
X86 Multiprocessing Basics

by Sherry L. Silver

Introduction

This purpose of this paper is to introduce the reader to multiprocessing systems. The ba-

sic features of a multiprocessing system are defined, design issues discussed, and various system

configurations evaluated. This paper provides the reader with an understanding of X86 multi-

processing system solutions but not with detailed design information.

General Concepts

The two fundamental elements of a multiprocessing system are its hardware configuration

and its controlling software. The basic hardware requirement for a multiprocessing configuration

is a system containing two or more microprocessors and some logic to control communication

with and between the processors. For the controlling software, the Basic Input/Output System

(BIOS) and the operating system chosen must have the ability to support multiple

microprocessors.

Multiprocessing systems are either symmetric or asymmetric, where the symmetry is de-

fined with respect to memory, input/output (I/O), and interrupts. In a fully symmetric multiproc-

essing system (SMP), the microprocessors are functionally identical, have equal status, and can

communicate with every other processor. The operating system may use this symmetry to dy-

namically assign program tasks to each processor based on the current needs of the application.

Essentially, any code segment can run on any microprocessor at any time after system initializa-

tion, or boot-up.

The one exception to this symmetry is during boot-up when either the hardware alone or

the hardware along with the BIOS identifies one of the processors as the boot processor. The

boot processor then works to enable the other processors. After the system is initialized, the op-

erating system switches to symmetric mode, and the boot processor functions in the same manner

as the other processors.

Page 1 of 15 December 12, 1995 Fax #40208

Application Note

®

 Revision Summary: This is the initial release of this Application Note.

In an asymmetric system, the microprocessors may be different and program tasks are

strictly divided by type among processors. Dynamic load balancing is not performed. If the spe-

cific task that one processor handles is not needed, the processor will be idle. The processors may

be limited to communication with neighboring processors only and may be configured in a hierar-

chical fashion. A typical asymmetric software scenario would consist of one processor running

the kernel with various tasks being performed on the other processors in a master-slave type rela-

tionship. An example of an asymmetric system would a 386 microprocessor paired with a 387

floating point coprocessor.

Also, software applications must be multithreaded to benefit from symmetrical multiproc-

essing so that threads, or tasks, can be assigned to different processors. If an application is not

multithreaded, it will run on only one of the processors. Examples of operating systems which

support multiprocessing are: Novell**, Windows NT**, Unixware**, and OS/2* SMP (version

of 2.1).

Multiprocessing Design Issues

In all multiprocessing systems, there are unique design issues that arise due to the flow of

information among the various bus masters (multiple microprocessors and I/O subsystems) and

memory (internal caches, external caches and main memory). The following are the three main

issues:

1. Cache Coherency

2. Arbitration

3. Interrupt Handling

Cache Coherency. By definition, maintaining cache coherency in a cache/memory system will

guarantee that a request for data from memory will always retrieve the most up-to-date data

value, regardless of which cache or memory location currently holds that value. This is particu-

larly important for write-back caches where data may not be transferred to main memory immedi-

ately. In fact, with write-back caches, the data is not written back to main memory until the last

possible instant - when another processor or I/O device needs to access the data or when its loca-

tion in the cache is needed for other data.

In a uniprocessor system, coherency is required between the processor's internal level 1

(L1) cache, the external level 2 (L2) cache, main memory, and I/O devices. In a multiprocessing

system, the need for coherency is extended to include the multiple caches associated with each mi-

croprocessor on the bus. For example, if Processor A updates a memory location in its write-

back L2 cache and another processor, Processor B, requests a read from the same memory ad-

dress, Processor B must always get the most up-to-date data which, in this case, would reside in

Processor A's L2 cache rather than main memory.

The responsibility for maintaining cache coherency lies in hardware. Depending on the

system topology, the cache coherency may be controlled by the core logic, the L2 caches, or the

processors. Independent of what the controlling hardware is, the process used is the same. The

Page 2 of 15 December 12, 1995 Fax #40208

main elements of this process are snooping the bus, interrogating the caches and, if necessary, up-

dating main memory.

When another bus master has control of the bus, the cache controlling hardware snoops,

or monitors, the system bus in order to determine which address in main memory the bus master is

accessing. After learning the desired memory address, each L2 cache controller interrogates its

L2 cache and its associated processor's internal L1 cache to determine, by use of the MESI

model defined below, if either cache has modified data for that memory location. If the result is

yes, indicating that main memory has stale data, then the cache controller seizes control of the bus

from the bus master and updates the location in main memory. After the data is written back to

main memory, the cache controller releases the bus, and the bus master may complete its read or

write cycle.

