
United States Patent 19
Baumgartner et al.

54

75

73

21
22

51
52
58

56

Re. 33,535

METHOD AND APPARATUS FOR
SYNCHRONIZNG AUDIO AND WIDEO DATA
STREAMS IN A MULTIMEDIA SYSTEM

Inventors: Donn M. Baumgartner; Thomas A.
Dye, both of Austin,Tex.

Assignee: Dell USA, L.P., Round Rock,Tex.

Appl. No.: 255,604
Filed: Jun. 8, 1994

Int, C. m. H04NS/04
... 348/515: 395/806

Field of Search 348/515; 395/154,
395/162-164; 345/122; 375/355; H04N 5/04,

5/12

References Cited

U.S. PATENT DOCUMENTS

2/1991
8/1985
10/1986
2/1987
7/1987
10/1987
6/1988
7/1989
12/1992
5/1995

Cooper.
Haji et al..
Kouyama et al. .
Kouyama et al. .
Chapelle et al. .
Cooper.
Lem.
Noske et al. .
Gear et al. .
Dockter et al. 364,514 R

5,430,485 7/1995 Lankford et al. ... 348/515
5,471,576 11/1995 Yee ... 395/154

FOREIGN PATENT DOCUMENTS

2305278 12/1990 Japan 34.8/515

4538,176
4,618,890
4,644,400
4,679,085
4,703,355
4,750,034
4,851,909
5,170.252
5,420,801

f Synchronizationy
module /

Coll oudic driver to
citton wive rote stutus 584

Calculate and store
Oudio Frome rute 505

Imtialize varicbles
s508

Deterinine current
video frame number

Determine curren
audio positio.

Coculate equivcent
audio frone number

O

too far chead
(nd cucio clairg

Yes
512

514

Calculate synchronization
error yuantity cudio poused

(nd wideo co-ght
lip

524

US005642171A

11 Patent Number: 5,642,171
45 Date of Patent: Jun. 24, 1997

OTHER PUBLICATIONS

Nicolaou, Cosmos "An Architecture for Real-Time Multi
media Communication Systems"; IEEE Journal on Selected
Areas in Communications, vol. 8, No. 3, Apr. 1990.
Little, Thomas D.C. and Arif Ghafoor "Synchronization and
Storage Models for Multimedia Objects”; IEEE Journal on
Selected Areas in Communications, vol. 8, No.3, Apr. 1990.

Primary Examiner-Sherrie Hsia
57 ABSTRACT

Amethod and apparatus for synchronizing audio and video
data streams in a computer system during a multimedia
presentation to produce a correctly synchronized presenta
tion. The preferred embodiment of the invention utilizes a
nonlinear feedback method for data synchronization. The
method of the present invention periodically queries each
driver for the current audio and video position (or frame
number) and calculates the synchronization error. The syn
chronization error is used to determine a tempo value
adjustment to one of the data stream designed to place the
video and audio back in sync. The method then adjusts the
audio or video tempo to maintain the audio and video data
streams in synchrony. In the preferred embodiment of the
invention, the video tempo is changed nonlinearly over time
to achieve a match between the video position and the
equivalent audio position. The method applies a Smoothing
function to the determined tempo value to prevent overcom
pensation. The method of the present invention can operate
in any hardware system and in any software environment
and can be adapted to existing systems with only minor
modifications.

40 Claims, 7 Drawing Sheets

(

Cetermine tempo
525

530 so wolve

Adjust tempo using
a smoothing function 538

532 -- Audio
ohead of audio
status reporled

OS bod

Yes

temp3
lost-tempo

error=3 and
lost empg

nct t cinq
ge 548

Set tempo to nominal role

550 - M.
Set last temp3 to notinal ote

552

tempt

Store used tempo ic
nexl Sync coll

5,642,171 Sheet 1 of 7 Jun. 24, 1997 U.S. Patent

| ±0IJI

ZZ!

5,642,171 Sheet 2 of 7 Jun. 24, 1997 U.S. Patent

0
G
Z

p.100 0|pný

07%

2 (f)I, H.

0%" |

OZZ

5,642,171 Sheet 3 of 7 Jun. 24, 1997 U.S. Patent

5,642,171 Sheet 4 of 7 Jun. 24, 1997 U.S. Patent

þ :) I H

| 79
pJ00 0|pný 910MpIDH

U.S. Patent Jun. 24, 1997 Sheet 5 of 7 5,642,171

Synchronization
module

No (>
Col Oudio driver to

obton WOve rote Stotus 504

Colculote Ond store
Oudio frome rote 506

Initialize VOriables
508

Determine Current
510 video frome number

518
Audio

to0 for OheOd
Ond OUdio ploying

Determine Current NO
Oudio position 512

Stop Oudio Calculote equivalent
Oudio frome number 514

520
522 Colculote synchronizotion

516 error quantity No OUdio poused Yes
Ond video Cought

Up

Restort Oudio

524

FIC 5A

U.S. Patent Jun. 24, 1997 Sheet 6 of 7 5,642,171

Determine tempo
526

528

FIC 5B

Video
Storted

Yes

Set tempo to
530 slow volue

Adjust tempo using
Q Smoothing function 558 532 Audio

ahead of Oudio
status reported

OS bod

Yes

536
Audio

dato OVoloble
Set tempo to
nominot rote

No

exit

Synchronizotion Yes
error X tolerance Sync

error =0 Ond
last tempo

not = nomino
rote

No

Adjust tempo Set tempo to nominol rote

Adjust tempo

Set lost tempo to nominol rote
554

Store used tempo for
next Sync coll

U.S. Patent Jun. 24, 1997 Sheet 7 of 7 5,642,171

Common Storting Point
602

608

Audio Do to Video Doto
Streom StreOm

604 606

FIC.. 6

5,642,171
1.

METHOD AND APPARATUS FOR
SYNCHRONZING AUDIO AND WIDEO DATA
STREAMS IN A MULTIMEDIA SYSTEM

FIELD OF THE INVENTION

The present invention relates generally to multimedia
computer systems, and more particularly to a method and
apparatus for synchronizing video and audio data streams in
a computer system during a multimedia presentation.

DESCRIPTION OF THE RELATED ART

Multimedia computer systems have become increasingly
popular over the last several years due to their versatility and
their interactive presentation style. A multimedia computer
system can be defined as a computer system having a
combination of video and audio outputs for presentation of
audio-visual displays. A modem multimedia computer sys
tem typically includes one or more storage devices such as
an optical drive, a CD-ROM, a hard drive, a videodisc, or an
audiodisc, and audio and video data are typically stored on
one or more of these mass storage devices. In some file
formats the audio and video are interleaved together in a
single file, while in otherformats the audio and video data
are stored in different files, many times on different storage
media. Audio and video data for a multimedia display may
also be stored in separate computer systems that are net
worked together. In this instance, the computer system
presenting the multimedia display would receive a portion of
the necessary data from the other computer system via the
network cabling.
A multimedia computer system also includes a video card

such as a VGA (Video Graphics Array) card which provides
output to a video monitor, and a sound card which provides
audio output to speakers. A multimedia computer system
may also include a video accelerator card or other special
ized video processing card for performing video functions,
such as compression, decompression, etc. When a computer
system displays a multimedia presentation, the computer
system microprocessor reads the audio and video data stored
on the respective mass storage devices, or received from the
other computer system in a distributed system, and provides
the audio stream through the sound card to the speakers and
provides the video stream through the VGA card and any
specialized video processing hardware to the computer
video monitor. Therefore, when a computer system presents
an audio-visual display, the audio data stream is decoupled
from the video data stream, and the audio and video data
streams are processed by separate hardware subsystems.
A multimedia computer system also includes an operating

system and drivers for controlling the various hardware
elements used to create the multimedia display. For
example, a multimedia computer includes an audio driver or
sound card driver for controlling the sound card and a video
driver for controlling the optional video processing card.
One example of an operating system which supports mul
timedia presentations is the Multimedia Extensions for the
Microsoft Windows operating system.

