
 2-63

2System Management Mode

2.9 System Management
Mode

System Management Mode (SMM) provides an
additional interrupt which can be used for
system power management or software trans-
parent emulation of I/O peripherals. SMM is
entered using the System Management Inter-
rupt (SMI#) that has a higher priority than any
other interrupt, including NMI. An SMI inter-
rupt can also be triggered via software using an
SMINT instruction. After an SMI interrupt,
portions of the CPU state are automatically

saved, SMM is entered, and program execution
begins at the base of SMM address space
(Figure 2-37). Running in SMM address space,
the interrupt routine does not interfere with the
operating system or any application program.

Eight SMM instructions have been added to the
x86 instruction set that permit software initiated
SMM, and saving and restoring of the total CPU
state when in SMM mode. Two SMM pins,
SMI# and SMIACT#, support SMM functions.

Figure 2-37. System Management Memory Address
Space

2.9.1 SMM Operation

FFFF FFFFh

Physical Memory

Physical

0000 0000h

Potential

0000 0000h

FFFF FFFFh

1713604
Non-SMM Mode

SMIACT# Active
4 KBytes to

SMM Mode

4 GBytes

Memory Space SMM Address
Space

4 GBytes

SMIACT# Negated

Defined
SMM

Address
Space

2-64

System Management Mode

SMM operation is summarized in Figure 2-38.
Entering SMM requires the assertion of the
SMI# pin for at least two CLK periods or execu-
tion of the SMINT instruction. For the SMI# or
SMINT instruction to be recognized, the
following configuration register bits must be set
as shown in Table 2-33. The configuration
registers are discussed in detail earlier in this
chapter.

After recognizing SMI# or SMINT and prior to
executing the SMI service routine, some of the
CPU state information is changed. Prior to
modification, this information is automatically
saved in the SMM memory space header
located at the top of SMM memory space.
After the header is saved, the CPU enters real
mode and begins executing the SMI service
routine starting at the SMM memory base
address.

The SMI service routine is user definable and
may contain system or power management
software. If the power management software
forces the CPU to power down, or the SMI
service routine modifies more than what is
automatically saved, the complete CPU state
information can be saved.

Figure 2-38. SMI Execution
Flow Diagram

Table 2-33. Requirements for Recognizing SMI# and
SMINT

REGISTER (Bit) SMI# SMINT

SMI CCR1 (1) 1 1

SMAC CCR1 (2) 0 1

ARR3 SIZE (3-0) > 0 > 0

SM3 CCR1 (7) 1 1

2.9.2 SMM Memory Space

SMI# Sampled Active or

CPU State Stored in SMM

Program Flow Transfers

CPU Enters Real Mode

Execution Begins at SMM

RSM Instruction Restores CPU

Normal Execution Resumes

Address Space Header

to SMM Address Space

Address Space Base Address

State Using Header Information

SMINT Instruction Executed

 2-65

2System Management Mode

Header

With every SMI interrupt or SMINT instruc-
tion, certain CPU state information is automati-
cally saved in the SMM memory space header
located at the top of SMM address space as
shown Figure 2-39 and Table 2-34 (Page 2-66).

The header contains CPU state information that
is modified when servicing an SMI interrupt.
Included in this information are two pointers.
The Current IP points to the instruction that was
executing when the SMI was detected.

Figure 2-39. SMM Memory Space Header

DR7

EFLAGS

CR0

031
Top of SMM

-4h

-8h

-Ch

-10h

-14h

-18h

-1Ch

-20h

-24h

-28h

P

Current IP

Next IP

CS Selector

CS Descriptor (Bits 63-32)

CS Descriptor (Bits 31-0)

ESI or EDI

I

31 16 15 0

31 2 1 0

-2Ch

-30h

Address Space

3

S

I/O Write AddressI/O Write Data Size

I/O Write Data

16 15

2122

CPL

H

4

Reserved

Reserved

Reserved

Reserved

2-66

System Management Mode

The Next IP points to the instruction that will
be executed after exiting SMM. Also saved are
the contents of debug register 7 (DR7), the
extended flags register (EFLAGS), and control
register 0 (CR0). If SMM has been entered due
to an I/O trap for a REP INSx or REP OUTSx
instruction, the Current IP and Next IP fields
contain the same addresses and the I and P field
contain valid information.

