
Multimedia Systems (1994) 2:103-117
M u l t i m e d i a Sys t ems
�9 Springer-Verlag 1994

A performance analysis of personal computers
in a video conferencing environment
Khoa D. Huynh 1., Taghi M. Khoshgoftaar 2.*

1 IBM Corporation, Internal Zip 1430, P.O. Box 1328, Boca Raton, FL 33429-1328, USA
2 Department of Computer Science & Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA

Abstract. New intelligent adapters, advanced bus architec-
tures, and powerful microprocessors have resulted in a new
generation of personal computers with true multimedia capa-
bilities. Collaborative applications are the most demanding ap-
plications of multimedia technologies today. We present a per-
formance analysis of how effective video conferencing appli-
cations can be supported with personal computers connected
through a local area network (LAN). We also evaluate the per-
formance impact of an advanced, peer-to-peer I/O protocol.
The key factor in the performance of a video conferencing
system over a LAN is the video compression and decompres-
sion algorithms. At high video frame rates, the peer-to-peer
I/O protocol performs better than the traditional, bus-master,
interrupt-driven I/O protocol.

Key words: Video conferencing - Subsystem control block
architecture - Peer-to-peer I/O - Interrupt-driven I/O - Move
mode - Locate mode

1 Introduction

A government study reports that interactive video instruction
improves achievement by an average of 38% over conventional
instruction methods while reducing the time needed to be-
come proficient by 31% (Fletcher 1990). Another study (Isaacs
and Tang 1993) finds that, compared with audio-only, a video
channel adds or improves the ability to show understanding,
forecast responses, give nonverbal information, enhance ver-
bal descriptions, manage pauses, and express attitudes. These
findings suggest that full-motion, interactive video applica-
tions may be particularly useful for handling conflict and other
interaction-intense activities. Recent advances in communica-
tions technology have made large bandwidth available at rea-
sonable cost, and the advances in computer technology have
produced powerful personal computers with built-in video and

* e-mail: khoa@vnet.ibm.com
** e-mail: taghi@cse.fau.edu
Correspondence to: K.D. Huynh

audio capabilities, such as the IBM UltiMedia 1 family of Per-
sonal System/21 (PS/21) computers. The advent of such mul-
timedia computers has given rise to many computer supported
collaborative applications. An important class of collabora-
tive applications is video conferencing between two or more
persons (participants) (Vin et al. 1991).

In a typical video conferencing environment, each partici-
pant is equipped with a personal computer, a video camera, and
a voice-recording device, such as a microphone. The partici-
pants' computers are connected via a network. This network
can be a local area network (LAN), such as Ethernet or Token
Ring, or it can be a wide area network, such as the Integrated
Services Digital Network (ISDN). At the heart of each par-
ticipant's station is the personal computer, which contains a
video adapter card. The video adapter can receive the video
input from the camera, compress the video frames, and send
the compressed frames across the network to other confer-
ence participants. At the same time, the personal computer
must also be able to receive compressed video frames from
other participants. Once the (compressed) video frames are
received from the network, the video adapter in the computer
must mix the video frames from all participants into composite
frames, decompress the composite frames, and display them
on the personal computer's monitor. The process of mixing
video frames from multiple participants (sources) into com-
posite frames involves some level of image processing (Vin et
al. 1991). Several proposals for multisource, multinser video
mixing (compositing) are discussed in Yun and Messerschmitt
(1993). In addition to video information, voice (audio) and text
information (chalkboards) must be communicated among all
conference participants. The disk storage of video, voice, and
data, as well as their retrieval and playback, must also be sup-
ported in some video conferencing environments. The disk
storage and retrieval of conference information is important if
the conference participants wish to go back and review what
was discussed during an earlier segment of the conference
(Gibbs et al. 1987; Little and Ghafoor 1990).

E IBM, Personal System/2, PS/2, Micro Channel, UltiMedia,
ActionMediaII, 386SLC, 486SLC2, P2P are trademarks or registered
trademarks of International Business Machines Corp.

104

In parallel with the research and development of multi-
media applications, the IBM Subsystem Control Block (SCB)
architecture has been defined to fully exploit the functional
and performance capabilities of increasingly powerful micro-
processors, advanced system bus designs, such as the Micro
Channel 1, and a whole new array of intelligent adapters (also
called bus masters). The SCB architecture has two operating
modes, the Locate Mode and the Move Mode (IBM 1991). The
Locate Mode represents the more conventional I/O processing
model where the host processor and system memory are in-
volved in facilitating data transfers between two I/O adapters
in the system. This mode is being used in the current generation
of personal computers. In contrast, the Move Mode specifies
a new peer-to-peer I/O protocol between various intelligent
adapters in a system - without involving the host processor
and system memory. Data transfers are initiated and take place
directly between two adapters in the system. The critical issue
here is how effective these SCB operating modes function in
I/O-intensive environments, such as video conferencing and
other multimedia applications. In this study, we evaluated, in
a video conferencing environment, (1) how effective the SCB
architecture was in using the main components of a personal
computer system, such as the processor, the Micro Channel,
and intelligent adapters, (2) how it impacted the time delays
in sending and receiving video information to and from the
network connecting the conference participants, and in partic-
ular, (3) how the two SCB operating modes, the Locate Mode
and the Move Mode, compared with each other.

The organization of this paper is as follows. We first discuss
the type of video conferencing environment considered in our
study. We then present an overview of the SCB architecture and
its two operating modes. Our simulation models for the two
SCB modes operating in a video conferencing environment are
described next. The performance analysis is presented after the
description of the models. Finally, a summary of these results
is provided in the last section.

2 System under consideration

We considered a video conferencing system with two or more
conference participants. Each participant can be a single per-
son or a group of people. At the location of each participant,
there is at least a personal computer, equipped with a video
adapter card, and a camera for video recording. There is no
consideration of audio (voice), since audio typically takes only
approximately 10% of the video's bandwidth, storage capac-
ity, and processing power. Audio can usually be included with
full-motion video with little, if any, additional cost (Harney
et al. 1991). In addition, we are only interested in the sys-
tem architectures required to support a video conferencing
system, rather than the software architectural models for pro-
viding conference connection services and configuration man-
agement.

In our study, we considered each conference participant's
computer as shown in Fig. 1. In the upper left portion of Fig. 1
are the usual components of the IBM PS/2 system, including

the system (host) CPU, the system memory, various I/O de-
vices, such as disks, network controllers, etc., and the Micro
Channel. Also connected to the Micro Channel is an advanced
video adapter, called the Digital Video Interactive 2 (DVI) sub-
system. Thi s subsystem is based on the second-generation In-
tel i7502 video processor (Harney et al. 1991). It is similar
to the IBM ActionMedia II 1 adapter that was introduced in
1992. However, what differentiates this adapter from the Ac-
tionMedia II adapter is the existence of an Intel 80C1862 pro-
cessor to support the SCB architecture. In addition, we have
also assumed a higher-performance 50-MHz i750 video pro-
cessor (the ActionMedia II uses the 25-MHz version of the
i750, which is currently available). The 80C 186 processor pri-
marily acts as the central processor of the video subsystem. It
handles the SCB protocol for the subsystem, such as decoding
the SCBs (Locate Mode) or control elements (Move Mode) re-
ceived from the host processor or other adapters. In the Move
Mode, it also generates control elements to other adapters in
the system, and processes replies from them. The Video RAM
(VRAM) plays the role of a general-purpose buffer for the en-
tire video subsystem. It is in this buffer that video images are
kept to be compressed, decompressed, mixed, or manipulated.
The VRAM is multiported, and has very fast memory cycle
time (less than 100 ns).

The i750 processor includes two chips, the 82750PB pixel
processor and the 82750DB display processor. The 82750PB
pixel processor was designed on reduced instruction set com-
puting (RISC) principles (Harney et al. 1991). It can support
single-cycle instruction execution, real-time compression and
decompression of digital motion video at up to 30 frames/s. At
50-MHz clock speed, the pixel processor can compress digital
motion video at 30 frames/s using only 50% of its clock cy-
cles; motion video decompression takes only 25% of the total
clock cycles. In general, the pixel processor compresses and
decompresses video images from VRAM, generates graphics
and special effects. The 82750DB display processor handles
real-time display functions and drives the monitor.

