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T h e  
E v o l u t i o n  o f  
D V I  S y s t e m  

 OtEl are  esk op  omp  er has  een 

undergoing a transformation from a text and numeric processing system 

to a powerful tool for managing and communicating all types of digital 

information. Audio, photo-realistic images and motion video have joined the 

ranks of other digital data types available to application developers [2]. 

The addition of these "multimedia" data types places new requirements 

on the computer systems and their operating environments: Multimedia 

data consumes massive amounts of storage space, and playback of full- 

motion digital video requires real-time decompression and high I /O  

bandwidth [7]. 

DVI ® multimedia products include a set of hardware and software tools 

that integrate the full range of these new data types in a desktop 

computing environment. A typical DVI system includes a personal 

computer or workstation with Intel's ActionMedia TM playback card, system 

software, and a C D - R O M  drive. With the addition of the capture card and 

peripherals (such as a videotape player, audio cassette player or camera), 

the user or application developer can create multimedia elements as well 

as play/display them. Since all of the DVI presentation materials are in 

digital form, they can be stored on any random-access storage device or 

even transmitted across a network [16]. l ' ~  
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The  development  of  DVI tech- 
nology started in 1983 when a 
group at the David Sarnoff  Re- 
search Center  in Princeton, N.J., 
began examining the feasibility of  
combining the interactivity of  com- 
puters  with the realism of  televi- 
sion. The  results were first demon-  
strated publicly at the Second 
Annual  Microsoft CD-ROM Con- 
ference in March of  1987 [5]. Two 
years later, the technology was pur-  
chased by Intel  Corporat ion.  Intel 
in t roduced the first board  products  
based on this technology in July 
1989. 

The  system software included 
with the first generat ion of  DVI 
products  only ran on IBM-compati-  
ble computers  unde r  the MS-DOS 
opera t ing  system. This article de- 
scribes how DVI system software is 
evolving to take advantage of  more 
powerful  hardware  and opera t ing  
system environments.  The  article 
begins by examining the conceptual 
basis, the data flow, and the task- 
scheduling mechanisms employed 
by the cur ren t  ActionMedia soft- 
ware system to play digital audio 
and video. The  task-scheduling so- 
lutions employed by other  multi- 

DVI is a registered t r a d e m a r k  o f  Intel Corpo-  
ration. ActionMedia is a t r ademark  o f  Intel 
Corpora t ion  

media  systems will be discussed in 
this article as well. The  next-gener-  
ation software architecture,  called 
the Audio  Video Kernel  (AVK), will 
be discussed in the final section of  
this article, illustrating the changes 
in these areas. 

The ActionMedia 
Software System 
DVI system software is available 
current ly  on PC/AT or  PS/2 plat- 
forms runn ing  MS-DOS. This sys- 
tem, known as the Act ionMedia 750 
Software Library,  is comprised of  
three main subsystems: the Real- 
Time Executive (RTX), the Audio/  
Video Subsystem (AVSS), and a 
special graphics library. RTX pro- 
vides real-time multi tasking ser- 
vices to AVSS as well as to DVI ap- 
plications. AVSS is used to control  
playback of  digital audio/video files. 
The  graphics l ibrary provides spe- 
cial-purpose video effects, as well as 
more  tradit ional  drawing primitives 
and fonts [11]. The  conceptual 
model  used to describe this system 
is a "super  VCR." 

The Super VCR Model 
The  "playback unit" in Figure ] is 
the AVSS subsystem itself. Control  
functions for play, stop, pause and 
frame advance are provided as C 
language function calls. Applica- 

tions can play an audio/video file in 
much the same way a VCR plays a 
tape. The  "effects unit" is actually a 
collection of  functions in the graph-  
ics library. Graphics can be added  
to video as it plays via special func- 
tions called "hook routines." A 
hook rout ine is an application- 
suppl ied C function that is regis- 
tered with AVSS by passing it a 
pointer  to the function. Hook rou- 
tines encapsulate a set of  DVI 
graphics operat ions that will be 
executed on each video frame after  
it is decompressed,  but  before  it is 
displayed. AVSS automatically calls 
the hook rout ine at the p rope r  
time. An application can provide 
the user  with interactive control  
over AVSS through keyboard or  
mouse input  which are t reated as 
"events" by RTX. 

AVSS Data Flow 
AVSS uses three parallel  opera-  
tions, implemented  as RTX tasks, 
to play digital video: the server task 
reads a f rame of  compressed video 
into memory,  a decode task requests 
that the frame be decompressed by 
the pixel processor, and a display 
task displays the decompressed 
f rame on the compute r  monitor.  
These  tasks must be pe r fo rmed  30 
times a second in o rde r  to play a 30- 
f rame per  second motion video se- 
quence smoothly [11]. 

The  AVSS data-flow diagram in 
Figure 2 illustrates how the three 
tasks interact with the data buffers.  
The  data flows from the storage 
device into the input  buffer  as com- 
pressed data. Each frame is then 
decompressed  into one of  the bit- 
maps in an array called the "screen 
array." I f  a hook rout ine has been 
installed by the application, it is 
called so that graphics can be ap- 
plied before  the frame is displayed. 
The  screen array bi tmaps are re- 
used in a circular fashion. The re  
are two bi tmap resolutions that can 
be used in the screen array, 256 x 
240 and 512 x 480. Source video is 
s tored at 256 x 240 resolution. I f  
the screen array is also 256 x 240, 
the decompressed  video will fill the 
bitmap, and the result ing image will 
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AVSS Conceptual MOdel 

: I G U R E  2 

AVSS Data Flow 

fill the computer ' s  screen. I f  the 
screen array uses 512 x 480 bit- 
maps, the video will only fill one- 
quar ter  of  the bi tmap and the 
screen. 

