
l /
i

' I v ,
4

i ' i
- i D m , , - ~

l/

http://crossmark.crossref.org/dialog/?doi=10.1145%2F129617.129619&domain=pdf&date_stamp=1992-01-02

T h e
E v o l u t i o n o f
D V I S y s t e m

 OtEl are esk op omp er has een

undergoing a transformation from a text and numeric processing system

to a powerful tool for managing and communicating all types of digital

information. Audio, photo-realistic images and motion video have joined the

ranks of other digital data types available to application developers [2].

The addition of these "multimedia" data types places new requirements

on the computer systems and their operating environments: Multimedia

data consumes massive amounts of storage space, and playback of full-

motion digital video requires real-time decompression and high I /O

bandwidth [7].

DVI ® multimedia products include a set of hardware and software tools

that integrate the full range of these new data types in a desktop

computing environment. A typical DVI system includes a personal

computer or workstation with Intel's ActionMedia TM playback card, system

software, and a C D - R O M drive. With the addition of the capture card and

peripherals (such as a videotape player, audio cassette player or camera),

the user or application developer can create multimedia elements as well

as play/display them. Since all of the DVI presentation materials are in

digital form, they can be stored on any random-access storage device or

even transmitted across a network [16]. l ' ~

~s6~0~6v30~s63~087563~08,65~235v3~ ~ James L.~reen

COMMUNICATIONS OF THE ACM/January 1992/Vol.35, No.1 S3

The development of DVI tech-
nology started in 1983 when a
group at the David Sarnoff Re-
search Center in Princeton, N.J.,
began examining the feasibility of
combining the interactivity of com-
puters with the realism of televi-
sion. The results were first demon-
strated publicly at the Second
Annual Microsoft CD-ROM Con-
ference in March of 1987 [5]. Two
years later, the technology was pur-
chased by Intel Corporat ion. Intel
in t roduced the first board products
based on this technology in July
1989.

The system software included
with the first generat ion of DVI
products only ran on IBM-compati-
ble computers unde r the MS-DOS
opera t ing system. This article de-
scribes how DVI system software is
evolving to take advantage of more
powerful hardware and opera t ing
system environments. The article
begins by examining the conceptual
basis, the data flow, and the task-
scheduling mechanisms employed
by the cur ren t ActionMedia soft-
ware system to play digital audio
and video. The task-scheduling so-
lutions employed by other multi-

DVI is a registered t r a d e m a r k o f Intel Corpo-
ration. ActionMedia is a t r ademark o f Intel
Corpora t ion

media systems will be discussed in
this article as well. The next-gener-
ation software architecture, called
the Audio Video Kernel (AVK), will
be discussed in the final section of
this article, illustrating the changes
in these areas.

The ActionMedia
Software System
DVI system software is available
current ly on PC/AT or PS/2 plat-
forms runn ing MS-DOS. This sys-
tem, known as the Act ionMedia 750
Software Library, is comprised of
three main subsystems: the Real-
Time Executive (RTX), the Audio/
Video Subsystem (AVSS), and a
special graphics library. RTX pro-
vides real-time multi tasking ser-
vices to AVSS as well as to DVI ap-
plications. AVSS is used to control
playback of digital audio/video files.
The graphics l ibrary provides spe-
cial-purpose video effects, as well as
more tradit ional drawing primitives
and fonts [11]. The conceptual
model used to describe this system
is a "super VCR."

The Super VCR Model
The "playback unit" in Figure] is
the AVSS subsystem itself. Control
functions for play, stop, pause and
frame advance are provided as C
language function calls. Applica-

tions can play an audio/video file in
much the same way a VCR plays a
tape. The "effects unit" is actually a
collection of functions in the graph-
ics library. Graphics can be added
to video as it plays via special func-
tions called "hook routines." A
hook rout ine is an application-
suppl ied C function that is regis-
tered with AVSS by passing it a
pointer to the function. Hook rou-
tines encapsulate a set of DVI
graphics operat ions that will be
executed on each video frame after
it is decompressed, but before it is
displayed. AVSS automatically calls
the hook rout ine at the p rope r
time. An application can provide
the user with interactive control
over AVSS through keyboard or
mouse input which are t reated as
"events" by RTX.

AVSS Data Flow
AVSS uses three parallel opera-
tions, implemented as RTX tasks,
to play digital video: the server task
reads a f rame of compressed video
into memory, a decode task requests
that the frame be decompressed by
the pixel processor, and a display
task displays the decompressed
f rame on the compute r monitor.
These tasks must be pe r fo rmed 30
times a second in o rde r to play a 30-
f rame per second motion video se-
quence smoothly [11].

The AVSS data-flow diagram in
Figure 2 illustrates how the three
tasks interact with the data buffers.
The data flows from the storage
device into the input buffer as com-
pressed data. Each frame is then
decompressed into one of the bit-
maps in an array called the "screen
array." I f a hook rout ine has been
installed by the application, it is
called so that graphics can be ap-
plied before the frame is displayed.
The screen array bi tmaps are re-
used in a circular fashion. The re
are two bi tmap resolutions that can
be used in the screen array, 256 x
240 and 512 x 480. Source video is
s tored at 256 x 240 resolution. I f
the screen array is also 256 x 240,
the decompressed video will fill the
bitmap, and the result ing image will

5 4 January 1992/Vol.35, No.l/COMMUNICATIONS OF T H E A C M

: I G U R E 1

AVSS Conceptual MOdel

: I G U R E 2

AVSS Data Flow

fill the computer ' s screen. I f the
screen array uses 512 x 480 bit-
maps, the video will only fill one-
quar ter of the bi tmap and the
screen.

