The i750°
Video
Processor:
A Total
Multimedia
sSolution

Kevin Harney,
Mike Keith,
Gary Lavelle,
Lawrence D. Ryan
and Daniel J. Stark

http://crossmark.crossref.org/dialog/?doi=10.1145%2F103085.103092&domain=pdf&date_stamp=1991-04-01

he term multimedia means dif-

ferent things to different peo-
ple. For some, it is the simplest
combination of text and graphics
on a personal computer. For oth-
ers, it is the combination of iext,
graphics, and audio. Still others
think of multimedia as including
video still images. With the intro-
duction of digital motion video, the
definition of multimedia comput-
ing becomes even more clouded
and confusing.

For the purposes of this article,
we offer the following working def-
inition of multimedia computing:
Multimedia combines motion and
still video, special effects, synthetic
video, fast graphics and text with
the interactive capabilities of a per-
sonal deskiop computer.

The i750%® video processor was
developed to deliver all these multi-
media elements cost-effectively o
the end user. This article will pro-
vide a video subsystem overview, a
detailed description of the video
processor itself, a sidebar on vari-
ous aspects of its custom [C design
and development, and a discussion
of programming the video proces-
SOT.

First, A Littie History . . .

The dominant user interface for
personal computers during the
mid-to-late 1970s was a keyboard, a
monochrome text display, and the
command line. A number of these
early machines had graphics and
simple audio capabilities. However,
it was not until 1984 with the intro-
duction of the Macintosh™ with bit-
mapped monochrome graphics as a
fundamental feature, that user in-
terfaces began to shift toward
mouse-driven windows and icons.

It has been only in the last year
or so that application developers
have taken advantage of the oppor-
tunity to incorporate audio into
mainstream applications, such as
computer-driven desktop presenta-
tions.

It is interesting to note that the
basic graphical user interface has
been only modestly improved upon
in the seven years since its introduc-

JNICATIONS OF THE ACM/ April 1991/ Vol 34, No.g

tion on the Macintosh. We now
have color graphics displays but
usually with a disappointingly small
number of colors to choose trom.
Even more interesting, considering
the advances in VLSI technology
during the same time, is the fact
that virtually all personal comput-
ers sull rely on the host micropro-
cessor to create and format the dis-

play.

Technoiogy Advances Set The
Stage . ..

Consider some technology ad-
vances during the seven years since
the introduction of the Macintosh:

* VLSI ransistor
creased 16-fold.

® VLSI speeds increased 8-fold.

¢ The CD-ROM is available as a
low-cost, high-capacity, read-only
computer peripheral.

* Dual-port dynamic RAMs were
introduced.

s Networks are pervasive.

densities in-

These five major advances in basic
computer technology, coupled with
equally major advances in digital
video compression algorithms and
video processor architecrures,
transtorm the simple monochrome
text/graphics display subsystem of
seven vears ago into today’s rich
and highly dynamic video subsys-
tem. Displays can now feature full-
screen, full-motion video, high-
resolution video stills, video special
effects, 3-D real-time synthetic
video, and very fast, true color
graphics.

The presence of motion video
also pulls audio onto center stage as
an integral data element. Because
good quality audio requires only
10% or so of video’s bandwidth,
storage capacity, and processing
power, it can be included with mo-
tion video with little, if any, addi-
tional cost.

The 1750 Video Processor

The motivating force behind the
design of the 1750 video processor
architecture was the desire to inte-
grate all processing functions re-
quired for multimedia into a single

DIGITAL MULTIMEDIA SYSTEMS

programmable chip set. This in-
volved the design and development
of basic video and logic building
blocks that would find application
over a broad range of algorithms.
While a hardwired implementation
may at first appear to offer better
performance for a particular algo-
rithm, a programmable approach is
ultimately superior since it can be
reprogrammed to track the evolu-
tion of an algorithm or standard,
and at the same time, support each
of the diverse algorithms required
in a full multimedia system,

An example of this flexibility is
the ability to process images en-
coded within the JPEG still image
compression standard. While not
explicitly tailored for performing
the multitude of JPEG-specific cal-
culations needed to reconstruct
these images, the processor still
performs admirably—decoding 2
640 x 480 JPEG-encoded image
requires less than one second.

Programmability has provided a
straightforward path to upward
compatibility with the i750 A-series
video processor (Intel's previous
generation i750 is comprised of the
82750PA pixel and 82750DA dis-
play processors used in the Intel/
IBM ActionMedia™ PC-AT and
PS8/2-compatible boards).