The  MS-DOS BIOS and file sys- 
tem provide only "waited" read and 
write operations.  The  application 
must wait for the read or  write to 
complete before it can continue 
processing. Due to the real-time 
requirements  of  playing digital 
video, ActionMedia software in- 
cludes its own asynchronous read 
functions for a select number  of  
hard  drives, thereby circumventing 
the DOS BIOS and file system. 
These functions allow AVSS to con- 
tinue scheduling the decompress-  
ion and display tasks while the data 
is being t ransferred into memory.  

TaSk Scheduling Using RTX 
RTX assumes all of  the system's 
resources are available for its use. It 
takes control over a number  of  the 
in ter rupt  vectors, particularly the 
t imer interrupt ,  and intercepts a 
number  of  calls that would nor- 
mally be handled by DOS. RTX's 
first responsibility is to provide 
CPU resources to AVSS so the mo- 
tion video plays smoothly. Action- 
Media applications can create their  
own tasks under  RTX, but  they 
must be carefully designed so they 
do not interfere with AVSS tasks 

and they can actually get a chance 
to run  under  the RTX scheduling 
scheme. This is done by assigning 
the task the p roper  priority and 
making sure it issues an event wait 
sometime dur ing  its execution 
cycle. RTX priorities range from 
zero (the highest priority) to 15 (the 
lowest). The  AVSS server task, de- 
code task, and display task run at 
priorities 3, 4, and 5 respectively. 
Applicat ion tasks with lower priori-  
ties will always be p reempted  by the 
AVSS tasks. The  event-wait condi- 
tion is controlled via a function call 
in the RTX library. Common 
events include keyboard,  mouse, 
and t imeout events. The  RTX 
scheduler is activated periodically 
based on a host- t imer interrupt ,  

and places the currently running  
task at the head of  a "ready" list for 
its priority. It then hands control to 
the task at the head of  highest pri- 
ority ready list. Al though the RTX 
scheduler  and all application tasks 
are runn ing  on the host CPU, two 
of  the AVSS tasks, the decode and 
display tasks, are actually executed 
by the DVI processors. 

New Requirements and 
the AVSS Architecture 
The AVSS VCR model works well 
for applications that treat  video 
files like tapes (i.e., as self- 
contained presentations to be pas- 
sively observed). Simple training 
applications, mult imedia  presenta- 
tions, or on-line "video help" are 
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examples well-suited to the VCR 
paradigm.  The  current  Action- 
Media software includes interactive 
graphics effects and dynamic mix- 
ing of  audio streams, functions that 
stretch the limits of  the VCR model. 
Applications such as the Truck 
Driver Safety t ra iner  developed by 
Appl ied  Optical Media [16] or  the 
Code Review Tra in ing  application 
developed at Carnegie-Mellon Uni- 
versity [ 18] demonst ra te  capabilities 
that cannot be easily described 
using a VCR. The  next generat ion 
of  DVI system software will enable 
even more  advanced applications 
such as video conferencing or  mul- 
t imedia electronic mail [3]. A more  
sophisticated conceptual  model  is 
required that can be used to de- 
scribe this b roader  class of  interac- 
tive mul t imedia  applications. 

The  AVSS decompress ion and 
display tasks share the bi tmaps in 
the screen array. This prevents the 
application from controll ing more 
than one stream at a time. In  o rde r  
to allow for the possibility o f  multi- 
ple streams, the decompress ion bit- 
maps and the display bi tmaps will 
have to be separate  areas of  mem- 
ory with the video data being cop- 
ied from one to the other. The  copy 
could also include a scale factor 
which would allow video to be dis- 
played, relocated or  resized in a 
windowing environment .  

The  AVSS/RTX architecture was 
implemented  specifically on a DOS 
plat form and is not  easily por ted  to 
new environments.  Thus  the RTX 
technique for scheduling the re- 
quired tasks needed  to be 
re implemented  or  replaced.  The  
AVK team identif ied two require- 
ments for the new tasking mecha- 
nism. It has to be portable  across 
opera t ing  systems, (some of  which 
suppor t  preemptive  multi tasking 
and some of  which do not), and it 
should minimize the reliance on the 
host CPU for real-t ime response. 