The data flows within a video conferencing system with
only two participants are illustrated in Fig. 2. In the upper half
of Fig. 2, we see how the video frames are captured, com-
pressed, and sent to the other (remote) participant across the
token-ring network. In the lower half of Fig. 2, the video frames
are received from the token-ring network, transferred to the
video adapter, decompressed, and then displayed on the mon-
itor. It is interesting to note that the SCB Locate Mode uses
system memory as an intermediate destination for transferring
compressed video frames between the VRAM on the video
adapter and the token-ring adapter, while the SCB Move Mode
bypasses system memory. We will revisit this later as we dis-
cuss the SCB architecture in more detail. It should be em-
phasized that Fig. 2 only shows video data moving from one
participant to another in one direction; in reality, the data flows
occur in both directions between two participants.

2 Intel, i386, i386DX, i486, i486DX, i750, 80C186, Digital Video
Interactive, DVI, Real Time Video, RTV are trademarks or registered
trademarks of Intel Corp.

105

IBM PS/2 Main System
.

Video Adapter
r .

Control

Addre

r Live or Recorded I GenLockSync
| Real-Time
L Video Input Composite ~deo

~deo Data

v eo- j iv, o (VRAM) Array Sync
(1M-4G byte) and

Control
Serial Bus

Data I/0

F•--"•'•"-•! 82750DB
Display

H-R~et Processsor

s,~c

Buffer/Mixer ~
�9 (Opt iona l) I I

i
i .

360 KB/Frame 8 KB/Fmne

Decompress]4

(S2750PB) (82750PB)
2

.

locate ~ ! Mow Code [

i Network Code SutrP~

I Add.~,~ p"

SEND (Capture ->NetwoflO ~
RECEIVE (Network->Di~lay) > ~ Toll.-Ring

I LANAdaptor [

Is" ' ~ 1 : code
t..~e~ ~ I Move

I ',Mo~ [Video Confercaeiag I

. - d

Fig. 1. The system under
consideration
Fig. 2. The data flow within a
video conferencing system with
two participants

Both midrange and high-performance PSI2 systems were
studied. Below are some of the component characteristics that
were implemented in the models used in our study:

The host processor. For the midrange PS/2 Model 70 system,
the host processor is the Intel i386DX 2 processor running at
25 MHz with 64 kbytes of external cache. For the high-end
PS/2 50 MHz Server, the host processor is a 50-MHz i486DX 2
processor with 256 kbytes of second-level cache. From now
on, we refer to the midrange PS/2 Model 70 as simply the

386 system, and the high-end PS/2 50 MHz Server as the 486
system.

The system memory. In our work, we assumed that the amount
of physical memory was quite large so that we would never
reach the memory overcommit state; there was no memory
swapping as a result of memory shortage. However, we did
take into account the memory access contention in our models.
The memory access speed is dependent on the host processor 's
cycle time. We assumed that, on both the midrange and high-

106

end PS/2 systems, the memory controller used the efficient
dualpath design. This design implements separate data paths
and first-in-first-out (FIFO) queues for the host processor and
the Micro Channel. This enables both the host processor and
the Micro Channel to buffer memory requests simultaneously
and perform other tasks while the memory controller processes
those memory requests in the FIFO queues.

The Micro Channel. The midrange PS/2 Model 70 has a 32-
bit Micro Channel with a 300-ns basic cycle time, giving an
effective data transfer rate of 13.33 MB/s. The high-end PS/2
50 MHz Server supports the 32-bit data streaming mode with
an effective data transfer rate of 40 MB/s.

One (hypothetical) DVI video subsystem. As discussed previ-
ously, this video subsystem implements the Intel 80C186 pro-
cessor to handle the SCB protocols. It also has the 82750PB
pixel processor to handle the compression and decompres-
sion of digital motion video, among other tasks. The actual
IBM ActionMedia II adapter, on which this DVI subsystem is
based, runs the Real-Time Video 2 (RTV 2) microcode to per-
form compression and decompression on the i750 pixel pro-
cessor. The RTV microcode has a five-stage pipeline for video
compression and a three-stage pipeline for video decompres-
sion. The RTV compression pipeline is run at the frame rate
while the decompression pipeline is run at twice the frame rate.
The pipelines are designed to keep the video frames moving
smoothly from one conference participant to the others across
the token ring. This is necessary because there are many vari-
able factors that can adversely affect the delays of motion video
frames, such as host processor utilization, network traffic and
bandwidth, etc. The pipelines act as a series of buffers to en-
sure that video frames are not lost if the network is busy or
the host processor cannot schedule the software at the required
time.

The negative impact of these pipelines is that they dra-
matically increase the capture-to-playback time delays, which
are very critical in video conferencing systems. Since the i750
pixel processor can compress and decompress motion video
frames at 30 fi'ames/s, we assumed that both the compres-
sion and decompression pipelines were single-stage in our
study. There were several reasons for us to assume single-
stage pipelines (which would be the case for more advanced
video conferencing hardware):

1. The ActionMedia II adapter uses the 25-MHz version of
the i750 video processor. Our hypothetical DVI video subsys-
tem uses the higher-performance, 50-MHz version of the i750
processor. As a result, the video compression and decompres-
sion can be completed in a single frame time (at 30 frames/s)
with comfortable "dead" time for other activities.

2. The pipelines would not be needed for buffering pur-
poses if we could implement normal memory buffers instead.
We assumed that the microcode would be responsible for han-
dling these buffers in our study.

3. The single-stage pipelines would allow us to have mini-
mal video compression and decompression time delays. These
delays are independent of the system architectures, which are

the real focus of our study. Thus by minimizing these delays,
we can see the impact of the SCB architecture in the capture-
to-playback delays more easily.

In addition to compression and decompression of motion
video, we also use the DVI video subsystem for video mix-
ing if there is more than one incoming video stream from the
network (in the case of fully distributed video mixing scheme,
to be discussed later). Derived from empirical measurements
obtained for the ActionMedia II adapter, our DVI subsystem
based on the 50-MHz i750 video processor should be able
to compress a full-motion video frame in 16.66 ms (half the
frame time at 30 frames/s) and decompress a video frame in
8.33 ms (a quarter of the frame time at 30 frames/s). We also
assumed that the overhead of mixing multiple video frames
into a composite frame would be 8.33 ms. These assumptions,
in addition to the fact that our DVI subsystem has the 80C186
processor and uses single-stage pipelines for compression and
decompression, lead to the term "hypothetical" used in this
paper, since there is no such video adapter currently available.

One SCSI-2 I/0 subsystem. This includes the IBM PS/2 SCSI-2
adapter, which can support both the Locate and Move Modes
of the SCB architecture, a small computer system interface
(SCSI) bus, and one SCSI disk. The adapter has an Intel
80C186 processor to support the SCB protocols, just as in
our DVI video subsystem discussed previously.

One (hypothetical) 32-bit token-ring adapter. We assumed that
the conference participants were connected via a LAN us-
ing the 16-Mbits/s token-ring network technology. There have
been several token-ring adapters introduced in the past several
years for the PS/2 systems. However, there is no token-ring
adapter currently available that can support the SCB Move
Mode. As a result, we had to make some assumptions about
the architecture of this adapter. We assumed that the token-ring
adapter had the same general architecture as our DVI video
subsystem discussed previously in this paper. Like the DVI
video subsystem, it would have an Intel 80C186 processor to
handle the SCB Locate and Move Modes, as well as a general-
purpose memory buffer to manipulate (assemble/disassemble)
data for transmitting across the token ring. As such, it would
have the same processing overhead as the DVI video subsys-
tem in supporting the SCB protocol and handling the memory
buffer. We also assumed in our study that the token ring was
not saturated, so the token waiting time was negligible.