System Overview

A DVI® display subsystem is shown
in Figure 1. Its engine is the
82750PB pixel processor (PB) [4]
and the 82750DB display processor
(DB) {2].

Separate from the “host” proces-
sor, PB is responsible for most of
the classical data processing and
control functions in the subsystem,
The pixel processor compresses
and decompresses image data from
memory, generates fast graphics
and special effects, and acts as the
master arbitrator for subsystem
memory and interdevice transac-
tions.

Host Microprocessor Subsystem

owi® Technology Video Subsystem

s T i R e T A
I Lo I
b | Keyboards Host Lo Host 82750PB :
| Operator Memory o Micro- Contol Pixel I
! Input {EPROM b processor Processor ;
i | controlier and RAM) | | | Interface |
! —7 Lo logic |~ s 3 } 4 !
| ko s e = :
I CD-ROM | Y | | - !
- . N o N
|
Storage : fray Sync
| e Host o %i?n’; »| (1M-4G byte) a,’.,(d !
I Lo I
1 | Serial and CPU Lo Generator Serial Control
! | Network 10 P Data 10 B
| Controllers | | i 1
: (Optional) : : Video Data 32 \é :
~
I o I
____________ N Y !
I I
| Feah o) §2750DB !
: Video NV-Hsiet L DlSp|ay :
: Digitizer |-F-Resety, Processor :
: {Optional) Syne Digital-to- :
Analog
: Alhs Converters :
I !
! 1 Je av |rv [Bu i
: [\ i 4 Y |
I " I
Live or Recorded }—oontockSyne » B f\flcl;:?Moixer I
Real-Time Composite Video : ; (%pﬁonm)
Video Input T >
I
L o o o

DVI¢ Technology Display
Subsystem

The display processor performs
real-time display functions includ-
ing data-format transformations,
color translation, pixel-value inter-
polation, and provides outputs
which support image capture and
video synchronization. The DB
generates all the timing signals re-
quired to drive display devices in-
cluding digital and analog RGB or
YUV pixel outputs and an B8-bit
digital word of alpha data. An
alpha channel is provided to obtain
a fractional mix of DB outputs with
another video source to achieve
video effects such as titling and
graphic overlays.

DVI technology performs its

operations in YUV color space.
Each YUV component is repre-
sented as a series of 8-bit samples.
In this color system the luminance,
or brightness information (as given
by the Y information), is separated
from the chrominance, or color in-
formation (as given by the U and V
components).

Working in this domain allows
various psychovisual effects to be
exploited, most notably, color in-
formation need not be stored at the
same resolution as the luminance
data [5]. For this reason, color in-
formation is stored at one-half or
one-quarter the luminance density
(subsampled) in each dimension,
without significant loss of image
quality. Since luma and chroma in-
formation are stored at different
resolutions, they are placed in dif-

ferent bitmaps.

Generating Displays From Bitmaps
During display blanking intervals,
DB reads in programming infor-
mation and two lines of chromi-
nance information. During the pro-
grammed active portion of the
display, DB reads in luminance in-
formation and, at the same time,
interpolates the chroma informa-
tion up to the resolution of the lu-
minance data.

At the earliest possible point in
the blanking interval preceding an
active display line, DB requests PB
to load a line of the luma bitmap
into the serial shift register of the
VRAM. At the start of an active dis-
play, DB will access the luma infor-
mation at the programmed transfer
rate.

April 1991/Vol 34, No.4/COMMUNICATIONS OF THE ACM

Since each data word is 32-bits
wide, each access yields up to four
8-bit luma samples allowing the
luma data rate to be one-fourth of
the active display rate. The display
rate is determined by two factors:
the operating frequency of DB; and
the ratio of the horizontal resolu-
tion of the source bitmap to the dis-
play resolution (the pixel rate).

It is possible to overlay DB out-
put with the output of another dis-
play device, such as a VGA graphics
card (or NTSC video) to combine
screens of DVI motion video and
an external source. This is made
possible by “gen-locking” DB to the
external source. Since all of DB’s
video timing and display parame-
ters are programmable, almost any
video rate may be gen-locked.

Selection of the source image
stream to be displayed or overlaid is
accomplished by “tagging” bits in
either the luminance or chromi-
nance data streams stored in video
memory. Since the luminance
channel is of a higher bandwidth, it
can be “channel switched” on a
pixel-by-pixel basis. Because the
chroma information is subsampled,
channel switching is restricted to
the subsampled resolution de-
scribed by either 2 2 X2 or 4 X 4
block of pixels.

