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Abstract. New intelligent adapters, advanced bus architec- 
tures, and powerful microprocessors have resulted in a new 
generation of personal computers with true multimedia capa- 
bilities. Collaborative applications are the most demanding ap- 
plications of multimedia technologies today. We present a per- 
formance analysis of how effective video conferencing appli- 
cations can be supported with personal computers connected 
through a local area network (LAN). We also evaluate the per- 
formance impact of an advanced, peer-to-peer I/O protocol. 
The key factor in the performance of a video conferencing 
system over a LAN is the video compression and decompres- 
sion algorithms. At high video frame rates, the peer-to-peer 
I/O protocol performs better than the traditional, bus-master, 
interrupt-driven I/O protocol. 
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1 Introduction 

A government study reports that interactive video instruction 
improves achievement by an average of 38% over conventional 
instruction methods while reducing the time needed to be- 
come proficient by 31% (Fletcher 1990). Another study (Isaacs 
and Tang 1993) finds that, compared with audio-only, a video 
channel adds or improves the ability to show understanding, 
forecast responses, give nonverbal information, enhance ver- 
bal descriptions, manage pauses, and express attitudes. These 
findings suggest that full-motion, interactive video applica- 
tions may be particularly useful for handling conflict and other 
interaction-intense activities. Recent advances in communica- 
tions technology have made large bandwidth available at rea- 
sonable cost, and the advances in computer technology have 
produced powerful personal computers with built-in video and 
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audio capabilities, such as the IBM UltiMedia 1 family of Per- 
sonal System/21 (PS/21) computers. The advent of such mul- 
timedia computers has given rise to many computer supported 
collaborative applications. An important class of collabora- 
tive applications is video conferencing between two or more 
persons (participants) (Vin et al. 1991). 

In a typical video conferencing environment, each partici- 
pant is equipped with a personal computer, a video camera, and 
a voice-recording device, such as a microphone. The partici- 
pants' computers are connected via a network. This network 
can be a local area network (LAN), such as Ethernet or Token 
Ring, or it can be a wide area network, such as the Integrated 
Services Digital Network (ISDN). At the heart of each par- 
ticipant's station is the personal computer, which contains a 
video adapter card. The video adapter can receive the video 
input from the camera, compress the video frames, and send 
the compressed frames across the network to other confer- 
ence participants. At the same time, the personal computer 
must also be able to receive compressed video frames from 
other participants. Once the (compressed) video frames are 
received from the network, the video adapter in the computer 
must mix the video frames from all participants into composite 
frames, decompress the composite frames, and display them 
on the personal computer's monitor. The process of mixing 
video frames from multiple participants (sources) into com- 
posite frames involves some level of image processing (Vin et 
al. 1991). Several proposals for multisource, multinser video 
mixing (compositing) are discussed in Yun and Messerschmitt 
(1993). In addition to video information, voice (audio) and text 
information (chalkboards) must be communicated among all 
conference participants. The disk storage of video, voice, and 
data, as well as their retrieval and playback, must also be sup- 
ported in some video conferencing environments. The disk 
storage and retrieval of conference information is important if 
the conference participants wish to go back and review what 
was discussed during an earlier segment of the conference 
(Gibbs et al. 1987; Little and Ghafoor 1990). 

E IBM, Personal System/2, PS/2, Micro Channel, UltiMedia, 
ActionMediaII, 386SLC, 486SLC2, P2P are trademarks or registered 
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In parallel with the research and development of multi- 
media applications, the IBM Subsystem Control Block (SCB) 
architecture has been defined to fully exploit the functional 
and performance capabilities of increasingly powerful micro- 
processors, advanced system bus designs, such as the Micro 
Channel 1, and a whole new array of intelligent adapters (also 
called bus masters). The SCB architecture has two operating 
modes, the Locate Mode and the Move Mode (IBM 1991). The 
Locate Mode represents the more conventional I/O processing 
model where the host processor and system memory are in- 
volved in facilitating data transfers between two I/O adapters 
in the system. This mode is being used in the current generation 
of personal computers. In contrast, the Move Mode specifies 
a new peer-to-peer I/O protocol between various intelligent 
adapters in a system - without involving the host processor 
and system memory. Data transfers are initiated and take place 
directly between two adapters in the system. The critical issue 
here is how effective these SCB operating modes function in 
I/O-intensive environments, such as video conferencing and 
other multimedia applications. In this study, we evaluated, in 
a video conferencing environment, (1) how effective the SCB 
architecture was in using the main components of a personal 
computer system, such as the processor, the Micro Channel, 
and intelligent adapters, (2) how it impacted the time delays 
in sending and receiving video information to and from the 
network connecting the conference participants, and in partic- 
ular, (3) how the two SCB operating modes, the Locate Mode 
and the Move Mode, compared with each other. 

The organization of this paper is as follows. We first discuss 
the type of video conferencing environment considered in our 
study. We then present an overview of the SCB architecture and 
its two operating modes. Our simulation models for the two 
SCB modes operating in a video conferencing environment are 
described next. The performance analysis is presented after the 
description of the models. Finally, a summary of these results 
is provided in the last section. 

2 System under consideration 

We considered a video conferencing system with two or more 
conference participants. Each participant can be a single per- 
son or a group of people. At the location of each participant, 
there is at least a personal computer, equipped with a video 
adapter card, and a camera for video recording. There is no 
consideration of audio (voice), since audio typically takes only 
approximately 10% of the video's bandwidth, storage capac- 
ity, and processing power. Audio can usually be included with 
full-motion video with little, if any, additional cost (Harney 
et al. 1991). In addition, we are only interested in the sys- 
tem architectures required to support a video conferencing 
system, rather than the software architectural models for pro- 
viding conference connection services and configuration man- 
agement. 

In our study, we considered each conference participant's 
computer as shown in Fig. 1. In the upper left portion of Fig. 1 
are the usual components of the IBM PS/2 system, including 

the system (host) CPU, the system memory, various I/O de- 
vices, such as disks, network controllers, etc., and the Micro 
Channel. Also connected to the Micro Channel is an advanced 
video adapter, called the Digital Video Interactive 2 (DVI) sub- 
system. Thi s subsystem is based on the second-generation In- 
tel i7502 video processor (Harney et al. 1991). It is similar 
to the IBM ActionMedia II 1 adapter that was introduced in 
1992. However, what differentiates this adapter from the Ac- 
tionMedia II adapter is the existence of an Intel 80C1862 pro- 
cessor to support the SCB architecture. In addition, we have 
also assumed a higher-performance 50-MHz i750 video pro- 
cessor (the ActionMedia II uses the 25-MHz version of the 
i750, which is currently available). The 80C 186 processor pri- 
marily acts as the central processor of the video subsystem. It 
handles the SCB protocol for the subsystem, such as decoding 
the SCBs (Locate Mode) or control elements (Move Mode) re- 
ceived from the host processor or other adapters. In the Move 
Mode, it also generates control elements to other adapters in 
the system, and processes replies from them. The Video RAM 
(VRAM) plays the role of a general-purpose buffer for the en- 
tire video subsystem. It is in this buffer that video images are 
kept to be compressed, decompressed, mixed, or manipulated. 
The VRAM is multiported, and has very fast memory cycle 
time (less than 100 ns). 