Alternate Task-Scheduling 
Strategies 
In developing AVK, Intel consid- 
e red  a number  of  strategies for 
making task-scheduling and data- 

flow tasks as efficient as possible. A 
number  of  o ther  companies have 
recently described their  approaches  
as well. Compact  Disk-Interactive 
(CD-I), a system developed by Phil- 
ips, Sony, and Microware corpora-  
tions, is a self-contained system 
aimed primari ly at the consumer  
market.  It consists of  a "player" that 
is hooked up to s tandard home tel- 
evision and stereo equipment  [8]. 
When  video functionality becomes 
available for CD-I players, the 
video bitstream will be created off- 
line using a parallel processing 
machine. The  CD-I player  hard-  
ware will include a VLSI decoder  
chip, a block of  DRAM, a video key- 
ing subsystem, and a dedicated 
CPU. Coupled with the CPU is a 
ROM containing a real-time oper-  
ating system called CD-RTOS 
(Compact Disk Real-Time Operat -  
ing System). The  CPU reads the 
encoded video stream from the 
CD-ROM and delivers it to the de- 
coder  chip. A system controller  in- 
side the decoder  chip is responsible 
for satisfying the real-time require-  
ments o f  the playback stream based 
on t iming data extracted from the 
encoded bitstream [17]. Because 
the CD-I player  hardware  is fully 
self-contained, there is no concern 
for cross-platform compatibility, 
and  its applications can assume full 
control  over the environment .  This 
is similar in principle to the AVSS/ 
RTX strategy, where it is assumed 
that only one application is running  
and that it could control all of  the 
computer ' s  resources. The  main 
difference between these systems is 
that CD-RTOS will not have to co- 
exist with another  opera t ing  system 
the way RTX had to cooperate  with 
MS-DOS. 

A group of  researchers at the 
University of  California at Berkeley 
have proposed  an extension to 
X-Windows, called Continuous 
Media Extensions to X-Windows 
(CMEX). The  CMEX server con- 
sists of  a set of  processes runn ing  
on the workstation CPU that are 
scheduled preemptively with real- 
time deadlines.  These  processes 
handle  the input /output  of  continu- 

ous media  to a compression/decom- 
pression engine such as the 
82750PB. After  decompress ing a 
f rame of  video, the 82750PB would 
issue an in te r rupt  to the host CPU. 
An in te r rup t  handler  activates the 
I/O process and sets a deadl ine for 
it so the next f rame of  data will be 
t ransfer red  in time for it to be de- 
compressed.  I t  then signals the 
compression/decompression engine 
to begin executing on the data [10]. 
This  strategy is similar to RTX be- 
cause the job  of  scheduling the vari- 
ous tasks is left to the host CPU, al- 
though it differs in one impor tant  
respect. RTX was designed to as- 
sume control  o f  the host CPU from 
its opera t ing  system (MS-DOS) in 
o rde r  to achieve mult iprocessing 
functionality, whereas CMEX uses 
the mult iprocessing features of  its 
host opera t ing  system (Unix). The  
scheduling strategy employed by 
CMEX could be used on any multi- 
processing opera t ing  system given a 
sufficiently powerful  CPU and I/O 
bandwidth.  In  fact, an early proto-  
type of  AVK was implemented  on 
OS/2 using this strategy. O f  course, 
opera t ing  systems such as DOS and, 
more  important ly,  DOS/Windows 
do not  provide the preempt ive  
mult i tasking suppor t  required for a 
system like CMEX. 

A di f ferent  strategy is employed 
by Fluent  Machines, Inc. in their  
Fluency system. This system in- 
cludes two add-in cards for ISA-bus 
machines equipped  with 33MHz 
80386 CPUs. This  system employs a 
dual  coprocessor  strategy for pro-  
cessing continuous mul t imedia  
data. An Intel  80960 RISC proces- 
sor runn ing  a p ropr ie ta ry  real-time 
opera t ing  system called Fluent-  
Streams schedules tasks and syn- 
chronizes mult iple audio and video 
data streams. Ano the r  processor 
executes the video compression/  
decompress ion tasks. This  strategy 
offloads all video processes from 
the host CPU, allowing it to opera te  
in virtually any operat ing-system 
envi ronment  [20]. This  dual  copro-  
cessor strategy is an elegant  techni- 
cal solution, but  results in signifi- 
cantly more  expensive hardware  
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n d e v e l o p i n g  A V K ,  

I n t e l  c o n s i d e r e d  a 
n u m b e r  o f  s t r a t e g i e s  
f o r  m a k i n g  t a s k - s c h e d u l i n g  

a n d  d a t a  f l o w  t a s k s  
a s  e f f i c i e n t  a s  p o s s i b l e .  

than Intel 's single video processor 
approach.  

A New Conceptual Model 
For the next generat ion of  DVI sys- 
tem software, a new model has been 
developed:  the digital video pro-  
duction studio. A typical produc-  
tion studio contains mixers, tape 
decks, moni tor ing systems, effects 
processors and other  items that 
connect together  to record,  modify 
and play audio or  video tracks [6]. 
In our  conceptual model, a digital 
product ion studio is composed of  
an analogous collection of  subsys- 
tems that operate  on digital streams 
of  audio and video data. A collec- 
tion of  streams in tended to play 
together  forms a "group."  Analog 
inputs and outputs can be thought  
of  as "channels." Streams of  audio 
and video data are routed from 
input  channels to output  channels 
by making "connections." Streams 
can be "mixed" together  (e.g., as- 
signed to the same output  channel) 
or they can be routed through an 
"effects processor" to alter the data 
in some way. The  main components  
of  the digital product ion studio in- 
clude the analog device interface, 
the display manager ,  the sampler,  
the stream manager ,  the effects 
processor, and the audio/video 
mixer. These components  are illus- 
trated in Figure 3. 
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The Analog Interface 
One of these components,  the ana- 
log interface, is essentially a patch 
bay. It allows the system to be con- 
nected to various analog input  and 
output  devices such as a laser disc 
player, VCR, camera, and speakers. 
These connections are called "phys- 
ical channels" because they map 
directly to external physical devices. 
A physical channel  is unidirec- 
tional, and acts as either an input  or 
an output  channel, carrying a single 
stream of data. These connections 
are also physical in the sense that 
they correspond to the input/  
output  features of the DVI hard- 
ware. The ActionMedia Series II 
hardware allows video output  to a 
computer  monitor (via a 15-pin 
DIN connector), a Super-VHS re- 
corder or monitor (via a Y-C con- 
nector), and audio output  (via a 
stereo miniplug). Video and audio 
inputs are combined into a single 
connector plug (via an 8-pin mini- 
DIN connector). Digital-to-analog 
(D/A) conversion is performed on 
all output  channels. Analog-to- 
digital (A/D) conversion is per- 
formed on all input  channels. 

