = Set Carry Flag 2 

STD = Set Dlrecaon Flag 2 

8 

ARITHMETIC 
ADD = Add 

Ragister to Ragister * 2 

Register to Memory 7" 2" a 

I Me~ry to Register 6' I' a 

Immediate to Register IMemory I 100000sw rim I immediate data 217" 0/2" a 

Immediate to Accumulator (Short Form) 0000010w immediate data 2 

ADC = Add with Carry 

Register to Ragister 000100dw I mod reg rim I 2' 

Register to Memory 0001000w I mad reg rim I 7" 2" a 

Memory to Register 0001001w I mad reg rim I 6' I' a 

Immediate to Register/Memory 100000sw ImodOl0 rim I immediate data 2/7"" O/2 ee a 

Immediate to Accumulator (Short Form) 0001010w immediate data 2 

INC = Increment 

Register IMemory l111111w I modOOO rim I 216" 0/2" a 

Register (Short Form) 101000 rag I 2 

SUB = Subtrect 

Ragister from Register 001010dw I mod rag rim I 2 
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Table 8.1. 80376 Instruction Set Clock Count Summary (Continued) 

Clock Number 
Instruction Format 

Counts 
OIOala Notes 
Cycles 

ARITHMETIC' (Conlinued) 

Register Irom Memory 100101 OOw ImOdreg r/mi 7" 2" a 

Memory Irom Register 10010101 w ImOdreg r/mi 6' a 

11 OOOOOsw ImOd 1 0 1 rIm I immediate data 
:1. 

Immediate from RegisterlMemory .' 0/1" a 

Immediate from Accumulator (Short Form) 10010110wl immediate data 

SBB = Subtract with Borrow 

Register from Register 000110dw ImOdreg r/ml 
Register from Memory 00011 OOw ImOdreg r/ml 2" a 

Memory lrom Register 0001101w ImOdreg r/ml I' a 

Immediate Irom Register IMemory 1 OOOOOsw ImodOll 0/2" a 

Immediale from Accumulator (Short Farm) 0001110wl 

DEC = Decrement 

RegisterlMemory 0/2" a 

Register (Short Form) 2 

CMP = Compare 

Register with Register 2 

Memory with Register 5' I' a 

Register with Memory 6" 2" • 
Immediate with RegisterlMemory 2/5' OIl' a 

2 

NEG = Change Sign 2/6' 0/2' • 
AAA = ASCII Adjust DkAdd 4 

AAS = ASCII Adju.lfor Subt 4 

4 

DAS = Decimal Adjust lor Subtract 00101111 4 

MUL = Multiply (Unsigned) 

Accumulator with Register IMemory 1111011w Imodl00 r/ml 
Multiplier-Byte 12-17/15-20 011 a,n 

-Word 12-25115-28' OIl' a.n 
-Doubleword 12-41/17-46' 0/2' a,n 

IMUL = Integer Multiply (Signed) 

Accumulator with RegisterlMemory 1111011w Imodl0l r/ml 
Multiplier-Byte 12-17115-20 011 a.n 

-Word 12-25/15-28' OIl' a,n 
-Doubleword 12-41/17-46' 0/2' .,n 

Register with RegisterlMemory 00001111 10101111 I mod reg r/ml 
Multiplier-Byte 12-17115-20 011 .,n 

-Word 12-25/15-28' 0/1' a,n 
-Doubleword 12-41/17-46' 0/2' a,n 

Register IMemory with Immediate to Register I 011010s1 I mod reg r/ml immediate data 

-Word 13-26/14-27' 0/1' a,n 
-Doubleword 13-42/16-45' 0/2' a,n 
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Table 8.1. 80376 Instruction Set Clock Count Summary (Continued) 

Clock Number 
Instruction Format 

Counts OtDats Notes 
Cycles 

ARITHMEnC (Continued) 
DIV = Divide (Unsigned) 

Accumulator by Register/Memory 1111011 w I mod 11 0 r/ml 

Divisor-Byte *,17 0/1 a,o 
-Word 0/1' a,o 
-Doubleword 0/2' a,o 

IDIV = Integer Divide (Slgned) 

Accumulator by Register/Memory 11111011 w I mod 111 r/ml 

Divisor-Byte 0/1 a,o 
-Word 0/1 a,o 
-Doubleword 0/2' a,o 

AAD = ASCII Ad)ustlor Divide 11010101 1000010101 19 

AAM = ASCII Adlust lor Multiply 111010100 I 00001010 I 17 

CBW = Convert Byle to Word 1100110001_ 

WD = Convert Word to Double Word 1 10011001 

LOGIC 

Register/Memory by 1 317" O/2'~ a 

Register/Memory by CL 3/7" 0/2" a 

3/7" 0/2u a 

Through Carry (RCL and RCR) 

Register/Memory by 1 9/10" 0/2" a 

Register/Memory by.Q!.. 9110" 10/2" a 
"1' 

Register/Memory by Imme 9/10" 0/2" a 

000 ROL 
001 n~~ 

010 RCL 
011 RCR 
100 SHL/SAL 
101 SHR 
111 SAR 

SHLD = Shill Lell Double 

Register/Memory by Immediate 00001111 10100100 Imodreg r/ml immed S-bit data 3/7" 0/2" 

Register/Memory ~y CL 100001111 1 1010010'1 Imodreg r/ml 317'· 0/2" 

SHRD = Shill Right Double 

RegisterlMemory by Immediate 100001111 1 10101100lmodreg r/mlimmed 8-bit data 317" 0/2'" 

Register/Memory by CL 100001111 I 10101101 I mod reg r/ml 317" 0/2" 

AND = And 

Register to Register I 001000dw ImOdreg r/ml 
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Table 8.1. 80376 Instruction Set Clock Count Summary (Continued) 

Clock 
Number 

InstructIon Format Counts 
of Data Notes 
Cycles 

LOGIC (Continued) 

0010000w I mod reg r/ml 
:I.. 

Register to Memory 1"" 2" a 

Memory to Register 0010001w I mod reg r/ml l' a 

Immediate to RegisterlMemory 1 OOOOOOw I mod 1 00 r/ml immediate data 0/2·· a 

Immediate to Accumulator (Short Form) 001001 Ow I immediate data 

TEST = And FunctIon to Flags, No Result 

Register IMemory and Register I tOOOOtow I mod reg r/ml 0/1' a 

Immediate Data and RegisterlMemory I 11 t 1011w ImodOOO 0/1' a 

Immediate Data and Accumulator 
(Short Form) 1010100w 

OR = Or 

Register to Register 

Register to Memory 7" 2" a 

Memory to Register 6' I' a 

Immediate to RegisterlMemory 217" 0/2" a 

Immediate to Accumulator (Short Form) 2 

XOR = Exclusive Or 

Register to Register 2 

Register to Memory 7" 2" a 

Memory to Register 6' I' a 

Immediate to Registerii&emory 217·· 0/2 .... a 

2 

NOT = Invert Regl.tor/Memory r/ml 2/6·· 0/2·· a 

STRING MANIPULATION 

CMPS = Compare Byte Word 1010011w 10' 2' a 

INS = Input Byte/Word from OX Port 
9" I" a,l,k 

0110110w 
29" I" a,I,1 

LODS = Load Byte/Word to AL/ AX/EAX I 1 0 1 0 1 lOw 5' I' a 

MOVS = Move Byte Word 11010010w 7" 2" a 

OUTS = Output Byte/Word to DX Port 0110111 w 
8" I" a,l,k 
28" 1" a,I,1 

SCAS = Scan Byte Word 1010111 w 7' I' a 

STOS = Store Byte/Word from 

ALIAX/EX 110101 01w I 4' I' a 

XLA T = Translate StrIng 11010111 5' I' a 

REPEATED STRING MANIPULATION 
Repeated by Count in CX or ECX 

REPE CMPS = Compere String 

(Find Non-Match) 11110011 11010011 w I 5 + 9n·· 2"·· a 

4-825 



80376 

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued) 

Clock Number 
Instruction Format 

Counts 
of Data Notes 
Cycles 

REPEATED STRING MANIPULATION (Continued) 

REPNE CMPS = Compare String 

(Find Match) 11110010 1010011 w 5 + 9n" 20·· a 

REP INS = Input String 
In' a,f,k 

11110011 0110110w 
In' a,f,1 

REP LODS = Load String 11110011 1010110w In' a 

REP MOYS = Move String 11110011 1010010w 20';':- a 

REP OUTS = Output String 11110011 
In' a,f,k 

0110111 w 
In' a,f,1 

REPE SCAS = Scan String 

(Find Non-AL/ AX/EAX) 11110011 110H)IIIW I In' a 

REPNE SCAS = Scan String 

(Find AL/ AX/EAX) 11110010 11010111 wi In' a 

REP STOS = Store String 11110011 In' a 

BIT MANIPULATION 

BSF = SCan Bit Forward 10 + 3n'" 2n-· a 

BSR = SCan Bit Reverse 10 + 3n" 2n'" a 

BT = Test Bit 

Register/Memory, Immediate 3/6' 0/1' a 

Register/Memory, Register 3/12' 0/1' a 

BTC = Test Bit and Complement 

Register/Memory, Immediate 6/B' , 0/2' a 

6/13' 0/2' a 

BTR = Test BII and Re 

6/B' 0/2' a 

Register/Memory, Register 6/13' 0/2' a 

I BTS = Test Bit and Set 

Register/Memory, Immediate D./a. 0/2* a 

Register/Memory, Register 00001111 10101011 I mod rag r/ml 6/13' 0/2' a 

CONTROL TRANSFER 

CALL = Call 

Direct within Segment 1110,1000 I full displacement 9 + m* 2 

I 
Register/Memory 

Indirect within Sagment 11111111 Imodo 1 0 r/ml 9 + m/12 + m 2/3 a,j 

Directlntersagment 10011010 I urisigned full ollsel, selector 42+ m 9 c,d,r 
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Table 8.1. 80376 Instruction Set Clock Count Summary (Continued) 

Clock Number 
Instruction Format Counts olOata Notes 

Cycles 

CONTROL TRANSFER (Continued) 

(Directlntersegment) !! ... 
Via Call Gate to Same Privilege Level 64'~ m 13 a,c,d,l 

Via Call Gate to Different Privilege Level, 

(No Parameters) 13 a,c,d,l 

Via Call Gate to Different Privilege Level, 
(x Parameters) 13 + 4x a,c,d,l 

From 386 Task to 386 TSS 124 s,c,d,l 

Indirect Intersegment 11111111 ImodOll r/ml 10 a,c,d,l 

Via Call Gate to Same Privilege Level 14 a,c,d,l 

Via Call Gate to Different Privilege Level, 
(No Parameters) 14 a,c,d,l 

Via Call Gate to Different Privilege Level, 
(x Parameters) 14 + 4x a,c,d,l 

From 386 Task to 386 TSS 399 130 a,c,d,l 

JMP ~ Unconditional Jump 

Short 7 + m 

Direct within Segment 7 + m 

9 + m/14 + m 2/4 a,l 

Direct Inters~gment 37 + m c,d,l 

Via Call Gate to sam~riV· 53 + m 9 a,c,d,l 

From 386 Task to 386 TSS 395 124 a,c,d,l 

Indirect Intersegment Imodl01 r/ml 37 + m 9 a,c,d,l 

Via Call Gate to Same Privilege Level 59 + m 13 s,c,d,l 

From 386 Task to 386 TSS 401 124 a,c,d,l 

4-827 



80376 

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued) 

InslrueUon Formal 

CONTROL TRANSFER (Continued) 
RET = Relurn from CALL: 

Within Segment 

Within Segment Adding Immediate to SP 

Intersegment 

Intersegment Adding Immediate to SP 

to Different Privilege Level 

Intersegment 
Intersegment Adding Immediate to SP 

CONDtTIONAL JUMPS 
NOTE: Times Are Jump "Taken or Not Taken" 
JO = Jump on Overflow 

8-Bit Displacement 

Full Displacement 

JNO = Jump on Nol Overflow 

6-Bit Displacement 

Full Displacement 

B-Bit Displacement 

Full Displacement 

8-Bit Displacement 

Full Displacement 

JE/JZ = Jump on E~/Ze 

8-Bit Displacement 

I Fuil Dlspoacement 

J~5/JN:! - Jum~ en ~= ECi:.:=I/t!:t Z:rc 

8-Bit Displacement I 
Full Displacement I 

11000011 

11000010 

11001011 

11001010 

01110101 

00001111 

JBE/JNA = Jump on Below or Equal/Nol Above 

8-Bit Displacement I 01110110 

Full Displacement I 00001111 

JNBEI JA = Jump on Nol Below or Equall Above 

B-Bit Displacement I 01110111 

Full Displacement I 00001111 

JS = Jump on Sign 

8-Bit Displacement 01111000 

Full Displacement 00001111 

16-bit displ 

16-bit displ 

8-bitdiapl 

10000101 I full displacement 

8-bltdiapl 

10000110 I full diaplacement 

8-b"displ 

10000111 I lull displacement 

8-bitdlapl 

10001000 I full displacement 

4-828 

Clock 
Counls 

7 + mor3 

7 + mor3 

7 + mor3 

7 + mor3 

7 + mor3 

7 + mor3 

1+ mor::J 

7 + m or3 

7 + mor3 

7 + mor3 

7 + mor3 

7 + mor3 

7 + mor3 

7 + mor3 

7 + mor3 

Number 
olDala 
Cyelas 

2 

2 

4 

4 

4 
4 

Noles 

a,j,p 

a.j,p 

a,c,d,j,p 

a,c,d,j,p 

c,d,j,p 
c,d,j,p 
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Table 8.1. 80376 Instruction Set Clock Count Summary (Continued) 

Clock Number 
Inslrucllon Formal Counts 01 Dala Noles 

Cycles 

CONDITIONAL JUMPS (Continued) 

JNS ~ Jump on Nol Sign 

8-Bil Displacement 01111001 8-bitdispl 7 + mor3 

Full Displacement 00001111 10001001 I full displacemenl 7+ mer*, 

JP/JPE ~ Jump on Parlty/Parlly Even 

8-Bit Displacement I 01111010 8-bitdispl 

Full Displacement I 00001111 10001010 I lull displacement 

JNP/JPO ~ Jump on Nol Parlty/Parity Odd 

8-Bit Displacement I 01111011 8-bildispl 

Full Displacement I 00001111 10001011 

8-Bit Displacement 

Full Displacement 

8-Bit Displacement 

Full Displacement 7 + mor3 

8-Bit Displacement 7+mor3 

Full Displacement 7 + mor3 

8-Bit Displacement 7+mor3 

Full Displacement 7+mor3 

JECXZ ~ Jump on EqIt Z 9+mor5 

(Address Size Prefix Differe 

LOOP ~ Loop ECX Time. 11 + m 

LOOPZ/LOOPE ~ Loop with 
Zero/Equal 11100001 B-bitdispl 11 + m 

LOOPNZ/LOOPNE ~ Loop While 
NolZero 11100000 8-bitdispl 11 + m 

CONDITIONAL BYTE SET 
NOTE: Times Are Register/Memory 

SETO ~ Sel Byle on Overflow 

To RegisterlMemory 00001111 10010000 I modOOO rIm I 4/5' 0/1' a 

SElNO ~ Sel Byte on Nol Overflow 

To RegisterlMemory 00001111 10010001 I modOOO rim I 4/5' 0/1' a 

SETB/SETNAE ~ Sel Byle on BelowlNol Above or Equal 

To Register/Memory I 00001111 I 10010010 I modOOO rim I 4/5' 0/1' a 

4-829 



inter 80376 

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued) 

Instruction Format 

CONDITIONAL BYTE SET (Continued) 

SETNB ~ SeIByteonNoIBelow/Abovre.:;o:..;rE::;q"u=a:..I __ ,-____ ...,. ____ -, 

To Register/Memoryl L. ..:0:..;0:..0:.0:...:.1.:.1..:.1..:.1.....L_1:..o:..;:.0..:.1.:;0.:;0...:1...:1-1.I.:,:m:;:od;;:..;:0..;:0..;:0,--,r.:./m"'-lI 

SETE/SETZ ~ S.I Byte on Equal/Z.ro ,..-____ ...,. _____ ,-____ -, 

To Register/Memoryl L. .,.;0,-,0,-,0:.0;,..:.1.:.1..:.1..:.1.....L_1.:...0:.0;,..:.1.:;0..:.1.:0..:0-,-I.:,:m:;:od=0..;:0..;:0,--,r.:./m"'-lI 

SETNE!~E'ffl~ = Set Byte an Not Ef!Ua;;.I/.:.:N.::ol.:.:z"'.;;;.ro"-_ ....... _____ ...-____ -, 

To ReglsterlMemory .... 1_0;..0;..0;..0.;...;,.1 ...;1...;1_1-,-_1.:...0;;,...:..0 ...;1..:.0..:.1..:.0...;1-LI...;m.;,;:o..:.d..:.o..:.o-,0_c.=J 

To RegisterlMemory L...:=:";:'':'':''':''':'.....L'''':''':'';:''':''::'':'''':''':''''.J...::C::; 

SETS ~ Sel Byte on Sign 

To RegisterlMemory 

SETNS ~ S., Byt. on Nol Sign 

To Register/Memory 

SETL/SETNGE ~ Set Byte on Leis/ .... Ir.=:::...:"'i.~.-.lF-.~ .. L-___ --, 

ENTER ~ Entor Procedure 

L~O 

L ~ 1 

L> 1 

LEA VE ~ Leave Procedure 

1 0011111 I modOOO rim I 
1 1 ° ° 1 ° ° ° I 16-bit displacement, 8-btt level 

11001001 

4·830 

Clock 
Counls 

4/5' 

* 

4/5' 

4/5' 

4/5' 

4/5' 

4/5' 

415' 

10 
14 

17 +8(0'- 1) 

6 

Number 
olDato 
Cycles 

0/1' 

0/1' 

0/1' 

0/1' 

0/1' 

0/1' 

0/1' 

0/1' 

0/1' 

0/1' 

0/1' 

1 
4(n -1) 

Not •• 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 
a 
a 

a 
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Table 8.1. 80376 Instruction Set Clock Count Summary (Continued) 

Instruction 

INTERRUPT INSTRUCTIONS 

INT = Interrupt: 

Type Specified 

Via Interrupt or Trap Gate 
to Same Privilege level 

Via Interrupt or Trap Gate 
to Dillerent Privilege Level 

Format 

11001101 

From 386 Task to 386 TSS via Task Gate 

Type 3 

Via Interrupt or Trap Gate 
to Same Privilege Level 

Via Interrupt or Trap Gate 
to Different Privilege Level 

From 386 Task to 386 TSS via Task Gate 

If OF = 1: 
IfOF= 0 

11001100 

type 

71 

111 

308 

71 

111 

413 

4-831 

Number 
olDBta 
Cycles 

14 

14 

140 

14 

14 

138 

14 

14 

138 

Notes 

c,d,l,p 

c,d,l,p 

c,d,l,p 

c,d,l,p 

c,d,l,p 

c,d,l,p 

c,d,l,p 

c,d,l,p 

c,d,l,p 
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Table 8.1. 80376 Instruction Set Clock Count Summary (Continued) 

Clock 
Number 

Count. 
01 Oats Notes 
Cycle. 

Instruction Format 

INTERRUPT INSTRUCTIONS (Continued) 

Bound = Out ol,Range 01100010 mad reg rIm * 
Interrupt 511 Detect Value 

II In Range 0 a,c,d,l,o,p 

II Out of Range: 
Via Interrupl or Trap Gate 

to Same Privilege Level 14 c,d,l,p 
Via Interrupt or Trap Gate 

to Different Privilege Level 14 c,d,l,p 

From 386 Task to 366 TSS via Task Gate 138 c,d,l,p 

INTERRUPT RETURN 

IRET = Intenrupt Return 11001111 

To the Same Privilege Level (w~hin Task) 42 a,c,d,l,p 
To Different Privilege Level (within Task) 66 a,c,d,l,p 

From 386 Task to 386 TSS 328 138 c,d,l,p 

PROCESSOR CONTROL 

HLT = HALT 5 b 

CRO 10 b 

Register from CRO 6 b 

* DRO-3 Irom Register 22 b 

DR6-7 f,om Registe, 16 b 

Register f,om DR6-7 14 b 

Registe, from DRO-3 00001111 00100001 11 eeereg 22 b 

NOP = No Operation 10010000 3 

WAIT= Walt until BUSY # Pin I. Negated I 10011011 6 
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Table 8.1. 80376 Instruction Set Clock Count Summary (Continued) 

Instruction Format 

PROCESSOR EXTENSION INSTRUCTIONS 

Processor Extension Escape 

PREFIX BYTES 

Address Size Prefix 

LOCK ~ Bus Lock Prefix 

Operand Size Prefix 

Segment Override Prefix 

CS: 

DS: 

ES: 

FS: 

GS: 

ss: 

PROTECTION CONTROL 

From Register/Memory 

LAR ~. Load Access Rights 

LGDT ~ Load Global Oss 

LlDT ~ 

Table Register 

Table Register to 
Register/Memory 

I 1 1 a lIT TTl mod L L L rIm I 
ITT and LLL bits are opeode 
information for coprocessor. 

01100111 

11110000 

01100110 

00101110 

00111110 

00100110 

01100100 

01100101 

00001111 00000000 I modOl0 

LMSW ~Load Machine Status Word 

From Register/Memory 00001111 00000001 I modll 0 

LSL ~ Load Segment Limit 

From Register/Memory 00001111 00000011 I mod reg 

Byte.Granular Limit 
Page-Granular Limit 

LTR ~ Load Task Register 

From Register/Memory 00001111 00000000 ImodOOI 

SGDT ~ Store Global Descriptor 

Table Register 00001111 00000001 I modOOO 

SIDT~ Store Interrupt Descriptor 

Table Register I 00001111 00000001 I modOOl 

SLDT ~ Store Local Descriptor Table Register 

To Register/Memory I 00001111 00000000 I modOOO 

4-833 

rIm I 

rIm I 

r/ml 

rIm I 

rIm I 

rIm I 

rIm I 

Clock 
Counts 

See 80387SX Data Sheet 

"0 '1, 

20/21·· 

17/18' 

13"'-

13·· 

24/28' 

10/13' 

24/27' 
29/32' 

27/31' 

II' 

II' 

2/2' 

Number 
of Data 
Cycles 

2" 

I' 

3' 

3' 

5' 

I' 

2' 
2' 

4' 

3' 

3' 

4' 

Notes 

a 

a 

a,c,i,p 

a,e 

a,e 

a,c,e,p 

a,e 

a,c,i,p 
a,c,i,p 

a,c,B,P 

a 

a 

a 
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Table 8.1. 80376 Instruction Set Clock Count Summary (Continued) 

Instruction 

PROTECTION CONTROL (Continued) 

SMSW = Store Machine 
Status Word 

STR = Store Task Register 

To Register/Memory 

VERfI = Vfulfy Read Accesss 

Register/Memory 

VERW = Verily Write Accesss 

Format 
Clock 

Counts 

2/2' 

2/2' 

10/11" 

15/16" 

'-\" , ,),,' ,<,,'0' 

Number 
otData Notes 
Cycles 

l' a,c 

l' a 

2" a,c,i,p 

2 ... · a,c,i,p 

NOTES: " ~.~::~~. , 
a, Exception 13 fault (general Violation) wilFpccur if the memory operand in CS, OS, ES, FS or GS cannot be used due to 
either a segment limit violation or access tights violation, If a stack limit is violated, and exception 12 (stack segment limit 
violation or not present) occurs, 
b, For segment load operations, the CPL, RPL and OPL must agree with the privilege rules to avoid an exception 13 fault­
(general protection violation), The segments's descriptor must indicate "present" or exception 11 (CS, OS, ES, FS, GS not 
present), If the SS register,is loaded and a stack segment not present is detected, an exception 12 (stack segment limit 
violation or not present occurs), 
c, All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCK# to maintain 
descriptor integrity in multiprocessor systems. 
d. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general 
protection violation) if an applicable privilege rule is volated. 
e. An exception 13 fault occurs if CPL is greater than O. 
f. An exception 13 fault occurs if CPL is greater than IOPL. 
g. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL field of the flag register is updated only 
if CPL = O. 
h. Any violation of privelege rules as applied t6 the selector operand does not cause a protection exception; rather, the zero 
flag is cleared. -
i. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault (general 
protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation 
or no present) will occur if the stack limit is violated by the operand's starting address. 
j. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment-or an exception 13 fault 
(general protection violation) will occur. 
k. If CPL ,;; IOPL 
I. If CPL >IOPL 
m. LOCK# is automatically asserted. regardless of the presence or absence of the LOCK# prefix. 
n. The 80376 uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most signifi­
cant bit in the operand (multiplier). Clock counts given are minimum to maximum. To calculate actual clocks use the follow­
ing formula: 

Actual Clock = if m < > 0 then max ([Iog2 Imll. 3) + 9 clocks: 
if m = 0 then 12 clocks (where m is the multiplier) 

o. An exception may occur, depending qn the value of the operand. 
p. LOCK # is asserted during descriptor table accesses. 
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8.2 INSTRUCTION ENCODING 

Overview 

All instruction encodings are subsets of the general 
instruction format shown in Figure B.1. Instructions 
consist of one or two primary opcode bytes, possibly 
an address specifier consisting of the "mod rim" 
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if required. 

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac­
cording to the class of operation. The fields define 
such information as direction of the operation, size 
of the displacements .. register encoding, or sign ex­
tension. 

Almost all instructions referring to an operand in 
memory have an addressing mode byte following 
the primary opcode byte(s). This byte, the mod rim 
byte, specifies the address mode to be used. Certain 

encodings of the mod rim byte indicate a second 
addressing byte, the scale-index-base byte, follows 
the mod rim byte to fully specify the addressing 
mode. 

Addressing modes can include a displacement im­
mediately following the mod rim byte, or scaled in­
dex byte. If a displacement is present, the possible 
sizes are B, 16 or 32 bits. 

If the instruction specifies an immediate operand, 
the immediate operand follows any displacement 
bytes. The immediate operand, if specified, is always 
the last field of the instruction. 

Figure B.1 illustrates several of the fields that can 
appear in an instroction, such as the mod field and 
the rim field, but the Figure does not show all fields. 
Several smaller fields also appear in certain instruc­
tions, sometimes within the opcode bytes them­
selves. Table B.2 is a complete list of all fields ap­
pearing in the B0376 instruction set. Further ahead, 
following Table B.2, are detailed tables for each 
field. 

I TTTTTTT T I TTTTTT TT I mod TTT rim I ss index base Id32i16iBi none data32i16iBi none 

opcode 
(one or two bytes) 
(T represents an 

opcode bit.) 

"mod rim" Us_j_bn 

• byte byte j 

'~--------~------~. 
register and address 

mode specifier 

address 
displacement 
(4, 2, 1 bytes 

or none) 

Figure 8.1. General Instruction Format 

Table 8.2. Fields within 80376 Instructions 

Field Name Description 

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 
d Specifies Direction of Data Operation 
s Specifies if an Immediate Data Field Must be Sign-Extended 
reg General Register Specifier 
mod rim Address Mode Specifier (Effective Address can be a General Register) 

ss Scale Factor for Scaled Index Address Mode 
index General Register to be used as Index Register 
base General Register to be used as Base Register 
sreg2 Segment Register Specifier for CS, SS, OS, ES 
sreg3 Segment Register Specifier for CS, SS, OS, ES, FS, GS 
tttn For Conditional Instructions, Specifies a Condition Asserted 

or a Condition Negated 

Note: Table 8.1 shows encoding of individual instructions. 

4-835 

immediate 
data 

(4, 2, 1 bytes 
or none) 

Number of Bits 

1 
1 
1 
3 

2 for mod; 
3 for rim 

2 
3 
3 
2 
3 

4 



inter 
16·Bit Extensions of the 
Instruction Set 

80376 

Encoding of reg Field When w Field 
is not Present in Instruction 

Register Selected Two prefixes, the operand size prefix (66H) and the 
effective address size prefix (67H), allow overriding 
individually the default selection of operand size and . 
effective address size. These prefixes may precede 
any opcode bytes and affect only the instruction 
they precede. If necessary, one or both of the prefix­
es may be placed before the opcode bytes. The 
presence of the operand size prefix (66H) and the 
effective address preiix wiii aiiow 16-bil dala opera­
tion and 16-bit effective address calculations. 

reg Field 
Register Selected 

During 32·Bit 
with 66H Prefix 

For instructions with more than one prefix, the order 
of prefixes is unimportant. 

Unless specified otherwise, instructions with 8-bit 
and, 16-bit operands do not affect the contents of 
the high-order bits of the extended registers. 

Encoding of Instruction Fields 

Within the instruction are several fields indicating 
register selection, addressing mode and so on. 

ENCODING OF OPERAND LENGTH (w) FIELD 

For any given instruction performing a data opera­
tion, the instruction will execute as a 32-bit opera­
tion. Within the constraints of the operation size, the 
w field encodes the operand size as either one byte 
or the full operation size, as shown in the table be­
low. 

wField 
Operand Size 

o 8 Bits 
16 Bits 

ENCODING OF THE GENERAL 
REGISTER (reg) FIELD 

Normal "....----_ .... ,...:_-
V.,1;ICUIU ~I"~ 

8 Bits 
32 Bits 

The general register is specified by the reg field, 
which may appear in the primary opcode bytes, or as 
the reg field of the "mod rim" byte, or as the rim 
field of the "mod rim" byte. 
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000 
001 
010 
011 
100 
101 
110 
111 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

iSg 

000 
001 
010 
011 
100 
101 
110 
111 

Data Operations 

AX EAX 
CX ECX 
DX EDX 
BX EBX 
SP ESP 
BP EBP 
SI ESI 
DI EDI 

Encoding of reg Field When w Field 
is Present in Instruction 

Register Specified by reg Field 
with 66H Prefix 

Function of w Field 

(whenw = 0) (whenw = 1) 

AL AX 
CL CX 
DL DX 
BL BX 
AH SP 
CH BP 
DH SI 
BH DI 

Register Specified by reg Field 
without 66H Prefix 

Function of w Field 

(when w = 0) (when w = 1) 

AL EAX 
CL ECX 
DL EDX 
BL EBX 
AH ESP 
CH EBP 
DH ES! 
BH EDI 



80376 

ENCODING OF THE SEGMENT 
REGISTER (sreg) FIELD 

The sreg field in certain instructions is a 2-bit field 
allowing one of the CS, OS, ES or SS segment regis­
ters to be specified. The sreg field in other instruc­
tions is a 3-bit field, allowing the FS and GS segment 
registers to be specified also. 

2-Bit sreg2 Field 

2-Bit 
Segment 

sreg2 Field 
Register 
Selected 

00 ES 
01 CS 
10 SS 
11 OS 

3-Bit sreg3 Field 

3-Bit Segment 

sreg3Fleid 
Register 
Selected 

000 ES 
001 CS 
010 SS 
011 OS 
100 FS 
101 GS 
110 do not use 
111 do not use 

ENCODING OF ADDRESS MODE 

Except for special instructions, such as PUSH or 
POP, where the addressing mode is pre-determined, 
the addressing mode for the current instruction is 
specified by addressing bytes following the primary 
opcode. The primary addressing byte is the "mod 
rim" byte, and a second byte of addressing informa­
tion, the "s-i-b" (scale-index-base) byte, can be 
specified. 

The s-i-b byte (scale-index-base byte) is specified 
when using 32-bit addressing mode and the "mod 
rim" byte has rim = 100 and mod = 00,01 or 10. 
When the sib byte is present, the 32-bit addressing 
mode is a function of the mod, ss, index, and base 
fields. 

The primary addressing byte, the "mod rim" byte, 
also contains three bits (shown as TTT in Figure 8.1) 
sometimes used as an extension of the primary op­
code. The three bits, however, may also be used as 
a register field (reg). 

When calculating an effective address, either 16-bit 
addressing or 32-bit addressing is used. 16-bit ad­
dressing uses 16-bit address components to calcu­
late the effective address while 32-bit addressing 
uses 32-bit address components to calculate the ef­
fective address. When 16-bit addresstng is used, the 
"mod rim" byte is interpreted as a 16-bit addressing 
mode specifier. When 32-bit addressing is used, the 
"mod rim" byte is interpreted as a 32-bit addressing 
mode specifier. 

Tables on the following three pages define all en­
codings of all 16-bit addressing modes and 32-bit 
addressing modes. 
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Encoding of Normal Address Mode with "mod rim" byte (no "s-i-b" byte present): 

mod rim Effective Address mod rim Effective Address 

00000 OS: [EAX) 10000 OS: [EAX + d32) 
00001 OS: [ECX) 10001 OS: [ECX + d32) 
00010 OS: [EOX) 10010 OS: [EOX + d32) 
00011 OS: [EBX) 10011 OS: [EBX + d32) 
00100 s-i-b is present 10100 s-i-b is present 
00101 OS:d32 10101 SS: [EBP + d32) 
nn -t .. n nc.rcCIl vv IIV ""V·LL..VIJ 10110 DS: [ES! + d32! 
00111 OS: [EOI) 10111 OS: [EOI + d32] 

01000 OS: [EAX + d8) .11000 register-see below 
01001 OS:[ECX+d8) 11001 register-see below 
01010 OS: [EOX + d8) 11010 register-see below 
01011 OS:[EBX+d8) 11 011 register-see below 
01100 s-i-b is present 11100 register-see below 
01101 SS: [EBP + d8) 11 101 register-see below 
01110 OS:[ESI+d8) 11110 register-see below 
01111 OS: [ED I + d8) 11 111 , register-see below 

Register Specified by reg or rim 
during Normal Data Operations: 

mod rim 
function of w field 

(whenw=O) (whenw=1) 

11000 AL EAX 
11001 CL ECX 
11010 OL EOX 
11 011 BL EBX 
11100 AH ESP 
11101 CH EBP 
1-1 .... n nl.l ~~I 

11 111 BH EOI 

Register Specified by reg or rim 
during 16-Blt Data Operations: (66H Prefix) 

mod rim. 
function of w field 

(whenw=O) (whenw=1) 

11000 AL AX 
11001 CL CX 
11010 OL OX 
11 011 BL BX 
11100 AH SP 
11101 CH BP 
11 110 OH SI 
11 111 BH 01 
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Encoding of 16·bit Address Mode with "mod rIm" Byte Using 67H Prefix 

mod rIm Effective Address mod rIm Effective Address 

00000 OS:[BX+SI] 10000 OS:[BX+SI+d16] 
00001 OS:[BX+OI] 10001 OS:[BX + 01 + d16] 
00010 SS:[BP+SI] 10010 SS:[BP + SI + d16] 
00011 SS:[BP+OI] 10011 SS:[BP+01+d16] 
00100 OS:[SI] 10100 OS:[SI+d16] 
00101 OS: [01] 10101 OS:[01+d16] 
00110 OS:d16 10110 SS:[BP+d16] 
00111 OS: [BX] 10111 OS:[BX+d16] 

01000 OS:[BX+SI+d8] 11000 register-see below 
01001 OS:[BX + 01 + d8] 11001 register-see below 
01010 SS:[BP+SI+d8] 11010 register-see below 
01011 SS:[BP+01+d8] 11 011 register-see below 
01100 OS:[SI+d8] 11100 register-see below 
01101 OS:[01+d8] 11 101 . register-see below 
01110 SS:[BP+d8] 11110 register-see below 
01 111 OS:[BX+d8] 11 111 register-see below 
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mod base 

00000 
00001 
00010 
00011 
00100 
00 101 
00110 
00111 

01000 
01001 
01010 
01011 
01100 
01101 
01110 
01111 

10000 
10001 
10010 
10011 
10100 
10101 
10110 
10111 

NOTE: 

80376 

Encoding of 32-bit Address Mode ("mod rIm" byte and "s-i-b" byte present): 

Effective Address 

OS: [EAX + (scaled index)] 
OS: [ECX + (scaled index)] 
OS: [EOX + (scaled index)] 
OS: [EBX + (scaled index)] 
SS: [ESP + (scaled index)] 
OS: [d32 + (scaled index)] 
OS: [ESI + (scaled index)] 
OS: [EOI + (scaled index» 

OS: [EAX + (scaled index) + d8] 
OS: [ECX + (scaled index) + d8] 
OS:[EOX + (scaled index) + d8] 
OS: [EBX + (scaled index) + d8] 
SS:[ESP+(scaled index)+d8] 
SS: [EBP + (scaled index) + d8] 
OS: [ESI + (scaled index) + d8] 
OS: [EO I + (scaled inqex) + d8] 

OS: [EAX + (scaled index) + d32] 
OS: [ECX + (scaled index) + d32] 
OS: [EOX + (scaled index) + d32] 
OS: [EBX + (scaled index) + d32] 
SS: [ESP + (scaled index) + d32] 
SS: [EBP + (scaled index) + d32] 
OS: [ESI + (scaled index) + d32] 
OS:[EOI + (scaled index) + d32] 

ss Scale Factor 

00 x1 
01 x2 
10 x4 
11 x8 

index Index Register 

000 EAX 
001 ECX 
010 EOX 
011 EBX 
100 no index reg" 
101 ESP 
110 ESI 
111 EOI 

"IMPORTANT NOTE: 
When index field is 100, indicating "no index register," then 
ss field MUST equal 00. If index is 100 and ss does not 
equal 00, the effective address is undefined. 

Mod field in "mod rIm" byte; ss, index, base fields in 
"s-i-b" byte. 
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ENCODING OF OPERATION 
DIRECTION (d) FIELD 

In many two-operand instructions the d field is pres­
ent to indicate which operand is considered the 
source and which is the destination. 

d Direction of Operation 

0 Register/Memory <- - Register 
"reg" Field Indicates Source Operand; 
"mod r/m" or "mod ss index base" Indicates 
Destination Operand 

1 Register <- - Register/Memory 
"reg" Field Indicates Destination Operand; 
"mod r/m" or "mod ss index base" Indicates 
Source Operand 

ENCODING OF SIGN-EXTEND (s) FIELD 

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if 
the size of the immediate data is 8 bits and is being 
placed in a 16-bit or 32-bit destination . 

Effect on Effect on 
s 

Immediate DataS Immediate Data 1613~ 

o None 

1 Sign-Extend Data8 to Fill 
16-Bit or 32-Bit Destination 

ENCODING OF CONDITIONAL 
TEST (tttn) FIELD 

None 

None 

For the conditional instructions (conditional jumps 
and set on condition), tttn is encoded with n indicat­
ing to use the condition (n = 0) or its negation (n = 1), 
and ttt giving the condition to test. 
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Mnemonic Condition 

0 Overflow 
NO No Overflow 
B/NAE Below/Not Above or Equal 
NB/AE Not Below/Above or Equal 
E/Z Equal/Zero 
NEINZ Not Equal/Not Zero 
BE/NA Below or EquallNot Above 
NBE/A Not Below or Equal/ Above 
S Sign 
NS Not Sign 
PIPE Parity/Parity Even 
NP/PO Not Parity/Parity Odd 
LlNGE Less Than/Not Greater or Equal 
NL/GE Not Less Than/Greater or Equal 
LE/NG' Less Than or Equal/Greater Than 
NLE/G Not Less or Equal/Greater Than 

ENCODING OF CONTROL OR DEBUG 
REGISTER (eee) FIELD 

tttn 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

For the loading and storing of the Control and Debug 
registers. 

When Interpreted as Control Register Field 

eeeCode Reg Name 

000 CRO 
010 Reserved 
011 Reserved 

Do not use any other encoding 

When Interpreted as Debug Register Field 

eeeCode Reg Name 

000 ORO 
001 DR1 
010 DR2 
011 DR3 
110 DR6 
111 DR7 

Do not use any other encoding 
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9.0 REVISION HISTORY 

This 80376 data sheet, version -002, contains updates and improvements to previous versions. A revision 
summary is listed l:1ere for your convenience. 

The sections significantly revised since version ·001 are: 

Front Page 

Section 1.0 

Section 2.0 

Section 2.1 

Section 2.1 

Section 2.3 

Section 2.6 

Section 2.8 

Section 2.10 

Section 3.0 

Section 3.2 

Section 3.2 

Section 3.3 

Section 4.1 

Section 4.1 

Section 4.2 

Section 4.4 

Section 4.6 

Section 4.7 

Section 5.0 

Section 6.2 

Section 6.4 

Section 6.4 

Section 6.5 

Section 8.1 

Section 8.2 

The 80376 Microarchitecture diagram was added. 

Figure 1.2 was updated to show both top and bottom views of the. 88-pin PGA package. 

Figure 2.0 was updated to show the 16-bit registers SI, 01, BP and SP. 

Figure 2.2 was updated to show the correct bit polarity for bit 4 in the CRO register. 

Tables 2.1 and 2.2 were updated to include additional information on the EFLAGs and CRO 
registers. 

Figure 2.3 was updated to more accurately reflect the addressing mechanism of.the 80376. 

In the subsection Maskable Interrupt a paragraph was added to describe the effect of 
interrupt gates on the IF EFLAGs bit. 

Table 2.7 was updated to reflect the correct power up condition of the CRO register. 

Figure 2.6 was updated to show the correct bit positions of the BT, BS and BO bits in the 
OR6 register. . 

Figure 3.1 was updated to clearly show the address calculation process. 

The subsection DESCRIPTORS was elaborated upon to clearly define the relationship be­
tween the linear address space and physical address space of the 80376. . 

Figures 3.3 and 3.4 were updated to show the AVL bit field. 

The last sentence in the first ·paragraph of subsection PROTECTION AND 1/0 PERMIS­
SION BIT MAP was deleted. This was an incorrect statement. 

In the Subsection ADDRESS BUS (BI;IE#, BLE#, A23-A1 last sentence in the first para­
graph was updated to reflect the numerics operand addresses as 8000FCH and 8000FEH. 
Because the 80376 sometimes does a double word 1/0 access a second access to 
8000FEH can be seen. 

The S'ubsection Hold Lantencles was updated to describe how 32-bit and unaligned ac­
cesses are internally locked but do not assert the LOCK # signal. 

Table 4.6 was updated to show the correct active data bits during a BLE# assertion. 

This section was uodated to correctlv reflect the pipelininQ of the address and status of the 
80376 as opposed· to "Address Pipeiining" .which occurs on processors such as the 80286. 

Tabie 4.7 was updated to show the correct Revision number, 05H. 

Table 4.8 was updated to show the numerics operand register 8000FEH. This address ·is 
seen when the 80376 does a OWORO operation to the port address 8000FCH. 

In the first paragraph the case temperatures were updated to correctly reflect the 0·C-115·C 
for the ceramic package and 0·C-11 O·C for the plastic package. 

Table 6.2 was updated to correctly reflect the Case Temperature under Bias specification of 
-65·C-120·C. 

Figure 6.8 vertical axis was updated to retlect "Output Valid Oelay (ns)". 

Figure 6.11 was updated to show typical Icc vs Frequency for the 80376. 

This entire section was updated to reflect the new ICE-376 emulator. 

The clock counts and opcodes for various instructions were updated to their correct value. 

The section INSTRUCTION ENCODING was appended to the data sheet. 

The sections significantly revised since version -002 are: 

Section 1.0 Modified table 1.1. to list pins in alphabetical or~er. 
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82370 
INTEGRATED SYSTEM PERIPHERAL 

• High Performance 32-Bit DMA • Programmable Wait State Generator 
Controller for 16-Bit Bus - 0 to 15 Wait States Pipelined 
-16 MBytes/Sec Maximum Data - 1 to 16 Wait States Non-Pipelined 

Transfer Rate at 16 MHz • DRAM Refresh Controller 
- 8 Independently Programmable 

Channels • 80376 Shutdown Detect and Reset 

20-Source Interrupt Controller 
Control • - Software/Hardware Reset 

-Individually Programmable Interrupt 
Vectors • High Speed CHMOS III Technology 

-15 f;xternal, 5 Internal Interrupts • 100-Pin Plastic Quad Flat-Pack Package 
- 82C59A Superset and 132-Pin Pin Grid Array Package 

• Four 16-Bit Programmable Interval (See Packaging Handbook Order # 231369) 

Timers • Optimized for Use with the 80376 
- 82C54 Compatible Microprocessor 

• Software Compatible to 82380 - Resides on Local Bus for Maximum 
Bus Bandwidth 

The 82370 is a multi-function support peripheral that integrates system functions necessary in an 80376 
environment. It has eight channels of high performance 32-bit DMA (32-bit internal, 16-bit external) with the 
most efficient transfer rates possible on the 80376 bus. System support peripherals integrated into the 82370 
provide Interrupt Control, Timers, Wait State generation, DRAM Refresh Control, and System Reset logic. 

The 82370's DMA Controller can transfer data between devices of different data'path widths using a single 
channel. Each DMA channel operates' independently in any of several modes. Each channel has a temporary 
d~ta storage register for handling non-aligned data without the need for external alignment logic. 

80376 LOCAL BUS 

r---------
I ~~~~~ 
I 
I 
I 
I 
I 
I 
I 
I 
I 

16 - BIT PHYSICAL 
(32 - BIT LOGICAL) 

8-CHANNEL 
OMA 

CONTROLLER 

TIMER 0 

TIMER 1 

TIMER 2 

TIMER 3 

Internal Block Diagram 
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Pin Qescriptions 

The 82370 provides all of the signals necessary to 
interface an 80376 host processor. It has a separate 
24-bit address and 16-bit data bus. It also has a set 
of control signals to support operation as a bus mas­
ter or a bus slave. Several special function signals 

exist on the 82370 for interfacing the system support 
peripherals to their respective system counterparts. 
Following are the definitions of the individual pins of 
the 82370. These brief descriptions are provided as 
a reference. Each signal is further defined within the 
sections which describe the associated 82370 func­
tion. 

Symbol Type Name and Function 

A1-A23 I/O ADDRESS BUS: Outputs physical memory or port I/O addresses. See 
A ........ ___ 13 •• _ If") '1 tl\ , .................. i ... i ....... ,..1 i ... .,,.. .. ""' .... fi,,,., 
r\WI"'I ... ~i;II wu., \"""UI lUI QUUILIUIIQI IIIIUI'II~,""IUII. 

BHE# I/O . BYTE ENABLES: Indicate which data bytes of the data bus take partin a bus 
BLE# cycle. See Byte Enable (2.2.4) for additional information. 

Do-D15 I/O DATA BUS: This is the 16-bit data bus. These pins are active outputs during 
interrupt acknowledges, during Slave accesses, and when the 82370 is in the 
Master Mode. 

CLK2 I PROCESSOR CLOCK: This pin must be connected to the processor's clock, 
CLK2. The 82370 monitors the phase of this clock in order to remain 
synchronized with the CPU. This clock drives all of the internal synchronous 
circuitry. 

D/C# I/O DATA/CONTROL: D/C# is used to distinguish betwe~n CPU control cycles 
and DMA or CPU data access cycles. It is active as an output only in the 
Master Mode. 

WiR# iiO WRiTEiREAD: 'IV iR # is used to distinguisil between write and read cycles. It 
is active as an output only in the Master Mode. 

MIIO# I/O MEMORY /10: M/IO# is used to distinguish between memory and 10 
accesses. It is, active as an output only in the Master Mode. 

ADS# I/O ADDRESS STATUS: This signal indicates presence of a valid address on the 
address bus. It is active as output only in the Master Mode. ADS# is active 
during the first T-state where addresses and control signals are valid. 

NA# I NEXT ADDRESS: Asserted by a peripheral or memory to begin a pipelined 
address cycle. This pin is m?nit.o~ed ?rily whil~ the 82370 is in the Master 
Mode. In the Slave Mode, plpelinlng IS determined by the current and past 
!;tRtlJ!i of the ADS # and READY # sianals .- ----- - -

HOLD 0 HOLD REQUEST: This is an active-high signal to the Bus Master to request 
control of the system bus. When control is granted, the Bus Master activates 
the hold acknowledge signal (HLDA). 

HLDA I HOLD ACKNOWLEDGE: This input signal tells the DMA controller that the 
Bus Master has relinquished control of the system bus to the DMA controller. 
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Pin Descriptions (Continued) 

Symbol Type Name and Function 

DREQ (0-3, 5-7) I DMA REQUEST: The DMA Request inputs monitor requests from peripherals 
requiring DMA service. Each of the eight DMA channels has one DREQ input. 
These active-high inputs are internally synchronized and prioritized. Upon 
request, channel 0 has the highest priority and channel 7 the lowest. 

DREQ4/IRQ9# I DMA/INTERRUPT REQUEST: This is the DMA request input for channel 4. It 
is also connected to the interrupt controller via interrupt request 9. This 
internal connectiol) is available for DMA channel 4 only. The interrupt input is 
active low and can be programmed as either edge or level triggered. Either 
function can be masked by the appropriate mask register. Priorities of the 
DMA channel and the interrupt request are not related but follow the rules of 
the individual controllers. 

Note that this pin has a weak internal pull-up. This causes the interrupt 
request to be inactive, but the DMA request will be active if there is no 
external connection made. Most applications will require that either one or the 
other of these functions be used, but not both. For this reason, it is advised 
that DMA channel 4 be used for transfers where a software request is more 
appropriate (such as memory-to-memory transfers). In such an application, 
DREQ4 can be masked by software, freeing IRQ9# for other purposes. 

EOP# 1/0 END OF PROCESS: As an output, this signal indicates that the current 
Requester access is the last access of the currently operating DMA channel. 
It is activated when Terminal Count is reached. As an input, it Signals the DMA 
channel to terminate the current buffer and proceed to the next buffer, if one 
is available. This signal may be programmed as an asynchronous or 
synchronous input. 

EOP# must be connected to a pull-up resistor. This will prevent erroneous 
external requests for termination of a DMA process. 

EDACK (0-2) 0 ENCODED DMA ACKNOWLEDGE: These signals contain the encoded 
acknowledgment of a request for DMA service by a peripheral. The binary 
code formed by the three signals indicates which channel is active. Channel 4 
does not have a DMA acknowledge. The inactive state is indicated by the 
code 100. During a Requester access, EDACK presents the code for the 
active DMA channel. During a Target access, EDACK presents the inactive 
code 100. 

IRQ (11 -23) # I INTERRUPT REQUEST: These are active low interrupt request inputs. The 
inputs can be programmed to be edge or level sensitive. Interrupt priorities 
are programmable as either fixed or rotating. These inputs have weak internal 
pull-up resistors. Unused interrupt request inputs should be tied inactive 
externally. 

INT 0 INTERRUPT OUT: INT signals that an interrupt request is pending. 

ClKIN I TIMER CLOCK INPUT: This is the clock input signal to all of the 82370's 
programmable timers. It is independent of the system clock input (ClK2). 

TOUT1/REF# 0 TIMER 1 OUTPUT/REFRESH: This pin is software programmable as either 
the direct output of Timer 1, or as the indicator of a refresh cycle in progress. 
As REF #, this signal is active during the memory read cycle which occurs 
during refresh. 
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Pin Descriptions (Continued) 

Symbol 

TOUT2#/lR03# 

TOUT3# 

READY # 

WSC (0-1) 

READYO# 

RESET 

CHPSEL# 

CPURST 

Vee 

Vss 

Type 

1/0 

0 

I 

I 

0 

I 

0 

0 

Name and Function 

TIMER 2 OUTPUT /INTERRUPT REQUEST: This is the inverted output of 
Timer 2. It is also connected directly to interrupt request 3. External hardware 
can use IR03 # if Timer 2 is programmed as OUT = 0 (TOUT2 # = 1). 

TIMER 3 OUTPUT: This is the inverted output of Timer 3. 

READY INPUT: This active-low input indicates to the 82370 that the current 
bus cycle is complete. READY is sampled by the 82370 both while it is in the 
Master Mode, and while it is in the Slave Mode. 

WAIT STATE CONTROL: WSCO and WSC1 are inputs used by the Wait-
State Generator to determine the number of wait states required by the 
currently accessed memory or 110. The binary code on these pins, combined 
with the M/IO# signal, selects an internal register in which a wait-state count 
is stored. The combination WSC = 11 disables the wait-state generator. 

READY OUTPUT: This is the synchronized output of the wait-state generator. 
It is also valid during CPU accesses to the 82370 in the Slave Mode when the 
82370 requires wait states. READYO # should feed directly the processor's 
READY # input. 

RESET: This synchronous input serves to initialize the state of the 82370 and 
provides basis for the CPURST output. RESET must be held active for at least 
15 CLK2 cycles in order to guarantee the state of the 82370. After Reset, the 
82370 is in the Slave Mode with all outputs except timers and interrupts in 
their inactive states. The state of the timers and interrupt controller must be 
initialized through software. This input must be active for the entire time 
required by the host processor to guarantee proper reset. 

CHIP SELECT: This pin is driven active whenever the 82370 is addressed in a 
slave bus read or write cycle. It is also active during interrupt acknowledge 
cycles when the 82370 is driving the Data Bus. It can be used to control the 
local bus transceivers to prevent contention with the system bus. 

CPU RESET: CPURST provides a synchronized reset signal for the CPU. It is 
activated in the event of a software reset command, a processor shut"down 
det~ct, or a hardwar~ reset via the ~ESET pin. The 82370 holds CPURST 
active for 62 clocks In response to either a software reset command or a shut­
down detection Otherwise CPURST reflects the RESET input 

POWER: + 5V input power. 

Ground Reference. 

Table 1. Walt-State Select Inputs 

Port Walt-State Registers Select Inputs 

Address D7 D4 D3 DO WSC1 WSCO 

72H MEMORY 0 1/00 0 0 
73H MEMORY 1 1/01 0 1 
74H MEMORY 2 1/02 1 0 

DISABLED 1 1 

M/IO# 1 0 
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100 
290164-2 

100 Pin Quad Flat-Pack Pin Out (Top View) 

A Row BRow CRow DRow 

Pin Label Pin Label Pin Label Pin Label 

1 CPURST 26 Vee 51 A11 76 OREQ5 
2 INT 27 011 52 AlO 77 OREQ4/IRQ9# 
3 Vee 28 D4 53 A9 78 OREQ3 
4 Vss 29 D12 54 Ae 79 OREQ2 
5 TOUT2#/IRQ3# 30 D5 55 A7 80 DREQ1 
6 TOUT3# 31 D13 56 As 81 DREQO 
7 D/C# 32 Ds 57 A5 82 IRQ23# 
8 Vee 33 Vss 58 Vee 83 IRQ22# 
9 W/R# 34 D14 59 A4 84 IRQ21 # 

10 M/IO# 35 D7 60 A3 85 IRQ20# 
11 HOLD 36 D15 61 A2 86 IRQ19# 
12 TOUT1/REF# 37 A23 62 Al 87 IRQ18# 
13 ClK2 38 A22 63 Vss 88 IRQ17# 
14 Vss 39 A21 64 BlE# 89 IRQ16# 
15 READYO# 40 A20 65 BHE# 90 IRQ15# 
16 EOP# 41 A19 66 Vss 91 IRQ14# 
17 CHPSEl# 42 Ale 67 ADS# 92 IRQ13# 
18 Vee 43 Vee 68 Vee 93 IRQ12# 
19 Do 44 A17 69 EDACK2 94 IRQ11 # 
20 De 45 A1S 70 EDACK1 95 ClKIN 
21 Dl 46 A15 71 EDACKO 96 WSCO 
22 D9 47 A14 72 HlDA 97 WSC1 
23 D2 48 Vss 73 DREQ7 98 RESET 
24 D10 49 A13 74 DREQ6 99 READY # 
25 D3 50 A12 75 NA# 100 Vss 
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A B C o E f G H K l M N p 

Vee Vss Vee A12 A9 AB AS A3 BHE# OREOO EOACKI Vss Vee 

o o o o o o o o o o 0 o o 
Vee A19 A17 AIS A13 Al0 A7 A4 Al AOS# EOACK2 INT Vss Vee 

2 o 0 0 0 0 0 o o o 0 0 0 o o 

3 

4 

5 

Vss A21 AlB 

o o o 
Vee A22 A20 

000 
(NC) 

o 
(NC) 

o 
A23 

o 
(NC) (NC) (NC) 

S 0 0 0 
(NC) (NC) (NC) 

7 0 0 0 
(NC) (NC) 015 

BOO 0 

AIS A14 

o o 
All 

o 
AS A2 

o o 

BonOM VIEW 
METAL liD 

(82370) 

ORE04/ 
BlE# , IR09# EDACKO HlOA ORE07 OREOS 

o 0 0 0 o 0 
ORlQ6 NAil ilREQ3 

000 
WSCO DRE02 DREOI 

o o 0 
WSCI IR022# IR023# 

000 
IR021# IR020# IROI9# 

000 
IROI7# IROIS# IROIB# 

000 
07 (NC) (NC) IROI3# IROI4# IROIS# 

9 o o o 0 

0131 I D/C# 

o 0 
014 OS IROI2# IR011# 

10 

11 

o 
(NC) 

o 

o 
05 

o 

o 0 
ClKIN W/R# 

o 0 (~ ~--------------------------------~~. 
Vee (NC) 012 

12 0 0 0 
Vss (NC) 04 

1 13 1 0 
Vee 

14 0 

o o 
Vss Vee 

o 0 

(NC) 03 DID (NC) REAOYO# HOLD CHPSEl# EOP# CPURST RESET Vee 

o 0 o o 0 0 0 0 000 
TOUT1/ TOUT2#/ 

D9 (NC) (NC) REf# M/VJ# TOUT3# IR03 Vss (NC) (NC) 02 

o o o o o o o o o o o 
Oil (NC) (NC) ClK2 01 DO 08 Vss Vee Vss Vee 

o 0 000 o o o o o o 
290164-3 

82370 PGA Pinout 
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Pin Label Pin Label 

G14 CLK2 D14 Dll 
N12 RESET F12 D10 
M12 CPURST G13 Dg 
C5 A23 K14 DB 
84 A22 A9 D7 
83 A21 810 D6 
C4 A20 811 D5 
82 A19 C13 D4 
C3 AlB E12 D3 
C2 A17 F13 D2 
D3 A16 H14 Dl 
D2 A15 J14 Do 
E3 A14 P11 W/R# 
E2 A13 L13 MIIO# 
E1 A12 K2 ADS# 
F3 All M10 D/C# 
F2 A10 N4 NA# 
F1 Ag M11' READY# 
G1 AB H12 READYO# 
G2 A7 J12 HOLD 
G3 A6 M3 HLDA 
H1 A5 M2 INT 
H2 A4 L12 EOP# 
J1 A3 L2 EDACK2 
H3 A2 M1 EDACK1 
J2 Al L3 EDACKO 
J3 8LE# N3 DREQ7 
K1 8HE# M4 DREQ6 
K12 CHPSEL# P3 DREQ5 
C8 D15 K3 DREQ4I1RQ9# 
A10 D14 P4 DREQ3 
C10 D13 N5 DREQ2 
C12 D12 P5 DREQ1 

1.0 FUNCTIONAL OVERVIEW 

The 82370 contains several independent functional 
modules. The following is a brief discussion of the 
components and features of the 82370. Each mod­
ule has a corresponding detailed section later in this 
data sheet. Those sections should be referred to for 
design and programming information. 

. 1.1 82370 Architecture 

The 82370 is comprised of several computer system 
functions that are normally found in separate LSI 
and VLSI components. These include: a high-per­
formance, eight-channel, 32-bit Direct Memory Ac­
cess Controller; a 20-level Programmable Interrupt 

Pin Label Pin Label 

L1 DREQO A2 Vee 
PS IRQ23# P2 Vee 
NS IRQ22# A4 Vee 
M7 IRQ21 # A12 Vee 
N7 IRQ20# P12 Vee 
P7 IRQ19# A14 Vee 
P8 IRQ18# C14 Vee 
M8 IRQ17# M14 Vee 
N8 IRQ1S# P14 Vee 
P9 IRQ15# A5 NC 
N9 IRQ14# 85 NC 
M9 IRQ13# AS NC 
N10 IRQ12# 8S NC 
P10 IRQ11 # C6 NC 
M5 WSCO A7 NC 
M6 WSC1 87 NC 
M13 TOUT3# C7 NC 
N13 TOUTUIIRQ3# A8 NC 
K13 TOUT1/REF# 88 NC 
N11 CLKIN. 89 NC 
A1 Vss C9 NC 
C1 Vss A11 NC 
N1 Vss 812 NC 
N2 Vss C11 NC 
A3 Vss D12 NC 
A13 Vss G12 NC 
P13 Vss 813 NC 
814 Vss D13 NC 
L14 Vss E13 NC 
N14 Vss H13 NC. 
81 Vee J13 NC 
D1 Vee E14 NC 
P1 Vee F14 NC 

Controller which is a superset of the 82C59A; four 
1S-bit Programmable Interval Timers which are func­
tionally equivalent to the 82C54 timers; a DRAM Re­
fresh Controller; a Programmable Wait State Gener­
ator; and system reset logic. The interface to the 
82370 is optimized for high-performance operation 
with the 8037S microprocessor. 

The 82370 operates directly on the 80376 bus. In 
the Slave Mode, it monitors the state of the proces­
sor at all times and acts or idles according to the 
commands of the host. It monitors the address pipe­
line status and generates the programmed number 
of wait states for the device being accessed. The 
82370 also has logic to the reset of the 80376 via 
hardware or software reset requests and processor 
shutdown status. 
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After a system reset, the 82370 is in the Slave 
Mode. It appears to the system as an lID device. It 
becomes a bus master when it is performing DMA 
transfers. 

To maintain compatibility with existing software, the 
registers within the 82370 are accessed as bytes. If 
the internal logic of the 82370 requires a delay be­
fore another access by the processor, wait states 

are automatically inserted into the access cycle. 
This allows the programmer to write initialization rou­
tines, etc. without regard to hardware recovery 
times. 

Figu~e 1-1 shows the basic architectural compo­
nents of the 82370. The following sections briefly 
discuss the architecture and function of each of the 
distinct sections of the 82370. 

80376 LOCAL BUS CHFSEi..# 

Toun/REF# 

I 
INT 

RESET 

DREOO 

DRE07 

EDACKO 
EDACK1· 

EDACK2 

EOP# 

.-..F'#---'~ TOUT2# 
1-----1 

TOUT3# 

" _____________________ L ___ ....::.:;_:.:_:....-_....;~_ CLK IN 

Figure 1-1. Architecture Qf the 82370 

4-850 

290164-4 



82370 

1.1.1 DMA CONTROLLER 

The 82370 contains a high-performance, 8-channel 
DMA Controller. It provides a 32-bit internal data 
path. Through its i6-bit external physical data bus, it 
is capable of transferring data in any combination of 
bytes, words and double-words. The addresses of 
both source and destination can be independently 

. incremented, decremented or held constant, and 
cover the entire 16-bit physical address space of the 
80376. It can disassemble and assemble non­
aligned data via a 32-bit internal temporary data 
storage register. Data transferred between devices 
of different data path widths can also be assembled 
and disassembled using the internal temporary data 
storage register. The DMA Controller can also trans­
fer aligned data between I/O and memory on the fly, 
allowing data transfer rates up to 16 megabytes per 
second for an 82370 operating at 16 MHz. Figure 
1-2 illustrates the functional components of the DMA 
Controller. 

There are twenty-four general status and command 
registers in the 82370 DMA Controller. Through 
these registers any of the channels may be pro­
grammed into any of the possible modes. The oper­
ating modes of anyone channel are independent of 
the operation of the other channels. 

Each channel has three programmable registers 
which determine the location and amount of data to 
be transferred: 

Byte Count Register- Number of bytes to trans­
fer. (24-bits) 

Requester Register - Byte Address of memory 
or peripheral which is re­
questing DMA service . 
(24-bits) 

Target Register - Byte Address of peripheral 
or memory which will be 
accessed. (24-bits) 

There are also port addresses which, when ac­
cessed, cause the 82370 to perform specific func­
tions. The actual data written doesn't matter, the act 
of writing to the specific address causes the com­
mand to be executed. The commands which operate 
in this mode are: Master Clear, Clear Terminal Count 
Interrupt Request, Clear Mask Register, and Clear 
Byte Pointer Flip-Flop. 

DMA transfers can be done between all combina­
tions of memory and I/O; memory-to-memory, mem­
ory-to-I/O, I/O-to-memory, and I/O-to-I/O .. DMA 
service can be requested through software and/or 
hardware. Hardware DMA acknowledge Signals are 
available for all channels (except channel 4) through 
an encoded 3-bit DMA acknowledge bus 
(EDACKO-2). 

HOLD4---------~ 

HLDA 
CONTROL/STATUS REGISTERS CHANNEL REGISTERS 

DREOO 
DREOI 
DRE02 
DRE03 
DRE04 
DREQS 
DRE06 
DREQ7 

:::::: 
~ =: 
==: ----. 

~ I 

DMA 
• REQUEST 
ARBITRATION 

LOGIC 

COMMAND REGISTER I 

COMMAND REGISTER II 

MODE REGISTER I 

MODE REGISTER II 

SOFTWARE REQUEST 
REGISTER 

MASK REGISTER 

STATUS REGISTER 

BUS SIZE REGISTER 

CHAINING REGISTER 

BASE CURRENT TEMPORARY 
BYTE COUNT BYTE COUNT REGISTER 

BASE CURRENT 
REOUESTER REQUESTER 

ADDRESS ADDRESS 
CHANNEL 0 

BASE CURRENT 
TARGET TARGET 

ADDRESS ADDRESS 

CHANNEL I (SAME AS CH D) 
. CHANNEL 2 (SAME AS CH 0) 
CHANNEL 3 (SAME AS CH 0) 

,I "LOWER" GROUP OF CHANNELS 

EDACKO +--
EDACKI +-- PROCESS 

CONTROL 
EDACK2 +--

EOP# ........ . 

I "UPPER" GROUP OF CHANNELS 

CHANNEL 4 (SAME AS CH 0) 
CONTROL/STATUS CHANNEL S (SAME AS CH 0) 
(SAME AS 

CHANNEL 6 (SAME AS CH 0) LOWER GROUP) 
CHANNEL 7 (SAME AS CH 0) 

Figure 1·2. 82370 DMA Controller 
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The 82370 DMA Controllenransfers blocks of data 
(buffers) in three modes: Single Buffer, Buffer Auto­
Initialize, and Buffer Chaining. In the Single Buffer 
Process, the 82370 DMA Controller is programmed 
to transfer one particular block of data. Successive 
transfers then require reprogramming of the DMA 
channel. Single Buffer transfers are useful in sys­
tems where it is known at the time the transfer be­
gins what quantity of data is to be transferred, and 
there is a contiguous block of data area available. 

The Buffer Auto-Initialize Process allows the same 
data area to be used for successive DMA transfers 
without having to reprogram the channel. 

The Buffer Chaining Process allows a program to 
specify a list of buffer transfers to be executed. The 
82370 DMA Controller, through interrupt routines, is 
reprogrammed from the list. The channel is repro­
grammed for a new buffer before the current buffer 
transfer is complete. This pipelining of the channel 
programming process allows the system to allocate 
non-contiguous blocks of data storage space, and 
transfer all of the data with one DMA process. The 
buffers that make up the chain do not have to be in 
contiguous locations. 

Channel priority can be fixed or rotating. Fixed priori­
ty allows the programmer to define the priority of 
DMA channels based on hardware or other fixed pa-

GAT~ CONTROL H~~ 
LOGIC 

eLKIN 

rameters. Rotating priority is used to provide periph­
erals access to the bus on a shared basis. 

With fixed priority, the programmer can set any 
channel to 'have the current 19west priority. This al­
lows the user to reset or manually rotate the priority 
schedule without reprogramming the command reg­
isters. 

1.1.2 PROGRAMMABLE INTERVAL TIMERS 

Four 16-bit programmable interval timers reside 
within the 82370. These timers are identical in func­
tion to the timers in the 82C54 Programmable Inter­
val Timer. All four of the timers share a common 
clock input which can be independent of the system 
clock. The timers are capable of operating in six dif­
ferent modes. In all of the modes, the current count 
can be latched and read by the 80376 at any time, 
making these very versatile event timers. Figure 1-3 
shows the functional components of the Program­
mable Interval Timers. 

The outputs of the timers are directed to key system 
functions, making system design simpler. Timer 0 is 
routed directly to an interrupt input and is not avail­
able e>.1ernally. This timer would typically be used to 
generate time-keeping interrupts, 

TOUTO 

--------------_----4 TIMER 0 

TIMER 1 TOUT! 

~ .. ~, :roun 
y----TIM-E-R-3------.J--+TOUT3 

290164-6 

Figure 1-3. Programmable Interval TimerS-Block Diagram 

4-852 



82370 

Timers 1 and 2 have outputs which are available for 
general timer/counter purposes as well as special 
functions. Timer 1 is routed to the refresh control. 
logic to provide refresh timing. Timer 2 is connected 
to an interrupt request input to provide other timer 
functions. Timer 3 is a general purpose timer/coun­
ter whose output is available to external hardware. It 
is also connected internally to the interrupt request 
which defaults to the highest priority (IROO). 

1.1.3 INTI;RRUPT CONTROLLER 

The 82370 has the equivalent of three enhanced 
82C59A Programmable Interrupt Controllers. These 
controllers can all be operated in the Master Mode, 
but the priority is always as if they were cascaded. 
There are 15 interrupt request inputs provided for 
the user, all of which can be inputs from external 
slave interrupt controllers. Cascading 82C59As to 
these request inputs allows a possible total of 120 
external interrupt requests. Figure 1-4 is a block dia­
gram of the 82370 Interrupt Controller. 

Each of the interrupt request inputs can be individu­
ally programmed with its own interrupt vector, allow­
ing more flexibility in interrupt vector mapping than 

IRQO# 
IRQ1# 
IRQ2# 
IRQ3# 
IRQ4# 
IRQ5# 
IRQ6# 
IRQ7# 

DATA (0-7) 

was available with the 82C59A. An interrupt is pro­
vided to alert the system that an attempt is being 
made to program the vectors in the method of the 
82C59A. This provides compatibility of existing soft­
ware that used the 82C59A or 8259A with new de­
signs using the 82370. 

In the event of an unrequested or otherwise errone­
ous interrupt acknowledge cycle, the 82370 Interrupt 
Controller issues a default vector. This vector, pro­
grammed by the system software, will alert the sys­
tem of unsolicited interrupts of the 80376. 

The functions of the 82370 Interrupt Controller are 
identical to the 82C59A, except in regards to pro­
gramming the interrupt vectors as mentioned above. 
Interrupt request inputs are programmable as either 
edge or. level triggered and are software maskable. 
Priority can be either fixed or rotating and interrupt 
requests can be nested. 

Enhancements are added to the 82370 for cascad­
ing external interrupt controllers. Master to Slave 
handshaking takes place on the data bus, instead of 
dedicated cascade lines. 

IRQ1 
IRQ2 
IRQ3 
IRQ4 

IRQ5 
IRQ6 
IRQ7 

...... ___ -+ INTERRUPT 
TO HOST 

IN­
SERVICE 

REG. 

DATA (0-7) 

INDIVIDUALLY PROGRAMMABLE 
VECTOR BANK 

._-------------------------------
82370 ENHANCEMENT OVER THE 82C59A 

290164-7 

Figure 1-4.82370 Interrupt Controller-Block Diagram 
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1.1.4 WAIT STATE GENERATOR 

The Wait State Generator is a programmable 
READY generation circuit for the 80376 bus. A p~­
ripheral requiring wait states can request the Walt 
State Generator to hold the processor's READY in­
put inactive for a predetermined number of bus 
states. Six different wait state counts can be pro­
grammed into the Wait State Generator by software; 
three for memory accesses and three for I/O ac­
cesses. A block diagram of the 82370 Wait State 
Generator is shown in Figure 1-5. 

The peripheral being accessed selects the required 
. wait state count by plaCing a code on a 2-bit wait 
state select bus. This code along with the M/IO# 
signal from the bus master is used to select one of 
six internal 4-bit wait state registers which has been 
programmed with the desired number of wait states. 
From zero to fifteen wait states can be programmed 
into the wait state registers. The Wait State genera­
tor tracks the state of the processor or current bus 
master at all times, regardless of which device is the 
current bus master and regardless of whether or not 
the wait state generator is currently active. 

The 82370 Wait State Generator is disabled by mak­
ing the select inputs both high. This all~ws hardware 
which is intelligent enough to generate Its own ready 
signal to be accessed without penalty. As previously 
mentioned, deselecting the Wait State Generator 
does not disable its ability to determine the proper 
number of wait states due to pipeline status in sub­
sequent bus cycles. 

The number of wait states inserted into a pipelined 
bus cycle is the value in the selected wait state reg­
ister. If the bus master is operating in the non-pipe­
linAn mode. the Wait State Generator will increase t't,; ~~m-b-er' of wait states inserted into the bus cycle 
by one. 

Pipelined 0-15 Wait States 
Non·Pipelined 0-16 Wait States 

On reset, the Wait State Generator's registers are 
loaded with the value FFH, giving the maximum 
number of wait states for any access in which the 
wait state select inputs are active. 

1.1.5 DRAM REFRESH CONTROLLER 

The 82370 DRAM Refresh Controller consists of a 
24-bit refresh address counter and bus arbitration 
logic. The output of Timer 1 is used to periodically 
reauest a refresh cycle. When the cont~oller re­
ceives the request, it requests access to the system 
bus through the HOLD signal. When bus control is 
acknowledged by the processor or current bus mas­
ter the refresh controller executes a memory read 
op~ration at the address currently in the Refresh Ad­
dress Register. At the same time, it activates a re­
fresh signal (REF #) that the memory uses to force a 
refresh instead of a normal read. Control of the bus 
is transferred to the processor at the completion of 
this cycle. Typically a refresh cycle will take six clock 
cycles to execute on an 80376 bus. . 

The 82370 DRAM· Refresh Controller has the high­
est priority when requesting bus access and will ih­
terrupt any active DMA process. This allows large 
blocks of data to be moved by the DMA controller 
without affecting the refresh function. Also the DMA 
controller is not required to completely relinquish the 

. bus, the refresh controller simply steals a bus cycle 
between DMA accesses. 

The amount by which the refresh address is incre­
mented is programmable to allow for different bus 
widths and memory bank arrangements. 

. . - --_. ---........... ,,"1"."' .. . 1.1.0 \"t-u nc'i:liE:. I ru ... ", •• "' •• 

The 82370 coniaifiS it special iasat function ,,-.. hien 
can respond to hardware reset signals as well as a 

INTERNAL WAIT STATE 
REQUIREMENT 

0403 DO 

MEMORY 0 I/O 0 
WSCO 

WSCl 

M/IOH 

REGISTER 
SELECT 
LOGIC 

MEMORY 1 I/O 1 

MEMORY 2 I/O 2 . 

(RESERVED) REFRESH 

PROGRAMMABLE WAIT STATE 
REGISTERS 

WAIT STATE 
COUNTER 

Figure 1-5. 82370 Walt State Generator-Block Diagram 
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software reset command. The circuit will hold the 
80376's RESET line active while an external hard­
ware reset signal is present at its RESET input. It 
can also reset the 80376 processor as the result of a 
software command. The software reset command 
causes the 82370 to hold the processor's RESET 
line active for a minimum of 62 clock cycles. The 
80376 requires that its RESET line be held active for 
a minimum of 80 clock cycles to re-initialize. For a 
more detailed explanation and solution, see Appen­
dix D (System Notes). 

The 82370 can be programmed to sense the shut­
down detect code on the status lines from the 
80376. If the Shutdown Detect function is enabled, 
the 82370 will automatically reset the processor. A 
diagnostic register is available which can be used to 
determine the cause of reset. 

1.1.7 REGISTER MAP RELOCATION 

After a hardware reset, the internal registers of the 
82370 are located in I/O space beginning at port 
address OOOOH. The map of the 82370's registers is 
relocatable via a software command. The default 
mapping places the 82370 between I/O addresses 
OOOOH and OODBH. The relocation register allows 
this map to be moved to any even 256-byte bounda­
ry in the processor's 16-bit I/O address space or any 
even 64 kbyte boundary in the 24-bit memory ad­
dress space. 

1.2 Host Interface 

The 82370 is designed to operate efficiently on the 
local bus of an 80376 microprocessor. The control 
signals of the 82370 are identical in function to 
those of the 80376. As a slave, the 82370 operates 
with all of the features available on the 80376 bus. 
When the 82370 is in the Master Mode, it looks iden­
tical to an 80376 to the connected devices. 

The 82370 monitors the bus at all times, and deter­
mines whether the current bus cycle is a pipe lined or 
non-pipelined access. All of the status signals of the 
processor are monitored. 

The control, status, and data registers within the 
82370 are located at fixed addresses relative to 
each other, but the group can be relocated to either 
memory or I/O space and to different locations with­
in those spaces. 

As a Slave device, the 82370 monitors the control/ 
status lines of the CPU. The 82370 will generate all 
of the wait states it needs whenever it is accessed. 
This allows the programmer tlw freedom of access-

ing 82370 registers without having to insert NOPs in 
the program to wait for slower 82370 internal regis­
ters. 

The 82370 can determine if a current bus cycle is a 
pipelined or a non-pipelined cycle. It does this by 
monitoring the ADS#, NA# and READV# signals 
and thereby keeping track of the current state of the 
80376. 

As a bus master, the 82370 looks like an 80376 to 
the rest of the system. This enables the designer 
greater flexibility in systems which include the 
82370. The designer does not have to alter the inter­
faces of any peripherals designed to operate with 
the 80376 to accommodate the 82370. The 82370 
will access any peripherals on the bus in the same 
manner as the 80376, including recognizing pipe­
lined bus cycles. 

The 82370 is accessed as an 8-bit peripheral. The 
80376 places the data of all 8-bit accesses either on 
D(0-7) or D(8-15). The 82370 will only accept data 
on these lines when in the Slave Mode. When in the 
Master Mode, the 82370 is a full 16-bit machine, 
sending and receiving data in the same manner as 
the 80376. 

2.0 80376 HOST INTERFACE 

The 82370 contains a set of interface signals to op­
erate efficiently with the 80376 host processor. 
These signals were designed so that minimal hard­
ware is needed to connect the 82370 to the 80376. 
Figure 2-1 depicts a typical system configuration 
with the 80376 processor. As shown' in the diagram, 
the 82370 is designed to interface directly with the 
80376 bus. 

Since the 82370 resides on the opposite side of the 
data bus transceivers with respect to the rest of the 
system peripherals, it is important to note that the 
transceivers should be controlled so that contention 
between the data bus transceivers and the 82370 
will not occur. In order to ease the implementation of 
this, the 82370 activates the CHPSEL# signal which 
indicates that the 82370 has been addressed and 
may output data. This signal should be included in 
the direction and enable control logic of the trans­
ceiver. When any of the 82370 internal registers are 
read, the data bus transceivers should be disabled 
so that only the 82370 will drive the local bus. 

This section describes the basic bus functions of the 
82370 to show how this device interacts with the 
80376 processor. Other signals which are not direct­
ly related to the host interface will be discussed in 
their associated functional block description. 
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Figure 2-1. 80376/82370 System Coniiguraiiuii 

2.1 Master and Slave Modes 

At any time. the 82370 acts as either a Slave device 
or a Master device in the system. Upon reset. the 
82370 will be in the Slave Mode. In this mode. the 
80376 processor can read/write into the 82370 in­
ternal registers. Initialization information may be pro­
grammed into the 82370 during Slave Mode. 

When DMA service (including DRAM Refresh Cycles 
generated by the 82370) is requested, the 82370 will 
request and subsequently get control of the 80376 
local bus. This is done through the HOLD and HLDA 
(Hold Acknowledge) signals. When the 80376 proc-

essor responds by asserting the HLDA signal, the 
82370 will switch into Master' Mode and perform 
DMA transfers. In this mode, the 82370 is the bus 
master of the system. It can read/write data from/to 
memory and peripheral devices. The 82370 will re­
turn to the Slave Mode upon completion of DMA 
transfers, or when HLDA is negated. 

2.2 80376 interface Signals 

As mentioned in the Architecture section, the Bus 
Interface module of the 82370 (see Figure 1-1) con­
tains signals that are directly connected to the 
80376 host processor. This module has separate 

4-856 



inter 82370 

16-bit Data and 24-bit Address busses. Also, it has 
additional control Signals tq support different bus op­
erations on the system. By residing on the 80376 
local bus, the 82370 shares the same address, data 
and control lines with the processor. The following 
subsections discuss the signals which interface to 
the 80376 host processor. 

2.2.1 CLOCK (CLK2) 

The CLK2 input provides fundamental timing for the 
82370. It is divided by two internally to generate the 
82370 internal clock. Therefore, CLK2 should be 
driven with twice the 80376's frequency. In order to 
maintain synchronization with the 80376 host proc­
essor, the 82370 and the 80376 should share a 
common clock source. 

The internal clock consists of two phases: PHI1 and 
PHI2. Each CLK2 period is a phase of the internal 
clock. PHI2 is usually used to sample input and set 
up internal signals and PHI1 is for latching internal 
data. Figure 2-2 illustrates the relationship of CLK2 
and the 82370 internal clock signals. The CPURST 
signal generated by the 82370 guarantees that the 
80376 will wake up in phase with PHI1. 

2.2.2 DATA BUS (00-015) 

This 16-bit three-state bidirectional bus provides a 
general purpose data path between the 82370 and 
the system. These pins are tied directly to the corre­
sponding Data Bus pins of the 80376 local bus. The 
Data Bus is also used for interrupt vectors generated 
by the 82370 in the Interrupt Acknowledge cycle. 

During Slave 1/0 operations, the 82370 expects a 
single byte to be written or read. When the 80376 
host processor writes into the 82370, either 00-07 
or Ds-D15 will be latched into the 82370, depending 

upon whether Byte Enable bit BLE# is 0 or 1 (see 
Table 2-1). When the 80376 host processor reads 
from the 82370, the single byte data will be duplicat­
ed twice on the Data Bus; i.e. on 00-07 and Ds-
015· 

During Master Mode, the 82370 can transfer 16-, 
and 8-bit data between memory (or 1/0 devices) and 
1/0 devices (or memory) via the Data Bus. 

These three-state bidirectional signals are connect­
ed directly to the 80376 Address Bus. In the Slave 
Mode, they are used as input signals so that the 
processor can address the 82370 internal ports/reg­
isters. In the Master Mode, they are used as output 
signals by the 82370 to address memory and periph­
eral devices. The Address Bus is capable of ad­
dressing 16 Mbytes of physical memory space 
(OOOOOOH to FFFFFFH), and 64 Kbytes of 1/0 ad­
dresses. 

2.2.4 BYTE ENABLE (BHE#, BLE#) 

The Byte Enable pins BHE# and BLE# select the 
specific byte(s) in the word addressed by A1-A23. 
During Master Mode operation, it is used as an out­
put by the 82370 to address memory and 1/0 loca­
tions. The definition of BHE# and BLE# is further 
illustrated in Table 2-1. 

NOTE: 
The 82370 will activate BHE# when output in Mas­
ter Mode. For a more detailed explanation and its 
solutions, see Appendix 0 (System Notes). 

I 
S2370 CLOCK PERIOO 82370 CLOCK PERIOD 82370 CLOCK PERIOD 

CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD 
III I 112 III I 112 III I 112 

CLK2 

I 
\ \ 'I \ j, PHI1J, 

I I 
PHI2\, I I ~ I }-I 

290164-9 

Figure 2-2. CLK2 and 82370 Internal Clock 
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As an output (Master Mode): 
Table 2-1. Byte Enable Signals 

Byte to be Accessed 
Logical Byte Presented on 

BHE# BLE# Data Bus During WRITE Only* 
Relative to A23-A1 

D15-D8 D7':Do 

0 0 0, 1 B A 
0 1 1 A A 
1 0 0 U A 
1 1 (Not Used) 

U = Undefined 
A = Logical 00-07 
B = Logical 08-015 

° NOTE: 
Actual number of bytes accessed depends upon the programmed data path width. 

Table 2-2. Bus Cycle Definition 

M/IO# D/C# W/R# 

0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 

1 1 0 
1 1 1 

2.2.5 BUS CYCLE DEFINITION SIGNALS 
(D/C#, W/R#, M/IO#) 

These three-state bidirectional signals define the· 
type of bus cycle being performed. W IR # distin­
guishs3 berNeen \A!rite and read cycl~s- ole#- dis­
tinguishes between processor data and control cy­
cies. MiiOi: distinguishes between meffiOiY and 110 
cycles. 

During Slave Mode, these signals are driven by the 
80376 .host processor; during Master Mode, they are 
driven by the 82370. In either mode, these signals 
will be valid when the Address Status (ADS#) is 
driven LOW. Exact bus cycle definitions are given in 
Table 2-2. Note that some combinations are recog· 
nized as inputs, but not generated as outputs. In the 
Master Mode, D/C#. is always HIGH. 

2.2.6 ADDRESS STATUS (ADS#) 

This signal indicates that a valid address (A1-A23, 
BHE#, BLE#) and bus cycle definition (W/R#, 
D/C#, M/IO#) is being driven on the bus. In the 
Master Mode, it is driven by the 82370 as an output. 
In the Slave Mode, this signal is monitored as 

As INPUTS As OUTPUTS 

Interrupt Acknowledge NOT GENERATED 
UNDEFINED NOT GENERATED 
1/0 Read 1/0 Read 
110 Write 1/0 Write 
UNDEFINED NOT GENERATED 
HALT if A1 = 1 NOT GENERATED 
SHUTDOWN if A1 = 0 
Memory Read Memory Read 
Memory Write Memory Write 

an input by the 82370. By the current and past 
status of ADS# and the READY# input, the 82370 
is able to determine, during Slave Mode, if the next 
bus cycle is a pipelined address cycle. ADS# is as­
serted during T1 and T2P bus states (see Bus State 
Definition). 

NOTE: 
ADS# must be qualified with the rising edge of 
CLK2. 

2.2.7 TRANSFER ACKNOWLEDGE (READY#) 

This input indicates that the current bus cycle is 
complete. In the Master Mode, assertion of this sig­
nal indicates the end of a DMA bus cycle. In the 
Slave Mode, the 82370 monitors this input and 
ADS # to detect a pipelined address cycle. This sig­
nal should be tied directly to the READY # input of 
the 80376 host processor. 

2.2.8 NEXT ADDRESS REQUEST (NA #) 

This input is used to indicate to the 82370 in the 
Master Mode that the system is requesting address 
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pipelining. When driven LOW by either memory or 
peripheral devices during Master Mode, it indicates 
that the system is prepared to accept a new address 
and bus cycle definition signals from the 82370 be­
fore the end of the current bus cycle. If this input is 
active when sampled by the 82370, the next address 
is driven onto the bus, provided a bus request is 
already pending internally. 

This input pin is monitored only in the Master Mode. 
In the Slave Mode, the 82370 uses the AOS# and 
READY # signals to determine address pipe lining 
cycles, and NA# will be ignored. 

2.2.9 RESET (RESET, CPURST) 

RESET 

This synchronous input suspends any operation in 
progress and places the 82370 in a known initial 
state. Upon reset, the 82370 will be in the Slave 
Mode waiting to be initialized by the 80376 host 
processor. The 82370 is reset by asserting RESET 
for 15 or more CLK2 periods. When RESET is as­
serted, all other input pins are ignored, and all other 
bus pins are driven to an idle bus state as shown in 
Table 2-3. The 82370 will determine the phase of its 
internal clock following RESET going inactive. 

RESET is level-sensitive and must be synchronous 
to the CLK2 signal. The RESET setup and hold time 
requirements are shown in Figure 2-3. 

ClK2 

RESET 

T30-RESET Hold Time 
T31-RESET Setup Time 

Table 2-3. Output Signals Following RESET 

Signal Level 

A1-A23, 00-015, BHE#, BLE# Float 
O/C#, W/R#, MIIO#, AOS# Float 
REAOYO# '1' 
EOP# '1' (Weak Pull-UP) 
EOACK2-EOACKO '100' 
HOLD '0' 
INT UNDEFINED' 
TOUT1/REF#, UNDEFINED" 
TOUT2#/IRQ3#, TOUT3# 
CPURST '0' 
CHPSEL# '1' 

"NOTE: 
The Interrupt Controller and Programmable Interval Timer 
are initialized by software commands. 

CPURST 

This output signal is used to reset the 80376 host 
processor. It will go active (HIGH) whenever one of 
the following events occurs: a) 82370's RESET input 
is active; b) a software RESET command is issued 
to the 82370; or c) when the 82370 detects a proc­
essor Shutdown cycle and when this detection fea­
ture is enabled (see CPU Reset and Shutdown De­
tect). When activated, CPURST will be held active 
for 62 clocks. The timing of CPURST is such that the 
80376 processor will be in synchronization with the 
82370. This timing is shown in Figure 2-4. 

290164-10 

Figure 2-3. RESET Timing 

PHI 2 PHil PHI 2 PHil 

ClK2 

~T33 MIN. 

CPURST \\\\\\~ 
_---::+11 T33 MAX. 

290164-11 
T33-CPU Reset from CLK2 

Figure 2-4. CPURST Timing 
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2.2.10 INTERRUPT OUT (INT) 

This output pin is used to signal the 80376 host 
processor that one or more interrupt requests (either 
internal or external) are pending. The processor is 
expected to respond with an Interrupt Acknowledge 
cycle. This signal should be connected directly to 
the Maskable Interrupt Request (INTR) input of the 
80376 host processor. 

2.3 62370 Bus Timing 

The 82370 internally divides the CLK2 signal by two 
to generate its internal clock. Figure 2-2 showed the 
relationship of CLK2 and the .internal clock which 
consists of two phases: PHI1 and PHI2. Each CLK2 
period is a phase of the internal clock. 

In the 82370, whether it is in the Master or Slave 
Mode, the shortest time unit of bus activity is a bus 
state. A bus state, which is also referred as a 
'T-state', is defined as one 82370 PHI2 clock period 
(i.e. two CLK2 periods). Recall in Table 2-2 various 
types of bus cycles in the 82370 are defined by the 
M/IO#, D/C# and W/R# signals. Each of these 
bus cycles is composed of two or more bus states. 
The length of a bus cycie depends on when the 
READY# input is asserted (Le. driven LOW). 

2.3.1 ADDRESS PIPELINING 

The 82370 supports Address Pipelining as an option 
in both the Master and Slave Mode. This feature typ­
ically allows a memory or peripheral device to oper­
ate with one less wait state than would otherwise be 
required. This is possible because during a pipelined 
cycle, the address and bus cycie' definition oi the 
next cvcle will be Qenerated by the bus master while 
waiting for the end of the current cycle to be ac­
knowledged. The pipelined bus is especially well 
suited for an interleaved memory environment. For 
16 MHz interleaved memory designs with 100 ns ac­
cess time DRAMs, zero wait state memory accesses 
can be achieved when pipelined addressing is se­
lected. 

In the Master Mode, the 82370 is capable of initiat-
. ing, on a cycle-by-cycle basis, either a pipelined or 
non-pipelined access depending upon the state of 
the NA# input. If a pipelined cycle is requested (indi­
cated by NA# being driven LOW), the 82370 will 
drive the address and bus cycle definition of the next 
cycle as soon as there is an internal bus request 
pending. 

