Statistical Analysis of Floating
Point Flaw in the Pentiu
Processor (1994)

Intel Corporation

November 30th 1994

H. P. Sharangpani Numerics Architect & Project Leader,
Microcode & Algorithm Development,
Pentium™ Processor Development Team,
Intel Corporation

M. L. Barton, Ph.D. Staff Computational Scientist,
Software Technology Lab,
Intel Corporation

1 Abstract

A subtle flaw in the hardware divide unit of the PentllfnProcessor was discovered by Intel.
Subsequently, a characterization of its impact to the end-user application base was conducted.
The flaw is rare and data-dependent, and causes a reduction in precision of the divide instruc-
tion and certain other operations in certain cases.

The significance of the flaw depends upon (a) the rate of use of specific FP instructions in the
Pentiuni™ CPU, (b) the data fed to them, (c) the way in which the results of these instructions
are propagated into further computation in the application; and (d) the way in which the final
results of the application are interpreted.

The thorough and detailed characterization of the flaw and the subsequent investigations of its
impact on applications through elaborate surveys, analyses and empirical observation lead us
to the overall conclusion that the flaw is of no concern to the vast majority of users of Pentium

processor based systems. A few users of applications in the scientific/engineering and financial
engineering fields who require unusual precision and invoke millions of divides per day may

need to employ either an updated Pentium processor without the flaw or a software

workaround.

2 Introduction

This document describes a subtle flaw inside the Floating Point Unit on certain steppings of the
Pentium™ processor, and characterizes the significance of this flaw for end-users of applica-
tions that are likely to be run on a computer based on the Pentium processor. The flaw in the
Pentium processor causes a slight reduction in precision for certain operations in very rare cas-
es.

Intel discovered this flaw as part of its ongoing product development and testing work. So far
seven trillion computer cycles worth of testing has been conducted on the Pentium processor as
part of this ongoing program. Subsequent to the discovery of the flaw, a detailed investigation
was conducted to characterize both the flaw as well as its impact on the end-user base. This
document summarizes the outcome of the investigation.

The overall document has 9 sections. This section 2 is an introduction. Section 3 gives a high
level summary of the flaw as it manifests itself inside the processor. Section 4 explains in de-
tail how the divide algorithm is implemented and what led to the slight flaw in early steppings.
Section 5 describes the general statistical evaluation framework suitable to analyze the fre-
guency of occurrence and the significance of the flaw on the end-user application base. Section
6 analyzes the impact of the flaw on this software base. Section 7 presents the conclusions of
the characterization study. Sections 8 and 9 contain Acknowledgments and Bibliography of
References.

2 Intel Corporation

3 Description of the Flaw

The flaw as it manifests itself in the CPU is now described. The following characterization
statements can be made:

1.

On certain input data, the Floating Point Divide Instructions on the Pentfum
processor produce inaccurate results.

The problem can occur in all three operating precisions (single, double, extend-
ed) for the divide instruction. Empirical studies involving over 1 trillion data
cases indicate that far fewer failures are found in single precision than in double
or extended precision. The remainder function, and those transcendental func-
tions which rely on the divide instruction, also exhibit reduced precision. For the
remainder and transcendental instructions, which operate only in extended preci-
sion, the problem can only occur in extended precision.

The incidence of the problem is independent of the processor rounding modes.

Encountering the problem is highly dependent upon the input data. Only certain
input data will trigger the problem. It is not straightforward to describe the exact
set of input operands on which the problem can get triggered. Hence it is neces-
sary to describe the incidence of occurrence in terms of a probability distribu-
tion statistic. Characterization based on two independent methods consistently
yields a probability that 1 in 9 billion randomly fed divide or remainder instruc-
tions will produce inaccurate results. The fraction of the total input number
space that is prone to failure is 1.14 X

[The first characterization method is analytical and mathematical, and is based
upon a Markov chain analysis of the iterative implementation algorithm. The

second method is empirical, relying upon running billions of random input sam-

ples through the instructions under test. Over 1 trillion data points were run for
the second method. Both methods correlate well.]

The degree of the inaccuracy of the result delivered depends upon the input data
and upon the instruction involved.

On the divide instruction, the worst case inaccuracy occurs in the 12th bit posi-
tion to the right of the binary point of the significand of the result, or in the 4th

significant decimal digit. Statistical measurements using over a trillion test
points indicate that the inaccuracy is equally likely to manifest itself in bit posi-

tions 12 through 52 to the right of the binary point. The likelihood of encounter-

ing an inaccuracy in any one bit position is then 1 in every 360 billion randomly
fed divides.

The problem does not occur on the specific use of the divide instruction to com-
pute the reciprocal of the input operand in single precision.

The cause of the problem traces itself to a few missing entries in a lookup table used in the
hardware implementation algorithm for the divide operation. Since this divide operation is used
by the Divide, Remaindering, and certain Transcendental Instructions, an inaccuracy intro-
duced in the operation manifests itself as an inaccuracy in the results generated by these in-

structions.

Intel Corporation 3

4 Pentium ™ Processor Divide Algorithm

The Pentium processor is Intel’'s next generation of compatible microprocessors following the
i486™ CPU family. The primary goal was to combine compiler and hardware téachyndo
maximize performance while preserving software compatibility. More specifically the floating
point performance goal was to achieve up to a 5x speedup of floating point vector_code and a
3x speedup of scalar code when compared to an i486 CPU of identical clock freguehty

part, this meant providing a higher performance floating point divider.

The 1486 processor used the classic non-restoring “shift and subtract” division algorithm for its
floating point divide operation. This inherently allowed only one quotient bit to be generated
per clock. To improve the floating point divide performance on the Pentium processor, a radix
4 SRT algorithm was chosen. This algorithm, as implemented, allows the divide hardware to
generate 2 bits of quotient per clock thus approximately doubling the divide performance.

4.1 SRT Algorithm

To help better understand the flaw, we have attached a brief introduction to the SRT division
technique.

The SRT divide algorithm can basically be described in steps as:

1. Sample the most significant digits of the divisor and dividend.

2. Use the samples as indexes into a lookup table to get a guess of the next quotient
digits. (in this case the quotient guess can be -2, -1, 0, +1, +2).

3. Multiply the divisor by the quotient guess and subtract it from dividend (Note
that this is an addition if the quotient guess was negative).

4. Save the quotient digits in the least significant digits of a quotient register.
Shift the remainder left by 2 and shift the quotient registers left by 2 (i.e. radix
4)

Sample the most significant digits of the new shifted partial remainder.

Go to step 2 unless you have generated enough significant quotient digits.

o

Generate the binary quotient by assembling the values in the quotient register.

© ® N ©

If the last partial remainder was negative then adjust the quotient by subtracting
the value 1.

For a c[:zc])mplete treatment on the subject of SRT division refer to the paper written by Daniel E.
Atkinsl<l,

1. The SRT algorithm was named after the 8rgcits that discovered it independently at about the same time:
D. Sweeney of IBM, J.E. Robertson of the University of lllinois, and T.D. Tocher of the Imperial College
of London.

4 Intel Corporation

Mathematically, the SRT algorithm can be represented with the equations shown in (EQ 1) and
(EQ 2) below. The first equation shows the first step of the algorithm whgetée initial par-

tial remainder, is the dividend. The second equation indicates the recursive nature of the algo-
rithm. Here, to generate the next partial remaindgs)X one must multiply the quotient guess
(gj+1) by the divisor §) and subtract that quantity from the shifted partial remainder of the pre-
vious iteration (Pj). Where () is the radix of the operation (in this case 4). The number of iter-
ations is determined by the number of significant digits required in the quotient remembering
that the first iteration only produces one significant digit.

