IDT-C6[™] Processor from Centaur Technology Inc.

"The Value Processor"

C6 & IDT-C6 are trademarks of Integrated Device Technology Inc.

Centaur Technology Inc.

x86 processor design Started 4/95 by Glenn Henry Subsidiary of Integrated Device Technology Manufacturing & sales partner Substantial processor & x86 expertise • IBM, Somerset, Motorola, DEC, AMD, TI, Dell Unique culture & management approach Yields very high productivity & responsiveness

Target Market

Who Did We Design For?

Low-cost desktops & mobile systems

- Substantially less than \$1500 total system
- Currently with 120-150 MHz P54-class CPU

Price-conscious consumers

- Looking for best value
- Focusing on total system price & performance
- Running primarily business applications
 - Word, spreadsheet, database, drawing
- Represents 40-50% of market volume

Observations

Low-end commodity desktop (VX, 256 KB, 32-MB EDO, Trident 1MB)

4

IDT-C6 Strategy

Competitive Performance Low Cost Low Price

Lowest Power

Unique Design Approach <u>Best Value</u> (WS/\$ & WS/Watt) <u>Target Markets</u> < \$1500 Desktops & Mobile Systems

IDT-C6 Processor

Plug-compatible with P55 (Socket 7)
 Includes MMXTM-compatible instructions

Competitive performance
 On targeted applications/environments

Very low cost - aggressive pricing

• 88-mm² die

Lowest power

Low-cost technology

"Back to the future" design approach

• Less than mobile P55 (which is less than all else)

IDT-C6 Product Offerings

Separate desktop & mobile versions

- More dynamic power management in mobile
- All with MMX-compatible instructions
 296-pin CPGA packages
 Single voltage (3.3V/3.52V)

Performance (200 MHz, WS97-B-95)

Low-end commodity desktop (VX, 256 KB, 32-MB EDO, Trident 1MB)

8

Performance/Size (Cost)

Low-end commodity desktop

Power Dissipation (Max W)

Note: IDT-C6 at 3.3V core

10

How'd We Do It?

Back To The Future!

Re-applied original RISC principles

- Simple microarchitecture
- Large caches (KB) & TLBs
- Highly tuned for actual usage
- "Value-justification" of hardware
- vs. current trend of complexity & large size
 Techno mumbo jumbo for its own sake
- Patents pending

IDT-C6 Design Concept

Benefits of IDT-C6 Approach

Small size

- High efficiency of cache & arrays
- Minimal control logic
- No bleeding-edge technology needed
- Low power dissipation
 - Few logic transistors
 - Easy to dynamically manage caches
- Fast design cycle
 market responsive
- Easy to verify (compatibility)
 - vs. out-of-order, super-scalar, etc.

LOW

Cost

IDT-C6 Architecture

Transistors

Transistors 3.99 M SRAM

- 0.32 ROM
- 0.37 Full Custom
- 0.51 Datapath
- 0.21 Control logic

5.40 M Total C6 88 mm²

vs. 4.50 *M* Total P55 141 mm²

Technology

■ 0.35µ CMOS (IDT "CMOS 9.5") ■ 0.28µ gate length (drawn) ■ 4-level metal, stacked vias 6T SRAM cell Low cost technology No local interconnect, no trench isolation, etc. To be manufactured in 2 IDT Fabs Including new 8" Fab 4 (Oregon)

Current Status

Working silicon available for 11 months First silicon booted Windows

Compatible now

- Extensive board, OS & application testing
- No significant errata
- Ready for formal outside testing
- Engineering samples available now
 - To Beta customers

Production shipments 3rd quarter

Roadmap

