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2.5 Address Space

The IBM 6x86 CPU can directly address  64 
KBytes of I/O space and 4 GBytes of physical 
memory (Figure 2-24).  

Memory Address Space.    Access can be 
made to memory addresses between 
0000 0000h and FFFF FFFFh. This 4 GByte 

Figure 2-24.  Memory and I/O Address Spaces

memory  space can be accessed using byte, 
word (16 bits), or doubleword (32 bits) format.  
Words and doublewords are stored in consecu-
tive memory bytes with the low-order byte 
located in the lowest address.  The physical 
address of a word or doubleword is the byte 
address of the low-order byte.
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I/O Address Space

The IBM 6x86  I/O address space is accessed 
using IN and OUT instructions to addresses 
referred to as “ports”.  The accessible I/O 
address space size is 64 KBytes and can be 
accessed through 8-bit, 16-bit or 32-bit ports.  
The execution of any IN or OUT instruction 
causes the M/IO# pin to be driven low, thereby 
selecting the I/O space instead of memory 
space.  

The accessible I/O address space ranges 
between locations 0000 0000h and 0000 FFFFh 
(64 KBytes). The I/O locations (ports) 22h and 
23h can be used to access the IBM 6x86 
configuration registers.

2.6 Memory Addressing
 Methods

With the IBM 6x86 CPU, memory can be 
addressed using nine different addressing 
modes (Table 2-23, Page 2-42).  These 
addressing modes are used to calculate an 
offset address often referred to as an effective 
address.  Depending on the operating mode of 
the CPU, the offset is then combined using 
memory management mechanisms to create a 
physical address that actually addresses the 
physical memory devices.

Memory management mechanisms on the IBM 
6x86 CPU consist of segmentation and paging.  
Segmentation allows each program to use 
several independent, protected address 
spaces.  Paging supports a memory subsystem 
that simulates a large address space using a 
small amount of RAM and disk storage for 
physical memory.  Either or both of these 
mechanisms can be used for management of 
the IBM 6x86 CPU memory address space.
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2.6.1 Offset Mechanism

The offset mechanism computes an offset 
(effective) address by adding together one or 
more of three values: a base, an index and a 
displacement.  When present, the base is the 
value of one of the eight 32-bit general regis-
ters.   The index if present, like the base, is a 
value that is in one of the eight 32-bit general 
purpose registers (not including the ESP 
register).  The index differs from the base in 
that the index is first multiplied by a scale 
factor of 1, 2, 4 or 8 before the summation is 
made.  The third component added to the 
memory address calculation is the displace-
ment.  The displacement is a value of up to 
32-bits in length supplied as part of the instruc-
tion.  Figure 2-25 illustrates the calculation of 
the offset address.

Nine valid combinations of the base, index, 
scale factor and displacement can be used with 
the IBM 6x86 CPU instruction set.  These 
combinations are listed in Table 2-23.  The 
base and index both refer to contents of a 
register as indicated by [Base] and [Index].

Figure 2-25.   Offset Address Calculation

Table 2-23.   Memory Addressing Modes

ADDRESSING
MODE

BASE INDEX
SCALE

FACTOR
(SF)

DISPLACEMENT
(DP)

OFFSET ADDRESS (OA)
CALCULATION

Direct x OA = DP

Register Indirect x OA = [BASE]

Based x x OA = [BASE] + DP

Index x x OA = [INDEX] + DP

Scaled Index x x x OA = ([INDEX] * SF) + DP

Based Index x x OA = [BASE] + [INDEX]

Based Scaled Index x x x OA = [BASE] + ([INDEX] * SF)

Based Index with
Displacement

x x x OA = [BASE] + [INDEX] + DP

Based Scaled Index with 
Displacement

x x x x OA = [BASE] + ([INDEX] * SF) + DP



2-43

2Memory Addressing Methods

2.6.2 Memory
Addressing

Real Mode Memory Addressing

In real mode operation, the IBM 6x86 CPU 
only addresses the lowest 1 MByte of memory.  
To calculate a physical memory address, the 
16-bit segment base address located in the 
selected segment register is multiplied by 16 
and then the 16-bit offset address is added.  
The resulting 20-bit address is then extended. 
Three hexadecimal zeros are added as upper 
address bits to create the 32-bit physical address.   
Figure 2-26 illustrates the real mode address 
calculation. 

The addition of the base address and the offset 
address may result in a carry.  Therefore, the 
resulting address may actually contain up to 21 
significant address bits that can address 
memory in the first 64 KBytes above 1 MByte.