The MESI cache coherency model is used to determine the state of the data stored in

cache memory. The model keeps track of the coherency of data for each cache line -- usually 16

or 32 bytes each. The four defined MESI states are listed below.

 Modified The cache line has been updated, or modified, by the processor.

 Exclusive The cache line is unaware of any other cache containing this data.

 Shared An exact duplicate of the cache line exists in at least one other cache.

 Invalid The cache line does not contain valid data. This is the initial state of each

cache line after reset.

Arbitration. One requirement of symmetric multiprocessing systems is that all processors must be

able to communicate with each other and with the I/O subsystems. In order to provide

interference-free and orderly communication in multiprocessing systems, both hardware and soft-

ware arbitration mechanisms must be implemented.

Hardware arbitration ensures that only one bus master, a single processor or I/O device,

has control of the bus at any time. In a design with hardware arbitration, a bus master must issue

a bus request to the arbitrator. When the arbitrator determines that the previous bus master has

disconnected from the bus and that it is the requesting bus master's turn to use the bus, it grants

the bus to the bus master. Hardware arbitration schemes are dependent on the chosen topology

and may be controlled by the core logic, the L2 caches, or the processors.

Software arbitration is necessary to ensure that in certain situations only one processor or

I/O device can access a specific address or run a particular piece of code at a time. Locked cycles

are often used to control software arbitration. For example, if one processor is performing a criti-

cal memory operation, such as updating a semaphore using a read-modify-write operation, it will

lock out any of the other bus masters from accessing the locked address until it has completed the

locked cycle operation.

Interrupt Handling. The third challenge in designing a multiprocessing system is the channeling

and processing of interrupts. This is accomplished by the interrupt controller, which is typically a

part of the core logic. In a multiprocessing system, the interrupt controller receives interrupt

Page 3 of 15 December 12, 1995 Fax #40208

requests from I/O devices and/or processors, determines which processor(s) shall service each in-

terrupt, and routes the interrupts to the correct microprocessors.

In a symmetric system, any interrupt from any source can be routed to any processor and

handled there. Two solutions available today for interrupt handling in SMP systems are AMD**

and Cyrix's** OpenPIC** specification and Intel's** APIC** specification. A more detailed dis-

cussion on interrupt handling will be provided following an overview of multiprocessing system

configurations.

Multiprocessing System Configurations

Multiprocessing is used both in servers and high-end desktop systems. As with any de-

sign, the trade-off between desired performance and cost as well as technical limitations helps to

determine the type of system configuration and the number of processors used. For example, a

typical server configuration today might have four microprocessors, whereas multiprocessing

desktop systems usually have only two. Note, however, that the actual number of microproces-

sors can be much higher. In fact, massively parallel systems such as IBM's POWERparallel* sys-

tems or Intel's supercomputers can have upwards of 512 or 1024 microprocessors. Given these

variables, there are various strategies a designer may use in developing a multiprocessing system.

The following three are evaluated in this paper.

1. Private Cache Symmetric Multiprocessing (PC SMP)

2. Shared Look-Through Cache Symmetric Multiprocessing (SLTC SMP)

3. Shared Look-Aside Cache Symmetric Multiprocessing (SLAC SMP)

Private Cache Symmetric Multiprocessing (PC SMP). In a PC SMP topology, each microproces-

sor has its own unique look-through L2 cache. A typical PC SMP configuration is shown in Dia-

gram 1. Arbitration and cache coherency in PC SMP systems are usually controlled by the core

logic; however, a few processors, such as the Intel Pentium** processor are designed to handle

arbitration and cache coherency directly over a private bus between the processors.

 CPU A L2 A

 CORE

MEMORY
 LOGIC

 I/O

 CPU B L2 B

Diagram 1: Private Cache Symmetric Multiprocessing (PC SMP)

(Dotted lines show potential integration)

Page 4 of 15 December 12, 1995 Fax #40208

The individual L2 caches provide a number of performance enhancements. The first per-

formance improvement is due to a smaller amount of electrical loading on the microprocessors.