The MS-DOS BIOS and file sys-
tem provide only "waited" read and
write operations. The application
must wait for the read or write to
complete before it can continue
processing. Due to the real-time
requirements of playing digital
video, ActionMedia software in-
cludes its own asynchronous read
functions for a select number of
hard drives, thereby circumventing
the DOS BIOS and file system.
These functions allow AVSS to con-
tinue scheduling the decompress-
ion and display tasks while the data
is being t ransferred into memory.

TaSk Scheduling Using RTX
RTX assumes all of the system's
resources are available for its use. It
takes control over a number of the
in ter rupt vectors, particularly the
t imer interrupt , and intercepts a
number of calls that would nor-
mally be handled by DOS. RTX's
first responsibility is to provide
CPU resources to AVSS so the mo-
tion video plays smoothly. Action-
Media applications can create their
own tasks under RTX, but they
must be carefully designed so they
do not interfere with AVSS tasks

and they can actually get a chance
to run under the RTX scheduling
scheme. This is done by assigning
the task the p roper priority and
making sure it issues an event wait
sometime dur ing its execution
cycle. RTX priorities range from
zero (the highest priority) to 15 (the
lowest). The AVSS server task, de-
code task, and display task run at
priorities 3, 4, and 5 respectively.
Applicat ion tasks with lower priori-
ties will always be p reempted by the
AVSS tasks. The event-wait condi-
tion is controlled via a function call
in the RTX library. Common
events include keyboard, mouse,
and t imeout events. The RTX
scheduler is activated periodically
based on a host- t imer interrupt ,

and places the currently running
task at the head of a "ready" list for
its priority. It then hands control to
the task at the head of highest pri-
ority ready list. Al though the RTX
scheduler and all application tasks
are runn ing on the host CPU, two
of the AVSS tasks, the decode and
display tasks, are actually executed
by the DVI processors.

New Requirements and
the AVSS Architecture
The AVSS VCR model works well
for applications that treat video
files like tapes (i.e., as self-
contained presentations to be pas-
sively observed). Simple training
applications, mult imedia presenta-
tions, or on-line "video help" are

COMMUNICATIONS OF THE A C M / J a n u a r y 1992/Vol.35, No.l S S •

examples well-suited to the VCR
paradigm. The current Action-
Media software includes interactive
graphics effects and dynamic mix-
ing of audio streams, functions that
stretch the limits of the VCR model.
Applications such as the Truck
Driver Safety t ra iner developed by
Appl ied Optical Media [16] or the
Code Review Tra in ing application
developed at Carnegie-Mellon Uni-
versity [18] demonst ra te capabilities
that cannot be easily described
using a VCR. The next generat ion
of DVI system software will enable
even more advanced applications
such as video conferencing or mul-
t imedia electronic mail [3]. A more
sophisticated conceptual model is
required that can be used to de-
scribe this b roader class of interac-
tive mul t imedia applications.

The AVSS decompress ion and
display tasks share the bi tmaps in
the screen array. This prevents the
application from controll ing more
than one stream at a time. In o rde r
to allow for the possibility o f multi-
ple streams, the decompress ion bit-
maps and the display bi tmaps will
have to be separate areas of mem-
ory with the video data being cop-
ied from one to the other. The copy
could also include a scale factor
which would allow video to be dis-
played, relocated or resized in a
windowing environment .

The AVSS/RTX architecture was
implemented specifically on a DOS
plat form and is not easily por ted to
new environments. Thus the RTX
technique for scheduling the re-
quired tasks needed to be
re implemented or replaced. The
AVK team identif ied two require-
ments for the new tasking mecha-
nism. It has to be portable across
opera t ing systems, (some of which
suppor t preemptive multi tasking
and some of which do not), and it
should minimize the reliance on the
host CPU for real-t ime response.

Alternate Task-Scheduling
Strategies
In developing AVK, Intel consid-
e red a number of strategies for
making task-scheduling and data-

flow tasks as efficient as possible. A
number of o ther companies have
recently described their approaches
as well. Compact Disk-Interactive
(CD-I), a system developed by Phil-
ips, Sony, and Microware corpora-
tions, is a self-contained system
aimed primari ly at the consumer
market. It consists of a "player" that
is hooked up to s tandard home tel-
evision and stereo equipment [8].
When video functionality becomes
available for CD-I players, the
video bitstream will be created off-
line using a parallel processing
machine. The CD-I player hard-
ware will include a VLSI decoder
chip, a block of DRAM, a video key-
ing subsystem, and a dedicated
CPU. Coupled with the CPU is a
ROM containing a real-time oper-
ating system called CD-RTOS
(Compact Disk Real-Time Operat -
ing System). The CPU reads the
encoded video stream from the
CD-ROM and delivers it to the de-
coder chip. A system controller in-
side the decoder chip is responsible
for satisfying the real-time require-
ments o f the playback stream based
on t iming data extracted from the
encoded bitstream [17]. Because
the CD-I player hardware is fully
self-contained, there is no concern
for cross-platform compatibility,
and its applications can assume full
control over the environment . This
is similar in principle to the AVSS/
RTX strategy, where it is assumed
that only one application is running
and that it could control all of the
computer ' s resources. The main
difference between these systems is
that CD-RTOS will not have to co-
exist with another opera t ing system
the way RTX had to cooperate with
MS-DOS.