Protected Mode Memory Addressing

In protected mode three mechanisms calculate a 
physical memory address (Figure 2-27, Page 2-44).

• Offset Mechanism that produces the 
offset or effective address as in real mode.

• Selector Mechanism that produces the 
base address.

• Optional Paging Mechanism that trans-
lates a linear address to the physical 
memory address.

The offset and base address are added together 
to produce the linear address.  If paging is not 
enabled, the linear address is used as the phys-
ical memory address.  If paging is enabled, the 
paging mechanism is used to translate the 
linear address into the physical address.  The 
offset mechanism is described earlier in this 
section and applies to both real and protected 
mode.  The selector and paging mechanisms 
are described in the following paragraphs.

Figure 2-26.   Real Mode Address Calculation
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Figure 2-27.   Protected Mode Address Calculation

2.6.3 Selector Mechanism

Using segmentation, memory is divided into an 
arbitrary number of segments, each containing 
usually much less than the 232 byte (4 GByte) 
maximum.

The six segment registers (CS, DS, SS, ES, FS 
and GS) each contain a 16-bit selector that is 
used when the register is loaded to locate a 
segment descriptor in either the global 
descriptor table (GDT) or the local descriptor 
table (LDT).  The segment descriptor defines 

the base address, limit, and attributes of the 
selected segment and is cached on the IBM 
6x86 CPU as a result of loading the selector.  
The cached descriptor contents are not visible 
to the programmer.  When a memory reference 
occurs in protected mode, the linear address is 
generated by adding the segment base address 
in the hidden portion of the segment register to 
the offset address.  If paging is not enabled, 
this linear address is used as the physical 
memory address.  Figure 2-28 illustrates the 
operation of the selector mechanism.

Figure 2-28.   Selector Mechanism
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2.6.4 Paging Mechanisms

The paging mechanisms (Figure 2-29) trans-
late linear addresses to their corresponding 
physical addresses.  For traditional paging, the 
page size is always 4 KBytes.  If IBM 6x86  
Variable-Size Paging is selected, a page size 
may be as large as 4 GBytes.  Use of larger 
page sizes allows large memory areas such as 
video memory to be placed in a single page, 
eliminating page table thrashing.

Paging is activated when the PG and the PE 
bits within the CR0 register are set.  

2.6.4.1 Traditional Paging
Mechanism

The traditional paging mechanism translates 
the 20 most significant bits of a linear address 
to a physical address.  The linear address is 
divided into three fields DTI, PTI, PFO 
(Figure 2-30, Page 2-46). These fields respec-
tively select:

• an entry in the directory table, 
• an entry in the page table selected by the 

directory table 
• the offset in the physical page selected by 

the page table

The directory table and all the page tables can 
be considered as pages as they are 4-KBytes in 

size and are aligned on 4-KByte boundaries. 
Each entry in these tables is 32 bits in length. 
The fields within the entries are detailed in 
Figure 2-31 (Page 2-46) and Table 2-24 (Page 
2-47).

A single page directory table can address up to 
4 GBytes of virtual memory (1,024 page 
tables—each table can select 1,024 pages and 
each page contains 4 KBytes). 

Translation Lookaside Buffer (TLB) is made 
up of three caches (Figure 2-30, Page 2-46).   

• the DTE Cache caches directory table 
entries

• the Main TLB caches page tables entries
• the Victim TLB stores PTEs that have 

been evicted from the Main TLB

The DTE cache is a 4-entry fully associative 
cache, the main TLB is a 128-entry direct 
mapped cache and the victim TLB is an 
8-entry fully associative cache.The DTE cache 
caches the four most recent DTEs so that 
future TLB misses only require a single page 
table read to calculate the physical address.  
The DTE cache is disabled following RESET 
and is enabled by setting the DTE_EN bit 
(CCR4 bit4).  

 

Figure 2-29.  Paging Mechanisms
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Figure 2-30.  Traditional Paging Mechanism

Figure 2-31.   Directory and Page Table Entry (DTE and PTE) Format

CR3

Directory Table Index Page Table Index Page Frame Offset

31 22 21 12 11 0

Physical Page

DTE PTE

0 0 0

4 Kb4 Kb

(DTI) (PTI) (PFO)
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0
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127

0
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Main TLB
128 Entry

Direct Mapped

DTE Cache
4 Entry  

Fully Associative

Page Table MemoryDirectory Table

0

4 Kb
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Linear 
Address

Control
Register External Memory

Victim TLB
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Fully Associative

BASE ADDRESS AVAILABLE P
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D

31 012 11 9 8 123456710

ARESERVED
PP
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D

W
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/
S
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Note: In DTE format, bit 6 is reserved
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Table 2-24.   Directory and Page Table Entry (DTE and PTE) Bit Definitions

BIT POSITION FIELD NAME DESCRIPTION

31-12 BASE
ADDRESS

Specifies the base address of the page or page table.