Graphic images used in Windows multimedia applica
tions can be created in either of two ways, these being
bit-mapped images and vector-based images. Bit-mapped
images comprise a plurality of picture elements (pixels) and
are created by assigning a color to each pixel inside the
image boundary. Most bit-mapped color images require one
byte per pixel for storage, so large bit-mapped images create
correspondingly large files. For example, a full-screen, 256
color image in 640-by-480-pixel VGA mode requires 307,

10

15

20

25

30

35

45

50

55

65

2
200 bytes of storage, if the data is not compressed. Vector
based images are created by defining the end points,
thickness, color, pattern and curvature of lines and solid
objects comprised within the image. Thus, a vector-based
image includes a definition which consists of a numerical
representation of the coordinates of the object, referenced to
a corner of the image.

Bit-mapped images are the most prevalent type of image
storage format, and the most common bit-mapped-image file
formats are as follows. A file format referred to as BMP is
used for Windows bit-map files in 1-, 2-, 4-, 8-, and 24-bit
color depths. BMPfiles containabit-map header that defines
the size of the image, the number of color planes, the type .
of compression used (if any), and the palette used. The
Windows DIB (device-independent bit-map) format is a
variant of the BMP format that includes a color table
defining the RGB (red green blue) values of the colors used.
Other types of bit-map formats include the TIF (tagged
image format file), the PCX (Zsoft Personal Computer
Paintbrush Bitmap) file format, the GIF (graphics inter
change file) format, and the TGA (Texas Instruments
Graphic Architecture) file format.
The standard Windows format for bit-mapped images is a

256-color device-independent bit map (DIB) with a BMP
(the Windows bit-mapped file format) or sometimes a DIB
extension. The standard Windows format for vector-based
images is referred to as WMF (Windows metafile).

Compression
Full-motion video implies that video images shown on the

computer's screen simulate those of a television set with
identical (30 frames-per-second) frame rates, and that these
images are accompanied by high-quality stereo sound. A
large amount of storage is required for high-resolution color
images, not to mention a full-motion video sequence. For
example, a single frame of NTSC video at 640-by-400-pixel
resolution with 16-bit color requires 512K of data perframe.
At 30 flames per second, over 15 Megabytes of data storage
are required for each second of full motion video. Due to the
large amount of storage required for full motion video,
various types of video compression algorithms are used to
reduce the amount of necessary storage. Video compression
can be performed either in real-time, i.e., on the fly during
video capture, or on the stored video file after the video data
has been captured and stored on the media. In addition,
different video compression methods exist for still graphic
images and for full-motion video.

Examples of video data compression for still graphic
images are RLE (run-length encoding) and JPEG (Joint
Photographic Experts Group) compression. RLE is the stan
dard compression method for Windows BMP and DIB files.
The RLE compression method operates by testing for dupli
cated pixels in a single line of the bit map and stores the
number of consecutive duplicate pixels rather than the data
for the pixel itself. JPEG compression is a group of related
standards that provide either lossless (no image quality
degradation) or lossy (imperceptible to severe degradation)
compression types. Although JPEG compression was
designed for the compression of still images rather than
video, several manufacturers supply JPEG compression
adapter cards for motion video applications.

In contrast to compression algorithms for still images,
most video compression algorithms are designed to com
press full motion video. Video compression algorithms for
motion video generally use a concept referred to as inter
frame compression, which involves storing only the differ

5,642,171
3

ences between successive frames in the data file. Interframe
compression begins by digitizing the entire image of a key
frame. Successive frames are compared with the key frame,
and only the differences between the digitized data from the
key frame and from the successive frames are stored.
Periodically, such as when new scenes are displayed, new
key frames are digitized and stored, and subsequent com
parisons begin from this new reference point. It is noted that
interframe compression ratios are content-dependent, i.e., if
the video clip being compressed includes many abruptscene
transitions from one image to another, the compression is
less efficient. Examples of video compression which use an
interframe compression technique are MPEG, DVI and
Indeo, among others.
MPEG (Moving Pictures Experts Group) compression is

a set of methods for compression and decompression of full
motion video images that uses the interframe compression
technique described above. The MPEG standard requires
that sound be recorded simultaneously with the video data,
and the video and audio data are interleaved in a single file
to attempt to maintain the video and audio synchronized
during playback. The audio data is typically compressed as
well, and the MPEG standard specifies an audio compres
sion method referred to as ADPCM (Adaptive Differential
Pulse Code Modulation) for audio data.
A standard referred to as Digital Video Interactive (DVI)

format developed by Intel Corporation is a compression and
storage format for full-motion video and high-fidelity audio
data. The DVI standard uses interframe compression tech
niques similar to that of the MPEG standard and uses
ADPCM compression for audio data. The compression
method used in DVI is referred to as RTV 2.0 (real time
video), and this compression method is incorporated into
Intel's AVK (audio/video kernel) software for its DVI prod
uct line. IBM has adopted DVI as the standard for displaying
video for its Ultimedia product line. The DVI file format is
based on the Intel i750 chipset and is supported through the
Media Control Interface (MCI) for Windows. Microsoft and
Intel jointly announced the creation of the DVMCI (digital
video media control interface) command set for Windows
3.1 in 1992.
The Microsoft Audio Video Interleaved (AVID format is a

special compressed file structure format designed to enable
video images and synchronized sound stored on CD-ROMs
to be played on PCs with standard VGA displays and audio
adapter cards. The AVI compression method uses an inter
frame method, i.e., the differences between successive
frames are stored in a manner similar to the compression
methods used in DVI and MPEG. The AVI format uses
symmetrical software compression-decompression
techniques, i.e., both compression and decompression are
performed in real time. Thus AVI files can be created by
recording video images and sound in AVI format from a
VCR or television broadcastin real time, if enough free hard
disk space is available.

In the AVI format, data is organized so that coded frame
numbers are located in the middle of an encoded data file
containing the compressed audio and compressed video.The
digitized audio and video data are organized into a series of
frames, each having header information. Each frame of the
audio and video data streams is tagged with a frame number
that typically depends upon the frame rate. For example, at
every 33 milliseconds (ms) or a 30th of a second, a frame
number is embedded in the header of the video frame and at
every 30th of a second, or 33 ms, the same frame number is
embedded in the header of the audio track. The number
assigned to the frames is, therefore, coordinated so that the

10

15

20

25

30

35

40

45

50

55

65

4
corresponding audio and video frames are originally tagged
with the same number. Therefore, since the frames are
initially received simultaneously, the frames can actually be
preprocessed so that tag codes are placed into the header
files of the audio and the video for tracking the frame
number and position of the audio and video tracks.