A group of researchers at the
University of California at Berkeley
have proposed an extension to
X-Windows, called Continuous
Media Extensions to X-Windows
(CMEX). The CMEX server con-
sists of a set of processes runn ing
on the workstation CPU that are
scheduled preemptively with real-
time deadlines. These processes
handle the input /output of continu-

ous media to a compression/decom-
pression engine such as the
82750PB. After decompress ing a
f rame of video, the 82750PB would
issue an in te r rupt to the host CPU.
An in te r rup t handler activates the
I/O process and sets a deadl ine for
it so the next f rame of data will be
t ransfer red in time for it to be de-
compressed. I t then signals the
compression/decompression engine
to begin executing on the data [10].
This strategy is similar to RTX be-
cause the job of scheduling the vari-
ous tasks is left to the host CPU, al-
though it differs in one impor tant
respect. RTX was designed to as-
sume control o f the host CPU from
its opera t ing system (MS-DOS) in
o rde r to achieve mult iprocessing
functionality, whereas CMEX uses
the mult iprocessing features of its
host opera t ing system (Unix). The
scheduling strategy employed by
CMEX could be used on any multi-
processing opera t ing system given a
sufficiently powerful CPU and I/O
bandwidth. In fact, an early proto-
type of AVK was implemented on
OS/2 using this strategy. O f course,
opera t ing systems such as DOS and,
more important ly, DOS/Windows
do not provide the preempt ive
mult i tasking suppor t required for a
system like CMEX.

A di f ferent strategy is employed
by Fluent Machines, Inc. in their
Fluency system. This system in-
cludes two add-in cards for ISA-bus
machines equipped with 33MHz
80386 CPUs. This system employs a
dual coprocessor strategy for pro-
cessing continuous mul t imedia
data. An Intel 80960 RISC proces-
sor runn ing a p ropr ie ta ry real-time
opera t ing system called Fluent-
Streams schedules tasks and syn-
chronizes mult iple audio and video
data streams. Ano the r processor
executes the video compression/
decompress ion tasks. This strategy
offloads all video processes from
the host CPU, allowing it to opera te
in virtually any operat ing-system
envi ronment [20]. This dual copro-
cessor strategy is an elegant techni-
cal solution, but results in signifi-
cantly more expensive hardware

S 6 January 1992/Vol.35, No.1/COMMUNICATIONSOFTHEACM

n d e v e l o p i n g A V K ,

I n t e l c o n s i d e r e d a
n u m b e r o f s t r a t e g i e s
f o r m a k i n g t a s k - s c h e d u l i n g

a n d d a t a f l o w t a s k s
a s e f f i c i e n t a s p o s s i b l e .

than Intel 's single video processor
approach.

A New Conceptual Model
For the next generat ion of DVI sys-
tem software, a new model has been
developed: the digital video pro-
duction studio. A typical produc-
tion studio contains mixers, tape
decks, moni tor ing systems, effects
processors and other items that
connect together to record, modify
and play audio or video tracks [6].
In our conceptual model, a digital
product ion studio is composed of
an analogous collection of subsys-
tems that operate on digital streams
of audio and video data. A collec-
tion of streams in tended to play
together forms a "group." Analog
inputs and outputs can be thought
of as "channels." Streams of audio
and video data are routed from
input channels to output channels
by making "connections." Streams
can be "mixed" together (e.g., as-
signed to the same output channel)
or they can be routed through an
"effects processor" to alter the data
in some way. The main components
of the digital product ion studio in-
clude the analog device interface,
the display manager , the sampler,
the stream manager , the effects
processor, and the audio/video
mixer. These components are illus-
trated in Figure 3.

COMMUNICATIONS OF THE ACM/January 1992/Vol.35, No.l 5 7

The Analog Interface
One of these components, the ana-
log interface, is essentially a patch
bay. It allows the system to be con-
nected to various analog input and
output devices such as a laser disc
player, VCR, camera, and speakers.
These connections are called "phys-
ical channels" because they map
directly to external physical devices.
A physical channel is unidirec-
tional, and acts as either an input or
an output channel, carrying a single
stream of data. These connections
are also physical in the sense that
they correspond to the input/
output features of the DVI hard-
ware. The ActionMedia Series II
hardware allows video output to a
computer monitor (via a 15-pin
DIN connector), a Super-VHS re-
corder or monitor (via a Y-C con-
nector), and audio output (via a
stereo miniplug). Video and audio
inputs are combined into a single
connector plug (via an 8-pin mini-
DIN connector). Digital-to-analog
(D/A) conversion is performed on
all output channels. Analog-to-
digital (A/D) conversion is per-
formed on all input channels.

The Display System
The display subsystem controls the
display of the visual data on the
computer screen. Multiple visual
data types (still images and video)
can be displayed simultaneously on
the same screen. This collection can
be thought of as the user's "view" of
the data, ' and there may be more
than one view defined in the sys-
tem. The display subsystem allows
for the creation of these views, and
for selecting the view to be dis-
played (or "monitored") at any
given time. This is the video equiva-
lent of having a number of sub-
mixes, only one of which can be
monitored at a time.

The Sampler
A sampling synthesizer, or sampler,
is a common accessory in audio
production studios. An audio sam-
pie records a waveform created by
an acoustic source as a sequence of
digital values in memory. The

sounds can then be altered by ma-
nipulat ing these values. This idea
can be extended to include visual
data. A digital representation of a
photograph can be thought of as a
"visual sample" which can be ma-
nipulated in memory before being
displayed.

