
http://crossmark.crossref.org/dialog/?doi=10.1145%2F103085.103092&domain=pdf&date_stamp=1991-04-01

T hc term rnultzmpdia mrans dif-
ferent things to different peo-

plr. For some, it is the simplest
combination of text and graphics
on a personal computer. For oth-
ers, it is thr combination of wet,
graphics, and audio. Still others
think of multimedia as including
video still images. With the intro-
duction of digital motion video, the
definition of multimedia comput-
ing becomes even more clouded
and confusing.

For the purposes of this article,
we offer the following working def-
mttmn of multimedia computing:
Multimedia combines motion and
still video, special effects, synthetic
video, fast graphics and text with
the interactive capabilities of a per-
sonal desktop computer.

The i750” video processor was
developed to deliver all these multi-
mrdia elements cost-effectively to
the end user. This article will pro-
vide a video subsystem overview, a
detailed description of the video
processor itself, a sidebar on vari-
ous aspects of its custom IC design
and development, and a discussion
of programming the video proces-
sor.

Fir% A Little History .
The dominant user interface for
personal computers during the
mid-to-late 1970s was a keyboard, a
monochrome text display, and the
command line. A number of these
early machines had graphics and
simple audio capabilities. However,
it was not until 1984 with the intro-
duction of the Macintosh’” with bit-
mapped monochrome graphics as a
fundamental feature, that user in-
terfaces began to shift toward
mouse-driven windows and icons.

It has been only in the last year
or so that application developers
have taken advantage of the oppor-
tunity to incorporate audio into
mainstream applications, such as
computer-driven desktop presenta-
tions.

It is interesting to now that the
basic graphical user interface has
been only modestly improved upon
in the seven years since its introduc-

tion on the Macintosh. We now
have color graphics displays but
usually with a disappointingly small
number of colors to choose from
Even more interesting, considering
the advances in VLSI technology
during the same time, is the fact
that virtually all personal comput-
ers still rely on the host micropro-
cessor to create and format the dis-

play.

Technology AdvanCeS Set The
Stage
Consider some technology ad-
vances during the seven years since
the introduction of the Macintosh:

l VLSI transistor densities in-
creased l&fold.

l VLSI speeds increased X-fold.
l The CD-ROM is available as a

low-cost, high-capacity, read-only
computer peripheral.

l Dual-port dynamic RAMs were
introduced.

l Networks are pervasive.

These five m+r advances in basic
computer technology, coupled with
equally major advances in digital
video compression algorithms and
video processor architectures,
transform the simple monochrome
textigraphics display subsystem of
seven years ago into today’s rich
and highly dynamic video subsys-
tem. Displays can now feature full-
screen, full-motion video, high-
resolution video stills, video special
effects, 3-D real-time synthetic
video, and very fast, true color
graphics.

The presence of motion video
also pulls audio onto center stage as
an integral data element. Because
good quality audio requires only
10% or so of video’s bandwidth,
storage capacity, and processing
power, it can be included with mo-
tion video with little, if any, addi-
tional cost.

The 1750 video Processor
The motivating force behind the
design of the i750 video processor
architecture was the desire to inte-
grate all processing functions re-
quired for multimedia into a single

programmable chip set. This irl-
valved the drqign and devclopmcnr
of basic video and logic building
blocks that would find application
over a broad range of algorithms.
While a hardwired implementation
may at first appear to offer better
performance for a particular algo-
rithm, a programmable approach is
ultimately superior since it can be
reprogrammed to track the evolu-
tion of an algorithm or standard,
and at the same time, support each
of the diverse algorithms required
in a full multimedia system.

An example of this flexibility ia
the ability to process images rn~
coded within the JPEG still image
compression standard. While not
explicitly tailored for performing
the multitude of JPEG-specific cal-
culations needed to reconstruct
these images, the processor still
performs admirably-decoding a
640 X 480 JPEG-encoded image
requires less than one second.

Programmability has provided a
straightforward path to upward
compatibility with the i750 A-series
video processor (Intel’s previous
generation i750 is comprised of the
8275OPA pixel and 82750DA dis-
play processors used in the Inteli
IBM ActionMedia’” PC-AT and
PSR-compatible boards).

System overview
A DVIB display subsystem is shown
in Figure 1. Its engine is the
82750PB pixel processor (PB) [4]
and the 82750DB display processor
(DB) PI.