Since each processor is connected only to its L2 cache and not the other processors', its electrical

loading is reduced. This allows for faster bus speeds between the processor and its L2 cache, as-

suming the L2 can support the higher frequency. Even better performance can be achieved by in-

tegrating the L2 cache with the processor as one chip.

The PC SMP system also benefits from the look-through nature of the individual caches.

A look-through cache provides processor bus - system bus isolation, which allows for increased

processor performance and bus concurrent operations.

Each of the look-through L2 caches provides a buffer between the system bus traffic and

its processor, allowing only relevant requests through to the processor. For example, since a

look-through L2 cache always has a copy of every line that is resident in its processor's internal

L1 cache, the processor does not need to be interrupted and asked to check its internal L1 cache

if the memory location is not stored in its L2 cache. With fewer interruptions, the processor's per-

formance is improved.

Due to the isolation between the processor bus and the system bus, multiple operations

can be performed simultaneously to improve system performance. This is referred to as bus con-

current operations. An example would be one processor accessing its external L2 cache memory

while another bus master accesses memory or I/O over the system bus at the same time.

Another advantage of this topology is a reduction in system bus traffic. Since each proc-

essor has frequently used data stored in its own L2 cache, the number of main memory accesses

occurring on the system bus to fulfill processor requests is greatly reduced. This benefits both the

processors and the system bus in the PC SMP system. The processors incur fewer wait states

when retrieving data from main memory, and the system bus utilization by each processor is

decreased.

Since the use of individual look-through caches reduces the percentage of time each proc-

essor ties up the system bus, more processors may be implemented in the system. However, if the

percentage of system bus time required by all bus master devices adds up to over 100%, the bus

bandwidth is exceeded, and individual processor performance decreases due to added wait states

for bus accesses. For example, a 64-bit data bus in a system running at 33 MHz yields a band-

width equal to 264 MB/sec. Assuming the bus is 30% utilized by each processor (.30 * 264 = 79

MB/sec) and that there are four of these microprocessors in the system (4 * 79 = 316 MB/sec),

the bus would be saturated!

The technical drawback to PC SMP designs is the demand placed on the system bus due

to L2-L2 cache snooping and electrical loading. In order to maintain cache coherency with multi-

ple caches on the bus, L2-L2 snoop traffic is now required. The additional L2-L2 snoop traffic

puts a high demand on an already crowded system bus. Furthermore, the high number of electri-

cal loads on the bus demands that the system bus be run at a lower speed than the processor bus.

One-half of the processor bus speed is typical.

Page 5 of 15 December 12, 1995 Fax #40208

An estimate of the overall system performance gain for a dual-processor PC SMP system

over a uniprocessor system is 1.6X - 1.8X. For a quad-processor system, the gain increases to

around 2.8X - 3.4X. The tradeoff for the high performance of these systems is cost. In order to

provide the individual look-through caching capability, multiple expensive dual-ported L2 caches

must be used. Due to the higher costs, this configuration is used exclusively for servers.

Shared Look-Through Cache Symmetric Multiprocessing (SLTC SMP). In an SLTC SMP con-

figuration, a look-through cache is shared between the processors, as shown in Diagram 2, in or-

der to reduce system costs. However, sharing the cache also reduces the per processor caching

capability, limiting the number of processors that can be used effectively to only two.

While each processor has only half as much caching capability as in the PC SMP system

(assuming the same size L2 cache) and must share the processor bus, the performance benefit due

to the processor bus - system bus isolation as discussed for the PC SMP configuration still exists.

The net performance gain for this type of system is approximately 1.4X - 1.6X over a single proc-

essor configuration.

In the SLTC SMP configuration, the arbitration and cache coherency is usually controlled

by either the L2 cache or the processors themselves. In this scenario, the core logic has no

knowledge of the multiple processors behind it, and standard desktop core logic may be used.

However, if an L2 cache that is not multiprocessing-capable is used in an SLTC SMP scheme,

then extra "glue" logic must be included on the system board, or possibly in the core logic. This is

less desirable as it would either increase the design complexity for the system board designer or

raise the cost of the core logic.

Overall, the cost savings over the private cache configuration permits the use of the SLTC

SMP topology in high-end desktop systems.

Shared Look-Aside Cache Symmetric Multiprocessing (SLAC SMP). In a SLAC SMP topology,

the multiple processors share one look-aside L2 cache that resides on the system bus as shown in

Diagram 3. This is very similar to a typical uniprocessor desktop configuration, except with an

additional processor.