In our model, the sample is im-
plemented as blocks of video mem-
ory that can be used for temporary
storage of audio or video data. A
frame of data can be sampled from
a video file and stored as a still
image. An image can be routed
through the effects processor and
transformed (by altering the visual
attributes such as the tint, bright-
ness, etc.) or converted (from one
bitmap format to another) and then
placed back into the sampler and
displayed or stored to disk.

The Stream Manager
The stream manager, much like the
transport controls on a tape deck, is
responsible for managing the flow
of digital data to or from a storage
device such as a CD-ROM, hard
disk or local-area network. Streams
"flow" through logical channels like
tracks on a tape. Unlike data
streams associated with physical
channels, streams from logical
channels do not necessarily map
one to one with a physical device. A
device such as a CD-ROM may pro-
vide a single file of interleaved
audio/video data to the stream
manager that maps to several logi-
cal channels (e.g., one for video and
two for audio). Logical channels are
bidirectional (except for the CD-
ROM). This means that the same
channels can be used for either
input or output, although not at the
same time.

The Effects Processor
The effects processor can be used
to add image effects and graphics
to stills and video, or to alter the
characteristics of audio data. The
effects processor serves the same
function as the "effects unit" in the
AVSS VCR model. It can be used to
add image effects and graphics to
stills or video as it plays.

The Mixer
The audio/video mixer is the heart
of the production studio. It pro-
vides mechanisms for assigning in-
coming streams to output channels
as well as the reverse. There are
different types of streams and
channels for audio and video data.
For example, the left and right
audio channels can be digitized and
combined into a single stereo
stream. Video channels may pro-
vide continuous motion streams, or
still images.

While an audio input channel
produces a single audio track, the
mixer can combine multiple audio
tracks in various ways to feed audio
output channels. The mixer can
also manipulate the streams on
their way through the system. In a
recording studio, audio tracks can
be "panned" between the left and
right outputs by tu rn ing a potenti-
ometer from left to right. Digital
audio streams can be assigned to an
output channel in varying percent-
ages ranging from 0 to 100 each for
both the left and right channel.

Mixing video streams to the
video output channel is simply a
matter of defining the source object
(a video stream or a still image) and
the destination object (the applica-
tion's "view" on the computer
screen). Several sources can be as-
signed to the same destination cre-
ating a composite image, or a "vis-
ual mix." A mixer typically provides
some controls for modifying the
data. In the case of digital video
data, this includes defining rectan-
gular regions of the source and des-
tination object for cropping or scal-
ing, and altering attributes such as
tint, contrast, brightness, and color
saturation.

Bandwidth Saturation
In an audio production studio, if
too many input channels are as-
signed to the same track the tape
can become "saturated," which re-
sults in poor-quality sound. In the
same way, there are physical limita-
tions on the number of streams and
groups that can be manipulated in
real time by a computer. For exam-

S 8 January 1992/Vo1.35, No.1/COMMUNICATIONS OF THE ACM

pie, data rates of various devices,
the host bus bandwidth, and the
number of available CPU cycles, all
impose limits on the ability of the
computer to handle these complex
data types. These limiting elements
are described in the digital produc-
tion studio model in terms of "satu-
ration."

Logical tracks can be assigned so
they exceed the data rate of a par-
ticular device such as a CD-ROM or

hard disk. As a result, the recording
data may miss frames, or the file
may not play back properly. In ei-
ther case, the bandwidth of the de-
vice can be said to be saturated.

Another form of saturation oc-
curs when too many effects are in-
stalled concurrently. The video and
audio processors also have a limited
bandwidth, and it is possible to
overload them with more work
than they can perform in real time

while video is playing. This results
in visible and/or audible artifacts
such as dropped frames, slower
playback, or audio noise.

Another limiting factor is the

: I G U R E 3

Conceptual Model for Multimedia
Computing

: I G U R E 4

Play Function

I
Digital

Production
Studio

COMMUNICATIONS OF THE ACM/January 1992/Vo1.35, No.1 S 9

6 0 January 1992/Vol.35, No.I/GOMMUNIGATION$ OF THE ACM

bandwidth of the data bus as it per-
forms data transfers involving
memory. Digital data must be
moved from the storage media or
local-area network into local mem-
ory on the DVI device before it can
be decompressed and displayed. I f
several physical devices are supply-
ing tracks of data to the "mixer,"
the bandwidth of the system bus
may become saturated, even if the
data rates of the devices are not.

Evaluation of the
New MOdel by Cases
To ensure the new conceptual
model is a superset of the AVSS
"Super VCR" model, a series of
cases were examined that demon-
strate the VCR functions in terms
of channel assignments between the
components of the digital produc-
tion studio.

Figure 4 shows the channel as-
signments for playing a file from a
digital storage device. In this exam-
ple, the file contains a single track
of video data, plus left and r ight
audio tracks. The play function as-
signs the video track to the physical
video output channel where the
data is converted to an analog sig-
nal for display or to record on a
VCR. The decompression of the
digital video is handled automati-
cally by the system software. The
audio tracks are assigned to each of
the audio output channels that may
be connected to an amplif ier or a
tape recorder .