Pi= Pg- qr*d EQ1)
Pj+1= rPj - gj+1*d (=[1,1C-1]) (EQ2)

Pj = partial remainder in the j-th cyclegP dividend).
r = radix (in this case r = 4).

q = guotient digit selected in the (j+1)th cycle.

d = divisor.

IC= The number of iterations to perform.

Note that when the radix is equal to the operative base, this recursive equation yields one digit
of quotient per iteration. For higher radix division a multi-digit quotient can be generated each
iteration. In the case of the Pentium processor, radix 4 division is performed on binary numbers
yielding 2 binary quotient digits per iteration. This relationship holds true if the following re-
striction (for convergence) is placed on the remainder:

Pl <= n/(r-1) * d (EQ3)

n = absolute value of the highest divisor multiple (i.e. for divisor multiples,-2x,-1x,0x,1x, 2X, ... n =2)

The quantityn/(r-1) is referred to as the measure of redundancy (MoR) and in the Pentium pro-
cessor divide implementation evaluates to 2/(4-1)=2/3. This value will be used from here on.

4.1.1 Quotient Selection

Since a non-restoring division is used and the result is stored in “redundant” form, the guessed
guotient need only meet the above remainder criteria. By manipulating the above equations,
MIN and MAX equations that bound the next partial remainder for a given divisor and quotient
digit are produced.

rPj = [(+2/3) + g 41]*d (max) (EQ4)
rPj = [(-2/3) + g 41]*d (min) (EQ5)
with; q(j+1) = [-2,-1,0,+1,+2] (EQ6)

Plotting these equations generates a plot of the Partial-Remainder and Divisor (commonly
known as the “P-D” plot), that is used in the quotient selection process. The positive half of
this plot is shown below in Figure 4-1 . The shaded regions in this plot indicate the region of
overlapping quotient choices, where either of the digits indicated may be chosen.

Intel Corporation 5

Figure 4-1 Theoretical P-D Plot

h__‘ 0011.100
= oo11.011
= 0011.010
(]

o 0011.001
.E 0011.000

@ 0010110 ¢
X 0010.101 &
g 0010.100
= 0010.011
S

(G 0010.010

©

@ 0010.000
& ooo1.111
< 0001.110

0101.100

0101.011

0101.010

0101.001

0101.000

0100.111
0100.110

Measure of Redundancy
5 MSBs of divisor

7 MSBs of shifted partial remainder

0100.101

0100.100

0100.011

0100.010

0100.001
0100.000

0011.111

0011.110

0011.101

\\

A\

0010.111

///////
/////////////

\

0010.001

| &

\

Py
7
//%////////////////////////

;8/3D

5/3D

///// 4/3 D

///7//////////////////»

///7///////////// |

///////////////

0001.101
0001.100

0001.011 =

y
,////?7////////////
-

////////////////////

//////////
| -

0001.010

0001.001
0001.000

0000.111

0000.110

0000.101
0000.100
0000.011

—
- -
-

\\

//////
////////////////////////
=
=7 N
//

%\\

- 2/3D

/ 1/3D

PSS

0000.010

0000.001

0000.000

1.0000(1.

1.0011/1.01001.0102,1.0110 1.0111{1.100Q 1.1001 1.1010 1.

1. lll’

1111.111

1111.110 O

Divisor

RoU = Region of Uncertainty

Intel Corporation

4.1.2 Region of Uncertainty

Since the divisor and the shifted partial remainder are truncated there is some uncertainty in the
generation of the quotient bits. One must take this uncertainty into account when selecting quo-
tient digits, that is, a quotient digit can only be selected if the region of uncertainty for the giv-
en Partial-remainder/Divisor pair lies entirely within a quotient region delineated by the
equations above. This is where the overlapping nature of these regions comes in handy.

For the uncertainty in the Divisor which is chopped after the 4th bit to the right of the binary
point (i.e. maintaining 4 bits to the right of the binary point).

ID-D’| < 24 (EQ7)
D = divisor (EQ8)
D' = chopped divisor (EQ9)

For the Partial Remainder, the estimate comes from the 7 most significant bits of the redundant
form (carry-save) “shifted partial remainder” (4 bits to the left and 3 bits to the right of the bi-
nary point) thus:

|PJ--P’J-| < 2'2 (Conservative worst case due to the Carry-Save implementation) (EQ 10)
Pj = full non-redundant partial remainder (EQ 11)
P = chopped non-redundant partial remainder (EQ 12)

Figure 4-2 below illustrates a simple binary example of the same iterative equation for radix 4
SRT. Note the way that Qpos and Qneg are used to store positive and negative weighted quo-
tients, how the final quotient is derived from the two, and which bits are sampled as indexes
into the lookup table (the shaded regions in the partial remainders).

Intel Corporation 7

Figure 4-2 Simple Binary Example of Iterative SRT Divide.

Given:
r =2 (radix) 5
D = R(0) = 1.110000 *12 Qpos= 00.000000
d=1.100000 * 2 Qneg=00.000000

P(0)= 0001.110000 --> q(1)= +1

P(1)=rP(0)-q(1)d Qpos= 00.000001
0001.110000 Qneg= 00.000000
- 0001.100000

0000.010000 --> q(2)= +1
P(2)=rP(1)-q(2)d Qpos= 00.000101
0001.000000 Qneg= 00.000000
-0001.100000 _
1111.100000 --> g(3)= -1

P@)=rP(2)-q(3)d Qpos= 00.010100

1110.000000 Qneg= 00.000001
--0001.100000

1111.100000 --> q(4)= -1

P(4)=rP(3)-q(4)d Qpos= 01.010000
1110.000000 Qneg= 00.000101
- -0001.100000 _
1111.100000 (last remainder) 1 <--P(4) is negative so
Q= 01.001010 decrement Q as

per algorithm

Q= 01.001010*2 !

4.2 The Underlying Cause

After the quantized P-D plot (lookup table) was numerically generated as in Figure 4-1, a
script was written to download the entries into a hardware PLA (Programmable Lookup Array).
An error was made in this script that resulted in a few lookup entries (belonging to the positive
plane of the P-D plot) being omitted from the PLA. The 5 critical entries are shown in Figure 4-

3 as the shaded regions. As a result of the omission, a divisor/remainder pair that hits these en-
tries during the lookup phase of the SRT algorithm will incorrectly read a quotient digit value
of 0 instead of +2. Subsequently, the iterative algorithm will return a quotient result with re-
duced precision.

As can be seen from the P-D plot, the only situations in which there is a probability of seeing
this flaw is when the binary divisor has the following bit patterns in the most significant bits:
1.0001, 1.0100, 1.0111, 1.1010, and 1.1101. Empirically, it has been observed that these bit
patterns need to be followed by a long string of 1's to further boost the probability of incurring
the inaccuracy due to the flaw. Note also, that since the divide hardware operates only on the
mantissa the exponents of the operands have no effect on whether this flaw is observed or not.

