
2-1

Programming Interface

PRELIMINARY

Advancing the Standards



2. PROGRAMMING
INTERFACE

In this chapter, the internal operations of the M
II CPU are described mainly from an application
programmer’s point of view. Included in this
chapter are descriptions of processor initializa-
tion, the register set, memory addressing, vari-
ous types of interrupts and the shutdown and
halt process. An overview of real, virtual 8086,
and protected operating modes is also included
in this chapter. The FPU operations are
described separately at the end of the chapter.

This manual does not—and is not intended
to—describe the M II processor or its operations
at the circuit level.

2.1 Processor Initialization

The M II CPU is initialized when the RESET sig-
nal is asserted. The processor is placed in real
mode and the registers listed in Table 2-1 (Page
2-2) are set to their initialized values. RESET
invalidates and disables the cache and turns off
paging. When RESET is asserted, the M II CPU
terminates all local bus activity and all internal
execution. During the entire time that RESET is
asserted, the internal pipelines are flushed and
no instruction execution or bus activity occurs.

Approximately 150 to 250 external clock cycles
after RESET is negated, the processor begins
executing instructions at the top of physical
memory (address location FFFF FFF0h). Typi-
cally, an intersegment JUMP is placed at FFFF
FFF0h. This instruction will force the processor
to begin execution in the lowest 1 MByte of
address space.

Note: The actual time depends on the clock
scaling in use. Also an additional 220 clock
cycles are needed if self-test is requested.

Apri l 9, 1997 5:38 pm

c:\dataoem\!m2\!m2_2-1.fm

Rev 0.2

MII™ PROCESSOR
 Enhanced High Performance CPU

2-2 PRELIMINARY

Processor Initialization
Advancing the Standards



Table 2-1. Initialized Register Controls

REGISTER REGISTER NAME INITIALIZED CONTENTS COMMENTS

EAX Accumulator xxxx xxxxh 0000 0000h indicates self-test passed.

EBX Base xxxx xxxxh

ECX Count xxxx xxxxh

EDX Data 06 + Device ID Device ID = 51h or 59h (2X clock)
Device ID = 55h or 5Ah (2.5X clock)
Device ID = 53h or 5Bh (3X clock)
Device ID = 54h or 5Ch (3.5X clock)

EBP Base Pointer xxxx xxxxh

ESI Source Index xxxx xxxxh

EDI Destination Index xxxx xxxxh

ESP Stack Pointer xxxx xxxxh

EFLAGS Flag Word 0000 0002h

EIP Instruction Pointer 0000 FFF0h

ES Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

CS Code Segment F000h Base address set to FFFF 0000h.
Limit set to FFFFh.

SS Stack Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

DS Data Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

FS Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

GS Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.

IDTR Interrupt Descriptor Table Reg-
ister

Base = 0, Limit = 3FFh

GDTR Global Descriptor Table
 Register

xxxx xxxxh, xxxxh

LDTR Local Descriptor Table
 Register

xxxx xxxxh, xxxxh

TR Task Register xxxxh

CR0 Machine Status Word 6000 0010h

CR2 Control Register 2 xxxx xxxxh

CR3 Control Register 3 xxxx xxxxh

CR4 Control Register 4 0000 0000h

CCR (0-6) Configuration Control (0-6) 00h CCR(0-3, 5-6)
80h CCR4

ARR (0-7) Address Region Registers (0-7) 00h

RCR (0-7) Region Control Registers (0-7) 00h

DR7 Debug Register 7 0000 0400h
Note: x = Undefined value

2-3

2

PRELIMINARY

Instruction Set Overview

2.2 Instruction Set
Overview

The M II CPU instruction set performs ten
types of general operations:

All M II CPU instructions operate on as few as
zero operands and as many as three operands.
An NOP instruction (no operation) is an exam-
ple of a zero operand instruction. Two operand
instructions allow the specification of an
explicit source and destination pair as part of
the instruction. These two operand instruc-
tions can be divided into eight groups accord-
ing to operand types:

An operand can be held in the instruction itself
(as in the case of an immediate operand), in one
of the processor’s registers or I/O ports, or in
memory. An immediate operand is prefetched
as part of the opcode for the instruction.

Operand lengths of 8, 16, or 32 bits are sup-
ported as well as 64-or 80-bit associated with
floating point instructions. Operand lengths of
8 or 32 bits are generally used when executing
code written for 386- or 486-class (32-bit code)
processors. Operand lengths of 8 or 16 bits are
generally used when executing existing 8086 or
80286 code (16-bit code). The default length

• Arithmetic • High-Level Language Support

• Bit Manipulation • Operating System Support

• Control Transfer • Shift/Rotate

• Data Transfer • String Manipulation

• Floating Point • MMX Instructions

• Register to Register • Register to I/O

• Register to Memory • I/O to Register

• Memory to Register • Immediate Data to Register

• Memory to Memory • Immediate Data to Memory

of an operand can be overridden by placing one
or more instruction prefixes in front of the
opcode. For example, by using prefixes, a
32-bit operand can be used with 16-bit code, or
a 16-bit operand can be used with 32-bit code.

Chapter 6 of this manual lists each instruction
in the M II CPU instruction set along with the
associated opcodes, execution clock counts,
and effects on the FLAGS register.

2.2.1 Lock Prefix

The LOCK prefix may be placed before certain
instructions that read, modify, then write back
to memory. The prefix asserts the LOCK# sig-
nal to indicate to the external hardware that the
CPU is in the process of running multiple indi-
visible memory accesses. The LOCK prefix can
be used with the following instructions:

Bit Test Instructions (BTS, BTR, BTC)
Exchange Instructions (XADD, XCHG,

CMPXCHG)
One-operand Arithmetic and Logical

Instructions (DEC, INC, NEG, NOT)
Two-operand Arithmetic and Logical

Instructions (ADC, ADD, AND, OR, SBB,
SUB, XOR).

An invalid opcode exception is generated if the
LOCK prefix is used with any other instruction,
or with the above instructions when no write
operation to memory occurs (i.e., the
destination is a register). The LOCK# signal
can be negated to allow weak-locking for all of
memory or on a regional basis. Refer to the
descriptions of the NO-LOCK bit (within
CCR1) and the WL bit (within RCRx) later in
this chapter.

2-4 PRELIMINARY

Register Sets
Advancing the Standards



2.3 Register Sets

From the programmer’s point of view there are
58 accessible registers in the M II CPU. These
registers are grouped into two sets. The appli-
cation register set contains the registers fre-
quently used by application programmers, and
the system register set contains the registers
typically reserved for use by operating system
programmers.

The application register set is made up of gen-
eral purpose registers, segment registers, a flag
register, and an instruction pointer register.

The system register set is made up of the
remaining registers which include control reg-
isters, system address registers, debug registers,
configuration registers, and test registers.

Each of the registers is discussed in detail in the
following sections.

2.3.1 Application
Register Set

The application register set, (Figure 2-1, Page
2-5) consists of the registers most often used by
the applications programmer. These registers
are generally accessible and are not protected
from read or write access.

The General Purpose Register contents are
frequently modified by assembly language
instructions and typically contain arithmetic
and logical instruction operands.

Segment Registers in real mode contain the
base address for each segment. In protected
mode the segment registers contain segment
selectors. The segment selectors provide index-
ing for tables (located in memory) that contain
the base address and limit for each segment, as
well as access control information.

The Flag Register contains control bits used to
reflect the status of previously executed instruc-
tions. This register also contains control bits
that affect the operation of some instructions.

The Instruction Pointer register points to the
next instruction that the processor will execute.
This register is automatically incremented by
the processor as execution progresses.

2-5

2

PRELIMINARY

Register Sets

Figure 2-1. Application Register Set

EIP (Instruction Pointer)

CS (Code Segment Selector)

SS (Stack Segment Selector)

DS (Data Segment Selector)

ES (Extra Segment Selector)

FS (Extra Segment F Selector)

GS (Extra Segment G Selector)

EAX (Accumulator)

EBX (Base)

ECX (Count)

EDX (Data)

ESI (Source Index)

EDI (Destination Index)

EBP (Base Pointer)

ESP (Stack Pointer)

31 0

15 0

1531 16 0

IP

1700405

Segment Registers

General Purpose Registers

Instruction Pointer Register

EFLAGS (Flag Register)
1531 16 0

FLAGS

Flag Register

2.3.2 General Purpose
Registers

The general purpose registers are divided into
four data registers, two pointer registers, and two
index registers as shown in Figure 2-2 (Page 2-6).

The Data Registers are used by the applica-
tions programmer to manipulate data struc-
tures and to hold the results of logical and
arithmetic operations. Different portions of
the general data registers can be addressed by
using different names.

An “E” prefix identifies the complete 32-bit
register. An “X” suffix without the “E” prefix
identifies the lower 16 bits of the register.

The lower two bytes of a data register can be
addressed with an “H” suffix (identifies the
upper byte) or an “L” suffix (identifies the lower
byte). The _L and _H portions of a data regis-
ters act as independent registers. For example,
if the AH register is written to by an instruc-
tion, the AL register bits remain unchanged.

2-6 PRELIMINARY

Register Sets
Advancing the Standards



Figure 2-2. General Purpose Registers

EAX (Accumulator)

EBX (Base)

ECX (Count)

EDX (Data)

ESI (Source Index)

EDI (Destination Index)

EBP (Base Pointer)

ESP (Stack Pointer)

AX

SI

DI

BP

SP

31 16 15 8 7 0

1746400

BX

CX

DX

AH

BH

CH

DH

AL

BL

CL

DL

The M II processor implements a stack using
the ESP register. This stack is accessed during
the PUSH and POP instructions, procedure
calls, procedure returns, interrupts, exceptions,
and interrupt/exception returns.

The microprocessor automatically adjusts the
value of the ESP during operation of these
instructions.The EBP register may be used to
reference data passed on the stack during
procedure calls. Local data may also be placed
on the stack and referenced relative to BP. This
register provides a mechanism to access stack
data in high-level languages.

The Pointer and Index Registers are listed
below.

SI or ESI Source Index
DI or EDI Destination Index
SP or ESP Stack Pointer
BP or EBP Base Pointer

These registers can be addressed as 16- or
32-bit registers, with the “E” prefix indicating
32 bits. The pointer and index registers can be
used as general purpose registers, however,
some instructions use a fixed assignment of
these registers. For example, repeated string
operations always use ESI as the source pointer,
EDI as the destination pointer, and ECX as the
counter. The instructions using fixed registers
include multiply and divide, I/O access, string
operations, translate, loop, variable shift and
rotate, and stack operations.

2-7

2

PRELIMINARY

Register Sets

2.3.3 Segment Registers and
Selectors

Segmentation provides a means of defining data
structures inside the memory space of the
microprocessor. There are three basic types of
segments: code, data, and stack. Segments are
used automatically by the processor to deter-
mine the location in memory of code, data, and
stack references.

There are six 16-bit segment registers:

CS Code Segment
DS Data Segment
ES Extra Segment
SS Stack Segment
FS Additional Data Segment
GS Additional Data Segment.

In real and virtual 8086 operating modes, a seg-
ment register holds a 16-bit segment base. The
16-bit segment is multiplied by 16 and a 16-bit
or 32-bit offset is then added to it to create a lin-
ear address. The offset size is dependent on the
current address size. In real mode and in vir-

tual 8086 mode with paging disabled, the linear
address is also the physical address. In virtual
8086 mode with paging enabled, the linear
address is translated to the physical address
using the current page tables. Paging is
described in Section 2.12.4 (Page 2-52).

In protected mode a segment register holds a
Segment Selector containing a 13-bit index, a
Table Indicator (TI) bit, and a two-bit
Requested Privilege Level (RPL) field as shown
in Figure 2-3.

The Index points into a descriptor table in
memory and selects one of 8192 (213) segment
descriptors contained in the descriptor table.

A segment descriptor is an eight-byte value used
to describe a memory segment by defining the
segment base, the segment limit, and access
control information. To address data within a
segment, a 16-bit or 32-bit offset is added to the
segment’s base address. Once a segment selec-
tor has been loaded into a segment register, an
instruction needs only to specify the segment
register and the offset.

Figure 2-3. Segment Selector in Protected Mode

INDEX RPL

17417 01

15 3 2 1 0

TI

Descriptor

Descriptor Table

Segment

Main Memory

Segment Selector

Base

Limit

0

8191

2-8 PRELIMINARY

Register Sets
Advancing the Standards



The Table Indicator (TI) bit of the selector
defines which descriptor table the index points
into. If TI=0, the index references the Global
Descriptor Table (GDT). If TI=1, the index ref-
erences the Local Descriptor Table (LDT). The
GDT and LDT are described in more detail in
Section 2.4.2 (Page 2-16). Protected mode
addressing is discussed further in Sections 2.6.2
(Page 2-52).

The Requested Privilege Level (RPL) field in a
segment selector is used to determine the Effec-
tive Privilege Level of an instruction (where
RPL=0 indicates the most privileged level, and
RPL=3 indicates the least privileged level).

If the level requested by RPL is less than the
Current Program Level (CPL), the RPL level is
accepted and the Effective Privilege Level is
changed to the RPL value. If the level requested
by RPL is greater than CPL, the CPL overrides
the requested RPL and Effective Privilege Level
remains unchanged.

When a segment register is loaded with a seg-
ment selector, the segment base, segment limit
and access rights are loaded from the descriptor
table entry into a user-invisible or hidden por-
tion of the segment register (i.e., cached
on-chip). The CPU does not access the descrip-
tor table entry again until another segment reg-
ister load occurs. If the descriptor tables are
modified in memory, the segment registers must
be reloaded with the new selector values by the
software.

The processor automatically selects an implied
(default) segment register for memory refer-
ences. Table 2-2 describes the selection rules.
In general, data references use the selector con-
tained in the DS register, stack references use
the SS register and instruction fetches use the
CS register. While some of these selections may
be overridden, instruction fetches, stack opera-
tions, and the destination write of string opera-
tions cannot be overridden. Special segment
override instruction prefixes allow the use of
alternate segment registers including the use of
the ES, FS, and GS segment registers.

Table 2-2. Segment Register Selection Rules

TYPE OF MEMORY REFERENCE IMPLIED (DEFAULT)
SEGMENT

SEGMENT OVERRIDE
PREFIX

Code Fetch CS None

Destination of PUSH, PUSHF, INT, CALL,
 PUSHA instructions

SS None

Source of POP, POPA, POPF, IRET,
 RET instructions

SS None

Destination of STOS, MOVS, REP STOS,
 REP MOVS instructions

ES None

Other data references with effective
 address using base registers of:
 EAX, EBX, ECX,
 EDX, ESI, EDI
 EBP, ESP

DS

SS

CS, ES, FS, GS, SS

CS, DS, ES, FS, GS

2-9

2

PRELIMINARY

Register Sets

2.3.4 Instruction Pointer
Register

The Instruction Pointer (EIP) register contains
the offset into the current code segment of the
next instruction to be executed. The register is nor-
mally incremented with each instruction execu-
tion unless implicitly modified through an
interrupt, exception or an instruction that
changes the sequential execution flow
(e.g., JMP, CALL).

2.3.5 Flags Register

The Flags Register, EFLAGS, contains status
information and controls certain operations on
the M II CPU microprocessor. The lower 16 bits of
this register are referred to as the FLAGS register
that is used when executing 8086 or 80286 code.
The flag bits are shown in Figure 2-4 and
defined in Table 2-3 (Page 2-10).

Figure 2-4. EFLAGS Register

Flags

Alignment Check

1701105

Virtual 8086 Mode
Resume Flag
Nested Task Flag
I/O Privilege Level
Overflow
Direction Flag
Interrupt Enable
Trap Flag
Sign Flag
Zero Flag
Auxiliary Carry
Parity Flag
Carry Flag

0 0 0 0 0 0 0 0 0 0 0 0

0 or 1 Indicates Reserved
A = Arithmetic Flag, D = Debug Flag, S = System Flag, C = Control Flag

9 8 7 6 5 4 3 1 2 0
C

1
P

0
A

0
ZSTIDOION

0
RVA

3
1

2
4

2
3

1
9

1 1 1 1 1 1 1 1 1
8 7 6 5 4 3 2 1 0

C M F T PL F F F F F F F F F

S
S
D
S
S
A
C
S
D
A
A
A
A
A

Identification S

2
1
I
D

2-10 PRELIMINARY

Register Sets
Advancing the Standards



Table 2-3. EFLAGS Bit Definitions

BIT
POSITION NAME FUNCTION

0 CF Carry Flag: Set when a carry out of (addition) or borrow into (subtraction) the most
significant bit of the result occurs; cleared otherwise.

2 PF Parity Flag: Set when the low-order 8 bits of the result contain an even number of ones;
cleared otherwise.

4 AF Auxiliary Carry Flag: Set when a carry out of (addition) or borrow into (subtraction) bit
position 3 of the result occurs; cleared otherwise.

6 ZF Zero Flag: Set if result is zero; cleared otherwise.

7 SF Sign Flag: Set equal to high-order bit of result (0 indicates positive, 1 indicates negative).

8 TF Trap Enable Flag: Once set, a single-step interrupt occurs after the next instruction
completes execution. TF is cleared by the single-step interrupt.

9 IF Interrupt Enable Flag: When set, maskable interrupts (INTR input pin) are acknowledged
and serviced by the CPU.

10 DF Direction Flag: If DF=0, string instructions auto-increment (default) the appropriate index
registers (ESI and/or EDI). If DF=1, string instructions auto-decrement the appropriate
index registers.

11 OF Overflow Flag: Set if the operation resulted in a carry or borrow into the sign bit of the
result but did not result in a carry or borrow out of the high-order bit. Also set if the
operation resulted in a carry or borrow out of the high-order bit but did not result in a
carry or borrow into the sign bit of the result.

12, 13 IOPL I/O Privilege Level: While executing in protected mode, IOPL indicates the maximum
current privilege level (CPL) permitted to execute I/O instructions without generating an
exception 13 fault or consulting the I/O permission bit map. IOPL also indicates the
maximum CPL allowing alteration of the IF bit when new values are popped into the
EFLAGS register.

14 NT Nested Task: While executing in protected mode, NT indicates that the execution of the
current task is nested within another task.

16 RF Resume Flag: Used in conjunction with debug register breakpoints. RF is checked at
instruction boundaries before breakpoint exception processing. If set, any debug fault is
ignored on the next instruction.

17 VM Virtual 8086 Mode: If set while in protected mode, the microprocessor switches to virtual
8086 operation handling segment loads as the 8086 does, but generating exception 13
faults on privileged opcodes. The VM bit can be set by the IRET instruction (if current
privilege level=0) or by task switches at any privilege level.