11-9 -- Undefined and available to the programmer.

8-7 -- Reserved and not available to the programmer.

6 D Dirty Bit. If set, indicates that a write access has occurred to the page (PTE 
only, undefined in DTE).

5 A Accessed Flag.  If set, indicates that a read access or write access has occurred
to the page.

4 PCD Page Caching Disable Flag.  If set, indicates that the page is not cacheable in
the on-chip cache.

3 PWT Page Write-Through Flag.  If set, indicates that writes to the page or page tables 
that hit in the on-chip cache must update both the cache and external memory.

2 U/S User/Supervisor Attribute.  If set (user), page is accessible at privilege level 3. 
If clear (supervisor), page is accessible only when CPL ≤ 2.

1 W/R Write/Read Attribute.  If set (write), page is writable.  If clear (read), page is 
read only.

0 P Present Flag.  If set, indicates that the page is present in RAM memory, and
validates the remaining DTE/PTE bits.  If clear, indicates that the page is not
present in memory and the remaining DTE/PTE bits can be used by the
programmer.

For a TLB hit, the TLB eliminates accesses to 
external directory and page tables.     

The victim TLB increases the apparent associa-
tivity of the main TLB and helps eliminate TLB 
trashing (unproductive TLB management).  
When an entry in the main TLB is replaced, a 
copy of the replaced entry is sent to the victim 
TLB before the entry in the main TLB is over-
written. If the victim TLB receives a hit, its 
entry is swapped with a main TLB entry.   

The TLB must be flushed by the software when 
entries in the page tables are changed.  The TLB 

is flushed whenever the CR3 register is loaded.  
A particular page can be flushed from the TLB 
by using the INVLPG instruction. This instruc-
tion also flushes the entire DTE cache.

2.6.4.2 Translation Lookaside
Buffer Testing

The TLB can be tested by writing to a main TLB 
followed by performing a TLB lookup (TLB 
read) to see if the expected contents are within 
the TLB.  TLB test operations are performed 
using test register TR6 and TR7 shown in
Figure 2-32 (Page 2-48).  Tables 2-25 through 
2-27 list the bit definitions for TR6 and TR7. 
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Main TLB Write . To perform a direct write to 
a main TLB entry, the TR7 register is config-
ured with the desired physical address as well 
as the PCD and PWT bits.  The BI, HV, HD and 
HB bits are not used. The TR6 register is then 
configured with the linear address, D, U, W and 
V bits.  The D, U, and W bits must be comple-
ments of the D#, U#, and W# bits during a 
write.  When the TR6 register is configured, the 
IBM 6x86 CPU writes the linear and physical 
address into the main TLB along with the A, D, 
U, and W bits.  The main TLB entry is selected 
by bits 12 through 18 of the linear address field.

TLB Lookup . During a TLB lookup, the IBM 
6x86 CPU queries the TLB with a given linear 
address and expected A, W, U and D values. 
The query returns a corresponding physical 
address, and the source of the address.  The 
address source could be from the main TLB, 

from the victim TLB or from the variable-size 
paging mechanism. 

The TLB lookup involves a single TR6 register 
write. The CMD bits are set to 0x1.  The D, U, 
W, D#, U# and W# bits are not used during 
TLB lookups.

After a TLB lookup, the HV, HD and HB bits 
in TR7 indicate which (if any) PTEs were 
found with the requested linear address.  If a 
TLB entry was found for a PTE in the victim or 
variable size-paging cache, the BI bit in the 
TR7 register will contain the index of the par-
ticular entry. If multiple entries respond, only 
the HV, HD and HB bits are valid and all TR7 
fields are undefined. 

Figure 2-32.  TLB Test Registers

ADR6 (LINEAR ADDRESS)

 = Reserved

V D U U# W TR6

ADR7 (PHYSICAL ADDRESS / BC MASK)

31 12 10 9 8 7 6 5

PCDPWT HV TR7BI HD

4 3 2 01

D# W#

12 10 9 8 7 6 5 4 3 2 0131

11

11

CMD 

HB

A A#
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Table 2-25.  TLB Test Register Bit Definitions

REGISTER
NAME

NAME RANGE DESCRIPTION

TR7 ADR7 31-12 Physical address or variable page size mechanism mask.
TLB lookup:  data field from the TLB.
TLB write:  data field written into the TLB.