In the Slave Mode, the 82370 is constantly monitor­
ing the ADS# and READY# signals on the proces­
sor local bus to determine if the current bus cycle is 

a pipe lined cycle. If a pipelined cycle is detected, the 
82370 will request one less wait state from the proc­
essor if the Wait State Generator feature. is selected. 
On the other hand, during an 82370 internal register 
access in a pipelined cycle, it will make use of the 
advance address and bus cycle information. In all 
cases, Address Pipelining will result in a savings of 
one wait state. 

2.3.2 MASTER MODE .BUS TIMING 

When the 82370 is in the fv1astei tv1oda, it • ..-m be in 
one of six bus states. Figure 2-5 shows the complete 
bus state diagram of the Master Mode, including 
pipelined address states. As seen in the figure, the 
82370 state diagram is very similar to that of the 
80376. The major difference is that in the 82370, 
there is no Hold state. Also, in the 82370, the condi­
tions for some state transitions depend upon wheth­
er it is the end of a DMA process. 

NOTE: 
The term 'end of a DMA process' is loosely defined 
here. It depends on the DMA modes of operation 
as well as the state of the EOP# and DREQ in­
puts. This is expained in detail in section 3-DMA 
Controller .. 

The 82370 will enter the idle state, n, upon RESET 
and whenever the internal address is not available at 
the end of a DMA cycle or at the end of a DMA 
process. When address pipelining is not used (NA # 
is not asserted), a new bus cycle always begins with 
state T1. During T1, address and bus cycle definition 
signals will be driven on the bus. T1 is always fol­
lowed byT2. 

if a bus cycie is not ackiioY';lsdgad (~aJith READY #:) 
during T2 .and NA# is negated, T2 will be repeated. 
When the end of the bus cycie is acknowiedged dur­
ing T2, the following state will be T1 of the next bus 
cycle (if the internal address latch is loaded and if 
this is not the end of the DMA process). Otherwise, 
the Ti state will be entered. Therefore, if the memory 
or peripheral accessed is fast enough to respond 
within the first T2, the fastest non-pipelined cycle will 
take one T1 and one T2 state. 

Use of the address pipelining feature allows the 
82370 to enter three additional bus states: T1 P, T2P 
and T2L T1 P is the first bus state of a pipelined bus 
cycle. T2P follows T1 P (or T2) if NA# is asserted 
when sampled. The 82370 will drive the bus with the 
address and bus cycle definition signals of the next 
cycle during T2P. From the state diagram, it can be 
seen that after an idle state Ti, the first bus cycle 
must begin with T1, and is therefore a non-pipelined 
bus cycle. The next bus cycle can be pipelined if 
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NA # is asserted and the previous bus cycle ended 
in a T2P state. Once the 82370 is in a pipelined 
cycle and provided that NA# is asserted in subse· 
quent cycles, the 82370 will be switching between 
T1 P and T2P states. If the end of the current bus 
cycle is not acknowledged by the READY # input, 
the 82370 will extend the cycle by adding T2P 
states. The fastest pipelined cycle will consist of one 
T1 P and one T2P state. 

The 82370 will enter state T2i when NA# is assert· 
ed and when one of the following two conditions 
occurs. The first condition is when the 82370 is in 
state T2. T2i will be entered if READY# is not as­
serted and there is no next address available. This 
situation is similar to a wait state. The 82370 will stay 
in T2i for as long as this condition exists. The sec­
ond condition which will cause the 82370 to enter 
T2i is when the 82370 is in state T1 P. Before going 
to state T2P, the 82370 needs to wait in state T2i 
until the next address is available. Also, in both cas­
es, if the DMA process is complete, the 82370 will 
enter the T2i state in order to finish the current DMA 
cycle. 

Figure 2-6 is a timing diagram showing non-pipelined 
bus accesses in the Master Mode. Figure 2-7 shows 
the timing of pipelined accesses in the Master Mode. 

ADAV. READY# Asserted 

2.3.3 SLAVE MODE BUS TIMING 

Figure 2-8 shows the Slave Mode bus timing in both 
pipelined and non-pipe lined cycles when the 82370 
is being accessed. Recall that during Slave Mode, 
the 82370 will constantly monitor the ADS# and 
READY # Signals to determine if the next cycle is 
pipelined. In Figure 2-8, the first cycle is non-pipe­
lined and the second cycle is pipelined. In the pipe­
lined cycle, the 82370 will start decoding the ad­
dress and bus cycle signals one bus state earlier 
than in a non-pipe lined cycle. 

The READY # input signal is sampled by the 80376 
host processor to determine the completion of a bus 
cycle. This occurs during the end of every T2, T2i 
and T2P state. Normally, the output of the 82370 
Wait State Generator, READYO#, is directly con­
nected to the READY # input of the 80376 host 
processor and the 82370. In such case, READYO# 
and READY # will be identical (see Wait State Gen­
erator). 

NA# Asserted. [Not ADAV + End of DMA) 

Not ADAV. READY# Negated 

290164-12 

NOTE: 
ADAV-Internal Address Available 

Figure 2-5. Master Mode State Diagram 
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Figure 2-6. Non-Pipellned Bus Cycles 
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290164-13 
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290164-14 

Figure 2-7. Pipelined Bus Cycles 
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290164-15 

NA# is shown here only for timing reference. It is not sampled by the 82370 during Slave Mode. 
When the 82370 registers are accessed. it will take one or more wait states in pipelined and two or more wait states in 
non-pipelined cycle to complete the internal access. 

Figure 2 ... 8. Slave Read/Write Timing 

3.0 DMA CONTROLLER 

The 82370 DMA Controller is capable of transferring 
data between any combination of memory and/or 
110, with any combination of data path widths. The 
82370 DMA Controller can be· programmed to ac­
commodate 8- or 16-bit devices. With its 16-bit ex­
ternal data path, it can transfer data in units of byte 
or a word. Bus bandwidth is optimized through the 
use of an internal temporary register which can dis­
assemble or assemble data to or from either an 
aligned or non-aligned destination or source. Figure 
3-1 is a block diagram of the 82370 DMA Controller. 

The 82370 has eight channels of DMA. Each chan­
nel operates independently of the others. Within the 
operation of the individual channels, there are many 
different modes of da~a transfer available. Many of 
the operating modes can be intermixed to provide a 
very versatile DMA controller. 

3.1 Functional Description 

In describing the operation of the 82370's DMA Con­
troller, close attention to terminology is required. Be-
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.1- I 
HOLD +-----, 
HLDA----, 

DREQO 
DREQI 
DREQ2 
DREQ3 
DREQ4 
DREQ5 
DREQ6 

::::: 
---+ DMA 
---+ REQUEST 
---+ ARBITRATION 
---+ LOGIC 

---+ 
~I I 

CONTROL/STATUS REGISTERS CHANNEL REGISTERS 

COMMAND REGISTER I BASE CURRENT TEMPORARY 
COMMAND REGISTER II BYTE COUNT BYTE COUNT REGISTER 

MODE REGISTER I BASE CURRENT 
REQUESTER REQUESTER 

MODE REGISTER II ADDRESS ADDRESS 
CHANNEL 0 

SOFTWARE REQUEST BASE CURRENT 
REGISTER TARGET TARGET 

MASK REGISTER ADDRESS ADDRESS 

STATUS REGISTER CHANNEL 1 (SAME AS CH 0) 
BUS SIZE REGISTER CHANNEL Z (SAME AS eH OJ 
CHAINING REGISTER CHANNEL 3 (SAME AS CH 0) 

I "LOWER" GROUP OF CHANNELS 

EDACKO +--
EDACKI +-- PROCESS 

CONTROL 
EDACK2 +--

EOP# ~ 

I "UPPER" GROUP OF CHANNELS 

CHANNEL 4 (SAME AS CH 0) 
CONTROL/STATUS CHANNEL 5 (SAME AS CH 0) 
(SAME AS 

CHANNEL 6 (SAME AS CH 0) LOWER GROUP) 
CHANNEL 7 (SAME AS CH 0) 

290i64-i6 

·Figure 3-1. 82370 DMA Controller Block Diagram 

fore entering the discussion of the function of the 
82370 DMA Controller, the following explanations of 
some of the terminology used herein may be of ben­
efit. First, a few terms for clarification: 

DMA PROCESS-A DMA process is the execution 
of a programmed DMA task from Dl3ginning to end. 
Each DMA process requires intitial programming by 
the hosi 60376 rnlciOpiOcessoi. 

BUFFER-A contiguous block of data. 

BUFFER TRANSFER-The action required by the 
DMA to transfer an entire buffer. 

DATA TRANSFER-The DMA action in which a 
group of bytes or words are moved between devices 
by the DMA Controller. A data transfer operation 
may involve movement of one or many bytes. 

BUS CYCLE-Access by the DMA to a single byte 
or word. 

Each DMA channel consists of three major compo­
nents. These components are identified by the con­
tents of programmable registers which define the 

memory or 1/0 devices being serviced by the DMA. 
They are the Target, the Requester, and the Byte 
Count. They will be defined generically here and in 
greater detail in the DMA register definition section. 

The Requester is the device which requires service 
bv the 82370 DMA Controller, and makes the re­
quest for service. All of the control signals which the 
D~w1A monitors or generates far specific channels 
are logically related to the Requester. Only the Re­
quester is considered capable of initiating or termi­
nating a DMA process. 

The Target is the device.with which the Requester 
wishes to communicate. As far as the DMA process 
is concerned, the Target is a slave which is incapa­
ble of control over the process. 

The direction of data transfer can be either from Re­
quester to Target or from Target to Requester; i.e. 
each can be either a source or a destination. 

The Requester and Target may each be either 1/0 
or memory. Each has an address associated with it 
that 'can be incremented, decremented, or held con­
stant. The addresses are stored in the Requester 
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Address Registers and Target Address Registers, 
respectively. These registers have two parts: one 
which contains the current address being used in the 
DMA process (Current Address Register), and one 
which holds the programmed base address (Base 
Address Register). The contents ,of the Base Regis­
ters are never changed by the 82370 DMA Control­
ler. The Current Registers are incremented or decre­
mented according to the progress of the DMA pro­
cess. 

The Byte Count is the component of the DMA pro­
cess which dictates the amount of data which must 
be transferred. Current and Base Byte Count Regis­
ters are provided. The Current Byte Count Register 
is decremented once for each byte transferred by 
the DMA process. When the register is decremented 
past zero, the Byte Count is considered· 'expired' 
and the process is terminated or restarted, depend­
ing on the mode of operation of the channel. The 
point at which the Byte Count expires is called 'Ter­
minal Count' and several status signals are depen­
dent on this event. 

Each channel of the 82370 DMA Controller also 
contains a 32-bit Temporary Register for use in as­
sembling and disassembling non-aligned data. The 
operation of this register is transparent to the user, 
although the contents of it may affect the timing of 
some DMA handshake sequences. Since there is 
data storage available for each channel, the DMA 
Controller can be interrupted without loss of data. 

To avoid unexpected results, care should be taken 
in programming the byte count correctly when as­
sembing and disassembling non-aligned data. For 
example: 

Words to Bytes: 
Transferring two words to bytes, but setting the byte 
count to three, will result in three bytes transferred 
and the final byte flushed. 

Bytes to Words: 
Transferring six bytes to three words, but setting the 
byte count to five, will result in the sixth byte trans­
ferred being undefined. 

The 82370 DMA Controller is a slave on the bus until 
a request for DMA service is received via either a 
software request command or a hardware request 
signal. The host processor may access any of the 
control/status or channel registers at any time the 
82370 is a bus slave. Figure 3-2 shows the flow of 
operations that the DMA Controller performs. 

At the time a DMA service request is received, the 
DMA Controller issues a bus hold request to the 
host processor. The 82370 becomes the bus master 
when the host relinquishes the bus by asserting a 

hold acknowledge signal. The channel to be serv­
iced will be the one with the highest priority at the 
time the DMA Controller becomes the bus master. 
The DMA Controller will remain in control of the bus 
until the hold acknowledge signal is removed, or un­
til the current DMA transfer is complete. 

While the 82370 DMA Controller has control of the 
bus, it will perform the required data transfer(s). The 
type of transfer, source and destination addresses, 
and amount of data to transfer are programmed in 
the control registers of the DMA channel which re­
ceived the request for service. 

At completion of the DMA process, the 82370 will 
remove the bus hold request. At this time the 82370 
becomes a slave again, and the host returns to be­
ing a master. If there are other DMA channels with 
requests pending, the controller will again assert the 
hold request signal and restart the bus arbitration 
and switching process. 

2901114-17 

Figure 3-2. Flow of DMA Controller Operation 

3.2 Interface Signals 

There are fourteen control signals dedicated to the 
DMA process. They include eight DMA Channel Re­
quests (DREQn), three Encoded DMA Acknowledge 
signals (EDACKn), Processor Hold and Hold Ac-
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END OF' PROCESS 

DREQn 

TO HOST {HOLD ' 82370 
PROCESSOR DMA CONTROLLER 1----.f6.:-r.D::-:A~C~Kn~--.,....--+I 

HLDA L __ '"'T"....tEiW~ 

290164-18 

Figure 3-3. Requester, Target and DMA Controller Interconnection 

knowledge (HOLD, HLDA), and End-of-Process 
(EOP#). The DREOn inputs and EDACK (0-2) out­
puts are handshake signals to the devices requiring 
DMA service. The HOLD output and HLDA input are 
handshake signals to the host processor. Figure 3-3 
shows these signals and how they interconnect be­
tween the 82370 DMA Controller, and the Requester 
and Target devices. 

3.2.1 DREQn and EDACK (0-2) 

These signals are the handshake signals between 
the peripheral and the 82370. When the peripheral 
requires DMA service, it asserts the DREOn signal 
of the channel which is programmed to perform the 
se!"l!iGE!, The 82370 arbitrates ,the DREOn against 
other pending requests and begins the DMA pro­
cess aftai finishing other higher priority processes. 

When the DMA service for the requested channel is 
in progress, the EDACK (0-2) signals represent the 
DMA channel which is accessing the Requester. 
The 3-bit code on the EDACK (0-2) lines indicates 
the number of the channel presently being serviced. 
Table 3-2 shows the encoding of these signals. Note 
that Channel 4 does not have a corresponding hard­
ware acknowledge. 

The DMA acknowledge (EDACK) signals indicate 
the active channel only during DMA accesses to the 
Requester. During accesses to the Target, EDACK 
(0-2) has the idle code (100). EDACK(0-2) can 
thus be used to select a Requester device during a 
transfer. 

DREOn can be programmed as either an Asynchro­
nous or Synchronous input. See section 3.4.1 for de­
tails on synchronous versus asynchronous operation 
of these pins. 

EDACK2 

0 
0 
0 
0 
1 
1 
1 
1 

Table 3·2. EDACK Encoding 
During a DMA Transfer 

EDACK1 EDACKO Active Channel 

0, 0 0 
0 1 1 
1 0 2 
1 1 3 
0 0 Target Access 
0 1 5 
1 0 6 
1 1 7 

The EDACKn signals are always active. They either 
iiidicate 'no acknc'wa,,'!edge' or they indiG~.tA a bus ac­
cess to the requester. The acknowledge code is ei­
ther ; 00, for an idie DiviA Of during a Drv1A access to 
the Target, or 'n' during a Requester access, where 
n is the binary value representing the channel. A 
simple 3-line to 8-line decoder can be used to pro­
vide discrete acknowledge signals for the peripher­
als. 

3.2.2 HOLD AND HLDA 

The Hold' Request (HOLD) and Hold Acknowledge 
(HLDA) signals are the handshake signals between 
the DMA Controller and the host processor. HOLD is 
an output from the,82370 and HLDA is an input. 
HOLD is asserted by the DMA Controller when there 
is a pending DMA request, thus requesting the proc­
essor to give' up control of the bus so the DMA pro­
cess can take place. The 80376 responds by assert-

, ing HLDA when it is ready to relinquish control of the 
bus. 
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The 82370 will begin operations on the bus one 
clock cycle after the HLDA signal goes active. For 
this reason, other devices on the bus should be in 
the slave mode when HLDA is active. 

HOLD and HLDA should not be used to gate or se­
lect peripherals requesting DMA service. This is be­
cause of the use of DMA-like operations by the 
DRAM Refresh Controller. The Refresh Controller is 
arbitrated with the DMA Controller for control of the 
bus, and refresh cycles have the highest priority. A 
refresh cycle will take place between DMA cycles 
without relinquishing bus control. See section 3.4.3 
for a more detailed discussion of the interaction be­
tween the DMA Controller and the DRAM Refresh 
Controller. 

3.2.3 EOP# 

EOP# is a bi-directional signal used to indicate the 
end of a DMA process. The 82370 activates this as 
an output during the T2 states of the last Requester 
bus cycle for which a channel is programmed to exe­
cute. The Requester should respond by either with­
drawing its DMA request, or interrupting the host 
processor to indicate that the channel needs to be 
programmed with a new buffer. As an input, this sig-

. nal is used to tell the DMA Controller that the periph­
eral being serviced does not require any more data 
to be transferred. This indicates that the current 
buffer is to be terminated. . 

EOP # can be programmed as either an Asynchro­
nous or a Synchronous input. See section 3.4.1 for 
details on synchronous versus asynchronous opera­
tion of this pin. 

3.3 Modes of Operation 

The 82370 DMA Controller has many independent 
operating functions. When designing peripheral in­
terfaces for the 82370 DMA Controller, all of the 
functions or modes must be considered. All of the 
channels are independent of each other (except in 
priority of operation) and can operate in any of the 
modes. Many of the operating mod~s, though inde­
pendently programmable, affect the operation of 
other modes. Because of the large number of com­
binations possible, each programmable mode is dis­
cussed here with its affects on the operation of other 
modes. The entire list of possible combinations will 
not be presented. 

Table 3-1 shows the categories of DMA features 
available in the 82370. Each of the five major cate­
gories is independent of the others. The sub-catego­
ries are the available modes within the major func-

Table 3-1. DMA Operating Modes 

I. TARGET/REQUESTER DEFINITION 
a. Data Transfer Direction 
b. Device Type 

II. BUFFER PROCESSES 
a. Single Buffer Process 
b. Buffer Auto-Initialize Process 
c. Buffer Chaining Process 

III. DATA TRANSFER/HANDSHAKE MODES 
a. Single Transfer Mode 
b. Demand Transfer Mode 
c. Block Transfer Mode 
d. Cascade Mode 

IV. PRIORITY ARBITRATION 
a. Fixed 
b. Rotating 
c. Programmable Fixed 

V. BUS OPERATION 
a. Fly-By (Single-Cycle)/Two-Cycle 
b. Data Path Width 
c. Read, Write, or Verify Cycles 

tion or mode category. The following sections ex­
plain each mode or function and its relation to other 
features. 

3.3.1 TARGET/REQUESTER DEFINITION 

All DMA transfers involve three devices: the DMA 
Controller, the Requester, and the Target. Since the 
devices to be accessed by the DMA Controller vary 
widely, ,the operating characteristics of the DMA 
Controller must be tailored to the Requester and 
Target devices. . 

The Requester can be defined as either the source 
or the destination of the data to be transferred. This 
is done by specifying a Write or a Read transfer, 
respectively. In a Read transfer, the Target is the 
data source and the Requester is the destination for 
the data. In a Write transfer, the Requester is the 
source and the Target is the destination. , 

The Requester and Target addresses can each be 
independently programmed to be incremented, dec­
remented, or held constant. As an example, the 
82370 is capable of reversing a string of data by 
having the Requester address increment and the 
Target address decrement in a memory-to-memory 
transfer. 
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3.3.2 BUFFER TRANSFER PROCESSES 

The 82370 DMA Controller allows three programma­
ble Buffer Transfer Processes. These processes de­
fine the logical way in which a buffer of data is ac­
cessed by the DMA. 

The three Buffer Transfer Processes include the Sin­
gle Buffer process, the Buffer Auto-Initialize Pro­
cess, and the Buffer Chaining Process. These pro­
cesses require special prcigramming considerations. 
See the DMA Programming section for more detaiis 
on setting up the Buffer Transfer Processes. 

Single Buffer Process 

The Single Buffer Process allows the DMA channel 
to transfer only one buffer of data. When the buffer 
has been completely transferred (Current Byte 
Count decremented past zero or EOP# input ac­
tive), the DMA process ends and the channel be~ 
comes idle. In order for that channel to be used 
again, it must be reprogrammed. 

The Single Buffer Process is usually used when the 
amount of data to be transferred is known exactly, 
and it is also known that there is not likely to be any 
data to follow before the operating system can re­
program the channel. 

Buffer Auto-Initialize Process 

The Buffer Auto-Initialize Process allows multiple 
groups of data to be transferred to or from a single 
buffer. This process does not require reprogram­
ming. The Current Registers are automatically repro­
grammed from the Base Registers when the current 
process is terminated, either by an ~xpiled 8yie 
Count or by an external EOP# signal. The data 
transferred will always be between the same Target 
and Requester. 

The auto-initialization/process-execution cycle is re­
peated until the channel is either disabled or re-pro­
grammed. 

Buffer Chaining Process 

The Buffer Chaining Process is useful for iransfer­
ring large quantities of data into non-contiguQus 
buffer areas. In this process, a single channel is 
used to process data from several buffers, while 
having to program the channel only once. Each new 
buffer is programmed in a pipe lined operation that 
provides the new buffer information· while the old 
buffer is being processed. The chain is created by 
loading new buffer information while the 82370 _DMA 
Controller is processing the Current Buffer. When 
the Current Buffer expires, the 82370 DMA Control­
ler automatically restarts the channel using the new 
buffer information. 

Loading the new buffer information is done by an 
interrupt routine which is requested by the 82370. 
Interrupt Request 1 (IRQ1) is tied internally to the 
82370 DMA Controller for this purpose. IRQ1 is gen­
erated by the 82370 when the new buffer informa­
tion is loaded into the channel's Current Registers, 
leaving the Base Registers 'empty'. The interrupt 
service routine loads new buffer information into the 
Base Registers. The host processor is required to 
load the information for another buffer before the 
current Byte Count expires. The process repeats un­
iii the hust prograiils the channel back to single buff­
er operation, or until the channel runs out of buffers. 

The channel runs out of buffers when the Current 
Buffer expires and the Base Registers have not yet 
been loaded with new buffer information. When this 
occurs, the channel must be reprogrammed. 

If an external EOP# is encountered while executing 
a Buffer Chaining Process, the current buffer is con­
sidered expired and the new buffer information is 
loaded into the Current Registers. If the Base Regis­
ters are 'empty', the chain is terminated. 

The channel uses the Base Target Address Register 
as an indicator of whether or not the Base Registers 
are full. When the most significant byte of the Base 
Target Register is loaded, the channel considers all 
of the Base Registers loaded, and removes the in­
terrupt request. This requires that the other Base 
Registers (Base Requester Address, Base Byte 
Count) must be loaded before the Base Target Ad­
dress Register. The reason for implementing the re­
loading process'this way is that, for most applica­
tions, the Byte Count and the Requester will not 
change from one buffer to the next, and therefore do 
not need to be iepiogrammsd. The d,ctai!s of pro­
gramming the channel for the Buffer Chaining Pro­
cess can be found in the section on DMA program­
ming. 

3.3.3 DATA TRANSFER MODES 

Three Data Transfer modes are available in the 
82370 DMA Controller. They are the Single Transfer, 
Block Transfer, anci Demand Transfer Modes. 
These transfer modes can be used in conjunction 
with anyone of three Buffer Transfer modes: Single 
Buffer, Auto-Initialized Buffer and Buffer Chaining. 
Any Data Transfer Mode can be used under any of 
the Buffer Transfer Modes. These modes are inde­
pendently available for all DMA channels. 

Different devices being serviced by the DMA Con­
troller require different handshaking sequences for 
data transfers to take place. Three handshaking 
modes are available on the 82370, giving the de­
signer the opportunity to use the DMA Controller as 
efficiently as possible. The speed at which data can 
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be presented or read by a device can affect the way 
a DMA Controller uses the host's bus, thereby af­
fecting not only data throughput during the DMA pro­
cess, but also affecting the host's performance by 
limiting its access to the bus. 

HOLD-HLDA-DACK handshake cycle. Figure 3-5 
shows the timing of the Single Transfer Mode cycle. 

Single Transfer Mode 

In the Single Transfer Mode, one data transfer to or 
from the Requester is performed by the DMA Con­
troller at a time. The DREQn input is arbitrated and 
the HOLD/HLDA sequence is executed for each 
transfer. Transfers continue in this manner until the 
Byte Count expires, or until EOP# is sampled active. 
If the DREQn input is held active continuously, the 
entire DREQ-HOLD-HLDA-DACK sequence is re­
peated over and over until the programmed number 
of bytes has been transferred. Bus control is re­
leased to the host between each transfer. Figure 3-4 
shows the logical flow of events which make up a 
buffer transfer using the Single Transfer Mode. Re­
fer to section 3.4 for an explanation of the bus con­
trol arbitration procedure. 

The Single Transfer Mode is used for devices which 
require complete handshake cycles with each data 
access. Data is transferred to or from the Requester 
only when the Requester is ready to perform the 
transfer. Each transfer requires the entire DREQ-

Tx Tx TI 

CLK2 

CLK 

DREQn 

HOLD _-+ __ ....:;:.,-

HLDA 

TI 

INITIALIZE BUFFER 

END OF BUFFER 

Figure 3-4. Buffer Transfer 
in Single Transfer Mode 

T1 T2 TI 

290164-19 

A(1-23) ;iiigii~~~~i£i~-~+;~--+----1~==!:==~ BLE#,BHE# .c. --------
WR#.M/IO# 

EDACK(O-2) --+----+-~~-+---~--~~---n~--~r-~l~O~O~ 

290164-20 

NOTE: 
The Single Transfer Mode is more efficient (15%-20%) in the case where the source is the Target. Because of the 
internal pipeline of the 82370 DMA Controller. two idle states are added at the end of a transfer in the case where the 
source is the Requester. 

Figure 3-5. DMA Single Transfer Mode 

4-869 



inter 82370 

Block Transfer Mode 

In the Block Transfer Mode, the DMA process is ini­
tiated by a DMA request.and continues unti the Byte 
Count expires, or until EOP # is activated by the Re­
quester. The DREQn signal need only be held active 
until the first Requester access. Only a refresh cycle 
will interrupt the block transfer process. 

Figure 3-6 illustrates the operation of the DMA dur­
ing the Block Transfer Mode. Figure 3-7 shows the 
timing ot the handshake signais during Biock Mode 
Transfers. 

Tx Tx Tx Tf Tf Tl 

ClK2 

elK 

DREQn 

HQLO 

HlDA 

ADS# 

READY# 

A(I-23) 
BlE#.BHE# 
WR#.M/IO# 

EOP# 

T2 Tl T2 

290164-21 

Figure 3·6. Buffer Transfer 
, in Block Transfer Mode 

T1 T2 TI Tx TI 

290154-22 

Figure 3·7. Block Mode Transfers 
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Demand Transfer Mode 

The Demand Transfer Mode provides the most flex­
ible handshaking procedures during the DMA pro­
cess. A Demand Transfer is initiated by a DMA re­
quest. The process continues until the Byte Count 
expires, or an external EOP # is encountered. If the 
device being serviced (Requester) desires, it can in­
terrupt the DMA process by de-activating the 
DREQn line. Action is taken on the condition of 
DREQn during Requester accesses only. The ac­
cess during which DREQn is sampled inactive is the 
last Requester access which will be performed dur­
ing the current transfer. Figure 3-8 shows the flow of 
events during the transfer of a buffer in the Demand 
Mode. 

When the DREQn line goes inactive, the DMA Con­
troller will complete the current transfer, including 
any necessary accesses to the Target, and relin­
quish control of the bus to the host. The current pro­
cess information is saved (byte count, Requester 
and Target addresses, and Temporary Register). 

The Requester can restart the transfer process by 
reasserting DREQn. The 82370 will arbitrate the re­
quest with other pending requests and begin the 
process where it left off. Figure 3-9 shows the timing 
of handshake signals during Demand Transfer Mode 
operation. 

Tx Tx Tx n n T1 

CLK2 

ClK 

DREOn 

DREOn 

HOLD 

HLDA 

ADS# 

READY# 

A(I-23) 
BLE#.BHE# 

WR#,M/IO# 

EOP# 

T2 T1 T2 

INITIALIZE BUFfER 

END OF BUFFER 
290164-23 

Figure 3-8. Buffer Transfer 
in Demand Transfer Mode 

Tl 12 n Tx Tx 

290164-24 

Figure 3-9. Demand Mode Transfers 
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Using the Demand Transfer Mode allows peripherals 
to access memory in small, irregular bursts without 
wasting bus control time. The 82370 is designed to 
give the best possible bus control latency in the De­
mand Transfer Mode. Bus control latency is defined 
here as the time form the last active bus cycle of the 
previous bus master to the first active bus cycle of 
the new bus master. The 82370 DMA Controller will 
perform its first bus access cycle two bus states af­
ter HLDA goes active. In the typical configuration, 
bus control is returned to the host one bus state 
after the DREQn goes inactive. 

There are two cases where there may be more than 
one bus state of bus control latency at the end of a 
transfer. The first is at the end of an Auto-Initialize 
process, and the second is at the end of a process 
where the source is the Requester and Two-Cycle 
transfers are used. 

When a Buffer Auto-Initialize Porcess is complete, 
the 82370 requires seven bus states to reload the 
Current Registers from the Base Registers of the 
Auto-Initialized channel. The reloading is done while 
the 82370 is still the bus master so that it is prepared 
to service the channel immediately after relinquish­
ing the bus, if necessary. 

I 
CHANNEL 7 
CHANNEL 6 

CHANNELS U 
CHANNEL 4 

.' PflA¥TOIA I - l 

In the case where the Requester is the source, and 
Two-Cycle transfers are being used, there are two 
eXtra idle states at the end of the transfer process. 
This occurs due to the housekeeping in the DMA's 
internal pipeline. These two idle states are present 
only after the very last Requester access, before the 
DMA Controller de-activates the HOLD signal. 

3.3.4 CHANNEL PRIORITY ARBITRATION 

DMA channel priority can be programmed into one 
of two arbitration methods: Fixed or Rotating. The 
four lower DMA channels and the four upper DMA 
channels operate as if they were two separate DMA 
controllers operating in cascade. The lower group of 
four channels (0-3) is always prioritized between 
channels 7 and 4 of the upper group of channels (4-
7). Figure 3-10 shows a pictorial representation of 
the priority grouping. 

The priority can thus be set up as rotating for one 
group of channels and fixed for the other, or any 
other combination. While in Fixed Priority, the pro­
grammer can also specify which channel has the 
lowest priority. 

LOW PRIORITY 

I 
, 

CHANNEL 3 

CHANNEL 2 
CHANNEL 1 I CHANNEL 0 

t 
HIGH PRIORITY 

290164-25 

Figure 3-10. DMA Priority Grouping 
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The 82370 DMA Controller defaults to Fixed Priority. 
Channel 0 has the highest priority, then 1, 2, 3, 4, 5, 
6, 7. Channel 7 has the lowest priority. Any time the 
DMA Controller arbitrates DMA requests, the re­
questing channel with the highest priority will be 
serviced next. . 

Fixed Priority can be entered into at any time by a 
software command. The priority levels in effect after 
the mode switch are determined by the current set­
ting of the Programmable Priority. 

Programmable Priority is available for fixing the prior­
ity of the DMA channels within a group to levels oth­
er than the default. Through a software command, 
the channel to have the lowest priority in a group 
can be specified. Each of the two groups of four 
channels can have the priority fixed in this way. The 
other channels in the group will follow the natural 
Fixed Priority sequence. This mode affects only the 
priority levels while operating with Fixed Priority. 

For example, if channel 2 is programmed to have the 
lowest priority in its group, channel 3 has the highest 
priority. In descending order, the .other channels 
would have the following priority: (3,0,1,2),4,5,6,7 
(channel 2 lowest, channel 3 highest). If the upper 

CHANNEL 6 
CHANNEL 7 
PHANTOM I---

CHANNEL 4 
CHANNEL 5 

group were programmed to have channel 5 as the 
lowest priority channel, the priority would be (again, 
highest to lowest): 6,7, (3,0,1,2), 4,5. Figure 3-11 
shows this example pictorially. The lower group is 
always prioritized as a fifth channel of the upper 
group (between channels 4 and 7). 

The DMA Controller will only accept Programmable 
Priority commands while the addressed group is op­
erating in Fixed Priority. Switching from Fixed to Ro­
tating Priority presel')les the current priority levels. 
Switching from Rotating to Fixed Priority returns the 
priority levels to those which were last programmed 
by use of Programmable Priority. 

Rotating Priority allows the devices using DMA to 
share the system bus more evenly. An individual 
channel does not retain highest priority after being 
serviced, priority is passed to the next highest priori­
ty channel in the group. The channel which was 
most recently serviced inherits the lowest priority. 
This rotation occurs each time a channel is serviced. 
Figure 3-12 shows the sequence of events as priori­
ty is passed between channels. Note that the lower 
group rotates within the upper group, and that serv­
icing a channel within the lower group causes rota­
tion within the group as well as rotation of the upper 
group. 

LOW PRIORITY 

CHANNEL 3 
CHANNEL 2 
CHANNEL 1 
CHANNEL 0 

HIGH PRIORITY 
290164-26' 

Figure 3·11. Example of Programmed Priority 
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10111213114151e171- default (highest to low­
est) 

DREQ2 and DREQ6-process channel 2 

14151e171131011121- chann~1 .2 dr~p~ to low-
est PriOrity wIthIn group. 
Lower group drops to 
lowest priority within up­
per group. (Double Rota­
tionj 

DREQe (still) and DREQ7-process channel e 

01310111,21 ~-chan~el.e dr~p.s to low-
" est PriOrity wlthm group 

DREQ7 (still) and DREQO-process channel 7 

13101112114151e171- chan~el7 dr~p.s to low-
est PriOrity WIthIn group 

DREQO (still) and DREQ1-process channel 0 

channel 0 drops to' low­
est priority within group. 
(Double Rotation) 

DREQ1 (still)-process channel 1 

1415IeI71121310111-chan~el.1 d~o~s to low-
est PriOrity WIthIn group 

Figure 3-12. Rotating Channel Priority. 
Lower and upper groups are programmed 

for the Rotating Priority Mode. 

3.3.5 COMBINING PRIORITY MODES 

Since the DMA Controller operates as two four­
channel controllers in cascade, the overall priority 
scheme of all eight channels can take on a variety of 
forms. There are four possible combinations of prior­
ity modes between the tWo groups of channels: 
Fixed Priority only (default), Fixed Priority upper 
group/Rotating Priority lower group, Rotating Priority 
upper group/Fixed Priority lower group, and Rotating 
Priority only. Figure 3-13 illustrates the operation of 
the two combined priority methods. 

Case 1-
0-3 Fixed Priority, 4-7 Rotating Priority 

High Low 

Default priority 101112131 H51e 71 

After servicing channel 2, 14151el71101112131 

, After servicing channel e ' 0 10 1112131 ~ 

After servicing channel 1 14151el71 [011 T2f31 

Case 2-
0-3 Rotating Priority, 4-7 Fixed Priority 

High Low 

Default priority 10111213114151e 71 

After servicing channel 2 13101112114151el71 

After serviCing channel e 13101112114151el71 

After servicing channel 1 12131011114151el71 

Figure 3-13. Combining Priority Modes 

3.3.6 BUS OPERATION 

Data may be transferred by the DMA Controller us­
ing two different bus cycle operations: Fly-By (one­
cycle) and Two-Cycle. These bus handshake meth­
ods are selectable independe!'!t!y for l3ach ~hAnnel 
through a command register. Device data path 
widths afe Indepeildeiltly piogiammable fOi both 
Target and Requester. Also selectable through soft­
ware is the direction of data transfer. All of these 
parameters affect the operation of the 82370 on a 
bus-cycle by bus-cycle basis. ' 

3.3.6.1 Fly-By Transfers 

The Fly-By Transfer Mode is the fastest and most 
efficient way to use the 82370 DMA Controller to' 
transfer data. lri this method of transfer, the data is 
written, to the destination device at the same time it 
is read from the source. Only one bus cycle is used 
to accomplish the transfer. 
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In the Fly-By Mode, the DMA acknowledge signal is 
used to select the Requester. The DMA Controller 
simultaneously places the address of the Target on 
the address bus. The state of M/IO# and W/R# 
during the Fly-By transfer cycle indicate the type of 
Target and whether the Target is being written to or 
read from. The Target's Bus Size is used as an in­
crementer for the Byte Count. The Requester ad­
dress registers are ignored during Fly-By transfers. 

Note that memory-to-memory transfers cannot be 
done using the Fly-By Mode. Only one memory of 
I/O address is generated by the DMA Controller at a 
time during Fly-By transfers. Only one of the devices 
being accessed can be selected by an address. 
Also, the Fly-By method of . data transfer limits the 
hardware to accesses of devices with the same data 
bus width. The Temporary Registers are not affect­
ed in the Fly-By Mode. 

Fly-By transfers also require that the data paths of 
the Target and Requester be directly connected. 
This requires that successive Fly-By access be to 
word boundaries, or that the Requester be capable 
of switching its connections ,to the data bus. 

3.3.6.2. Two-Cycle Transfers 

Two-Cycle transfers can also be performed by the 
82370 DMA Controller. These transfers require at 
least two bus cycles to execute. The data being 
transferred is read into the DMA Controller'S Tempo­
rary Register during the first bus cycle(s). T,he sec­
ond bus cycle is used to write the data from the 
Temporary Register to the destination. 

If the addresses of the data being transferred are 
not word aligned, the 82370 will recognize the situa­
tion and read and write the data in groups of bytes, 
placing them always at the proper destination. This 
process of collecting the desired bytes and putting 
them together is called "byte assembly". The re­
verse process (reading from aligned locations and 
writing to non-aligned locations) is called "byte dis­
assembly". 

The assembly/disassembly process takes place 
transparent to the software, but can only be done 
while using the Two-Cycle transfer method. The 
82370 will always perform the assembly/disassem­
bly process as necessary for the current data trans­
fer. Any data path widths for either the Requester or 
Target can be used in the Two-Cycle, Mode. This is 
very convenient for interfacing existing 8- and 16-bit 
peripherals to the 80376's 16-bit bus. 

The 82370 DMA Controller always reads and write 
data within the word boundaries; i.e. if a word to be 

read is crossing a word boundary, the DMA Control­
ler will perform two read operations, each reading 
one byte, to read the 16-bit word into the Temporary 
Register. Also, the 82370 DMA Controller always at­
tempts to fill the Temporary Register from the 
source before writing any data to the destination. If 
the process is terminated before the Temporary 
Register is filled (TC or EOP#), the 82370 will write 
the partial data to the destination. If a process is 
temporarily suspended (such as when DREQn,is de­
activated during a demand transfer), the contents of 
a partially filled Temporary Register will be stored 
within the 82370 until the process is restarted. 

For example, if the source is specified as an 8-bit 
device and the destination as a 32-bit device, there 
will be four reads as necessary from the 8-bit source 
to fill the Temporary Register. Then the 82370 will 
write, the 32-bit contents to the destination in two 
cycles of 16-bit each. This cycle will repeat until the 
process i,s terminated or suspended. 

With Two-Cycle transfers, the devices that the 
82370 accesses can reside at any address within 
I/O or memory space. The device must be able to 
decode the byte-enables (BlE #, BHE #). Also, if the 
device cannot accept data in byte quantities, the 
programmer must take care not to allow the DMA 
Controller to access the device on any address oth­
er than the device boundary. 

3.3.6.3 Data Path Width and Data Transfer Rate 
Considerations 

The number of bus cycles used to transfer a single 
"word" of data is affected by whether the Two-Cycle 
or the Fly-By (Single-Cycle) transfer method is used. 

The number of bus cycles used to transfer data di­
rectly affects the data transfer rate. Inefficient use of 
bus cycles will decrease the effective data transfer 
rate that can be obtained. Generally, the data trans­
fer rate is halved by using Two-Cycle transfers in­
stead of Fly-By transfers. 

The choice of data path widths of both Target and 
Requester affects the data transfer rate also. During 
each bus cycle, the largest pieces of data possible 
should be transferred. 

The data path width of the devices to be accessed 
must be programmed into the DMA controller. The 
82370 defaults after reset to 8-bit-to-8-bit data trans­
fers, but the Target and Requester can have differ­
ent data path widths, independent of each other and 
independent of the other channels. Since this is a 
software programmable function, more discussion of 
the uses of this feature are found in the section on 
programming. 
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3.3.6.4 Read, Write and Verify Cycles 

Three different bus cycles types may be used in a 
data transfer. They are the Read, Write and Verify 
cycles. These cycle types dictate the way in which 
the 82370 operates on the data to be transferred. 

A Read Cycle transfers data from the Target to the 
Requester. A Write Cycle transfers data from the 
Requester to the target. In a Fly-By transfer, the ad­
dress and bus status signals indicate the access 
(read of write) to the Target; the access to the Re­
quester is assumed to be the opposite. 

The Verify Cycle is used to perform a data read only. 
No write access is indicated or assumed in a Verify 
Cycle. The Verify Cycle is useful for validating block 
fill operations. An external comparator must be pro­
vided to do any comparisons on the data read. 

3.4 Bus Arbitration and Handshaking 

Figure 3-14 shows the flow of events in the DMA 
request arbitration process. The arbitration se­
quence starts when the Requester asserts a DREQn 
(or DMA service is requested by software). Figure 
3-15 shows the timing of the sequence of events 
following a DMA request. This sequence is executed 
for each channel that is activated. The DREQn sig­
nal can be replaced by a software DMA channel re­
quest with no change in the sequence. 

After the Requester asserts the service request, the 
82370 will request control of the bus via the HOLD 
signal. The 82370 will always assert the HOLD sig­
nal one bus state after the service request is assert­
ed. The 80376 responds by C1ssefting the HLDA sig­
nal, thus releasing control of the. bus to the 82370 
DMA Controller. 

Priority of pending DMA service requests is arbitrat­
ed during the first state after HLDA is asserted by 
the 80376. The next state will be the beginning of 
the first transfer access of the highest priority pro­
cess. 

When the 82370 DMA Controller is finished with its 
current bus activity, it returns control of the bus to 
the host processor. This is done by driving the 
HOLD signal inactive. The 82370 does not drive any 
address or data bus Signals after HOLD goes low. It 
enters the Slave Mode until another DMA process is 
requested. The processor acknowledges that it has 

regained control of the bus by forcing the HLDA sig­
nal inactive. Note that the 82370's DMA Controller 
will not re-request control of the bus until. the entire 
HOLD/HLDA handshake sequence is complete. 

82370 ASSERTS HOLD REQUEST 

80376 ASSERTS HOLD ACKNO~LEDGE 

82370 ARBITRATES PENDING REQUESTS 

82370 PERFORMS HIGHEST PRIORITY 
TRANSFER (SEE DATA TRANSFER MODES) 

82370 DE-ASSERTS HOLD REQUEST 

290164-27 

Figure 3-14. Bus Arbitration and DMA Sequence 

The 82370 Dtv1A COiitioUei wiH terminate c. current 
DMA process for one of three reasons: expired byte 
count, end-of-process command {EOP# activatedj 
from a peripheral, or deactivated DMA request sig­
nal. In each case, the controller will de-assert HOLD 
immediately after completing the data transfer in 
progress. These three methods of process termina­
tion are illustrated in Figures 3-16, 3-19 and 3-18, 
respectively. 

An expired byte count indicates that the current pro­
cess is complete as programmed and the channel 
has no further transfers to process. The channel 
must be restarted according to the currently pro­
grammed Buffer Transfer Mode, or reprogrammed 
completely, including a new Buffer Transfer Mode. 
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Channel priority resolution takes place during the bus state before HOLDA is asserted, allowing the DMA Controller to 
respond to HLDA without extra idle bus states. 

Figure 3-15. Beginning of a DMA process 

If the peripheral activates the EOP# signal. it is indi­
cating that it will not accept or deliver any more data 
for the current buffer. The 82370 DMA Controller 
considers this as a completion of the channel's cur­
rent process and interprets the condition the same 
way as if the byte count expired. 

The action taken by the 82370 DMA Controller in 
response to a de-activated DREQn signal depends 
on the Data Transfer Mode of the channel. In the 
Demand Mode, data transfers will take place as long 
as the DREQn is active and the byte count has not 
expired. In the Block Mode, the controller will com­
plete the entire block transfer without relinquishing 
the bus, even if DREQn goes inactive before the 

transfer is complete. In the Single Mode, the control­
ler will execute single data transfers, relinquishing 
the bus between each transfer, as'long as DREQn is 
active. 

Normal termination of a DMA process due to expira­
tion of the byte count (Terminal Count-TC) is 
shown if Figure 3-16. The condition of DREQn is 
ignored until after the process is terminated. If the 
channel is programmed to auto·initialize. HOLD will 
be held active for an additional seven clock cycles 
while the auto-initialization takes place. 

Table 3-3 shows the DMA channel activity due to 
EOP# or Byte Count expiring (Terminal Count). 

Table 3-3. DMA Channel Activity Due to Terminal Count or External EOP# 

Single or 
Auto- Chaining-Base 

Buffer Process Chaining-Base 
Initialize Loaded 

Empty 

EVENT 

Terminal Count True X True X True X 
EOP# X 0 X 0 X 0 

RESULTS 

Current Registers Load Load Load Load 
Channel Mask Set Set 
EOP# Output 0 X 0 X 1 X 
Terminal Count Status Set Set Set Set 
Software Request CLR CLR CLR CLR 
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Figure 3-16. Termination of a DMA Process Due to Expiration of Current Byte Count 
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DREQa 

DREQb 

HOLD 

HlDA II 
--CHANNEL A~ 

The 82370 aiways relinquishes coniroi oj iha bus 
between channel services. This allows the hardware 
designer the flexibility to externally arbitrate bus hold 
requests, if desired. If another DMA request is pend· 
ing when a higher priority channel service is com· 
pleted, the 82370 will relinquish the bus until the 
hold acknowledge is inactive. One bus state after 
the HLDA signal goes inactive, the 82370 will assert 
HOLD again. This is illustrated in Figure 3·17. 

3.4.1 SYNCHRONOUS AND ASYNCHRONOUS 
SAMPLING OF DREQn AND EOP# 

As an indicator that a DMA service is to be started, 
DREQn is always sampled asynchronous. It is sam· 

Tx Tx n 

",,1'>-:,--CHANNEl 8 --' 
290164-30 

pled at the beginning of a bus state and acted upon 
at the end of the state. Figure 3·15 illustrates the 
start of a DMA process due to a DREQn input. 

The DREQn and EOP # inputs can be programmed 
to be sampled either synchronously or asynchro· 
nously to signal the end of a transfer. 

The synchronous mode affords the Requester one 
bus state of extra time to react to an access. This 
means the Requester can terminate a process on 
the current access, without losing any data. The 
asynchronous mode requires that the input signal be 
presented prior to the beginning of the last state of 
the Requester access. 

4·878 



inter 82370 

The timing relationships of the DREQn and EOP# 
signals to the termination of a DMA transfer are 
shown in Figures 3-18 and 3-19. Figure 3-18 shows 
the termination of a DMA transfer due to inactive 
DREQn. Figure 3-19 shows the termination of a 
DMA process due to an active EOP # input. 

In the Synchronous Mode, DREQn and EOP# are· 
sampled at the end of the last state of every Re­
quester data transfer cycle. If EOP# is active or 
DREQn is inactive at this time, the 82370 recognizes 
this access to the Requester as the last transfer. At 
this point, the 82370 completes the transfer in prog­
ress, if necessary, and returns bus control to the 
host. 

T2 T1 

DREOn --+----+--'" 

In the asynchronous mode, the inputs are sampled 
at the beginning of every state of a Requester ac­
cess. The 82370 waits until the end of the state to 
act on the input. 

DREQn and EOP# are sampled at the latest possi­
ble time when the 82370 can determine if another 
transfer is required. In the Synchronous Mode, 
DREQn and EOP# are sampled on the trailing edge 
of the last bus state before another data access cy­
cle begins. The Asynchronous Mode requires that 
the signals be valid one clock'cycle earlier. 

T2 TI Tx Tx Tx 

(ASYNCHRONOUS) '---+-__ --!..A~~~~~~~~~QQjQQj~ 
DREon~xg~~-~~~~~~_~~XX~XXXXgg~gg~~~~~ (SYNCHRONOUS) .l. 

HOLD 

HlDA 

290164-31 

Figure 3-18. Termination of a DMA Process due to De-Asserting DREQn 
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Figure 3·19. Termination of a DMA Process due to an External EOP# 
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While in the Pipeline Mode, if the NA# signal is sam­
pled active during a transfer, the end of the state 
where NA# was sampled active is when the 82370 
decides whether to commit to another transfer. The 
device must de-assert DREOn or assert EOP # be­
fore NA# is asserted, otherwise the 82370 will com­
mit to another, possibly undesired, transfer. 

Synchronous DREOn and EOP# sampling allows 
the peripheral to prevent the next transfer from oc­
curring by de-activating DREOn or asserting EOP # 
during ths· current Requester access, before the 
82370 DMA Controller commits itself to another 
transfer. The DMA Controller will not perform the 
next transfer if it has not already begun the bus cy­
cle. Asynchronous sampling allows less stringent 
timing requirements than the Synchronous Mode, 
but requires that the DR EOn signal be valid at the 
beginning of the next to last bus state of the current 
Requester access. 

Using the Asynchronous Mode with zero wait states 
can be very difficult. Since the addresses and con­
trol signals are driven by the 82370 near half-way 
through the first bus state of a transfer, and the 
Asynchronous Mode requires that DREOn be inac­
tive before the end of the state, the peripheral being 
accessed is required to present DREOn only a few 
nanoseconds after the control information is avail­
able. This means that the peripheral's control logic 
must be extremely fast (practically non-causal). An 
alternative is the Synchronous Mode. 

3.4.2 ARBITRATION OF CASCADED MASTER 
REQUESTS 

The Cascade Mode allows another DMA-type de­
vice to share the bus by arbitrating its bus accesses 
with the 82370's. Seven of the eight DMA channels 
(O-3 and 5-7) can be connected to a cascaded de­
vice. The cascaded device requests bus control 
through the DR EOn line of the channel which is pro­
grammed to operate in Cascade Mode. Bus hold ac­
knowledge is signalled to the cascaded device 
through the EDACK lines. When the EDACK lines 
are active with the code for the requested cascade 
channel, the bus is available to the cascaded master 
device. 

A cascade cycle begins the same way a regular 
DMA cycle begins. The requesting bus master as­
serts the DR EOn line on the 82370. This bus control 
request is arbitrated as any other DMA request 
would be. If any channel receives a DMA request, 
the 82370 requests control of the bus. When the 
host acknowledges that it has released bus control, 
the 82370 acknowledges to the requesting master 
that it may access the bus. The 82370 enter:; an idle 
state until the new master relinquishes control. 

A cascade cycle will be terminated by one of two 
events: DREOn going inactive, or HLDA going inac­
tive. The normal way to terminate the cascade cycle 

803761 J 82370 
DREQO 1+------1 

Bus Master 0 
HOLD REQUEST 

HOLD D HOLD 

HLCA UlnA ~ .. ~~~ 
EDACKO =: EDACKI 
EDACK2 

DREQn 

IlOLD ACKNOWLEDGE - "I ._- --
A 
B 
C 
latched 
decoder 
7~ HOLD ACKNOWLEDGE 

Bus Master 7 
HOLD REQUEST 

Figure 3-20. Cascaded Bus Master 

4-880 

290164-33 



inter 82370 

is for the cascaded master to drop the DREQn sig­
nal. Figure 3-21 shows the two cascade cycle termi­
nation sequences. 

The Refresh Controller may interrupt the cascaded 
master to perform a refresh cycle. If this occurs, the 
82370 DMA Controller will de-assert the EDACK sig­
nal (hold acknowledge to cascaded master) and wait 
for the cascaded master to remove its hold request. 
When the 82370 regains bus control, it will perform 
the refresh cycle in its normal fashion. After the re­
fresh cycle has been completed, and if the cascad­
ed device has re-asserted its request, the 82370 will 
return contrQI to the cascaded master which was in­
terrupted. 

The 82370 assumes that it is the only device moni­
toring the HLDA signal. If the system designer 
wishes to place other devices on the bus as bus 
masters, the HLDA from the processor must be in­
tercepted before presenting it to the 82370. Using 
the Cascade capabililty of the 82370 DMA Controller 
offers a much better solution. 

3.4.3 ARBITRATION OF REFRESH REQUESTS 

The arbitration of refresh requests by the DRAM Re­
fresh Controller is slightly different from normal DMA 

channel request arbitration. The 82370 DRAM Re­
fresh Controller always has the highest priority of 
any DMA process. It also can interrupt a process in 
progress. Two types of processes in progress may 
be encountered: normal DMA, and bus master cas­
cade. 

In the event of a refresh request during a normal 
DMA process, the DMA Controller will complete the 
data transfer in progress and then execute the re­
fresh cycle before continuing with the current DMA 
process. The priority of the interrupted' process is 
not lost. If the data transfer cycle interrupted by the 
Refresh Controller is the last of a DMA process, the 
refresh cycle will always be executed before control 
of the bus is transferred back to the host. 

When the Refresh Controller request occurs during 
a cascade cycle, the Refresh Controller must be as­
sured that the cascaded master device has relin­
quished control of the bus before it can execute the 
refresh cycle. To do this, the DMA Controller drops 
the EDACK signal to the cascaded master and waits 
for the corresponding DREQn input to go inactive. 
By dropping the DREQn signal, the cascaded mas­
ter relinquishes the bus. The Refresh Controller then 
performs the refresh cycle. Control of the bus is re­
turned to the cascaded master if DREQn returns to 
an active state before the end of the refresh cycle, 
otherwise control is passed to the processor and the 
cascaded master loses its priority. 

Cascade cycle termination by DREOn Inactive 

OREQn 

\~---------------------------
EOACK ___________ ..JX'-___ 1_0_0 ______ __ 

HOLO 

\~-----------------
HLOA \~----

Cascade cycle termination by HLOA inactive 

HLDA 

\~-------------------------
EOACK ___________ ..JX'-____ 1_00 ______ __ 

OREQn \XX\ 

HOLD-----------------~\. 

~-------

Figure 3-21. Cascade Cycle Termination 
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3.5 DMA Controller Register Overview 

The 82370 DMA Controller contains 44 registers 
which are accessable to the host processor. Twen­
ty-four of these registers contain the device ad­
dresses and data counts for the individual DMA 
channels (three per channel). The remaining regis­
ters are control and status registers for initiating and 
monitoring the operation of the 82370 DMA Control­
ler. Table 3-4 lists the DMA Controller's registers 
and their accessability. 

Table 3-4. DMA Controller Registers 

Register Name Access 

Control/Status Registers-one each per group 

Command Register I 
Command Register II 
Mode Register I 
Mode Register II 
Software Request Register 
Mask Set-Reset Register 
Mask Read-Write Register 
Status Register 
Bus Size Register 
Chaining Register 

write only 
write only 
write only 
write only. 
read/write 
write only 
read/write 
read only 
write only 
read/write 

Channel Registers-one each per channel 

Base Target Address write only 
Current Target Address read only 
Base Requester Address write only 
Current Requester Address read only 
Base Byte Count write only 
Current Byte Count read only 

3.5.1 CONTROL/STATUS REGISTERS 

The following registers are available to the host 
processor for programming the 82370 DMA Control­
ler into its various modes and for checking the oper­
. ating status of the DMA processes. Each set of four 
DMA channels has one of each of these registers 
associated with it. 

Command Register I 

Enables or disables the DMA channel as a group. 
Sets the Priority Mode (Fixed or Rotating) of the 
group. This write-only register is cleared by a hard­
ware reset, defaulting to all channels enabled and 
Fixed Priority Mode. 

Command Register II 

Sets the sampling mode, of the DREQn and EOP# 
inputs. Also sets the lowest priority channel for the 
group in the Fixed Priority Mode. The functions pro­
grammed through Command Register II default after 

a hardware reset to: ~synchronous DREQn and 
EOP#, and channels 3 and 7 lowest priority. 

Mode Registers I 

Mode Register I is identical in function to the Mode 
register of the 8237 A. It programs the following func­
tions for an individually selected channel: 

Type of Transfer-read, write, verify 
Auto-Initialize-enable or disable 
Target Address Count-increment or decrement 
Data Transfer Mode-demand, singie, biock, 
cascade ' 

Mode Register I functions default to the following 
after reset: verify transfer, Auto-Initialize disabled, In­
crement Target address, Demand Mode. 

Mode Register II 

Programs the following functions for an individually 
selected channel: 

Target Address Hold-enable or disable 
Requester Address Count-increment or 
decrement 
Requester Address Hold-enable or disable 
Target Device Type-I/O or Memory 
Requester Device Type-I/O or Memory 
Transfer Cycles-Two-Cycle or Fly-By 

Mode Register II functions are defined as follows 
after a hardware reset: Disabie Target Address Hold, 
Increment Requester Address, Target (and Re­
quester) in memory, Fly-By Tiansfer Cycles. Note: 
Requester Device Type ignored in Fly-By Transfers. 

Software Request Register 

ThA nMA r.nntrnliRr r.An resoond to service reauests 
~hich .~;~ i-;'iiiat~d "by" software. Each channel tias an 
internal request status bit associated with it. The 
host processor can write to this register to set or 
reset the request bit of a selected channel. 

The status of a group's software DMA service re­
quests can be read from this register as well. Each 
status bit is cleared upon Terminal Count or external 
EOP#. 

The software DMA requests are non-maskable and 
subject to priority arbitration with all other software 
and hardware requests. The entire register is 
cleared by a hardware reset. 

Mask Registers 

Each channel has associated with it a mask bit 
which can be set/reset to disable/enable that chan­
nel. Two methods are available forsetting and clear­
ing the mask bits. The Mask Set/Reset Register is a 
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write·only register which allows the host to select an 
individual channel and either set or reset the mask 
bit for that channel only. The Mask Read/Write Reg­
ister is available for reading the mask bit status and 
for writing mask bits in groups of four. 

The mask bits of a group may be cleared in one step 
by executing the Clear Mask Command. See the 
DMA Programming section for details. A hardware 
reset sets all of the channel mask bits, disabling all 
channels. 

Status Register 

The Status register is a read-only register which con­
tains the Terminal Count (TC) and Service Request 
status for a group. Four bits indicate the TC status 
and four bits indicate the hardware request status 
for the four channels in the group. The TC bits are 
set when the Byte Count expires, or when and exter­
nal EOP# is asserted. These bits are cleared by 
reading from the Status Register. The Service Re­
quest bit for a channel indicates when there is a 
hardware DMA request (DREQn) asserted· for that 
channel. When the request has been removed,. the 
bit is cleared. 

Bus Size Register 

This write-only register is used to define the bus size 
of the Target and Requester of a selected channel. 
The bus sizes programmed will be used to dictate 
the sizes of the data paths accessed when the DMA 
channel is active. The values programmed into this 
register affect the operation of the Temporary Regis­
ter. When 32-bit bus width is programmed, the 
82370 DMA Controller will access the device twice 
through its 16-bit external Data Bus to perform a 
32-bit data transfer. Any byte-assembly required to 
make the transfers using the specified data path 
widths will be done in the Temporary Register. The 
Bus Size register of the Target is used as an incre­
ment/decrement value for the Byte Counter and 
Target Address when in the Fly-By Mode. Upon re­
set, all channels default to 8-bit Targets and 8-bit 
Requesters. 

Chaining Register 

As a command or write register, the Chaining regis­
ter is used to enable or disable the Chaining Mode 
for a selected channel. Chaining can either be dis­
abled or enabled for an individual channel, indepen­
dently of the Chaining Mode status of other chan­
nels. After a hardware reset, all channels default to 
Chaining disabled. 

When read by the host, the Chaining Register pro­
vides the status of the Chaining Interrupt of each of 
the channels. These interrupt status bits are cleared 
when the new buffer information has been loaded. 

3.5.2 CHANNEL REGISTERS 

Each channel has three individually programmable 
registers necessary for the DMA process; they are 
the Base Byte Count, Base Target Address, and 
Base Requester Address registers. The 24-bit Base 
Byte Count register contains the number of bytes to 
be transferred by the channel. The 24-bit Base Tar­
get Address Register contains the beginning ad­
dress (memory or 110) of the Target device. The 
24-bit Base Requester Address register contains the 
base address (memory or 110) of the device which is 
to request DMA service. 

Three more registers for each DMA channel exist 
within the DMA Controller which are directly related 
to the registers mentioned above. These registers 
contain the current status of the DMA process. They 
are the Current Byte Count register, the Current Tar­
get Address, and the Current Requester Address. It 
is these registers which are manipulated (increment­
ed, decremented, or held constant) by the 82370 
DMA Controller during the DMA process. The Cur­
rent registers are loaded from the Base registers at 
the beginning of a DMA process. 

The Base registers are loaded when the host proc­
essor writes to the respective channel register ad­
dresses. Depending on the mode in which the chan­
nel is operating, the Current registers are typically 
loaded in the same operation. Reading from the 
channel register addresses yields the contents of 
the corresponding Current register. 

To maintain compatibility with software which ac­
cesses an 8237 A, a Byte Pointer Flip-Flop is used to 
control access to the upper and lower bytes of some 
words of the Channel Registers. These words are 
accessed as byte pairs at single port addresses. The 
Byte Pointer Flip-Flop acts as a one-bit pointer 
which is toggled each time a qualifying Channel 
Register byte is accessed. 

It always points to the next logical byte to be ac; 
cessed of a pair of bytes. . 

The Channel registers are arranged as pairs of 
words, each pair with its own port address. Address­
ing ~he port with the Byte Pointer Flip-Flop reset ac­
cesses the least significant byte of the pair. The 
most significant byte is accessed when the Byte 
Pointer is set. 

For compatibility with existing 8237A designs, there 
is one exception to the above statements about the 
Byte Pointer Flip-Flop. The third byte (bits 16-23) of 
the Target Address is accessed through its own port 
address. The Byte Pointer Flip-Flop is not affected 
by any accesses to this byte. 
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The upper eight bits of the Byte Count Register are 
cleared when the least significant byte of the regis­
ter is loaded. This provides compatibility with soft­
ware which accesses an 8237 A. The 8237 A has 
16-bit Byte Count Registers. 

NOTE: 
The 82370 is a subset of the Intel 82380 32-bit 
DMA Controller with Integrated System Peripherals. 

Although the 82370 has 24 address bits externally, 
. the programming model is actually a full 32 bits wide. 
For this reason, there are some "hidden" DMA reg­
isters in the 82370 register set. These hidden regis­
ters correspond to what would be A24-A31 in a 
32-bit system. 

Think of the 82370 addresses as though they were 
32 bits wide, with only the lower 24 bits available 
externally. 

This should be of concern in two areas: 

1. Understanding the Byte Pointer Flip Flop 
2. Removing the IRQ1 Chaining Interrupt 

The byte pointer flip flop will behave as though the 
hidden upper address bits were accessible. 

The IRQ1 Chaining Interrupt will be removed only 
when the hidden upper address bits are pro­
grammed. You will note that since the hidden upper 
address bits are not available externally, the value 
you program into the registers is not important. The 
act of programming the hidden register is critical in 
removing the IRQ1 Chaining interrupt for a DMA 
channel. 

The port assignments for these hidden upper ad­
dress bits come directly from the port assignments 
of the Intel 82380. For your convenience, those port 
definitions have been included in this data sheet in 
section 3.7. 

3.5.3 TEMPORARY REGISTERS 

Each channel has a 32-bit Temporary Register used 
for temporary data storage during two-cycle DMA 
transfers. It is this register in which any necessary 
byte assembly and disassembly of non-aligned data 
is performed. Figure 3-22 shows how a block of data 
will be moved between memory locations with differ­
ent boundaries. Note that the order of the data does 
not change. 

Ifthe destination is the Requester and an early pro­
cess termination has been indicated by the EOP# 
signal or DREQn inactive in the Demand Mode, the 
Temporary Register is not affected. If data remains 
in the Temporary Register due to differences in data 
path widths of the Target and Requester, it will not 
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Requester = destination = 00000053H 
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Figure 3·22. Transfer of data between memory 
locations with different boundaries. This will be 

the result, independent of data path width. 

be transferred or otherwise lost, but will be stored for 
later transfer. 

If the destination is the Target and the EOP# signal 
is sensed active during the Requester access of a 
transfer, the DMA Controller will complete the trans­
fer by sending to the Target whatever information is 
in the Temporary Register at the time of process 
termination. This implies that the Target could be 
accessed with partial data in two accesses. For this 
reason it is advisable to have an 1/0 device desig­
nated as a Requester, unless it is capable of han­
diing parlia; data tiansfers. 

.3.6 DMA Controller Programming 
Programming a DMA Channel to perform a needed 
DMA function is in general a four step process. First 
the global attributes of the DMA Controller are pro­
grammed via the two Command Registers. These 
global attributes include:. priority levels, channel 
group enables, priority mode, and DREQn/EOP# in­
put sampling. 

The second step involves setting the operating 
modes of the particular channel. The Mode Regis­
ters are used to define· the type of transfer and the 
handshaking modes. The Bus Size Register and 
Chaining Register may also need to be programmed 
in this step. 

The third step in setting up the channel is to load the 
Base Registers in accordance with the needs of the 
operating modes chosen in step two. The Current 
Registers are automatically loaded from the Base 
Registers, if required by the Buffer Transfer Mode in 
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effect. The information loaded and the order in 
which it is loaded depends on the operating mode. A 
channel used for cascading, for example, needs no 
buffer information and this step can be skipped en­
tirely. 

The last step is to enable the newly programmed 
channel using one of the Mask Registers. The chan­
nel is then available to perform the desired data 
transfer. The status of the channel can be observed 
at any time through the Status Register, Mask Reg­
ister, Chaining Register, and Software Request reg­
ister. 

Once the channel is programmed and enabled, the 
DMA process may be initiated in one of two ways, 
either by a hardware DMA request (DREQn) or a 
software request (Software Request Register). 

Once programmed to a particular Process/Mode 
configuration, the channel will operate in that config­
uration until programmed otherwise: For this reason, 
restarting a channel after the current buffer expires 
does not require complete reprogramming of the 
channel. Only those parameters which have 
changed need to be reprogrammed. The Byte Count 
Register is always changed and must be repro­
grammed. A Target or Requester Address Register 
which is incremented or decremented should be re­
programmed also. 

3.6.1 BUFFER PROCESSES 

The Buffer Process is determined by the Auto-Initial­
ize bit of Mode Register I and the Chaining Register. 
If Auto-Initialize is enabled, Chaining should not be 
used. 

3.6.1.1 Single Buffer Process 

The Single Buffer Process is programmed by dis­
abling Chaining via the Chaining Register and pro­
gramming Mode Register I for non-Auto-Initialize. 

3.6.1.2 Buffer Auto-Initialize Process 

Setting the Auto-Initialize bit in Mode Register I is all' 
that is necessary to place the channel in this mode. 
Buffer Auto-Initialize must not be enabled simulta­
neous to enabling the Buffer Chaining Mode as this 
will have unpredictable results. 

Once the Base Registers are loaded, the channel is 
ready to be enabled. The channel will reload its Cur­
rent Registers from the Base Registers each time 
the Current Buffer expires, either by an expired Byte 
Count or an external EOP#. 

INSTALL IRQl INTERRUPT SERVICE ROUTINE 

SET THE CHANNEL TO NON-CHAINING PROCESS 

PROGRAM THE MODE REGISTERS 

LOAD BASE REGISTERS rOR FIRST BurFER 

SET THE CHANNEL TO CHAINING PROCESS 

(lRQl WILL BE ACTIVATED) 

ENABLE INTERRUPT 

(IRQ 1 WILL NEED SERVICE­
LOAD BASE REGISTERS) 

FROM THIS POINT, THE HOST CAN PERFORM 
ANOTHER TASK. THE INTERRUPT SERVICE ROUTINE 

LEFT BEHIND WILL MAINTAIN THE CHANNEL. 
290164-35 

Figure 3~23. Flow of Events in the Buffer Chaining Process 
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3.6.1.3 Buffer Chaining Process 

The Buffer Chaining Process is entered into from the 
Single Buffer Process. The Mode Registers should 
be programmed first, with all of the Transfer Modes 
defined as if the channel were to operate in the Sin­
gle Buffer Process. The channel's Base Registers 
are then loaded. When the channel has been set up 
in this way, and the chaining interrupt service routine 
is in place, the Chaining Process can be entered by 
piogis.mming the Chaining ~egister, Figure 3-23 il­
lustrates the Buffer Chaining Process. 

An interrupt (IRQ1) will be generated immediately af­
ter the Chaining Process is entered, as the channel 
then perceives the Base Registers as empty and in 
need of reloading. It is important to have the inter­
rupt service routine in place at the time the Chaining 
Process is entered into. The interrupt request is re-

- moved when the most significant byte of the Base 
Target Address is loaded. 

The interrupt will occur again when the first buffer 
expires and the Current Registers are loaded from 
the Base Registers. The cycle continues until the 
Chaining Process is disabled, or the host fails to re­
spond to IRQ1 before the Current Buffer expires. 

Exiting the Chaining Process can be done by reset­
ting the Chaining Mode Register. If an interrupt is 
pending for the channel when the Chaining Register 
is reset, the interrupt request will be removed. The 
Chaining Process can be temporarily disabled by 
setting the channel's Mask bit in the Mask Register. 

The interrupt service routine for IRQ1 has the re­
spcns!b!!ity of reloading thA Base Registers as nec­
essary. It should check the status of the channel to 
determine the cause of channsl expiration, etc. !t 
should also have access to operating system infor­
mation regarding the channel, if any exists. The 
IRQ1 service routine should be capable of determin­
ing whether the chain should be continued or termi­
nated and act on that information. 

3.6.2 DATA TRANSFER MODES 

The Data Transfer Modes are selected via Mode· 
Register I. The Demand, Single, and Block Modes 
are selected by bits D6 and D7. The individual trans­
fer type (Fly-By vs Two-Qycle, Read-Write-Verify, 
and 1/0 vs Memory) is programmed through both of 
the Mode registers. 

3.6.3 CASCADED BUS MASTERS 

The Cascade Mode is set by writing ones to D7 and 
D6 of Mode Register I. When a channel is pro-

grammed to operate in the Cascade Mode, all of the 
other modes associated with Mode Registers I and II 
are ignored. The priority and DREQn/EOP# defini­
tions of the Command Registers will have the same 
effect on the channel's operation as any other 
mode. 

3.6.4 SOFTWARE COMMANDS 

There are five port addresses which, when written 
to, command certain operations to be performed by 
the 82370 DMA Controller. The data written to these 
locations is not of consequence, writing to the loca­
tion is all that is necessary to command the 82370 to 
perform the indicated function. Following are de­
scriptions of the command functions. 

Clear Byte Pointer Flip-Flop-Location ObOCH 

Resets the Byte Pointer Flip-Flop. This command 
should be performed at the beginning of any access 
to the channel registers in order to be assured of 
beginning at a predictable place in the register pro­
gramming sequence. 

Master Clear-Location OOODH 

All DMA functions are set to their default states: This 
command is the equivalent of a hardware reset to 
the DMA Controller. Functions other than those in 
the DMA Controller section of the 82370 are not af­
fected by this command. 

Clear Mask Register-Channels 0-3 
- Location OOOEH 

Channels 4-7 
- Location OOCEH 

This command simultaneouslv clears the Mask Bits 
of all channels in the addressed group, enabling all 
of the channels in the group. 

Clear TC Interrupt Request-Location 001EH 

This command resets the Terminal Count Interrupt 
Request Flip-Flop. It is provided to allow the pro­
gram which made a software DMA request to ac­
knowledge that it has responded to the expiration of 
the requested channel(s). 

3.7 Register Definitions 

The following diagrams outline the bit definitions and 
functions of the 82370 DMA Controller's Status and 
Control Registers. The function and programming of 
the registers is covered in the previous section on 
DMA Controller Programming. An entry of "X" as a 
bit value indicates "don't care." 
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Channel Registers (read Current, write Base) 

Channel Register Name Address Byte Bits 
(hex) Pointer Accessed 

Channel 0 Target Address 00 0 0-7 
1 8-15 

87 x 16-23 
10 0 24-31(*) 

Byte Count 01 0 0-7 
1 8-15 

11 0 16-23 
Requester Address 90 0 0-7 

1 8-15 
91 0 . 16-23 

1 24-31(*) 

Channel 1 Target Address 02 0 0-7 
1 8-15 

83 x 16-23 
12 0 24-31(*) 

Byte Count 03 0 0-7 
1 8-15 

13 0 16-23 
Requester Address 92 0 0-7 

1 8-15 
93 0 16-23 

1 24-31(*) 

Channel 2 Target Address 04 0 0-7 
1 8-15 

81 x 16-23 
14 0 24-31(*) 

Byte Count 05 0 0-7 
1 8-15 

15 0 16-23 
Requester Address 94 0 0-7 

1 8-15 
95 0 16-23 

1 24-31(*) 

Channel 3 Target Address 06 0 0-7 
1 8-15 

82 x 16-23 
16 0 24-31(') 

Byte Count 07 0 0-7 
1 8-15 

17 0 16-23 
Requester Address 96 0 0-7 

1 8-15 
97 0 16-23 

1 24-31(') 
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Channel Registers (read Current, write 8ase) (Continued) 

Channel Register Name Address .8yte Bits 
(hex) Pointer Accessed 

Channel 4 Target Address CO 0 0-7 
1 8-15 

8F x 16-23 
DO 0 24-31(*) 

Byte Count C1 0 0-7 
1 8-15 

Dl n 16-23 v 

Requester Address 98 0 0.-7 
1 8-15 

99 0 16-23 
1 24-31(*) 

Channel 5 Target Address C2 0 0-7 
1 8-15 

8B. x 16-23 
02 0 24-31(*) 

Byte Count C3 0 0-7 
1 8-15 

03 0 16-23 
Requester Address 9A 0 0-7 

1 8-15 
9B 0 16-23 

1 24-31(*) 

Channel 6 Target Address C4 0 0-7 
1 8-15 

89 x 16-23 
04 0 24-31(*) 

Byte Count C5 0 0-7 
1 8-15 

05 0 16-23 
Requester Address 9C o - -V-I 

1 8-15 
90 0 16-23 

1 24-31(*) 

Channel 7 Target Address C6 0 0-7 
1 8-15 

8A x 16-23 
06 0 24-31(*) 

Byte Count C7 0 0-7 
1 8-15 

07 0 16-23 
Requester Address 9E 0 0-7 

1 8-15 
9F 0 16-23 

1 24-31(*) 

NOTE: 
(*)These bits are not available externally. You need to be aware of their existence for chaining and Byte Pointer Flip-Flop 
operations. Please see section 3.5.2 for further details. 
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Command Register I (write only) 

Port Addresses- Channels 0-3-0008H 

Channels 4-7-00C8H 

07 06 05 

82370 

04 03 02 01 DO 

I x x I x P I x M I x x I 

I 
I 

Command Register II (write only) 

Port Addresses- Channels 0-3-001 AH 

Channels 4-7-00DAH 

07 06 05 04 03 02 01 00 

1010IoI01~1~1~1~1 

GROUP MASK 
o = ENABLE CHANNELS 
1 = DISABLE CHANNELS 

PRIORITY 
o = FIXED PRIORITY 
1 = ROTATING PRIORITY 

L..= DREON SAMPLING 

EOP# SAMPLING 

Mode Register I (write only) 

Port Addresses- Channels 0-3-000BH 

Channels 4-7-00CBH 

07 06 05 04 03 02 01 DO 

1~1~ITII~I"lrol~lrol 

LL 

o = ASYNCHRONOUS 
1 = SYNCHRONOUS 

LOW PRIORITY LEVEL SET 
00 = CHANNEL 0(4) LOWEST 
01 = 1(5) 
10 = 2(6) 
11 = 3(7) 

CHANNEL SELECT 
00 " CHANNEL 0(4) 
01" 1(5) 
10" 2(6) 
11" 3(7) 

TRANSFER TYPE 
00 = VERIFY 
01 "WRITE 
10" READ 
11 "ILLEGAL 
XX IF IN CASCADE MODE 

AUTO-INITIALIZE 
o = DISABLE. 1 = ENABLE 

TARGET INCREMENT/DECREMENT 
o = INCREMENT TARGET 
1 = DECREMENT TARGET • 
X IF TARGET HOLD ENABLED 

DATA TRANSFER MODE 
00 " DEMAND MODE 
01 "SINGLE TRANSFER MODE 
1 0 " BLOCK MODE 
11 "CASCADE MODE 

'Target and Requester DECREMENT is allowed only for byte transfers. 
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Mode Register II (write only) 

Port Addresses- Channels 0-3-001 BH 

Channels 4-7-00DBH 

82370 

07 06 05 04 03 02 01 00 

1~1~lrol~I~I~I~I~1 

I I I I I I I I C~:~~~~W~~TER I L= TARGET HOLD 
o = INCREMENT/DECREMENT 
1 = HOLO 

REQUESTER INCREMENT 
o = INCREMENT 
1 = DECREMENT • 

X IF REQUESTER HOLD ENABLED 

REQUESTER HOLD 
""-------- 0 = INCREMENT/DECREMENT 

1. = HOLD -

1-.--...... ------- TARGET DEVICE lYPE 

1-.-_____ '--_____ REQUESTER OEVICE lYPE 
0= MEMORY 
1 = INPUT/OUTPUT 

TRANSFER CYCLES 1-.-------------- 0 = ONE-CYCLE (FLY-BY) 
1 '" TWO-CYCLE 

'Target and Requester DECREMENT is allowed only for byte transfers. 

Software Request Register (read/write) 

Port Addresses- Channels 0-3-0009H 

Channels 4-7-00C9H 

Write Format: Software DMA Service Request 
r-------

07 06 05 04 03 02 01 00 

x I x x x x R Cl I CO I 
I CHANNEL SELECT 

L---L._ . SEE MODE REGISTER I 

L-____ REQUEST SERVICE 
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o '" REMOVE REQUEST 
1 '" ASSERT REQUEST 
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Read Format: Software Requests Pending 

07 06 05 . 04 03 02 01 DO 1 = REQUEST PENDING 

I X I x I x L x ISR3JSR21SRli SROJ 

I L CHANNEL 0(4) REQUEST 

CHANNEL 1 (5) REQUEST 

CHANNEL 2(6) REQUEST 

CHANNEL 3(7) REQUEST 

Mask Set/Reset Register Individual Channel Mask (write only) 

Port Addresses- Channels 0-3-000AH 

Channels 4-7-00CAH 

07 06 05 04 

X x I x I x 

03 

x I 
02 01 DO 

M Cl I CO I 

I 
I CHAN N EL SELECT 

SEE MODE REGISTER I 

MASK SET BIT 
o = CLEAR MASK 
1 = SET MASK 

Mask Read/Write Register Group Channel Mask (read/write) 

Port Addresses- Channels 0-3-000FH 

Channels 4-7-00CFH 

07 06 05 04 03 02 01 DO 

I x I x I x I x I M3 I M2 I loll I MO I 

I L CHANNEL 0(4) MASK BIT 

CHANNEL 1 (5) MASK BIT 

CHANNEL 2(6) MASK BIT 

CHANNEL 3(7) MASK BIT 

MASK BIT = 0 - CHANNEL ENABLED 
= 1 - CHANNEL DISABLED 
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Status Register Channel Process Status (read only) 

Port Addresses- Channels 0-3-000SH 

Channels 4-7-00CSH 

Bus Size Register 

D7 D6 D5 D4 D3 D2 Dl DO 

CHANNEL 0(4) EXPIRED 

..... -- CHANNEL 1 (5) EXPIRED 

II 
I '---CHANNEL 2(6) EXPIRED 

L... ______ CHANNEL 3(7) EXPIRED 

. 1 = EXPIRED 

L..-_______ CHANNEL 0(4) REQUEST 

CHANNEL 1(5) REQUEST 
L..-_____ ....... _____ CHANNEL 2(6) REQUEST 

..... ------------- CHANNEL 3(7) REQUEST 
1 = REQUEST. PENDING 

Set Data Path Width (write only) 

Port Addresses- Channels 0-3-001SH 

Channels 4-7-00DSH 

D7 D6 D5 D4 D3 D2 Dl DO 

290164-44 

CHANNEL SELECT 
L..-............. _ SEE MODE REGISTER I 

L..._"-_________ TARGET BUS SIZE 

..... -"-------------~ REQUESTER BUS SIZE 

Bus Size Encoding: 
00 = Reserved by iniei iO = i6-bit Bus 

. 01 = 32-bit Bus' 11 = a-bit Bus· 

290164-45 

°If programmed as 32-bit bus width. the corresponding device will be accessed in two 16-bit cycles provided that the data is 
aligned within word boundary. . 

Chaining Register (read/write) 

Port Addresses- Channels 0-3-0019H 

Channels 4-7-00D9H 

WRITE F'ORMAT: SET CHAINING MODE 

D7 D6 D5 D4 D3 D2 Dl DO 

o o o o I 0 

4·S92 

CHANNEL SELECT 
SEE MODE REGISTER I 

CHAINING ENABLE BIT 
o = DISABLE CHAINING MODE 
1 = ENABLE CHAINING MODE 
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READ FORMAT: CHANNEL INTERRUPT STATUS 

07 06 OS 04 03 02 01 DO 

I X I X I X I X I CI3 I CI2 I CI1 I CIO I 

3.8 8237 A Compatibility 

The register arrangement of the 82370 DMA Con­
troller is a superset of the 8237 A DMA Controller. 
Functionally the 82370 DMA Controller is very differ­
ent from the 8237 A. Most of the functions of the 
8237A are performed also by the 82370. The follow­
ing discussion points out the differences between 
the 8237 A and the 82370. 

The 8237A is limited to transfers between liD and 
memory only (except in one special case, where two 
channels can be used to perform memory-to-memo­
ry transfers). The 82370 DMA Controller can transfer 
between any combination of memory and liD. Sev­
eral other features of the 8237 A are enhanced or 
expanded in the 82370 and other features are add­
ed. 

The 8237 A is an 8-bit only DMA device. For pro­
gramming compatibility, all of the 8-bit registers are 
preserved in the 82370. The 82370 is programmed 
via 8-bit registers. The address registers in the 
82370 are 24-bit registers in order to. support the 
80376's 24-bit bus. The Byte Count Registers are 
24-bit registers, allowing support of larger data 
blocks than possible with the 8237 A. 

All of the 8237 A's operating modes are supported 
by the 82370 (except the cumbersome two-channel 
memory-to-memory transfer). The 82370 performs 
memory-to-memory transfers using only one chan­
nel. The 82370 has the added features of buffer 
pipelining (Buffer Chaining Process) and program­
mable priority levels. 

The 82370 also adds the feature of address regis­
ters for both destination and source. These address­
es may be incremented, decremented, or held con­
stant, as required by the application of the individual 
channel. This allows any combination of destination 

. and source device. 

I L CHANNEL 0(4) BASE EMPTY 

CHANNEL 1 (5) BASE EMPTY 

CHANNEL 2(6) BASE EMPTY 

CHANNEL 3(7) BASE EMPTY 
290164-47 

Each DMA channel has associated with it a Target 
and a Requester. In the 8237A, the Target is the 
device which can be accessed by the address regis­
ter, the Requester is the device which is accessed 
by the DMA Acknowledge signals and must be an 
liD device. 

4.0 PROGRAMMABLE INTERRUPT 
CONTROLLER (PIC) 

4.1 Functional Description 

The 82370 Programmable Interrupt Controller (PIC) 
consists of three enhanced 82C59A Interrupt Con­
trollers. These three controllers together provide 15 
external and 5 internal interrupt request inputs. Each 
external request input can be cascaded with an ad­
ditional 82C59A slave controller. This scheme al­
lows the 82370 to support a maximum of 120 
(15 x 8) external interrupt request inputs. 

Following one or more interrupt requests, the 82370 
PIC issues an_interrupt signal to the 80376. When 
the 80376 host processor responds with an interrupt 
acknowledge signal, the PIC will arbitrate between 
the pending interrupt requests and place the inter­
rupt vector associated with the highest priority pend­
ing request on the data bus. 

The major enhancement in the 82370 PIC over the 
82C59A is that each of the interrupt request inputs 
can be individually programmed with its own inter­
rupt vector, allowing more flexibility in interrupt vec­
tor mapping. 

4.1.1 INTERNAL BLOCK DIAGRAM 

The block diagram of the 82370 Programmable In­
terrupt Controller is shown in Figure 4-1. Internally, 
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the PIC consists of three 82C59A banks: A, Band C. 
The three banks are cascaded to one another: C is 
cascaded to B, B is cascaded to A. The INT output 
of Bank A is used externally to interrupt the 80376. 

Bank A has nine interrupt request inputs (two are 
unused), and Banks Band C have eight interrupt 
request inputs. Of the fifteen external interrupt re­
quest inputs, two are shared by other functions. Spe-

.. cifically, the Interrupt Request 3 input (IRQ3#) can 
be used as the Timer 2 output (TOUT2#). This pin' 
can be used in three different ways: iRQ3 # input 
only, TOUT2# output only, or using TOUT2# to 
generate an IRQ3# interrupt request. Also. the In­
terrupt Request 9 input (IRQ9#) can be used as 
OMA Request 4 input (OREQ 4). Typically. only 
IRQ9# or OREQ4 can be used at a time. 

IROI6# 
IROI7# 
IROI8# 
IROI9# 
IR020# 
IR021 # 
IR022# 
IR023# 

TOUTO(IRO 
ORE04/IR09# 

8#)- .... 
(IR010#) -+ 

IROll# 
IROI2# 
IROI3# 
IROI4# 
IROI5# 

. 

0 
1 

4.1.2 INTERRUPT CONTROLLER BANKS 

All three banks are identical, with the exception of 
the IRQ1.5 on Bank A. Therefore, only one bank will 
be discussed. In the 82370 PIC, all external requests 
can be cascaded into and each interrupt controller 
bank behaves like a master. As compared to the 
82C59A, the enhancements in the banks are: 

- All interrupt vectors are individually programma­
ble. (In the 82C59A, the vectors must be pro­
grammed in eight consecutive interrupt vector lo­
cations.) 

- .The cascade address is provided on the Data 
Bus (00-07). (In the 82C59A, three dedicated 
control signals (CASO, CAS 1 , CAS2) are used for 
master/slave cascading.) 

~ INTERRUPT 
4 BANK ~ 
5 C 
6 
7 

0 
1 

~ INTERRUPT 
4 BANK lli! 
5 B 
6 
7 

, TOUT3# "Roo#i . , 0 
CHAINING (lROl #) 1 

ICW2 (lRO 1.5#) 1 .5 
(lR02#) 2 INTERRUPT 

TOUT2#/IR03#..;.......;;.;-.. 3 BANK 
SW Req TC (IR04#) 4 A 
. NOT USED 5 

NOT USED 6 
DEFAULT (IR07#) .... 7 ___ ..... 

INT 
(OUTPUT) 

Figure 4-1. Interrupt Controller Block Diagram 
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The block diagram of a bank is shown in Figure 4-2. 
As can be seen from this figure, the bank consists of 
six major blocks: the Interrupt Request Register 
(IRR), the In-Service Register (ISR), the Interrupt 
Mask Register (IMR), the Priority Resolver (PR), the 
Vector Registers (VR), and the Control Logic. The 
functional description of each block is included be­
low. 

INTERRUPT REQUEST (IRR) AND 
IN-SERVICE REGISTER (ISR) 

The interrupts at the Interrupt Request (IRQ) input 
lines are handled by two registers in cascade, the 
Interrupt Request Register (IRR) and the In-Service 
Register (ISR). The IRR is used to store all interrupt 
levels which are requesting service; and the ISR is 
used to store all interrupt levels which are being 
serviced. 

PRIORITY RESOLVER (PR) 

This logic block determines the priorities of the bits 
set in the IRA. The highest priority is selected and 
strobed into the corresponding bit of the ISR during 
an Interrupt Acknowledge cycle. 

IROO# 
IR01# 
IR02# 
IR03# 
IR04# 
IR05# 
IR06# 
IR07# 

DATA (D-7) 

INTERRUPT MASK REGISTER (IMR) 

The IMR stores the bits which mask the interrupt 
lines to be masked (disabled). The IMR operates on 
the IRA. Masking of a higher priority input will not 
affect the interrupt request lines of lower priority. 

VECTOR REGISTERS (VR) 

This block contains a set of Vector Registers, one 
for each interrupt request line, to store the pre-pro­
grammed interrupt vector number. The correspond­
ing vector number will be driven onto the Data Bus 
of the 82370 during the Interrupt Acknowledge cy­
cle. 

CONTROL LOGIC 

The Control Logic coordinates the overall operations 
of the other internal blocks within the same bank. 
This logic will drive the Interrupt Output signal (INn 
HIGH when one or more unmasked interrupt inputs 
are active (LOW). The INT output signal goes direct­
ly to the 80376 (in bank A) or to another bank to 
which this bank is cascaded (see Figure 4-1). Also, 

IROI 
IR02 
IR03 

IR04 
IR05 
IR06 
IR07 

r--___ .INTERRUPT 
TO HOST 

IN­
SERVICE 

REG. 

DATA (0-7) 

INDIVIDUALLY PROGRAMMABLE 
VECTOR BANK 

82380 ENHANCEMENT OVER THE 82C59A 
290 164-A8 

Figure 4-2. Interrupt Bank Block Diagram 
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this logic will recognize ah Interrupt Acknowledge 
cycle (via M/IO#, D/C# and W/R# signals). During 
this bus cycle, the Control Logic will enable the cor­
responding Vector Register to drive the interrupt 
vector onto the Data Bus. 

In bank A, the Control Logic is also responsible for 
handling the special ICW2 interrupt request input 
(IR01.5). 

4.2 Interface Signals 

4.2.1 INTERRUPT INPUTS 

There are 15 external Interrupt Request inputs and 5 
internal Interrupt Requests. The external request in­
puts are: IR03#,IR09#,IR011 # to IR023#. They 
are shown in bold arrows in Figure 4-1. All IRO in­
puts are active LOW and they can be programmed 
(via a control bit in the Initialization Command Word 
1 (ICW1» to be either edge-triggered or level-trig­
gered. In order to be recognized as a valid interrupt 
request, the interrupt input must be active (LOW) un­
til the first INT A cycle (see Bus Functional Descrip­
tion). Note that all 15 external Interrupt Request in­
puts have weak internal pull-up resistors. 

As mentioned earlier, an 82C59A can be cascaded 
to each external interrupt input to expand the inter­
rupt capacity to a maximum of 120 levels. Also, two 
of the interrupt inputs are dual functions: IR03# can 
be used as Timer 2 output (TOUT2#) and IR09# 
can be used as DRE04 input. IR03# is a bidirec­
tional dual function pin. This interrupt request ihput is 
wired-OR with the output of Timer 2 (TOUT2#). If 
nnlv IRn!'! # fllnr.tinn ill to be used. Timer 2 should 
b~"' p~~g~am~~d -~o that OUT2 is "LOW. Note that 
TOUT2# can also be used to generate an interrupt 
request to IR03# input. 