Separate from the “host” proces-
SOT, PB is responsible for most of
the classical data processing and
control functions in the subsystem.
The pixel processor compresses
and decompresses image data from
memory, generates fast graphics
and special effects, and acts as the
master arbitrator for subsystem
memory and interdevice transac-
tions.

65

Host MIcroproce~)sor Subsystem
----------____-----

Keyboard/ 1

Diskor
CD-ROM .

Mass
storage

HOSl
Memory

(EPROM
and RAM)

HOSL
CPU 3

DVI@ Technology Video Subsystem
~~~~~~~~---------_--_______ 

HOSt 8275OPB 
Miao- -ml * Pixel 

pr0CGZSSw Pf.XXSSXX 
Interface 

Logic a Adm 
x32 Data 

t 
t 

t Video RAM 

VRAM 
(VRAM) Array 

Timing --t (tM-4G byte) 

Generator Ssriti 
Data lx) 

VI00 
Dgiazef 

(Optional) c 
DVle TeChnOlOgV Display 

Subsystem 

The display processor performs 
real-time display functions includ- 
ing data-format transformations, 

color translation, pixel-value inter- 
polation, and provides outputs 
which support image capture and 
video synchronization. The DB 
generates all the timing signals re- 
quired to drive display devices in- 
cluding digital and analog RGB or 
YUV pixel outputs and an 8-bit 

digital word of alpha data. An 
alpha channel is provided to obtain 
a fractional mix of DB outputs with 
another video source to achieve 
video effects such as titling and 
graphic overlays. 

DVI technology performs its 

operations in YUV color space. 
Each YUV component is repre- 
sented as a series of 8.bit samples. 
In this color system the luminance, 
or brightness information (as given 

by the Y information), is separated 
from the chrominance, or color in- 
formation (as given by the U and V 
components). 

Working in this domain allows 

various psychovisual effects to he 
exploited, most notably, color in- 
formation need not be stored at the 
same resolution as the luminance 

data [5]. For this reason, color in- 
formation is stored at one-half or 
one-quarter the luminance density 
(subsampled) in each dimension, 
without significant loss of image 
quality. Since luma and chroma in- 
formation are stored at different 
resolutions, they are placed in dif- 

Generating Displays From Bitmaps 
During display blanking intervals, 

DB reads in programming infor- 
mation and two lines of chromi- 
name information. During the pro- 
grammed active portion of the 
display, DB reads in luminance in- 
formation and, at the same time, 
interpolates the chroma informa- 
tion up to the resolution of the lu- 
minance data. 

At the earliest possible point in 
the blanking interval preceding an 
active display line, DB requests PB 
to load a line of the luma bitmap 
into the serial shift register of the 
VRAM. At the start of an active dis- 
play, DB will access the luma infor- 
mation at the programmed transfer 
rate. 

66 



wide range of video effects, inch& _ _ 
ing scaling motion video into win- 
dows, “warping” (texture mapping) Ii- 

Since each data word is 32-b% 
wide, each access yields up to four 
H-bit luma samples allowing the 
luma data rate to be one-fourth ot 
lhe active display rate. The display 
rate is determined by two factors: 
the operating frequency of DB; and 
the ratio of the horizontal resolu~ 
tion of the source bitmap to the dis- 
play resolution (the pixel rate). 

It is possible to overlay DB out- 
put with the output of another dis- 
play device, such as a VGA graphics 
card (or NTSC video) to combine 
screens of DVI motion video and 
an external source. This is made 
possible by “gen-locking” DB to the 
external source. Since all of DB’s 
video timing and display parame- 
ters are programmable, almost any 
video rate may be gen-locked. 

Selection of the source image 
stream to be displayed or overlaid is 
accomplished by “lagging” bits in 
either the luminance or chromi- 
name data streams stored in video 
memory. Since the luminance 
channel is of a higher bandwidth, it 
can be “channel switched” on a 
pixel-by-pixel basis. Because the 
chroma information is subsampled, 
channel switching is restricted to 
the subsampled resolution de- 
scribed by either a 2 x 2 or 4 x 4 
block ot pixels. 

The PB offers hardware specifi- 