In this scheme, various degrees of core logic support are necessary. If the processor con-

trols the arbitration and cache coherency directly, standard desktop core logic may be used.

Diagram 2: Shared Look-Through Cache Symmetric Multiprocessing (SLTC SMP)

 CPU B

 CPU A

 L2
 CORE

MEMORY
 LOGIC

 I/O

Page 6 of 15 December 12, 1995 Fax #40208

Otherwise, special core logic would need to be incorporated to provide the multiprocessing

control.

The biggest advantage of this topology is cost. Of the three multiprocessing solutions dis-

cussed in this paper, the SLAC SMP is the least costly to implement. Look-aside caches are less

expensive than look-through caches since they have only one port and have a simpler design.

Also, since the processors are sharing an L2 cache, the only unique expense incurred is for the

multiprocessing-capable core logic (if required).

The disadvantage to this type of configuration is the high amount of traffic between the

processors, the L2 cache, and the core logic on the system bus. In a look-aside configuration,

there is no bus isolation, or filtering, of irrelevant information (i.e., a snoop must go to all proces-

sors and the L2 cache). All traffic occurs on the system bus. To avoid saturating the bus, this

configuration is typically used with only two microprocessors. Due to the overhead on the system

bus, the performance gain is usually around 1.3X - 1.5X.

Although it has the lowest performance of the three multiprocessing configurations, SLAC

SMP systems are the most commonly used. The price/performance ratio delivers a solution well

suited for the high-end desktop market.

Configuration Summary. Table 1 summarizes the performance gain and relative costs associated

with each of the three multiprocessing configurations which have been discussed. As expected,

performance gain is directly proportional to cost.

 Configuration Performance Gain Relative Cost

 PC SMP 1.6 - 1.8 X $$$$

 SLTC SMP 1.4 - 1.6 X $$

 SLAC SMP 1.3 - 1.5 X $

Table 1: Multiprocessing System Configuration Summary. Performance gain

estimates of three dual-processor SMP system configurations versus a

uniprocessor system and the relative costs of each configuration.

Page 7 of 15 December 12, 1995 Fax #40208

Diagram 3: Shared Look-Aside Cache Symmetric Multiprocessing (SLAC SMP)

 CPU B

 CPU A

 L2

 CORE

MEMORY
 LOGIC

 I/O

Uniprocessor Interrupt Handling

As stated earlier, the channeling and processing of interrupts is handled by the interrupt

controller. In a symmetric multiprocessing system, any interrupt from any source can be routed to

any processor and handled there. Before discussing how the interrupt controller works to control

interrupts in such an SMP system, a general overview of the industry standard 8259 interrupt

process for uniprocessor systems is provided.

The Interrupt Controller. In an x86 uniprocessor system, there are many sources for interrupts

(the serial interface, parallel interface, floppy/hard disk controller, network adapter, keyboard,

mouse, etc.) but only one interrupt pin on the single microprocessor to receive them. It is the

responsibility of the programmable interrupt controller (PIC) to receive interrupt requests from

the various sources, prioritize them, and route them in order of priority to the microprocessor.

In a multiprocessing system, extra support is needed to handle the processing of interrupts

by multiple processors. With multiple processors available to process interrupts, the PIC now

needs to decide which processor to deliver each interrupt to and keep track of these assignments.

Also, multiprocessing systems must be able to handle interprocessor interrupts. In addi-

tion to the interrupt sources present in a uniprocessor system, each processor is now a potential

interrupt source and may direct interrupt requests to any of the other processors in the system.

Interprocessor interrupts provide communication between processors for reasons such as power

management or to restart or shutdown the system.

8259 Interrupt Process. Any x86 multiprocessing interrupt solution must maintain compatibility

with the 8259 programmable interrupt controller that has been the industry standard interrupt

controller since the PC/AT. Both APIC and OpenPIC support 8259-type interrupt control. An

overview of the 8259's interrupt process will provide a basic understanding of the data exchange

that occurs during an interrupt in a uniprocessor system. The interrupt process for an 8259-type

interrupt consists of the following steps:

1. The I/O device issues a hardware interrupt to the 8259 PIC by raising the signal on the

PIC's pin to which it is connected.