The five internal interrupt requests serve special 
system functions. They are shown in Table 4-1. The 
following paragraphs describe these interrupts. 

Table 4·1. 82370 Internal Interrupt Requests 

Interrupt Request . Interrupt Source 

IROO# Timer 3 Output (TOUT3) 
IR08# Timer 0 Output (TOUTO) 
IR01# DMA Chaining Request 
IR04# DMA Terminal Count 
IR01.5# ICW2Written 

TIMER 0 AND TIMER 3 INTERRUPT REQUESTS 

IR08# and IROO# interrupt requests are initiated 
by the output of Timers 0 and 3, respectively. Each 
of these requests is generated by an edge-detector 
flip-flop. 

The flip-flops are activated by the following condi­
tions: 

Set - Rising edge of timer output (TOUT); 

Clear - Interrupt acknowledge for this request; OR 
Request is masked (disabled); OR Hard­
ware Reset. 

CHAINING AND TERMINAL COUNT INTERRUPTS 

These· interrupt requests are generated by the 
32370 D~JlA Contreller. The chaining request 
(IR01 #) indicates that the DMA Base Register is 
not loaded. The Terminal Count request (IR04#) in­
dicates that a software DMA request was cleared. 

ICW2 INTERRUPT REQUEST 

Whenever an Initialization Control Word 2 (ICW2) is 
written to a Bank, a special ICW2 interrupt request is 
generated. The interrupt will be cleared when the 
newly programmed ICW2 Register is read. This in­
terrupt request is in Bank A at level 1.5. This inter­
rupt request is internally ORed with the Cascaded 
Request from Bank B and is always assigned a high­
er priority than the Cascaded Request. 

This.special interrupt is provided to support compati­
bility with the original 82C59A. A detailed description 
of this interrupt is discussed in the Programming 
section. 

DEFAULT INTERRUPT (IRQ7#) 

During an Interrupt Ac.knowledge cycle, if there is no 
active pending request, the PIC will automatically 
generate a default vector. This vector corresponds 
to the !RQ?:# vector in bank A. 

4.2.2 INTERRUPT OUTPUT (INT) 

The INT output pin is taken directly from bank A. 
This Signal should be tied to the Maskable Interrupt 
Request (INTR) of the 80376. When this signal is 
active (HIGH), it indicates that one or more internal! 
external interrupt requests are pending. The 80376 
is expected to respond with an interrupt acknowl­
edge cycle. 

4.3 Bus Functional Description 

The INT output of bank A will be activated as a result 
of any unmasked interrupt request. This may be a 
non-cascaded or cascaded request. After the PIC 
has driven the INT signal HIGH, the 80376 will re­
spond by performing two interrupt acknowledge cy~ 
cles. The timing diagram in Figure 4-3 shows a typi­
cal interrupt acknowledge process between the 
82370 and the 80376 CPU. 
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NOTE: 
What is actually driven on the Data Bus depends on if the current interrupt request is a Slave Request. 

INTA Cycle 1 INTA Cycle 2 
NON-SLAVE REQUEST 
SLAVE REQUEST 

·Slave will place a vector at this time. 

OOH Vector 
Slave Address High Impedence· 

Figure 4-3. Interrupt Acknowledge Cycle 

After activating the INT signal, the 82370 monitors 
the status lines (M/IO#, D/C#, W/R#) and waits 
for the 80376 to initiate the first interrupt acknowl­
edge cycle. In the 80376 environment, two succes­
sive interrupt acknowledge cycles (INTA) marked by 
M/IO#=LOW, D/C#=LOW, and W/R#=LOW 
are performed. During the first INTA cycle, the PIC 
will determine the highest priority request. Assuming 
this interrupt input has no external Slave Controller 
cascaded to it, the 82370 will drive the Data Bus 
with OOH in the first INTA cycle. During the second 
INTA cycle, the 82370 PIC will drive the Data Bus 
with the corresponding pre-programmed interrupt 
vector. 

If the PIC determines (from the ICW3) that. this inter­
rupt input has an external Slave Controller cascaded 
to it, it will drive the Data Bus with the specific Slave 
Cascade Address (instead of OOH) during the first 
INTA cycle. This Slave Cascade Address is the pre­
programmed content in the corresponding Vector 
Register. This means that no Slave Address should 
be chosen to be OOH. Note that the Slave Address 
and Interrupt Vector are different interpretations of 
the same thing. They are both the contents of the 
programmable Vector Register. During the second 
INT A cycle, the Data Bus will be floated so that the 
external Slave Controller can drive its interrupt vec­
tor on the bus. Since the Slave Interrupt Controller 
resides on the system bus, bus transceiver enable 
and direction control logic must take this into consid­
eration. 

In order to have a' successful interrupt service, the 
interrupt request input must be held valid (LOW) until 
the beginning of the first interrupt acknowledge cy­
cle. If there is no pending interrupt request when the 
first INTA cycle is generated, the PIC will generate a 
default vector, which is the IRQ7 vector (Bank A, 
level 7). 

According to the Bus Cycle definition of the 80376, 
there will be four Bus Idle States between the two 
interrupt acknowledge cycles. These idle bus cycles 
will be initiated by the 80376. Also, during each inter­
rupt acknowledge cycle, the internal Wait State Gen­
erator of the 82370 will automatically generate the 
required number of wait states for internal delays. 

4.4 Modes of Operation 

A variety of modes and commands are available for 
controlling the 82370 PIC. All of them are program­
mable; that is, they may be changed dynamically un­
der software control. In fact, each bank can be pro­
grammed individually to operate in different modes. 
With these modes and commands, many possible 
configurations are conceivable, giving the user 
enough versatility for almost any interrupt controlled 
application. 

This section is not intended to show how the 82370 
PIC can be programmed. Rather, it describes the 
operation in different modes. 
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4.4.1 END-OF-INTERRUPT 

Upon completion of an interrupt service routine, the 
interrupted bank needs to be notified so its ISR can 
be updated. This allow,S the PIC' to keep track of 
which interrupt levels are in the process of being 
serviced and their relative priorities. Three different 
End-Of-Interrupt (EO I) formats are available. They 
are: Non-Specific EOI Command, Specific EOI Com­
mand, and Automatic EOI Mode. Selection of which 
EOI to use is dependent upon the interrupt opera-
tions the user wishes to perform. . 

If the 82370 is NOT programmed in the Automatic 
EOI Mode, an EOI command must be issued by the 
80376 to the specific 82370 PIC Controller Bank. 
Also, if this controller bank is cascaded to another 
internal bank, an EOI command must also be sent to 
the bank to which this bank is cascaded. For exam­
ple, if an interrupt request of Bank C in the 82370 
PIC is serviced, an EOI should be written into Bank 
C, Bank B and Bank A. If the request comes from an 
external interrupt controller cascaded to Bank C, 
then an EOI should be written into the external con­
troller as well. 

NON-SPECIFIC EOI COMMAND 

A Non-Specific EOI command sent from the 80376 
lets the 82370 PIC bank know when a service rou­
tine has been completed, without specification of its 
exact interrupt level. The respective interrupt bank 
automatically determines' the interrupt level and re­
sets the correct bit in the ISA. 

To take advantage of the Non-Specific EOI, the in­
terrupt bank must be in a mode of operation in which 
it can predetermine its in-service routine ievei::;. For 
this reason, the Non-Specific EOI command should 
only be used when the most recent level acknowl­
edged and serviced is always the highest priority. lev­
el (Le. in the Fully Nested Mode structure to be de­
scribed below). When the interrupt bank receives a 
Non-Specific EOI command, it simply resets the 
highest priority ISR bit to indicate that the highest 
priority routine in service is finished. . 

Special consideration should be taken when decid­
ing to use the Non-Specific EOI command. Here are 
two operating conditions in which it is best NOT 
used since the Fully Nested Mode structure will be 
destroyed: 

- Using the Set Priority command within an inter­
rupt service routine. 

- Using a Special Mask Mode. 

These conditions are covered in more detail in their 
own sections, but are listed here for reference. 

SPECIFIC EOI COMMAND 

Unlike a Non-Specific EOI command which automat­
ically resets the highest priority ISR bit, a Specific 
EOI command specifies an exact ISR bit to be reset. 
Anyone of the IRQ levels of an interrupt bank can 
be specified in the command. 

The Specific EOI command is needed to reset the 
ISR bit of a completed service routine whenever the 
interrupt bank is not able to automatically determine 
it. The Specific EOi cornmand can be used in aU 
conditions of operation, including those that prohibit 
Non-Specific EOI command usage mentioned 
above. 

AUTOMATIC EOI MODE 

When programmed in the Automatic EOI Mode, the 
80376 no longer needs to issue a command to notify 
the interrupt bank it has completed an interrupt rou­
tine. The interrupt bank accomplishes this by per­
forming a Non-Specific EOI automatically at the end 
of the second INTA cycle. 

Special consideration should be taken when decid­
ing to use the Automatic EOI Mode because it may 
disturb the Fully Nested Mode str~cture. In the Auto­
matic EOI Mode, the ISR bit of a routine in service is 
reset right after it is acknowledged, thus leaving no 
designation in the ISR that a'service routine is being 
executed. If any interrupt request within the same 
bank occurs during this time and interrupts are en­
abled, it will get serviced regardless of its priority. 
Therefore, when using this mode, the 80376 should 
keep its interrupt request input disabled during exe­
cution of a service routine. By doing this, higher pri­
ority iilteirtipt '6vels wHl be ser.;iccd only after the 
completion of a routine in service. This guideline re­
stores the Fully Nested Mode structure. However, in 
this scheme, a routine In service cannot be interrupt­
ed since the host's interrupt request input is dis­
abled. 

4.4.2 INTERRUPT PRIORITIES 

The 82370 PIC provides various methods for arrang­
ing the interrupt priorities of the interrupt request in­
puts to suit different applications. The following sub­
sections explain these methods in detail. 

4.4.2.1 Fully Nested Mode 

The Fully Nested Mode of operation is a general pur­
pose priority mode. This mode supports a multi-level 
interrupt structure in which all of the Interrupt Re­
quest (IRQ) inputs within one bank are arranged 
from highest to lowest. 
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Unless otherwise programmed, the Fully Nested 
Mode is entered by default upon initialization. At this 
time, IRQO# is assigned the highest priority 
(priority = 0) and IRQ7 # the lowest (priority = 7). 
This default priority can be changed, as will be ex­
plained later in the Rotating Priority Mode. 

When an interrupt is acknowledged, the highest pri­
ority request is determined from the Interrupt Re­
quest Register (IRR) and its vector is placed on the 
bus. In addition, the corresponding bit in the In-Serv­
ice Register (ISR) is set to designate the routine in 
service. This ISR bit will remain set until the 80376 
issues an End Of Interrupt (EOI) command immedi­
ately before returning from the service routine; or 
alternately, if the Automatic End Of Interrupt (AEOI) 
bit is ·set, the ISR bit will be reset at the end of the 
second INTA cycle. 

While the ISR bit is set, all further interrupts of the 
same or lower priority are inhibited. Higher level in­
terrupts can still generate an interrupt, which will be 
acknowledged only if the 80376 internal interrupt en­
able flip-flop has been reenabled (through software 
inside the current service routine). 

4.4.2.2 Automatic Rotation-Equal Priority 
Devices 

Automatic rotation of priorities serves in applications 
where the interrupting devices are of equal priority 

within an interrupt bank. In this kind of environment, 
once a device is serviced, all other equal priority pe­
ripherals should be given a chance to be serviced 
before the original device is serviced again. This is 
accomplished by automatically assigning a device 
the lowest priority after being serviced. Thus, in the 
worst case, the device would have to wait until all 
other peripherals connected to the same bank are 
serviced before it is serviced again. 

There are two methods of accomplishing automatic 
rotation. One is used in conjunction with the Non­
Specific EOI command and the other is used with 
the Automatic EOI mode. These two methods are 
discussed below. 

ROTATE ON NON-SPECIFIC EOI COMMAND 

When the Rotate On Non-Specific EOI command is 
issued, the highest ISR bit is reset as in a normal 
Non-Specific EOI command. However, after it is re­
set, the corresponding Interrupt Request (IRQ) level 
is assigned the lowest priority. Other IRQ priorities 
rotate to conform to the Fully Nested Mode based 
on the newly assigned low priority. 

Figure 4-4 shows how the Rotate On Non-Specific 
EOI command affects the interrupt priorities. As­
sume the IRQ priorities were assigned with IRQO the 
highest and IRQ7 th~ lowest. IRQ6 and IRQ4 are 

IS7 IS6 IS5 IS4 IS3 IS2 lSI ISO 

ISR STATUS­
PRIORITY t-:::-t-::-+~+--:-t-::-f-::--t-:--t-~ 

(BEFORE 
COMMAND) 

LOWEST PRIORITY HIGHEST PRIORITY 

IS7 IS6 IS5 IS4 IS3 IS2 lSI ISO 

ISR STATUS 

PRIORITY 

HIGHEST PRIORITY 

(AFTER 
COMMAND) 

LOWEST PRIORITY 

Figure 4-4. Rotate On Non-Specific EOI Command 
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already in service but neither is completed. Being 
the higher priority routine, IRQ4 is necessarily the 
routine being executed. During the IRQ4 routine, a 
rotate on Non-Specific EOI command is executed. 
When this happens, Bit 4 in the ISR is reset. IRQ4 
then becomes the lowest priority and IRQS becomes 
the highest. 

ROTATE ON AUTOMATIC EOI MODE 

The Rotate On Automatic EOI Mode works much 
iike the Rotate On Non-Speciiic EO; COiTlmand. The 
main difference is that priority rotation is done auto­
matically after the second INTA cycle of an interrupt 
request. To enter or exit this mode, a Rotate-On-Au­
tomatic-EOI Set Command and Rotate-On-Automat­
ic-EOI Clear Command is provided. After this mode 
is entered, no other commands are needed as in the 
normal Automatic EOI Mode. However, it must be 
noted again that when using any form of the Auto­
matic EOI Mode, special consideration should be 
taken. The guideline presented in the Automatic EOI 
Mode also applies here. 

4~4.2.3 Specific Rotation-Specific Priority 

Specific rotation gives the user versatile capabilities 
in interrupt controlled operations. It serves in those 
applications in which a specific device's interrupt pri­
ority must be altered. As opposed to Automatic Ro­
tation which will automatically set priorities after 
each interrupt request is serviced, specific rotation is 
completely user controlled. That is, the user selects 
which interrupt level is to ieceive the lowest or the 
highest priority. This can be done during the main 
program or within interrupt routines. Two specific ro-

tation commands are available to the user: Set Prior­
ity Command and Rotate On Specific EOI Com­
mand. 

SET PRIORITY COMMAND 

The Set Priority Command allows the programmer to 
assign an IRQ level the lowest priority. All other in­
terrupt levels will conform to the Fully Nested Mode 
based on the newly assigned low priority. 

. The Rotate On Specific EOI Command is literally a 
combination of the Set Priority Command and the 
Specific EOI Command. Like the Set Priority Com­
mand, a specified IRQ level is assigned lowest priori­
ty. Like the Specific EOI Command, a specified level 
will be reset in the ISA. Thus, this command accom­
plishes both tasks'in one single command. 

4.4.2.4 Interrupt Priority Mode Summary 

In order to simplify understanding the many modes 
of interrupt priority, Table 4-2 is provided to bring out 
their summary of operations. 

4.4.3 INTERRUPT MASKING 

VIA INTERRUPT MASK REGISTER 

Each bank in the 82370 PIC has an Interrupt Mask 
Register (IMR) which enhances interrupt control ca-

Table 4-2. Interrupt Priority Mode Summary 

Interrupt 
Operation Effect On Priority After EOI 

Priority 
Summary 

Mode Non-Specific! Automatic Specific 

Fully-Nested Mode IRQO# - Highest Priority No change in priority. Not Applicable. 
IRQ7 # - Lowest Priority Highest ISR bit is reset. 

Automatic Rotation Interrupt level just Highest ISR bit is reset Not Applicable. 
(Equal Priority Devices) serviced is the lowest and the corresponding 

priority. level becomes the lowest 

Other priorities rotate to priority. 

conform to Fully-Nested 
Mode. 

Specific Rotation User specifies the Not Applicable. As described under 
(Specific Priority Devices) lowest priority level. "Operation Summary". 

Other priorities rotate to 
conform to Fully-Nested 
Mode. 
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pabilities. This IMR allows individual IRQ masking. 
When an IRQ is masked, its interrupt request is dis­
abled until it is unmasked. Each bit in the 8-bit IMR 
disables one interrupt channel if it is set (HIGH). Bit 
o masks IRQO, Bit 1 masks IRQ1 and so forth. 
Masking an IRQ channel will only disable the corre­
sponding channel and does not affect the others' 
operations. 

The IMR acts only on the output of the IRR. That is, 
if an interrupt occurs while its IMR bit is set, this 
request is not "forgotten". Even with an IRQ input 
masked, it is still possible to set the IRR. Therefore, 
when the IMR bit is reset, an interrupt request to the 
80376 will then be generated, providing that the IRQ 
request remains active. If the IRQ request is re­
moved before the IMR is reset, the Default Interrupt 
Vector (Bank A, level 7) will be generated during the 
interrupt acknowledge cycle. 

SPECIAL MASK MODE 

In the Fully Nested Mode, all IRQ levels of lower 
priority than the routine in service are inhibited. How­
ever, in some applications, it may be desirable to let 
a lower priority interrupt request to interrupt the rou-

, tine in service. One method to achieve this is by 
using the Special Mask Mode. Working in conjunc­
tion with the IMR, the Special Mask Mode enables 
interrupts from all levels except the level in service. 
This is usually done inside an interrupt service rou­
tine by masking the level that is in service and then 
issuing the Special Mask Mode Command. Once the 
Special Mask Mode is enabled, it remains in effect 
until it is disabled. 

4.4.4 EDGE OR LEVEL INTERRUPT 
TRIGGERING 

Each bank in the 82370 PIC can be programmed 
independently for either edge or level sensing for the 

82370 
D(0m-. 

interrupt request signals. Recall that all IRQ inputs 
are active LOW. Therefore, in the edge triggered 
mode, an active edge is defined as an input tran­
sition from an inactive (HIGH) to active (LOW) state. 
The interrupt input may remain active without gener­
ating another interrupt. During level triggered mode, 
an interrupt request will be recognized by ~n active 
(LOW) input, and there is no need for edge detec­
tion. However, the interrupt request must be re­
moved before the EOI Command is issued, or the 
80376 must be disabled to prevent a second false 
interrupt from occurring. 

In either modes, the interrupt request input must be 
active (LOW) during the first INTA cycle in order to 
be recognized. Otherwise, the Default Interrupt Vec­
tor will be generated at level 7 of Bank A. 

4.4.5 INTERRUPT CASCADING 

As mentioned previously, the 82370 allows for exter­
nal Slave interrupt controllers to be cascaded to any 
of its external interrupt request pins. The 82370 PIC 
indicates that an external Slave Controller is to be 
serviced by putting the contents of the Vector Regis­
ter associated with the particular request on the 
80376 Data Bus during the first INTA cycle (instead 
of OOH during a non-slave service). The external log­
ic should latch the vector on the Data Bus using the 
INTA status signals and use it to select the external 
Slave Controller to be serviced (see Figure 4-5). The 
selected Slave will then respond to the second INTA 
cycle and place its vector on the Data Bus. This 
method requires that if external Slave Controllers 
are used in the system, no vector should be pro­
grammed to OOH. 

Since the external Slave Cascade Address is provid­
ed on the Data Bus during INTA cycle 1, an external 
latch is required to capture this address for the Slave 
Controller. A simple scheme is depicted in Figure 
4-5 below. 

POSITIVE 
EDGE 

MASTER/SLAVE 
FLIP-FLOP CAS(O-7) 

IN OUT ~TO SLAVE 
8259'5 

CLK 

I :~ 
, 

DATA BUS INTA# """'-{" (FROM BUS CONTROLLER) 

LATCH HERE 
290164-52 

Figure 4-5. Slave Cascade Address Capturing 
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4.4.5.1 Special Fully Nested Mode 

This mode will be used where cascading is em­
ployed and the priority is to be conserved within 
each Slave Controller. The Special Fully Nested 
Mode is similar to the "regular" Fully Nested Mode 
with the following exceptions: 

- When an interrupt request from a Slave Control­
ler is in service, this Slave Controller is not 
locked out from the Master's priority logic. Fur­
ther interrupt requests from the higher priority 
iogic within the Siave Coniroiier wiii be iecog­
nized by the 82370 PIC and will initiate interrupts 
to the 80376. In comparing to the "regular" Fully 
Nested Mode, the Slave Controller is masked out 
when its request is in service and no higher re­
quests from the same Slave Controller can be 
serviced. 

- Before exiting the interrupt service routine, the 
software has to check whether the interrupt serv­
iced was the only request from the Slave Con­
troller. This is done by sending a Non-Specific 
EOI Command to the Slave Controller and then 
reading its In Service Register. If there are no 
requests in the Slave Controller, a Non-Specific 
EOI can be sent to the corresponding 82370 PIC 
bank also. Otherwise, no EOI should be sent. 

4.4.6 READING INTERRUPT STATUS 

The 82370 PIC provides several ways to read differ­
ent status of each interrupt bank for more flexible 
interrupt control operations. These include polling 
the, highest priority pending interrupt request and 
reading the contents of different interrupt status reg­
isters. 

1!.1!.6.1 Pall Cammand 

The 82370 PIC supports status pOlling operations 
with the Poll Command. In a Poll Command, the 
pending interrupt request with the highest priority 
can be determined. To use this command, the INT 
output is not used, or the 80376 interrupt is disabled. 
Service to devices is achieved by software using the 
Poll Command. 

This mode is useful if there is a routine command 
common to several levels so that the INTA se­
quence is not needed. Another application is to use 
the Poll Command to expand the number of priority 
levels. ' 

Notice that the ICW2 mechanism is, not supported 
for the Poll Command. However, if the Poll Com­
mand is used, the programmable Vector Registers 
are of no concern since no INTA cycle will be gener-
ated. . 

4.4.6.2 Reading Interrupt Registers 

The contents of each interrupt register (IRR, ISR, 
and IMR) can be read to update the user's program 
on the present status of the 82370 PIC. This can be 
a versatile tool in the decision making process of a 
service routine, giving the user more control over 
interrupt operations. 

The reading of the IRR and ISR contents can be 
performed via the Operation Control Word 3 by us­
ing a Read Status Register Command and the con­
tent of IMR can be read via a simple read operation 
of the register itself. ' 

4.5 Register Set Overview 

Each bank of the 82370 PIC consists of a set of 8-bit 
registers to control its operations. The address map 
of all the registers is shown in Table 4-3 below. 
Since all three register sets are identical in functions, 
only one set will be described. ' , 

Functionally, each register set can be divided into 
.e: ...... _...... ........ Th-.... " "" ...... +h,." fnllr Initioll'7otinn r.nm_ 
IIV~ \:fIVU .... .:a. II .... , Qlw, ~II"" ."'W. 1111 ......... _ .............. __ ••• 

mand Words (ICW's), the three Operation Control 
Words (OeW'sj, the Poiiiinterrupi Requestiin-Serv­
ice Register, the Interrupt Mask Register, and the 
Vector Registers. A description of each group fol­
lows. 
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Table 4-3. Interrupt Controller Register Address Map 

Port 
Access Register Description 

Address 

20H Write Bank B ICW1, DCW2, or DCW3 
Read Bank B Poll, Request or In-Service 

Status Register 
21H Write Bank B ICW2, ICW3, ICW4, DCW1 

Read Bank B Mask Register 
22H Read BankB ICW2 
28H Read/Write IRQ8 Vector Register 
29H Read/Write IRQ9 Vector Register 
2AH Read/Write Reserved 
2BH Read/Write IRQ11 Vector Register 
2CH Read/Write IRQ12 Vector Register 
20H Read/Write IRQ13 Vector Register 
2EH Read/Write IRQ14 Vector Register 
2FH Read/Write IRQ15 Vector Register 

AOH Write Bank C ICW1, DCW2, or DCW3 
Read Bank C Poll, Request or In-Service 

Status Register 
A1H Write Bank C ICW2, ICW3, ICW4, DCW1 

Read Bank C Mask Register 
A2H Read BankCICW2 
A8H Read/Write IRQ16 Vector Register 
A9H Read/Write IRQ17 Vector Register 
AAH Read/Write IRQ18 Vector Register 
ABH Read/Write IRQ19 Vector Register 
ACH Read/Write IRQ20 Vector Register 
AOH Read/Write IRQ21 Vector Register 
AEH Read/Write IRQ22 Vector Register 
AFH Read/Write IRQ23 Vector Register 

30H Write Bank A ICW1, DCW2, or DCW3 
Read Bank A Poll, Request or In-Service 

Status Register 
31H Write Bank A ICW2, ICW3, ICW4, DCW1 

Read Bank A Mask Register 
32H Read BanklCW2 
38H Read/Write IRQO Vector Register 
39H Read/Write IRQ1 Vector Register 
3AH Read/Write· IRQ:1.5 Vector Register 
3BH Read/Write IRQ3 Vector Register 
3CH Read/Write IRQ4 Vector Register 
30H Read/Write Reserved 
3EH Read/Write Reserved 
3FH Read/Write IRQ7 Vector Register 
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4.5.1 INITIALIZATION COMMAND WORDS (ICW) 

Before normal operation can begin, the 82370 PIC 
must be brought to a known state. There are four 
8-bit Initialization Command Words in each interrupt 
bank to setup the necessary conditions and modes 
for proper operation. Except for the second com­
mand word (ICW2) which is a read/write register, the 
other three are write-only registers. Without going 
into detail of the bit definitions of the command 
words, the following subsections give a brief de­
sCiiption of what functions each command \, .... ord 
controls. 

ICW1 

The ICW1 has three major functions. They are: 

- To select between the two IRQ input triggering 
modes (edge- or level-triggered); 

- To designate whether or not the interrupt bank is 
to be used alone or in the cascade mode. If the ' 
cascade mode is desired, the interrLipt bank will 
accept ICW3 for further cascade mode program­
ming. Otherwise, no ICW3 will be accepted; 

- To determine whether or not ICW4 will be iSSued; 
that is, if any of the ICW4 operations are to be 
used. 

ICW2 

ICW2 is provided for compatibility with the 82C59A 
only. Its contents do not affect the operation of the 
interrupt bank in any way. Whenever the ICW2 of 
any of the three banks is written into, an interrupt is 
generated from bank A at level 1.5. The interrupt 
request will be cleared after the ICW2 register has 
........ "'... ..,.. .... rI h" tho a.n'l7&t Tho IIe:or ie: .cto\(no,...t~rI tn 
U"'~II 'vu,u ""'1 " .......................... I ..... ___ , .00.# _~ ..... __ .. __ .. _ 

program the corresponding vector register or to use 
it as an indicator that an attempt was made io aHer 
the contents. Note that each ICW2 register has dif­
ferent addresses for read and write operations. 

ICW3 

The interrupt bank will only accept an ICW3 if pro­
grammed in the external cascade mode (as indicat­
ed in ICW1). ICW3 is used for specific programming 
within the cascade mode. The bits in ICW3 indicate 
which interrupt request inputs ,have a Slave cascad-

, ed to them. This will subsequently affect the inter­
rupt vector generation during the interrupt acknowl­
edge cycles as described previously. 

ICW4 

The ICW4 is accepted only if it was selected in 
ICW1. This command word register serves two func­
tions: 

- To select either the Automatic EOI mode or soft­
ware EOI mode; 

- To select if the Special Nested mode is to be 
used in conjunction with the cascade mode. 

4.5.2 OPERATiON CONTROL WORDS {OC"; 

Once initialized by the ICW's, the interrupt banks will 
be operating in the Fully Nested Mode by default 
and they are ready to accept interrupt requests. 
However, the operations of each interrupt bank can 
be further controlled or modified by the use of 
OCW's. Three OCW's are available for programming 
various modes and commands: Note that all OCW's 
are 8-bit write-only registers. 

The modes and operations controlled by the OCW's 
are: 

- Fully Nested Mode; 

- Rotating Priority Mode; 

- Special Mask Mode; 

- Poll Mode; 

- EOI Commands; 

- Read Status Commands. 

OCW1 

OCW1 is used solely for masking operations. It pro­
vides a direct link to the Internal Mask Register 
(!~.1R). The 80376 can 'Nrite to this oew register to 
enable or disable the interrupt inputs. Reading the 
pre-programmed mask can be done via the Interrupt 
Mask Register which will be discussed shortly. 

OCW2 

OCW2 is used to select End-Of-Interrupt, Automatic 
Priority Rotation, and Specific PrioritY Rotation oper­
ations. Associated commands and modes of these 
operations are selected using the different combina­
tions of bits in OCW2. 

Specifically, the OCW2 is used to: 

- Designate an interrupt level (0-7) to be used to 
reset a specific ISR bit or to set a specific priori­
ty. This function can be enabled or disabled; 

- Select which software EOI command (if any) is to 
be executed (Le. Non-Specific or Specific EOI); 

- Enable one of the priority rotation operations (i.e. 
Rotate On Non-Specific EOI, Rotate On Auto­
matic EOI, or Rotate'On Specific EOI). 
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OCW3 

There are three main categories of operation that 
OCW3 controls. They are summarized as follows: 

- To select and execute the Read Status Register 
Commands, either reading the Interrupt Request 
Register (IRR) or the In-Service Register (ISR); 

- To issue the Poll Command. The Poll Command 
will override a Read Register Command if both 
functions are enabled simultaneously; 

- To set or reset the Special Mask Mode. 

4.5.3 POLLIINTERRUPT REQUEST liN-SERVICE 
STATUS REGISTER 

As the name implies, this 8-bit read-only register has 
multiple functions. Depending on the command is­
sued in the OCW3, the content of this register re­
flects the result of the command executed. For a 
Poll Command, the register read contains the binary 
code of the highest priority level requesting service 
(if any). For a Read IRR Command, the register con­
tent will show the current pending interrupt re­
quest(s). Finally, for a Read ISR Command, this reg­
ister will specify all interrupt levels which are being 
serviced. 

4.5.4 INTERRUPT MASK REGISTER (IMR) 

This is a read-only 8-bit register which, when read, 
will specify all interrupt levels within the same bank 
that are masked. 

4.5.5 VECTOR REGISTERS (VR) 

Each interrupt request input has an 8-bit read/write 
programmable vector register associated with it. The 
registers should be programmed to contain the inter­
rupt vector for the corresponding request. The con­
tents of the Vector Register will be placed on the 
Data Bus during the INTA cycles as described previ­
ously. 

4.6 Programming 

Programming the 82370 PIC is accomplished by us­
ing two types of command words: ICW's and 
OCW's. All modes and commands explained in the 
previous sections are programmable using the 
ICW's and OCW's. The ICW's are issued from the 
80376 in a sequential format and are used to setup 
the banks in the 82370 PIC in an initial state of oper­
ation. The OCW's are issued as needed to vary and 
control the 82370 PIC's operations. 

Both ICW's and OCW's are sent by the 80376 to the 
interrupt banks via the Data Bus. Each bank distin­
guishes between the different ICW's and OCW's by 
the I/O address map, the sequence they are issued 
(ICW's only), and by some dedicated bits among the 
ICW's and OCW's. 

An example of programming the 82370 interrupt 
controllers is given in Appendix C (Programming the 
82370 Interrupt Controllers). 

All three interrupt banks are programmed in a similar 
way. Therefore, only a single bank will be described 
in the following sections. 

4.6.1 INITIALIZATION (ICW) 

Before normal operation can begin, each bank must 
be initialized by programming a sequence of two to 
four bytes written into the ICW's. 

Figure 4-6 shows the initialization flow for an inter­
rupt bank. Both ICW1 and ICW2 must be issued for 
any form of operation. However, ICW3 and ICW4 are 
used only if designated in ICW1. Once initialized, if 
any programming changes within the ICW's are to 
be made, the entire ICW sequence must be repro­
grammed, not just an individual ICW. 

Note that although the ICW2's in the 82370 PIC do 
not effect the Bank's operation, they still must be 
programmed in order to preserve the compatibility 
with the 82C59A. The contents programmed are not 
relevant to the overall operations of the interrupt 
banks. Also, whenever one of the three ICW2's is 
programmed, an interrupt level 1.5 in Bank A will be 
generated. This interrupt request will be cleared 
upon reading of the ICW2 registers. Since the three 
ICW2's share the same interrupt level and the sys­
tem may not know the origin of the interrupt, all three 
ICW2's must be read. 
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*ICW2 vector address must be programmed now. 

(ICW2 INTERRUPT. GENERATED) 

(ALLOW SERVICING 
OF ICW2 INTERRUPT) 

290164-53 

Other vector ad~resses may be programmed via. !eW2 interF'lJpt service routine, 

Figure 4-6. Initialization Sequence 

Certain internal setup conditions occur automatically 
within the interrupt bank after the first ICW (ICW1) 
has been issued. These are: 

- The edge sensitive circuit is reset, which means 
that following initialization, an interrupt request 
input must make a HIGH-to-LOW transition to 
generate an interrupt; 

- The Interrupt Mask Register (IMR) is cleared; 
that is, all interrupt inputs are enabled; 

- IRQ7 input of each bank is assigned priority 7 
(lowest); 

- Special Mask Mode is cleared and Status Read 
is set to IRR; 

- If no ICW4 is needed, then no Automatic-EOI is 
selected. 

4.6.2 VECTOR REGISTERS (VR) 

Each interrupt request input has a separate Vector 
Register. TheSe Vector Registers are used to store 
the pre-programmed vector number corresponding 
to their interrupt sources. In order to guarantee prop­
er interrupt handling, all Vector Registers must be 
programmed with the predefined vector numbers. 
Since an interrupt request will be generated whenev­
er an ICW2 is written during the initialization se­
quence, it is important that the Vector Register of 
IRQ1.S in Bank A should be initialized and the inter­
rupt service routine of this vector is set up before the 
ICW's are written. 
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4.6.3 OPERATION CONTROL WORDS (OCW) 

After the ICW's are programmed, the operations of 
each interrupt controller bank can be changed by 
writing into the DCW's as explained before. There is 
no special programming sequence required for the 
DCW's. Any DCW may be written at any time in or­
der to change the mode of or to perform certain op­
erations on the interrupt banks. 

4.6.3.1 Read Status and Poll Commands (OCW3) 

Since the reading of IRR and ISR status as well as 
the result of a Poll Command are available on the 
same read-only Status Register, a special Read 
Status/Poll Command must be issued before the 
Poll/Interrupt Requestlln-Service Status Register is 
read. This command can be specified by writing the 
required control word into DCW3. As mentioned ear­
lier, if both the Poll Command and the Status Read 
Command are enabled simultaneously, the Poll 
Command will override the Status Read. That is, af­
ter the command execution, the Status Register will 
contain the result of the Poll Command. 

4.7 Register Bit Definition 

INITIALIZATION COMMAND WORD 1 (ICW1) 

Note that for reading IRR and ISR, there is no need 
to issue a Read Status Command to the DCW3 ev­
ery time the IRR or ISR is to be read. Dnce a Read 
Status Command is received by the interrupt bank, it 
"remembers" which register is selected. However, 
this is not true when the Poll Command is used. 

In the Poll Command, after the DCW3 is written, the 
82370 PIC treats the next read to the Status Regis­
ter as an interrupt acknowledge. This will set the ap­
propriate IS bit if there is a request and read the 
priority level. Interrupt Request input status remains 
unchanged from the Poll Command to the Status 
Read. 

In addition to the above read commands, the Inter­
rupt Mask Register (IMR) can also be read. When 
read, this register reflects the contents of the pre­
programmed DCW1 which contains information on 
which interrupt request(s) is(are) currently disabled. 

07 06 05 04 03 02 01 DO 

I x I x I x I 1 I LTIM I x I SNGLj IC4 I 

I ~ 
+ o - NO ICW4 NEEDED 

1 - ICW4 NEEDED 
o - EDGE TRIGGERED 
1 - LEVEL TRIGGERED 

INITIALIZATION COMMAND WORD 2 (ICW2) 

o .;. EXTERNAL CASCADE 
(lCW3 NEEDED) 

1 - NO EXTERNAL CASCADE 
(lCW3 NOT NEEDED) 

I 07 I 06 I 05 I 04 I 03 I 02 I 01 I DO i 

I I 
! 

CONTENT IS NOT RELEVANT TO THE ACTUAL 
OPERATION OF THE BANK BUT CAN BE READ 

BY THE INTERRUPT SERVICE ROUTINE TO 
DETERMINE WHERE THE INTERRUPT VECTORS 

OF EACH BANK START. 
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INITIALIZATION COMMAND WORD 3 (ICW3) 

ICW3 for Bank A: 

ICW3 for Bank B: 

ICW3 for Bank C: 

07 06 05 04 03 02 01 DO 

o o I 0 I 0 Istololol ~ 0 - NO SLAVE CASCAOED TO BANK A 
1 - THERE IS A SLAVE CASCADED 

TO TOUT2#/IRQ3# PIN 

07 06 05 04 03 02 01 DO 

o - NO CASCADED REQUEST TO IRQN 
1 - THERE IS A CASCADED REQUEST 

CONNECTED TO IRQN (I.E. THE 
CORRESPONDING INTERRUPT 
REQUEST INPUTS) 

07 06 05 04 03 02 01· DO 

o - NO CASCADED REQUEST TO IRQN 
1 - THERE IS A CASCADED REQUEST 

CONNECTED TO IRQN 

!N!T!ALlZAT!ON COMMAND WORD 4 (!CW4) 

07 06 05 04 0302 01 DO 

o = NORMAL EOI 
~--+ 1 =AUTOt.lATIC EOI 

290164-56 

290164-57 

290164-58 

..... _______ -+ O=NOT SPECIAL rULLY NESTED MODE 
1 = SPECIAL FULLY t~ESTED MODE 
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OPERATION CONTROL WORD 1 (OCW1) 

07 06 05 04 03 02 01 DO 

MI = 1 MASK SET (INTERRUPT DISABLED) 
1..-_-+ 011=0 MASK RESET (INTERRUPT ENABLED) 

290164-60 

OPERATION CONTROL WORD 2 (OCW2) 

07 06 05 04 03 02 01 DO 

1 NON-SPECIFIC EOI COMMAND 

R I SL I EOI 

I I I 
o o L2 '~~ I 

,~""'"" """ . TO BE ACTED UPON 

1 SPECIFIC EOI COMMAND 
1 ROTATE ON NON-SPECIFIC EOI 
o ROTATE ON AUTO-EO I MODE (SET) 
o ROTATE ON AUTO-EO I MODE (CLEAR) 

o 
o 
1 
1 
o 
1 
1 
o 

o 
1 
o 
o 
o 
1 
1 
1 

1 ROTATE ON SPECIFIC EOI (L2-LO USED) 
o SET PRIORITY (L2-LO USED) 
o NO OPERATION 

OPERATION CONTROL WORD 3 (OCW3) 

07 06 05 04 03 02 01 DO 

ESMM SMM RIS 
o 0 NO ACTION o NO ACTION 
o 1 NO ACTION 1 - POLL COMMAND 1 NO ACTION 
1 0 RESET SPECIAL MASK 0- NO POLL COMMAND o READ IR REG. 
1 1 SET SPECIAL MASK 1 READ IS REG. 

290164-61 

290164-62 

ESMM - Enable Special Mask Mode. When this bit is set to 1, it· enables the SMM bit to set or reset the 
Special Mask Mode. When this bit is set to 0, SMM bit becomes don't care. 

SMM - Special Mask Mode. If ESMM = 1 and SMM = 1, the interrupt controller bank will enter Special Mask 
Mode. If ESMM = 1 and SMM = 0, the bank will revert to normal mask mode. When ESMM = 0, SMM 
has no effect. . 

4-909 



inter 82370 

POLLIINTERRUPT REQUEST liN-SERVICE STATUS REGISTER 

Poll Command Status 

07 06 05 04 03 02 01 00 

I I I x I x I x I x I W2 I WI I wo I 

Interrupt Request Status 

NOTE: 

I I 
4 BINARY COOE OF 

'--+ 0 - NO PENOING INTERRUPT 
1 - PENOING INTERRUPT 

THE HIGHEST PRIORITY 
LEVEL REQUESTING 

07 06 05 04 03 02 01 DO 

IIRQ7 IIRQ6 IIRQ5 IIRQ4 IIRQ3 IIRQ2 IIRQl IIRQO I 
IF IRQ BIT IS: 0 - NO REQUEST 

290164-63 

1 - REQUEST PENOING 
290164-64 

Although all Interrupt Request inputs are active LOW, the internal logical will invert the state of the pins so that when there 
is a pending interrupt request at the input, the corresponding IRQ bit will be set to HIGH in the Interrupt Request Status 
register. 

In-Service Status 

07 06 05 04 03 02 01 00 

1157 1156 1155 1154 1153 1152 1151 1150 I 

IF IS BIT IS: 0 - NOT IN-SERVICE 
1 - REQUEST IS IN-SERVICE 

290164-65 

VECTOR REGISTER (VR) 

8-BIT VECTOR NUMBER 
290164-66 
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Table 4-4. Register Operational Summary 

Operational 
Description 

Fully Nested Mode 
Non·specific EOI Command 
Specific EOI Command 
Automatic EOI Mode 
Rotate On Non·Specific 

EOICommand 
Rotate On Automatic 

EOI Mode 
Set Priority Command 
Rotate On Specific 

EOICommand 
Interrupt Mask Register 
Special Mask Mode 
Level Triggered Mode 
Edge Triggered Mode 
Read Register Command, IRR 
Read Register Command, ISR 
Read IMR 
Poll Command 
Special Fully Nested Mode 

4.8 Register Operational Summary 

For ease of reference, Table 4·4 gives a summary of 
I the different operating modes and commands with 
their corresponding registers. 

5.0 PROGRAMMABLE INTERVAL 
TIMER 

5.1 Functional Description 

The 82370 contains four independently Programma· 
ble Interval Timers: Timer 0-3. All four timers are 
functionally compatible to the Intel 82C54. The first 
three timers (Timer 0-2) have specific functions. 
The fourth timer, Timer 3, is a general purpose timer. 
Table 5·1 depicts the functions of each timer. A brief 
description of each timer's function follows. 

Irlmer 

0 
1 

2 

3 

Table 5-1. Programmable 
Interval Timer Functions 

Output Function 

IR08 Event Based IR08 Generato 
TOUT1/REF# Gen. Purpose/DRAM 

Refresh Req. 
TOUT2/IR03# Gen. Purpose/Speaker 

OutlIR03# 
TOUT3# Gen. Purpose/IROQ 

Generator 

Command Bits Words 

OCW·Default 
OCW2 EOI 
OCW2 SL, EOI, LO-L2 

ICW1,ICW4 IC4,AEOI 
OCW2 EOI 

OCW2 R,SL, EOI 

OCW2 LO-L2 
OCW2 R,SL, EOI 

OCW1 MO-M7 
OCW3 ESMM,SMM 
ICW1 LTIM 
ICW1 LTIM 

OCW3 RR,RIS 
OCW3 RR,RIS 

IMR MO-M7 
OCW3 P 

ICW1,ICW4 1C4,SFNM 

TIMER o-Event Based Interrupt Request 8 
Generator 

Timer 0 is intended to be used as an Event Counter. 
The output of this timer will generate an Interrupt 
Request 8 (IR08) upon a rising edge of the timer 
output (TOUTO). Normally, this timer is used to im· 
plement a time·of-day clock or system tick. The Tim­
er 0 output is not available as an external signal. 

TIMER 1-General Purpose/DRAM Refresh 
Request 

The output of Timer 1, TOUT1, can be used as a 
general purpose timer or as a DRAM Refresh Re· 
quest signal. The rising edge of this output creates a 
DRAM refresh request to the 82370 DRAM Refresh 
Controller. Upon reset, the Refresh Request func­
tion is disabled, and the output pin is the Timer 1 
output. 

TIMER2-General Purpose/Speaker OutIlRQ3# 

The Timer 2 output, TOUT2 #, could be used to sup­
port tone generation to an external speaker. This pin 
is a bidirectional signal. When used as an input, a 
logic LOW asserted at this pin will generate an Inter­
rupt Request 3 (IR03#) (see Programmable Inter­
rupt Controller). 
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DATA BUFFER OUTO 
~ 

8-BIT • &: COUNTER 0 
INTERNAL BUS 

LOGIC' 
~ 

OUT' 
COUNTER' 

+-

CONTROL 
GATE WORD 

REGISTER I 

OUT2 
COUNTER 2 

~ 

CONTROL OUT3 --+ ' WORD COUNTER 3 
REGISTER II ~ 

CLKIN 

I EDGE I IROB, 
'I DETECTOR I (INTERN AL) 

.I EDGE REFRESH I 
'I DETECTOR CONTROLLER 

REF# 

I REFII 
2-TO-1 
, MUX 

r+TOUT1/R TOUT' 
o select 

EF# 

t-~EFENA 
, OPEN COLLECTOR (INTERN 

BLE 
AL) - TOUT2# - ! /IR03# 

TO IR03# (INTERNAL) 

J EDGE 1 IROO 

I DETECTOR I (INTERN AL) 

4- TOUT3# 

290164-67 

Figure 5·1. Block Diagram of Programmable Interval Timer 

TIMER 3-General Purpose/Interrupt Request 0 
Generator 

The output of Timer 3 is fed to an edge detector and 
generates an Interrupt Request 0 (IROO) in the 
82370. The inverted output of this timer (TOUT3#) 
is also available as a:n external signal for general 
purpose use. 

5.1.1 INTERNAL ARCHITECTURE 

The functional block diagram of the Programmable 
Interval Timer ~ection is shown in Figure 5-1. Follow­
ing is a description of each block. 

DATA BUFFER & READ/WRITE LOGIC 

This part of the Programmable Interval Timer is used 
to interface the four timers to the 82370 internal bus. 
The Data Buffer is for transferring commands and 
data between the 8-bit internal bus and the timers. 

The Read/Write Logic accepts inputs from the inter­
nal bus and generates Signals to control other func­
tional blocks within the timer section. 

CONTROL WORD REGISTERS I & II 

The Control Word Registers are write-only registers. 
Thev are used to control the operatin!:! modes of the 
timers. Control Word Register'l controls Timers 0, 1 
and 2, and Control Word Register II controls Timer 
3. Detailed description of the Control Word Regis­
ters will be included in the Register Set Overview 
section. 

COUNTER 0, COUNTER 1, COUNTER 2, 
COUNTER 3 

Counters 0, 1, 2, and 3 are the major parts of Timers 
0, 1, 2, and 3, respectively. These four functional 
blocks are identical in operation, so only a Single 
counter will be described. The internal block dia­
gram of one counter is shown in Figure 5-2. 
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GATEn 
elK n OUT n 

290164-68 

Figure 5·2. Internal Block Diagram of a Counter 

The four counters share a common clock input 
(ClKIN), but otherwise are fully independent. Each 
counter is programmable to operate in a different 
mode, 

Although the Control Word Register is shown in the 
figure, it is not part of the counter itself. Its pro­
grammed contents are used to control the opera­
tions of the counters. 

The Status Register, when latched, contains the cur­
rent contents of the Control Word Register and 
status of the output and Null Count Flag (see Read 
Back Command). 

The Counting Element (CE) is the actual counter. It 
is a 16-bit presettable synchronous down counter. 

The Output latches (OL) contain two 8-bit latches 
(OlM and OlL). Normally, these latches "follow" 
the content of the CEo OlM contains the most signif­
icant byte of the counter and Oll contains the least 
significant byte. If the Counter Latch Command is 
sent to the counter, Ol will latch the present count 
until read by the 80376 and then return to follow the 
CEo One latch at a time is enabled by the timer's 
Control logic to drive the internal bus. This is how 
the 16-bit Counter communicates over the 8-bit in­
ternal bus. Note that CE cannot be read. Whenever 
the count is read, it is one of the Ol's that is being 
read. ' 

When a new count is written into the counter, the 
value will be stored in the Count Registers (CR), and 
transferred to CEo The transferring of the contents 
from CR's to CE is defined as "loading" of the coun­
ter. The Count Register contains two 8-bit registers: 
CRM (which contains the most significant byte) and 
CRl (which contains the least significant byte). Simi­
lar to the Ol's, the Control logic allows one register 
at a time to be loaded from the 8-bit internal bus. 
However, both bytes are transferred from the CR's 
to the CE simultaneously. Both CR's are cleared 
when the Counter is programmed. This way, if the' 
Counter has been programmed for one byte count 
(either the most significant or the least significant 
byte only), the other bYte will be zero. Note that CE 
canl10t be written into directly. Whenever a count is 
written, it is the CR that is being written. 

As shown in the diagram, the Control logic consists 
of three signals: ClKIN, GATE, and OUT. ClKIN 
and GATE will be discussed in detail in the section 
that follows. OUT is the internal output of the coun­
ter. The external outputs of some timers (TOUT) are 
the inverted version of OUT (see TOUT1, TOUT2 #, 
TOUT3#). The state of OUT depends on the mode 
of operation of the timer. 
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5.2 Interface Signals 

5.2.1 ClKIN 
/ 

ClKIN is an input signal used by all four timers for 
internal timing reference. This signal can be inde· 
pendent of the 82370 system clock, ClK2. In the 
following discussion, each "ClK Pulse" is defined 
as the time period between a rising edge and a fall· 
ing edge, in that order. of ClKIN. 

During the rising edge of elKIN, the state of GATE 
is sampled. All new counts are loaded and counters 
are decremented on the falling edge of ClKIN. 

5.2.2 TOUT1, TOUT2#, TOUT3# 

TOUT1. TOUT2 # and TOUT3 # are the external 
output signals of Timer 1. Timer 2 and Timer 3, re­
spectively. TOUT2# and TOUT3# are the inverted 
signals of their respective counter outputs, OUT. 
There is no external output for Timer o. 

If Timer 2 is to be used as a tone generator of a 
speaker. external buffering must be used to provide 
sufficient drive capability. 

The Outputs of Timer 2 and 3 are dual function pins. 
The output pin of Timer 2 (TOUT2 # /IR03 #). which 
is a bidirectional open-collector signal, can also be 
used as interrupt request input. When the interrupt 
function is enabled (through the Programmable In­
terrupt Controller), a lOW on this input will generate 
an Interrupt Request 3 # to the 82370 Programma­
ble Interrupt Controller. This pin has a weak internal 
pull·up resistor. To use the IR03# function, Timer 2 
should be oroarammed so that OUT2 is lOW. Addi­
tionally, OUT3- of Timer 3 is connected to an edge 
""""+",..+"r .. ,hi,..,h 'Alill ,.." ... "'r~+" """ I"+~rrll'"'t 00.,",11000+ n 
U,,",Lv,","U' ..... 111"'11 ""'III l::f""IIQIWr.,", Wit II IL"'II"'t''' 11"""1 ............. v 

(I ROO) to the 82370 after the rising edge of OUT3 
(see Figure 5-1). 

5.2;3 GATE 

GATE is not an externally controllable Signal. Rath­
er, it 'can be software controlled with the Internal 
Control Port. The state of GATE is always sampled 
on the rising edge of elKIN. Depending on the 
mode of operation, GATE is used to enable/disable 
counting or trigger the start of an operation. 

For Timer 0 and 1, GATE is always enabled (HIGH). 
For Timer 2 and 3. GATE is connected to Bit 0 and 
6, respectively, of an Internal Control Port (at ad­
dress 61 H) of the 82370. After a hardware reset, the 
state of GATE of Timer 2 and 3 is disabled (lOW). 

5.3 Modes of Operation 

Each timer can be independently programmed to 
· operate in one of six different modes. Timers are 

programmed by writing a Control Word into the Con-. 
trol Word Register followed by an Initial Count (see 
Programming). 

The following are defined for use in describing the 
different modes of operation. 

ClK Pulse- A rising edge, then a falling edge, in 
that order, of CLKiN. 

Tr!gger- A rising edge of a timer's GATE input. 

Timer/Counter loading- The transfer of a count 
. from Count Register 

. (CR) to Count Element 
(CE). 

5.3.1 MODE O-INTERRUPT ON TERMINAL 
COUNT 

Mode 0 is typically used for event counting. After the 
Control Word is written, OUT is initially lOW, and will 
remain lOW until the counter reaches zero. OUT 
then goes HIGH and remains HIGH until a new 
count or a new Mode 0 Control Word is written into 
the counter. 

In this mode, GATE = HIGH enables counting; 
GATE = lOW disables counting. However, GATE 
has no effect on OUT. 

After the Control Word and initial count are written to 
a timer, the initial count will be loaded on the next 
ClK pulse. This ClK pulse does not decrement the 
count. so for an initial count of N, OUT does not go 
HiGH untii N + i CLK puises after the initiai count is 
written. 

· If a new count is written to the timer, it will be loaded 
on the next ClK pulse and counting will continue 
from the new count. If a two-byte count is written, 
the following happens: 

· 1. Writing the first byte disables counting, OUT is set 
lOW immediately (i.e. no ClK pulse required). 

2. Writing the second byte allows the new count to 
be loaded on the next ClK pulse. 

This allows the counting sequence to be synchroniz­
ed by software. Again, OUT does not go HIGH until 
N + 1 ClK pulses after the new count of N is written. 
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CW=10 LSB-4.-_________ _ 

WRITE-UU 

ClK 

GATE ----------------

OUT ~-'-_______ __' 

I N I N I N I N I 
CW=10 LSB=3.-_________ _ 

WRITE-UU 

CLK 

GATE 

CW~10 LSBc3 Lsa_2 

WRITE ~-----

eLK 

GATE ----------------

OUT ~ ....... _______ __',_ 

I g I ~~ I 
290164-69 

NOTES: 
The following conventions apply to all mode timing diagrams. 
1. Counters are programmed for binary (not BCD) counting and for reading/writing least significant byte (LSB) only. 
2. The counter is always selected (CS;!' always low). 
3. CW stands for "Control Word"; CW = 10 means a control word of 10, Hex is written to the counter. 
4. LSB stands for "Least significant byte" of count. 
5. Numbers below diagrams are count values. 
The lower number is the least significant byte. 
The upper number is the most significant byte. Since the counter is programmed to read/write LSB only, the most 
significant byte cannot be read. 
N stands for an undefined count. 
Vertical lines show transitions between count values. 

Figure 5-3. Mode 0 

If an initial count is written while GATE is lOW, the 
counter will be loaded on the next ClK pulse. When 
GATE goes HIGH, OUT will go HIGH N ClK pulses 
later; no ClK pulse is needed to load the counter as 
this has already been done. 

5.3.2 MODE 1-GATE RETRIGGERABLE 
ONE-SHOT 

In this mode, OUT will be initially HIGH. OUT will go 
lOW on the ClK pulse following a trigger to start the 

one-shot operation. The OUT signal will then remain 
lOW until the timer reaches zero. At this point, OUT 
will stay HIGH until the next trigger comes in. Since 
the state of GATE Signals of Timer 0 and 1 are inter­
nally set to HIGH. 

After writing the Control Word and initial count, the 
timer is considered "armed". A trigger results in 
loading the timer and setting OUT lOW on the next 
ClK pulse. Therefore, an initial count of N will result 
in a one-shot pulse width of N ClK cycles. Note 
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Figure 5-4. Mode 1 

that this one-shot operation is retriggerable; Le. OUT 
will remain lOW for N ClK pulses after every trigger. 
The one-shot operation can be repeated without re­
writing the same count into the timer. 

If a new count is written to the timer during a one­
shot operation, the current one-shot pulse width will 
not be affected until the timer is retriggered. This is 
because loading of the new count to CE will occur 
only when the one-shot is triggered. 

5:3.3 MODE 2-RATE GENERATOR 

This mode is a- divide-by-N counter. It is typically 
used to generate a Real Time Clock interrupt. OUT 
will initially be HIGH. When the initial count has dec-

remented to 1, OUT goes lOW for one ClK pulse, 
then OUT goes HIGH again. Then the timer reloads 
the initial count and the process is repeated. In other 
words, this mode is periodic since the same se­
quence is repeated itself indefinitely. For an initial 
count of N, the sequence repeats every N ClK cy­
cles. 

Similar to Mode 0, GATE = HIGH enables counting, 
where GATE = lOW disables counting. If GATE 
goes lOW during an output pulse (lOW), OUT is set 
HIGH immediately. A trigger (rising edge on GATE) 
will reload the timer with the initial count on the next 
ClK pulse. Then, OUT will go lOW (for one ClK 
pulse) N ClK pulses after the new trigger. Thus, 
GATE can be used to synchronize the timer. 
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290164-71 

A GATE transition should not occur one clock prior to terminal count. 

Figure 5-5. Mode 2 

After writing a Control Word and initial count. the 
timer will be loaded on the next ClK pulse. OUT 
goes lOW (for one ClK pulse) N ClK pulses after 
the initial count is written. This is another way the 
timer may be synchronized by software. 

Writing a new count while counting does not affect 
the current counting sequence because the new 
count will not be loaded until the end of the current 
counting cycle. If a trigger is received after writing a 

new count but before the end of the current period. 
the timer will be loaded with the new count on the 
next ClK pulse after the trigger. and counting will 
continue with the new count. 

5.3.4 MODE 3-SQUARE WAVE GENERATOR 

Mode 3 is typically used for Baud Rate generation. 
Functionally. this mode is similar to Mode 2 except 
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. for the duty cycle of OUT. In this mode, OUT will be 
initially HIGH. When half of the initial count has ex­
pired, OUT goes low for the remainder of the count. 
The counting sequence will be repeated, thus this 
mode is also periodic. Note that an initial count of N 
results in a square wave with a period of N CLK 
pulses. 

The GATE input can be used to synchronize the tim­
er. GATE=HIGH enables counting; GATE=LOw 
disables counting. If GATE goes LOW while OUT is 
LOW, OUT is set HIGH immediately (i.e. no eLK 
pulse is required). A trigger reloads the timer with the 
initial count on the next CLK pulse. 

After writing a Control Word and initial count, the 
timer will be loaded on the next CLK pulse. This al­
lows the timer to be synchronized by software. 

Writing· a new count while counting does not affect 
the current counting sequence; If a trigger is re­
ceived after writing a new count but before the end 
of the current half-cycle of the square wave, the tim­
er will be loaded with the new count on the next CLK 
pulse and counting will continue from the new count. 
Otherwise, the new count will be loaded at the end 
of the current half-cycle. . 

There is a slight difference in operation depending 
on whether the initial count is EVEN or ODD. The 
following description is to show exactly how this 
mode is implemented. 

EVEN C,OUNTS: 

OUT is initially HIGH. The initial count is loaded on 
one CLK pulse and is decremented by two on suc­
ceeding CLK pulses. When the count expires (decre­
mented to 2), OUT changes to LOW and the timer is 
reioaded with the initial count. The above process is 
repeated indefinitely. 

ODD COUNTS: 

OUT is initially HIGH. The initial count minus one 
(which is an even number) is loaded on one CLK 

. pulse and is decremented by two on succeeding 
CLK pulses. One CLK pulse after the count expires 
(decremented to 2), OUT goes LOW and the timer is 
loaded with the initial count minus one again. Suc­
ceeding CLK pulses decrement the count by two. 
When the count expires, our goes HIGH immedi­
ately and the timer is reloaded with the initial count 
minus one. The above process is repeated indefi­
nitely. So for ODD counts, OUT will HIGH or 
(N + 1 )/2 counts and LOW for (N -1 )/2 counts. 
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NOTE: 
A GATE transition should not occur one clock prior to terminal count. 

Figure 5-6. Mode 3 

5.3.5 MODE 4-INITIAL COUNT TRIGGERED 
STROBE 

This mode allows a strobe pulse to be generated by 
writing an initial count to the timer. Initially, OUT will 
be HIGH. When a new initial count is written into the 
timer, the counting sequence will begin. When the 
initial count expires (decremented to 1), OUT will go 
LOW for one CLK pulse and then go HIGH again. 

Again, GATE=HIGH enables counting while 
GATE = LOW disables counting. GATE has no ef­
fect on OUT. 

After writing the Control Word and initial count, the 
timer will be loaded on the next CLK pulse. This CLK 
pulse does not decrement the count, so for an initial 
count of N, OUT does not strobe LOW until N + 1 
CLK pulses after initial count is written. 

If a new count is written during counting, it will be 
loaded in the next CLK pulse and counting will con-
tinue from the new count. ' 
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Figure 5-7. Mode 4 

If a two-byte count is written, the following will occur: 

1. Writing the first byte has no effect on counting. 

2. Writing. the second byte allows the new count to 
be loaded on the next ClK pulse. 

OUT will strobe lOW N + 1 ClK pulses after the 
new count of N is written. Therefore, when the 
strobe pulse will occur after a trigger depends on the 
value of the initial count loaded. 

5.3.6 MODE 5-GATE RETRIGGERABLE 
STROBE 

Mode 5 is very similar to Mode 4 except the count 
sequence is triggered by the gate signal instead of 

by writing an initial count. Initially, OUT will be HIGH. 
Counting is triggered by a rising edge of GATE. 
When the initial count has expired (decremented to 
1), OUT will go lOW for one ClK pulse and then go 
HIGH again. 

After loading the Control Word and initial count, the 
Count Element will not be loaded until the ClK pulse 
after a trigger. This ClK pulse does not decrement 
the count. Therefore, for an initial count of N, OUT 
does not strobe lOW until N + 1 ClK pulses after a 
tri.Qger. 
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Figure 5-8. Mode 5 

The counting sequence is retriggerable. Every trig­
ger will result in the timer being loaded with the initial 
count on the next eLK pulse. 

5.3.7 OPERATION COMMON TO ALL MODES 

If the new count is written during counting" the cur­
rent counting sequence will not be affected. If a trig­
ger occurs after the new count is written but before 
the current count expires, the timer will be loaded 
with the new count on the next eLK pulse and a new 
count sequence will start from there. 
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5.3.7.1 GATE 

The GATE input is always sampled on the rising 
edge of eLKIN. In Modes 0, 2, 3 and 4, the GATE 
input is level sensitive. The logic level is sampled on 
the rising edge of eLKIN. In Modes 1, 2, 3 and 5, the 
GATE input is rising edge sensitive. In these modes, 
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Summary of Gate Operations 

Mode GATE LOW or Going LOW 

0 Disable count 
1 No Effect 

2 1. Disable count 
2. Sets output HIGH 

immediately 
3 i. iDisabie count 

2. Sets output HIGH 
immediately 

4 Disable count 
5 No Effect 

a rising edge of GATE (trigger) sets an edge sensi­
tive flip-flop in the timer. The flip-flop is reset imme­
diately after it is sampled. This way, a trigger will be 
detected no matter when it occurs; i.e. a HIGH logic 
level does not have to be maintained until the next 
rising edge of ClKIN. Note that in Modes 2 and 3, 
the GATE input is both edge and level sensitive. 

5.3.7.2 Counter 

New counts are loaded and counters. are decre­
mented on the falling edge of ClKIN. The largest 
possible initial count is O. This is equivalent to 2**16 
for binary counting and 10'*4 for BCD counting. 

Note that the countei does not stop when it reaches 
zero. In Modes 0, 1, 4 and 5, the counter 'wraps 
around' to the highest count: either FFFF Hex for 
binary counting or 9999 for BCD counting, and con­
tinues counting. Modes 2 and 3 are periodic. The 
counter reloads itself with the initial count and con­
tinues counting from there. 

The minimum and maximum initial count in each 
counter depends on the mode of operation. They 
are summarized below. 

Mode Min Max 

0 1 0 
1 1 0 
2 2 0 
3 2 0 
4 1 0 
5 1 0 

5.4 Register Set Overview 

The Programmable Interval Timer module of the 
82.370 contains a set of six registers. The port ad­
dress map of these registers is shown in Table 5-2. 

GATE Rising· HIGH. 

No Effect Enable count 
1. Initiate count No Effect 
2. Reset output 

after next clock 
Initiate count Enable count 

initiate count L __ .... I .................... + 
LIIQUII;i lJVUll1. 

No Effect Enable count 
Initiate count No Effect 

Table 5-2. Timer Register Port Address Map 

Port Address Description 

40H Counter 0 Register (read/write) 
41H Counter 1 Register (read/write) 
42H Counter 2 Register (read/write) 
43H Control Word Register I 

(Counter 0, 1 & 2) (write-only) 

:44H Counter 3 Register (read/write) 
45H Reserved 
46H Reserved 
47H Control Word Register II 

(Counter 3) (write-only) 

5.4.1 COUNTER 0, 1, 2, 3 REGISTER 

These four 8-bit registers are functionally identical. 
They are used to write the initial count value into the 
resDective timer. Also. thev can be used to read the 
latched count value of a timer. Since they are 8-qit 
registers, reading and writing of the 16-bit initial 
count must follow the count format specified in the 
Control Word Registers; i.e. least significant byte 

, only, most significant byte only, or least significant 
byte then most significant byte (see Programming). 

5.4.2 CONTROL WORD REGISTER I & " 

There are two Control Word Registers associated 
with the Timer section. One of the two registers 
(Control Word Register I) is used to control the oper­
ations of Counters 0, 1 and 2 and the other (Control 
Word Register II) is for Counter 3. The major func­
tions of both Control Word Registers are listed be­
low: 
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- Select the timer to be programmed. 

- Define which mode the selected timer is to oper-
ate in. 

- Define the count sequence; i.e. if the selected 
timer is to count as a Binary Counter or a Binary 
Coded Decimal (BCD) Counter. 

- Select the byte access sequence during timer 
read/write operations; i.e. least significant byte 
only, most significant only, or least significant 
byte first, then most significant byte. 

Also, the Control Word Registers can be pro­
grammed to perform a Counter latch Command or a 
Read Back Command which will be described later. 

5.5 Programming 

5.5.1 INITIALIZATION 

Upon power-up or reset, the state of all timers is 
undefined. The mode, count value, and output of all 
timers are random. From this point on, how each 
timer operates is determined solely by how it is pro­
grammed. Each timer must be programmed before it 
can be used. Since the outputs of some timers can 
generate interrupt signals to the 82370, all timers 
should be initialized to a known state. 

Counters are programmed by writing a Control Word 
into their respective Control Word Registers. Then, 
an Initial Count can be written into the correspond­
ing Count Register. In general, the programming pro­
cedure is very flexible. Only two conventions need to 
be remembered: 

1. For each timer, the Control Word must be written 
before the initial count is written. 

2. The 16-bit initial count must follow the count for­
mat specified in the Control Word (least significant 
byte only, most significant byte only, or least signifi­
cant byte first, followed by most significant byte). 

Since the two Control Word Registers and the four 
Counter Registers have separate addresses, and 
each timer can be individually selected by the appro­
priate Control Word Register, no special instruction 
sequence is required. Any programming sequence 
that follows the conventions above is acceptable. 

A new initial count may be written to a timer at any 
time without affecting the timer's programmed mode 
in any way. Count sequence will be affected as de­
scribed in the Modes of Operation section. Note that 
the new count must follow the programmed count 
format. 

If a timer is previously programmed to read/write 
two-byte counts, the following precaution applies. A 
program must not transfer control between writing 
the first and second byte to another routine which 
also writes into the same timer. Otherwise, the read/ 
write will result in incorrect count. 

Whenever a Control Word is written to a timer, all 
control logic for that timer(s) is immediately reset 
(i.e. no ClK pulse is required). Also, the correspond­
ing output in, TOUT #, goes to a known initial state. 

5.5.2 READ OPERATION 

Three methods are available' to read the current 
count as well as the status of each timer. They are: 
Read Counter Registers, Counter latch Command 
and Read Back Command. Below is a description of 
these methods. 

READ COUNTER REGISTERS 

The current count of a timer can be read by perform­
ing a read operation on the corresponding Counter 
Register. The only restriction of this read operation 
is that the ClKIN of the timers must be inhibited by 
using external logic. Otherwise, the count may be in 
the process of changing when it is read, giving an 
undefined result. Note that since all four timers are 
sharing the same ClKIN signal, inhibiting ClKIN to 
read a timer will unavoidably disable the other timers 
also. This may prove to be impractical. Therefore, it 
is suggested that either the Counter latch Com­
mand or the Read Back Command can be used to 
read the current count of a timer. 

Another alternative is to temporarily disable a timer 
before reading its Counter Register by using the 
GATE input. Depending on the mode of operation, 
GATE = lOW will disable the counting operation. 
However, this option is available on Timer 2 and 3 
only, since the GATE signals of the other two timers 
are internally enabled all the time. 

COUNTER LATCH COMMAND 

A Counter Latch Command will be executed When­
ever a special Control Word is written into a Control 
Word Register. Two bits written into the Control 
Word Register distinguish this command from a 'reg­
ular' Control Word (see Register Bit Definition). Also, 
two other bits in the Control Word will select which 
counter is to be latched. 

Upon execution of this command, the selected 
counter's Ol!tput latch (Ol) latches the count at the 
time the Counter latch Command is received. This 
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count is held in the latch until it is read by the 80376, 
or until the timer is reprogrammed. The count is then 
unlatched automatically and the- OL returns to "fol­
lowing" the Counting Element (CE). This allows 
reading the contents of the counters "on the fly" 
without affecting counting in progress. Multiple 
Counter Latch Commands may be used to latch 
more than one counter. Each latched count is held 
until it is read. Counter Latch Commands do not af­
fect the programmed mode of the timer in any way. 

If a countei is latched, and at soma time latar. it is 
latched again before the prior latched count is read, 
the second Counter Latch Command is ignored. The 
count read will then be the count at the time the first 
command was issued. , 

In any event, the latched count must be read ac­
cording to the programmed format. Specifically, if 
the timer is programmed for two-byte counts, two 
bytes must be read. However, the two bytes do not 
have to be read right after the other. Read/write or 
programming operations of other timers may be per­
formed between them. 

Another feature of this Counter Latch Command is 
that read and write operations of the same timer 
may be interleaved. For example, if the timer is pro­
grammed for two-byte counts, the following se­
quence is vali9. 

1. Read least significant bYte. 

2. Write new least significant byte. 

3. Read most Significant byte. 

4. Write new most significant byte. 

• , .... +;..""'..... ;... "P,...,·.,·.", ...... "·u··"'·.. +"" rOoOlri/ .. ,ri+o 'hAII'\_h\lto 
II Q 1.1111\;001 I~ t-""'~IWIIIIII""Y .. ..., """""~ • ............ __ ,._ 

counts, the following precaution applies. A program 
must not transfer controi between reading the first 
and second byte to another routine which also reads 
from that same timer. Otherwise, an incorrect count 
will be read. 

READ BACK COMMAND 

The Read Back Command is another special Com" 
mand Word operation which 'allows the user to read 
the current count value and/or the status of the se­
lected timer(s). Like the Counter Latch Command, 
two bits in the Command Word identify this as a 
Read Back Command (see Register Bit Definition). 

The Read Back Command may be used to latch 
multiple counter Output Latches (OL's) by selecting 
more than one timer within a Command Word. This 
single command is functionally equivalent to several 
Counter Latch Commands, one for each counter to 

be latched. Each counter's latched count will be 
held until it is read by the 80376 or until the timer is 
reprogrammed. The counter is automatically un­
latched when read, but other counters remain 
latched until they are read~ If multiple Read Back 
commands are issued to the same timer without 
reading the count, all but the first are ignored; i.e. the 
count read will correspond to the very first Read 
Back Command issued. 

As mentioned previously, the Read Back Command 
may also be used to latch status information of the 
selected timer(s). When this function is enabled, the 
status of a timer can be read from the Counter Reg­
ister after the Read Back Command is issued. The 
status information of a timer includes the following: 

1. Mode of timer: 

This allows the user to check the mode of opera­
tion of the timer last programmed. 

2. State of TOUT pin of the timer: 

This allows the user to monitor the counter's out­
put pin via software, possibly eliminating some 
hardware f~om a system. 

3. Null Count/Count available: 

The Null Count Bit in the status' byte indicates if 
the last count written to the Count Register (CR) 
has been loaded into the Counting Element (CE). 
The exact time this happens depends on the 
mode of the timer and is described in the Pro­
gramming section. Until the count is loaded into 
the Counting Element (CE), it cannot be read from 
the timer. If the count is latched or read before 

'this occurs, the count value will not reflect the 
new count just written . 

If multiple status latch operations of the, timer(s) are 
nArfnrmAri withnut rAl!riino the status. all but the first 
~o~-;~;~;d ~~~- ig~~~~d;-i:~~ the status 'read in will cor­
respond to the first Read Back Cpmmand issued. 

Both the current count and status of the selected 
timer(s) may be latched simultaneously by enabling 
both functions in a single Read Back Command. 
This is functionally the same as issuing two separate 
Read Back Commands at once. Once.again, if multi­
ple read commands are issued to latch both the 
count and status of a timer, all but the first command 
will be ignored. 

If both count and status of a timer are latched, the 
first read operation of that. timer will return the 
latched status, regardless of which was latched first. 
The next one or two (if two count bytes are to be 
read) read operations return the latched count. Note 
that subsequent read operations on the Counter 
Register will return the unlatched count (like the first 
read method discussed). 
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5.6 Register Bit Definitions 

COUNTER 0, 1, 2, 3 REGISTER (READ/WRITE) 

Port Address Description 

40H Counter 0 Register (read/write) 
41H Counter 1 Register (read/write) 
42H Counter 2 Register (read/write) 
44H Counter 3 Register (read/write) 
45H Reserved 
46H Reserved 

Control Word Register I 

07 06 05 

SELECT COUNTER: 
00 SELECT COUNTER 0 
01 SELECT COUNTER 1 
10 SELECT COUNTER 2 
11 READ BACK COMMAND 

FOR COUNTER 0-2 

04 

07 

READ/WRITE: 

03 

06 

02 

00 COUNTER LATCH COMMAND 
01 READ/WRITE LSB BYTE ONLY 
10 READ/WRITE MSB BYTE ONLY 

05 04 I 03 I 

01 DO 

0- 16-BIT BINARY 
COUNTER 

1 - BCD COUNTER 
(4 DECADES) 

11 READ/WRITE LSB, THEN MSB BYTE 

MODE: 
000 MODE 0 
001 MODE 1 
Xl0 MODE 2 
XII MODE 3 
100 MODE 4 
101 MODE 5 

290164-76 

82370 

02 

Note that these 8-bit registers are for writing and 
reading of one byte of the' 16-bit count value, either 
the most significant or the least significant byte. 

CONTROL WORD REGISTER I & II (WRITE­
ONLY) 

Port Address Description 

43H Control Word Register I 
(Counter 0, 1, 2 (write-only) 

47H Control Word Register II 
(Counter 3) (write-only) 

01 

0t!. LSB OF COUNT BYTE 

MSB OF COUNT BYTE 
290164-75 

Control Word Register II 

07 06 05 

SELECT COUNTER: 
00 SELECT COUNTER 3 
01 RESERVED 
10 RESERVED 
11 READ BACK COMMAND 

fOR COUNTER 3 

04 

READ/WRITE: 

03 02 

00 COUNTER LATCH COMMAND 
01 READ/WRITE LSB BYTE ONLY 
10 READ/WRITE MSB BYTE ONLY 

01 DO 

0- 16-BIT BINARY 
COUNTER 

1 - BCD COUNTER 
(4 DECADES) 

11 READ/WRITE LSB, THEN MSB BYTE 

MODE: 
000 MODE 0 
001 MODE 1 
Xl0 MODE 2 
XII MODE 3 
100 MODE 4 
101 MODE 5 

290164-77 
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COUNTER LATCH COMMAND FORMAT 

(Write to Control Word Register) 

'07 06 05 04 03 02 01 DO 

00 COUNTER 0 (OR 3) 
01 COUNTER 1 
10 COUNTER 2 
11 READ BACK COMMAND 

x x x 

READ BACK COMMAND FORMAT 

(Write to Control Word Register) 

07 

STATUS FORMAT 

06 05 04 ,03 02 01 

0- LATCH COUNT 
1 - DO NOT LATCH 

COUNT 

0- LATCH STATUS 
1 - DO NOT LATCH 

STATUS 

a - COUNTER NOT 
SELECTED 

1 - COUNTER IS 
SELECTED 

(Returned from Read Back Command) 

07 06 05 04 03 

a - COUNT AVAILABLE 
FOR READING 

1 - NULL COUNT 

4-926 

02 01 

290164-78 

00 

DO 

COUNTER 
MODE 

290164-79 
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6.0 WAIT STATE GENERATOR 

6.1 Functional Description 

The 82370 contains a programmable Wait State 
Generator which can generate a pre-programmed 
number of wait states during both CPU and DMA 
initiated bus cycles. This Wait State Generator is ca­
pable of generating 1 to 16 wait states in non-pipe­
lined mode, and 0 to 15 wait states in pipe lined 
mode. Depending on the bus cycle type and the two 
Wait State Control inputs (WSC 0-1), a pre-pro­
grammed number of wait states in the selected Wait 
State Register will be generated. 

The Wait State Generator can also be disabled to 
allow the use of devices capable of generating their 
own READY# signals. Figure 6-1 is a block diagram 
of the Wait State Generator. 

6.2 Interface Signals 

The following describes the interface signals which 
affect the operation of the Wait State Generator. 
The READY #, WSCO and WSC1 signals are inputs. 
READYO# is the ready output signal to the host 
processor. 

6_2.1 READY # 

READY # is an active LOW input signal which indi­
cates to the 82370 the completion of a bus cycle. In 
the Master mode (e.g. 82370 initiated DMA transfer), 
this signal is monitored to determine whether a pe­
ripheral or memory needs wait states inserted in the 
current bus cycle. In the Slave mode, it is used (to­
gether with the ADS# signal) to trace CPU bus cy­
cles to determine if the current cycle is pipe lined. 

, 6.2.2 READYO# 

READYO# (Ready Out#) is an active LOW output 
signal and is the output of the Wait State Generator. 
The number of wait states generated depends on 
the WSC(0-1) inputs. Note that special cases are 
handled for access to the 82370 internal registers 
and for the Refresh cycles. For 82370 internal regis­
ter access, READYO# will be delayed to take into 
the command recovery time of the register. One or 
more wait states will be generated in a pipe lined cy­
cle. During refresh, the number of wait states will be 
determined by the preprogrammed value in the Re­
fresh Wait State Register. 

In the simplest configuration, READYO# can be 
connected to the READY # input of the 82370 and 
the 80376 CPU. This is, however, not always the 

. case. If external circuitry is to control the READY # 
inputs as well, additional logic will be required (see 
Application Issues). 

6.2.3 WSC(O-1) 

These two Wait State Control inputs, together with 
the M/IO# input, select one of the three pre-pro­
grammed 8-bit Wait State Registers which deter­
mines the number of wait states to be generated. 
The most significant half of the three Wait State 
Registers corresponds to memory accesses, the 
least significant half to 1/0 accesses. The combina­
tion WSC(0-1) = 11 disables the Wait State Gener­
ator. 

INTERNAL WAIT STATE 
REQUIREMENT 

WSCO 
WSCI 

M/IO# 

07 04 03 DO 

REGISTER MEMORY 0 I/o 0 

SELECT 
MEMORY 1 I/O 1 LOGIC 

MEMORY 2 I/o 2 

(RESERVED) REFRESH ADS#. 
READY# 

PROGRAMMABLE WAIT STATE 
REGISTERS 

Figure 6-1. Wait State Generator Block Diagram 
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6.3 Bus Function 

6.3.1 WAIT STATES IN NON·PIPELINED CYCLE 

The timing diagram of two typical non-pipelined cy­
cles with 82370 generated wait states is shown in 
Figure 6-2., In this diagram, it is assumed that the 
internal registers of the 82370 are not addressed. 
During the first T2 state of ea~h bus cycle, the Wait 
State Control and the M/IO# inputs are sampled to 
determine which Wait State Regi!lter (if any) is se­
lected. If the WSC inputs are active (Le. not both are 
driven HIGH), the pre-programmed number of wait 
states corresponding to the selected Wait State 
Register will be requested. This is done by driving 
the READYO# output HIGH during the end of each 
T2 state. 

The WSC (0-1) inputs need only be valid during the 
very first T2 state of each non-pipe lined cycle. As a 
general rule, the WSC inputs are sampled on the 
rising edge of the next clock (82384 ClK) after the 
last state when ADS # (Address Status) is asserted. 

The number of wait states generated depends on 
the type of bus cycle, and the number of wait states 
requested. The various combinations are discussed 
below. 

1. Access the 82370 internal registers: 2 to 5 wait 
states, depending upon the specific register ad­
dressed. Some back-to-back sequences to the Inter­
rupt Controller will require 7 wait states. 

2. Interrupt Acknowledge to the 82370: 5 wait states. 

3. Refresh: As programmed in the Refresh Wait 
State Register (see Register Set Overview). Note 
that if WCS (0-1) = 11, READYO# will stay inac­
tive. 

4. Other bus cycles: Depending on WCS (0-1) and 
M/IO# inputs, these inputs select a Wait State Reg­
ister in which the number of wait states will be equal 
to the pre-programmed wait state count in the regis­
tei plus 1. The VJait State Register selection is' de­
fined as follows (Table 6-1). 

Table 6-1. Walt State Register Selection 

MIIO# WSC(O-1) Register Selected 

0 00 WAIT REG 0 (1/0 half) 
0 01 WAIT REG 1 (1/0 half) 
0 10 WAIT REG 2 (1/0 half) 
1 00 WAIT REG 0 (MEM half) 
1 01 WAIT REG 1 (MEM half) 
1 10 WAIT REG 2 (MEM half) 
X 11 Wait State Gen. Disabled 

The Wait State Control signals, WSC (0-1), can be 
generated with the address decode and the Readl 
Write control signals as shown in Figure 6-3. 

LT~LT~LT~l~h~h~h~~ 
CLK21 V ~ V j ,V ..."j V ~ V ..,j V ~ \..I ~ 
-~~--W" ~ W" \..J r+-J 

I 
I CLK 

A(l - 23) 
MiIO# 

BLE#,.BHE# 
WSC(O-l) 

ADS# 

READY# 

READYO# 

~ 

1\-....1 \ " 
\ I ~ 

, 
I \ II I \ 

ONE WAIT STATE TWO WAIT STATES 
290164-82 

Figure 6-2. Wait States in Non-Pipelined Cycles 
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Addre •• Decode --+~ . 
W/R# --+~ WSC(O-l) 

290164-83 

Figure 6-3. WSC (0-1) Generation 

Note that during HALT and SHUTDOWN, the num­
ber of wait states will depend on the WSC (0-1) 
inputs, which will select the memory half of one of 
the Wait State Registers (see CPU Reset and Shut­
down Detect). 

6.3.2 WAIT STATES IN PIPELINED CYCLES 

The timing diagram of two typical pipelined cycles 
with 82370 generated wait states is shown in Figure 
6-4. Again, in this diagram, it is assumed that the 
82370 internal registers are not addressed. As de­
fined in the timing of the 80376 processor, the Ad­
dress (A1-23), Byte Enable (BHE#, BLE#), and 
other control signals (MIIO#, ADS#) are asserted 
one T-state earlier than in a non-pipelined cycle; i.e. 
they are asserted at T2P. Similar to the non-pipe­
lined case, the Wait State Control (WSC) inputs are 
sampled in the middle of the state after the last state 
the ADS# signal is asserted. Therefore, the WSC 
inputs should be asserted during the T1 p state of 
each pipelined cycle (which is one T -state earlier 
than in the non-pipelined cycle). 

Tlp T2 T2p , 

ClK2 

ClK 

A(l - 23) 
1.1/10# 

BlE#,BHE# 
WSC(O-l) 

ADS# 

READY# 

READYO# 

ONE WAIT STATE 

The number of wait states generated in a pipelined 
cycle is selected in a similar manner as in the non­
pipelined case discussed in the previous section. 
The only difference here is that the actual number of 
wait states generated will be one less than that of 
the non-pipelined cycle. This is done automatically 
by the Wait State Generator. 

6.3.3 EXTENDING AND EARLY TERMINATING 
BUS CYCLE 

The 82370 allows external logic to either add wait 
states or cause early termination of a bus cycle by 
contrOlling the READY # input to the 82370 and the 
host processor. A possible configuration is shown in 
Figure 6-S. 

80376 

READY# 

EXTERNAL READY 1/ 
(EARLY TERMINATION) 

82370 

READYOI/ 

L-_______ ~ READYI/ 

290164-85 

Figure 6-5. External 'READY' Control Logic 

T1p T2 T2 T2p 

TWO WAIT STATES 
290164-84 

Figure 6-4. Wait States in Pipelined Cycles 
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The EXT. ROY # (External Ready) signal of Figure 6-
5 allows external devices to cause early termination 
of a bus cycle. When this signal is asserted LOW, 
the output of the circuit will also go LOW (even 
though the READYO # of the 82370 may still be 
HIGH). This output is fed'to the READY# input of 
the 80376 and the 82370 to indicate the completion 
of the current bus cycle. 

Similarly, the EXT. NOT READY (External Not 
Ready) signal is used to delay the READY # input of 
the processor and the 82370. As long as this signai 
is driven HIGH, the output of the circuit will drive the 
READY # input HIGH. This will effectively extend the 
duration .of a bus cycle. However, it is important to 

T1 T2 T1 

CLK2 

eLK 

note that if the two-level logic is not fast enough to 
satisfy the READY # setup time, the OR gate should 
be eliminated. Instead, the 82370 Wait State Gener­
ator can be disabled by driving both WSC (0-1) 
HIGH. In this case, the addressed memory or I/O 
device should activate the external READY # input· 
whenever it is ready to terminate the current bus 
cycle. 

Figures 6-6 and 6-7 show the timing relationships of 
the ready Signals for the early termination and exten­
sion of the bus cycies. Seciion 6-7, Application Is­
sues, contains a detailed timing analysis of the ex­
ternal circuit. 

T2 T2 T2 Tx 

A(l - 23) II----+---~ ..... --+---~--~ .... -..;....w_--_I_ 
1.1/10# 

BLE#, BHE# I'----+---....... 'I'---~---+----+---'I'----+ 

I 
I 

ADS# 

READYO# 

A(l - 23) 
M/IO# 

BLE#.BHE# 
ADS# 

READY# 

READYO# 

lWO WAIT STATES 
290164-86 

Figure 6-6. Early Termination of Bus Cycle By 'READY #' 

\.....J ~ ~ f\-J i'--J" -- - . 

\ 

\ I· 

I\, I 

290164-07 

Figure 6-7. Extending Bus Cycle by 'READY#' 
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Due to the following implications, it should be noted 
that early termination of bus cycles in which 82370 
internal registers are accessed is not recommended. 

1. Erroneous data may be read from or written into 
the addressed register. 

2. The 82370 must be allowed to recover either be­
fore HLDA (Hold Acknowledge) is asserted or before 
another bus cycle into an 82370 internal register is 
initiated. 

The recovery time, in clock periods, equals the re­
maining wait states that were avoided plus 4. 

6.4 Register Set Overview 

Altogether, there are four 8-bit internal registers as­
sociated with the Wait State Genertor. The port ad­
dress map of these registers is shown below in Ta­
ble 6-2. A detailed description of each follows. 

Table 6-2. Register Address Map 

Port Address Description 

72H Wait State Reg 0 (read/write) 
73H Wait State Reg 1 (read/write) 
74H WaitState Reg 2 (read/write) 
75H Ref. Wait State Reg (read/write) 

WAIT STATE REGISTER 0,1,2 

These three 8-bit read/write registers are functional­
ly identical. They are used to store the pre-pro­
grammed wait state count. One half of each register 
contains the wait state count for I/O accesses while 
the other half contains the count for memory ac­
cesses. The total number of wait states generated 

. will depend on the type of bus cycle. For a non-pipe­
lined cycle, the actual number of wait states request­
ed is equal to the wait state count plus 1. For a 
pipelined cycle, the number of wait states will be 
equal to the wait state count in the selected register. 
Therefore, the Wait State Generator is capable of 
generating 1 to 16 wait states in non-pipelined 
mode, and 0 to 15 wait states in pipelined mode. 

Note that the minimum wait state count in each reg­
ister is O. This is equivalent to 0 wait states for a 
pipelined cycle and 1 wait state for a non-pipelined 
cycle. 

REFRESH WAIT STATE REGISTER 

Similar to the Wait State Registers discussed above, 
this 4-bit register is used to store the number of wait 

• states to be generated during a DRAM refresh cycle. 

Note that the Refresh Wait State Register is not se­
lected by the WSC inputs. It will automatically be 
chosen whenever a DRAM refresh cycle occurs. If 
the Wait State Generator is disabled during the re­
fresh cycle (WSC (0-1) = 11), READYO# will stay 
inactive and the Refresh Wait State Register is ig­
nored. 

6.5 Programming 

Using the Wait State Generator is relatively straight­
forward. No special programming sequence is re­
quired. In order to ensure the expected number of 
wait states will be generated when a register is se­
lected, the registers to be used must be pro­
grammed after power-up by writing the appropriate 
wait state count into each register. Note that upon 
hardware reset, all Wait State Registers are initial­
ized with the value FFH, giving the maximum num­
ber of wait states possible. Also, each register can 
be read to check the wait state count previously 
stored in the register. 

6.6 Register Bit Definition 

WAIT STATE REGISTER 0,1,2 

Port Address Description 

72H Wait State Register 0 (read/write) 
73H Wait State Register 1 (read/write) 
74H Wait State Register 2 (read/write) 

l~lool~l~lrol~l~Jool 

I I I I I/o WAIT 
STATE COUNT 

L.....---.....l.-'MEMORY WAIT STATE COUNT 

290164-88 

REFRESH WAIT STATE REGISTER 

Port Address: 75H (Read/Write) 

L...-___ ......L--. REFRESH WAIT 
STATE COUNT 

290164-89 
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6.7 Application Issues 

6.7.1 EXTERNAL 'READY' CONTROL LOGIC 

'As mentioned in sectio~ 6.3.3, wait state cycles gen­
erated by the 82370 can be terminated early or ex­
tended longer by means of additional external logic, 
(see Figure 6-5). In order to ensure that the 
READY # input timing requirement of the 80376 and 
the 82370 is satisfied, special care must be taken 
when designing this external control logic. This sec­
tion addresses the design requirements. 

A simplified block diagram of the external logic along 
with the READY # timing diagram is shown in Figure 
6-8. The purpose is to determine the maximum delay 

time allowed in the external control logic in order to 
satisfy the READY # setup time. 