In the AVI format, the audio and video information are
interleaved (alternated in blocks) in the CD-ROM to mini
mize delays that would result from using separate tracks for
video and audio information. Also, the audio and video data
are interleaved to synchronize the data as it is stored on the
system. This is done in an attempt to synchronize the audio
and video data during playback.
The Apple QuickTime format was developed by Apple for

displaying animation and video on Macintosh computers,
and has become a de facto multimedia standard. Apple's
QuickTime and Microsoft's AVI take a parallel approach to
the presentation of video stored on CD-ROMs, and the
performance of the two systems is similar. The QuickTime
format, like AVI, uses software compression and decom
pression techniques but also can employ hardware devices,
similar to those employed by DVI, to speed processing. The
Apple QuickTimeformat became available for the PC under
Microsoft Windows in late 1992.
As mentioned above, the audio and video data streams in

a multimedia presentation are processed by separate hard
ware subsystems under the control of separate device driv
ers. The audio and video data are separated into separate data
streams that are then transmitted to separate audio and video
subsystems. The video data is transmitted to the video
subsystem for display, and the audio data is transmitted to
the sound subsystem for broadcast. These two subsystems
are addressed by separate drivers, and each driver is loaded
dynamically by the operating system during a multimedia
presentation. In an operating system that is multi-tasking,
has multiple drivers, or has multiple windows, the time
period between the servicing of drivers is indeterminate. If
a driver is not serviced by the operating system in time for
the next frame, a portion of the multimedia systems may
stall, resulting in the audio not being synchronized with the
video. When the audio and video portions of a multimedia
presentation become unsynchronized, many times this lack
of synchronization is noticeable to the viewer, resulting in a
less pleasing display. One result of audio and video data
being out of sync is that the viewer may hear words that do
not match the lips of the speaker, a situation commonly
called "out of lip sync."

Therefore, many times the corresponding audio and video
frames of a multimedia presentation are not played synchro
nously together. The reasons for the audio and video data
streams falling out of sync during a presentation include the
inherent decoupling of the audio and video data streams in
separate subsystems in conjunction with system bottlenecks
and performance issues associated with the large amounts of
data that are required to be manipulated during a multimedia
presentation. As mentioned above, full motion video clips
with corresponding audio require massive amounts of sys
tem resources to process. However, a considerably greater
amount of processing is required to display the video data
than is required for the audio data. First the video data must
be decompressed either in software or in a codec
(compression-decompression) device. If the color depth of
the video is higher than that of the display, such as when an
AVIfile with 16 bit video is played on an 8 bit display, the
computer must dither colors to fit within the display's color
restrictions. Also, if the selected playback window size is
inconsistent with the resolution at which the video was
captured, the computer is required to scale each frame.

5,642,171
5

In addition to the greater amount of processing required
for video data, the amount of video processing can vary
considerably, thus further adversely affecting synchroniza
tion. For example, one variable that affects the speed of
video playbackis the decompression performed on the video
data. The performance of software decompression algo
rithms can vary for a number of reasons. For example, due
to the interframe method of compressing data, the number of
bytes that comprise each video frame is variable, depending
on how similar the prior video frame is to the current video
frame. Thus, more time is required to process a series of
frames in which background is moving than is required to
process a series of frames containing only minor changes in
the foreground. Other variables include whether the color
depth of the video equals that of the display and whether the
selected playback window size is consistent with the reso
lution at which the video was captured, as mentioned above.

In addition, a slow CPU adversely affects every stage in
the processing of a video file for playback. A sluggish hard
disk or CD-ROM controller can also adversely affect per
formance as can the performance of the display controller or
video card. Also, other demands can be made on the system
as a result of something as simple as a mouse movement.
While the above processing is being performed on the video
and audio data, and while other demands are made on
system resources, it becomes very difficult to ensure that the
audio and video data remain in synchronization.
Video for Windows includes a method which presumably

attempts to maintain the audio and video portions of a
multimedia display in sync, i.e., attempts to adapt when the
computer system cannot keep up with either the video or
audio portions of the display. Video for Windows bench
marks the video hardware when it first begins execution as
well as every time thereafter that the default display is
changed. The results of these tests are used to determine a
particular system's baseline display performance at various
resolutions and color depths. Video for Windows then uses
this information regarding the capabilities of the video
system to adjust the video frame rate to match the bench
marked performance for the default display. Video for
Windows maintains the continuity of the audio at all costs
because a halting audio track is deemed more distracting.
When the burden of the video playback is such that the
system cannot keep up, Video for Windows skips frames
during playback or adjusts the frame rate continuously as the
system's resource usage patterns change.

However, the method used by video for Windows in
adjusting the video rate to match the benchmarked perfor
mance of the default display results in an average frame rate
suitable for the benchmark determined at the time the default
was last changed. Attempts to display video frames contain
ing an unusually heavy amount of non-repetitive data will
slow processing down to the point where the benchmarked
frame rate is no longer useful. When this happens, video
frames are skipped because the burden of processing the
video data becomes too great to preserve lip-sync in the
display. The result can be "jerky” movement of the images
of persons speaking as noted in Discover Windows 3.1
Multimedia, by Roger Jennings (Que Corp. 1992), p.
105-106. Thus, the method used by Video for Windows has
proven to be inadequate, i.e., the video and audio portions
still fall out of sync or exhibit "jerky" movement during a
presentation.

Shortcomings inherent in decoupled audio multimedia
systems have been a problem for some time, and various
efforts have been made to synchronize the audio and video
portions of a presentation. There has been a recognized need

10

15

20

25

30

35

45

50

55

65

6
in the industry for a solution to this problem. However, no
satisfactory solution has been found, prior to the present
invention.

Therefore, a method and apparatus is desired which
provides improved synchronization between digital audio
and digital video data streams in a multimedia computer
system, i.e., a method is needed to assure that corresponding
video and audio frames are played back together. A syn
chronization method is also desired that does not require the
use of an encoding procedure prior to the processing of
audio and video digital signals. It is also desirable to provide
a multimedia synchronization system that is capable of
functioning consistently whether video and audio data are
delivered to the system in separate files or interleaved in one
file.

SUMMARY OF THE ENVENTION

The present invention comprises a method and apparatus
for synchronizing separate audio and video data streams in
a multimedia system. The preferred embodiment of the
invention utilizes a nonlinear feedback method for data
synchronization that is independent of hardware, the oper
ating system and the video and audio drivers used. The
system and method of the present invention does not require
that incoming data be time stamped, or that any timing
information exist in the video data stream relative to audio
and video data correspondence. Further, the data is not
required to be modified in any way prior to the transfer of
data to the video and audio drivers, and no synchronization
information need be present in the separated audio and video
data streams that are being synchronized by the system and
method of the present invention. The preferred embodiment
of the present invention requires that there be a common
starting point for the audio and video data, i.e., that them be
a time index of Zero where the audio and video are both in
synchrony, such that the first byte of audio and video digital
data are generated simultaneously.
The synchronization method of the present invention is

called periodically during a multimedia display to synchro
nize the video and audio data streams. In the preferred
embodiment, a periodic timer is set to interrupt the multi
media operating system at uniform intervals during a mul
timedia display and direct the operating system to invoke the
synchronization method of the present invention. When the
synchronization method is invoked, the method first queries
the video driver to determine the current video frame
position and then queries the audio driver to determine the
current audio position. The current audio position is then
used to compute the equivalent audio frame number. The
synchronization method compares the video and audio
frame positions and computes a synchronization error value,
which is essentially the number of frames by which the
video frame position is in front of or behind the current
audio frame position.
The synchronization error is used to assign a tempo value

meaningful to either the video driver or the audio driver. In
the preferred embodiment, the method adjusts the video
tempo to maintain video synchronization, but in an alternate
embodiment the method adjusts the audio tempo to maintain
synchronization. Once a video tempo value has been
determined, the preferred method adjusts this video tempo
value by applying a smoothing function, i.e., a weighted
average of prior tempo values, to the determined tempo
value. If the synchronization error is determined to be
greater than a defined tolerance, i.e., if the audio and video
data streams are more than a certain number of flames out of

5,642,171
7

sync, and if the tempo value is not equal to the last tempo
value previously sent to the video driver, then the method
adjusts the video frame speed by passing the tempo value to
the video driver.