18 AC Alignment Check Enable: In conjunction with the AM flag in CR0, the AC flag determines
whether or not misaligned accesses to memory cause a fault. If AC is set, alignment faults
are enabled.

21 ID Identification Bit: The ability to set and clear this bit indicates that the CPUID instruction
is supported. The ID can be modified only if the CPUID bit in CCR4 is set.

2-11

2

PRELIMINARY

System Register Set

2.4 System Register Set

The system register set, shown in Figure 2-5
(Page 2-12), consists of registers not generally
used by application programmers. These regis-
ters are typically employed by system level pro-
grammers who generate operating systems and
memory management programs.

The Control Registers control certain aspects
of the M II processor such as paging, coproces-
sor functions, and segment protection. When a
paging exception occurs while paging is
enabled, some control registers retain the linear
address of the access that caused the exception.

The Descriptor Table Registers and the Task
Register can also be referred to as system
address or memory management registers.
These registers consist of two 48-bit and two
16-bit registers. These registers specify the
location of the data structures that control the
segmentation used by the M II processor. Seg-
mentation is one available method of memory
management.

The Configuration Registers are used to con-
figure the M II CPU on-chip cache operation,
power management features and System Man-
agement Mode. The configuration registers
also provide information on the CPU device
type and revision.

The Debug Registers provide debugging facil-
ities to enable the use of data access break-
points and code execution breakpoints.

The Test Registers provide a mechanism to
test the contents of both the on-chip 64 KByte
cache and the Translation Lookaside Buffer
(TLB). In the following sections, the system
register set is described in greater detail.

2-12 PRELIMINARY

System Register Set
Advancing the Standards



Figure 2-5. System Register Set

Control

Test

DR0
DR1
DR2
DR3
DR6
DR7

GDTR
IDTR
LDTR

TR

CR0
CR2
CR3

1531 16 0

1516 0

Page Fault Linear Address Register
Page Directory Base Register

47

31 0
 Linear Breakpoint Address 0

Breakpoint Status
Breakpoint Control

Cache Test

CCR1
CCR2

0

31 0

TLB Test Control
TLB Test Status

Cache Test
Cache Test

Linear Breakpoint Address 1
Linear Breakpoint Address 2
Linear Breakpoint Address 3

7
CCR0
CCR1

Base
Base

Limit
Limit

Selector
Selector Task Register

Descriptor

1728200

Registers

Table
Registers

CCR2

Address Region Register 0

CCR3

ARR0

Registers

CCR3

23

CCR0

CCR4CCR4

CCR6CCR6

Address Region Register 1 ARR1

Address Region Register 2 ARR2

Address Region Register 3 ARR3

Address Region Register 4 ARR4

Address Region Register 5 ARR5

Address Region Register 6 ARR6

Address Region Register 7 ARR7

RCR0

RCR1

RCR2

RCR3

RCR4

RCR5

RCR6

RCR7

07

Configuration
Registers

CCR = Configuration Control Register

RCR = Region Control Register
ARR = Address Region Register

Debug
Registers

TR3
TR4
TR5
TR6
TR7

CR4

CCR5 CCR5

2-13

2

PRELIMINARY

System Register Set

2.4.1 Control Registers

The Control Registers (CR0, CR2, CR3 and
CR4), are shown in Figure 2-6. (These registers
should not be confused with the CCRn registers.)
The CR0 register contains system control bits
which configure operating modes and indicate
the general state of the CPU. The lower 16 bits
of CR0 are referred to as the Machine Status
Word (MSW). The CR0 bit definitions are
described in Table 2-4 and Table 2-5 (Page
2-14). The reserved bits in CR0 should not be
modified.

When paging is enabled and a page fault is gen-
erated, the CR2 register retains the 32-bit linear
address of the address that caused the fault.
When a double page fault occurs, CR2 contains
the address for the second fault. Register CR3
contains the 20 most significant bits of the
physical base address of the page directory. The

page directory must always be aligned to a
4-KByte page boundary, therefore, the lower 12
bits of CR3 are not required to specify the base
address.

CR3 contains the Page Cache Disable (PCD) and
Page Write Through (PWT) bits. During bus
cycles that are not paged, the state of the PCD
bit is reflected on the PCD pin and the PWT bit
is driven on the PWT pin. These bus cycles
include interrupt acknowledge cycles and all
bus cycles, when paging is not enabled. The
PCD pin should be used to control caching in an
external cache. The PWT pin should be used to
control write policy in an external cache.

Control register CR4 (Table 2-6, Page 2-15)
controls usage of the Time Stamp Counter
Instruction, Debugging Extensions, Page Global
Enable and the RDPMC instruction.

Figure 2-6. Control Registers

PAGE FAULT LINEAR ADDRESS

17 495 00MSW

PAGE DIRECTORY BASE REGISTER (PDBR) RESV.RESERVED

31 3 0

P P

1RESERVED RESERVED
T E M PA WP C N

W
T

C
D

S M P EM P

01234161831 30 29

G D W
N
E

5

CR3

CR2

CR0

CR4

6781112 2

D

E

P

E
C

E

P
G

D

T
S

2-14 PRELIMINARY

System Register Set
Advancing the Standards



Table 2-4. CR0 Bit Definitions

BIT
POSITION NAME FUNCTION

0 PE Protected Mode Enable: Enables the segment based protection mechanism. If PE=1, protected
mode is enabled. If PE=0, the CPU operates in real mode and addresses are formed as in an
8086-style CPU.

1 MP Monitor Processor Extension: If MP=1 and TS=1, a WAIT instruction causes Device Not Avail-
able (DNA) fault 7. The TS bit is set to 1 on task switches by the CPU. Floating point instruc-
tions are not affected by the state of the MP bit. The MP bit should be set to one during normal
operations.

2 EM Emulate Processor Extension: If EM=1, all floating point instructions cause a DNA fault 7.

3 TS Task Switched: Set whenever a task switch operation is performed. Execution of a floating
point instruction with TS=1 causes a DNA fault. If MP=1 and TS=1, a WAIT instruction also
causes a DNA fault.

4 1 Reserved: Do not attempt to modify.

5 NE Numerics Exception. NE=1 to allow FPU exceptions to be handled by interrupt 16. NE=0 if
FPU exceptions are to be handled by external interrupts.

16 WP Write Protect: Protects read-only pages from supervisor write access. WP=0 allows a read-only
page to be written from privilege level 0-2. WP=1 forces a fault on a write to a
read-only page from any privilege level.

18 AM Alignment Check Mask: If AM=1, the AC bit in the EFLAGS register is unmasked and allowed
to enable alignment check faults. Setting AM=0 prevents AC faults from occurring.

29 NW Not Write-Back: If NW=1, the on-chip cache operates in write-through mode. In write-through
mode, all writes (including cache hits) are issued to the external bus. If NW=0, the on-chip
cache operates in write-back mode. In write-back mode, writes are issued to the external bus
only for a cache miss, a line replacement of a modified line, or as the result of a cache inquiry
cycle.

30 CD Cache Disable: If CD=1, no further cache line fills occur. However, data already present in the
cache continues to be used if the requested address hits in the cache. Writes continue to update
the cache and cache invalidations due to inquiry cycles occur normally. The cache must also be
invalidated to completely disable any cache activity.

31 PG Paging Enable Bit: If PG=1 and protected mode is enabled (PE=1), paging is enabled. After
changing the state of PG, software must execute an unconditional branch instruction (e.g., JMP,
CALL) to have the change take effect.

Table 2-5. Effects of Various Combinations of EM, TS, and MP Bits

CR0 BIT INSTRUCTION TYPE
EM TS MP WAIT ESC

0 0 0 Execute Execute

0 0 1 Execute Execute

0 1 0 Execute Fault 7

0 1 1 Fault 7 Fault 7

1 0 0 Execute Fault 7

1 0 1 Execute Fault 7

1 1 0 Execute Fault 7

1 1 1 Fault 7 Fault 7

2-15

2

PRELIMINARY

System Register Set

Table 2-6. CR4 Bit Definitions

BIT
POSITION NAME FUNCTION

2 TSD Time Stamp Counter Instruction
If = 1 RDTSC instruction enabled for CPL=0 only; Reset State
If = 0 RDTSC instruction enabled for all CPL states

3 DE Debugging Extensions
If = 1 enables I/O breakpoints and R/W bits for each debug register are defined as:
 00 -Break on instruction execution only.
 01 -Break on data writes only.
 10 -Break on I/O reads or writes.
 11 -Break on data reads or writes but not instruction fetches.

If = 0 I/O breakpoints and R/W bits for each debug register are not enabled.

7 PGE Page Global Enable
If = 1 global page feature is enabled.
If = 0 global page feature is disabled.
Global pages are not flushed from TLB on a task switch or write to CR3

8 PCE Performance Monitoring Counter Enable
If = 1 enables execution of RDPMC instruction at any protection level.
If = 0 RDPMC instruction can only be executed at protection level 0.

2-16 PRELIMINARY

System Register Set
Advancing the Standards



2.4.2 Descriptor Table
Registers and Descriptors

Descriptor Table Registers

The Global, Interrupt, and Local Descriptor
Table Registers (GDTR, IDTR and LDTR), shown
in Figure 2-7, are used to specify the location of
the data structures that control segmented
memory management. The GDTR, IDTR and
LDTR are loaded using the LGDT, LIDT and
LLDT instructions, respectively. The values of
these registers are stored using the correspond-
ing store instructions. The GDTR and IDTR
load instructions are privileged instructions
when operating in protected mode. The LDTR
can only be accessed in protected mode.

The Global Descriptor Table Register (GDTR)
holds a 32-bit linear base address and 16-bit
limit for the Global Descriptor Table (GDT).
The GDT is an array of up to 8192 8-byte
descriptors. When a segment register is loaded
from memory, the TI bit in the segment selector
chooses either the GDT or the Local Descriptor
Table (LDT) to locate a descriptor. If TI = 0, the
index portion of the selector is used to locate the
descriptor within the GDT table. The contents
of the GDTR are completely visible to the pro-

grammer by using a SGDT instruction. The first
descriptor in the GDT (location 0) is not used by
the CPU and is referred to as the “null descrip-
tor”. The GDTR is initialized using a LGDT
instruction.

The Interrupt Descriptor Table Register
(IDTR) holds a 32-bit linear base address and
16-bit limit for the Interrupt Descriptor Table
(IDT). The IDT is an array of 256 interrupt
descriptors, each of which is used to point to an
interrupt service routine. Every interrupt that
may occur in the system must have an associ-
ated entry in the IDT. The contents of the IDTR
are completely visible to the programmer by
using a SIDT instruction. The IDTR is initialized
using the LIDT instruction.

The Local Descriptor Table Register (LDTR)
holds a 16-bit selector for the Local Descriptor
Table (LDT). The LDT is an array of up to 8192
8-byte descriptors. When the LDTR is loaded,
the LDTR selector indexes an LDT descriptor
that resides in the Global Descriptor Table
(GDT). The base address and limit are loaded
automatically and cached from the LDT descrip-
tor within the GDT.

Figure 2-7. Descriptor Table Registers

1708003

BASE ADDRESS LIMIT

SELECTOR

47 16 15 0

LDTR

IDTR

GDTRBASE ADDRESS LIMIT

2-17

2

PRELIMINARY

System Register Set

Subsequent access to entries in the LDT use the
hidden LDTR cache to obtain linear addresses. If
the LDT descriptor is modified in the GDT, the
LDTR must be reloaded to update the hidden
portion of the LDTR.

When a segment register is loaded from mem-
ory, the TI bit in the segment selector chooses
either the GDT or the LDT to locate a segment
descriptor. If TI = 1, the index portion of the
selector is used to locate a given descriptor
within the LDT. Each task in the system may be
given its own LDT, managed by the operating
system. The LDTs provide a method of isolating
a given task’s segments from other tasks in the
system.

The LDTR can be read or written by the LLDT
and SLDT instructions.

Descriptors

There are three types of descriptors:

• Application Segment Descriptors that
define code, data and stack segments.

• System Segment Descriptors that define an
LDT segment or a Task State Segment
(TSS) table described later in this text.

• Gate Descriptors that define task gates,
interrupt gates, trap gates and call gates.

Application Segment Descriptors can be located
in either the LDT or GDT. System Segment
Descriptors can only be located in the GDT.
Dependent on the gate type, gate descriptors
may be located in either the GDT, LDT or IDT.
Figure 2-8 illustrates the descriptor format for
both Application Segment Descriptors and Sys-
tem Segment Descriptors. Table 2-7 (Page
2-18) lists the corresponding bit definitions.

Table 2-8. (Page 2-18) and Table 2-9. (Page
2-19) defines the DT field within the segment
descriptor.

Figure 2-8. Application and System Segment Descriptors

BASE 15-0

31

P DPL D TYPE

+0

+4

1707803

2324 16

G D 0
A

LIMIT 19-16 BASE 23-16

LIMIT 15-0

15 14 13 12 11 8 7 022 21 20 19

V
L T

BASE 31-24

2-18 PRELIMINARY

System Register Set
Advancing the Standards



Table 2-7. Segment Descriptor Bit Definitions

BIT
POSITION

MEMORY
OFFSET NAME DESCRIPTION

31-24
7-0

31-16

+4
+4
+0

BASE Segment base address.
32-bit linear address that points to the beginning of the segment.

19-16
15-0

+4
+0

LIMIT Segment limit.

23 +4 G Limit granularity bit:
0 = byte granularity, 1 = 4 KBytes (page) granularity.

22 +4 D Default length for operands and effective addresses.
Valid for code and stack segments only: 0 = 16 bit, 1 = 32-bit.

20 +4 AVL Segment available.

15 +4 P Segment present.

14-13 +4 DPL Descriptor privilege level.

12 +4 DT Descriptor type:
0 = system, 1 = application.

11-8 +4 TYPE Segment type. See Tables 2-7 and 2-8.

Table 2-8. TYPE Field Definitions with DT = 0

TYPE
(BITS 11-8) DESCRIPTION

0001 TSS-16 descriptor, task not busy.

0010 LDT descriptor.

0011 TSS-16 descriptor, task busy.

1001 TSS-32 descriptor, task not busy

1011 TSS-32 descriptor, task busy.

2-19

2

PRELIMINARY

System Register Set

Table 2-9. TYPE Field Definitions with DT = 1

TYPE
APPLICATION DECRIPTOR INFORMATION

E C/D R/W A

0 0 x x data, expand up, limit is upper bound of segment

0 1 x x data, expand down, limit is lower bound of segment

1 0 x x executable, non-conforming

1 1 x x executable, conforming (runs at privilege level of calling procedure)

0 x 0 x data, non-writable

0 x 1 x data, writable

1 x 0 x executable, non-readable

1 x 1 x executable, readable

x x x 0 not-accessed

x x x 1 accessed

2-20 PRELIMINARY

System Register Set
Advancing the Standards



System Register Set

Interrupt Gate Descriptors are used to enter a
hardware interrupt service routine. Trap Gate
Descriptors are used to enter exceptions or soft-
ware interrupt service routines. Trap Gate and
Interrupt Gate Descriptors can only be located
in the IDT.

Call Gate Descriptors are used to enter a proce-
dure (subroutine) that executes at the same or a
more privileged level. A Call Gate Descriptor
primarily defines the procedure entry point and
the procedure’s privilege level.

Figure 2-9. Gate Descriptor

Table 2-10. Gate Descriptor Bit Definitions

BIT
POSITION

MEMORY
OFFSET NAME DESCRIPTION

31-16
15-0

+4
+0

OFFSET Offset used during a call gate to calculate the branch target.

31-16 +0 SELECTOR Segment selector used during a call gate to calculate the branch target.

15 +4 P Segment present.

14-13 +4 DPL Descriptor privilege level.

11-8 +4 TYPE Segment type:
0100 = 16-bit call gate
0101 = task gate
0110 = 16-bit interrupt gate
0111 = 16-bit trap gate
1100 = 32-bit call gate
1110 = 32-bit interrupt gate
1111 = 32-bit trap gate.

4-0 +4 PARAMETERS Number of 32-bit parameters to copy from the caller’s stack to the called
procedure’s stack (valid for calls).

OFFSET 31-16

SELECTOR 15-0

31

P TYPE0 PARAMETERS

+0

+4

1707903

16

0

OFFSET 15-0

15 14 13 12 11 8 7 0

0 0DPL

Gate Descriptors provide protection for exe-
cutable segments operating at different privilege
levels. Figure 2-9 illustrates the format for Gate
Descriptors and Table 2-10 lists the correspond-
ing bit definitions.

Task Gate Descriptors are used to switch the
CPU’s context during a task switch. The selec-
tor portion of the task gate descriptor locates a
Task State Segment. These descriptors can be
located in the GDT, LDT or IDT tables.

c:\dataoem\!m2\!m2_2-20.fm

April 1, 1997 4:26 pm

Rev 0.71

2-21

2

PRELIMINARY

System Register Set

2.4.3 Task Register

The Task Register (TR) holds a 16-bit selector
for the current Task State Segment (TSS) table as
shown in Figure 2-10. The TR is loaded and
stored via the LTR and STR instructions, respec-
tively. The TR can only be accessed during pro-
tected mode and can only be loaded when the
privilege level is 0 (most privileged). When the
TR is loaded, the TR selector field indexes a TSS
descriptor that must reside in the Global

Descriptor Table (GDT). The contents of the
selected descriptor are cached on-chip in the hid-
den portion of the TR.

During task switching, the processor saves the cur-
rent CPU state in the TSS before starting a new
task. The TR points to the current TSS. The TSS
can be either a 386/486-style 32-bit TSS
(Figure 2-11, Page 2-22) or a 286-style 16-bit TSS type
(Figure 2-12, Page 2-23). An I/O permission bit
map is referenced in the 32-bit TSS by the I/O Map
Base Address.

Figure 2-10. Task Register

1708103

SELECTOR

15 0

2-22 PRELIMINARY

System Register Set
Advancing the Standards



Figure 2-11. 32-Bit Task State Segment (TSS) Table

+0h
+4h
+8h
+Ch
+10h
+14h
+18h

+1Ch
+20h
+24h

+28h
+2Ch
+30h
+34h

BACK LINK (OLD TSS SELECTOR)

SS for CPL = 0

SS for CPL = 1

SS for CPL = 2

+38h
+3Ch
+40h
+44h
+48h
+4Ch
+50h
+54h
+58h
+5Ch
+60h
+64h

ES
CS
SS
DS
FS
GS

SELECTOR FOR TASK'S LDT
T

ESP for CPL = 0

ESP for CPL = 1

ESP for CPL = 2

CR3
EIP

EFLAGS
EAX
ECX
EDX

31 16 15 0

EBX
ESP
EBP
ESI
EDI

I/O MAP BASE ADDRESS

1708203

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 = RESERVED.