First, it will be assumed that the 80376 is running at 
16 MHz (i.e. CLK2 is 32 MHz). Therefore, one bus 
state (two CLK2 periods) will be equivalent to 
62.5 ns. According to the AC specifications of the 
82370, the maximum delay time for valid READYO# 
signal is 31 ns after the rising edge of CLK2 in the 
beginning of T2 (for non-pipelined cycle) or T2P (for 
pipelined cycle). Also, the minimum READY # setup 
time of the 80376 and the 82370 should be 19 ns 
before the rising edge of CLK2 at the beginning of 
the next bus state. This limits the total delay time for 
the external READY# control logic to be 12.5 ns 
(62.5-31-19) in order to meet the READY # setup 
timing requirement. ' 

EXT. READY# EXT. NOT READY 

80376-16 
82370 

READY 
READY# 

l 
CONTROL READYO# 

LOGIC 

READY# 
, 

A 
PHil 1; PHI2 

~ "-CLK2 

B 'I' 0-

READYO# 1 X 
I !--c-

AXXXXXXAAARAAAAAAAAA I 

290164-90 

A = PHI1 + PH12 = 62.5 ns 
B = Maximum READYO# Valid Delay = 35 ns 
C = READY # Setup Time = 20 ns , 
D = Maximum Ready Control Logic Delay = A - B - C = 7.5 ns 

Figure 6·8; 'READY' Timing Consideration 
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7.0 DRAM REFRESH CONTROLLER 

7.1 Functional Description 

The 82370 DRAM Refresh Controller consists of a 
24-bit Refresh Address Counter and Refresh Re­
quest logic for DRAM refresh operations (see Figure 
7-1). TIMER 1 can be used as a trigger signal to the 
DRAM Refresh Request logic. The Refresh Bus Size 
can be programmed to be 8- or 16-bit wide. Depend­
ing on the Refresh Bus Size, the Refresh Address 
Counter will be incremented with the appropriate val­
ue after every refresh cycle. The internal logic of the 
82370 will give the Refresh operation the highest 
priority in the bus control arbitration process. Bus 
control is not released and re-requested if the 82370 
is already a bus master. 

7.2 Interface Signals 

7.2.1 TOUT1/REF# 

The dual function output pin of TIMER 1 
(TOUT1/REF#) can be programmed to generate 
DRAM Refresh signal. If this feature is enabled, the 
rising edge of TIMER 1 output (TOUT1 #) will trigger 
the DRAM Refresh Request logic. After some delay 
for gaining access of the bus, the 82370 DRAM Con­
troller will generate a DRAM Refresh signal by driv­
ing REF # output lOW. This signal is cleared after 
the refresh cycle has taken place, or by a hardware 
reset. 

TO 
(lNTE 

un 
RNAL) DRAM 

REFRESH 
CONTROLLER 

If the DRAM Refresh feature is disabled, the 
TOUT1 IREF # output pin is simply the TIMER 1 out­
put. Detailed information of how TIMER 1 operates 
is discussed in section 6-Programmable Interval 
Timer, and will not be repeated here. 

7.3 Bus Function 

7.3.1 ARBITRATION 

In order to ensure data integrity of the DRAMs, the 
82370 gives the DRAM Refresh signal the highest 
priority in the arbitration logic. It allows DRAM Re­
fresh to interrupt DMA in progress in order to per­
form the DRAM Refresh cycle. The DMA service will 
be resumed after the refresh is done. 

In case of a DRAM Refresh during a DMA process, 
the cascaded device will be requested to get off the 
bus. This is done by de-asserting the EDACK signal. 
Once DREQn goes inactive, the 82370 will perform 
the refresh operation. Note that the DMA controller 
does not completely relinquish the system bus dur­
ing refresh. The Refresh Generator simply "steals" 
a bus cycle between DMA accesses. 

Figure 7-2 shows the timing diagram of a Refresh 
Cycle. Upon expiration of TIMER 1, the 82370 will try 
to take control of the system bus by asserting 
HOLD. As soon as the 82370 see HlDA go active, 
the DRAM Refresh Cycle will be carried out by acti­
vating the REF# signal as well as the address and 
control signals on the system bus (Note that REF # 
will not be active until two ClK periods HlDA is as­
serted). The address bus will contain the 24-bit ad-

INTERNAL 
DMA 

HAND~AKE 
DMA 

CONTROLLER 
HEDGE J-DETECTOR 

I 24-BIT ~ 
ARBITRATION 

'ADDRESS 
LOGIC 

COUNTER 

I TO DMA 

I 
CONTROLLER 

24- BIT (INTERNAL) 
REFRESH 

REF# 
2-TO-l ADDRESS 
1 MUX 

TOUT1 
o select TOUT1/REF# 

f 
REFRESH ENABLE (INTERNAL) 

290164-91 

Figure 7·1. DRAM Refresh Controller 

4-933 



inter 82370 

dress currently in the Refresh Address Counter. The 
control signals are driven the same way as in a 
Memory Read cycle. This "read" operation is com­
plete when the READY # signal is driven LOW. 
Then, the 82370 will relinquish the bus by de-assert­
ing HOLD. Typically, a Refresh Cycle without wait 
states will take five bus states to execute. If "n" wait 
states are added, the Refresh Cycle will last for five 
plus "n" bus states. . 

How often the Refresh Generator will initiate a re­
fresh cyc!e depends on the freolJencV of r:1 KIN ::l!:: 

will as TIMER 1 's programmed 'mod~ of op~ratio~-. 
For.this specific application, TIMER 1 should be pro­
grammed to operate in Mode 2 to generate a con­
stant clock rate. See section 6-Programmable In­
terv~1 Timer for more information on programming 
the timer. One DRAM Refresh Cycle will be generat­
ed each time TIMER 1 expires (when TOUT1 chang­
es from LOW to HIGH). 

The Wait State Generator can be used to insert wait 
states during a refresh cycle. The 82370 will auto­
matically insert the desired number of wait states as 
programmed in the Refresh Wait State Register (see 
Wait State Generator) .. 

Tx Tx TI 

ClK2 

ClK 

HOLD +---....i( 

f-I 
.- \\\\\' 

REF'# 

READY# 
I I 

ADS# x 
I 

7.4 Modes of Operation 

7.4.1 WORD SIZE AND REFRESH ADDRESS 
COUNTER 

The 82370 supports 8- and 16-bit refresh cycle. The 
bus width during a refresh cycle is programmable 
(see Programming).· The bus size can be pro­
~rammed ~ia the Refresh Control Register (see Reg­
Ister Overview). If the DRAM bus size is 8- or 16-bits 
the Refresh Address Counter will be incremented by 
1 or 2, respectively. 

The Refresh Address Counter is cleared by a hard­
ware reset. 

7.5 Register Set Overview 

The Refresh Generator has two internal registers to 
control its operation. They are the Refresh Control 
Register and the Refresh Wait State Register. Their 
port address map is shown in Table 7-1 below. 

n T1 T2 Ti 

1 
.\\ 

J.m'X'X 
I 
I I 
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Figure 7-2. 82370 Refresh Cycie 
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Table 7-1. Register Address Map 

Port Address Description 

1CH Refresh Control Reg. (read/write) 
75H Ref. Wait State Reg. (read/write) 

The Refresh Wait State Register is not part of the 
Refresh Generator. It is only used to program the 
number of wait states to be inserted during a refresh 
cycle. This register is discussed in detailed in section 
7 (Wait State Generator) and will not be repeated 
here. 

REFRESH CONTROL REGISTER 

This 2-bit register serves two functions. First, it is 
used to enable/disable the DRAM Refresh function 
output. If disabled, the output of TIMER 1 is simply 
used as a general purpose timer. The second func­
tion of this register is to program the DRAM bus size 
for the refresh operation. The programmed bus size 
also determines how the Refresh Address Counter 
will be incremented after each refresh operation. 

7.6 Programming 

Upon hardware reset, the DRAM Refresh function is 
disabled (the Refresh Control Register is cleared). 
The following programming steps are needed before 
the Refresh Generator can be used. Since the rate 
of refresh cycles depends on how TIMER 1 is pro· 
grammed, this timer must be initialized with the de­
sired mode of operation .as well as the correct 
refresh interval (see Programming Interval Timer). 
Whether or not wait states are to be generated dur­
ing a refresh cycle, the Refresh Wait State Register 
must also be programmed with the appropriate val­
ue. Then, the DRAM Refresh feature must be en­
abled and the DRAM bus width should be defined. 
These can be done in one step by writing the appro-

priate control word into the Refresh Control Register 
(see Register Bit Definition). After these steps are 
done, the refresh operation will automatically be in­
voked by the Refresh Generator upon expiration of 
Timer 1. 

In addition to the above programming steps, it 
should be noted that after reset, although the 
TOUT1/REF# becomes the Time 1 output, the 
state of this pin in undefined. This is because the 
Timer module has not been initialized yet. Therefore, 
if this output is used as a DRAM Refresh signal, this 
pin should be disqualified by external logic until the 
Refresh function is enabled. One simple solution is 
to logically AND this output with HLDA, since HLDA 
should not be active after reset. 

7.7 Register Bit Definition 

REFRESH CONTROL REGISTER 

Port Address: 1CH (Read/Write) 

8.0 RELOCATION REGISTER AND 
ADDRESS DECODE 

8.1 Relocation Register 

All the integrated peripheral devices in the 82370 
are controlled by a set of internal registers. These 
registers span a total of 256 consecutive address 
locations (although not all the 256 locations are 
used). The 82370 provides a Relocation Register 
which allows the user to map this set of internal reg­
isters into either the memory or I/O address space. 
The function of the Relocation Register is to define 
the base address of the internal register set of the 
82370 as well as if the registers are to be memory­
or I/O-mapped. The format of the Relocation Regis-
ter is depicted in Figure 9-1. . 

MUST BE ZERO 

00 REf'. DISABLED 
01 INTEL RESERVED 
lOBUS SIZE = 1 6 
11 BUS SIZE =B 

290164-93 
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07 '06 05 04 03 02 01 DO 

FOR I/O MAPPED:AI5-A9 
FOR MEMORY MAPPED: A23-A 16 

o -I/O MAPPED 
I-MEMORY 

MAPPED 
290164-94 

Port Address: 7FH (Read/Write) 

Figure 8-1. Relocation Register 

Note that the Relocation Register is part of the inter­
nal register set of the 82370. It has a port address of 
7FH. Therefore, any time the content of the Reloca­
tion Register is changed, the physical location of this 
register will also be moved. Upon reset of the 82370, 
the content of the Relocation Register will be 
cleared. This implies that the 82370 will respond to 
its I/O addresses in the range of OOOOH to OOFFH. 

8.1.1 I/O-MAPPED 82370 

As shown in the figure, Bit 0 of the Relocation Regis­
ter determines whether the 82370 registers are to be 
memory-mapped or 1/0 mapped. When Bit 0 is set 
to '0', the 82370 will respond to I/O Addresses. Ad­
dress signals BHE#, BLE#, A1-A7 will be used to 
select one of the internal registers to be accessed. 
Bit 1 to Bit 7 of the Relocation Register will corre­
spond tq A9 to A 15 of the Address bus, respectively. 
Together with A8 implied to be '0', A15 to A8 will be 
fully decoded by the 82370. The following shows 
how the 82370 is mapped into the 1/0 address 
space. 

Example 

Relocation Register = 11001110 (OCEH) 

82370 will respond to I/O address range from 
OCEOOH to OCEFFH. 

Therefore, this I/O mapping mechanism allows the 
82370 internal registers to be located on any even, 
contiguous, 256 byte boundary of the system I/O 
space. 

8.1.2 MEMORY-MAPPED 82370 

When Bit 0 of the Relocation Register is set to '1', 
the 82370 will respond to memory addresses. Again, 

Address signals BHE#, BLE#, A1-A7 will be used 
to select one of the internal registers to be ac­
cessed. Bit 1 to Bit 7 of the Relocation Register will 
correspond to A17-A23, respectively. A16 is as­
sumed to be '0', and A8-A 15 are ignored. Consider 
the following example. 

Example 

Relocation Register = 10100111 (OA7H) 

The 82370 will respond to memory addresses in 
the range of A6XXOOH to A60XXFFH (where 'X' is 
don't care). 

This scheme implies that the internal registers can 
be located in any even, contiguous, 2"16 byte page 
of the memory space. 

8.2 Address Decoding 

As mentioned pieviously, the 82370 internal regis­
ters do not occupy the entire contiguous 256 ad­
dress iocations. Some of the iocations are 'unoccu­
pied'. The 82370 always decodes the lower 8 ad­
dress signals (BHE#, BLE#, A1-A7) to determine if 
anyone of its registers is being accessed. If the ad­
dress does not correspond to any of its registers, the 
82370 will not respond. This allows external devices 
to be located within the 'holes' in the 82370 address 
space. Note that there are several unused address­
es reserved for future Intel peripheral devices. 

8.3 Chip-Select (CHPSEL #) 

The Chip-Select Signal (CHPSEL #) will go active 
when the 82370 is addressed in a Slave bus 
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CLK2 

ADS# 

82370 
NOT ACCESSED 

11 T2 

CHPSEL# -!-__ -¥'IQQj~ 

READY# 

11 

82370 
ACCESSED- 2 WAIT STATES 

T2 T2 T2 

290164-95 

Figure 8-2. CHPSEL# Timing 

cycle (either read or write), or in an interrupt ac­
knowledge cycle in which the 82370 will drive the 
Data Bus. For a given bus cycle, CHPSEL# be­
comes active and valid in the first T2 (in a non-pipe­
lined cycle) or in T1 P (in a pipe lined cycle). It will 
stay valid until the cycle is terminated by READY # 
driven active. As CHPSEL# becomes valid well be­
fore the 82370 drives the Data Bus, it can be used to 
control the transceivers that connect the local CPU 
bus to the system bus. The timing diagram of 
CHPSEL# is slJown in Figure 8-2. 

9.0 CPU RESET AND SHUTDOWN 
DETECT . 

The 82370 will activate the CPURST signal to reset 
the host processor when one of the following condi­
tions occurs: 

- 82370 RESET is active; 

- 82370 detects a 80376 Shutdown cycle (this fea-
ture can be disabled); 

- CPURST software command is issued to 80376. 

Whenever the CPURST signal is activated, the 
82370 will reset its own internal Slave-Bus state ma­
chine. 

9.1 Hardware Reset 

Following a hardware reset, the 82370 will assert its 
CPURST output to reset the host processor. This 
output will stay active for as long as the RESET input 
is active. During a hardware reset, the 82370 internal 
registers will be initialized as defined in the corre­
sponding functional descriptions. 

9.2 Software Reset 

CPURST can be generated by writing the following 
bit pattern into 82370 register location 64H. 

D7 . DO 
1111XXXO 

The Write operation into this port is considered as 
an 82370 access and the internal Wait State Gener­
ator will automatically determine the required num­
ber of wait states. The CPURST will be active follow. 
ing the completion of the Write cycle to this port. 
This signal will last for 62 CLK2 periods. The 82370 
should not be accessed until the CPURST is deacti-
vated. . 

This internal port is Write-Only and the 82370 will 
not respond to a Read operation to this location. 
Also, during a software reset cOl)1mand, the 82370 
will reset its Slave-Bus state machine. However, its 
internal registers remain unchanged. This allows the 
operating system to distinguish a 'warm' reset by 
reading any 82370 internal register previously pro­
grammed for a non-default value. The Diagnostic 
registers can be used for this purpose (see Internal 
Control and Diagnostic Ports). 

9.3 Shutdown Detect 

The 82370 is constantly monitoring the Bus Cycle 
Definition signals (M/IO#, D/C#, W/R#) and is 
able to detect when the 80376 is in a Shutdown bus 
cycle. Upon detection of a processor shutdown, the 
82370 will activate the CPURST output for 62 CLK2 
periods to reset the host processor. This signal is 
generated after the Shutdown cycle is terminated by 
the READY # signal. 
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Although the 82370 Wait State ,Generator will not 
automatically respond to a Shutdown (or Halt) cycle, 
the Wait State Control inputs (WSCO, WSC1) can be 
used to determine the number of wait states in the 
same manner as other non-82370 bus cycles. 

This Shutdown Detect feature can be enabled or dis­
abled by writing a control bit in the Internal Control 
Port at address 61 H (see Internal Control and Diag­
nostic Ports). This feature is disabled upon a hard­
ware reset of the 82370. As in the case of Software 
Reset, the 82370 will reset its Slave-Bus state ma­
chine but will not change any of its internal register 
contents. 

10.0 INTERNAL CONTROL AND 
DIAGNOSTIC PORTS 

10.1 Internal Control Port 

The format of the Internal Control Port of the 82370 
is shown in Figure 10-1. This Control Port is used to 
enable/disable the Processor Shutdown Detect 
mechanism as well as controlling the Gate inputs of 
the Timer 2 and 3. Note that this is a Write-Only port. 
Therefore, the 82370 will not respond to a read op­
eration to this port. Upon hardware reset, this port 
will be cleared; i.e., the Shutdown Detect feature 
and the Gate inputs of Timer 2 and 3 are disabled. 

Port Address: 61 H (Write only) 

10.2 Diagnostic Ports 

Two 8-bit read/write Diagnostic Ports are provided 
in the 82370. These are two storage registers and 
have no, effect on the operation of the 82370. They 
can be used to store checkpoint data or error codes 
in the power-on sequence and in the diagnostic 
service routines. As mentioned in the CPU RESET 
AND St-jUTDOWN DETECT section, these Diagnos-, 
tic ports can be used to distinguish between 'cold' 
and 'warm' reset. Upon hardware reset, both Diag­
nostic Ports are clel'lred, The address map of these 
Diagnostic Ports is shown in Figure 10-2-. 

Port Address 

Diagnostic Port, 1 (Read/Write) 80H 
Diagnostic Port 2 (Read/Write) 88H 

Figure 10-2. Address Map of Diagnostic Ports 

11.0 INTEL RESERVED 1/0 PORTS 

There are nineteen 110 ports in the 82370 address 
space which are reserved for Intel future peripheral 
device use only. Their address locations are: 10H, 
12H, 14H, 16H, 2AH, 3DH, 3EH, 45H, 46H, 76H, 
77H, 7DH, 7EH, CCH, CDH, DOH, D2H, D4H, and 
D6H. These addresses should not be used in the 
system since the 82370 will respond to read/write 
operations to these locations and bus contention 
may occur if any peripheral is assigned to the same 
address location. 

I 
07 06 05 04 03 02 01 DO 

I 

I :iHuluOWN 
ENABLE/ 
DiSABLE 

I 
SHUTDOWN 

DETECT 
0- DISABLE 
1- ENABLE 

i _ i I (;UUNIt.K ~ I 
GATE 

I II'U"'UI I 

I 
COUNTER 3 

GATE 
0- DISABLE 
1- ENABLE 

I I I I 
I I I I 

I 
NOT USED 

Figure 10-1. Internal Control Port 
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, __ .... _ _ i I (;VUNIt.K;;: I 
GATE 

I II'U'''UI I 

I 
COUNTER 2 

GATE 
0- DISABLE 
1- ENABLE 

I 
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12.0 PACKAGE THERMAL 
SPECIFICATIONS 

calculated from the 0jc and 0ja from the following 
equations: 

TJ = Tc + P*lIjc 

TA = Tj - P*lIja 

TC = Ta + P*(lIia - lIid 

The intel 82370 Integrated System Peripheral is 
specified for operation when case temperature is 
within the range of O·C to 78·C for the ceramic 
132-pin PGA package, and 68·C for the 1 ~O-pin 
plastic package. The case temperature may be mea­
sured in any environment, to determine whether the 
82370 is within specified operating range. The case 
temperature should be measured at the center of 
the top surface opposite the pins. 

The ambient temperature is guaranteed as long as 
T c is not violated. The ambient temperature can be 

Values for 0ja and 8jc are given in Table 12.1 for the 
1 ~O-lead fine pitch. 0ja is given at various airflows. 
Table 12.2 shows the maximum T a allowable (with­
out exceeding T cl at various airflows. Note that T a 
can be improved further by attaching "fins" or a 
"heat sink" to the package. P is calculated using the 
maximum hot Icc. 

Table 12.1 82370 Package Thermal Characteristics 
Thermal Resistances ("C/Watt) Ole and 0la 

I I I 3 I 3 I 
Package Ole 

0la Versus Airflow-ft3/mln (m3/sec) 

0 200 400 600 800 1000 
(0) (1.01) (2.03) (3.04) (4.06) (5.07) 

1 DOL Fine Pitch 7 33 27 24 21 18 17 

132L PGA 2 21 17 14 12 11 10 

Table 12.282370 Maximum Allowable Ambient 
Temperature at Various Airflows 

I I 131 3 I 
Package 

T a(c) Versus Airflow-ft3/min (m3/sec) 
Ole o 200 400 600 800 1000 

(0) (1.01) (2.03). (3.04) (4.06) (5.07) 

1 DOL Fine Pitch 7 63 74 79 85 91 92 

132LPGA 2 74 83 88 93 97 99 

100l PQFP Pkg: 132l PGA Pkg: 
Te = T. + P·(8j. - 8jcl 
Te = 63 + 1.21(33 - 7) 

Te = T. + P'(8Ja - 6je) 
Te = 74 +1.2121 - 2) 

Te = 63 + 1.21(26) , Te = 74 + 1.21(19) 
Te = 63 + 31.46 Te = 74 + 22.99 
Te =94'C Te = 96'C 
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13.0 ELECTRICAL ,SPECIFICATIONS 

82370 ,D.C. Specifications Functional Operating Range: 
Vcc = 5.0V ±10%; TCASE = O°C to 96°C for 132-pin PGA, O°C to 94°C for 100-pin plastic, 

Symbol . Parameter Description Min l\IIax Units Notes 

VIL Input Low Voltage, -0.3 . 0.8 V (Note 1) 

VIH Input High Voltage 2.0 VCC + 0.3, V 

V,Le CLK2 Input Low Voltage -0.3 0.8 V (Note 1) 

VIHC CLK2 Input High Voltage VCC - 0.8 VCC + 0.3 V 

VOL Output Low VoJtage 
IOL = 4 rnA: 0.45 V 

A1-23; 00-15, BHE#, BLE# . 
IOL = 5 rnA: 0.45 V 

All Others 

VOH Output High Voltage 

IOH = -1 rnA A23-A1, 015-00, BHE#, BLE# 2.4 V (Note 5) 

IOH = -0.2mA A23-A1, 015-00, BHE#, BLE# VCC - 0.5 V (Note 5) 

IOH = -0.9 rnA All Others 2.4 V (Note 5) 

IOH = '-0.18 rnA All Others VCC - 0.5 V (Note 5) 

III Input Leakage Current ±15· ""A 
All Inputs Except: 

IRQ11#-IRQ23# 
EOP#, TOUT2/IRQ3# 
OREQ4/IRQ9# 

iLl1 Input Leakage Curient 10 -300 ""A 0< VIN < Vee 
Inputs: (Note 3) 

IRQ11#-IRQ23# 
EOP#, TOIJT2!!RQ3 
OREQ4/1RQ9 

ILO Output Leakage Current ±15 ""A 0< VIN < Vee 

ICC· Supply Current (CLK2 = 32 MHz) 220 rnA (Note 4) 

CI Input Capacitance 12 pF (Note 2) 

CCLK CLK2 Input Capacitance 20 pF ' (Note 2) 

NOTES: 
1. Minimum value is not 100% tested. 
2. fc = 1 MHz; sampled only. 
3. These pins have weak internal pullups. They sould not be left floating. 
4. Icc is specified with inputs driven to CMOS levels. and outputs drivin9 CMOS loads. Icc may be higher if inputs are driven 
to TIL levels, or if outputs are driving TIL loads. 
5. Tested at the minimum operating frequency of the part. 
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CLK2 [ ___ 2V
J 

..... 8--

MIN MAX 
3.0V --~~-"'\t:\'\\:\'\\tr-=;;t--

VALID VALID 
_~O~U~TP~U~T~n~1.~5~V~~~~1~.5:V~O~U~T~PU~T~n~+~1 

OV 

3.0V "n"C~---+--_m~ 

LEGEND: 
A-Maximum output delay specification 
B-Minimum output delay specification 
C-Minimum input setup specification 
D-Minimum input hold specification 

290164-97 

Figure 13-1. Drive Levels and Measurement Points for A.C. Specification 

82370 A.C. Specifications These A.C. timings are tested at 1.5V thresholds, except as noted. 
Functional Operating Range: Vee = 5.0V ±10%; TeASE = O·Cto 96·Cfor 132·pin PGA,O·C to 94·C for 
1 OO·pin plastic 

Symbol Parameter Description Min Max Units Notes 

Operating Frequency 1/(t1 a x 2) 4 1.6 MHz 

t1 CLK2 Period 31 125 ns 

t2a CLK2 High Time 9 ns At2.0V 
t2b CLK2 High Time 5 ns At Vee - O.SV 
t3a CLK2 Low Time 9 ns At2.0V 
t3b CLK2 Low Time 7 ns AtO.SV 
t4 CLK2 Fall Time 7 ns Vee - O.SV to O.SV 
t5 CLK2 Rise Time 7 ns O.SV to Vee - O.SV 

t6 A1-A23, BHE#, BLE# 4 36 ns CL = 120pF 
EDACKO-EDACK2 Valid Delay 

t7 A1-A23, BHE#, BLE# 4 40 ns (Note 1) 
EDACKO-EDACK3 Float Delay 

tS A1-A23, BHE#, BLE# Setup Time 6 ns 
t9 A1-A23, BHE#, BLE# Hold Time 4 ns 

t10 W/R#, M/IO#, D/C# Valid Delay 4 33 ns CL = 75pF 
t11 WiR#, M/IO#, D/C# Float Delay 4 35 ns (Note 1) 
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82370 A.C. Specifications These A.C. timings are tested at 1.5V thresholds, except as noted. 
Functional Operating Range: Vee = 5.0V ± 10%; TeASE = O·C to 96·C for 132-pin PGA, O·C to 94·C for 
100-pin plastic (Continued) 

Symbol Parameter Description. Min Max Units Notes 

112 W/R#, MIIO#, O/C# Setup Time 6 ns 
113 

, 
W/R#, MIIO#, O/C# Hold Time 4 ns I 

t14 AOS# Valid Delay 6 33 ns CL = 50pF 
t15 AOS# Float Delay 4 35 ns (Note 1) 

116 
A r""\t"'Io..JL l""_ ..... _ T: __ ". ns /"\UO'ft' ..;JtI\utJ IIIII~ " 

117 AOS# Hold Time 4 ns 

t18 Slave Mode 00-015 Read Valid 3 46 ns CL = 120pF 
t19 Slave Mode 00-015 Read Float 6 35 ns (Note 1) 

120 Slave Mode 00-015 Write Setup 31 ns 
t21 Slave Mode 00-015 Write Hold 26 ns 

t22 Master Mode 00-015 Write Valid 4 40 ns CL = 120pF 
123 Master Mode 00-015 Write Float 4 35 ns (Note 1) 

124 Master Mode 00-015 Read Setup 8 ns 
125 Master Mode 00-015 Read Hold 6 ns 

t26 READY # Setup Time 19 ns , 
t27 READY # Hold Time 4 ns 

128 WSCO-WSC1 Setup Time 6 ns 
129 WSCO-WSC1 Hold Time 21 ns 

t30 RESET Setup Time 13 ns 
131 RESET Hold Time 4 ns 

t32 REAOYO# Valid Delay 4 31 ns CL=25pF 

t33 CPURST Valid Delay (Falling Edge Only) 2 18 ns CL = 50pF 

t34 HOLD Valid Delay 5 33 ns CL = 100pF . .,,, UI nA ~ ........ _ T: __ " . ... '" 
t36 HLOA Hold Time 6 ns 

---- .- -

t37a EOP# Setup (Synchronous) 21 ns 
t38a EOP# Hold (Synchronous) 6 ns 

137b EOP # Setup (Asynchronous) 11 ns 
t38b EOP# Hold (Asynchronous) 11 ns 

t39 EOP# Valid Delay (Falling Edge Only) 5 38 ns CL = 100pF 
t40 EOP# Float Delay 5 40 ns (Note 1) 

t41a OREQ Setup (Synchronous) 21 ns 
t42a OREQ Hold (Synchronous) 4 ns 

t41b OREQ Setup (Asynchronous) 11 ns 
t42b OREQ Hold (Asynchronous) 11 ns 

t43 INT Valid Delay from IRQn 500 ns 

t44 NA # Setup Time 5 ns 
t45 NA # Hold Time 15 ns 
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82370 A.C. Specifications These A.C. timings are tested at 1.5V thresholds, except as noted. 
Functional Operating Range: Vee = 5.0V ±10%; TeAsE = O·C to 96·C for 132-pin PGA, O·C to 94·C for 
100-pin plastic (Continued) 

Symbol Parameter Description Min Max Units Notes 

t46 ClKIN Frequency DC 10 MHz 
t47 ClKIN High Time 30 ns 2.0V 
t48 ClKIN low Time 50 ns 0.8V 
t49 ClKIN Rise Time 10 ns 0.8Vt03.7V 
t50 ClKIN Fall Time 10 ns 3.7VtoO.8V 

TOUT1 # IREF # Valid Delay 
t51 from ClK2 (Refresh) 4 36 ns CL = 120pF 
t52 from ClKIN (Timer) 3 93 ns CL = 120 pF 

t53 TOUT2 # Valid Delay 3 93 ns CL = 120pf 
(from ClKIN, Falling Edge Only) 

t54 TOUT2 # Float Delay 3 36 ns (Note 1) 

t55 TOUT3# Valid Delay 3 93 ns CL = 120 pF 
(from ClKIN) 

't56 CHPSEl# Valid Delay 1 35 ns CL = 25pF 

NOTE: 
1. Float condition occurs when the maximum output current becomes less than ILO in magnitude. Float delay is not tested. 
For testing purposes, the float condition occurs when the dynamic output driven voltage changes with current loads. 

82370 
OUTPUT~ 

~CL 

CL indicates all parasitic capacitances. 
290164-98 

Figure 13-2. A.C. Test Load 

290164-99 

Figure 13-3 

4-943 



intJ 82370 

INPUT SET - UP AND HOLD TIMING ~CONT.~ 

Tx 
PHI1 PHI2 PHI1 PHI2 PHI1 PHI2 

CLK2 

NA# 

WSC(O-I) 

PHil PHI2 PHil PHI2 PHil PHI2 

CLK2 

A(I-A23). BHE#. BlE# --------t=~t=======:t===*-----
W/R#. M/IO#. O/C# --------t==t===========*-----

R~OY#---------------{::::~::::~----~----------------------

A~#------~-------{::::~::::~----------------------------

HLOA---------------{:::::t::::)-----------------------------
0(0 - 15) (OMA Read) ---------------{:::::t::::)-----------------------------
0(0 - 15) (CPU Write) ----------....;..:.....-{:::::t::::)-----------------------------

EOP# ------ct==c:1 ::J,-) -----­
OREQ(0-7) __ ----c~=T4=tt:T=~~}------

290164-AO 

Figure 13·4. Input Setup and Hold Timing 
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Tx 

CLK2 T3l' T30 

RESET 

Hold Setup 

Tx 

CLK2 . PHI2 I PHil I PHI2 . 

r- T33 MIN. 
CPURST ------------1~~~ 

CLK2 

A 1 - 23. BHE#. BLE# 

A 1 - 23. BHE#. BLE# 
EDACK(O- 2) 

A 1 - 23. BHE#. BLE# 

ADS# 

ADS# 

ADS# 

HOLD 

CHPSEL# 

--J 

..... 

I- T33 MAX. 

Figure 13-5. Reset Timing 

Tx Tx 
PHil I PHI2 

~ 
PHil I PHI2 

~ ---~ 
:XXX - T6Max --- T6Mln -:XXX - T6Max 

I-- T7Mln -'J..M. 
T7Max 

I--- T14Mln -:XXX -
T14Max 

I-- T14Mln 
.......-.. 
.XXX. - T14Max 

I-- T1SMIn 

D<XX 

HT34Mln 
T15Max 

I//// 

r-TS6~~n 
T34Max 

I\\\\\\. 
I 

T56Max 

Figure 13-6. Address Output Delays 
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Tx 
PHil I PHI2 

"--"--

'///// 
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Tx Tx 
PHil PHI2 PHil PHI2 PHil PHI2 

D(O-15)(CPU READ) 

T19t.4dx 

D(O-15)(Dt.4A WRITE) 

D(O-15)(Dt.4A WRITE) 

T22t.4ox 

D(O-15)(Dt.4A WRITE) 

T23t.4ox 
290164-A3 

Figure 13-7. Data Bus Output Delays 

PHil PHI2 PHil PHI2 PHil PHI2 

CLK2 

W/R#. t.4/IO#.D/C# ----------I-II"~~-------------

W/R#. t.4/IO#.D/C# =:========t~~~t::--------.:...-.....;-
W/R#. t.4/IO#.D/C# ----------..j.;.-l~'l'lr--------~----

~ 1")~MIn 

READYO# IXXX 
I T32t.4ox - T39t.4ln 

EOP# :XXX 
T39t.4ox - T40t.4ln 

EOP# 
VillI 

O~ 
T40t.4ox 

REF# IXXX 
'1- T51t.4ax 

290164-A4 

Figure 13-8. Con,trol Output Delays 
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eLKIN 

TOUT1 __________________ ~~::::~~~--------------------------------

TOUT2# ---------+"'"'~ 

TOUT2# ____________ 1--\ 

TOUT3# ___________ ~1~~~---------------------------
1----~T55I.4ax 

290164-A5 

Figure 13·9. Timer Output Delays 
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Port Address 
(HEX) 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
OB 
OC 
00 
OE 
OF 
10 
11 
12 
13 
14 
15 
." IU 

17 
18 
19 
1A 
1B 
1C 
1E 
20 

21 

22 
28 
29 
2A 

82370 

APPENDIX A 
PORTS LISTED BY ADDRESS 

Description 

Read/Write DMA Channel 0 Target Address, AO-A 15 
Read/Write DMA Channel 0 Byte Count, BO-B 15 
Read/Write DMA Channel 1 Target Address, AO-A 15 
Read/Write DMA Channel 1 Byte Count, BO-B15 
Read/Write DMA Channel 2 Target Address, AO-A 15 
Read/Write DMA Channel 2 Byte Count, BO-B15 
Read/Write DMA Channel 3 Target Address, AO-A15 
Read/Write DMA Channel 3 Byte Count, BO-B15 
Read/Write DMA Channel 0-3 Status/Command I Register 
Read/Write DMA Channel 0-3 Software Request Register 
Write DMA Channel 0-3 Set-Reset Mask Register 
Write DMA Channel 0-3 Mode Register I 
Write Clear Byte-Pointer FF 
Write DMA Master-Clear 
Write DMA Channel 0-3 Clear Mask Register 
Read/Write DMA Channel 0-3 Mask Register 
Intel Reserved 
Read/Write DMA Channel 0 Byte Count, B16-B23 
Intel Reserved 
Read/Write DMA Channel 1 Byte Count, B16-B23 
Intel Reserved 
Read/Write DMA Channel 2 Byte Count, B16-B23 
!nte! Reserved 
Read/Write DMA Channel 3 Byte Count, B16-B23 
Write DMA Channei 0-3 Bus Size Register 
Read/Write DMA Channel 0-3 Ch~ining Register 
Write DMA Channel 0-3 Command Register II 
Write DMA Channel 0-3 Mode Register" 
Read/Write Refresh Control Register 
Reset Software Request Interrupt 
Write Bank B ICW1, OCW2 or OCW3 
Read Bank B Poll, Interrupt Request or In-Service 
Status Register 
Write Bank B ICW2, ICW3, ICW4 or OCW1 
Read Bank B Interrupt Mask Register 
Read Bank B ICW2 
Read/Write IR08 Vector Register 
Read/Write IR09 Vector Register 
Reserved 
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Port Address 
Description 

(HEX) 

2B Read/Write IRQ11 Vector Register 
2C Read/Write IRQ12 Vector Register 
20 Read/Write IRQ13 Vector Register 
2E Read/Write IRQ14 Vector Register 
2F Read/Write IRQ15 Vector Register 
30 Write Bank A ICW1, OCW2 or OCW3 

Read Bank A Poll, Interrupt Request or In-Service 
Status Register 

31 Write Bank A ICW2, ICW3, ICW4 or OCW1 
Read Bank A Interrupt Mask Register 

32 Read Bank A ICW2 
38 Read/Write IRQO Vector Register 
39 Read/Write IRQ1 Vector Register 
3A Read/Write IRQ1.5 Vector Register 
3B Read/Write IRQ3 Vector Register 
3C Read/Write IRQ4 Vector Register 
3D Reserved 
3E Reserved 
3F Read/Write IRQ7 Vector Register 
40 Read/Write Counter 0 Register . 
41 Read/Write Counter 1 Register 
42 Read/Write Counter 2 Register 
43 Write Control Word Register I-Counter 0, 1, 2 
44 Read/Write Counter 3 Register 
45 Reserved 
46 Reserved 
47 Write Word Register II-Counter 3 
61 Write Internal Control Port 
64 Write CPU Reset Register (Data-1111 XXXOH) 
72 Read/Write Wait State Register 0 
73 Read/Write Wait State Register 1 
74 Read/Write Wait State Register 2 
75 Read/Write Refresh Wait State Register 
76 Reserved 
77 Reserved 
70 Reserved 
7E Reserved 
7F Read/Write Relocation Register 
80 Read/Write Internal Diagnostic Port 0 
81 Read/Write DMA Channel 2 Target Address, A 16-A23 
82 Read/Write DMA Channel 3 Target Address, A16-A23 
83 Read/Write DMA Channel 1 Target Address, A 16-A23 
87 Read/Write DMA Channel 0 Target Address, A 16-A23 
88 Read/Write Internal Diagnostic Port 1 
89 Read/Write DMA Channel 6 Target Address, A 16-A23 
8A Read/Write DMA Channel 7 Target Address, A 16-A23 
8B Read/Write DMA ~hannel 5 Target Address, A 16-A23 
8F Read/Write DMA Channel 4 Target Address, A16-A23 
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Port Address 
(HEX) 

90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
9A 
9B 
9C 
9D 
9E 
9F 
AO 

A1 

A2 
A8 
A9 
AA 
AB 
AC 
AD 
AE 
AF 
CO 
C1 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 
CA 
CB 
CC 
CD 
CE 
CF 
DO 
D1 
D2 
03 

'82370 

Description 

Read/Write OMA Channel 0 Requester Address, AO-A 15 
Read/Write OMA Channel 0 Requester Address, A16-A23 
Read/Write DMA Channel 1 Requester Address, AO-A 15 
Read/Write OMA Channel1.Requester Address, A 16-A23 
Read/Write DMA Channel 2 Requester Address, AO-A15 
Read/Write OMA Channel 2 Requester Address, A16-A23 
Read/Write OMA Channel 3 Requester Address, AO-A 15 
ReadiWrite DMA Channei 3 Requeste; Addiass, A 15-A23 
Read/Write DMA Channel 4 Requester Address, AO-A 15 
Read/Write OMA Channel 4 Requester Address, A16-A23 
Read/Write OMA Channel 5 Requester Address, AO-A 15 
Read/Write DMA Channel 5 Requester Address, A16-A23 ' 
Read/Write OMA Channel 6 Requester Address, AO-A 15 
R'ead/Write DMA Channel 6 Requester Address, A16-A23 
Read/Write OMA Channel 7 Requester Address, AO-A 15 
Read/Write DMA Channel 7 Requester Address, A 16-A23 
Write Bank C ICW1, OCW2 or OCW3 
Read Bank C Poll, Interrupt Request or In-Service 
Status Register 
Write Bank C ICW2, ICW3, ICW4 or OCW1 
Read Bank C Interrupt Mask Register 
Read Bank C ICW2 
Read/Write IR016 Vector Register 
Read/Write IR017 Vector Register 
Read/Write IR018 Vector Register 
Read/Write IR019 Vector Register 
Read/Write IR020 Vector Register 
Read/Write IR021 Vector Register 
Read/Write IR022 Vector Register 
Read/Write IR023 Vector Register 
RA~d/Write DMA Channel 4 Taraet Address, AO-A 15 
Read/Write OMA Channel 4 Byte Count, BO-B15 
ReadiWrite DMA Channel 5 Taiget Address, AO-A 15 
Read/Write OMA Channel 5 Byte Count, BO-B15 
Read/Write DMA Channel 6 Target Address, AO-A 15 
Read/Write DMA Channel 6 Byte Count, BO-B15 
Read/Write DMA Channel 7 Target Address, AO-A 15 
Read/Write DMA Channel 7 Byte Count, BO-B15 
Read DMA Channel 4-7 Status/Command I Register 
Read/Write DMA Channel 4-7 Software Request Register 
Write OMA Channel 4-7 Set-Reset Mask Register, 
Write DMA Channel 4-7 Mode Register I 
Reserved 
Reserved 
Write DMA Channel 4-7 Clear Mask Register 
Read/Write DMA Channel 4-7 Mask Register 
Intel Reserved' 
Read/Write OMA Channel 4 Byte Count, B16-B23 
Intel Reserved . 
Read/Write DMA Channel 5 Byte Count, 816-B23 
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Port Address Description 
(HEX) 

04 Intel Reserved 
05 Read/Write OMA Channel 6 Byte Count, B16-B23 
06 Intel Reserved 
07 Read/Write OMA Channel 7 Byte Count, B16-B23 
08 Write OMA Channel 4-7 Bus Size Register 
09 Read/Write OMA Channel 4-7 Chaining Register 
OA Write OMA Channel 4-7 Command Register II 
DB Write OMA Channel 4-7 Mode Register II 
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APPENDIX B 
PORTS LISTED BY FUNCTION 

I 

Port Address 
IHEX\ .. -----, 

DMA CONTROLLER 

OD 
OC 

08 
C8 
1A 
DA 

OB 
CB 
1B 
DB 

09 
C9 
1E 

OE 
CE 
OF 
CF 
nA 
VI"\ 

CA 

18 
D8 

19 
D9 

00 
67 
01 
11 
90 
91 

I 

Description 

Write DMA Master-Clear 
Write OMA Clear Byte-Pointer FF 

Read/Write DMA Channel 0-3 Status/Command I Register 
Read/Write DMA Channel 4-7 Status/Command I Register 
Write DMA Channel 0-3 Command Register II 
Write DMA Channel 4-7 Command Register II 

Write DMA Channel 0-3 Mode Register I 
Write DMA Channel 4-7 Mode Register I 
Write DMA Channel 0-3 Mode Register II 
Write DMA Channel 4-7 Mode Register II 

Read/Write DMA Channel 0-3 Software Request Register 
Read/Write DMA Channel 4-7 Software Request Register 
Reset Software Request Interrupt 

Write DMA Channel 0-3 Clear Mask Register 
Write DMA Channel 4-7 Clear Mask Register 
Read/Write DMA Channel 0-3 Mask Register 
Read/Write DMA Channel 4-7 Mask Register 
Write DMA Channel 0-3 Set-Rf3sf3t Mask Register 
Write DMA Channel 4-7 Set-Reset Mask Register 

Write DMA Channel 0-3 Bus Size Register 
Write DMA Channel 4-7 Bus Size Register 

Read/Write DMA Channel 0-3 Chaining Register 
Read/Write DMA Channel 4-7 Chaining Register 

Read/Write DMA Channel 0 Target Address, AO-A 15 
Read/Write DMA Channel 0 Target Address, A 16-A23 
Read/Write DMA Channel 0 Byte Count, BO-B15 
Read/Write DMA Channel 0 Byte Count, B16-B23 
Read/Write DMA Channel 0 Requester Address, AO-A 15 
Read/Write DMA Channel 0 Requester Address, A 16-A23 
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Port Address 
Description 

(HEX) 

DMA CONTROLLER (Continued) 

02 Read/Write DMA Channel 1 Target Address, AO-A15 
83 ReadiWrite DMA Channel 1 Target Address, A 16-A23 
03 Read/Write DMA Channel 1 Byte Count, 80-815 
13 Read/Write DMA Channel 1 8yte Count, 816-823 
92 Read/Write OMA Channel 1 Requester Address, AO-A 15 
93 Read/Write OMA Channel 1 Requester Address, A 16-A23 

04 Read/Write OMA Channel 2 Target Address, AO-A15 
81 Read/Write OMA Channel 2 Target Address, A 16-A23 
05 Read/Write OMA Channel 2 8yte Count, 80-815 
15 Read/Write OMA Channel 2 Byte Count, 816-823 
94 Read/Write OMA Channel 2 Requester Address, AO-A15 
95 Read/Write OMA Channel 2 Requester Address, A 16-A23 

06 Read/Write OMA Channel 3 Target Address, AO-A15 
82 Read/Write OMA Channel 3 Target Address, A 16-A23 
07 Read/Write OMA Channel3 8yte Count, 80-815 
17 Read/Write OMA Channel 3 8yte Count, 816-823 
96 Read/Write OMA Channel 3 Requester Address, AO-A 15 
97 Read/Write OMA Channel 3 Requester Address, A 16-A23 

CO Read/Write OMA Channel 4 Target Address, AO-A 15 
8F Read/Write OMA Channel 4 Target Address, A16-A23 
C1 Read/Write OMA Channel 4 8yte Count, 80-815 
01 Read/Write OMA Channel 4 8yte Count, 816-823 
98 Read/Write OMA Channel 4 Requester Address, AO-A 15 
99 Read/Write OMA Channel 4 Requester Address, A 16-A23 

C2 Read/Write DMA Channel 5 Target Address, AO-A 15 
88 Read/Write OMA Channel 5 Target Address, A 16-A23 
C3 Read/Write OMA Channel 5 8yte Count, 80-815 
03 Read/Write OMA Channel 5 8yte Count, 816-823 
9A Read/Write OMA Channel 5 Requester Address, AO-A 15 
98 Read/Write OMA Channel 5 Requester Address, A 16-A23 

C4 Read/Write OMA Channel 6 Target Address, AO-A 15 
89 Read/Write OMA Channel 6 Target Address, A 16-A23 
C5 Read/Write OMA Channel 6 8yte Count, 80-815 
05 Read/Write OMA Channel 6 Byte Count, 816-B23 
9C Read/Write OMA ChannelS Requester Address, AO-A15 
90 Read/Write OMA Channel 6 Requester Address, A 16-A23 

C6 Read/Write OMA Channel 7 Target Address, AO-A 15 
8A Read/Write OMA Channel 7 Target Address, A 16-A23 
C7 Read/Write OMA Channel 7 Byte Count, 80-815 
07 Read/Write OMA Channel 7 8yte Count, 816-823 
9E Read/Write OMA Channel 7 Requester Address, AO-A 15 
9F Read/Write OMA Channel 7 Requester Address, A 16-A23 
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Port Address 

(HEX) 

INTERRUPT CONTROLLER 

20 

21 

22 
28 
29 
2A 
2B 
2C 
20 
2E 
2F 

AO 

A1 

A2 
A8 
A9 
AA 
AB 
AC 
AD 
AE 
AF 

30 

31 

32 
38 
39 
3A 
36 
3C 
3D 
3E 
3F 

82370 

Description 

Write Bank B ICW1, OCW2 or OCW3 
Read Bank B Poll, lnterrupt Request or In-Service 
Status Register 
Write Bank B ICW2, ICW3, ICW4 or OCW1 
Read Bank B Interrupt Mask Register 
Read Bank B ICW2 
Read/Write iRQti Vector Register 
Read/Write IRQ9 Vector Register 
Reserved . 

. Read/Write IRQ11 Vector Register 
Read/Write IRQ12 Vector Register 
Read/Write IRQ13 Vector Register 
Read/Write IRQ14 Vector Register 
Read/Write IRQ15 Vector Register 

Write Bank C ICW1, OCW2 or OCW3 
Read Bank C Poll, Interrupt Request or In-Service 
Status Register 
Write Bank C ICW2, ICW3, ICW4 or OCW1 
Read Bank C Interrupt Mask Register 
Read Bank CICW2 
Read/Write IRQ16 Vector Register 
Read/Write IRQ17 Vector Register 
Read/Write IRQ18 Vector Register 
Read/Write IRQ19 Vector Register 
Read/Write IRQ20 Vector Register 
Read/Write IRQ21 Vector Register 
Read/Write IRQ22 Vector Register 
Read/Write IRQ23 Vector Register 

Write Bank A ICW1, OCW2 or OCW3 
Read Bank A Poii, interrupt Request or in-Service 
Status Register 
Write Bank A ICW2, ICW3, ICW4 or OCW1 
Read Bank A Interrupt Mask Register 
Read Bank A ICW2 
Read/Write IRQO Vector Register 
Read/Write IRQ1 Vector Register 
Read/Write IRQ1.5 Vector Register 
Read/Write IRQ3 Vector Register 
Read/Write IRQ4 Vector Register 
Reserved 
Reserved 
Read/Write IRQ7 Vector Register 
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Port Address 
Description 

(HEX) 

PROGRAMMABLE INTERVAL TIMER 

40 Read/Write Counter 0 Register 
41 Read/Write Counter 1 Register 
42 Read/Write Counter 2 Register 
43 Write Control Word Register I-Counter 0, 1, 2 
44 Read/Write Counter 3 Register 
47 Write Word Register II-Counter 3 

CPU RESET 

64 Write CPU Reset Register (Data-1111 XXXOH) 

WAIT STATE GENERATOR 

72 Read/Write Wait State Register 0 
73 Read/Write Wait State Register 1, 
74 Read/Write Wait State Register 2 
75 Read/Write Refresh Wait State Register 

DRAM REFRESH CONTROLLER 

1C Read/Write Refresh Control Register 

INTERNAL CONTROL AND DIAGNOSTIC PORTS 

61 Write Internal Control Port 
80 Read/Write Internal Diagnostic Port 0 
88 Read/Write Internal Diagnostic Port 1 

RELOCATION REGISTER 

7F Read/Write Relocation Register 

INTEL RESERVED PORTS 

10 Reserved 
12 Reserved 
14 Reserved 
16 Reserved 
2A Reserved . 
3D Reserved 
3E Reserved 
45 Reserved 
46 Reserved 
76 Reserved 
77 Reserved 
70 Reserved 
7E Reserved 
CC Reserved 
CO Reserved 
DO Reserved 
02 Reserved 
04 Reserved 
06 Reserved 
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APPENDIX C 
PROGRAMMING THE 82370 INTERRUPT CONTROLLERS 

This Appendix describes two methods of programming and initializing the Interrupt Controllers of the 82370. A 
simple interrupt service routine is also shown which provides compatibility with the 82C59 Interrupt Controller. 

The two methods of programming the 8237° Interrupt Controllers are needed to provide Simple initialization 
procedures in different software environments. For new applications, a simple initialization and programming 
sequence can be used. For PC-DOS or other applications which expect 8259s, an 'interrupt handler for 
initialization traps must be provided. Once the handler is in place, all three 82370 Interrupt Controller banks 
can be programmed or initialized in the same manner as an 8259. 

The ICW2 interrupt is generated by the 8;2370 when' writing the ICW2 command to any of the interrupt 
controller banks. This interrupt is supplied to provide compatibility to existing code that expects to be program­
ming 82C59s. The ICW2 value is stored in the ICW2 register of the associated bank, but is ignored by the 
controller. It is the responsibility of the ICW2 interrupt handler to read the ICW2 register and use its value to 
program the individual vector registers accordingly. 

NEW APPLICATIONS' 

New applications do not generally require compatibility with previous code, or at least the code is usually easily 
modifiable. If the application fits this description, then the ICW2 interrupt can be ignored. This is done by 
initializing the interrupt controller as necessary, and before enabling CPU interrupts, removing the ICW2 

• interrupt request by reading the ICW2 register. Listing 1 shows the code for doing this for bank A. The same 
procedure can be used for the other banks. 
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Listing 1. 
Initialization of an 82370 Interrupt Controller Bank 

Without ICW2 Interrupts 

cli ;disable all interrupts 

;initialize controller 
mov al,lCWl 
out 30h,al 
mov al,lCW2 
out 31h,al 
mov al,lCW3 
out 31h,al 
mov al,lCW4 
out 31h,al 

mov al,BANK_A_MASK 
out 31h,al 

logic 
;begin sequence 

;send dummy lCW2 

;send lCW3 if necessary 

;send lCW4 

;write to mask register (OCW1) 

;program vector registers 

mov al,lCW2 
out 38h,al 
mov al,lCW2+1 
out 39h,al 
mov al,lCW2_VECTOR 
out 3Ah,al 
mov al,lCW2+3 
out 3Bh,al 
mov al,lCW2+4 
out 3Ch,al 
mov al,lCW2+7 
out 3Fh,al 

;remove lCW2 interrupt 

in al,31h 

in al,32h 

ilRQO 

;lRQl 

;lRQ1.5 (probably never used in 
; this system) 

;lRQ3 

;lRQ4 

;lRQ7 

request 

;read mask register to work around 
; A-step errata 

;read lCW2 register to clear 
interrupt request 

;return to calling program 

sti 
ret 

ire-enable interrupts 
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OLD APPLICATIONS 

In applications where 8259 compatibility is required, the ICW2 interrupt handler'must be invoked whenever an 
interrupt controller is initialized (ICW1-ICW2-ICWn sequence). The handler's purpose is to read the ICW2 
value from the ICW2 read register and write the appropriate sequence of vectors to the vector registers. Listing 
2 shows the typical initialization sequence (this is not changed from the 8259), and the required initialization for 
operation of the ICW2 interrupt handler. Listing 2 shows the ICW2 interrupt handler. 

Listing 2. 
Initialization of Bank A ~C;i IC\A/2 I;,t:r;"upt: 

cli ;disable all interrupts 

;initialize controller logic 

mov al,ICWl 
out 30h,al 
mov al,ICW2 
out 31h,al 

.******* , 
mov al,ICW3 
out 31h,al 

;******* 

mov al,ICl'l4 
out ;31h,al 

;begin sequence 

:send dummy ICW2 

;send ICW3 if necessary 
note that using ICW3 for 
cascading bank B is not required 
and will affect the way EOIs are 
required for nesting. ,It is 
advised that ICW3 not be used. 

:send ICW4 

mov al,Bank_A_Mask ;write to mask register (OCW1=7Bh) 
out 31h,al ;don't mask off IRQ1.5 or Default 

interrupt (IRQ7) 

:program necessary vector regis~ers 

mov al,ICW2_VECTOR ;IRQ1.5 
out 3Ah,al 

mov al,IRQ7_DEFAULT_VECTOR 
out 3Fh,al 

:remove ICW2 interrupt request for bank A 

in al,31h 

in. al.32h 

:read mask register to work around 
: A-step errata 

:read ICW2 register to clear 
; interrupt request 

:at this point install interrupt call vector for ICW2, if 
;not already done somewhere else in the code 

sti ;re-enable interrupts 
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push ax 
push cx 
push dx 

service bank B 

in al.2lh 

in al,22h 
mov cx,S 
mov dX,2Sh 

out 
inc 
inc 
loop 

dX,al 
al 
dx 
BANK_B_LOOP 

;service bank C 

in al,OAlh 

in al,OA2h 
mov cx,S 
mov dx,OASh 

out 
inc 
inc 
loop 

pop 
pop 
pop 
iret 

dx.al 
al 
dx 
BANK_C_LOOP 

dx 
cx 
ax 

82370 

listing 3. 
ICW2 Interrupt Service Routine 

proc near 

;save registers 

;read mask register for A-step errata 

;read ICW2 
;count vectors 
;point to vectors 

;wri te vector 
;next vector 
;next vector I/O address 

;read mask register for A-step errata 

;read ICW2 
;count vectors 
;point to vectors 

;write vector 
;next vector 
;next vector i/o address 

;restore registers 

;return 

endp 
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Table 1. Interrupt Controller Registers 

Bank A: 

30H write ICW1, OCW2, OCW3 
read' Poll, IRR, ISR 

31H write ICW2, ICW3, ICW4, OCWl 
read IMR 

32H read ICW2 read register 
38H read/write IRQO vector 
3SH read/write IRQl vector 

, 3AH read/write IRQ1.5 vector 
3BH read/write IRQ3 vector 
:SCH read/write IRQ4 vector 
3DH RESERVED 
3EH RESERVED 
3FH read/write IRQ7 vector 

Bank B: 
20H write ICW1, OCW2, OCW3 

read Poll, IRR, ISR 
21H write ICW2, ICW3, ICW4, OCWl 

read IMR 
22H read ICW2 read register 
28H read/write IRQ8 vector 
2SH read/write IRQS vector 
2AH RESERVED 
2BH read/write IRQll vector 
2CH read/write IRQ12 vector 
2DH read/write IRQ13 vector 
2EH read/write IRQ14 vector 
2FH read/write IRQ15 vector 

Bank C: 

AOH write ICW1, OCW2, OCW3 
read Poll, !RR. ISH 

A1H write ICW2, ICW3, ICW4, OCWl 
read IMR 

A2H read ICW2 read register 

A8H read/write IRQ16 vector 
ASH read/write IRQ17 vector 
AAH read/write IRQ18 vector 
ABH I"ead/write IRQ19 vector 
ACH read/write IRQ20 vector 
ADH read/write IRQ2l vector 
AEH read/write IRQ22 vector 
AFH read/write IRQ23 vector 
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1. BHE# IN MASTER MODE. 

82370 

APPENDIX D 
SYSTEM NOTES 

In Master Mode, BHE# will be activated during DMA to/from 8·bit devices residing at even locations when 
the remaining byte count is greater than 1. 

For example, if an 8·bit device is located at 00000000 Hex and the number of bytes to be transferred is > 1, 
the first address/BHE# combination will be 00000000/0. In some systems this will cause the bus controller 
to perform two 8·bit accesses, the first to 0000000 Hex and the second to 00000001 Hex. However, the 
82370's DMA will only read/write one byte. This mayor may not cause a problem in the system depending 
on what is located at 00000001 Hex. 

Solution: 

There are two solutions if BH# active is unacceptable. Of the two, number 2 is the cleanest and most 
recommended. 

1. If there is an 8·bit device that uses DMA located at an even address, do not use that address + 1. The 
limitation-of this solution is that the user must have complete control over what addresses will be used in 
the end system. 

2. Do not allow the Bus Controller to split cycles for the DMA. 

2. RESET OUTPUT OF 82370: 

The 80376 requires its RESET line to be active for 80 clock cycles. The 82370 generates holds the RESET 
line active for 62 clock cycles. 

The following design example shows how the user can extend the active high of the RESET line to 80 clock 
cycles. 

Extending the RESET Output of the 82370 

This section de~cribAS a hardware solution for using the 82370's CPURST output and the software reset 
command to cause the 80376 to enter into a self·test. 

The 80376 requires two simultaneous events in order to initiate the self·test sequence. The RESET input of 
the processor must be held active for at least 80 CLK2 periods and the BUSY # input must be low 8 CLK2 
periods prior to and 8 CLK2 periods subsequent to RESET going inactive. 

A system which does not have an 80387SX will simply have the BUSY # input to the 80376 tied low. A system 
which contains the 80387SX will require extra logic between the BUSY # output of the 80387SX and the 
BUSY # input of the 80376 in order to force self·test on reset. The extra BUSY # logic required will not be 
described here. 

The 82370 CPURST output is intended to be retimed with faster TTL components in order to meet the RESET 
input setup time requirements of the 80376 and 80387SX. This requires a 74F379 (quad flip·flop with enable) 
or equivalent. The flip·flops required are described in TECH BIT (Ed Grochowski, April 10, 1987). 

The 82370 does not meet the RESET pulse duration requirements for causing self·test of the 80376 when a 
software reset command is issued to the 82370. The 82370 provides a RESET pulse width of 62 CLK2 
periods, the 80376 requires 80 CLK2 periods as mentioned earlier. 

In order to cause the 80376 to do a self·test after a software reset, the CPURST output pulse of the 82370 
must be lengthened. Figure 1 shows a circuit which will do this. . 
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Note that the CPURST output is the OR of the 82370 RESET input and the output of the software reset 
command logic, and thus will have the same duration as the RESET input during power-on. 

The additional circuitry required consists of an OR gate, a one-shot, a capacitor, and a resistor more than is 
found in a system without the 82370. The one-shot (74121) is inserted between the CPURST output of the 
82370 and the input of the retiming flip-flops (74F379). The period of the one-shot should be long enough to 
guarantee the 80 ·CLK2 periods that the 80376 requires. 

The OR gate (74F32) is required to guarantee that the 80376 is held in a RESET state while the 82370 is being 
reset. This is done to be sure that BE3# is held low when the RESET input to the 82370 goes inactive. BE3# 
is used during the reset to determine whether it is necessary to enter a special faCtory test mode. It must be 
low when the RESET input goes inactive, and the 80376 drives it low during reset. 

OSC .A. CLK2 

--
74F109 

I 
PR 

~J 0 CLK 

.- K 82370 
CLR 

I RESET CPURST 

-r- I 
~ -r-

IN4148 ~~ lOOk 74F379 J 10k 74121 

~- 10 10 ~ RIC B 

7~1: '-- 20 20 O.OIJLF~ 

p"" C AI A2 O-

r-- 3D 30 -
~ 

;- 40 
40 

47.0. 

-t 

G RESET 

80376 
74F32 

<1-
290164-A7 

Figure 0-1. Extending 82370 Reset Output 
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82370 TIMER UNIT NOTES 

The 82370 DMA Controller with Integrated System Peripherals is functionally inconsistent with the data sheet. 
This document explains the behavior of the 82370 Timer Unit and outiines subsequent limitations of the timer 
unit. This document also provides recommended workarounds. 

Overview: 

. There are two areas in which the 82370 timer unit exhibits non-specified behavior: 

1. Mode 0 operation 

2. Write Cycles to the 82370 Timer Unit 

1.0 MODE '0 OPERATION 

1.1 Description 

For Mode 0 operation, the 82370 timer is specified as follows in the Intel 1989 Microprocessor and Peripheral 
Handbook Vol. I Page 4-240: 

1. Writing the first byte disables counting, OUT is set lOW immediately ... 

Due to mode 0 errata, this should read as follows: 

1. Writing the first byte sets OUT lOW immediately. If the counter has not yet expired, writing the first byte also 
disables counting. However, if the counter has expired, writing the first count does not disable counting, 
although OUT still behaves correctly (set lOW immediately). 

1.2 Consequences 

Software errors will occur ii algorithms depend on the 82370 timer unit to stop counting after writing the first 
byte. Thus, software that is based on the 8254 core will not function reliably on the 82370 timer unit. 

Note, however, that the external signal of the timer behaves correctly. 

1.3 Solution 

As long as software algorithms are aware of this behavior, there should be no problems, as the external signal 
behaves correctly. 

1.4 Long Term Plans 

Currently, Intel has ,no plans to fix this behavior of the 82370 timer unit. 

2.0 WRITE CYCLES TO THE 82370 TIMER UNIT: 

This.errata applies only to SLAVE WRITE cycles to the 82370 timer unit. During these cycles, the data being 
written into the 82370 timer unit may be corrupted if ClKIN is not inhibited during a certain "window" of the 
write cycle. 
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2.1 Description 

Please refer to Figure 0-2. 

82370 

Ouring write cycles to the 82370 timer unit, the 82370 translates the 80376 interface signals such as #AOS, 
#W/R, #M/IO, and #O/C into several internal signals that control the operation of the internal sUb-blocks 
(e.g. Timer Unit). 

The 82370 timer uint is controlled by such internal signals. These internal signals are generated and sampled 
with respect 'to two separate clock signals: ClK2 (the system clock) and ClKIN (the 82370 timer unit clock). 

Since the ClKIN and ClK2 clock Signals are used internally to generate control signals for the interface to the 
timer unit, some timing parameters must be met in order for the interface logic to function properly. 

Those timing parameters are met by inhibiting the ClKIN signal for a specific window during Write Cycles to 
the 82370 Timer Unit. 

The ClKIN signal must be inhibited using external logic, as the GATE function of the 82370 timer unit is not 
guaranteed to totally inhibit ClKIN. 

2.2 Consequences 

This ClKIN inhibits circuitry guarantees proper write cycles to the 82370 timer unit. 

Without this solution, write cycles to the 82370 timer unit could place corrupted data into the timer unit 
registers. This, in turn, could yield inaccurate results and improper timer operation. 

The proposed solution would involve a hardware modification for existing systems. 

2.3 Solution 

A timing waveform (Figure 0-3) shows the specific window during which ClKIN must be inhibited. Please note 
that ClKIN must only be inhibited during the window shown in Figure 0-3. This window is defined by two AC 
timing parameters: 

ta = 9 ns 

The proposed solution provides a certain amount of system "guard band" to make sure that this window is 
avoided. 

PAL equations for a suggested workaround are also included. Please refer to the comments in the PAL codes 
for stated assumptions of this particular workaround. A state diagram (Figure 0-4) is provided to help clarify 
how this PAL is designed. 

Figure 0-5 shows how this PAL would fit into a system workaround. In order to show the effect of this work­
around on the ClKIN signal, Figure 0-6 shows how ClKIN is inhibited. Note that you must still meet the ClKIN 
AC timing parameters (e.g. t47 (min), t4B (min» in order for the timer unit to function properly. 

Please note that this workaround has not been tested. It is provided as a suggested solution. Actual solutions 
will vary from system to system. 
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2.4 Long Term Plans 

Intel has no plans to fix this behavior in the 82370 timer unit. 

module Timer_82370_Fix 
flag '-r2', '-q2', '-1'1', '-t4', '-wl,3,S,5,4,lS,7,12,17,18,15,14' 
title '82370 Timer Unit CLKIN 

INHIBIT Signal PAL Solution ' 
Timer_Unit_Fix device 'P1SRS'; 

"This PAL inhibits the CLKIN Signal (that comes from an oscillator) 
"during Slave Writes to the 82370 Timer unit. 

"ASSUMPTION: This PAL assumes that an external system address 
decoder provides a Signal to indicate that an 82370 
Timer Unit access is taking place. This input 
signal is called TMB in this PAL. This PAL also 
assumes that this TMB Signal occurs during a 
specific T-State. Please see Figure 2 of this 

- document to see when this Signal is expected to 
be active by this PAL. 

"NOTE: This PAL does not support pipelined 82370- SLAVE 
cycles. 

"(c) Intel Corporation 1989. This PAL is provided, as a proposed 
"method of solving a certain 82370 Timer Unit problem. This PAL 
"has not been tested or validated. Please validate this solution 
"for your system and application. 
" 
"Input Pins" 

"' .. ,. .... 
\.IJ.JI\~ 

RESET 
rMB 

IRDY 
lADS 

CLK 
W_R 
ncl 
nc3 
Glma 
GNDb 
CLKIN_IN 

·Output Pins· 

-,-
!,.L" 

pin 
pin 

pin 
pin 

- pin 
pin 
pin 
pin 
pin 
pin 
pin 

Q_O pin 

CLKIN_OUT pin 
INHIBIT pin 
SO pin 
Sl pin 

-Declarations· 

, •• ~ ....... __ ", ...... 1. 
., ~3~~~w V~~~_ 

2; "Microprocessor RESET signal 
3; "Input trom Address Decoder, indicating 

"an access to the timer unit of the 
"82370. 

4; ·End of Cycle indicator 
5; "Address and control strobe 
S; ·PHI2 clock 
7; ·Write/Read Signal" 
8; -No Connect O· 
9; ·No Connect 1" 

10; -Tied to -ground, documentation only 
11; ·Output enable, documentation only 
12; "Input-CLKIN directly from oscillator 

18; ·Internal Signal only, fed back to 
·PAL logic· 

17; ·CLKIN Signal fed to 82370 'Timer Unit 
lS; ·CLKIN Inhibit Signal 
15; ·Unused State Indicator Pin 
14; ·Unused State Indicator Pin 
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Valid_ADS 
Valid_RDY 
Timer_Acc 

ADS Be eLK 
RDY Be eLK 
TMR Be eLK 

82370 

"#ADS sampled in PHIl of 80376 T-State 
"#RDY sampled in PHIl of 80376 T-State 
"Timer Unit Access, as provided by 
"external Address Decoder" 

State_Diagram [INHIBIT, Sl, SO] 

state 000: 

state 001: 

state 010: 

state 110: 

state 111: 

state 011: 

state 100: 

state 101: 

EQUATIONS 

if RESET then 000 
else if Valid_ADS Be W_R then 001 
else 000; 

if RESET then 000 
else if Timer_Acc then 010 
else if !Timer_Acc then 000 
else 001; 

if RESET then 000 
else if eLK then 110 
else 010; 

if RESET then 000 
else if eLK then 111 
else 110; 

if RESET then 000 
else if eLK then 011 
else 111; 

if RESET then 000 
else if Valid_RDY then odo 
else 011; 

if RESET then 000 
else 000; 

if RESET then 000 
else 000; 

Q_O := eLKIN_IN; "Latched incoming clock. This Signal is used 
"internally to feed into the MUX-ing logic· 

eLKIN_OUT := (INHIBIT Be eLKIN_OUT Be !RESET) 
+1 !INHIBIT Be Q_O Be !RESET); 

"Equation for eLKIN_OUT. This 
"feeds directly to the 82370 Timer Unit." 

END 
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82370 Timer Unit elKIN 
INHIBIT signal PAL Solution 

Equations for Module Timer_82370_Fix 

Device Timer_UniLFix 

-Reduced Equations: 

82370 

IINHIBIT:= (leLK & IINHIBIT # eLK & SO # RESET # !S1); 

IS1 : = (RESET 
# iNHiBiT & iSI 
# eLK & !INHIBIT & !-RDY & SO & S1 
# leLK & IS1 
# !S1 & !TMR 
# ISO & IS1); 

ISO: = (RESET 
# INHIBIT & !S1 
# eLK & !INHIBIT & !-RDY & S1 
#IINHIBIT & ISO & S1 
# leLK & ISO 
# IINHIBIT & ISO & S1 
# SO & IS1 
# !S1 &!W_R 
# - ADS & !81); 

I~O : = (!eLKIN_IN); 

!eLKIN_OUT : = (RESET # leLKIN_OUT & INHIBIT # !INHIBIT & !O_O); 
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Chip diagram for Module Timer_82370_Fix 

Device Timer_UniLFix 

CLK2 

ADS# 

W/R# 

M/IO# 

RDY# 

ClKIN 

DO-07 

ClK2- 1 

RESEJ- 2 

TMR- 3 

RDY- 4 

ADS- 5 

ClK- 6 

W_R- 7 

ncl- B 

nc3- 9 

GNDa- 10 

~ 

• 

• 

• 

4 ~ 

82370 

P16R6 

'-/ 
20 ~ 

19 ~ 

18 ~Q_O 

17 I-CLKIN_OUT 

16 I-INHIBIT 

15 I-SO 

14 ~SI 

13 ~ 

12 I-ClKIN_IN 

11 I-GNDb 

290164-A9 

82370 

-
011 
0 
VI 

" C5#. WR#. RD# and 
Ol other Internal signals 
m 
C 
VI 

"'-...., 
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TIMER 
UNIT 

Intimal Data BUI 

290164-80 

Figure D-2. Translation of 80376 Signals to Internal 82370 Timer Unit Signals 
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REAOYO# 
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Figure 0-3. 82370 "timer Unit Write Cycle 

[INHIBIT, S1, so] 
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.... I~ 
~ i! 

(INHIBIT) 
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Figure 0-4. State Diagram for Inhibit Signal 
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I ClK2/ClK I 
CIRCUIT 

ClK2 ClK 

L 82370 
TIMER-PAL 

80376 16R8 

ClK2 1 ClK2 ClK2 
17 

~ ClK 
ClKIN 

RESET ~ 2 ~ RESET 

RDY# ~ 
4 

~ RDY# 

ADS# ~ 
5 ADS# ~ ClKIN 

W/R# ~ 
7 

W/R# 12 
~ 

ClKIN J 3 TMR 

ADDR DECODER -
~ 

-
I ClKIN OSC 

NOTE: 
This solution does not support pipelined 82370 SLAVE Cycles. 

Figure 0-5. System with 82370 Timer Unit "INHIBIT" Circuitry 

INHIBIT# __ ~ ____________ J 

eLKIN (derived) 

Should have gone 
HIGH here. but was 
Inhlbltod. ," _ _ _ _ _I""!==~ 

, 

eLKIN (original) ,'-----'/ 'I.-__ ...Jf 
FIGURE 0-5 (0): Inhibited ClKIN In on 82370 Timer Unit Be ClKIN Minimum HIGH time. 

INHIBIT# / ------
eLKIN (derived) 

eLKIN (original) 

Should have gone 
LOW hire, but was 
Inhlb~.d. 

,'----_/ 
, 
' .. _ _ _ _ _ ,.".==J 

\ ___ ..r 

\ 

290164-83 

290164-84 

Figure 0-6. Inhibited ClKIN in an 82370 Timer Unit and ClKIN Minimum lOW Time 
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i860™ 64-Bit Microprocessor 

• 'Parallel Architecture that Supports Up 
to Three Operations per Clock 
- One Integer or Control Instruction 

per Clock 
- Up to Two Floating-Point Results per 

Clock 

• High Performance Design 
-33.3/40 MHz Clock Rates 
- 80 Peak Single Precision MFLOPs 
- 60 Peak Double Precision MFLOPs 
- 64-Bit External Data Bus 
- 64-Bit Internal Instruction Cache Bus 
-128-Bit Internal Data Cache Bus 

• High Level of Integration on One Chip 
- 32-Bit Integer and Control Unit 
- 32/64-Bit Pipelined Floating-Point 

Adder and Multiplier Units 
- 64-Bit 3-D Graphics Unit 
- Paging Unit with Translation 

Lookaside Buffer 
- 4 Kbyte Instruction Cache 
- 8 Kbyte Data Cache 

• Compatible with Industry Standards 
- ANSI/IEEE Standard 754-1985 for 

Binary Floating-Point Arithmetic 
- 386™/i486TM Microprocessor Data 

Formats and Page Table Entries 
-JEDEC 168-pin Ceramic Pin Grid 

Array Package (see Packaging 
Outlines and Dimensions, order 
#231369) 

• Easy to Use 
- On-Chip Debug Register 
- Assembler, Linker, Simulator, 

Debugger, C and FORTRAN 
Compilers, FORTRAN Vectorizer, 
Scalar and Vector Math Libraries for 
both OS/2* and UNIX* Environments 

The Intel i860™ Microprocessor (order codes A80860-33 and A80860-40) delivers supercomputing perform­
ance in a single VLSI component. The 64-bit design of the i860 microprocessor balances integer, floating 
point, and graphics performance for applications such as engineering workstations, scientific computing, 3-D 
graphics workstations, and multiuser systems. Its parallel architecture achieves high throughput with RISC 
design techniques, pipelined processing units, wide data paths, large on-chip caches, million-transistor design, 
and fast one-micron CHMOS IV silicon technology. 

A31-A3 063-00 CONTROL 

i t i 
I 

BUS ole CACHE I 
CONTROL UNIT 

6. 6. 6. 

$$11 32 PHYSICAL FP FP FP 6. .l. ADDRESS srcl result src2 

6. 
DATA BUS "- "-1 32 FP INSTRUCTION BUS .I FLOATING-POINT I 64 I FP I 6. 

MULTIPLIER UNIT 
CONTROLLING UNIT ole 

32 CORE INSTRUCTION BUS ·1 FP REGISTER FILE 

h tp ...... IINS~~~~ION 17:::J RISC CORE I 
r-

64 6. ... 
132 

... 
CACHE LOW CACHE HIGH 

I FP I INSTRUCTION DATA DATA 

"I 
ADDRESS ALIGNMENT ADDER UNIT 

30 
t 6. 

32 
~ ~ 

PAGE UNIT ~ 32 
32 DATA ADDRESS 

I I DATA CACHE 1 GRAPHICS UNIT 

64 

240296-1 

Figure 0.1. Block DIagram 

Intel, intel, 386, i486, i860, Multibus II and Parallel System Bus are trademarks of Intel Corporation. 
·UNIX is a registered trademark of AT&T. OS/2 is a trademark of International Business Machines Corporation. 
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i860TM MICROPROCESSOR 

1.0 FUNCTIONAL DESCRIPTION 

As shown by the block diagram on the front page, 
the i860 microprocessor consists of 9 units: 

1. Core Execution Unit 
2. Floating-Point Control Unit 
3. Floating-Point Adder Unit 
4. Floating-Point Multiplier Unit 
5. Graphics Unit 
6. Paging Unit 
7. Instruction Cache 
8. Data Cache 
9. Bus and Cache Control Unit 

The core execution unit controls overall operation of 
the i860 microprocessor. The core unit executes 
load, store, integer, bit, and control-transfer opera­
tions, and fetches instructions for the floating-point 
unit as well. A set of 32 x 32-bit general-purpose 
registers are provided for the manipulation of integer 
data. Load and store instructions move 8-, 16-, and 
32-bit data to and from these registers. Its full set of 
integer, logical, and control-transfer instructions give 
the core unit the ability to execute complete systems 
software and applications programs. A trap mecha­
nism provides rapid response to exceptions and ex­
ternal interrupts. Debugging is supported by the abili­
ty to trap on data or instruction reference. 

The floating-point hardware is connected to a sepa­
rate set of floating-point registers, which can be 
accessed as 16 x 64-bit registers, or 32 x 32-bit reg­
isters. Special load and store instructions can also 
access these same registers as 8 x 128-bit registers. 
All floating-point instructions use these registers as 
their source and destination operands. 

The floating-point control unit controls both the float­
ing-point adder and the floating-point mu!tiplier, issu­
ing instructions, handling all source and result 
exceptions, and updating status bits in the floating­
pOint status register. The adder and multiplier can 
operate in parallel, producing up to two results per 
clock. The floating-point data types, floating-point in­
structions, and exception handling all support the 
IEEE Standard for Binary Floating-Point Arithmetic 
(ANSIIIEEE Std 754-1985). 

The floating-point adder performs addition, subtrac­
tion, comparison, and conversions on 64- and 32-bit 
floating-point values. An adder instruction executes 
in three clocks; however, in pipelined mode, a new 
result is generated every clock. 

The floating-point multiplier performs floating-point 
and integer multiply and floating-point reciprocal op­
erations on 64- and 32-bit floating-point values. A 
multiplier instruction executes in three to four clocks; 
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however, in pipelined mode, a new result can be 
generated every clock for single-precision and every 
other clock for double precision. 

The graphics unit has special integer logic that sup­
ports three-dimensional drawing in a graphics frame 
buffer, with color intensity shading and hidden sur­
face elimination via the Z-buffer algorithm. The 
graphics unit recognizes the pixel as an 8-, 16-, or 
32-bit data type. It can compute individual red, blue, 
and green color intensity values within a pixel; but it 
does so with parallel operations that take advantage 
of the 64-bit internal word size and 64-bit external 
bus. The graphics features of the i860 microproces­
sor assume that the surface of a solid object is 
drawn with polygon patches whose shapes approxi­
mate the original object. The color intensities of the 
vertices of the polygon and their distances from the 
viewer are known, but the distances and intensities 
of the other points must be calculated by interpola­
tion. The graphics instructions of the i860 microproc­
essor directly aid such interpolation. 

The paging unit implements protected, paged, virtual 
memory via a 64-entry, four-way set-associative 
memory called the TLB (Translation Lookaside Buff­
er). The paging unit uses the TLB to perform the 
translation of logical address to physical address, 
and to check for access violations. The access pro­
tection scheme employs two levels of privilege: user 
and supervisor. 

The instruction cache is a two-way set-associative 
memory of four Kbytes, with 32-byte blocks. It trans­
feis up to 64 bits pei clock (320 Mbyte/sec at 
40 MHz). 

The data cache is a two-way set-associative memo­
ry of eight Kbytes, with 32-byte blocks. It transfers 
UD to 128 bits Der clock 1640 Mbvte/sec at 40 MHz) 
The i860 microprocessor normally uses write back 
caching, i.e. memory writes update the cache (if ap­
plicable) without necessarily updating memory im­
mediately; however, caching can be inhibited by 
software where necessary. 

The bus and cache control unit performs data and 
instruction accesses for the core unit. It receives cy­
cle requests and specifications from the core unit, 
performs the data-cache or instuction-cache miss 
processing, controls TLB translation, and provides 
the interface to the external bus. Its pipelined struc­
ture supports up to three outstanding bus cycles. 

2.0 PROGRAMMING INTERFACE 

The programmer-visible aspects of the architecture 
of the i860 microprocessor include data types, regis­
ters, instructions, and traps. 
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2.1 Data Types 

The iB60 microprocessor provides operations for in­
teger and floating-point data. Integer operations are 
performed on 32-bit operands with some support 
also for 64-bit operands. Load and store instructions 
can reference B-bit, 16-bit, 32-bit, 64-bit, and 12B-bit 
operands. Floating-point operations are performed 
on IEEE-standard 32- and 64-bit formats. Graphics 
oriented instructions operate on arrays of B-, 16-, or 
32-bit pixels. 

2.1.1 INTEGER 

An integer is a 32-bit signed value in standard two's 
complement form. A 32-bit integer can represent a 
value in the range -2,147,4B3,64B (-231 ) to 
2, 147,4B3,647 (+ 231 - 1). Arithmetic operations on 
B- and 16-bit integers can be performed by sign-ex­
tending the B- or 16-bit values to 32 bits, then using 
the 32-bit operations. 

There are also add and subtract instructions that op­
erate on 64-bit long integers. 

Load and store instructions may also reference (in 
addition to the 32- and 64-bit formats previously 
mentioned) B- and 16-bit items in memory. When an 
B- or 16-bit item is loaded into a register, it is con­
verted to an integer by sign-extending the value to 
32 bits. When an B- or 16-bit item is stored from a 
register, the corresponding number of low-order bits 
of the register are used. 

2.1.2 ORDINAL 

Arithmetic operations are available for 32-bit ordi­
nals. An ordinal is an unsigned integer. An ordinal 
can represent values in the range 0 to 
4,294,967,295 (+232 - 1). 

Also, there are add and subtract instructions that op­
erate on 64-bit ordinals. 

2.1.3 SINGLE- AND DOUBLE-PRECISION REAL 

Figure 2.1 shows the real number formats. A single­
precision real (also called "single real") data type is 
a 32-bit binary floating-point number. Bit 31 is the 
sign bit; bits 30 .. 23 are the exponent; and bits 22 .• 0 
are the fraction. In accordance with ANSI/IEEE 
standard 754, the value of a single-precision real is 
defined as follows: 

1. If e = 0 and f oF 0 or e = 255 then generate a 
floating-point source-exception trap when en­
countered in a floating-point operation. 

2. If 0 < e < 255, then the value is (-1)S x 1.f x 
2e - 127. 

3. If e = 0 and f = 0, then the value is signed zero. 

A double-precision real (also called "double real") 
data type is a 64-bit binary floating-point number. Bit 
63 is the sign bit; bits 62 .. 52 are the exponent; and 
bits 51 .. 0 are the fraction. In accordance with ANSI/ 
IEEE standard 754, the value of a double-precision 
real is defined as follows: 

1. If e = 0 and f oF 0 or e = 2047, then generate a 
floating-point source-exception trap when en­
countered in a floating-point operation. 

2. If 0 < e < 2047, then the value is (-1)S x 1.1 x 
2e-1023. 

Single-Precision Real 

31 23 

1·1 e 

f LfRACTION 

L ___ -================= EXPONENT SIGN 

Double-Precision Real 

63 52 

Is I 
t LfRACTION l '----------------- EXPONENT 
'-----,---------------- SIGN 

Figure 2.1. Real Number Formats 
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3. If e = 0 and f = 0, then the value is signed zero. 

The special values infinity, NaN ("Not a Number"), 
indefinite, and denormal generate a trap when en­
countered. The trap handler implements IEEE-stan­
dard results. 

A double real value occupies an even/odd pair of 
floating-point registers. Bits 31 .. 0 are stored in the 
even-numbered floating-point register; bits 63 .. 32 
are stored in the .next higher odd-numbered floating­
point register. 

2.1.4 PIXEL 

A pixel may be 8, 16, or 32 bits long depending on 
color and intensity resolution requirements. Regard­
less of the pixel size, the i860 microprocessor al­
ways operates on 64 bits worth of pixels at a time. 
The pixel data type is used by two kinds of instruc­
tions: 

• The selective pixel-store instruction that helps im­
plement hidden surface elimination. 

• The pixel add instruction that helps implement 
3-0 color intensity shading. 

• To perform color intensity shading efficiently in a va-
riety of applications, the i860 microprocessor de­
fines three pixel formats according to Table 2.1. 

Figure 2.2 illustrates one way of assigning meaning 
to the fields of pixels. These assignments are for 
illustration purposes only. The i860 microprocessor 
defines only the field sizes, not the specific use of 
each field. Other ways of using the fields of pixels 
are possible. 

-I 

16-81T PIXEL 

32-81T PIXEL 

31 23 

R G 

Table 2.1. Pixel Formats 

Pixel Bits of Bits of Bits of 
Bits of 

Size Color 1 Color 2 Color 3 
Other 

(in bits) Intensity Intensity Intensity 
Attribute 
(Texture) 

8 N (::;; 8) bits of intensity" 8-N 
16 6 

I 
6 

I 
4 

32 8 8 8 8 
The Intensity attribute fields may be assigned to colors In 
any order convenient to the application. 

15 

·With 8-bit pixels, up to 8 bits can be used for intensity; the 
remaining bits can be used for any other attribute, such as 
color. The intensity bits must be the low-order bits of the 
pixel. 

2.2 Register Set 

As Figure 2.3 shows, the i860 microprocessor has 
the following registers: 

• An integer register file 

• A floating-point register file 

• Six control registers (psr, epsr, db, dirbase, fir, 
and fsr) 

• Four special-purpose registers (KR, KI, T, and 
MERGE) 

The control registers are accessible only by load 
and store control-register instructions; the integer 
and floating-point registers are accessed by arithme­
tic operations and load and store instructions. The 
special-purpose registers KR, KI, T, and MERGE are 
used by a few specific instructions. 

7 5 o 
----I 

8-81T PIXEL c 

9 3 0 

R G B 

15 7 o 

B T 

240296-4 
I-Intensity, R-Red intensity, G-Green intensity, B-Blue intensity, C-Color, T-Texture 
These assignments of specific meanings to the fields of pixels are for illustration purposes only. Only the field sizes are 
defined, not the specific use of each field. 

Figure 2.2. Pixel Format Example 

5·4 
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2.2.1 INTEGER REGISTER FILE 

There are 32 integer registers, each 32 bits wide, 
referred to as rO through r31, which are used for 
address computation and scalar integer computa­
tions. Register rO always returns zero when read, 
independently of what is stored in it. 

2.2.2 FLOATING·POINT REGISTER FILE 

There are 32 floating-point registers, each 32-bits 
wide, referred to as fO through f31, which are used 
for floating-point computations. Registers fO and f1 
always return zero when read, independently of 
what is stored in them. The floating-point registers 
are also used by a set of graphics operations, pri­
marily for 3D graphics computations. 

When accessing 64-bit floating-point or integer val­
ues, the i860 microprocessor uses an even/odd pair 
of registers. When accessing 128-bit values, it uses 
an aligned set of four registers (fO, f4. f8, .... f28). 
The instruction must designate the lowest register 
number of the set of registers containing 64- or 128-
bit values. Misaligned register numbers produce un­
defined results. The register with the lowest number 
contains the least significant part of the value. For 
128-bit values, the register pair with the lower num­
bers contain the least significant 64 bits while the 
register pair with the higher numbers contain the 
most significant 64 bits. 
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The 128-bit load and store instructions, along with 
the 128-bit data path between the floating-point reg­
isters and the data cache help to sustain the extraor­
dinarily high rate of computation. 

2.2.3 PROCESSOR STATUS REGISTER 

The processor status register (psr) contains miscel­
laneous state information for the current process. 
Figure 2.4 shows the format of the psr. 

• BR (Break Read) and BW (Break Write) enable a 
data access trap when the operand address 
matches the address in the db register and a 
read or write (respectively) occurs. 

• Various instructions set CC (Condition Code) ac­
cording to tests they perform. The branch-on­
condition-code instructions test its value. The bla 
instruction sets and tests LCe (Loop Condition 
Code). 

• 1M (Interrupt Mode) enables external interrupts if 
set; disables interrupts if clear. 

• U (User Mode) is set when the i860 microproces­
sor is executing in user mode; it is clear when the 
i860 microprocessor is executing in supervisor 
mode. In user mode, writes to some control regis­
ters are inhibited. This bit also controls the mem­
ory protection mechanism. See section 2.4.4.3 
for a description of memory protection in user 
and supervisor modes. 
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ADDRESS 

F!gure 2.3. Registers and Data Paths 
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BREAK READ 
BREAK WRITE ------------------------, 
CONDITION CODE -----------------------, 
LOOP CONDITION CODE ---------------------, 
INTERRUPT MODE --------------------., 
PREVIOUS INTERRUPT MODE -----------------, 
USER MODE ---------------------, 
PREVIOUS USER MODE 
INSTRUCTION TRAP ------------------, 
INTERRUPT --------------------, 
INSTRUCTION ACCESS TRAP ------------, 
DATA ACCESS TRAP ----------------, I 
FLOATING-POINT TRAP --------------, 1 
DELAYED SWITCH ! 
DUAL INSTRUCTION MODE 1 

PM 

KILL NEXT FLOATING-POINT INSTRUCTION 
(RESERVED) 
SHIFT COUNT 
PIXEL SIZE 
PIXEL MASK 

·Can be changed only from supervisor level. 

Figure 2.4 Processor Status Register 

INTERLOCK -------------..., 

WRITE-PROTECT MOOE -----------.11 DATA CACHE .SIZE --------, 

(RESERVED) 

. . 
1 ttL-(RESERVED) 

L.. _________ :~G~~~~:~EM~6EMODE 

L... -----------OVERFLOW FLAG 

Figure 2.5 Extended Processor Status Register 

PROCESSOR 
TYPE 
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• PIM (Previous Interrupt Mode) and PU (Previous 
User Mode) save the corresponding status bits 
(1M and U) on a trap, because those status bits 
are changed when a trap occurs. They are re­
stored into their corresponding status bits when 
returning from a trap handler with a branch indi­
rect instruction when a trap flag is set in the psr. 

• DS (Delayed Switch) is set if a trap occurs during 
the instruction before dual-instruction mode is en­
tered or exited. If DS is set and DIM (Duallnstruc­
tion Mode) is clear, the i860 microprocessor 
switches to dual-instruction mode one instruction 
after returning from the trap handler. If DS and 
DIM are both set, the i860 microprocessor 
switches to single-instruction mode one instruc­
tion after returning from the trap handler. 

• FT (Floating-Point Trap), DAT (Data Access 
Trap), IAT (Instruction Access Trap), IN (Inter­
rupt), and IT (Instruction Trap) are trap flags. 
They are set when the corresponding trap condi­
tion occurs. The trap handler examines these bits 
to determine which condition or conditions have 
caused the trap. 
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• When a trap occurs, the i860 microprocessor 
sets DIM if it is executing in dual-instruction 
mode; it clears DIM if it is executing in single-in­
struction mode. If DIM is set after returning from a 
trap handler, the i860 microprocessor resumes 
execution in dual-instruction mode. 
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• When KNF (Kill Next Floating-Point Instruction) is 
set, the next floating-point instruction is sup­
pressed (except that its dual-instruction mode bit 
is interpreted). A trap handler sets KNF if the 
trapped floating-paint instruction should not be 
reexecuted. ' 

• SC (Shift Count) stores the shift count used by 
the last right-shift instruction. It controls the num­
ber of shifts executed by the double-shift instruc­
tion. 

• PS (Pixel Size) and PM (Pixei Mask; are used by 
the pixel-store instruction and by the graphics in­
structions. The values of PS control pixel size as 
defined by Table 2.2. T~e bits in PM correspond 
to pixels to be updated by the pixel-store instruc­
tion pst.d. The low-order bit of PM corresponds 
to the low-order pixel of the 64-bit source oper­
and of pst.d. The number of low-order bits of PM 
that are actually used is the number of pixels that 
fit into 64-bits, which depends upon PS. If a bit of 
PM is set, then pst.d stores the corresponding 
pixel. Refer also to the pst.d instruction in section 
8. 