The Display System 
The display subsystem controls the 
display of the visual data on the 
computer  screen. Multiple visual 
data types (still images and video) 
can be displayed simultaneously on 
the same screen. This collection can 
be thought of as the user's "view" of 
the data, ' and  there may be more 
than one view defined in the sys- 
tem. The display subsystem allows 
for the creation of these views, and 
for selecting the view to be dis- 
played (or "monitored") at any 
given time. This is the video equiva- 
lent of having a number  of sub- 
mixes, only one of which can be 
monitored at a time. 

The Sampler 
A sampling synthesizer, or sampler, 
is a common accessory in audio 
production studios. An audio sam- 
pie records a waveform created by 
an acoustic source as a sequence of 
digital values in memory. The  

sounds can then be altered by ma- 
nipulat ing these values. This idea 
can be extended to include visual 
data. A digital representation of a 
photograph can be thought of as a 
"visual sample" which can be ma- 
nipulated in memory before being 
displayed. 

In our  model, the sample is im- 
plemented as blocks of video mem- 
ory that can be used for temporary 
storage of audio or video data. A 
frame of data can be sampled from 
a video file and stored as a still 
image. An image can be routed 
through the effects processor and 
transformed (by altering the visual 
attributes such as the tint, bright- 
ness, etc.) or converted (from one 
bitmap format to another) and then 
placed back into the sampler and 
displayed or stored to disk. 

The Stream Manager 
The stream manager,  much like the 
transport  controls on a tape deck, is 
responsible for managing the flow 
of digital data to or from a storage 
device such as a CD-ROM, hard 
disk or local-area network. Streams 
"flow" through logical channels like 
tracks on a tape. Unlike data 
streams associated with physical 
channels, streams from logical 
channels do not necessarily map 
one to one with a physical device. A 
device such as a CD-ROM may pro- 
vide a single file of interleaved 
audio/video data to the stream 
manager  that maps to several logi- 
cal channels (e.g., one for video and 
two for audio). Logical channels are 
bidirectional (except for the CD- 
ROM). This means that the same 
channels can be used for either 
input  or output,  although not at the 
same time. 

The Effects Processor 
The effects processor can be used 
to add image effects and graphics 
to stills and video, or to alter the 
characteristics of audio data. The 
effects processor serves the same 
function as the "effects unit" in the 
AVSS VCR model. It can be used to 
add image effects and graphics to 
stills or video as it plays. 

The Mixer 
The audio/video mixer is the heart 
of the production studio. It pro- 
vides mechanisms for assigning in- 
coming streams to output  channels 
as well as the reverse. There  are 
different types of streams and 
channels for audio and video data. 
For example, the left and right 
audio channels can be digitized and 
combined into a single stereo 
stream. Video channels may pro- 
vide continuous motion streams, or 
still images. 

While an audio input  channel 
produces a single audio track, the 
mixer can combine multiple audio 
tracks in various ways to feed audio 
output  channels. The  mixer can 
also manipulate the streams on 
their way through the system. In a 
recording studio, audio tracks can 
be "panned" between the left and 
right outputs by tu rn ing  a potenti- 
ometer from left to right. Digital 
audio streams can be assigned to an 
output  channel  in varying percent- 
ages ranging from 0 to 100 each for 
both the left and right channel. 

Mixing video streams to the 
video output  channel is simply a 
matter of defining the source object 
(a video stream or a still image) and 
the destination object (the applica- 
tion's "view" on the computer  
screen). Several sources can be as- 
signed to the same destination cre- 
ating a composite image, or a "vis- 
ual mix." A mixer typically provides 
some controls for modifying the 
data. In the case of digital video 
data, this includes defining rectan- 
gular regions of the source and des- 
tination object for cropping or scal- 
ing, and altering attributes such as 
tint, contrast, brightness, and color 
saturation. 

Bandwidth Saturation 
In  an audio production studio, if 
too many input  channels are as- 
signed to the same track the tape 
can become "saturated," which re- 
sults in poor-quality sound. In the 
same way, there are physical limita- 
tions on the number  of streams and 
groups that can be manipulated in 
real time by a computer.  For exam- 
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pie, data rates of various devices, 
the host bus bandwidth, and the 
number  of available CPU cycles, all 
impose limits on the ability of the 
computer to handle these complex 
data types. These limiting elements 
are described in the digital produc- 
tion studio model in terms of "satu- 
ration." 