PCD 11 Page-level cache disable bit (PCD).
Corresponds to the PCD bit of a page table entry.

PWT 10 Page-level cache write-through bit (PWT).
Corresponds to the PWT bit of a page table entry.

BI 9-7 Cell index for victim TLB and block cache operations.

HV 5 Victim TLB hit.

HD 4 Main TLB hit.

HB 3 Variable-Size Paging Mechanism hit.

TR6 ADR6 31-12 Linear Address.  
TLB lookup:  The TLB is interrogated per this address.  If 
one and only one match occurs in the TLB, the rest of the 
fields in TR6 and TR7 are updated per the matching TLB 
entry.
TLB write:  A TLB entry is allocated to this linear address.  

V 11 PTE Valid.
TLB write:  If set, indicates that the TLB entry contains 
valid data.  If clear, target entry is invalidated.

D, D# 10-9 Dirty Attribute Bit and its complement. 
Refer to Table 2-26., Page 2-50.

U, U# 8-7 User/Supervisor Attribute Bit and its complement.
Refer to Table 2-26., Page 2-50.

W, W# 6-5 Write Protect bit and its complement.
Refer to Table 2-26., Page 2-50.

A, A# 4-3 Accessed Bit and its complement.
Used for block cache entries only.
Refer to Table 2-26., Page 2-50.

CMD 2-0 Array Command Select.
Determines TLB array command.
Refer to Table 2-27, Page 2-50.



2-50

Memory Addressing Methods

Table 2-26.   TR6 Attribute Bit Pairs

BIT  BIT# EFFECT ON TLB LOOKUP EFFECT ON TLB WRITE

0 0 Do not match. Undefined.

0 1 If bit = 0, match. Bit is cleared.

1 0 If bit = 1, match. The bit is set.

1 1 If bit = 0 or 1, match. Undefined.
Note: “BIT” applies to A, D, U or W fields in TR6; “BIT#” applies to A#, D#, U#, or W# fields in TR6.

Table 2-27.  TR6 Command Bits

CMD Command

0x0 Direct write to main TLB.

0x1 TLB lookup for a linear address in all arrays.

100 Write to variable page size mask only.

110 Write to variable page size linear and physical address fields.

101 Read variable page size mask and linear address.

111 Read variable page size cache physical and linear address.
Note: x = don’t care
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2.6.5 Variable-Size
Paging Mechanism

The Variable-Size Paging Mechanism 
(VSPM) is an advanced alternative to 
traditional paging. As shown in Figure 2-33,  
VSPM allows the creation of pages ranging in 
size from 4 KBytes to 4 GBytes. The larger 
page size nearly eliminates page table thrashing 
associated with using multiple 4-KByte pages. 

For example, paging 1 MByte of memory 
requires 256 4-KByte pages using traditional 
paging.  The software not only incurs overhead 
during setting up the 256 pages, but also incurs 
additional overhead accessing the page tables 
each time a page is not found in the on-chip 
TLB.  In contrast, a single 1-MByte page 
virtually eliminates the overhead.

Configuring Variable-Size Pages. The VSPM 
is configured using TLB test registers, TR6 and 
TR7  (These registers are also used to test the 
TLB).  The VSPM configuration is performed 
in much the same manner as when writing to a 
line of the TLB (Refer to Section 2.6.4.2.).   
The major exception to this, is that a mask field 
is written to the VSPM as part of the VSPM 
configuration.

The physical address, linear address, valid bit 
and attribute bits in a main TLB write all have 
the same meaning as in a main TLB read except 
that CMD=110. The BI field is used to select the 
VSPM cell to be written.

A VSPM mask setup operation is performed 
when CMD=100 and a test register write is per-
formed.  During a VSPM mask setup, the TR7 
address field is used as the mask field. The mask 
field selectively masks linear address bits 31-12 
from the VSPM tag compare.  This has the 
effect of allowing the VSPM to map pages 
greater than 4 KBytes. 

Figure 2-33.  Variable-Size Paging Mechanism
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After a VSPM mask setup, the valid bit, 
attribute bits, and the linear address are left in 
undefined states.  Therefore, the VSPM mask 
setup should be performed prior to other VSPM 
operations.

Unlike the victim and main TLBs, the VSPM 
operations make use of the accessed bit.  During 
a VSPM mask or physical address write the A 
and A# fields are written to the VSPM.

VSPM Reads. VSPM reads are performed with 
the address of the entry to be read in the BI field 
of the TR7 register and with CMD=111. The 
entry’s and physical address is read into the TR6 
and TR7 address fields as well as the valid bit, 
and attribute bits.  

