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Introduction

IBM 6x86 MICROPROCESSOR
Sixth-Generation Superscalar
Superpipelined x86-Compatible CPU 
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The on-chip FPU allows floating point instruc-
tions to execute in parallel with integer instruc-
tions and features a 64-bit data interface. The 
FPU incorporates a four-deep instruction 
queue and a four-deep store queue to facilitate 
parallel execution.

Additionally the IBM 6x86 CPU incorporates 
a low power suspend mode, stop clock capa-
bility, and system management mode (SMM) 
for power sensitive applications.

1.1 Major Functional
Blocks

The IBM 6x86 processor consists of five major 
functional blocks, as shown in the overall 
block diagram on the first page of this manual:

• Integer Unit 
• Cache Unit
• Memory Management Unit 
• Floating Point Unit 
• Bus Interface Unit 

Instructions are executed in the X and Y pipe-
lines within the Integer Unit and also in the 
Floating Point Unit (FPU). The Cache Unit 
stores the most recently used data and instruc-
tions to allow fast access to the information by 
the Integer Unit and FPU. 

Product Overview

1. ARCHITECTURE
OVERVIEW

The IBM 6x86 CPU is a leader in the sixth 
generation of high performance, x86-compat-
ible microprocessors. Increased performance is 
accomplished by the use of superscalar and 
superpipelined design techniques. 

The IBM 6x86 CPU is superscalar in that it 
contains two separate pipelines that allow 
multiple instructions to be processed at the 
same time. The use of advanced processing 
technology and the increased number of pipe-
line stages (superpipelining) allows the IBM 
6x86 CPU to achieve clocks rates of 100 MHz 
and above. 

Through the use of unique architectural 
features, the IBM 6x86  processor eliminates 
many data dependencies and resource 
conflicts, resulting in optimal performance for 
both 16-bit and 32-bit x86 software.

The IBM 6x86 CPU contains two caches: a 
16-KByte dual-ported unified cache and a 
256-byte instruction line cache. Since the 
unified cache can store instructions and data in 
any ratio, the unified cache offers a higher hit 
rate than separate data and instruction caches 
of equal size. An increase in overall 
cache-to-integer unit bandwidth is achieved by 
supplementing the unified cache with a small, 
high-speed, fully associative instruction line 
cache. The inclusion of the instruction line 
cache avoids excessive conflicts between code 
and data accesses in the unified cache.
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Integer Unit

Physical addresses are calculated by the 
Memory Management Unit and passed to 
the Cache Unit and the Bus Interface Unit 
(BIU). The BIU provides the interface 
between the external system board and the 
processor’s internal execution units. 

1.2 Integer Unit 

The Integer Unit (Figure 1-1) provides parallel 
instruction execution using two seven-stage 
integer pipelines. Each of the two pipelines, 
X and Y, can process several instructions 
simultaneously.

Figure 1-1. Integer Unit
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Integer Unit 1
The Integer Unit consists of the following 
pipeline stages:

• Instruction Fetch (IF)
• Instruction Decode 1 (ID1)
• Instruction Decode 2 (ID2)
• Address Calculation 1 (AC1)
• Address Calculation 2 (AC2)
• Execute (EX)
• Write-Back (WB)

The instruction decode and address calculation 
functions are both divided into superpipelined 
stages.

1.2.1 Pipeline Stages

The Instruction Fetch (IF) stage, shared by 
both the X and Y pipelines, fetches 16 bytes of 
code from the cache unit in a single clock 
cycle. Within this section, the code stream is 
checked for any branch instructions that could 
affect normal program sequencing. 

If an unconditional or conditional branch is 
detected, branch prediction logic within the IF 
stage generates a predicted target address for 
the instruction. The IF stage then begins 
fetching instructions at the predicted address.

The superpipelined Instruction Decode func-
tion contains the ID1 and ID2 stages.   ID1, 
shared by both pipelines, evaluates the code 
stream provided by the IF stage and deter-
mines the number of bytes in each instruction. 
Up to two instructions per clock are delivered 
to the ID2 stages, one in each pipeline.

The ID2 stages decode instructions and send 
the decoded instructions to either the X or Y 
pipeline for execution. The particular pipeline 
is chosen, based on which instructions are 
already in each pipeline and how fast they are 

expected to flow through the remaining pipe-
line stages. 