If the synchronization error is approximately 0, i.e., the
audio and video data streams are substantially in sync, and
the prior determined tempo value passed to the video driver
was not the nominal rate, i.e., the rate intended to exactly
match the audiorate, the method passes a video tempo value
at the nominal rate to the video driver. In other words, if the
audio and video data streams are in sync, a tempo value at
the nominal rate is passed to the video driver. This removes
any affects of the smoothing function, which otherwise
would change the tempo value to other than the nominal
rate.

The method also determines if the audio is too far ahead
of the video and if the audio is playing. If so, the audio is
paused to allow the video to catch up. If the method
determines that the audio is paused and that the video has
caught up, the method restarts the audio. The method saves
the video tempo value for comparison during the next call by
the periodic timer and surrenders control to the operating
system until called again.

Therefore, the present invention provides an improved
method of synchronizing the audio and video data streams
during a multimedia presentation to provide a correctly
synchronized presentation. The present invention permits
the use of existing software drivers and multimedia operat
ing systems. Further, the method of the present invention
operates independently of where the audio and video data
are stored as well as the type of operating system or drivers
being used.Thus the presentinvention operates regardless of
whether the audio and video data are interleaved in one file,
stored on different media, or stored in separate computer
systems. Also, the present invention does not require any
type of time stamping or tagging of data, and thus does not
require any modification of the video or audio data. Further,
the present invention operates regardless of the type of
compression/decompression algorithm used on the video
data.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the
preferred embodiment is considered in conjunction with the
following drawings, in which:

FIG. 1 illustrates a block diagram of a multimedia com
puter system according to one embodiment of the invention;

FIG. 2 is a block diagram illustrating atypical multimedia
control system;

FIG. 3 is a block diagram illustrating a prior art multi
media software architecture;

FIG. 4 is a block diagram illustrating a multimedia
software architecture incorporating the synchronization
method of the present invention; and
FIGS.5A-B are flowchart diagrams illustrating operation

of the synchronization method of the present invention.
FIG. 6 illustrates audio and video data streams having a

common starting point.
DETALED DESCRIPTION OF THE

PREFERRED EMBODIMENT

Multimedia Computer System
Referring now to FIG. 1, a block diagram illustrating a

multimedia computer system according to one embodiment

O

15

20

25

30

35

45

50

55

65

8
of the present invention is shown. It is noted that FIG. 1
illustrates only portions of a functioning computer system,
and those elements not necessary to the understanding of the
operation of the present invention have been omitted for
simplicity. As shown, the multimedia computer system
includes a CPU 102 coupled to a host bus 106. Main
memory 104 is also coupled to the hostbus 106. The host
bus 106 is coupled to an expansion bus 112 by means of a
bus controller 110. The expansion bus may be any of various
types including the AT (advanced technology) bus or indus
try standard architecture (ISA) bus, the EISA (extended
industry standard architecture) bus, a microchannel (MCA)
bus, etc. A video card or video adapter such as a VGA (video
graphics array) card 120 is coupled to the expansion bus 112
and is adapted to interface to a video monitor 122, as shown.
The computer system may also include a video accelerator
card 124 for performing compression/decompression
(codec) functions. However, in the preferred embodiment
the computer system does not include a video accelerator
card. An audio card or sound card 130 is also coupled to the
expansion bus 112 and interfaces to a speaker 132. The audio
board 130 is preferentially a Sound Blaster II brand card
made by Creative Labs, Inc. of Milpitas, Calif.

Various mass storage devices are also coupled to the
expansion bus 112, preferably including a CD-ROM 140,
and a hard drive 142, as well as others. One or more of these
mass storage devices store video and audio data which is
used during presentation of a multimedia display. The audio
and video data may be stored in any of a number of formats
and may be stored on different media. Further, the audio and
video data may be stored on media located in other computer
systems that are connected to the computer system via a
network. Thus the present invention can operate in a dis
tributed environment.

It is noted that a multimedia computer system according
to the present invention may be configured in any of a
number of ways. For example, the video and audio card 120
and 130, as well as one or more of the mass storage devices
140 or 142 may be coupled to a CPU local bus such as the
PCI (peripheral compact interconnect) bus, or the VESA
(Video Enhanced Standards Association) local bus, as
desired. Various other computer configurations are also
contemplated, such as a distributed system.

In the preferred embodiment of the invention, the multi
media computer system illustrated in FIG. 1 operates using
the Windows 3.1 Operating System from Microsoft Corpo
ration of Redmond, Washington. The computer system also
preferably includes the Microsoft Windows multimedia
extension software, including Microsoft's Media Control
Interface and associated drivers. The Windows Media Con
trol Interface (MCI) is a set of high-level commands that
provide a device-independent interface for controlling mul
timedia devices and media files. The MCI command set is
designed to provide a generic core set of commands to
control different types of media devices. Because of the high
level of device independence provided by the MCI com
mand set, a programmer can use MCI commands rather than
a low level API to access the multimedia capabilities of
Windows. It is noted that the computer system may use other
operating Systems and other multimedia software, as
desired.
The computer system includes video and audio drivers

which interface to video and audio hardware, respectively.
The audio driver interfaces between the multimedia operat
ing system and the audio card 130. The video driver inter
faces between the operating system and the video accelera
tor card, if any. In the preferred embodiment, which does not

5,642,171
9

include a video accelerator 124, the video driver does not
actually interface to any video hardware, but rather performs
various video data processing on the main CPU 102. In the
preferred embodiment, the video driver is comprised in the
Intel Audio-Visual Kernel (AVK). The audio driver is pref
erably an MCI compliant WAV driver corresponding to the
respective audio card 130.
The computer system also includes a synchronization

method according to the present invention which synchro
nizes the audio and video data streams during a multimedia
presentation to ensure that the appropriate sounds are gen
erated by the speaker 132 when the corresponding images
are being displayed by the video monitor 122.

Multimedia Software Architecture of the Preferred
Embodiment

Referring now to FIG. 2, the Microsoft Windows' Mul
timedia Extensions Software Architecture is illustrated. As
shown in FIG. 2, a multimedia application 200 directs a
computer system to present a multimedia display by inter
facing to the hardware through the operating system and
various device driver layers. The block 210 includes the
Windows Kernel and Graphics Device Interface (GDI), i.e.,
the bulk of the Windows operating system. As shown, the
multimedia application 200 interfaces through the Windows
operating system 210 to Windows device drivers 220. The
device drivers 220 interface to the various elements in the
computer system including the printer, hard drive 142, video
monitor 122, etc.
The block 240 comprises the Windows Multimedia

Extensions Software. This translation layer isolates applica
tions from device drivers and centralizes device
independent code. The translation layer 240 translates a
multimedia function call into a set of Media Control Inter
face ("MCI") calls which interface to Media Control Inter
face drivers 250. As shown, the Media Control Interface
drivers interface to mass storage devices 260 and 270 such
as the CD-ROM 140 or hard drive 142. The Media Control
Interface layer also communicates with MCI compliant
multimedia device drivers 230 using a set of low level
functions, as shown. The multimedia hardware device driv
ers 230 directly control amultimedia device such as an audio
card 130 or video accelerator 124. For more information on
the Media Control Interface layer 240, please see Discover
Windows 3.1 Multimedia by Roger Jennings (Que Corp.
1992) chapters 23 and 24, which is hereby incorporated by
reference. Please also see generally the Microsoft Multime
dia Programmer's Reference and the Microsoft Windows
Multimedia Programmer's Workbook, available from
Microsoft Corporation, which are both hereby incorporated
by reference.
The recording and presentation of multimedia displays is

handled by the Windows Multimedia Extension Software in
conjunction with the individual MCI drivers. Currently, not
all multimedia drivers support MCI commands and com
mand options. In particular, optional commands used by
some devices are not supported. An example of an option
command is "set,” which sets the operating state of a device.
Such a command would support the option "tempo 200," for
example, as a means of controlling the speed of the playback
device. Another example of an option command is the
"pause” command, which suspends operation of a playback
device, but leaves the device ready to resume playing
immediately,
One embodiment of the present invention avoids use of