2-23

2

PRELIMINARY

System Register Set

Figure 2-12. 16-Bit Task State Segment (TSS) Table

1708803

BACK LINK (OLD TSS SELECTOR)

SP FOR PRIVILEGE LEVEL 0

SS FOR PRIVILEGE LEVEL 0

SP FOR PRIVILEGE LEVEL 1

SS FOR PRIVILEGE LEVEL 1

SP FOR PRIVILEGE LEVEL 2

SS FOR PRIVILEGE LEVEL 2

IP

FLAGS

AX

CX

DX

BX

SP

BP

SI

DI

ES

CS

SS

DS

SELECTOR FOR TASK'S LDT

+0h

+2h

+4h

+6h

+8h

+Ah

+Ch

+Eh

+10h

+12h

+14h

+16h

+18h

+1Ah

+1Ch

+1Eh

+20h

+22h

+24h

+26h

+28h

+2Ah

2-24 PRELIMINARY

System Register Set
Advancing the Standards



2.4.4 M II Configuration
Registers

The M II configuration registers are used to
enable features in the M II CPU. These registers
assign non-cached memory areas, set up SMM,
provide CPU identification information and
control various features such as cache write
policy, and bus locking control. There are four
groups of registers within the M II configura-
tion register set:

• 7 Configuration Control Registers (CCRx)
• 8 Address Region Registers (ARRx)
• 8 Region Control Registers (RCRx)

Access to the configuration registers is achieved
by writing the register index number for the
configuration register to I/O port 22h. I/O port
23h is then used for data transfer.

Each I/O port 23h data transfer must be pre-
ceded by a valid I/O port 22h register index
selection. Otherwise, the current 22h, and the
second and later I/O port 23h operations com-
municate through the I/O port to produce
external I/O cycles. All reads from I/O port 22h
produce external I/O cycles. Accesses that hit
within the on-chip configuration registers do
not generate external I/O cycles.

After reset, configuration registers with indexes
C0-CFh and FC-FFh are accessible. To prevent
potential conflicts with other devices which
may use ports 22 and 23h to access their regis-
ters, the remaining registers (indexes D0-FBh)
are accessible only if the MAPEN(3-0) bits in
CCR3 are set to 1h. See Figure 2-16 (Page
2-29) for more information on the
MAPEN(3-0) bit locations.

If MAPEN[3-0] = 1h, any access to indexes in
the range 00-FFh will not create external I/O
bus cycles. Registers with indexes C0-CFh,
FC- FFh are accessible regardless of the state of
MAPEN[3-0]. If the register index number is
outside the C0-CFh or FC-FFh ranges, and
MAPEN[3-0] are set to 0h, external I/O bus
cycles occur. Table 2-11 (Page 2-25) lists the
MAPEN[3-0] values required to access each M
II configuration register. All bits in the config-
uration registers are initialized to zero following
reset unless specified otherwise.

2.4.4.1 Configuration Control
Registers

(CCR0 - CCR6) control several functions,
including non-cacheable memory, write-back
regions, and SMM features. A list of the config-
uration registers is listed in Table 2-11 (Page
2-25). The configuration registers are described
in greater detail in the following pages.

2-25

2

PRELIMINARY

System Register Set

Table 2-11. M II CPU Configuration Registers

REGISTER NAME ACRONYM REGISTER
INDEX

WIDTH
(Bits)

MAPEN VALUE
 NEEDED FOR

ACCESS

Configuration Control 0 CCR0 C0h 8 x

Configuration Control 1 CCR1 C1h 8 x

Configuration Control 2 CCR2 C2h 8 x

Configuration Control 3 CCR3 C3h 8 x

Configuration Control 4 CCR4 E8h 8 1

Configuration Control 5 CCR5 E9h 8 1

Configuration Control 6 CCR6 EAh 8 1

Address Region 0 ARR0 C4h - C6h 24 x

Address Region 1 ARR1 C7h - C9h 24 x

Address Region 2 ARR2 CAh - CCh 24 x

Address Region 3 ARR3 CDh - CFh 24 x

Address Region 4 ARR4 D0h - D2h 24 1

Address Region 5 ARR5 D3h - D5h 24 1

Address Region 6 ARR6 D6h - D8h 24 1

Address Region 7 ARR7 D9h - DBh 24 1

Region Control 0 RCR0 DCh 8 1

Region Control 1 RCR1 DDh 8 1

Region Control 2 RCR2 DEh 8 1

Region Control 3 RCR3 DFh 8 1

Region Control 4 RCR4 E0h 8 1

Region Control 5 RCR5 E1h 8 1

Region Control 6 RCR6 E2h 8 1

Region Control 7 RCR7 E3h 8 1

Note: x = Don’t Care

2-26 PRELIMINARY

System Register Set
Advancing the Standards



7 6 5 4 3 2 1 0

Reserved Reserved Reserved Reserved Reserved Reserved NC1 Reserved

Figure 2-13. M II Configuration Control Register 0 (CCR0)

Table 2-12. CCR0 Bit Definitions

BIT
POSITION NAME DESCRIPTION

1 NC1 No Cache 640 KByte - 1 MByte
If = 1: Address region 640 KByte to 1 MByte is non-cacheable.
If = 0: Address region 640 KByte to 1 MByte is cacheable.

Note: Bits 0, 2 through 7 are reserved.

2-27

2

PRELIMINARY

System Register Set

7 6 5 4 3 2 1 0

SM3 Reserved Reserved NO_LOCK Reserved SMAC USE_SMI Reserved

Figure 2-14. M II Configuration Control Register 1 (CCR1)

Table 2-13. CCR1 Bit Definitions

BIT
POSITION NAME DESCRIPTION

7 SM3 SMM Address Space Address Region 3
If = 1: Address Region 3 is designated as SMM address space.

4 NO_LOCK Negate LOCK#
If = 1: All bus cycles are issued with LOCK# pin negated except page table accesses and
interrupt acknowledge cycles. Interrupt acknowledge cycles are executed as locked
cycles even though LOCK# is negated. With NO_LOCK set, previously noncacheable
locked cycles are executed as unlocked cycles and therefore, may be cached. This
results in higher performance. Refer to Region Control Registers for information on
eliminating locked CPU bus cycles only in specific address regions.

2 SMAC System Management Memory Access
If = 1: Any access to addresses within the SMM address space, access system manage-
ment memory instead of main memory. SMI# input is ignored. Used when initializing
or testing SMM memory.
If = 0: No effect on access.

1 USE_SMI Enable SMM and SMIACT# Pins
If = 1: SMI# and SMIACT# pins are enabled.
If = 0: SMI# pin ignored and SMIACT# pin is driven inactive.

Note: Bits 0, 3, 5 and 6 are reserved.

2-28 PRELIMINARY

System Register Set
Advancing the Standards



7 6 5 4 3 2 1 0

USE_SUSP Reserved Reserved WPR1 SUSP_HLT LOCK_NW SADS Reserved

Figure 2-15. M II Configuration Control Register 2 (CCR2)

Table 2-14. CCR2 Bit Definitions

BIT
POSITION NAME DESCRIPTION

7 USE_SUSP Use Suspend Mode (Enable Suspend Pins)
If = 1: SUSP# and SUSPA# pins are enabled.
If = 0: SUSP# pin is ignored and SUSPA# pin floats.

4 WPR1 Write-Protect Region 1
If = 1: Designates any cacheable accesses in 640 KByte to 1 MByte address region
are write protected.

3 SUSP_HLT Suspend on Halt
If = 1: Execution of the HLT instruction causes the CPU to enter low power sus-
pend mode.

2 LOCK_NW Lock NW
If = 1: NW bit in CR0 becomes read only and the CPU ignores any writes to the
NW bit.
If = 0: NW bit in CR0 can be modified.

1 SADS If = 1: CPU inserts an idle cycle following sampling of BRDY# and inserts an idle
cycle prior to asserting ADS#

Note: Bits 0, 5 and 6 are reserved.

2-29

2

PRELIMINARY

System Register Set

7 6 5 4 3 2 1 0

MAPEN3 MAPEN2 MAPEN1 MAPEN0 Reserved LINBRST NMI_EN SMI_LOCK

Figure 2-16. M II Configuration Control Register 3 (CCR3)

Table 2-15. CCR3 Bit Definitions

BIT
POSITION NAME DESCRIPTION

7 - 4 MAPEN(3-0) MAP Enable
If = 1h: All configuration registers are accessible.
If = 0h: Only configuration registers with indexes C0-CFh, FEh and FFh
are accessible.

2 LINBRST If = 1: Use linear address sequence during burst cycles.
If = 0: Use “1 + 4” address sequence during burst cycles. The “1 + 4” address
sequence is compatible with Pentium’s burst address sequence.

1 NMI_EN NMI Enable
If = 1: NMI interrupt is recognized while servicing an SMI interrupt.
NMI_EN should be set only while in SMM, after the appropriate SMI interrupt
service routine has been setup.

0 SMI_LOCK SMI Lock
If = 1: The following SMM configuration bits can only be modified while in an
SMI service routine:
CCR1: USE_SMI, SMAC, SM3
CCR3: NMI_EN
CCR6: N, SMM_MODE
ARR3: Starting address and block size.
Once set, the features locked by SMI_LOCK cannot be unlocked until the
RESET pin is asserted.

Note: Bit 3 is reserved.

2-30 PRELIMINARY

System Register Set
Advancing the Standards



7 6 5 4 3 2 1 0

CPUID Reserved Reserved Reserved Reserved IORT2 IORT1 IORT

Figure 2-17. M II Configuration Control Register 4 (CCR4)

Table 2-16. CCR4 Bit Definitions

BIT
POSITION NAME DESCRIPTION

7 CPUID Enable CPUID instruction.
If = 1: the ID bit in the EFLAGS register can be modified and execution of the
CPUID instruction occurs as documented in section 6.3.
If = 0: the ID bit in the EFLAGS register can not be modified and execution of
the CPUID instruction causes an invalid opcode exception.

2 - 0 IORT(2-0) I/O Recovery Time
Specifies the minimum number of bus clocks between I/O accesses:
0h = 1 clock delay
1h = 2 clock delay
2h = 4 clock delay
3h = 8 clock delay
4h = 16 clock delay
5h = 32 clock delay (default value after RESET)
6h = 64 clock delay
7h = no delay

Note: Bits 3 - 6 are reserved.

2-31

2

PRELIMINARY

System Register Set

.

7 6 5 4 3 2 1 0

Reserved Reserved ARREN Reserved Reserved Reserved Reserved WT_ALLOC

Figure 2-18. M II Configuration Control Register 5 (CCR5)

Table 2-17. CCR5 Bit Definitions

BIT
POSITION NAME DESCRIPTION

5 ARREN Enable ARR Registers
If = 1: Enables all ARR registers.
If = 0: Disables the ARR registers. If SM3 is set, ARR3 is enabled regardless of
the setting of ARREN.

0 WT_ALLOC Write-Through Allocate
If = 1: New cache lines are allocated for read and write misses.
If = 0: New cache lines are allocated only for read misses.

Note: Bits 1 - 3 and 6 - 7 are reserved.

2-32 PRELIMINARY

System Register Set
Advancing the Standards



7 6 5 4 3 2 1 0

Reserved N Reserved Reserved Reserved Reserved WP_ARR3 SMM_MODE

Figure 2-19. M II Configuration Control Register 6 (CCR6)

Table 2-18. CCR6 Bit Definitions

BIT
POSITION NAME DESCRIPTION

6 N Nested SMI Enable bit: If operating in Cyrix enhanced SMM mode and:
If = 1: Enables nesting of SMI’s
If = 0: Disable nesting of SMI’s.

This bit is automatically CLEARED upon entry to every SMM routine and is
SET upon every RSM. Therefore enabling/disabling of nested SMI can only be
done while operating in SMM mode.

1 WP_ARR3 If = 1: Memory region defined by ARR3 is write protected when operating out-
side of SMM mode.
If = 0: Disable write protection for memory region defined by ARR3.
Reset State = 0.

0 SMM_MODE If = 1: Enables Cyrix Enhanced SMM mode.
If = 0: Disables Cyrix Enhanced SMM mode.

Note: Bit 1 is reserved.

2-33

2

PRELIMINARY

System Register Set

2.4.4.2 Address Region
Registers

The Address Region Registers (ARR0 - ARR7)
(Figure 2-20) are used to specify the location
and size for the eight address regions.

Attributes for each address region are specified
in the Region Control Registers (RCR0-RCR7).
ARR7 and RCR7 are used to define system main
memory and differ from ARR0-6 and RCR0-6.

With non-cacheable regions defined on-chip,
the M II CPU delivers optimum performance by
using advanced techniques to eliminate data
dependencies and resource conflicts in its exe-
cution pipelines. If KEN# is active for accesses

to regions defined as non-cacheable by the
RCRs, the region is not cached. The RCRs take
precedence in this case.

A register index, shown in Table 2-19 (Page
2-34) is used to select one of three bytes in each
ARR.

The starting address of the ARR address region,
selected by the START ADDRESS field, must be
on a block size boundary. For example, a
128 KByte block is allowed to have a starting
address of 0 KBytes, 128 KBytes, 256 KBytes,
and so on.

The SIZE field bit definition is listed in (Page
2-34). If the SIZE field is zero, the address
region is of zero size and thus disabled.

31 12 3 0

START ADDRESS SIZE

Memory Address
 Bits A31-A24

Memory Address
Bits A23-A16

Memory Address
Bits A15-A12

Size Bits
 3-0

7 0 7 0 7 4 3 0

Figure 2-20. Address Region Registers (ARR0 - ARR7)

2-34 PRELIMINARY

System Register Set
Advancing the Standards



Table 2-19. ARR0 - ARR7 Register Index Assignments

ARR
Register

Memory Address
 (A31 - A24)

Memory Address
(A23 - A16)

Memory Address
(A15 - A12)

Address Region
Size (3 - 0)

ARR0 C4h C5h C6h C6h

ARR1 C7h C8h C9h C9h

ARR2 CAh CBh CCh CCh

ARR3 CDh CEh CFh CFh

ARR4 D0h D1h D2h D2h

ARR5 D3h D4h D5h D5h

ARR6 D6h D7h D8h D8h

ARR7 D9h DAh DBh DBh

Table 2-20. Bit Definitions for SIZE Field

SIZE (3-0)
 BLOCK SIZE BLOCK SIZE

SIZE (3-0)
BLOCK SIZE BLOCK SIZE

ARR0-6 ARR7 ARR0-6 ARR7

0h Disabled Disabled 8h 512 KBytes 32 MBytes

1h 4 KBytes 256 KBytes 9h 1 MBytes 64 MBytes

2h 8 KBytes 512 KBytes Ah 2 MBytes 128 MBytes

3h 16 KBytes 1 MBytes Bh 4 MBytes 256 MBytes

4h 32 KBytes 2 MBytes Ch 8 MBytes 512 MBytes

5h 64 KBytes 4 MBytes Dh 16 MBytes 1 GBytes

6h 128 KBytes 8 MBytes Eh 32 MBytes 2 GBytes

7h 256 KBytes 16 MBytes Fh 4 GBytes 4 GBytes

2-35

2

PRELIMINARY

System Register Set

2.4.4.3 Region Control
 Registers

The Region Control Registers (RCR0 - RCR7)
specify the attributes associated with the ARRx
address regions. The bit definitions for the
region control registers are shown in Figure
2-21 (Page 2-36) and in Table 2-21 (Page
2-36). Cacheability, weak locking, write gath-
ering, and cache write through policies can be
activated or deactivated using the attribute bits.

If an address is accessed that is not in a memory
region defined by the ARRx registers, the fol-
lowing conditions will apply:

• If the memory address is cached,
write-back is enabled if WB/WT# is
returned high.

• Writes are not gathered
• Strong locking takes place
• The memory access is cached, if KEN# is

returned asserted.

Overlapping Conditions Defined. If two
regions specified by ARRx registers overlap and
conflicting attributes are specified, the follow-
ing attributes take precedence:

• Write-back is disabled
• Writes are not gathered
• Strong locking takes place
• The overlapping regions are

non-cacheable.

2-36 PRELIMINARY

System Register Set
Advancing the Standards



7 6 5 4 3 2 1 0

Reserved INV_RGN Reserved WT WG WL Reserved CD

Figure 2-21. Region Control Registers (RCR0-RCR7)

Table 2-21. RCR0-RCR7 Bit Definitions

BIT
POSITION NAME DESCRIPTION

6 INV_RGN Inverted Region. If =1, applies controls specified in RCRx to all memory addresses out-
side the region specified in corresponding ARR. Applicable to RCR0-RCR6 only.

4 WT Write-Through. If =1, defines the address region as write-through instead of
write-back.

3 WG Write Gathering. If =1, enables write gathering for the associated address region.

2 WL Weak Locking. If =1, enables weak locking for that address region.

0 CD Cache Disable. If =1, defines the address region as non-cacheable.

Note: Bits 1, 5 and 7 are reserved.

2-37

2

PRELIMINARY

System Register Set

Inverted Region (INV_RGN). Setting
INV-RGN applies the controls in RCRx to all the
memory addresses outside the specified address
region ARRx. This bit effects RCR0-RCR6 and
not RCR7.

Write Through (WT). Setting WT defines the
address region as write-through instead of
write-back, assuming the region is cacheable.
Regions where system ROM are loaded (shad-
owed or not) should be defined as write-
through. This bit works in conjunction with the
CR0_NW and PWT bits and the WB/WT# pin
to determine write-through or write-back
cacheability.

Write Gathering (WG). Setting WG enables
write gathering for the associated address
region. Write gathering allows multiple byte,
word, or Dword sequential address writes to
accumulate in the on-chip write buffer. As
instructions are executed, the results are placed
in a series of output buffers. These buffers are
gathered into the final output buffer.

When access is made to a non-sequential mem-
ory location or when the 8-byte buffer becomes
full, the contents of the buffer are written on the
external 64-bit data bus. Performance is
enhanced by avoiding as many as seven memory
write cycles.

WG should not be used on memory regions that
are sensitive to write cycle gathering. WG can be
enabled for both cacheable and non-cacheable
regions.

