
 6-1

Instruction Set

IBM 6x86 MICROPROCESSOR
Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU

6. INSTRUCTION SET

This section summarizes the IBM 6x86 CPU
instruction set and provides detailed information
on the instruction encodings. All instructions
are listed in the CPU Instruction Set Summary
Table (Table 6-20, Page 6-14), and the FPU
Instruction Set Summary Table (Table 6-22,
Page 6-30). These tables provide information
on the instruction encoding, and the instruction
clock counts for each instruction. The clock
count values for both tables are based on the
assumptions described in Section 6.3.

6.1 Instruction Set Summary

Depending on the instruction, the IBM 6x86
CPU instructions follow the general instruction
format shown in Figure 6-1. These instructions
vary in length and can start at any byte address.
An instruction consists of one or more bytes
that can include: prefix byte(s), at least one
opcode byte(s), mod r/m byte, s-i-b byte,
address displacement byte(s) and immediate
data byte(s). An instruction can be as short as
one byte and as long as 15 bytes. If there are
more than 15 bytes in the instruction a general
protection fault (error code of 0) is generated.

Figure 6-1. Instruction Set Format

P P P P P P P P T T T T T T T T mod R R R r/m ss index base 32 16 8 none 32 16 8 none
7 0 7 0 7 6 5 3 2 0 7 6 5 3 2 0

mod r/m s-i-b

register and address

address immediate

P = prefix bit

op-code
optional prefix byte(s) (one or two bytes) byte

mode specifier

byte displacement
(4, 2, 1 bytes,

or none)

data
(4, 2, 1 bytes,

or none)
T = opcode bit
R = opcode bit or reg bit

6-2

Instruction Set Summary

6.2 General Instruction Fields

The fields in the general instruction format at the byte level are listed in Table 6-1.

6.2.1 Optional Prefix Bytes

Prefix bytes can be placed in front of any instruction. The prefix modifies the operation of the
next instruction only. When more than one prefix is used, the order is not important. There are
five type of prefixes as follows:

1. Segment Override explicitly specifies which segment register an instruction will use for
effective address calculation.

2. Address Size switches between 16- and 32-bit addressing. Selects the inverse of the
default.

3. Operand Size switches between 16- and 32-bit operand size. Selects the inverse of the
default.

4. Repeat is used with a string instruction which causes the instruction to be repeated for
each element of the string.

5. Lock is used to assert the hardware LOCK# signal during execution of the instruction.

Table 6-1. Instruction Fields

FIELD NAME DESCRIPTION WIDTH

Optional Prefix Byte(s) Specifies segment register override, address and operand size,
repeat elements in string instruction, LOCK# assertion.

1 or more bytes

Opcode Byte(s) Identifies instruction operation. 1 or 2 bytes

mod and r/m Byte Address mode specifier. 1 byte

s-i-b Byte Scale factor, Index and Base fields. 1 byte

Address Displacement Address displacement operand. 1, 2 or 4 bytes

Immediate data Immediate data operand. 1, 2 or 4 bytes

 6-3

6Instruction Set Summary

Table 6-2 lists the encodings for each of the available prefix bytes.

Table 6-2. Instruction Prefix Summary

PREFIX ENCODING DESCRIPTION

ES: 26h Override segment default, use ES for memory operand

CS: 2Eh Override segment default, use CS for memory operand

SS: 36h Override segment default, use SS for memory operand

DS: 3Eh Override segment default, use DS for memory operand

FS: 64h Override segment default, use FS for memory operand

GS: 65h Override segment default, use GS for memory operand

Operand Size 66h Make operand size attribute the inverse of the default

Address Size 67h Make address size attribute the inverse of the default

LOCK F0h Assert LOCK# hardware signal.

REPNE F2h Repeat the following string instruction.

REP/REPE F3h Repeat the following string instruction.

6-4

Instruction Set Summary

6.2.2 Opcode Byte

The opcode field specifies the operation to be performed by the instruction. The opcode field is
either one or two bytes in length and may be further defined by additional bits in the mod r/m
byte. Some operations have more than one opcode, each specifying a different form of the opera-
tion. Some opcodes name instruction groups. For example, opcode 80h names a group of opera-
tions that have an immediate operand and a register or memory operand. The reg field may appear
in the second opcode byte or in the mod r/m byte.

6.2.2.1 w Field

The 1-bit w field (Table 6-11) selects the operand size during 16 and 32 bit data operations.

6.2.2.2 d Field

The d field (Table 6-10) determines which operand is taken as the source operand and which
operand is taken as the destination.