If CMD=101, the linear address, mask, valid bit 
and attribute bits are read.

2.7 Memory Caches

The IBM 6x86 CPU contains two memory 
caches as described in Chapter 1. The Unified 
Cache acts the primary data cache, and 
secondary instruction cache.  The Instruction 
Line Cache is the primary instruction cache and 
provides a high speed instruction stream for the 
Integer Unit.

The unified cache is dual-ported allowing 
simultaneous access to any two unique banks. 
Two different banks may be accessed at the 
same time permitting any two of the following 
operations to occur in parallel:

• Code fetch
• Data read (X pipe, Y pipe or FPU)
• Data write (X pipe, Y pipe or FPU).

2.7.1 Unified Cache 
MESI States

The unified cache lines are assigned one of four 
MESI states as determined by MESI bits stored 
in tag memory. Each 32-byte cache line is 
divided into two 16-byte sectors.  Each sector 
contains its own MESI bits. The four MESI 
states are described below:

Modified MESI cache lines are those that have 
been updated by the CPU, but the corre-
sponding main memory location has not yet 
been updated by an external write cycle. Modi-
fied cache lines are referred to as dirty cache 
lines.

Exclusive MESI lines are lines that are exclu-
sive to the IBM 6x86 CPU and are not dupli-
cated within another caching agent’s cache 
within the same system.  A write to this cache 
line may be performed without issuing an 
external write cycle.

Shared MESI lines may be present in another 
caching agent’s cache within the same system.  
A write to this cache line forces a corresponding 
external write cycle. 

Invalid MESI lines are cache lines that do not 
contain any valid data.
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2.7.1.1 Unified Cache Testing

The unified cache can be tested through the 
use of  TR3, TR4, and TR5 on-chip test regis-
ters. Fields within these test registers identify 
which area of the cache will be selected for 
testing.  

Cache Organization. The unified cache 
(Figure 2-34) is divided into 32-bytes lines. 
This cache is divided into four sets. Since a set 
(as well as the cache) is smaller than main 
memory, each line in the set corresponds to 
more than one line in main memory. When a 
cache line is allocated, bits A31-A12 of the 
main memory address are stored in the cache 

line tag.  The remaining address bits are used 
to identify the specific 32-byte cache line 
(A11-A5), and the specific 4-byte entry within 
the cache line (A4-A2).

Test Initiation . A test register operation is 
initiated by writing to the TR5 register shown 
in Figure 2-35 (Page 2-54) using a special 
MOV instruction. The TR5 CTL  field, 
detailed in Table 2-28 (Page 2-54), determines 
the function to be performed.  For cache 
writes, the registers TR4 and TR3 must be 
initialized before a write is made to TR5. Eight 
4-byte accesses are required to access a 
complete cache line.  

Figure 2-34.  Unified Cache
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Figure 2-35.  Cache Test Registers

Table 2-28.  Cache Test Register Bit Definitions

REGISTER
NAME

FIELD
NAME

RANGE DESCRIPTION

TR5 SET 13 - 12 Cache set selection (one of four “sets”).

LINE 11 - 5 Cache line selection (one of 128 lines).

ENT 4 - 2 Entry selection (one of eight 4-byte entries in a line).

CTL 1 - 0 Control field
If = 00: flush cache without invalidate
If = 01: write cache
If = 10: read cache
If = 11: no cache or test register modification 

TR4 TAG 31 - 12 Physical address for selected line

MESIU 7 - 6 If = 00, Modified Upper Sector MESI bits
If = 01, Shared Upper Sector MESI bits
If = 10, Exclusive Upper Sector MESI bits
If = 11, Invalid Upper Sector MESI bits*

MESIL 5 - 4 If = 00, Modified Lower Sector MESI bits
If = 01, Shared Lower Sector MESI bits
If = 10, Exclusive Lower Sector MESI bits
If = 11, Invalid Lower Sector MESI bits*

MRU 3 - 0 Used to determine the Least Recently Used (LRU) line.

TR3 DATA 31 - 0 Data written or read during a cache test.
*Note: All 32 bytes should contain valid data before a line is marked as valid.

 = Reserved

31

TR5

DATA (CACHE DATA)

31

MESIL TR4

31

TR3

CTL

MRUTAG (CACHE TAG ADDRESS)

11 10 9 8 7 6 5 4 3 2 01

9 8 7 6 5 4 3 2 01

1213

LINESET ENT

11 1012

MESIU
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Write Operations. During a write, the TR3 
DATA (32-bits) and TAG field information is 
written to the address selected by the SET, 
LINE, and ENT fields in TR5. 