2. The PIC prioritizes concurrent interrupts using a hardware prioritization scheme where

the priority of each interrupt request is dependent upon which interrupt request pin the

I/O device is connected to on the 8259. After determining the highest priority interrupt

request, the PIC drives the interrupt line to the processor to inform it of the

interrupt request. Since the processor can deal with only one interrupt at a time, all

other pending interrupts are masked, or ignored.

3. The processor responds to the 8259 with an interrupt acknowledge bus cycle.

4. The PIC responds to the processor's interrupt acknowledge cycle by sending the

interrupt message across the data bus to the processor. Included in the interrupt

message is the interrupt source and the pre-programmed interrupt vector (8-bit pointer

Page 8 of 15 December 12, 1995 Fax #40208

to the interrupt handler).

5. The processor branches to the vector address and executes the corresponding interrupt

handler.

6. Upon completion of the interrupt handler, the processor issues an end of interrupt

(EOI) command to the PIC.

7. The PIC clears the completed interrupt and unmasks any pending interrupts. If

pending interrupts exist, the PIC begins processing of the next hardware interrupt.

APIC Interrupt Handling

Intel's solution for the handling of interrupts in a multiprocessing application is its Ad-

vanced Programmable Interrupt Controller (APIC). In hopes of establishing APIC as the industry

standard, Intel is providing board designs and working with core logic chipset manufacturers in

addition to embedding APIC technology in its latest Pentium** and P6** processors and

chipsets.1

APIC Architecture. The APIC architecture is distributed between two basic functional units, the

local APIC and the I/O APIC as seen in Diagram 4. Together, the APIC units are responsible for

1 Electronic Engineering Times - Issue 840 - AMD, Cyrix push open-server spec

 L2 A

Diagram 4: APIC INTERRUPT HANDLING IN A PC SMP SYSTEM

L
1
 C
O
H
E
R
E
N
C
Y
.

A
R
B
IT
R
A
T
IO
N

 L2 B

 CORE

MEMORY

 LOGIC
 I/O

 8259

 APIC

 I/O

 LOCAL

 APIC A
 CPU A

 CPU B LOCAL

 APIC B

ICC BUS

8259 I/O

INTERRUPTS

AND BUS

CYCLES

(Dotted lines show potential integration)

EXTERNAL

INTERRUPTS

Page 9 of 15 December 12, 1995 Fax #40208

delivering interrupts from interrupt sources to interrupt destinations throughout the multiproces-

sing system. The local and I/O units may be implemented in hardware as a discrete chip contain-

ing both units (e.g. Intel's 82489DX interrupt controller), or they may be integrated with other

system components. For example, the local APIC is embedded in Intel's Pentium microproces-

sors, and the I/O APIC can be built into the core logic chipset.

As a discrete chip, the 82489DX may be used as either the local unit or the I/O unit, but

not both since one local APIC is required for each processor. Depending on the number of inter-

rupt lines in the system, one or more I/O APICs may be used. In order to distinguish the APIC

units, each local and I/O APIC has an ID register that is programmed during system initialization.

Up to 240 total APIC devices (maximum of 32 local APICs) can be supported. The APIC IDs

are used by software to specify destination information and to access APIC's communication bus.

The local and I/O APIC units communicate through the Interrupt Controller Communica-

tions (ICC) bus. In the case of an I/O interrupt, the I/O APIC unit receives the interrupt request,

determines who it will direct it to, formats an interrupt message, and sends it over the ICC bus.

The local unit that is addressed by its ID accepts the message sent by the I/O unit and delivers it

to its processor. The use of a unique ICC bus provides two advantages: 1) interrupt-related traf-

fic is off-loaded from the system bus and 2) processors can share in the handling of interrupts

without the software's knowledge.

Interprocessor interrupts are also passed along the ICC bus. These interrupts are handled

in an APIC system as a bus message from the originating processor's local APIC to the local

APIC(s) of the intended processor(s). The originating local APIC formats the message in the

same manner as an I/O APIC would, including information such as the destination ID and inter-

rupt handling vector.

APIC Interrupt Modes. The APIC architecture defines three different interrupt modes: PIC

mode, Virtual-Wire mode, and Symmetric I/O mode. The first two modes, PIC and Virtual-Wire,

provide support for PC/AT compatible system initialization. At least one of these two modes

must be implemented in order to boot-up the system. The Symmetric I/O mode is required for all

multiprocessing APIC systems and provides the APIC interrupt handling support once all micro-

processors have been initialized.

