
Cyrix 5x86: Fifth-Generation Design Emphasizes
Maximum Performance While Minimizing Transistor Count

Darrell Benke and Tom Brightman
Cyrix Corporation

Abstract

The Cyrix 5x86 processor is a new
performance-optimized x86 design. Drawing on
the experience gained in the development of
Cyrix’s sixth-generation M1 superscalar CPU,
the 5x86 design incorporates many of the
performance-enhancing techniques of the M1 in
a novel way to meet the key requirement of low
power system designs: maximum performance
per watt of power consumed. The challenge of
the 5x86 design was to achieve compelling
system performance at no more than half the
power consumption of competing solutions.
That goal was achieved by critically evaluating
the costs (measured in power and transistor
count) versus the benefits (measured in
performance) of key architectural features. This
analysis enabled the careful selection of
architectural features that deliver the desired
performance at less than half the power
consumption of competing fifth-generation
alternatives.

Introduction

The driving force behind architectural
enhancements is the demand for increased
system performance. Modern processors achieve
performance by exploiting the parallelism
inherent in algorithms to the fullest extent
possible. The obvious example is a superscalar
processor that can execute multiple instructions

concurrently. While concurrent execution
increases performance, it does so at a
substantial cost in design complexity and
transistors required.

Unfortunately, initial superscalar designs have
been frustrated by the problems of inter-
instruction dependency checking and resource
usage contention. To manage these conflicts,
some designs imposed instruction-issuing
constraints on the theory that application
programs could be recompiled quickly and
easily (based on knowledge of the instruction
issuing rules and restrictions) to optimize code
flow. Examples of this approach include the
PowerPC 601, HP-PA7100 and the Intel
Pentium processor − CPUs that can issue two
instructions simultaneously but only under
restrictive, special-case conditions. These
conditions are more of a limitation for the
Pentium since the majority of the software it
executes will be from the installed base of x86
operating systems and applications. This
limitation reduces the effectiveness of issuing
and executing multiple instructions.

The cost of the second execution pipeline and
the complexity of dual pipe control will
probably never be justified by application
performance benefits in fifth-generation
processors that do not have guaranteed access
to recompiled software. In the x86 market,
recompilation simply has not occurred and will
likely never occur. (Note: The sixth-generation



M1 avoids this by design − it does not assume
recompilation to achieve a high level of multiple
issue and execution.)

5x86 Architecture

The increased complexity, transistor count, and
power consumption of superscalar designs led
Cyrix engineers to re-examine the benefits of
the superscalar approach. Clearly the power
dissipated in a second execution pipeline plus
the added power dissipated in the control logic
to oversee two execution pipelines should be
minimal to achieve performance that will justify
the transistors added. Analysis has shown that
the increased complexity of two execution
pipelines can cost 40% in transistor count while
providing an increase of less than 20% in
instructions-per-clock performance.

Cyrix engineers analyzed the M1 performance
features to identify those that could increase the
performance of a single execution pipeline. The

resulting list includes is shown below.

• memory bypassing

• branch prediction

• 16-KByte cache

• decoupled load/store

These features dramatically increase the
utilization of a single execution pipeline
without the added transistor count, power
consumption, and complexity of a superscalar
architecture.

Two facts were fundamental in identifying
features for the 5x86:

(a) the x86 is a 32-bit architecture.

(b) the average instruction length is 2.7 bytes
for existing 8/16-bit code and
4.4 bytes for 32-bit code.

Address

1746001

Instruction Decoder and Issue Unit

Instruction Fetch Unit

Register File

Load/Store Unit

ALU

128

Memory Management Unit

Data

Address
3264

Bus Interface
Unit

Control

Data

32-Entry TLB

Address
Calculation

Unit

Load
Queue

Store
Queue

16-KByte
Unified

Write-Back
Cache

48-Byte
Instruction

Buffer

128-Entry
Branch 

Target Buffer

Floating Point
Unit

Figure 1. 5x86 Processor Block Diagram



These two facts combine to reduce the bus
width required to handle most data and code
transactions to 32 bits. A key lesson from both
fifth- and sixth-generation designs, however, is
that inherent parallelism is most easily exploited
through the use of decoupled units within the
processor. These units are interconnected with
multiple 32-bit, split-transaction busses so that
the operational latency of one unit does not
block actions by another.