The PB offers hardware specifi-
cally designed to tag any portion of
the input stream of pixels to create
windows and overlays from arbi-
trarily selected sources. The ability
to efficiently tag pixel data allows
the application to optimize system
resources and to produce a high-
resolution display that includes text
overlays and windows from multi-
ple sources.

The 82750PB Pixel Processor

The 82750PB was designed as a
cost-eftective, real-time video and
graphics processor for multimedia
applications. Its unique architec-
ture, with fully static, 25 MHz,
single-cycle instruction execution,
supports real-time full-screen en-
coding and decoding of digital mo-
tion video at 30 frames/second. The
PB can simultaneously perform a

COMMUNICATIONS OF THE ACM/ April 1991/ Voi34, Nud

g et o ety n e a a s e g

wide range of video effects, includ-
ing scaling motion video into win-
dows, “warping” (texture mapping}
video omnto surfaces, and many
screen transition effects.

Architecturai Overview
The PB architecture was designed
to be simple, efficient, and highly
parallel. Figure 2 is a simplified dia-
gram of the 82750PB.

A 32-bit, linear, byte-address-
able, external address bus and 32-
bit data bus are used (o communi-
cate with external memory and ex-
ternal devices. Internal datapaths
are either 16- or 32-birs wide and
designed to allow the simultaneous
processing of two or more 8-bit pix-
els. Functional blocks are connected
to one another using one or more
of these buses and the PB can trans-

DIGITAL MULTIMEDIA SYSTEMS

used to perlorm most arithmetic,
logical, and control operations. The
ALU supports 32 types of opera-
tions specific to processing motion
video, such as operations on dual
“side-by-side” 8-bit pixel magni-
tudes.

The AILU and barrel shifter {(as
well as most other functional
blocks) communicate with a multi-
port I6-word x 16-bit register file
and a bH12-word x 16-bit data
RAM. The RAM can be accessed
from two 16-bit buses via four inde-
pendent pointers. These “C-style”
pointers can be autoincremented
and decremented, as well as partici-

A Bus
Sequencer Data
Microcode | ’—’B L RAM
RAM
Microcode ’]‘3 TB
Instruction
r. Input/
ALU Output
*1 FIFOs
Relg:;i::,'ter 4
Data
32
Barrel
Shifter
™ statistical |_
Counters |- »| Decoder
Pixel PVBAM I I , Address
Interpolator aintats £
™ Host'VRAM VBus
Interface 4

67

Hardware
for Video
Encoding

and
Decoding

The 82750PB Pixel Processor

This device compresses and decompresses video data and bulids screen images pixel-by-pixel. The processor
must perform Its tasks In less time than It takes each dot to appear on the display. Its standard speed Is 25
MHz—higher speeds will be offered. It contains over 310,000 transistors in an area measuring 309 x 261 mils,

68 Apeil 9910Vl 58 e/ COMMUMICATIONS OF THE ACM

o e S DIGITAL MULTIMEDIA SYSTEMS

pate in general-purpose ALU oper-
ations.
The PB also contains two special-

cuted in a single clock cycle.
A microprogrammable cache
control algorithm is used to guar-

Hardware
for Video
Encoding
and

ized, semi-independent structures
that are optimized for image-
processing tasks.

First, the pixel interpolator cal-
culates fractional spatial movement
of pixels, scales groups of pixels,
and is used for various filtering
operations.

Second, the statistical decoder
decompresses video data in real
time. It is a specialized input FIFO
that reads variable-length serial bit
sequences from memory and de-
codes them into fixed-length 16-bit
values.

Because of the voluminous quan-
tities of memory data that must
continually pass through the pixel
processor, four independent FIFO
channels allow PB to efficiently
read, process, and write data. Each
FIFO packs and unpacks data
words and bytes, buffers data, and
initiates transfers to and from the
memory array.

Two FIFO channels are dedi-
cated to supply continuous streams
of input from memory, containing
compressed and uncompressed
images as well as the microcode
routines required to operate on
them.

Two output FIFQO channels are
used to store intermediate pixel val-
ues required during the construc-
tion of complete displayable im-
ages.

Communication with the “host”
processor and other devices on the
DVI system bus, as well as PD/DB
requests for memory, are arbitrated
by a state-machine within PB. This
logic is responsible for generating
the external timing required to load
or read PB internal registers, gen-
erate and acknowledge interrupts,
and to provide a rotating priority
scheme to control the four FIFOs
and statistical decoder requests for
memory.