Read Operations. During a read, the cache 
address selected by the SET, LINE and ENT 
fields in TR5 are used to read data into the TR3 
DATA (32-bits) field. The TAG, MESI and 
MRU fields in TR4 are updated with the infor-
mation from the selected line. TR3 holds the 
selected read data. 

Cache Flushing. A cache flush occurs during 
a TR5 write if the CTL field is set to zero. 
During flushing, the CPU’s cache controller 
reads through all the lines in the cache. “Modi-
fied” lines are redefined as “shared” by setting 
the shared MESI bit.  Clean lines are left in 
their original state.  

2.8 Interrupts and
Exceptions

The processing of either an interrupt or an 
exception changes the normal sequential flow 
of a program by transferring program control 
to a  selected service routine. Except for SMM 
interrupts, the location of the selected service 
routine  is determined by one of the interrupt 
vectors stored in the interrupt descriptor table.

Hardware interrupts are generated by signal 
sources external to the CPU.  All exceptions 
(including so-called software interrupts) are 
produced internally by the CPU.

2.8.1 Interrupts

External events can interrupt normal program 
execution by using one of the three interrupt 
pins on the IBM 6x86 CPU.

• Non-maskable Interrupt (NMI pin)
• Maskable Interrupt (INTR pin)
• SMM Interrupt (SMI# pin).

For most interrupts, program transfer to the 
interrupt routine occurs after the current 
instruction has been completed.  When the 
execution returns to the original program, it begins 
immediately following the last completed instruc-
tion.

With the exception of string operations,  inter-
rupts are acknowledged between instructions.  
Long string operations have interrupt windows 
between memory moves that allow  interrupts 
to be acknowledged.

The NMI interrupt  cannot be masked by  
software and always uses interrupt vector 2 to 
locate its service routine.  Since the interrupt 
vector is fixed and is supplied internally, no 
interrupt acknowledge bus cycles are 
performed.  This interrupt is normally reserved 
for unusual situations such as parity errors and 
has priority over INTR interrupts.

Once NMI processing has started, no addi-
tional NMIs are processed until an IRET 
instruction is executed, typically at the end of 
the NMI service routine.  If NMI is re-asserted 
prior to execution of the IRET instruction, one 
and only one NMI rising edge is stored and  
processed after execution of the next IRET.  
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2.8.2 Exceptions

Exceptions are generated by an interrupt 
instruction or a program error.  Exceptions are 
classified as traps, faults or aborts depending 
on the mechanism used to report them and the 
restartability of the instruction that first caused 
the exception. 

A Trap Exception is reported immediately 
following the instruction that generated the 
trap exception.   Trap exceptions are generated 
by execution of a software interrupt instruction  
(INTO, INT 3, INT n, BOUND), by a 
single-step operation or by a data breakpoint. 

Software interrupts can be used to simulate 
hardware interrupts.   For example, an INT n 
instruction causes the processor to execute the 
interrupt service routine pointed to by the nth 
vector in the interrupt table.  Execution of the 
interrupt service routine occurs regardless of 
the state of the IF flag in the EFLAGS register.

The one byte INT 3, or breakpoint interrupt 
(vector 3), is a particular case of the INT n 
instruction.  By inserting this one byte instruc-
tion in a program, the user can set breakpoints 
in the code that can be used during debug.

Single-step operation is enabled by setting the 
TF bit in the EFLAGS register.  When TF is 
set, the CPU generates a debug exception 
(vector 1) after the execution of every instruc-
tion.  Data breakpoints also generate a debug 
exception and are specified by loading the 
debug registers (DR0-DR7) with the appro-
priate values.

During the NMI service routine, maskable 
interrupts may be enabled (unmasked).  If an 
unmasked INTR occurs during the NMI 
service routine, the INTR is serviced and 
execution returns to the NMI service routine 
following the next IRET.   If a HALT instruc-
tion is executed within the NMI service 
routine, the IBM 6x86 CPU restarts execution 
only in response to RESET, an unmasked INTR 
or an SMM interrupt.  NMI does not restart 
CPU execution under this condition.

The INTR interrupt  is unmasked when the 
Interrupt Enable Flag (IF) in the EFLAGS 
register is set to 1.  When an INTR interrupt 
occurs, the CPU performs two locked interrupt 
acknowledge bus cycles.  During the second 
cycle, the CPU reads an 8-bit vector that is 
supplied by an external interrupt controller.  
This vector selects one of the 256 possible 
interrupt handlers which will be executed in 
response to the interrupt.