According to our analysis and others (Little and Ghafoor
1991), the main problem with the host processor in a video
conferencing system is that the software code providing the
conference services may not be scheduled within a strict tim-
ing constraint when required because the processor is busy per-
forming other tasks. This is a typical problem in other real-time
systems as well. The problem has more to do with processor
scheduling than processor utilization. As a result, we did not
consider background activities that could require substantial
CPU processing and had nothing to do with video conferenc-
ing. An example of the type of background activities that we
would like to avoid is the nonvideo-conferencing graphics op-
erations that rely heavily on the host processor to perform most

of their work. However, we considered the background file
transfers of video information. Conference participants might
want to review an earlier segment of their conference or some
video images stored on disk. In this case, the video informa-
tion recorded earlier on disk must be retrieved and transferred
across the network linking all participants. We assumed that
the disk from which video information was retrieved resided
locally within the system under consideration.

Our study focused on two types of systems: a video con-
ferencing system with centralized video mixing, and a sys-
tem with fully distributed video mixing. There are many tech-
niques for mixing multiple video streams into a single com-
posite stream: centralized mixing, fully distributed mixing,
and hierarchical mixing (Vin et al. 1991; Yun and Messer-
schmitt 1993). In centralized mixing, each participant's com-
puter sends a video stream to a central video mixer. The central
mixer forms a composite video stream from all video streams
coming from all participants. This mixer then sends this com-
posite video stream to each participant for playback. Thus
each computer must be able to support two separate video
streams: one outgoing to the central mixer, and one compos-
ite stream coming from the mixer. However, fully distributed
mixing requires that each participant uses the network's multi-
cast capability to send its video stream to all other participants.
It also requires that video streams from all other participants
can be received, mixed together to form a composite stream,
and played back on the monitor. This approach is the simplest
and easiest to implement, but it does incur the duplication of
processing power and network bandwidth to perform video
mixing at each participant's station.

Video mixing requires some amount of image processing
(Ramanathan et al. 1992; Vin et al. 1991). We assumed here
that the mixing could be done by microcode running on the
i750 pixel processor, and that the mixing overhead was the
same as that of video decompression. Regardless of the number
of video streams, there is always one image to be decompressed
and displayed on the monitor of each conference participant.

In this study, each participant in a centralized mixing sys-
tem should be able to handle three different data streams:

- An incoming (perhaps composite) video stream from the
central mixer across the network,

- An outgoing stream to be sent across the network to the
central mixer, and

- A continuous video file transfer stream at 30 frames/s.

However, if the video mixing is done at each participant's
station as in a fully distributed mixing system, each participant
must be able to support at least four data streams concurrently
in a conference involving more than two participants. In the
case of the three-participant conference, each computer must
be able to support the following four data streams:

- Two incoming video streams from the other two partici-
pants,

- One outgoing video stream to be sent across the network
to the other participants (perhaps using the network's mul-
ticast capability), and

- A continuous video file transfer stream at 30 frames/s.

107

All video streams are multiplexed while moving across the
network. Within a participant's computer, the video streams
also share the Micro Channel. In a fully distributed mixing sys-
tem, multiple incoming streams from the network are parsed
and then mixed together to form a composite stream by the
microcode running on the Intel i750 pixel processor.

On some systems, the average size of the (compressed)
video frames and the packet size used to transfer data across
the LAN are not the same. Many frames can be combined into
a larger data packet to transfer across the network. However,
this tends to introduce additional time delays between video
capture and playback on a remote system. These delays must be
minimized. With a 45:1 video compression ratio and the RTV
microcode, the average frame size is about 7-8 kB, which is
also found to be the case in Crimmins (1993). The maximum
packet size on the standard 16-Mbits/s token-ring network is
8 kb. As a result, each video frame will be sent on the network
as a separate packet, so the time delays between video capture
and playback should be minimal.

The Motion Picture Experts Group (MPEG) standard spec-
ifies that a video signal (and its associated audio) can be com-
pressed to a bit rate of about 1.5 Mbits/s with acceptable quality
(Le Gall 1991). For video services using the ISDN, the Consul-
tative Committee on International Telegraphy and Telephony
(CCITT) Recommendation H.261 states that a single standard,
p • 64 kbits/sec (p = 1, 2, 3 , . . . , 30), can cover the entire ISDN
channel capacity (Liou 1991). With p = 30, the maximum bit
rate as specified by the H.261 standard can be up to 2 Mbits/s.
In this study, we assumed a maximum bit rate of 2 Mbits/s per
video stream.

3 T h e S u b s y s t e m C o n t r o l B l o c k a r c h i t e c t u r e

in v i d e o c o n f e r e n c i n g

The Subsystem Control Block (SCB) architecture enhances
the potential of intelligent I/O adapters (bus masters) by defin-
ing the logical protocols and control structures that are used
to transfer command/control information, data, and status in-

formation between the host processor and an I/O adapter,
or directly between I/O adapters themselves (peer-to-peer)
(IBM 1991). The architecture provides command chaining,
data chaining, signaling, and synchronization of commands
and status information. It separates the delivery of control in-
formation and data to increase the system performance, raise
the level of functional capability, and provide more design flex-
ibility. This key feature was considered carefully in our study.
The SCB architecture has two operating modes: the Locate
Mode and the Move Mode.

3.1 The SCB Locate Mode - traditional approach

Most current I/O adapters used in personal systems today sup-
port the Locate Mode (or some variants) of the SCB architec-
ture. It is a bus-master, interrupt-driven I/O protocol. In the
Locate Mode, the control structure is a relatively fixed format
structure, called the command control block. This structure al-
lows the command, control, and status information, as well as

108

Host Data
.Processor

Atl~ t ion I

Re#,,~ J
a

Control

First

i
!

q
!

l
i I t

' I I , Buffet

i

l

~~176 I v.,.

I / 0 A d ~ t e ,

Shared Memory
.

Inbound

, ; 2)0N [' o - L l ,,~

J

4-a-q

Processor �9

J

5=1
4=1

V

Fig. 3. Subsystem control block architecture: a Lo-
cate mode; b Move mode

pointers to data buffers in system memory, to be passed from
the host processor to an I/O adapter (Fig. 3a).
In the Locate Mode, only the host processor can send requests
to an I/O adapter. To send a request to an I/O adapter, the
host processor first builds the control bIock in system mem-
ory to describe the I/O operation that needs to be performed
(an I/O request). It then writes the physical memory address

of the control block to the adapter's command interface regis-
ters, and a device identifier to the adapter's attention register,
which inten-upts the adapter's on-board processor. After being
interrupted, the adapter's processor uses the memory address
in its command interface registers to locate the control block
in system memory and fetches it into its own storage area
for execution. After the I/O request is completed, the adapter

109

interrupts the host processor, and supplies it with status in-
formation. The adapter's reply to the host processor must be
synchronized with the request.

As an example, let us consider the case where a video frame
must be sent to the token-ring network. First, the video flame
is captured from the recording camera into the VRAM of the
video adapter. The frame is then compressed by the i750 pixel
processor on the adapter. After the frame is compressed, the
video adapter sends an I/O interrupt to the host processor. The
host processor formulates a control block in system memory
and interrupts the video adapter, instructing it to transfer the
compressed video frame into system memory. The 80C186
processor on the video adapter then fetches the control block
from system memory, decodes it, and initiates a data trans-
fer from the VRAM to some data buffer in system memory.
The address of this buffer is specified in the control block.
Once the compressed flame is in system memory, the video
adapter sends the I/O-complete status back to the host proces-
sor. Upon receiving the status, the host processor formulates
another control block in system memory and interrupts the
token-ring adapter, asking it to get the compressed video flame
from system memory. The token-ring adapter then fetches the
control block from system memory, decodes it, and transfers
the flame from system memory to the token-ring network. Af-
ter the data transfer is completed, it sends the I/O-complete
status back to the host processor, indicating that the request
has been completed. As a result, both the host processor and
system memory are involved in moving the compressed video
frame between the VRAM on the video adapter and the token-
ring network.