The 5x86 CPU employs a dedicated branch unit
including a branch target buffer (BTB), a 16-
KByte unified write-back cache, a floating point
unit (FPU), and an instruction fetch (IF) unit
and an instruction decode (ID) unit. The
memory management unit contains a 32-entry
translation lookaside buffer, a load/store unit
capable of managing concurrent operations, and
the address calculation unit. The 5x86
functional units are interconnected by two 32-
bit busses that permit non-blocking operation
of the units. A 128-bit instruction fetch bus
feeds 16 bytes of code per cycle to a three-line-
deep buffer in the instruction decode unit.

Execution Pipeline

The 5x86 has a six-stage execution pipeline as
shown in Figure 2. The instruction fetch pipe
stage generates a continuous instruction stream
from the on-chip cache and external memory
for use by the instruction decode stage. The
instruction fetch stage exploits the 5x86 branch
prediction logic to fetch instructions at the
predicted address. Up to 48 bytes of code are
queued prior to the instruction decode stage.
The instruction decode stage evaluates the code
stream provided by the instruction fetch stage
and determines the number of bytes in each
instruction and the instruction type.

The address calculation function contains two
superpipelined stages. If an instruction refers to
a memory operand, Stage 1 calculates a memory
address for the instruction. Stage 2 performs
any required memory management functions,
cache accesses, and register file accesses. If a
floating point instruction is detected by Stage 2,
the instruction is sent to the FPU for processing.

The execution stage, under control of
microcode, executes instructions using the
operands provided by the address calculation
stage. The last stage of the pipeline, write-back,
updates the register file or writes to the
load/store unit within the memory management
unit.

Memory Bypassing

The six-stage pipeline of the 5x86 CPU is
capable of bypassing memory operations, under
certain conditions, to streamline processing.
Memory bypassing can be illustrated by the
instruction sequence below.

ADD [mem], CX
SUB DX, [mem]

This sequence adds the value in CX to the value
at [mem] and then subtracts the new value from
the value at DX. Most processors wait for the
first instruction to update the value at [mem]
before fetching the operand for the second
instruction. The 5x86 processor detects that the
value being updated at [mem] is needed by the

Address Calculation Stage 2

Execution Stage

Write Back

Instruction Decode Stage

Instruction Fetch Stage

Address Calculation Stage 1

Figure 2. Six-Stage Execution Pipeline



second instruction and supplies the result of the
first instruction to the second instruction
directly, without an intervening memory read
operation. Bypassing the memory read
operation allows this sequence to complete in
two clock cycles while other processors, without
memory bypassing, may take at least four
cycles.

Cache

The 5x86 implements a 16-KByte, four-way set
associative, unified instruction/data cache that
can operate in either write-back or write-
through mode. The cache is arranged as four
sets of 256 lines per set with 16 bytes per line.
Each 16-byte cache line has an associated 21-bit
tag and one valid bit. Each cache line also
includes four dirty bits, one bit per double-
word. The four dirty bits allow each double-
word to be marked independently as dirty
rather than marking the entire line as dirty.
Marking each double-word as dirty minimizes
the number of writes needed when a cache
flush operation or line eviction occurs. When
three or more double-words within a cache line
are dirty and a cache flush operation or line
eviction occurs, a burst write cycle is performed
when writing back that line to memory to
further minimize required bus bandwidth for
cache management.

To increase cache bandwidth, the 5x86 cache
architecture is surrounded by three buffers that
allow an entire cache line to be read or written
in a single clock cycle. The cache fill buffer
assembles 16 bytes of data prior to requesting
cache access to perform the actual line fill. The
cache flush buffer holds dirty cache data that
needs to be exported to the external bus
(system memory) as a result of a cache flush or
line replacement. The cache HITM buffer holds
a cache line from an external inquiry that
results in a cache hit. Because the 5x86 is scalar
and has these buffers, it alleviates the need for
more sophisticated cache banking techniques
for concurrent accesses. This leads to a
transistor reduction of approximately 20%

relative to a banked implementation of
equivalent size.