MCI commands for querying the audio and video drivers

10

15

20

30

35

45

10
and controlling the tempo and pausing of playback devices.
In this embodiment the synchronization method of the
presentinvention makes calls directly to the API of the audio
and video drivers to obtain the necessary information and
control the tempo of one of the respective data streams to
maintain synchronization. The preferred embodiment of the
invention uses the MCI interface to access the respective
multimedia device drivers to query the drivers as well as
adjust the tempo of the data streams. In alterative embodi
ments of the invention, the synchronization method uses
MCI commands to interface to the audio driver and uses the
direct API to access the video driver, or vice versa. r

Multimedia storage devices can be classified as either
simple devices or compound devices. Simple devices do not
require a data file for playback, and videodisc players and
CD audio players are examples of simple devices. Com
pound devices require a data file for playback and examples
of compound devices include digital video players and
waveform audio players. The preferred embodiment of the
invention is used to synchronize audio and video data
streams from compound devices.

Prior Art Multimedia System
Referring now to FIG. 3, a prior art multimedia system

that does not include the synchronizing method of the
present invention is shown. As shown in FIG. 3, audio and
video data are stored in a multimedia system using one of a
variety of storage devices 301,302, and 303, including the
hard disk 142 or CD-ROM 140. If the audio and video data
are stored in the audio-video interleave (AVI) file format,
then the audio and video data are interleaved together on the
storage media in the same file. Alternatively, the audio and
video data are stored on different storage media, perhaps on
different computer systems connected via a network. As
previously noted, the present invention operates regardless
of whether the audio and video data are interleaved together,
stored on separate media, or stored on separate computer
systems.
The audio and video data are provided to the CPU 102,

which is preferably executing the Microsoft Windows Oper
ating System 307, as well as the Microsoft Multimedia
Extension software. The Multimedia Extension software
invokes the media control interface (MCI) layer software
309, which in turn invokes respective MCI digital drivers
311 to provide the respective data streams to the respective
hardware subsystems. As shown, the MCI digital driver 311
communicates with the video driver in the Intel audio-video
kernel (AVK) 341. The video driver in the AVK performs

50

55

65

various processing on the video data and interfaces to video
accelerator hardware 124, if any. The video driver in the
AVK341 also monitors the frame number of the video frame
being played. The video data is then provided to the video
frame buffer 345 in the video adaptor (VGA card) 120 where
it is then displayed on the video monitor 122. The MCI
digital driver 311 also communicates with the audio driver
331 to provide the audio data 313 to the respective hardware
audio card 130 to the speaker 132. The audio driver 331 is
preferably an MCI-compliant driver. Thus, audio data is read
from the respective storage device and provided to the audio
card 130 by the MCI driver 311 and the audio drivers 331
executing on the CPU 102. The audio driver 331 monitors
the number of bytes of audio data processed from the start
of a particular set of data.
As discussed in the background section, prior art multi

media systems provide generally unsynchronized audio and
video outputs during a multimedia presentation due to the

5,642,171
11

inherent difficulty of synchronizing separate audio and video
data streams passing through separate audio and video
Subsystems and controlled by separate audio and video
drivers. Numerous factors can affect the playback of the
audio and video data streams, including the greater amount
and more variable amount of processing required for the
video data as well as other demands that can be made on the
system.
As discussed above, a large amount of processing may be

required before the video data can be displayed on the video
monitor 122. For example, if the video's color depth is
higher than the display's, as when an AVIfile is played with
16-bit video on an 8-bit display, colors must be dithered to
fit within the display's color restrictions. Also, if the play
back Window size differs from the resolution at which the
video was captured, each frame must be scaled. Video and
audio data processing can be adversely affected by a number
of other factors, including a slow hard disk, a slow CD-ROM
controller, and a slow display controller or audio card.
During this process, it becomes virtually impossible for the
environment to maintain the audio and video data properly
Synchronized while managing other critical tasks. As dis
cussed in the background section, prior art methods, to the
extent there are any, have proved inadequate in maintaining
Synchronization between video and audio data streams.

Multimedia Software Architecture Including the
Preferred Embodiment of the Present Invention

Referring now to FIG. 4, operation of the preferred
embodiment of the present invention is illustrated. Logical
blocks in FIG. 4 that are similar to those shown in FIG. 3 are
designated with the same reference numeral for conve
nience. As discussed above, the preferred embodiment uses
an MCI compatible interface to perform the synchronization
method of the present invention. The preferred embodiment
also uses the video driver in the Intel Audio Video Kernel
(AVK) 341. Because of the high level of device indepen
dence provided by the MCI interface, the multimedia capa
bilities of Microsoft Windows can be accessed through MCI
protocols, rather than through low-level Application Pro
gram Interfaces (API). The preferred embodiment uses the
MCI protocol and commands to interface with the video and
audio drivers. These protocols are found in the Microsoft
Windows Software Development Kit, Multimedia Program
mer's Guide, Document Number PC30253-0492 which can
be obtained from Microsoft Corporation of Redmond, Wash
ington. (facsimile number 206-936-7329). In an alternative
embodiment of the present invention, as mentioned above,
the method of the present invention avoids the MCI layer
and instead communicates directly with the API of the video
and audio drivers. Bypassing the MCIinterface layer results
in a slight speed increase due to the decreased overhead. The
Source code listing following this description implements an
embodiment of the invention that bypasses the MCI layer
and instead communicates directly with the API of the audio
and video drivers.
As shown in FIG. 4, video data and commands pass from

the MCIdigital driver 311 to the video driver in the AVK341
via the data path 315. The AVKin turn provides data to the
video hardware 124, if any, which in turn provides the video
data to the video frame buffer 345 in the video adaptor 120.
Audio data and commands are transferred from the MCI

digital driver 311 to the audio driver 331 via data path 313.
The audio driver 331 in turn provides the data to the audio
card 130 via data path 333, and the speaker 132 produces
Sound corresponding to the audio data.

10

15

20

25

30

35

45

50

55

65

12
The synchronization method of the present invention is

performed by synchronization module block 421. The syn
chronization module 421 comprises a method that is pref
erably implemented in software, and a source code listing of
one embodiment of this method is located at the end of this
specification. As noted above, the source code listing at the
end of this specification operates by interfacing directly to
the API of the audio and video drivers rather than going
through the MCI interface layer. Otherwise the source code
listing is similar to the preferred method. The MCI digital
driver 311 provides a signal to the synchronization module
421 over path 417. The computer system includes a timer
which periodically interrupts the MCI layer 309 and MCI
driver 311 and directs the MCI layer 309 to invoke the
synchronization module 421 of the present invention. When
the synchronization module 421 is invoked, the synchroni
zation method queries the audio and video drivers 331 and
341 for the current position of the audio and video data. The
synchronization module 421 is shown connected to the AVK
video driver 341 and the audio driver 331. As noted above,
the synchronization module 421 of the preferred embodi
ment of the invention interfaces to the AVK video driver 341
and the audio driver 331 through the MCI interface layer. In
contrast, the source code listing at the end of this specifi
cation implements an embodiment that accesses the AVK
video driver 341 and audio driver 331 directly via the API
of the respective drivers.
The audio driver 331 provides audio position information

to the synchronization module 421 over path 429. The AVK
video driver 341 provides video frame position data over
signal path 423 to the synchronization module 421. The
synchronization module 421 uses the audio and video frame
rate information to compute a video tempo value that is
provided to the AVK video driver 341. Video tempo and
pause commands are conveyed from the synchronization
module to the AVK 341 over signal path 425, preferably
routed through the MCIlayer 309 as discussed above. Also,
in the preferred embodiment, the synchronization module
421 provides a pause command to the audio driver 331. In
an alternate embodiment, the present invention maintains
synchronization by adjusting the audio tempo, and the
synchronization module 421 generates an audio playback
tempo command that is conveyed to the audio driver 331
over signal path 427.