Instruction Cache and Execution

Instructions are stored and exe-
cuted from a pipelined 512-word x
48-bit static cache and can be exe-

COMMUNICATIONS OF THE ACM/ April 1991/Vol 34, No.4

antee maximum cache “hit” effi-
ciency and can be tailored for dif-
ferent types of system- and
device-level operations.

By coordinating the operation of
the 1750 assembler with dual-word
cache accesses and appropriate PB
instruction control fields, zero-
delay branches can be performed
without conscious programmer in-
tervention. The ability to perform
any logical operation and then to
effectively perform a simultaneous
two-way branch based on the re-
sults of that operation yields a sig-
nificant performance increase over
typical microprogrammable proc-
€SSOI,

The 48-bit PB instruction word is
divided into a total of 11 different
control fields designed to allow
highly parallel operations.

For example, ALU operations on
pixels fetched from memory can be
performed simultaneocusly with it-
eration counter updates while the
pixel interpolator is operating on
pixels decoded by the statistical
decoder—and then branch—all
within a single clock cycle.

Pixel Interpolator

As long as the only objective of
video data decompression is the
faithful reproduction of the source
image, decompression itself is rela-
tively straightforward. If any addi-,
tional transformations are required
(the image is to be enlarged or re-
duced, scrolled, rotated, or inten-
tionally distorted) a simple corre-
spondence no longer exists between
the original stored pixels and those
to be displayed.

Straightforward attempts to ad-
Jjust the image often produce unde-
sirable artifacts known generally as
“aliasing effects.”

There exist a number of “anti-
aliasing” algorithms that eliminate
these artifacts at the expense of
processing cycles and, as such, are
not appropriate for use in real-time
systems.

As an example, when the size of

an image is reduced, the space be-
tween each stored pixel will exceed
the space between those to be dis-
played. This means that each dis-
played pixel falls somewhere be-
tween two rows and two columns of
pixels in the original image. In
principle, the color and intensity of
each displayed pixel can be derived
by averaging the values of the four
stored pixels that surround it
weighted according to how far the
displayed pixel is from the rows
and columns to the top, bottom,
left, and right.

If TL, TR, BL, and BR define
the four corner magnitudes of the
pixels of the surrounding block,
and h and v define the horizontal
and vertical displacement fractions
to move a pixel within the block, the
weighted average of each color and
intensity component is defined by
the following equation:

W = TL*(1-h)(1-v) +
TR*h(1-v) +
BL*(1-h)v +
BR*hv

The horizontal and vertical weights
are specified in multiples of 1/16th
of the space between individual
pixels.

The pixel interpolator is de-
signed to operate in several differ-
ent modes. Most common is a pipe-
lined sequential mode that allows
interpolated pixels to be generated
at a maximum rate of one pixel
every other clock cycle. Additional
modes optimized for interpolating
over random pixel “quads,” differ-
ent horizontal and vertical weights,
and selectable output “phase” have
been included.

Statistical Decoder

The statistical decoder is a special-
ized input channel that reads en-
coded bit streams containing vari-
able-length symbols and decodes
each symbol into fixed-length val-
ues.

§ BEuannunnEane---- :
LLETTT D ETENSeN

The 82750DB Display Processor

This device retrieves expanded image data from memory, converts it to the format needed for dispiay, and
produces the color, timing, and control signals needed to drive various displays. Its standard speed is 28
MHz—higher speeds will be offered. It contains over 200,000 transistors in an area measuring 321 x 276 mils.

70 Aprii 1991 /Vol.34, No.4/GOMMUNIGATIONS OF THE ACM

[n image compression, certain
values occur more frequently than
others. One means of compressing
such data is to use fewer bits to en-
code the more frequently occurring
values and more bits to encode less
frequently occurring ones. This
type of encoding scheme is called
statistical or Huffman encoding
because it depends on the fre-
quency of occurrence of any partic-
ular value to be encoded.

The statistical decoder receives
long series of variable-length sym-
bols from memory as a sequence of
32-bit data words. Each symbol en-
codes both its length and value and
ignores the natural boundaries be-
tween memory words or bytes. The
decoder must concatenate these
variable-length sequences, examine
the initial bit patterns, extract suit-
able substrings, expand the sub-
strings, and then realign the re-
maining data and repeat the pro-
cess for the next symbol.

Each of the above operations is
performed automatically for a vari-
ety of codes (code books) and cod-
ing conventions. The PB’s decoding
hardware includes a RAM that al-
lows the encoding and decoding
algorithms to optimize themselves
for different populations of values
to be encoded/decoded.