If entry into SMM was caused by an I/O trap it
is useful for the programmer to know the port
address, data size and data value associated with
that I/O operation. This information is also
saved in the header and is only valid for an I/O
write operation. The I/O write information is
not restored within the CPU when executing a RSM
instruction.

Table 2-34. SMM Memory Space Header

NAME DESCRIPTION SIZE

DR7 The contents of Debug Register 7. 4 Bytes

EFLAGS The contents of Extended Flags Register. 4 Bytes

CR0 The contents of Control Register 0. 4 Bytes

Current IP The address of the instruction executed prior to servicing SMI interrupt. 4 Bytes

Next IP The address of the next instruction that will be executed after exiting SMM mode. 4 Bytes

CS Selector Code segment register selector for the current code segment. 2 Bytes

CPL Current privilege level for current code segment. 2 Bits

CS Descriptor Code segment register descriptor for the current code segment. 8 Bytes

H If set indicates the processor was in a halt or shutdown prior to servicing the
SMM interrupt.

1 Bit

S Software SMM Entry Indicator.
S = 1, if current SMM is the result of an SMINT instruction.
S = 0, if current SMM is not the result of an SMINT instruction.

 1 Bit

P REP INSx/OUTSx Indicator.
P = 1 if current instruction has a REP prefix.
P = 0 if current instruction does not have a REP prefix.

 1 Bit

I IN, INSx, OUT, or OUTSx Indicator.
I = 1 if current instruction performed is an I/O WRITE.
I = 0 if current instruction performed is an I/O READ.

 1 Bit

I/O Write Data Size Indicates size of data for the trapped I/O write.
 01h = byte
 03h = word
 0Fh = dword

 2 Bytes

I/O Write Address Processor port used for the trapped I/O write. 2 Bytes

I/O Write Data Data associated with the trapped I/O write. 4 Bytes

ESI or EDI Restored ESI or EDI value. Used when it is necessary to repeat a REP OUTSx or
REP INSx instruction when one of the I/O cycles caused an SMI# trap.

 4 Bytes

Note: INSx = INS, INSB, INSW or INSD instruction.
Note: OUTSx = OUTS, OUTSB, OUTSW and OUTSD instruction.

 2-67

2System Management Mode

2.9.3 SMM Instructions

The IBM 6x86 CPU automatically saves the
minimal amount of CPU state information
when entering SMM which allows fast SMI
service routine entry and exit. After entering
the SMI service routine, the MOV, SVDC,
SVLDT and SVTS instructions can be used
to save the complete CPU state information.
If the SMI service routine modifies more than
what is automatically saved or forces the CPU
to power down, the complete CPU state
information must be saved. Since the CPU is
a static device, its internal state is retained
when the input clock is stopped. Therefore,
an entire CPU state save is not necessary
prior to stopping the input clock.

The new SMM instructions, listed in Table 2-35,
can only be executed if:

1) SMI# = 0
2) SM3 = 1
3) ARR3 SIZE > 0
4) Current Privilege Level = 0
5) SMAC bit is set or the CPU is in an

SMI service routine.

If the above conditions are not met and an
attempt is made to execute an SVDC, RSDC,
SVLDT, RSLDT, SVTS, RSTS, SMINT or
RSM instruction, an invalid opcode exception is
generated. These instructions can be executed
outside of defined SMM space provided the above
conditions are met.

The SMINT instruction may be used as a soft-
ware controlled mechanism to enter SMM.

Table 2-35. SMM Instruction Set

INSTRUCTION OPCODE FORMAT DESCRIPTION

 SVDC 0F 78 [mod sreg3 r/m] SVDC mem80, sreg3Save Segment Register and Descriptor
Saves reg (DS, ES, FS, GS, or SS) to mem80.

 RSDC 0F 79 [mod sreg3 r/m] RSDC sreg3, mem80Restore Segment Register and Descriptor
Restores reg (DS, ES, FS, GS, or SS) from
mem80.
Use RSM to restore CS.
Note: Processing “RSDC CS, Mem80” will produce an
exception.

 SVLDT 0F 7A [mod 000 r/m] SVLDT mem80 Save LDTR and Descriptor
Saves Local Descriptor Table (LDTR) to mem80.

 RSLDT 0F 7B [mod 000 r/m] RSLDT mem80 Restore LDTR and Descriptor
Restores Local Descriptor Table (LDTR) from
mem80.