There are times when the appli-
cation must digitize from an analog
source (like a videocassette re-
corder), and display the result on
the computer screen without com-
pressing and storing the data. This
scenario is depicted in Figure 5.
The analog input channels are as-
signed directly to their correspond-

: I G U R E S

Monitor Function

: I G U R E iS

ReCOrd Function

: I G U R E 7

Monitor/Record Function

ing ou tput channels.
Figure 6 illustrates the channel

assignment for recording. The
physical input channels are as-
signed to the logical output chan-
nels, where they are ei ther com-
bined for storage as an audio/video
file on a hard disk or sent out onto a
network. As with the playback sce-
nario, the digital compression is
handled automatically by the sys-
tem software.

Figure 7 shows the moni tor case
combined with the record case. In
this scenario, the physical input
channels are assigned simultane-
ously to the physical output chan-
nels as well as to the logical chan-
nels for storage or transmission.

The digital product ion studio
model sufficiently describes the
VCR functions provided by the
current generat ion of DVI software
and hardware. Th rough the use of
the sampler and effects processor,
image manipulat ion and the addi-
tion of graphics effects can easily be
described. Video conferencing
applications can be described as a
combination of the play (Figure 4)
and record (Figure 6) cases. The
streams in the record group origi-
nate from a video camera and mi-
c rophone with the output channels
t ransmit ted across a network. Si-
multaneously, the playback group
originates from a network connec-
tion and its output channels are
connected to the speakers and the
screen display. Other combinations
are also possible. For instance, two
playback groups or groups of
streams that originate from sepa-
rate storage devices can be de-
scribed.

The digital product ion studio
model was used to drive the design
of Intel 's second generat ion of DVI
system software, re fer red to as the
Audio Video Kernel (AVK). The
model proved useful in describing
the features of AVK and for deriv-
ing the semantics of the applica-
t ion-program interface (API).

The AVK System Archi tecture
The increased power of the
82750PB pixei processor [9], the

migrat ion to multiple operat ing
environments , and a desire to sup-
por t windowing environments have
all contr ibuted to the design of the
Audio Video Kernel. The AVK
project was started with a number
of addit ional design goals in mind.
First, the design would be portable
to a number of host platforms and
operat ing environments. Second,
the system needed to be able to
expand as the power of the hard-
ware increased. For example, the
software system design should not
limit the number of video streams
that could play simultaneously. Fi-
nally, it was decided that the reli-
ance on the host CPU should be
kept to a minimum.

The AVK system architecture is
illustrated in Figure 8. I t is built in
layers to allow for maximum port-
ability between platforms. The bot-
tom layer includes a collection of
82750PB microcode routines re-
fe r red to collectively as the "micro-
code engine." One of these func-
tions, called DoMotion, manages
decompression tasks and buffers,
while another , called Copy-
Scale, copies and optionally scales
the video images in real time into
the display buffer. Microcode is
also used to schedule the display
task. DoMotion allows other micro-
code routines and their associated
parameters to be loaded and exe-
cuted dynamically to add video ef-
fects.

The next layer is called the
Audio/Video Driver (AVD). This
layer encapsulates knowledge of
the ActionMedia hardware (Figure
9), separat ing it f rom the rest of the
system. The AVD interface pro-
vides functions for accessing the
local video memory (VRAM) on the
device, setting display formats for
the 82750DB, and loading micro-
code functions from VRAM into
the 82750PB's on-chip instruction
memory. AVD also provides an in-
terface into the audio subsystem
and the optional capture subsys-
tem.

The third layer is called the
Audio/Video Library (AVL). AVL
provides most of the functionality

COMMUNICATIONS OF THE ACM/January 1992/Vol.35, No.l 61

described in the digital product ion
studio model by encapsulating the
new digital data types needed for
manipula t ing motion video and
audio. These data types are gener-
alized into "streams" which are col-
lected together into "groups." A
stream group is simply a collection
of one or more streams that need to
be control led synchronously. Con-
trol functions such as play, pause,
stop, and frame advance, opera te
on groups. AVL implements these
control functions as well as read
and write data functions for cap-
ture and display data buffers. AVL
also provides control over the attri-
butes of these data types. For exam-
ple, functions for adjust ing the vol-
ume of an audio stream or for
adjust ing the tint on a video stream
are provided. This layer is largely
p la t fo rm- independent and there-
fore easily portable to o ther hard-
ware environments and opera t ing
systems.

AVL also includes a set of C
functions that are used internally
for VRAM memory management ,
bi tmap formatt ing, and for gener-
ating and managing command lists.
A command list is a collection of
microcode functions and their pa-
rameters. These command lists can
be built in memory and then sched-
uled for execution by the 82750PB
as a group. This is how the effects
processor in our AVK design model
is implemented. Each microcode
function can be thought o f as an
effect. Placing the "effect" on a
command list is analogous to "in-
stalling" the effect to the effects
processor. Command lists are ei-
ther associated with a bi tmap (in the
case of a still image) or with a video
stream. I f the command list is asso-
ciated with a video stream, then it
will be executed on all frames until
the list is replaced or cancelled.

The final layer shown in Figure
8, is an environment-specific layer
that has two main functions: It
reads and writes data to the host file
system and integrates AVK into the
environment 's windowing system.
These functions can be efficiently
implemented in an environment-

specific manner , and were placed
outside of the AVK architecture for
portabili ty reasons. The Media
Control Interface (MCI), def ined
for Microsoft 's Mult imedia Exten-
sions to Windows [15], and the
Quicktime Movie Toolbox interface
[14] are examples o f environment-
specific interfaces that could be
implemented on top of AVK.