The cache bandwidth is further enhanced by a
dedicated 128-bit port for transferring
instructions to the IF unit. The 128 bits of
instruction are transferred directly to a line in
the instruction buffer. The cache data port is 64
bits wide and can be split into two 32-bit data
paths. The ability to have two 32-bit data paths
allows the 5x86 to simultaneously perform a
32-bit data transfer to or from main memory,
and a 32-bit data transfer to or from the
load/store unit. In addition, superpipelining the
5x86 address calculation stage allows cache
accesses in a single clock cycle, identical to
register accesses.

Branch Prediction

The 5x86 minimizes the performance impact of
latency in branch instructions by using branch
prediction. Branch instructions occur, on
average, every five instructions in x86-
compatible programs. When the normal
sequential flow of a program changes due to a
branch instruction, the pipeline stages may stall
while waiting for the CPU to calculate, retrieve,
and decode the new instruction stream. The
branch unit is composed of logic to boost
performance by predicting the set of
instructions that are most likely to be executed.
The 5x86 uses a 128-entry BTB to store branch
target addresses and branch prediction
information. This feature allows the processor
to predict, on the basis of recent history, which
branch will be taken. Correctly predicted
branch instructions execute in a single clock.
Incorrectly predicted branches require five
clock cycles to flush the instruction pipeline.
The decision to follow one branch or the other
is based on a four-state branch prediction
algorithm that achieves approximately 80%
prediction accuracy with a 128-entry BTB.

If an unconditional branch instruction is
encountered in the fetch stage, the 5x86
accesses the BTB to check for the branch



instruction’s target address. The BTB actually
contains a pointer to a line in the cache
containing the instructions at the desired
address. If the branch instruction finds a
matching address in the BTB, the 5x86 begins
fetching at the cache line specified by the BTB.

In the case of conditional branches, the BTB
also provides history information to indicate
which branch is more likely to be taken. If the
conditional branch instruction finds a matching
branch address in the BTB, the 5x86 begins
fetching instructions at the predicted target
address. If the conditional branch does not find
a matching address in the BTB, the 5x86
predicts that the branch will not be taken and
may prefetch both the predicted and the non-
predicted path, eliminating the cache access
cycle on misprediction. Once fetched, a
conditional branch instruction is decoded and
then dispatched to the pipeline. The conditional
branch instruction continues through the
pipeline and is resolved in the execute stage.

Since the target address of a return (RET)
instruction is dynamic rather than static, the
5x86 caches the target addresses for RET
instructions in a return stack rather than in the
BTB. The return address is pushed on the return
stack during a CALL instruction and popped
during the corresponding RET instruction.

Instruction Fetch Unit

The instruction fetch unit in the 5x86 fetches
instruction bytes from cache or memory and
delivers them to the ID unit. Because of the
variable-length nature of x86 instructions and
the time required to access external memory,
the IF unit implements a 48-byte buffer for
temporary storage of fetched instruction bytes.
Instructions from memory are loaded, one 16-
byte line at a time, into the three-line buffer.
The instruction fetch unit keeps the instruction
buffer full by issuing fetch requests ahead of
instructions being sent to the ID unit. The IF
unit provides eight bytes of instruction to the ID
unit each cycle. When enough bytes have been

sent to the ID unit to free up a 16-byte line in
the instruction buffer, the instruction fetch unit
requests an instruction fetch. The 48-byte
instruction buffer conserves the required
instruction bandwidth to the cache and frees up
cache bandwidth for data accesses. In addition,
the instruction buffer can store small code
loops, making them easily accessible to the ID
unit and allowing increased execution
performance.

A special feature of the IF unit allows short
change-of-flow actions to execute without
accessing memory if the target address has
already been fetched and stored in the
instruction buffer. The process combines the
capabilities of the IF and branch target
prediction. This capability enhances
performance and saves power since the cache
and internal busses are not activated for the
fetch.

Instruction Decode Unit

The instruction decode unit in the 5x86
decodes the variable-length x86 instructions.
The instruction decode involves determining
the length of each instruction, separating
immediate and/or displacement operands,
decoding addressing modes and register fields,
and creating an entry point into the microcode
ROM. As previously discussed, the input to the
instruction decoder is eight bytes of instructions
supplied by the IF unit. These bytes are shifted
and aligned according to the instruction
boundary of the last instruction decoded. The
ID unit can decode and issue instructions at a
maximum rate of one per clock. Instructions
with one prefix and instructions of length less
than or equal to eight bytes can be decoded in a
single cycle.