 SVTS 0F 7C [mod 000 r/m] SVTS mem80 Save TSR and Descriptor
Saves Task State Register (TSR) to mem80.

 RSTS 0F 7D [mod 000 r/m] RSTS mem80 Restore TSR and Descriptor
Restores Task State Register (TSR) from mem80.

 SMINT 0F 7E SMINT Software SMM Entry
CPU enters SMM mode. CPU state information
is saved in SMM memory space header and exe-
cution begins at SMM base address.

 RSM 0F AA RSM Resume Normal Mode
Exits SMM mode. The CPU state is restored
using the SMM memory space header and execu-
tion resumes at interrupted point.

Note: mem80 = 80-bit memory location

2-68

System Management Mode

All of the SMM instructions (except RSM and
SMINT) save or restore 80 bits of data, allow-
ing the saved values to include the hidden por-
tion of the register contents.

2.9.4 SMM Memory Space

SMM memory space is defined by setting the
SM3 bit and specifying the base address and
size of the SMM memory space in the ARR3
register. The base address must be a multiple
of the SMM memory space size. For example,
a 32 KByte SMM memory space must be
located at a 32 KByte address boundary. The
memory space size can range from 4 KBytes to
4 GBytes.

SMM memory space accesses are always
non-cacheable. SMM accesses ignore the state
of the A20M# input pin and drive the A20
address bit to the unmasked value.

SMM memory space can be accessed while in
normal mode by setting the SMAC bit in the
CCR1 register. This feature may be used to
initialize the SMM memory space.

2.9.5 SMI Service Routine
Execution

Upon entry into SMM, after the SMM header
has been saved, the CR0, EFLAGS, and DR7
registers are set to their reset values. The Code
Segment (CS) register is loaded with the base,
as defined by the ARR3 register, and a limit of
4 GBytes. The SMI service routine then
begins execution at the SMM base address in
real mode.

The programmer must save the value of any
registers that may be changed by the SMI service
routine. For data accesses immediately after
entering the SMI service routine, the programmer
must use CS as a segment override. I/O port
access is possible during the routine but care must
be taken to save registers modified by the I/O
instructions. Before using a segment register, the
register and the register’s descriptor cache
contents should be saved using the SVDC
instruction. While executing in the SMM space,
execution flow can transfer to normal memory
locations.

Hardware interrupts, (INTRs and NMIs), may
be serviced during a SMI service routine. If
interrupts are to be serviced while executing in
the SMM memory space, the SMM memory
space must be within the 0 to 1 MByte address
range to guarantee proper return to the SMI
service routine after handling the interrupt.

INTRs are automatically disabled when
entering SMM since the IF flag is set to its
reset value. Once in SMM, the INTR can be
enabled by setting the IF flag. NMI is also
automatically disable when entering SMM.
Once in SMM, NMI can be enabled by setting
NMI_EN in CCR3. If NMI is not enabled, the
CPU latches one NMI event and services the
interrupt after NMI has been enabled or after
exiting SMM through the RSM instruction.

Within the SMI service routine, protected mode
may be entered and exited as required, and real
or protected mode device drivers may be
called.

 2-69

2Shutdown and Halt

To exit the SMI service routine, a Resume
(RSM) instruction, rather than an IRET, is
executed. The RSM instruction causes the
IBM 6x86 processor to restore the CPU state
using the SMM header information and
resume execution at the interrupted point. If
the full CPU state was saved by the
programmer, the stored values should be
reloaded prior to executing the RSM instruc-
tion using the MOV, RSDC, RSLDT and
RSTS instructions.

CPU States Related to SMM and Suspend
Mode

The state diagram shown in Figure 2-40 (Page
2-70) illustrates the various CPU states associ-
ated with SMM and suspend mode. While in
the SMI service routine, the IBM 6x86 CPU
can enter suspend mode either by (1) executing
a halt (HLT) instruction or (2) by asserting the
SUSP# input.

During SMM operations and while in SUSP#
initiated suspend mode, an occurrence of
SMI#, NMI, or INTR is latched. (In order for
INTR to be latched, the IF flag must be set.)
The INTR or NMI is serviced after exiting
suspend mode.

If suspend mode is entered via a HLT instruc-
tion from the operating system or application
software, the reception of an SMI# interrupt
causes the CPU to exit suspend mode and enter
SMM.