To use the decoder, a starting
address and code book are loaded.
Thereatter, programs may simply
read an indefinite series of ex-
panded symbols in parallel with
other operations.

Input And Output FIFOs

The PB contains two input and two
output FIFO channels that are used
to read and write pixel and pro-
gram data to external memory.
Each FIFO has its own 32-bit ad-
dress pointer that can be pro-
grammed to sequentially increment
or decrement through either 8- or
16-bit data types. Each FIFO dou-
ble buffers 32-bit data words to
allow more efficient program exe-
cution and to allow hardware mem-
ory controllers to take advantage of
the sequential nature of FIFO
MEMOory accesses.

COMMUNICATIONS OF THE ACM/ Aprif 1991/ Vol .34, No.¢

aa aa aa e ety s aaaaaaaanaaaaaaaaanaapaaaayaapa gttt N ENE SN

The 82750DB Display Processor
I'he B2750DB incorporates all of
the digital and analog processing
elements torm the
basis of a low-cost display subsys-
tem. By programming internal con-
trol registers, video timing can be
modified to accommodate a wide
variety of scanning frequencies and
display characteristics. A large se-
lection of bits-per-pixel, pixels-per-

Nnecessary Lo

DIGITAL MULTIMEDIA SYSTEMS

Hardware
for Video
Encoding
and

Decoding

line, and pixel heights are available
that allow designers a wide latitude
in selecting display

82750DB Display Processor

resolution,

VRAM < Shift Clk
Data A2 A2
! ! !
Sync Generation uv Pixel
and interpolator Processing
Timing Control
YUVa
Y ¥
VBUS CLUT
Control - (3)256x8
Y
Y2
Cusor Overlay Horizontal
16x18 Interpolator
Y Y Y
YUV to RGB
Converter
-]
A
Border/Blanking Control
and Qutput Equalizer
Triple
8-Bit DAC
//4 /’3 /,32
Y Y Y
VBUS Analog Digital
RNV, G/Y, BU RN, G/Y, B/U,a

n

frame rates 'dll([ICIory [(_‘Lill.llt_‘*
ments.

Architectural Overview

The 82750DB uses a single phase,
1X clock system and a heavily pipe-
lined architecture. The 82750DB
incorporates the following major
functional units:

Pixel data path

Chrominance interpolator
YUV-to-RGB color space conver-
sion

VBUS control

Pixel equalization

Triple 8-bit DACs

Pixel Data Path

The main purpose of the pixel data
path is to read coded pixel bitmaps
memory, bit-
maps mnto Red/Green/Blue pixels,
and output them to a video mixer
or directly to the display device.

Depending on memory size, tim-
ing requirements, and the desired
final pixel resolution, application
designers will choose from a num-
ber of different bits-per-pixel for-
mats. Coded pixel bitmaps are writ-
ten into a video memory shift
register by PB, and read out as 32-
bit words by DB during the active
display time.

The pixel data path can take dif-
ferent sizes and resolutions of pixel
bitmaps and zoom them under pro-
control to whatever final
image size is desired on the display

out of reconstruct

gram

screen. ‘The actual positioning of

these video and graphics display
windows 1s also fully programma-
ble, down to individual pixel reso-
lutions.

When the display device beam is
retracing, DB reads program regis-
ter data out of memory. Since re-
trace occurs on a line-by-line basis,
DB can be (pro-
grammed) on virtually every hon-
zontal scan line. This allows mulu-
ple “strips” of different video or
graphics sources, different window
sizes, or different resolutions to be
displayed on different portions of
the screen.

The DB incorporates a recon-

reconfigured

72

o

figurable color lookup table
(CLUT) that normally is organized
as either a single 24-bit or a triple
8-bit 256-entry color map. Because
each map can be loaded for every
scan line, the programmer may se-
lect and display 256 colors from a
palette of over 16 million on a line-
by-line basis.

These modes allow DB to display
color graphics or to perform non-
linear pixel transformations, such
as gamma correction, [5]

The CLUT may also be split into
two 128-entry color maps thart,
when used in conjunction with DB’s
overlay capability, allow completely
independent video and graphics
pixel transformations.

Another unique funcuonal block
in the pixel data path is an alpha
channel processor. With this fea-
ture, a weighted mix of DB outputs
can be combined with other video
or graphics sources. This allows not
only multiple sources to be dis-
plaved in different portions of the
display device, but also the ability to
pertform high-end video processing
effects, such as edge feathering.