The operation of the Locate Mode is serial in that the host
processor cannot send another request to the same I/O device
(disk, LAN connection, etc.) until the current request has been
completed. There can only be one request active per device at
any given time, because requests to the same device cannot be
"tagged". The host processor, however, can send requests to
other devices through the same or another I/O adapter.

3.2 The SCB Move Mode - new approach

The Move Mode supports I/O data transfers by using shared
memory interfaces to deliver requests and control-related in-
formation between two I/O adapters, or between the host pro-
cessor and an I/O adapter, in the system (Fig. 3b). This provides
true peer-to-peer relationship between all system components.
The key feature in the Move Mode is that an I/O adapter can
send requests to, and accept requests from, another I/O adapter,
not just the host processor. In the Locate Mode, an I/O adapter
can only receive requests from the host processor.

The Move Mode uses control elements instead of control
blocks. The control elements are variable in length and can
contain I/O requests, status, or error notifications. They can
be used by the host processor or an intelligent I/O adapter
to deliver requests or replies to another adapter. The control
elements are moved between I/O adapter pairs, or between
an adapter and a host processor, through a pair of delivery
pipes. Each pipe behaves as a FIFO queue, and allows for

the delivery of control elements in only one direction. Full
duplex operation thus requires a pair of pipes. There is one
pair of delivery pipes for each pair of I/O adapters (or for each
adapter and the host processor) that want to communicate with
each other. Fig. 3b shows three pairs of delivery pipes used by
two I/O adapters and the host processor to communicate with
one another. A delivery pipe must be in memory shareable
by the sending and receiving adapters. This does not mean
that the pipes must reside in system memory; they can be
in an I/O adapter's memory buffers, provided that any other
adapter or host processor that wants to communicate with it
can access those memory buffers. In this study, we assumed
that the delivery pipes between the I/O adapters were not in
system memory. The pipes allow multiple control elements to
be queued and processed asynchronously to each adapter or
host processor. Unlike the Locate Mode, the Move Mode is not
serial in nature: it can support the queuing of many requests
to the same I/O device in the delivery pipes.

Let us consider the case of moving a video frame to the
token-ring network. First, the video flame is captured and
compressed in the VRAM of the video adapter. After the
video flame is compressed by the i750 pixel processor, the
80C186 processor on the video adapter performs some pro-
cessing on the compressed frame, such as attaching a header
to the frame, and so on. It then builds a control element in
VRAM, and sends it to the token-ring adapter through a de-
livery pipe. Once the token-ring adapter processes the control
element extracted from the delivery pipe, it sets up a direct
data transfer of the compressed video frame between the video
adapter (VRAM) and itself. The video frame is eventually fed
onto the token-ring network. The host processor and system
memory are not involved at all in this data transfer. However,
the host processor does have to send a control element to the
video adapter at the start of each video stream (not flame) to
initialize the video adapter and supply it with necessary in-
formation about the video stream. After that, the transfer of
frames in the video stream is handled completely by the video
and token-ring adapters.

4 Modeling methodology

In our work, we used the IBM Research Queuing Package
(RESQ) (MacNair and Sauer 1985; Saner and MacNair 1979,
1984). We have decided to use the simulation approach mainly
because the SCB architecture and the system hardware mod-
eled here are highly sophisticated, and thus, analytical solu-
tions could not be easily obtained. In addition, the models need
some capabilities that are only provided with simulation (not
analytical modeling) in RESQ, such as the capability to make
routing decisions based on the status of simulation conditions
as well as probabilities, etc.

4.1 Description o f models

The focus of our work was the construction of simulation mod-
els for the Locate Mode and Move Mode of the SCB archi-
tecture. The models were written in the RESQ language. Each

110

model is a set of open chain submodels, simulating multiple
concurrent video data streams and file transfers. Depending
on the particular video conferencing system that we want to
simulate, we can enable or disable each of the submodels in-
dividually. Deterministic interarrival times are used for frame
rates, and exponential distribution with a mean value of 8 kB
is used for frame sizes. For a more detailed description of the
models, refer to (Huynh and Khoshgoftaar 1993).

The access contention for the system shared memory and
the Micro Channel is modeled by representing these com-
ponents as "active" service centers, rather than "passive" re-
sources, in RESQ. The models have separate memory queues
for the memory traffic initiated by the host processor and the
adapters on the Micro Channel, reflecting the dualpath mem-
ory controller design. Arbitration on the Micro Channel is
modeled with the processor-sharing discipline in RESQ.

In the Move Mode model, the delivery pipe from a source
adapter to a destination adapter is modeled as a queue in front
of the destination adapter. Each queue is dedicated to the con-
trol elements sent from each particular source adapter; each
source adapter has its own queues to the same destination
adapter, as specified by the SCB architecture. The pipe is in
the destination adapter's memory. The SCB Move Mode also
recommends that all data transfers between two adapters are
made between the memories on those adapters. In the case of
the video adapter and the token-ring adapter, for instance, the
data transfers are made between the VRAM and the token-ring
adapter's memory buffers. The system memory is not used in
these data transfers.

In the Locate Mode model, the queues in front of service
centers representing adapters are not used (that is, they all
have the queue length of 1), since requests (control blocks)
are queued at the device-driver (operating system) level run-
ning on the host processor, not at individual adapters. This is
to reflect the fact that there is no delivery pipe in the Locate
Mode. Tokens are used in the Locate Mode model to ensure
that the host processor cannot send another request to a device
(and its adapter) before the current request to the same device
is completed. There is no such token used in the Move Mode
since control elements are queued in the delivery pipes. How-
ever, some tokens are used in both models to calculate the time
delays in RESQ.

4.2 Confidence interval methods

For confidence interval estimation, we used the independent
replication method. Following are the specific parameters that
we specified for the simulation runs of the models:

- Number of replications: 5.

- Confidence interval: 90%.
- Simulation length: 2000 frames (over 1 s of full motion

video).
We used the same simulation parameters for simulation

runs of both models, so the results can be directly compared
to one another.

4.3 Model validation

We have validated our Locate Mode models by empirical per-
formance measurements collected on real hardware. The file
transfer submodel's results are comparable to those obtained
on the real PSI2 systems under similar workload conditions.
For the video conferencing workload, we have also obtained
empirical performance data for an existing person-to-person
(P2P1) software package running on the IBM ActionMedia II
card. The P2P software is the basic video conferencing appli-
cation between two persons. The ActionMedia II card uses the
RTV 2.0 microcode to compress and decompress full-motion
video at 15 frames/s. To compare our Locate Mode model's
results against the real P2P measurements on ActionMedia II,
we modified our Locate Mode model to use the five-stage com-
pression pipeline and the three-stage decompression pipeline.
The compression pipeline runs at the frame rate (15 frames/s),
but the decompression pipeline is run at twice the frame rate
(30 frames/s). In this case, the model's results are very similar
to those obtained on the real P2P software.

There is no existing hardware that can support the SCB
Move Mode, so it is much harder to validate our Move Mode
model directly. However, the same modeling techniques and
many modeling assumptions used in the Locate Mode model
are applied to the Move Mode model, so we are very confident
about the Move Mode model.

5 R e s u l t s

The models require many input parameters relating to the func-
tional and performance characteristics of the host processor,
system memory, Micro Channel, adapters, disks, video pro-
cessing hardware, and the token-ring network. These param-
eters were obtained empirically on actual hardware available
commercially or under development. The software overhead,
such as the path lengths for the file system, network support
code, and video conferencing software, were measured using
the DEKKO software analysis tool running on the IBM Op-
erating Systerrd2. For more details on the input parameters,
please refer to Table 1.