8 Intel Corporation

4.3 Instructions Affected

Since it is the divider hardware that exhibits the flaw, instructions that will exhibit the flaw in-
clude:

FDIV

FDIVP

FDIVR

FDIVRP

FIDIV

FIDIVR

FPREM

FPREM1

The following transcendental instructions use the divide hardware within their computation but
empirical testing of billions of cases have not shown any error:

FPTAN

FPATAN

FYL2X

FYL2XP1

Intel Corporation 9

Figure 4-3 Missing Terms in P-D Plot

Shifted Partial Remainder (rPj)

0101.100
0101.011
0101.010
0101.001
0101.000
0100.111
0100.110
0100.101
0100.100
0100.011
0100.010
0100.001
0100.000
0011.111

0011.110
0011.101
0011.100
0011.011

0011.010
0011.001
0011.000
0010.111

0010.110
0010.101
0010.100
0010.011
0010.010
0010.001
0010.000
0001.111

0001.110
0001.101
0001.100
0001.011
0001.010
0001.001
0001.000
0000.111

0000.110
0000.101
0000.100
0000.011

0000.010
0000.001
0000.000
1111.111

1111.110 0

MOR = 2/3 Measure of Redundancy
[DVSR]5 5 MSBs of divisor
[Pl 7

8/3D

7 MSBs of shifted partial remainder

5/3 D

5
1

4/3 D

RoU

2/3D

—~
+
H
O
o
O
—T

i 1/3D

1.0000/1.0001

1.0010

1.0011/1.01001.0107/1.0110 1.0111/1.1000 1.1001 1.1010 1.1011 1.1100

1.1101

1.111Q

1. 111}.

Divisor

RoU = Region of Uncertainty

10

Intel Corporation

5 Evaluation Framework to Gauge Impact on User

The significance of the flaw to an end-user clearly depends upon:

1. The frequency of occurrence of the reduced precision divide within the applica-
tion. If the flaw is unlikely to be seen during the practical lifetime of the com-
puter, it is of no significance to the user.

2. The (propagated) impact to the end-user when the problem manifests itself.

The frequency of occurrence of the reduced precision divide depends upon the rate of use of the
specific FP instructions in the Pentium CPU by the user, and upon the data fed to these instruc-
tions. If and when the problem manifests itself, the impact on the end-user depends upon the
way in which the results of these instructions (along with any inaccuracies) are propagated into
further computation in the application, and upon the way in which the final results of the appli-
cation are interpreted by the end-user.

The evaluation methodology thus involved first estimating the frequency of occurrence of the
reduced precision divide for random input data, and then analyzing each potential occurrence
and its environment to gauge its end-impact. The subsequent sections describe the statistical
method followed to characterize the frequency of occurrence, propose a metric for comparison,
and present reference information to calibrate the significance of a given rate of occurrence.

5.1 Statistical Characterization Methodology for Frequency of Occurrence

This section describes the general statistical evaluation methodology suitable to analyze the
frequency of occurrence of the reduced precision divide in applications. Given that it is intrac-
table to describe the exact set of input operands on which the problem can get triggered, and
given that the incidence of the problem is best described as a statistical probability, the method
suitable for characterizing the frequency of this problem in an end-user application finds a
close parallel to the conventional framework used for evaluating reliability of a computer sys-
tem given an assortment of hard and soft failure modes.

For any given failure mechanism, conventional reliability methods define the FIT rate (or Fail-
ures In Time) in terms of the number of device failures produced by the mechanism in every
10% hours of device operation. The Mean Time Before Failure or MTBF is simply the inverse of
the FIT rate.

When examining the reliability of the overall computer system, one focuses upon the failure
mechanisms with the highest FIT rates, since these will make the dominant contribution to a
system failure in the field. For example, system failures can occur due to a wide variety of rea-
sons, such as:

Human errors in installation,

Power supply failures,

Packaging and system interconnect defects,

CPU failures,

Memory failures,

a rc 0N PE

Intel Corporation 11

6. Disk drive failures,
7. Keyboard failures, and
8. Failure mechanisms from other devices.

These failure mechanisms span a wide range of FIT rates, and it is typically the mechanism
with the highest FIT rate that is most significant from the point of view of frequency of fail-
ures.

5.2 Metric for Evaluating Frequency of Occurrence

A modified form of the conventional definition of the FIT rate has been found to be a conve-
nient metric for evaluating the frequency of occurrence.

Consider the following analysis:
1. Probability of failure for independent divide/remainder operation =
1.14 x 1019=p
2. By Basic Binomial model:
Given n successive independent operations,
Probability of n-1 consecutive successful operations = ({T:S)
Probability of the 1st failure at the nth operation = [(iDPl}] *p

MTBF = SUM{n * (probability of first failure at nth op)}

= SUM {n * [(1-P)"Y « P}

1/P

~9 x 1@ = time taken for 9 billion independent divides to be run

3. Hence for each application, assess the time taken to run 9 billion independent di-
vide or remainder operations, since this is the MTBF due to this mechanism.

In effect, the analysis involves calculating the effective FIT rate due to this failure mechanism
in the context of the given application. As can be seen from the above analysis, the mean time
before an inaccuracy is encountered is simply the time taken for the user to exercise the appli-
cation with 9 billion independent divide operations. Alternatively, characterizing the various
applications in terms of how many independent operations of interest (e.g. divide instructions)
are run per unit time (say days) will provide an effective metric for the frequency of occurrence
of the reduced precision divide, assuming totally random input data to the instructions.

Based on the FIT rate for this failure mode alone, a calculation is performed on the MTBF due
to this failure mode. This MTBF is then compared against the MTBF due to other failure
modes, and against the lifetime of the part, to give the user a perspective against which to judge
the rarity of the error due to the flaw.

5.3 Reference Failure Rates

Table 5-1 below summarizes a few failure mechanisms and FIT rates typical in a commercial
PC system based on the Pentium processor. Also included in the table is a sample FIT rate for a
typical PC user running spreadsheet calculations involving 1,000 independent divides per day

12 Intel Corporation

on a Pentium processor that exhibits the flaw. As can be seen from this table, the FIT rate due
to the flaw bears little significance for such a user because the mean time before encountering
an inaccuracy far exceeds both the time before other failure mechanisms begin to play, as well
as the practical lifetime of the PC.

Table 5-1 Typical System Failure Rates

Failure category and systemHard FIT ratg .MTBF Rate of significant
(per 1@ device| (1 in x years) .
component or Soft failure seen by user
hours)
16 4-Mbit DRAM partsing Soft 16,000 7 years Depends upon where
60Mhz Pentiuni™ proces- defect occurs and how
sor system without ECC propagated
Particle defects in Pen-| Hard 400-500 200-250 years Depends upon where
tium™ processor defect occurs and how
propagated
16 4-Mbit DRAM partsina Soft 160 700 years Depends upon where
60Mhz Pentiuni™ proces- defect occurs and how
sor system with ECC propagated
PC user on spreadsheet runHard 3.3 27,000 years Less frequent than 1
ning 1,000 independent in 27,000 years.
divides a day on the Pent Depends upon the
tium™ processoft way inaccurate result
gets used

a. A detailed analysis on divide usage in spreadsheets is provided in Section 6.2.1 .

6 Analysis of Impact on Applications

As discussed in the previous section, given a certain appreciable frequency of occurrence of the
reduced precision divide, the impact on the end-user depends upon the way in which the results
of these instructions (along with any inaccuracies) are propagated into further computation in
the application, and upon the way in which the final results of the application are interpreted by
the end-user.

In order to truly understand the importance of the flaw, an elaborate characterization effort was
undertaken. The effort had a twofold thrust: first, to estimate the frequency of occurrence of

the reduced precision divide, and second, to estimate how the reduction in precision gets prop-
agated to the end result, and to determine how it gets used.

Intel Corporation 13

The methodology used for this purpose involved data sources both internal and external to In-
tel. Internally, characterization was performed in a verification laboratory on key applications
that had been ported to the laboratory environment. Additionally, test suites provided by the
application vendor for verification of the functionality of the test suite on that platform were
procured, and were used for a pilot measurement. Externally, opinions were taken from eminent
application and algorithm experts in the industry as well as from power users of the key appli-
cations.