Logical tracks can be assigned so 
they exceed the data rate of a par- 
ticular device such as a CD-ROM or 

hard disk. As a result, the recording 
data may miss frames, or the file 
may not play back properly. In ei- 
ther case, the bandwidth of the de- 
vice can be said to be saturated. 

Another  form of saturation oc- 
curs when too many effects are in- 
stalled concurrently. The video and 
audio processors also have a limited 
bandwidth, and it is possible to 
overload them with more work 
than they can perform in real time 

while video is playing. This results 
in visible and/or audible artifacts 
such as dropped frames, slower 
playback, or audio noise. 

Another  limiting factor is the 

: I G U R E  3 

Conceptual Model for Multimedia 
Computing 

: I G U R E  4 

Play Function 

I 
Digital 

Production 
Studio 
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bandwidth of  the data  bus as it per-  
forms data transfers involving 
memory.  Digital data must  be 
moved from the storage media  or 
local-area network into local mem- 
ory on the DVI device before it can 
be decompressed and displayed. I f  
several physical devices are supply- 
ing tracks of  data to the "mixer," 
the bandwidth of  the system bus 
may become saturated, even if the 
data rates of  the devices are not. 

Evaluation of the 
New MOdel by Cases 
To ensure the new conceptual 
model  is a superset  of  the AVSS 
"Super VCR" model,  a series of  
cases were examined that demon-  
strate the VCR functions in terms 
of  channel assignments between the 
components  of  the digital produc-  
tion studio. 

Figure 4 shows the channel as- 
signments for playing a file from a 
digital storage device. In  this exam- 
ple, the file contains a single track 
of  video data, plus left and r ight  
audio tracks. The  play function as- 
signs the video track to the physical 
video output  channel where the 
data is converted to an analog sig- 
nal for display or to record on a 
VCR. The  decompression of  the 
digital video is handled  automati-  
cally by the system software. The  
audio tracks are assigned to each of  
the audio output  channels that may 
be connected to an amplif ier  or a 
tape recorder .  

There  are times when the appli- 
cation must digitize from an analog 
source (like a videocassette re- 
corder),  and display the result on 
the computer  screen without com- 
pressing and storing the data. This 
scenario is depicted in Figure 5. 
The  analog input  channels are as- 
signed directly to their  correspond-  

: I G U R E  S 

Monitor Function 

: I G U R E  iS 

ReCOrd Function 

: I G U R E  7 

Monitor/Record Function 

ing ou tput  channels. 
Figure 6 illustrates the channel 

assignment for recording.  The  
physical input  channels are as- 
signed to the logical output  chan- 
nels, where they are ei ther com- 
bined for storage as an audio/video 
file on a hard  disk or  sent out  onto a 
network. As with the playback sce- 
nario, the digital compression is 
handled  automatically by the sys- 
tem software. 

Figure 7 shows the moni tor  case 
combined with the record  case. In  
this scenario, the physical input  
channels are assigned simultane- 
ously to the physical output  chan- 
nels as well as to the logical chan- 
nels for storage or  transmission. 

The  digital product ion studio 
model  sufficiently describes the 
VCR functions provided by the 
current  generat ion of  DVI software 
and hardware.  Th rough  the use of  
the sampler  and effects processor, 
image manipulat ion and the addi- 
tion of  graphics effects can easily be 
described. Video conferencing 
applications can be described as a 
combination of  the play (Figure 4) 
and record (Figure 6) cases. The  
streams in the record group origi- 
nate from a video camera and mi- 
c rophone  with the output  channels 
t ransmit ted across a network. Si- 
multaneously,  the playback group 
originates from a network connec- 
tion and its output  channels are 
connected to the speakers and the 
screen display. Other  combinations 
are also possible. For  instance, two 
playback groups or groups of  
streams that originate from sepa- 
rate storage devices can be de- 
scribed. 

The  digital product ion studio 
model  was used to drive the design 
of  Intel 's second generat ion of  DVI 
system software, re fer red  to as the 
Audio  Video Kernel  (AVK). The  
model  proved useful in describing 
the features of  AVK and for deriv- 
ing the semantics of  the applica- 
t ion-program interface (API). 

The AVK System Archi tecture  
The  increased power of  the 
82750PB pixei processor [9], the 

migrat ion to multiple operat ing 
environments ,  and a desire to sup- 
por t  windowing environments  have 
all contr ibuted to the design of  the 
Audio Video Kernel. The  AVK 
project was started with a number  
of  addit ional  design goals in mind. 
First, the design would be portable 
to a number  of  host platforms and 
operat ing environments.  Second, 
the system needed to be able to 
expand  as the power of  the hard-  
ware increased. For  example,  the 
software system design should not 
limit the number  of  video streams 
that could play simultaneously. Fi- 
nally, it was decided that the reli- 
ance on the host CPU should be 
kept to a minimum. 

The  AVK system architecture is 
illustrated in Figure 8. I t  is built in 
layers to allow for maximum port-  
ability between platforms. The  bot- 
tom layer includes a collection of  
82750PB microcode routines re- 
fe r red  to collectively as the "micro- 
code engine." One of  these func- 
tions, called DoMotion, manages 
decompression tasks and buffers, 
while another ,  called Copy- 
Scale, copies and optionally scales 
the video images in real time into 
the display buffer.  Microcode is 
also used to schedule the display 
task. DoMotion allows other  micro- 
code routines and their  associated 
parameters  to be loaded and exe- 
cuted dynamically to add video ef- 
fects. 