Table 1. General assumptions (input parameters for models)

Compression ratio = 45:1 = 360 kB:8 kB
Bit rate = 2.0 Mbits/s.
Token-ring packet size = 8 kB
File transfer (background) size = 4kB

No audio (10% of processing bandwidth) considered
- Compression = 50% cycle, one-stage pipeline
- Decompression = 25% cycle, one-stage pipeline
- Video mixing = 25% cycle

Software overhead:
- File system = 5 KLOCS/request.
- Network support = 5 KLOCS/request.
- Initial code (Move Mode) = 5 KLOCS/stream.
-Video conferencing = 15 KLOCS/frame (Locate)

1 KLOC/frame (Move)

111

5.1 Micro Channel utilization

It is more advantageous to reduce the Micro Channel utiliza-
tion, since the channel is the main data path connecting the host
processor, system memory, adapters, and other I/O devices.
Fig. 4a shows that the Move Mode uses the Micro Channel
much less than the Locate Mode in both 386 and 486 sys-
tems. The data indicate that the Move Mode demands 50%
less bandwidth from the Micro Channel for the same video
conferencing workload running at the same frame rate on the
same hardware, thus giving the channel higher data transfer
capacity. The data also show that the Micro Channel is not
the system bottleneck: its utilization never exceeds 20% in our
study. The Micro Channel's 40-MB/s data streaming mode
supported in the 486 system exhibits a threefold improvement
in the channel utilization and hence, its data transfer capacity,
over the normal data transfer mode used in the 386 system.

5.2 Host processor utilization

One of the key system considerations in video conferenc-
ing applications is the use of the host processor. In a three-
way conference with fully distributed video mixing scheme,
Fig. 5b shows that the i386 microprocessor in the midrange
PS/2 Model 70 would be nearly 100% utilized if the video con-
ferencing software (to be executed every frame) exceeded 60
kilolines of assembly code (60 KLOCS) in the Locate Mode,
with the video file transfers running in the background. On
the 486 system (PS/2 50-MHz Server), the host processor uti-
lization approaches 100% if the video conferencing software
is approximately 240 KLOCS in the Locate Mode. Based on
empirical measurements obtained for the existing P2P soft-
ware, the path length for video conferencing software is only
15 KLOCS/frame in the Locate Mode, so the host processor
is not likely to be a system bottleneck.

In the Move Mode, the CPU utilization is less than 0.01% in
all cases. This shows that, at least in terms of CPU utilization,
the Move Mode is superior to the Locate Mode for the i386-
based systems, since the host processor does not get involved
at all in the Move Mode, except for some initialization at the
beginning. Much of the work that the host processor must
do in the Locate Mode is done by the adapters in the Move
Mode. As the data in Fig. 5 shows, the receive/decompress
time delay increases dramatically if the video conferencing
software running per frame on the Intel 80C186 processor on
the video adapter exceeds 16 KLOCS. However, this can be
improved by having a faster processor on the video adapter.
Furthermore, the software path length for video conferencing
that the processor on the video adapter must execute per frame
is estimated to be only 1 KLOC in the Move Mode.

Across various frame rates, but in the same video confer-
encing environment, the host processor utilization does not
change in a linear fashion in the Locate Mode, according to
Fig. 6a and 6b. This is due to the impact of the video file trans-
fers running at 30 frames/s in the background. The impact of
these background video file transfers on the host processor
utilization is shown in Fig. 7a. Given the fact that the video

file transfers are running at 30 frames/s, their impact on the
host processor utilization is much larger at lower frame rates.
At 8 frames/s, background video file transfers account for al-
most 50% of the total host processor utilization, while at 30
frames/s, they only account for roughly 20%.

Comparing the data of Fig. 6a and 6b, it can be observed
that the centralized video mixing scheme uses much fewer
system resources than the fully distributed mixing scheme.
This is quite expected.

5.3 Util&ation of other system components

Since memory access speeds are dependent on the host pro-
cessor's cycle time, the data in system memory in the 486
system can be accessed much faster than in the 386 system.
This is reflected in the data shown in Fig. 7b. At 30 frames/s,
the effective memory utilization approaches 35% in the 386
system, as compared to only 10% in the 486 system (with its
burst mode). As expected, the higher the frame rate, the higher
the effective memory utilization is. This is true for the Locate
Mode only. The Move Mode does not involve system memory
in data transfers, so the system memory use is near zero in
the Move Mode. The data in Fig. 7b also indicate that the disk
utilization by the background video file transfers is 24%.

Fig. 7b also shows that a three-way video conferencing en-
vironment, with concurrent video file transfers and fully dis-
tributed mixing scheme, can use up to 53% of the token ring's
bandwidth at 30 frames/s and 20% at 8 frames/s. This assumes
the compressed frame size of 8 kB (about 45:1 compression
ratio), and a maximum bit rate of 2 Mbits/s. The 16-Mbits/s
token ring can indeed handle multiple, concurrent compressed
video data streams.

5.4 Video compress~send time delay

The video compress/send time delay refers to the time interval
from the moment a video frame is captured in VRAM until
it is sent on the token-ring network to other conference par-
ticipants. In a centralized video mixing system, there is no
significant difference between the Locate Mode and the Move
Mode in this delay (Fig. 8a). This is because most of the time
is spent in compressing the video frames, even though we as-
sumed single-stage compression pipeline. Since the pipeline
runs at the frame rate, the lower the frame rate, the longer it
would take to compress a video frame, and thus, the longer
the compress/send delay would be. As a result, the slopes of
the curves are negative as the frame rate increases. The perfor-
mance of the host processor, system memory, and the Micro
Channel does not seem to have much effect. Consequently,
video compression algorithms are the key factor in the overall
time delay in a video conferencing system.

In a fully distributed video mixing system, the system re-
source requirements, and thus resource contention, are higher
than in a centralized video mixing system. Consequently, the
Move Mode, with its lower resource utilization, can deliver
better performance than the Locate Mode in a fully distributed

112

~ ~ i - I

. ~ 5 2

15
I
L
I

T
o
N 5

100 Pe~ent(%)

8O

80

40

20

LOCATE MODE ONLY

/

/

�9 /

f "

J

f -

/

0 0
8 FPS 15 FP$ 30 FPS 15 80 120 240

FRAME (PACKET) RATE VIDEO CONF SOFTWARE (KLOCS)

1.4

1.2
T
I
M ";
E

0.8
D
E
L 0.6
A
Y

0.4

0.2

, ~onds MOVE MODE ONLY

)
4 16 64

4 a b 5 VIDEO CONF SOFTWARE (KLOCS)

100 Percent (%) 100 Percent (%)

HOST PROCESSOR UTILIZATION IN MOVE MOOK ~ �9 0.01% PROCESSOR UTIUZATION IN MOVE MODE IS < 0.01%

(FOR BOTH ~$ AND ,186 SYSTEM~) (FOR BOTH 38e AND 488 SYSTEMS)
U 80 U 80
T T
I I
L L
I 80 I 80 I"

z
A ~ A
T 40 ~ T 40

o o
N N

20 20

. - - - - - - - - -
0 0 i ,

8 FPS 15 FPS 30 FPS 8 FPS 15 FPS 30 FPS

6a FRAME (PACKET) RATE b FRAME (PACKET) RATE

Fig. 4. Fully distributed video mixing, a Micro Channel utilization, b host processor utilization. Frame rate = 30 frames/s. - - , Locate Mode
(386 system); - -, Locate Mode (486 system); - - -, Move Mode (386 system); - - -, Move Mode (486 system)
Fig. 5. Video receive/decompress delay (Fully distributed video mixing). - - , 386 system; - -, 486 system
Fig. 6. Host processor utilization. (Video conferencing software is 15 KLOCS in Locate Mode and 1 KLOC in Move Mode). - - , Locate Mode
(386 system); - -, Locate Mode (486 system); a fully distributed video mixing; b centralized video mixing

video mixing system. As can be observed in Fig. 8b, the com-
press/send delay is essentially the same for both the Locate
Mode and the Move Mode at 8 frames/s and 15 frames/s.
However, as we approach 30 frames/s, the resource contention
becomes much higher, so the Move Mode with its direct peer-
to-peer data transfer protocol results in lower time delays.
This is because the utilization of system resources, such as
the host processor, memory, Micro Channel, etc., is lower in
the Move Mode than in the Locate Mode. It can also be ob-
served that, with one additional video stream and the video
mixing overhead required in a fully distributed mixing sys-
tem, the time delays are higher than those of the centralized
mixing system at 30 frames/s. At lower frame rates (8 frames/s
and 15 frames/s), there is really no difference in the video com-
press/send time delays, regardless of the SCB modes and video
mixing schemes. It is reasonable to expect that, as more par-
ticipants are added to a video conferencing system, the time
delay differences between the Locate Mode and Move Mode,
and between centralized and fully distributed video mixing
schemes, will be more apparent.