cally designed to tag any portion of 
the input stream of pixels to create 
windows and overlays from arbi- 
trarily selected sources. The ability 
to efficiently tag pixel data allow 
the application to optimize system 
resources and to produce a high- 
resolution display that includes text 
overlays and windows from multi- 
ple sources. 

The 82750PB Pixel Processor 
The 82750PB was designed as a 
cost-effective, real-time video and 
graphics processor for multimedia 
applications. Its unique architec- 
ture, with fully static, 25 MHz, 
single-cycle instruction execution, 
supports real-time full-screen en- 
coding and decoding of digital mo- 
tion video at 30 frames/second. The 
PR can simultaneously perform a 

l”LTlMEDlA SYSTEMS 

video onto surfaces, and many _ - - 
screen transition effecls. 

wchitectural OVerVieW 
The PB architecture was designed 
to be simple, efficient, and highly 
parallel. Figure 2 is a simplified dia- 
gram of the 82750PB. 

fer data simultaneously over any 
one of them during any given cycle. 

A 16.bit specialized ALU, aug- 
mented by a 16.bit barrel shifter, is 

A 32.bit, linear, byte-addresa- 
able, external address bus and 3% 
bit data bus are used to communi- 
cate with external memory and ex- 
ternal devices. Internal datapaths 
are either 16. or 32-b& wide and 
designed to allow the simultaneous 
processing of two or more R-bit pix- 
els. Functional blocks are connected 
to one another using one or more 
of these buses and the PB can trans- 

used to perIorm mosl arirhmrtic, 
logical, and control oprrations. The 
ALU supports 32 types of opera- 
tions specific to processing motion 
video, such as operations on dual 
“side-by-side” X-bit pixel magni- 
tudes. 

8275OPB Pixel Pvxe~~Or 

The ALU and barrel shifter (as 
well as most other functional 
blocks) communicate with a multi- 
port 16.word x 16.bit register tile 
and a 51%word x 1Bbit data 
RAM. The RAM can be accessed 
from two 16.bit buses via four inde- 
pendent pointers. These “C-style” 
pointers can be autoincremented 
and decremented, as well as partici- 

Seq”encwr . 

ALU 
A Inpuff 

output + 
- FlFOs 

Register 
File 

Barrel 
Shifter 

counters 4 

Pixel 
Interpolator - 

VRAM 
Pointers 

, Addrwss 
94 



Ihe 5275OP5 PlXel PrOCaSSOI 
This device compresses and decompresses video data and builds Screen images pixel-by-pixel. The processor 
must perform Its tasks In IeSS time than It takes each dot to appear on the display. Its Standard Speed Is 25 
MHZ-higher Speeds will be Offered. It contains over 310,oM) tranSlStOrS In an area meaSuring 309 x 261 WIS. 



pate in general-purpose ALU oper- 
ations. 

The PB also contains two special- 
ized, semi-independent structures 
that are optimized for image- 
processing tasks. 

First, the pixel interpolator cal- 
culates fractional spatial movement 
of pixels, scales groups of pixels, 
and is used for various filtering 
operations. 

Second, the statistical decoder 
decompresses video data in real 
time. It is a specialized input FIFO 
that reads variable-length serial bit 
sequences from memory and de- 
codes them into fixed-length 1Bbit 
values. 

Because of the voluminous quan- 
tities of memory data that must 
continually pass through the pixel 
processor, four independent FIFO 
channels allow PB to efficiently 
read, process, and write data. Each 
FIFO packs and unpacks data 
words and bytes, buffers data, and 
initiates transfers to and from the 
memory array. 

Two FIFO channels are dedi- 
cated to supply continuous streams 
of input from memory, containing 
compressed and uncompressed 
images as well as the microcode 
routines required to operate on 
them. 

Two output FIFO channels are 
used to store intermediate pixel val- 
ues required during the construe- 
don of complete displayable im- 
ages. 

Communication with the “host” 
processor and other devices on the 
DVI system bus, as well as PDiDB 
requests for memory, are arbitrated 
by a state-machine within PB. This 
logic is responsible for generating 
the external timing required to load 
or read PB internal registers, gen- 
erate and acknowledge interrupts, 
and to provide a rotating priority 
scheme to control the four FIFO8 