The  next layer is called the 
Audio/Video Driver (AVD). This 
layer encapsulates knowledge of  
the ActionMedia hardware  (Figure 
9), separat ing it f rom the rest of  the 
system. The  AVD interface pro- 
vides functions for accessing the 
local video memory (VRAM) on the 
device, setting display formats for 
the 82750DB, and loading micro- 
code functions from VRAM into 
the 82750PB's on-chip instruction 
memory.  AVD also provides an in- 
terface into the audio subsystem 
and the optional  capture  subsys- 
tem. 

The  third layer is called the 
Audio/Video Library (AVL). AVL 
provides most of  the functionality 
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described in the digital product ion 
studio model  by encapsulating the 
new digital data types needed for 
manipula t ing motion video and 
audio. These  data types are gener-  
alized into "streams" which are col- 
lected together  into "groups." A 
stream group  is simply a collection 
of  one or  more  streams that need to 
be control led synchronously. Con- 
trol functions such as play, pause, 
stop, and frame advance, opera te  
on groups.  AVL implements  these 
control  functions as well as read 
and write data functions for cap- 
ture and display data buffers. AVL 
also provides control  over the attri- 
butes of  these data  types. For exam- 
ple, functions for adjust ing the vol- 
ume of  an audio stream or  for 
adjust ing the tint on a video stream 
are provided.  This layer is largely 
p la t fo rm- independent  and there- 
fore easily portable to o ther  hard-  
ware environments  and opera t ing  
systems. 

AVL also includes a set of  C 
functions that are used internally 
for VRAM memory  management ,  
bi tmap formatt ing,  and for gener-  
ating and managing  command  lists. 
A command  list is a collection of  
microcode functions and their  pa- 
rameters.  These  command  lists can 
be built in memory  and then sched- 
uled for execution by the 82750PB 
as a group.  This is how the effects 
processor in our  AVK design model  
is implemented.  Each microcode 
function can be thought  o f  as an 
effect. Placing the "effect" on a 
command list is analogous to "in- 
stalling" the effect to the effects 
processor. Command  lists are ei- 
ther associated with a bi tmap (in the 
case of  a still image) or  with a video 
stream. I f  the command  list is asso- 
ciated with a video stream, then it 
will be executed on all frames until 
the list is replaced or  cancelled. 

The  final layer shown in Figure 
8, is an environment-specific layer 
that has two main functions: It 
reads and writes data to the host file 
system and integrates AVK into the 
environment 's  windowing system. 
These  functions can be efficiently 
implemented  in an environment-  

specific manner ,  and were placed 
outside of  the AVK architecture for 
portabili ty reasons. The  Media 
Control  Interface (MCI), def ined 
for Microsoft 's Mult imedia Exten- 
sions to Windows [15], and the 
Quicktime Movie Toolbox interface 
[14] are examples o f  environment-  
specific interfaces that could be 
implemented  on top of  AVK. 

Objects in the Audio/Video Library 
Using the conceptual  model  de- 
scribed previously, a number  of  
objects were identif ied and ab- 
stracted to form the basis for the 
AVK interface. The  interface con- 
sists of  a collection of  objects with 
their  associated behavior and attri- 
butes. The  AVK objects and their  
relationships are il lustrated in Fig- 
ure  10. 

The  analog interface subsystem 
(patchbay) contains two objects, the 
AVK Session, and the AVK Device. 
The  calls associated with these ob- 
jects start up AVK, define the com- 
municat ion mechanism between 
AVK and the application, allow 
query of  device capabilities, and 
open and close the DVI device 
within an AVK application session. 

The  Stream Manager  (tapedeck) 
is implemented  as a collection of  
objects that control  digital data 
streams. These  objects were t reated 
by AVSS as a tightly coupled collec- 
tion (i.e., a file). AVK treats these 
objects as independen t  of  the file 
(or files) storing the data. A Group is 
the unit  of  control synchronization 
and communicat ion (i.e., the tape 
t ranspor t  controls). Group calls in- 
clude functions such as play, pause, 
and record.  A Group Buffer repre-  
sents the tape. A group buffer  can 
contain multiple Streams, all of  
which play at the same rate. A 
Stream is a single track of  audio or  
video data. Several streams may be 
stored in the same file. 

The  function of  the mixer in 
AVK is provided by an object called 
a Connector. A connector  can be 
thought  of  a pipe which accepts 
data flow in, optionally t ransforms 
that data, and pumps data out. The  
connector  is a higher-level abstrac- 

tion of  a copy operat ion.  Connec- 
tors allow rectangular  regions, 
called "boxes," to be def ined for the 
source and destination bitmaps. 
The  size of  the boxes can be modi- 
fied in real time to allow resizing 
and relocating of  images to suppor t  
windowing. 

The  display subsystem is embod-  
ied in an object called a View. A view 
is a displayable image, and a collec- 
tion of  visual regions (boxes) which 
are mapped  into windows by the 
application. A view is most often 
the destination of  a connector,  
where the source is another  dis- 
playable object such as an image or  
a video stream. An application can 
switch between mult iple views. 