Table 2.2. Values of PS 

Value 
Pixel Size Pixel Size 

In bits In bytes 

00 8 1 
01 16 2 
10 32 4 
11 (undefined) (undefined) 

2.2.4 EXTENDED PROCESSOR STATUS 
REGISTER 

The extended processor status register (epsr) con­
tains additional state information for the current pro­
cess beyond that stored in the psr. Figure 2.5 shows 
the format of the epsr. 

• The processor type is one for the i860 microproc­
essor. 

• The stepping number has a unique value that dis­
tinguishes amoiig different rnvisions of the prcc .. 
essor. 

• IL (Interlock) is set if a trap occurs after a lock 
instruction but before the load or store following 
the subsequent unlock instruction. IL indicates to 
the trap handler that a locked sequence has 
been interrupted. This does not apply if a st.c 
dlrbase was used to set the BL bit. 

• WP (write protect) controls the semantics of the 
W bit of page table entries. A clear W bit in either 
the directory or the page table entry causes 
writes to be trapped. When WP is clear, writes 
are trapped in user mode, but not in supervisor 
mode. When WP is set, writes are trapped in both 
user and supervisor modes. 

• INT (Interrupt) is the value of the INT input pin. 

• DCS (Data Cache Size) is a read-only field that 
tells the size of the on-chip data cache. The num­
ber of bytes actually available is 212+DCS; there­
fore, a value of zero indicates 4 Kbytes, one indi­
cates 8 Kbytes, etc. 

ADDRESS TRANSLATION ENABLE ----------------------, 
DRAM PAGE SIZE -----------------

31 

BUS LOCK ------------------------, 
I-CACHE, TLB iNVAliDATE ------ ------------, 
(RESERVED) ---------------------, 
CODE SIZE 8-BIT -------------------, j 
REPLACEMENT BLOCK ----------------, 'j 
REPLACEMENT CONTROL 1 , 

12 

DIRECTORY TABLE BASE (DTB) 

• • • •••• 
'Can be changed only from supervisor level 

Figure 2.6. Directory Base Register 
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• PBM (Page-Table Bit Mode) determines which bit 
of page-table entries is output on the PTB pin. 
When PBM is clear, the PTB signal reflects bit CD 
of the page-table entry used for the current cycle. 
When PBM is set, the PTB signal reflects bit WT 
of the page-table entry used for the current cycle. 

• BE (Big Endian) controls the ordering of bytes 
within a data item in memory. Normally (Le. when 
BE is clear) the iB60 microprocessor operates in 
little end ian mode, in which the addressed byte is 
the low-order byte. When BE is set (big endian 
mode), the low-order three bits of all load and 
store addresses are complemented, then 
masked to the appropriate boundary for align­
ment. This causes the addressed byte to be the 
most significant byte. Section 2.3 discusses little 
and big endian addressing. 

• OF (Overflow Flag) is set by adds, addu, subs, 
and subu when integer overflow occurs. For 
adds and subs, OF is set if the carry from bit 31 
is different than the carry from bit 30. For addu, 
OF is set if there is a carry from bit 31. For subu, 
OF is set if there is no carry from bit 31. Under all 
other conditions, it is cleared by these instruc­
tions. OF controls the function of the intovr 
instruction. 

2.2.5 DATA BREAKPOINT REGISTER 

The data breakpoint register (db) is used to gener­
ate a trap when the i860 microprocessor makes a 
data-operand access to the address stored in this 
register. The trap is enabled by BR and BW in psr. 
The db register can only be changed from supervi­
sor level. When comparing, a number of low order 
bits of the address are ignored, depending on the 
size of the operand. For example, a 16-bit access 
ignores the low-order bit of the address when com­
paring to db; a 32-bit access ignores the low-order 
two bits. This ensures that any access that overlaps 
the address contained in the register will generate a 
trap. The OAT occurs before the data is accessed 
and prevents the load or store from completing. 

2.2.6 DIRECTORY BASE REGISTER 

The directory base register dlrbase (shown in Figure 
2.6) controls address translation, caching, and bus 
options. The dlrbase register can only be changed 
from supervisor level. The BL bit is changed from 
user level with the lock and unlock instructions. 

• ATE (Address Translation Enable), when set, en­
ables the virtual-address translation algorithm. 
The data cache must be flushed before changing 
the ATE bit. 
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• DPS (DRAM Page Size) controls how many bits 
to ignore when comparing the current bus-cycle 
address with the previous bus-cycle address to 
generate the NENE# signal. This feature allows 
for higher speeds when using static column or 
page-mode DRAMs and consecutive reads and 
writes access the row. The comparison ignores 
the low-order 12 + DPS bits. A value of zero is 
appropriate for one bank of 256K X n RAMs, 1 
for 1 M X n RAMS, etc. 

• When BL (Bus Lock) is set, external bus access­
es are locked. The LOCK # signal is asserted the 
next bus cycle whose internal bus request is gen­
erated after BL is set. It remains set on every 
subsequent bus cycle as long as BL remains set. 
The LOCK # signal is deasserted on the next in­
ternal bus request generated after BL is cleared. 
Traps immediately clear BL. The lock and unlock 
instructions control the BL bit. 

• ITI (I-Cache, TLB Invalidate), when set in the val­
ue that is loaded into dirbase, causes the instruc­
tion cache and address-translation cache (TLB) 
to be flushed. The ITI bit does not remain set in 
dlrbase. ITI always appears as zero when read­
ing dirbase. Section 2.5 discusses flushing the 
data cache before invalidating the TLB. 

• When CSB (Code Size B-Bit) is set, instruction 
cache misses are processed as 8-bit bus cycles. 
When this bit is clear, instruction cache misses 
are processed as 64-bit bus cycles. This bit can 
not be set by software; hardware sets this bit at 
initialization time. It can be cleared by software 
(one time only) to allow the system to execute out 
of 64-bit memory after bootstrapping from 8-bit 
EPROM. A non delayed branch to code in 64-bit 
memory should directly follow the st.c (store con­
trol register) instruction that clears CSB, in order 
to make the transition from 8-bit to 64-bit memory 
occur at the correct time. The branch must be 
aligned on a 64-bit boundary. 

• RB (Replacement Block) identifies the cache 
block to be replaced by cache replacement algo­
rithms. The high-order bit of RB is ignored"by the 
instruction and data caches. RB conditions the 
cache flush instruction flush, which is discussed 
in Section B. Table 2.3 explains the values of RB. 

• RC (Replacement Control) controls cache re­
placement algorithms. Table 2.4 explains the sig­
nificance of the values of RC. 

• DTB (Directory Table Base) contains the high-or­
der 20 bits of the physical address of the page 
directory when address translation is enabled (Le. 
ATE = 1). The low-order 12 bits of the address 
are zeros. 
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Value 

0 
0 

0 
1 
o 
1 

Value 

00 

01 

10 

11 

i860TM MICROPROCESSOR 

fLUSH ZERO 
TRAP INEXACT --------------------------, 
ROUNOING MODE -------------------------, 
UPDATE 
fLOATING-POINT TRAP ENABLE -----------------, 
(RESERVED) -----------------------, I 
STICKY INEXACT fLAG ------------------, 
SOURCE EXCEPTION -------------------, I 
MULTIPLIER UNDERflOW ----------------, I 
MULTIPLIER OVERfLOW I 
MULTIPLIER INEXACT I 
~~;~~~~~t~~g;E I I 
ADDER OVERflOW 1 1 1 ! ! ! ! ! !! l 1 1 

111 1 t t ADDER INEXACT 
ADDER ADD ONE 

RESULT REGISTER L________ ADDER EXPONENT 
(RESERVED) 

LOAD PIPE RESULT PRECISION 
- INTEGER(GRAPHICS) PIPE RESULT PRECISION 

MULTIPLIER PIPE RESULT PRECISION 
ADDER PIPE RESULT PRECISION 

(RESERVED) 
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Figure 2.7. Floating-Point Status Register 

Table 2.3. Values of RB 

Replace 
TLBBlock 

0 
1 
2 
3 

Replace Instruction 
and Data Cache Block 

0 
1 

o 

Table 2.4. Values of RC 

Meaning 

Selects the normal replacement 
algorithm where any block in the set 
may be replaced on cache misses in all 
caches. 

Instruction, data, and TLB cache 
misses replace the block selected by 
RB. The instruction and data caches 
ignore the high-order bit of RB. This 
mode is used for instruction cache and 
TLB testing. 

Data cache misses replace the block 
selected by the low-order bit of RB. 

Disables data cache replacement. 
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2.2.7 FAULT INSTRUCTION REGISTER 

When a trap occurs, this register contains the ad­
dress of the trapping instruction (not necessarily the 
instruction that created the conditions that required 
the trap). The fir is a read only register. The address 
oj the id.c; instruction used to iead the fii is iaturnad 
in rdest when reading the fir at any time other than 
the first Id.c fir after a trap. 

2.2.8 FLOATING-POINT STATUS REGISTER 

The floating-point status register (fsr) contains the 
floating-point trap and rounding-mode status for the 
current process. Figure 2.7 shows its format. The fsr 
is writable in user level. 

e If FZ (Flush Zero) is clear and underflow occurs, 
a reSUlt-exception trap is generated. When FZ is 
set and underflow occurs, the result is set to zero, 
and no trap due to underflow occurs. 

• If TI (Trap Inexact) is clear, inexact results do not 
cause a trap. If TI is set, inexact results cause a 
trap. The sticky inexact flag (SI) is set whenever 
an inexact result is produced, regardless of the 
setting of TI. 

• RM (Rounding Mode) ,specifies one of the four 
rounding modes defined by the IEEE standard. 
Given a true result b that cannot be represented 
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Table 2.5. Values of RM 

Value Rounding Mode 

00 Round to nearest or even 

01 Round down (toward - <Xl) 
10 Round up (toward + <Xl 
11 Chop (toward zero) 

by the target data type, the i860 microprocessor 
determines the two representable numbers 8 

and c that most closely bracket b in value (8 < b 
< c). The i860 microprocessor then rounds 
(changes) b to 8 or c according to the mode se­
lected by RM as defined in Table 2.5. Rounding 
introduces an error in the result that is less than 
one least-significant bit. 

• The U-bit (Update Bit), if set in the value that is 
loaded into fsr by a st.e instruction, enables up­
dating of the result-status bits (AE, AA, AI, AO, 
AU, MA, MI, MO, and MU) in the first-stage of the 
floating-point adder and multiplier pipelines. If this 
bit is clear, the result-status bits are unaffected 
by a st.e instruction; st.e ignores the correspond­
ing bits in the value that is being loaded. A st.e 
always updates fsr bits 21 .. 17 and 8 .. 0 directly. 
The U-bit does not remain set; it always appears 
as zero when read. 

• The FTE (Floating-Point Trap Enable) bit, if clear, 
disables all floating-point traps (invalid input oper­
and, overflow, underflow, and inexact result). 

• SI (Sticky Inexact) is set when the last stage re­
sult of either the multiplier or adder is inexact (Le. 
when either AI or MI is set). SI is "sticky" in the 
sense that it remains set until reset by software. 
AI and MI, on the other hand, can by changed by 
the subsequent floating-point instruction. 

• SE (Source Exception) is set when one of the 
source operands of a floating-point operation is 
invalid; it is cleared when all the input operands 
are valid. Invalid input operands include denor­
mals, infinities, and all NaNs (both quiet and sig­
naling). 

• When read from the fsr, the result-status bits MA, 
MI, MO, and MU (Multiplier Add-One, Inexact, 
Overflow, and Underflow, respectively) describe 
the last stage result of the multiplier. 

When read from the fsr, the result-status bits AA, 
AI, AO, AU, and AE (Adder Add-One, Inexact, 
Overflow, Underflow, and Exponent, respectively) 
describe the last stage result of the adder. The 
high-order three bits of the 11-bit exponent of the 
adder result are stored in the AE field. 

The Adder Add One and Multiplier Add One bits 
indicate that the absolute value of the result frac-

5-11 

Rounding Action 

Closer to b of 8 or c; if equally 
close, select even number 
(the one whose least 
significant bit is zero). 
8 

c 
Smaller in magnitude of 8 or c. 

tion grew by one least-significant bit due to 
rounding. AA and MA are not influenced by the 
sign of the result. 

After a floating·point operation in a given unit (ad­
der or multiplier), the result-status bits of that unit 
are undefined until the point at which result ex­
ceptions are reported. 

When written to the fsr with the U-bit set, the 
result-status bits are placed into the first stage of 
the adder and multiplier pipelines. When the 
processor executes pipelined operations, it prop­
agates the result-status bits of a particular unit 
(multiplier or adder) one stage for each pipelined 
floating-point operation for that unit. When they 
reach the last stage, they replace the normal re­
sult-status bits in the fsr. When the U-bit is not 
set, result-status bits in the word being writeen to 
the fsr are ignored. 

In a floating-point dual-operation instruction (e.g. 
add-and-multiply or subtract-and-multiply), both 
the multiplier and the adder may set exception 
bits. The result-status bits for a particular unit re­
main set until the next operation that uses that 
unit. 

• RR (Result Register) specifies which floating­
point register (fO-f31) was the destination regis­
ter when a result-exception trap occurs due to a 
scalar operation. 

• LRP (Load Pipe Result Precision), IRP (Integer 
(Graphics) Pipe Result Precision), MRP (Multiplier 
Pipe Result Precision), and ARP (Adder Pipe Re­
sult Precision) aid in restoring pipeline state after 
a trap or process switch. Each defines the preci­
sion of the last stage result in the corresponding 
pipeline. One of these bits is set when the result 
in the last stage of the corresponding pipeline is 
double precision; it is cleared if the result is single 
preqision. These bits cannot be changed by soft­
ware. 

2.2.9 KR, KI, T, AND MERGE REGISTERS 

The KR, KI, and T registers are special-purpose reg­
isters used by th,e dual-operation. floating-point 
instructions pfam, pfmam, pfsm, and pfmsm, 



i860TM MICROPROCESSOR 

which initiate both an adder (A-unit) operation and a 
multiplier (M-unit) operation. The KR, KI, and T regis­
ters can store values from one dual-operation in­
struction' and supply them as inputs to subsequent 
dual-operation instructions. (Refer to Figure 2.14.) 

The MERGE register is used only by the graphics 
instructions. The purpose of the MERGE register is 
to accumulate (or merge) the results of multiple-ad­
dition operations that use as operands the color-in­
tensity values from pixels or distance values from a 
Z-buffer. The accumuiaied r'esuiis can then be 
stored in one 54-bit operation. 

Two multiple-addition instructions and an OR in­
struction use the MERGE register. The addition in­
structions are designed to add interpolation values 
to each color-intensity field in an array of pixels or to 
each distance value in a Z-buffer. 

Refer to the instruction descriptions in section 8 for 
more information about these registers. 

2.3 Addressing 

Memory is addressed in byte units with a paged vir­
tual-address space of 232 bytes. Data and instruc­
tions can be located anywhere in this address 
space. Address arithmetic is performed using 32-bit 
input values and produces 32-bit results. The low-or­
der 32 bits of the result are used in case of overflow. 

Normally, multibyte data values are stored in memo­
ry in little endian format, Le., with the least significant 
byte at the lowest memory address. As an option, 
the ordering can be dynamically selected by soft­
ware in supervisoi mode. Tha i850 microprocessor 
also offers big end ian mode, in which the most sig­
nificant byte of a data item is at the iowest address. 
Figure 2.8 shows the difference between the two 
storage modes. Big endian and little endian data ar­
eas should not be mixed within a 54-bit data word. 
Illustrations of data structures in this data sheet 
show data stored in little endian mode, Le., the low­
order byte is at the lowest memory address. 

Code accesses are always done with little endian 
addressing. This implies that code will appear differ­
entlY than documented here when accessed as big 
end ian data. Intel recommends that disassemblers 
running in a big endian system, convert instructions 
which have been read as data back to little endian 
form and present them in the format documented 
here., 

Alignment requirements are as follows (any violation 
results in a data-access trap): 

• 128-bit values are aiigned on i 6-byte boundaries 
when referenced in memory (i.e. the four least 
significant address bits must be zero). 

• 54-bit values are aligned on 8-byte boundaries 
when referericed in memory (i.e. the three least 
significant address bits must be zero). ' 

• 32-bit values are aligned on 4-byte boundaries 
when referenced in memory (i.e. the two least 
significant address bits must be zero). 

5-12 

• 15-bit values are aligned on 2-byte boundaries 
when referenced in memory (Le. the least signifi­
cant address bit must be zero). 

2.4 Virtual Addressing 

When address translation is enabled, the i850 micro­
processor maps instruction and data virtual address­
es into physical addresses before referencing mem­
ory. This address transformation is compatible with 
that of the 38Q microprocessor and implements the 
basic features needed for page-oriented virtual­
memory systems and page-level protection. 

The address translation is optional. Address transla­
tion is in effect oniy when the ATE bit of diibase is 
set. This bit is typically set by the operating system 
during software initialization. The ATE bit must be 
set if the operating system is to implement page-ori­
ented protection or page-oriented virtual memory. 
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31 21 11 o 
DIR PAGE OFFSET 

Figure 2.9. Format of a Virtual Address 

Address translation is disabled when the processor 
is reset. It is enabled when a store to dirbase sets 
the ATE bit. It is disabled again when a store clears 
the ATE bit. 

2.4.1 PAGE FRAME 

A page frame is a 4-Kbyte unit of contiguous· ad· 
dresses of physical main memory. Page frames be· 
gin on 4·Kbyte boundaries and are fixed in size. A 
page is the collection of data that occupies a page 
frame when that data is present in main memory. 
The data may also occupy some location in second· 
ary storage when there is not sufficient space in 
main memory. 

2.4.2 VIRTUAL ADDRESS 

A virtual address refers indirectly to a physical ad­
dress by specifying a page table, a page within that 

I DIR I PAGE I OFFSET I 

I 
PAGE DIRECTORY 

• • 

table, and an offset within that page. Figure 2.9 
shows the format of a virtual address. 

Figure 2.10 shows how the i860 microprocessor 
converts the DIR, PAGE, and OFFSET fields of a 
.. : ..... ",1 ,..,.a,.,t.,..t'!ot'" i",t,.., +h~ nh,,~i"'oOl onrlr.oOQ h" f"OnnQlllt_ 
VII LUQ' QUUIQ.:;II~ IIILV " •• '" t"'l~I"""'" ""''''' ................ .." ................. . 

ing two levels of page tables. The addressing mech­
anism uses the DIR field as an index into a page 
directory, uses the PAGE field as an index into the 
page table determined by the page directory, and 
uses the OFFSET field to address a byte within the 
page determined by the page table. 

2.4.3 PAGE TABLES 

A page table is simply an array of 32·bit page specifi­
ers. A page table is itself a page, and therefore con· 
tains 4 Kbytes of memory or at most 1 K 32-bit en· 
tries. 

PAGE FRAI.lE 

PHYSICAL 
ADDRESS 

PAGE TABLE 
• 

I 
I 
II 

PG TBL ENTRY 

DIR ENTRY 

DTB 1-----..... 
240296-32 

Figure 2.10. Address Trans!ation 
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Two levels of tables are used to address a page of 
memory. At the higher level is a page directory. The 
page directory addresses up to 1 K page tables of 
the second level. A page table of the second level 
addresses up to 1 K pages. All the tables addressed 
by one page directory, therefore, can address 1 M 
pages (220). Because each page contains 4 Kbytes 
(212 bytes), the tables of one page directory can 
span the entire physical address space of the iB60 
microprocessor (220 x 212 = 232). 

The physical address of the current page directory is 
stored in DTB field of the dirbase register. Memory 
management software has the option of using one 
page directory for all processes, one page directory 
for each process, or some combination of the two. 

2.4.4 PAGE-TABLE ENTRIES 

Page-table entries (PTEs) in either level of page ta­
bles have the same format. Figure 2.11 illustrates 
this format. 

2.4.4.1 Page Frame Address 

The page frame address specifies the physical start­
ing address of a page. Because pages are located 
on 4K boundaries, the low-order 12 bits are always 
zero. In a page directory, the page frame address is 
the address of a page table. In a second-level page 
table, the page frame address is the address of the 
page frame that contains the desired memory oper­
and. 

2.4.4.2 Present Bit 

The P (present) bit indicates whether a page table 
entry can be used in address translation. P = 1 indi-

cates that the entry can be used. When P = 0 in 
either level of page tables, the entry is not valid for 
address translation, and the rest of the entry is avail­
able for software use; none of the other bits in the 
entry is tested by the hardware. If P = 0 in either 
level of page tables when an attempt is made to use 
a page-table entry for address translation, the proc­
essor signals either a data-access fault or an in­
struction-access fault. In software systems that sup­
port paged virtual memory, the trap handler can 
bring the required page into physical memory. 

Note that there is no P bit for the page directory 
itself. The page directory may be not-present while 
the associated process is suspended, but the oper­
ating system must ensure that the page directory 
indicated by the dirbase image associated with the 
process is present in physical memory before the 
process is dispatched. 

2.4.4.3 Writable and User Bits 

The W (writable) and U (user) bits are used for page­
level protection, which the i860 microprocessor per­
forms at the same time as address translation. The 
concept of privilege for pages is implemented by as­
signing each page to one of two levels: 

1. Supervisor level (U = O)-for the operating sys­
tem and other systems software and related data. 

2. User level (U = 1 )-for applications procedures 
and data. 

The U bit of the psr indicates whether the i860 mi­
croprocessor is executing at user or supervisor level. 
The i860 microprocessor maintains the U bit of psr 
as follows: 

PRESENT -----------------------------, 

NOTE: 

WRITABLE ---------------------------, 
USER----------------------------, 
WRITE-THROUGH ------------------------, 
CACHE DISABLE ----------------------, 
ACCESSED ----------------------, 
DIRlY ----------------------, 
(RESERVED) -------------------, 

''''~,~ roo ,~" .~ .. """~ I 
31 12 9 

PAGE FRAME ADDRESS 31 •. 12 

X indicates Intel reserved. Do not use. 

Figure 2.11. Format of a Page Table Entry 
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• The i860 microprocessor clears the psr U bit to 
indi~ate supervisor level when a trap occurs (in­
cluding when the trap instruction causes the 
trap). The prior value ofU is copied into PU. 

• !he i860 microprocessor copies the psr PU bit 
Into the U bit when an indirect branch is executed 
and one of the trap bits is set. If PU was one the 
i860 microprocessor enters user level. ' 

With the U bit of psr and the Wand U bits of the 
page table entries, the i860 microprocessor imple­
ments the following protection rules: 

• When at user level, a read' or write of a supervi­
sor-level page causes a trap. 

• When at user level, a write to a page whose W bit 
is clear causes a trap. 

• When at user level, st.c to certain control regis-
ters is ignored. 

When the i860 microprocessor is executing at super­
visor I~vel, all pages are addressable, but, when it is 
executing at user level, only pages that belong to the 
user-level are addressable. 

When the i860 microprocessor is executing at super­
yisor. level, all pages are r~adable. Whether a page 
IS writable depends upon the write-protection mode 
controlled by WP of epsr: 

WP = 0 All pages are writable. 

WP = 1 A wiite to a page whose W bit is 
clear causes a trap. 

When the i860 microprocessor is executing at user 
level, only pages that belong to user level and are 
marked writable are actually writable; pages that be­
long to sups;"visor leve! are neither readable ncr \A!ri­
table from user level. 

2.4.4.4 Write-Through Bit 

The i860 microprocessor does not implement a 
write-through caching policy for the on-chip data 
cache; however, the WT (write-through) bit in the 
second-level page-table entry does determine inter­
nal ~aching policy. If WT is set in a PTE, on-chip 
caching of data from the corresponding page is in­
hibited. The i860 CPU may place pages having 
WT = 1 into the instruction cache. Future imple­
mentations of the i860 architecture may adhere to a 
write-through data caching' policy. Therefore, they 
may cache pages having the WT bit of the PTE set. 
If WT is clear, the normal write-back policy is applied 
to data from the page in the on-chip caches. The WT 
bit of page directory entries is not referenced by the 
processor, but is reserved. 

The WT bit is independent of the CO bit; therefore, 
data may be placed in a second-level coherent 
cache, but kept out of the on-chip caches. 
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2.4.4.5 Cache Disable Bit 

If the CD (cache disable) bit in the second-level 
page-table entry is set, data from the associated 
page is not placed in instruction or data caches. 
Clearing CD permits the cache hardware to place 
data from the associated page into caches. The CD 
bit of page directory entries is not referenced by the 
processor, but is reserved. , 

To control external caches, the i860 microprocessor 
outputs on its PTe pin eit~ai the CD or 'w'.'T bit. Ths 
PBM bit of epsr determines which bit is output. 

2.4.4.6 Accessed and Dirty Bits 

The A (accessed) and 0 (dirty) bits provide data 
about page usage in both levels of the page tables. 

The i860 microprocessor sets the corresponding ac­
cessed bits' in both levels of page tables before a 
read or write operation to a page. The processor 
tests the dirty bit in the second-level page table be­
fore a write to an address covered by that page table 
entry, and, under certain conditions: causes traps. 
The trap handler then has the opportunity to main­
tain appropriate values in the dirty bits. The dirty bit 
in directory entries is not tested by the i860 micro­
processor. The precise algorithm for using these bits 
is specified in Section 2.4.5. 

An operating system that supports paged virtual 
memory can use these bits to determine what pages 
to eliminate from physical memory when the de­
mand for memory exceeds the physical memory 
available. The 0 and A bits in the PTE (page-table 
~ntry) are normally initialized to zero by the operat­
Ing system. The processor sets the A bit when a 
page is accessed either by a read or write operation. 
When a data- or instruction-access fault occurs, the 
trap handler sets the 0 bit if an allowable write is 
being performed, then re-executes the instruction. 

The operating system is responsible for coordinating 
its updates to the accessed and dirty bits with up­
dates by the CPU and by other processors that may 
share the page tables. The i860 microprocessor au­
tomatic~IIy assert~ the LOCK,# signal while setting 
the A bit. If an A-bit of a PTE is found not set during 
a locked. sequence (created by the lock instruction), 
a trap Will occur and the processor will not update 
the A-bit. 

2.4.4.7 Combining Protection of Both Levels of 
Page Tables 

For anyone page, the protection attributes of itS 
page directory entry may differ from those of its 
page table entry. The i860 microprocessor 'com­
putes the effective protection attributes for a page 
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by examining the protection attributes in both the 
directory and the page table. Table 2.6 shows the 
effective protection provided by the possible combi­
nations- of protection attributes. 

2.4.5 ADDRESS TRANSLATION ALGORITHM 

The algorithm below defines the translation of each 
virtual address to a physical address. Let DIR, 
PAGE, and OFFSET be the fields of the virtual ad­
dress; let PFA 1 and PFA2 be the page frame ad­
dress fields of the first and second level page tables 
respectively; DTB is the page directory table base 
address stored in the dirbase register. 

1. Read the PTE (page table entry) at the physical 
address formed by DTB:DIR:OO. 

2. If P in the PTE is zero, generate a data- or instruc­
tion-access fault. 

3. If W in the PTE is zero, the operation is a write, 
and either the U-bit of the PSR is set or WP = 1, 
generate a data or instruction access fault. 

4. If the U-bit in the PTE is zero and the U-bit in the 
psr is set, generate a data or instruction access 
fault. 

5. If A in the PTE is zero, and if the TLB miss oc­
curred while the bus was locked (due to a lock 

instruction, or st.c dirbase with BL = 1), gener­
ate a data or instruction access fault. (The trap 
allows software to set A to one and restart the 
sequence. This avoids ambiguity in determining 
what address corresponds to a locked sema­
phore for external bus hardware use.) 

6. If A in the PTE is zero, and if the TLB miss oc­
curred while the bus was not locked, assert 
LOCK #. Re-fetch and check the PTE, set A, and 
store the PTE. Deassert LOCK # during the store. 

7. Locate the PTE at the physical address formed by 
PFA1:PAGE:OO. 

8. Perform the P, W, U, and A checks as in steps 2 
through 5 with the second-level PTE. 

9. If D in the PTE is clear and the operation is a 
write, generate a data or instruction access fault. 

10. Form the physical address as PFA2:0FFSET. 

The i860 microprocessor looks only in external 
memory for Page Directories and Page Tables, in 
the translation process. The data cache is not 
searched. Therefore, any code which modifies Page 
Directories or Page Tables must keep them out of 
the cache. The tables should be kept in non-cache­
able memory, or flushed from the cache. 

Table 2.6. Combining Directory and Page Protections 

Page Directory Page Table Combined Protection 

Entry Entry User Supervisor 
Access Access 

U-blt W-bit U-bit W-bit WP= X WP = 0 WP= 1 

0 0 0 0 N R/W R 
0 0 0 1 N R/W R 
0 0 1 0 N R/W R 
0 0 1 1 N R/W R 

0 1 0 0 N R/W R 
0 1 0 1 N R/W R/W 
0 1 1 0 N R/W R 
0 1 1 1 N R/W R/W 

1 0 0 0 N R/W R 
1 0 0 1 N R/W R 
1 0 1 0 R R/W R 
1 0 1 1 R R/W R 

1 1 0 0 N R/W R 
1 1 0 1 N R/W R/W 
1 1 1 0 R R/W R 
1 1 1 1 R/W R/W R/W 

NOTES: 
N = No access allowed R/W = Both reads and writes allowed 
R = Read access only X = Don't care 

5-17 
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The i860 microprocessor expects Page Directories 
and Page Tables to be.in little endian format. The 
operating system must maintain these tables in little 
endian format by either setting BE = 0 when manip­
ulating the tables or by complementing bit 2 of the 
address when loading or storing entries. 

2.4.6 ADDRESS TRANSLATION FAULTS 

The address translation fault is one instance of the 
data-access fault. The instruction causing the fault 
can be re-executed upon returning from the trap 
handler. 

2.4.7 PAGE TRANSLATION CACHE 

For greatest efficiency in address translation, the 
i860 microprocessor stores the most recently used 
page-table data in an on-chip cache called the TLB 
(translation lookaside buffer). Only if the necessary 
paging information is not in the cache must both lev­
els of page tables be referenced. 

2.5 Caching and Cache Flushing 

The i860 microprocessor has the ability to cache in­
struction, data, and address-translation information 
in on~chip caches. Caching uses virtual-address 
tags. The effects of mapping two different virtual ad­
dresses in the same address space to the same 
physical address are undefined. 

Instruction, data, and address-translation caching on 
the i860 microprocessor are not transparent. Writes 
do not immediately update r:nemory, the TLB, nor the 
instruction cachtt. Vvfites to iTu3mOry by othai bus 
devices do not update the caches. Under certain cir­
cumstances, such as lID references, self-modifying 
code, page-table updates, or shared data in a multi­
processing system, it is necessary to bypass or to 
flush the caches. The i860 microprocessor provides 
the following methods for doing this: 

• Bypassing Instruction and Data Caches. If 
deasserted during cache-miss processing, the 
KEN # pin disables instruction and data caching 
of the referenced data. If the CD bit of the associ­
ated second-level PTE is set, caching of data and 
instructions is disabled. The i860 CPU may place 
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pages having WT = 1 into the instruction cache. 
Future implementations of the i860 architecture 
may adhere to a write-through data cache policy. 
Thus, they may cache pages having the WT bitof 
the PTE set. The value of the CD bit or the WT bit 
is output on the PTB pin for. use by external 
caches. 

• Flushing Instruction and Address-Translation 
Caches. Storing to the dlrbase register with the 
ITI bit set invalidates the contents of the instruc­
tion and address-translation caches. This bit 
should be set when a page table or a page con­
taining code is modified or when changing the 
DTB field of dirbase. Note that in order to make 
the instruction or address-translation caches con­
sistent with the data cache, the data cache must 
be flushed before invalidating the other caches. 

NOTE: 
The mappin.9 of the page containing the currently 
executing instruction and the next six instructions 
should not be different in the new page tables 
when st.c dirbase changes DTB or activates ITI. 
The six instructions following the st.c should be 
nops and should lie in the same page as the st.c. 

• Flushing the Data Cache. The data cache is 
flushed by a software routine using the flush in­
struction. The data cache must be flushed prior to 
flushing the instruction or address-translation 
caches (as controlled by the ITI bit of dlrbase) or 
enabling or disabling address translation (via the 
ATE bit). The data cache does not need flushing 
if the program is modifying only the P, U, W, A, or 
D bits of a PTE (as long as the Page Frame Ad­
dress is not changed and the PTE itself was not 
in the data cache.) The i860 CPU does not check 
these protection bits on cache line writeback. 
Thus, a trap handler can service a DAT for D-bit-

. zero by setting D = 1 and then ITI = 1. In the 
case of setting the P or A bits active, there is no 
need to invalidate or flush any caches because 
the processor does not load entries into the TLB 
that have P = 0 or A = o. The i860 microproces­
sor searches only external memory for· Page Di­
rectories and Page Tables·in the translation pro­
cess. The data cache is not searched. Therefore, 
Page Tables and Directories should be kept in 
non-cacheable memory, or flushed from the 
cache by any code which accesses them. 
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2.6 Instruction Set 

Table 2.7 shows the complete set of instructions 
grouped by function within processing unit. Refer to 
Section 8 for an algorithmic definition of each in­
struction. 

The architecture of the i860 microprocessor uses 
parallelism to increase the rate at which operations 
may be introduced into the unit. Parallelism in the 
i860 microprocessor is not transparent; rather, pro­
grammers have complete control over parallelism 
and therefore can achieve maximum performance 
for a variety of computational problems. 

2.6.1 PIPELINED AND SCALAR OPERATIONS 

One type of parallelism used within the floating-point 
unit is "pipelining". The pipelined architecture treats 
each operation as a series of more primitive opera­
tions (called "stages") that can be executed in par­
allel. Consider just the floating-point adder unit as an 
example. Let A represent the operation of the adder. 
Let the stages be represented by A1, A2, and Aa. 
The stages are designed such that AI + 1 for one ad­
der instruction can execute in parallel with Ai for the 
next adder instruction. Furthermore, each AI can be 
executed in just one clock. The pipelining within the 
multiplier and graphics units can be described simi­
larly, except that the number of stages may be differ­
ent. 

Figure 2.12 illustrates three-stage pipelining as 
found in the floating-point adder (also in the floating­
point multiplier when single-precision input operands 
are employed). The columns of the figure represent 
the three stages of the pipeline. Each stage holds 
intermediate results and also (when introduced into 
first stage by software) holds status information per­
taining to those results. The figure assumes that the 
instruction stream consists of a series of consecu­
tive floating-point instructions, all of one type (Le. all 
adder instructions or all single-precision multiplier in­
structions). The instructions are represented as i, 
i + 1, etc. The rows of the figure represent the states 
of the unit at successive clock cycles. Each time a 
pipelined operation is performed, the result of the 
last stage of the pipeline is stored in the destination 
register rdes!, the pipeline is advanced one stage, 
and the input operands src1 and src2 are trans­
ferred to the first stage of the pipeline. 
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In the i860 microprocessor, the number of pipeline 
stages ranges from one to three. A pipe lined opera­
tion with a three-stage pipeline stores the result of 
the third prior operation. A pipelined operation with a 
two-stage pipeline stores the result of the second 
prior operation. A pipe lined operation with a one­
stage pipeline stores the result of the prior opera­
tion. 

There are four floating-point pipelines: one for the 
multiplier, one for the adder, one for the graphics 
unit, and one for floating-point loads. The adder 
pipeline has three stages. The number of stages in 
the multiplier pipeline depends on the precision of 
the source operands in the pipeline. Single preciSion 
has three stages and double precision has two 
stages. The graphics unit has one stage for all preci­
sions. The load pipeline has three stages for all pre­
cisions. 

Changing the FZ (flush zero), RM (rounding mode), 
or RR (result register) bits of fsr while there are re­
sults in either the multiplier or adder pipeline produc­
es effects that are not defined. 

2.6.1.1 Scalar Mode 

In addition to the pipelined execution mode, the i860 
microprocessor also can execute floating-point in­
structions in "scalar" mode. Most floating-point in­
structions have both pipelined and scalar variants, 
distinguished by a bit in the instruction encoding. In 
scalar mode, the floating-point unit does not start a 
new operation until the previous floating-point oper­
ation is completed. The scalar operation passes 
through all stages of its pipeline before a new opera­
tion is introduced, and the result is stored automati­
cally. Scalar mode is used when the next operation 
depends on results from the previous few floating­
point operations (or when the compiler or program­
mer does not want to deal with pipelining). 

2.6.1.2 Pipelining Status Information 

Result status information in the fsr consists of the 
AA, AI, AD, AU, and AE bits, in the case of the ad­
der, and the MA, MI, MO, and MU bits, in the case of 
the multiplier. This information arrives at the fsr via 
the pipeline in one of two ways: 
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Table 2.7. Instruction Set 

Core Unit Floating-Point Unit 

Mnemonic Description Mnemonic Description 

Load and Store Instructions F-P Multiplier Instruction 

Id.x Load integer fmul.p F-P multiply 
st.x Store integer pfmul.p Pipelined F-P multiply 
fld.y F-P load pfmul3.dd 3-Stage pipe lined F-P multiply 
pfld.z Pipelined F-P load fmlow.p F-P multiply low 
fst.y F-P store frcp.p F-P reciprocal 
pst.a Pixel store frsqr.p F-P reciprocal square root 

Register to Register Moves F-P Adder Instructions 

ixfr Transfer integer to F-P register fadd.p F-P add 
fxfr Transfer F-P to integer register pfadd.p Pipelined F-P add 

Integer Arithmetic Instructions famov.r F-P adder move 
pfamov.r Pipe lined F-P aojer move 

addu Add unsigned fsub.p F-P subtract 
adds Add signed 
subu Subtract unsigned 
subs Subtract signed 

pfsub.p Pipelined F-P subtract 
pfgt.p Pipelined F-P greater-than compare 
pfeq.p Pipe lined F-P equal compare 

Shift Instructions 

shl Shift left 
shr Shift right 
shra Shift right arithmetic 
shrd Shift right double 

fix.p F-P to integer conversion 
pfix.p Pipelined F-P to integer conversion 
ftrunc.p F-P to integer truncation 
pftrunc.p Pipelined F-P to integer truncation 

Dual-Operation Instructions 

Logical Instructions 

and Logical AND 
andh Logical AND high 
andnot . Logical AND NOT 
andnoth Logical AND NOT high 

pfam.p Pipelined F-P add and multiply 
pfsm.p Pipelined F-P subtract and multiply 
pfmam.p Pipe lined F-P multiply with add 
pfmsm.p Pipelined F-P multiply with subtract 

Long Integer Instructions 

or Logical OR 
orh Logical OR high 
xor Logical exclusive OR 
xorh Logical exclusive OR high 

fisub.z Long-integer subtract 
pfisub.z Pipelined long-integer subtract 
fiadd.z Long-integer add 
pfiadd.z Pipe lined long-integer add 

I Control-Transfer Instructions 
i 

trap . Software trap 

I Graphics Instructions 

fzchks 
I 

16-blt L-buffer check 
intovr Software trap on integer overflow pfzchks Pipelined 16-bit Z-buffer check 
br Branch direct fzchkl 32-bit Z-buffer check 
bri Branch indirect pfzchkl Pipelined 32-bit Z-buffer check 
bc Branch on CC 
bc.t Branch on CC taken 

faddp Add with pixel merge 
pfaddp Pipelined add with pixel merge 

bnc Branch on not CC faddz Add with Z merge 
bnc.t Branch on not CC taken pfaddz Pipelined add with Z merge 
bte Branch if equal form OR with MERGE register 
bine Branch if not equal pform Pipelined OR with MERGE register 
bla Branch on LCC and add 
call Subroutine call 
calli Indirect subroutine call Assembler Pseudo-Operations 

System Control Instructions Mnemonic Description 

flush Cache flush mov Integer register-register move 
Id.c Load from control register fmov.r F-P reg-reg move 
st.c Store to control register 
lock Begin interlocked sequence 
unlock End interlocked sequence 

pfmov.r Pipe lined F-P reg-reg move 
nop Core no-operation 
fnop F-P no-operation 
pfle.p Pipelined F-P less-than or equal 

5-20 



inter i860™ MICROPROCESSOR 

STAGE 1 STAGE 2 STAGE 3 

results (status) results (status) results status 

CLOCK n 

INSTRUC 
I 

CLOCK n+l 

INSTRUC 
1+1 

INSTRUC 
1+2 r 

1+1 

1+2 

(s) r 

(.) 

CLOCKn+~ 
1+1 1 

(s) r s 

~ CLOCKn+~ ~ 
INSTRUC 

1+3 r 

1+3 1+2 

(.) r 

1+1 

(5) r, s 

rdest 
1+3 

~ CLOCKn+~ ~~ 
INSTRUC 

1+4 r 

1+4 1+3 

(.) r 

1+2 

(.) r s 

rde.t 
1+4 

CLOCKn+~ ~ 
INSTRUC 

1+5 

1+5 1+4 1+3 
rdest 
1+5 

240296-9 

Figure 2.12. Pipelined Instruction Execution 

1. It is calculated by the last stage of the pipeline. 
This is the normal case. 

2. It is propagated from the first stage of the pipe­
line. This method is used when restoring the state 
of the pipeline after a preemption. When a store 
instruction updates the fsr and the value of the 
U bit in the word being written into the fsr is set, 
the store updates the result status bits in the first 
stage of both the adder and multiplier pipelines. 
When software changes the result-status bits of 
the first stage of a particular unit (multiplier or ad­
der), the updated result-status bits are propagat­
ed one stage for each pipelined floating-point op­
eration for that unit. In this case, each stage of the 
adder and multiplier pipelines holds its own copy 
of the relevant bits of the fsr. When they reach 
the last stage, they override the normal result­
status bits computed from the last stage result. 
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At the next floating-point instruction (or at certain 
core instructions), after the result reaches the last 
stage, the i860 microprocessor traps if any of the 
status bits of the fsr indicate exceptions. Note that 
the instruction that creates the exceptional condition 
is not the instruction at which the trap occurs. 

2.6.1.3 Precision in the Pipelines 

In pipe lined mode, when a floating-point operation is 
initiated, the result of an earlier pipelined floating­
point operation is returned. The result precision of 
the current instruction applies to the operation being 
initiated. The precision of the value stored in rdest is 
that which was specified by the instruction that initia­
ted that operation. 
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Figure 2.13. Dual-Instruction Mode Transitions 

If rdest is the same as src1 or src2, the value being 
cdnrorl in ,rleu:t ic: lIet,:!." Ret thA innllt nnArAnri In thiQ. _ .. _ .... - .... __ ..... - ---- -- .... - ... .-- .. -... -._ .. _- ... -... -
case, the precision of rdest must be the same as the 
source precision. .. 

The multiplier pipeline has two stages when the 
source operand is double-precision and three stages 
when the preciSion of the source operand is single. 
This means that a pipelined multiplier operation 
stores the result of the second previous multiplier 
operation for double-precision inputs and third previ­
ous for single-precision inputs (except when chang-
ing preCisions). . 

2.6.1.4 Transition between Scalar and Plpelined 
Operations • 

When a scalar operation is executed, it passes 
through all stages of the pipeline; therefore, any un­
stored results in the affected pipeline are lost. To 
avoid losing information, the last pipelined opera­
tions before a scalar operation should be dummy 
pipelined operations that unload unstored results 
from the affected pipeline. 
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After a scalar operation, the values of all pipeline 
stages of the affeoted tmit (excFlpt thFl l~l'It) Are un­
defined. No spurious reSUlt-exception traps result 
when the undefined values ai6 subsequently storad 
by pipelined operations; however, the values should 
not be referenced as source operands. 

For best performance a scalar operation should not 
immediately precede a pipelined operation whose 
rdest is nonzero. 

2.6.2 DUAL-INSTRUCTION MODE 

Another form of parallelism results from the fact that 
the i860 microprocessor can execute both a floating­
point and a core instruction simultaneously. Such 
parallel execution is called dual-instruction mode. 
When executing in dual-instruction mode, the in­
struction sequence consists of 64-bit aligned instruc­
tions with a floating-point instruction in the lower 32 
bits and a core instruction in the upper 32 bits. Table 
2.7 identifies which instructions are executed by the 
core unit and which by the floating-point unit. 
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Programmers specify dual-instruction mode either 
by including in the mnemonic of a floating-point in­
struction a d. prefix or by using the Assembler direc­
tives .dual '" .enddual. Both of the sp~cifications 
cause the D-bit of floating-point instructions to be 
set. If the i860 microprocessor is executing in single­
instruction mode and encounters a floating-point in­
struction with the D-bit set, one more 32-bit instruc­
tion is executed before dual-mode execution begins. 
If the i860 microprocessor is executing in dual-in­
struction mode and a floating-point instruction is en­
countered with a clear D-bit, then one more pair of 
instructions is executed before resuming single-in­
struction mode. Figure 2.13 illustrates two variations 
of this sequence of events: one for extended se­
quences of dual-instructions and one for a single in­
struction pair. 

When a 64-bit dual-instruction pair sequentially fol­
lows a delayed branch instruction in dual-instruction 
mode, both 32-bit instructions are executed. 

2.6.3 DUAL-OPERATION INSTRUCTIONS 

Special dual-operation floating-point instructions 
(add-and-multiply, subtract-and-multiply) use both 
the multiplier and adder units within the f1oating­
point unit in parallel to efficiently execute such com­
mon tasks as evaluating systems of linear equa­
tions, performing the Fast Fourier Transform (FFT), 
and performing graphics transformations. 

The instructions pfam sre1, sre2, rdest (add and 
multiply), pfsm sre1, sre2, rdest (subtract and multi­
ply), pfmam ser1, sre2, rdest (multiply and add), and 
pfmsm sre1, sre2, rdest (multiply and subtract) initi­
ate both an adder operation and a multiplier opera­
tion. Six operands are required, but the instruction 
format specifies only three operands; therefore, 
there are special provisions for specifying the oper­
ands. These special provisions consist of: 

• Three special registers (KR, KI, and T), that can 
store values from one dual-operation instruction 
and supply them as inputs to subsequent dual­
operation instructions. 

1. The constant registers KR and KI can store the 
value of sre1 and subsequently supply that val­
ue to the multiplier pipeline in place of sre1. 

2. The transfer register T can store the last stage 
result of the multiplier pipeline and subse­
quently supply that value to the adder pipeline 
in place of sre1. 

• A four-bit data-path control field in the opcode 
(OPC) that specifies the operands and loading of 
the special registers. 

1. Operand-1 of the multiplier can be KR, KI, or 
sre1. 

2. Operand-2 of the multiplier can be sre2 or the 
last stage result of the adder pipeline. 
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3. Operand-1 of the adder can be sre1, the T-reg­
ister, or the last stage result of the adder pipe­
line. 

4. Operand-2 of the adder can be sre2, the last 
stage result of the multiplier pipeline, or the 
last stage result of the adder pipeline. 

Figure 2.14 shows all the possible data paths sur­
rounding the adder and multiplier. A ope field in 
these instructions select different data paths. Sec­
tion 8 shows the various encodings of the ope field. 

SRC1 SRC2 RDEST 

MULTIPLIER UNIT 

ADDER UNIT 

RESULT 
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Figure 2.14. Dual-Operation Data Paths 

Note that the mnemonics pfam.p, pfsm.p, 
pfmam.p, and pfmsm.p are never used as such in 
the assembly language; these mnemonics are used 
here to designate classes of related instructions. 
Each value of ope has a unique mnemonic associ­
ated with it. 

2.7 Addressing Modes 

Data access is limited to load and store instructions . 
Memory addresses are computed from two fields of 
load and store instructions: sre1 and sre2. 

1. sre 1 either contains the identifier of a 32-bit inte­
ger register or contains an immediate 16-bit ad­
dress offset. 

2. sre2 always specifies a register. 
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Table 2.8. Types of Traps 

Type 
Indication Caused by 

PSR,ESPR FSR Condition Instruction 

Instruction IT OF Software traps trap, intovr 
Fault IL Missing unlock Any 

Floating SE Floating-point source exception Any M- or A-unit except fmlow 
Point Floating-point result exception Any M- or A-unit except fmlow, pfgt, 
Fault FT AO,MO overflow and pfeq. Reported on any F-P 

AU,MU underflow instruction plus pst, fst, and 
Ai, ivii inexaci resuii sometimes 11d, pfld, Ixli 

Instruction IAT Address translation exception Any 
Access Fault during instruction fetch 

Data Access Load/store address translation Any load/store 
Fault exception 

OAT' Misaligned operand address Any load/store 
Operand address matches Any load/store 

db register 

Interrupt IN External interrupt 

Reset No trap bits set Hardware RESET signal 

NOTES: . 
'These cases can be distinguished by examining the operand addresses. 
The I L bit of the epsr must be checked by the trap handler to tell if the bus is currently in a locked sequence. 

Because either sret or sre2 may be null (zero), a 
variety of useful addressing modes result: 

offset + register Useful for accessing fields within 
a record, where register points 
to the beginning of the record. 
Useful for accessing items in a 
stack frame, where register is 
r3, the register used for pointing 
to the beginning of the stack 
frame. 

register + register Useful for two-dimensional ar­
rays or for ,array access within 
the stack frame. 

register Useful as the end result of any 
arbitrary address calculation. 

offset Absolute address into the first or 
last 32K of the logical address 
space. 

In addition, the floating-point load and store instruc­
tions may select autoincrement addressing. In this 
mode src2 is replaced by the sum of sret and sre2 
after performing the load or store. This mode makes 
stepping through arrays more efficient, because it 
eliminates one address-calculation instruction. 

2.8, Traps and Interrupts 
Traps are caused by exceptional conditions detect­
ed in programs or by external interrupts. Traps 
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cause interruption of normal program flow to exe­
cute a special program known as a trap handler. 
Traps are divided into the types shown in Table 2.8. 
Interrupts and traps start execution in single instruc­
tion mode at virtual address OxFFFFFFOOin supervi­
sor level (U = 0). 

2.8.1 TRAP HANDLER INVOCATION 

This section appiies to traps other than reset. When 
a trap occurs, execution of the current instruction is 
aborted. The instruction is restartable. The proces­
sor takes the following steps while transferring con­
trol to the trap handler: 

1. Copies U (user mode) of the psr into PU (previous 
U). 

2. Copies 1M (interrupt mode) into PIM (previous 1M). 

3. Sets U to zero (supervisor mode). 

4. Sets 1M to zero (interrupts disabled). 

5. If the processor is in dual i'nstruction mode, it sets 
DIM; otherwise it clears DIM. 

6. If the processor is in single-instruction mode and 
the next instruction will be executed in dual­
instruction mode or if the processor is in dual-in­
struction mode and the next instruction will be 
executed in single-instruction mode, OS is set; 
otherwise, it is cleared. 
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7. The appropriate trap type bits in psr are set (IT, 
IN, IAT, OAT, FT). Several bits may be set if the 
corresponding trap conditions occur simulta­
neously. 

8. An address is placed in the fault instruction regis­
ter (fir) to help locate the trapped instruction. In 
single-instruction mode, the address in fir is the 
address of the trapped instruction itself. In dual-in­
struction mode, the address in fir is that of the 
floating-point half of the dual instruction. If an in­
struction or data access fault occurred, the asso­
ciated core instruction is the high-order half of the 
dual instruction (fir + 4). In dual-instruction 
mode, when a data access fault occurs in the ab­
sence of other trap conditions, the floating-point 
half of the dual instruction will already have been 
executed. 

The processor begins executing the trap handler 
by transferring execution to virtual address 
OxFFFFFFOO. The trap handler begins execution in 
single-instruction mode. The trap handler must ex­
amine the trap-type bits in psr (IT, IN, IAT, OAT, FT) 
to determine the cause or causes of the trap. 

2.8.2 INSTRUCTION FAULT 

This fault is caused by any of the following condi­
tions. In all cases the processor sets the IT bit be­
fore entering the trap handler. 

• By the trap instruction. 

• By the intovr instruction. The trap occurs only if 
OF in epsr is set when intovr is executed. The 
trap handler should clear OF before returning. 

• By the lack of an unlock instruction within 32 in­
structions of a lock. In this case IL is also set. 
When the trap handler finds IL set, it should scan 
backwards for the lock instruction and restart at 
that point. The absence of a lock instruction with­
in 32 instructions of the trap indicates a program­
ming error. 

2.8.3 FLOATING-POINT FAULT 

The floating-point fault occurs on floating-point in­
structions, pst, fst, and sometimes fld, pfld, ixfr. 
The floating-point faults of the i860 microprocessor 
support the floating-point exceptions defined by the 
IEEE standard as well as some other useful classes 
of exceptions. The i860 microprocessor divides 
these into two classes: source exceptions and result 
exceptions. The numerics library supplied by Intel 
provides the IEEE standard default handling for all 
these exceptions. 

2.8.3.1 Source Exception Faults 

When used as inputs to the multiplier or adder, all 
exceptional operands, including infinities, denormal-
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ized numbers and NaNs, cause a floating-point fault 
and set SE in the fsr. Source exceptions are report­
ed on the instruction that initiates the operation. For 
pipe lined operations, the pipeline is not advanced. 

The SE value is undefined for faults on fld, pfld, fst, 
pst, and ixfr instructions when in single-instruction 
mode or when in dual-instruction mode and the com­
panion instruction is not a multiplier or adder opera­
tion. 

2.8.3.2 Result Exception Faults 

The class of result exceptions includes any of the 
following conditions: 

• Overflow. The absolute value of the rounded 
true result would exceed the largest positive finite 
number in the destination format. 

• Underflow (when FZ is clear). The absolute val­
ue of the rounded true result would be smaller 
than the smallest positive finite number in the 
destination format. 

• Inexact result (when TI is set). The result is not 
exactly representable in the destination format. 
For example, the fraction % cannot be precisely 
represented in binary form. This exception occurs 
frequently and indicates that some (generally ac­
ceptable) accuracy has been lost. 

The point at which a result exception is reported de­
pends upon whether pipelined operations are being 
used: 

• Scalar (nonpipelined) operations. Result ex­
ceptions are reported on the next floating-point, 
fst.x, or pst.x (and sometimes fld, pfld, ixfr) in­
struction after the scalar operation. When a trap 
occurs, the last stage of the affected unit con­
tains the result of the scalar operation. 

• Pipelined operations. Result exceptions are re­
ported when the result is in the last stage and the 
next floating-point, fst.x or pst.x (and sometimes 
fld, pfld, ixfr) instruction is executed. When a 
trap occurs, the pipeline is not advanced, and the 
last stage results (that caused the trap) remain 
unchanged. 

When no trap occurs (either because FTE is clear or 
because no exception occurred), the pipeline is ad­
vanced normally by the new floating-point operation. 
The result-status bits of the affected unit are unde­
fined until the point that result exceptions are report­
ed. At this point, the last stage result-status bits (bits 
29 .. 22 and 16 .. 9 of the fsr) reflect the values in the 
last stages of both the adder and multiplier. For ex­
ample, if the last stage result in the multiplier has 
overflowed and a pipe lined floating-point pfadd is 
started, a trap occurs and MO is set. 



intJ i860TM MICROPROCESSOR 

For scalar operations, the RR bits of fsr specify the 
register in which the result was stored. RR is updat­
ed when the scalar instruction is initiated. The trap, 
however, occurs on a subsequent instruction. Pro­
grammers must prevent intervening stores to fsr 
from modifying the RR bits. Prevention may take one 
of the following forms: 

• Before any store to fsr when a result exception 
may be pending, execute a dummy floating-point 
operation to trigger the result-exception trap. 

• Always read from fsr before storing to it, and 
mask updates so that the RR bits are not 
changed. 

For pipelined operations, RR is cleared and the re­
sult is in the last stage of the pipeline of the appro­
priate unit. The trap handler must flush the pipeline, 
saving the results and the status bits. 

In either pipelined or scalar mode, the trap handler 
must then compute the trapping result. In either 
case, the result has the same fraction as the true 
result and has an exponent which is the low-order 
bits of the true result. The trap handler can inspect 
the result, compute the result appropriate for that 
instruction (a NaN or an infinity, for example), and 
store the correct result. The result is either stored in 
the register specified by RR .(if nonzero) or (if RR = 
0) the trap handler must reload the pipeline with the 
saved results and status bits. The trap handler must 
clear the result status for the last stage and then 
reexecute the trapping instruction. 

Result exceptions may be reported for both the ad­
der and multiplier units at the same time. In this 
case, the trap handler should fix up the last stage of 
both pipelines. 

2.8.4 INSTRUCTION ACCESS FAULT 

This trap results from a page-not-present exception 
during instruction fetch. If a supervisor-level page is 
fetched in user mode, an exception mayor may not 
occur. 

2.8.5 DATA ACCESS FAULT 

This trap results from an abnormal condition detect­
ed during data operand fetch or store. Such an ex­
ception can be due only to one of the following caus­
es: 

• An attempt is being made to write to a page 
whose D (Dirty) bit is clear. 

• A memory operand is misaligned (is not located 
at an address that is a multiple of the length of 
the data). 

• The address stored in the db register is equal to . 
one of the addresses spanned by the operand. 

• The operand is in a not-present page. 
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• An attempt is being made from user level to write 
to a read-only page or to access a supervisor-lev­
el page. 

• The operand was in a page whose PTE had 
A = 0, and the access occurred during a locked 
sequence. (Le., between lock and unlock.) 

• Write protection (determined by epsr bit WP = 1) 
is violated in supervisor mode. 

2.8.6 INTERRUPT TRAP 

An interrupt is an event that is signaled from an ex­
ternal source. If the processor is executing with in­
terrupts enabled (1M set in the psr), the processor 
sets the interrupt bit IN in the psr, and generates an 
interrupt trap. Vectored interrupts are implemented 
by interrupt controllers and software. 

2.8.7 RESET TRAP . 

When the i860 microprocessor is reset, execution 
begins in single-instruction mode at physical ad­
dress OxFFFFFFOO. This is the same address as for 
other traps. The reset trap can be distinguished from 
other traps by the fact that no trap bits are set. The 
instruction cache is flushed. The bits DPS, BL, and 
ATE in dirbase are cleared. eS8 is initialized by the 
value at the INT pin at the end of reset. The read­
only fields of the espr are set to identify the proces­
sor, while the IL, WP, and PBM bits are cleared. The 
bits U, 1M, BR, and BW in psr are cleared. All other 
bits of psr and all other register contents are 
undefined. 

The software must ensure that the data cache is 
flushed and control registers are properly initialized 
before performing operations that depend on ihe 
values of the cache or registers. The data cache has 
no "validity" bits, so memory accesses before the 
flush may result in false data cache hits. 

Reset code must initialize the floating-point pipeline 
state to zero with floating-point traps disabled to en­
sure that no spurious floating-point traps ate gener-
ated. . 

After a RESET the i860 microprocessor starts exe­
cution at supervisor level (U = 0). Before branching 
to the first user-level instruction, the RESET trap 
handler or subsequent initialization code has to set 
PU and a trap bit so that an indirect branch instruc­
tion will copy PU to U, thereby changing to user lev­
el. 

2.9 Debugging 

The i860 microprocessor supports debugging with 
both data and instruction breakpoints. The features 
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of the i860 architecture that support debugging in­
clude: 

• db (data breakpoint register) which permits speci­
fication of a data addresses that the i860 micro­
processor will monitor. 

• BR (break read) and BW (break write) bits of ' the 
psr, which enable trapping of either reads or 
writes (respectively) to the address in db. 

• DAT (data access trap) bit of the psr, which al­
lows the trap handler to determine when a data 
breakpoint was the cause of the trap. 

• trap instruction that can be used to set break­
points in code. Any number of code breakpoints 
can be set. The values of the srct and src2 fields 
help identify which breakpoint has occurred. 

• IT (instruction trap) bit of the psr, which allows 
the trap handler to determine when a trap 
instruction was the cause of the trap. 

3.0 HARDWARE INTERFACE 

In the following description of hardware interface, 
the # symbol at the end of a signal name indicates 
that the active or asserted state occurs when the 
signal is at a low voltage. When no # is present after 
the signal name, the signal is asserted when at the 
high voltage level. 

3.1 Signal Description 
Table 3.1 identifies functional groupings of the pins, 
lists every pin by its identifier, gives a brief descrip­
tion of its function, and lists some of its characteris­
tics. All output pins are tristate, except HLDA and 
BREa. All inputs are synchronous, except HOLD 
and INT. 

3.1.1 CLOCK (ClK) 

The CLK input determines execution rate and timing 
of the i860 microprocessor. Timing of other signals 
is specified relative to the rising edge of this signal. 
The i860 microprocessor can utilize a clock rate of 
33.3 MHz or 40 MHz. The internal operating frequen­
cy is the same as the external clock. This Signal is 
TTL compatible. 

3.1.2 SYSTEM RESET (RESEn 

Asserting RESET for at least 16 CLK periods causes 
initialization of the i860 microprocessor. Refer to 
section 3.2 "Initialization" for more details related to 
RESET. 

3.1.3 BUS HOLD (HOLD) AND BUS HOLD 
ACKNOWLEDGE (HlDA) 

These pins are used for i860 microprocessor bus 
arbitration. At some clock after the HOLD signal is 
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asserted, the i860 microprocessor releases control 
of the local bus and puts all bus interface outputs 
(except BREa and HLDA) into a floating state, then 
asserts HLDA-all during the same clock period. It 
maintains this state until HOLD is deasserted. In­
struction execution stops only if required instructions 
or data cannot be read from the on-chip instruction 
and data caches. 

The time required to acknowledge a hold request is 
one clock plus the number of clocks needed to finish 
any outstanding bus cycles. HOLD is· recognized 
even while RESET or LOCK # are asserted. 

When leaving a bus hold, the i860 microprocessor 
deactivates HLDA and, in the same clock period, ini­
tiates a pending bus cycle, if any. 

Hold is an asynchronous input. 

3.1.4 BUS REQUEST (BREQ) 

This signal is asserted when the i860 microproces-· 
sor has a pending memory request, even when 
HLDA is asserted. This allows an external bus arbi­
ter to implement an "on demand only" policy for 
granting the bus to the i860 microprocessor. BREa 
is asserted the clock after the- i860 microprocessor 
realizes an internal request for the bus. BREa is 
deasserted with the last ADS# for which there is a 
pending request. 

3.1.5 INTERRUPT/CODE-SIZE (INT/CS8) 

This input allows interruption of the current instruc­
tion stream. If interrupts are enabled (1M set in psr) 
when INT is asserted, the i860 microprocessor 
fetches the next instruction from address 
OxFFFFFFOO. To assure that an interrupt is recog­
nized, INT should remain asserted until the software 
acknowledges the interrupt (by writing, for example, 
to a memory-mapped port of an interrupt controller). 
The maximum time between the assertion of INT 
and execution of the first instruction of the trap han­
dier is 10 clocks, plus the time for twenty non pipe­
lined read cycles (six TLB misses, with four refetch­
es when the A bit is zero) plus the time for eight 
nonpipelined writes (updates to the A bit), plus the 
time for four sets of four pipe lined read cycles and 
two sets of four pipe lined writes (instruction and data 
cache misses and write-back cycles to update mem­
ory) for non-locked sequences. 

If the bus is locked from a lock instruction, the INT 
pin is ignored and the INT bit of epsr is always zero. 
The lock instruction can only assert LOCK# for 30-
33 clock cycles before trapping. If the bus is locked 
from a st.C dirbase with BL = 1 then interrupts are 
fully functional and the timing of service is the same 
as for non-locked sequences. 
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Table 3.1. Pin Summary 

Pin 
Function Active Inputl 

Name State Output 

Execution Control Pins 

CLK CLocK I 
RESET System reset High I 
HOLD Bus hold High I 
HLDA Bus hold acknowledge High 0 
BREQ Bus request High 0 
!NT/CSa !nterrupt, code-size High I 

Bus Interface Pins 

A31-A3 Address bus High 0 
BE7#-BEO# Byte Enables Low 0 
063-00 Data bus High I/O 
LOCK# Bus lock Low 0 
W/R# Write/Read bus cycle Hi/Low 0 
NENE# NExt NEar Low 0 
NA# Next Address request Low I 
READY # Transfer Acknowledge Low I 
ADS# ADdress Status Low 0 

Cache Interface Pins 

KEN# Cache ENable Low I 
PTB Page Table Bit High 0 

Testability Pins 

SHI BoundarY Scan Shift Input High I 
BSCN BoundarY Scan Enable High I 
SCAN Shift Scan Path High I 

Intel-Reserved Configuration Pins 

CC1-CCO Configuration High I 

Power and Ground Pins 

Vee 
Vss 

-. :system power 
System ground 

! I 

A # after a pin name indicates that the signal is active when at the low voltage level. 

If INT is asserted during the clock before the falling 
edge of RESET, the eight-bit code-size mode is se­
lected. For more about this mode, refer to section 
3.2 "Initialization". 

INT is an asynchronous input. 

3.1.6 ADDRESS PINS (A31-A3) AND BYTE 
ENABLES (BEU-BEO#) 

The 29-bit address bus (A31-A3) identifies address­
es to a·64-bit location. Separate byte-enable signals 
(BE7#-BEO#) identify which bytes should be ac­
cessed within the 64-bit location. Cache reads return 
64 bits without regard for the byte-enable signals .. 

Instruction fetches (W/R# is low) are distinguished 
from data accesses by the unique combinations of 
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BE7#-BEO# defined in Table 3.2. For an eight-bit 
code fetch in eight-bit code-size (CS8) mode. 
BE2#-BEO# are redefined to be A2-AO of the ad­
dress. In this case BE7#-BE3# form the code 
shown in Table 3.2 that identifies an instruction 
fetch. The A2 in the table does not represent a phys­
ical pin, just a conceptual internal address line value. 
The "x"under A2 for CS8 mode means "not applica­
ble", or "don't care" .. All other combinations of byte 
enables indicate data accesses. 

3.1.7 DATA PINS (063-00) 

The bus interface has 64 bidirectional data pins 
(063-00) to transfer data in eight- to 64-bit quanti­
ties. Pins 07-00 transfer the least significant byte; 
pins 063-056 transfer the most significant byte. 
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In write bus cycles, the point at which data is driven 
onto the bus depends on the type of the preceding 
cycle. If there was no preceding cycle (i.e. the bus 
was idle), data is driven with the address. If the pre­
ceding cycle was a write, data is driven as soon as 
READY # is returned from the previous cycle. If the 
preceding cycle was a read, data is driven one clock 
after READY # is returned from the previous cycle, 
thereby allowing time for the bus to be turned 
around. 

3.1.8 BUS LOCK (LOCK#) 

This signal is used to provide atomic (indivisible) 
read-modify-write sequences in multiprocessor sys­
tems. A multiprocessor bus arbiter must permit only 
one processor a locked access to the address which 
is on the bus when LOCK # first activates. The sys­
tem must maintain the lock of that location until 
LOCK # deactivates. 

The i860 microprocessor coordinates the external 
LOCK# signal with the software-controlled BL bit of 
the dirbase register. Programmers do not have to 
be concerned about the fact that bus activity is not 
always synchronous with instruction execution. 
LOCK # is asserted with ADS # for the first bus cycle 
that results from an instruction executed after the BL 
bit is set. Pending bus cycles are locked according 
to the BL bit when the instruction was executed. 
Even if the BL bit is changed between the time that 
an instruction generates an internal bus request and 
the time that the cycle appears on the bus, the i860 
microprocessor still asserts LOCK # for that bus cy­
cle. 

If ADS # is active when LOCK # deactivates, then 
that request should complete before the hardware 
relinquishes the lock. If ADS# is not active, the lock­
ing of the location can immediately end when 
LOCK # deactivates. Of course the simplest arbitra­
tion hardware can just lock the entire bus against all 
other accesses during LOCK # assertion. 

The deassertion of LOCK# depends on how the BL 
bit was deasserted. If the BL bit is deasserted with 
the unlock instruction, LOCK # is deasserted with 
the next Id or st but after any pending bus cycles. 
Between locked sequences, at least one cycle of 

no LOCK # is guaranteed by the behavior of the 
unlock instruction. LOCK# deassertion .may occur 
independently of ADS# for the case of a trap or a 
cache hit after unlock. 

If BL is deasserted with a st.c dirbase instruction, 
LOCK# is only deasserted for a following Id or st 
instruction that causes a cache miss. LOCK# stays 
asserted for pending bus cycles and intervening 
cache hits. 

The i860 microprocessor also asserts LOCK# dur­
ing TLB miss processing for updates of the ac­
cessed bit in page-table entries. The maximum time 
that LOCK # can be asserted in this case is five 
clocks plus the time required by software to perform 
a read-modify-write sequence. Instruction fetches do 
not alter the LOCK # pin. 

Between lock and unlock instructions, the INT pin is 
ignored and the INT bit of epsr is always zero when 
read by Id.c epsr. 

3.1.9 WRITE/READ BUS CYCLE (W/R#) 

This pin specifies whether a bus cycle is a read 
(LOW) or write (HIGH) cycle. 

3.1.10 NEXT NEAR (NENE#) 

This signal allows higher-speed reads and writes in 
the case of consecutive reads and writes that ac­
cess static column or page-mode DRAMs. The i860 
microprocessor asserts NENE# when the current 
address is in the same DRAM page as the previous 
bus cycle. The i860 microprocessor determines the 
DRAM page size by inspecting the DPS field in the 
dlrbase register. The page size can range from 29 to 
216 64-bit words, supporting DRAM sizes from 256K 
x 1, 256K X 4, and up. NENE# is never asserted 
on the next bus cycle after HLDA is deasserted. 

3.1.11 NEXT ADDRESS REQUEST (NA#) 

NA# makes address pipelining possible. The sys­
tem asserts NA# to indicate that it is ready to ac-

Table 3.2; Identifying Instruction Fetches 

Code A2 BE7# BE6# BE5# BE4# BE3# BE2# BE1# BEO# Fetch 

Normal 0 1 1 1 1 1 0 1 0 (Non-CS8) 

Normal 1 1 0 1 0 1 1 1 1 (Non-CS8) 

CS8 
Mode x 1 0 1 0 1 Low-order address bits 
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cept the next address from the i860 microprocessor. 
NA # may be asserted before the current cycle 
ends. (If the system does not implement pipelining, 
NA# does not have to be activated.) The i860 mi­
croprocessor samples NA# .every clock, starting 
one clock after the prior activation of ADS#. When 
NA # is active, the i860 microprocessor is free to 
drive address and bus-cycle definition for the next 
pending bus cycle. The i860 microprocessor remem­
bers that NA# was asserted when no internal re­
quest is pending; therefore, NA# can be deactivat­
ed after the next rising edge of the eLK signal. Up,to 
three bus cycles can be outstanding simultaneously. 

3_1.12 TRANSFER ACKNOWLEDGE (READY#) 

The system asserts the READY # signal during read 
cycles when valid data is on the data pins and during 
a write cycles when the system has accepted data 
from the data pins. READY # is sampled one clock 
after prior -ADS # or prior READY # in case of pipe­
lining. . 

3.1-13 ADDRESS STATUS (ADS#) 

The i860 microprocessor asserts ADS# during the 
first clock of each bus cycle to identify the ciock 
period during which it begins to assert outputs on 
the address bus. This signal is not held active during 
a pipe lined bus cycle. This allows' two-level pipelin­
ing, for a maximum of three outstanding cycles. 

3.1.14 CACHE ENABLE (KEN#) 

The i860 microprocessor samples KEN # to deter­
mine whether the data being read for the current 
cache-miss cycle is to be cached. This pin is inter­
nally NORed with the CD and WT bits to control 
cacheability on a page by page basis (refer to Table 
3.3). 

If the address is one that is permitted to be in the 
cache, KEN # must be continuously asserted during 
the sampling period starting from the clock after 
ADS# is asserted, through the clock NA# or 
READY # is asserted. The entire 64 bits of the data 
bus will be used for the read, regardless of the state 
of the byte-enable pins. Three additional 64-bit bus 
cycles will be generated to fill the rest of the 32-byte 
cache block. 

If KEN # is found deasserted at any clock from the 
clock after ADS # through the clock of the first NA # 
or READY #, the data being read will not be cached 
and two scenarios can occur: 1) if the cycle is due to 
data-cache miss, no .subsequent cache-fill cycles 
will be generated; 2) if the cycle is due to an instruc­
tion-cache miss, additional cycle(s) will be generat­
ed until the address reaches a 32-byte boundary. To 
avoid caching a line, external hardware must de-
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assert KEN# during or before the first NA# or 
READY#. 

3.1.15 PAGE TABLE BIT (PTB) 

Depending on the setting of the PBM (page-table bit 
mode) bit of the epsr, the PTB reflects the value of 
either the CD (cache disable) bit or the WT (write 
through) bit of the page-table entry used for the cur­
rent cycle. When paging is disabled, PTB remains 
inactive. 

Table 3.3. Cacheability based on 
KEN# and CD OR'ed WT 

CD OR'edWT KEN# Meaning 

0 0 Cacheable access 
0 1 Noncacheable access 
1 0 Noncacheable page 
1 1 Noncacheable page 

3.1.16 BOUNDARY SCAN SHIFT INPUT (SHI) 

This pin is used with the testabilitY features. Refer to 
section 3.3. 

3.1.17 BOUNDARY. SCAN ENABLE (BSCN) 

This pin is used with the testability features. Refer to 
section 3.3. 

3.1.18 SHIFT SCAN PATH (SCAN) 

This pin is used with the testability features. Refer to 
section 3.3. 

3.1.19 CONFIGURATION «;(;1-(;(;0) 

These two pins are reserved by Intel. Strap both pins 
LOW. 

3.1.20 SYSTEM POWER (Vee) AND GROUND 
(VSS) 

The i860 microprocessor has 48 pins for power and 
ground. All pins must be connected to the appropri­
ate low-inductance power and ground signals in the 
system. 

3.2 Initialization 

Initialization of the i860 microprocessor is caused by 
assertion of the RESET signal for at least 16 clocks. 
Table 3.4 shows the status of output pins during the 
time that RESET is asserted. Note that HOLD re­
quests are honored during RESET and that the 
status of output pins depends on whether a HOLD 
request is being acknowledged. 
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Table 3.4. Output Pin Status during Reset 

Pin Value 

Pin Name HOLD 
HOLD 

Not 
Acknowledged 

Acknowledged 

AOS#, LOCK# HiGH Tri-State OFF 

W/R#, PTB LOW Tri-State OFF 

BREa LOW LOW 

HLOA LOW HIGH 

063-00 Tri-State OFF Tri-State OFF 

A31-A3, 
BE7#-BEO#, Undefined Tri-State OFF 
NENE# 

After a reset, the i860 microprocessor begins exe­
cuting at physical address OxFFFFFFOO. The pro­
gram-visible state of the i860 microprocessor after 
reset is detailed in section 2.8.7. 

Eight-bit code-size mode is selected when INT ICS8 
is asserted during the clock before the falling edge 
of RESET. While in eight-bit code-size mode, in­
struction cache misses are byte reads (transferred 
on 07-00 of the data bus) instead of eight-byte 
reads. This allows the i860 microprocessor to be 
bootstrapped from an eight-bit EPROM. For these 
code reads, byte enables BE2#-BEO# are rede­
fined to be the low order three bits of the address, 
so that a complete byte address is available. These 
r~ads update the instruction cache if KEN # is as­
serted (refer to section 3.1.14) and are not pipelined 
even if NA # is asserted. While in this mode, instruc­
tions must reside in an eight-bit wide memory, while 
data must reside in a separate 64-bit wide memory. 
After the code has been loaded into 64-bit memory, 
initialization code can initiate 64-bit code fetches by 
clearing the CS8 bit of the dirbase register (refer to 
section 2). Once eight-bit code-size mode is dis­
abled by software, it cannot be reenabled except by 
resetting the i860 microprocessor. 

3.3 Testability 

The i860 microprocessor has a boundary scan mode 
that may be used in component- or board-level test­
ing to test the Signal traces leading to and from the 
i860 microprocessor. Boundary scan mode provides 
a simple serial interface that makes it possible to 
test all signal traces with only a few probes. Probes 
need be connected only to CLK, BSCN, SCAN, SHI, 
BREa, RESET, and HOLD. 

The pins BSCN and SCAN control the boundary 
scan mode (refer to Table 3.5). When BSCN is as-
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serted, the i860 microprocessor enters boundary 
scan mode on the next rising clock edge. Boundary 
scan mQde can be activated even while RESET is 
active. When BSCN is deasserted while in boundary 
scan mode, the i860 microprocessor leaves bounda­
ry scan mode on the next rising clock edge. After 
leaving boundary scan mode, the internal state is 
undefined; therefore, RESET should be asserted. 

Table 3.5. Test Mode Selection 

BSCN SCAN Testability Mode 

LO LO No testability mode selected 
LO HI (Reserved for Intel) 
HI LO Boundary scan mode, normal 
HI HI Boundary scan mode, shift 

SHI as input; BREa as 
output 

For testing purposes, each signal pin has associated 
with it an internal latch. Table 3.6 indentifies these 
latches by name and classifies them as input, out­
put, or control. The input and output latches carry 
the name of the corresponding pins. 

Table 3.6. Test Mode Latches 

Input Output 
Associated 

Control 
Latch Latch 

Latch 

SHI 
BSCN 
SCAN 
RESET 
00-063 00-063 . OATAt 
CC1-CCO· 

A31-A3 AOORt 
NENE# NENEt 
PTB# PTBt 
W/R# W/Rt 
AOS# AOSt 
HLOA 
LOCK # LOCKt 

READY # 
KEN# 
NA# 
INT/CS8 
HOLD 

BE7#-BEO# BEt 
BREa 

Within boundary scan mode the i860 microproces­
sor operates in one of two submodes: normal mode 
or shift mode, depending on the value of the SCAN 
input. A typical test sequence is ... 
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1. Enter shift mode to assign values to the latches 
that correspond with the pins. 

2. Enter normal mode. In normal mode the i860 mi­
croprocessor transfers the latched values to the 
output pins and latches the values that are being 
driven onto the input pins. 

3. Reenter ·shift mode to read the new values of the 
input pins. 

3.3.1 NORMAL MODE 

When SCAN 'is deasserted, the normal mode is se­
lected. For each input pin (RESET, HOLD, 
INT/CS8, NA#, READY#, KEN#, SHI, BSCN, 
SCAN, CC1, and CCO), the corresponding latch is 
loaded' with the value that is being driven onto the 
pin. 

The tristate output pins (A31-A3, BE7#-BEO#, 
W/R#, NENE#, ADS#, LOCK#, and PTB) are en­
abled by the control latches ADDRt (for A31-A3), 
BEt, W/Rt, NENEt, ADSt, LOCKt, and PTBt. If a con­
trol latch is set, the corresponding output latches 
drive their output pins; otherwise the pins are not 
driven. 

The 1/0 pins (063-00) are enabled by the control 
latch DATAt, which is similar to the other control 
latches. In addition, when DATAt is not set, the data 
pins are treated as input pins and their values are 
latched. 

3.3.2 SHIFT MODE 

When SCAN is asserted, the shift mode is selected. 
In shift mode. the Dins are oraanized into a boundary 
scan chain. The scan chain Is. configured as a shift 
...... ,..it"l+" .. +hl!l+ ic.'" Oohif+.o.rI nn tho. ricinn onn.o. nf r..1 I( Thg 
11IIiOi'1::I1~"""'1 r.IIQ' I~ ~IUI""""" VII ........ """"'::1 ....... tt- ..... -_ ....... _ 

SHI pin is connected to the input of one end of the 
boundary scan chain. The value of the most signifi­
cant bit of the scan chain is output on the BREQ pin. 
To avoid glitches while the values are being shifted 
along the chain, the tester should assert both the 
RESET and HOLD pins. Then all tristate outputs are 
disabled. The order of the pins within the chain is 
shown in Figure 3.1. 

1 2 3 4 .... SHI .... BSCN .... SCAN .... RESET .... 
70 71 72 100 

COl .... ceo .... A31 .... .... A3 

105 106 107 108 109 
PTB# .... W/Rt .... W/R# .... ADSt -+ ADS# 

114 115 116 117 118 
KEN# -+ NA# -+ INT/CS8 -+ HOLD -+ BEt 

A tester causes entry into this mode for. one of two 
purposes: 

1. To assign values to output latches to be driven 
onto output pins upon subsequent entry into nor­
mal mode. 

2. To read the values of input pins previously latched 
in normal mode. 

4.0 BUS OPERATION 

A bus cycle begins when ADS# is activated' and 
ends when READY # is sampled active. READY # is 
sampled one clock after assertion of ADS# and 
thereafter until it becomes active .. New cycles can 
start as often as every other clock until three cycles 
are outstanding. A bus cycle is considered outstand­
ing as long as READY # has not been asserted to 
terminate that cycle. After READY # becomes ac­
tive, it is not sampled again for the following (out­
standing) cycle until the second clock after the one 
during which it became active. READY # is assumed 
to be inactive whe~ it is not sampled. 

With regard to how a bus cycle is generated by the 
i860 microprocessor, there are two types of cycles: 
pipelined and nonpipelined. Both types of cycles can 
be either read or write cycles. A pipelined cycle is 
one that starts while one or two other bus cycles are 
outstanding. A nonpipelined cycle is one that starts 
when no other bus cycles are outstanding. 

4.1 Fipeliiiiiig 

A m-n read or write cycle is a cycle with a total cycle 
time of m clocks and a cycle-to-cycle time of. n 
clocks (m ~ n). Total cycle time extends from the 
clock in which ADS# is activated to the clock in 
which READY # becomes active, whereas, cycle-to­
cycle time extends from the time'that READY # is 
sampled active for the previous cycle to the time 
that it is sampled active again for the current cycle. 
When m = n, a nonpipelined cycle is implied; m > n 
implies a pipelined cycle. 

5 6 69 
DATAl .... DO .... .... 063 .... 

101 102 103 104 .... ADDRI .... NENEt .... NENE# -+ PTBt .... 
110 111 112 113 

-+ HLDA -+ LOCKt -+ LOCK# -+ READY # -+ 

119 126 127 .... BE7# -+ -+ BEOll' -+ BREa -+ 

Figure 3.1. Order of Boundary Scan Chain 
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Pipelining may occur for the next bus cycle any time 
the current bus cycle requires more than two clock 
periods to finish (m > 2). The next cycle can be 
initiated when NA# is sampled active, even if the 
current cycle has not terminated. In this case, pipe­
lining occurs. NA# is recognized only in the clock 
when ADS # has become inactive. 

To allow high transfer rates in large memory sys­
tems, two-level pipelining is supported (i.e., there 
may be up to three cycles in progress at one time). 
Pipelining enables a new word of data to be trans­
ferred every two clocks, even though the total cycle 
time may be up to six clocks. 

4.2 Bus State Machine 

The operation of the bus is described in terms of a 
bus state machine using a state transition diagram. 
Figure 4.1 illustrates the i860 microprocessor bus 
state machine. A bus cycle is composed of two or. 
more states. Each bus state lasts for one elK peri­
od. 

The i860 microprocessor supports up to two levels 
of address pipelining. Once it has started the first 
bus cycle, it can generate up to two more cycles as 
long as READY# remains inactive. To start a new' 
bus cycle while other cycles are still outstanding, 
NA # must be active for at least one clock cycle 
starting with the clock after the previous ADS#. 
NA# is latched internally. 

States Tj and Tjk' for j = {1 ,2,3) and k = {1 ,2), are 
used to describe the state of the i860 microproces­
sor Bus State Machine. Index j indicates the number 
of outstanding bus cycles while index k distinguishes 
the intermediate states for the j-th outstanding cycle. 
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Therefore there can be up to three outstanding cy­
cles, and there are two possible intermediate states 
for each level of pipelining. Tj1 is the next state after 
Tj' as long as j cycles are outstanding. Tj2 is entered 
when NA # is active but the i860 microprocessor is 
not ready to start a new cycle. 

Five conditions have to be met to start a new cycle 
while one or more cycles are already pending: 

1. READY # inactive 

2. NA # having been active 

3. An internal request pending (BREQ active) 

4. HOLD not active 

5. Fewer than three cycles outstanding 

Note that BREQ is asserted on the clock after the 
i860 microprocessor realizes an internal request for 
the bus. 

Upon hardware RESET, the bus control logic enters 
the idle state TI and awaits an internal request for a 
bus cycle. If a bus cycle is requested while there is 
no hold request from the system, a· bus cycle begins, 
advancing to state T 1 ~ On the next cycle, the state 
machine automatically advances to state T 11. If 
READY# is active in state T11, the bus control logic 
returns either to TI, if no new cycle is started, or to 
T1, if a new cycle request is pending internally. In 
fact, if an internal bus request is pending each time 
READY # is active, the state machine continues to 
cycle between T 11 and T 1. 

However, if READY # is not active but the next ad­
dress request is pending (as indicated by an active 
NA#), the state machine advances either to state 
T 2 (if an internal bus request is pending, signifying 
that two bus cycles are now outstanding), or to state 
T12 (if no bus internal request is pending, signifying 
NA# has been found active). Transitions from state 
T12 are similar to those from T11: 
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HOLD ASSERTED 

READY, DEASSERltD 

NOTES: 
READY # 

NA# 
ADS# 
HLDA 
HOLD 

Assumed deasserted one clock after the ac· 
tive clock 
Not sampled during ADS# active clock 
Active in Tl, T2 and Ta 
Active in TH 
Synchronized internally and masked by bus 
lock request 
Internal Bus Request Pending (BREQ assert· 
ed) 

240296-29 

Figure 4.1. Bus State Machine 

If two bus cycles are already outstanding (as indicat· 
ed by T 2k for k = I 1,21) and NA # is latched active 
but READY # is not active, one more bus request 
causes entry into state T 3. Transitions from this 
state are similar to those from T 2. 

In general, if there is an internal bus request each 
time both READY # and NA # are active, the state 
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machine continues to oscillate between Tjl and Tj. 
for j = 12,3l. 

When NA# is sampled active while there is a pend­
ing bus request, ADS# is activated in the next clock 
period (provided no more than two cycles are al­
ready outstanding). 
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Internal pending bus requests start new bus cycles 
only if no HOLD request has been recognized. THis 
entered from the idle state T" Tn, and T12. HLDA is 
active in this state. There is a one clock delay to 
synchronize the HOLD input when the signal meets 
the respective minimum setup and hold time require­
ments. The state machine uses the synchronized 
HOLD to move from state to state. 

4.3 Bus Cycles 

Figures 4.2 through 4.10 illustrate combinations of 
bus cycles. 

CYCLE 1 

4.3.1 NONPIPELINED READ CYCLES 

A read cycle begins with the clock in which ADS# is 
asserted. The i860 microprocessor begins driving 
the address during this clock. It samples READY # 
for active state every clock after the first clock. A 
minimum of two clocks is required per cycle. Data is 
latched when READY # is found active when sam­
pled at the end of a clock period. Figure 4.2 illus­
trates nonpipelined read cycles with zero wait 
states. 

Normally, all 64 bits of the data bus are latched; 
however, in the case of noncacheable bus cycles, 
the byte enables BE7#-BEO# determine which 
bytes are used. In eS8 mode, only the low-order 
eight bits are latched. 

CYCLE 2 CYCLE 3 
NON-PIPELINED NON-PIPELINED NON-PIPELINEO 

READ READ READ 
(2-2) (2-2) (2-2) 

Tl TIl Tl TIl Tl TIl 

elK 

AOS# 

A31-A3, W/R#. 
BEn#. NENE#. 

PTB 

NA# 

REAOY# 

063-00 

240296-13 

Figure 4.2. Fastest Read Cycles 
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elK 

AC5G 

A31-A3, W/R#, 
BEn#, NENE#, 

PTB 

NA# 

READY# 

063-00 

CYCLE 1 
NON-PIPElINED 

WRITE 
(2-2) 

T1 T11 

CYCLE 2 CYCLE 3 
NON-PIPELINED NON-PIPELINED 

WRITE WRITE 
(2-2) (2-2) 

T1 T11 T1 T11 

240296-14 

Figure 4.3. Fastest Write Cycles 

4.3.2 NONPIPELINED WRITE CYCLES 

The ADS # and READY # activity for write cycles 
follows the same logic as that for read cycles, as 
Figure 4.3 illustrates for back-to-back, nonpipelined 
write cycles with zero wait-states. The byte enables 
BE7#-BEO# indicate which bytes on the data bus 
_ .. _ •• _I:..a 
QI,,", VClIIU. 

The fastest write cycie takes oniy two ciocks to com­
plete. However, when a read cycle immediately pre-
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cedes a write cycle, the write cycle must contain a 
wait state, as illustrated in Figure 4.4. Because the 
device being read might still be driving the data bus 
during the first clock of the write cycle, there is a 
potential for bus contention. To help avoid such con­
tention, the i860 microprocessor does not drive the 
data bus until the second clock of the write cycle. 
T~_ ....... : ......... _+_ : ...... __ .. : ..... ,.,1 + __ ._ •• : ..... _ ..... _ ............. : .. : ___ 1 
I I It,; "all. oO:»lG\g 10 I o"tUIi ou ioU ..,. UYIUO ,.IQ aUUII.IUliai 

time necessary to terminate the write cycle. In other 
read-write combinations, the i860 microprocessor 
does not require a wait state. 
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CYCLE 1 CYCLE 2 
NON-PIPELINED NON-PIPELINED 

READ WRITE 
(2-2) (3-3) 

Tl Tl1 Tl TIl TIl 

eLK 

Figure 4.4. Fastest Read/Write Cycles 

CYCLE 1 
NON-PIPELINED 

READ 
(5-5) 

CYCLE 2 
PIPELINED 

READ 
(5-2) 

CYCLE 3 
NON-PIPELINED 

READ 
(2-2) 

Tl Tl1 

CYCLE 3 
PIPELINED 

WRITE 
(6-3) 

Figure 4.5. Pipelined Read Followed by Pipelined Write 
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CYCLE 4 
PIPELINED 

WRITE 
(6-2) 

240296-16 
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CYCLE 1 
NON-PIPELINED 

WRITE 
(5-5) 

CYCLE 2 
PIPELINED 

WRITE 
(5-2) 

CYCLE 3 
PIPELINED 

READ 
(5-2) 

CYCLE 4 
PIPELINED 

READ 
(5-2) 

240296-17 

Figure 4.6. Plpellned Write Followed by Plpellned Read· 

4.3.3 PIPELINED READ AND WRITE CYCLES 

Figures 4.5 and 4.6 illustrate combinations of non­
pipelined and pipelined read and write cycles. The 
following description applies to both diagrams. While 
Cycle 1 is still in progress, two new cycles are initiat­
ed. By the time READY # first becomes active, the 
stata machine has moved through states T 1; T 11: 
T 2, T 21, and T 3. Cycles 3 and 4 show how activating 
READY # terminates the corresponding outstanding 
cycle, and yet activating NA# while there is an inter­
nal request pending adds a new outstanding cycle. 