and statistical decoder requests for 
rlKlllory. 

lnstructlon Cache and Execution 
Instructions are stored and exe- 
cuted from a pipelined 51%word x 
48.bit static cache and can be exe- 

cuted in a single clock cycle. 
A microprogrammable cache 

control algorithm is used to guar- 
antee maximum cache “hit” efii- 
ciency and can be tailored for dif- 
ferent types of system- and 
device-level operations. 

By coordinating the operation of 
the i750 assembler with dual-word 
cache accesses and appropriate PB 
instruction control fields, zero- 
delay branches can be performed 
without conscious programmer in- 
tervention. The ability to perform 
any logical operation and then to 
effectively perform a simultaneous 
two-way branch based on the re- 
suits of that operation yields a sig- 
nificant performance increase over 
typical microprogrammable pro+ 
essors. 

The 48.bit PB instruction word is 
divided into a total of 11 different 
control fields designed to allow 
highly parallel operations. 

For example, ALU operations on 
pixels fetched from memory can be 
performed simultaneously with it- 
eration counter updates while the 
pixel interpolator is operating on 
pixels decoded by the statistical 
decoder-and then branch-all 
within a single clock cycle. 

PlXl?l interpolator 
As long as the only objective of 
video data decompression is the 
faithful reproduction of the source 
image, decompression itself is rela- 
tively straightforward. If any addi-, 
tional transformations are required 
(the image is to be enlarged or re- 
duced, scrolled, rotated, or inten- 
tionally distorted) a simple corre- 
spondence no longer exists between 
the original stored pixels and those 
to be displayed. 

Straightforward attempts to ad- 
just the image often produce unde- 
sirable artifacts known generally as 
“aliasing effects.” 

There exist a number of “anti- 
aliasing” algorithms that eliminate 
these artifacts at the expense of 
processing cycles and, as such, are 
not appropriate for use in real-time 
SySt.3llS. 

As an example, when the size of 

an image is reduced, thr space he- 
tween each stored pixel will exceed 
the space between those to be dis- 
played. This means that each dis- 
played pixel falls somewhere be- 
tween two rows and two columns of 
pixels in the original image. In 
principle, the color and intensity of 
each displayed pixel can be derived 
by averaging the values of the four 
stored pixels that surround it, 
weighted according to how far the 
displayed pixel is from the rows 
and columns to the top, bottom, 
left, and right. 

If TL, TR, BL, and BR define 
the four corner magnitudes of the 
pixels of the surrounding block, 
and h and v define the horizontal 
and vertical displacement fractions 
to move a pixel within the block, the 
weighted average of each color and 
intensity component is defined by 
the following equation: 

W = TL*(l-h)(l-v) + 
TR*h( l-v) + 
BL*(l-h)v + 
BR*hv 

‘I’he horizontal and vertical weights 
are specified in multiples of l/l&h 
of the space between individual 
pixels. . 

The pixel interpolator is de- 
sinned to ooerate in several differ- y 
em modes. Most common is a pipe- 
lined sequential mode that allows 
interpolated pixels to be generated 
at a maximum rate of one pixel 
every other clock cycle. Additional 
modes optimized for interpolating 
over random pixel “quads,” differ- 
ent horizontal and vertical weights, 
and selectable output “phase” have 
been included. 

StatIStIcal Decoder 
The statistical decoder is a special- 
ized input channel that reads en- 
coded bit streams containing vari- 
able-length symbols and decodes 
each symbol into fixed-length val- 
“t3. 

66 















P Define some names for PB hardware objects ‘I 
#define input in1 P InputFlFO for reading pixels ‘I 
#define output out1 P output FIFO for writing pixels ‘I 
#define readouf dram1 P Points to pwious-line buffer in DRAM ‘I 
#define writebuf dram2 f Points to same buffer: for reading ‘1 
#define vector dram3 P Points to wotor table at DRAM address 0 ‘I 
P Here Is the actual code ‘I 
LOOP: 
pixint - ‘readbuf++. ‘outplt I alu, cnt -; 
pixint - ‘input. &J-A; 

vectw I ‘stat, %litebuf++ I ahI; 