Synchronization Method-Flowchart
Referring now to FIGS.5A and 5B, a flowchart diagram

illustrating operation of the synchronization method per
formed by the synchronization module 421 according to the
present invention is shown. The main portion of the syn
chronization method is located at lines 151-327 of the
source code listing at the end of this specification. The
synchronization method makes a function call to a function
referred to as audframe decupl aud dev, which computes
the audio frame number from the audio position. This
function is located generally at lines 1-150 of the source
code listing.
When the synchronization method is invoked, in step 502

the method determines if this is the first time the method has
been invoked. If so, then in step 504 the method calls the
audio driver to obtain the wave rate, i.e., how many kilohertz
at which the audio is operating. In step 506 the method
calculates and stores the number of bytes that are in an audio
frame that is equivalent to a corresponding video frame. The
method obtains the wave rate at which the audio is playing,
determines how many bytes of audio are played each
second, then calculates the equivalent number of bytes for

5,642,171
13

each video frame using the known video frame rate. The
equation used in this calculation is:

bytes per frn 100000-Avio-AudStrmsOl
SamplesPerSecond"Avio-AudStrmsOFrameRate/10 UL;

In step 508 the synchronization method initializes other
variables. For example, the method initializes a previous
tempo variable to a starting value, preferably a nominal
value. As discussed further below, this previous tempo
variable is used to record the prior tempo variable provided
to the video driver the last time the synchronization module
was invoked. Other variables can be initialized as desired. If
the synchronization module is not being called for the first
time in step 502, then operation proceeds directly to step
S10.

It is noted that the preferred embodiment of the invention
operates as shown in FIG. 5Ain steps 502-508. However, in
an alternate embodiment, steps 502-508 are performed
elsewhere, such as in the audio driver 331 or the MCI layer
309. It is also noted that steps 502-508 are not included in
the source code listing at the end of this specification.

In step 510 the method determines the current video frame
number. The synchronization method of the present inven
tion calls the respective video driver 341 controlling the
video hardware (if any) to determine what video frame
number is currently being played. This call preferably uses
MCI interface commands. In step 512 the method calls the
respective audio driver to determine the current audio
position, i.e., which audio byte is currently being played.
This call also preferably utilizes MCI commands. In an
alternate embodiment, the call to the video driver is made
directly to the API of the video driver, and the call to the
audio driver involves a call directly to the API of the WAV
audio driver 331 to determine what audio byte is currently
being played. In step 514 the method then calculates the
equivalent audio frame number being played using the audio
framerate value calculated and stored in step 506. As shown
in the source code listing at the end of this specification, step
514 invokes a function referred to as audframe decupl
aud dev. This function calculates the current audio frame
number using a fraction representing the number of bytes
per equivalent audio frame to determine the audio frame
number. This function preferably does not use floating point
numbers in the calculation due to the perceived unreliability
of floating point numbers in some programming environ
ments.

Referring to FIGS. 5A and 5B and 6, the preferred
embodiment of the present invention requires that there be
a common starting point for the audio and video data. FIG.
6 illustrates an audio data stream 604 and a video data
stream 606 having a common starting point 602. Each audio
data stream 604 includes audio frames 608 having audio
data, and each video data stream 606 includes video frames
610 having video data. There is a time index of zero where
the audio data stream 604 and video data stream 606 are both
in synchrony, such that a first byte of the audio data stream
604 and a first byte of the video data stream 606 are
generated simultaneously.

In step 516 the method then calculates the synchroniza
tion error quantity. Clearly, because audio data stream 604
and video data stream 606 have a common starting point
602, calculating the synchronization error quantity essen
tially involves subtracting the current video frame number
from the current audio frame number to determine the
number of frames by which the audio and video are out of
Sync.

10

15

20

25

30

35

45

50

55

65

14
In step 518 the method determines if the audio is too far

ahead of the video and if the audio is still playing. In the
preferred embodiment the method determines if the audio is
more than 5 frames ahead of the video in step 518. If the
audio is determined to be too far ahead and is also playing
in step 518, then the method stops the audio in step 520 and
then advances to step 522. If the audio is either not too far
ahead, i.e., not more than 5 frames ahead, or the audio is not
playing, then operation advances directly to step 522. It is
noted that if the audio is determined to be too far ahead in
step 518, i.e. more than 5 frames ahead of the video, then the
synchronization method of the present invention may not be
working, i.e., the video tempo is not being set properly.
Another possibility is that the synchronization method is not
being called often enough. It is noted that if the video
advances too far ahead of the audio, then the video is simply
slowed down using a lower video tempo.

In step 522 the method determines if the audio is paused
and the video has caught up to the audio. In the preferred
embodiment, the video is considered to have caught up to
the audio if the audio is less than 2 frames ahead of the
video. If the audio is paused and the video is determined to
have caught up to the audio, then the audio is restarted in
step 524. Operation then advances to step 526 (FIG. 5B). If
either the audio is not paused or the video has not caught up
to the audio, then operation proceeds directly to step 526.

In step 526 the method selects a synchronization adjust
ment factor, referred to as a tempo value, for the video driver
using a lookup table. In the source code listing at the end of
this specification, the video tempo value is actually selected
from a case statement. As noted above, in the preferred
embodiment the synchronization method adjusts the video
frame rate or video tempo to maintain the audio and video
data streams in sync. However, it is noted that in the present
invention either the audio or video stream rates can be
adjusted as desired. For example, the method could slow
down or speed up the video frame rate or slow down or
speed up the audio frame rate as desired to maintain the
respective audio and video data streams in sync. It is noted
that adjusting the audio data stream may be a simpler
procedure than adjusting the video data stream. The audio
data stream was not adjusted in the preferred embodiment
because of concerns that the user might be able to hear the
audio adjustments. However, experimentation has shown
that adjustments to the audio data stream would generally
not be detectable by the user if the synchronization method
of the present invention was invoked a sufficient number of
times each second.

In step 528 the method determines if the video has started
to play. If not, then the method sets the video tempo value
to a slow value. This is done merely to begin the video
portion of the presentation at a slow rate. If the video has
started to play, operation proceeds directly to step 532. In
step 532 the method adjusts the video tempo value using a
smoothing or dampening function. The preferred embodi
ment uses a smoothing formula which combines one half of
the current tempo value plus one half of the previous tempo
value. This smoothing function operates to prevent over
compensation and to add stability to the synchronization
method, thus allowing for smoother synchronization. The
adjustment performed in step 532 is similar to a damping
function.

In step 534 the method determines if the audio is paused.
If the audio is determined to not be paused in step 534, then
in step 536 the method determines if audio data is available.
If audio data is determined to not be available in step 536,
then it is assumed that the multimedia presentation does not

5,642,171
15

include any audio data. In this case the method exits since
it not necessary to adjust the video playback speed or tempo
if there is no audio component. If audio data is determined
to be available in step 536, then operation advances to step
542.