The i750 processor includes two chips, the 82750PB pixel 
processor and the 82750DB display processor. The 82750PB 
pixel processor was designed on reduced instruction set com- 
puting (RISC) principles (Harney et al. 1991). It can support 
single-cycle instruction execution, real-time compression and 
decompression of digital motion video at up to 30 frames/s. At 
50-MHz clock speed, the pixel processor can compress digital 
motion video at 30 frames/s using only 50% of its clock cy- 
cles; motion video decompression takes only 25% of the total 
clock cycles. In general, the pixel processor compresses and 
decompresses video images from VRAM, generates graphics 
and special effects. The 82750DB display processor handles 
real-time display functions and drives the monitor. 

The data flows within a video conferencing system with 
only two participants are illustrated in Fig. 2. In the upper half 
of Fig. 2, we see how the video frames are captured, com- 
pressed, and sent to the other (remote) participant across the 
token-ring network. In the lower half of Fig. 2, the video frames 
are received from the token-ring network, transferred to the 
video adapter, decompressed, and then displayed on the mon- 
itor. It is interesting to note that the SCB Locate Mode uses 
system memory as an intermediate destination for transferring 
compressed video frames between the VRAM on the video 
adapter and the token-ring adapter, while the SCB Move Mode 
bypasses system memory. We will revisit this later as we dis- 
cuss the SCB architecture in more detail. It should be em- 
phasized that Fig. 2 only shows video data moving from one 
participant to another in one direction; in reality, the data flows 
occur in both directions between two participants. 

2 Intel, i386, i386DX, i486, i486DX, i750, 80C186, Digital Video 
Interactive, DVI, Real Time Video, RTV are trademarks or registered 
trademarks of Intel Corp. 
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Fig. 1. The system under 
consideration 
Fig. 2. The data flow within a 
video conferencing system with 
two participants 

Both midrange and high-performance PSI2 systems were 
studied. Below are some of  the component  characteristics that 
were implemented in the models used in our study: 

The host processor. For the midrange PS/2 Model  70 system, 
the host processor is the Intel i386DX 2 processor running at 
25 MHz with 64 kbytes of  external cache. For the high-end 
PS/2 50 MHz  Server, the host processor is a 50-MHz i486DX 2 
processor with 256 kbytes of  second-level cache. From now 
on, we refer to the midrange PS/2 Model  70 as simply the 

386 system, and the high-end PS/2 50 MHz Server as the 486 
system. 

The system memory. In our work, we assumed that the amount 
of  physical  memory was quite large so that we would never 
reach the memory overcommit state; there was no memory 
swapping as a result of  memory shortage. However, we did 
take into account the memory access contention in our models. 
The memory access speed is dependent on the host processor 's  
cycle time. We assumed that, on both the midrange and high- 
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end PS/2 systems, the memory controller used the efficient 
dualpath design. This design implements separate data paths 
and first-in-first-out (FIFO) queues for the host processor and 
the Micro Channel. This enables both the host processor and 
the Micro Channel to buffer memory requests simultaneously 
and perform other tasks while the memory controller processes 
those memory requests in the FIFO queues. 

The Micro Channel. The midrange PS/2 Model 70 has a 32- 
bit Micro Channel with a 300-ns basic cycle time, giving an 
effective data transfer rate of 13.33 MB/s. The high-end PS/2 
50 MHz Server supports the 32-bit data streaming mode with 
an effective data transfer rate of 40 MB/s. 

One (hypothetical) DVI video subsystem. As discussed previ- 
ously, this video subsystem implements the Intel 80C186 pro- 
cessor to handle the SCB protocols. It also has the 82750PB 
pixel processor to handle the compression and decompres- 
sion of digital motion video, among other tasks. The actual 
IBM ActionMedia II adapter, on which this DVI subsystem is 
based, runs the Real-Time Video 2 (RTV 2) microcode to per- 
form compression and decompression on the i750 pixel pro- 
cessor. The RTV microcode has a five-stage pipeline for video 
compression and a three-stage pipeline for video decompres- 
sion. The RTV compression pipeline is run at the frame rate 
while the decompression pipeline is run at twice the frame rate. 
The pipelines are designed to keep the video frames moving 
smoothly from one conference participant to the others across 
the token ring. This is necessary because there are many vari- 
able factors that can adversely affect the delays of motion video 
frames, such as host processor utilization, network traffic and 
bandwidth, etc. The pipelines act as a series of buffers to en- 
sure that video frames are not lost if the network is busy or 
the host processor cannot schedule the software at the required 
time. 

The negative impact of these pipelines is that they dra- 
matically increase the capture-to-playback time delays, which 
are very critical in video conferencing systems. Since the i750 
pixel processor can compress and decompress motion video 
frames at 30 fi'ames/s, we assumed that both the compres- 
sion and decompression pipelines were single-stage in our 
study. There were several reasons for us to assume single- 
stage pipelines (which would be the case for more advanced 
video conferencing hardware): 

1. The ActionMedia II adapter uses the 25-MHz version of 
the i750 video processor. Our hypothetical DVI video subsys- 
tem uses the higher-performance, 50-MHz version of the i750 
processor. As a result, the video compression and decompres- 
sion can be completed in a single frame time (at 30 frames/s) 
with comfortable "dead" time for other activities. 

2. The pipelines would not be needed for buffering pur- 
poses if we could implement normal memory buffers instead. 
We assumed that the microcode would be responsible for han- 
dling these buffers in our study. 

3. The single-stage pipelines would allow us to have mini- 
mal video compression and decompression time delays. These 
delays are independent of the system architectures, which are 

the real focus of our study. Thus by minimizing these delays, 
we can see the impact of the SCB architecture in the capture- 
to-playback delays more easily. 

In addition to compression and decompression of motion 
video, we also use the DVI video subsystem for video mix- 
ing if there is more than one incoming video stream from the 
network (in the case of fully distributed video mixing scheme, 
to be discussed later). Derived from empirical measurements 
obtained for the ActionMedia II adapter, our DVI subsystem 
based on the 50-MHz i750 video processor should be able 
to compress a full-motion video frame in 16.66 ms (half the 
frame time at 30 frames/s) and decompress a video frame in 
8.33 ms (a quarter of the frame time at 30 frames/s). We also 
assumed that the overhead of mixing multiple video frames 
into a composite frame would be 8.33 ms. These assumptions, 
in addition to the fact that our DVI subsystem has the 80C186 
processor and uses single-stage pipelines for compression and 
decompression, lead to the term "hypothetical" used in this 
paper, since there is no such video adapter currently available. 