The Address Calculation function contains two 
stages, AC1 and AC2. If the instruction refers 
to a memory operand, the AC1 calculates a 
linear memory address for the instruction. 

The AC2 stage performs any required memory 
management functions, cache accesses, and 
register file accesses. If a floating point 
instruction is detected by AC2, the instruction 
is sent to the FPU for processing. 

The Execute (EX) stage executes instructions 
using the operands provided by the address 
calculation stage.   

The Write-Back (WB) stage is the last IU 
stage. The WB stage stores execution results 
either to a register file within the IU or to a 
write buffer in the cache control unit.

1.2.2 Out-of-Order
Processing 

If an instruction executes faster than the 
previous instruction in the other pipeline, the 
instructions may complete out of order. All 
instructions are processed in order, up to the 
EX stage. While in the EX and WB stages, 
instructions may be completed out of order.

If there is a data dependency between two 
instructions, the necessary hardware interlocks 
are enforced to ensure correct program 
execution. Even though instructions may 
complete out of order, exceptions and writes 
resulting from the instructions are always 
issued in program order.
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1.2.3 Pipeline Selection

In most cases, instructions are processed in 
either pipeline and without pairing constraints 
on the instructions. However, certain instruc-
tions are processed only in the X pipeline:

• Branch instructions 
• Floating point instructions
• Exclusive instructions

Branch and floating point instructions may be 
paired with a second instruction in the Y pipe-
line. 

Exclusive Instructions cannot be paired with 
instructions in the Y pipeline. These instruc-
tions typically require multiple memory 
accesses. Although exclusive instructions may 
not be paired, hardware from both pipelines is 
used to accelerate instruction completion. 
Listed below are the IBM 6x86 CPU exclusive 
instruction types: 

• Protected mode segment loads
• Special register accesses

 (Control, Debug, and Test Registers)
• String instructions
• Multiply and divide
• I/O port accesses
• Push all (PUSHA) and pop all (POPA)
• Intersegment jumps, calls, and returns

1.2.4 Data Dependency
Solutions 

When two instructions that are executing in 
parallel require access to the same data or 
register, one of the following types of data 
dependencies may occur:

• Read-After-Write (RAW)
• Write-After-Read (WAR)
• Write-After-Write (WAW)

Data dependencies typically force serialized 
execution of instructions. However, the IBM 
6x86 CPU implements three mechanisms that 
allow parallel execution of instructions 
containing data dependencies:

• Register Renaming
• Data Forwarding
• Data Bypassing

The following sections provide detailed exam-
ples of these mechanisms.

1.2.4.1 Register Renaming

The IBM 6x86 CPU contains 32 physical 
general purpose registers. Each of the 32 
registers in the register file can be temporarily 
assigned as one of the general purpose 
registers defined by the x86 architecture 
(EAX, EBX, ECX, EDX, ESI, EDI, EBP, and 
ESP). For each register write operation a new 
physical register is selected to allow previous 
data to be retained temporarily. Register 
renaming effectively removes all WAW and 
WAR dependencies. The programmer does not 
have to consider register renaming; it is 
completely transparent to both the operating 
system and application software.
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Example #1 - Register Renaming Eliminates Write-After-Read (WAR) Dependency

A WAR dependency exists when the first in a pair of instructions reads a logical register, and the 
second instruction writes to the same logical register. This type of dependency is illustrated by the 
pair of instructions shown below: 

X PIPE Y PIPE 

(1) MOV BX, AX (2) ADD AX, CX
BX ←AX AX ←AX + CX 

Note: In this and the following examples the original instruction order is shown in parentheses.

In the absence of register renaming, the ADD instruction in the Y pipe would have to be stalled to 
allow the MOV instruction in the X pipe to read the AX register.

The IBM 6x86 CPU, however, avoids the Y pipe stall (Table 1-1). As each instruction executes, 
the results are placed in new physical registers to avoid the possibility of overwriting a logical 
register value and to allow the two instructions to complete in parallel (or out of order) rather than 
in sequence.