6.1 Taxonomy of Applications

The application base was categorized into the following groups:

1. Commercial PC applications on desktop/mobile platform running on MS-DOS,
Microsoft* Windows*, or OS/2*. This class includes basic spreadsheet users for
personal finance or basic accounting.

2. Technical applications. This includes a broad range of applications including en-
gineering and scientific, advanced multimedia, educational, and financial appli-
cations. Thus, this class includes power users of spreadsheets such as financial
analysts and financial engineers.

Applications in this category could be purely integer-based, or could involve
floating point instructions for either numerical computation or for visualization.

This class spans the widest range of applications running on MS-DOS, Win-
dows, OS/2 or UNIX* operating systems.

3. Server and transaction processing applications.

6.2 Impact on Commercial PC applications

A large majority of PC applications do not invoke the floating point unit. This includes appli-
cations such as word processing, text editing and email. In the commercial PC domain, the ma-
jority of applications that do use floating point do not invoke an appreciable number of divides
and hence do not introduce significant failures that will pose a data-integrity problem during
the useful life of the part. Table 6-1 illustrates the outcome of the analyses and characteriza-
tion on a few key applications. Of specific concern were the spreadsheet applications, where
numerical calculation is often supported via use of the floating-point unit. Towards this con-
cern, a more elaborate study focussed on spreadsheets. This study is addressed in the next sub-
section.

14 Intel Corporation

6.2.1 Spreadsheets

The study on spreadsheets included a survey of acknowledged numerics experts in the industry.
The results of the survey were partially confirmed by statistical characterization in the internal
verification laboratory at Intel. The results from the survey are now summarized.

Table 6-1 COMMERCIAL PC APPLICATIONS ON DOS/WINDOWS/OS/2

Impact of failure

Class Applications MTBF in div/rem/tran
Word processing Microsoft Word, Wordperfect, etc. Never None
Spreadsheets |123, Excel, QuattroPro 27,000 years Unnoticeable
(basic user) (basic user runs fewer than 1000 div/day)

Publishing, Print Shop, 270 years Impact only
Graphics Adobe Acrobat viewers on Viewing

Personal Money| Quicken, Money, Managing Your Money, 2,000 years | Unnoticeable
Management |Simply Money, TurboTax
(fewer than 14,000 divides per day)

Games X-Wing, Falcon (flight simulator), Strate@70 years Impact is benign
Games (since game)

The most common use of a spreadsheet is as a computational database that collects information
of some kind, e.g. information on expense reports, budgets or miscellaneous data on a process,
an experiment or personnel in a firm. Only a small fraction of all spreadsheet users are actually
“heavy” users, users who intensely invoke the computational engine to generate numerical in-
formation. Most other users either use spreadsheets to display this kind of information and
make minor modifications and edits, or perform a few calculations.

Once entered into the spreadsheet with a certain number of significant digits, most data is con-
verted to some internal representation, and most numeric computation is floating point-based.
Spreadsheets like Excel* and QuattroPro* compute in double precision floating point, while
Lotus-123* computes in extended precision. While intermediate values are stored with the full
precision, results are displayed as dictated by the user. About 40% of the results in general are
displayed with only two decimal digits after the point (e.g. for currency display), another 40%
are displayed as integers (after rounding), and only the remaining 20% of the numbers are dis-
played in scientific format or in floating point format with more than two digits after the deci-
mal point.

About 95% of the numeric formulae invoked contain one or two operators, typically an add or a
multiply or, rarely, a divide. Occasionally, the Mod function (that remainders by one to get the
fractional portion of the number) is used. The remaining 4% of the formulae used include func-
tions such as IRR (Internal Rate of Return, which solves an Nth order polynomial equation),
Power, Interest Rates, Standard Deviation and Square Root. Transcendental functions are in-
voked very rarely. Equation solvers are also used rarely, and could invoke the divide function
to implement Newton’s formula.

Intel Corporation 15

For most accounting applications of the spreadsheet, typical input data may have up to about 7-
8 decimal digits to the left of the decimal point, and about 2-3 digits to the right of the point, so
that the information is known to about 11 significant digits. The most common use of divides is
for computation of ratios. Often these ratios are applied once or a couple of times to data, and
often towards the end of the computation, so that results from the divide have reduced opportu-
nity to propagate. Since ratios are often used for calculatimgepgages, the ratio requires
about 4 decimal digits (2 to the right and 2 to the left of the decimal point).

For the rest of the basic spreadsheet users, most data that is input to spreadsheets has fewer
than three significant digits to the right of the decimal point. A lot of the numbers have only a
few significant digits to the left of the point and are thus only known to four or five digits. Also
frequent are power-of-two fractions.

In terms of numbers of operations, fewer than 10% of the instructions executed in a typical
spreadsheet run floating point instruction. Most of the numerical operations are geared toward
the display engine. Displaying a spreadsheet of 1 page with 600 cells and 2 floating point oper-
ations (one of which may be a divide) per cell would require 1,200 FP operations. On the com-
putational side, a typical recalculation could contains 5,000 adds and subtracts, a few
multiplies and a very few divides. Divides are used for date calculations, to divide by 365. It is
very unlikely that a basic spreadsheet user would invoke any more than 500-1,000 independent
divides per day. It is worth noting that scrolling through several pages repeatedly would result
in recalculation with the same values and would not introduce any additional independent di-
vide operations and therefore no additional errors.

Given that even by conservative estimates, an average PC user invoking 1,000 divides per day
would see a FIT rate of once in 27,000 years due to this failure mechanism, and given the infor-
mation on the way the data is interpreted, displayed and used, we conclude that the rate of a
significant failure would be much smaller than once every 27,000 years. By the analysis from
the previous sections, the common user will not see this effect during the practical lifetime of
the part.

For individual users who invoke a greater number of independent divides per day (than 1,000),
the rate of encountering a reduced precision result will simply be increased proportionately.

The treatment of the advanced use of spreadsheets for financial engineering is handled in the
section on technical applications.

6.3 Impact on Technical Applications

In the following two subsections, we examine first engineering and scientific applications, fol-
lowed by applications in the financial world.

6.3.1 Impact on Engineering and Scientific Applications

A broad array of applications are run by scientists and engineers on modern workstations. Ta-
ble 6-2 shows one taxonomy of technical applications based on the discipline. This table gives

16 Intel Corporation

the algorithm employed in the particular application, an example of such an application, an in-
dication of its reliance on divides, the normal condition of the problem (an indication of the
likelihood that an error will propagate through the calculation [see below]) and the frequency
with which Pentium processors are likely to be used in the application.

The straight-forward calculation of frequency of occurrence of a divide inaccuracy based on
the number of divides/day on a Pentium processor based platform indicates that users will ex-
perience inaccuracy due to the flaw from time to time in the course of floating point intensive
work. Based on this result it is necessary to investigate the likely impact of a divide returning a
reduced precision result. Figure 6-1 shows a simple framework for evaluating the frequency of

K*Pl*PZ 6 K*Pl*PZ*Ps
meaningful problems/yr.

inaccuracies/yr.

4>
K divs/yr.

Figure 6-1 Outcome Frequencies Algorithm.