Objects in the Audio/Video Library
Using the conceptual model de-
scribed previously, a number of
objects were identif ied and ab-
stracted to form the basis for the
AVK interface. The interface con-
sists of a collection of objects with
their associated behavior and attri-
butes. The AVK objects and their
relationships are il lustrated in Fig-
ure 10.

The analog interface subsystem
(patchbay) contains two objects, the
AVK Session, and the AVK Device.
The calls associated with these ob-
jects start up AVK, define the com-
municat ion mechanism between
AVK and the application, allow
query of device capabilities, and
open and close the DVI device
within an AVK application session.

The Stream Manager (tapedeck)
is implemented as a collection of
objects that control digital data
streams. These objects were t reated
by AVSS as a tightly coupled collec-
tion (i.e., a file). AVK treats these
objects as independen t of the file
(or files) storing the data. A Group is
the unit of control synchronization
and communicat ion (i.e., the tape
t ranspor t controls). Group calls in-
clude functions such as play, pause,
and record. A Group Buffer repre-
sents the tape. A group buffer can
contain multiple Streams, all of
which play at the same rate. A
Stream is a single track of audio or
video data. Several streams may be
stored in the same file.

The function of the mixer in
AVK is provided by an object called
a Connector. A connector can be
thought of a pipe which accepts
data flow in, optionally t ransforms
that data, and pumps data out. The
connector is a higher-level abstrac-

tion of a copy operat ion. Connec-
tors allow rectangular regions,
called "boxes," to be def ined for the
source and destination bitmaps.
The size of the boxes can be modi-
fied in real time to allow resizing
and relocating of images to suppor t
windowing.

The display subsystem is embod-
ied in an object called a View. A view
is a displayable image, and a collec-
tion of visual regions (boxes) which
are mapped into windows by the
application. A view is most often
the destination of a connector,
where the source is another dis-
playable object such as an image or
a video stream. An application can
switch between mult iple views.

The sampler in our cur rent de-
sign consists only o f the Image and
Image Buffer objects. An image is a
por t ion of VRAM which may be
used to store still images. An image
buffer is a compressed image. Im-
ages can be "compressed" into an
image buffer, and image buffers
can be "decompressed" into images.
Image effects can be pe r fo rmed in-
place on an image, or as part o f a
copy opera t ion using a connector.

AVK Data Flow
The technique of using the screen-
array bitmaps as display buffers was
selected for use by AVSS for per-
formance reasons. The old A-series
pixel processor had enough pro-
cessing power to decompress 256 x
240 images in real t ime at 30 frames
per second, but not enough power
to copy or scale the images as well.
The new B-series 82750PB pixel
processor has more than twice the
processing power of the earl ier
A-series version. With the addi-
tional power, a more flexible buf-
fer ing scheme can be used, as illus-
t rated in the AVK data-flow
diagram in Figure 11. Separat ing
the display bi tmap from the array
of decompress ion bitmaps allows
for the insertion of a copy/scale
operat ion. This allows "windowing"
effects such as relocating and resiz-
ing the video image. In o rde r for
the video to appea r as a quar ter-
screen "window" using AVSS, all

62 January 1992/Vo1.35, No.l/COMMUNICATIONS O F T H E ACM

the bitmaps need to be 512 × 480
pixels. Separating this into two
areas allows the decompression bit-
maps to be 256 x 240 pixels, with
only one 512 × 480 pixel bitmap
acting as the display buffer. Since
there are a minimum of four bit-
maps required in the decompress-
ion array, this scheme actually uses
less memory.

There is another advantage to
the AVK data flow. As the DVI
hardware becomes more powerful,
multiple simultaneous video win-
dows can be implemented by allo-
cating a compressed data buffer
and decompression array for each
video stream while performing the
copy/scale operation to the same
display bitmap. The AVSS architec-
ture used a single array of bitmaps
for both decompression and dis-
play.

Task Scheduling Using the
82750PB Pixel Processor
Playing and recording digital mo-
tion video and audio requires real-
time processing of several interde-
pendent tasks. Most of the operat-
ing systems in use in desktop
computers do not provide real-time

support. The solution to this di-
lemma for AVK takes advantage o f
the programmability of the
82750PB by performing the real-
time scheduling of tasks using a col-
lection of microcode routines called
the "microcode engine." The con-
trol-flow diagram in Figure 12

: I G U R E 8

AVK SOftware Architecture

m l G U R N 9

ACtlonMedla Series II Hardware

COMMUNICATIONS OF THE &CM/January 1992/Vo1.35, No.l 63

shows the components o f the mi-
crocode engine, and their relation-
ships. The main components are
the scheduler (DoMotion), the
buffer/stream processing task, the
command list processing task, and a
periodic processing task.

While video streams are playing,

DoMotion loops continuously be-
tween the master command list
processing task, and the buffer/
stream processing task. For play-
back, the buffer/stream processing
task looks for a frame of com-
pressed data to be available, along
with a free bitmap into which the

frame can be decompressed. When
both these conditions are met, it
calls the appropriate decompress-
ion algorithm. During video cap-
ture, the buffer/stream processing
task looks for a completed bitmap
to arrive from the digitizer, and for
space in the compressed data
buffer, and then calls the compres-
sion algorithm.

