Overview of the Cyrix M2 Microprocessor

Michael Woodmansee Project Manager, M2 Processor Development

> Cyrix Corporation http://www.cyrix.com

Presentation Agenda

- **u** Product Goals
- u M2 Key Features
- **u** Microarchitecture Overview
- u Ll cache and TLB
- u Performance
- u Multimedia Enhancements
- u Summary

M2 Product Goals

- Highest performance desktop for Windows[®] 95 and Windows[®] NT in '97
- Acceleration of multimedia applications
- Provide flexible system cost/performance options
- **Low cost highly manufacturable**
- Low power mainstream mobile solution

M2 Key Features

- High-performance superscalar native x86 core
 - Optimizations for 16-bit and 32-bit code
 - 2x faster than the 6x86 on 32-bit code
 - Enhanced cache, MMU, BTB
- u 180 to 225 MHz operation
 - 75/187, 66/200, 75/225 initial offerings
 - 2:1, 2.5:1, 3:1, 3.5:1 core to bus clock ratio
- **u Pentium[®] Pro + MMX instruction set**
- u Standard 6x86 socket
 - 2.5 V core, 3.3 V bus interface
 - 6 M transistors
 - less than 200 sq. mm, .35u 5 layer metal CMOS

M2 Block Diagram

M2 Architectural Features

Feature	P6	M2
Full x86 instruction set optimization		
MMX Instructions		
Superscalar		
Superpipelined		
Register renaming		
Data dependency removal		
Multi-branch prediction		
Speculative execution		
Out-of-order completion		
80-bit floating point unit	\checkmark	

The M2 is a native mode sixth-generation x86 processor

M2 Branch Unit

- **u** Branch target cache
 - 512 entries
 - 4-way set associative
- **u** Branch history table
 - 512 entries
 - 4-state branch prediction algorithm
- u Return stack
 - 8 entries

M2 Memory Management Unit

- **u Two level TLB architecture**
- u L1 TLB
 - 16 entry, direct mapped
 - Dual ported
- u L2 TLB
 - 384 entry, 6-way set associative
 - Dual ported

M2 Cache Architecture

u 64 Kbyte unified cache

- Primary data cache, secondary instruction cache
- 4-way set associative, 32 byte line size
- 2 accesses per cycle
- 256 byte instruction line cache
 - Primary instruction cache
 - 8 entries, 32 byte line size
 - Fully associative

M2 Performance

u Windows 95 and Windows NT

- TLB, cache miss rate increase with 32-bit apps
- Critical word latency limits performance

	Pentium Pro	M2
Ll	8K instr.	64K unified
Cache	8K data	
L2	On module	Off chip
Cache	256K or 512K	256K or 512K
TLB	32-entry instr.	16-entry Ll
	64-entry data	384-entry L2
BTB	512-entry	512-entry

Growing mismatches between processor
frequency and bus frequency exacerbate the cache miss penalty

• 1 bus cycle = 2-3 processor cycles

M2 Performance Analysis

Relative Performance - 32-bit Applications

M2 Multimedia Extensions: Overview

- New data types: packed Byte/Word/Doubleword, Quadword
- u Eight media registers
 - Aliased with floating point (FP) register state
 - 64-bit general purpose registers
- u Instruction set
 - Single Instruction Multiple Data (SIMD)
 - Saturation or modulo arithmetic
- u Instructions
 - Arithmetic, Comparison, Conversion, Logical, Shift, & Data Transfer
 - Source operand can reside in memory or in media register
 - Destination operand can only reside in media register

Integrated Multimedia & FPU

- Existing wide adders & multiplier in FP module can be efficiently subdivided to support SIMD processing
- FPU pipeline design can accommodate singlecycle multiply & fused multiply-add operations
- MMX compatibility prohibits simultaneous use of FPU hardware by both x86 FP & MMX operations
 - Why add dedicated functional unit/hardware?

M2 Multimedia/FPU Block Diagram

M2 Multimedia Architecture: Pipeline Diagram

Multimedia instructions execute in a variable length pipeline. Instructions sent to instruction shelf in IQ stage.

F

Arithmetic/Logical/Shift:

ID1 ID2 AC1 AC2 IQ RF ALS WB

IF ==>Fetch

ID1 ==>Instruction Decode 1

ID2 ==>Instruction Decode 2

AC1 ==>Address Calculation

AC2 ==>Address Calculation/Cache Access

IQ ==>Transfer to MMX Instruction Shelf

RF ==>**FP** Register File Access

ALS ==>Arithmetic/Logical/Shift

M1 ==> Multiply Stage 1

M2 ==> Multiply Stage 2

WB ==>Write-Back

Multiply Pipeline: M1 M2 WB

M2 Multimedia Performance

- Cache line locking ==> scratch pad memory
 - Locked memory lines guarantee locality of reference
 - Used by driver software code & data
 - Predictable access speed yields real-time capability
- **u** Pipeline accesses to L1 cache
 - Memory operand access at same speed as register access
 - Combined with lockdown capability, permits giant "register files"
- u Single-cycle execution
 - EMMS, Add, Subtract, Logical, & Shift operations execute in a single cycle
 - Multiply & MAC execute with single-cycle throughput & latency of 2 clocks

Summary

- High-performance superscalar x86 microprocessor
- **U Optimizations** for 16-bit and 32-bit code
- **u 200 MHz core frequency**
- u MMX software compatible
- Utilizes existing board and chipset infrastructure
- u Production: 1H '97