In Figure 4.5, Cycle 3 is a write cycle following a read 
cycle; therefore, one wait state must be inserted. 
The i860microprocessor does not drive the data 
bus until one clock after the read data. is returned 
from the preceding read cycle. During Cycles 3 and 
4, the state machine oscillates between states T 3 
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and T 31 maintaining full bus capacity (two levels of 
pipelining; three outstanding cycles). Cycles 2, 3, 
and 4 in Figure 4.6 are 5-2 cycles; i.e. each requires 
a total cycle time of five Clocks while the throughput 
rate is one cycle every two clocks. 

Figure 4.7 iiiustrates in a more gaflefal mannSi how 
the NA# signal controls pipelining. Cycle 1 is a 2-2 
cycle, the fastest possible. The next cycle cannot be 
started any earlier; therefore, there is no need to 
activate NA# to start the next cycle early. Cycle 2,a 
3-3 read, is different. Cycle 3 can be started during 
the third state (a wait state) of Cycle 2, and NA# is 
asserted to accomplish this, 

NA# is not activated following the ADS# clock of 
Cycle 3, thereby allowing Cycle 3 to terminate be­
fore the start of Cycie 4. As a result, Cycle 4 is a 
nonpipelined cycle. 
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ClK 

AOS# 

A3l-A3. W/R#. 
BEn#. NENE#. 

PTB 

NA# 

READY# 

063-00 

CYCLE '1 
NON-PIPELINED 

READ 
(2-2) 

ClK 

AOS# 

A3l-A3. W/R#. 
BEn#. NENE#. 

PTB 

NA# 

REAOY# 

063-00 

, i860TM MICROPROCESSOR 

CYCLE 2 
NON-PIPELINED 

READ 
(3-3) 

CYCLE 3 
PIPELINED 

READ 
(3-2) 

Figure 4.7. Pipelining Driven by NA# 

CYCLE 4 
NON-PIPELINED 

READ 
(2-2) 

Figure 4.8. NA # Active with No Internal Bus Request 
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IDLE IDLE 
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ClK 

ADS; 

A31-A3, W/R#, 
BEn#, NEME#, 

PTB 

MA# 

READY# 

D63-DO 

lOCK# 

CYCLE 1 
NON-PIPElINED 

READ 
(2-2) 

Tl Tl1 

'CYCLE 2 CYCLE 3 
NON-PIPElINED NON-PIPElINED 

WRITE WRITE 
(2-2) (2-2) 

Tl Tl1 Tl Tl1 

240296-20 

Figure 4.9. Locked Cycles 

When there is no internal bus request, activating 
NA # does not start a new cycle; the i860 micropioc­

,essor, however, remembers that NA# has been ac­
tivated. Figure 4.8' illustrates the situation where 
NA# is active but no internal bus request is'pending. 
NA# is activated when two cycles are outstanding. 
8scause there is no internal request pending until 
after one idle state, no new bus cycle is started dur-
ing that period. ' . 

4.3.4 LOCKED CYCLES 

The LOCK # signal is asserted when the current bus 
cycle is to be locked with the next bus cycle. Asser­
tion of LOCK # may be initiated by ,a program's set­
ting the BLbit of the dlrbase register using the lock 
instruction or st.e dirbase with BL = 1 (refer to sec­
tion 2) or by the i860 microprocessor itself during 
page table updates. 

In Figure 4.9, the first read cycle is to be locked with 
the following write cycle. If there were idle states 
between the cycles, the LOCK # signal would re­
main asserted. This is the case for a read!modify! 
write operation. The second write cycle is not locked 
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because LOCK # is no longer asserted when the 
first write cycle starts. 

4.3.5 HOLD AND BREQ ARBITRATION CYCLES 

The HOLD, HLDA, and BREQ signals permit bus ar­
bitration between the ieso microprocessor and an ... 
other bus master. 

See Figure 4.10. When HOLD is asserted, the i860 
microprocessor does not relinquish control of the 
bus until all outstanding cycles are completed. If 
HOLD were asserted one clock earlier, the last i860 ' 
microprocessor bus cycle before HLDA would not 
be started. 

The outputs (except HLDA and BREQ) float when 
HLDA is asserted. HOLD is sampled at the end of 
the clock in which it is activated. Recommended set­
up and hold times must be met to guarantee sam­
pling one clock after external HOLD activation. 
When HOLD is sampled active, a one clock delay for 
internal synchronization follows. HLDA may be 
deasserted as early as the clock following deasser­
tion of HOLD. 
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T" T" 

eLK 

ADS/I 

A31-A3. W/RII. 1x-7-+:~m~-+--+:~IMI:"'J\ 
BEn#. NENE#. 

PTB ~_-I-'~u:.j'iU-_+-_-I-'~IUj:~ 

READY/I 

HOLD 

HLDA 

BREQ 

240296-21 

Figure 4.10. HOLD, HLDA, and BREQ 

If, during a HOLD cycle, an internal bus request is 
generated, BREQ is activated even though HLDA is 
asserted. It remains active at least until the clock 
after ADS# is activated for the requested cycle. 

4.4 Bus States During RESET 

Figure 4.11 shows how INT ICSS is sampled during 
the clock period just before the falling edge of RE-

SET. If INT ICSS is sampled active, the iS60 micro­
processor enters CSS mode. No inputs (except for 
HOLD, INT ICSS, and CC1-CCO) are sampled dur­
ing RESET. 

Note that, because HOLD is recognized even while 
RESET is active, the HLDA output signal may also 
become active during RESET. Refer to Table 3.4 
"Output Pin Status during Reset". 

:.: '6 eLKs 

240296-22 

Figure 4.11. Reset Activities 
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5.0 MECHANICAL DATA 

FigurE;ls 5.1 and 5.2 show the locations of pins; Tables 5.1 and 5.2 help to locate pin identifiers. 

Q G , 0 c 

() () () () () () () () () () () () () () () () () 
Vee Vss Vee VSS A12 A17 A19 A21 A23 A25 A29 Al1 Yee Vss Vee Yss Vee 

() () () () () () () () () () () () () () () () () 
Vss Vee Vss AS A10 A13 A15 A18 A20 A24 A27 "28 ceo Vee Vss Vee Vss 

() () () () () () () () () () () () () () (i (i (; ~ 

Yee Vss A6 A7 A9 A1 t A1" A16 CLK A22 A26 A3D eel 062 060 VSS Vee 

() () () 
Vss Vee AS 

() 0 0 
Vee M A3 

() 0, 0 
W!R, HENE, P18 

() () () 
ADS, HLOA BREQ 

() 0 0 
LOCKI KEN, READY, 

() 0 () 
IHT/CSS HAl HOLD 

10 ( ) ( ) ( ) 

BE5# BF:11 BUI 

11 () () 0 
BE3, BE2, ,BE'I 

12 () () () 
SHI Bi:l, BED, 

13 () o () , 
RESET SCAN 85CH 

1. () () () 
VSS DO 

() 

Vss 

01 

() 
02 

() 
03 

() 
05 

() 
07 

16 () () 0 () () 0 
Vss Vee Vss Vee a. 09 

17 () () () () () () 

() 
011 

() () 
013 011 

() 

021 

() () 

D23 027 

() () () () () () 

() 
029 

() () () 4 
063 059 Vss 

() () () 5 
061 058 056 

OO()6 
057 05. 052 

() () () 7 
055 053 050 

o () () 
051 0.9 o.a 

() () () 

0'7 0'5 006 

() () () 10 
043 042 D« 

o o () 11 
039 0.1 0.0 

() () () 12 
037 \03& 038 

() 0 () 13 

035 D34 Vee 

() () 0 1. 
033 Vee Vss 

00 
031 032 

( j 

Vss 

() () () () () 16 

08 015 0.. 019 022 025 028 030 Vss Vee Vss 

() () () () () () ( ) ( ) ( ) ( ) ( ) 17 

Vee VSS Vee Vss Vee D6 010 012 016 018 020 024 026 Vss Vee VSS Vee 

Q II H 

Figure 5.1. Pin Configuration-View from Top Side 
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o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Vee Vss Vee Vss Vee A31 A.29 A,25 A23 A21 A19 11.17 A12 Vss Vee Vss Vee 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 000 
Vss Vee Vss Vee ceo A2B A27 1.24 A20 11.18 A1S Al.3 Al0 A8 Vss Yee Vss 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 000 
Vee Vss 060 062 ee1 .1.30 A26 A22 elK A16 A14 All A9 47 AS Vss Vee 

o o o o o o 
Vss 059 063 

METAL LID 
AS Vee Vss 

000 000 
056 DSS 061 A3 A4 Vee 

000 000 
052 054 057 PTB NENE# W/R# 

000 000 
D50 D53 D55 BREQ HLDA ADS# 

000 000 
048 049 051 READYN KEN# LOCK# 

o o o o o o 
046 045 047 HOLD NA# INT/CS8 

10 0 o o o o o 10 
044 042 043 BEOI BE7N BE5# 

11 0 o o o 0 o 11 
040 041 039 BE4, BE2# BE3# 

12 0 0 o o 0 o 12 
03B 036 D37 BEO# BEl, SHI 

13 0 0 o o o o 13 
Vee 034 D35 BSCN SCAN RESET 

,. 0 0 o o o v,s Vee D33 L-______________________ ----I Dl DO 
o 14 

Vss 

15 0 0 o o o o 0 0 0 o o o o o o 0 o 15 
Vee Yss 032 031 029 027 023 021 017 013 011 rn DS D3 02 Yss Vee 

16 0 o o o o o 0 0 0 o o o o 000 o 16 
Vss Vee Vss 030 D28 025 022 019 014 015 08 09 D4 Yet; Vss Vee Vss 

17 0 o o o o 000 0 o o o o o o o o 17 
Vee Vss Vee Vss D26 024 020 018 016 012 010 06 Vee Vss Vee Vss Vee 

Figure 5.2. Pin Configuration-View from Pin Side 
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Table 5.1. Pin Cross Reference by Location 

Location. Signal Location Signal Location Signal Location Signal 

A1 ............. Vee C9 ............. 047 J15 ............ 017 010 .......... BE6# 
A2 ............. vss C10 ............ 043 J16 ............ 014 011 .......... BE4# 
A3 ............. Vee C11 ............ 039 J17 ............ 016 012 .......... BEO# 
A4 ............. Vss C12 ............ 037 K1 ............. A21 013 .......... BSCN 
A5 ............. 056 C13 ............ 035 K2 ............. A18 014 ............. 01 
A6 ............. 052 C14 ............ 033 K3 ............. A16 015 .............. 02 
A7 ............. 050 C15 ............ 032 K15 .. : ......... 013 ·016 ............ Vss 
A8 ............. D48 Ci6 ... : ........ Vss 1"04~ nit:. 

~IU •••••••••••• ...,I.., Q17 .......... . Vee 
A9 ............. 046 C17 ............ Vee K17 ............ 012 R1 ............. Vss 
A10 ............ 044 01 ............. Vss L1 ............. A19 R2 ............. Vee 
A11 ............ 040 02 ........... ,.Vee L2 ............. A15 R3 ............. Vss 
A12 ............ 038 03 ............. 062 L3 ............. A14 R4 ............. Vee 
A13 ............ Vee 015 ............ 031 L15 ............ 011 R5 .............. A4 
A14 ............ Vss 016 ............ 030 L16 ............. 08 R6 ......... NENE# 
A15 ............ Vee 017 ............ Vss L17 ............. 010 R7 ........... HLOA 
A16 ............ Vss E1 ............. Vee M1 ............. A17 R8 .......... KEN# 
A17 ............ Vce E2 ............. CCO M2 ............. A13 R9 ............ NA# 
B1 ............. Vss E3 ............. CC1 M3; ............ A11 R10 .... : ..... BE7# 
B2 ............. Vee E15 ............ 029 M15 ............ 07 R11 .......... BEU 
B3 ............. Vss E16 ............ 028 M16 ............ 09 R12 .......... BE1# 
B4 .... : ........ 059 E17 ............ 026 M17 ............ 06 R13 .......... SCAN 
B5 ............. 058 F1 ............. A31 N1 ............. A12 R14 ............. 00 
B6 ............. 054 F2 ............. A28 N2 ............. A10 R15 ............ Vss 
B7 ............. 053 F3 ............. A30 N3 .............. A9 R16 ............ Vee 
B8 ............. 049 F15 ............ 027 N15 ............. 05 R17 ............ Vss 
B9 ............. 045 F16 ............ 025 N16 ............. 04 S1 ............. Vee 
B10 ............ 042 F17 ............ 024 N17 ............ Vee S2 ............. Vss 
811 ............ 041 G1 ............. A29 P1 ............. VSS S3 ............. Vee 
B12 •........... 036 G2 ........... :.A27 P2 .............. A8 S4 ............. Vss 
B13 ............ 034 G3 ...... , ...... A26 P3 .............. A7 S5 ............. Vee 
B14 .... , ....... VCC I. B15 ............ Vss 
816 ............ Vee 

G15 ........... 023 
G16 ........... 022 
G17 ........... D20 

P15 ............. 03 
P16 ............ Vee 
P17 ............ VSS 

S6 .......... W/R# 
S7 ........... AOS# 
S8 ......... LOCK# 

B17 ............ Vss H1 ............. A25 01 ............. Vee S9 ........ INT/CS8 
C1 ...... : ...... Vee H2 ............. A24 02 ............. Vss S10 .......... BE5# 
C2 ............. Vss H3 ............. A22 03 .............. A6 S11 .......... BE3# 
C3 ............. 060 H15 ............ 021 04 .............. A5 S12 ............ SHI 
C4 ............. 063 H16 ............ 019 05 .............. A3 S13 ......... RESET 
C5 ............. 061 H17 ............ 018 06 ............ PTB S14 ............ Vss 
C6 ............. 057 J1 ............. A23 07 ........... BREO S15 ............ Vee 
C7 ............. 055 J2 ............. A20 08 ........ REAOY# S16 ............ Vss 
C8 ............. 051 J3 ........•.... CLK 09 ........... HOLO S17 ........ : ... Vee 
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Table 5.2. Pin Cross Reference by Pin Name 

Signal Location Signal Location Signal Location Signal Location 

A3 .............. 05 CLK ............. J3 041 ............ B11 Vee ............ B16 
A4 .............. R5 00 ...... , ...... R14 042 ............ B10 Vee ............. C1 
A5 .............. 04 01 .. , .......... 014 043 ............ C10 Vee ............ C17 
A6 .............. 03 02 ............. 015 044 ............ A10 Vee ............. 02 
A7 .............. P3 03 ............. P15 045 ............. B9 Vee ............. E1 
A8 .............. P2 04., ........... N16 046 ............. A9 Vee ............ N17 
A9 .............. N3 05 ... , ......... N15 047 ............. C9 Vee ............ P16 
A10 ............. N2 06 •........... M17 048 ............. A8 Vee ............. 01 
A11 ............. M3 '07 ......... , .. M15 049 ............. B8 Vee ........... 017 
A12 ............. N1 08 ............. L16 050 ............. A7 Vee ............. R2 
A13 ............. M2 09 ............ M16 051 ............. C8 Vee ............. R4 
A14 ............. L3 010 ............ L17 052 ............. A6 Vee ............ R16 
A15 ............. L2 011 ............ L15 053 ............. B7 Vee ............. 51 
A16 ............. K3 012 ............ K17 054 ............. B6 Vee ............. 53 
A17 ............. M1 013 ............ K15 055 ............. C7 Vee ............. 55 
A18 ............. K2 014 ............ J16 056 ............. A5 Vee ............ 515 
A19 ............. L1 '015 ............ K16 057 ............. C6 Vee ............ 517 
A20 ............. J2 016 ............ J17 058 ............. B5 Vss ............. A2 

, A21 ............. K1 017 ............ J15 059 ............. B4 Vss ..... : ....... A4 
A22 ............. H3 018 ............ H17 060 ............. C3 Vss ............ A14 
A23 ............. J1 019 .......... , .H16 061 ............. C5 Vss ............ A16 
A24 ............. H2 020 ........... G17 062 ............. 03 Vss ............. B1 
A25 ............. H1 021 ............ H15 063 ............. C4 Vss ............. B3 
A26 ............. G3 022 ........... G16 HLOA ........... R7 Vss ............ B15 
A27 ............. G2 023 ........... G15 HOLO ........... 09 Vss ............ B17 
A28 ............. F2 024 ............ F17 INT/C58 ........ 59 Vss ............. C2 
A29 ............. G1 025 ............ F16 KEN# .......... R8 Vss ............ C16 
A30 ............. F3 026 ........... .-E17 LOCK# ......... 58 Vss ............. 01 
A31 ............. F1 027 ............ F15 NA# ............ R9 Vss ............ 017 
A05# ........... 57 028 ............ E16 NENE# ......... R6 'Vss ............. P1 
BEO# .......... 012 029 ............ E15 PTB ............ 06 Vss ............ P17 
BE1# .......... R12 030 ............ 016 REAOY# ........ 08 Vss ............. 02 
BEU .......... R1'1 031 ............ 015 RE5ET ......... 513 Vss ............ 016 
BE3# .......... 511 032 ............ C15 5CAN .......... R13 Vss ............. R1 
BE4# .......... 011 033 ............ C14 5HI ............ 512 Vss ............. R3 
BE5# ....... , .. 510 034 ............ B13 Vee ............. A1 Vss ............ R15 
BE~# .......... 010 035 ............ C13 Vee ............. A3 Vss ............ R17 
BE7# .......... R10 036 ............ B12 Vee ............ A13 Vss ............. 52 
BREO ........... 07 037 ............ C12 Vee ............ A15 Vss ............. 54 
B5CN .......... 013 038 ............ A12 Vee ............ A17 Vss ............ 514 -
CCO ....... , ..... E2 039 ............ C11 Vee ............. B2 Vss ............ 516 
CC1 ............. E3 040 ............ A11 Vee ............ B14 W/R# .......... 56 
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Table 5.3. Ceramic PGA Package Dimension Symbols 

Letter or 
Description of Dimensions Symbol 

A Distance from seating plane to highest point of body 

A1 Distance between seating plane and base plane (lid) 

A2 Distance from base plane to highest point of body 

A3 Distance from seating plane to bottom of body 

B Diameter of terminal lead pin 
--"~- .. 

D Largest overall package dimension of length 

D1 A body length dimension, outer lead center to outer lead center 

e1 Linear spacing between true lead position centerlines 

L Distance from seating plane to end of lead 

51 Other body dimension, outer lead center to edge of body 

NOTES: 
1. Controlling dimension: millimeter. 
2. Dimension "e1" ("e") is non-cumulative. 
3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch. 
4. Dimensions "8", "81" and "C" are nominal. 
5. Details of Pin 1 identifier are optional. 
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Family: Ceramic Pin Grid Array Package 

Symbol 
Millimeters Inches 

Min Max Notes Min Max 

A 3.56 4,57 0.140 0.180 

A1 0.64 1.14 SOLID LID 0.025 0.045 

A2 23 0,30 SOLID LID 0.110 0.140 

As 1,14 1.40 0.045 0.055 

B 0.43 0.51 0.017 0.020 

0 44,07 44,83 1.735 1.765 

01 40,51 40.77 1.595 1.605 

61 2.29 2,79 0.090 0.110 

L 2.54 3.30 0.100 0.130 

N 168 168 

S1 1.52 2.54 0.060 0.100 

ISSUE IWS REV X 7/15/88 

Notes 

SEATING 
PLANE "1 

!IlB (ALL PINS) I . 

f=~ 
SWAGGED 

PIN 
DETAIL 

240296-S0 

SOLID LID 

SOLID LID 

Figure 5.3.168 Lead Ceramic PGA Package Dimensions 
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6.0 PACKAGE THERMAL 
SPECIFICATIONS 

The i860 microprocessor is specified for operation 
when T C (the case temperature) is within the range 
of 0·C-85°C. T c may be measured in -any environ­
ment to determine whether the i860 microprocessor 
is within specified operating range. The case tem­
perature should be measured at the center of the 
top surface opposite the pins. 

T A (the ambient tempaiatura) can be calcu!ated 
from 9CA (thermal resistance from case to ambient) . 
with the following equation: 

Typical values for 9CA at various airflows are given 
in Table 6.1 for the 1.75 sq. in., 168 pin, ceramic 
PGA. 

Table 6.2 shows the maximum T A allowable (without 
exceeding T c> at various airflows and operating fre-
quencies (fCUQ. . 

. Note that T A is greatly improved by attaching "fins" 
or a "heat sink" to the package. P (the maximum 
power consumption) is calculated by using the maxi­
mum Icc at 5V as tabulated in the DC Characteris­
tics of section 7. 

Table· 6.1. Thermal Resistance (9CA) at Various 
Airflows 

InoC/Watt 

Airflow-ft/min (m/sec) 

0 200 400 600 800 1000 
(0) (1.01) (2.03) (3.04) (4.06) (5.07) 

9CA with 
13 9 5.5 5.0 3.9 3.4 

Heatsink* 

9CA without 
17 14 11 9 7.1 6.6 

Heat Sink 
.. ·0.285" high Unidirectional heat Sink (AI alloy 6061, 50 mil 

fin width, 150 mil center-to·center fin spacing). 

Table 6.2. Maximum T A at Various Airflows 

InoC 

Airflow-ft/min (m/sec) 

fCLK 0 200 400 600 800 1000 
(MHz) (0) (1.01) (2.03) (3.04) (4.06) (5.07) 

TAwith 33.3 46 58 69 70 73 75 
Heat Sink" 40.0 43 56 67 69 72 74 

TA without 33.3 34 43 52 ·58 64 65 
Heat Sink -- - .-,..- .- ~- -- -, I 4U.U I OjU I 4V I 4lf I 00 I 0':: I 0'+ I 

·0.285" high unidirectional heat sink (AI alloy 6061,50 mil fin width, 150 mil 
center·to·center fin spacing). 
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7.0 ELECTRICAL DATA 

Inputs and outputs are TTL compatible. All input and 
output timings are specified relative to the 1.5 volt 
level of the rising edge of CLK and refer to the point 
that the signals reach 1.5V. 

7.1 Absolute Maximum Ratings 

Case Temperature T C under Bias ...... O·C to 85~C 

Storage Temperature .......... - 65·C to + 150·C 

Voltage on Any Pin 
with Respect to Ground .............. - 0.5 to 6.5V 

7.2 D.C. Characteristics 

• Notice: Stresses above those listed under "Abso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above those indicated in the opera­
tional sections of this specification is not implied Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE Specifications contained within the 
following tables are subject to change. ' 

Table 7.1. DC Characteristics 
Tc = 0·Ct085·C, Vee = 5V ±5% 

Symbol Parameter Min Max Units Notes 

VIL Input LOW Voltage -0.3 +0.8 V 

VIH Input HIGH Voltage 2.0 Vee + 0.3 V 

VILe CLK Input LOW Voltage -0.3 +0.8 V 

VIHC CLK Input HIGH Voltage 3.0 Vee + 0.3 V 

VOL Output LOW Voltage 0.45 V (Note 1) 

VOH Output HIGH Voltage 2.4 V (Note 2) 

Icc Power Supply Current 
CLK = 33.3 MHz 600 rnA Vee@5V 
CLK = 40.0 MHz 650 rnA Vec@5V 

ILl Input Leakage Current ±15 p.A No pullup 
orpulldown 

ILO Output Leakage Current ±15 p.A 
CIN Input Capacitance 15 pF (Note 3) 
Co I/O or Output Capacitance 15 pF (Note 3) 

CCLK Clock Capacitance 20 pF (Note 3) 

NOTES: 
1. This parameter is measured at 4.0 mA for A31-A3, 063-00, BE7#-BEO#; at 5.0 mA for all other outputs. 
2. This parameter is measured at 1.0 mA for A31-A3, 063-00, BE7 # -BEO#; at 0.9 mA all other outputs. 
3. These are not tested. They are guaranteed by design characterization. 

5-49 



7.3 A.C. Characteristics 
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Table 7.2. A.C. Characteristics 
Te = O°Cto 85°C, Vee = 5V ±5% 

All timings measured at ClK = 1.5V unless otherwise specified. 

33.3 MHz 40.0 MHz 
Symbol Parameter 

, 
Min Ml!lx Min Max 
(ns) (ns) (ns) (ns) 

t1 ClKperiod 30 125 25 125 
t2 eLK high time 7 " U 

t3 ClKlowtime 7 5 
t4 . ClK fall time 4 4 
t5 ClK rise time 4 4 
tSa A31-A3, PTB, W/R#, NENE# valid delay 3.5 23 3.5 19 
tSb BEn #' valid delay 3.5 25 3.5 21 
t7 Float time, all outputs 3.5 30 3.5 25 . 
t8 ADS#, BREQ, LOCK#, HLDAvalid delay 3.5 20 3.5 15 
t9 DS3-DO valid delay 3.5 35 3.5 31 
t10 Setup time, all inputs except INT, HOLD 11 8 
t11 Hold time, all inputs except INT, HOLD 4 3 
t12 INT, HOLD setup time 11 8 
t13 INT, HOLD hold time. 4 4 

NOTES: 

. 
Test 

Conditions 

""f 1]\/ envy 

atO.8V 
·2VtoO.8V 
0.8Vto 2V 
50 pF load 
50 pFload 
(Note 1) 
50 pF load 
50 pF load 

(Note 2) 
(Note 2) 

1. Float condition occurs when maximum output current becomes less than ILO in magnitude. Float delay is not tested. 
2. INT and HOLD are asynchronous inputs. The setup and hold specifications are given for test purposes or to assure 
recognition on a specific rising edge of elK. 
~n = 0,1, ... ,7 
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3.0V 

2.0V 
elK 

I.SV t2 t3 

O.BV 

tl 

INPUT INPUT 
SETUP HOLD 

t12mln t 13m1n 

INPUTS 

tl0m1n t11 m1n 

VALID 

flOAT 

240296-25 

Figure 7.1. elK,lnput, and Output Timings 
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nmn+15~---r----~--~----'----' 

nom +10 1-_-+-__ +-_-+ __ +'~--'<f'"3-DO 

TYPICAL· OUTPUT 
DELAY (ns) nom +5 1---+--+-~""-t-:::7.c:-+--I 

@ 1.5V 

nom -5 F'I... __ ' __ -'--__ -'-____ -'--__ ---' ____ -' 

25 50 75 100 125 

LOAD CAPACITANCE. CL (pf) 

150 

Graphs are not linear outside the CL range shown. 
nom = nominal value given in the AC timing table. 
'Typical part under worst-case conditions. 

240296-26 

Figure 7.2. Typical Output Delay vs Load Capacitance under Worst-Case Conditions 

TYPICAL. OUTPUT ' A S#. BREQ. LOCK#. HLDA 
SLEW TIME (ns) 9 1--,-+-------:.r-+-~"f--'"7iiI''9 

(0.8- 2.OV) 

/R#. NENE# 

3~~+--+--+--~-, 

. 25 75 100 .. 'n: 150 

LOAD CAPACITANCE. CL (pf) 

NOTES: 
Graphs are not linear outside the CL range shown. 
'Typical part under worst-case conditions. 

240296-27 

Figure 7.3., Typical Slew Time vs Load Capacitance under Worst-Case Conditions 
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700 
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. 
500 ~ 

5 
Jl 400 

I./~ 

V i-'" 1/ 

...... V 
V 

V 
300 

200 
8 12 16 20 24 26 30 34 3840 

FREQUENCY (MHz) 
240296-28 

NOTES: 
Graphs are not linear outside the frequency range 
shown. 
'Worst-case supply current at 5V. 

Figure 7.4. Typical Icc vs Frequency 

8.0 INSTRUCTION SET 

Key to abbreviations: 

sret A register (integer or floating-point 
depending on class of instruction) 
or a 16-bit immediate value. The 
immediate value is sign-extended 
for add and subtract operations 
and zero-extended for logical oper­
ations. 

sretni 

sre2 

rdest 

freg 

ireg 

etr/reg 

#eonst 

Same as sret except that no im­
mediate value is permitted. 

A register (integer or floating-point 
depending on class of instruction). 

A register (integer or floating-point 
depending on class of instruction). 

A floating-point register. 

An integer register. 

One of the control registers fir, 
psr, epsr, dirbase, db, or fsr. 

A 16-bit immediate address offset 
that the i860 microprocessor sign­
extends to 32 bits when computing 
the effective address. 
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mem.x(address) The contents of the memory loca­

.p 

.r 

.w· 

.x 

.y 

.Z 

Ibrott 

sbrott 

brx 

srets 

PM 

tion indicated by address with a 
size of x. 

Table 8.1. Precision 
Specification 

Suffix 
Source Result 

Precision Precision 

.ss single single 

.sd single double 

.dd double double 

.ds double single 

Unless otherwise specified, float­
ing-point operations accept single­
or double-precision source oper­
ands and produce a result of equal 
or greater precision. 80th input op­
erands must have the same preci­
sion. The source and result preci­
sion are specified by a two-letter 
suffix to the mnemonic of the oper­
ation. 

Precision specification .ss, .sd, or 
.dd (.ds not permitted). Refer to 
Table 8.1. 

Precision specification .ss, .sd, 
.ds, or .dd. Refer to Table 8-1. 

.ss (32 bits), or .dd (64 bits) 

.b (8 bits), .s (16 bits), or .1 (32 bits) 

.1 (32 bits), .d (64 bits), or .q (128 
bits) 

.I (32 bits), or .d (64 bits) 

A signed, 26-bit, immediate, rela­
tive branch offset 

A signed, 16-bit, immediate, rela­
tive branch offset 

A function that computes the tar­
get address of a branch by shifting 
the offset (either Ibrott or sbroff) 
left by two bits, sign-extending it to 
32 bits, and adding the result to 
the address of the current control­
transfer instruction plus four. 

An integer register or a 5-bit imme­
diate that is zero-extended to 32 
bits. 

The pixel mask, which is consid­
ered as an array of eight bits 
PM[0]..PM[71. where PM[O] is the 
least significant bit. 



inter i860TM MICROPROCESSOR 

8.1 Instruction Definitions in Alphabetical Order 

adds srct, src2, rdest ..... ........ .' ...................................... .' ........ Add Signed 
rdest - srct + src2 
OF - (bit 31 carry "* bit 30 carry) 
CC set if src2 '< -srct (signed) 
CC clear if src2 ~ -srct (signed) 

addu srct, src2, rdest ................................................... ' ....... Add Unsigned 
rdest - srct + src2 
OF - bit 31 carry 
CC - bit 31 carry 

and srct, 'src2, rdest ............................................. _ ............... Logical AND 
rdest - srctand src2 
CC set if result is zero, cleared otherwise 

andh # const, src2, rdest .................................................... Logical AND High 
rdest - (# const shifted left 16 bits) and src2 
CC set if result is zero, cleared otherwise 

andnot srct, src2, rdest ....................................................... Logical AND NOT 
rdest - not srct and src2 
CC set if result is zero, cleared otherwise 

andnoth #const, src2, rdest . ............................................... Logical AND NOT High 
rdest - not (# const shifted left 16 bits) and src2 

bc 

CC set if resul~ is zero, cleared otherwise 

Ibroff .................................................................... Branch on ce 
IF ,CC = 1 
THEN continue execution at brx(lbroff) 
FI , 

bc.t Ibroff ...................................................... ' ....... Branch on ee, Taken 
IF CC = 1 
THEN execute one more sequential instruction 

continue execution at brx(lbroff) 
ELSE skip next sequential instruction 
FI 

bla src t n~ src2, sproff . ............... : .............................. Branch on Lee and Add 
LCC-temp clear if src2 < -srctni (signed) 
LCC-temp set if src2 ~ -srctni (signed) 

src2 - src1nf + src2 
-Execute one more sequential instruction 

bnc 

IF LCC 
THEN LCC - LCC-temp 

continue execution at brx(sbroff) 
ELSE LCC -- LCC-temp 
FI 

IF 
THEN 
FI 

Ibroff ................................................................ Branch on Not ee 
CC = 0 ' 
continue execution at brx(lbroff) 

bnc.t Ibroff ......................................................... Branch on Not ee, Taken 
IF CC = 0 
THEN execute one more sequential instruction 

continue execution at brx(lbroff) 
ELSE skip next sequential instruction 
FI 

br Ibroff . .................................................... Branch Direct Unconditionally 
Execute one more sequential instruction. 
Continue execution at brx(lbroff). 
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brl [src1ni] ................................................ . Branch Indirect Unconditionally 

bte 

Execute one more sequential instruction 
IF any trap bit in psr is set 
THEN copy PU to U, PIM to 1M in psr 

clear trap bits 

FI 

IF 05 is set and DIM is reset 
THEN enter dual-instruction mode after executing one 

instruction in single-instruction mode 
ELSE IF 05 is set and DIM is set 

FI 

THEN enter single-instruction mode after executing one 
instruction in dual-instruction mode 

ELSE IF DIM is set 

FI 

THEN enter dual-instruction mode 
for next two instructions 

ELSE enter single-instruction mode 
for next two instructions 

FI 

Continue execution at address in src1ni 
(The original contents of src1ni is used even if the next instruction 
modifies src1ni. Does not trap if src1ni is misaligned.) 

IF 
THEN 
FI 

src1s, src2, sbroff ............................. ; ......................... . Branch If Equal 
src1s = src2 
continue execution at brx(sbroff) 

btne src1 s, src2, sbroff . ................................................... Branch If Not Equal 
IF 
THEN 
FI 

src1s *" src2 
contin'.le execution at brx(sbroff) 

call Ibroff . .................................................................. Subroutine Call 
r1 - address of next sequential instruction + 4 
Execute one more sequential instruction 
Continue execution at brx(lbroff) 

calli [src1ni] ........................................................ Indirect Subroutine Call 
r1 - address of next sequential instruction + 4 
Execute one more sequential instruction 
Continue execution at address in src1ni 

(The original contents of src1ni is used even if the next instruction 
modifies src1ni. Does not trap if src1ni is misaligned. 
The register src1ni must not be r1.) 

fadd.p src1, src2, rdest ...................................................... Floating-Point Add 
rdest - src1 + src2 

faddp src1, src2, rdest . .................................................... Add with Pixel Merge 
rdest - src1 + src2 . 
Shift and load MERGE register as defined in Table 8.2 

faddz src1, src2, rdest ....................................................... Add with Z Merge 
rdest - src1 + src2 
Shift MERGE right 16 and load fields 31..16 and 63 .. 48 

famov.r src1, rdest .............................................•..... Floating-Point Adder Move 
rdest -- src1 
Send src1 through the floating-point adder. (Preserves -0 (minus zero) when src1 is -0. src2 
must be coded as fO by the assembler.) 

fladd.w src1, src2, rdest ...................................................... . Long-Integer Add 
rdest - src1 + src2 
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fisub.w sre t, sre2, rdest . ................................ , ................. Long-Integer Subtract 
rdest +- sret' - sre2 

fix.p sret, rdest ... ....................................... Floating-Polntto Integer Conversion 
rdest +- 64- bit value with low-order 32 bits equal to integer part of sret rounded 

. Floating-Point Load 
fld.y sret(sre2), (reg ......................................... : ..................... . (Normal) 
fld.y srct(sre2)+ +, (reg . .................................................... (Autolncrement) 

(reg +- mem.y (sret + sr(2) 
IF autoincrement 
THEN sre2 +- srct + src2 
FI 

Cache Flush 
flush #const(sre2) .................................................................. (Normal) 
flush #eonst(src2) + + ...................................................... (Autoincrement) 

Replace block in data cache with address (#const + sre2). 
Contents of block undefined. 
IF autoincrement 
THEN sre2 +- #const + src2 
FI 

fmlow.dd srct, sre2, rdest . ............................................. Floating-Point Multiply Low 
rdest +- low-order 53 bits of sret mantissa x src2 mantissa 
rdest bit 53 +- most significant bit of mantissa 

fmov.r sret, rdest . ................................................ Floating-Point Reg-Reg Move 
Assembler pseudo-operation 

fmov.ss sret, rdest = fiadd.ss sret, fO, rdest 
fmov.dd sret, rdest = fladd.dd sret, fO, rdest 
fmov.sd sret, rdest = famov.sd sret, rdest 
fmov.ds sret, rdest = famov.ds sret, rdest 

fmul.p sret, sre2, rdest ..................................... : ............ Floating-Point Multiply 
rdest +- sret x sre2 

fnop .................................................................. Floating-Point No Operation 
Assembler pseudo-operation 

fnop = shrd rO, fO, fO 
form sret, rdest .................................................... . OR with MERGE Register 

rdest +- sret OR MERGE 
MERGE +- 0 

frcp.p sre2, rdest .................................................... Floating-Point Reciprocal 
rdest +- i i sre2 with maximum mantissa errOr < 2-7 

frsqr.p sre2, rdes! ........................................ Floating-Point Reciprocal Square Root 
rdest +- 1/SQRT (src2) with maximum mantissa error < 2-7 

Floating-Point Store 
fst.y (reg, sret(src2) ........... ,' .................................................... (Normal) 
fst.y (reg, sret(sre2) + + ........... ,' ......................................... (Autolncrement) 

mem.y (sre2 + srct) +- (reg 
IF autoincrement 
THEN sre2 +- sret + sre2 
FI 

fsub.p sre t, src2, rdest . ................................................. Floating-Point Subtract 
rdest +- sret - sre2 

ftrunc.p sre t, rdest .......................................... Floatlng-Polntto Integer Conversion 
rdest +- 64-bit value with low-order 32 bits equal to integer part of sret 

fxfr sret,ireg . ............................................... Transfer F-P to Integer Register 
ireg +- srct 
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fzchkl src1, src2, rdest ................................................... 32-Blt Z-Buffer Check 
Consider src1, src2, and rdest as arrays of two 32-bit 

fields src1(0) .. src1(1), src2(0) .. src2(1), and rdest(0) .. rdest(1) 
where zero denotes the least-significant field. 

PM --. PM shifted right by 2 bits 
FOR i = 0 to 1 
DO 

PM [i + 6] -- src2(i) ~ src1(i) (unsigned) 
rdest(i) -- smaller of src2(i) and src1(i) 

00 
MERGE -- 0 

fzchks src1, src2, rdes! ..................... , ........... : ...... , .......... 16-Blt Z-Buffer Check 
Consider src " src2, and rdes! as arrays of four 16-bit 

fields src1(0) .. src1(3), src2(0) .. src2(3), and rdest(0) .. rdest(3) 
where zero denotes the least-significant field. 

PM -- PM shifted right by 4 bits 
FOR i = 0 to 3 
DO 

PM [i + 4] -- src2(i) ~ src1(i) (unsigned) 
rdest(i) -- smaller of src2(i) and src1(i) 

00 
MERGE -- 0 

Intovr .......................................................... Software Trap on Integer Overflow 
If OF in epsr = 1, generate trap with IT set in psr. 

ixfr src1ni, {reg . ............................................. Transfer Integer to F-P Register 
(reg -- src1ni 

Id.c c!r1reg, rdest ................................................ Load from Control Register 
rdes! -- ctr1 reg . 

Id.x src1(src2), rdes! ........................................................... Load Integer 
rdest -- mem.x (src1 + src2) 

lock ...................... : ........................................... Begin Interlocked Sequence 
Set BL in dirbase. The next load or store locks the bus. 
Disable interrupts until the bus is unlocked. 

mov src2, rdes! ...................................................... Register-Register Move 
Assembler pseudo-operation 

mov src2, rdest = shl rO, src2, rdes! 

nop ........................................................................ Core-Unit No Operation 
Assembler pseudo-operation 

nop = shl rO, rO, rO 

or src1, src2, rdes! ............................................................. Logical OR 
rdest -- src1 OR src2 
CC set if result is z,ero, cleared otherwise 

orh #const, src2, rdes! ...........................•......................... . Logical OR High 
rdes! -- (# cons! shifted left 16 bits) OR src2 
CC set if result is zero, cleared otherwise 

pfadd.p src1, src2, rdes! ............ ~ ................................ Plpelined Floating-Point Add 
rdes! -- last stage Adder result 
Advance A pipeline one stage 
A pipeline first stage -- src1 + src2 

pfaddp src1, src2, rdest .......................................... Pipelined Add with Pixel Merge 
rdes! -- last stage Graphics result 
last stage Graphics result -- src1 + src2 
Shift and load MERGE register from last stage Graphics result as defined in Table 8.2 
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pfaddz src1, src2, rdest . ............................................. Plpellned Add with Z Merge 
rdest +- last stage Graphics result . 
last stage Graphics result +- src1 + src2 
Shift MERGE right 16 and load fields 31..16 and 63 .. 48 from last stage Graphics result 

pfam.p src1, src2, rdest . ................................ Plpelined Floating-Point Add and Multiply 
rdest +- last stage Adder result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage +- A-op1 + A-op2 
M pipeline first stage +- M-op1 X M-op2 

pfamov.r src1, rdest . ......................................... Pipellned Floating-Point Adder Move 
rdest +- last stage Adder result 
Advance A pipeline one stage 
A pipeline first stage +- src1 

pfeq.p src 1, src2, rdest .................................. Pipelined Floating-Point Equal Compare 
rdest +- last stage Adder result 
CC set if src1 = src2, else cleared 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs . 

pfgt.p src 1, src2, rdest ......................... Pipelined Floating-Point Greather-Than Compare 
(Assembler clears R-bit of instruction) 
rdest +- last stage Adder result 
CC set if src1 > src2, else cleared 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

pfiadd.w src1, src2, rdest ............................................. . Pipelined Long-Integer Add 
rdest +- last stage Graphics result 
last stage Graphics result +-' src1 + src2 

pfisub.w src1, src2, rdest ......................................... Pipelined Long-Integer Subtract 
rdest +- last stage Graphics result 
last stage Graphics result +- src1 - src2 

pfix.p src 1, rdest ................................ Pipelined Floating-Point to Integer Conversion 
rdest ~ last stage Adder result' . 
Advance A pipeline one stage 
A pipeline first stage +- 64-bit value with low-order 32 bits 

equal to integer part of src1 rounded 

, Pipellned Floating-Point Load 
pfld.:i: src1(src2j, treg . ~ ............................................................. . (Norma!) 
pfld.z src1(src2) + + , freg ........................ ,' ............................ (A"tolncr:ement) 

freg +- mem.z (third previous pfld's (src1 + src2» 
(where .z is precision of third previous pfld.z) 

If autoincrement . 
THEN src2 +- src1 + src2 
FI 

pfle.p src1, src2, rdest .............................. . Pipelined F-P Less-Than or Equal Compare 
Assembler pseudo-operation, identical to pfgt.p except that . 

assemble; sets R-bit of inst;uction. . 
rdest +- last stage Adder result 
CC clear if src 1 ::;; src2, else set 
Advance A pipeline one stage 
A pipeline first stage is undefined, but no result exception occurs 

pfmam.p src 1, src2, rdest . ................................ Plpellned Floating-Point Add and Multiply 
rdest +- last stage Multiplier result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage +- A-op1 - A-op2 
M pipeline first stage +- M-op1 x M-op2 
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pfmov.r src1, rdest ....................................... Pipelined Floating-Point Reg-Reg Move 
Assembler pseudo-operation 

pfmov.ss src1, rdest = pfiadd.ss src1, fO, rdest 
pfmov.dd src1, rdest = pfiadd.dd src1, fO, rdest 
pfmov.sd src1, rdest = pfamov.sd src1, rdest 
pfmov.ds src1, rdest = pfamov.ds src1, rdest 

pfmsm.p src1, src2, rdest ............................ Pipelined Floating-Point Subtract and Multiply 
rdest - last stage Multiplier result . 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage - A-op1 - A-op2 
M pipeline first stag~ - M-op1 x M-op2 

pfmul.p src1, src2, rdest ......................................... Pipelined Floating-Point Multiply 
rdest - last stage Multiplier result 
Advance M pipeline one stage 
M pipeline first stage - src1 x src2 

pfmul3.p src1, src2, rdest . .......................................... Three-Stage Pipelined Multiply 
rdest - last stage Multiplier result 
Advance 3-Stage M pipeline one stage 
M pipeline first stage - src1 x src2 

pform src1, rdest ............................................. . Pipelined OR to MERGE Register 
rdest - last stage Graphics result 
last stage Graphics result - src1 OR MERGE 
MERGE - 0 

pfsm_p src 1, src2, rdest ............................ Pipelined Floating-Point Subtract and Multiply 
rdest - last stage Adder result 
Advance A and M pipeline one stage (operands accessed before advancing pipeline) 
A pipeline first stage - A-op1 - A-op2 . , 
M pipeline first stage - M-op1 x M-op2 

pfsub.p src1, src2, rdest ........................................ Pipelined Floating-Point Subtract 
rdest - last stage Adder result 
Advance A pipeline one stage 
A pipeline first stage - src1 + src2 

pftrunc.p src1, rdest ................................ Plpellned Floating-Point to Integer Conversion 
rdest - last stage Adder result . 
Advance A pipeline one stage 
A pipeline first stage - 64-bit value with low-order 32 bits 

equal to integer part of src1 

pfzchkl src1, src2, rdest .......................................... Pipelined 32-Bit Z-Buffer Check 
Consider src1, src2, and rdest, as arrays of two 32-bit 

fields src1(0) .. src1(1), src2(0) .. src2(1), and rdest(0) .. rdest(1) 
where zero denotes the least significant field. 

PM - PM shifted right by 2 bits 
FOR i = 0 to 1 
DO 

PM Ii + 6] - src2(i) :;;; src1(i) (unsigned) 
rdest(i) - last stage Graphics result 
last stage Graphics result - smaller of src2(i) and src1(i) 

00 
MERGE - 0 
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pfzchks sre 1, sre2, rdesf .......................................... Plpellned 16-Blt Z-Buffer Check 
Consider sre1, sre2, and rdest, as arrays of four 16-bit 

fields sre1(0) .. sre1(3), src2(0) .. sre2(3), and rdest(0) .. rdest(3) 
where zero denotes the least significant field. 

PM of- PM shifted right by 4 bits 
FOR i = 0 to 3 
DO 

PM [i + 41 of- src2(i) $; sre1(i) (unsigned) 
rdest(i) of- last stage Graphics result 
last stage Graphics result of- smaller of sre2(i) and,sre1(i) 

00 ' 
MERGE - 0 

pst.d treg, # eonst(src2) ........................................................... Pixel Store 
pst.d treg, # const(sre2) + + .......................... ~ ............. Pixel Store Autoincrement 

Pixels enabled by PM in mem.O (sre2 + #const) of- treg 
Shift PM right by a/pixel size (in bytes) bits 
IF autoincrement 
THEN sre2 of- #const + sre2 
FI 

shl srde1, sre2, rdest ............................................................. . Shift Left 
rdest of- sre2 shifted left by sre 1 bits 

shr sre1, sre2, rdest . .. " .... : ......................................... : .......... Shift Right 
SC (in psr) of- src1 
rdest of- sre2 shifted right by sret bits , . 

shra sre1, sre2, rdest ................................................... Shift Right Arithmetic 
rdest of- sre2 arithmetically shifted right by src1 bits 

, . 
shrd sre1, sre2, rdesf ...................................................... Shift Right Double 

rdest of- low-order 32 bits of sre1:sre2 shifted right by SC bits 

st.c sre 1 ni, etr/reg .................................................. Store to Control Register 
etr/reg of- sre1ni 

st.x sre1ni, #eonst(sre2) ....................................................... Store Integer 
mem.x (sre2 + #const) of- sre1ni . 

subs sre 1, sre2, rdest ......................................................... Subtract Signed 
rdest of- sre 1 - sre2 
OF of- (bit 31 carry # bit 30 carry) 
CC set if sre2 > sre1 (Signed) 
CC clear if src2 $; sre1 (signed) 

subu, sre1, sre2, rdest ..................................................... . Subtract Unsigned 
rdest of- sre1 - src2 
OF of- NOT (bit 31 carry) 
CC of- bit 31 carry 
(Le. CC set if sre2 $; sre1 (unsigned) 

CC clear if sre2 > sre1 (unsigned) 

trap sre1, sre2, rdest .......................................................... Software Trap 
Generate trap with IT set in psr 

unlock .................................................................. End Interlocked Sequence 
Clear BL in dlrbase. The next load or store unlocks the bus. 
Enable interrupts after bus is unlocked. 

xor sre1, sre2, rdest . ................................................... Logical Exclusive OR 
rdest of- sre1 XOR sre2 
CC set if result is zero, cleared otherwise 

xorh # const, sre2, rdest ............................................ Logical Exclusive OR High 
rdest of- (# const shifted left 16 bit) XOR sre2 
CC set if result is zero, cleared otherwise 

5-60 



intJ i860TM MICROPROCESSOR 

Table 8.2. FADDP MERGE Update 

Pixel 
Fields Loaded From 

Right Shift 
Size 

Result into MERGE 
Amount 

(from PS) (Field Size) 

8 63 .. 56,47 . .40,31 .. 24,15 .. 8 8 
16 63 .. 58,47 . .42,31..26,15 .. 10 6 
32 63 .. 56, 31 .. 24 8 

8.2 Instruction Format and Encoding 

All instructions are one word long and begin on a 
word boundary. When operands are registers, the 
register encodings shown in Table 8.3 are used. 
There are two general core-instruction formats, 
REG-format and CTRL-format, as well as a separate 
format for floating-point instructions. 

8.2.1 REG-FORMAT INSTRUCTIONS 

Within the REG-format are several variations as 
shown in Figure 8.1. Table 8.4 gives the encodings 
for these instructions. One encoding is an escape 
code that d~fines yet another variation: the core es­
cape instructions. Figure 8.2 shows the format of 
this group, and Table 8.5 shows the encodings. 

In these instructions, the src2 field selects one of 
the 32 integer registers (most instructions) or five 
control registers (st.c and Id.c). Dest selects one of 
the 32 integer registers (most instructions) or float­
ing-point registers (fld, fst, pfld, pst, ixfr). For in­
structions where src1 is optionally an immediate val­
ue, bit 26 of the opcode (I-bit) indicates whether src1 
is an immediate. If bit 26 is clear, an integer register 
is used; if bit 26 is set, src1 is contained in the low­
order 16 bits, except for bte and btne instructions. 
For bte and btne, the five-bit immediate value is 
contained in the src1 field. For st, bte, btne, and 
bla, the upper five bits of the offset or broffset are 
contained in the dest field instead of src1, and the 
lower 11 bits of offset are the lower 11 bits of the 
instruction. 
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Table 8.3. Register Encoding 

Register Encoding 

rO 0 

r31 31 

fO 0 

f31 31 

Fault Instruction 0 
Processor Status 1 
Directory Base 2 
Data Breakpoint 3 
Floating-Point Status 4 
Extended Process Status 5 

For Id and st, bits 28 and zero determine operand 
size as follows: 

Bit 28 BitO Operand Size 

0 0 8-bits 
0 1 8-bits 
1 0 16-bits 
1 1 32-bits 

When src1 is an immediate and bit 28 is set, bit zero 
cif the immediate value is forced to zero. 

For fld, fst, pfld, pst, and flush, bit 0 selects autoin­
crement addressing if set. Bits one and two select 
the operand size as follows: 

Bit 1 Bit2 Operand Size 

0 0 64-bits 
0 1 128-bits 
1 0 32-bits 
1 1 32-bits 

When src1 is an immediate value, bits zero and one 
of the immediate value are forced to zero to main­
tain alignment. When bit one of the immediate value 
is clear, bit two is also forced to zero. 
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31 25 

OPCODEII SRC2 
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20 
General Format 

15 10 

IMMEDIATE, OFFSET, OR NULL 

16-Bit Immediate Variant (except bte and btne) 

o 

31 25· 20 15 0 

1~ __ O_P_C_O_D_E __ ~I_l~I ____ SR_C_2 __ -JI ____ D_E_ST ____ LI _____________ IM_M_E_D_IA_T_E ____________ ~I 
st, bla, bte, and btne 

31 25 20 15 10 o 

OPCODEII SRC2 OFFSET LOW 

bte and btne with 5-Blt Immediate 
25 20 15 10 o 

SRC2 OFFSET LOW 

Figure 8.1. REG-Format Variations 
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Id.x 
st.x 
ixfr 

fld.x, fst.x 
flush 
pst.d 
Id.c, st.c 
bri 
trap 

bte, btne 
pfld.y 

addu, Os, subu, Os, 
shl, shr 
shrd 
bla 
shra 
and(h) 
andnot(h) 
or(h) 
xor(h) 

L Integer Length 
0 -8 bits 
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Table 8.4. REG-Format Opcodes 
31 

Load Integer 0 0 
Store Integer 0 0 
Integer to F-P Reg Transfer 0 0 
(reserved) 0 0 
Load/Store F-P 0 0 

. Flush 0 0 
Pixel Store 0 0 
Load/Store Control Register 0 0 
Branch Indirect 0 1 
Trap 0 1 
(Escape for F-P Unit) 0 1 
(Escape for Core Unit) 0 1 
Branch Equal or Not Equal 0 1 
Pipe lined F-P Load 0 1 
(CTRL-Format Instructions) 0 1 
Add/Subtract 1 0 
Logical Shift 1 0 
Double Shift 1 0 
Branch LCC Set and Add 1 0 
Arithmetic Shift 1 0 
AND 1 1 
ANDNOT 1 1 
OR 1 '1 
XOR 1 1 
(reserved) 1 1 

AS Add/Subtract 
0 -Add 

1 -16 or 32 bits (selected by bit 0) 1 -Subtract 
LS Load/Store LR Left/Right 

0 -Load 0 -Left Shift 
1 -Store 1 -Right Shift 

SO Signed/Ordinal E Equal 

0 L 
0 L 
0 0 
0 1 
1 0 
1 1 
1 1 
1 1 
0 0 
0 0 
0 0 
0 0 
0 1 
1 0 
1 x 
0 SO 
1 0 
1 1 
1 1 
1 1 
0 0 
0 1 
1 0 
1 1 
x x 

0 -Ordinal 0 -Branch on Not Equal 
1 -Signed 1 -Branch on Equal 

H High Immediate 
0 -and, or, andnot, xor 0 -srct is register 
1 -andh, orh, andnoth, xorh 1 -srct is immediate 

31 26 15 10 

10 1 0 0 1 1 I reserved I SRCl reserved 

Figure 8.2. Core Escape Instruction Format 
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26 

0 I 
1 1 
1 0 
1 0 

LS I 
0 1 
1 1 

LS 0 
0 0 
0 1 
1 0 
1 1 
E I 
n I 
x x 

AS I 
LR I 
0 0 
0 1 
1 I 
H I 
H I 
H I 
H I 
1 0 

5 0 

OPCODE I 
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lock 
calli 

intovr 

unlock 

Table 8.5. Core Escape Opcodes 
4 

(reserved) 0 0 
Begin Interlocked Sequence 0 0 

Indirect Subroutine Call 0 0 
(reserved) 0 0 

Trap on Integer Overflow 0 0 
(reserved) 0 0 
(reserved) 0 0 

End Interlocked Sequence 0 0 
(reserved) 0 1 
(reserved) 1 0 
(reserved) 1 1 

8.2.2 CTRL-fORMAT INSTRUCTIONS 

o 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 
x x x 
x x x 
x x x 

The CTRL instructions do not refer to registers, so instead of the register fields, they have a 26-bit relative 
branch offset. Figure 8.3 shows the format of these instructions and Table 8.6 defines the encodings. . 

31 28 25 o 

BROFFSET 

BROFFSET is a signed 26-bit relative branch offset. 

Figure 8.3. CTRL Instruction Format 

Table 8.6. CTRL-Format Opcodes 
28 26 

br Branch Direct 0 0 
call Call 0 1 1 
bc(.t) Branch on CC Set 0 T 
bnc(.t) Brancn on pC Clear I 1 I 1 T 

T Takan 
0 -be or bne 
1 -be.t or bnc.t 
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8.2.3 FLOATING-POINT INSTRUCTIONS 

The floating-point instructions also constitute an escape series. All these instructions begin with the bit se­
quence 010010. Figure 8.4 shows the format of the floating point instructions, and Table 8.7 gives the encod­
ings. Within the dual-operation instructions is a subcode OPC whose values are given in Table 8.8 along with 
the mnemonic that corresponds to each. 

31 25 20 15 

10100101 SRC2 DEST SRC1 

SRC1, SRC2 -Source; one of 32 floating-point registers 
DEST -Destination register 

(instructions other than txtr) one of 32 floating-point registers 
(fxfr) one of 32 integer registers 

P Pipelining S Source Precision 

7 

OPCODE 

1 -Pipelined instruction mode 
o -Scalar instruction mode 

D Dual-Instruction Mode 

1 -Double-precision source operands 
o -Single-precision source operands 

R Result Precision 
1 -Dual-instruction mode 
o -Single-instruction mode 

1 -Double-precision result 
o -Single-precision result 

pfam 
pfmam 
pfsm 
pfmsm 
(p)fmul 
fmlow 
frcp 
frsqr 
(p)fadd 
(p)fsub 
(p)fix 
(p)famov 
pfgt/pfle" 
pfeq 
(p)ftrunc 
fxfr 
(p)fladd 
(p)tisub 
(p)fzchkl 
(p)fzchks 
(p)faddp 
(p)faddz 
(p)form 

Figure 8.4. Floating-Point Instruction Encoding 

. Table 8.7. Floating-Point Opcodes 
6 

Add and Multiply' 
Multiply with Add" 0 0 0 
Subtract and Multiply' . 

0 0 1 
Multiply with Subtract' 
Multiply 0 1 0 
Multiply Low 0 1 0 
Reciprocal. 0 1 0 
Reciprocal Square Root 0 1 0 
Add 0 1 1 
Subtract 0 1 1 
Fix 0 1 1 
Adder Move 0 1 1 
Greater Than 0 1 1 
Equal 0 1 1 
Truncate 0 1 1 
Transfer to Integer Register 1 0 0 
Long-Integer Add 1 0 0 
Long-Integer Subtract 1 0 0 
Z-Check Long 1 0 1 
Z-Check Short 1 0 1 
Add with Pixel Merge 1 0 1 
Add with Z Merge 1 0 1 
OR with MERGE Register 1 0 1 

'pfam and pfsm have P-bit set; pfmam and pfmsm have P-bit clear . 
• 'pfgt has R bit cleared; pfle has R bit set. 
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0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
1 
0 
1 
0 
0 
1 

OPC 

OPC 

0 0 
0 0 
0 1 
0 1 
0 0 
0 0 
0 1 
0 1 
1 0 
1 0 
0 1 
0 0 
0 0 
1 0 
1 1 
1 1 
0 0 
0 0 
0 1 

o 

o 

0 
1 
0 
1 
0 

. 1 

0 
1 
0 
1 
0 
0 
1 
1 
1 
1 
0 
1 
0 
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The following table shows the opcode mnemonics that generate the various encodings of ope and explains 
each encoding, 

Table 8.8. DPe Encoding 

ope PFAM PFSM M-Unit M-Unlt A-Unit A-Unit T K 
Mnemonic Mnemonic op1' op2 op1 op2 Load Load' 

0000 r2p1 r2s1 KR src2 src1 M result No No 
0001 r2pt r2st KR src2 T M result No Yes 
0010 r2ap1 r2as1 KR src2 src1 A result Yes No 
0011 r2apt r2ast KR src2 T A result Yes Yes 
0100 i2p1 12s1 KI src2 src1 M result No No 
0101 i2pt 12st KI src2 T M result No Yes 
0110 i2ap1 12as1 KI src2 src1 A result Yes No 
0111 12apt 12ast KI src2 T A result Yes Yes 
1000 rat1p2 rat1s2 KR A result src1 src2 Yes 'No 
1001 m12apm m12asm src1 src2 A result M result No No 
1010 ra1p2 ra1s2 KR A result src1 src2 No No 
1011 m12ttpa m12ttsa src1 src2 T A result Yes No 
1100 iat1p2 lat1s2 KI A result src1 src2 Yes No 
1101 m12tpm m12tsm src1 src2 T M result No No 
1110 la1p2 ia1s2 KI A result src1 ' src2 No No 
1111 m12tpa m12tsa src1 src2 T A result No No 

ope 
PFMAM' PFMSM M-Unlt M-Unlt A-Unit A-Unit T K 

Mnemonic Mnemonic op1 op2 op1 op2 Load Load', 

0000 mr2p1 , mr2s1 KR src2 src1 M result No No 
0001 mr2pt mr2st KR src2 T M result No Yes, 
0010 mr2mp1 mr2ms1 KR src2 src1 M result Yes No 
0011 mr2mpt mr2mst KR src2 T M result Yes Yes 
0100 mi2p1 mi2s1 KI src2 src1 M result No No 
0101 ml2pt mi2st KI src2 T' M result No Yes 
0110 ml2mp1 ml2ms1 KI src2 src1 M result Yes No 
0111 mi2mpt mi2mst KI src2 T M result Yes Yes 
1000 mrmt1p2 I mrmt1s2 KR M result src1 src2 Yes No 
1001 mm12m!)m mm12msm src1 src2 M result M result No No 
1010 mrm1p2 mrm1s2 KR M result src1 src2 No No 
1011 mm12ttpm mm12ttsm src1 src2 T A result Yes No 
1100 mimt1p2 mimt1s2 KI M result src1 src2 . Yes No 
1101 mm12tpm mm12tsm src1 src2 T M result No No 
11.10 mim1p2 mim1s2 KI M res!Jlt src1 src2 No No 
1111 Intel-Reserved 

"If K-Ioad is set. KR is loaded when operand-1 of the multiplier Is KR; KI is loaded when operand·1 of the multiplier is KI, 

5-66 



inter i860TM MICROPROCESSOR 

8.3 Instruction Timings 

i860 microprocessor instructions take one clock to 
execute unless a freeze condition is invoked. Freeze 
conditions and their associated delays are shown in 

Freeze Condition 

Instruction-cache miss 

Reference to destination of Id instruction that 
misses 

fld miss 

call1callilixfrlfxfr/ld_clst.c and data cache miss 
processing in progress 

Id/st/pfld/fld/fst and data cache miss 
processing in progress 

Reference to destof Id, call, calli, fxfr, or Id.c in 
the next instruction 
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the table below. Freezes due to multiple simulta­
neous cache misses result in a delay that is the sum 
of the delays for processing each miss by itself. Oth­
er multiple freeze conditions usually add only the de­
lay of the longest individual freeze. 

Delay 

Number of clocks to read instruction (from ADS 
clock to first READY # clock) plus time to last 
READY # of block when jump or freeze occurs 
during miss processing plus two clocks if data-
cache being accessed when instruction-cache 
miss occurs. 

One plus number of clocks to read data (from 
ADS # clock to first READY # clock) minus number 
of instructions executed since load (not counting 
instruction that references load destination) 

One plus number of clocks from ADS # to first 
READY # 

One plus number of clocks until first READY # 
returned 

One plus number of clocks until last READY # 
returned 

One clock 
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Freeze Condition 

Reference to dest of fld/pfld/ixfr in the next two 
instructions 

bc/bnc/bc.t/bnc.t following faddlfsub/pfeg/ 
pfgt 

Src1 of multiplier operation refers to result of 
previous operation 

Floating-point or graphics unit instruction or fst, 
and scalar operation in progress other than frcp or 
fi's(jr 

Multiplier operation preceded by a double­
precision multiply 

Multiplier operation with data pattern requiring 
extra rounding operation 

TLB miss 

pfld when three pfld's are outstanding 

pfld hits in the data cache 

Store pipe full (two internal plus outstanding bus 
cycles) and st/fst miss, Id miss, or flush with 
modified block 

Address pipe fuii (one internai pius outstanding 
bus cycles) and Id/fld/plfd/st/fst 

Idlfld following st/fst hit 

Delayed branch not taken 

Nondelayed branch taken: 
bC,bnc 
bte, btne 

Branch indirect bri 

st.c 

Result of graphics-unit instruction (other than 
fmov) used in next instruction when the next 
instruction is an adder- or multiplier-unit instruction 

Result of graphics-unit instruction used in next 
instruction when the next instruction is a graphics­
unit instruction 

flush followed by flush 

fst followed by pipelined floating-point operation . 
that overwrites the register being stored 

Delay 

Two clocks in the first instruction; one in the 
second instruction 

One clock 

One clock 

If the scalar operation is fadd, fix, fmlow, fmul.ss, 
fmul.sd, ftrunc, or fsub, two minus the number of 
ir:.siruciions already execuied ariei ihe scaiar 
operation. If the scalar operation is fmul.dd, three 
minus the number of instructions executed after it. 
Add one if the preCision of the result of the 
previous scalar operation is different than that of 
the source. Add one if the floating-point operation 
is pipelined and its destination is not fO. If the sum 
of the above terms is negative, there is no delay. 

One clock 

One clock 

Five plus the number of clocks to finish two reads 
plus the number of clocks to set A-bits (if 
necessary) 

One plus the number of clocks to return data from 
first pfld 

Two plus the number of clocks to finish all 
outstanding accesses 

One plus the number of clocks until READY # 
active on next write data 

Number of CiOCKS untii next address can be issued 

One clock 

One clock 

One clock 
Two clocks 

One clock 

Two clocks 

One clock 

One clock 

Three clocks 

One clock 
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8.4 Instruction Characteristics 

The following table lists some of the characteristics 
of each instruction. The characteristics are: 

• What processing unit executes the instruction. 
The codes for processing units are: 
A Floating-point adder unit 
E Core execution unit 
G Graphics unit 
M Floating-point multiplier unit 

• Whether the instruction is pipelined or not. A P 
indicates that the instruction is pipelined. 

• Whether the instruction is a delayed branch in­
struction. A 0 marks the delayed branches. 

• Whether the instruction changes the condition 
code CC. A CC marks those instructions that 
change CC. 

• Which faults can be caused by the instruction. 
The codes used for exceptions are: 

IT Instruction Fault 
SE Floating-Point Source Exception 
RE Floating-Point Result Exception, including 

overflow, underflow, inexact result 
OAT Data Access Fault 

The instruction access fault IAT and the interrupt 
trap IN are not shown in the table because they 
can occur for any instruction. 

• Perf9rmance notes. These comments regarding 
optimum performance are recommendations 
only. If these recommendations are not followed, 
the i860 microprocessor automatically waits the 
necessary number of clocks to satisfy internal 
hardware requirements. The following notes de­
fine the numeric codes that apPear in the instruc­
tion table: 

1. The following instruction should not be a con­
ditional branch (bc, bnc, bc_t, or bnc.t). 

2. The destination should not be a source oper­
and of the next two instructions. 

3. A load should not directly follow a store that is 
expected to hit in the data cache. 

4. When the prior instruction is scalar, src1 
should not be the same as the rdest of the 
prior operation. 
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5. The (reg should not reference the destination 
of the next instruction if that instruction is a 
pipelined floating-point operation. 

6. The destination should not be a source oper­
and of the next instruction. 

7. When the prior operation is scalar and multipli­
er op1 is src1, src2 should not be the same as 
the rdest of the prior operation. 

B. When the prior operation is scalar, src1 ·and 
src2 of the current operation should not be the 
same as rdest of the prior operation. 

9. A pfld should not immediately follow a pfld. 

• Programming restrictions. These indicate combi­
nations of conditions that must be avoided by 
programmers, assemblers, and compilers. The 
following notes define the alphabetic codes that 
appear in the instruction table: 

a. The sequential instruction following a delayed 
control-transfer instruction may not be another 
control-transfer instruction (except in the case 
of external interrupts), nor a trap instruction, 
nor the target of a control-transfer instruction. 

b. When using a bri to return from a trap handler, 
programmers should take care to prevent traps 
from occurring on that or on the next sequen­
tial instruction. 1M should be zero (interrupts 
disabled) when the bri is executed. 

c. If rdest is not zero, src1 must not be the same 
as rdest 

d. When src1 goes to the multiplier op1, KR, or 
KI, src1 must not be the same as rdest. 

e. If rdest is not zero, src1 and src2 must not be 
the same as rdest. 

f. src1 must not be the same as src2 for the 
autoincrementing form of this instruction. 
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Table 8.9 Instruction Characteristics 

Instruction 
Execution Pipelined? Sets 

Faults 
Performance Programming 

Unit Delayed? CC? Notes Restrictions 

adds E CC 1 
addu E CC 1 
and E CC 
andh E CC 
andnot E CC 
andnoth E CC 
bc E 
bc.t E 0 a 
bla E 0 a, f 
bnc E 

bnc.t E 0 a 
br E 0 a 
brl E 0 a,b 
bte E 
btne E 

call E 0 6 a 
calli E 0 6 a 
fadd.p A SE,RE 

. faddp G 8 
faddz G 8 

ramoY.r A SE 
fladd.z G I 8 
fisub.z G 8 
flx.p A SE,RE 
fld.y E OAT 2,3 f 

flush E 
fmlow.p M 4 
!m!.!!.p M SE,RE 4 I form G 8 
frep.p M C"~ ~I::' 

~t:., nl-

frsqr.p M SE,RE 
fst.y E OAT 5 f 
fsub.p A SE,RE 
ftrunc.p A SE,RE 
fxfr G 6,8 

fzchkl G 8 
fzchks G 8 
intovr E IT 
Ixfr E 2 
Id.c E 

Id.x E OAT 6 
or E CC 
orh E CC 
pfadd.p A P SE, RI? 
pfaddp G P 8 e 
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Instruction 
Execution Pipelined? Sets 

Faults 
Performance Programming 

Unit Delayed? CC? Notes Restrictions 

pfaddz G P 8 e 
pfam.p A&M P SE, RE 7 d 
pfamov.r A P SE 
pfeq.p A P CC SE 1 
pfgt.p A P CC SE 1 
pfiadd.z G P B e 

pfisub.z G P B e 
pfix.p A P SE,RE 
pfld.z E P OAT 2,9 f 
pfmam.p A&M P SE,RE 7 d 

pfmsm.p· A&M p' SE,RE 7 d 
pfmul.p M P SE,RE 4 c 
pform G P 8 e 
pfsm.p A&M P SE,RE 7 d 
pfsub.p A P SE,RE 
pftrunc.p A P SE,RE 
pfzchkl G P 8 
pfzchks G P 8 
pstd E OAT f 
shl E 
shr E 
shra E 
shrd E 
st.c E. 
stx E OAT 
subs E CC 1 
subu E CC 1 
trap E IT 
xor E CC 
xorh E CC 
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DATA SHEET REVISION REVIEW 
The following list represents the key differences be­
tween version 002 and version 001 of the i860 Mi­
croprocessor Data Sheet. 

1. Big-endian description in section 2.3 has been ex­
panded. 

2. Bit 17 of the Extended Processor Status· Register 
(EPSR) is the INT bit which reflects the value on 
the interrupt pin (I NT), as described in section 
2.2.4 entitled "EXTENDED PROCESSOR 
STATUS REGISTER". This is a documentation 
update only. 

3. The cacheability of a page is controlled by 
NOR'ing the value of the CD, WT bits and the 
KEN # input pin, as described in section 2.5 enti­
tled "Caching and Cache Flushing" and section 
3.1.14 entitled "Cache Enable (KEN#)". This is a 
documentation update only. 

4. The NOTE section in section 2.5 entitled "Cach­
ing and Cache Flushing" has been updated to 
clarify the paging requirement on changing the 
DTB field in the dlrbase register. 

5. Information on register encoding is added in sec­
tion 8.2 entitled "Instruction Format and Encod­
ing". This is a documentation update only. 

The following list represents the key differences be­
tween this version and version 002 of the i860 Mi­
croprocessor Data Sheet. 

Specification Changes: 

1. Specification changes for improved AC perform­
ance are in section 7.3. 

2. HOLD is acknowledged during locked bus cy­
cles. See section 3. i .8. 

3. Additiona! paths have been added to the bus 
state diagram to allow direct transitions from 
states T12 and T11 to state TH. See Figures 4.1 
and 4.10. 

4. Two new instructions, (p)famov.r, have been 
added. These replace (p)fadd.ds and 
(p)fadd.sd in the assembler pseudo-ops 
(p)fmov.r. These changes are in section 8.1 and 
tables 2.7, 8.7, and 8.9. 
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Documentation Changes: 

1. Big and little endian description. has been ex­
panded in sections 2.2.2, 2.3, and Figure 2.8. . 

2. The actions and explanations of the lock, un­
lock, and st.c dirbase changing the BL bit have 
been updated in .sections 2.2.4, 3.1.5, 3.1.8, 
4.3.4, 4.3.5, and 8.1. 

3. The explanation of the AA and MA bits of the 
fpsr have been expanded in section 2.2.8. 

4. The explanation of the WT bit of the Page Table 
Entries has been expanded in sections 2.4.4.4 
and 2.5. 

5. A change concerning the locking of the bus dur­
ing address translation is explained in sections 
2.4.5 and 2.8.5. 

6. A further explanation on when to flush the data 
cache is given in section 2.5. 

7. The explanation of the floating point multiplier 
pipeline has been expanded in section 2.6.1. 

8. The explanation of BREQ has been expanded in 
section 3.1.4 and Figure 4.1. 

9. The explanation of result exceptions has been 
expanded in sections 2.8 and 3.2. 

10. Instruction fetch identification has been clarified 
in section 3.1.6 and table 3.2. 

1.1. Bus cycle diagrams in Figures 4.7, 4.8, and 4.10 
have been clarified/corrected. 

12. Precision specification .r has been added to sec­
tion 8.0 and table 8.1. 

13. In section 8.4, performance note 9 has been 
added, programming restriction d has been 
cnang6d, and programming restriction f has 
been added. Table 8.9 has been updated to re­
flect these changes. 

14. The description of testability has changed in 
sections 3.3. and 3.3.2. RESET and HOLD must 
be asserted by the tester to force the chip out­

, puts to float (tri-state). 
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8086/80186 SOFTWARE DEVELOPMENT PACKAGES 

COMPLETE SOFTWARE DEVELOPMENT SUPPORT FOR THE 
8086180186 FAMILY OF MICROPROCESSORS 
Intel supports application development for the 8086/80186 family of microprocessors 
(8086, 8088, 80186, 80188 and real mode 80286 and 80386 designs) with a complete set 
of development languages and utilities. These tools include a macro assembler and 
compilers for C, PLlM, FORTRAN and Pascal. A linker/relocator program, library 
manager, numerics support libraries, and object-to-hex utility are also available. Intel 
software tools generate fast and efficient code. They are designed to give maximum 
control over the processor. Most importantly, they are designed to get your application up 
and running in an embedded system fast and with maximum design productivity. 

FEATURES 
• Macro assembler for speed-critical code 
• NEW windowed, interactive source level 

debugger works with all Intel languages 
• ANSI Compatible iC-86 package for 

structured C programming, with many 
processor specific extensions 

• PLIM compiler for high-level language 
programs with support for many low­
level hardware functions 

• FORTRAN for ANSI-compatible, 
numeric intensive applications 

• Pascal for developing modular, portable 
applications that are easy to maintain 

• Linker program for linking modules 
generated by Intel compilers and 
assemblers 

• Locator for generating programs with 
absolute addresses for execution from 
ROM based systems 

• AEDIT Source Code and text editor 
• Library manager for creating and 

maintaining object module libraries 
• ,Complete numeric support libraries 

including a software emulator for the 
8087 

• Object-to-hex conversion utility for 
burning code into (E)PROMS 

• Hosted on IBM PC XT/AT* or 
compatibles running DOS, DEC VAX* 
or MicroVAX* systems running VMS, 
and Intel Systems 86/3XX or 286/3XX 
running iRMX® Operating System 

imJ--------------------November, 1989 
Cllntel Corporation 1989 
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Figure 1: The Application Development Process 

ASM-86 MACRO ASSEMBLER 
ASM-S6 is the macro assembler for the 8086/80186 
family of components. It is used to translate symbolic 
assembly language source into relocatable object 
code where utmost speed, small code size and 
hardware control are critical. Intel's exclusive macro 
facility in ASM-86 saves development and 
maintenance time, since common code sequences 
need only be developed once. The I;Issembler's 
simplified instruction set reduces the number of 
mncmonicG that the programmer needs to rememhp.r: 
This assembler also saves development time by - -
pe~orming extensive checks on consistent usage of 
variables and labels. Inconsistencies are detected 
when the program is assembled, before linking or 
debugging is started. 

NEW FOR 1989: SOURCE LEVEL 
DEBUGGER 
08-86 is an on-host software execution environment 
with source level debug capabilities for object 
modules produced by ie-86, ASM-86, PUM-86, 
P~scal-86 and FORTRAN-86. Its powerful, source­
Oriented interface allows users to focus their efforts on 
findi~g bu.gs rather than spending time learning and 
manipulating the debug environment. 
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• Ease of learning. Drop-down menus make the 
tool easy to learn for new or casual users. A 
command line interface is also provided for more 
complex problems. 

• Extf..nsive debug modes. Watch windows, 
conditional breakpoints (breakpoints triggered by 
program conditions), trace points, and fixed and 
temporary breakpoints can be set and modified as 
needed. 

• See into your program. You can browse source 
and call stack, observe processor registers, output 
s~reen, and waterl WillUOW variables aCCeSSed by 
either the pull down menu or by a single keystroke 
using function keys. 

• Full debug symbolics for maximum 
productivity. The user need not know whether a 
variable is an unsigned integer, a real, or a 
structure; the debugger utilizes the wealth of 
variable typing information available in Intel 
languages to display program variables in their 
respective type formats. 

• Support for overlaid programs and the numeric 
coprocessor. 



iC-86 SOFTWARE PACKAGE 
Intel's iC-86 brings the full power of the C program­
ming language to 8086, 8088, 80186 and 80188-
based microprocessor systems. It can also be used 
to develop real mode programs for execution on the 
80286 or 80386. iC-86 has been developed 
specifically for embedded microprocessor-based 
applications. iC-86 meets the draft proposed ANSI C 
standard. Key features of the iC-86 compiler include: 

• Highly Optimized_ Four levels of optimization are 
available. Important optimization features include a 
jump optimizer and improved register manipulation 
via register history. 

• ROM able Code and Libraries. The iC-86 compiler 
produces ROMabie code which can be loaded 
directly into embedded target systems. Libraries 
are also completely ROM able, retargetable and 
reentrant. 

• Supports Small, Medium, Compact, and Large 
memory segmentation models . 

• Symbolics. The iC-86 compiler boosts program­
ming productivity by providing extensive debug 
information, including type information and 
symbols. The symbolics information can be used 
to debug using IntelICP" emulators and the new 
DB-86 Source level debugger. 

• Built·in functions. iC-86 is loaded with built-in 
functions. The flags register, 110 ports, interrupts, 
and numerics chip can be controlled directly, 
without the need for assembly language coding. 
You spend more of your productive time 
programming in C and less with Assembler. Built-in 
functions also improve compile-time and run-time 
performance since the compiler generates in-line 
code instructions instead of function calls to 
assembly instructions. 

• Standard Language. ie-86 conforms to the 1988 
Draft Proposed ANSI standard for the C language. 
iC-86 code is fully linkable with other modules 
written in other Intel 80861186 languages, allowing 
programmers to use the optimal language for any 
task. 
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PLlM-86 SOFTWARE PACKAGE 
PLlM-86 is a high-level programming language 
designed to support the software requirements of 
advanced 16-bit microprocessors. PLlM-86 provides 
the productivity advantages of a high-level language 
while providing the low-level hardware access 
features of assembly language. Key features of 
PLlM-86 include: 

• Structured programming. PLlM-86 supports 
modular and structured programming, making 
programs easier to understand, maintain and 
debug. 

• Built·in functions. PLlM-86 includes an extensive 
list of functions, including TYPE CONVERSION 
functions, STRING manipulations, and functions for 
interrogating 80861186 hardware flags. 

• Interrupt handling. The INTERRUPT attribute 
allows you to define interrupt handling procedures. 
The compiler generates code to save and restore 
all registers for INTERRUPT procedures. 

• Compiler controls. Compile-time options increase 
the flexibility of the PLlM-86 compiler. They include: 
optimization, conditional compilation, the inclusion 
of common PLiM source files from disk, cross­
reference of symbols, and optional assembly 
language code in the listing file. 

• Data types. PLlM-86 supports seven data types, 
allowing the compiler to perform three different 
kinds of arithmetic: signed, unsigned and floating 
point. 

• Language compatibility. PLlM-86 object modules 
are compatible with all other object modules 
generated by Intel 80861186 languages. 



FORTRAN·86 SOFTWARE PACKAGE 
FORTRAN-86 meets the ANSI FORTRAN 77 
Language Subset Specification and includes almost 
all of the features of the full standard. This 
compatibility assures portability of existing FORTRAN 
programs and shortens the development process, 
since programmers are immediately productive 
without retraining. 

FORTRAN-86 provides extensive support for numeric 
processing tasks and applications, with features such 
as: 
• Support for single, double, double extended 

precision, complex, and double complex floating­
point data types 

• Support for proposed REALiviATH iEEE floating 
point standard 

• Full support for all other data types:. integer, logical 
and character 

• Optional hardware (808? numeric data processor) 
or software (simulator) floating-point support at link 
time 

PASCA~86S0FTWAREPACKAGE 
Pascal-86 conforms to the ISO Pascal standard, 
facilitating application portability, training and 
maintenance. It has also been enhanced with 
microcomputer support features such as.interrupt 
handling, direct port I/O and separate compilation. 

A well-defined and documented run-time operating 
system .interface allows the user to execute 
applications under user-designed operating systems 
as an alternate to the development system 
environment. Program modules compiled under 
Pascal-86 are compatible and linkable with modules 
written in other Intel 80861186 languages, so 
developers can implement each module in the 
language most appropriate for the task at hand. 

Pascal-86 object modules contain symbol and type 
information for program debugging using IntelICP" 
emulators and the OB-86 debugger. 

L1NK·86 LINKER 
Intel's LlNK-86 utility is used to combine multiple 
object modules into a single program and resolve 
references between independently compiled 
modules. The resulting linked module can be either a 
bound load-time-Iocatable module or simply a 
relocatable module. A .EXE option allows modules to 
be generated which can be executed directly on a 
DOS system. 

LlNK-86 greatly increases productivity by allowing 
you to use modular programming. The incremental 
link capability allows new modules to be easily added 
to existing software. Because applications can be 
broken into separate modules, they're easier to 
design, test and maintain. Standard modules can be 
reused in different applications, saving software 
development time. 
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LOC·86 LOCATOR 
The LOC-86 utility changes relocatable 8086/186 
object modules into absolute object modules. Its 
default address assignment algorithm will 
automatically assign absolute addresses to the object 
modules prior to loading of the code into the target 
system. This frees you from concern about the final 
arrangement of the object code in memory. You still 
have the power to override the control and specify 
absolute addresses for various Segments, Classes, 
and Groups in memory. You may also reserve various 
parts of memory. 

LOC-86 is a powerful tool for embedded 
development because it-simplifies set up of the 
bootstiap Joadsi and initialization code fer execution 
from ROM based systems. The locator will also 
optionally generate a print file containing diagnostic 
information to assist in program debugging. 

NUMERICS SUPPORT LIBRARY 
The Numerics Support Library greatly facilitates the 
use of floating-point calculations from programs 
written in Assembler, PLlM, and C. It adds to these 
languages many of the functions that are built into 
applications programming languages, such as Pascal 
and FORTRAN. A full 808? software emulator and 
interface libraries are included for precision floating 
point calculations without the use of the 808? 
component. The decimal conversion library aids the 
translation between decimf'll and binary formats. A 
Common Elementary Function library provides 
support for transcendental, rounding and other 
common functions, not directly handled by the 
numeric processor. An Error Handler Module makes 
it easy to write interrupt routines that recover from 
floating-point error conditions. 



LlB-86 LIBRARIAN 
The Intel LlS-86 utility creates and maintains libraries 
of software object modules. Standard modules can 
be placed in a library and linked to your application 
using the LlNK-86 utility. 

AEDIT SOURCE CODE AND TEXT EDITOR 
AEDIT is a full-screen text editing system designed 
specifically for software engineers and technical 
writers. With the facilities for automatic program block 
indentation, HEX display and input, and full macro 
support, AEDIT is an essential tool for any 
programming environment. And with AEDIT, the 
output file is the pure ASCII text (or HEX code) you 
input - no special characters or proprietary formats. 

Dual file editing means you can create source code 
and its supporting documents at the same time. Keep 
your program listing with its errors in the background 
for easy reference while correcting the source in the 
foreground. Using the split-screen windowing 
capability, it is easy to compare two files, or copy text 
from one to the other. The DOS system-escape 
command eliminates the need to leave the editor to 
compile a program, get a directory listing, or execute 
any other program executable at the DOS system 
level. 
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OH-86 OBJECT-To-HEXADECIMAL 
CONVERTER 
The OH-86 utility converts Intel 8086/186 object 
modules into standard hexadecimal format, allowing 
the code to be loaded directly into PROM using 
industry standard PROM programmers. 

SERVICE, SUPPORT AND TRAINING 
Intel augments its 8086/186 family development tools 
with a full array of seminars, classes and workshops. 
In addition, on-site consulting services, field 
application engineering expertise, telephone hotline 
support, and software and hardware maintenance 
contracts are available to help assure your design 
success. 



ORDERING INFORMATION 
D86ASM86NL ASM-86 Assembler for PC XT 

or AT system (or 
compatible) running 
DOS 3.0 or higher 

WSASM86 ASM-86 Assembler for VAXI 
VMS 

MWSASM86 ASM-86 Assembler for 
MicroVAXIVMS 

R86ASM86SU ASM-86 Assembler for Intel 
86/3XX systems 
running iRMX 86 
operating system 

R286ASM86EU ASM-86 Assembler for Intel 
286/3XX systems 
running iRMX W' 
operating system 

Note: 

D86C86NL 

WSC86 

ASM-86 includes Macro Assembler, 
Link'86, Loc-86, Lib-86, Cross­
Reference utility, OH-86, Numerics 
Support, and DB-86 Source Level 
Debugger. (DB-86 available in DOS 
version only.) 

iC-86 Software Package for 
IBM PC XTiAT 
running PC DOS 3.0 
or higher 

iC-86 Software Package for 
VAXIVMS 

MWSPLM86 PLlM-86 Software Package for 
MicroVAXIVMS 

R86PLM86SU PLlM-86 Software Package for 
Intel System 
8086/3XX running 
iRMX 86 operating 
system 

D86FOR86NL FORTRAN-86 Software Package for 
PC XT/AT (or 
compatible) running 
PC-DOS 3.0 or 
higher 

WSFORT86 FOH rRAN-86 Soitware Package for 
VAXIVMS 4.3 and 
later 

MWSFORT86 FORTRAN-86 Software Package for 
MicroVAXIVMS 

R86FOR86SU 

D86PAS86NL 

WSPAS86 

MWPAS86 

FORTRAN-86 Software Package for 
Intel System 86/3XX 
running iRMX 86 
operating system 

PASCAL-86 Software Package for 
IBM PC XT/AT 
running PC DOS 3.0 
or higher 

PASCAL-86 Software Package for 
VAXNMS 

PASCAL-86 Software Package for 
MicroVAXIVMS 

MWSC86 iC-86 Software Package for 
MicroVAXIVMS R86PAS86SU PASCAL-86 Software Pacl<age for 

Intel System 86/3XX 
running iRMX 86 R86C86SU iC-86 

D86PLM86NL PLlM-86 

WSPLM86 PLlM-86 

Software Package for 
I n+al C::\lC'torn . 

8086/3XX·~~nning D86EDNL AI::UIT Source Code 
Editor for IBM PC 
XT/AT running PC 
DOS 3.0 or higher 

iRtv1X 8G opeiating 
system 

Software Package for 
IBM PC XT/AT 
running PC DOS 3.0 
or higher 

Software Package for 
VAXIVMS 
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INTEL iC-86/286 C COMPILER 

INTEL iC-86/286 COMPILER 
The Intel iC-86/286 compiler is the C compiler to use for 80861186/286 embedded 
microprocessor designs. In addition to outstanding execution speed, Intel's iC-86/286 
compiler generates compact, efficient code which can be easily loaded into ROM-based 
systems. The iC-86/286 compiler is also fully supported by the Intel OB86 windowed 
source-level software debugger and in-circuit emulation tools. 

iC-86/286 COMPILER FEATURES 
• Optimized for embedded systems 
• Built-in functions for automatic machine 

code generation 
• ROM able code and libraries 
• Integrated debugging with Intel ICE'· 

and 121CETM 
• Compliance with draft ANSI standard 
• Supports Small, Medium, Compact, and 

Large memory models 
• PLIM compatible subsyst,ems 

• Selector data type support 
• Linkable with other Intel 8086/286 

languages such as ASM and PUM 
• ROM able and reentrant libraries 
• Ability to mix memory models with 

"near" and '1ar" pointers 
• C and PUM calling conventions for 

compatibility with PUM and other C 
programs 

• iRMX® interface libraries included 

intel"----------
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BUILT-IN FUNCTIONS 
The iC-86/286 compiler features more than 35 
prQCessor-specific functions that directly generate 
machine code within the C language. 

Built-in functions eliminate the need for in-line 
assembly language coding or making calls to 
assembly functions. This increases code performance 
and reduces programming time. 

With built-ins you can enable or disable interrupts and 
directly control hardware I/O without having to exit C 
for assembler. This means you can write high 
performance software for real time applications 
without having to keep track of every architectural· 
detail, as you wouid in assembiy ianguage. Fur 
example, to generate an INT instruction, you simply 
type: . 

cause interrupt (number) 
Or, the following iC-86 instruction will cause the 
processor to come to a halt with interrupts enabled: 

halt ( ) 

'EMBEDDEI;) COMPONENT SUPPORT 
iC-86/286 compiler was designed specifically for 
embedded microprocessor applications. It produces 
ROM able code which can be loaded directly into 
target systems via Intel.lCE emulators and debugged 
without modification for fast, easy, development and 
debugging. 

HIGHLY OPTIMIZED . 
The iC-86/286 compiler has four levels of optimization 
for tailoring performance to your application. 
Important optimization features include a jump 
optimizer and improved register manipulation using 
register history. 

RUN-TIME SUPPORT 
Run-time libraries for the ir.-R6/286 comDiler are de­
signed for use in many environments. Both DOS and 
iRrv1X interlace libraries are included so programs 
executing on those systems can take advantage of 
operating system features. The interface libraries 
conform to the ANSI standard. They also meet the 
IEEE standard POSIX interface so you can easily 
retarget the libraries for use in applications that do 
not run on DOS or iRMX. 

The libraries are completely ROMabie and re-entrant 
making it easy to adapt them for embedded, multi-
tasking or real-time applications. ' 

80th the DOS and iRMX-1 operating system interface 
libraries are provided with iC-86 hosted on DOS. The 
iRMX-1 hosted version of iC-86 includes the iRMX 
interface libraries only. 

iC-286 compiler includes iRMX-11 interface libraries 
only. 
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INTEGRATED DEBUG TOOLS 
The iC-86/286 compiler is part of a completely 
integrated set of development tools from Intel (Fig. 1). 

Code output from the compiler can be easily linked 
with modules written in assembler and high-level 
languages, such as PUM, Fortran, and Pascal. 

Linked modules and programs can be debugged 
using Intel's 0886 windowed source-level software 
debugger. The debugger uses an advanced interface 
with windows and pull-down menus for the ultimate in 
debug productivity. Watch windows can be opened to 
observe changing program variables and processor 
regish~fS. You can ieadily s'vvitch bet\vccn program 
modules and view the calling sequence and call 
stack. 