Video algorithms are executed
on the 82750PB pixel processor.
There are currently two types of
algorithms for video, PLV and
RTV. PLV stands for production-
level video. It refers to video com-
pressed off-line, on a parallel pro-
cessing computer, and provides the
best possible video image quality.
PLV can be decompressed in real
time using the 82750PB [17]. RTV,
or real-time video, refers to motion
video compression/decompression
performed in real time using the
82750PB.

There are also algorithms for
working with still images. These
include the DVI algorithms for
compressing/decompressing 16-bit
and 9-bit (subsampled) images, as
well as the Joint Photographic Ex-
perts Group (JPEG) [21] algorithm
for compressing/decompressing
9-bit (subsampled) images.

Audio algorithms are executed
on the audio digital signal proces-
sor. The algorithms supplied with
AVK include ADPCM4E (a 4-bit
adaptive differential pulse code
modulation algorithm) used by the
ActionMedia system, and 8-bit
PCM (also used by Microsoft's Mul-
timedia Extensions) [1].

The master command list-
processing task executes microcode
functions requested by the host via
an area of memory called the set
queue. The command list inter-
preter uses the master command

: I G U R I E 1 0

AVK ObjeCt Relationships

: I G U R E 11

Monitor

AVK Data Flow

8 1 G U R E 1 2

AVK Mlcrocode Engine

64 January 1992/Vol.35, No.l/COMMUNICATIONS OF THE ACM

list as an instruction stack. The host
can dynamically "program" the
82750PB by placing commands on
the set queue. Dur ing periodic pro-
cessing, these commands are relo-
cated to the command list. Com-
mand lists provide the address of
each microcode function and the

arguments to be used dur ing its
execution. The microcode function
must exist in device memory, so it
can be loaded in real time into the
82750PB on-chip instruction RAM.
When the command list in terpre ter
is called from the periodic process-
ing task, it gets its instructions from

the stream command list; when it is
called from the master command
list-processing task, it gets the in-
structions f rom the master com-
mand list. Each command is exe-
cuted in order , re turn ing to the
in terpre ter when complete. When
the entire command list has been

COMMUNICATIONS OF THE ACM]January 1992/Vol.35, No.1 6 S

executed, the command list inter-
pre ter itself re turns to the calling
task.

A vertical blanking in ter rupt
triggers execution of the periodic
processing task. I f it is t ime to copy
a frame, it calls the copy/scale mi-
crocode via the command list inter-
preter . In this case, a stream com-
mand list is used instead of the
master command list.

The copy/scale microcode copies
rectangular regions f rom one bit-
map to another . I t can optionally
scale the bitmap, or alter its appear-
ance by changing the tint, contrast,
saturation, or brightness. I f the bit-
map is one of a series of video
frames, the copy is pe r fo rmed con-
tinuously as the frames are decom-
pressed. I f the bi tmap is a still
image, the copy is only pe r fo rmed
once per request. The connector
object in the AVK interface is used
by the applicat ion to control the
copy/scale operations.

The set queue function is called
l~rom the periodic processing task,
and is used to t ransfer commands
(from the host) to the master com-
mand list or the stream command
lists. This allows the host processor
to communicate instructions to the
82750PB processor.

AVK uses the 82750PB as a co-
processor ra ther than a slave pro-
cessor (as in the AVSS/RTX ap-
proach). By allowing DoMotion to
pe r fo rm the real-t ime task schedul-
ing, the host CPU is free to pe r fo rm
the data delivery and other applica-
tion tasks.

Corlcluslon
In this article the evolution of DVI
system software from its original
MS-DOS implementa t ion (AVSS) to
the next generat ion current ly
unde r deve lopment (AVK) has
been described. Both the increasing
power o f 82750 hardware and the
desire to move DVI to other plat-
forms and opera t ing environments
has affected the AVK design goals.

In his book, Object-Oriented Soft-
ware Construction, Meyer introduces
the concept o f an "operat ion
model" as a start ing point for soft-

ware design, stating that "any use-
ful system must be based on a cer-
tain interpreta t ion of some work
phenomenon [13]." The digital
product ion studio model has
proved useful in describing the fea-
tures of the DVI systems, and mul-
t imedia systems in general. The
author has made numerous presen-
tations to both technical and non-
technical audiences, and found that
borrowing terms and concepts
from a "real-world" model facili-
tates unders tanding. It also pro-
vides a useful language for discuss-
ing features and requirements with
potential users of the new system.
The model selected for AVK is con-
sidered rich enough to suppor t the
addi t ion of new features and exten-
sions in a conceptually consistent
way.

The data flow and object decom-
position is sufficiently "granular" to
allow the software to expand to take
advantage of more powerful hard-
ware as it becomes available. Sepa-
rat ing the decompression bitmaps
from the display bi tmap is one ex-
ample of this. It has been demon-
strated that new (simultaneous)
data streams can be added as I/O
bandwidth and processor power
expand. Also by allowing the host
to "program" the microcode en-
gine, the addit ion o f custom micro-
code for video effects and new and
improved image compression/
decompression algori thms can be
made without al tering the underly-
ing structure of the software.