nul - pixint, nul - ‘V&Or, alu I A +] 6. ]cp loop; 

Interframe Motion-Compensated vector Ouantlzatlon DecodIng 

bottom line of a pair of lines and 
once as the top line of the next pair 
of lines). By buffering each input 
line in on-chip DRAM, extra mem- 
ory reads are saved and execution 
time is reduced. 

The first line of code in Listing 1 

pixint = *readbuf++, *output = 
alu, Cnt- -; 

loads a 1Bbit value, containing WJO 
pixels, from the line buffer into the 
pixel interpolator. Simultaneously, 
it outputs the final result (also nvo 
pixels) from the last time through 
the loop to memory. The loop 
counter, cm, is also decremented. 

The second instruction 

pixint = *input, alu = A; 

loads nw pixels from the next line 
of the source region into the pixel 
interpolator, and also passes it 
through the ALU. This is done so it 
can be saved in the line buffer on 
the next instruction. 

The third instruction 

vector = *stat, *writebuf++ = alu; 

reads the statistical decoder into a 
DRAM pointer. This puts the de- 
coded code book index for the vec- 
tor into the DRAM pointer. The 
vectctr table has been located in 
DRAM starting at address 0, so the 
required table lookup can be per- 

formed on the next instruction by 
simply reading the value of *vector. 
Also on this instruction, the pixels 
read on the previous instruction are 
put into the line buffer. 

The final instruction 

nul = pixint, nul = *vector, alu = 
A +] B, jcp loop 

reads the output of the pixel inter- 
polator (which produces 2 values in 
the motion-compensated array) 
and adds this to the difference- 
image vector (which is obtained by 
the table lookup through *vector). 
The ALU +I opcode is used, which 
independently adds the upper and 
lower bytes in the two 16.bit words, 
and also restricts each result to the 
limits 0 and 255. Finally, this in- 
struction performs a zero-overhead 
conditional branch based on the 
loop COtInter. 

Decode Performance 
Since this loop processes two pixels 
every four instructions, at 25 MHz 
it can process about 200,000 pixels 
in l/60 of a second. Decompression 
of an entire image includes other 
processing steps; total execution 
speed is typically about 70,000 pix- 
els per 1160 of a second, which is 
sufficient for good quality full- 
screen video. Note that for stan- 
dard 30 frame/second video, this 
means that only about one-half the 
PB cycles are used for reconstruct- 
ing each image. The remaining cy- 
cles can be used to apply video ef- 
fects, graphics overlays, and other 
operations which are useful in an 
interactive environment. 

Other Applications and 
Performance 
In addition to motion video com- 
pression and decompression, PB 
can be programmed m do image 
manipulation, video special effects, 
2-D and 3-D graphics, text, and 
digital audio algorithms [l]. 

For example, a piece of an image 
can be copied in external memory 
(such as a “raster-op” or “bit-blit” 
operation) by the following inner 
loop: 

76 



LOOP: 
tmp = *inI, cnt- - 

*out1 = tmp, jcp loop 

This requires two instructions 
rather than one because only one 
memory access per instruction is 
permitted in PB. For an &bit bit- 

An Example Of Three-DImensIonal 
TCSttIWMapped Solids Drawn 
with PB 

map (or bitmap plane), this pro- 
vides a “blit” speed of 12.5M pixels/ 
second. 

Now, an arbitrary transforma- 
tion of the pixel values can be 
achieved at no cost, using a lookup 
table in DRAM, as follows: 

LOOP: 
dram1 = *inl, cnt-- 
*out1 = *draml, jcp loop 

This can he used for example, 
for real-time adjustment of image 

DIGITAL MULTIMEDIA SVSTSYS 

brightness, contrast, or tint, by ap- 
plying the appropriate transforma- 
tion of values for each color compo- 
nent. 

Standard 2-D and 3-D graphics 
primitives have also been imple- 
mented. Figure 6 shows an example 
of 3-D texture-mapped solids 
drawn with PB, including Z-buffer- 



ing for hidden-surface removal. 
Drawing speed for this picture is 
;~c~pr;,imately 1 million pixels/ 

Although PB does not have a 
hardware multiplier, algorithms 
involving multiplication can often 
be implemented efficiently, using 

combinations of the two shifters 