The  sampler  in our  cur rent  de- 
sign consists only o f  the Image and 
Image Buffer objects. An image is a 
por t ion of  VRAM which may be 
used to store still images. An image 
buffer  is a compressed image. Im- 
ages can be "compressed" into an 
image buffer,  and image buffers  
can be "decompressed" into images. 
Image effects can be pe r fo rmed  in- 
place on an image, or  as part  o f  a 
copy opera t ion  using a connector.  

AVK Data Flow 
The  technique of  using the screen- 
array bitmaps as display buffers  was 
selected for use by AVSS for per- 
formance reasons. The  old A-series 
pixel processor had enough pro-  
cessing power  to decompress  256 x 
240 images in real t ime at 30 frames 
per  second, but  not enough power 
to copy or  scale the images as well. 
The  new B-series 82750PB pixel 
processor has more  than twice the 
processing power of  the earl ier  
A-series version. With the addi-  
tional power, a more  flexible buf- 
fer ing scheme can be used, as illus- 
t rated in the AVK data-flow 
diagram in Figure 11. Separat ing 
the display bi tmap from the array 
of  decompress ion bitmaps allows 
for the insertion of  a copy/scale 
operat ion.  This allows "windowing" 
effects such as relocating and resiz- 
ing the video image. In  o rde r  for 
the video to appea r  as a quar ter-  
screen "window" using AVSS, all 
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the bitmaps need to be 512 × 480 
pixels. Separating this into two 
areas allows the decompression bit- 
maps to be 256 x 240 pixels, with 
only one 512 × 480 pixel bitmap 
acting as the display buffer. Since 
there are a minimum of  four bit- 
maps required in the decompress- 
ion array, this scheme actually uses 
less memory. 

There  is another advantage to 
the AVK data flow. As the DVI 
hardware becomes more powerful, 
multiple simultaneous video win- 
dows can be implemented by allo- 
cating a compressed data buffer 
and decompression array for each 
video stream while performing the 
copy/scale operation to the same 
display bitmap. The  AVSS architec- 
ture used a single array of  bitmaps 
for both decompression and dis- 
play. 

Task Scheduling Using the 
82750PB Pixel Processor 
Playing and recording digital mo- 
tion video and audio requires real- 
time processing of  several interde- 
pendent  tasks. Most of  the operat- 
ing systems in use in desktop 
computers do not provide real-time 

support. The  solution to this di- 
lemma for AVK takes advantage o f  
the programmability of  the 
82750PB by performing the real- 
time scheduling of  tasks using a col- 
lection of  microcode routines called 
the "microcode engine." The con- 
trol-flow diagram in Figure 12 
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shows the components o f  the mi- 
crocode engine, and their relation- 
ships. The  main components are 
the scheduler (DoMotion), the 
buffer/stream processing task, the 
command list processing task, and a 
periodic processing task. 

While video streams are playing, 

DoMotion loops continuously be- 
tween the master command list 
processing task, and the buffer/ 
stream processing task. For play- 
back, the buffer/stream processing 
task looks for a frame of  com- 
pressed data to be available, along 
with a free bitmap into which the 

frame can be decompressed. When 
both these conditions are met, it 
calls the appropriate decompress- 
ion algorithm. During video cap- 
ture, the buffer/stream processing 
task looks for a completed bitmap 
to arrive from the digitizer, and for 
space in the compressed data 
buffer, and then calls the compres- 
sion algorithm. 

Video algorithms are executed 
on the 82750PB pixel processor. 
There  are currently two types of  
algorithms for video, PLV and 
RTV. PLV stands for production- 
level video. It refers to video com- 
pressed off-line, on a parallel pro- 
cessing computer,  and provides the 
best possible video image quality. 
PLV can be decompressed in real 
time using the 82750PB [17]. RTV, 
or real-time video, refers to motion 
video compression/decompression 
performed in real time using the 
82750PB. 

There  are also algorithms for 
working with still images. These 
include the DVI algorithms for 
compressing/decompressing 16-bit 
and 9-bit (subsampled) images, as 
well as the Joint  Photographic Ex- 
perts Group (JPEG) [21] algorithm 
for compressing/decompressing 
9-bit (subsampled) images. 

Audio algorithms are executed 
on the audio digital signal proces- 
sor. The  algorithms supplied with 
AVK include ADPCM4E (a 4-bit 
adaptive differential pulse code 
modulation algorithm) used by the 
ActionMedia system, and 8-bit 
PCM (also used by Microsoft's Mul- 
timedia Extensions) [1]. 

The  master command list- 
processing task executes microcode 
functions requested by the host via 
an area of  memory called the set 
queue. The  command list inter- 
preter uses the master command 
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list as an instruction stack. The  host 
can dynamically "program" the 
82750PB by placing commands  on 
the set queue. Dur ing periodic pro- 
cessing, these commands are relo- 
cated to the command list. Com- 
mand lists provide the address  of  
each microcode function and the 

arguments  to be used dur ing  its 
execution. The  microcode function 
must exist in device memory,  so it 
can be loaded in real time into the 
82750PB on-chip instruction RAM. 
When the command list in terpre ter  
is called from the periodic process- 
ing task, it gets its instructions from 

the stream command  list; when it is 
called from the master command 
list-processing task, it gets the in- 
structions f rom the master com- 
mand list. Each command is exe- 
cuted in order ,  re turn ing  to the 
in terpre ter  when complete. When  
the entire command list has been 
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executed, the command list inter- 
pre ter  itself re turns  to the calling 
task. 