5.5 Video receive~decompress time delay

The video receive/decompress time delay refers to the time in-
terval from the moment a video frame is read from the token-
ring network until the moment it is ready to be displayed on the
computer's monitor. Although the video decompression usu-
ally requires only 50% of the processing required for video

compression, its impact on the receive/decompress delay is
still great. This is because both compression and decompres-
sion use single-stage pipelines, which all run at the flame rate.
As a result, in a video conferencing system using the central-
ized video mixing scheme, there is no significant difference
in this type of delay between the Locate Mode and the Move
Mode, or between the 386 and 486 systems (Fig. 9a). How-
ever, it can be observed that the Locate Mode on the 386
system, with its slower host processor and Micro Channel,
is slightly worse than the Move Mode. Fig. 9b examines the
receive/decompress delay more carefully on the 386 system.
The data shows that the Move Mode performs better than the
Locate Mode at all frame rates. This is true for both central-
ized and fully distributed mixing schemes. So on a slower
system, the direct peer-to-peer transfer protocol offered by the
Move Mode delivers better performance than the more tradi-
tional I/O approach used in the Locate Mode. Figure 9b also
indicates that the delays in a centralized video mixing sys-
tem are slightly lower than those in a fully distributed video
mixing system. This is quite expected because a system with
fully distributed video mixing must handle more concurrent
video streams than a system with centralized video mixing.
In addition, in the fully distributed mixing system, the video
mixing must be performed at each participant's location while
this task is performed by a central video mixer in the cen-
tralized video mixing system. At 30 flames/s, the time delay
difference between the centralized and fully distributed video
mixing systems is larger than at lower frame rates. This is be-

113

lo0

U 8O
T
'1
L
I 6O
Z
A
T 40 !
O
N

20

7a

Percent {%)

LOCATE MODE & 386 SYSTEM ONLY

8 FPS 15 FPS

FRAME (PACKET) RATE

30 FPS

b

50 Pement(%)

IN ALL CAGES:
TOKEN RING UTILIZATION = 53% (at 30 FPS)

= 20% (at 8 FPS)
DISK UTILIZATION = 24%

8 FPS 15 FPS

FRAME (PACKET) RATE

30 FPS

Seconds
0.4

Second~ 386 SYSTEM ONLY
o,2

T
l 0.3
M
E

D
E 0,2
L
A
Y

0.1

8a

0.4

T
I 0,3
M
E

D
g 0.2

L
A
Y

0,1

8 FPS 15 FPS 30 FPS

FRAME (PACKET) RATE

lr

T
I
M
E

D
E
L
A
Y

T
I
M
E

D
E
L
A
Y

0,15

0.1

0.05

0.2

8 FPS 15 FPS 30 FPS

FRAME (PACKET) RATE

Seconds 386 SYSTEM ONLY

0.t5

0.1

0.05

0 0
8 FPS 15 FPS 30 FPS 8 FPS 15 FPS 30 FPS

FRAME (PACKET) RATE FRAME (PACKET) RATE
9a b

Fig. 7. Fully distributed video mixing, a Host processor utilization. @, with file transfers; m, with no files transfers; b host memory utilization.
- - , Locate Mode (386 system); - -, Locate Mode (486 system)
Fig. 8 Video compress/send detay. Video conferencing software is 15 KLOCS in Locate Mode and 1 KLOC in Move Mode. a Centralized
video mixing. - - , Locate (386 system); - -, Locate (486 system); - -, Move (386 system); - - -, Move (486 system); b - - , Locate (centralized);
- -, Locate (distributed); - -, Move (centralized);- - -, Move (distributed)
Fig. 9 Video receive/decompress delay. Video conferencing software is 15 KLOCS in Locate Mode and 1 KLOC in Move Mode. a Centralized
video mixing. - - , Locate (386 system); - -, Locate Mode (486 system); - -, Move Mode (386 system); - - -, Move Mode (486 system); b - - ,
Locate (centralized); - -, Locate (distributed); - -, Move (centralized); - - -, Move (distributed)

cause the system must handle more video frames per second
at 30 frames/s, and the need to handle more concurrent video
streams in the ful ly distr ibuted video mix ing system increases
the resource content ion, and thus, the t ime delays.

As in the case of the video compress /send t ime delays, the
lower the frame rate, the longer it would take to decompress a
video frame, and thus, the longer the receive/decompress t ime
delay would be. This is because the decompress ion pipel ine
runs at the f rame rate. For instance, at 8 frames/s, the t ime delay
at the s ingle-stage decompress ion pipel ine is 125 ms (without

any queuing at the pipeline), while the same type of delay is
only 33.33 ms at 30 frames/s.

Figure 10 shows the t ime delays for a single video
stream, either outgoing or incoming. The data shows that
the compress/send overhead is actually smal ler than the re-
ceive/decompress overhead, even though the compress ion
overhead takes more processing power from the pixel pro-
cessor. There are several reasons:

- The overall t ime delays for video compress ion and de-
compress ion are essential ly the same because both use single-

114

stage pipelines (even though video compression takes more
processing from the pixel processor than video decompres-
sion). The 50-MHz i750 pixel processor is able to handle both
compression and decompression within a frame time.

- The video compression process performed on the video
frames shortly after their capture in VRAM has minimum
queuing. This is due to the fact that video frames are captured
at precisely the frame rate, and so as long as the compression
process does not take longer than the frame time, there is no
queuing at the compression stage. However, the video decom-
pression process is not started until after the frames have been
received from the network, manipulated, and mixed. Many
variable factors associated with the delays at the host proces-
sor, memory, Micro Channel, and other system components,
cause the video frames to arrive at the decompression pipeline
at irregular intervals, not precisely at the frame rate. This leads
to a higher queuing level at the decompression pipeline, and
consequently, higher time delays.

So far we have seen no significant difference between the
Move Mode and the Locate Mode in the time delays. However,
the Move Mode is much better in handling video file transfer
operations (Fig. 10). This is because the video file transfer op-
erations involve two slow subsystems, the disk subsystem and
the token-ring network. In the Locate Mode, each data trans-
fer must travel from the source subsystem to system memory,
and then, from system memory to the destination subsystem;
thus, from the standpoint of a single data transfer, the two sub-
systems operate serially, not in parallel. On the other hand,
the Move Mode, with its direct peer-to-peer transfer protocol,
allows these two slow subsystems to operate in parallel (one
sending and the other one receiving data), and thus, signifi-
cantly cuts down the overall time delays.

However, a video conferencing data stream involves only
one slow subsystem, and that is the token-ring network. The
video adapter's VRAM is very fast, and data transfers be-
tween the VRAM and host memory can be performed rela-
tively quickly. Therefore, not having the data transfers to and
from host memory in the Move Mode does not result in a
significant performance improvement over the Locate Mode.
In general, the SCB Move Mode works best when the data
transfers involve two slow adapters.

5.6 Breakdown of the time delays

In this section, we will look at the video compress/send and
video receive/decompress time delays in more detail. Figure
l l a - d shows the time delays for a system using fully dis-
tributed video mixing. Figure 12a-d illustrate the same time
delays for a system using centralized video mixing.