One SCSI-2 I/0 subsystem. This includes the IBM PS/2 SCSI-2 
adapter, which can support both the Locate and Move Modes 
of the SCB architecture, a small computer system interface 
(SCSI) bus, and one SCSI disk. The adapter has an Intel 
80C186 processor to support the SCB protocols, just as in 
our DVI video subsystem discussed previously. 

One (hypothetical) 32-bit token-ring adapter. We assumed that 
the conference participants were connected via a LAN us- 
ing the 16-Mbits/s token-ring network technology. There have 
been several token-ring adapters introduced in the past several 
years for the PS/2 systems. However, there is no token-ring 
adapter currently available that can support the SCB Move 
Mode. As a result, we had to make some assumptions about 
the architecture of this adapter. We assumed that the token-ring 
adapter had the same general architecture as our DVI video 
subsystem discussed previously in this paper. Like the DVI 
video subsystem, it would have an Intel 80C186 processor to 
handle the SCB Locate and Move Modes, as well as a general- 
purpose memory buffer to manipulate (assemble/disassemble) 
data for transmitting across the token ring. As such, it would 
have the same processing overhead as the DVI video subsys- 
tem in supporting the SCB protocol and handling the memory 
buffer. We also assumed in our study that the token ring was 
not saturated, so the token waiting time was negligible. 

According to our analysis and others (Little and Ghafoor 
1991), the main problem with the host processor in a video 
conferencing system is that the software code providing the 
conference services may not be scheduled within a strict tim- 
ing constraint when required because the processor is busy per- 
forming other tasks. This is a typical problem in other real-time 
systems as well. The problem has more to do with processor 
scheduling than processor utilization. As a result, we did not 
consider background activities that could require substantial 
CPU processing and had nothing to do with video conferenc- 
ing. An example of the type of background activities that we 
would like to avoid is the nonvideo-conferencing graphics op- 
erations that rely heavily on the host processor to perform most 



of their work. However, we considered the background file 
transfers of video information. Conference participants might 
want to review an earlier segment of their conference or some 
video images stored on disk. In this case, the video informa- 
tion recorded earlier on disk must be retrieved and transferred 
across the network linking all participants. We assumed that 
the disk from which video information was retrieved resided 
locally within the system under consideration. 

Our study focused on two types of systems: a video con- 
ferencing system with centralized video mixing, and a sys- 
tem with fully distributed video mixing. There are many tech- 
niques for mixing multiple video streams into a single com- 
posite stream: centralized mixing, fully distributed mixing, 
and hierarchical mixing (Vin et al. 1991; Yun and Messer- 
schmitt 1993). In centralized mixing, each participant's com- 
puter sends a video stream to a central video mixer. The central 
mixer forms a composite video stream from all video streams 
coming from all participants. This mixer then sends this com- 
posite video stream to each participant for playback. Thus 
each computer must be able to support two separate video 
streams: one outgoing to the central mixer, and one compos- 
ite stream coming from the mixer. However, fully distributed 
mixing requires that each participant uses the network's multi- 
cast capability to send its video stream to all other participants. 
It also requires that video streams from all other participants 
can be received, mixed together to form a composite stream, 
and played back on the monitor. This approach is the simplest 
and easiest to implement, but it does incur the duplication of 
processing power and network bandwidth to perform video 
mixing at each participant's station. 

Video mixing requires some amount of image processing 
(Ramanathan et al. 1992; Vin et al. 1991). We assumed here 
that the mixing could be done by microcode running on the 
i750 pixel processor, and that the mixing overhead was the 
same as that of video decompression. Regardless of the number 
of video streams, there is always one image to be decompressed 
and displayed on the monitor of each conference participant. 

In this study, each participant in a centralized mixing sys- 
tem should be able to handle three different data streams: 

- An incoming (perhaps composite) video stream from the 
central mixer across the network, 

- An outgoing stream to be sent across the network to the 
central mixer, and 

- A continuous video file transfer stream at 30 frames/s. 

However, if the video mixing is done at each participant's 
station as in a fully distributed mixing system, each participant 
must be able to support at least four data streams concurrently 
in a conference involving more than two participants. In the 
case of the three-participant conference, each computer must 
be able to support the following four data streams: 

- Two incoming video streams from the other two partici- 
pants, 

- One outgoing video stream to be sent across the network 
to the other participants (perhaps using the network's mul- 
ticast capability), and 

- A continuous video file transfer stream at 30 frames/s. 
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All video streams are multiplexed while moving across the 
network. Within a participant's computer, the video streams 
also share the Micro Channel. In a fully distributed mixing sys- 
tem, multiple incoming streams from the network are parsed 
and then mixed together to form a composite stream by the 
microcode running on the Intel i750 pixel processor. 

On some systems, the average size of the (compressed) 
video frames and the packet size used to transfer data across 
the LAN are not the same. Many frames can be combined into 
a larger data packet to transfer across the network. However, 
this tends to introduce additional time delays between video 
capture and playback on a remote system. These delays must be 
minimized. With a 45:1 video compression ratio and the RTV 
microcode, the average frame size is about 7-8 kB, which is 
also found to be the case in Crimmins (1993). The maximum 
packet size on the standard 16-Mbits/s token-ring network is 
8 kb. As a result, each video frame will be sent on the network 
as a separate packet, so the time delays between video capture 
and playback should be minimal. 

The Motion Picture Experts Group (MPEG) standard spec- 
ifies that a video signal (and its associated audio) can be com- 
pressed to a bit rate of about 1.5 Mbits/s with acceptable quality 
(Le Gall 1991 ). For video services using the ISDN, the Consul- 
tative Committee on International Telegraphy and Telephony 
(CCITT) Recommendation H.261 states that a single standard, 
p • 64 kbits/sec (p = 1, 2, 3 , . . . ,  30), can cover the entire ISDN 
channel capacity (Liou 1991). With p = 30, the maximum bit 
rate as specified by the H.261 standard can be up to 2 Mbits/s. 
In this study, we assumed a maximum bit rate of 2 Mbits/s per 
video stream. 

3 T h e  S u b s y s t e m  C o n t r o l  B l o c k  a r c h i t e c t u r e  

in  v i d e o  c o n f e r e n c i n g  

The Subsystem Control Block (SCB) architecture enhances 
the potential of intelligent I/O adapters (bus masters) by defin- 
ing the logical protocols and control structures that are used 
to transfer command/control information, data, and status in- 

formation between the host processor and an I/O adapter, 
or directly between I/O adapters themselves (peer-to-peer) 
(IBM 1991). The architecture provides command chaining, 
data chaining, signaling, and synchronization of commands 
and status information. It separates the delivery of control in- 
formation and data to increase the system performance, raise 
the level of functional capability, and provide more design flex- 
ibility. This key feature was considered carefully in our study. 
The SCB architecture has two operating modes: the Locate 
Mode and the Move Mode. 