2.10 Shutdown and Halt

The Halt Instruction (HLT) stops program exe-
cution and prevents the processor from using the
local bus until restarted. The IBM 6x86 CPU
then issues a special Stop Grant bus cycle and
enters a low-power suspend mode if the
SUSP_HLT bit in CCR2 is set. SMI, NMI,
INTR with interrupts enabled (IF bit in
EFLAGS=1), WM_RST or RESET forces the
CPU out of the halt state. If interrupted, the
saved code segment and instruction pointer
specify the instruction following the HLT.

Shutdown occurs when a severe error is detected
that prevents further processing. An NMI input
can bring the processor out of shutdown if the
IDT limit is large enough to contain the NMI
interrupt vector and the stack has enough room
to contain the vector and flag information.
Otherwise, shutdown can only be exited by a
processor reset.

2-70

Shutdown and Halt

Figure 2-40. SMM and Suspend Mode State Diagram

O S/Application

SoftwareRESET

R S M*SMI#=0

HLT*

SUSP#=1

NM I or INTR

SUSP#=0

SUSP#=1

HLT*

INTR or N M I
IRET*

INTR and N M I

IRET*

IRET*

* Instructions

SMI# = 0

(INTR, N M I and S M I latched)

(INTR and N M I latched)

SMI Service

Suspend Mode Interrupt Service

Suspend Mode

Suspend Mode

Suspend Mode

SUSP#=0

Non-SMM Operations
SMM Operations

(SUSPA# = 0) Routine

(SUSPA# = 0)

(SUSPA# = 0)

Routine
(SMI#=0)

(SUSPA# = 0)

Interrupt Service
Routine

Interrupt Service
Routine

S MINT*

NM I or INTR

 2-71

2Protection

2.11 Protection

Segment protection and page protection are
safeguards built into the IBM 6x86 CPU
protected mode architecture which deny unau-
thorized or incorrect access to selected
memory addresses. These safeguards allow
multitasking programs to be isolated from each
other and from the operating system. Page
protection is discussed earlier in this chapter.
This section concentrates on segment protec-
tion.

Selectors and descriptors are the key elements
in the segment protection mechanism. The
segment base address, size, and privilege level
are established by a segment descriptor. Privi-
lege levels control the use of privileged
instructions, I/O instructions and access to
segments and segment descriptors. Selectors
are used to locate segment descriptors.

Segment accesses are divided into two basic
types, those involving code segments (e.g.,
control transfers) and those involving data
accesses. The ability of a task to access a
segment depends on the:

• segment type
• instruction requesting access
• type of descriptor used to define the

segment
• associated privilege levels (described

below).

Data stored in a segment can be accessed only
by code executing at the same or a more privi-
leged level. A code segment or procedure can
only be called by a task executing at the same
or a less privileged level.

2.11.1 Privilege Levels

The values for privilege levels range
between 0 and 3. Level 0 is the highest privi-
lege level (most privileged), and level 3 is the
lowest privilege level (least privileged). The
privilege level in real mode is effectively 0.

The Descriptor Privilege Level (DPL) is the
privilege level defined for a segment in the
segment descriptor. The DPL field specifies
the minimum privilege level needed to access
the memory segment pointed to by the
descriptor.

The Current Privilege Level (CPL) is defined
as the current task’s privilege level. The CPL
of an executing task is stored in the hidden
portion of the code segment register and essen-
tially is the DPL for the current code segment.

The Requested Privilege Level (RPL) speci-
fies a selector’s privilege level and is used to
distinguish between the privilege level of a
routine actually accessing memory (the CPL),
and the privilege level of the original requestor
(the RPL) of the memory access. The lesser of
the RPL and CPL is called the effective privilege
level (EPL). Therefore, if RPL = 0 in a
segment selector, the effective privilege level
is always determined by the CPL. If RPL = 3,
the effective privilege level is always 3 regard-
less of the CPL.

For a memory access to succeed, the effective
privilege level (EPL) must be at least as privi-
leged as the descriptor privilege level (EPL ≤
DPL). If the EPL is less privileged than the
DPL (EPL > DPL), a general protection fault
is generated. For example, if a segment has a
DPL = 2, an instruction accessing the segment
only succeeds if executed with an EPL ≤ 2.