Intel's 0886 Software Debugger 

Naturally code generated by iC-86/286 works 
completely with Intel's 121CE, ICE-186, ICE-286 and 
ICE-386 family of in-circuit emulators as well as the 
iPAT'" performance analysis tool. This complete set of 
toe!s gives ~/OU the pO\..AJer to qtliGkly rip-hug: test~ 
integrate and optimize your application code for the 
target system. 

ICE-186, iPAT 
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Figure 1: The Application Development Process 

SERVICE AND SUPPORT 
Intel's development tools are backed by our 
worldwide service and support organization 
dedicated to solving any problems encountered by 
our customers. Several hardware and software 
service programs are available 

SPECIFICATIONS 

ENVIRONMENT 

Hardware DOS Version: IBM PC XT or AT (or 
Requirements 100% Compatible) 

running DOS 3.1 or 
greater. 

iRMX Version: iRMX-1 system for iC-86 
iRMX-li system for 
iC-286 

Memory DOS Version: 
Requirements iRMX Version: 

Media DOS Version: 

iRMX Version: 

STANDARDS 

256 KB 

374 KB 

5%" DSIDD Diskettes 
3V2" DSIDD Diskettes 

DSIDD iRMX Standard 
Format 

iC-86/286 conforms to the X3J11 ANSI draft proposal 
for the C programming language. 
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which include hotline support, consulting, training, 
technical newsletters, bulletin boards and other 
services. The iC-86/286 compiler includes 90 days of 
software support under warranty. 

ORDERING INFORMATION 
Order Code 
D86C86NL 
D86C286NL 
R86C86 
R286C286 

Host Environment 
DOS 

Target Code 
8086/186 
80286 
8086/186 
80286 

DOS 
iRMX-1 
iRMX-II 

Other programming tools: 
Host 

Order Code Environment 
D86PAK86NL DOS 

D86ASM86KIT DOS 

D86ASM286NL DOS 
R86ASM86 iRMX-1 

R286ASM286 iRMX-II 

RMXIISFTSCP iRMX-li 

Description 
8086/186 
Assembler, DB86 
Debugger, Utilities 
AEDIT text editor 
8086/186 
Assembler,DB86 
Debugger, Utilities 
80286 Assembler 
8086/186 
Assembler, Utilities 
80286 Assembler, 
Utilities 
80286 Softscope 
Debugger 



Ada: CROSS-DEVELOPMENT FOR THE 80386 MICROPROCESSOR 

Intel's Ada'-386 Cross-Compilation Package comprises a rich set of Ada language tools 
for the programmer wanting to develop Ada applications targeted to the industry's leading 
32-bit architecture, the 80386 microprocessor. This tool set includes an Ada cross 
compiler which generates compact, highly optimized, code for embedded real-time 
80386 applications. The cross compiler and other tools making up the Cross-Compilation 
Package form a complete development environment designed specifically to support 
large scale, mission critical Ada programming development projects. 

Intel's Ada-386 Cross-Compilation Package runs under VAXIVMS, and features, in 
addition to the cross compiler, a number of tools which make the programmer's job more 
efficient. These tools include a VMS hosted and targeted compiler to enable the 
programmer to do unit testing on the VAX early In the deveiopmeni cycie. Aiso illduueu 
with each of the compilers is an Ada svmbolic debugger to facilitate the debug process, 
and sophisticated code generation tools, such as the Linker and Global Optimizer, to help 
make the target code smaller and more efficient. An object module Importer is included 
with the cross compiler to allow the programmer to save and make use of program 
modules written in other Intel 80386 languages. 

intel"--------
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KEY COMPILATION PACKAGE 
FEATURES 
• Tight, efficient, 32-bit 80386 code 

- Generated code designed and optimized for the 
80386 architecture 

• Built-in support for the 80386 
- Full representation specifications, including 

address clauses 
- Machine code insertion 

• 80387 coprocessor support 
- Full IEEE numerics support 

• pragma INTERFACE 
-Call modules written in other Intel languages: 

ASM-386, PLlM·386 & C-386 
• Highly optimized interrupt handling 

- Fast execution of interrupt handlers without 
requiring a context switch 

• Pre-emptive delay 
-Force synchronization at the end of programmed 

"delays" 
• Optional download and debug paths using the 

VAX-hosted Ada debugger 
- With a ROM-resident target debug monitor 

(included), or 
-ICE-386 (80386 In-Circuit Emulator) for less 

intrusive debugging 
• Modular, configurable runtime system 

- Linker excludes routines not required by the 
embedded application (no overhead penalty) 

- Easily configured for different hardware 
environments 

REAL TIME Ada FROM INTEL 
Intel's Ada development environment makes 
developing real-time embedded applications 
convenient and easy. All steps in the development 
process can proceed, start to finish, from a VAX 
terminal-from initial unit testing with the VMS­
targeted compiler to compiling and linking using the 
80386-targeted cross compiler. Downloading to the 
80386 target and debugging can also be 
accomplished from the VAX terminal. 

COMPILATION PACKAGE COMPONENTS 

• Compilers & Library Tools 
Both compilers, the VMS targeted version and the 
80386 cross targeted version, use the same user 
interface, commands and library management 
tools so the programmer learns them only once. 
The cross compiler has an optional switch which 
directs the compiler to produce assembly 
language text interspersed with Ada source text as 
comments. This feature gives the programmer a 
convenient way to hand-inspect the code. The 
assembly language text can also be assembled 
using the Intel 80386 Assembler. 

The cross compiler has important optimizations to 
help meet real-time needs. For example, when 
response times to interrupts are critical, the 
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programmer can speed up response times by 
invoking the "function mapped" optimization via a 
special compiler directive, "pragma INTERRUPT." 
This function mapping enables an interrupt handler 
to execute without first requiring a task switch, i.e., 
within the context of the interrupted task. 

• Global Optimizer . 
The Global Optimizer is used to reduce the size 
and increase the speed of embedded application 
code. This tool is invoked at the user's option, but 
usually after most of the coding and debugging is 
complete. Some key functions performed by the 
Global Optimizer include: 

• Linker 
The Linker combines separately compiled Ada 
modules, imported non-Ada modules (see 
Importer below), and the Ada runtime system 
into one executable image. To reduce target 
code size, the Linker also eliminates 
subprograms in the application code and in the 
runtime system that are not actually required by 
the application. The programmer may also use 
the Linker to produce output in a format suitable 
for burning PROMs. 

• Importer 
The Importer can help preserve previous software 
investments. The Importer converts object modules 
from Intel's OMF-386 format to a format suitable for 
linking with Ada modules. An Ada application can 
call these imported non-Ada modules through 
"pragma INTERFACE." Pragma INTERFACE is 
supported for Intel's ASM-386, PLlM-386 and 
C-386 languages. 

• Ada Runtime System 
All the necessary lOW-level support routines for 
executing programs on a bare 80386 
microprocessor are provided in the Ada Runtime 
System. These routines are responsible for 
managing tasking, interrupts, the real-time clock 
and memory. Also included are predefined Ada 
packages, such as Text_I/O, IO_Exceptions, 
Unchecked_Conversion and Calendar. The Ada 
Runtime System is written almost entirely in Ada, 
with a small number of packages written in 80386 
assembly language to support key low-level 
functions. The Runtime System is easily configured 
for different 80386 hardware environments, and 
source code is provided for this purpose. 



• Symbolic Debugger 
A VAX-resident symbolic debugger is supplied for 
each compiler_ The debugger allows the 
programmer to debug at the source level while the 
code is executing on the target. Log and script files 
may be used to automate repetitive debug 
sessions_ Important debugger features include: 

Feature Benefit 
machine level step through machine 

interface instructions; read/write to 
registers, memory, and I/O j).orts 

single/multiple step through source code by 
step single or mUltiple statements 

breakpoints halt execution at specified points 

call chain 
display display the dynamic nesting of a 

program at a particular point in 
time 

task status determine the status of a task at 
display a particular point in time 

variable display examine values of program 
variables 

trap unhandled examine state of the target 
exceptions program when an unhandled 

exception occurs 

A small debug monitor, supplied in PROM, is used 
with the Symbolic Debugger. The code can also be 
downloaded and debugged using Intel's ICE-386 
in-circuit emulator. 

• Language Tools 
Intel's Ada development environment includes tools 
that help development projects run more smoothly. 
A Cross Referencer provides a cross-reference 
listing of all source file locations where a user­
defined symbol in an Ada compilation unit is 
defined. A Source Dependency Lister produces a 
valid compilation order lisi for compilation units in 
an Ada program and lists dependencies among 
units. A Source Formatter (or "pretty printer") takes 
as input a non-formatted Ada source file and 
outputs a formatted version of the same text that 
adheres to standardized language conventions. 

VAXlVMS HOST CODE 
GENERATION 

mOLS 

GLOBAL 

LIBRARIAN 
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WORLDWIDE SERVICE AND SUPPORT . 
Complete hardware and software support is provided. The Ada-386 Compilation Package comes with Intel's 
standard gO-day warranty plus an extended one-year maintenance agreement, ensuring uninterrupted 
support for a full 15 months. One-year maintenance contract renewals are available from Intel annually. 

ORDERING INFORMATION 
Order Code 
VVSAda386-75 

-82 
-83 
-85 
-88 

Host Configuration 
VAX 730, 750 
VAX 78X, 8200 
VAX 8300 
VAX 85XX, 86XX, 8700 
VAX 8800 

MVVSAda386-VS VAXStationll 
-02 MicroVAXIl 

ICE386HW N/A 

Product 
Ada-386 Cross-Compilation Package. Included are the following 
tools hosted on VAXIVMS: 
• 80386-targeted Ada cross compiler & library tools 
• VMS self-targeted Ada compiler & library tools 
• For each compiler a Symbolic Debugger, a Global Optimizer 

and Language Tools 
• Ada-386 Linker and Importer 
• Ada-386 Runtime System 
The Compilation Package also includes full documentation, Intel's 
standard gO-day warranty, and an extended one-year 
maintenance contract. 

80386 In-Circuit Emulatbr (hardware only). Used with the VAX­
hosted Symbolic Debugger, the ICE-386 offers the programmer 
an alternative download method to using the ROM-resident 
debug kernel supplied with the Compilation Package. 

Note: Ada-386 software license required for each host CPU. Multiple copies require multiple licenses . 

• VAXNMS IS a registered trademark of Digital EqUipment Corporation 
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INTEL386™ FAMILY DEVELOPMENT SUPPORT 

COMPREHENSIVE DEVELOPMENT SlJPPORT FOR THE 
INTEL3B6'" I'IIMILY OF MICROPROCESSORS 
The perfect complement to the Intel386™ Family of microprocessors is the optimum 
development solution. From a single source, Intel, comes a complete, synergistic hardware and 
software development toolset, delivering full access to the power of the Intel386 architecture in 
a way that only Intel can. 

Intel development tools are easy to use, yet powerful, with contemporary user interface 
techniques and productivity boosting features such as symbolic debugging. And you'll find Intel 
first to market with the tools needed to start development, and with lasting product quality and 
cornfl~hensive support. t.o keep l1r.vr.lopmenl. on-track. 

If what Interests you is getting the best product to market in as little time as possible. Intel is 
the choice. 

I'EIITlJRES 
• Comprehensive support for the full 32 bit 

Intel386 architecture, including protected 
mode and 4 gigabyte physical memory 
addressing 

• Source display and symbolics allow 
debugging in the context of the original 
program 

• Architectural extensions in Intel high-level 
languages provides for manipulating 

, hardware directly without assembly 
language routines 

• A common object code format (OMF-386'") 
supports the intermixing of modules 
written in various languages 

• ROM-able code is output directly from the 
language tools, Significantly reducing the 
effort necessary to integrate software into 
the final target system 

• Support for the 80387 numeric 
coprocessor 

• Operation in DOS and VAX*NMS* 
environments 

irnJ--------------------
Intel Corporation assumes no responSibility for the use of any circuitry other than circuitry embodied In an Intel product. No other circuit patent licenses 
are Implied. Information contained herein supersedes previously published specifications on these devices from Intel and Is subject to change without 
DOUce. 

e Intel Corporation 1989 
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l"llure ,. Intel Microprocessor Development Environment 

ASM-3Btr' MACRO ASSEMBLER 
ASM-386T• is a "high-level" macro assembler for the 
Intel386 Family. ASM-386 offers many features normally 
found only in high-level languages. The macro facility in 
ASM-386 saves development time by allowing common 
program sequences to be coded only once. The assembly 
language is strongly typed. performing extensive checks 
on the usage of variables and labels. 

Other ASM-386 features include: 

• "High-level" assembler mnemonics to simplify the 
language 

• Structures and records for data representation 
• Upward compatibility with ASM-286 

PLlM-3B6'M COMPILER 
PUM-386" Is a structured high-level system 
implementation language for the Intel386 Family. 
PUM-386 supports the implementation of protected 
operating system software by providing built-in 
procedures and variables to access the Intel386 
architecture. 

For efficient code generation. PUM-386 features four 
levels of optimization. a virtual symbol table. and four 
models of program size and memory usage. 

Other PUM-386 features include: 

• The ability to define a procedure as an interrupt 
handler as well as facilities for generating interrupts 

• Direct support of byte. half-word. and word input and 
output from microprocessor ports 

• Upward compatibility with PUM-286 and PUM-86 
source code 

PUM-386 combines the benefits of a high-level language 
with the ability to access the Intel386 architecture. For 
the development of systems software. PUM-386 is a cost­
effective alternative to assembly language programming. 

C-3B6'M COMPILER 
C-386'M brings the C language to the Intel386 Family. For 
code efficiency. C-386 features two levels of optimization. 
three models of program size and memory usage. and an 
extremely efficient register allocator. The C-386 compiler 
eliminates common code. eliminates redundant loads and 
stores. and resolves span dependencies (shortens 
branches) within a program. 

C-386 allows full access to the Intel386 architecture 
through control of bit fields. pointers. addresses. and 
register allocations. 

Other C-386 features include: 

o An interrupt directive defining a function as an 
interrupt function 

• Built-in functions allow direct access to the 
microprocessor through the inline insertion of machine 
code 

• Structure assignments. functions taking structure 
arguments. and returning structures. and the void and 
enum data types 

The C-386 runtime library is implemented in layers. The 
upper layers include the standard 1/0 library (STOIO). 
memory management routines. conversion routines. and 
string manipulation routines. The lowest layer. operating 
system interface routines. is documented for adaptation 
to the target environment. 
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RtL-3B6™ REUJCATION, "'NIlAGE, 
AND "'BRAR}, TOOtS 
The RLL-386™ relocation, linkage, and library tools 
are a cohesive set of utilities featuring comprehen­
sive support of the full Intel386 architecture. 
RLL-386 provides for a variety of functions-from 
linking separate modules, building an object library, 
or linking in 80387 support, to building a task to 
execute under protected mode or the multi-tasking, 
memory protected system software itself. 

The RLL-386 relocation, linkage, and library tools 
package includes a program binder for linking ASM, 
PUM, and C modules together, a system builder for' 
configuring protected, muiti-LasK systems, a cruss 
reference mapper, a program librarian, an 80387 
numeric coprocessor support library, and a 
conversion utility for outputing hex format code for 
PROM programming. 

Ada-3B6™ CROSS COMPltATlON 
PACIlAGE 
The Ada-386™ Cross-Compilation Package is a 
complete development environment for embedded 
real-time Ada applications for the 386™ 
microprocessor. The Ada cross compiler, which runs 
under VAXIVMS, generates code highly optimized for 
the 80386. The Ada-386 Cross-Compilation Package 
also features a VMS hosted and targeted compiler 
and tools to support software debugging before the 
target system is available. Sophisticated code 
generation tools, such as the Global Optimizer, help 
make the target code smaller and more efficient. 

Ada-386 includes a source level symbolic debugger 
working in unison with a small debug monitor 
supplied in PROM. Code can also be downloaded 
and debugged using Intel's ICEDI-386 In-Circuit 
Emulator. 

Other Ada-386 features include: 

• Tne allillty to directly caii Intei's lRMK real-time. 
kernel 

• An object module importer allows prowam 
modules written in other Intel386 Family 
languages to be linked with Ada modules 

• Built in support for the 386, including machine 
code insertion and fuli representation 
specifications 

• Highly optimized interrupt handling-fast 
execution of interrupt handlers without requiring 
a context switch 

INTEt3B6™ I'AMlt}' IN-CIRClJIT 
EMlJtA'I'ORS 
Intel386 Family in-Circuit emulators embody 
exclusive technology that gives the emulator access 
to internal processor states that are accessible in no 
other way. Intel386 microprocessors fetch and 
execute instructions in parallel; fetched Instructions' 
are not necessarily executed. Because of this, an 
emulator without this access to internal processor 
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states is pronc to error in determining what tlctually 
occurred inside the microprocessor. With Intel's -
exclusive technology, Intel386 ~'tlmily emultltors arc 
one hundred percent accurate. 

Other features of Intel386 Family in-circuit 
emulators include: 

• Unparalleled support of the Intel386 architecture, 
notably the native protected mode 

• Emulation at clock speeds to 25MHz and full­
featured trigger and trace capabilities 

• Non-intrUSive operation 
• Convertible to support any Intel386 

microprocessor 

With symbolic debugging, memory locations can be 
examined or modified using symbolic references to 
the original program, such as a procedure or a vari­
able name, line number, or program label. Source 
code associated with a given line number can be 
displayed, as can the type information of variables, 
such as byte, word, record, or array. Microprocessor 
data structures, such as registers, descriptor tables, . 
and page tables, can also be examined and modified 
using symbolic names. The symbolic debugging 
information for use with Intel development tools is 
produced only by Intel languages. . . 

DOS-RESIDENT SOFTWARE 
DEBlJGGER 
DB386™ is an on-host software execution 
environment with source-level symbolic debug' 
capabilities for object modules produced by Intel's 
ASM-386, iC-386, and PUM-386 translators. This 
software debug environment allows 386 code to be 
executed and debugged directly on a 386 or 
386SX-™microprocessor based PC, without any 
additional target hardware required. With Intel's 
standard windowed human interface, users can . 
focus their efforts on finding bugs rather than 
spending time learning and manipulating the debug 
cllviI'UIlIllClIt. 
,. ~ ...... ft., .. c lTD.' f'arJI .... ...a.c AI't-h.o. 'l'DI:.TM 
- VUI'I'''A ILO """'J ."' ....... '"'0' v. ~ •• '"' "''"''' 

architecture. A run-time interface allows 
protected-mode 386 programs to be executed 
directly on a 386- or 386SX-based PC. 

• Ease of learning. Drop-down menus make the 
tool easy to learn for new or casual users. A 
command line interface is also provided for more 
complex problems. , 

• Extensive debug modes. Watch windows 
(display user-specified variables), trace points, 
and breakpoints (Including fixed, temporary, and 
conditional) can be set and modified as needed, 
even during a debug session. 

• See Into the 386 application. The user can 
browse source and call stacks, observe processor 
registers, and access wateh window variables by 
either the pull down menu or by a single 
keystroke using the function keys. An easy-to-use 
disassembler and single-line assembler can also 
speed the debug process. 



DOS-RI;SIDENT SOI'TWARE 
DEBllGGI;R (continued) 
• Full dt'bug symbolics for maximum productivity. 

Thl' usl'r nl'cd not know whether a variable is an 
unsignl'd integcr, a real. or a structure. The debugger 
utilizl's the wealth of typing information available in 
Intei languages to display program variables in their 
respective type formats. 

lJIONITOR-386™ SOFTWARE 
DEBllGGER 
MONITOR·386'" is a software debugger primarily for 
non·PC 386 and 386SX microprocessor based target 
systems. The monitor allows 386 software applications 
to be downloaded and symbolically debugged on 
virtually any target system using the 386 architecture. 
MONITOR-386, used in conjunction with Intel single 
board computers iSBC® 386/22 and iSBC 386/116, can 
debug software before a functional prototype of the 
target system is available. 

• Breakpoints. Both hardware and software 
breakpoints can be set at symbolic addresses. 

• Program Execution, Users can single-step through 
assembly or high-level language applications. 

• Debug Procedures. MONITOR-386 command 
sequences can be defined as macros, significantly 
reducing the amount of repetitive information which 
needs to be entered. 

• Disassembler/Single Line Assembler. Users can 
display and patch memory with 80386/80387 
mnemonics. 

iPAT-386T>! PERFORMANCE ANALYSIS 
TOOL 
iPAT-386'" performance analysis tool provides analysis of 
real-time software executing on a 386-based target 
system. With iPA'I'386, it is possible to speed-tunc 
applications, optimize usc of operating systems, 
determine response characteristics, and identify code 
execution coverage. 

By examining iPAT-386 histogram and tabular 
information about procedure usage (with the option of 
including interaction with other procedures, hardware, 
the operating system, or interrupt service routines) for 
critical functions, performance bottlenecks can be 
identified. With iPAT-386 code execution coverage 
information, the completeness of testing can be 
confirmed. iPA1'386 can be used in conjunction with 
Intel's ICE·386'" in-circuit emulator to control test 
conditions. 

iPAT-386 provides real-time analysis up to 20M Hz, 
performance profiles of up to 125 partitions, and code 
execution coverage analysis over 252K. 

irltel386, 386, 386SX, :n(}, ICE. and iSBC art' lra<ll'marks of Int('j Corporalion. 
\AX and VMS are registered lrademLlrks of Digital Equipment Corporation. 

SERJlICE, SlJPPORT, AND TRAINING 
To augment its development tools, Intel offers a full 
array of seminars, classes, and workshops, field 
application engineering expertise, hotline technical 
support, and on-site service. 

PRODlJCT SlJPPORT MATRIX 

Componrn. Hos. 

Produc. :J86 386sx 376 OOS .,"XI.,,,,S 
AS!\.1<l86 \laero :\sst'mhkr .... 
PIJ!\.l·:JHH Compiler .... .... .... 
C-3HIi Compiler .... .... .... .... 
RLL':W6 Relocation. .... .... 
LinkafW. and Library Lools 

·\da-:JHIi CI'OSS Compilation .... 
Package 

Inll'I:WG F<llTlily In·Circuit .... 
EmulaLors 

Willdo\\cd Software .... .... .... 
I)('bugger 

~lollilor';l86 SofL\\<lrt' .... .... 
Ikbuggt'r 

iPAT·386 Pcrform;JIl('(' .... .... 
>\nalysis Tool 

ORDERING INFORMATION 
For direct information on Intel's Development Tools, 01' 

for the number of your nearest sales office or distrihutor, 
call 800-874-6835 (U.S.). For information or literature on 
additional Intel products, call 800-548-4725 (U.S. and 
Canada). 

UNITED STATES, Intel Corporation 
3065 Bowers Ave., Santa Clara, CA 95051 
Tcl: (408) 765·8080 

JAPAN, Intel Japan K.K. 
5-6 Tokodai, Tsukuba-shi, 
Ibaraki, 300·26 
Tel: 029747-8511 

FRANCE, Intel Corporation S.A.R.L. 
1, Rue Edison, BP 303, 
78054 Saint-Quentin-en-Yvelines Cedex 
Tel: (33) 1-30 57 7000 

UNITED KINGDOM, Intel Corporation (U.K.) Ltd. 
Pipers Way, Swindon, Wiltshire, England SN3 1RJ 
Tel: (0793) 696000 

WEST GERMANY, Intel Semiconductor GmbH 
Dornacher Strasse 1, 8016 Feldkirchen bei Muenchen 
Tel: 089/90 99 20 

HONG KONG, Intel Semiconductor Ltd. 
101F East Tower, Bond Center, 
Queensway, Central 
Tel: (5) 8444·555 

CANADA, Intel Semiconductor of Canada, Ltd. 
190 AttlVell Drive, Suite 500 
Rexdale, Ontario M9W 6H8 
Tel. (416) 675-2105 

Printed in USAfD901BI0289/1OKJWCPIVJC 
Development Tools Operation 
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A E 0 ITS 0 U R CE CO 0 E AN 0 T EXT E 0 I TO R 

PROGRAMMER SUPPORT 
AEDIT,is a full-screen text editing system designed specifically for software engineers and 
technical writers. With the facilities for automatic program block indentation, HEX display 
and input, and full macro support, AEDIT is an essential tool for any programming 
environment: And with AEDIT, the output file is the pure ASCII text (or HEX code) you 
input-no special characters or proprietary formats. 

Dual file editing means you can create source code and its supporting documents at the 
same time. Keep your program listing with its errors in the background for easy reference 
while correcting the source in the foreground. Using the split-screen windowing capability, 
it is easy to compare two files, or copy text from one to the other. The DOS system-eSCBpl? 
command eliminates the need to leave the editor to compile a program, get a directory 
listing, or execute any other program executable at the DOS system level. 

There are no limits placed on the size of the file or the length of the lines processed with 
AEOn: It even has a batch mode for those times when you need to make automatic string 
substitutions or insertions in a number of separate text files. 

AEDIT FEATURES 
• Complete range of editing support­

from document processing to HEX 
code entry and modification 

• Supports system escape for quick 
execution of PC-DOS System level 
commands 

• Full macro support for complex or 
repetitive editing tasks 

• Hosted on PC-DOS and RMX operating 
systems 

• Dual file support with optional split­
, screen windowing 
• No limit to file size or line length 
• Quick response with an easy to use 

menu driven interface 
• Configurable and extensible for 

complete control of the editing process 

infel'-------,-------
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FEATURES 

POWERFUL TEXT EDITOR 
As a text editor, AEDIT is versatile and complete. In 
addition to simple character insertion and cursor 
positioning commands, AEDIT supports a number of 
text block processing commands. Using these 
commands you can easily move, copy, or delete both 
small and large blocks of text. AEDIT also provides 
facilities for forward or reverse string searches, string 
replacement and query replace. 

AEDIT removes the restriction of only inserting 
characters when adding or modifying text. When 
adding text with AEDIT you may choose to either 
insert characters at the current cursor location, or 
over-write the existing text as you type. This flexibility 

. simplifies the creation and editing of tables and 
charts. 

USER INTERFACE 
The menu-driven interface AEDIT provides makes it 
unnecessary to memorize long lists of commands 
and their syntax. Instead, a complete list of the 
commands or options available at any point is always 
displayed at the bottom of the screen. This makes 
AEDIT both easy to learn and easy to use. 

FULL FLEXIBILITY 
In addition to the standard PC terminal support 
provided with AEOn; you are able to configure AEDIT 
to work with almost any terminal. This along with user­
definable macros and full adjustable tabs, margins, 
and case sensitivity combine to make AEDIT one of 
the most flexible editors available today. 

SPECIFICATIONS 

HOST SYSTEM 
AEDIT for PC-DOS has been designed to run on the 
IBM' PC XT, IBM PC AT, and compatibles. It has 
been tested and evaluated for the PC-DOS 3.0 or 
greater operating system. 

Versions of AEDIT are available for the iRMX"'-86 and 
RMX II Operating System. 

ORDERING INFORMATION 
D86EDINL 

122716 

AEDIT Source Code Editor Release 
2.2 for PC-DOS with supporting 
documentation 

AEDIT-DOS Users Guide 

122721 AEDIT-DOS Pocket Reference 

RMX864WSU AEDIT for iRMX-86 Operating 
System 

R286EDI286EU AEDIT for iRMX II Operating System 

MACRO SUPPORT 
AEDIT will create macros by simply keeping track of 
the command and text that you type, "learning" the 
function the macro is to perform. The editor 
remembers your actions for later execution, or you 
may store them in a file to use in a later editing 
session. 

Alternatively, you can design a macro using AEDITs 
powerful macro language. Included with the editor is 
an extensive library of useful macros which you may 
use or modify to meet your individual editing needs. 

TEXT PROCESSING 
For your documentation needs, paragraph filling or 
justification simplifies the chore of document 
formatting. Automatic carriage return insertion means 
you can focus on the content of what you are typing 
instead of how close you are to the edge of the 
screen. 

SERVICE, SUPPORT, AND TRAINING 
Intel augments its development tools with a full array 
of seminars, classes, and workshops; on-site 
consulting services; field application engineering 
expertise; telephone hot-line support; and software 
and hardware maintenance contracts. This full line of 
services will ensure your design success. 

For direct information on Intel's Development Tools, or 
for the number of your nearest sales office or 
distributor, call 800-874-6835 (U.S.). For information 
or literature on additional Intel products, call 
800-548-4725 (U.S. and Canada). 
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I iPATTM PERFORMANCE ANALYSIS TOOL 

REAL-TIME SOFTWARE ANALYSIS FOR THE 8086188, 801861188, 
80286, AND 80386 
Intel's iPAT'" Performance Analysis Tool enables OEMs developing applications based on 
the 8086/88, 80186/188, 80286, or 80386 microprocessors to analyze real-time software 
execution in their prototype systems at speeds up to 20 MHz. Through such analysis, it is 
possible to speed-tune applications with real-time data, optimize use of operating systems 
(such as Intel's iRMX® II Real-Time Multitasking Executive forthe 80286 and 80386, and 
iRMK"" Real-Time Multitasking Kernel for tile 80386), characterize response characteristics, 
and determine code execution coverage by real-time test suites. Analysis is performed 
symbolically, non-intrusively, and in real-time with 100% sampling in the microprocessor 
prototype environment. iPAT supports analysis of OEM-developed software built using 
8086,80286, and 80386 assemblers and compilers supplied by Intel and other vendors. 

All iPAT P6rfoimanc6 Analysis Tool products are serially linl~cd to DOS computer systems 
(such as IBM * PC AT, PC XT, and PS/2 * Model 80) to host iPAT control and graphic display 
software. Several means of access to the user's prototype microprocessor system are 
supported. For the 80286 (real and protected mode), a 12.5 MHz iPAT-286 probe can be 
used with the iPATCORE system. For the 8086/88 (MAX MODE designs only), a 10 MHz 
iPAT-88 probe can be used with the iPATCORE system. iPATCORE systems also can be 
connected to sockets provided on the ICEm-286 and ICE-186 in-circuit emulators, or 
interfaced to liCE in-circuit emulators with probes supporting the 8086/88,80186/188, or 
80286. The 20 MHz iPAT'M-386™ probe, also supported by the common iPATCORE system, 
can be operated either in "piggyback" fashion connected to an Intel ICE in-circuit emulator 
for the Inte1386'" , or directly connected to a prototype system independent of an ICE. 
iPAT-386 supports all models of 80386 applications anywhere in the lowest 16 Megabytes of 
the 80386 linear address space. 

iPAT FEATURES 
• Up to 20 MHz real-time analysis 
• Histograms and analysis tables 
• Performance profiles of up to 125 

partitions 

• Code execution coverage over up to 
252K 

• Hardware or software interrupt analysis 
• Simple use with function keys and 

graphics 
• Use with or without Intel ICEs 

intel"-----------
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FEATURES 

MOST COMPLETE REAL-TIME ANALYSIS 
AVAILABLE TODAY 
iPAT Performance Analysis Tools use in-circuit probes 
containing proprietary chip technology to achieve full 
sampling in real-time non-intrusively. 

MEETS THE REAL-TIME DESIGNER'S 
NEEDS 
The iPAT products include support for interactions 
between real-time software and hardware interrupts, 
real-time operating systems, "idle time," and full 
analysis of real-time process control systems. 

SPEED-TUNING YOUR SOFTWARE 
By examining iPAT histogram and tabular information 
about procedure usage (including or not including 
their interaction with other procedures, hardware, 
operating systems, or interrupt service routines) for 
critical functions, the software engineer can quickly 
pinpoint trouble spots. Armed with this information, 
bottlenecks can be eliminat~d by means such as 
changes to algorithms, recoding in assembler, or 
adjusting system interrupt priorities. Finally, iPAT can 
be used to prove the acceptibility of the developer's 
results. 

EFFICIENCY AND EFFECTIVENESS IN 
TESTING . 
With iPAT code execution coverage information, 
product evaluation with tesi suites can be performed 
more effectively and in less time. The evaluation team 
can quickly pinpoint areas of code that are executed 
or not executed under real-time conditions. By this 
means, the evaluation team can substantially remove 
the "black box" aspect of testing and assure 100% 
hits on the software under test. Coverage information 
can be used to document testing at the module, 
procedure, and line level. iPAT utilities also support 
generation of instruction-level code coverage 
information. 

ANALYSIS WITH OR WITHOUT 
SYMBOLICS 
If your application is developed with "debug" 
symbolics generated by Intel 8086, 80286, or 80386 
assemblers and compilers, iPAT can use them­
automatically. Symbolic names also can be defined 
within the iPAT environment, or conversion tools 
supplied with the iPAT products can be used to 
create symbolic information from virtually any 
vendor's map files for 8086, 80286, and 80836 
software tools. 

REAL OR PROTECTED MODE 
iPAT supports 80286 and 80386 protected mode 
symbolic information generated by Intel 80286 and 
80386 software tools. It can work with absolute 
addresses, as well as base-offset or selector-offset 
references to partitions in the prototype system's 
execution address space. 

FROM ROM-LOADED TO OPERATING 
SYSTEM LOADED APPLICATIONS 
The software analysis provided by iPAT watches 
absolute execution addresses in-circuit in real time, 
but also supports use of various iPAT utilities to 
determine the load locations for load-time located 
software, such as applications running under iRMXII, 
DOS, Microsoft Windows', or MS-'OS/2. 

USE STANDALONE OR WITH ICE 
The iPAT-386, iPAT-286, and iPAT-86/88 probes, 
together with an iPATCORE system, provide 
standalone software analysis independent of an ICE 
(in-circuit emulator) system. The iPATCORE system 
and DOS-hosted software also can be used together 
with ICE-386, ICE-286, and 12ICE-86/88, 1861188, or 
286 in-circuit emulators and DOS-hosted software. 
Under the latter scenario, the user can examine 
prototype software characteristics in real-time on one 
DOS host while another DOS host is used to supply 
input or test conditions to the protype through an 
ICE. It also is possible to use an iPATCORE and 121CE 
system with integrated host software on a single Intel 
Series III or Series IV development system or on a 
DOS computer. 

UTILITIES FOR YOUR NEEDS 
Various utilities supplied with iPAT products support 
generation of symbolic information from map files 
associated with 3rd-party software tools, extended 
analysis of iPAT code execution coverage analysis 
data, and convenience in the working environment. 
For example, symbolics can be generated for maps 
produced by most software tools, instruction-level 
code execution information can be produced, and 
iRMXII-format disk.s can be read/written in DOS 
floppy drives to facilitate file transfer. 

WORLDWIDE SERVICE AND SUPPORT 
All iPAT Performance Analysis Tool products are 
supported by Intel's worldwide service and support. 
Total hardware and software support is available, 
including ahotline number when the need is there. 
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FEATURES 

CONFIGURATION GUIDE 
For all of the following application requirements, the iPAT system is supported with iPAT 2.0 (or greater) or 
iPATIIICE 1.2 (or greater) host software, as footnoted. 

Application Software 

80386 Embedded 

iRMK on 80386 

iRMXII OS-Loaded or Embedded on 
386 

OS/2-Loaded on 386 

iRMXII OS-Loaded or Embedded 

80286 Embedded 

DOS OS-Loaded 80286 

OS/20S-Loaded,80286 

80186/188 Embedded 

DOS OS-Loaded 8086188 

8086/88 Embedded 

Notes: 

Option 

#1 

#1 

#1 

#1 
#1 

#1 
#2 
#3 
#4 
#5 
#6 

#1 

#1 

#1 
#2 
#3 
#4 
#5 

#1 

#1 
#2 
#3 
#4 
#5 

iPAT Order Codes, Host System 
iPAT386DOS1, iPATCORE DOS 

iPAT386DOS, iPATCORE DOS 

iPAT386DOS, iPATCORE DOS 
iPAT386DOS, iPATCORE DOS 
iPAT286DOS, iPATCORE DOS 
iPAT286DOS, iPATCORE DOS 
ICEPATKIT2 DOS 
IICEPATKIT3 DOS 
IIIPATD, iPATCORE3 DOS4 
I II PATB , iPATCORE3 Series 1114 
II I PATC , iPATCORE3 Series IV4 

iPAT286DOS, iPATCORE DOS 

iPAT286DOS, iPATCORE DOS 

ICEPATKIT2 DOS 
IICEPATKIT3 DOS 
IIIPATD, iPATCORE3 DOS4 
IIiPATB, iPATCORE3 Series 1114 
IIIPATC, iPATCORE3 Series IV4 

iPAT88DOS, iPATCORE DOS 

iPAT88DOS, iPATCORE DOS 
IICEPATKIT3 DOS 
IIIPATD, iPATCORE3 DOS4 
IIIPATB, iPATCORE3 Series 1114 
IIIPATC, iPATCORE3 Series IV4 

1. Operable standalone or with ICE-386 (separate product; separate host). iPAT-386 probe connects directly to 
prototype system socket, or to optional 4 probe-to-socket hinge cable (order code TA386A), or to ICE-386 
probe socket. . 

? ~onlliroc::: 1r.1=~1AF\ nr 1r.l=e?Rf:i. in_f'irf".llit Amlll::1tnr c::.\/c::.ho.m 
3: R~q~i~~~ iiC"E 'i~~c~~~it ~~~Iat~r-~y;i~;;."-·-·--· -, _._". 
4. Includes iPATJllC[ integiatad soft'vvaie (if1ATIICE 1.2 Oi gieat6i), 'vvhich only supports sequential iPAT and 

ICE operation on one host, rather than in' parallel on two hosts (iPAT 2.0 or greater). 
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SPECIFICATIONS 

HOST COMPUTER REQUIREMENTS 
All iPAT Performance Analysis Tool products are 
hosted on IBM PC AT, PC XT, or PS/2 Model 80 
personal computers, or 100% compatibles, and use a 
serial link for host-to-iPAT communications. At least a 
PC AT class system is recommended. The DOS host 
system must meet the following minimum 
requirements: 
• 640K Bytes of Memory 
• 360K Byte or 1.2M Byte floppy disk drive 
• Fixed disk drive 
• A serial port (COM1 or COM2) supporting 9600 

baud data transfer 
• DOS 3.0 or later 
• IBM or 100% compatible BIOS 

PHYSICAL DESCRIPTIONS 
Width Height Length 

Unit Inches Cm. Inches Cm. Inches Cm. 

iPATCORE 8.25 21.0 1.75 4.5 13.75 35.0 
Power Supply 7.75 20.0 4.25 11.0 11.0 28.0 
iPAT-386 probe 3.0 7.6 0.50 1.3 4.0 10.1 
iPAT-286 probe 4.0 10.2 1.12 2.8 6.0 15.3 
iPAT-86 probe 4.0 10.2 1.12 2.8 6.0 15.3 
iPATCABLE (to 

ICE-186/286) 4.0 10.2 .25 .6 36.0 91.4 
IIIPATB,C,D 

(liCE board) 12.0 30.5 12.0 30.5 .5 1.3 
Serial cables PC 

AT/XT PS/2 144.0370.0 

EL~CTRICAL CONSIDERATIONS 
The iPATCORE system power supply uses an AC 
power source at 100\/, 120\/, 220\/, or 240V over 47Hz 
to 63Hz. 2 amps (AC) at 100V or 120V; 1 amp at 220V 
or 240V 

iPAT-386, iPAT-286 and iPAT-86/88 probes are 
externally powered, impose no power demands on 
the user's prototype, and can thus be used to analyze 
software activity through power down and power up 
of a prototype system. For ICE-386, ICE-286, 
ICE-186, and liCE microprocessor probes, see the 
appropriate in-circuit emulator factsheets. 

ENVIRONMENTAL SPECIFICATIONS 
Operating Temperature: 1Q°C to 40°C (50°F to 

104°F) ambient 
Operating Humidity: Maximum of 85% relative 

humidity, non-condensing 
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VALIDATED ADA FOR UNIX*/386 

TARGET: UNIX V/386 ADA APPLICATIONS 
The UNIX' \/.3/386 Ada toolset consists of an Ada compiler plus a set of related tools 
that allow a user to develop, manage, compile, optimize, link, load, and execute Ada 
application programs on an InteI386'" Microprocessor-based UNIX host. Supported hosts 
are Intel's MULTIBUS® II Development Platform: the MOP, and InteI386'" Microprocessor­
based PC platforms: the 301 and 302 (plus 100% compatibles). 

SOill tile compiler and the object code it produces' run under the UNIX operating system, 
resulting in a user interface that is simple, consistent, and familiar to UNIX users. Intel's 
UNIX/386 Ada toolset provides a flexible, price effective, project-oriented development 
environment for developing commercial, industrial, and military Ada applications. 

FEATURES: 
• complete Ada development environment 
• generated code is fast and efficient (over 5200 Dhrystones/second) 
• sophisticated, Ada-~nowledgeable GLOBAL OPTIMIZER 
• ACVC validated configurations 
• worldwide support provided by Intel 

THIS PRODUCT CONFORMS 
TO ANSI/MI~STO-181SA AS 
DETERMINED BY THE AJPO 
UNDER ITS CURRENT 
TESTINC PROCEDURES 

infel-" -------
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TOOLSET COMPONENTS 

UNIX-targeted Ada COMPILER 
Compiles Ada source (at a rate of approximately 1000 Ada source lines per CPU minute on an unloaded 
Intel MOP) while performing syntax checking, semantic analysis, external calls validation, and error 
reporting. The resultant "intermediate form," along with optional debug information, is put into the project 
database. While processing source, the compiler automatically performs many "base level" optimizations, 
such as dead code elimination and register assignment for loops. 

Intelligent LINKER 
The intelligent LINKER binds and links the user's application with the Ada Execution Environment (AEE) 
to build an image that's ready for execution or debugging under UNIX. To reduce final code size, the 
intelligent LINKER automatically includes only those modules from the user's application and from the 
AEE that will actually be needed in the final configuration. The LINKER outputs object code in COFF 
format. 

GLOBAL OPTIMIZER 
The GLOBAL OPTIMIZER is a powerful tool for decreasing code size and increasing execution speed of 
the code generated by the COMPILER. The GLOBAL OPTIMIZER is able to optimize single compilation 
units, groups of compilation units (known as collections), or the entire executable image. As a general 
rule, Globally Optimized systems are up to 30% iaster and 30% smaller than their unoptimized forms. 

Source-level, Symbolic Ada DEBUGGER 
The DEBUGGER provides an easy, clear, and interactive environment for examining the behavior of Ada 
programs during execution. The windowing feature of the DEBUGGER allows the user to split the 
debugger screen into two areas: a source window (where source can be viewed a page at a time), and a 
command line window. The DEBUGGER has extensive capabilities including: 

• breakpoint on execution 
• source level single step 
• call chain display 
• task status display 
• program 110 display 
• macro processor 
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ADA FOR UNIX/386 . .. THE COMPLETE TOOLSET FROM INTEL 

AEE Ada Execution Environment (or "run-time 
svstem") 
The AEE provides the environment for executing Ada 
programs on the UNIX host. The following Ada 
packages are provided with the product:-

• TEXT~O 
• SEQUENTlAL_'O 
• DiRECT_iO 
• UNCHECKED_CONVERSION 
• CALENDAR 

LANGUAGE TOOL.S 
The following Ada Language Tools supplement the 
standard UNIX toolset and provide the developer with 
specific Ada capabilities to improve programmer 
productivity. 

• Ada Cross Referencer 
generates a listing of all symbolic names 
referenced within a compilation unit or 
collection and shows where they were 
declared, used, and referenced 

e Ada Source Dependency Lister 
reports dependencies among units and/or 
produces a valid compilation order 

• Ada Source Formatter (often referred to as a 
"pretty printer") 
formats /\do. sou rec tc~~t so that its caGY to 
read and consistent in appearance 

• AUa CUrTIf,JiiaiiuTI OTUt:lT Tuui 
provides the user the ability to·compile or 
re-compile systems with a single 
command 

LIBRARY MANAGEMENT TOOLS 
The LIBRARY MANAGER and LIBRARY TOOLSET 
are a powerful set of utilities for managing the Ada 
project database. The utilities work with the Ada 
database to provide: 

• library creation/deletion and listing 
• version control 
• configuration management 
• order of compilation rules 
• elaboration ordering 
• system builds 
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SYSTEM REQUIREMENTS 
System requirements are: 
• 4M-bytes RAM (bare minimum), 6M-bytes or more 

are recommended 
• 60M-byte hard disk or larger (Ada toolset takes up 

20M-bytes, UNIX takes up another 25M-bytes) 
• 114" cartridge tape drive 
• 80387 math co-processor is NOT required 

UNIX is bundled with the Intel MOP and is available 
for the 301 and 302 PC platforms by contacting Intel 
at (800) FOR:UNIX. The Ada toolset is delivered on a 
single 114" cartridge tape ("tar" format). 

VALIDATION 
The UNIX V/386 Self-Targeted Ada compilation 
system was validated by the Ada Joint Program 
Office (AJPO) according to the following criteria: 
Date of Issue: Sept. 29, 1988, ACVC V1.9 
Certificate #: 88052911.09137 
Host: Intel MOP, MULTIBUS II (UNIX, 

Version V.3.0) (a derived validation 
was awarded for the 301) 

Target: Same as host . 

ORDERING INFORMATION 
platform 

U386AdaSWS Intel's MB-II MOP 
U386AdaSPS Intel's 301 1302's (plus 100% 

compatible 386 PCs) 

The codes listed above include the Ada toolset plus 
15-months of hot-line support and product upgrades. 

platform 
U386AdaSW Intel's MB-II MOP 
U386AdaSP Intel's 301 1302's (plus 100% 

compatible 386 PCs) 

The codes listed above include the Ada toolset plus 
3-months of hot-line support and product upgrades. 

NOTE: Each copy of the Ada toolset is licensed for 
use on a single system. Multiple copies 
require multiple licenses. 

WORLDWIDE SERVICE AND SUPPORT 
The Ada toolset comes complete with either Intel's 
standard 90-day warranty, or an extended 15-month 
maintenance plan. Follow-on support plans are also 
available from Intel. 

For more information or the number of your nearest 
Intel sales office, call 800-54.8-4725 (good in the U.S. 
and Canada). 

6-27 



I 

ADA-386/iRMKTM INTERFACE LIBRARIES 

TARGET: REAL-TIME, EMBEDDED 386'M DESIGNS 
The Ada-386/iRMK''' interface libraries allow users of Release 1.1 of Intel's validated 
VAXIVMS' hosted Ada-386 toolset the ability to integrate iRMKs features and benefits 
into their embedded, real-time InteI386'" microprocessor based Ada applications. 

Intels iRMKTM is a small, fast, configurable, 32-bit kernel designed for real-time 
applications that use the 386'" microprocessor. iRMK provides a tasking system 
(controlll'lrl by an interrupt-driven, deterministic, priority-based scheduler), intertask 
communication and synchronization primitives, fast memory management, and 
MULTIBUS® \I message passing primitives. 

rr: liT' 'Dr:~ • 
• ... " .. v ..... ..,. 

• access to MULTIBUS® II resources through iRMK primitives (message passing, ... ), 
• iRMK tasking as an alternative to Ada tasking, 
• fast and flexible inter-iRMK-task communication (semaphores, mailboxes, ... ), and 
• high-level access to iRMK supported hardware drivers (interrupt controllers, timers, ... ). 

intel-' ----------
... Intel CorporatIOn 1989 
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ACCESSING iRMK'" FROM ADA-386 
All iRMKI.1 primitives are accessible from Ada-386 

. programs (except for KN--.initiaJize which is 
automatically called from the Ada start-up code). 

To use iRMK in your Ada-386 application, simply add 
the appropriate Ada sub-library to your library list and 

't.:··; :': :.:' .. :r:::~::·\· ~'::':'::": ~::: /;:: :.; 
':':.:':::':':::";';'::":::::':';",:,,:,:::::. 

;/;·:I·::t:\·t.}:}:}:T ?:. :; .. ::; :: ' . 
... ;.':::.:::.:::.:.:':.::..;.::.;:.:: .... ::::::::.: ... :>. 

use iRMK primitives as if they were Ada procedures 
or functions. Use Ada context clauses to identify the 
modules your application needs, just as you with 
other library units. Thus, accessing iRMK from 
Ada-386 is analogous to putting iRMK primitive calls 
in a C-386 or PLlM-386 program. 

'(/~:\::}.:,':: .. ::: ... :.:::::::'.~ .. :.< .. :':':" ',:':., :.;'." . ,.: '::.:" '".,' .:.:.:::::.-:::::.:: 

·((i:::((if~~i~d'6V:A~a::J~iidaf,6h·::sili~~~:.:-::,:::;:::f:i 

TASKING MODELS 
Ada-386 programs can either use the iRMK tqsking 
model or the Ada tasking model (but not both). 

Using iRMK'" Tasking 
By using the iRMK tasking model, you gain access to 
an environment that can provide: 

• the ability to map Ada procedures and 
functions to iRMK tasks, 

• bounded interrupt latency, 
• fast and flexible inter-task communication, 
• no run-time degradation with increasing 

tasks, 
• fast memory allocation, and 
•. MULTIBUS® II message passing. 

If iRMK tasking is chosen, Ada task specifications 
and task bodies cannot be present in the software 
(these would invoke the Ada tasking environment). 
Because Ada tasks cannot be used, the Ada 
keywords: accept, select, and entry are not available. 

Using Ada Tasking 
If Ada tasking is chosen, a subset of iRMK primitives 
can still safely be used. These include: iRMK's Device 
Management Module primitives, Memory 
Management Module primitives, Interconnect Space 
Support Module primitives, and Descriptor Table 
Management Module primitives. 

In addition, the Ada delay function maps directly onto 
the iRMK KN--S/eep primitive, providing deterministic 
task awaken times. 

Other benefits provided are: 
• management of Ada's heap space by iRMK's 

fast memory manager, and, 
• a high-level interface to iRMK hardware 

drivers. 
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LIBRARY CONTENTS 
The Ada-386/iRMK interface libraries consist of 
Release 1.1 of the iRMK kernel, plus associated 
interface modules, that have been IMPORTed into 
Ada-386 sub-libraries. Two Ada sub-libraries are 
provided: 

• RMK386: 
OPTIMIZED for maximum performance 
.with minimum size, and 

• RMICDBG: 
un-OPTIMIZED and un-SQUEEZED to be 
used for debugging and collective 
optimization with your applir.i'ltinn 

Each sub-library contains: 
• the iRMK basic and optional modules (in 

object form), ready to be LINKed with your 
Ada-386 application, 

• Ada specifications and bodies for the iRMK 
primitives, 

• Ada-to-jRMK interface modules (in object 
form), and 

• Ada-386 Run-Time Environment modules (in 
ASM-386 source form) 

environment code for MULTIBUS® I and 
MULTIBUS II boards, 
initialization code for MULTIBUS® I and 
MULTIBUS II boards, and 
Ada delay and timer code. 

Two Linker options files (configured for Intel's 16 and 
20MHz 3861MB-I boards and Intel's 16 and 20MHz 
3861MB-II boards) and three sample Ada-386 
programs (in source form) are also included. The 
sample programs demonstrate: 

• iRMK Taskino 
ten tasks are created (using the 
KAJ r-rClQfo t~C"v nril'"'nitil, ..... \ 
." ._ ............... LV_L .......... " ~llIrlllrYvl 

• Inter-Task Communication 
parameters are passed among three iRMK 
tasks via a FIFO mailbox 

• MULTI BUS II Message Passing 
this example demonstrates board-to-board 
communication. 

WORLDWIDE SERVICE AND SUPPORT 
The Ada portion of the Ada-386/iRMK interface 
libraries is covered, at no extra charge, by the 15-
month Ada-386 maintenance plan. However, specific 
support for the iRMK kernel is not covered by the 
Ada-386 plan. Support for iRMK is available from 
Intel under a separate policy. Contact your local sales 
office for further information. 

ORDERING INFORMATION 
order code 
MVVSAdaRMKRI.1 

VVSAdaRMKRI.1 

magnetic media 
TK50 
7", 1600BPI tape 

Both prnrl11cts are shipped in VMS BACKUP format. 

For more information or the number of your nearest 
Intel sales office, call 800-548-4725 (good in the U.S. 
and Canada). 
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COMPREHENSIVE DEVELOPMENT SUPPORT FOR THE ;486''' 
MICROPROCESSOR 
The perfect complement to the i486™ microprocessor is the optimum development 
solution. From a single source, Intel, comes a cbmplete, synergistic hardware and 
software development toolset, delivering full access to the power of the i486 architecture 
in a way that only Intel can. 

Intel development tools are easy to use, yet powerful, with contemporary user interface 
techniques and productivity boosting features such as symbolic debugging. And you'll 
find Intel first to market with the tools needed to start development, and with lasting 
product quality and comprehensive support to keep development on-track. 

If what interests you is getting the best product to market \n as little time as possible, Intel 
is the choice. 

FEATURES 
• Comprehensive support for the full 32 

bit i486 architecture, including 
protected mode, 4 gigabyte physical 
memory addressing, and caching 

• Symbolics allow debugging in the 
context of the original program 

• Architectural extensions in Intel high­
level languages provide for 
manipulating hardware directly without 
assembly language routines 

• 386'" software compatibility is assured 
at both object and source level 

• ROM-able code is output directly from 
the language tools, significantly 
reducing the effort necessary to 
integrate software into the final target 
system 

• Support for the i486 microprocessor on­
chip numerics with numerics libraries 

• Operation in DOS and VAX*/vMS* 
environments 
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Figure 1. Intel i486'" Microprocessor Development Environment 

ASM-386/486 MACRO ASSEMBLER 
ASM-386/486 is a "high-level" macro assembler for 
the i486 microprocessor. ASM-386/486 offers many 
features normally found only in high-level languages. 
The macro facility in ASM-386/486 saves· 
development time by allowing common program 
sequences to be coded only once. The assembly 
language is strongly typed, performing extensive 
checks on the usage of variables and labels. 

Other ASM-386/486 features include: 

• "High-level" assembler mnemonics to simplify the 
language 

• Structures and records for data representation 
o Support for Intel's standard object code format for 

symbolic debug, and for linking object modules 
from other Intel 386/486 languages. 

PUM-3B6i4B6 COMPiLER 
PL!~.~·386/486 is a structured high-level system 
implementation language for the i486 architecture. 
PUM-386/486 supports the implementation of 
protected operating system software by providing 
built-in procedures and variables to access the i486 
architecture. ' 

For efficient code generation, PUM-386/486 features 
four levels of optimization, a virtual symbol table, and 
four models of program size and memory usage .. 

Other PUM-386/486 features include: 

• The ability to define a procedure as an interrupt 
handler as well as facilities for generating interrupts 

• Direct support of byte, half-word, and word input 
and output from microprocessor ports 

• Support for Intel's standard object code format for 
symbolic debug, and for linking object modules 
from other Intel 386/486 languages. 

PUM-386/486 combines the benefits of a high-level 
language with the ability to access the i486 
architecture. For the development of systems 
software, PUM-386/486 is a cost~effective alternative 

C-386/486 COMPILER 
C-386/486 is id~al for developing portable system 
~pplications based on the i486 architecture. For code 
efficiency, C-386/486 utilizes two levels of 
optimization, three models of program size and 
memory usage, and an extremely efficient register 
allocation scheme. In addition, C-386/486 allows full 
access to the 486 architecture through (:ontrol of bit 
fields, pointers, addresses, and register allocation. 

The C-386/486 runtime library is implemented in 
layers. The upper layers include the standard I/O 
library (STDIO), memory management routines, 
conversion routines, and string manipulation routines. 
The lowest layer, operating system interface routines, 
is documented for adaptation to the target 
environment. 

FORTRAN COMPILER FOR THE i486™ 
MiCROPROCESSOR 
The Fortran-386 translator meets the ,A.NSf Fortran 77 
Language Subset Specification. This compatibility 
assures portability of existing Fortran programs and 
shortens the development process when moving 
Fortran databases off of mini or mainframe 
computers and onto i486 microprocessor-based 
systems. 

Fortran-386 provides extensive support for numeric 
processing tasks and applications, with features such 
as: 
• Support for floatiflg-point data types including 

single, double, and double extended precision; 
complex and double complex data types; as well 
as integer, signed, and logical data types 

• Support for the proposed REALMATH IEEE 
floating point standard 

• Support for Fortran language extensions endorsed 
by the U.S. Department of Defense 

• Support of Intel's standard object code format for 
symbolic debug, and for linking object modules 
from other Intel386/486 languages 

to assembly language programming. 
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SOFTWARE UTILITIES FOR THE ;486"1 
, MICROPROCESSOR 
The RLL-386/486 software utilities are a cohesive set 
of software design aids for programming the i486'" 
microprocessor system. The package enables 
system programmers to design protected, mUlti-user 
and mUlti-tasking operating system software. 
RLL-386/486 provides for a variety of functions-from 
linking separate modules, building an object library, 
linking in floating point tasks, learning the i486 , 
architecture with a series of templates, or building a 
task to execute under protected mode. 

The RLL-386/486 software utilities package includes 
a program binder for linking separately compiled 
modules together, a system builder for configuring 
protected multiple-task systems, a floating point and 
numeric support library, a cross-reference mapper 
listing symbolic information, a program librarian', and 
a conversion utility to download hex format for PROM 
programming. 

ICD-486 IN-CIRCUIT DEBUGGER 
ICD-486 In-Circuit Debugger provides sophisticated 
real-time hardware and software debug capabilities 
for i486 microprocessor based designs. The user can 
run at the full speed of the i486 CPU, ensuring that 
the elusive timing bugs will be found. And because 
ICD-486 is completely non-intrusive, no modifications 
will be required in the final target system. 

ICD-486 is the first development tool which allows 
users to debug high speed cached applications at 
the full speed of the processor. ICD-486 embodies 
exclusive technology, providing symbolic access to 
internal processor states that would not be accessible 
in any other way. With Intel's exclusive technology, 
users can be assured that the ICD-486 provides 
complete accuracy when debugging cached 
applications in real time. 

ICD-486 can be used by both hardware and real-time 
software developers, at any stage of development. 
Early in the development process, ICD-486 allows 
prototype development and software debugging .. 
Later in the design cycle, the ICD-486 can be used 
when integrating hardware and software modules. 
With symbolic debugging, memory locations can be 
examined or modified using symbolic references to 
the original prograrn, such as a procedure or variable 
name, line number, or program label. 

Figure 2_ 08386 Screen Display 

DOS-RESIDENT SOFTWARE DEBUGGER 
08386 is an on-host software execution environment 
with source-level symbolic debug capabilities for 
object modules produced by Intel's ASM-386/486, 
C-386/486, PLlM-386/486, and Fortran-386 
translators. This software debug environment allows 
i486 software applications to be executed and 
debugged directly on a 386 or 386SX'''­
microprocessor based PC, without any additional 
target hardware required. With Intel's standard 
windowed human interlace, users can focus their 
efforts on finding bugs rather than spending time 
learning and manipulating the debug environment. 

• Supports key features of the i486 arChitecture: 
A run-time interlace allows protected-mode 
programs to be executed directly on a 386- or 
386SX-based PC. 

• Ease of learning_ Drop-down menus make the 
tool easy to learn for new or casual users. A 
command line interface is also provided for more 
complex problems. 

• Extensive debug modes. Watch windows (display 
user-specified variables), trace points, and 
breakpoints (including fixed, temporary, and 
conditional) can be set and modified as needed, 
even during a debug session. 

• See into the i486 microprocessor_ The user can 
browse source and call stacks, observe processor 
registers, and access watch window variables by 
either the pull down menu or by a single keystroke 
using the function keys. An easy-to-use 
disassembler and single-line assembler can also 
speed the debug process. 

• Full debug symbolics for maximum 
productivity, The user need not know whether a 
variable is an unsigned integer, a real, or a 
structure. The debugger utilizes the wealth of 
typing information available in Intel languages to 
display program variables in their respective type 
formats. 
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SERVICE, SUPPORT, AND TRAINING 
To augment its development tools, Intel offers a full 
array of seminars, classes, and workshops, field 
application engineering expertise, hotline technical 
support, and on-site service. 

,486. Inte1386. 386. 386SX. 376. ICE. and iSBC are trademarks of Intel 
Corporat,on. VAX and VMS are reg,stered trademarks of D'g,tal Equipment 
Corporation. 

ORDERING INFORMATION 
For direct information on Intel's Development Tools, or 
for the num~er bf your nearest sales office or 
distributor, eaIl800-874-6835 (U.S.). For information 
or literature on additional Intel products, call 
800-548-'4725 (U.S. and Canada). 
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ICD-486 IN-CIRCUIT DEBUGGER 

;486T>1 MICROPROCESSOR IN-CIRCUIT DEBUGGER 
Intel's ICD-486, the in-circuit debugger for the i486'" microprocessor, represents a new 
generation of in-circuit emulation technology. From the inventor of the microprocessor 
comes a development tool that delivers complete access to the i486 architecture. 

ICD-486 is the first development tool which allows users to debug high speed cached 
applications at the full speed of the processor. ICD-486 embodies exclusive technology, 
providing symbolic access to internal processor states that would not be accessible in 
any other way. With Intel's exclusive technology, users can be assured that the ICD-486 
provides complete accuracy when debugging cached applications in real time'. 

FEATURES 
• Real time emulation at the full speed of 

the i486 microprocessor 
• Full development and debug support 

for the i486 microprocessor on-chip 
caching and numerics 

• Programming support for the i486 
microprocessor real mode and native 
protected mode 

• Non-intrusive operation, allowing the 
target system to be debugged without 
modification 

• Ability to set up to 4 hardware and 16 
software breakpoints on execution 
addresses, data read, or data access 

• A sync-out line for hooking the ICD-486 
up to a high speed logic analyzer to 
provide trace information 

• Provides full symbolic information to 
display and modify all registers 
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FULL-SPEED DEBUG AND DEVELOPMENT 
The ICD-486 In-Circuit Debugger provides 
sophisticated ,real-time hardware and software debug 
capabilities for i486 microprocessor based designs, 
The user can run at the full speed of the i486 CPU, 
ensuring that the elusive timing bugs will be found, 
And because ICD-486 is non-intrusive, the target 
system being debugged can be the same as the final 
target system. 

DEBUG CACHED APPLICATIONS 
Until nC'N, it has been extremely difficult to accurately 
debug high speed cached microprocessor 
applications. However, by incorporating Intel's 
exclusive technology, the ICD-486 allows users to 
debug applications which utilize the on-chip caching 
capabilities of the i486 microprocessor, This is not just 
a statistical reconstruction of the cache-the iCD-486 
provides complete accuracy when debugging 
applications regardless of whether cache is on or off. 

IDEAL FOR ALL STAGES OF 
DEVELOPMENT 
ICD-486 can be used by both hardware and real-time 
software developers, at any stage of development. 
Early in the development process, ICD-486 allows 
prototype development and software debugging. 
Later in the design cycle, the ICD-486 can be used 
when integrating hardware and software modules. 

SPEEDING DEVELOPMENT WITH 
SYMBOLICS 
With symbolic debugging, memory locations can be 
examined or modified using symbolic references to 
the original program, such as a procedure or variable 
name, line number, or program label. Microprocessor 
data structures, such as registers, .descriptor tables, 
and page tables, can also be examined and modified 
using symbolic names rather than via cumbersome 
linear or physical addresses. Opti(nai syfnboiic 
debugging can be achieved when using the ICD-486 
with Intel languages, which produce not only address 
and memory locations but also variable and 
procedure typing information. 

THE COMPLETE STORY 
For advanced hardware debugging, the ICD-486 has 
been designed to work with high speed logic 
analyzers. The ICD-486 ships with a Logic Analyzer 
Interface board which provides the control signals to 
trigger the logic analyzer. With a user-supplied 
software interface, the ICD-486 and logic analyzer 
can work in combination to monitor or recognize bus 
activity and to gather execution trace. 

SOFTWARE COMPLETES THE SYSTEM 
Intel provides a comprehensive software 
development environment to complement the 
ICD-486, delivering the most complete 32-bit 
microprocessor development environment available 
from a single vendor. 

Intel's i486 software development tools offer a broad 
choice of languages with object code compatibility so 
performance can be maximized by using different 
languages for specific tasks. Architectural extensions 
in the high level languages allow hardware features 
such as interrupts, 110, or flags to be controlled 
directly, avoiding the tedium and overhead of 
assembly routines. 

Intel's software environment includes a sophisticated 
software debugger and execution environment, 
allowing i486 software applications to be tested 
and debuaaed directlv on a standard 3867M 

microprocessor-based PC. To provide full access to 
the power olthe i486 architecture, the software 
portfolio incorporates a unique, sophisticated, and 
very powerful system builder, simplifying the 
generation of protected mode systems. To furtlier 
reduce the task of integrating software into the final 
target configuration, Intel i486 microprocessor 
software tools produce code which can be directly 
downloaded in target system ROM or can be 
converted into standard hex code. 

THE RIGHT TOOL FOR THE JOB 
ICD-486, the new generation of in-circuit emulation 
technology, is the right tool to use when your product 
development schedules are tight and your product 
quality requirements are high. Intel's exclusive 
technology allows you to debug cached applications 
at the full speed of the i486 processor, and the 
symbolic debug information can vastly improve your 
productivity. 

WORLDWIDE, WORLD CLASS SERVICES 
Augmenting Intel's i486 microprocessor development 
tools is a full array of seminars, classes, ,and 
workshops; on-site consulting services; field 
application engineering expertise; telephone hotline 
support; and software and hardware maintenance 
contracts, ' 

ORDERING INFORMATION 
ICD48625D In-circuit debugger for the i486 

microprocessor. Operates to 25 
MHz. Includes hardware debug 
module, power supply, isolation 
board, stand-alone self-test 
board, logic analyzer interface 
board, user documentation, and 
DOS host software and interface 
cable. 

ICD48625CON33D Identical to the ICD48625D, but 
also includes a guaranteed 
upgrade to 33 MHz i486 
microprocessor support when 
available. 

For direct information on Intel's Development Tools, or 
for the number of your nearest sales office or 
distributor, call 800-874-6835 (U.S.). For information 
or literature on additional Intel products, call 
800-548-4725 (U.S, and Canada). 
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I2ICETM IN-CIRCUIT EMULATION SYSTEM 

IN·CIRCUIT EMULATOR FOR THE 8086180186180286 FAMILY OF 
MICROPROCESSORS 
The 12ICE'· In-Circuit Emulator is a high-performance, cost-effective debug environment 
for developing systems with the Intel 8086/80186/80286 family of microprocessors. With 
10 MHz emulation, a window-oriented user interface, and compatibility with Intel's iPAT"' 
Performance Analysis Tool, the 121CE Emulator gives you unmatched speed and control 
over all phases of hardwarelsoftware debug. 

FEATURES 
• Emulation speeds up to 10 MHz with 
• 8086/88, 80186/188 and 80286 

microprocessors 
• 8087 and 80287 numeric coprocessor 

support 
• Hosted on IBM PC AT', AT BIOS, or 

compatibles 
• ICEVIEW"' window-oriented user 

interface with pull-down menus and 
context-sensitive help 

• Source and symbol display using all 
Intel languages 

• 1K frame bus and execution trace buffer 
• Symbolic debugging for flexible access 

to memory location and program 
variables 

• Flexible breakpointing for quick 
problem isolation 

• Memory expandable to 288K with zero 
wait states 

• Worldwide service and support 
• iPAT option for software speed tuning 
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Plat~ 1. An example of the ICEVIEW" user interface showing source, 
memory, watch, and trace. 

ONE TOOL FOR THE ENTIRE 
DEVELOPMENT PROCESS 
The 121CE Emulator allows hardware and software 
design to proceed simultaneously, so you can 
develop software even before prototype hardware is 
available. With 32K of zero wait-state mappable 
memory (and an additional 256K with optional 
memory boards), you can use the 121CE Emulator to 
debug at any stage of the developmenlcycle: 
hardware development, software development, 
system integration or system test. 

HIGH-SPEED, REAL-TIME EMULATION 
The 121CE Emulator delivers full-speed, real-time 
emuiaiiun ai ~JJt:~ds up to 10 tv1Hz. Based on intel's 
exclusive microprocessor technology, the 121CE 
Emulator matches each chip's electrical and timing 
characteristics without memory or interrupt intrusions, 
ensuring design accuracy and eliminating surprises. 
The performance of your prototype is the 
performance you can expect from your final product. 

EASY-TO-USE ICEVIEW'" INTERFACE 
The ICEVIEW interface makes the 121CE Emulator 
easy to learn and use by providing easy access to 
application information and ICE functions. Pull-down 
menus and windows boost productivity for both new 
and experienced users. Multiple on-screen windows 
allow you to access the source display, execution 
trace, register, and other important information, all at 
the same time. You can watch the information change 
as you modify and step through your program. You 
can even customize window size and screen 
positions. 

A command line interface is also available with syntax 
checking and context-sensitive prompts. ICEVIEW 
works with monochrome, CGA and'the latest EGA 

SYMBOLIC DEBUG SPEEDS 
DEVELOPMENT 
The extensive debug symbolics generated by the 
Intel 8086 and 80286 assemblers and compilers can 
increase your development productivity. Symbolics 
with automatic formatting are available for all primitive 
types, regardless of whether the variables are 
globals, locals (stack-resident) or pointers. The virtual 
symbol table supports all symbolics, even in very 
large programs. Aliasing can be used to reduce 
keystrokes and save time. 

POWERFUL BREAK AND TRACE 
CAPABILITY FOR FAST PROBLEM 
!SOLATION 
The 121CE Emulator allows up to eight simultaneous 
break/trace conditions to be set (four execution, four 
bus), a timesaver when solving hardware/software 
integration problems. Break and trace points can be 
set on specified line numbers, on procedures, or on 
symbolic data events, such as writing a variable to a 
value or range of values. You can break or trace on 
specific hardware events, such as a read or write to a 
specific address, data or I/O port, or on a 
combination of events. 

MULTIPROCESSOR, PROTECTED MODE, 
AND COPROCESSOR SUPPORT 
Up to four 121CE systems can be linked and controlled 
simultaneously from one PC host, enabling you to 
debug mUltiprocessor systems. The 121CE Emulator 
with an 80286 probe supports all 80286 protected 
mode capabilities. It also supports the 8087 and 
80287 numeric coprocessors. 

color displays. 
6-38 



iPAT'" FOR SOFTWARE PERFORMANCE 
-'AND CODE COVERAGE ANALYSIS 
The 121CE Emulator interfaces to Intel's iPAT 
Performance Analysis Tool for examining software 
execution speeds and code coverage in real time. 
iPAT displays critical performance data about your 
code in easy-to-understand histograms and tables. 
Elusive bottlenecks are readily seen, allowing you to 
focus your attention to get the most performance out, 
of your product. 

iPAT also performs code execution coverage, letting 
you perform product evaluations faster and more 
effectively. iPAT pinpoints areas in your code either 
executed or not executed according to specific 
conditions, taking the guesswork out of software 
evaluations. 

EASY INTERFACE TO EXTERNAL 
INSTRUMENTS 
The 121CE system includes external emulation clips 
and software support for setting breakpoints, 
trace points and arm/disarm conditions on external 
events, making it easy to connect external logic 
analyzers and signal generators. You can debug 
complex hardware/software interactions with a high 
level of productivity. 

WORLDWIDE SERVICE AND SUPPORT 
The 121CE Emulator is supported by Intel's worldwide 
service and support organization. In addition to an 
extended warranty, you can choose from hotline 
support, on-site systems engineering assistance, and 
'a variety of hands- on training workshops. 

SPECIFICATIONS 

HOST REQUIREMENTS 
IBM PC/AT or 100% PC AT BIOS compatible 
DOS 3.1 or later 
640K bytes of memory 
360K bytes or 1.2 MB floppy disk drive 
Hard disk drive 
Monochrome, CGA or EGA monitor (EGA 
recommended) 

PHYSICAL DESCRIPTION 

Width Height Length 

Unit cm in cm in cm in 

121CE 
chassis 43.2 17.0 21.0 8.25 61.3 24.13 

Probe 
base 21.6 8.5 7.6 3.0 25.4 10.0 

Host/chassis cable 15 ft. (4.6 m) 
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ELECTRICAL CHARACTERISTICS 
90-132 V or 180-264 V (selectable) 
47-63 Hz 
12 amps (AC) 

ENVIRONMENTAL SPECIFICATIONS 
Operating temperature: 0-40°C (32-104°F) ambient 
Operating humidity: Maximum of 85% relative 
humidity, non-condensing 

ORDERING INFORMATION 
Kit Code 
plll010KITO 

plll111 KITO 

111198 

plll212KITO 

Contents 
121CE system 10 MHz 8086/8088 
support kitfor IBM PC host. 
Includes probe, chassis, and host 
interface module and software. 
121CE system 10 MHz 80186 
support kit for IBM PC host. 
Includes probe, chassis, host 
interface module and software. 
Note: For 80188 support, the 
111198 option below must also be 
ordered. 
10 MHz 80188 support 
conversion kit to convert 80186 

. probe to 80188 probe. 
121CE system, 10 MHz 80286 
support kit for IBM PC AT host. 
Includes probe, chassis, host 
interface module and software. 

11101 o PATC86 0 121CE system 10 MHz 8086/8088 
support kit with iPAT Performance 
Analysis Tool for PC AT host. 

, Includes 121CE probe, chassis, 
host interface module, iPAT tciol 
option, cables and software. Also 
includes iC-86 compiler, 86 Macro 
Assembler, utilities, and AEDIT 
text editor. 

111111 PATC860 As above for 10 MHz 80186 
support. 

111212PATC860 As above for 10 MHz 80286 
support. Note': C-286 and 
RLL·286 and ASM·286 must be 

9540 
ordered separately. 
121CE PC AT host software. 
Includes ICEVIEW·M windowed 
human interface. 

Note: 121CE probes, chassis, software, cables and 
iPAT options are available separately. 
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ICElM-186 IN-CIRCUIT EMULATOR 

HIGH PERFORMANCE REAL-TIME EMULATION 
Intels ICE-186 emulator delivers real-time emulation for the 80C186 microprocessor at 
speeds up to 12.5 MHz. The in-circuit emulator is a versatile and efficient tool for 
developing, debugging and testing products designed with the Intel 80C186 
microprocessor. The ICE-186 emulator provides real time, full speed emulation in a userS 
system. Popular features such as symbolic debug, 2K bytes trace memory, and single­
step program execution are standard on the ICE-186 emulator. Intel provides a complete 
development environment using assembler (ASM86) as well as high-level languages such 
as Intel's iC86, PUM86, Pascal 86 and Fortran 86 to accelerate development schedules. 

The ICE-186 emulator supports a subset of the 80C186 features at 12.5 MHz and at the 
TTL level characteristics of the component. The emulator is hosted on IBM's Personal 
Computer .AT, already available as a standard development solution in most of today's 
engineering environments. The ICE-186 emulator operates in prototype or standalone 
mode, allowing software development and debug before a prototype system is available. 
The ICE-186 emulator is ideally suited fordeveloping real-time applications such as 
industrial automation, computer peripherals, communications, office automation, or other 
applications requiring the full power of the 12.5 MHz 80C186 microprocessor. 

ICI2"-186 FEATURES 
• Full 12.5 MHz Emulation Speed 
• 2K Frames Deep Trace Memory 
• Two-Level Breakpoints with Occurrence 

Counters 
• Single-Step Capability 
• 128K Bytes Zero Wait-State Mapped 

Memory 
• Supports DRAM Refresh 
• High-Level Language Support 

• Symbolic Debug 
• RS-232-C and GPIB Communication 
. Links 

• Crystal Power Accessory 
• Interface for Intel Performance Analysis 

Tool (iPAT) 
• Interface for Optional General Purpose 

Logic Analyzer 
• Tutorial Software 
• Complete Intel Service and Support 
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HIGHEST EMULATION SPEED AVAILABLE 
TODAY 
The ICE-186 emulator supports development and 
debug of time-critical hardware and software using 
Intels 12.5 MHz 80C186 microprocessor. 

RETRACE SOFTWARE TRACKS 
This emulator captures up to 2,048 frames of 
processor activity, including both execution and data 
bus activity. With this trace memory, large blocks of 
program code can be traced in real time and viewed 
for program flow and behavior characteristics. 

HARDWARE BREAKPOINTS FOR' 
COMPLEX DEBUG 
User-defined ''TIL: THEN" breakpoint statements stop 
emulation at specific execution addresses or bus 
events. During the hardware and software integration 
phase, breakpoint statements can be defined as 
execution addresses andlor bus addresses andlor 
bus access types such as memory and 1/0 reads or 
writes. Additionally, event counters provide another 
level of breakpoint control for sophisticated state 
machine constructs used to specify emulation 
breakpoints/tracepoints. 

SMALL OR LARGE STEPS 
A stepping command can be used to view program 
execution one instruction at a time or in preset 
instruction blocks. When used in conjunction with 
symbolic debug, code execution can be monitored 
quickly and precisely. 

DEBUG CODE WITHOUT A PROTOTYPE 
Even before prototype hardware is available, the 
ICE-186 emulator working in conjunction with the 
Crystal Power Accessory (CPA) creates a "virtual" 
application environment. 128K bytes of zero wait-state 
memory is available for mapped memory and 110 , 
resource addressing in 4K increments. The CPA 
provides emulator diagnostics as well as the ability to 
use the emulator without a prototype. 

DON'T LOSE MEMORY 
The ICE-186 emulator continues DRAM refresh 
signals even when emulation has been halted, thus 
ensuring DRAM memory will not be lost. During 
interrogation mode the ICE-186 emulator will keep the 
timers functioning and correctly respond to' interrupts 
in real-time. 

HIGH LEVEL LANGUAGE SUPPORT 
OPTIMIZED FOR INTEL TOOLS 
The ICE-186 supports emulation for programs written 
in Intels ASM86 or any of Intels high-level languages: 

PL/M-86 Fortran-86 
Pascal-86 C-86 

These languages are optimized for the Intel 
80186/80188 component architectures to deliver a 
tightly integrated, high performance aevelopment 
environment. 
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USER-FRIENDLY SYMBOLICS AID IN 
DEBUG 
Symbolics allow access to program symbols by name 
rather than cumbersome physical addresses. 
Symbolic debug speeds the debugging process by 
reducing reliance on memory maps. In a dynamic 
development process, user variaples can be used as 
parameters for ICE-186 commands resulting in a 
consistent debug environment. -

SUPPORTS FAST BREAKS 
"Fastbreaks" is a feature which allows the emulation 
processor to halt, access memory, and return to 
emulation as quickly as possible. A fastbreak never 
takes more than 5625 clock cycles (most types of 
fastbreaks are considerably less). This feature is 
particularly useful in embedded applications. 

MULTIPLE HIGH-SPEED COMMUNICATION 
LINKS 
Two communication links are available for use in 
conjunction with the host IBM PC AT. The ICE-186 
emulator uses either serial (RS-232-C) or a parallel 
(GPIB) link. A user supplied National Instruments 
(lEEE-488) GPIB communication board provides 
parallel transfers at rates up to 300K bytes per 
second. 

SOFTWARE ANALYSIS (iPAT) 
Intel's Performance Analysis Tool (iPAT) is designed to 
increase team productivity with features like interrupt 
latency measurement, code coverage analysis and 
software module performance analysis. These 
features enable the user to design reliable, high 
performance embedded control products. The 
ICE-186 emulator has an external 60 pin connector 
for iPAT. 

BUILT-IN SUPPORT FOR LOGIC ANALYSIS 
General-purpose logic analyzers can be used in 
conjunction with the ICE-186 to provide detailed 
timing of specific events. The ICE-186 emulator 
provides an external sync signal for triggering logic 
analysis, making complex trigger sequence 
programming easy. An additional 60 pin connector is 
included for the logic analyzer. 

WORLDWIDE SERVICE AND SUPPORT 
The ICE-186 emulator is supported by Intels 
worldwide service and support organization. Total 
hardware and software support is available including 
a hotline number when the need is there. 

Note: This emulator does not support use of the 
8087. 



SPECIFICATIONS 

PERSONAL COMPUTER REQUIREMENTS 
The ICE·186 emulator is hosted on an IBM PC AT. The 
emulator has been tested and evaluated on an IBM 
PC AT. The PC AT must meet the following minimum 
requirements: 
• 640K Bytes of Memory 
• Intel Above Board with at Least 1M Byte of 

Expansion Memory 
• One 360K Bytes or One 1.2M Bytes floppy Disk 

Drive 
• One 20M Bytes Fixed·Disk Drive 
• PC DOS 3.2 or Later 
• A serial Port (COM1 or COM2) Supporting 

Minimally at 9600 Baud Data Transfers, or a 
National Instruments GPIB·PC2A board. 

• IBM PC AT BIOS 

PHYSICAL DESCRIPTION AND 
CHARACTERISTICS 
The ICE·186 Emulator consists of the following 
components: 

Width Helaht Lenath 
Unit Inches em. Inches em. Inches em. 

Emulator 
Control Unit 10.40 26.40 1.70 4.30 20.70 52.60 

Power Supply 7.60 19.00 4.15 10.70 11.00 27.90 
User Probe 3.70 9.40 .65 1.60 7.00 17.80 
User Cablel 
Plcc 22.00 55.90 

Hinge Cable 3.40 8.60 
Crystal Power 
Accessory 4.30 10.90 .60 1.50 6.70 17.00 

CPA Power 
Cable 9.00 22.90 

ELECTRICAL CONSIDERATIONS 
Icc1050mA 
IIH 70,..A Max. 
IlL -1.5mA Max 
IOH -1.0mA Max. 

TIMING CONSIDERATIONS 

ICE·186 User AC Differences 
COMPONENT ICE· 186 

SPEC SPEC 
Svmbol Parameter Min. Max. Min. 

TDvCL Data in Setup 
IA/n\ '0 ~, \", ..... , 

TARYCH Async Ready 15 23 
(ARDY) 
Resolution 
Transition Setup 
Time 

TSRYCL Synchronous 15 25 
Ready (SRDY) 
Transition Setup 
Time 

TI-lVCL HOLD Setup 15 32 

TlNVCH NMI 15 32 
!TEST 15 31 
INTR.TIMERIN 15 17 
Setup Time 

T1Nvcl DRQO,DRQ1. 15 19 
Setup Time 

TCLAZ Address Float 
Delay 
READ Cycles Te lAX 25 5 
INTA cycles Te lAX 25 0 
HLDA relAX 25 10 

TLHLL ALE Width (min) TCLCL-30 TCLCL-32 

TCHLH ALE Active 
Delay' 25 

(N/A) CLKOUT Low te (N/A) 
ALE Active" 

TCHLL ALE Inactive 
Delay 25 

TLLAX Address Hold to TCHCL-15 TCHCL-28 
ALE Inactive 

I TCvm 

(min) I 
Control Inactive 
Delay 5 37 

TAzAL Address Float to 
IRD Active 0 -30 

TAvLL Address VAlid to TCLCH-15 TCLCH-19 
ALE Low (min) 

TCHQSV Que Status 
Delay 28 

lDXDl IDEN Inactive to 0 -7 
DT IR Low 

Telco CLKIN to 21 
CLKOUT Skew 

Consult User Guide for Additional Specifications . 

• Applies only when the ALE MODE variable is set to START. 
•• Applies only when the ALEMODE variable is set to END. 

Max. 

36 
25 
50 

42 

19 

40 

40 

35 

37 
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ALE Slg .... START/END Timing 

I " '1 I n I T3 I U I 

ORDERING INFORMATION 
ICE186 ICE-186 System including ICE 

software (Requires DOS 3.xX PC AT 
with Above Board) 

ICE 186AB ICE 186 with Above Board included 
ICE1861PAT ICE-186 System including ICE SIW 

packages and the iPAT system 
(Requires DOS 3.XX PC AT with 
Above Board) 

D86ASM86NL 86 macro assembler 86 builder/ 
. binder/mapper utilities for DOS 3.XX. 

D86C86NL 86 C compiler and run time libraries 
for DOS 3.XX. 

D86PAS86NL 86 Pascal Compiler for DOS 3.XX. 

D86PLM86NL 86 PUM compiler for DOS 3.XX. 

D86FOR86NL 86 Fortran compiler for DOS 3.XX. 

ICE PAT KIT iPAT Kit (Performance Analysis Tool) 
for ICE 186 

ICEXONCE Adapter for on-circuit emulation 

ICEXLCC Adapter for LCC component 

ICEXPGA Adapter for PGA component 

ENVIRONMENTAL SPECIFICATIONS 
Operating Temperature 1Q°C to 40°C Ambient 
Storage Temperature -40°C to 70°C 
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ICETM-188 IN-CIRCUIT EMULATOR 

HIGH PERFORMANCE REAL-TIME EMULATION 
Intel's ICE-1BB emulator delivers real-time emulation for the BOC1BB microprocessor at 
speeds up to 12.5 MHz. The in-circuit emulator is a versatile and efficient tool for 
developing, debugging and testing products designed with the Intel BOC1BB 
microprocessor. The ICE-1BB emulator provides real time, full speed emulation in a user's 
system. Popular features such as symbolic debug, 2K bytes trace memory, and single­
step program execution are standard on the ICE-1BB emulator. Intel provides a complete 
development environment using assembler (ASM86) as well as high-level languages such 
as Intel's iCB6, PUM86, Pascal B6 and Fortran 86 to accelerate development schedules. 

The iCE·18a ~(nulato( SUppOits a subset of the 80C188 features at 12.5 ~.4Hz and B.t thA 
TTL level characteristics of the component. The emulator is hosted on IBM's Personal 
Computer AT, already available as a standard deveiopmefli soiution in most of today's 
engineering environments. The ICE-188 emulator operates in prototype or standalone 
mode, allowing software development and debug before a prototype system is available. 
The ICE-1B8 emulator is ideally suited for developing real-time applications such as 
industrial automation, computer peripherals, communications, office automation, or other 
applications requiring the full power of the 12.5 MHz 80C188 microprocessor. 

ICETM-188 FEATURES. 
• Full 12.5 MHz Emulation Speed 
• 2K Frames Deep Trace Memory 
• Two-Level Breakpoints with Occurrence 

Counters 
• Single-Step Capability· 
• 12BK Bytes Zero Wait-State Mapped 

Memory 
• Supports DRAM Refresh 
• High-Level Language Support 

• Symbolic Debug 
.. RS-232-C and GPIB Communication 

Links 
• Crystal Power Accessory . 
• Interface for Intel Performance Analysis 

Tool (iPAT) 
• Interface for Optional General Purpose 

Logic Analyzer 
• Tutorial Software 
• Complete Intel Service and Support 

imJ--------------------
October, 1989 

C Intel Corporation 1989 
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HIGHEST EMULATION SPEED AVAILABLE 
. TODAY 
The ICE-188 emulator supports development and 
debug of time-critical hardware and software using 
Intel's 12.5 MHz 80C188 microprocessor .. 

RETRACE SOFTWARE TRACKS 
This emulator captures up to 2,048 frames of 
processor activity, including both execution and data 
bus activity. With this trace memory, large blocks of 
program code can be traced in real time and viewed 
for program flow and behavior characteristics. 

HARDWARE BREAKPOINTS FOR 
COMPLEX DEBUG . 
User-defined "TIL-THEN" breakpoint statements stop 
emulation at specific execution addresses or bus 
events. During the hardware and software integration 
phase, breakpoint statements can be defined as 
execution addresses and/or bus addresses and/or 
bus access types such as memory and I/O reads or 
writes. Additionally, event counters provide another 
level of breakpoint control for sophisticated state 
machine constructs used to specify emulation 
breakpoints/tracepoints. 

SMALL OR LARGE STEPS 
A stepping command can be used to view program 
execution one instruction at a time or in preset 
instruction blocks. When used in conjunction with 
symbolic debug, code execution can be monitored 
quickly and precisely. 

DEBUG CODE WITHOUT A PROTOTYPE 
Even before prototype hardware is available, the 
ICE-188 emulator working in conjunction with the 
Crystal Power Accessory (CPA) creates a "virtual" . 
application environment. 128K bytes of zero wait-state 
memory is available for mapped memory and 1/0 
resource addressing in 4K increments. The CPA 
provides emulator diagnostics as well as the ability to 
use the emulator without a prototype. 

DON'T LOSE MEMORY 
The ICE-188 emulator continues DRAM refresh 
signals even when emulation has been halted, thus 
ensuring DRAM memory will not be lost. During 
interrogation mode the ICE-188 emulator will keep the 
timers functioning and correctly respond to interrupts 
in real-time_ 

HIGH LEVEL LANGUAGE SUPPORT 
OPTIMIZED FOR INTEL TOOLS 
The ICE-188 supports emulation for programs written 
in Intel's ASM86 or any of Intel's high-level languages: 

PUM-86 Fortran-86 
Pascal-86 C-86 

These languages are optimized for the Intel 
80186/80188 component architectures to deliver a 
tightly integrated, high performance development 
environment. 

USER-FRIENDLY SYMBOLICS AID IN 
DEBUG 
Symbolics allow access to program symbols by name 
rather than cumbersome physical addresses. 
Symbolic debug speeds the debugging process by 
reducing reliance on memory maps. In a dynamic 
development process, user variables can be used as 
parameters for ICE-188 commands resulting in a 
consiste"t debug environment. 

SUPPORTS FAST BREAKS 
"Fastbreaks" is a feature which allows the emulation 
processor to halt, access memory, and return to 
emulation as quickly as possible. A fastbreak never 
takes more than 5625 clock cycles (most types of 
fastbreaks are considerably less). This feature is 
particularly useful in embedded applications. 

MULTIPLE HIGH-SPEED COMMUNICATION 
LINKS 
Two communication links are available for use in 
conjunction with the host IBM PC AT. The ICE-188 
emulator uses either serial (RS-232-C) or a parallel 
(GPIB) link. A user supplied National Instruments 
(IEEE-488) GPIB communication board provides 
parallel transfers at rates up to 300K bytes per 
second. 

SOFTWARE ANALYSIS (iPAT) 
Intel's Performance Analysis Tool (iPAT) is designed to 
increase team productivity with features like interrupt 
latency measurement, code coverage analysis and 
software module performance analysis. These 
features enable the user to design reliable, high 
performance embedded control products. The 
ICE-188 emulator has an external 60 pin connector 
for iPAT. 

BUILT-IN SUPPORT FOR LOGIC ANALYSIS 
General-purpose logic analyzers can be used in 
conjunction with the ICE-188 to provide detailed 
timing of specific events. The ICE-188 emulator 
provides an external sync signal for triggering logic 
analysis, making complex trigger sequence 
programming easy. An additional 60 pin connector is 
included for the logic analyzer. 

WORLDWIDE SERVICE AND SUPPORT 
The ICE-188 emulator is supported by Intel's 
worldwide service and support organization. Total 
hardware and sQftware support fs available including 
a hotline number when the need is there. 

Note: This emulator does not support use of the 
8087. 
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SPECIFICATIONS 

PERSONAL COMPUTER REQUIREMENTS 
The ICE-188 emulator is hosted on an IBM PC AT. The 
emulator has been tested and evaluated on an IBM 
PC AT. The PC AT must meet the following minimum 
requirements; 
• 640K Bytes of Memory 
• Intel Above Board with at Least 1M Byte of 

Expansion Memory 
• One 360K Bytes or One 1.2M Bytes floppy Disk 

Drive 
• One 20M Bytes Fixed-Disk Drive 
• PC DOS 3.2 or Later 
e A serial Port (CO~,,11 or CO~,,42) Supporting 

Minimally at 9600 Baud Data Transfers, or a 
National Instruments GPIB-PC2A board. 