3.1 The SCB Locate Mode - traditional approach 

Most current I/O adapters used in personal systems today sup- 
port the Locate Mode (or some variants) of the SCB architec- 
ture. It is a bus-master, interrupt-driven I/O protocol. In the 
Locate Mode, the control structure is a relatively fixed format 
structure, called the command control block. This structure al- 
lows the command, control, and status information, as well as 
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pointers to data buffers in system memory, to be passed from 
the host processor to an I/O adapter (Fig. 3a). 
In the Locate Mode, only the host processor can send requests 
to an I/O adapter. To send a request to an I/O adapter, the 
host processor first builds the control bIock in system mem- 
ory to describe the I/O operation that needs to be performed 
(an I/O request). It then writes the physical memory address 

of the control block to the adapter's command interface regis- 
ters, and a device identifier to the adapter's attention register, 
which inten-upts the adapter's on-board processor. After being 
interrupted, the adapter's processor uses the memory address 
in its command interface registers to locate the control block 
in system memory and fetches it into its own storage area 
for execution. After the I/O request is completed, the adapter 
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interrupts the host processor, and supplies it with status in- 
formation. The adapter's reply to the host processor must be 
synchronized with the request. 

As an example, let us consider the case where a video frame 
must be sent to the token-ring network. First, the video flame 
is captured from the recording camera into the VRAM of the 
video adapter. The frame is then compressed by the i750 pixel 
processor on the adapter. After the frame is compressed, the 
video adapter sends an I/O interrupt to the host processor. The 
host processor formulates a control block in system memory 
and interrupts the video adapter, instructing it to transfer the 
compressed video frame into system memory. The 80C186 
processor on the video adapter then fetches the control block 
from system memory, decodes it, and initiates a data trans- 
fer from the VRAM to some data buffer in system memory. 
The address of this buffer is specified in the control block. 
Once the compressed flame is in system memory, the video 
adapter sends the I/O-complete status back to the host proces- 
sor. Upon receiving the status, the host processor formulates 
another control block in system memory and interrupts the 
token-ring adapter, asking it to get the compressed video flame 
from system memory. The token-ring adapter then fetches the 
control block from system memory, decodes it, and transfers 
the flame from system memory to the token-ring network. Af- 
ter the data transfer is completed, it sends the I/O-complete 
status back to the host processor, indicating that the request 
has been completed. As a result, both the host processor and 
system memory are involved in moving the compressed video 
frame between the VRAM on the video adapter and the token- 
ring network. 

The operation of the Locate Mode is serial in that the host 
processor cannot send another request to the same I/O device 
(disk, LAN connection, etc.) until the current request has been 
completed. There can only be one request active per device at 
any given time, because requests to the same device cannot be 
"tagged". The host processor, however, can send requests to 
other devices through the same or another I/O adapter. 

3.2 The SCB Move Mode - new approach 

The Move Mode supports I/O data transfers by using shared 
memory interfaces to deliver requests and control-related in- 
formation between two I/O adapters, or between the host pro- 
cessor and an I/O adapter, in the system (Fig. 3b). This provides 
true peer-to-peer relationship between all system components. 
The key feature in the Move Mode is that an I/O adapter can 
send requests to, and accept requests from, another I/O adapter, 
not just the host processor. In the Locate Mode, an I/O adapter 
can only receive requests from the host processor. 

The Move Mode uses control elements instead of control 
blocks. The control elements are variable in length and can 
contain I/O requests, status, or error notifications. They can 
be used by the host processor or an intelligent I/O adapter 
to deliver requests or replies to another adapter. The control 
elements are moved between I/O adapter pairs, or between 
an adapter and a host processor, through a pair of delivery 
pipes. Each pipe behaves as a FIFO queue, and allows for 

the delivery of control elements in only one direction. Full 
duplex operation thus requires a pair of pipes. There is one 
pair of delivery pipes for each pair of I/O adapters (or for each 
adapter and the host processor) that want to communicate with 
each other. Fig. 3b shows three pairs of delivery pipes used by 
two I/O adapters and the host processor to communicate with 
one another. A delivery pipe must be in memory shareable 
by the sending and receiving adapters. This does not mean 
that the pipes must reside in system memory; they can be 
in an I/O adapter's memory buffers, provided that any other 
adapter or host processor that wants to communicate with it 
can access those memory buffers. In this study, we assumed 
that the delivery pipes between the I/O adapters were not in 
system memory. The pipes allow multiple control elements to 
be queued and processed asynchronously to each adapter or 
host processor. Unlike the Locate Mode, the Move Mode is not 
serial in nature: it can support the queuing of many requests 
to the same I/O device in the delivery pipes. 

Let us consider the case of moving a video frame to the 
token-ring network. First, the video flame is captured and 
compressed in the VRAM of the video adapter. After the 
video flame is compressed by the i750 pixel processor, the 
80C186 processor on the video adapter performs some pro- 
cessing on the compressed frame, such as attaching a header 
to the frame, and so on. It then builds a control element in 
VRAM, and sends it to the token-ring adapter through a de- 
livery pipe. Once the token-ring adapter processes the control 
element extracted from the delivery pipe, it sets up a direct 
data transfer of the compressed video frame between the video 
adapter (VRAM) and itself. The video frame is eventually fed 
onto the token-ring network. The host processor and system 
memory are not involved at all in this data transfer. However, 
the host processor does have to send a control element to the 
video adapter at the start of each video stream (not flame) to 
initialize the video adapter and supply it with necessary in- 
formation about the video stream. After that, the transfer of 
frames in the video stream is handled completely by the video 
and token-ring adapters. 

4 Modeling methodology 

In our work, we used the IBM Research Queuing Package 
(RESQ) (MacNair and Sauer 1985; Saner and MacNair 1979, 
1984). We have decided to use the simulation approach mainly 
because the SCB architecture and the system hardware mod- 
eled here are highly sophisticated, and thus, analytical solu- 
tions could not be easily obtained. In addition, the models need 
some capabilities that are only provided with simulation (not 
analytical modeling) in RESQ, such as the capability to make 
routing decisions based on the status of simulation conditions 
as well as probabilities, etc. 

4.1 Description o f  models 

The focus of our work was the construction of simulation mod- 
els for the Locate Mode and Move Mode of the SCB archi- 
tecture. The models were written in the RESQ language. Each 
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model is a set of  open chain submodels, simulating multiple 
concurrent video data streams and file transfers. Depending 
on the particular video conferencing system that we want to 
simulate, we can enable or disable each of  the submodels in- 
dividually. Deterministic interarrival times are used for frame 
rates, and exponential distribution with a mean value of 8 kB 
is used for frame sizes. For a more detailed description of the 
models, refer to (Huynh and Khoshgoftaar 1993). 