Intel Corporation 17

outcomes for a Pentium processor based platform used for divide-intensive work.The symbols

Table 6-2 Taxonomy of Workstation Applications

S . Divide I
Discipline Algorithm(s) Example(s) Intensive Conditioning
Structural
Mechanics
Stress Sparse Matrix Solution MSC/NASTRAN™ Yes Poor (Shell
Vibration Sparse Matrix Eigenanalysis | MSC/NASTRAN™ Yes Poor
Crash Dynamics LS-DYNA3D™ No Good
Fluid Dynamics
Flow Sparse Matrix Solution FIDAP™ Yes Good
Flow Finite Difference Update LFO67™ No Good
Combustion Sparse MatrBolution FIRE™ Yes Poor
Chemistry
Quantum Chemistry Dense Eigenanalysis GAMESS™ Yes Good
Molecular Modelling | N-body Charmm™ No Good
Problem
Visualization &
Graphics
Imaging Pixel Manipulation DISSPLA™ No Good
Animation Polygon manipulatioand shadf SuperAnimator Yes Good
and Rendering ing
Petroleum Engineer-
ing
Reservoir Modelling Implicit Finite Differences ECLIPSE™ Yes Good
Seismic Signal Processing DIsCO™ No Good
Electrical Engineer-
ing
Circuits Sparse Matrix Solution HSPICE™ Yes Varies
Electro- Sparse Matrix Solution maddog Yes Good
magnetics
Mathematics
Special Series IMSL™ No Good
Functions
Linear Algebra Librar-| Various BLAS Varies Varies
ies
Biology
Genetics Search GenBank db™ No Good
Defense

~

18

Intel Corporation

Table 6-2 Taxonomy of Workstation Applications

Discipline Algorithm(s) Example(s) Irﬁ;‘gﬁ/e Conditioning
Radar Signature Anali Dense Matrix Solution Proprietary Yes Varies
ysis
Signal Processing FFT Proprietary No Good

used in Figure 6-1 are explained in Table 6-3

Table 6-3 Description of Symbols Used in Outcome Frequencies Algorithm

K |[Number of divides performed/year

P1 | Probability of a divide returning reduced precision

P2 | Probability of a divide inaccuracy leading to a meaningful inaccuracy in the final answer

P3 | Probability that a meaningful inaccuracy in the final answer leads to a problem in use

The number of divides performed in any given period of time is of course dependent on the size
and frequencies of the analyses performed on the Pentium processor based platform. It is diffi-
cult to select a representative example because the percentage of divides can vary dramatically.
For example, in Gaussian Elimination on dense matrices the operation count variewherl

N is the matrix order, while the number of divides is proportional to N. Thus smaller matrices
have a much higher proportion of divides and will encounter more divides per unit time, even
though the precision of the divides in the larger matrix calculations is more critical. The sparsi-
ty pattern also plays a large role as sparse matrix computations encounter divides as a larger
percentage of the total operations than do dense matrices. For the purposes of estimation we as-
sume a divide rate of K = 120 million/day. This corresponds to Gaussian Elimination on a 2,000
by 2,000 matrix with a bandwidth of 250 at a flop rate of 30Mflops. (This example is illustra-
tive only and is not intended to quote performance on a specific problem.) A cross check of the
data from extensive testing with engineering codes indicates rates approaching, but not exceed-
ing this value. The probability P1 is known from the studies cited earlier in this report. It works
out to 1 in 9 billion or 1.11E-10.

The final stage, governed by P3, gives the number of problems expected per year for the sys-
tem. By “problem” we mean the use of an answer with less than expected precision that has a
significantly negative impact on the user. Examples would be failure of designed parts, finan-
cial decisions leading to loss of value or erroneous navigation information. The probability P3
is very difficult to estimate, or even to bound. Many errors that could result from a reduced
precision divide would cause a calculation to either fail entirely or produce an answer so obvi-
ously wrong that it would never be used in practice.

Rather than wrestle with P3 we attempt to bound P2, the probability that the flaw leads to a
meaningfully inaccurate result. For this purpose we defirmaningfully inaccuratas having

an accuracy of fewer that three significant digits. Since the inaccuracy in the divide result ap-
pears in bit positions between the 12th to the right of the binary point in the mantissa and the

Intel Corporation 19

last bit, corresponding to inaccuracies no larger that in the 4th significant digit, an amplifica-
tion of the inaccuracy must occur for a meaningful inaccuracy to appear in the final result.
While it is easy to construct examples in which a single divide inaccuracy can result in a final
answer possessing anywhere from full accuracy to no significant digits (The latter outcome is
most easily produced by subtracting the result of a slightly inaccurate divide from a number of
close magnitude so that the correct result would contain only digits beyond those lost to the in-
accuracy), in practice most reduced precision divides are found to be benign.

If P2 were 1.0, indicating that every divide inaccuracy produced a meaningful inaccuracy in the
result, the frequency of meaningful inaccuracy would be 1 in 75 days based on the values of K
and P1 above. In order for this frequency to fall to a level comparable to the frequency of di-
vide inaccuracies in spreadsheet applications P2 must be of the ordefoThe remainder of

this section deals with the estimation of P2.

6.3.1.1 Estimating P2

The property of a problem (the algorithm along with its data) that relates errors in the output to
errors in the input (or errors introduced by numerical computation) isoimglition While the
condition can be expressed as a single number for many calculations and can be used in error
bounds, for the purposes of this report the condition can be thought of expressing the quality of
sensitivity to accuracy in the divide operation. It should be noted that the error in the final an-
swer may actually be less than the error introduced in a particular operation in cases where that
calculation ultimately turns out to be a minor contributor to the final answer or in cases where
the algorithm is self-correcting (e.g. certain iterative schemes or neural net computing).

An experimental approach is used to estimate P2, the probability that a divide inaccuracy will
result in a meaningful inaccuracy in the final result. This approach is preferred over an analyt-
ical one since a problem’s sensitivity to error is highly dependent on the particular data and the
location at which the error is introduced. It can be seen in Table 6-2 that those applications
characterized by a large number of divides and poorly conditioned are largely those that deal in
dense or sparse matrix algebra, and in particular those involving exotic modelling technigues
(such as the use of shell elements in finite element analysis) or eigenvalue extraction (as used
in the calculation of vibration modes in structural analysis). Since the use of Pentium proces-
sors in the solution of large dense matrix equations is thought rafgewe concentrate on
sparse matrix problems. In order to capture the most demanding work loads we ran extensive
tests on the QA test suites of MSC/NASTRANA ANSYS™t should be noted that these
engineering codes were provided by their vendors for the ongoing purpose of functional and
performance testing on Intel-based systems and their use here in no way constitutes a recom-
mendation or endorsement by the MacNeal-Schwendler or Swanson companies.

NASTRAN and ANSYS represent the upper end of engineering analysis packages and both are
frequently run on supercomputers in the calculation of stress, vibration modes, fluid flow, mag-
netic fields, and other engineering calculations characterized by finite element models. While
NASTRAN has few licenses on Intel Architecture systems and ANSYS has only a moderate
number, the workloads run on these codes represent a worst case scenario for a Pentium proces-
sor-based system in engineering use. Those engineering codes in widespread use on Intel Ar-
chitecture systems (e.g. AutoCAD*) will not place more stress on the floating point

20 Intel Corporation

performance than these codes. Thus our intent in setting up this test program is to identify any
possible problems in sparse matrix computing. If problems are found we will then look to the
more plentiful applications on PCs to see if the types of analysis found to be susceptible to
problems are performed with those codes.

Given the infrequency of divide inaccuracies, and the likelihood that a single inaccuracy will
go unnoticed, it is impractical to run problems on a Pentium processor with the divide flaw and
wait for an inaccuracy to show up in the output. In fact, at no point in the testing described here
was an actual effect from the divide flaw seen. Since the object of the experiment is to deter-
mine the effect on the output of the engineering analysis when inaccuracies occur, we introduce
inaccuracies artificially and observe the result. Even this plan has the problem that single inac-
curacies introduced at random, and with random bit locations for the inaccuracy, will take or-
ders of magnitude too long to produce statistically significant results.