• IBM PC AT BIOS 

.PHYSICAL DESCRIPTION AND 
CHARACTERISTICS 
The ICE-188 Emulator consists of the following 
components; 

Width . Helaht Lenath 
Unit Inches Cm. Inches Cm_ Inches Cm. 

Emulator 
Control Unit 10.40 26.40 1.70 4.30 20.70 52.60 

Power Supply 7.60 19.00 4.15 10.70 11.00 27.90 
User Probe 3,,70 9.40 .65 1.60 7.00 17.80 
UserCablel 
Plcc 22.00 55.90 

Hinge Cable 3.40 8.60 
Crystal Power 
Accessory 4.30 10.90 .60 1.50 6.70 17.00 

CPA Power 
Cable 9.00 22.90 

ELECTRICAL CONSIDERATIONS 
Icc10S0mA 
IIH 70ILA Max. 
IlL -.1.SmA Max 
IOH -1.0mA Max. 

TIMING CONSIDERATIONS 

ICE-188 User AC Differences 
COMPONENT ICE-188 

SPEC SPEC 
Svmbol Paremeler Min. Max. Min. 
roVCL Data in Setup 

(NO) is 24 
TARYCH Async Ready 15 23 

(ARDY) 
Resolution 
Transition Setup 
Time 

TSRVCL Synchronous 15 25 
Ready (SRDY) 
Transition Setup 
Time 

THVCL HOLD Setup 15 32 
TlNVCH NMI 15 32 

!TEST 15 31 
INTR,TIMERIN 15 17 
Setup Time 

llNvcL DRQO,DRQ1, 15 19 
Se!upTime 

TCLAZ Address Float 
Delay 
READ Cycles TCLAX 25 5 
INTA cycles TCLAX 25 0 
HLDA TCLAX 25 10 

TLHLL ALE Width (min) TCLCL-30 TCLCL·32 
TCHlH ALE Active 

Delay' 25 
(N/A) CLKOUT Low te (N/A) 

ALE Active" 
TCHLL ALE Inactive 

Delay 25 

lLLAX Address Hold to TCHCL-15 TCHcL-28 
ALE InElrti~ 

~~~'C! inactive I 
Delay 5 37 

TAZAL Address Float to 
IRD Active 0 -30 

TAvLL Address VAlid to TCLCH-15 TCLcH-19 
ALE Low (min) 

TCHosv Que Status 
Delay 28 

lDXDL /DEN Inactive to 0 -7 
DT fR Low 

TC,cc CLKINto 21 
CLKOUTSkew 

Consult User Guide for Addttional Spec~ications . 

• Applies only when the ALE MODE variable is set to START. 
•• Applies only when the ALE MODE variable is set to END. 

Max. 

36 
25 
50 

42 
19 

40 

40 

35 

37 
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ALE Signal START/END Timing 

I " T1 I T2 I' 13 I 14 I 

CUCOUT 

I I I 
AU II~ 
~~ --~im~9~1~ -~c~~~ ____________ __ 

I I I 
I I .--::h 

=~TART) I d <D J:"""';~c=--__________ __ 
I I I 

==-~ J=~4iL<=-____________ _ 

ORDERING INFORMATION 
ICE188 ICE-188 System including ICE 

software (Requires DOS 3.XX PC AT 
with Above Board) 

ICE 188AB ICE 188 with Above Board included 

D86ASM86NL 86 macro assembler 86 builder/ 
binder/mapper utilities for DOS 3.XX. 

D86C86NL 86 C compiler and run time libraries, 
for DOS 3.XX. 

D86PAS86NL 86 Pascal Compiler for DOS 3.XX. 

D86PLM86NL 86 PLiM compiler for DOS 3.XX. 

D86FOR86NL 86 Fortran compiler for DOS 3.XX. 

ICE PAT KIT iPAT Kit (Performance Analysis Tool) 
for ICE 188 

ICEXONCE Adapter for on-circuit emulation 

ICEXLCC Adapter for LCC component 

ICEXPGA Adapter for PGA component 

UP188 User probe to convert ICE-186 to 
support 80C188 component 

ENVIRONMENTAL SPECIFICATIONS 
Operating Temperature 10°C to 40°C Ambient 
Storage Temperature -40°C to 70°C 

For direct information on Intel's Development Tools, or 
for the number of your nearest sales office or 
distributor, call 800-874-6835 (U.S.). For information 
or literature on additional Intel products, call 
800-548-4725 (U.S. and Canada). 
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ICE-286 IN-CIRCUIT EMULATOR 

HIGH PERFORMANCE REAL-TIME EMULATION 
Intel's ICE-286 emulator delivers real-time emulation for the 80286 microprocessor at 
speeds up to 12.5 MHz. The in:circuit emulator is a versatile and efficient tool for 
developing, debugging and testing products designed with the Intel 80286 

. microprocessor. The ICE-286 emulator provides real time, full speed emulation in a users 
system. Popular features such as symbolic debug, 2K by1es trace memory, and single­
step program execution are standard on the ICE-286 emulator. Intel provides a complete 
development environment using assembler (ASM-286) as well as high-level languages 
such as Intels iC286, PLlM-286 or Fortran 286 to accelerate development schedules. 

intel's !CE-286 emul8\or i~ ho~tArl on IBM's Personal Computer AT. already available as a 
standard development solution in most of todays engineering environments. The ICE-286 
emulatoi opeiates in prototype or standa.lone mode a!!o\·ving sofh"/are development and 
debug before a prototype system is available. The ICE-286 emulator is ideally suited for. 
developing real time applications such as process control, machine control, 
communications, or other applications requiring the full power of the 12.5 MHz 80286 
microprocessor. . 

ICE-286 FEATURES 
• Full 12.5 MHz Emulation Speed 
• 2K Bytes Deep Trace Memory 
• Two-Level Breakpoints with Occurrence 
COO~ffi . 

• Single-Step Capability 
• 128K By1es Zero Wait-State Mapped 

Memory 
• Support For Protected and Real Modes 
• High-Level Language Support 
• Symbolic Debug 

• Numeric Processor Extension Support 
• RS-232-C and GPIB Communication 

Links 
• Crystal Power Accessory 
• Interface for Intel Performance Analysis 

Tool (iPAT) 
• Interface for Optional General Purpose 

Logic Analyzer 
• Tutorial Software 
• Complete Intel Service and Support 

i~' __________________ __ 
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HIGHEST EMULATION SPEED AVAILABLE 
TODAY 
The ICE-286 emulator supports development and 
debug of time-critical hardware and software using 
Intel's 12.5 MHz 80286 microprocessor. 

RETRACE SOFTWARE TRACKS 
This emulator captures up to 2048 frames of 
processor activity, including both execution and data 
bus activity. With this trace memory, large blocks of 
program code can be traced in real time and viewed 
for program flow and behavior characteristics. 

HARDWARE BREAKPOINTS FOR 
COMPLEX DEBUG 
User-defined "TIl: THEN" breakpoint statements stop 
emulation at specific execution addresses or bus 
events. During the hardware and software integration 
phase, breakpoint statements can be defined as 
execution addresses and/or bus addresses and/or 
bus access types, such as memory and I/O reads or 
writes. Additionally, event counters provide another 
level of breakpoint control for sophisticated state 
machine constructs used to specify emulation 
breakpointsitracepoints. 

SMALL OR LARGE STEPS 
A stepping command can be used to view program 
execution one frame at a time or in preset frame 
blocks. When used in conjunction with symbolic 
debug, code execution can be monitored quickly and 
precisely. 

DEBUG CODE WITHOUT A PROTOTYPE 
Even before prototype hardware is available, the 
ICE-286 emulator working in conjunction with the 
Crystal Power Accessory (CPA) creates a "virtual" 
application environment. 128K bytes of zero wait-state 
memory is available for mapped memory and I/O 
resource addressing in 4K increments. The CPA 

. provides emulator diagnostics as well as the ability to _ 
use the emulator without a prototype. 

PROTECTED AND REAL MODES 
The ICE-286 emulator has full access to all protected­
mode registers and permits modification of register 
contents. Protected mode of execution if beneficial 
for secure, multitasking applications. 

HIGH-LEVEL LANGUAGE SUPPORT 
OPTIMIZED FOR INTEL TOOLS 
The ICE-286 supports emulation for programs written 
in Intel's ASM 286 and ASM 86 or any of the Intel 
high-level languages: 

PLlM-286/86 
Pascal-286/86 

Fortran-286/86 
C-286/86 

These languages are optimized for Intel component 
architectures to deliver a tightly integrated, high 
performance development environment. 

USER-FRIENDLY SYMBOLICS AID IN 
DEBUG 
Symbolics allow access to program symbols by name 
rather than cumbersome physical addresses. 
Symbolic debug speeds the debugging process by 
reducing reliance on memory maps. In a dynamic 
development process, user variables can be used as 
parameters for ICE-286 commands resulting in a 
consistent debug environment. 

80287 NUMERICS SUPPORT 
The ICE-286 emulator provides emulation support for 
the 80287 numerics processor. 80287 registers can 
be displayed and modified allowing full debug 
support for numerics. 

MULTIPLE HIGH-SPEED COMMUNICATION 
LINKS 
Two communication links are available for use in 
conjunction with the host IBM PC AT. The ICE-286 
emulator uses either serial (RS-232-C) or a parallel 
(GPIB) link. A user supplied National Instruments 
(IEEE-488) GPIB communication board provides 
parallel transfers at rates up to 300K bytes per 
second. 

SOFTWARE ANALYSIS (iPAT) 
Intel's Performance Analysis Tool (iPAT) is designed to 
increase team productivity with features like interrupt 
latency measurement, code coverage analysis and 
software module performance analysis. These 
features enable the user to design reliable, high 
performance embedded control products. The 
ICE-286 emulator has an external 60 pin connector 
for iPAT. 

BUILT-IN SUPPORT FOR LOGIC ANALYSIS 
General-purpose logic analyzers can be used in 
conjunction with the lCE-286 to provide detailed 
timing of specific events. The ICE-286 emulator 
provides an external sync signal for triggering logic 
analysis, making complex trigger sequence 
programming easy. An additional 60 pin connector is 
included for the logic analyzer. 

WORLDWIDE SERVICE AND SUPPORT 
The ICE-286 emulator is supported by Intel's 
worldwide service and support organization. Total 
hardware and software support is available including 
a hotline number when the need is there. . 
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SPECIFICATIONS 

PERSONAL COMPUTER REQUIREMENTS 
The ICE-286 emulator is hosted on an IBM PC AT. 
The emulator has been tested and evaluated on an 
IBM PC AT. The PC AT must meet the following 
minimum requirements: 
• 640K Bytes of Memory 
• Intel Above Board with at Least 1M Byte of 

Expansion Memory 
• Ol'1e 360K Bytes or One 1.2M Bytes Floppy Disk 

Drive 
• One 20M Bytes Fixed-Disk Drive 
• PC-DOS 3.2 or Later 
• .A. Serial Port ((;OM1 or COM2) Supporting 

Minimally at 9600 Baud Data Transfers, or a 
National Instruments GPIB-PC2A Board. 

• IBM PC AT BIOS 

ELECTRICAL CONSIDERATIONS 
Icc 1050mA 

ENVIRONMENTAL SPECIFICATIONS 
Temperature 1Q°C to 40°C Ambient' 
Storage Temperature -40°C to 70°C 

TIMING/DC CONSIDERATIONS 

ICE"·286 USER PIN DIFFERENCES 
COMPONENT ICE·286 

PARAMETER 
2 System (elK) low 

time 
3 System (elK) high 

time 
8 Read Data Setup 

10 /Ready Setup 
12a Status/peak # active 

delay 
12b Status/peak # 

Inactive delay 
13 Address valid delay 

1
14 Wnte data valid 

delay 
15 Address/status/data 

float 

SPEC. SPEC. 
Min Max Min Max 

11 237 14 236 

13 239 14 236 
5 7 

22 24 

3 18 3 20 

3 20 3 22 
1 32 1 34 

o 30 1 o 33 

. PHYSICAL DESCRIPTION AND 
CHARACTERISTICS 
The ICE-286 Emulator consists of the following 
components: . 

Width Height Length 

Unit Inches Cm. Inches Cm. Inches Cm. 

Emulator 
Control Unit lOAD 26040 1.70 4.30 20.70 52.60 

Power Supply 760 1900 415 1070 1100 2790 
User Probe 3.70 940 .65 160 7.00 17.80 
UserCablel 
Pice 22.00 55.90 

Hjl1\J~ Cabie 3.40 8.60 
Crystal Power 
Accessory 4.30 10.90 .60 1.50 670 17.00 

CPA Power 
Cable 9.00 2290 

ORDERING INFORMATION 
ICE286 ICE-286 NMOS System including 

ICE SIW packages (Requires DOS 
3.XX PC AT with Above Board) 

ICE286AB ICE-286 NMOS System including 
ICE S/W packages and Intel's 2M 
Byte Above Board (PCiviB 4125) 
(Requires DOS 3.XX PC-AT) 

ICE286PAT ICE-286 NMOS System including 
ICE S/W Packages and the iPAT 
system (Requires DOS 3XX PC AT 
with Above Board) 

D86ASM286NL 286 macro assembler 286 builder/ 
binder/mapper utilities for DOS 
3.XX. 

D86C286NL 286 C compiler and run time 
libraries for DOS 3.XX. 

D86PLM286NL 286 PUM compiler for DOS 3.XX. 
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INTEL386™ FAMILY IN-CIRCUIT EMULATORS 

ACCURATE AND SOPHISTICATED EMULATION FOR THE INTEL386'M 
FAMILY OF MICROPROCESSORS 
Intel386™ In-CirC\.Jit Emulators are the cornerstone of the optimum development solution 
for the Intel386 family of microprocessors. From the inventor of the microprocessor 
comes a development tool that delivers absolute access to the sophistication of the 
architecture in a way that only Intel can. 

Productivity boosting features such as symbolic debugging make Intel386 emulators 
. easy to use and powerful. Intel product quality and world class technical support and 
service minimizes the "downtime" incurred in resolving problems. And your investment in 
development tools is protected via interchangeable probes for the 38670 , 386SX™, and 
376TO processors. 

Maximize your productivity with Intel development tools. Reduced time to market and 
increased market acceptance for your microprocessor-based product are the benefits 
when Intel is the choice. 

FEATURES 
• Exclusive technology giving access to 

internal processor states provides 
absolutely accurate emulation history 

• Unparalleled support of all of the 
Intel386 operating modes opens the 
door to the full potential of the Intel386 
architecture 

• Non-intrusive emulation to processor 
speeds of 25MHz 

• Versatile event recognition makes short 
work of uncovering complex bugs 

• Dynamic trace display of bus and 
execution information during emulation 

• A comprehensive software development 
system creates the most complete 
development environment available 
from a single vendor 

• A companion performance analysis tool 
provides analysis of software for 
optimized performance and reliability 

intel'----------
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FEATURES 

ABSOLUTELY ACCURATE EMULATION 
Intel386 Family in-circuit emulators embody exclusive 
technology that accesses internal processor states 
that are otherwise invisible. Intel386 microprocessors 
fetch and execute instructions in parallel; fetched 
instructions are not necessarily executed. Because of 
this, an emulator without this capability is prone to 
error in determining what actually occurred inside the 
microprocessor. With Intel's exclusive technology, an 
Intel386 emulator displays execution history with one 
hundred percent accuracy. . 

OPENING THE DOOR TO PROTECTED 
MODE 
Intel386 emulators open the door to the full potential 
of the architecture with unparalleled support of 
protected mode. Not only does the emulator display 
and modify task state segments and global, local, 
and interrupt descriptor tables (with symbolic access 
to all descriptor components like privilege level and 
segment type), but emulator functions are sensitive to 
the operating mode of the processor, greatly 
improving ease of use. 

Intel386 emulators support all aspects of protected 
mode addressing, including paged virtual memory. 
Processor tables are used to automatically translate 
virtual addres.ses to linear and physical addresses. 
Physical addresses can be translated to symbolic 
references to indicate the module, procedure, or data 
segment accessed. And when debugging a memory 
management system, components of the page table 
and directory can be displayed and modified. 

FLEXIBLE AND VERSATILE EVENT 
RECOGNITION 
Flexibility and versatility in event recognition makes 
short work of uncovering the most complex bugs. 
Bus event recognition circuitry may be used to trigger 
on specific or masked data input, output, read, 
writtp.n or fp.tr.hp.rI At A nhv!':ir.al Address or ranae of 
~dd~~~s~~~ Or a-no_chip debug registers may be-used 
to trigger on virtual, linear, or symbolic addresses 
being executed, accessed, or written. 

Versatility shows in other triggering options-upon a 
task switch, an external signal from another emulator 
or a logic analyzer, multiple occurrences of an event, 
a full trace buffer, halt or shutdown cycles, or interrupt 
acknowledge. And up to four sequential event 
triggers can be combined with a high-level construct. 

Intel386 emulators continuously capture all bus 
activity, and optionally execution information, into a 
trace buffer of 4096 frames with PRE, POST, and 
CENTERED collection modes. The contents of the 
trace buffer can be displayed during full speed 
emulation in either execution cycle or machine-level 
instruction formats. Symbolic information can 
optionally be included in the trace display. A third 
trace display, the current chain of procedure calls, 
can be displayed when emulating high-level 
language programs. 

SPEEDING DEVELOPMENT WITH 
SYMBOLICS 
Intel386 processor data structures, such as registers, 
descriptor tables, and page tables, can be examined 
and modified using symbolic names. And with the 
symbolic debugging information that is a feature of 
Intel languages, memory locations can be accessed 
. using symbolic references to the source program 
(such as a procedure and variable names, line 
numbers, or program labels) rather than via 
cumbersome virtual, linear, or physical addresses. 
The type information of variables (such as byte. word, 
record, or array) can also be displayed. 

ACCESSING THE POWER 
The power of the Intel386 emulator is reflected in the 
sophisticated user interface. Refined for ease of use, 
the command line interface contains many features to 
boost productivity and customize functionality. 

On-line help, a syntax menu, command line editing, 
command history, and error message query promote 
ease of learning and use. I/O redirection and the 
ability to escape to the host operating system provide 
versatility for the power user. Customized procedures 
with variables and literal definitions can be created to 
assist in debugging or for manufacturing test or field 
service applications. ' 

SYSTEM CONNECTIVITY AND 
CONFIGURATION 
The Intel386 emulator can be combined with a 
variety of devices. I/O lines synchronize emulation 
starts and triggers with external tools such as a logic 
analyzer or another emulator. An optional time tag 
board synchronizes multiple Intel386 emulators and 
records timestamp information in the trace buffer ~ith 
20 nanosecond resolution. An optional clips pod 
supplements two general purpose input lines with 
eight data lines captured and displayed In the trace. 
The bus isolation board buffers the emulation 
processor from faults in an untested target. And with 
the stand-alone/self-test board the emulator can be 
used to debug software before the target system is 
functional, as well as execute confidence tests. 

THE INVESTMENT PICTURE 
As designs move from one Intel386 Family processor 
to another, the reinvestment cost is limited to probes 
that adapt the emulato'r base to the specific 
processor. Beside cost savings, migration from one , 
processor to another is accomplished with minimum 
disruption in the engineering environment, as the 
same command language applies to the entire 
emulator family. 
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FEATURES 

SOFTWARE COMPLETES THE SYSTEM 
Intel wraps a comprehensive software development 
system around the emulator to deliver the most 
complete development environment available from a 
single vendor. Like the emulator, Intel's software 
development system supports every aspect of the 
Intel386 architecture. 

Overlooked at times is that a significant part of 
developing a system is making sure the code works. 
Intel languages integrate seamlessly with the Intel386 
emulator and provide the symbolics so important for 
efficient debugging. Only by using Intel languages 
with the Intel386 emulator can the full power of Intel 
development solution be utilized. 

The software development system offers a broad 
choice of languages with object code compatibility so 
performance can be maximized by using different 
languages for specialized, performance critical 
modules. Architectural extensions in the high-level 
languages allows hardware features such as 
interrupts, input/output, or flags to be controlled 
directly, avoiding the tediousness of coding assembly 
language routines. 

Intels software portfolio includes a unique, 
sophisticated, and very powerful system builder, 
simplifying the generation of protected mode 
systems. To further reduce the effort necessary to 
integrate software into the final target configuration, 
Intel tools produce ROM-able code directly from the 
development system. 

OPTIMIZING PERFORMANCE AND 
RELIABILITY 
A companion performance analysis tool, iPAT"'-386, 
provides analysis of real-time software executing on 
80386-based target systems. With iPAT-386. it is 
possible to speed-tune applications, optimize use of 
operating systems, determine response 
characterist!cs, and identify code execution coverage. 
And iPAT-386 can be used in conjunction with an 
Intel386 in-circuit emulator to control test conditions. 

WORLD CLASS, WORLDWIDE SERVICES 
Augmenting the Intel386 Family development tools is 
a full array of seminars, classes and workshops; on­
site consulting services; field application engineering 
expertise; telephone hotline support; and software 
and hardware maintenance contracts. 

No one can match Intel's motivation to supply you 
with the absolute best in microprocessor 
development tools. When the heart of your design is 
an Intel microprocessor, Intel development tools help 
to insure we both enjoy continued success. 

ORDERING INFORMATION 

ICE376D In-circuit emulator for 80376 ICE38625D In-circuit emulator for 80386 
component. Operates to component. Operates to 
16MHz. Includes control unit, 25M Hz. Includes control unit, 
power supply, 376 processor power supply, 386 processor 
module with POFP adaptor, module with 132 pin PGA 
stand-alone self-test board, adaptor, stand-alone self-test 
isolation board, and DOS host board, isolation board, and DOS 
software and interface cable. host software and interface 

cable. 
ICE376DAB Identical to ICE376D with 

PC/AT® compatible 2MB ICE38625DAB Identical to ICE38625D with 
Above Board. PC/AT compatible 2MB Above 

Board. 
ICE386SXD In-circuit emulator for 80386SX 

component. Operates to ICE376T0386SXD Conversion kit to adapt ICE376D 
16MHz. Includes control unit, to support the 80386SX 
power supply, 386SX'processor component. Operates to 
module with POFP adaptor, 16MHz. Includes 386SX 
stand-alone self-test board, processor module and DOS 
isolation board, and DOS host host software. 
software and interface cable. 

ICE376T0386D Conversion kit to adapt ICE376D 
ICE386SXDAB Identical to ICE386SXD with to support the 80386 

PC/AT compatible 2MB Above component. Operates to 
Board. . 25M Hz. Includes 386 processor 
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ORDERING INFORMATION 

ICE386SXT0376D Conversion kit to adapt 
ICE386SXD to support the 
80376 component. Operates to 
16MHz. Includes 376 processor 
module and DOS host software. 

ICE386SXT0386D Conversion kit to adapt 
ICE386SXD to support the 
80386 component. Operates to 
25M Hz. Includes 386 processor 
module and DOS host software. 

ICE386T0376D Conversilln kit to adapt 
ICE38625D to support the 
80376 component. Operates to 
16MHz. Includes 376 processor 
module and DOS host software. 

ICE386T0386SXD Conversion kit to adapt 
ICE38625D to support the 
80386SX component. Operates 
to 16MHz. Includes 386SX 
processor module and DOS 
host software. 

88PGAADAPT Adaptor for ICE376D to support 
88 pin PGA component 
packaging. 

ICE3XXCPO Clips Pod Option for ICE376D, 
ICE386SXD, and ICE38625D. 

ICE3XXTTB Time Tag Board Option for 
ICE376D, ICE386SXD, and 
ICE38625D. 

For more information on Intel's Development Tools, or 
for the number of your nearest sales office or 
distributor, call 800-874-6835 (U.S.). For information 
or literature on additional Intel products, call 
800-548-4725 (U.S. and Canada). 

iPAT, Inte1386, 386, 386SX, and 376 are trademarks of Intel Corporation. 
PC/AT is a registered trademark of International Business Machines Corporation. 



ICETM·386SX SPECIFICATIONS AND REQUIREMENTS 

HOST SYSTEM REQUIREMENTS 
The user supplied host system can be either an IBM® PC/AT® or Personal System/2® Model 60. Host system 
requirements to run the emulator include the following: 

• DOS version 3.2 
• 640K bytes of RAM in conventional memory 

• A serial port or the National Instruments GPIB­
PCII"', GPIB-PCIIN", or MC-GPIB'" board 

• An AboveT• board with 1 megabyte of RAM 
configured in expanded memory mode, EMM.SYS 
software version 3.2 

• A math coprocessor if either the optional time tag 
board is used or if a math coprocessor resides on 
the target system 

• A 20 MB hard disk 

ELECTRICAL CHARACTERISTICS 
100-120V or 220-240V selectable 
50-60 Hz 
2 amps (AC max) @ 120V 
1 amp (AC max) @ 240V 

ENVIRONMENTAL CHARACTERISTICS 
Operating temperature: + 10 C to + 40 C 

(50 to 104 F) 
Operating Humidity: Maximum of 85% relative 

humidity, non-condensing 

The Emulator's Physical Characteristics 
Unit Width Height Length 

inches cm inches cm inches cm 

Base Unil 13.4 34.0 4.6 11.7 11.0 27.9 
Processor Module 3.8 9.7 0.7 1.8 4.4 11.2 
Oplionallsolalion Board 3.8 9.7 0.5 1.3 4.4 11.2 
Power Supply 7.7 19.6 4.1 10.4 11.0 27.9 
User Cable 1.9 4.8 17.3 43.9 
Targel·Adapler Cable 2.3 5.3 0.5 1.3 5.1 13.0 
Serial Cable 144 366 
Oplional Clips Pod 3.3 8.4 0.8 2.0 6.0 15.2 

r-________________________ T~h=e~P~ro~c~e~ss~o~r~M=o~dulera~nd~B~I=B~D~im~e~n=s~io~n~s ________ ~~------------~ 
1 __ ~ ~I ~- 35" ·1 
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ELECTRICAL SPECIFICATIONS 
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p'----------.-:~:~ 
_·_·----1 

To 0 I 

The synchronization input lines must be valid for at 
least four CLK2 cycles as they are only sampled on 
every other cycle. Thes~ input lines are standard TTL 
inputs. The synchronization output lines are driven by 
TTL open 

collector outputs that have 4.7K-ohm pull-up resistors. 
The synchronizaiion input and output signals on the 
optional clips pod are standard TTL input and 
outputs. 

AC Specifications With the Bus Isolation Board Installed. 
Symbol Parameter Minimum Maximum Notes 
11 CLK2 Reriod 50 nS 11 Max 
t2a CLK2 igh lime 12a Min+2 nS @2V 
13b CLK2 low lime 13b Min+2 nS @0.8v 
16 A 1·A23 valid delay 16 Min + 3.5 nS 16 Max + 24.6 nS CL= 120 pF 
17 A l-A23 iloal del'aj 114 Min+5.5 nS 114 Max+37.6 nS 
18 BLE#, BHE# LO K# valid delay 18 Min+3.5 nS 18 Max+24.6 CL=75pF 
19 BLE#, BHE# LOCK# floal delay 114 Min+5.5 nS 114 Max+37.6 
110 W/R#, MIIO#, O/C#, AOS# valid delay 110 Min+3.5 nS 110 Min+24.6 CL=75 pF 
111 W/R#, MIIO#, O/C#, ADS# iloal delay 114 Min+5.5 nS 114 Max+37.6 
112 DO-015 wrile dala valid delay 112 Min+4.5 nS 112 Max + 20.6 CL= 120 pF 
113 00-015 wrile dala iloal delay 7.5 nS 45.6 nS 
114 HLOA valid delay 114 Min=3 nS 114 Max+21.2 nS 
116 NA# hold lime 116 Min+l0.6 nS 
120 REAOY# hold lime 120 Min + 1 0.6 nS 
121 DO·015 read selup lime 121 Min + 8.5 nS 
122 00-D15 read hold lime 122 Min + 7.6 nS 
124 HOLD hold lime 124 Min + 1 0.6 nS 
125 RESET selup lime 125 Min+2.1 nS 
126 RESET hold lime 126 Min + 2.1 nS. 
128 NMI, INTR hold lime 128 Min + 10.6 nS 
130 PEREO, ERROR#, BUSY# hold lime 130 Min + 10.6 nS 

infel'------------
October. 1989 

Order Number. 260851-001 © Intel Corporation 1989 
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SPECIFICATIONS 

Emulator Capacitance Specifications 
With the Target-Adapter Cable Installed 

Typical 
Symbol Description (Note 1) 

C'N Input Capacitance 
CLK2 55pF 
READYH, ERROR# 35pF 
HOLD, BUSYH, PEREa, NAH, 
INTR, NMI 20pF 
RESET 30pF 

GOUT Output or 1/0 Capacitance 
015-00 50pF 
AI5-Al, BLEH 40pF 
A23-A 16, BHEH, D/CH 30pF 
HL(lA, W/R# 55pF 
ADSH, Mil ON, LOCKH 35pF 

Note 1: Not tested. These specifications include the 
80386SX component and all additional emulator loading. 

Item 

Emulator DC Specifications 
Without the BIB Installed 

Description Max_ Notes 

PM-Icc Processor Module Supply Current 386SX-lcc+ 
940mA 

I'H Input High Leakage Current 
A23-A 1, BLE#, BHEH, D/CH, HLDA 0.02 mA 1 
015-00 0.06 mA 1 
ADSH, M/IOH, LOCKH, READYH, 

ERRORH 0.01 mA 1 
W/RH 0.03 mA 1 
CLK2 0.04 mA 1 
RESET 0.06 mA 2 

I'L Input Low Leakage Current 
A23-A 1, BLEH, BHEH, D/C# 0.6mA 1 
015-00 0.06 mA 1 
ADSH, M/IOH, LOCKH, REI\DYH, 

ERROR# 0.01 mA 1 
W/RH 0.51 mA 1 
CLK2 0.62mA 1 
RESET 0.6mA 2 
HLDA 0.02 mA 1 

.. 
Note 1: This specification IS the DC Input loading of the 

emulator circuitry only and does not include any 
80386SX leakage current. 

Note 2: This specification replaces the 80386SX 
specification for this signal. 

Item 

BIB-Icc 

VOL 

VOH 

I'H 

-
I'L 

1'0 

Emulator DC Specifications 
,,·,nth the 8113 Installed 

Description Min_ 

BIB Supply Current 

Output Low Voltage (lOL ~ 48 mAl 
A23-Al, BLE#, BHE#, D/C#, ADSH 
015-00, Mil ON, LOCK#, WIR# 
HLDA (loL ~ 24 mAl 

Output High Voltage (lOH ~ 3 mAl 
A23-Al, BLE#, BHE#, D/C#, ADS# 2.4 v 
015-00, M/IO#, LOCK#, W/R# 2.4 v 
HLDA (loH~24 mAl 38v 

Input High Current 
CLK2, RESET 
READY# 

Input Low Current 
CLK2, RESET 
READY# 

Output Leakage Current 
A23-A 1, BLE#, BHE#, D/C#, ADS# 
015-00, M/IO#, LOCKH, W/R# 

Max, 

PM-1cc+ 
350mA 

0.5 v 
0.5v 
0.44 v 

1.01'A 
25 "A 

1.01'A 
25Ol'A 

±2O I'A 
± 2O I'A 

PROCESSOR MODULE INTERFACE 
CONSIDERATIONS 
With the processor module directly attached to the 
target system without using the bus isolation board 
(BIB), the target system must meet the following 
requirements: 

• The user bus controller must only drive the data 
bus during a valid read cycle of the emulator 
processor or while the emulator processor is in a 
hold state (the emulator processor uses the data 
bus to communicate with the emulator hardware), 

• Before driving the address bus, the user system 
must gain control by asserting HOLD and 
receiving HLDA. . 

• The user reset signal is disabled during the 
interrogation mode. It is enabled in emulation, but 
is delayed by 2 or 4 CLK2 cycles. 

• The user system must be able to drive one 
additional TTL load on all signals that go to the 
emulation processor. 

When the target system does not satisfy the first two 
restrictions, the bus isolation board is used to isolate 
the emulation processor from the target system. With 
the isolation board installed, the processor CLK2 is 
restricted·to running at·20 MHz. 

The processor module derives its DC power from the 
target system through the 80386SX socket. It requires 
1400mA, including the 80386SX current. The isolation 
board requires an additional 350mA. 

The processor must be socketed, for example using 
Textool 2-0100-07243-000 or AMP 821949-4 sockets. 

The printed circuit board design should locate the 
processor socket at the physical ends of the printed 
circuit board traces that connect the processor to the 
other logic of the target system. This reduces 

. transmission line noise. Additionally, It the target 
system is enclosed in a box, pin one of the processor 
socket should be oriented away from the target 
system's box opening to make connecting the target­
adapter cable easier. 

Above, ICE, Inte1386, 386, 386SX, and 376 are trademarks of 
Intel Corporation. GPIB-PCII, GPIB-PCIIA, and MC-GPIB are 
trademarks of National Instruments Corporation. IBM, PC/AT, 
and Personal System/2 are registered trademarks of 
International Business Machines Corporation. 

For direct information on Intel's Development Tools, or 
for the number of your nearest sales office or 
distributor, call 800-874-6835 (U.S,). For information 
or literature on additional Intel products, call 
800-548-4725 (U.S. and Canada). 
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ICETM-376 SPECIFICATIONS AND REQUIREMENTS 

HOST SYSTEM REQUIREMENTS 
The user supplied host system can be either an IBM® PC/AT® or Personal System/2® Model 60. Host system 
requirements to run the emulator include the following: 

• DOS version 3.2 
• 640K bytes of RAM in conventional memory 

• A serial port or the National Instruments GPIB­
PCII"', GPIB-PCIIA"', or MC·GPIBTM board 

• An Above'" board with 1 megabyte of RAM 
configured in expanded memory mode, EMM.SYS 
software version 3.2 

• A math coprocessor if either the optional time tag 
board is used or if a math coprocessor resides on 
the target system 

• A 20 MB hard disk 

ELECTRICAL CHARACTERISTICS 
100-120V or 220·240V selectable 
50-60 Hz 
2 amps (AC max) @ 120V 
1 amp (AC max) @ 240V 

ENVIRONMENTAL CHARACTERISTICS 
Operating temperature: + 10 C to + 40 C 

(50 to 104 F) 
Operating Humidity: Maximum of 85% relative 

humidity, non-condensing 

The Emulator's Physical Characteristics 
Unit Width Height Length 

inches cm inches cm inches cm 

Base Unit 13.4 34.0 4.6 11.7 11.0 27.9 
Processor Module 3.8 9.7 0.7 1.8 4.4 11.2 
Optional Isolation Board 3.8 9.7 0.5 1.3 4.4 11.2 

~~~~c~~ffly 7.7 19.6 4.1 10.4 11.0 27.9 
1.9 4.8 17.3 43.9 

1 OO-Pin Target-Adapter Cable 2.3 5.3 0.5 1.3 5.1 13.0 
~~;~In c!~b~:t-AdaPter Cable 2.3 5.3 0.5 1.3 5.8 14.7 

144 366 
Optional Clips Pod 3.3 8.4 0.8 2.0 6.0 '15.2 

r-_________________________ T~h~e~p~ro~c~e~ss~o~r~M~o~du,lefa~nd~BI~B~D~im~en~s~io~n~s~==~~==---------------1 

I L-.I ", 1B6_.·-_~:.·.-t. ~ ~ --:c~~~ "If'--------(C-~ ~ .... ~. $'------,----------,-=~ 
~~~~::==~~~~i 1~~::::::==:-~li~~~:;~'1 = Fa L '~ii __ 

ELECTRICAL SPECIFICATIONS 
The synchronization input lines must be valid for at 
least four CLK2 cycles as they are only sampled on 
every other cycle. These input lines are standard TTL 
inputs. The synchronization output lines are driven by 
TTL open 

collector outputs that have 4_7K-ohm pull-up resistors. 
The synchronization input and output signals on the 
optional clips pod are standard TTL input and 
outputs. 

AC Specifications With the Bus Isolation Board Installed. 
Symbol Parameter Minimum Maximum Notes 
t1 CLK2 Rerlod 50 oS t1 Max 
t2a CLK2 igh time t2a Min+2 nS @2V 
t3b CLK2 low time t3b Min+2 nS @0.8v 
t6 A 1-A23 valid delay t6 Min +3.5 nS t6 Max + 24.6 nS CL= 120 pF 
t7 A 1-A23 float del~ t14 Min+5.5 nS t14 Max+37.6 nS 
t8 BLEil, BHEII LO KII valid delay t8 Min + 3.5 nS t8 Max+24.6 CL=75pF 
t9 BLEil, BHEII LOCKII float delay t14 Min+5.5 nS t14 Max + 37.6 
t10 W/RII, M/IOII, O/CII, AOSII valid delay t10 Min+3.5 nS t10 Min+24.6 CL=75 pF 
t11 W/RII, M/IOII, O/CII, AOSII float delay t14 Min+5.5 nS t14 Max+37.6 
t12 00-015 write data valid delay t12 Min+4.5 nS t12 Max + 20.6 CL=120pF 
t13 00-015 write data float delay 7.5 nS 45.6 nS 
t14 HLOA valid delay t14 Min=3 nS t14 Max+21.2 nS 
t16 NAil hold time t16 Min+10.6 nS 
t20 REAOYII hold time t20 Min + 10.6 nS 
t21 00-015 read setup time t21 Min + 8.5 nS 
t22 00-015 read hold time t22 Min + 7.6 nS 
t24 HOLD hold time t24 Min + 1 0.6 nS 
t25 RESET setup time t25 Min+2.1 nS 
t26 RESET hold time t26 Min+2.1 nS 
128 NMI, INTR hold time t28 Min + 1 0_6 nS 
t30 PEREQ, ERRORII, BUSYII hold time t30 Min+10.6 nS 

. intel'----------,------
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6-57 

October, 1989 
Order Number 280865·001 



SPECIFICATIONS 

Emulator Capacitance Specifications 
With Target-Adapter Cable Installed 

Typical 
Symbol Description (Note 1) 

C'N Input Capacttance 
ClK2 55pF 
READY#, ERROR# 
HOLD, BUSY#, PEREQ, NA#, 

35pF 

INTR, NMI 20pF 
RESET 30pF 

COUT Output or I/O Capacitance 
015·00 50pF 
AI5·Al, BlE# 40pF 
A23·AI6, BHE#, D/C# 30pF 
U! nh \1\110~ ""n~ ADS#': M/IO#, LOCK# 35pF 

Note 1: Not tested. These specifications include the 80376 
component and all additional emulator loading. 

Item 

PM·lcc 

I'H 

I'L 

Emulator DC Specifications 
Without the BIB Installed 

Description Max. 

Processor Module Supply Current 376·lcc + 
940mA 

Input High leakage Current 
A23·Al, BlE#, BHE#, D/C#, HlDA ,0.02 mA 
015·00 0.06mA 
ADS#, MIIO#:lOCK#, READY#, 
ERROR# 0.01 mA 

W/R# 0.03 mA 
ClK2 0.04 mA 
RESET 0.06mA 

Input low leakage Current 
A23·Al, BlE#, BHE#, D/C# 0.6mA 
015·00 0.06 mA 
ADS#, MIIO#, lOCK#, READY#, 
ERROR# 0.01 mA. 

W/R# 0.51 mA 
ClK2 0.62 mA 
RESET 0.6mA 
HlDA 0.02 rnA 

Notes 

1 
1 

1 
1 
1 
2 

1 
1 

1 
1 
1 
2 
1 

.. 
Note 1: This speCification IS the DC Input loading of the 

emulator circuitry only and does not include any 
80376 leakage current. 

Note 2: This specification replaces the 80376 specification 
for this signal. 

Item 

BIB·lcc 

VOL 

VOH 

I'H 

I'L 

1'0 

Emulator DC Specifications 
With the BiB instailed 

Description Min. 

BIB Supply Current 

Output low Voltage (IOL = 48 mAl 
A23·Al, BlE#, BHE#, D/C#, ADS# 
015·00, MIIO#, lOCK#, W/R# 
HlDA (loL = 24 mAl 

Output High Voltage (loH = 3 mAl 
A23·Al, BlE#, BHE#, D/C#, ADS# 2.4 v 
015·00, MIIO#, lOCKH, W/R# 2.4 v 
HlDA (IOH=24 mAl 3.8v 

Input High Current 
ClK2, RESET 
READY# 

Input low Current 
ClK2, RESET 
READY# 

Output leakage Current 
A23·Al, BlE#, BHE#, D/C#, ADS# 
015·00, MIIO#, lOCK#, W/R# 

Max. 

PM·lcc + 
350mA 

0.5v 
0.5v 
0.44 v 

1.01'A 
251'A 

1.01'A 
25Ol'A 

±2O I'A 
±20 "A 

PROCESSOR MODULE INTERFACE 
CONSIDERATIONS 
With the processor module directly attached to the 
target system without using the bus isolation board 

, (BIB), the target system must meet the following 
requirements: 

• The user bus controller must only drive the data 
bus during a valid read cycle of the emulator 
processor or while the emulator processor is in a 
hold state (the emulator processor uses the data 
bus to communic3.te with the emulator hardware). 

• Before driving the address bus, the user system 
must gain control by asserting HOLD and 
receiving HLDA. 

• The user reset signal is disabled during the 
interrogation mode, It is enabled in emulation, but 
is delayed by 2 or 4 CLK2 cycles. 

• The user system must be able to drive one 
additional TTL load on all signals that go to the 
emulation processor. 

When the target system does not satisfy the first two 
restrictions, the bus isolation board is used to isolate 
the emulation processor from the target system. With 
the isolation board installed, the processor CLK2 is 
restricted to running at 20 MHz. 

The processor module derives its DC power from the 
target system through the 80376 socket. It requires 
1400mA, including the 80376 current. The isolation 
board requires an additional 350mA. 

The processor must be socketed, for example using' 
TextooI2-0100-07243·000 or AMP 821949·4 sockets. 

The printed circuit board design should locate the 
processor socket at the physical ends of the printed 
circuit board traces that connect the processor to the 
other loaic of the taraet svstem. This reduces 
transmission line noise. Additionally, if the target 
system is enclosed in a box, pin one of the processor 
socket should be oriented away from the target 
system's box opening to make connecting the target­
adapter cable easier. 

Above, ICE, Inte1386, 386, 386SX, and 376 are trademarks of 
Intel Corporation. GPIB·PCII, GPIB·PCIIA, and MC·GPIB are 
trademarks of National Instruments Corporation. IBM, PC/AT, 
and Personal System/2 are registered trademarks of 
International Business Machines Corporation. 

For direct information on Intel's Development Tools; or 
for the number of your nearest sales office or 
distributor, call 800-874-6835 (U.S.). For information 
or literature on additional Intel products, call 
800-548-4725 (U.S. and Canada). 
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HOST SYSTEM REQUIREMENTS 
The user supplied host system can be either an IBM® PC/AT® or Personal System/2® Model 60. Host system 
requirements to run the emulator include the following: 

• DOS version 3.2 
• 640K bytes of RAM in conventional memory 

• A serial port or the National Instruments GPIB­
PCII'M, GPIB-PCIIAm, or MC-GPIB'" board 

• An Above'· board with 1 megabyte of RAM 
configured in expanded memory mode, EMM.SYS 
software version 3.2 

• A math coprocessor if either the optional time tag 
board is used or if a math coprocessor resides on 
the target system 

• A 20 MB hard disk 

ELECTRICAL CHARACTERISTICS 
100-120V or 220-240V selectable 
50-60 Hz 
2 amps (AC max) @ 120V 
1 amp (AC max) @ 240V 

ENVIRONMENTAL CHARACTERISTICS 
Operating temperature: + 10 C to + 40 C 

(50 to 104 F) 
Operating Humidity: Maximum of 85% relative 

humidity, non-condensing 

The Emulator's Physical Characteristics 
Unit Width Height Length 

inches cm inches cm inches cm 

Base Unit 13.4 34.0 4.6 11.7 11.0 27.9 
Processor Module 3.8 9.7 0.7 1.8 4.4 11.2 
Optional Isolation Board 3.8 9.7 0.5 1.3 4.4 11.2 
Power Su pply 7.7 19.6 4.1 10.4 11.0 27.9 
User Cable 1.9 4.8 17.3 43.9 
Target-Adapter Cable 2.3 5.3 0.5 1.3 5.8 14.7 
Serial Cable 144 366 
Optional Clips Pod 3.3 8.4 0.8 2.0 6.0 15.2 

III====~"';:::'_===_=_=_II_T,-,h",e-"p-,-ro",C~~:"SS~~~~:":_M':=.~ti~Uler=a"-,nd=-=B;=IB,-,D"-,im=en",s,,,io,,,,no=s _____ -:--------,-, 
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ELECTRICAL SPECIFICATIONS 
The synchronization input lines must be valid for at 
least four CLK2 cycles as they are only sampled on 
every other cycle. These input lines are standard TTL 
inputs. The synchronization output lines are driven by 
TTL open 

collector outputs that have 4.7K-ohm pull-up resistors. 
The synchronization input and output signals on the 
optional clips pod are standard TTL input and 
outputs. 

AC Specifications With the Bus Isolation Board Installed. 
Symbol Parameter Minimum Maximum Notes 
t1 CLK2 Rerlod 40 nS t1 Max 
t2a CLK2 igh time t2a Mln+2 nS @2V 
t3b CLK2 low time t3b Min+2 nS ~0.8V 
t6 A2·A31 valid delay t6 Min + 3.5 nS t6 Max + 24.6 nS L= 120 pF 
t7 A2-A31 float del~ t14 Mln+5.5 nS t14 Max+32.6 nS 
t8 BEO#-BE3#, LO K# valid delay t8 Min + 3.5 nS t8 Max+24.6 CL= 75pF 
t9 BEO#-BE3#, LOCK# float delay t14 Min+5.5 nS t14 Max+32.6 
t10 W/R#, M/IO#, O/C#, AOS# valid delay t10 Min+3.5 nS t10 Min + 24.6 CL=75pF 
t11 W/R#, M/IO#, O/C#, AOS# float delay t14 Min+5.5 nS t14 Max+32.6 
t12 00-031 write data valid delay t12 Mln+4.5 nS t12 Max + 20.6 CL= 120 pF 
t13 00·031 write data float delay 7.5 nS 41.6 nS 
t14 HLOA valid delay t14 MIn=3 nS t14 Max+21.2 nS 
t16 NA# hold time t16 Min+ 10.6 nS 
t18 BS16# hold time t18 Mln+10.6 nS 
t20 REAOY# hold time t20 Min + 10.6 nS 
t21 00-031 read setup time t21 Min + 8.5 nS 
t22 00·031 read hold time t22 Min + 7.6 nS 
t24 HOLD hold time 124 Min + 1 0.6 nS 
125 ~~~H ~~\~i~~e t25Min+2.1 nS 
t26 t26 Min+2.1 nS 
128 NMI, INTR hold time t28 Min + 1 0.6 nS 
t30 PEREQ, ERROR#, BUSY# hold time t30 Min + 1 0.6 nS 

i~' ____ ~ __ ~ ______________ _ 
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SPECIFICATIONS 

E mu ator C Of S apacltance ,peci Icatlons 
Symbol Descriplion Typical TAC Inslalle 

C'N Input Capacitance 
CLK2 3SpF 4SpF 
READY#, NMI, BS16# 2SpF 3SpF 
HOLD, BUSY#, PEREQ, 
NA#, INTR: ERROR# 10pF 20pF 
RESET 20pF 30pF 

COUI Output or I/O Capacitance 
DO-D31 40pF SOpF 
A2-A31, BEO#-BE3# 30pF 40pF 
D/C# 3SpF 4SpF 
W/R# 40pF SOpF 
ADS#, MIIO#, LOCK#, 2SpF 3SpF 
HLDA 

Note 1: Not tested. These specifications include the 80386 
component and all additional emulator loading. 

Note 2: The target-adapter cable adds a propagation delay 
of 0.5nS. 

lIem 
PM-Icc 

111\ 

I" 

Emulator DC Specifications 
Without the BIB Installed 

Descripllon Max. 

Processor Module Supply Current 386-1cc+ 
. 1.SA 

Input High Leakage Current 
A2-A31. BEO#-BE3#. DO-D31 20pA 
HLDA, NMI, BS16# 10pA 
ADS#, MIIO#, LOCK#, READY# 10pA 
W/R#, D/C# 30pA 
CLK2 1SpA 
RESET SpA 

Input Low Leakage Current 
A2-A31, BEO#-BE3#, DO-D31 600pA 
HLDA, NMI, BS16# 10pA 
ADSn, MIIOn, LOCK#, READY# 10pA 
W/R# 110pA 
D/C# 610pA 
CLK2 1SpA 
RESET SpA 

Noles 

1 

1 
1 
1 
1 
2 

1 
1 
1 
1 
1 
1 
2 

Note 1: This specification is the DC input loading of the 
emulator circuitry only and does not include any 
80386 leakage current. 

Note 2: This specification replaces the 80386 specification 
for thi~ ~i(Jn,,1 

Ilem 
BIB-Icc 

Va' 

VOII 

1111 

I" 

1'0 

Emulator DC Specifications 
With the BIB Installed 

Descrlplion Min. 

BIB Supply Current 

Output Low Voltage (lOL ~ 48 mAl 
A2-A31. BEO#-BE3#. D/C#, ADS# 
DO-D31, MIIO#, LOCK#, W/R# 
HLDA (Iol ~24 mAl 

Output High Voltage (loH~3 mAl 
A2-A31, BEO#-BE3#, D/C//., ADS# 2.4 v 
DO D31, MIlOff, LOCKff, W/Rff 2.4 v 
HLDA (10,,=24 mAl 3.8v 

Input High Current 
CLK2, RESET 
READY# 

Input Low Current 
CLK2, RESET 
READY# 

Output Leakage Current 
A2-A31, BEO#-BE3#, D/C#, ADS# 
DO-D31, MIIO#, LOCK#, W/R# 

Maxo 
PM-I~c+ 
47SmA 

0.5 v 
O.Sv 

0.44 v 

1.0pA 
2SpA 

1.OpA 
2S0pA 

±20pA 
+20pA 

PROCESSOR MODULE INTERFACE 
CONSIDERATIONS 
With the processor module directly attached to the 
target system without using the bus isolation board 
(BIB), the target system must meet the following 
requirements: 

• The user bus controller must only drive the data' 
bus during a valid read cycle of the emulator 
processor or while the emulator proc~ssor is in a 
hold state (the emulator processor uses the data 
bus to communicate with the emulator hardware). 

• Before driving the address bus, the user system' 
must gain control by asserting HOLD and 
receiving HLDA. 

• The user reset signal is disabled during the 
interrogation mode. It is enabled in emulation, but 
is delayed by 2 or 4 CLK2 cycles. 

• The user system must be able to drive one 
additional TTL load on all signals that go to the 
emulation processor. 

When the target system does not satisfy the first two 
restrictions, the bus isolation board is used to isolate 
the emulation processor from the target system. With 
the isolation board installed, the processor CLK2 is 
restricted to running at 25 MHz. 

Jhe processor module derives its DC power from the 
target system through the 80386 socket. It requires 
1500mA, including the 80386 current. The isolation 
board requires an additional 475mA. 

The processor must be socketed. The printed circuit 
board design should locate the processor socket at 
the physical ends of the printed circuit board traces 
that connect the processor to the other logic of the 
target system. This reduces transmission line noise. 
Additionally, if the target system is enclosed in a box, 
pin one of the processor sockel should be oriented to 
make connecting the processor module or target­
HdHpter cHble (TAD) easier. 

The emulator uses the 386 microprocessor's pins C7, 
E13, and F13. The 80386 High Performance 32-8it 
Microprocessor With Integrated Memory . 
Management data sheet specifies these pins as "N/C" 
(no connect). If the target system uses any of these 
pins, you must do one of the following: 

• Use the bus isolation board. 
• Use the target-adapter cable (TAC). 
• Build an adapter to disconnect pins C7, E13, and 

F13 (i.e., a socket with these pins removed). 

Above, ICE, Inte1386, 386, 386SX, and 376 are trademarks of 
Intel Corporation, GPIB-PCII, GPIB-PCIIA, and MC-GPIB are 
trademarks of National Instruments Corporation. IBM, PC/AT, 
and Personal System/2 are registered·trademarks of 
International Business Machines Corporation. 

For direct information on Intel's Development Tools, or 
for the number of your nearest sales office or 
distributor, call 800-874-6835 (U.S.). For information 
or literature on additional Intel products, call 
800-548-4725 (U.S. and Canada). 
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Cos1a Mesa 92626 COLORADO tHamilton/Avnet ElectroniCS ~~3~~~~~~ ~~3J{~~~~ Tel: (714) 754-6071 5825 D Peachtree Comers 
TWX: 910-595·1928 Arrow ElectroniCS, Inc. Norcross 30092 

HamiltonJAvnet Electronics tHamltton/Avnet Electronics 
tHamltton/Avnet Electronics 

7060 South Tucson Way ~~4g{~m:~ 6622 Oak Hall Lane 13743 Shoreline Court 
1175 Bordeaux Drive 

Englewood 80112 Columbia 21045 Earth CI~ 83045 Sunnyvale 94086 Tel: (303) 790-4444 
;;~~r~:~'~~I=uP' Inc. ~~3~;~~~ Tel: (314 344-1200 

Tel: (408) 743·3300 tHamiltonJAvnet Electronics TWX: 91 ·762-0684 
TWX: 910-339-9332 8765 E. Orchard Road Norcross 30071 

~~~~=:I~~~'8;. NEW HAMPSHIRE 
tHamlltonJAvnet ElectroniCS Sufie 708 Tel: (404) 448·1711 

Englewood 80111 TWX: 810·766-4515 tArrow Electronics, Ill!'-4545 Ridgeview Avenue 
~~3~~~~~ 

Columbia 21046 3 Perimeter Road 
~:r glf9)05~~~gOO • ILLINOIS 

Tel: (301) 290-6150 MancheSlar 03103 
TWX: 710-928·9702 

~~~~~~= TWX: 910-595-2638 
tWyle Distribution Group Arrow Electronics, Inc. tPioneerrrechnologies Group, Inc. 

tHamllton/Avnet ElectroniCS 451 E. 124th Avenue 1140 W. Thorndale 9100 Gaither Road tHamlltonJAvnet Electronics 
9650 Desoto Avenue Thornton 80241 llaSca 60143 ~~~;~~~~1~ . 444 E. Industrial Drive 
Chaisworth 91311 ~~~~~t~~~ Tel: (312) 250-0500 Manchester 03103 
Tel: (818) 700-1161 TWX: 312·250-0916 TWX: 710-828-0545 Tel: (603) 624-9400 

tMicrocomputet System Technical Distributor Center 



intel~ 
DOMESTIC DISTRIBUTORS (Contd.) 

NEW JERSEY tPloneer Electronics tHamiiton/Avnet Electronics tPioneer Electronics Zentronics 
68 Corporate Drive 12121 E. 51st St., Suite 102A 18260 Kramer Bay No.1 

tArrow Electronics, Inc. Binghamton 13904 Tulsa 74146 Austin 76756 3300 14th Avenue N.E. 
Four East Stow Road Tel: (607) 722-9300 Tel: (916) 252-7297 Tel: (512) 635-4000 Calgary T2A 6J4 
Unit 11 TWX: 510-252-0693 TWX: 910-874-1323 Tel: (403) 272-1021 
Marlton 06053 

Pioneer Electronics OREGON tPioneer Electronics BRITISH COLUMBIA Tel: (609) 596-6000 
40 Oser Avenue 13710 Omega Road tHamilton/Avnet Electronics TWX: 710-897-0829 
Hauppauge 11787 tAlmac ElectroniCS Corp. Dallas 75234 105-2550 Boundary 

tArrow Electronics Tel: (516) 231-9200 1865 N. W. 169th Place Tel: (214) 366-7300 Burmalay V5M 3Z3 
6 Century Drive Beaverton 97005 TWX: 910-650-5563 Tel: (604) 437·6667 tPioneer Electronics Tel: (503) 629-8090 

~:~~~)YJ:~~1m ~~~,:!s;.ar:n~~sY:~~t 11797 
TWX: 910·467·8746 tPioneer Electronics zentronics 

5853 Point West Drive 108-11400 Bridgeport Road 
Tel: (516) 921·8700 tHamilton/Avnet Electronics Houston 77036 Richmond V6X 112 tHamihon/Avnet Electronics TWX: 5tO-221·2184 6024 S.W. Jean Road Tel: (713) 988-5555 Tel: (604) 273·5575 1 Keystone Ave., Bldg. 36 Bldg. C, Suite 10 TWX: 910·881·1606 TWX: 04·5077'89 

~~~('ld;)il~~~'110 tPioneer Electronics Lake Oswego 97034 
Wyle Distribution Group MANITOBA 840 Fairport Park Tel: (503) 635·7848 

TWX: 710-940-0262 Fairport 14450 TWX: 910-455·8179 1810 Greenville Avenue Zentronics Tel: (716) 381·7070 Richardson 75081 60-1313 Border Unit 60 tHemllton/Avnet electronics TWX: 510·253·7001 Wyle Distribution Group Tel: (214) 235-9953 
~r(~~ ~~~}:s~ 10 Industrial 5250 N.E. Elam Young Parkway 

Falrtleld 07006 
NORTH CAROLINA Suite 600 

UTAH Tel: (201) 575·5300 Hillsboro 97124 ONTARIO TWX: 710·734-4388 tArrow Electronics, Inc. i~l~~~fsg:~gg Arrow Electronics Arrow Electronics, Inc. 5240 Greensdairy Road 1946 Parkway Blvd. 36 Antares Dr. tMTI Systems Sale. Raleigh 27604 Salt Lake City 84119 Nepean K2E 7W5 37 Kulick Rd. Tel: (919) 876·3132 PENNSYlVANIA Tel: (801) 973·6913 Tel: (613) 226·6903 Falrtleld 07006 TWX: 510·928-1856 Tel: (201) 227·5552 
Arrow Electronics, Inc. tHamiiton/Avnet ElectroniCS Arrow Electronics, Inc. 

tHamiJton/Avnet Electronics 650 Seca Road 1585 West 2100 South 1093 Meyerside 
tPloneer Electronics 3510 Spring Forest Drive Monroeville 15146 Salt Lake City 84119 Mississauga LST 1 M4 
45 Route 46 Raleigh 27604 Tel: (412) 856-7000 Tel: (801) 972·2800 Tel: (416) 673·7769 
Plnebrook 07058 

~\9~;~~~~~~~~ TWX: 910-925-401 B TWX: 06-218213 

~\2~ll~~~~g Hamilton/Avnet Electronics tHamiiton/Avnet ElectroniCS 

~?:b~r~~" 5~~~ Wyle Distribution Group 6845 Rexwood Road ~~eX~;~t~~~~~li~: ~~~.p, Inc. 1325 West 2200 South Units 3-4-5 
Tel: (412) 281-4150 SUite E Mlssissauga L4T 1 R2 NEW MEXICO Charlotte 28210 West Valley 84119 Tel: (416) 677·7432 Tel: (919) 527·6188 Pioneer Electronics Tel: (801) 974-9953 TWX: 610-492·8867 Alliance Electronics Inc. TWX: 810-621-0366 259 Kappa Drive 

Hamilton/Avnet Electronics 11030 Ccchiti S.E. Pittsburgh 15238 
WASHINGTON ~e~~~~~~~~ns~ OHIO Tel: (412) 782·2300 6845 Rexwood Rd., Unit 6 

TWX: 710·795-3122 tAlmac Electronics Corp. Mississauga L4T 1 R2 
TWX: 910-989-1151 Arrow ElectroniCS, Inc. 14360 S.E. Eastgate Way Tel: (416) 277·0484 

7620 McEwen Road tPioneerfTechnologies Group, Inc. 
Bellevue 98007 tHamiiton/Avnet Electronics HamiitonJAvnet ElectroniCS Centerville 45459 Delaware Valley 
Tel: (206) 643·9992 190 Colonnade Road South 2524 Baylor Drive S.E. Tel: (513) 435·5563 261 Gibraher Road 
TWX: 910-444-2067 Nepean K2E 7L5 

~e~~(k"~:s~rJoog TWX: 810-459-1611 Horsham 19044 Tel: (613) 226·1700 
tArrow Electronics, Inc. ~m~.~~t~~g Arrow ElectroniCS, Inc. 1WX: 05-349·71 TWX: 910-989-0814 19540 68th Ave. South tZentronics 6238 Cochran Road 

Kent 98032 Solon 44139 Tel: (206) 575·4420 8 Tilbury Court 
NEW YORK Tel: (216) 248-3990 TEXAS Brampton L6T 3T4 

TWX: 810-427·9409 
tArrow Electronics, Inc. tHamiiton/Avnet ElectroniCS Tel: (416) 451·9800 

tArrow ElectroniCS, Inc. 14212 N.E. 21st Street TWX: 06·976-78 
3375 Brighton Henrietta tHamlltonJAvnet Electronics 3220 Commander Drive 

Bellevue 98005 tZentronics Townline Rd. 954 Senate Drive carrollton 75006 
Tel: (206) 643·3950 155 Colonnade Road Rochester 14623 ~:r(5~:r~~733 Tel: (214) 380·6464 
TWX: 910·443-2489 Unit 17 Tel: (716) 275-0300 TWX: 910·860·5377 

Nepean K2E 7Kl TWX: 510-253-4766 TWX: 810-450·2531 
tArrow ElectroniCS, Inc. Wyle Distribution Group Tel: (613) 226-8840 

15385 N.E. 90th Street 
Arrow Electronics, Inc. Hamifton/Avnet ElectronIcs 10899 Kinghurst 

Redmond 98052 Zentronics 
4588 Emery Industrial Pkwy. Suite 100 60-1313 Border St. 20 Oser Avenue Warrensville Heights 44128 Houston 77099 Tel: (206) 881·1150 

~r(~g.jj ~~~~~~7 Hauppauge 11788 Tel: (216) 349·5100 Tel: (713) 530-4700 
~\5Jf~m:~~gg TWX: 810-427·9452 TWX: 910·880-4439 WISCONSIN 

QUEBEC 
tHamllton/Avnet Electronics tArrow Electronics, Inc. Arrow ElectroniCS, Inc. tArrow Electronics Inc. Hamilton/Avnet 
~~:'~I~m~lBlvd. 2227 W. Braker Lane 200 N. Patrick Blvd" Ste. 100 4050 Jean Talon Quest 933 Motor Parkway Austin 78758 Brookfleld 53005 Montreal H4P 1W1 \!:1(r,~)g~3~~ggO Tel: (614) 882·7004 Tel: (512) 835-4180 Tel: (414) 767-8600 Tel: (514) 735-5511 TWX: 910·874-1348 TWX: 910-262·1193 

TWX: 05·25590 TWX: 510-224·6166 tPioneer Electronics 
4433 Interpolnt Boulevard tHamiiton/Avnet Electronics Hamilton/Avnet ElectroniCS Arrow Electronics, Inc. 

tHemllton/Avnet Electronics Dargn45424 1807 W. Braker Lane 2975 Mooriand Road 500 Avenue St·Jean Baptiste 
333 Metro Park Te : (513~ 236-9900 Austin 78758 New Beriln 53151 Suite 280 
Rochester 14623 TWX: 81 -459·1622 Tel: (512) 637·6911 Tel: (414) 784·4510 Quebec G2E 5R9 

~m~~~;:~~ TWX: 910-874·1319 TWX: 910·262·1182 Tel: (418) 871·7500 tPioneer Electronics FAX: 418·871·6816 4800 E. 131st Street tHaroiltonJAvnet Electronics Hamilton/Avnet Electronics tHemlitonJAvnet Electronics Cleveland 44105 2111 W. Walnut Hill Lane CANADA 2795 Halpern 103 Twin Oaks Drive ~\2~f~.~~1:~~ Irvln~ 75038 St. Laurent H2E 7Kt Syracuee 13208 Tel: 214~ 550-6111 Tel: (514) 335·1000 Tel: (315) 437-0288 TWX: 91 -860·5929 ALBERTA TWX: 610-421·3731 TWX: 710-541·1560 OKLAHOMA 
tHamilton/Avnet Electronics Hamllton/Avnet Electronics Zentronics 

~:r.~e~rks~~:e Arrow Electronics, Inc. 4850 Wright Rd., Suite 190 2816 21st Street N.E. 817 McCaffrey 
1211 E. 51st St., Suite 101 Stafford 77477 Calgary T2E 6Z3 St. Laurent H4T 1 M3 

Port Washington 11050 Tulsa 74146 Tel: (713) 240-7733 Tel: (403) 230·3586 Tel: (514) 737·9700 
Tel: (516) 621-6200 Tel: (918) 252·7537 TWX: 910-881·5523 TWX: 03-827-842 TWX: 05·827·535 

tMlcrocomputer System rec::hnlcal Distributor Center 



DENMARK 

Intel Denmark AlS 
Glentevej 61, 3rd Floor 
2400 Copenhagen NV 
Tel: (45) (31) 198033 
Tl.X: 19567 

ANLAND 

Intel Finland OV 
Ruosilantie 2 
00390 Helsinki 

~:4: (~~g~~2 544 644 

FRANCE 

Intel Corporation S.A.R.L. 
1, Rue Edison-BP 303 
78054 St. QuenUn-en-Vvelines 
Cedex 
Tel: (33) (1) 30 57 7000 
Tl.X: 699016 

EUROPEAN SALES OFFICES 
WEST GERMANY ISRAEL NDRWAY 

Intel Semiconductor GmbH* Intel Semiconductor Ltd.'" Intel Norway AlS 
Dornacher Strasse 1 Atidim Industrial Park-Neve Sharet Hvamvelen 4-PO Box 92 
8016 Feldklrchen bel Muenchen P.O. Box 43202 2013 Skjellen 
Tel: (49) 089190992-<1 Tel-Aviv 61430 

m~i;rol~ 842 420 Tl.X: 5-231n Tel: (972) 03-499080 
Tl.X: 371215 

Intel Semiconductor GmbH 
Hohenzollem Strasse 5 
3000 Hannover 1 

ITALY SPAIN 

Tel: (49) 0511/344081 Intel COrporation ltaIia S.p.A.'" Intel Iberia S.A. 
TL.X: 9-23625 Milanofiorl Palazzo E ZUrbaran, 28 

20090 Assago 28010 Madnd 
Intel Semiconductor GmbH Milano Te!: (~4) (1) 308.25.52 
Abraham LIncoln Strasse 16-18 Tel: (39) (02) 89200950 TL.X: 46880 
6200 Wiesbaden Tl.X: 341286 

+~i~1~~~/7605-O NETHERLANDS SWEDEN 

Intel S.emieonductor GmbH Intel Semiconductor B.V.* Intel Sweden A.B." 
Zettachring lOA Postbus 84130 Dalvagen 24 
7000 Stuttgart 80 3099 CC Rotterdam 17136 Solna 

m'<~~~,k1f287-280 Tel: (31) 10.407.11.11 Tel: (46) 8 734 01 00 
TL.X: 22283 TL.X: 12261 

SWItZERLAND 

Intel Semiconductor A.G. 
Zuerlchstrasse 
8185 Wlnkel-Ruell bel Zuerich 
Tel: (41) 01/860 62 62 
Tl.X: 8259n 

UNITED KINGDOM 

:;.:~~ration (U.K.) Ltd.' 

SWlndon, WlI1shlra SN3 1 RJ 
Tel; (44) (urn) 696000 
Tl.X: 444447/8 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 
AUSTRIA Tekelec-A1rtronic ITALY Dltram ~~~:~:ns 
Bacher Electronics G.m.b.H. 

Cite des Bruyeres 
Intesi 

Avenlda Miguel Bombarda, 133 
Rue carle Vernet - BP 2 1000 Llsboa Westem Road 

Rotenmuehlgasse 26 92310 Sevres Divislone ITT Industries GmbH Tel: (35) (1) 54 53 13 Bracknell RG121RW 
1120 Wien Tel: (33) (1) 45 34 75 35 Viele Mllanoflon TL.X: 14182 Tel: (44) (0344) 55333 
Tel: (43) (0222) 835646 Tl.X: 204552 Palazzo E/5 TL.X: 847201 
Tl.X: 31532 ~:8~~J~~1 SPAIN 

WEST GERMANY Jermyn 
BELGIUM Tl.X: 311351 ATD Electronica, S.A. Vestry Estate 

Inelco Belgium S.A. Electronic 2000 AG Lasi Elettronica S.p.A. Plaza eludad de Viena. 6 Otford Road 

Av. des Croix de Guerre 94 Stahlgrubening 12 V. Ie Fulvlo Tosti, 126 28040 Madrid Sevenoaks 

1120 BruxeJles 8000 Muenchen 82 20092 Clnlsello Belsamo (MQ Tel: (34) (1) 234 40 00 Kern TN14 5EU 

?10~cf~~~~s'!rnlaan, 94 
Tel: (49) 089/42001-0 Tel: (39) 02/2440012 Tl.X: 424n Tel: (44) (0732) 450144 
Tl.X: 522561 Tl.X: 352040 ITT-SESA Tl.X: 95142 • 

Tel: (32) (02) 216 01 60 In Multikomponent GmbH Tetcom S.r.l. ~:t:~oMr!Pa':t~::ngel, 21-3 MMD Tl.X: 64475 or 22090 PosHach 1265 Via M. Civitali 75 Unit 8 Southview Park 
Bahnhofs1rasse 44 20148 Milano Tel: (34) (1) 419 09 57 Ceversham 

DENMARK 7141 Moegllngen Tel: (39) 02/4049046 Tl.X: 27461 Readl"ll 
ITT-Multlkomponent 

Tel: (49) 07141/4879 Tl.X: 335654 Metrologla Iberica, S.A.' Berkshire RG4 OAF 
Tl.X: 7264472 Tel: (44) (0734) 481666 Naverland 29 ITT Muiticomponents Ctra. de Fuencarral, n.80 

2600 Glostrup Jermyn GmbH Vlale Milanoflori E/5 28100 Alcobendas (Madnd) Tl.X: 846669 

Tel: (45) (0) 245 66 45 1m Dachsstueck 9 ~~~~~J~~l 
Tel: (34) (1) 653 66 11 

Rapid Silicon Tl.X: 33355 6250 Umburg 
Tel: (49) 06431/508-0 Tl.X: 311351 SWEDEN' Rapid House 

Denmark Street 
FINLAND TLX: 415257-0 

Silverstar Nordisk Eleldronlk AS High Wycombe· 
OY Rntronlc AB Metrologle GmbH Via Del Gracchi 20 Torshamnsgatan 39 BUck~hamshlre HP11 2ER 
Melkonkatu 24A Megllngerstrasse 49 20146 Milano Box 36 ~~~\~~~) 442266 
nn?1 n Hplc:.inkl 8000 Muenchen 71 T.:IoI· (!-lQ\ n~/.4Qcu::;.1 1R.4 Q~ Klc:.t~ 

Tel: (358) (0) 6926022 Tel: (49) 089/78042-0 TLx:'332100 --_. Tel: (4s) 68:03 46 30 • 
Rapid Systems Tl.X: 124224 Tl.X: 5213189 . Tl.X: 10547 

NETHERLANDS RaDld HOuse 

FRANCE 
Proeieccron venrieDs GmDH SWIlZERLAND Denmark Street 
Max Planck Strasse 1-3 Koning en Hartman Elektrotechniek High Wycombe 

Almex 6072 Dreieich B.V. Industrade A.G. BUCkln~hamshlre HP11 2ER 
Zone industrielle d'Antony Tel: (49) 06103/30434-3 Energleweg 1 Hertlstrasso 31 m'<:;\.k~4) 450244 
48, rue de l'Aubepine TLX: 417903 2627 AP Delft 8304 Wailisellen 
BP 102 +~,<~~~W 15/609906 Tel: (41) (01) 8328111 
92164 Antony cedex IRELAND Tl.X: 56788 

YUGOSLAVIA Tel: (33) (1) 466621 12 Micro Marketin9 Ltd. NORWAY TURKEY Tl.X: 250067 H.R. Microelectronics Corp. Glenageary Office Park Nordlsk Eleldronikk (Norge) AlS 
Jermyn·Generim Glenageary Postboks 123 EMPA Electronic 2005 de I. Cruz Blvd., SIB. 223 
50, rue des Gemeaux Co. Dublin Smedsvingen 4 Undwurmstrasse 95A Santa Clara, CA 95050 
Silic 580 Tel: (21) (353) (01) 85 63 25 1364 Hvalstad 8000 Muenchen 2 U.S.A. 
94653 Rungis cedex Tl.X: 31584 

+~mJ'If) 84 62 10 
Tel: (49) 089/53 80 570 Tel: (1) (408) 988-0286 

Tel: (33) (1) 49 78 49 78 Tl.X: 528573 Tl.X: 387452 
Tl.X: 261565 ISRAEL 

ReDldo Electronic Components 
Metrologie Easnonics Lta. PORTUGAL UNITED KINGDOM 

S.p.a. 
Tour d'Asnleres 11 Rozanis Street ATD Portugal LDA Accent Electronic Components Ltd. Via C. Beccaria, 8 
4, avo Laurent-Cely P.O.B. 39300 Rua Dos Luslados, 5 Sala B Jubilee House, Jubilee Road 34133 Trieste 
92606 Asnieres Cedex Tel-Aviv 61392 1300 Usboa Letchworth, Herts SG61TL Halla 
Tel: (33) (1) 47 90 62 40 Tel: (972) 03-475151 +~,<~~ 64 80 91 Tel: (44) (0462) 686666 Tel: (39) 040/360555 
Tl.X: 611448 Tl.X: 33638 Tl.X: 826293 TL.X: 460461 



AU5ll1ALlA 

Intel Australia Pty. ltd.* 
Spectrum Building 

~~~i~t~E,L~~k 6 

Tel: 612·957·2744 
FAX: 612·923·2632 

BRAZIL 

Intel Semicondutores do Brazil LTDA 
Av. Paulista. 11Sg..CJS 404/405 
01311 - Sao Paulo - S.P. 
Tel: 55-11·287·5899 
TLX: 391115314615D6 
FAX: 55·11·287-5119 

CHINAlHONG KONG 

Inlel PRC Corporation 
15/F, OIIIce 1, Citlc Bldg. 
Jian Guo Men Wal Street 

¥:,ili(~, :~4850 
TLX: 22947 INTEL CN 
FAX: (1) 500·2953 

Intel Semiconductor Ud." 
1 OIF East Tower 
Bond Center 
Queensway, Central 
Hong Kong 
Tel: (5) 8444-555 
TLX: 63869 ISHLHK HX 
FAX: (5) 8681·989 

INTERNATIONAL SALES OFFICES 
INDIA 

Intel Asia Electronics, Inc. 
4/2, Samrah Plaza 
SI. Mark's Road 
Sangalore 560001 
Tel: 011·91·812·215065 
TLX: 9538452875 DC6Y 
FAX: 091·812·215067 

JAPAN 

Intel Japan K.K. 
5-6 Takodai, Tsukuba-shi 
Ibarakl, 300-26 
Tel: 0298-47·8511 
TLX: 3656·160 
FAX: 029747-8450 

Intel Japan ttK." 
Dailchl Milsugl Bldg. 
1-8889 Fuchu-cho 

. Fuchu-shi. Tokyo 183 
Tel: 0423-60·7871 
FAX: 0423-60-0315 

Intel Japan K.K. * 
Bldg. Kumagaya 
2-69 Hon-cho 
Kumagaya-shi, Saltama 360 
Tel: 04B5·24·6871 
FAX: 0485-24·7518 

~f~ui~~:~~'~~saShi-kOSU9i Bldg. 
915 Shinmaruko, Nakahara-ku 
Kawasaki-shit Kanagawa 211 
Tel: 044·733·7011 
FAX: 044-733·7010 

~f~~~~:~~i~sugi Bldg. 
1·2·1 Asahi·machi 
Atsugi·shi, Kanagaw.a 243 
Tel: 0462·29-3731 
FAX: 0<162·29-3781 

Intel Japan K.K. * 
Ryokuchl·Ekl Bldg. 
2-4-' Terauchi 
Toyonaka-shi, Osaka 560 
Tel: 06-863-1091 
FAX: 06-863·1084 

Intel Japan K.K 
Shlnmaru Bldg. 
1-5--1 Marunouchl 
Chiyoda·ku, Tokyo 100 
Tel: 03·201-3621 
FAX: 03-201-6850 

~~:~~,~~.K.K 
1-16-20 Nishiki 
Naka-ku, Nagoya-shl 
Alchl450 
Tel: 052·204-1261 
FAX: 052·204-1285 

KOREA 

Intel Technology Asia, Ltd. 
16th Floor, Life Bldg. 
61 Yoido-dong, Youngdeungpo-Ku 
Seoul 150·010 
Tel: (2) 784·8186, 8286, 8386 
TLX: K293121NTELKO 
FAX: (2) 784·8096 

SINGAPORE 

Intel Singapore Technology, Ltd. 
101 Thomson Road #21·05/06 
United Square 
Singapore 1130 
Tel: 250·7811 
TLX: 39921 INTEL 
FAX: 250·9256 

TAIWAN 

Intel Technology Far East Ltd. 
8th Floor, No. 205 
Bank Tower Bldg. 
Tung Hua N. Road 
Taipei 
Tel: 886-2·716-9660 
FAX: 886-2·717·2455 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
ARGENTINA 

DAFSYS S.R.L. 
Chacabuco, 91l-6 PI60 
1069-Buenos Aires 
Tel: 54-1-334·7726 
FAX: 54·1·334·1871 

AUSllIALIA 

Email Electronics 
15-17 Hume Street 
Huntingdsle, 3166 
Tel: 011·61-3·544-8244 
TLX: AA 30895 
FAX: 011·81-3-543-8179 

NSD-Australia 

~~~ ~:&,d~~:~au~~2~d. 
Tel: 03 8900970 
FAX: 03 8990819 

BRAZIL 

Elebra Microelectronlca SA 
Rua Geraldo FJausina' Gomes, 78 
10th Aoor 
04575· Sao Paulo - S.P. 
Tel: 55·11-534·9641 
TLX: 55·11·54593/54591 
FAX: 55·11·534·9424 

CHILE 

DIN Instruments 
Suecia2323 
Casilla 6055, Correo 22 
Santiago 
Tel: 56·2·225·8139 
TLX: 240.846 RUD 

CHINAlHONG KONG 

~I~r~.p~gc~~o;~~r~~~ral~~.' Ltd. 
Phase 1. 26 Kwai He! Street 
N.T., Kowloon 

~~I~i5~~223222 
TWX: 39114 JINMI HX 
FAX: 852·0-4261602 

*Fleld Appfication Location 

INDIA 

Micronic Devices 
Arun Complex 
No. 65 D.V.G. Road 
Basavanagudi 
Bangalore 560 004 
Tel: 011·91·812-600-63 t 

011·91·812-611-365 
TLX: 9538456332 MDBG 

Mlcronic Devices 
No. 516 5th Floor 
SwastiW: Chambers 
Sian, Trombay Road 
Chembur 
Bombay 400 071 
TLX: 9531 171447 MDEV 

Micronic Devices 
25/8, 1st Floor 
Beds Bazaar Marg 
Old Rajinder Nagar 
New Deihl 110 060 
Tel: 011·91·11·5723509 

011·91-11·589771 
TLX: 031·63253 MDND IN 

Mlcronlc Devices 
6·3-348/12A Dwarakapuri Colony 
Hyderabad 500 482 
Tel: 011·91-842·226748 

S&S Corporation 
1587 Kooser Road 
San Jose, CA 95118 
Tel: (408) 978-8216 
TLX: 820281 
FAX: (408) 978·8635 

JAPAN 

Asahi Electronics Co. Ltd. 
KMM Bldg. 2-14-1 Asano 
Kokurakita-ku 
Kitakyushu·shl 802 
Tel: 093·511-8471 
FAX: 093·551·7861 

C. Itoh Techno-Sclence Co., Ud. 
4-8-1 Dobashi, Miyamae-ku 
Kawasakl-shl, Kanagawa 213 . 
Tel: 044·852·5121 
FAX: 044·877-4268 

Dia Semicon Systems. Inc. 
Flower Hill Shinmachl Higashl-kan 
1-23-9 Shlnmachi, Setagaya-ku 
Tokyo 154 
Tel: 03-439-1600 
FAX: 03-439-1601 

~!r~~ 
Naka-ku, Nagoya-shl 460 
Tel: 052·204-2916 
FAX: 052·204·2901 

Ryoyo Electro Corp. 
Konwa Bldg. 
1-12-22 Tsukiji 
Chuo·ku, Tokyo 104 
Tel: 03·546-5011 
FAX: 03-546-5044 

KOREA 

J-Tek Corporation 
6th Floor, Government Pension Bldg. 
24-3 Yeida-dong 

~~~~p~~g~~~kU 
Tel: 82-2-780-8039 
TLX: 25299 KODIGIT 
FAX: 62·2·784·8391 

Samsung Electronics 
150 Taepyungro·2 KA 
Chungku, Seoul 100-102 
Tel: 82-2·751-3985 
TLX: 27970 KORSST 
FAX: 82·2·753-0967 

MEXICO 

SSB Electronics, Inc. 
675 Palomar Street, Bldg. 4, Suite A 
Chula Visla, CA 92011 
Tel: (619) 585-3253 
TLX: 287751 CBALL UR 
FAX: (619) 586·8322 

Dicopel S.A. 
Tochtli 368 Frace. Ind. San Antonio 
Azcapotzalco 
C.P. 02760·Mexlco, D.F. 
Tel: 52·5-561-3211 
TLX: 177 3790 Dicoms 
FAX: 52·5·561-1279 

PSI de Mexico 
Francisco Villas Esq. AJusto 
Cuernavaca-Morelos-CEP 62130 
Tel: 52-73-13-9412 
FAX: 52·73-17·5333 

NEW ZEALAND 
Email Electronics 
36 Olive Road 
Penrose. Auckland 
Tel: 011-64·9-591-155 
FAX: 011·64·9·592-681 

SINGAPORE 
Electronic Resources Pte, Ltd. 
17 Harvey Road #04·01 
Singapore 1336 
Tel: 283-0888 
TWX: 56541 ERS 
FAX: 2895327 

SOUTH AFRICA 
Electronic Building Elements 
178 Erasmus Street (off Watermeyet Street) 
Meyerspark, Pretoria, 0184 
Tel: 011·2712·803·7680 
FAX: 011·2712·803-8294 

TAIWAN 
Micro Electronics Co~oration 
f;p~f A~~ Shen as! Rd. 

Tel: 886-2·501·6231 
FAX: 856·2·505-6609 
Sartek 
15/F 135, Section 2 
Chien Juo North Rd. 
Taipei 10479, R.O.C. 
Tel: (02) 5010055 
FAX: (02) 5012521 

(02) 5058414 

VENEZUELA 
P. Benavides S.A. 
Avilanes a Rio 
Resldencla Kamarata 
Locaies 4 AL 7 
La Candelaria, Caracas 
Tel: 58·2·574-6338 
TLX: 28450 
FAX: 58-2·572·3321 



ALABAMA 

"'Intel Corp. 
5015 Bradford Dr., Suite 2 
Huntsville 3SB05 
Tel: (205) 830-4010 

ALASKA 

Intel Corp. 
c/o TransAlaska Data Systems 
300 Old Steese Hwy. 
Fairbanks 99701·3120 
Tel: (9071 452-4401 

Intel Cotp. 
c/o TransAlaska Data Systems 
1551 Lore Road 

re~~~~~~e5~~1°176 

ARIZONA 

"'Intel Corp. 
11225 N. 28th Dr. 
Suite 0·214 
Phoenix 85029 
Tel: (602) 869·4980 

"'Intel Corp. 
500 E. Fry Blvd., Suite M-15 
Sierra Vista 65635 
Tel: (602) 459-5010 

CALIFORNIA 

tlntel Corp. 
21515 Vanowen St., Ste. 116 
Canoga Park 91303 
Tel: (818) 704-8500 

"'Intel Corp. 
2250 E. Imperial Hwy., Ste. 218 
EI Segundo 90245 
Tel: (213) 640-6040 

"'Intel Corp. 
1900 Prairie City Rd. 
Folsom 95630-9597 
Tel: (916) 351-6143 

1-800-468-3548 

Intel Corp. 
9665 Cheasapeake Dr., Suite 325 
San Diego 92123-1326 
Tel: (619) 292-8086 

**Intel Corn. 
400 N. Tustin Avenue 
Suite 450 
Santa Ana 92705 
Tel: (714) 835-9642 

CALIFORNIA 

2700 San Tomas Expressway 
Santa Clara 95051 
Tel: (408) 970-1700 

1-800-421·0386 

DOMESTIC SERVICE OFFICES 
""""tlntel Corp. 
San Tomas 4 

KANSAS NEW YORK 

2700 San Tomas Exp., 2nd Floor *Intel Corp. "'tlntel Corp. 
Santa Clara 95051 10985 Cody, Suite 140 2950 Expressway Dr. South 
Tel: (408) 986-8086 Overland Park 66210 Islandia 11722 

Tel: (913) 345-2727 Tel: (516) 231-3300 

COLORADO 
i,~~~~~r~USiness Center MARYLAND 

*Intel Corp. Bldg. 300. Route 9 
650 S. Cherry St., Suite 915 **tlnlel Corp. Fishkill 12524 
Denver 80222 10010 Junction Dr., Suite 200 Tel: (914) 897-3860 
Tel: (303) 321-8086 Annapolis Junction 20701 

Tel: (301) 206-2860 

CO~NECT!CIJT 
FAX: 301-206-3677 NORTH CAROLINA 

*Intel Corp. 
;~ieL~°rPa:rm Corporate Park 

MASSACHUSETTS 5800 Executive Dr., Sto. 105 
Charlotte 28212 83 Wooster Heights Rd. "''''tlntel Corp. Tel: (704) 568-8966 Danbury 06810 3 Carlisle Rd., 2nd Floor 

Tel: (203) 748-3130 Westford 01886 """Intel Corp. 
Tel: (508) 692-1060 2700 Wycliff Road 

FLORIDA Suite 102 

MICHIGAN 
Raleigh 27607 

"""Intel Corp. Tel: (919) 781-8022 
6363 N.W. 6th Way, Ste. 100 "'tlntel Corp. Ft. Lauderdale 33309 
Tel: (305) 771-0600 

7071 Orchard Lake Rd., Ste. 100 OHIO 
West Bloorirfield 48322 

"'Intel Corp. 
Tel: (313) 851-8905 """tlntel Corp. 

5850 T.G. Lee Blvd., Ste. 340 3401 Park Center Dr., Ste. 220 
Orlando 32822 MINNESOTA Dayton 45414 
Tel: (407) 240-8000 Tel: (513) 890-5350 

;t~ae~~~(fth St., Suite 360 "'tlntal Corp. 
GEORGIA Bloomington 55431 25700 SCience Park Dr., Ste. 100 

Tel: (612) 835-6722 Beachwood 44122 
"'Intel Corp. Tel: (216) 464-2736 
3280 Pointe Pkwy., Ste. 200 
Norcross 30092 MISSOURI 
Tel: (404) 449-0541 OREGON 

"'Intel Corp. 
HAWAII 4203 Earth City Exp., Ste. 131 Intel Corp. 

'f:r~3~~ ~~~~~90 
15254 N.W. Greenbrier Parkway 

*Intel Corp. 
Building B 
Beaverton 97005 

U.S. I. S.C. Signal Batt. Tel: (503) 646-8051 
Building T-1521 

NEW JERSEY Shafter Plats "'Intel Corp. Shafter 96856 
"""Intel Corp. 5200 N.E. Elam Young Parkway 
300 Sylvan Avenue Hillsboro 97123 

ILLINOIS Englewood Cliffs 07632 Tel: (503) 681-8080 
Tel: (201) 567-0821 

"""tlntel Corp. 
300 N. Martingale Rd., Ste. 400 *Intel Corp. PENNSYLVANIA 
Schaumburg 60173 Parkway 109 Office Center 
Tel: (312) 605-8031 328 Newman Springs Road "'tlntel Corp. 

Red Bank 07701 455 Pennsylvania Ave., 8te. 230 
Tel: (201) 747-2233 Fort Washington 19034 

INDIANA Tel: (215) 641-1000 
"'Intel Corn. 

*Intel Corp. 280 Corporate Center tlntel Corp. 
6777 Purdue Rd., Ste. 125 75 Uvingston Ave., 1st Floor 400 Penn Center Blvd., Ste. 610 
Indianaoolis 46268 Roseland 07068 Pittsburch 15235 
Tel: (317) 875-0623 Tel: (201) 740-0111 Tel: (412) 823-4970 

CUSTOMER TRAINING CENTERS 
ILLINOIS 

300 N. Martingale Road 
Suite 300 
Schaumburg 60173 
Tel: (708) 706-5700 

1-800-421-0386 

MASSACHUSETTS 

3 Carlisle Road, First Floor 
Westford 01886 
Tel: (301) 220-3380 

1-800-328-0386 

MARYLAND 

10010 JUnction Dr. 
Suite 200 
Annapolis Junction 20701 
Tel: (301) 206-2860 

1-800-328-0386 

Intel Corp. 
1513 Cedar Cliff Dr. 

~:I~fr1~~1 ~ln160 
PUERTO RICO 

Intel Corp. 
South Industrial Park 
P.O. Box 910 
Las Piedras 00671 
Tel: (809) 733-8616 

TEXAS 

Intel Corp. 
8815 Over St.. Suite 225 
EI Paso 79904 
Tel: (915) 751-0186 

"'Intel Corp. 
313 E. Anderson Lane, Suite 314 
Austin 78752 
Tel: (512) 454-3628 

"""tlntel Corp. 
12000 Ford Rd., Suite 401 
Dallas 7523!t 
Tel: (214) 241-8087 

"'Intel Corp. 
7322 S.W. Freeway, Ste. 1490 
Houston 77074 
Tel: (713) 988-8086 

UTAH 

Intel Corp. 
428 East 6400 South, Ste. 104 
Murray 84107 
Tel: (801) 263-8051 

VIRGINIA 

"'Intel Corp. 
1504 Santa Rosa Rd., Ste. 108 
Richmond 23288 
Tel: (804) 282-5668 

WASHINGTON 

*Intel Corp. 
155 lOath Avenue N.E., Ste. 386 
Bellevue 98004 
Tel: (206) 453-8086 

CANADA 
ONTARIO 

Intel Semiconductor of 
Canada, Ltd. 
2650 Queensview Dr., Ste. 250 
Ottawa K2B 8H6 
Tel: (613) 829-9714 
FAX: 6t3-820-5936 

Intel Semiconductor of 
Canada. Ltd. 
190 Attwell Dr .. Ste. 102 
Rexdale M9W 6H8 
Tel: (416) 675-2105 
FAX: 416-675-2438 

SYSTEMS ENGINEERING MANAGERS OFFICES 
MINNESOTA 

3500 W. 80th Street 
Suite 360 

~~~~~~~~t~~5~~j~~ 

tSystem Engineering locations 
*Carry-in locations 

*"'Carry-in/mail·in locations 

NEW YORK 

2950 Expressway Dr., South 
Islandia 11722 
Tel: (506) 231-3300 