Table 6-3. w Field Encoding

w FIELD OPERAND SIZE

16-BIT DATA OPERATIONS 32-BIT DATA OPERATIONS

0 8 Bits 8 Bits

1 16 Bits 32 Bits

Table 6-4. d Field Encoding

d FIELD DIRECTION OF OPERATON SOURCE OPERAND
 DESTINATION

 OPERAND

0 Register --> Register or
Register --> Memory

reg mod r/m or
mod ss-index-base

1 Register --> Register or
Memory --> Register

mod r/m or
mod ss-index-base

reg

 6-5

6Instruction Set Summary

6.2.2.3 s Field

The s field (Table 6-10) determines the size of the immediate data field. If the S bit is set, the
immediate field of the OP code is 8-bits wide and is sign extened to match the operand size of the
opcode.

6.2.2.4 eee Field

The eee field (Table 6-6) is used to select the control, debug and test registers in the MOV instruc-
tions. The type of register and base registers selected by the eee field are listed in Table 6-6. The
values shown in Table 6-6 are the only valid encodings for the eee bits.

Table 6-5. s Field Encoding

s FIELD
Immediate Field Size

8-Bit Operand Size 16-Bit Operand Size 32-Bit Operand Size

0
(or not present)

8 bits 16 bits 32 bits

 1 8 bits 8 bits (sign extended) 8 bits (sign extended)

Table 6-6. eee Field Encoding

eee FILED REGISTER TYPE BASE REGISTER

000 Control Register CR0

010 Control Register CR2

011 Control Register CR3

000 Debug Register DR0

001 Debug Register DR1

010 Debug Register DR2

011 Debug Register DR3

110 Debug Register DR6

111 Debug Register DR7

011 Test Register TR3

100 Test Register TR4

101 Test Register TR5

110 Test Register TR6

111 Test Register TR7

6-6

Instruction Set Summary

6.2.3 mod and r/m Byte

The mod and r/m fields (Table 6-7), within the mod r/m byte, select the type of memory
addressing to be used. Some instructions use a fixed addressing mode (e.g., PUSH or POP) and
therefore, these fields are not present. Table 6-7 lists the addressing method when 16-bit addressing
is used and a mod r/m byte is present. Some mod r/m field encodings are dependent on the w field
and are shown in Table 6-8 (Page 6-7).

Table 6-7. mod r/m Field Encoding

mod and r/m fields
16-BIT ADDRESS MODE

with mod r/m Byte

32-BIT ADDRESS MODE
with mod r/m Byte and
No s-i-b Byte Present

00 000 DS:[BX+SI] DS:[EAX]

00 001 DS:[BX+DI] DS:[ECX]

00 010 DS:[BP+SI] DS:[EDX]

00 011 DS:[BP+DI] DS:[EBX]

00 100 DS:[SI] s-i-b is present (See 6.2.4 (Page 6-9))

00 101 DS:[DI] DS:[d32]

00 110 DS:[d16] DS:[ESI]

00 111 DS:[BX] DS:[EDI]

01 000 DS:[BX+SI+d8] DS:[EAX+d8]

01 001 DS:[BX+DI+d8] DS:[ECX+d8]

01 010 DS:[BP+SI+d8] DS:[EDX+d8]

01 011 DS:[BP+DI+d8] DS:[EBX+d8]

01 100 DS:[SI+d8] s-i-b is present (See 6.2.4 (Page 6-9))

01 101 DS:[DI+d8] SS:[EBP+d8]

01 110 SS:[BP+d8] DS:[ESI+d8]

01 111 DS:[BX+d8] DS:[EDI+d8]

10 000 DS:[BX+SI+d16] DS:[EAX+d32]

10 001 DS:[BX+DI+d16] DS:[ECX+d32]

10 010 DS:[BP+SI+d16] DS:[EDX+d32]

10 011 DS:[BP+DI+d16] DS:[EBX+d32]

10 100 DS:[SI+d16] s-i-b is present (See 6.2.4 (Page 6-9))

10 101 DS:[DI+d16] SS:[EBP+d32]

10 110 SS:[BP+d16] DS:[ESI+d32]

10 111 DS:[BX+d16] DS:[EDI+d32]

11 000-11 111 See Table 6-7 See Table 6-7

 6-7

6Instruction Set Summary

Table 6-8. mod r/m Field Encoding Dependent on w Field

mod r/m
16-BIT

OPERATION
w = 0

16-BIT
OPERATION

w = 1

32-BIT
OPERATION

w = 0

32-BIT
OPERATION

w = 1

11 000 AL AX AL EAX

11 001 CL CX CL ECX

11 010 DL DX DL EDX

11 011 BL BX BL EBX

11 100 AH SP AH ESP

11 101 CH BP CH EBP

11 110 DH SI DH ESI

11 111 BH DI BH EDI

6.2.3.1 reg Field

The reg field (Table 6-9) determines which general registers are to be used. The selected register is
dependent on whether a 16 or 32 bit operation is current and the status of the w bit.