Weak Locking (WL). Setting WL enables
weak locking for the associated address region.
During weak locking all bus cycles are issued
with the LOCK# pin negated (except when page
table access occur and during interrupt
acknowledge cycles.)

Interrupt acknowledge cycles are executed as
locked cycles even though LOCK# is negated.
With WL set previously non-cacheable locked
cycles are executed as unlocked cycles and
therefore, may be cached, resulting in higher
CPU performance.

Note that the NO_LOCK bit globally performs
the same function that the WL bit performs on
a single address region. The NO_LOCK bit of
CCR1 enables weak locking for the entire
address space. The WL bit allows weak locking
only for specific address regions. WL is inde-
pendent of the cacheability of the address
region.

Cache Disable (CD). Cache Disable - If set,
defines the address region as non-cacheable.
This bit works in conjunction with the CR0_CD
and PCD bits and the KEN# pin to determine
line cacheability. Whenever possible, the
ARR/RCR combination should be used to define
non-cacheable regions rather than using exter-
nal address decoding and driving the KEN# pin
as the M II can better utilize its advanced tech-
niques for eliminating data dependencies and
resource conflicts with non-cacheable regions
defined on-chip.

2-38 PRELIMINARY

Model Specific Registers
Advancing the Standards



2.5 Model Specific
Registers

The CPU contains several Model Specific
Registers (MSRs) that provide time stamp,
performance monitoring and counter event
functions. Access to a specific MSR through an
index value in the ECX register as shown in
Table 2-22 below.

The MSR registers can be read using the
RDMSR instruction, opcode 0F32h. During an
MSR register read, the contents of the particular
MSR register, specified by the ECX register, is
loaded into the EDX:EAX registers.

The MSR registers can be written using the
WRMSR instruction, opcode 0F30h. During a
MSR register write the contents of EDX:EAX are
loaded into the MSR register specified in the
ECX register.

The RDMSR and WRMSR instructions are
privileged instructions and are also used to
setup scratch pad lock (Page 2-61).

Table 2-22. Machine Specific
Register

REGISTER
 DESCRIPTION

ECX
VALUE

Test Data 3h

Test Address 4h

Command/Status 5h

Time Stamp Counter (TSC) 10h

Counter Event Selection and Control Register 11h

Performance Counter #0 12h

Performance Counter #1 13h

2.6 Time Stamp Counter

The Time Stamp Counter (TSC) Register
MSR(10) is a 64-bit counter that counts the in-
ternal CPU clock cycles since the last reset. The
TSC uses a continous CPU core clock and will
continue to count clock cycles even when the
M II is suspend mode or shutdown.

The TSC can be accessed using the RDMSR and
WRMSR instructions. In addition, the TSC can
be read using the RDTSC instruction, opcode
0F31h. The RDTSC instruction loads the con-
tents of the TSC into EDX:EAX. The use of the
RDTSC instruction is restricted by the Time
Stamp Disable, (TSD) flag in CR4. When the
TSD flag is 0, the RDTSC instruction can be ex-
ecuted at any privilege level. When the TSD
flag is 1, the RDTSC instruction can only be ex-
ecuted at privilege level 0.

2.7 Performance
Monitoring

Performance monitoring allows counting of
over a hundred different event occurrences and
durations. Two 48-bit counters are used: Per-
formance Monitor Counter 0 and Performance
Monitor Counter 1. These two performance
monitor counters are controlled by the Counter
Event Control Register MSR(11). The perfor-
mance monitor counters use a continuous CPU
core clock and will continue to count clock cy-
cles even when the M II CPU is in suspend
mode or shutdown.

2-39

2

PRELIMINARY

Performance Monitoring

2.8 Performance
Monitoring
Counters 1 and 2

The 48-bit Performance Monitoring Counters
(PMC) Registers MSR(12), MSR(13) count
events as specified by the counter event control
register.

The PMCs can be accessed by the RDMSR and
WRMSR instructions. In addition, the PMCs
can be read by the RDPMC instruction, opcode
0F33h. The RDPMC instruction loads the con-
tents of the PMC register specified in the ECX
register into EDX:EAX. The use of RDPMC in-
structions is restricted by the Performance Mon-
itoring Counter Enable, (PCE) flag in C4.

When the PCE flag is set to 1, the RDPMC in-
struction can be executed at any privilege level.
When the PCE flag is 0, the RDPMC instruction
can only be executed at privilege level 0.

2.8.1 Counter Event
Control Register

Register MSR(11) controls the two internal
counters, #0 and #1. The events to be counted
have been chosen based on the micro-architec-
ture of the M II processor. The control register
for the two event counters is described in
Figure 2-21 (Page 2-36) and Table 2-23 (Page
2-40).

2.8.1.1 PM Pin Control

The Counter Event Control register MSR(11)
contains PM control fields that define the PM0
and PM1 pins as counter overflow indicators or
counter event indicators. When defined as
event counters, the PM pins indicate that one or
more events occurred during a particular clock
cycle and do not count the actual events.

When defined as overflow indicators, the event
counters can be preset with a value less the
248-1 and allowed to increment as events occur.
When the counter overflows the PM pin be-
comes asserted.

2.8.1.2 Counter Type Control

The Counter Type bit determines whether the
counter will count clocks or events. When
counting clocks the counter operates as a timer.

2.8.1.3 CPL Control

The Current Privilege Level (CPL) can be used
to determine if the counters are enabled. The
CP02 bit in the MSR(11) register enables count-
ing when the CPL is less than three, and the
CP03 bit enables counting when CPL is equal to
three. If both bits are set, counting is not depen-
dent on the CPL level; if neither bit is set, count-
ing is disabled.

2-40 PRELIMINARY

Performance Monitoring
Advancing the Standards



2
6

2
5

2
4

2
3

2
2 21 16 15 10 9 8 7 6 5 0

T
C
1
*

P
M
1

C
T
1

C
P
1
3

C
P
1
2

TC1* RESERVED

T
C
0
*

P
M
0

C
T
0

C
P
0
3

C
P
0
2

TC0*

*Note: Split Fields

Figure 2-22. Counter Event Control Register

Table 2-23. Counter Event Control Register Bit Definitions

BIT
POSITION NAME DESCRIPTION

25 PM1 Define External PM1 Pin
If = 1: PM1 pin indicates counter overflows
If = 0: PM1 pin indicates counter events

24 CT1 Counter #1 Counter Type
If = 1: Count clock cycles
If = 0: Count events (reset state).

23 CP13 Counter #1 CPL 3 Enable
If = 1: Enable counting when CPL=3.
If = 0: Disable counting when CPL=3. (reset state)

22 CP12 Counter #1 CPL Less Than 3 Enable
If = 1: Enable counting when CPL < 3.
If = 0: Disable counting when CPL < 3. (reset state)

26, 21 - 16 TC1(5-0) Counter #1 Event Type
Reset state = 0

9 PM0 Define External PM0 Pin
If = 1: PM0 pin indicates counter overflows
If = 0: PM0 pin indicates counter events

8 CT0 Counter #0 Counter Type
If = 1: Count clock cycles
If = 0: Count events (reset state).

7 CP03 Counter #0 CPL 3 Enable
If = 1: Enable counting when CPL=3.
If = 0: Disable counting when CPL=3. (reset state)

6 CP02 Counter #0 CPL Less Than 3 Enable
If = 1: Enable counting when CPL < 3.
If = 0: Disable counting when CPL < 3. (reset state)

10, 5 - 0 TC0(5-0) Counter #0 Event Type
Reset state = 0

Note: Bits 10 - 15 are reserved.

2-41

2

PRELIMINARY

Performance Monitoring

2.8.2 Event Type and Description

The events that can be counted by the performance monitoring counters are listed in Table 2-24.
Each of the 127 event types is assigned an event number.

A particular event number to be counted is placed in one of the MSR(11) Event Type fields.
There is a separate field for counter #0 and #1.

The events are divided into two groups. The occurrence type events and duration type events.
The occurrence type events, such as hardware interrupts, are counted as single events. The du-
ration type events such as “clock while bus cycles are in progress” count the number of clock cy-
cles that occur during the event.

During occurrence type events, the PM pins are configured to indicate the counter has incre-
mented The PM pins will then assert every time the counter increments in regards to an occur-
rence event. Under the same PM control, for a duration event the PM pin will stay asserted for
the duration of the event.

Table 2-24. Event Type Register

NUMBER COUNTER 0 COUNTER 1 DESCRIPTION TYPE

00h yes yes Data Reads Occurrence

01h yes yes Data Writes Occurrence

02h yes yes Data TLB Misses Occurrence

03h yes yes Cache Misses: Data Reads Occurrence

04h yes yes Cache Misses: Data Writes Occurrence

05h yes yes Data Writes that hit on Modified or Exclusive Liens Occurence

06h yes yes Data Cache Lines Written Back Occurrence

07h yes yes External Inquiries Occurrence

08h yes yes External Inquires that hit Occurrence

09h yes yes Memory Accesses in both pipes Occurrence

0Ah yes yes Cache Bank conflicts Occurrence

0Bh yes yes Misaligned data references Occurrence

0Ch yes yes Instruction Fetch Requests Occurrence

0Dh yes yes L2 TLB Code Misses Occurrence

0Eh yes yes Cache Misses: Instruction Fetch Occurrence

0Fh yes yes Any Segment Register Load Occurrence

10h yes yes Reserved Occurrence

11h yes yes Reserved Occurrence

12h yes yes Any Branch Occurrence

2-42 PRELIMINARY

Performance Monitoring
Advancing the Standards



13h yes yes BTB hits Occurrence

14h yes yes Taken Branches or BTB hits Occurrence

15h yes yes Pipeline Flushes Occurrence

16h yes yes Instructions executed in both pipes Occurrence

17h yes yes Instructions executed in Y pipe Occurrence

18h yes yes Clocks while bus cycles are in progress Duration

19h yes yes Pipe Stalled by full write buffers Duration

1Ah yes yes Pipe Stalled by waiting on data memory reads Duration

1Bh yes yes Pipe Stalled by writes to not-Modified or not-Exclusive
cache lines.

Duration

1Ch yes yes Locked Bus Cycles Occurrence

1Dh yes yes I/O Cycles Occurrence

1Eh yes yes Non-cacheable Memory Requests Occurrence

1Fh yes yes Pipe Stalled by Address Generation Interlock Duration

20h yes yes Reserved

21h yes yes Reserved

22h yes yes Floating Point Operations Occurrence

23h yes yes Breakpoint Matches on DR0 register Occurrence

24h yes yes Breakpoint Matches on DR1 register Occurrence

25h yes yes Breakpoint Matches on DR2 register Occurrence

26h yes yes Breakpoint Matches on DR3 register Occurrence

27h yes yes Hardware Interrupts Occurrence

28h yes yes Data Reads or Data Writes Occurrence

29h yes yes Data Read Misses or Data Write Misses Occurrence

2Bh yes no MMX Instruction Executed in X pipe Occurrence

2Bh no yes MMX Instruction Executed in Y pipe Occurrence

2Dh yes no EMMS Instruction Executed Occurrence

2Dh no yes Transition Between MMX Instruction and FP Instructions Occurrence

2Eh no yes Reserved

2Fh yes no Saturating MMX Instructions Executed Occurrence

2Fh no yes Saturations Performed Occurrence

30h yes no Reserved

31h yes no MMX Instruction Data Reads Occurrence

32h yes no Reserved

32h no yes Taken Branches Occurrence

33h no yes Reserved

34h yes no Reserved

34h no yes Reserved

35h yes no Reserved

Table 2-24. Event Type Register (Continued)

NUMBER COUNTER 0 COUNTER 1 DESCRIPTION TYPE

2-43

2

PRELIMINARY

Performance Monitoring

35h no yes Reserved

36h yes no Reserved

36h no yes Reserved

37h yes no Returns Predicted Incorrectly Occurrence

37h no yes Return Predicted (Correctly and Incorrectly) Occurrence

38h yes no MMX Instruction Multiply Unit Interlock Duration

38h no yes MODV/MOVQ Store Stall Due to Previous Operation Duration

39h yes no Returns Occurrence

39h no yes RSB Overflows Occurrence

3Ah yes no BTB False Entries Occurrence

3Ah no yes BTB Miss Prediction on a Not-Taken Back Occurrence

3Bh yes no Number of Clock Stalled Due to Full Write Buffers While
Executing

Duration

3Bh no yes Stall on MMX Instruction Write to E or M Line Duration

3C - 3Fh yes yes Reserved Duration

40h yes yes L2 TLB Misses (Code or Data) Occurrence

41h yes yes L1 TLB Data Miss Occurrence

42h yes yes L1 TLB Code Miss Occurrence

43h yes yes L1 TLB Miss (Code or Data) Occurrence

44h yes yes TLB Flushes Occurrence

45h yes yes TLB Page Invalidates Occurrence

46h yes yes TLB Page Invalidates that hit Occurrence

47h yes yes Reserved

48h yes yes Instructions Decoded Occurrence

49h yes yes Reserved

Table 2-24. Event Type Register (Continued)

NUMBER COUNTER 0 COUNTER 1 DESCRIPTION TYPE

2-44 PRELIMINARY

Debug Registers
Advancing the Standards



2.9 Debug Registers

Six debug registers (DR0-DR3, DR6 and DR7),
shown in Figure 2-23, support debugging on
the M II CPU. The bit definitions for the debug
registers are listed in Table 2-25 (Page 2-45).

Memory addresses loaded in the debug regis-
ters, referred to as “breakpoints”, generate a
debug exception when a memory access of the
specified type occurs to the specified address.
A data breakpoint can be specified for a partic-
ular kind of memory access such as a read or a
write. Code breakpoints can also be set allow-
ing debug exceptions to occur whenever a
given code access (execution) occurs.

The size of the debug target can be set to 1, 2,
or 4 bytes. The debug registers are accessed via
MOV instructions which can be executed only
at privilege level 0.

The Debug Address Registers (DR0-DR3) each
contain the linear address for one of four possi-
ble breakpoints. Each breakpoint is further
specified by bits in the Debug Control Register
(DR7). For each breakpoint address in
DR0-DR3, there are corresponding fields L,
R/W, and LEN in DR7 that specify the type of
memory access associated with the breakpoint.

The R/W field can be used to specify instruc-
tion execution as well as data access break-
points. Instruction execution breakpoints are
always taken before execution of the instruc-
tion that matches the breakpoint.

The Debug Status Register (DR6) reflects con-
ditions that were in effect at the time the debug
exception occurred. The contents of the DR6
register are not automatically cleared by the
processor after a debug exception occurs and,
therefore, should be cleared by software at the
appropriate time.

Figure 2-23. Debug Registers

DR7

DR6

DR3

DR2

DR1

DR0

1 703 2 03ALL BITS MARKED AS 0 OR 1 ARE RESERVED AND SHOULD NOT BE MODIFIED.

BREAKPOINT 3 LINEAR ADDRESS

BREAKPOINT 2 LINEAR ADDRESS

BREAKPOINT 1 LINEAR ADDRESS

BREAKPOINT 0 LINEAR ADDRESS

0
B B B B BB

0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LEN R/W LEN R/W LEN R/W LEN R/W
0 0

G G L G L G L G L G L0 0 1
3 3 2 2

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 9 8 7 6 5 4 3 2 1 01
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7

1 1 0

6 5 4 3 2 0
1
1

0

T S

D E E 3 3 2 2 1 1 0

3 2 1

0

0
1 1 1 1 1 1 1

2-45

2

PRELIMINARY

Debug Registers

Code execution breakpoints may also be generated by placing the breakpoint instruction (INT 3) at
the location where control is to be regained. Additionally, the single-step feature may be enabled
by setting the TF flag in the EFLAGS register. This causes the processor to perform a debug excep-
tion after the execution of every instruction.

Table 2-25. DR6 and DR7 Debug Register Field Definitions

REGISTER FIELD NUMBER
OF BITS DESCRIPTION

DR6 Bi 1 Bi is set by the processor if the conditions described by DRi, R/Wi,
and LENi occurred when the debug exception occurred, even if the
breakpoint is not enabled via the Gi or Li bits.

 BT 1 BT is set by the processor before entering the debug handler if a task
switch has occurred to a task with the T bit in the TSS set.

 BS 1 BS is set by the processor if the debug exception was triggered by the
single-step execution mode (TF flag in EFLAGS set).

DR7 R/Wi 2 Specifies type of break for the linear address in DR0, DR1, DR3, DR4:
00 - Break on instruction execution only
01 - Break on data writes only
10 - Not used
11 - Break on data reads or writes.

 LENi 2 Specifies length of the linear address in DR0, DR1, DR3, DR4:
00 - One byte length
01 - Two byte length
10 - Not used
11 - Four byte length.

 Gi 1 If set to a 1, breakpoint in DRi is globally enabled for all tasks and is
not cleared by the processor as the result of a task switch.

 Li 1 If set to a 1, breakpoint in DRi is locally enabled for the current task
and is cleared by the processor as the result of a task switch.

 GD 1 Global disable of debug register access. GD bit is cleared whenever a
debug exception occurs.

2-46 PRELIMINARY

Test Registers
Advancing the Standards



2.10 Test Registers

The test registers can be used to test the
on-chip unified cache and to test the main TLB.

Test registers TR3, TR4, and TR5 are used to
test the unified cache. Use of these registers is
described with the memory caches later in this
chapter in section 2.13.1.1 on page 2-58.

Test registers TR6 and TR7 are used to test the
TLB. Use of these test registers is described in
section 2.12.4.1 on page 2-54.

2-47

2

PRELIMINARY

Address Space

2.11 Address Space

The M II CPU can directly address 64 KBytes of
I/O space and 4 GBytes of physical memory
(Figure 2-24).

Memory Address Space. Access can be
made to memory addresses between
0000 0000h and FFFF FFFFh. This 4 GByte

Figure 2-24. Memory and I/O Address Spaces

FFFF FFFFh

Physical Memory

Physical

0000 0000h

64 KBytes

Processor0000 FFFFh

0000 0000h

FFFF FFFFh

1750202

Memory Space

4 GBytes

I/O Address Space

Configuration
Register I/O
Space

0000 0023h
0000 0022h

Not
Accessible

memory space can be accessed using byte,
word (16 bits), or doubleword (32 bits)
format. Words and doublewords are stored in
consecutive memory bytes with the low-order
byte located in the lowest address. The phys-
ical address of a word or doubleword is the
byte address of the low-order byte.

2-48 PRELIMINARY

Memory Addressing Methods
Advancing the Standards



I/O Address Space

The M II I/O address space is accessed using
IN and OUT instructions to addresses referred
to as “ports”. The accessible I/O address space
size is 64 KBytes and can be accessed through
8-bit, 16-bit or 32-bit ports. The execution of
any IN or OUT instruction causes the M/IO#
pin to be driven low, thereby selecting the I/O
space instead of memory space.