To get a rough estimate of the size of P2 we introduce multiple inaccuracies into single runs of
the codes and extrapolate the results to single inaccuracy on problems of comparable complex-
ity. The procedure is as follows:

1. Run all tests with 100% of divides at minimum precision
(12 good bits to the right of the binary point of the significand)

2. For tests exhibiting meaningful inaccuracies:

a. Determine minimum number of divides (D) and precision (precis) to generate inaccuracy

b. For each test:

p2>>1/D Prob(precis)

3. Overall estimate of Max (pp)
In step 2b above the Prob(precis) is the probability that the divide inaccuracy will be as bad as
that precision level. For example if a precision loss in the 13th binary bit (12th bit to the right
of the binary point of the significand) in a double precision operation is required to see a mean-
ingful inaccuracy in the result, Prob(13) would be about 1/40.
Figures 6-2 and 6-3 show typical results for experiments run on problems which exhibit mean-
ingful inaccuracies when run with all divides at minimum precision. In these figures the num-

ber of significant digits in the final result is plotted as a function of the portion of divides
artificially modified. The three different curves for each figure show results for reducing the

Intel Corporation 21

precision of the divide results to fkfrent levels. For each precision level the tiiéing from

Figure 6-2. Divide Effects - ProblemVMI81

@ 5.00

g o ——Preds =13
% 3% —&—Preds ;22
é 2P —4— Preds =31
5, 1.00

% 000 | | | | '

0 0.2 04 0.6 0.8 1
Partion of Divides Modified

Figure6-3: DvideEffeds - Prddem\Vvbl

—— Praas =13
—&— Pregs =22
—— Pregs =31

0 02 04 06 08 1
Partion o Divides Mbdified

meaningful inaccuracy (number of significant digits fewer than three) to meaningless inaccura-
cy (more than three digits of accuracy) is observed. Each such transition yields an estimate for
po, the probability of meaningful inaccuracy on this problem due to a single random divide pre-
cision reduction. We take the largest such estimate to be the valugfof fhis problem, then
estimate B as the maximum over all tests.

6.3.1.2 Experimental Results: Estimation of P2

Table 6-4 shows a representative sample of results for tests where initial screening with all di-
vides at minimum precision indicated the potential for meaningful inaccuracy in the final re-
sult. For those tests the procedure outlined above in section 6.3.1.1 was followed to determine
the transition from meaningful to meaningless inaccuracy. Each test yields an extrapolation for
p2 and the maximum over all tests is our estimate pf P

22 Intel Corporation

As indicated at the bottom of Table 6-4 the maximum estimatepcfaRulated over all tests

run to date is 2.2e-4. A value in this range indicates that a meaningful inaccuracy due to the
flaw is expected only one time in about one thousand years on a Pentium processor based sys-
tem. This puts the probability of such an inaccuracy below that of other errors that could affect
a system over its lifetime (see Table 5-1) In this table the MTBF refers to the time between

meaningful inaccuracies in the final result.

Table 6-4 Experimental Estimation of P2

Test Type # divides p» I\;IgaBr';
Ansys:vm181 Eigenanalysis of a Flat Circular Plate 90,000 8)9e-6 23,000
Ansys:ev36-4s Magnetic Field in a Bar 18,000,000 7.1e-8 2,890,000
Ansys:ev56-16 Axisymmetric Stress 28,000 4.5e-5 4,560
Ansys:k2d-8s Eigenanalysis of Thin Square Plate 2,800,000 7.1e-6 28,900
Ansys:ev36-9s Magnetic Field around a Stranded Cpil 3,700,000 2.2e-7 930,000
Ansys:ev58-15 Thermal Stress Problem 45,000 8.8e-5 2,300
Ansys:ev88-10 Cantilever Beam Bending - Degenerated 28,000 1.4e-4 1,460

Shapes
Ansys:ev99-33s Stress with Overlaid Shell Elements 65,000 6|/2e-5 3,310
Ansys:Ir63-3 3-D Stress-Free Deflection with Shell 115,000 3.5e-5 5,860

Elements
Ansys:ev107-15 Homogeneous Test 260/000 4.9e-5 4,190
Ansys:ev108-24 Thermal Load 6,100 1.6e-4 1,280
Ansys:ev29-5s Natural Frequency of a Ring in a Flujd 97,000 1/6e-4 1,280
Ansys:ev48-7 Sliding Mass on an Incline 11,000 2.2e-4 930
Ansys:c9322 Sprs 52,000 2.4e-5 8,560
Ansys:c9324 Spring Damper 35,000 4.3¢e-5 4,770
Ansys:c9356 Large Spectral Analysis 670,000 7.5e-7 274,000
Ansys:vm104 Liquid-Solid Phase Change 60,000 2.1e-5 9,770
Ansys:vm105 Heat-Generating Coll 6,800 7.3e-5 2,810
Ansys:c9351 Test of Pressure Load 1,260{000 6.3e-8 3,259,000
Ansys:c9364 Glue Operation 69,000 1.9¢-5 10,800
Ansys:k2d-8s Eigenanalysis of Thin Square Plate 2,800,000 7.1e-6 28,900

Intel Corporation 23

Table 6-4 Experimental Estimation of P2

Test Type # divides p2o I\)//IgaBrl;
Ansys:vm26 Large Deflection of a Cantilevered Plate 470,000 2/7e-6 16,000
Ansys:vm33 Transient Thermal Stress in a Cylinder 441,000 1i{7e-6 120,700
Ansys:vm34 Bending of a Tapered Plate 6,000 8.3e-5 2,470
Nastran:BCELL5a | Static Analysis of a Cube 100,000 2.0e-6 103,000
Nastran:BCELL6H(Q Eigenanalysis of a Cube 2,980/000 1.8e-6 114,000

Result 2.2e-4 930

6.3.2 Impact on Financial applications

Financial engineering applications which use floating point division are implemented (by both
users and software distributors) in spreadsheets, in high level languages and through use of sta-
tistical software packages. To consider the potential impacts of the flaw for the financial engi-
neer, we will divide the work space into four categories. The first set is the collection of users
performing corporate or marketing analysis oriented calculations. The next set contains the
most frequent financial analytics such as present values, annuities, depreciations and basic fi-
nancial quantities. The last two sets comprise the most intensive computation and mathematical
models.

This summary classification of the financial applications and the impact of the flaw is given in
Table 6-5

Table 6-5 Classification of financial applications

Usage Examples Division intensive Impact
Standard spreadsheet | Corporate finance, budget dxo None
analysis marketing analysis,
Basic financial Present value, yield to matuSome Significant only in the extreme circumstanhce
calculations rity of > 10 million divisions per day
Complex mathematical |Black-Scholes model, Bing-Some Could be significant on continuous use
models mial model
Path based models and | Monte Carlo risk analysis,Yes Significant unless there is a low P2 factor.
simulations non recombining paths

Notice that the number of users of each category is inversely proportional to the severity of the
impact. The vast majority of users are included in the first category. The last category repre-
sents applications which have only recently been transferred to the desktop.

24 Intel Corporation

In the following sections we apply the characterization methodology (P1, P2) used in the sec-
tion on engineering applications to the 4 sets.

6.3.2.1 Values of P2

While we do not provide a detailed analysis of the P2 probability (the probability that the flaw
leads to a meaningful inaccuracy) for financial applications here, we will make the following
comments. The P2 value for these applications is often either close to 1.0 or 0.0. The former
leaves the risk at P1, the latter reduces the risk to zero.

P2 is close to 0.0 when dealing with random number generators, where any random number is
as good as another, provided the basic distribution is not changed. Since the inaccuracy hap-
pens in only 1 of nine billion divisions, there will be no change to the estimate of the distribu-
tion.