2-72

Protection

2.11.2 I/O Privilege Levels

The I/O Privilege Level (IOPL) allows the
operating system executing at CPL=0 to define
the least privileged level at which IOPL-sensi-
tive instructions can unconditionally be used.
The IOPL-sensitive instructions include CLI,
IN, OUT, INS, OUTS, REP INS, REP OUTS,
and STI. Modification of the IF bit in the
EFLAGS register is also sensitive to the I/O
privilege level. The IOPL is stored in the
EFLAGS register.

An I/O permission bit map is available as
defined by the 32-bit Task State Segment
(TSS). Since each task can have its own TSS,
access to individual processor I/O ports can be
granted through separate I/O permission bit
maps.

If CPL ≤ IOPL, IOPL-sensitive operations can
be performed. If CPL > IOPL, a general
protection fault is generated if the current task
is associated with a 16-bit TSS. If the current
task is associated with a 32-bit TSS and CPL >
IOPL, the CPU consults the I/O permission
bitmap in the TSS to determine on a port-by-port
basis whether or not I/O instructions (IN,
OUT, INS, OUTS, REP INS, REP OUTS) are
permitted, and the remaining IOPL-sensitive
operations generate a general protection fault.

2.11.3 Privilege Level Transfers

A task’s CPL can be changed only through
intersegment control transfers using gates or
task switches to a code segment with a different
privilege level. Control transfers result from
exception and interrupt servicing and from
execution of the CALL, JMP, INT, IRET and
RET instructions.

There are five types of control transfers that
are summarized in Table 2-36 (Page 2-73).
Control transfers can be made only when the
operation causing the control transfer references
the correct descriptor type. Any violation of
these descriptor usage rules causes a general
protection fault.

Any control transfer that changes the CPL
within a task results in a change of stack. The
initial values for the stack segment (SS) and
stack pointer (ESP) for privilege levels 0, 1,
and 2 are stored in the TSS. During a CALL
control transfer, the SS and ESP are loaded
with the new stack pointer and the previous
stack pointer is saved on the new stack. When
returning to the original privilege level, the
RET or IRET instruction restores the less-priv-
ileged stack.

 2-73

2Protection

Table 2-36. Descriptor Types Used for Control Transfer

TYPE OF CONTROL TRANSFER
OPERATION

TYPES
DESCRIPTOR
REFERENCED

DESCRIPTOR
TABLE

Intersegment within the same privilege level. JMP, CALL, RET, IRET* Code Segment GDT or LDT

Intersegment to the same or a more privileged
level.
Interrupt within task (could change CPL level).

CALL Gate Call GDT or LDT

Interrupt Instruction,
Exception, External
Interrupt

Trap or Interrupt Gate IDT

Intersegment to a less privileged level (changes
task CPL).

RET, IRET* Code Segment GDT or LDT

Task Switch via TSS CALL, JMP Task State Segment GDT

Task Switch via Task Gate CALL, JMP Task Gate GDT or LDT

IRET**, Interrupt
Instruction, Exception,
External Interrupt

Task Gate IDT

 * NT (Nested Task bit in EFLAGS) = 0
** NT (Nested Task bit in EFLAGS) = 1

Gates

Gate descriptors provide protection for privi-
lege transfers among executable segments.
Gates are used to transition to routines of the
same or a more privileged level. Call gates,
interrupt gates and trap gates are used for privi-
lege transfers within a task. Task gates are used
to transfer between tasks.

Gates conform to the standard rules of privi-
lege. In other words, gates can be accessed by
a task if the effective privilege level (EPL) is
the same or more privileged than the gate
descriptor’s privilege level (DPL).

2.11.4 Initialization and
Transition to Protected
Mode

The IBM 6x86 microprocessor switches to real
mode immediately after RESET. While oper-
ating in real mode, the system tables and regis-
ters should be initialized. The GDTR and IDTR
must point to a valid GDT and IDT, respectively. The
GDT must contain descriptors which describe
the initial code and data segments.

The processor can be placed in protected mode
by setting the PE bit in the CR0 register. After
enabling protected mode, the CS register should
be loaded and the instruction decode queue
should be flushed by executing an intersegment
JMP. Finally, all data segment registers should
be initialized with appropriate selector values.