Memory Management Unit

The 5x86 memory management unit contains
three primary functional units: the load/store
unit, the 32-entry translation lookaside buffer,
and the address calculation unit. The address



calculation unit performs all address
calculations, maintains instruction pointers for
each pipeline stage, and initiates load and store
transfers.

The 5x86 CPU implements an advanced
load/store unit to reduce the typical bottlenecks
associated with load/store processing. The
pipelined load/store unit is capable of managing
concurrent operations and of processing loads
and stores out of order while maintaining a
three-deep load queue and four-deep store
queue. The load/store unit is also responsible
for handling all read/write requests from the
address calculation unit, managing read-after-
write dependencies for memory accesses,
performing data forwarding, and checking self-
modifying code.

Execution and Floating Point Units

The execution unit consists of functional units
(logical, adder, constant ROM, shifter, and
multiplier/divider), register files, and the
microsequencer and associated ROM. The
execution unit is an efficient implementation
since performance gains are achieved in other
elements of the design. The 5x86 executes the
majority of widely used instructions in
Windows and other common applications in a
single clock cycle. As with previous Cyrix
processors, the 5x86 includes a hardware
integer multiplier that significantly reduces
integer multiply latencies.

The 5x86 FPU is based on the same core as the
FPU in Cyrix’s sixth-generation M1 processor.
The FPU interfaces to the integer unit and the
cache unit through a 64-bit bus. It is x87-
instruction-set compatible and adheres to the
IEEE-754 standard. Because most applications
contain FPU instructions mixed with integer
instructions, the 5x86 FPU achieves high
performance by completing integer and FPU
operations in parallel.

FPU instructions are dispatched to the pipeline
within the address calculation unit. The address

calculation stage of the pipeline checks for
memory management exceptions and accesses
memory operands for use by the FPU. The
load/store unit is responsible for managing FPU
operands. Once the instructions and operands
have been provided to the FPU, the FPU
completes instruction execution independently
of the ALU and load/store unit.

Power Management

The 5x86 was engineered with several advanced
power management features. The processor
monitors and automatically powers down the
FPU and other internal circuits when they are
not in use. The activation of internal sense
amplifiers is minimized by enabling them only
during cache accesses and by optimally
organizing the microcode. Each 32-bit section
of the 64-bit internal data bus is driven only
when needed. The core design of the 5x86 is
completely static to allow for easy clock
manipulation, a feature commonly used to
adjust processor power consumption. At 100
MHz, the 3.45-volt 5x86 dissipates a maximum
of 4.3 watts, with a typical dissipation of about
3 watts.

Additionally, software can automatically reduce
the core bus frequency to one half the external
bus frequency by simply writing to on-chip
registers. The System Management Mode (SMM)
software implementation is compatible with all
existing and planned Cyrix processors and can
be used for systems management functions such
as power conservation.

Bus Interface Unit

The 5x86 internal 64-bit bus is tapered down to
a 32-bit external bus to allow the processor to
be dropped into existing platforms. This is an
example of Cyrix’s strategy to leverage existing
sockets/designs to minimize customers’
development cycles. The 5x86 pinout is a
superset of the DX4 pinout since pins are
necessary to support the 5x86 write-back cache,
a feature not found on DX4s. The eight buffers



allow sufficient buffering of write activity to
maintain bandwidth for read operations,
reducing pipeline stalls. The 5x86 supports
both clock doubling and clock tripling. The bus
protocol is standard except for an optional
linear burst mode which can be implemented
instead of the Cyrix one-plus-four mode. The
one-plus-four mode is compatible with all
existing chipsets. Operating the CPU in linear
burst mode minimizes bus activity and results
in higher performance.

Conclusion

The 5x86 is clearly an innovative design in
identifying and utilizing superscalar
architectural features in a scalar configuration to
significantly improve performance while
minimizing transistor count. The branch
prediction and branch target cache, decoupled
load/store unit, and data forwarding capabilities
are just a few of the fifth-generation features
Cyrix brings to a scalar x86 design.

Cyrix Corporation
P.O. Box 850118
Richardson, TX 75085-0118
Tel: (214) 968-8388
Fax: (214) 699-9857

94220-00 © August 1995 Cyrix Corporation. Cyrix is a

registered trademark and 5x86 is a trademark of Cyrix Corporation.

All other brand or product names are trademarks or registered

trademarks of their respective holders.