Table 6-9. reg Field

reg

16-BIT
OPERATION

w Field Not
Present

32-BIT
OPERATION
w Field Not

Present

16-BIT
OPERATION

w = 0

16-BIT
OPERATION

 w = 1

32-BIT
OPERATION

w = 0

32-BIT
OPERATION

w = 1

000 AX EAX AL AX AL EAX

001 CX ECX CL CX CL ECX

010 DX EDX DL DX DL EDX

011 BX EBX BL BX BL EBX

100 SP ESP AH SP AH ESP

101 BP EBP CH BP CH EBP

110 SI ESI DH SI DH ESI

111 DI EDI BH DI BH EDI

6-8

Instruction Set Summary

6.2.3.2 sreg3 Field

The sreg3 field (Table 6-10) is 3-bit field that is similar to the sreg2 field, but allows use of the FS
and GS segment registers.

6.2.3.3 sreg2 Field

The sreg2 field (Table 6-11) is a 2-bit field that allows one of the four 286-type segment registers
to be specified.

Table 6-10. sreg3 Field Encoding

sreg3 FIELD SEGMENT REGISTER SELECTED

000 ES

001 CS

010 SS

011 DS

100 FS

101 GS

110 undefined

111 undefined

Table 6-11. sreg2 Field Encoding

sreg2 FIELD SEGMENT REGISTER SELECTED

00 ES

01 CS

10 SS

11 DS

 6-9

6Instruction Set Summary

6.2.4 s-i-b Byte

The s-i-b fields provide scale factor, indexing and a base field for address selection.

6.2.4.1 ss Field

The ss field (Table 6-12) specifies the scale factor used in the offset mechanism for address calcu-
lation. The scale factor multiplies the index value to provide one of the components used to calcu-
late the offset address.

6.2.4.2 index Field

The index field (Table 6-13) specifies the index register used by the offset mechanism for offset
address calculation. When no index register is used (index field = 100), the ss value must be 00 or
the effective address is undefined.

Table 6-12. ss Field Encoding

ss FIELD SCALE FACTOR

00 x1

01 x2

01 x4

11 x8

Table 6-13. index Field Encoding

Index FIELD INDEX REGISTER

000 EAX

001 ECX

010 EDX

011 EBX

100 none

101 EBP

110 ESI

111 EDI

6-10

Instruction Set Summary

6.2.4.3 Base Field

In Table 6-7 (Page 6-6), the note “s-i-b present” for certain entries forces the use of the mod and
base field as listed in Table 6-14. The first two digits in the first column of Table 6-14 identifies
the mod bits in the mod r/m byte. The last three digits in the first column of this table identifies
the base fields in the s-i-b byte.

Table 6-14. mod base Field Encoding

mod FIELD WITHIN
 mode/rm BYTE

base FIELD
WITHIN

s-i-b BYTE

32-BIT ADDRESS MODE
with mod r/m and
s-i-b Bytes Present

00 000 DS:[EAX+(scaled index)]

00 001 DS:[ECX+(scaled index)]

00 010 DS:[EDX+(scaled index)]

00 011 DS:[EBX+(scaled index)]

00 100 SS:[ESP+(scaled index)]

00 101 DS:[d32+(scaled index)]

00 110 DS:[ESI+(scaled index)]

00 111 DS:[EDI+(scaled index)]

01 000 DS:[EAX+(scaled index)+d8]

01 001 DS:[ECX+(scaled index)+d8]

01 010 DS:[EDX+(scaled index)+d8]

01 011 DS:[EBX+(scaled index)+d8]

01 100 SS:[ESP+(scaled index)+d8]

01 101 SS:[EBP+(scaled index)+d8]

01 110 DS:[ESI+(scaled index)+d8]

01 111 DS:[EDI+(scaled index)+d8]

10 000 DS:[EAX+(scaled index)+d32]

10 001 DS:[ECX+(scaled index)+d32]

10 010 DS:[EDX+(scaled index)+d32]

10 011 DS:[EBX+(scaled index)+d32]

10 100 SS:[ESP+(scaled index)+d32]

10 101 SS:[EBP+(scaled index)+d32]

10 110 DS:[ESI+(scaled index)+d32]

10 111 DS:[EDI+(scaled index)+d32]

 6-11

6CPUID Instruction

6.3 CPUID Instruction

The IBM 6x86 CPU executes the CPUID
instruction (opcode 0FA2) as documented in
this section only if the CPUID bit in the CCR4
configuration register is set. The CPUID
instruction may be used by software to deter-
mine the vendor and type of CPU.