2-74

Virtual 8086 Mode

2.12 Virtual 8086 Mode

Both real mode and virtual 8086 (V86) mode
are supported by the IBM 6x86 CPU allowing
execution of 8086 application programs and
8086 operating systems. V86 mode allows the
execution of 8086-type applications, yet still
permits use of the IBM 6x86 CPU paging
mechanism. V86 tasks run at privilege level 3.
When loaded, all segment limits are set to
FFFFh (64K) as in real mode.

2.12.1 V86 Memory
Addressing

While in V86 mode, segment registers are
used in an identical fashion to real mode. The
contents of the segment register are multiplied
by 16 and added to the offset to form the
segment base linear address. The IBM 6x86
CPU permits the operating system to select
which programs use the V86 address mecha-
nism and which programs use protected mode
addressing for each task.

The IBM 6x86 CPU also permits the use of
paging when operating in V86 mode. Using
paging, the 1-MByte address space of the V86
task can be mapped to anywhere in the
4-GByte linear address space of the IBM 6x86
CPU.

The paging hardware allows multiple V86
tasks to run concurrently, and provides protec-
tion and operating system isolation. The
paging hardware must be enabled to run
multiple V86 tasks or to relocate the address
space of a V86 task to physical address space
greater than 1 MByte.

2.12.2 V86 Protection

All V86 tasks operate with the least amount of
privilege (level 3) and are subject to all of the
IBM 6x86 CPU protected mode protection
checks. As a result, any attempt to execute a
privileged instruction within a V86 task results
in a general protection fault.

In V86 mode, a slightly different set of instruc-
tions are sensitive to the I/O privilege level
(IOPL) than in protected mode. These instruc-
tions are: CLI, INT n, IRET, POPF, PUSHF,
and STI. The INT3, INTO and BOUND varia-
tions of the INT instruction are not IOPL
sensitive.

2.12.3 V86 Interrupt Handling

To fully support the emulation of an 8086-type
machine, interrupts in V86 mode are handled
as follows. When an interrupt or exception is
serviced in V86 mode, program execution
transfers to the interrupt service routine at
privilege level 0 (i.e., transition from V86 to
protected mode occurs) and the VM bit in the
EFLAGS register is cleared. The protected
mode interrupt service routine then determines
if the interrupt came from a protected mode or
V86 application by examining the VM bit in
the EFLAGS image stored on the stack. The
interrupt service routine may then choose to
allow the 8086 operating system to handle the
interrupt or may emulate the function of the
interrupt handler. Following completion of the
interrupt service routine, an IRET instruction
restores the EFLAGS register (restores VM=1)
and segment selectors and control returns to
the interrupted V86 task.

 2-75

2Floating Point Unit Operations

2.12.4 Entering and Leaving
V86 Mode

V86 mode is entered from protected mode by
either executing an IRET instruction at CPL =
0 or by task switching. If an IRET is used, the
stack must contain an EFLAGS image with
VM = 1. If a task switch is used, the TSS must
contain an EFLAGS image containing a 1 in
the VM bit position. The POPF instruction
cannot be used to enter V86 mode since the
state of the VM bit is not affected. V86 mode
can only be exited as the result of an interrupt
or exception. The transition out must use a
32-bit trap or interrupt gate which must point
to a non-conforming privilege level 0 segment
(DPL = 0), or a 32-bit TSS. These restrictions
are required to permit the trap handler to IRET
back to the V86 program.

2.13 Floating Point Unit
Operations

The IBM 6x86 CPU includes an on-chip FPU
that provides the user access to a complete set
of floating point instructions (see Chapter 6).
Information is passed to and from the FPU
using eight data registers accessed in a
stack-like manner, a control register, and a
status register. The IBM 6x86 CPU also
provides a data register tag word which
improves context switching and performance
by maintaining empty/non-empty status for
each of the eight data registers. In addition,
registers in the CPU contain pointers to (a) the
memory location containing the current
instruction word and (b) the memory location
containing the operand associated with the
current instruction word (if any).

FPU Tag Word Register. The IBM 6x86
CPU maintains a tag word register (Figure
2-41 (Page 2-76)) comprised of two bits for
each physical data register. Tag Word fields
assume one of four values depending on the
contents of their associated data registers, Val-
id (00), Zero (01), Special (10), and Empty
(11). Note: Denormal, Infinity, QNaN, SNaN
and unsupported formats are tagged as “Spe-
cial”. Tag values are maintained transparently
by the IBM 6x86™ CPU and are only avail-
able to the programmer indirectly through the
FSTENV and FSAVE instructions.