The accessible I/O address space ranges
between locations 0000 0000h and
0000 FFFFh (64 KBytes). The I/O locations
(ports) 22h and 23h can be used to access the
M II configuration registers.

2.12 Memory Addressing
Methods

With the M II CPU, memory can be addressed
using nine different addressing modes (Table
2-26, Page 2-49). These addressing modes are
used to calculate an offset address often
referred to as an effective address. Depending
on the operating mode of the CPU, the offset is
then combined using memory management
mechanisms to create a physical address that
actually addresses the physical memory
devices.

Memory management mechanisms on the M II
CPU consist of segmentation and paging.
Segmentation allows each program to use
several independent, protected address spaces.
Paging supports a memory subsystem that
simulates a large address space using a small
amount of RAM and disk storage for physical
memory. Either or both of these mechanisms
can be used for management of the M II CPU
memory address space.

2-49

2

PRELIMINARY

Memory Addressing Methods

2.12.1 Offset Mechanism

The offset mechanism computes an offset
(effective) address by adding together one or
more of three values: a base, an index and a
displacement. When present, the base is the
value of one of the eight 32-bit general regis-
ters. The index if present, like the base, is a
value that is in one of the eight 32-bit general
purpose registers (not including the ESP
register). The index differs from the base in
that the index is first multiplied by a scale
factor of 1, 2, 4 or 8 before the summation is
made. The third component added to the
memory address calculation is the displace-
ment. The displacement is a value of up to
32-bits in length supplied as part of the
instruction. Figure 2-25 illustrates the calcula-
tion of the offset address.

Nine valid combinations of the base, index,
scale factor and displacement can be used with
the M II CPU instruction set. These combina-
tions are listed in Table 2-26. The base and
index both refer to contents of a register as
indicated by [Base] and [Index].

Figure 2-25. Offset Address Calculation

Table 2-26. Memory Addressing Modes

ADDRESSING
MODE BASE INDEX

SCALE
FACTOR

(SF)

DISPLACEMENT
(DP)

OFFSET ADDRESS (OA)
CALCULATION

Direct x OA = DP

Register Indirect x OA = [BASE]

Based x x OA = [BASE] + DP

Index x x OA = [INDEX] + DP

Scaled Index x x x OA = ([INDEX] * SF) + DP

Based Index x x OA = [BASE] + [INDEX]

Based Scaled Index x x x OA = [BASE] + ([INDEX] * SF)

Based Index with
Displacement

x x x OA = [BASE] + [INDEX] + DP

Based Scaled Index with
Displacement

x x x x OA = [BASE] + ([INDEX] * SF) + DP

Index

Base Displacement

Scaling

Offset Address

1706603

x1, x2, x4, x8

(Effective Address)

2-50 PRELIMINARY

Memory Addressing Methods
Advancing the Standards



2.12.2 Memory
Addressing

Real Mode Memory Addressing

In real mode operation, the M II CPU only
addresses the lowest 1 MByte of memory. To
calculate a physical memory address, the
16-bit segment base address located in the
selected segment register is multiplied by 16
and then the 16-bit offset address is added.
The resulting 20-bit address is then extended.
Three hexadecimal zeros are added as upper
address bits to create the 32-bit physical address.
Figure 2-26 illustrates the real mode address
calculation.

The addition of the base address and the offset
address may result in a carry. Therefore, the
resulting address may actually contain up to 21
significant address bits that can address
memory in the first 64 KBytes above 1 MByte.

Protected Mode Memory Addressing

In protected mode three mechanisms calculate a
physical memory address (Figure 2-27, Page 2-51).

• Offset Mechanism that produces the
offset or effective address as in real mode.

• Selector Mechanism that produces the
base address.

• Optional Paging Mechanism that trans-
lates a linear address to the physical
memory address.

The offset and base address are added together
to produce the linear address. If paging is not
enabled, the linear address is used as the phys-
ical memory address. If paging is enabled, the
paging mechanism is used to translate the
linear address into the physical address. The
offset mechanism is described earlier in this
section and applies to both real and protected
mode. The selector and paging mechanisms
are described in the following paragraphs.

Figure 2-26. Real Mode Address Calculation

Offset Mechanism

Selected Segment

Offset Address

1708304

X 16
Register

+

16

16 20

20 32 Linear Address
(Physical Address)

12

000h

2-51

2

PRELIMINARY

Memory Addressing Methods

Figure 2-27. Protected Mode Address Calculation

2.12.3 Selector Mechanism

Using segmentation, memory is divided into an
arbitrary number of segments, each containing
usually much less than the 232 byte (4 GByte)
maximum.

The six segment registers (CS, DS, SS, ES, FS
and GS) each contain a 16-bit selector that is
used when the register is loaded to locate a
segment descriptor in either the global
descriptor table (GDT) or the local descriptor
table (LDT). The segment descriptor defines

the base address, limit, and attributes of the
selected segment and is cached on the M II
CPU as a result of loading the selector. The
cached descriptor contents are not visible to
the programmer. When a memory reference
occurs in protected mode, the linear address is
generated by adding the segment base address
in the hidden portion of the segment register to
the offset address. If paging is not enabled, this
linear address is used as the physical memory
address. Figure 2-28 illustrates the operation
of the selector mechanism.

Figure 2-28. Selector Mechanism

Offset Mechanism

Selector Mechanism

Optional
Physical

1706504

Paging Mechanism
Memory
Address

32

32

32 32

Offset
Address

Address

Linear
 Address

Segment
Base

Segment

15 0

1739100

INDEX TI RPL

Descriptor

Segment
Descriptor

TI=0

TI=1

 Local Descriptor
Table

SELECTOR LOAD INSTRUCTION SEGMENT REGISTER
SELECTED BY DECODED

 INSTRUCTION

Segment
Register
File and

Descriptor
Cache

Segment
Register

Identification

Selector
In Segment
Register

Global Descriptor
Table

Segment
Base Address

2-52 PRELIMINARY

Memory Addressing Methods
Advancing the Standards



2.12.4 Paging Mechanism

The paging mechanism translates linear
addresses to their corresponding physical
addresses. The page size is always 4 KBytes.
Paging is activated when the PG and the PE bits
within the CR0 register are set.

The paging mechanism translates the 20 most
significant bits of a linear address to a physical
address. The linear address is divided into
three fields DTI, PTI, PFO (Figure 2-29, Page
2-53). These fields respectively select:

• an entry in the directory table,
• an entry in the page table selected by the

directory table
• the offset in the physical page selected by

the page table

The directory table and all the page tables can
be considered as pages as they are 4 KBytes in
size and are aligned on 4 KByte boundaries.
Each entry in these tables is 32 bits in length.
The fields within the entries are detailed in
Figure 2-30 (Page 2-53) and Table 2-27 (Page
2-54).

A single page directory table can address up to
4 GBytes of virtual memory (1,024 page
tables—each table can select 1,024 pages and
each page contains 4 KBytes).

Translation Lookaside Buffer (TLB) is
made up of two caches (Figure 2-29, Page
2-53).

• the L1 TLB caches page tables entries
• the L2 TLB stores PTEs that have been

evicted from the L1 TLB

The L1 TLB is a 16-entry direct-mapped dual
ported cache. The L2 TLB is a 384 entry,
6-way, dual ported cache.

2-53

2

PRELIMINARY

Memory Addressing Methods

Figure 2-29. Paging Mechanism

BASE ADDRESS AVAILABLE P
WU

D

31 012 11 9 8 123456710

A

17 08 50 3

PP
C
D

W
T

/
S

/
R

Note: In DTE format, bit 6 is reserved

RESERVED

Figure 2-30. Directory and Page Table Entry (DTE and PTE) Format

CR3

1747200

Direc tory Table Index Page Table Index Page Frame Offset

31 22 21 12 11 0

Physical Page

DTE

PTE

0

0 0

4 Kb

4 Kb

(DTI) (PTI) (PFO)

Page Table Memory

Directory Table

0

4 Kb

4 Gb

Linear
Address

Control
Register

L2 TLB
384 Entry

6-Way Associative

External Memory or Cache

Main L1 TLB
16 Entry

Direct Mapped

2-54 PRELIMINARY

Memory Addressing Methods
Advancing the Standards



Table 2-27. Directory and Page Table Entry (DTE and PTE) Bit Definitions

BIT POSITION FIELD NAME DESCRIPTION

31-12 BASE
ADDRESS

Specifies the base address of the page or page table.

11-9 -- Undefined and available to the programmer.

8-7 -- Reserved and not available to the programmer.

6 D Dirty Bit. If set, indicates that a write access has occurred to the page (PTE only,
undefined in DTE).

5 A Accessed Flag. If set, indicates that a read access or write access has occurred
to the page.

4 PCD Page Caching Disable Flag. If set, indicates that the page is not cacheable in
the on-chip cache.

3 PWT Page Write-Through Flag. If set, indicates that writes to the page or page tables
that hit in the on-chip cache must update both the cache and external memory.

2 U/S User/Supervisor Attribute. If set (user), page is accessible at privilege level 3. If
clear (supervisor), page is accessible only when CPL ≤ 2.

1 W/R Write/Read Attribute. If set (write), page is writable. If clear (read), page is
read only.

0 P Present Flag. If set, indicates that the page is present in RAM memory, and
validates the remaining DTE/PTE bits. If clear, indicates that the page is not
present in memory and the remaining DTE/PTE bits can be used by the
programmer.

For a TLB hit, the TLB eliminates accesses to
external directory and page tables.

The L1 TLB is a small cache optimized for speed
whereas the L2 TLB is a much larger cache opti-
mized for capacity. The L2 TLB is a proper
superset of the L1 TLB.

The TLB must be flushed by the software when
entries in the page tables are changed. Both the
L1 and L2 TLBs are flushed whenever the CR3
register is loaded. A particular page can be
flushed from the TLBs by using the INVLPG
instruction.

2.12.4.1 Translation Lookaside
 Buffer Testing

The L1 and L2 Translation Lookaside Buffers
(TLBs) can be tested by writing, then reading
from the same TLB location. The operation to be
performed is determined by the command
(CMD) field (Table 2-28, Page 2-54) in the TR6
register.

Table 2-28. CMD Field

CMD OPERATION LINEAR
 ADDRESS BITS

x00 Write to L1 15 - 12

x01 Write to L2 17 - 12

010 Read from L1 X port 15 -12

011 Read from L2 X port 17 -12

110 Read from L1 Y port 15 - 12

110 Read from L2 Y port 17 - 12

2-55

2

PRELIMINARY

Memory Addressing Methods

TLB Write

To perform a write to the M II TLBs, the TR7
register (Figure 2-31) is loaded with the desired
physical address as well as the PCD and PWT
bits. For a write to the L2 TLB, the SET field of
TR7 must be also specified. The H1, H2, and
HSET fields of TR7 are not used. The TR6 reg-
ister is then loaded with the linear address, V,
D, U, W and A fields and the appropriate CMD.
For a L1 TLB write, the TLB entry is selected by
bits 15-12 of the linear address. For a L2 TLB
write, the TLB entry is selected by bits 17-12 of
the linear address and the SET field of TR7.

TLB Read

For a L1 LTB read, the TR6 register is loaded
with the linear address and the appropriate
CMD. The L1 TLB entry selected by bits 15-12
of the linear address will then be accessed. The
linear address, V, D, PG, U, W and A fields of

TR6 and the physical address, PCD and PWT
fields of TR7 are loaded from the specified L1
entry. The H1 bit of TR7 will indicate if the
specified linear address hit in the L1 TLB.

For a L2 TLB read, the TR7 register is loaded
with the desired SET. The TR6 register is then
loaded with the linear address and the appro-
priate CMD. The L2 TLB entry selected by bits
17-12 of the linear address and the SET field in
TR7 will then be accessed. The linear address,
V,D, PG, V, W, and A fields of TR6 and the
physical address, PCD and PWT fields of TR7
are loaded from the specified L2 entry. The H2
bit of TR7 will indicate if the specified linear
address hit in the L2 TLB. If there was an L2
hit, the HSET field of TR7 will indicate which
SET hit.

The TLB test register fields are defined in Table
2-29. (Page 2-56).

Figure 2-31. TLB Test Registers

ADR6 (LINEAR ADDRESS)

 = Reserved

V D U 0 W TR6

1729100

ADR7 (PHYSICAL ADDRESS)

31 12 10 9 8 7 6 5

PCD PWT H1 TR7SET H2

4 3 2 01

PG 0

12 10 9 8 7 6 5 4 3 2 0131

11

11

CMD

HSET

A 0

2-56 PRELIMINARY

Memory Addressing Methods
Advancing the Standards



Table 2-29. TLB Test Register Bit Definitions

REGISTER
NAME NAME RANGE DESCRIPTION

TR7 ADR7 31-12 Physical address or variable page size mechanism mask.
TLB lookup: data field from the TLB.
TLB write: data field written into the TLB.

PCD 11 Page-level cache disable bit (PCD).
Corresponds to the PCD bit of a page table entry.

PWT 10 Page-level cache write-through bit (PWT).
Corresponds to the PWT bit of a page table entry.

SET 9-7 L2 TLB Set Selection (0h - 5h)

H1 5 Hit in L1 TLB

H2 4 Hit in L2 TLB

HSET 2-0 L2 Set Selection when L2 TLB hit occurred (0h - 5h)

TR6 ADR6 31-12 Linear Address.
TLB lookup: The TLB is interrogated per this address. If
one and only one match occurs in the TLB, the rest of the
fields in TR6 and TR7 are updated per the matching TLB
entry.
TLB write: A TLB entry is allocated to this linear address.

V 11 PTE Valid.
TLB write: If set, indicates that the TLB entry contains
valid data. If clear, target entry is invalidated.

D 10 Dirty Attribute Bit

PG 9 Page Global

U 8 User/Supervisor Attribute Bit

W 6 Write Protect bit.

CMD 2-0 Array Command Select.
Determines TLB array command.
Refer to Table 2-28, Page 2-54.

2-57

2

PRELIMINARY

Memory Caches

2.13 Memory Caches

The M II CPU contains two memory caches as
described in Chapter 1. The Unified Cache acts
as the primary data cache, and secondary
instruction cache. The Instruction Line Cache
is the primary instruction cache and provides a
high speed instruction stream for the Integer
Unit.

The unified cache is dual-ported allowing
simultaneous access to any two unique banks.
Two different banks may be accessed at the
same time permitting any two of the following
operations to occur in parallel:

• Code fetch
• Data read (X pipe, Y pipe or FPU)
• Data write (X pipe, Y pipe or FPU).

2.13.1 Unified Cache
MESI States

The unified cache lines are assigned one of four
MESI states as determined by MESI bits stored
in tag memory. Each 32-byte cache line is
divided into two 16-byte sectors. Each sector
contains its own MESI bits. The four MESI
states are described below:

Modified MESI cache lines are those that have
been updated by the CPU, but the corre-
sponding main memory location has not yet
been updated by an external write cycle. Modi-
fied cache lines are referred to as dirty cache
lines.

Exclusive MESI lines are lines that are exclusive
to the M II CPU and are not duplicated within
another caching agent’s cache within the same
system. A write to this cache line may be
performed without issuing an external write
cycle.

Shared MESI lines may be present in another
caching agent’s cache within the same system. A
write to this cache line forces a corresponding
external write cycle.

Invalid MESI lines are cache lines that do not
contain any valid data.

2-58 PRELIMINARY

Memory Caches
Advancing the Standards



2.13.1.1 Unified Cache Testing

The TR3, TR4, and TR5 test registers allow
testing the unified cache. These registers can
also be accessed as Model Specific Registers
MSR(3), MSR(4), and MSR(5) using the
RDMSR and WRMSR instructions. The data
placed in the MSR registers determine which
areas will be tested.

Cache Organization. The 64 KByte Unified
Cache (Figure 2-32) is a 4-way set associative
cache divided into 2,048 lines. There are 512
cache lines in each of the four sets. Each cache
line is 32 bytes wide.

Memory address bits A13-A5 address sequen-
tial cache lines, repeating the same sequence in

each set. Since each cache line represents any
memory location with the same A13-A5 bits,
the upper address bits A31-A14 are stored in
the cache tag line. Memory address bits A4-A2
are used to select a particular 4-byte entry
(ENT) within the cache line.

Test Initiation. A test register operation is
initiated by writing to the TR5 register shown
in Figure 2-33 (Page 2-59) using a special
MOV instruction. The TR5 CTL field, detailed
in Table 2-30 (Page 2-59), determines the
function to be performed. For cache writes,
the registers TR4 and TR3 must be initialized
before a write is made to TR5. Eight 4-byte
accesses are required to access a complete
cache line.

Figure 2-32. Unified Cache

1747500

SET 0

SET 1

SET 2

SET 3

ENT = 4-byte entry

32 Bytes of Data

2048 Lines

ENT ENT ENT ENT ENT ENT ENT ENT

512 Lines

Typical
Single
Line

2-59

2

PRELIMINARY

Memory Caches

31 24 23 22 20 19 18 16 15 12 11 8 7 6 5 4 3 2 0

S
M
I

V MESI MRU SET CTL TR5

31 2 1 0

ADDRESS TR4

31 0

DATA TR3

Figure 2-33. Cache Test Registers

Table 2-30. Cache Test Register Bit Definitions

REGISTER
NAME

FIELD
NAME RANGE DESCRIPTION

TR5 SMI 23 SMI Address Bit. Selects separate/cacheable SMI code/data
space

V, MESI 19 - 16 Valid, MESI Bits*
If = 1000, Modified
If = 1001, Shared
If = 1010, Exclusive
If = 0011, Invalid
If = 1100, Locked Valid
If = 0111, Locked Invalid
Else = Undefined

MRU 11 - 8 Used to determine the Least Recently Used (LRU) line.

SET 5 - 4 Cache Set. Selects one of four cache sets to perform operation
on.

CTL 1 - 0 Control field
If = 00: flush cache without invalidate
If = 01: write cache
If = 10: read cache
If = 11: no cache or test register modification

TR4 ADDRESS 31 - 2 Physical Address

TR3 DATA 31 - 0 Data written or read during a cache test.
*Note: All 32 bytes should contain valid data before a line is marked as valid.

2-60 PRELIMINARY

Memory Caches
Advancing the Standards



Write Operations. During a write, the TR3
DATA (32-bits) and TAG field information is
written to the address selected by the
ADDRESS field in TR4 and the SET field in
TR5.