The SMM interrupt  has higher priority than 
either INTR or NMI.  After SMI# is asserted, 
program execution is passed to an SMI service 
routine that runs in SMM address space 
reserved for this purpose.  The remainder of 
this section does not apply to the SMM inter-
rupts.  SMM interrupts are described in greater 
detail later in this chapter.
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A Fault Exception is reported prior to 
completion of the instruction that generated 
the exception.   By reporting the fault prior to 
instruction completion, the CPU is left in a 
state that allows the instruction to be restarted 
and the effects of the faulting instruction to be 
nullified.  Fault exceptions include 
divide-by-zero errors, invalid opcodes, page 
faults and coprocessor errors.  Instruction 
breakpoints (vector 1) are also handled as 
faults.   After execution of the fault service 
routine, the instruction pointer points to the 
instruction that caused the fault.

An Abort Exception is a type of fault excep-
tion that is severe enough that the CPU cannot 
restart the program at the faulting instruction.  
The double fault (vector 8) is the only abort 
exception that occurs on the IBM 6x86 CPU.

2.8.3 Interrupt Vectors

When the CPU services an interrupt or excep-
tion, the current program’s FLAGS, code 
segment and instruction pointer are pushed 
onto the stack to allow resumption of execu-
tion of the interrupted program.  In protected 
mode, the processor also saves an error code 
for some exceptions.  Program control is then 
transferred to the interrupt handler (also called 
the interrupt service routine).  Upon execution 
of an IRET at the end of the service routine, 
program execution resumes by popping from 
the stack, the instruction pointer, code segment, 
and FLAGS.

Interrupt Vector Assignments

Each interrupt (except SMI#) and exception is 
assigned one of 256 interrupt vector numbers 
(Table 2-29). The first 32 interrupt vector 
assignments are defined or reserved.  INT 
instructions acting as software interrupts may 
use any of the interrupt vectors, 0 through 255.
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Table 2-29.   Interrupt Vector Assignments

INTERRUPT VECTOR FUNCTION EXCEPTION TYPE

0 Divide error FAULT

1 Debug exception TRAP/FAULT*

2 NMI interrupt

3 Breakpoint TRAP

4 Interrupt on overflow TRAP

5 BOUND range exceeded FAULT

6 Invalid opcode FAULT

7 Device not available FAULT

8 Double fault ABORT

9 Reserved

10 Invalid TSS FAULT

11 Segment not present FAULT

12 Stack fault FAULT

13 General protection fault TRAP/FAULT

14 Page fault FAULT

15 Reserved

16 FPU error FAULT

17 Alignment check exception FAULT

18-31 Reserved

32-255 Maskable hardware interrupts TRAP

0-255 Programmed interrupt TRAP
*Note: Data breakpoints and single-steps are traps.  All other debug exceptions are faults.
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In response to a maskable hardware interrupt 
(INTR), the IBM 6x86 CPU issues interrupt 
acknowledge bus cycles used to read the vector 
number from external hardware.  These vectors 
should be in the range 32 - 255 as vectors 0 - 31 
are reserved.

Interrupt Descriptor Table

The interrupt vector number is used by the IBM 
6x86 CPU to locate an entry in the interrupt 
descriptor table (IDT).  In real mode, each IDT 
entry consists of a four-byte far pointer to the 
beginning of the corresponding interrupt 
service routine. In protected mode, each IDT 
entry is an eight-byte descriptor.  The Interrupt 
Descriptor Table Register (IDTR) specifies the 
beginning address and limit of the IDT.  
Following reset, the IDTR contains a base 
address of 0h with a limit of 3FFh.  

The IDT can be located anywhere in physical 
memory as determined by the IDTR register.  
The IDT may contain different types of 
descriptors: interrupt gates, trap gates and task 
gates.  Interrupt gates are used primarily to 
enter a hardware interrupt handler.  Trap gates 
are generally used to enter an exception handler 
or software interrupt handler.  If an interrupt 
gate is used, the Interrupt Enable Flag (IF) in 
the EFLAGS register is cleared before the inter-
rupt handler is entered.  Task gates are used to 
make the transition to a new task.

2.8.4 Interrupt and Exception
Priorities

As the IBM 6x86™  CPU executes instructions, 
it follows a consistent policy for prioritizing 
exceptions and hardware interrupts. The priori-
ties for competing interrupts and exceptions are 
listed in Table 2-30 (Page 2-60).  Debug traps 
for the previous instruction and the next 
instructions always take precedence. SMM 
interrupts are the next priority.  When NMI and 
maskable INTR interrupts are both detected at 
the same instruction boundary, the IBM 6x86 
microprocessor services the NMI interrupt first. 