The access contention for the system shared memory and 
the Micro Channel is modeled by representing these com- 
ponents as "active" service centers, rather than "passive" re- 
sources, in RESQ. The models have separate memory queues 
for the memory traffic initiated by the host processor and the 
adapters on the Micro Channel, reflecting the dualpath mem- 
ory controller design. Arbitration on the Micro Channel is 
modeled with the processor-sharing discipline in RESQ. 

In the Move Mode model, the delivery pipe from a source 
adapter to a destination adapter is modeled as a queue in front 
of the destination adapter. Each queue is dedicated to the con- 
trol elements sent from each particular source adapter; each 
source adapter has its own queues to the same destination 
adapter, as specified by the SCB architecture. The pipe is in 
the destination adapter's memory. The SCB Move Mode also 
recommends that all data transfers between two adapters are 
made between the memories on those adapters. In the case of  
the video adapter and the token-ring adapter, for instance, the 
data transfers are made between the VRAM and the token-ring 
adapter's memory buffers. The system memory is not used in 
these data transfers. 

In the Locate Mode model, the queues in front of service 
centers representing adapters are not used (that is, they all 
have the queue length of  1), since requests (control blocks) 
are queued at the device-driver (operating system) level run- 
ning on the host processor, not at individual adapters. This is 
to reflect the fact that there is no delivery pipe in the Locate 
Mode. Tokens are used in the Locate Mode model to ensure 
that the host processor cannot send another request to a device 
(and its adapter) before the current request to the same device 
is completed. There is no such token used in the Move Mode 
since control elements are queued in the delivery pipes. How- 
ever, some tokens are used in both models to calculate the time 
delays in RESQ. 

4.2 Confidence interval methods 

For confidence interval estimation, we used the independent 
replication method. Following are the specific parameters that 
we specified for the simulation runs of  the models: 

- Number of replications: 5. 

- Confidence interval: 90%. 
- Simulation length: 2000 frames (over 1 s of full motion 

video). 
We used the same simulation parameters for simulation 

runs of  both models, so the results can be directly compared 
to one another. 

4.3 Model validation 

We have validated our Locate Mode models by empirical per- 
formance measurements collected on real hardware. The file 
transfer submodel's results are comparable to those obtained 
on the real PSI2 systems under similar workload conditions. 
For the video conferencing workload, we have also obtained 
empirical performance data for an existing person-to-person 
(P2P1) software package running on the IBM ActionMedia II 
card. The P2P software is the basic video conferencing appli- 
cation between two persons. The ActionMedia II card uses the 
RTV 2.0 microcode to compress and decompress full-motion 
video at 15 frames/s. To compare our Locate Mode model's 
results against the real P2P measurements on ActionMedia II, 
we modified our Locate Mode model to use the five-stage com- 
pression pipeline and the three-stage decompression pipeline. 
The compression pipeline runs at the frame rate (15 frames/s), 
but the decompression pipeline is run at twice the frame rate 
(30 frames/s). In this case, the model's results are very similar 
to those obtained on the real P2P software. 

There is no existing hardware that can support the SCB 
Move Mode, so it is much harder to validate our Move Mode 
model directly. However, the same modeling techniques and 
many modeling assumptions used in the Locate Mode model 
are applied to the Move Mode model, so we are very confident 
about the Move Mode model. 

5 R e s u l t s  

The models require many input parameters relating to the func- 
tional and performance characteristics of  the host processor, 
system memory, Micro Channel, adapters, disks, video pro- 
cessing hardware, and the token-ring network. These param- 
eters were obtained empirically on actual hardware available 
commercially or under development. The software overhead, 
such as the path lengths for the file system, network support 
code, and video conferencing software, were measured using 
the DEKKO software analysis tool running on the IBM Op- 
erating Systerrd2. For more details on the input parameters, 
please refer to Table 1. 

Table 1. General assumptions (input parameters for models) 

Compression ratio = 45:1 = 360 kB:8 kB 
Bit rate = 2.0 Mbits/s. 
Token-ring packet size = 8 kB 
File transfer (background) size = 4kB 

No audio (10% of processing bandwidth) considered 
- Compression = 50% cycle, one-stage pipeline 
- Decompression = 25% cycle, one-stage pipeline 
- Video mixing = 25% cycle 

Software overhead: 
- File system = 5 KLOCS/request. 
- Network support = 5 KLOCS/request. 
- Initial code (Move Mode) = 5 KLOCS/stream. 
-Video conferencing = 15 KLOCS/frame (Locate) 

1 KLOC/frame (Move) 
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5.1 Micro Channel utilization 

It is more advantageous to reduce the Micro Channel utiliza- 
tion, since the channel is the main data path connecting the host 
processor, system memory, adapters, and other I/O devices. 
Fig. 4a shows that the Move Mode uses the Micro Channel 
much less than the Locate Mode in both 386 and 486 sys- 
tems. The data indicate that the Move Mode demands 50% 
less bandwidth from the Micro Channel for the same video 
conferencing workload running at the same frame rate on the 
same hardware, thus giving the channel higher data transfer 
capacity. The data also show that the Micro Channel is not 
the system bottleneck: its utilization never exceeds 20% in our 
study. The Micro Channel's 40-MB/s data streaming mode 
supported in the 486 system exhibits a threefold improvement 
in the channel utilization and hence, its data transfer capacity, 
over the normal data transfer mode used in the 386 system. 

5.2 Host processor utilization 

One of the key system considerations in video conferenc- 
ing applications is the use of the host processor. In a three- 
way conference with fully distributed video mixing scheme, 
Fig. 5b shows that the i386 microprocessor in the midrange 
PS/2 Model 70 would be nearly 100% utilized if the video con- 
ferencing software (to be executed every frame) exceeded 60 
kilolines of assembly code (60 KLOCS) in the Locate Mode, 
with the video file transfers running in the background. On 
the 486 system (PS/2 50-MHz Server), the host processor uti- 
lization approaches 100% if the video conferencing software 
is approximately 240 KLOCS in the Locate Mode. Based on 
empirical measurements obtained for the existing P2P soft- 
ware, the path length for video conferencing software is only 
15 KLOCS/frame in the Locate Mode, so the host processor 
is not likely to be a system bottleneck. 