Table 1-1. Register Renaming with WAR Dependency

Instruction
Physical Register Contents Action

Reg0 Reg1 Reg2 Reg3 Reg4 Pipe 

(Initial) AX BX CX

MOV BX, AX AX CX BX X Reg3 ← Reg0

ADD AX, CX CX BX AX Y Reg4 ← Reg0 + Reg2

Note: The representation of the MOV and ADD instructions in the final column of Table 1-1 
are completely independent.
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Example #2 - Register Renaming Eliminates Write-After-Write (WAW) Dependency 

A WAW dependency occurs when two consecutive instructions perform writes to the same 
logical register. This type of dependency is illustrated by the pair of instructions shown below:

X PIPE Y PIPE 

(1) ADD AX, BX (2) MOV AX, [mem] 
AX ←AX + BX AX ← [mem] 

Without register renaming, the MOV instruction in the Y pipe would have to be stalled to guar-
antee that the ADD instruction in the X pipe would write its results to the AX register first.

The IBM 6x86 CPU uses register renaming and avoids the Y pipe stall. The contents of the AX 
and BX registers are placed in physical registers (Table 1-2). As each instruction executes, the 
results are placed in new physical registers to avoid the possibility of overwriting a logical 
register value and to allow the two instructions to complete in parallel (or out of order) rather than 
in sequence.

Table 1-2. Register Renaming with WAW Dependency

Instruction
Physical Register Contents Action

Reg0 Reg1 Reg2 Reg3 Pipe 

(Initial) AX BX

ADD AX, BX BX AX X Reg2 ← Reg0 + Reg1 

MOV AX, [mem] BX AX Y Reg3 ← [mem]

Note: All subsequent reads of the logical register AX will refer to Reg 3, the result of the MOV
         instruction.
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1.2.4.2 Data Forwarding 

Register renaming alone cannot remove RAW 
dependencies. The IBM 6x86 CPU uses two 
types of data forwarding in conjunction with 
register renaming to eliminate RAW depen-
dencies:

• Operand Forwarding
• Result Forwarding

Operand forwarding takes place when the 
first in a pair of instructions performs a move 
from register or memory, and the data that is 
read by the first instruction is required by the 
second instruction. The IBM 6x86 CPU 
performs the read operation and makes the 
data read available to both instructions simul-
taneously. 

Result forwarding takes place when the first 
in a pair of instructions performs an operation 
(such as an ADD) and the result is required by 
the second instruction to perform a move to a 
register or memory. The IBM 6x86 CPU 
performs the required operation and stores the 
results of the operation to the destination of 
both instructions simultaneously.
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Example #3 - Operand Forwarding Eliminates Read-After-Write (RAW) Dependency

A RAW dependency occurs when the first in a pair of instructions performs a write, and the 
second instruction reads the same register. This type of dependency is illustrated by the pair of 
instructions shown below in the X and Y pipelines:

X PIPE Y PIPE 

(1) MOV AX, [mem] (2) ADD BX, AX
AX ← [mem] BX ← AX + BX 

The IBM 6x86 CPU uses operand forwarding and avoids a Y pipe stall (Table 1-3). Operand 
forwarding allows simultaneous execution of both instructions by first reading memory and then 
making the results available to both pipelines in parallel.  

Operand forwarding can only occur if the first instruction does not modify its source data. In 
other words, the instruction is a move type instruction (for example, MOV, POP, LEA). Operand 
forwarding occurs for both register and memory operands. The size of the first instruction desti-
nation and the second instruction source must match.

Table 1-3. Example of Operand Forwarding 

Instruction
Physical Register Contents Action

Reg0 Reg1 Reg2 Reg3 Pipe 

(Initial) AX BX

MOV AX, [mem] BX AX X Reg2 ← [mem]

ADD BX, AX AX BX Y Reg3 ← [mem] + Reg1 
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Example #4 - Result Forwarding Eliminates Read-After-Write (RAW) Dependency

In this example, a RAW dependency occurs when the first in a pair of instructions performs a 
write, and the second instruction reads the same register. This dependency is illustrated by the 
pair of instructions in the X and Y pipelines, as shown below:

X PIPE Y PIPE 

(1) ADD AX, BX (2) MOV [mem], AX
AX ←AX + BX [mem] ← AX

The IBM 6x86 CPU uses result forwarding and avoids a Y pipe stall (Table 1-4). Instead of trans-
ferring the contents of the AX register to memory, the result of the previous ADD instruction 
(Reg0 + Reg1) is written directly to memory, thereby saving a clock cycle.