In Fig. 1 la, only the delays in the Locate Mode are shown.
The two vertical bars on the left represent the video com-
press/send delay and video receive/decompress delay on the
386 system. The two vertical bars on the right show the same
delays obtained on a 486 system. It can be observed that the
time delays, especially the video receive/decompress delay,
are lower on the 486 system. Since there is little or no queu-
ing at the compression pipeline (as discussed in the preced-

Seconds
0,2

0.15

0.1

0.05

oN
COMP/$ND REC/DECOMP FILE XFERS

Fig. 10. General time delays, single data stream. Video conferenc-
ing software is 15 KLOCS in Locate Mode and 1 KLOC in Move
Mode. Maximum bit rate -- 2 Mbits/s, frame size (compressed) = 8 kB
(mean), frame rate =30 frames/s. ~, Locate Mode - 386 system; N,
Move Mode - 386 system; H, Locate Mode - 486 system; I , Move
Mode - 486 system

ing section), and the compression is performed by microcode
running on the i750 pixel processor on the video adapter, the
compression overhead is the same for both the 386 and 486 sys-
tems. The video conferencing software overhead, which runs
on the host processor in the Locate Mode, is smaller on the 486
system, as expected. Because of the i486's higher processing
power, there is less queuing at the decompression pipeline,
so the decompression overhead is much smaller on the 486
system. The queuing time in the operating system's network
device driver in the compress/send delay is larger than the
queuing time in the operating system's SCSI disk device driver
in the receive/decompress delay. This is because the through-
put of the 16-Mbits/s token-ring network is smaller than that of
the SCSI disk I/O subsystem. Overall, the receive/decompress
time delays are higher than the compress/send delays because
(1) there is more queuing at the decompression pipeline than at
the compression pipeline (as discussed in the preceding sec-
tion), and (2) there is the video mixing overhead in the re-
ceive/decompress delays. There is no need for video mixing
in the compress/send delays because each participant needs
only to send his or her own video out to the network.

Figure 1 lb shows the time delays in the Move Mode only.
One interesting observation is that the time delays on the 386
and 486 systems are approximately the same. This is because
the host processor does not have to do much work in the Move
Mode. There is no queuing in the operating system's device
drivers because the I/O commands are queued in the delivery
pipes between the adapters in the Move Mode.

Figure 1 lc and 1 ld compare the time delays between the
Locate Mode and the Move Mode on the 386 and 486 sys-
tems, respectively. The time delays in the Move Mode are
smaller than those in the Locate Mode, due in part to the smaller
video conferencing and network support overhead in the Move
Mode. The time delays for video compression and decom-
pression are about the same for the two SCB modes, which
is quite expected because these operations are performed by
microcode running on the video adapter, not by the host pro-
cessor. The video conferencing and network software over-
head is smaller in the Move Mode because the 80C186 pro-

115

T
I
M
E

D
E
L
A
Y

C

Seconds 0.15
386 SYSTEM ONLY

0.1

0.05

0
LOC-SEND LOC-RECV MOV-SEND MOV-RECV

0.15 ,Sec~ LOCATE MODE ONLY

0.1

0.05 H J
SEND-386 RECV-386 SEND-486 RECV-486

Seconds 0.15
386 SYSTEM ONLY

T
I
M 0.1
E

D
E
L
A 0.05
Y

0

b

T
1
M
E

D
E
L
A
Y

d

Seconds 0,15

OAf

486 SYSTEM ONLY

LOC-SEND LOC-RECV MOV-SEND MOV-RECV

SEND-386 RECV-306 SEND-486 RECV-486

Seconds 486 SYSTEM ONLY

Fig. lla--d. Time delay components (fully
distributed video mixing). Video conferenc-
ing software is 15 KLOCS in Locate Mode
and 1 KLOC in Move Mode. Frame rate
= 30 frames/s, frame size (compressed) = 8 kB
(mean), stream length = 2000 frames (packets).
~, video mixing; 1~, operating system queu-
ing; ~ , data transfers; D, network software; I ,
video conferencing software; •, compress/de-
compress: a 386 system only; b 486 system
only; c Locate Mode only; d Move Mode only

T
I
M 0.1
E

D
E
L
A 0.05
Y

T
I
M 0.1
E

D
E
L
A 0,05
Y

LOC-SEND LOC-RECV MOV-SEND MOV-RECV
0 ~ ' 0

a b

mWwl
LOC-SEND LOC-RECV MOV-SEND MOV-RECV

seconds 0,15
LOCATE MODE ONLY 0.15 Seconds

T T
I I

E N
L L

~ W N m ~ 1 7 6

o.o5 ~J~ Y

0 ~ 0
SEND-386 RECV-386 SEND-486 RECV-486

c d

MOVE MODE ONLY

SEND~8 ~ REOV~8 i

Fig. 12a--d. Time delay components (central-
ized video mixing). Video conferencing soft-
ware is 15 KLOCS in Locate Mode and I
KLOC in Move Mode. Frame rate = 30 frames/s,
frame size (compessed) = 8 kB (mean), stream
length = 2000 frames (packets). ~ , video mix-
ing; Illll, operating system queuing; m, data
transfers; [~, network software; I , video con-
ferencing software; M, compress/decompress:
a 386 system only; b 486 system only; c Locate
Mode only; d Move Mode only

cessor on the video adapter executes less code for each flame
in the Move Mode than the host processor executes in the Lo-
cate Mode. This is true even though the 80C186 processor is
slower than the i386 or i486 host processor. The overhead of
data transfers in the Move Mode is greater than that in the Lo-
cate Mode because it includes the queuing time in the delivery
pipes between the video adapter and the token-ring adapter in
the Move Mode. There is no delivery pipe in the Locate Mode,
but the I/O requests are queued inside the operating system's
device drivers; the queuing overhead in the device drivers are

shown separately from the data transfer overhead in the Lo-
cate Mode. However, it is clear from the figures that the sum of
the data transfer overhead and the queuing time in the device
drivers in the Locate Mode is greater than the sum of the data
transfer overhead and the queuing time in the delivery pipes
in the Move Mode. Note again that the video mixing overhead
only appears in the video receive/decompress time delays.

Figure 12a-d shows the time delays for a video conferenc-
ing system using centralized video mixing. There is no video
mixing overhead in the time delays because the video mix-

116

ing is performed by the central mixer located somewhere on
the network, so the video receive/decompress time delays are
lower than those in the fully distributed video mixing system.
The video compress/send time delays are approximately the
same as in the fully distributed video mixing system. Except
for the video mixing overhead, we can make the same general
observations from this figure as from Fig. 1 l a d .

6 Conclusion

In this paper, we provided an overview of the IBM PS/2 and
SCB architectures. The SCB architecture is designed to effi-
ciently manage the communication and data transfers between
the processor, intelligent adapters, and the Micro Channel.
This architecture has two operating modes, the Locate Mode
and the Move Mode. The Locate Mode embodies the more con-
ventional I/O processing model, while the Move Mode offers
a true peer-to-peer I/O protocol between intelligent adapters
on the Micro Channel. Simulation models of the PS/2 sys-
tems were constructed to determine how effective midrange
and high-end PSI2 systems can support one of the most I/O-
intensive multimedia applications today, the video conferenc-
ing environment. From the modeling data, the peer-to-peer
I/O protocol in the Move Mode uses much fewer system re-
sources (host processor, memory, Micro Channel) than the
Locate Mode. This increases the overall data processing ca-
pacity of the system. This suggests that, on a slow system,
the direct peer-to-peer transfer protocol offered by the Move
Mode delivers better performance than the more traditional
I/O approach used in the Locate Mode. In the Locate Mode,
the 25-MHz i386 processor in a midrange PSI2 system would
be 100% used if the video conferencing software running on
the host processor exceeded 60000 assembly instructions (60
KLOCS)/ffame. Even with the peer-to-peer I/O protocol in the
Move Mode, the end-to-end time delay between the capture
and playback systems would increase dramatically if the video
conferencing microcode running on the Intel 80C 186 proces-
sor on the video adapter exceeded 16 KLOCS/frame. This can
be improved by having a faster processor on the video adapter
card. However, based on empirical measurements obtained for
the existing P2P software (basic video conferencing between
two participants), the path length for video conferencing soft-
ware is only about 15 KLOCS/frame in the Locate Mode. In
the Move Mode, this path length is estimated to be approxi-
mately 1 KLOC.