Read Operations. During a read, the cache
address selected by the ADDRESS field in TR4
and the SET field in TR5. The TVB, MESI and
MRU fields in TR5 are updated with the infor-
mation from the selected line. TR3 holds the
selected read data.

Cache Flushing. A cache flush occurs during
a TR5 write if the CTL field is set to zero.
During flushing, the CPU’s cache controller
reads through all the lines in the cache. “Modi-
fied” lines are redefined as “shared” by setting
the shared MESI bit. Clean lines are left in
their original state.

2-61

2

PRELIMINARY

Memory Caches

2.13.2 RAM Cache Locking

RAM cache locking (was called Scratch Pad
Memory) sets up a private area of memory that
can be assigned within the M II unified cache.
Cached locked RAM is read/writable and is
NOT kept coherent with the rest of the system.
Scratch Pad Memory is a seperate memory on
certain Cyrix CPUs.

Cache locking may be implemented differently
on different processors. On the M II CPU, the
cache locking RAM may be assigned on a cache
line granularity.

RDMSR and WRMSR instructions (Page 2-39)
with indices 03h to 05h are used to assign
scratch pad memory. These instructions access
the cache test registers. See section 2.13.1.1
(Page 2-58) for detailed description of cache
test register operation. The cache line is
assigned into Scratch Pad RAM by setting its
MESI state to “locked valid.”

Table 2-31. RAM Cache Locking Operations

Read/Write ECX EDX EAX Operation

Read/Write 03h ---- Data to be read or
written from/to
the cache.

Loads or stores data to/from TR3.

Write 04h ---- 32 bits of address Address in EAX is loaded into TR4.
This address is the cache line address
that will be locked.

Read 04h ---- 32 bits of address Stores the contents of TR4 in EAX

Write 05h ---- Data to be written
into TR5

Performs operation specified in CTL
field of TR5.

Read 05h ---- Data in TR5 regis-
ter

Reads data in TR5 and stores in EAX.

When locking physical addresses into the cache
(Table 2-31), the programmer should be aware
of several issues:

1) Locking all sets of the cache should not be
done. It is required that one set always be avail-
able for general purpose caching. 2) Care must
be taken by the programmer not to create
synonyms. This is done by first checking to see
if a particular address is locked before
attempting to lock the address. If synonyms
are created, M II CPU operation will be unde-
fined.

 When ever possible, it is recommended to
flush the cache before assigning locked
memory areas. Locked areas of the cache are
cleared on reset, and are unaffected by warm
reset and FLUSH#, or the INVD and WBINVD
instructions.

2-62 PRELIMINARY

Interrupts and Exceptions
Advancing the Standards



2.14 Interrupts and
Exceptions

The processing of an interrupt or an exception
changes the normal sequential flow of a
program by transferring program control to a
selected service routine. Except for SMM inter-
rupts, the location of the selected service
routine is determined by one of the interrupt
vectors stored in the interrupt descriptor table.

Hardware interrupts are generated by signal
sources external to the CPU. All exceptions
(including so-called software interrupts) are
produced internally by the CPU.

2.14.1 Interrupts

External events can interrupt normal program
execution by using one of the three interrupt
pins on the M II CPU.

• Non-maskable Interrupt (NMI pin)
• Maskable Interrupt (INTR pin)
• SMM Interrupt (SMI# pin).

For most interrupts, program transfer to the
interrupt routine occurs after the current
instruction has been completed. When the
execution returns to the original program, it begins
immediately following the last completed instruc-
tion.

With the exception of string operations, inter-
rupts are acknowledged between instructions.
Long string operations have interrupt windows
between memory moves that allow interrupts
to be acknowledged.

The NMI interrupt cannot be masked by soft-
ware and always uses interrupt vector 2 to
locate its service routine. Since the interrupt
vector is fixed and is supplied internally, no
interrupt acknowledge bus cycles are
performed. This interrupt is normally reserved
for unusual situations such as parity errors and
has priority over INTR interrupts.

Once NMI processing has started, no additional
NMIs are processed until an IRET instruction is
executed, typically at the end of the NMI
service routine. If NMI is re-asserted prior to
execution of the IRET instruction, one and only
one NMI rising edge is stored and processed
after execution of the next IRET. During the
NMI service routine, maskable interrupts may
be enabled (unmasked). If an unmasked INTR
occurs during the NMI service routine, the
INTR is serviced and execution returns to the
NMI service routine following the next IRET. If
a HALT instruction is executed within the NMI
service routine, the M II CPU restarts execution
only in response to RESET, an unmasked INTR or
an SMM interrupt. NMI does not restart CPU
execution under this condition.

The INTR interrupt is unmasked when the
Interrupt Enable Flag (IF) in the EFLAGS
register is set to 1. When an INTR interrupt

2-63

2

PRELIMINARY

Interrupts and Exceptions

2.14.2 Exceptions

Exceptions are generated by an interrupt
instruction or a program error. Exceptions are
classified as traps, faults or aborts depending
on the mechanism used to report them and the
restartability of the instruction that first caused
the exception.

A Trap Exception is reported immediately
following the instruction that generated the
trap exception. Trap exceptions are generated
by execution of a software interrupt
instruction (INTO, INT 3, INT n, BOUND),
by a single-step operation or by a data
breakpoint.

Software interrupts can be used to simulate
hardware interrupts. For example, an INT n
instruction causes the processor to execute the
interrupt service routine pointed to by the nth
vector in the interrupt table. Execution of the
interrupt service routine occurs regardless of
the state of the IF flag in the EFLAGS register.

The one byte INT 3, or breakpoint interrupt
(vector 3), is a particular case of the INT n
instruction. By inserting this one byte instruc-
tion in a program, the user can set breakpoints
in the code that can be used during debug.

Single-step operation is enabled by setting the
TF bit in the EFLAGS register. When TF is set,
the CPU generates a debug exception (vector 1)
after the execution of every instruction. Data
breakpoints also generate a debug exception
and are specified by loading the debug regis-
ters (DR0-DR7) with the appropriate values.

occurs, the CPU performs two locked interrupt
acknowledge bus cycles. During the second
cycle, the CPU reads an 8-bit vector that is
supplied by an external interrupt controller.
This vector selects one of the 256 possible
interrupt handlers which will be executed in
response to the interrupt.

The SMM interrupt has higher priority than
either INTR or NMI. After SMI# is asserted,
program execution is passed to an SMI service
routine that runs in SMM address space
reserved for this purpose. The remainder of
this section does not apply to the SMM inter-
rupts. SMM interrupts are described in greater
detail later in this chapter.

2-64 PRELIMINARY

Interrupts and Exceptions
Advancing the Standards



A Fault Exception is reported prior to
completion of the instruction that generated
the exception. By reporting the fault prior to
instruction completion, the CPU is left in a
state that allows the instruction to be restarted
and the effects of the faulting instruction to be
nullified. Fault exceptions include
divide-by-zero errors, invalid opcodes, page
faults and coprocessor errors. Instruction
breakpoints (vector 1) are also handled as
faults. After execution of the fault service
routine, the instruction pointer points to the
instruction that caused the fault.

An Abort Exception is a type of fault exception
that is severe enough that the CPU cannot restart
the program at the faulting instruction. The
double fault (vector 8) is the only abort excep-
tion that occurs on the M II CPU.

2.14.3 Interrupt Vectors

When the CPU services an interrupt or excep-
tion, the current program’s FLAGS, code
segment and instruction pointer are pushed
onto the stack to allow resumption of execu-
tion of the interrupted program. In protected
mode, the processor also saves an error code
for some exceptions. Program control is then
transferred to the interrupt handler (also called
the interrupt service routine). Upon execution
of an IRET at the end of the service routine,
program execution resumes by popping from
the stack, the instruction pointer, code
segment, and FLAGS.

Interrupt Vector Assignments

Each interrupt (except SMI#) and exception is
assigned one of 256 interrupt vector numbers
Table 2-32, (Page 2-65). The first 32 interrupt
vector assignments are defined or reserved.
INT instructions acting as software interrupts
may use any of the interrupt vectors, 0 through
255.

2-65

2

PRELIMINARY

Interrupts and Exceptions

Table 2-32. Interrupt Vector Assignments

INTERRUPT VECTOR FUNCTION EXCEPTION TYPE

0 Divide error FAULT

1 Debug exception TRAP/FAULT*

2 NMI interrupt

3 Breakpoint TRAP

4 Interrupt on overflow TRAP

5 BOUND range exceeded FAULT

6 Invalid opcode FAULT

7 Device not available FAULT

8 Double fault ABORT

9 Reserved

10 Invalid TSS FAULT

11 Segment not present FAULT

12 Stack fault FAULT

13 General protection fault TRAP/FAULT

14 Page fault FAULT

15 Reserved

16 FPU error FAULT

17 Alignment check exception FAULT

18-31 Reserved

32-255 Maskable hardware interrupts TRAP

0-255 Programmed interrupt TRAP
*Note: Data breakpoints and single-steps are traps. All other debug exceptions are faults.

2-66 PRELIMINARY

Interrupts and Exceptions
Advancing the Standards



In response to a maskable hardware interrupt
(INTR), the M II CPU issues interrupt acknowl-
edge bus cycles to read the vector number from
external hardware. These vectors should be in
the range 32 - 255 as vectors 0 - 31 are reserved.

Interrupt Descriptor Table

The interrupt vector number is used by the M
II CPU to locate an entry in the interrupt
descriptor table (IDT). In real mode, each IDT
entry consists of a four-byte far pointer to the
beginning of the corresponding interrupt
service routine. In protected mode, each IDT
entry is an eight-byte descriptor. The Interrupt
Descriptor Table Register (IDTR) specifies the
beginning address and limit of the IDT.
Following reset, the IDTR contains a base
address of 0h with a limit of 3FFh.

The IDT can be located anywhere in physical
memory as determined by the IDTR register.
The IDT may contain different types of descrip-
tors: interrupt gates, trap gates and task gates.
Interrupt gates are used primarily to enter a
hardware interrupt handler. Trap gates are
generally used to enter an exception handler or
software interrupt handler. If an interrupt gate
is used, the Interrupt Enable Flag (IF) in the
EFLAGS register is cleared before the interrupt
handler is entered. Task gates are used to make
the transition to a new task.

2.14.4 Interrupt and Exception
Priorities

As the M II CPU executes instructions, it
follows a consistent policy for prioritizing
exceptions and hardware interrupts. The priori-
ties for competing interrupts and exceptions
are listed in Table 2-33 (Page 2-67). Debug
traps for the previous instruction and the next
instructions always take precedence. SMM
interrupts are the next priority. When NMI and
maskable INTR interrupts are both detected at
the same instruction boundary, the M II
processor services the NMI interrupt first.

The M II CPU checks for exceptions in parallel
with instruction decoding and execution.
Several exceptions can result from a single
instruction. However, only one exception is
generated upon each attempt to execute the
instruction. Each exception service routine
should make the appropriate corrections to the
instruction and then restart the instruction. In
this way, exceptions can be serviced until the
instruction executes properly.

The M II CPU supports instruction restart after
all faults, except when an instruction causes a
task switch to a task whose task state segment
(TSS) is partially not present. A TSS can be
partially not present if the TSS is not page
aligned and one of the pages where the TSS
resides is not currently in memory.

2-67

2

PRELIMINARY

Interrupts and Exceptions

Table 2-33. Interrupt and Exception Priorities

PRIORITY DESCRIPTION NOTES

0 Warm Reset Caused by the assertion of WM_RST.

1 Debug traps and faults from previ-
ous instruction.

Includes single-step trap and data breakpoints
specified in the debug registers.

2 Debug traps for next instruction. Includes instruction execution breakpoints
specified in the debug registers.

3 Hardware Cache Flush Caused by the assertion of FLUSH#.

4 SMM hardware interrupt. SMM interrupts are caused by SMI# asserted
and always have highest priority.

5 Non-maskable hardware interrupt. Caused by NMI asserted.

6 Maskable hardware interrupt. Caused by INTR asserted and IF = 1.

7 Faults resulting from fetching the
next instruction.

Includes segment not present, general protec-
tion fault and page fault.

8 Faults resulting from instruction
decoding.

Includes illegal opcode, instruction too long,
or privilege violation.

9 WAIT instruction and TS = 1 and
MP = 1.

Device not available exception generated.

10 ESC instruction and EM = 1 or
TS = 1.

Device not available exception generated.

11 Floating point error exception. Caused by unmasked floating point exception
with NE = 1.

12 Segmentation faults (for each
memory reference required by the
instruction) that prevent transfer-
ring the entire memory operand.

Includes segment not present, stack fault, and
general protection fault.

13 Page Faults that prevent transfer-
ring the entire memory operand.

14 Alignment check fault.

2-68 PRELIMINARY

Interrupts and Exceptions
Advancing the Standards



2.14.5 Exceptions in Real Mode

Many of the exceptions described in Table 2-33 (Page 2-67) are not applicable in real mode.
Exceptions 10, 11, and 14 do not occur in real mode. Other exceptions have slightly different
meanings in real mode as listed in Table 2-34.

Table 2-34. Exception Changes in Real Mode

VECTOR
NUMBER

PROTECTED MODE
 FUNCTION

REAL MODE FUNCTION

8 Double fault. Interrupt table limit overrun.

10 Invalid TSS. x

11 Segment not present. x

12 Stack fault. SS segment limit overrun.

13 General protection fault. CS, DS, ES, FS, GS segment limit overrun.

14 Page fault. x
Note: x = does not occur

2-69

2

PRELIMINARY

Interrupts and Exceptions

2.14.6 Error Codes

When operating in protected mode, the following exceptions generate a 16-bit error code:

The error code is pushed onto the stack prior to entering the exception handler. The error code
format is shown in Figure 2-34 and the error code bit definitions are listed in Table 2-35. Bits
15-3 (selector index) are not meaningful if the error code was generated as the result of a page
fault. The error code is always zero for double faults and alignment check exceptions.

Double Fault Invalid TSS

Alignment Check Segment Not Present

Page Fault Stack Fault

General Protection Fault

15 3 2 1 0

Selector Index S2 S1 S0

Figure 2-34. Error Code Format

Table 2-35. Error Code Bit Definitions

FAULT
TYPE

SELECTOR
INDEX

(BITS 15-3)

S2
(BIT 2)

S1
(BIT 1)

S0
(BIT 0)

Double Fault or
Alignment Check

0 0 0 0

Page Fault Reserved. Fault caused by:
0 = not present page
1 = page-level
protection violation.

Fault occurred
 during:
0 = read access
1 = write access.

Fault occurred during:
0 = supervisor access.
1 = user access.

IDT Fault Index of faulty
IDT selector.

Reserved. 1 If = 1, exception
occurred while trying
to invoke exception
or hardware interrupt
handler.

Segment
Fault

Index of faulty
selector.

TI bit of faulty
selector.

0 If =1, exception
occurred while trying
to invoke exception
or hardware interrupt
handler.

2-70PRELIMINARY

System Management Mode
Advancing the Standards


System Management Mode

2-70

2.15 System Management
Mode

System Management Mode (SMM) is a distinct
CPU mode that differs from normal CPU x86
operating modes (real mode, V86 mode, and
protected mode) and is most often used to
perform power management.

The M II CPU is backward compatible with the
SL-compatible SMM found on previous Cyrix
microprocessors. On the M II SMM has been
enhanced to optimized software emulation of
multimedia and I/O peripherals.

The Cyrix Enhanced SMM provides new
features:

• Cacheability of SMM memory
• Support for nesting of multiple SMIs
• Improved SMM entry and exit time.

Overall Operation

The overall operation of a SMM operation is
shown in (Figure 2-35). SMM is entered using
the System Management Interrupt (SMI) pin.
SMI interrupts have higher priority than any
other interrupt, including NMI interrupts. SMM
can also be entered using software by using an
SMINT instruction.

Upon entering SMM mode, portions of the CPU
state are automatically saved in the SMM
address memory space header. The CPU enters
real mode and begins executing the SMI service
routine in SMM address space.

Execution of a SMM routine starts at the base
address in SMM memory address space. Since
the SMM routines reside in SMM memory
space, SMM routines can be made totally trans-
parent to all software, including protected-
mode operating systems.

1713703

SMI# Sampled Active or

CPU State Stored in SMM

CPU Enters Real Mode

Execution Begins at SMM

RSM Instruction Restores CPU

Normal Execution Resumes

Address Space Header

Address Space Base Address

State Using Header Information

SMINT Instruction Executed

Figure 2-35. SMI Execution
Flow Diagram

c:\dataoem\!m2\!m2_2-71.fm

April 9, 1997 5:47 pm

Rev 0.2

 2-71

2

PRELIMINARY

System Management ModeSystem Management Mode

 2-71

2.15.1 SMM Memory Space

SMM memory must reside within the bounds of
physical memory and not overlap with system
memory. SMM memory space (Figure 2-36) is
defined by setting the SM3 bit in CCR1 and
specifying the base address and size of the SMM
memory space in the ARR3 register.

The base address must be a multiple of the SMM
memory space size. For example, a 32 KByte
SMM memory space must be located on a

32 KByte address boundary. The memory
space size can range from 4 KBytes to 4 GBytes
SMM accesses ignore the state of the A20M#
input pin and drive the A20 address bit to the
unmasked value.

SMM memory space can be accessed while in
normal mode by setting the SMAC bit in the
CCR1 register. This feature may be used to
initialize SMM memory space.

FFFF FFFFh

Physical Memory

Physical

0000 0000h

Potential

Defined

0000 0000h

FFFF FFFFh

1747600
Non-SMM Mode

SMIACT# Active
4 KBytes to

SMM Mode

4 GBytes

Memory Space SMM Address
Space

SMM
Address
Space

4 GBytes

SMIACT# Negated

Figure 2-36. System Management Memory Space

2-72PRELIMINARY

System Management Mode
Advancing the Standards


System Management Mode

2-72

2.15.2 SMM Memory Space Header

The SMM Memory Space Header (Figure 2-37) is used to store the CPU state prior to starting an
SMM routine. The fields in this header are described in Table 2-36 (Page 2-73). After the SMM
routine has completed, the header information is used to restore the original CPU state. The
location of the SMM header is determined by the SMM Header Address Register (SMHR).