available (single-bit parallel shifter 
and multibit barrel shifter). For 
example, a recent implementation 
of the CCITT/ISO JPEG image- 
compression algorithm based on 
the Discrete Cosine Transform 
(DCT) was found to be very multi- 
ply intensive. 

Nevertheless, PB is able to de- 
compress a 640 x 480 JPEC en- 
coded image in less than 1 second- 
about IO times faster than typical 
25MHz microprocessors (even 
those with a hardware multiply ca- 
pability). This illustrates the power 
and flexibility of programming PB 
at the microcode level. 

The PB can also be used for digi- 

tal audio decompression. Algo- 
rithms such as CD-ROM/XA, which 
are based on time-domain ADPCM 
techniques, can be decoded in 5% 
to 10% of PB’s available cycles. This 
permits the design of very low-cost 
multimedia systems in which a sin- 
gle PB does both the video and 
audio processing. 

Conclusion, PredictIon. and 
Challenge 
This article has described a low-cost 
VLSI solution for delivering full 
multimedia to personal computers 
and workstations. The i750 video 
processor’s substantial increase in 
multimedia performance results 
from a new video-rate DSP archi- 
tecture that has been well matched 
to key video-oriented processing 
requirements. 

Programmability at the 
microcode level offers hardware 
OEM’s and application developers 
complete flexibility in the face of 
uncertain and evolving end-user 
requirements without compromis- 
ing system cost or performance. 

The new elements of multi- 
media-motion and still video, spe- 

78 

cial effects, synthetic video, fast 
graphics--will result in a new para- 
digm for personal computers of 
greater impact than the 1980s shift 
from the “command-line” to the 
graphical user interface. 

Along with the advantages and 
benefits of multimedia comes the 
challenge to system and application 
developers to create new, friendlier 
and more effective user interfaces 
that fully leverage all the multime- 
dia elements now possible with the 
i750 video processor. 

Acknowledgments 
The authors would like to acknowl- 
edge the contributions made to the 
design and development of the i750 
video processor and this article: 
Tuan Bui, Ken Caviasca, Alfred 
Frim, Don Garrett, Judi Goldstein, 
Ei-Ichi Kowashi, Joseph Kraus- 
kopf, Kai Lee, Michael Patti, Hy 
Rae, Mark Ross, David Sprague, 
Sanjay Vinekar and Gini Vo1ini.P 

R&rences 

1. Foley and “an Dam, A. FundotMlllls 
of Inuroctivc Cmnp~tn Gra@hia. Ad- 
dison-Wesley, Reading, Mass. 

2. Lavelle, C.J. and Harney, K., et al. 
The S2750DB Display Processor. 
In& Tech. ,. “a”. 1991). 

3. Luther, A.C. Digital Video in the PC 
Entironmml. McGraw-Hill, Second 
Ed, 1990. 

4. Patti, M.F. and Sprague, D.L. The 
8275OPB Pixel Processor. Intel Tech. 

J. @n. 1991). 

5. Pritchard, D. Worldwide color relevi- 
sion standards-Similarities and dif- 
ferences. /. Sot. of Motirm Pi&m wwi 
Te,aisim Eng. (Feb. 1980). 

CR Categories aud Subject Lkwxip 
tars: 8.4.2 [InP”t/Output and Data 
Communieatious]: InpwJOutput De- 
vices-Inurge di.p!q: C. 1.2 [Processm 
Architectums]: Multiple Data Supam 
Architectures-Par&l @saws: C.3 
[ccmlP”tn Systems orglmiuIi.m]: 
Special-Purpose and Application-Based 
Systems-Microproccssm/tnicrocmnpuur 

applications; I.4.2 [Image Recessing]: 
Compression (coding)-A@mziti 
Vl!ZlhCdS 

General Terms: Design 
Additional Key Words and Pbrasesz 

DVI, digital video, multimedia 

About the Authors: 
KEVIN HARNEY is a chip designer at 
Intel Corporation. 
His research interests include image 
processing. 

MIKE KEITH is a software engineer at 
Intel Corporation. 
His research interests include digital 
video algorithms and applications. 

GARY LAVFLLE is a chip designer at 
Intel Corporation. His research inter- 
ests include computer architectures and 
display processors. 

LAWRENCE D. RYAN is a design man- 
ager at Intel Corporation. 
His research interests include DSPs, 
parallel p-erring and multimedia 
applications. 

DANIEL J. STARK is a chip designer at 
Intel Corporation. 
His research interests include computer 
architectures. 

Authors’ Present Address: Intel Cor- 
poration, 313 Enterprise Drive, 
Plainsboro, NJ 08596 