PIC Mode and Virtual-Wire Mode. During system initialization, the boot processor works to en-

able the other processors. Until the rest of the processors are initialized to the system, 8259-type

interrupt support for a uniprocessor system is required. Both the PIC mode and the Virtual-Wire

mode provide this support by enabling direct communication between the 8259 and the boot

processor. The difference between these two modes is in their implementation.

The PIC mode is implemented as a standard 8259 configuration where the 8259 is con-

nected to the processor's interrupt pin (not shown in APIC diagram), and all APIC components

are bypassed. In Virtual-Wire mode, the 8259 communicates with the processor through the local

APIC unit. It is not connected directly to the processor as in PIC mode, but to one of the local

APIC's pins (not shown in diagram). The local APIC acts as a virtual-wire by simply passing the

interrupt signals between the 8259 and the processor. In this mode, the I/O APIC is not used.

Page 10 of 15 December 12, 1995 Fax #40208

Since I/O APICs are ignored when operating in PIC and Virtual-Wire modes, interrupt

sources connected to the I/O APICs must also be connected to the 8259 to be heard. The operat-

ing system must have the ability to enable the special connections for PIC and Virtual Wire modes

and disable them for Symmetric I/O mode operation. After the system is initialized, the operating

system switches the interrupt mode to Symmetric I/O mode to support the multiple processors.

Symmetric I/O Mode. In Symmetric I/O mode, I/O interrupts may be configured to request inter-

rupts to the 8259 or the I/O APIC. If an interrupt request is directed to the 8259, the request is

forwarded to the I/O APIC. Once the I/O APIC has received an interrupt message, either from

the 8259 or directly, it uses the APIC protocol to prioritize and route interrupts across the ICC

bus to the processor. This process flow is similar to the 8259 process except that an extra step is

added for 8259 interrupts to forward the interrupt information to the I/O APIC and that the APIC

protocol is used for prioritizing and sending the message.

Interrupt Servicing in APIC Symmetric I/O Mode. There are two methods available in APIC's

symmetric I/O Mode to determine which processor will get to service an interrupt request: fixed

and lowest priority. In fixed delivery mode, the interrupt is unconditionally delivered to all the

processors' local APICs whose ID matches the destination information supplied with the interrupt.

This may be one or more processors. When the lowest priority method is used, the APIC will usu-

ally direct the interrupt to the processor that is executing the lowest-priority process in the sys-

tem. However, greater efficiency can sometimes be obtained by delivering an interrupt not to the

lowest priority processor, but to the processor that has most recently handled an interrupt from

the same source -- the focus processor. In this case, the interrupt handler's code will often still re-

side in the focus processor's cache.

After determining which processor(s) will service the interrupt request, the controller must

direct the interrupt to the correct processor. Unlike the 8259 interrupt process where the PIC

must wait for an interrupt acknowledge from the processor, in an APIC system, the APIC unit can

send the source information and interrupt vector along with the interrupt request. The delivery

scheme that APIC uses is simply to broadcast the interrupt message on the ICC bus. Any local

APIC that matches the destination ID(s) will receive and service the interrupt.

Since any APIC unit is capable of sending an interrupt message (I/O APICs for I/O inter-

rupts and local APICs for interprocessor interrupts), but only one message can be delivered at any

time on the common ICC bus, the local and I/O APIC units need to arbitrate for control of the

bus. The arbitration scheme used is a "rotating priority". One or more units may start sending an

interrupt message simultaneously. If this occurs, the rotating priority arbitration scheme is used

and the unit with the highest priority, the winner, is granted control of the bus and is allowed to

complete its interrupt message. After completing its message, the winner sets its priority level to

zero (the lowest), and all the other units increment their priority level by one. In this manner, the

APIC units rotate through the highest priority standing. The exception to this arbitration protocol

is the transmission of special messages, such as an end-of-interrupt, which will get control of the

bus right away.

The main disadvantage to using APIC for interrupt control is that the APIC architecture is

proprietary and for non-Intel microprocessors is hardware intensive. For I/O APIC support,

Page 11 of 15 December 12, 1995 Fax #40208

designers have the option of buying the discrete 82489DX controller or licensing the circuit from

Intel for inclusion in the chipset. If non-Intel microprocessors are being used, an 82489DX must

be purchased for each processor for local APIC control, adding to system costs and design

complexity.