In the Move Mode, the CPU utilization is less than 0.01% in 
all cases. This shows that, at least in terms of CPU utilization, 
the Move Mode is superior to the Locate Mode for the i386- 
based systems, since the host processor does not get involved 
at all in the Move Mode, except for some initialization at the 
beginning. Much of the work that the host processor must 
do in the Locate Mode is done by the adapters in the Move 
Mode. As the data in Fig. 5 shows, the receive/decompress 
time delay increases dramatically if the video conferencing 
software running per frame on the Intel 80C186 processor on 
the video adapter exceeds 16 KLOCS. However, this can be 
improved by having a faster processor on the video adapter. 
Furthermore, the software path length for video conferencing 
that the processor on the video adapter must execute per frame 
is estimated to be only 1 KLOC in the Move Mode. 

Across various frame rates, but in the same video confer- 
encing environment, the host processor utilization does not 
change in a linear fashion in the Locate Mode, according to 
Fig. 6a and 6b. This is due to the impact of the video file trans- 
fers running at 30 frames/s in the background. The impact of 
these background video file transfers on the host processor 
utilization is shown in Fig. 7a. Given the fact that the video 

file transfers are running at 30 frames/s, their impact on the 
host processor utilization is much larger at lower frame rates. 
At 8 frames/s, background video file transfers account for al- 
most 50% of the total host processor utilization, while at 30 
frames/s, they only account for roughly 20%. 

Comparing the data of Fig. 6a and 6b, it can be observed 
that the centralized video mixing scheme uses much fewer 
system resources than the fully distributed mixing scheme. 
This is quite expected. 

5.3 Util&ation of other system components 

Since memory access speeds are dependent on the host pro- 
cessor's cycle time, the data in system memory in the 486 
system can be accessed much faster than in the 386 system. 
This is reflected in the data shown in Fig. 7b. At 30 frames/s, 
the effective memory utilization approaches 35% in the 386 
system, as compared to only 10% in the 486 system (with its 
burst mode). As expected, the higher the frame rate, the higher 
the effective memory utilization is. This is true for the Locate 
Mode only. The Move Mode does not involve system memory 
in data transfers, so the system memory use is near zero in 
the Move Mode. The data in Fig. 7b also indicate that the disk 
utilization by the background video file transfers is 24%. 

Fig. 7b also shows that a three-way video conferencing en- 
vironment, with concurrent video file transfers and fully dis- 
tributed mixing scheme, can use up to 53% of the token ring's 
bandwidth at 30 frames/s and 20% at 8 frames/s. This assumes 
the compressed frame size of 8 kB (about 45:1 compression 
ratio), and a maximum bit rate of 2 Mbits/s. The 16-Mbits/s 
token ring can indeed handle multiple, concurrent compressed 
video data streams. 

5.4 Video compress~send time delay 

The video compress/send time delay refers to the time interval 
from the moment a video frame is captured in VRAM until 
it is sent on the token-ring network to other conference par- 
ticipants. In a centralized video mixing system, there is no 
significant difference between the Locate Mode and the Move 
Mode in this delay (Fig. 8a). This is because most of the time 
is spent in compressing the video frames, even though we as- 
sumed single-stage compression pipeline. Since the pipeline 
runs at the frame rate, the lower the frame rate, the longer it 
would take to compress a video frame, and thus, the longer 
the compress/send delay would be. As a result, the slopes of 
the curves are negative as the frame rate increases. The perfor- 
mance of the host processor, system memory, and the Micro 
Channel does not seem to have much effect. Consequently, 
video compression algorithms are the key factor in the overall 
time delay in a video conferencing system. 

In a fully distributed video mixing system, the system re- 
source requirements, and thus resource contention, are higher 
than in a centralized video mixing system. Consequently, the 
Move Mode, with its lower resource utilization, can deliver 
better performance than the Locate Mode in a fully distributed 
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video mixing system. As can be observed in Fig. 8b, the com- 
press/send delay is essentially the same for both the Locate 
Mode and the Move Mode at 8 frames/s and 15 frames/s. 
However, as we approach 30 frames/s, the resource contention 
becomes much higher, so the Move Mode with its direct peer- 
to-peer data transfer protocol results in lower time delays. 
This is because the utilization of system resources, such as 
the host processor, memory, Micro Channel, etc., is lower in 
the Move Mode than in the Locate Mode. It can also be ob- 
served that, with one additional video stream and the video 
mixing overhead required in a fully distributed mixing sys- 
tem, the time delays are higher than those of  the centralized 
mixing system at 30 frames/s. At lower frame rates (8 frames/s 
and 15 frames/s), there is really no difference in the video com- 
press/send time delays, regardless of  the SCB modes and video 
mixing schemes. It is reasonable to expect that, as more par- 
ticipants are added to a video conferencing system, the time 
delay differences between the Locate Mode and Move Mode, 
and between centralized and fully distributed video mixing 
schemes, will be more apparent. 

5.5 Video receive~decompress time delay 

The video receive/decompress time delay refers to the time in- 
terval from the moment a video frame is read from the token- 
ring network until the moment it is ready to be displayed on the 
computer's monitor. Although the video decompression usu- 
ally requires only 50% of the processing required for video 

compression, its impact on the receive/decompress delay is 
still great. This is because both compression and decompres- 
sion use single-stage pipelines, which all run at the flame rate. 
As a result, in a video conferencing system using the central- 
ized video mixing scheme, there is no significant difference 
in this type of  delay between the Locate Mode and the Move 
Mode, or between the 386 and 486 systems (Fig. 9a). How- 
ever, it can be observed that the Locate Mode on the 386 
system, with its slower host processor and Micro Channel, 
is slightly worse than the Move Mode. Fig. 9b examines the 
receive/decompress delay more carefully on the 386 system. 
The data shows that the Move Mode performs better than the 
Locate Mode at all frame rates. This is true for both central- 
ized and fully distributed mixing schemes. So on a slower 
system, the direct peer-to-peer transfer protocol offered by the 
Move Mode delivers better performance than the more tradi- 
tional I/O approach used in the Locate Mode. Figure 9b also 
indicates that the delays in a centralized video mixing sys- 
tem are slightly lower than those in a fully distributed video 
mixing system. This is quite expected because a system with 
fully distributed video mixing must handle more concurrent 
video streams than a system with centralized video mixing. 
In addition, in the fully distributed mixing system, the video 
mixing must be performed at each participant's location while 
this task is performed by a central video mixer in the cen- 
tralized video mixing system. At 30 flames/s, the time delay 
difference between the centralized and fully distributed video 
mixing systems is larger than at lower frame rates. This is be- 
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cause the system must  handle  more  video frames per second 
at 30 frames/s,  and the need to handle  more  concurrent  video 
streams in the ful ly distr ibuted video mix ing  system increases 
the resource content ion,  and thus, the t ime delays. 

As in the case of  the video compress /send t ime delays, the 
lower the frame rate, the longer  it would  take to decompress a 
video frame, and thus, the longer  the receive/decompress t ime 
delay would  be. This is because the decompress ion pipel ine 
runs at the f rame rate. For  instance,  at 8 frames/s, the t ime delay 
at the s ingle-stage decompress ion  pipel ine  is 125 ms (without 

any queuing at the pipeline),  while the same type of  delay is 
only 33.33 ms at 30 frames/s. 