FPU Control and Status Registers. The
FPU circuitry communicates information
about its status and the results of operations to
the programmer via the status register. The
FPU status register is comprised of bit fields
that reflect exception status, operation execu-
tion status, register status, operand class, and
comparison results. The FPU status register
bit definitions are shown in Figure 2-42
(Page 2-76) and Table 2-37 (Page 2-76).

The FPU Mode Control Register (MCR) is
used by the CPU to specify the operating mode
of the FPU. The MCR contains bit fields
which specify the rounding mode to be used,
the precision by which to calculate results, and
the exception conditions which should be re-
ported to the CPU via traps. The user controls
precision, rounding, and exception reporting
by setting or clearing appropriate bits in the
MCR. The FPU mode control register bit def-
initions are shown in Figure 2-43 (Page 2-77)
and Table 2-38 (Page 2-77).

2-76

Floating Point Unit Operations

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Tag(7) Tag(6) Tag(5) Tag(4) Tag(3) Tag(2) Tag(1) Tag(0)

Figure 2-41. FPU Tag Word Register

15 12 11 8 7 4 3 0

B C3 S S S C2 C1 C0 ES SF P U O Z D I

Figure 2-42. FPU Status Register

Table 2-37. FPU Status Register Bit Definitions

BIT
POSITION

NAME DESCRIPTION

15 B Copy of the ES bit. (ES is bit 7 in this table.)

14, 10 - 8 C3 - C0 Condition code bits.

13 - 11 SSS Top of stack register number which points to the current TOS.

7 ES Error indicator. Set to 1 if an unmasked exception is detected.

6 SF Stack Fault or invalid register operation bit.

5 P Precision error exception bit.

4 U Underflow error exception bit.

3 O Overflow error exception bit.

2 Z Divide by zero exception bit.

1 D Denormalized operand error exception bit.

0 I Invalid operation exception bit.

 2-77

2Floating Point Unit Operations

15 12 11 8 7 4 3 0

- - - - RC RC PC PC - - P U O Z D I

Figure 2-43. FPU Mode Control Register

Table 2-38. FPU Mode Control Register Bit Definitions

BIT
POSITION

NAME DESCRIPTION

11 - 10 RC Rounding Control bits:

00 Round to nearest or even
01 Round towards minus infinity
10 Round towards plus infinity
11 Truncate

9 - 8 PC Precision Control bits:

00 24-bit mantissa
01 Reserved
10 53-bit mantissa
11 64-bit mantissa

5 P Precision error exception bit mask.

4 U Underflow error exception bit mask.

3 O Overflow error exception bit mask.

2 Z Divide by zero exception bit mask.

1 D Denormalized operand error exception bit mask.

0 I Invalid operation exception bit mask.

 2-78

2Floating Point Unit Operations

NOTICE TO CUSTOMERS: Some of the information contained in this document was
obtained through a third party and IBM has not conducted independent tests of all
product characteristics contained herein. The product described in this document is sold
under IBM’s standard warranty.

The information contained in this document is subject to change without notice. The
products described in this document are NOT intended for use in implantation or other
life support applications where malfunction may result in injury or death to persons.
The information contained in this document does not effect or change IBM’s product
specifications or warranties. Nothing in this document shall operate as an express or
implied license or indemnity under the intellectual property rights of IBM or third
parties. All the information contained in this document was obtained in specific envi-
ronments, and is presented as an illustration. The results obtained in other operating
environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON
AN “AS IS” BASIS. In no event will IBM be liable for any damages arising
directly or indirectly from any use of the information contained in this document.

© International Business Machines Corporation 1996.
Printed in the United States of America
2-96

All Rights Reserved

© Cyrix Corporation 1996.
© IBM and the IBM logo are registered trademarks of the IBM Corporation.
 © Cyrix is a registered trademark of the Cyrix Corporation.
IBM Microelectronics is a trademark of the IBM Corporation.
 6x86 is a trademark of Cyrix Corporation

Other company, product, and service names, which may be denoted by a double asterisk (**), may be trademarks of
service marks of others.

Product names used in this publication are for identification purposes only and may be trademarks of their respective
companies.

IBM Corporation
1000 River Street
Essex Junction, Vermont 05452-4299
United States of America