OpenPIC Interrupt Handling

With the goal of offering an alternative to Intel's proprietary APIC technology as the in-

dustry standard, AMD** and Cyrix** have jointly developed an Intel-independent interrupt con-

trol solution for SMP systems. The AMD/Cyrix strategy is to provide an open x86

multiprocessing specification, OpenPIC (Open Programmable Interrupt Controller), at no cost to

computer manufacturers. The OpenPIC Architecture supports design into systems using x86 ven-

dors' microprocessors, such as the Intel Pentium.

OpenPIC Architecture. This open multiprocessing specification describes the required function a

"generic" interrupt controller must have in order to support the OpenPIC architecture. The Open-

PIC architecture is based upon an expansion of the standard 8259 interrupt controller protocol,

supporting up to 2048 interrupt sources and up to 32 processors. As in an 8259 configuration,

the controller has a unique connection to each processor's interrupt pin, as shown in Diagram 5,

and uses the system bus for communicating the interrupt message (source and vector).

An OpenPIC controller may be implemented as a stand-alone device, or it may be inte-

grated into the core logic chipset. Unlike the distributed APIC architecture consisting of I/O and

Diagram 5: OPENPIC INTERRUPT HANDLING IN A PC SMP SYSTEM

INTERRUPT A

INTERRUPT B

 CORE

MEMORY

 LOGIC
 I/O

 8259

OPENPIC
EXTERNAL

INTERRUPTS

8259 I/O

INTERRUPTS CPU B L2

L
1
 C
O
H
E
R
E
N
C
Y
.

A
R
B
IT
R
A
T
IO
N

 CPU A L2

IN
T
. M
E
S
S
A
G
E
S

(Dotted lines show potential Integration)

Page 12 of 15 December 12, 1995 Fax #40208

local units, OpenPIC control is centralized. Since the OpenPIC controller communicates directly

with each processor via its interrupt pin, no additional per processor hardware is required.

OpenPIC Interrupt Modes. In order to provide support for PC/AT compatible system initializa-

tion, the OpenPIC architecture defines two modes of operation, 8259 Pass-Through mode and

Symmetric Multiprocessing (SMP) mode.

8259 Pass-Through Mode. In 8259 pass-through mode, the 8259 interrupt request output will be

passed directly through the OpenPIC device to the boot processor. This provides support for

PC/AT compatible interrupts during boot-up. This mode is similar to APIC's Virtual-Wire mode.

In both cases, the advanced interrupt controller acts simply as a hard-wired connection. After ini-

tialization is complete, the system will disable the 8259 Pass-Through mode and switch to SMP

mode.

Symmetric Multiprocessing Mode. In SMP mode, there are two ways the OpenPIC controller

receives interrupt requests: via the 8259 and directly from the I/O devices. It is the responsibility

of the OpenPIC controller to prioritize the requests and distribute the interrupts to the processors.

Interrupt Servicing in OpenPIC SMP Mode. OpenPIC's SMP mode interrupt process flow is very

similar to the standard uniprocessor 8259 process, with differences due to a different source pri-

oritization scheme and the need to designate which processor is to service the interrupt.

In an OpenPIC system, source interrupts are prioritized using the following method. Each

interrupt source has a software programmable priority value, ranging from 0 (lowest) to 15 (high-

est). These values are programmed during initialization, but can be changed later. If concurrent

interrupt requests are received by the controller, they are processed in order of their priority.

Each processor has a task priority, also ranging from 0 to 15. Task priorities are set dynamically

by software. In order for the controller to deliver an interrupt to a processor, the source's priority

must be greater than the processor's task priority.

OpenPIC has two modes available for determining which processor(s) will receive the in-

terrupt: directed mode and distributed mode. Directed mode is like APIC's fixed mode where the

interrupt is delivered to specific processors as specified by the destination information. Directed

mode may be used for single or multiple destination interrupts. Distributed mode is a dynamic de-

livery mode for multiple destination I/O interrupts. In distributed mode, the controller uses an

implementation-specific algorithm to determine which processors it may distribute the interrupt

to. The delivery modes available to the controller are dependent upon the interrupt's source and

destination information as shown in Table 2.

Interrupt Type Single Destination Multiple Destination

I/O Interrupt Directed Distributed

Interprocessor Int. Directed Directed

Table 2: OpenPIC Delivery Modes.

Once the OpenPIC controller determines which processor(s) will service the interrupt, the

controller drives the interrupt line(s) to the processor(s) to notify them of the interrupt request.