Finally, using 82750PB micro-
code to pe r fo rm the real-time task
scheduling leaves the host CPU free
to pe r fo rm the file I/O and o ther
application tasks. This method of
task scheduling has a number of
advantages over the other strategies
examined in this article. First, it is
independen t o f host CPU architec-
tures and opera t ing environments
allowing the remainder of AVK
(which is implemented almost en-
tirely in C) to be more portable.
Any future DVI hardware architec-
ture can use the microcode engine
to schedule real-time video tasks.
Another advantage of this tech-

nique is that the 82750PB will
rarely be idle because of a bottle-
neck on the host CPU. In the
AVSS/RTX implementat ion, the
A-series video processor must wait
for instructions from the host pro-
cessor and can potentially be idle,
waiting for the host CPU to sched-
ule its next task. By allowing the
pixel processor to schedule its own
work, the 82750PB is more effi-
ciently utilized. In addit ion, the
host CPU only needs to communi-
cate with the 82750PB when it
wants to change the operat ion of
the microcode, and not on each
frame (30 times per second) as in
some of the other approaches dis-
cussed in this article. And finally,
this approach does not require the
use of another processor (as in the
Fluency system). The microcode
engine uses less than 7% of the cy-
cles of the 82750PB at 25MHz.

Future directions for AVK devel-
opment will include implementa-
tions by Intel and others on oper-
ating systems such as Unix/
X-Windows and Apple ' s System 7.
In addit ion, al ternate hardware
architectures which use the
82750PB/DB processors are being
examined and their impact on
AVK's design assessed.l~l

References
1. Amy, M., Ed. Digital Signal Process-

ing Applications. Prentice Hall, N.J.,
1990, 373-418.

2. Arnett, N. Computing faces the
dawn of a new age. Comput. Graph.
World (Aug. 1989), 35-37.

3. Borenstein, N.S. Multimedia elec-
tronic mail: Will the dream become
a reality? Commun. ACM 34, 4 (Apr.
1989), 117-119.

4. Curran, L. Here's an integrated
approach to multimedia. Electronics
(Feb. 1991).

5. Dixon, D.F. Life before the chips:
Simulating digital video interactive.
Commun. ACM 32, 7 (July 1989),
824-831.

6. Everest, A. Handbook of Multichannel
Recording. TAB Books, 1975.

7. Fox, E.A. The coming revolution in
interactive digital video. Commun.
ACM 32, 7 (July 1989), 794-801.

8. Frenkel, K.A. The next generation
of interactive technologies. Com-

6 ~ January 1992/Vo1.35, No.I/COMMUNICATIONS OFTHEACM

mun. ACM 32, 7 (July 1989), 872-
881.

9. Harney, K., et al. The i750 g video
processor: A total multimedia solu-
tion. Commun. ACM 34, 4 (Apr.
1991), 65-78.

10. Homsy, G., Anderson, D.P., and
Umemura, K., CMEX on a DVI
platform: An implementation de-
sign. University of California
Berkeley, Apr. 23, 1990.

11. Luther, A.C. Digital Video in the PC
Environment, 2d ed. McGraw-Hill,
N.Y., 1991.

12. Le Gall, D. MPEG: A video com-
pression standard for multimedia
applications. Commun. ACM 34, 4
(Apr. 199I), 47-58.

13. Meyer, B. Object-Oriented Software
Construction. Prentice Hall, N.Y.,
1988.

14. Petzold, C. The multimedia exten-
sions for windows--Enhanced
sound and video for the PC. Micro-
softSyst. J. 6, 2 (Mar. 1991), 19-26.

15. Poole, L. Quicktime in motion.
MacWorld (Sept. 1991), 154-159.

16. Ripley, G.D. Digital video interac-
t ive--A digital multimedia technol-
ogy. Commun. ACM 32, 7 (July
1989), 811-822.

17. Sijstermans, F., and van der Meer,

j . CD-I full-motion video encoding
on a parallel computer. Commun.
ACM 34, 4 (Apr. 1989), 81-91.

18. Stevens, S.M. Intelligent interactive
video simulation of a code inspec-
tion. Commun. ACM 32, 7 (July
1989), 832-843.

19. Tinker, M. DVI parallel image
compression. Commun. ACM 32, 7
(July 1989), 844-851.

20. Uppaluru, P. Network Computer
Video. Tech. Rep. Fluent Machines,
Inc. 1991.

21. Wallace, G.K. The JPEG still picture
compression standard. Commun.
ACM 34, 4 (Apr. 1991), 30-44.

CR Categories and Subject Descrip-
tors: B.4.1 [Input/Output and Data
Communications]: Data Communica-
tions Devices--Processors, receivers (e.g.,
voice, data, image); B.4.2 [Input/Output
and Data Communications]: Input/
Output Devices--Image display; C.1.3
[Computer Systems Organization]:
Processor Architectures--Other architec-
ture styles; C.3 [Computer Systems Or-
ganization]: Special-purpose and appli-
cation-based systems--Microproc-
essor~microcomputer applications; real-time
systems; 1.3.1 [Computing Methodolo-
gies]: Computer Graphics--Hardware

architecture; 1.4.0 [Computing Method-
ologies]: Image Processing--General;
1.4.1 [Computing Methodologies]:
Image Processing--Digitization

General Terms: Design
Additional Key Words and Phrases:

Digital multimedia systems, DVI

About the Author:
JAMES L. GREEN is a senior software
engineer at Intel's Multimedia Products
Operation in Princeton, N.J., and is one
of the principal architects of the Audio
Video Kernal. His current research in-
terests include object-oriented design
and programming. Author's Present
Address: Intel Corporation, 313 Enter-
prise Drive, Plainsboro, NJ 08536;
email: jlg@provax.intel.com

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

© ACM 0002-0782/92/0100-052 $1.50

COMMUNICATIONS OF THE ACM/January 1992/Vol.35, No.l S 7