The IBM 6x86 CPU checks for exceptions in 
parallel with instruction decoding and execu-
tion.  Several exceptions can result from a 
single instruction.  However, only one excep-
tion is generated upon each attempt to execute 
the instruction.  Each exception service routine 
should make the appropriate corrections to the 
instruction and then restart the instruction.  In 
this way, exceptions can be serviced until the 
instruction executes properly.

The IBM 6x86 CPU supports instruction restart 
after all faults, except when an instruction 
causes a task switch to a task whose task state 
segment (TSS) is partially not present.  A TSS 
can be partially not present if the TSS is not 
page aligned and one of the pages where the 
TSS resides is not currently in memory.
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Table 2-30.   Interrupt and Exception Priorities

PRIORITY DESCRIPTION NOTES

0 Warm Reset Caused by the assertion of WM_RST.

1 Debug traps and faults from previ-
ous instruction.

Includes single-step trap and data breakpoints 
specified in the debug registers.

2 Debug traps for next instruction. Includes instruction execution breakpoints 
specified in the debug registers.

3 Hardware Cache Flush Caused by the assertion of FLUSH#.

4 SMM hardware interrupt. SMM interrupts are caused by SMI# asserted 
and always have highest priority.

5 Non-maskable hardware interrupt. Caused by NMI asserted.

6 Maskable hardware interrupt. Caused by INTR asserted and IF = 1.

7 Faults resulting from fetching the 
next instruction.

Includes segment not present, general protec-
tion fault and page fault.

8 Faults resulting from instruction 
decoding.

Includes illegal opcode, instruction too long, 
or privilege violation.

9 WAIT instruction and TS = 1 and 
MP = 1.

Device not available exception generated.

10 ESC instruction and EM = 1 or 
TS = 1.

Device not available exception generated.

11 Floating point error exception. Caused by unmasked floating point exception 
with NE = 1.

12 Segmentation faults (for each 
memory reference required by the 
instruction) that prevent transfer-
ring the entire memory operand.

Includes segment not present, stack fault, and 
general protection fault.

13 Page Faults that prevent transfer-
ring the entire memory operand.

14 Alignment check fault.
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2.8.5 Exceptions in Real Mode

Many of the exceptions described in Table 2-30 (Page 2-60) are not applicable in real mode.  
Exceptions 10, 11, and 14 do not occur in real mode.  Other exceptions have slightly different 
meanings in real mode as listed in Table 2-31.

Table 2-31.   Exception Changes in Real Mode

VECTOR 
NUMBER

PROTECTED MODE FUNCTION REAL MODE FUNCTION

8 Double fault. Interrupt table limit overrun.

10 Invalid TSS. x

11 Segment not present. x

12 Stack fault. SS segment limit overrun.

13 General protection fault. CS, DS, ES, FS, GS segment limit overrun.

14 Page fault. x
Note: x = does not occur
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2.8.6 Error Codes

When operating in protected mode, the following exceptions generate a 16-bit error code:

The error code is pushed onto the stack prior to entering the exception handler. The error code 
format is shown in Figure 2-36 and the error code bit definitions are listed in Table 2-32.  Bits 
15-3 (selector index) are not meaningful if the error code was generated as the result of a page 
fault.  The error code is always zero for double faults and alignment check exceptions.

  

Double Fault Invalid TSS

Alignment Check Segment Not Present

Page Fault Stack Fault

General Protection Fault

15                   3 2 1 0

Selector Index S2 S1 S0

Figure 2-36.  Error Code Format

Table 2-32.   Error Code Bit Definitions

FAULT
TYPE

SELECTOR
INDEX

(BITS 15-3)

S2
(BIT 2)

S1
(BIT 1)

S0
(BIT 0)

Double Fault or 
Alignment Check

0 0 0 0

Page Fault Reserved. Fault caused by:
0 = not present page
1 = page-level
protection violation.

Fault occurred dur-
ing:
0 = read access
1 = write access.

Fault occurred dur-
ing:
0 = supervisor access
1 = user access.

IDT Fault Index of faulty
IDT selector.

Reserved. 1 If = 1, exception 
occurred while try-
ing to invoke excep-
tion or  hardware 
interrupt handler.

Segment
Fault

Index of faulty
selector.

TI bit of faulty
selector.

0 If =1, exception 
occurred while try-
ing to invoke excep-
tion or  hardware 
interrupt handler.