This delivery method is very different from APIC's approach where the interrupt message is

Page 13 of 15 December 12, 1995 Fax #40208

broadcast on the common ICC bus and any processor matching the destination information will

service the interrupt.

Interprocessor interrupts are supported in an OpenPIC design by hardware connections

between each processor and one of the OpenPIC controller's external interrupt request pins. To

initiate an interprocessor interrupt, the originating processor drives its interrupt request line to the

OpenPIC controller. Once the request is received by the controller, the interrupt is handled in the

same way as I/O device interrupts. Self-interrupts, where the processor specifies its own ID as

the destination are also supported.

Summary

Multiprocessing systems may be symmetric or asymmetric and must be controlled by a

multiprocessing-capable operating system. The three major design issues that must be handled in

any multiprocessing system are: cache coherency, arbitration, and interrupt handling. Depending

upon the system's configuration, cache coherency and arbitration may be handled by the core

logic, L2 caches, or the processors. Interrupts are handled by interrupt controllers.

Three symmetric multiprocessing system configurations were discussed: Private Cache

SMP, Shared Look-Through Cache SMP, and Shared Look-Aside Cache SMP. The private

cache configuration provides the highest performance along with the highest costs and is usually

used for servers. The SLTC SMP approach reduces costs by sharing a look-through L2 cache.

SLAC SMP systems provide the lowest cost solution by sharing a look-aside L2 cache. Although

the SLAC SMP strategy provides the lowest performance of the three, it is the most commonly

used configuration today due to its lower costs.

In a multiprocessing system, it is the responsibility of the interrupt controller to receive in-

terrupt requests from I/O devices and/or processors, to determine which processor(s) shall service

each interrupt, and to route the interrupts to the correct microprocessors. Two multiprocessing

interrupt solutions are currently available: Intel's APIC and AMD/Cyrix's OpenPIC. The APIC

solution consists of a proprietary distributed architecture. System designers have the option of

purchasing discrete APIC devices or licensing the circuit from Intel for integration in the chipset.

The OpenPIC specification defines only the function required by a centralized "generic" control-

ler; it does not stipulate the use of any specific device(s) or charge any licensing fees for use of the

architecture.

References

1) Shanley, T., 80486 System Architecture, Mindshare, Inc., Richardson, TX, 1994.

2) Shanley, T., and Anderson, D., ISA System Architecture, Third Edition, Mindshare, Inc.,

Richardson, TX, 1995.

3) Anderson, D. and Shanley, T., Pentium Processor System Architecture, Mindshare, Inc.,

Richardson, TX, 1993.

Page 14 of 15 December 12, 1995 Fax #40208

4) Intel MultiProcessor Specification, Version 1.4, Intel Corporation Literature Center, Mt.

Prospect, IL, 1995.

5) An APIC-Based Symmetric Multiprocessor System Design, Version 1.0, Intel Application

Note #AP-474, Intel Corporation Literature Center, Mt. Prospect, IL, 1994.

6) Pentium Family User's Manual, Vol. 3: Architecture and Programming Manual, Intel

Corporation Literature Center, Mt. Prospect, IL, 1994.

7) OpenPIC Multiprocessor Interrupt Controller Register Interface Specification, Revision 1.2,

Advanced Micro Devices and Cyrix Corporation, 1995.

Page 15 of 15 December 12, 1995 Fax #40208

IBM Corporation 1995. All rights reserved.

IBM and the IBM logo are registered trademarks of International Business Machines Corporation. IBM Mi-

croelectronics is a trademark of the IBM Corp.

All other product and company names are trademarks/registered trademarks of their respective holders. 1995

IBM Corp.

The information contained in this document is subject to change without notice. The products described in

this document are NOT intended for use in implantation or other life support applications where malfunction

may result in injury or death to persons. The information contained in this document does not effect or

change IBM's product specifications or warranties. Nothing in this document shall operate as an express or

implied license or indemnity under the intellectual property rights of IBM or third parties. All the information

contained in this document was obtained in specific environments, and is presented as an

illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS"

BASIS. In no event will IBM be liable for any damages arising directly or indirectly from any use of the

information contained in this document.

The following are trademarks of the IBM Corporation in the United States or other countries or both:

IBM OS/2 POWERparallel

Other company, product or service names, which may be denoted by a double asterisk (**), may be trademarks

or service marks of others.