If the audio is determined to be paused in step 534, then
in step 538 the method determines if the audio is ahead of
the video or if the audio status is reported as bad. If the audio
is determined to be equal to or behind the video in step 538,
then operation advances to step 542. If the audio is deter
mined to be ahead of the video in step 538 or if the audio
status is reported as bad, then the method sets the video
tempo to a nominal rate, i.e., a rate which is calculated to
be equal to the average speed of the audio playback. The
video tempo is set to the nominal rate in step 540 because it
is not necessary to set the video rate to large (fast) tempos
if the audio is paused and the audio is ahead of the video. In
cases where the audio is paused and is ahead of the video,
this typically means that the user has either clicked on the
PAUSE or STEP button during the presentation, or that the
audio has been halted because the audio and video were too
far out of sync.

In step 542 the method determines if the synchronization
error calculated in step 516 is greater than a set tolerance. In
the preferred embodiment the tolerance is set to 1 frame.
Thus the synchronization method does not adjust the video
tempo unless the audio and video are at least a certain
amount out of sync. If the audio and video are in sync or are
relatively close to being in sync, then the tempo is not
adjusted. This avoids having to call the video driver to adjust
the tempo and thus reduces the overhead caused by syn
chronization. If the synchronization error is greater than the
tolerance in step 542, then in step 543 the method deter
mines if the tempo value is equivalent to the last tempo
value, i.e., the tempo value sent to the video driver the last
time the synchronization method was executed. If the cur
rent tempo value equals the last tempo value, then opera
tion advances to step 554. In this instance the video driver
is already operating at this tempo, and thus there is no need
to call the video driver to set the tempo value to the same
value. This also serves to reduce the overhead of the
synchronization method. If the tempo value does not equal
the last tempo value in step 543, then in step 544 the
method adjusts the video frame rate using the tempo value
determined in step 526 and adjusted in step 532. As noted
above the method preferably adjusts the video frame rate
using MCI interface calls. In an alternate embodiment, as
shown in the source code listing, the synchronization
method passes the video frame rate or tempo value directly
to the video driver, using the AvkGrpTempo function call.
The video driver uses the received number to adjust the
video frame rate. Operation then advances to step 554.

If the synchronization erroris determined to not be greater
than the tolerance in step 542, then in step 546 the method
determines if the synchronization error is 0 and if the
previous tempo was not set to the nominal rate. If either the
synchronization erroris not 0 or the previous tempo was set
to the nominal rate, then operation advances to step 554. In
this instance it is not necessary to adjust the tempo because
the synchronization error was determined to be less than the
tolerance in step 542. If the synchronization error is 0 and
the last tempo is not equal to the nominal rate, then an extra
stabilizing effect is added. This extra stabilizing effect is
referred to as a "lock-down” function. In step 548 the
methodsets the tempo to the nominal rate and in step 550 the
method adjusts the video frame rate by making the appro
priate MCI interface call to the video driver. In step 552 the

10

15

20

25

30

35

45

50

55

65

16
method sets the last tempo variable to the nominal rate to
prevent steps 548–552 from being performed the next time
the synchronization method is called.
As noted above, steps 548-552 are performed when the

synchronization erroris 0 but the prior tempo was not set to
the nominal rate. Here it is desirable to eliminate the effects
of the Smoothing function applied in step 532. If the audio
and video data streams are in Sync, the tempo value pro
duced by the smoothing function in step 532 will suggest
that the two streams are out of sync because part of the
tempo value calculation is the weighted average of the
previous tempo value with the current value. Thus, if the
current tempo value is zero, but a previous adjustment was
required, the synchronization method would report that a
tempo adjustment is necessary. Therefore, in this instance
the tempo is set to the nominal rate just as if the Smoothing
function had not been applied.

Thus, this lock-down function ensures that the synchro
nization method does not overcompensate when the audio
and video are in sync. In other words, this function adds
stability by locking on a point where the audio and video are
in sync to prevent overcompensation from occurring, i.e.,
primarily to prevent the Smoothing function applied in step
532 from pushing the audio and video out of sync. Without
this lock-down function, if the audio and video data streams
were in sync, the Smoothing function would cause the
streams to fall out of sync, i.e., would cause the video data
stream to oscillate between being ahead of or behind the
audio stream.

In step 554 the method saves the tempo value for the next
call by the periodic timer. The synchronization method then
completes.

Conclusion
Therefore, a method and apparatus for synchronizing the

audio and video portions of a multimedia display is shown.
This method provides superior synchronization over meth
ods found in the prior art.

Although the method and apparatus of the present inven
tion has been described in connection with the preferred
embodiment, it is not intended to be limited to the specific
form set forth herein, but on the contrary, it is intended to
cover such alternatives, modifications, and equivalents, as
can be reasonably included within the spirit and scope of the
invention as defined by the appended claims.
We claim:
1. A method for synchronizing audio and video data

streams having a common starting point during a multimedia
presentation, comprising the steps of:

determining a current position of the video data stream
relative to the common starting point;

determining a current position of the audio data stream
relative to the common starting point;

calculating a synchronization error related to a difference
between the respective video data stream and audio
data stream current positions using the current positions
of the audio and video data streams;

adjusting a tempo of one of the data streams based on the
synchronization error if necessary to place the audio
and video data streams in synchrony;

repeating the determining steps and the steps of calculat
ing and adjusting during the multimedia presentation to
maintain the audio and video data streams in syn
chrony.

2. The method of claim 1, further comprising:
determining if the synchronization error is greater than a

tolerance value after the step of calculating and prior to
the step of adjusting, and

5,642,171
17

wherein the step of adjusting the tempo is performed only
if the synchronization erroris greater than the tolerance
value.

3. The method of claim 1, further comprising:
determining a tempo value from the synchronization error

calculated in the step of calculating prior to the step of
adjusting; and

wherein the step of adjusting comprises adjusting the
tempo of one of the data streams using the determined
tempo value.

4. The method of claim3, further comprising:
storing the determined tempo value;
calculating a second synchronization error by repeating at
a subsequent time the steps of determining a current
position of the video data stream, determining a current
position of the audio data stream, and calculating a
synchronization error;

determining a second tempo value from the second syn
chronization error; and

repeating the step of adjusting based on the second
synchronization error if the second determined tempo
value does not equal the stored determined tempo
value.

5. The method of claim 4, further comprising:
applying a smoothing function to the second determined
tempo value using the stored determined tempo value
and second determined tempo value prior to the step of
adjusting, wherein the smoothing function prevents
overcompensating the tempo adjustment and adds sta
bility to the synchronizing method.

6. The method of claim 5, further comprising:
determining if the synchronization error is 0 and if the

immediately prior tempo value was not equal to a
nominal rate prior to the step of adjusting; and

wherein the step of adjusting the tempo comprises setting
the tempo to the nominal rate if the synchronization
error is 0 and the immediately prior tempo value was
not equal to a nominal rate.

7. The method of claim 1, wherein the step of adjusting
the tempo comprises adjusting the tempo of the video data
Stream.

8. The method of claim 1, wherein the step of adjusting
the tempo comprises adjusting the tempo of the audio data
Stream.

9. The method of claim 1, further comprising:
determining if the audio data stream is far ahead of the

video data stream and if the audio is playing after the
steps of determining respective current positions; and

halting playback of the audio data steam if the audio data
steamis far ahead of the video data steam and the audio
is playing.

10. The method of claim 9, further comprising:
determining if the audio playback is paused and if the

video data stream has approximately caught up to the
audio data stream; and

restarting the audio playback if the audio playback is
paused and the video data stream has approximately
caught up to the audio data stream.

11. The method of claim 1, wherein the video data stream
is processed in a video subsystem and the audio data stream
is processed in an audio subsystem such that the video data
stream is decoupled from the audio data stream.

12. The method of claim 13, wherein each video frame
has a video frame number relative to the common starting
point, wherein the step of determining the current position of

10

15

20

25

30

35

45

50

55

65

18
the video data stream comprises determining a current video
frame number being played.