The second instruction must be a move instruction and the destination of the second instruction 
may be either a register or memory.

Table 1-4.  Result Forwarding Example 

Instruction

Physical Register
Contents

Action

Reg0 Reg1 Reg2 Pipe

(Initial) AX BX

ADD AX, BX BX AX X Reg2 ←Reg0 + Reg1

MOV [mem], AX BX AX Y [mem] ← Reg0 +Reg1
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1.2.4.3 Data Bypassing

In addition to register renaming and data forwarding, the IBM 6x86 CPU implements a third data 
dependency-resolution technique called data bypassing. Data bypassing reduces the performance 
penalty of those memory data RAW dependencies that cannot be eliminated by data forwarding.

Data bypassing is implemented when the first in a pair of instructions writes to memory and the 
second instruction reads the same data from memory. The IBM 6x86 CPU retains the data from 
the first instruction and passes it to the second instruction, thereby eliminating a memory read 
cycle. Data bypassing only occurs for cacheable memory locations.

Example #1- Data Bypassing with Read-After-Write (RAW) Dependency

In this example, a RAW dependency occurs when the first in a pair of instructions performs a 
write to memory and the second instruction reads the same memory location. This dependency is 
illustrated by the pair of instructions in the X and Y pipelines as shown below:

X PIPE Y PIPE

(1) ADD [mem], AX (2) SUB BX, [mem] 
[mem] ←[mem] + AX BX ← BX - [mem]

The IBM 6x86 CPU uses data bypassing and stalls the Y pipe for only one clock by eliminating 
the Y pipe’s memory read cycle (Table 1-5). Instead of reading memory in the Y pipe, the result 
of the previous instruction ([mem] + Reg0) is used to subtract from Reg1, thereby saving a 
memory access cycle.

Table 1-5.  Example of Data Bypassing 

Instruction

Physical Register
Contents

Action

Reg0 Reg1 Reg2 Pipe

(Initial) AX BX

ADD [mem], AX AX BX X [mem] ← [mem] + Reg0

SUB BX, [mem] AX BX Y Reg2 ← Reg1 - {[mem] + Reg0}
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1.2.5 Branch Control

Branch instructions occur on average every 
four to six instructions in x86-compatible pro-
grams. When the normal sequential flow of a 
program changes due to a branch instruction, 
the pipeline stages may stall while waiting for 
the CPU to calculate, retrieve, and decode the 
new instruction stream. The IBM 6x86 CPU 
minimizes the performance degradation and 
latency of branch instructions through the use 
of branch prediction and speculative execu-
tion. 

1.2.5.1 Branch Prediction 

The IBM 6x86 CPU uses a 256-entry, 4-way 
set associative Branch Target Buffer (BTB) to 
store branch target addresses and branch 
prediction information. During the fetch stage, 
the instruction stream is checked for the pres-
ence of branch instructions. If an uncondi-
tional branch instruction is encountered, the 
IBM 6x86 CPU accesses the BTB to check for 
the branch instruction’s target address. If the 
branch instruction’s target address is found in 
the BTB, the IBM 6x86 CPU begins fetching 
at the target address specified by the BTB.

In case of conditional branches, the BTB also 
provides history information to indicate 
whether the branch is more likely to be taken 
or not taken. If the conditional branch instruc-
tion is found in the BTB, the IBM 6x86 CPU 
begins fetching instructions at the predicted 
target address. If the conditional branch misses 
in the BTB, the IBM 6x86 CPU predicts that 
the branch will not be taken, and instruction 
fetching continues with the next sequential 

instruction. The decision to fetch the taken or 
not taken target address is based on a four-state 
branch prediction algorithm.

Once fetched, a conditional branch instruction 
is first decoded and then dispatched to the X 
pipeline only. The conditional branch instruc-
tion proceeds through the X pipeline and is 
then resolved in either the EX stage or the WB 
stage. The conditional branch is resolved in the 
EX stage, if the instruction responsible for 
setting the condition codes is completed prior 
to the execution of the branch. If the instruc-
tion that sets the condition codes is executed in 
parallel with the branch, the conditional 
branch instruction is resolved in the WB stage.