Again, P2 is close to 0.0 on simulations which use a large number of paths and perform expect-
ed value analysis. An error on one path will not have a significant impact on the final answer.
The number of paths are always far less than nine billion, so that more than one error among
the paths is very unlikely; and for more than two paths to have errors is prohibitively unlikely.
Finally, P2 is 0.0 when the number of significant decimal digits the user needs is less than four.

P2 moves from near 0.0 to near 1.0 as the need for significant decimal digits reaches 15. This is
because the inaccuracy seems to be equally likely to occur at each significant digit beyond
four. For instance, if the user needs six significant digits, and an error occurs, then (assuming
double pecision arithmetic), the probability that the inaccuracy was in fourthugh sixth
significant decimal digits is 3/15 = 0.2.

Most other times the P2 value will be near 1.0.
6.3.2.2 MTBF estimation

CATEGORY 1

For applications from the 1st set, such as corporate financial analysis and forecasting, market-
ing analysis, planning and so forth, the likelihood of encountering reduced precision divides is

low. This is because typical calculations here are dominated by comparisons and additions. The
input-output operations and the time for human conception of the results consume more time
then the processor spends performing arithmetic operations. This effect limits the number of

divisions that are computed per day to well below what is necessary to have any appreciable
probability of experiencing a meaningful inaccuracy. As an example, consider a large budget

calculation implemented as a 700x700 cell spread sheet, which is run an average of a few times
a day. This will produce less than 10,000 divisions a day (on average); so few divisions that no

error is likely to be seen for thousands of years.

CATEGORY 2

In the second set of usages, one of the most frequent calculations is discounting a value to the
present, which typically involves an expression such as (c/(1+r)~t). This discount process is
generally connected with some method of generating an associated cash flow. The number of
divisions is about one-fifth of the total operations (or less) and about equal to the number of
exponentiations. In the most extreme case, where the calculation is a simple present value, the

Intel Corporation 25

60MHz Pentium processor running 24hrs per day could produce at most 500 million divisions
and exponentiations, resulting in a MTBF of 18 days. In more realistic applications, the number
of PV calculations is of order of 1000 or less within the spreadsheet and the spreadsheet is re-
calculated no more than 100 times a day. This produces at most 500,000 divides a day for a
worst case MTBF of more than 50 years. This possibility is considerably less than the chances
of a system memory error, which could be equally inaccurate.

CATEGORY 3

The third set is represented by the Black-Scholes and simple binomial models. Black-Scholes
solutions generally require approximations to be made for standard normal distributions in or-
der to run them on any desktop computer. These approximations will increase the ratio of di-
vide time to compute time. Divisions, exponentiation, and natural logarithms take about one-
fifth of the actual computation time. Models pricing a few thousand options are run at most a
few times per hour, representing approximately a million divisions and transcendental compu-
tations per day. The MTBF would then be roughly 30 years. In the extreme case where a user
does not look at all the results, and continually recalculates the models, the upper bound of cal-
culations (running 24 hours per day at full rate) is about 1 billion divisions per day yielding an
MTBF of 9 days. Again, if the accuracy required is less than four digits, then even such maxi-
mal use will not produce a meaningful inaccuracy.

Simple Binomial models are usually implemented with a discount computation at each node of

the model and two simple integer divisions. The number of divisions and the number of expo-

nentiations are of the same order of magnitude, each being about 1/5th of the total number of
operations. For an analysis of a few thousand options a day, MTBF would exceed 30 years.

CATEGORY 4

The last category of applications focuses on the valuation of more complicated derivatives and
the use of simulation. Representative applications for this set include non-simple binomial
models, as well as trinomial and finite difference hmds. Simulation analysis usually em-
ploys Monte Carlo techniques to arrive at valuations for complex securities with large numbers
of embedded options such as CMOs (Collateralized Mortgage-backed Obligations).

More complicated binomial models, such as those with non-stationary dividends, and other val-
uation techniques such as non-recombining trees and finite difference methods can severely in-
crease the number of computational steps performed in a valuation. In the case of non-simple
binomial models, for example, realistic problems might have an MTBF of three years or less.
However, while finite difference problems also use significant numbers of divides, real appli-
cations of these techniques involve extensive non-division operations in order to implement
useful algorithms. This can greatly reduce the time spent doing divisions, resulting in very low
divisions per day. These methods can also be iterative, so that an inaccuracy on one iteration
will disappear in following iterations.

When simulation analysis is used for valuation, the number of cash flows valued must be rela-

tively large. This is significant since the extremely large numbers of discount operations great-

ly increases the rate of divisions per day. For those circumstances where continuous use of a
desktop platform is being made to solve these computationally intensive applications, the

MTBF may well be less than a week. However, this may be ameliorated by the P2 factor as dis-

cussed above.

26 Intel Corporation

In conclusion, the large majority of financial users will not experience any problems from the
flaw. The problem may manifest itself significantly in those programs for valuing the most
complicated financial instruments. Even in this case, if the valuation is statistically based, sin-
gle division inaccuracies may be harmless. The user should consider the number of divisions
performed per day and the context in which the resulting quotients are used.

6.4 Impact on Server Applications

Server applications do not use the relevant floating point instructions. The flaw has no impact
on them.

7 Conclusions

The thorough and detailed characterization of the flaw and the subsequent investigations of its
impact on applications through elaborate surveys, analyses and empirical observation lead us to
the following conclusions:

1. The significance of the flaw depends upon (a) the rate of use of specific FP in-
structions in the Pentiulf CPU, (b) the data fed to them, (c) the way in which
the results of these instructions are propagated into further computation in the
application; and (d) the way in which the final results of the application are in-
terpreted.

2. The flaw is of no significance in the commercial PC market where the vast ma-
jority of Intel processors are installed. Failure rates introduced by this flaw are
swamped by rates due to existing hard and soft failure mechanisms in PC sys-
tems. The average PC user is likely to encounter a failure once in 27,000 years
due to this flaw, indicating that it is practically impossible for such a user to en-
counter a problem in the useful lifetime of the product.

3. The flaw is of no significance for integer workstation applications, since they do
not use the Floating Point Unit.

4. The flaw is of no significance for Server applications.

5. The flaw is of no significance in the majority of the financial world, where PC
users run spreadsheets with little divide content. For these users the flaw has no
effect.

6. The flaw is of potential significance for a small minority of users in the financial
world. These users are primarily involved in running highly numerical applica-
tions involving intensive recalculations such as path-dependent derivatives valu-
ations and those valuations involving simulations. Depending on the
circumstances, these users should employ either an updated Pentium processor
without the flaw or a software workaround.

7. A small fraction of PCs are installed for use as engineering/scientific worksta-
tions. Although there may be an occasional occurrence of a reduced precision di-

Intel Corporation 27

vide, our extensive experiments with a range of engineering problems covering
CAD, structural analysis, computational fluid dynamics and circuit simulation
indicate that meaningful inaccuracies in the end-result will only be seen once in
about 1,000 years. Technical users running other applications requiring unusual
precision and employing millions of divides per day should employ either an up-
dated Pentium processor without the flaw or a software workaround.

Our overall conclusion is that the flaw in the floating point unit of the Pentium processor is of

no concern to the vast majority of users. A few users of applications in the scientific/engineer-
ing and financial engineering fields may need to employ either an updated processor without
the flaw or a software workaround.