A vertical blanking in ter rupt  
triggers execution of  the periodic 
processing task. I f  it is t ime to copy 
a frame, it calls the copy/scale mi- 
crocode via the command  list inter- 
preter .  In  this case, a stream com- 
mand  list is used instead of  the 
master  command  list. 

The  copy/scale microcode copies 
rectangular  regions f rom one bit- 
map to another .  I t  can optionally 
scale the bitmap, or  alter its appear-  
ance by changing the tint, contrast, 
saturation, or  brightness. I f  the bit- 
map is one of  a series of  video 
frames, the copy is pe r fo rmed  con- 
tinuously as the frames are decom- 
pressed. I f  the bi tmap is a still 
image, the copy is only pe r fo rmed  
once per  request. The  connector  
object in the AVK interface is used 
by the applicat ion to control  the 
copy/scale operations.  

The  set queue function is called 
l~rom the periodic processing task, 
and is used to t ransfer  commands  
(from the host) to the master com- 
mand  list or  the stream command 
lists. This allows the host processor 
to communicate  instructions to the 
82750PB processor. 

AVK uses the 82750PB as a co- 
processor ra ther  than a slave pro-  
cessor (as in the AVSS/RTX ap- 
proach).  By allowing DoMotion to 
pe r fo rm the real-t ime task schedul- 
ing, the host CPU is free to pe r fo rm 
the data  delivery and other  applica- 
tion tasks. 

Corlcluslon 
In this article the evolution of  DVI 
system software from its original 
MS-DOS implementa t ion (AVSS) to 
the next generat ion current ly 
unde r  deve lopment  (AVK) has 
been described.  Both the increasing 
power o f  82750 hardware  and the 
desire to move DVI to other  plat- 
forms and opera t ing  environments  
has affected the AVK design goals. 

In his book, Object-Oriented Soft- 
ware Construction, Meyer introduces 
the concept  o f  an "operat ion 
model"  as a start ing point  for soft- 

ware design, stating that "any use- 
ful system must  be based on a cer- 
tain interpreta t ion of  some work 
phenomenon  [13]." The  digital 
product ion studio model  has 
proved useful in describing the fea- 
tures of  the DVI systems, and mul- 
t imedia systems in general.  The  
author  has made numerous  presen- 
tations to both technical and non- 
technical audiences, and found that 
borrowing terms and concepts 
from a "real-world" model  facili- 
tates unders tanding.  It also pro-  
vides a useful language for discuss- 
ing features and requirements  with 
potential  users of  the new system. 
The  model  selected for AVK is con- 
sidered rich enough to suppor t  the 
addi t ion of  new features and exten- 
sions in a conceptually consistent 
way. 

The  data  flow and object decom- 
position is sufficiently "granular"  to 
allow the software to expand  to take 
advantage of  more powerful  hard-  
ware as it becomes available. Sepa- 
rat ing the decompression bitmaps 
from the display bi tmap is one ex- 
ample of  this. It has been demon-  
strated that new (simultaneous) 
data  streams can be added  as I/O 
bandwidth and processor power 
expand.  Also by allowing the host 
to "program" the microcode en- 
gine, the addit ion o f  custom micro- 
code for video effects and new and 
improved image compression/  
decompression algori thms can be 
made without al tering the underly-  
ing structure of  the software. 

Finally, using 82750PB micro- 
code to pe r fo rm the real-time task 
scheduling leaves the host CPU free 
to pe r fo rm the file I/O and o ther  
application tasks. This method of  
task scheduling has a number  of  
advantages over the other  strategies 
examined in this article. First, it is 
independen t  o f  host CPU architec- 
tures and opera t ing  environments  
allowing the remainder  of  AVK 
(which is implemented  almost en- 
tirely in C) to be more portable.  
Any future  DVI hardware  architec- 
ture can use the microcode engine 
to schedule real-time video tasks. 
Another  advantage of  this tech- 

nique is that  the 82750PB will 
rarely be idle because of  a bottle- 
neck on the host CPU. In the 
AVSS/RTX implementat ion,  the 
A-series video processor must wait 
for instructions from the host pro-  
cessor and can potentially be idle, 
waiting for the host CPU to sched- 
ule its next task. By allowing the 
pixel processor to schedule its own 
work, the 82750PB is more  effi- 
ciently utilized. In  addit ion,  the 
host CPU only needs to communi-  
cate with the 82750PB when it 
wants to change the operat ion of  
the microcode,  and not on each 
frame (30 times per  second) as in 
some of  the other  approaches  dis- 
cussed in this article. And  finally, 
this approach  does not  require  the 
use of  another  processor (as in the 
Fluency system). The  microcode 
engine uses less than 7% of  the cy- 
cles of  the 82750PB at 25MHz. 

Future  directions for AVK devel- 
opment  will include implementa-  
tions by Intel  and others  on oper-  
ating systems such as Unix/ 
X-Windows and Apple ' s  System 7. 
In  addit ion,  al ternate hardware  
architectures which use the 
82750PB/DB processors are being 
examined and their  impact  on 
AVK's design assessed.l~l 
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