Figure 10 shows the t ime delays for a single video 
stream, either outgoing or incoming.  The data shows that 
the compress/send overhead is actually smal ler  than the re- 
ceive/decompress overhead, even though the compress ion 
overhead takes more  processing power from the pixel pro- 
cessor. There are several reasons: 

- The overall t ime delays for video compress ion  and de- 
compress ion are essential ly the same because both use single- 
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stage pipelines (even though video compression takes more 
processing from the pixel processor than video decompres- 
sion). The 50-MHz i750 pixel processor is able to handle both 
compression and decompression within a frame time. 

- The video compression process performed on the video 
frames shortly after their capture in VRAM has minimum 
queuing. This is due to the fact that video frames are captured 
at precisely the frame rate, and so as long as the compression 
process does not take longer than the frame time, there is no 
queuing at the compression stage. However, the video decom- 
pression process is not started until after the frames have been 
received from the network, manipulated, and mixed. Many 
variable factors associated with the delays at the host proces- 
sor, memory, Micro Channel, and other system components, 
cause the video frames to arrive at the decompression pipeline 
at irregular intervals, not precisely at the frame rate. This leads 
to a higher queuing level at the decompression pipeline, and 
consequently, higher time delays. 

So far we have seen no significant difference between the 
Move Mode and the Locate Mode in the time delays. However, 
the Move Mode is much better in handling video file transfer 
operations (Fig. 10). This is because the video file transfer op- 
erations involve two slow subsystems, the disk subsystem and 
the token-ring network. In the Locate Mode, each data trans- 
fer must travel from the source subsystem to system memory, 
and then, from system memory to the destination subsystem; 
thus, from the standpoint of a single data transfer, the two sub- 
systems operate serially, not in parallel. On the other hand, 
the Move Mode, with its direct peer-to-peer transfer protocol, 
allows these two slow subsystems to operate in parallel (one 
sending and the other one receiving data), and thus, signifi- 
cantly cuts down the overall time delays. 

However, a video conferencing data stream involves only 
one slow subsystem, and that is the token-ring network. The 
video adapter's VRAM is very fast, and data transfers be- 
tween the VRAM and host memory can be performed rela- 
tively quickly. Therefore, not having the data transfers to and 
from host memory in the Move Mode does not result in a 
significant performance improvement over the Locate Mode. 
In general, the SCB Move Mode works best when the data 
transfers involve two slow adapters. 

5.6 Breakdown of the time delays 

In this section, we will look at the video compress/send and 
video receive/decompress time delays in more detail. Figure 
l l a - d  shows the time delays for a system using fully dis- 
tributed video mixing. Figure 12a-d illustrate the same time 
delays for a system using centralized video mixing. 

In Fig. 1 la, only the delays in the Locate Mode are shown. 
The two vertical bars on the left represent the video com- 
press/send delay and video receive/decompress delay on the 
386 system. The two vertical bars on the right show the same 
delays obtained on a 486 system. It can be observed that the 
time delays, especially the video receive/decompress delay, 
are lower on the 486 system. Since there is little or no queu- 
ing at the compression pipeline (as discussed in the preced- 
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Fig. 10. General time delays, single data stream. Video conferenc- 
ing software is 15 KLOCS in Locate Mode and 1 KLOC in Move 
Mode. Maximum bit rate -- 2 Mbits/s, frame size (compressed) = 8 kB 
(mean), frame rate =30 frames/s. ~, Locate Mode - 386 system; N, 
Move Mode - 386 system; H, Locate Mode - 486 system; I ,  Move 
Mode - 486 system 

ing section), and the compression is performed by microcode 
running on the i750 pixel processor on the video adapter, the 
compression overhead is the same for both the 386 and 486 sys- 
tems. The video conferencing software overhead, which runs 
on the host processor in the Locate Mode, is smaller on the 486 
system, as expected. Because of the i486's higher processing 
power, there is less queuing at the decompression pipeline, 
so the decompression overhead is much smaller on the 486 
system. The queuing time in the operating system's network 
device driver in the compress/send delay is larger than the 
queuing time in the operating system's SCSI disk device driver 
in the receive/decompress delay. This is because the through- 
put of the 16-Mbits/s token-ring network is smaller than that of 
the SCSI disk I/O subsystem. Overall, the receive/decompress 
time delays are higher than the compress/send delays because 
(1) there is more queuing at the decompression pipeline than at 
the compression pipeline (as discussed in the preceding sec- 
tion), and (2) there is the video mixing overhead in the re- 
ceive/decompress delays. There is no need for video mixing 
in the compress/send delays because each participant needs 
only to send his or her own video out to the network. 

Figure 1 lb shows the time delays in the Move Mode only. 
One interesting observation is that the time delays on the 386 
and 486 systems are approximately the same. This is because 
the host processor does not have to do much work in the Move 
Mode. There is no queuing in the operating system's device 
drivers because the I/O commands are queued in the delivery 
pipes between the adapters in the Move Mode. 

Figure 1 lc and 1 ld compare the time delays between the 
Locate Mode and the Move Mode on the 386 and 486 sys- 
tems, respectively. The time delays in the Move Mode are 
smaller than those in the Locate Mode, due in part to the smaller 
video conferencing and network support overhead in the Move 
Mode. The time delays for video compression and decom- 
pression are about the same for the two SCB modes, which 
is quite expected because these operations are performed by 
microcode running on the video adapter, not by the host pro- 
cessor. The video conferencing and network software over- 
head is smaller in the Move Mode because the 80C186 pro- 
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cessor on the video adapter executes less code for each flame 
in the Move Mode than the host processor executes in the Lo- 
cate Mode. This is true even though the 80C186 processor is 
slower than the i386 or i486 host processor. The overhead of 
data transfers in the Move Mode is greater than that in the Lo- 
cate Mode because it includes the queuing time in the delivery 
pipes between the video adapter and the token-ring adapter in 
the Move Mode. There is no delivery pipe in the Locate Mode, 
but the I/O requests are queued inside the operating system's 
device drivers; the queuing overhead in the device drivers are 

shown separately from the data transfer overhead in the Lo- 
cate Mode. However, it is clear from the figures that the sum of 
the data transfer overhead and the queuing time in the device 
drivers in the Locate Mode is greater than the sum of the data 
transfer overhead and the queuing time in the delivery pipes 
in the Move Mode. Note again that the video mixing overhead 
only appears in the video receive/decompress time delays. 