Correctly predicted branch instructions 
execute in a single core clock. If resolution of 
a branch indicates that a misprediction has 
occurred, the IBM 6x86 CPU flushes the pipe-
line and starts fetching from the correct target 
address. The IBM 6x86 CPU prefetches both 
the predicted and the non-predicted path for 
each conditional branch, thereby eliminating 
the cache access cycle on a misprediction. If 
the branch is resolved in the EX stage, the 
resulting misprediction latency is four cycles.  
If the branch is resolved in the WB stage, the 
latency is five cycles. 

Since the target address of return (RET) 
instructions is dynamic rather than static, the 
IBM 6x86 CPU caches target addresses for 
RET instructions in an eight-entry return stack 
rather than in the BTB. The return address is 
pushed on the return stack during a CALL 
instruction and popped during the corre-
sponding RET instruction. 
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1.2.5.2 Speculative Execution

The IBM 6x86 CPU is capable of speculative 
execution following a floating point instruc-
tion or predicted branch. Speculative execution 
allows the pipelines to continuously execute 
instructions following a branch without 
stalling the pipelines waiting for branch reso-
lution. The same mechanism is used to execute 
floating point instructions (see Section 1.5) in 
parallel with integer instructions.

The IBM 6x86 CPU is capable of up to four 
levels of speculation (i.e., combinations of 
four conditional branches and floating point 
operations).  After generating the fetch address 
using branch prediction, the CPU checkpoints 
the machine state (registers, flags, and 
processor environment), increments the specu-
lation level counter, and begins operating on 
the predicted instruction stream.

Once the branch instruction is resolved, the 
CPU decreases the speculation level.   For a 
correctly predicted branch, the status of the 
checkpointed resources is cleared. For a 
branch misprediction, the IBM 6x86 processor 
generates the correct fetch address and uses the 
checkpointed values to restore the machine 
state in a single clock. 

In order to maintain compatibility, writes that 
result from speculatively executed instructions 
are not permitted to update the cache or 
external memory until the appropriate branch 
is resolved. Speculative execution continues 
until one of the following conditions occurs:

1)  A branch or floating point operation 
is decoded and the speculation level 
is already at four. 

2)  An exception or a fault occurs.

3)  The write buffers are full.

4)  An attempt is made to modify a 
non-checkpointed resource (i.e., 
segment registers, system flags). 

1.3 Cache Units

The IBM 6x86 CPU employs two caches, the 
Unified Cache and the Instruction Line Cache 
(Figure 1-2). 

1.3.1 Unified Cache

The 16-KByte unified write-back cache func-
tions as the primary data cache and as the 
secondary instruction cache. Configured as a 
four-way set-associative cache, the cache 
stores up to 16 KBytes of code and data in 512 
lines. The cache is dual-ported and allows any 
two of the following operations to occur in 
parallel:

• Code fetch
• Data read (X pipe, Y pipeline or FPU)
• Data write (X pipe, Y pipeline or FPU)

The unified cache uses a pseudo-LRU replace-
ment algorithm and can be configured to allo-
cate new lines on read misses only or on read 
and write misses. More information 
concerning the unified cache can be found in 
Section 2.7.1 (Page 2-52).
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1.3.2 Instruction Line Cache

The fully associative 256-byte instruction line 
cache serves as the primary instruction cache. 
The instruction line cache is filled from the 
unified cache through the data bus. Fetches 
from the integer unit that hit in the instruction 
line cache do not access the unified cache. If 
an instruction line cache miss occurs, the 
instruction line data from the unified cache is 
transferred to the instruction line cache and the 
integer unit, simultaneously. 

The instruction line cache uses a pseudo-LRU 
replacement algorithm. To ensure proper oper-
ation in the case of self-modifying code, any 
writes to the unified cache are checked against 
the contents of the instruction line cache. If a 
hit occurs in the instruction line cache, the 
appropriate line is invalidated.