DR7

EFLAGS

CR0

031
SMHR

-4h

-8h

-Ch

-10h

-14h

-18h

-1Ch

-20h

-24h

-28h

P

Current IP

Next IP

CS Selector

CS Descriptor (Bits 63-32)

CS Descriptor (Bits 31-0)

ESI or EDI

I

1747700

31 16 15 0

31 2 1 0

-2Ch

-30h

Register

3

S

I/O Write AddressI/O Write Data Size

I/O Write Data

16 15

H

4

Reserved

Reserved

2122 1315

CN ISCPL

Figure 2-37. SMM Memory Space Header

 2-73

2

PRELIMINARY

System Management ModeSystem Management Mode

 2-73

Table 2-36. SMM Memory Space Header

NAME DESCRIPTION SIZE

DR7 The contents of Debug Register 7. 4 Bytes

EFLAGS The contents of Extended Flags Register. 4 Bytes

CR0 The contents of Control Register 0. 4 Bytes

Current IP The address of the instruction executed prior to servicing SMI interrupt. 4 Bytes

Next IP The address of the next instruction that will be executed after exiting SMM mode. 4 Bytes

CS Selector Code segment register selector for the current code segment. 2 Bytes

CS Descriptor Code segment register descriptor for the current code segment. 8 Bytes

CPL Current privilege level for current code segment. 2 Bits

N Nested SMI Indicator
If N = 1: current SMM is being serviced from within SMM mode.
If N = 0: current SMM is not being serviced from within SMM mode.

1 Bit

IS Internal SMI Indicator
If IS =1: current SMM is the result of an internal SMI event.
If IS =0: current SMM is the result of an external SMI event.

1 Bit

H SMI during CPU HALT state indicator
If H = 1: the processor was in a halt or shutdown prior to servicing the SMM
interrupt.

1 Bit

S Software SMM Entry Indicator.
If S = 1: current SMM is the result of an SMINT instruction.
If S = 0: current SMM is not the result of an SMINT instruction.

 1 Bit

P REP INSx/OUTSx Indicator
If P = 1: current instruction has a REP prefix.
If P = 0: current instruction does not have a REP prefix.

 1 Bit

I IN, INSx, OUT, or OUTSx Indicator
If I = 1: if current instruction performed is an I/O WRITE.
If I = 0: if current instruction performed is an I/O READ.

1 Bit

C Code Segment writable Indicator
If C = 1: the current code segment is writable.
If C = 0: the current code segment is not writable.

1 Bit

I/O Indicates size of data for the trapped I/O write:
 01h = byte
 03h = word
 0Fh = dword

2 Bytes

I/O Write Address I/O Write Address
Processor port used for the trapped I/O write.

 2 Bytes

I/O Write Data I/O Write Data
Data associated with the trapped I/O write.

4 Bytes

ESI or EDI Restored ESI or EDI value. Used when it is necessary to repeat a REP OUTSx or
REP INSx instruction when one of the I/O cycles caused an SMI# trap.

4 Bytes

Note: INSx = INS, INSB, INSW or INSD instruction.
Note: OUTSx = OUTS, OUTSB, OUTSW and OUTSD instruction.

2-74PRELIMINARY

System Management Mode
Advancing the Standards


System Management Mode

2-74

Current and Next IP Pointers

Included in the header information are the
Current and Next IP pointers. The Current IP
points to the instruction executing when the
SMI was detected and the Next IP points to the
instruction that will be executed after exiting
SMM.

Normally after an SMM routine is completed,
the instruction flow begins at the Next IP
address. However, if an I/O trap has occurred,
instruction flow should return to the Current IP
to complete the I/O instruction.

If SMM has been entered due to an I/O trap for
a REP INSx or REP OUTSx instruction, the
Current IP and Next IP fields contain the same
address.

If an entry into SMM mode was caused by an
I/O trap, the port address, data size and data
value associated with that I/O operation are
stored in the SMM header. Note that these
values are only valid for I/O operations. The I/O
data is not restored within the CPU when
executing a RSM instruction.

Under these circumstances the I and P bits, as
well as ESI/EDI field, contain valid information.

Also saved are the contents of debug register 7
(DR7), the extended flags register (EFLAGS),
and control register 0 (CR0).

If the S bit in the SMM header is set, the SMM
entry resulted from an SMINT instruction.

SMM Header Address Pointer

The SMM Header Address Pointer Register
(SMHR) (Figure 2-38) contains the 32-bit SMM
Header pointer. The SMHR address is dword
aligned, so the two least significant bits are
ignored.

The SMHR valid bit (bit 0) is cleared with every
write to ARR3 and during a hardware RESET.
Upon entry to SMM, the SMHR valid bit is
examined before the CPU state is saved into the
SMM memory space header. When the valid bit
is reset, the SMM header pointer will be calcu-
lated (ARR3 base field + ARR3 size field) and
loaded into the SMHR and the valid bit will be
set.

If the desired SMM header location is different
than the top of SMM memory space, as may be
the case when nesting SMI’s, then the SMHR
register must be loaded with a new value and
valid bit from within the SMI routine before
nesting is enabled.

The SMM memory space header can be relo-
cated using the new RDSHR and WRSHR
instructions.

Figure 2-38. SMHR Register

31 2 1 0

SMHR Res V

Table 2-37. SMHR Register Bits

BIT
POSITION DESCRPTION

31 - 2 SMHR header pointer address.

1 Reserved

0 Valid Bit

 2-75

2

PRELIMINARY

System Management ModeSystem Management Mode

 2-75

2.15.3 SMM Instructions

After entering the SMI service routine, the
MOV, SVDC, SVLDT and SVTS instructions
(Table 2-38) can be used to save the complete
CPU state information. If the SMI service
routine modifies more than what is automatically

saved or forces the CPU to power down, the
complete CPU state information must be saved.
Since the CPU is a static device, its internal state
is retained when the input clock is stopped.
Therefore, an entire CPU state save is not neces-
sary prior to stopping the input clock.

Table 2-38. SMM Instruction Set

INSTRUCTION OPCODE FORMAT DESCRIPTION

 SVDC 0F 78 [mod sreg3 r/m] SVDC mem80, sreg3 Save Segment Register and Descriptor
Saves reg (DS, ES, FS, GS, or SS) to mem80.

 RSDC 0F 79 [mod sreg3 r/m] RSDC sreg3, mem80 Restore Segment Register and Descriptor
Restores reg (DS, ES, FS, GS, or SS) from mem80.
Use RSM to restore CS.
Note: Processing “RSDC CS, Mem80” will produce an exception.

 SVLDT 0F 7A [mod 000 r/m] SVLDT mem80 Save LDTR and Descriptor
Saves Local Descriptor Table (LDTR) to mem80.

 RSLDT 0F 7B [mod 000 r/m] RSLDT mem80 Restore LDTR and Descriptor
Restores Local Descriptor Table (LDTR) from mem80.

 SVTS 0F 7C [mod 000 r/m] SVTS mem80 Save TSR and Descriptor
Saves Task State Register (TSR) to mem80.

 RSTS 0F 7D [mod 000 r/m] RSTS mem80 Restore TSR and Descriptor
Restores Task State Register (TSR) from mem80.

 SMINT 0F 38 SMINT Software SMM Entry
CPU enters SMM mode. CPU state information is
saved in SMM memory space header and execution
begins at SMM base address.

 RSM 0F AA RSM Resume Normal Mode
Exits SMM mode. The CPU state is restored using
the SMM memory space header and execution
resumes at interrupted point.

 RDSHR 0F 36 RDSHR ereg/mem32 Read SMM Header Pointer Register
Saves SMM header pointer to extended register or
memory.

 WRSHR 0F 37 WRSHR ereg/mem32 Write SMM Header Pointer Register
Load SMM header pointer register from extended
register or memory.

Note: mem32 = 32-bit memory location
 mem80 = 80-bit memory location

2-76PRELIMINARY

System Management Mode
Advancing the Standards


System Management Mode

2-76

The SMM instructions listed in Table 2-38,
(except the SMINT instruction) can be executed
only if:

1) ARR3 Size > 0
2) Current Privilege Level =0
3) SMAC bit is set or the CPU is executing

an SMI service routine.
4) USE_SMI (CCR1- bit 1) = 1
5) SM3 (CCR1-bit 7) = 1

If the above conditions are not met and an
attempt is made to execute an SVDC, RSDC,
SVLDT, RSLDT, SVTS, RSTS, SMINT, RSM,
RDSHR, or WDSHR instruction, an invalid
opcode exception is generated. These instruc-
tions can be executed outside of defined SMM
space provided the above conditions are met.

The SMINT instruction allows software entry
into SMM. The SVDC, RSDC, SVLDT, RSLDT,
SVTS and RSTS instructions save or restore 80
bits of data, allowing the saved values to include
the hidden portion of the register contents.

The WRSHR instruction loads the contents of
either a 32-bit memory operand or a 32-bit
register operand into the SMHR pointer register
based on the value of the mod r/m instruction
byte. Likewise the RDSHR instruction stores the
contents of the SMHR pointer register to either
a 32 bit memory operand or a 32 bit register
operand based on the value of the mod r/m
instruction byte.

2.15.4 SMM Operation

This section details the SMM operations.

Entering SMM

Entering SMM requires the assertion of the
SMI# pin or execution of an SMINT instruction.
SMI interrupts have higher priority than any
interrupt including NMI interrupts.

For the SMI# or SMINT instruction to be recog-
nized, the following configuration register bits
must be set as shown in Table 2-39.

Upon entry into SMM, after the SMM header has
been saved, the CR0, EFLAGS, and DR7 regis-
ters are set to their reset values. The Code
Segment (CS) register is loaded with the base,
as defined by the ARR3 register, and a limit of 4
GBytes. The SMI service routine then begins
execution at the SMM base address in real mode.

Table 2-39. Requirements for
Recognizing SMI# and SMINT

REGISTER (Bit) SMI# SMINT

SMI CCR1 (1) 1 1

SMAC CCR1 (2) 0 1

ARR3 SIZE (3-0) > 0 > 0

SM3 CCR1 (7) 1 1

 2-77

2

PRELIMINARY

System Management ModeSystem Management Mode

 2-77

Saving the CPU State

The programmer must save the value of any
registers that may be changed by the SMI service
routine. For data accesses immediately after
entering the SMI service routine, the programmer
must use CS as a segment override. I/O port
access is possible during the routine but care must
be taken to save registers modified by the I/O
instructions. Before using a segment register, the
register and the register’s descriptor cache contents
should be saved using the SVDC instruction.
While executing in the SMM space, execution flow
can transfer to normal memory locations.

Program Execution

Hardware interrupts, (INTRs and NMIs), may
be serviced during a SMI service routine. If
interrupts are to be serviced while executing in
the SMM memory space, the SMM memory
space must be within the 0 to 1 MByte address
range to guarantee proper return to the SMI
service routine after handling the interrupt.

INTRs are automatically disabled when entering
SMM since the IF flag is set to its reset value.
Once in SMM, the INTR can be enabled by
setting the IF flag. NMI is also automatically
disable when entering SMM. Once in SMM,
NMI can be enabled by setting NMI_EN in
CCR3. If NMI is not enabled, the CPU latches
one NMI event and services the interrupt after
NMI has been enabled or after exiting SMM
through the RSM instruction.

Within the SMI service routine, protected mode
may be entered and exited as required, and real
or protected mode device drivers may be
called.

Exiting SMM

To exit the SMI service routine, a Resume
(RSM) instruction, rather than an IRET, is
executed. The RSM instruction causes the M II
processor to restore the CPU state using the
SMM header information and resume execution
at the interrupted point. If the full CPU state
was saved by the programmer, the stored values
should be reloaded prior to executing the RSM
instruction using the MOV, RSDC, RSLDT and
RSTS instructions.

When the RSM instruction is executed at the
end of the SMI handler, the EIP instruction
pointer is automatically read from the NEXT IP
field in the SMM header.

When restarting I/O instructions, the value of
NEXT IP may need modification. Before
executing the RSM instruction, use a MOV
instruction to move the CURRENT IP value to
the NEXT IP location as the CURRENT IP value
is valid if an I/O instruction was executing when
the SMI interrupt occurred. Execution is then
returned to the I/O instruction, rather than to
the instruction after the I/O instruction.

A set H bit in the SMM header indicates that a
HLT instruction was being executed when the
SMI occurred. To resume execution of the HLT
instruction, the NEXT IP field in the SMM
header should be decremented by one before
executing RSM instruction.

2-78PRELIMINARY

System Management Mode
Advancing the Standards


System Management Mode

2-78

2.15.5 SL and Cyrix SMM
Operating Modes

There are two SMM modes, SL-compatible
mode (default) and Cyrix SMM mode.

2.15.5.1 SL-Compatible
SMM Mode

While in SL-compatible mode, SMM memory
space accesses can only occur during an SMI
service routine. While executing an SMI service
routine SMIACT# remains asserted regardless of
the address being accessed. This includes the
time when the SMI service routine accesses
memory outside the defined SMM memory
space.

SMM memory caching is not supported in
SL-compatible SMM mode. If a cache inquiry
cycle occurs while SMIACT# is active, any
resulting write-back cycle is issued with
SMIACT# asserted. This occurs even though the
write-back cycle is intended for normal memory
rather than SMM memory. To avoid this
problem it is recommended that the internal
caches be flushed prior to servicing an SMI
event. Of course in write-back mode this could
add an indeterminate delay to servicing of SMI.

An interrupt on the SMI# input pin has higher
priority than the NMI input. The SMI# input
pin is falling edge sensitive and is sampled on
every rising edge of the processor input clock.

Asserting SMI# forces the processor to save the
CPU state to memory defined by SMHR register
and to begin execution of the SMI service

routine at the beginning of the defined SMM
memory space. After the processor internally
acknowledges the SMI# interrupt, the
SMIACT# output is driven low for the duration
of the interrupt service routine.

When the RSM instruction is executed, the CPU
negates the SMIACT# pin after the last bus cycle
to SMM memory. While executing the SMM
service routine, one additional SMI# can be
latched for service after resuming from the first
SMI.

During RESET, the USE_SMI bit in CCR1 is
cleared. While USE_SMI is zero, SMIACT# is
always negated. SMIACT# does not float during
bus hold states.

2.15.5.2 Cyrix Enhanced
SMM Mode

The Cyrix SMM Mode is enabled when bit 0 in
the CCR6 (SMM_MODE) is set. Only in Cyrix
enhanced SMM mode can:

• SMM memory be cached
• SMM interrupts be nested

Pin Interface

The SMI# and SMIACT# pins behave differently
in Cyrix Enhanced SMM mode.

In Cyrix Enhanced SMM mode SMI# is level
sensitive. As a level sensitive signal software can
process SMI interrupts until all sources in the
chipset have been cleared.

 2-79

2

PRELIMINARY

System Management ModeSystem Management Mode

 2-79

While operating in this mode, SMIACT# output
is not used to indicate that the CPU is operating
in SMM mode. This is left to the SMM driver.

In Cyrix enhanced SMM, SMIACT# is asserted
for every SMM memory bus cycle and is de-as-
serted for every non-SMM bus cycle. In this
mode the SMIACT# pin meets the timing of
D/C# and W/R#.

During RESET, the USE_SMI bit in CCR1 is
cleared. While USE_SMI is zero, SMIACT# is
always negated. SMIACT# does float during bus
hold states.

Cacheability of SMM Space

In SL-compatible SMM mode, caching is not
available, but in Cyrix SMM mode, both code
and data caching is supported. In order to cache
SMM data and avoid coherency issues the
processor assumes no overlap of main memory
with SMM memory. This implies that a section
of main memory must be dedicated for SMM.

The on-chip cache sets a special ID bit in the
cache tag block for each line that contains SMM
code data. This ID bit is then used by the bus
controller to regulate assertion of the SMIACT#
pin for write-back of any SMM data.

Nested SMI

Only in the Cyrix Enhanced SMM mode is
nesting of SMI interrupts supported. This is
important to allow high priority events such as
audio emulation to interrupt lower priority SMI
code. In the case of nesting, it is up to the SMM
driver to determine which SMM event is being
serviced, which to prioritize, and perform all
SMM interrupt control functions.

Software enables and disables SMI interrupts
while in SMM mode by setting and clearing the
nest-enable bit (N bit, bit 6 of CCR6). By default
the CPU automatically disables SMI interrupts
(clears the N bit) on entry to SMM mode, and
re-enables them (sets the N bit) when exiting
SMM mode (i.e., RSM). The SMI handler can
optionally enable nesting to allow higher
priority SMI interrupts to occur while handling
the current SMI event.

The SMI handler is responsible for managing
the SMHR pointer register when processing
nested SMI interrupts. Before nested SMI’s can
be serviced the current SMM handler must save
the contents of the SMHR pointer register and
then load a new value into the SMHR register for
use by a subsequent nested SMI event.

Prior to execution of a RSM instruction the
contents of the old SMHR pointer register must
be restored for proper operation to continue.
Prior to restoring the contents of old SMHR
pointer register one should disable additional
SMI’s. This should be done so that the CPU will
not inadvertently receive and service an SMI
event after the old SMHR contents have been
restored but before the RSM instruction is
executed.

2.15.6 Maintaining the FPU
and MMX States

If power will be removed from the CPU or if the
SMM routine will execute MMX or FPU instruc-
tions, then the MMX or FPU state should be
maintained for the application running before
SMM was entered. If the MMX or FPU state is to
be saved and restored from within SMM, there
are certain guidelines that must be followed to
make SMM completely transparent to the appli-
cation program.

2-80PRELIMINARY

Shutdown and Halt
Advancing the Standards


Shutdown and Halt

2-80

The complete state of the FPU can be saved and
restored with the FNSAVE and FNRSTOR
instructions. FNSAVE is used instead of the
FSAVE because FSAVE will wait for the FPU to
check for existing error conditions before
storing the FPU state. If there is a unmasked
FPU exception condition pending, the FSAVE
instruction will wait until the exception condi-
tion is serviced. To maintain transparency for
the application program, the SMM routine
should not service this exception. If the FPU
state is restored with the FNRSTOR instruction
before returning to normal mode, the applica-
tion program can correctly service the excep-
tion. FPU instructions can be executed within
SMM once the FPU state has been saved.

The information saved with the FSAVE instruc-
tion varies depending on the operating mode of
the CPU. To save and restore all FPU informa-
tion, the 32-bit protected mode version of the
FPU save and restore instruction should be
used.

CPU States Related to SMM and Suspend
Mode

The state diagram shown in Figure 2-39 (Page
2-81) illustrates the various CPU states associ-
ated with SMM and suspend mode. While in
the SMI service routine, the M II CPU can enter
suspend mode either by (1) executing a halt
(HLT) instruction or (2) by asserting the SUSP#
input.