When the CPUID instruction is executed with
EAX = 0, the ASCII characters “CyrixIn-
stead” are placed in the EBX, EDX, and ECX
registers as shown in Table 6-15:

Table 6-15. CPUID Data
 Returned When EAX = 0

REGISTER
CONTENTS
(D31 - D0)

EBX 69 72 79 43
 i r y C*

EDX 73 6E 49 78
s n I x*

ECX 64 61 65 74
d a e t*

*ASCII equivalent

When the CPUID instruction is executed with
EAX = 1, EAX and EDX contain the values
shown in Table 6-16.

Table 6-16. CPUID Data
Returned When EAX = 1

REGISTER CONTENTS

EAX(3-0) 0

EAX(7-4) 2

EAX(11-8) 5

EAX(13-12) 0

EAX(31-14) reserved

EDX If EDX = 00, FPU not on-chip.
If EDX = 01, FPU on-chip.

6-12

Instruction Set Tables

6.4 Instruction Set Tables

The IBM 6x86 CPU instruction set is
presented in two tables: Table 6-20. “6x86
CPU Instruction Set Clock Count Summary”
on page 6-14 and Table 6-22. “6x86 FPU
Instruction Set Summary” on page 6-30.
Additional information concerning the FPU
Instruction Set is presented on page 6-29.

6.4.1 Assumptions Made in
Determining Instruction
Clock Count

The assumptions made in determining instruc-
tion clock counts are listed below:

1. All clock counts refer to the
internal CPU internal clock
frequency. For example, the clock
counts for a clock-doubled IBM
6x86 CPU-100 refer to 100 MHz
clocks while the external clock is
50 MHz.

2. The instruction has been
prefetched, decoded and is ready
for execution.

3. Bus cycles do not require wait
states.

4. There are no local bus HOLD
requests delaying processor access
to the bus.

5. No exceptions are detected during
instruction execution.

6. If an effective address is
calculated, it does not use two
general register components. One
register, scaling and displacement

can be used within the clock count
shown. However, if the effective
address calculation uses two
general register components, add
1 clock to the clock count shown.

7. All clock counts assume aligned
32-bit memory/ IO operands.

8. If instructions access a 32-bit
operand that crosses a 64-bit
boundary, add 1 clock for read or
write and add 2 clocks for read and
write.

9. For non-cached memory accesses,
add two clocks (IBM 6x86 CPU
with 2x clock) or four clocks (IBM
6x86 CPU with 3x clock).
(Assumes zero wait state memory
accesses).

10. Locked cycles are not cacheable.
Therefore, using the LOCK prefix
with an instruction adds additional
clocks as specified in paragraph 9
above.

11. No parallel execution of
instructions.

6.4.2 CPU Instruction Set
Summary Table
Abbreviations

The clock counts listed in the CPU Instruction
Set Summary Table are grouped by operating
mode and whether there is a register/cache hit
or a cache miss. In some cases, more than one
clock count is shown in a column for a given
instruction, or a variable is used in the clock
count. The abbreviations used for these condi-
tions are listed in Table 6-17.

 6-13

6Instruction Set Tables

6.4.3 CPU Instruction Set Summary Table Flags Table

The CPU Instruction Set Summary Table lists nine flags that are affected by the execution of
instructions. The conventions shown in Table 6-18 are used to identify the different flags. Table 6-19
lists the conventions used to indicate what action the instruction has on the particular flag.

Table 6-17. CPU Clock Count Abbreviations

CLOCK COUNT SYMBOL EXPLANATION

/ Register operand/memory operand.

n Number of times operation is repeated.

L Level of the stack frame.

|
Conditional jump taken | Conditional jump not taken.
(e.g. “4|1” = 4 clocks if jump taken, 1 clock if jump not taken)

\ CPL ≤ IOPL \ CPL > IOPL
(where CPL = Current Privilege Level, IOPL = I/O Privilege Level)

m Number of parameters passed on the stack.

Table 6-18. Flag Abbreviations

ABBREVIATION NAME OF FLAG

OF Overflow Flag

DF Direction Flag

IF Interrupt Enable Flag

TF Trap Flag

SF Sign Flag

ZF Zero Flag

AF Auxiliary Flag

PF Parity Flag

CF Carry Flag

Table 6-19. Action of Instruction on Flag

INSTRUCTION
TABLE SYMBOL

ACTION

x Flag is modified by the instruction.

- Flag is not changed by the instruction.

0 Flag is reset to “0”.

1 Flag is set to “1”.

u Flag is undefined following execu-
tion of the instruction.