13. The method of claim 1, wherein at any point in time
during the multimedia presentation an audio frame and a
video frame are being played and the step of determining the
current position of the audio data stream includes the steps
of:

determining which audio byte is currently being played;
obtaining a frequency at which the audio is being played;
determining how many bytes of audio are being played

per unit of time;
determining a number of bytes per audio frame equivalent

to a number of bytes per video frame; and
determining an equivalent audio frame number being

played relative to the common starting point.
14. The method of claim 12, wherein the step of calcu

lating a synchronization error comprises calculating a dif
ference between the current video frame number and the
determined equivalent audio frame number.

15. The method of claim 1, wherein the synchronizing
method is periodically performed each time after the expi
ration of a predetermined time interval.

16. A computer system which synchronizes audio and
video data streams, having respective audio and video data,
during an audio-visual display, comprising: one or more
storage devices for storing the audio and video data for the
audio-visual display;

a video monitor coupled to the one or more storage
devices for generating a video display corresponding to
the video data in the video data stream;

a speaker coupled to one or more storage devices for
generating sounds corresponding to the audio data in
the audio data stream;

one or more data paths for transmitting the audio and
video data streams corresponding to the audio and
video data from the one or more storage devices to the
speaker and the video monitor, respectively;

means coupled to the one or more storage devices, the one
or more data paths, the video monitor and the speaker
for obtaining a current position of the video data stream
relative to a common starting point of the audio and
video data streams;

means coupled to the one or more storage devices, the one
or more data paths, the video monitor and the speaker
for obtaining a current position of the audio data stream
relative to the common starting point;

means coupled to both the means for obtaining for cal
culating a synchronization error related to a difference
between the respective video data stream and audio
data stream current positions using the current positions
of the audio and video data streams; and

means coupled to the one or more data paths and the
synchronization error calculating means for adjusting a
tempo of one of the data streams based on the synchro
nization error if necessary to place the audio and video
data streams in synchrony; and

wherein the means for obtaining, means for calculating,
and means for adjusting repeat their respective func
tions during the audio-visual display to maintain the
audio and video data streams in Synchrony.

17. The computer system of claim 16, further comprising:
means coupled to the calculating means for determining if

the synchronization error is greater than a tolerance
value;

wherein the means for adjusting the tempo adjusts the
tempo only if the synchronization error is greater than
the tolerance value.

5,642,171
19

18. The computer system of claim 16, further comprising:
means for determining a tempo value from the synchro

nization error calculated by the means for calculating;
wherein the means for adjusting adjusts the tempo of one

of the data streams using the determined tempo value.
19. The computer system of claim 18, further comprising:
means coupled to the tempo value determining means for

storing the determined tempo value, wherein the stored
determined tempo value is used as a prior tempo value
the next time the synchronizing method is performed;

means coupled to the tempo value determining means and
the storing means for determining if the determined
tempo value equals the prior tempo value;

wherein the means for adjusting is not executed if the
determined tempo value equals the prior tempo value.

20. The computer system of claim 18, further comprising:
means coupled to the tempo value determining means for

storing the determined tempo value;
means coupled to the tempo value determining means and

the storing means for applying a smoothing function to
the determined tempo value using a tempo value stored
by the means for storing, wherein the smoothing func
tion prevents the means for adjusting the tempo from
overcompensating the tempo adjustment and adds sta
bility to the tempo adjustment.

21. The computer system of claim 20, further comprising:
means coupled to the calculating means for determining if

the synchronization error is 0 and if the immediately
prior tempo value was not equal to a nominal rate; and

wherein the means for adjusting the tempo comprises
means for setting the tempo to the nominal rate if the
synchronization error is 0 and the immediately prior
tempo value was not equal to a nominal rate.

22. The computer system of claim 16, wherein the means
for adjusting the tempo adjusts the tempo of the video data
Stream.

23. The computer system of claim 16, wherein the means
for adjusting the tempo adjusts the tempo of the audio data
Stream.

24. The computer system of claim 16, further comprising:
means coupled to the one or more data paths for deter

mining if the audio data streamis far ahead of the video
data stream and if the audio is playing; and

means for halting playback of the audio data stream is the
audio data stream is far ahead of the video data stream
and the audio is playing.

25. The computer system of claim 24, further comprising:
means coupled to one or more data paths for determining

if the audio playback is paused and if the video data
stream has approximately caught up to the audio data
Stream,

means coupled to the one or more data paths forrestarting
the audio playback if the audio playbackis paused and
the video data stream has approximately caught up to
the audio data stream.

26. The computer system of claim 16, wherein the one or
more data paths comprises an audio data path for transmit
ting the audio data stream and a video data path for trans
mitting the video data stream.

27. The computer system of claim 28, wherein the means
for obtaining the current position of the video data stream
comprises means for obtaining a current video frame num
ber.

28. The computer system of claim 16, wherein the audio
data stream and the video data stream include audio frames

10

15

20

25

30

35

45

50

55

65

20
and video frames, respectively, each audio and video frame
includes a respective frame number relative to the common
starting point, the means for obtaining the current position of
the audio data stream further comprising:

a means for determining which audio byte is currently
being played;

wherein said means for obtaining the current position of
the audio data stream includes means for calculating an
equivalent audio frame number relative to the common
starting point using the audio byte currently being
played, an audio play frequency, using a number of
bytes of audio played per unit of time, and using a
number of bytes per audio frame equivalent to a
number of bytes per video frame.

29. The method of claim 27, wherein the means for
calculating a synchronization error calculates a difference
between the current video frame number and the calculated
equivalent audio frame number.

30. The method as in claim 1 wherein the common
starting point is a time index of zero where the audio and
video data streams are both in synchrony, such that a first
byte of audio data and a first byte of video data are generated
simultaneously.

31. The method as in claim 1 wherein the multimedia
presentation utilizes a computer system having a video
driver, and wherein the video data stream includes video
frames, and wherein the video data stream current position
determining step comprises querying the video driver to
determine a current video frame number being played, the
method further comprising:

determining a tempo value using the synchronization
error;

wherein the tempo adjusting step comprises passing the
tempo value to the video driver.

32. The method as in claim 1 wherein the multimedia
presentation utilizes a computer system having an audio
driver and the audio data stream current position determin
ing step comprises the step of:

querying the audio driver to determine the current audio
data stream position.

33. The method as in claim 1 wherein the video data
stream and the audio data stream are respectively free from
time stamps, and the video data stream is free from any
timing information relative to the audio and video data
stream correspondence.

34. The method as in claim 1 wherein the tempo is a rate
of one of the data streams.

35. The method as in claim 5 wherein the smoothing
function combines one half of a current tempo value plus
one half of the prior tempo value.

36. The computer system as in claim 16 wherein the
current position of the video data stream is represented by a
video frame number, the computer system further compris
1ng:

a video driver means, coupled to the means for obtaining
a current position of the video data stream, for passing
the video frame number to the means for obtaining a
current position of the video data stream.

37. The computer system as in claim 16 wherein the
current position of the audio data streamis represented by an
audio frame number, the computer system further compris
Ing:

an audio driver means, coupled to the means for obtaining
a current position of the audio data stream, for passing
the audio frame number to the means for obtaining a
current position of the audio data stream.

5,642,171
21 22

38. The computer system as in claim 16 wherein the 40. The computer system as in claim 20 wherein the
common starting point is a time at which a first byte of the smoothing function combines one half of a current tempo
audio data and a firstbyte of the video data are in synchrony. value plus one half of the prior tempo value.

39. The computer system as in claim 16 wherein the
tempo is a rate of one of the data streams. ck cle : :: *k