During SMM operations and while in SUSP#
initiated suspend mode, an occurrence of
SMI#, NMI, or INTR is latched. (In order for
INTR to be latched, the IF flag must be set.)
The INTR or NMI is serviced after exiting
suspend mode.

If suspend mode is entered via a HLT instruc-
tion from the operating system or application
software, the reception of an SMI# interrupt
causes the CPU to exit suspend mode and enter
SMM.

2.16 Shutdown and Halt

The Halt Instruction (HLT) stops program ex-
ecution and prevents the processor from using
the local bus until restarted. The M II CPU then
issues a special Stop Grant bus cycle and enters
a low-power suspend mode if the SUSP_HLT bit
in CCR2 is set. SMI, NMI, INTR with interrupts
enabled (IF bit in EFLAGS=1), WM_RST or RE-
SET forces the CPU out of the halt state. If inter-
rupted, the saved code segment and instruction
pointer specify the instruction following the
HLT.

Shutdown occurs when a severe error is detected
that prevents further processing. An NMI input
can bring the processor out of shutdown if the
IDT limit is large enough to contain the NMI
interrupt vector and the stack has enough room
to contain the vector and flag information.
Otherwise, shutdown can only be exited by a
processor reset.

 2-81

2

PRELIMINARY

Shutdown and Halt Shutdown and Halt

 2-81

Figure 2-39. SMM and Suspend Mode State Diagram

OS/Application

SoftwareRESET

RSM*SMI#=0

HLT*

SUSP#=1

NMI or INTR

SUSP#=0

SUSP#=1

HLT*

INTR or NMI
IRET*

INTR and NMI

IRET*

IRET*

* Instructions

SMI# = 0

(INTR, NMI and SMI latched)

(INTR and NMI latched)

SMI Service

17 159 03

Suspend Mode Interrupt Service

Suspend Mode

Suspend Mode

Suspend Mode

SUSP#=0

Non-SMM Operations

SMM Operations

(SUSPA# = 0) Routine

(SUSPA# = 0)

(SUSPA# = 0)

Routine
(SMI#=0)

(SUSPA# = 0)

Interrupt Service
Routine

Interrupt Service
Routine

SMINT*

NMI or INTR

2-82PRELIMINARY

Protection
Advancing the Standards


Protection

2-82

2.17 Protection

Segment protection and page protection are
safeguards built into the M II CPU protected
mode architecture which deny unauthorized
or incorrect access to selected memory
addresses. These safeguards allow multi-
tasking programs to be isolated from each
other and from the operating system. Page
protection is discussed earlier in this chapter.
This section concentrates on segment protec-
tion.

Selectors and descriptors are the key elements
in the segment protection mechanism. The
segment base address, size, and privilege level
are established by a segment descriptor. Privi-
lege levels control the use of privileged instruc-
tions, I/O instructions and access to segments
and segment descriptors. Selectors are used to
locate segment descriptors.

Segment accesses are divided into two basic
types, those involving code segments (e.g.,
control transfers) and those involving data
accesses. The ability of a task to access a
segment depends on the:

• Segment type
• Instruction requesting access
• Type of descriptor used to define the

segment
• Associated privilege levels (described

below).

Data stored in a segment can be accessed only
by code executing at the same or a more privi-
leged level. A code segment or procedure can
only be called by a task executing at the same
or a less privileged level.

2.17.1 Privilege Levels

The values for privilege levels range between
0 and 3. Level 0 is the highest privilege level
(most privileged), and level 3 is the lowest
privilege level (least privileged). The privilege
level in real mode is effectively 0.

The Descriptor Privilege Level (DPL) is the
privilege level defined for a segment in the
segment descriptor. The DPL field specifies the
minimum privilege level needed to access the
memory segment pointed to by the descriptor.

The Current Privilege Level (CPL) is defined
as the current task’s privilege level. The CPL of
an executing task is stored in the hidden
portion of the code segment register and essen-
tially is the DPL for the current code segment.

The Requested Privilege Level (RPL) speci-
fies a selector’s privilege level and is used to
distinguish between the privilege level of a routine
actually accessing memory (the CPL), and the
privilege level of the original requestor (the RPL)
of the memory access. The lesser of the RPL
and CPL is called the effective privilege level (EPL).
Therefore, if RPL = 0 in a segment selector, the
effective privilege level is always determined
by the CPL. If RPL = 3, the effective privilege
level is always 3 regardless of the CPL.

For a memory access to succeed, the effective
privilege level (EPL) must be at least as privi-
leged as the descriptor privilege level (EPL ≤
DPL). If the EPL is less privileged than the
DPL (EPL > DPL), a general protection fault is
generated. For example, if a segment has a
DPL = 2, an instruction accessing the segment
only succeeds if executed with an EPL ≤ 2.

 2-83

2

PRELIMINARY

Protection Protection

 2-83

2.17.2 I/O Privilege Levels

The I/O Privilege Level (IOPL) allows the oper-
ating system executing at CPL=0 to define the
least privileged level at which IOPL-sensitive
instructions can unconditionally be used. The
IOPL-sensitive instructions include CLI, IN,
OUT, INS, OUTS, REP INS, REP OUTS, and
STI. Modification of the IF bit in the EFLAGS
register is also sensitive to the I/O privilege level.
The IOPL is stored in the EFLAGS register.

An I/O permission bit map is available as
defined by the 32-bit Task State Segment
(TSS). Since each task can have its own TSS,
access to individual processor I/O ports can be
granted through separate I/O permission bit
maps.

If CPL ≤ IOPL, IOPL-sensitive operations can
be performed. If CPL > IOPL, a general
protection fault is generated if the current task
is associated with a 16-bit TSS. If the current
task is associated with a 32-bit TSS and CPL >
IOPL, the CPU consults the I/O permission
bitmap in the TSS to determine on a port-by-port
basis whether or not I/O instructions (IN,
OUT, INS, OUTS, REP INS, REP OUTS) are
permitted, and the remaining IOPL-sensitive
operations generate a general protection fault.

2.17.3 Privilege Level Transfers

A task’s CPL can be changed only through
intersegment control transfers using gates or
task switches to a code segment with a different
privilege level. Control transfers result from
exception and interrupt servicing and from
execution of the CALL, JMP, INT, IRET and
RET instructions.

There are five types of control transfers that are
summarized in Table 2-40 (Page 2-84). Control
transfers can be made only when the operation
causing the control transfer references the correct
descriptor type. Any violation of these descriptor
usage rules causes a general protection fault.

Any control transfer that changes the CPL
within a task results in a change of stack. The
initial values for the stack segment (SS) and
stack pointer (ESP) for privilege levels 0, 1,
and 2 are stored in the TSS. During a CALL
control transfer, the SS and ESP are loaded
with the new stack pointer and the previous
stack pointer is saved on the new stack. When
returning to the original privilege level, the
RET or IRET instruction restores the less-privi-
leged stack

2-84PRELIMINARY

Protection
Advancing the Standards


Protection

2-84

Table 2-40. Descriptor Types Used for Control Transfer

TYPE OF CONTROL TRANSFER OPERATION
TYPES

DESCRIPTOR
REFERENCED

DESCRIPTOR
TABLE

Intersegment within the same privilege level. JMP, CALL, RET, IRET* Code Segment GDT or LDT

Intersegment to the same or a more privileged
level.
Interrupt within task (could change CPL level).

CALL Gate Call GDT or LDT

Interrupt Instruction,
Exception, External
Interrupt

Trap or Interrupt Gate IDT

Intersegment to a less privileged level (changes
task CPL).

RET, IRET* Code Segment GDT or LDT

Task Switch via TSS CALL, JMP Task State Segment GDT

Task Switch via Task Gate CALL, JMP Task Gate GDT or LDT

IRET**, Interrupt
Instruction, Exception,
External Interrupt

Task Gate IDT

 * NT (Nested Task bit in EFLAGS) = 0
** NT (Nested Task bit in EFLAGS) = 1

Gates

Gate descriptors provide protection for privi-
lege transfers among executable segments. Gates
are used to transition to routines of the same or
a more privileged level. Call gates, interrupt
gates and trap gates are used for privilege transfers
within a task. Task gates are used to transfer
between tasks.

Gates conform to the standard rules of privi-
lege. In other words, gates can be accessed by a
task if the effective privilege level (EPL) is the
same or more privileged than the gate descrip-
tor’s privilege level (DPL).

2.17.4 Initialization and
Transition to Protected
Mode

The M II processor switches to real mode
immediately after RESET. While operating in
real mode, the system tables and registers
should be initialized. The GDTR and IDTR
must point to a valid GDT and IDT, respectively. The
GDT must contain descriptors which describe
the initial code and data segments.

The processor can be placed in protected mode
by setting the PE bit in the CR0 register. After
enabling protected mode, the CS register should
be loaded and the instruction decode queue
should be flushed by executing an intersegment
JMP. Finally, all data segment registers should
be initialized with appropriate selector values.

 2-85

2

PRELIMINARY

Virtual 8086 Mode Virtual 8086 Mode

 2-85

2.18 Virtual 8086 Mode

Both real mode and virtual 8086 (V86) mode
are supported by the M II CPU allowing execu-
tion of 8086 application programs and 8086
operating systems. V86 mode allows the
execution of 8086-type applications, yet still
permits use of the M II CPU paging mecha-
nism. V86 tasks run at privilege level 3.
When loaded, all segment limits are set to
FFFFh (64K) as in real mode.

2.18.1 V86 Memory
Addressing

While in V86 mode, segment registers are used
in an identical fashion to real mode. The
contents of the segment register are multiplied
by 16 and added to the offset to form the
segment base linear address. The M II CPU
permits the operating system to select which
programs use the V86 address mechanism and
which programs use protected mode
addressing for each task.

The M II CPU also permits the use of paging
when operating in V86 mode. Using paging,
the 1-MByte memory space of the V86 task can
be mapped to anywhere in the 4-GByte linear
memory space of the M II CPU.

The paging hardware allows multiple V86
tasks to run concurrently, and provides protec-
tion and operating system isolation. The
paging hardware must be enabled to run
multiple V86 tasks or to relocate the address
space of a V86 task to physical address space
greater than 1 MByte.

2.18.2 V86 Protection

All V86 tasks operate with the least amount of
privilege (level 3) and are subject to all of the
M II CPU protected mode protection checks. As
a result, any attempt to execute a privileged
instruction within a V86 task results in a
general protection fault.

In V86 mode, a slightly different set of instruc-
tions are sensitive to the I/O privilege level
(IOPL) than in protected mode. These instruc-
tions are: CLI, INT n, IRET, POPF, PUSHF, and
STI. The INT3, INTO and BOUND variations
of the INT instruction are not IOPL sensitive.

2.18.3 V86 Interrupt Handling

To fully support the emulation of an 8086-type
machine, interrupts in V86 mode are handled
as follows. When an interrupt or exception is
serviced in V86 mode, program execution
transfers to the interrupt service routine at
privilege level 0 (i.e., transition from V86 to
protected mode occurs) and the VM bit in the
EFLAGS register is cleared. The protected
mode interrupt service routine then deter-
mines if the interrupt came from a protected
mode or V86 application by examining the VM
bit in the EFLAGS image stored on the stack.
The interrupt service routine may then choose
to allow the 8086 operating system to handle
the interrupt or may emulate the function of
the interrupt handler. Following completion
of the interrupt service routine, an IRET
instruction restores the EFLAGS register
(restores VM=1) and segment selectors and
control returns to the interrupted V86 task.

2-86PRELIMINARY

Floating Point Unit Operations
Advancing the Standards


Floating Point Unit Operations

2-86

2.18.4 Entering and Leaving
V86 Mode

V86 mode is entered from protected mode by
either executing an IRET instruction at CPL = 0
or by task switching. If an IRET is used, the
stack must contain an EFLAGS image with
VM = 1. If a task switch is used, the TSS must
contain an EFLAGS image containing a 1 in
the VM bit position. The POPF instruction
cannot be used to enter V86 mode since the
state of the VM bit is not affected. V86 mode
can only be exited as the result of an interrupt
or exception. The transition out must use a
32-bit trap or interrupt gate which must point
to a non-conforming privilege level 0 segment
(DPL = 0), or a 32-bit TSS. These restrictions
are required to permit the trap handler to IRET
back to the V86 program.

2.19 Floating Point Unit
Operations

The M II CPU includes an on-chip FPU that
provides the user access to a complete set of
floating point instructions (see Chapter 6).
Information is passed to and from the FPU
using eight data registers accessed in a
stack-like manner, a control register, and a
status register. The M II CPU also provides a
data register tag word which improves context
switching and performance by maintaining
empty/non-empty status for each of the eight
data registers. In addition, registers in the
CPU contain pointers to (a) the memory
location containing the current instruction
word and (b) the memory location containing
the operand associated with the current
instruction word (if any).

FPU Tag Word Register. The M II CPU main-
tains a tag word register (Figure 2-40 (Page
2-87)) comprised of two bits for each physical
data register. Tag Word fields assume one of
four values depending on the contents of their
associated data registers, Valid (00), Zero (01),
Special (10), and Empty (11). Note: Denor-
mal, Infinity, QNaN, SNaN and unsupported
formats are tagged as “Special”. Tag values are
maintained transparently by the M II CPU and
are only available to the programmer indirectly
through the FSTENV and FSAVE instructions.

FPU Control and Status Registers. The
FPU circuitry communicates information
about its status and the results of operations
to the programmer via the status register. The
FPU status register is comprised of bit fields
that reflect exception status, operation execu-
tion status, register status, operand class, and
comparison results. The FPU status register
bit definitions are shown in Figure 2-41
(Page 2-87) and Table 2-41 (Page 2-87).

The FPU Mode Control Register (MCR) is used
by the CPU to specify the operating mode of
the FPU. The MCR contains bit fields which
specify the rounding mode to be used, the pre-
cision by which to calculate results, and the
exception conditions which should be report-
ed to the CPU via traps. The user controls pre-
cision, rounding, and exception reporting by
setting or clearing appropriate bits in the
MCR. The FPU mode control register bit def-
initions are shown in Figure 2-42 (Page 2-88)
and Table 2-42 (Page 2-88).

 2-87

2

PRELIMINARY

Floating Point Unit OperationsFloating Point Unit Operations

 2-87

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Tag(7) Tag(6) Tag(5) Tag(4) Tag(3) Tag(2) Tag(1) Tag(0)

Figure 2-40. FPU Tag Word Register

15 12 11 8 7 4 3 0

B C3 S S S C2 C1 C0 ES SF P U O Z D I

Figure 2-41. FPU Status Register

Table 2-41. FPU Status Register Bit Definitions

BIT
POSITION NAME DESCRIPTION

15 B Copy of the ES bit. (ES is bit 7 in this table.)

14, 10 - 8 C3 - C0 Condition code bits.

13 - 11 SSS Top of stack register number which points to the current TOS.

7 ES Error indicator. Set to 1 if an unmasked exception is detected.

6 SF Stack Fault or invalid register operation bit.

5 P Precision error exception bit.

4 U Underflow error exception bit.

3 O Overflow error exception bit.

2 Z Divide by zero exception bit.

1 D Denormalized operand error exception bit.

0 I Invalid operation exception bit.

2-88PRELIMINARY

Floating Point Unit Operations
Advancing the Standards


Floating Point Unit Operations

2-88

Figure 2-42. FPU Mode Control Register

15 12 11 8 7 4 3 0

- - - - RC RC PC - - P U O Z D I

Table 2-42. FPU Mode Control Register Bit Definitions

BIT
POSITION NAME DESCRIPTION

11 - 10 RC Rounding Control bits:

00 Round to nearest or even
01 Round towards minus infinity
10 Round towards plus infinity
11 Truncate

9 - 8 PC Precision Control bits:

00 24-bit mantissa
01 Reserved
10 53-bit mantissa
11 64-bit mantissa

5 P Precision error exception bit mask.

4 U Underflow error exception bit mask.

3 O Overflow error exception bit mask.

2 Z Divide by zero exception bit mask.

1 D Denormalized operand error exception bit mask.

0 I Invalid operation exception bit mask.

 2-89

2

PRELIMINARY

MMX Operations MMX Operations

 2-89

2.20 MMX Operations

The M II CPU provides user access to the
MMX instruction set. MMX data is configured
in one of four MMX data formats. During oper-
ations eight 64-bit MMX registers are utilized.

2.20.1 MMX Data Formats

The MMX instructions operate on 64-bit data
groups called “packed data.” A single packed
data group can be interpreted as a:

• Packed byte (8 bytes)
• Packed word (4 words)
• Packed doubleword (2 doublewords)
• Quadword (1 quadword)

The packed data types supported are signed
and unsigned integer.

2.20.2 MMX Registers

The MMX instruction set operates on eight
64-bit, general-purpose registers (MM0-MM7).
These registers are overlayed with the floating
point register stack, so no new architectural
state is defined by the MMX instruction set.
Existing mechanisms for saving and restoring
floating point state automatically work for
saving and restoring MMX state.

2.20.3 MMX Instruction Set

The MMX instructions operate on all the
elements of a signed or unsigned packed data
group. All data elements (bytes, words,
doublewords or a quadword) are operated on
separately in parallel. For example, eight bytes
in one packed data group can be added to
another packed data group, such that eight
independent byte additions are performed in
parallel.

2.20.4 Instruction Group
Overview

The 57 MMX instructions are grouped into
seven categories:

• Arithmetic Instructions
• Comparison Instructions
• Conversion Instructions
• Logical Instructions
• Shift Instructions
• Data Transfer Instructions
• Empty MMX State (EMMS) Instruction

2-90PRELIMINARY

MMX Operations
Advancing the Standards


MMX Operations

2-90

2.20.5 Saturation Arithmetic

For saturating MMX instructions, a ceiling is
placed on an overflow and a floor is placed on
an underflow. When the result of an operation
exceeds the range of the data-type it saturates
to the maximum value of the range. Conversely,
when a result that is less than the range of a
data type, the result saturates to the minimum
value of the range.

 The saturation limits are shown in Table 2-43.

MMX instructions do not indicate overflow or
underflow occurrence by generating exceptions
or setting flags.

2.20.6 EMMS Instruction

The EMMS Instruction clears the TOS pointer
and sets the entire FPU tag word as empty. An
EMMS instruction should be executed at the
end of each MMX routine.

Table 2-43. Saturation Limits

DATA TYPE LOWER
 LIMIT

UPPER
LIMIT

Signed
Byte

80h -128 7Fh 127

Signed
Word

8000h -32,768 7FFFh 32,767

Unsigned
Byte

00h 0 FFh 256

Unsigned
Word

0000h 0 FFFFh 65,535