Figure 1-2. Cache Unit Operations
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Memory Management Unit

1.4.1 Variable-Size Paging
Mechanism

The IBM 6x86 variable-size paging 
mechanism allows software to map pages 
between 4 KBytes and 4 GBytes in size. The 
large contiguous memories provided by this 
mechanism help avoid TLB (Translation 
Lookaside Buffer) thrashing [see Section 2.6.4 
(Page 2-45)] associated with some operating 
systems and applications. For example, use of 
a single large page instead of a series of small 
4-KByte pages can greatly improve 
performance in an application using a large 
video memory buffer.

1.4 Memory 
Management Unit

The Memory Management Unit (MMU), 
shown in Figure 1-3, translates the linear 
address supplied by the IU into a physical 
address to be used by the unified cache and the 
bus interface. Memory management proce-
dures are x86 compatible, adhering to standard 
paging mechanisms. 

The IBM 6x86 MMU includes two paging 
mechanisms (Figure 1-3), a traditional paging 
mechanism, and a IBM 6x86 variable-size 
paging mechanism. 

Figure 1-3.  Paging Mechanism within the Memory Management Unit
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1.4.2 Traditional
Paging Mechanism

The traditional paging mechanism has been 
enhanced on the IBM 6x86 CPU with the addi-
tion of the Directory Table Entry (DTE) cache 
and the Victim TLB. The main TLB (Transla-
tion Lookaside Buffer) is a direct-mapped 
128-entry cache for page table entries. 

The four-entry fully associative DTE cache 
stores the most recent DTE accesses. If a Page 
Table Entry (PTE) miss occurs followed by a 
DTE hit, only a single memory access to the 
PTE table is required. 

The Victim TLB stores PTEs which have been 
displaced from the main TLB due to a TLB 
miss. If a PTE access occurs while the PTE is 
stored in the victim TLB, the PTE in the victim 
TLB is swapped with a PTE in the main TLB. 
This has the effect of selectively increasing 
TLB associativity. The IBM 6x86 CPU 
updates the eight-entry fully associative victim 
TLB on an oldest entry replacement basis.

1.5 Floating Point Unit 

The IBM 6x86 Floating Point Unit (FPU) 
interfaces to the integer unit and the cache unit 
through a 64-bit bus. The IBM 6x86 FPU is 
x87 instruction set compatible and adheres to 
the IEEE-754 standard. Since most applica-
tions contain FPU instructions mixed with 
integer instructions, the IBM 6x86 FPU 
achieves high performance by completing 
integer and FPU operations in parallel.

FPU Parallel Execution 

The IBM 6x86 CPU executes integer instruc-
tions in parallel with FPU instructions. Integer 
instructions may complete out of order with 
respect to the FPU instructions. The IBM 6x86 
CPU maintains x86 compatibility by signaling 
exceptions and issuing write cycles in program 
order.

As previously discussed, FPU instructions are 
always dispatched to the integer unit’s X pipe-
line. The address calculation stage of the X 
pipeline checks for memory management 
exceptions and accesses memory operands 
used by the FPU. If no exceptions are detected, 
the IBM 6x86 CPU checkpoints the state of the 
CPU and, during AC2, dispatches the floating 
point instruction to the FPU instruction queue. 
The IBM 6x86 CPU can then complete any 
subsequent integer instructions speculatively 
and out of order relative to the FPU instruction 
and relative to any potential FPU exceptions 
which may occur. 

As additional FPU instructions enter the pipe-
line, the IBM 6x86 CPU dispatches up to four 
FPU instructions to the FPU instruction queue. 
The IBM 6x86 CPU continues executing spec-
ulatively and out of order, relative to the FPU 
queue, until the IBM 6x86 CPU encounters 
one of the conditions that causes speculative 
execution to halt. As the FPU completes 
instructions, the speculation level decreases 
and the checkpointed resources are available 
for reuse in subsequent operations. The IBM 
6x86 FPU also uses a set of four write buffers 
to prevent stalls due to speculative writes. 
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Bus Interface Unit

1.6 Bus Interface Unit

The Bus Interface Unit (BIU) provides the 
signals and timing required by external 
circuitry. The signal descriptions and bus inter-
face timing information is provided in 
Chapters 3 and 4 of this manual.