8 Acknowledgments

Acknowledgments are due to all the engineers and computational scientists who participated in
the characterization effort. Special thanks to Joe Brandenburg (Principle Computational Scien-
tist, Scalable Systems Division) for reviewing the characterization of the technical applications

and for contributing to the section on financial applications, to Richard Passov (Senior Manag-
er, Quantitative Analysis, Corporate Treasury) for contributing to the financial application sec-

tion, to Luke Girard and Patrice Roussel (Senior Design Engineers, Microprocessor Products
Division) and to Dr. Peter Tang (Numerical Scientist, Argonne National Laboratories) for ana-

lytically and experimentally characterizing the hardware algorithm and the flaw.

9 References

[1] “Architecture of the Pentium Microprocessor”, by Donald Alpert and Dror
Avnon, IEEE Micro,V-13:11-21(June 1993).

[2] “Higher-Radix Division Using Estimates of the Divisor and Partial Remain-
ders”, Daniel E. Atkins, IEEE Transactions on Computing, C-17:925-935(1968)

*Designated trademarks are the property of their respective owners.
941130-1.1

28 Intel Corporation

APPENDIX A

In the process of the characterization, a list of scientific constants that might commonly be
used in floating point calculations were examined as potential divisors. These constants are
shown in Table A-1 below. Two of these constants, indicated by the shaded rows, were identi-
fied as potentially problematic based on the analysis in Section 4.2. To verify if these two con-
stants were really at risk each was used as a divisor with 100 billion random dividends with no
errors found.

Table A-1 Engineering and Scientific Constants Analyzed.

Constants Symbol Value x Hex Value

Absolute zero 0 degK -273.16 -1.1128F5C28F5C30 2 8
Acceleration of gravity (at sea level) g 9.78049 1.38F9C62A1B%C80 2 3
Avogadro’s constant No 6.02204 10 23 1.FE162D50E9DBA0 2 8
Bohr radius aB 052017 1.0EEFSEC80C73B02 1
Boltzmann’s constant 1.38066 10 23 |1.0BOEF8C6FOC050 2 76
Coulomb constant c 8.9874210 9 |1.0BD892B00000002 3
Distance from Earth to the Moon 3.84 10 8 |1.6E3600000000002 28
Distance from Earth to the Sun 1UA | 149 10 I |1.15888C90000000 2 37
Earth mass mE 5975 10 2 [1.3C505989B54FC02 82
Electron mass me |5488 10 # |1.1FBAB06A9676D02 L
Electron rest mass mo 0.91095 10 0 1.279EC3E2589790 2 100
Elementary charge q 1.6p218 10 -19 1.7A4DDBAGDAEES0 2 &3
Electron volt ¢V 1.60218 10 19 1.7A4DD6AGDAEESD 2 B3
Equatorial radius of Earth 6.378 10 6 |1.854840000000002 2
Eccentricity of Earth’s orbit 0.0167 1.119CEOQ75F6FD20 2 6
Faraday constant F 96300 1.78F40000000000 2 16
Gas constant R 198719 1.HCB87BDCF03080 2 0
Heat Mechanic Equivalence | 4185 10 3 |1.05900000000000 2 12
Hydrogen atom mass (neutral) mH 1.008142 1.0215p817B95A30 2 0
Loschmidt’s constant 2.68841 10 9 1.407BC3200000002 3l
Neutron mass mn 1,008982 1.024CA4F440AF20 2 0
Permeability in vacuum uo 1.2566310 B 1.AFC657FFABAG90 2 27
Permittivity in vacuum e0| 8.8541B 10 14 |1.8EC1IBECA727920 2
Planck constant h 6.62617 10 3 |1.B86270c8987D70 2 11
Proton mass mp 1)/007593 1.01F19D66ADB400 2 0

Intel Corporation 29

Table A-1 Engineering and Scientific Constants Analyzed.

Constants Symbol Value x Hex Value
Rydberg constant for a nucleus of infi- Rinf 109737 1.ACA90000000000 2 16
nite mass
Rydberg constant for hydrogen Rh 109674 1.ACA90000000000 2 16
Speed of light in vacuum c 2.9979p 10 8 |1.1DE768000000002 28
Standard Atmospheric Pressure latm 1.01325 10 > 1.8BCD0000000000 2 16
Sun diameter 189 10 9 |1.4B66DE000000002 ¥
Sun mass ms 199 10 P |1.91E096B424EC502 10
Thermal voltage at 300 K kT/q 0.0259 1.A8587P3DD97F60 2 6
Universal Gravitation Constant G 6.673 10 1 1.257B4D002790D0 2 "4
Volume of a perfect gas at 0 degree C 22.415 1.66A3D70A3D70A02 4
and 1 atm.
Wavelength of 1-eV quantum lambda 1.239[77 1.3D6191148FDAOO 2 0
Wien constant for displacement’s law 0.2898 1.28C154C985F070 2 2

Table A-2 below contains the list of combinations of the aforementioned constants that were
examined additionally for possible oacences of an error due to the flaw. No problem was
found.

Table A-2 Constants Used in Combination

Equation

Constants

Magnetic induction (Biot-Savart).
B=(2Clc)

C = Coulomb constant
¢ = speed of light

wi=(2rihic 3 e M ikm)-1)

Planck’s formula for spectral emittance:

h = Planck constant
¢ = speed of light
k = Boltzmann's constant

Clausius state equation:
p(V - nb) = nRT

b = (2/3)(No)(Pi)(d 3)
No = Avogadro’s humber

Schroedinger equation (Bohr’s postu-
late): mvr = n(h/2Pi)

h = Planck constant

c? 8.987524 10 16 1.3F4DODFA4D90002 6

kic 2 9.999883 10 B 1.AD7DE0586863902 24

hic 2 7.372630 10 Ol 1.61142E489F61602 167

hik 41799277 10 " 1.A6261C4CA093102 2

h/2Pi 1.054587 10 3* 1.185B78DB562900 2 113

NoO*Pi 1.89187910 2% 1.909EF751EF77402 &0
30 Intel Corporation

Table A-3 below indicates the commonly used multiples of the important constants and their
multiples that were checked. None of these multiples were found to be at risk.

Table A-3 Multiples of Common Constants

e 1.087312710 1 1.BD5D000B3DA0DO 2 3
2e 5.4365636 1.5BFOA87427F0102 2
e 2.7182818 1.5BF0A87427F0102 1
el2 1.3591409 1/5BFOA87427F0102 O
el3 0.9060939 1|CFEB8A2735CEF0 2 1
el4 D.6795704 1/5BFOA6C6A8C6602 1
el5 D.5436563 1/165A1E59875AD0 2 1
el6 D.4530469 1/CFEB86CC377B902 2
el7 D.3883259 1/8DA54E02C25220 2 2
el8 D.3397852 1/5BFOABC6ASC660 2 2
6Pi 1.8849556 10 1 1.8209F5CD213080 2 3
4Pi 1.2556637 10 1 1.0128FOE504FCF0 2 3
2Pi 6.2831853 1/921FB53C8D4F102 2
Pi 3.1415927 1|921FB5A7ED19702 1
Pil2 1.5707963 1.921FB4D12D84A02 O
Pi/3 1.0471976 1.0C152454731EE0 2 O
Pil4 0.7853981 1.921FB323AE5AF0 2 1
Pi/5 0.6283185 141B2F661F18CA02 1
Pil6 0.5235987 1.0C1520F974CB80 2 1
Pil7 0.4487989 1.CB91FO57EC50202 2
Pi/8 0.3926991 1.921FB67EACAE502 2
sq(2) 1.4142136 1.6A09E7098EF5002 O
sq(3) 1.7320508 1.HB67AE6502B910 2 0
sq(Pi) 17724539 1.G5BF89EE2AEB60 2 O

Intel Corporation 31

32

Intel Corporation