The Micro Channel utilization never exceeds 20% in our
study, so the Micro Channel is not really the system bottleneck.
With a video compression ratio of about 45:1, and a maximum
bit rate of 2 Mbits/s per video stream, the token ring is 53%
utilized in a three-way video conference with fully distributed
video mixing and background file transfers.

Since, in our study, the video compression and decompres-
sion pipelines run at the frame rate, the higher the frame rate,
the lower the time delays would be. We also found that the key
to minimize the video compress/send and receive/decompress
time delays is to optimize the video compression and de-
compression (video codec) algorithms. Nothing else matters

much. We feel that significant research should be dedicated
to the development of fast and efficient algorithms for full-
motion video codec. Unlike other multimedia applications,
video conferencing environments require real-time video com-
pression. There are currently three standard video codec tech-
niques: JPEG for full-color, still-frame applications, MPEG
for motion-intensive applications, and px64 standard (CCITT
Recommendation H.261) for video-based, real-time telecom-
munications. These standards combine several approaches for
compressing and decompressing video, such as the discrete
cosine transform, vector quantization, and differential pulse
code modulation. In order to maximize the performance of
these algorithms and minimize costs, we need to determine
which aspects of these algorithims should be implemented in
hardware and which aspects should be done in software. The
implementation of video codec algorithms can generally be
classified into three different categories:

- The hardware approach: the video codec algorithms are im-
plemented in specilized hardware to maximize performance
(an example is C cube).

- The software approach: the video codec algorithms are com-
pletely implemented in software to be run on the system (host)
processor. An example of this approach is the MPEG encoder
for X Window systems (Patel et al. 1993). The encoder algo-
rithms are implemented in C and are executed on the system
processor.

- The hybrid approach: the video codec algorithms are imple-
mented on microcoded, programmable processors. An exam-
ple of this approach is the Intel i750 with the RTV microcode
discussed previously in this paper.

The hardware approach tends to provide better video codec
performance at the expense of flexibility in implementing
different algorithms. On the other hand, the software ap-
proach emphasizes flexibility over performance. However,
with the tremendous progress made in the performance of
general-purpose processors, the software approach now de-
livers respectable performance. Although the hybrid approach
achieves some commercial success with the Intel i750 and
other programmable processors, pure software implementa-
tions of video codec will be significantly improved with the
introduction of RISC and multiprocessor technologies to per-
sonal computers.

At the high rate of 30 frames/s, with fully distributed video
mixing scheme, the Move Mode does perform better than the
Locate Mode. The Move Mode is more effective if the data
transfers involve two slow subsystems, such as the disk subsys-
tem and the token-ring network. In this case, the direct peer-to-
peer data transfer capability in the Move Mode is much faster
than the two-part transfer (from the source adapter to host
memory and from host memory to the destination adapter) re-
quired by the conventional I/O protocol in the Locate Mode.
Consequently, the Move Mode seems to handle video file trans-
fer operations much better than in the case where video data
streams are moved between fast VRAM on the video adapter
and a slow token ring in a video conferencing environment.

117

As expected, the time delays on the 486 system are lower
than those on the 386 system in the Locate Mode. However,
in the Move Mode, the time delays on the 386 and 486 sys-
tems are approximately the same. This is because the host
processor does not have to do much work in the Move Mode.
On the same hardware, the receive/decompress time delays
are higher than the compress/send delays because (1) there is
more queuing at the decompression pipeline than at the com-
pression pipeline, and (2) there is the video mixing overhead
in the receive/decompress delays. There is no need for video
mixing in the compress/send delays because each participant
only needs to send his or her own video out to the network.

The time delays in the Move Mode are smaller than those in
the Locate Mode, due in part to the smaller video conferencing
and network support overhead in the Move Mode. In addition,
the sum of the data transfer overhead and the queuing time in
the device drivers in the Locate Mode is more than the sum of
the data transfer overhead and the queuing time in the delivery
pipes in the Move Mode.

There is no video mixing overhead in a centralized video
mixing system because the video mixing is performed by the
central mixer located somewhere on the network, so the video
receive/decompress time delays are lower than those in the
fully distributed video mixing system. In addition, a partici-
pant in a fully distributed video mixing scheme must handle
more concurrent video streams than a participant in a system
with centralized video mixing. The video compress/send time
delays in this type of systems are slightly less than those in the
fully distributed video mixing system.

Acknowledgements. The authors thank Richard Mendelson, Ralph
Pipitone, and John Sierra of IBM Corporation, and Dr. Neal Coulter
of Florida Atlantic University for their wonderful support. Their input
and constant encouragement have made a significant difference in the
progress of this work. Special thanks are also due to Ranga Anumu-
lapally of Florida Atlantic University for his active participation in
this project.

References

Crimmins S (1993) Analysis of video conferencing on a token ring
local area network. Proceedings of the First ACM International
Conference on Multimedia, Anaheim, Calif., pp 301-310

Fletcher JD (1990) Effectiveness and cost of interactive videodisc
instruction in defense training and education. Institute for defense
analysis paper P-2372, Washington

Gibbs S, Tsichritzis D, Fitas A, Konstantas D, and Yeorgaroudakis
Y (1987) Muse: a multi-media filing system. IEEE Software 4:
4-12

Hamey K, Keith M, Lavelle G, Ryan L, Stark D (1991) The i750
video processor: a total multimedia solution. Commun ACM 34:
65-78

Huynh K, Khoshgoftaar T (1993) A Performance Analysis of Video
Conferencing On Personal Computer Systems. Technical Report
TR-CSE-93-26, Department of Computer Science and Engineer-
ing, Florida Atlantic University, Boca Raton, Fla

IBM (1991) Subsystem Control Block I/O Architecture Technical
Reference, 1st edn. IBM, IEEE Computer Society, Los Alamitos,
CA

Isaacs E, Tang J (1993) What video can and can't do for collabora-
tion: a case study. Proceedings of the First ACM International
Conference on Multimedia, Anaheim, Calif., pp 199-206

Le Gall D (1991) MPEG: a video compression standard for multime-
dia applications. Commun ACM 34:47-58

Liou M (1991) Overview of the px64 kbit/sec Video Coding Standard.
Commun ACM 34:59-63

Little T, Ghafoor A (1990) Network considerations for distributed
multimedia object composition and communication. IEEE Net-
work 4:32--49

Little T, Ghafoor A (1991) Multimedia synchronization protocols for
broadband integrated services. IEEE J Selected Areas Commun
9:1368-1382

MacNair E, Sauer C (1985) Elements of practical performance mod-
eling. Prentice-Hall, N.J., pp 46-80

Patel K, Smith BC, Rowe LA (1993) Performance of a software
MPEG video decoder. Proceedings of the First ACM Interna-
tional Conference on Multimedia, Anaheim, Calif., pp 75-82

Ramanathan S, Rangan E Vin H, Kaeppner T (1992) Optimal commu-
nication architectures for multimedia conferencing in distributed
systems. Proceedings of the 12th International Conference on
Distributed Computing Systems, pp 46-53

S auer C, MacNair E (1979) Queueing network software for systems
modeling. Software - Practice and Experience 9:369-380

Sauer C, MacNair E (1984) The evolution of the research queueing
package. Proceedings of the International Conference on Mod-
elling Techniques and Tools for Performance Analysis, pp 5-24

Vin H, Rangan P, Ramanathan S (1991) Hierarchical conferencing
architectures for inter-group multimedia collaboration, p 17

Yun L, Messerschmitt D (1993) Architectures for multi-source multi-
user video compositing. Technical report number CS91-210, De-
partment of Computer Science and Engineering, University of
California at San Diego, September 1991

For photographs and biographies of the authors see Volume 2,
Number 1, 1994, p 50.