Figure 12a-d shows the time delays for a video conferenc- 
ing system using centralized video mixing. There is no video 
mixing overhead in the time delays because the video mix- 
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ing is performed by the central mixer located somewhere on 
the network, so the video receive/decompress time delays are 
lower than those in the fully distributed video mixing system. 
The video compress/send time delays are approximately the 
same as in the fully distributed video mixing system. Except 
for the video mixing overhead, we can make the same general 
observations from this figure as from Fig. 1 l a d .  

6 Conclusion 

In this paper, we provided an overview of the IBM PS/2 and 
SCB architectures. The SCB architecture is designed to effi- 
ciently manage the communication and data transfers between 
the processor, intelligent adapters, and the Micro Channel. 
This architecture has two operating modes, the Locate Mode 
and the Move Mode. The Locate Mode embodies the more con- 
ventional I/O processing model, while the Move Mode offers 
a true peer-to-peer I/O protocol between intelligent adapters 
on the Micro Channel. Simulation models of the PS/2 sys- 
tems were constructed to determine how effective midrange 
and high-end PSI2 systems can support one of the most I/O- 
intensive multimedia applications today, the video conferenc- 
ing environment. From the modeling data, the peer-to-peer 
I/O protocol in the Move Mode uses much fewer system re- 
sources (host processor, memory, Micro Channel) than the 
Locate Mode. This increases the overall data processing ca- 
pacity of the system. This suggests that, on a slow system, 
the direct peer-to-peer transfer protocol offered by the Move 
Mode delivers better performance than the more traditional 
I/O approach used in the Locate Mode. In the Locate Mode, 
the 25-MHz i386 processor in a midrange PSI2 system would 
be 100% used if the video conferencing software running on 
the host processor exceeded 60000 assembly instructions (60 
KLOCS)/ffame. Even with the peer-to-peer I/O protocol in the 
Move Mode, the end-to-end time delay between the capture 
and playback systems would increase dramatically if the video 
conferencing microcode running on the Intel 80C 186 proces- 
sor on the video adapter exceeded 16 KLOCS/frame. This can 
be improved by having a faster processor on the video adapter 
card. However, based on empirical measurements obtained for 
the existing P2P software (basic video conferencing between 
two participants), the path length for video conferencing soft- 
ware is only about 15 KLOCS/frame in the Locate Mode. In 
the Move Mode, this path length is estimated to be approxi- 
mately 1 KLOC. 

The Micro Channel utilization never exceeds 20% in our 
study, so the Micro Channel is not really the system bottleneck. 
With a video compression ratio of about 45:1, and a maximum 
bit rate of 2 Mbits/s per video stream, the token ring is 53% 
utilized in a three-way video conference with fully distributed 
video mixing and background file transfers. 

Since, in our study, the video compression and decompres- 
sion pipelines run at the frame rate, the higher the frame rate, 
the lower the time delays would be. We also found that the key 
to minimize the video compress/send and receive/decompress 
time delays is to optimize the video compression and de- 
compression (video codec) algorithms. Nothing else matters 

much. We feel that significant research should be dedicated 
to the development of fast and efficient algorithms for full- 
motion video codec. Unlike other multimedia applications, 
video conferencing environments require real-time video com- 
pression. There are currently three standard video codec tech- 
niques: JPEG for full-color, still-frame applications, MPEG 
for motion-intensive applications, and px64 standard (CCITT 
Recommendation H.261) for video-based, real-time telecom- 
munications. These standards combine several approaches for 
compressing and decompressing video, such as the discrete 
cosine transform, vector quantization, and differential pulse 
code modulation. In order to maximize the performance of 
these algorithms and minimize costs, we need to determine 
which aspects of these algorithims should be implemented in 
hardware and which aspects should be done in software. The 
implementation of video codec algorithms can generally be 
classified into three different categories: 

- The hardware approach: the video codec algorithms are im- 
plemented in specilized hardware to maximize performance 
(an example is C cube). 

- The software approach: the video codec algorithms are com- 
pletely implemented in software to be run on the system (host) 
processor. An example of this approach is the MPEG encoder 
for X Window systems (Patel et al. 1993). The encoder algo- 
rithms are implemented in C and are executed on the system 
processor. 

- The hybrid approach: the video codec algorithms are imple- 
mented on microcoded, programmable processors. An exam- 
ple of this approach is the Intel i750 with the RTV microcode 
discussed previously in this paper. 

The hardware approach tends to provide better video codec 
performance at the expense of flexibility in implementing 
different algorithms. On the other hand, the software ap- 
proach emphasizes flexibility over performance. However, 
with the tremendous progress made in the performance of 
general-purpose processors, the software approach now de- 
livers respectable performance. Although the hybrid approach 
achieves some commercial success with the Intel i750 and 
other programmable processors, pure software implementa- 
tions of video codec will be significantly improved with the 
introduction of RISC and multiprocessor technologies to per- 
sonal computers. 

At the high rate of 30 frames/s, with fully distributed video 
mixing scheme, the Move Mode does perform better than the 
Locate Mode. The Move Mode is more effective if the data 
transfers involve two slow subsystems, such as the disk subsys- 
tem and the token-ring network. In this case, the direct peer-to- 
peer data transfer capability in the Move Mode is much faster 
than the two-part transfer (from the source adapter to host 
memory and from host memory to the destination adapter) re- 
quired by the conventional I/O protocol in the Locate Mode. 
Consequently, the Move Mode seems to handle video file trans- 
fer operations much better than in the case where video data 
streams are moved between fast VRAM on the video adapter 
and a slow token ring in a video conferencing environment. 
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As expected, the time delays on the 486 system are lower 
than those on the 386 system in the Locate Mode. However, 
in the Move Mode, the time delays on the 386 and 486 sys- 
tems are approximately the same. This is because the host 
processor does not have to do much work in the Move Mode. 
On the same hardware, the receive/decompress time delays 
are higher than the compress/send delays because (1) there is 
more queuing at the decompression pipeline than at the com- 
pression pipeline, and (2) there is the video mixing overhead 
in the receive/decompress delays. There is no need for video 
mixing in the compress/send delays because each participant 
only needs to send his or her own video out to the network. 

The time delays in the Move Mode are smaller than those in 
the Locate Mode, due in part to the smaller video conferencing 
and network support overhead in the Move Mode. In addition, 
the sum of the data transfer overhead and the queuing time in 
the device drivers in the Locate Mode is more than the sum of 
the data transfer overhead and the queuing time in the delivery 
pipes in the Move Mode. 

There is no video mixing overhead in a centralized video 
mixing system because the video mixing is performed by the 
central mixer located somewhere on the network, so the video 
receive/decompress time delays are lower than those in the 
fully distributed video mixing system. In addition, a partici- 
pant in a fully distributed video mixing scheme must handle 
more concurrent video streams than a participant in a system 
with centralized video mixing. The video compress/send time 
delays in this type of  systems are slightly less than those in the 
fully distributed video mixing system. 
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