Two other special-purpose
blocks in the pixel data path are the
hardware cursor and the horizontal
luminance interpolator. The hard-
ware cursor gives application writ-
ers the ability to overlay the cursor
without editing bitmaps whenever
the mouse position is updated. The
luminance interpolator generates
an averaged Y value that is inserted
between each pair of source Y val-
ues, softening the edges within re-
constructed images. The luminance
interpolator can be turned off for
“graphics” pixels.

Chrominance Interpolator

The task of the chrominance inter-
polator is 1o expand the
sampled color information up to

sub-

the corresponding luminance reso-
lution.

During programmed blanking
time, subsampled chrominance
data is read from bitmaps into color
information line storage RAMs
within DB. The interpolator deter-
mines when new chrominance in-

formation 1s needed based on the
current display position of the ras-
ter scan.

During active display time when
subsampled color video is heing
shown, DB performs a bilinear in-
terpolation to expand color infor-
mation to the resolution currently
being displayed. To accomplish
this, the chrominance interpolator
expands compressed color data in
both vertical and horizontal direc-
tions by a ratio of 2:1 or 4:1 in each
dimension.

After interpolation, DB can mix
chrominance and luminance on a
pixel-by-pixel basis. This ability to
mix video and graphics on the same
screen at any position, with any size.
and with any aspect ratio, is one of
the distinctive features of the 1750
architecture.

YUV-TO-RGB Conversion

The YUV-t0-RGB color space con-
version matrix is compatible with
the CCIR 601 standard. The con-
version is done fairly late in the
processing cycle, after things such
as color lookup table operations
and chrominance interpolation
have been completed.

For source data which 1s coded in
RGB format, or for systems that
draw only in RGB color space, the
programmer can choose to bypass
this function without disturbing
pipeline timing.

The color space conversion is
accomplished by performing a ma-
trix multiplication on the YUV pix-
els. Since the coefficients are all
constants, the multiplications may
be done with lookup ROMs and
adders.

Saturation circuitry is included o
ensure that any arbitrary YUV
pixel converts to an RGB value
which is within allowed ranges. The
accuracy of the conversion process
is =1/2 LSB.

VBUS Control

The VBUS control unit is responsi-
ble for much of DB’s internal pixel
timing and external system com-
munication tasks, as well as coordi-
nating DB requests for memory

Aprnil 1991 /Vol 34, No.4/COMMUNICATIONS OF THE ACM

and all communication with PB.

Communication with PB is done
via requests over a dedicated asyn-
chronous bus. The VBUS unit is
responsible for arbitrating among
the various requests that can be sent
to PB; these include bitmap display
requests, program load informa-
tion, memory refresh, and frame
synchronization information.

Actual communication with
VRAM is initiated via DB’s serial
shift clock. The DB must anticipate
when data is available from the
VRAM output shift register as a
function of PB request processing
and memory access time. Program-
mable delay parameters eliminate
the need for DB-to-PB or DB-to-
VRAM handshaking.

When gen-locked to an external
video source, the VBUS handles
the communications necessary to
capture and frame buffer the re-
ceived digitized video.

Pixel Equalization

A significant DB feature is its ability
to take source image data of any
size and resize it for different win-
dows. Designers program how long
each active pixel is held at the de-
vice outputs while the display beam
is tracing. The selection is made in
terms of number of frequency peri-
ods. The range of programmable
values is not only integer, but half-
integer as well. This quantizes the
pixel size selection choices to a finer
granularity resulting in a greater

e

The pixel equalizer ensures that
the output pixels are all of the same
duration, and their widths are of
the programmed size. As a system
integration feature, the on-chip
pixel equalizer eliminates the need
for external circuitry for pixel du-
ration equalization.

Digital-To-Analog Converter
Incorporating a triple 8-bit D/A
converter on DB represents the sin-
gle largest savings in overall system
cost. The triple DAC delivers Red/
Green/Blue analog outputs to a dis-
play device. The DAC conversion is
monotonic and can operate at the
maximum chip input clock fre-
quency. The DAC integral non-
linearity (INL) 1s 0.3% and differ-
ential non-linearity (DNL) is 1/4
LSB.

The 82750DB provides both
analog and 24-bit digital RGB out-
puts. The digital outputs can be dis-
abled as a power reduction feature
in systems requiring only analog
outputs from the DACs.

Programming The i750 Video
Processor

Like most microcoded processors,
the 1750 video processor does not
have an “instruction set” in the con-
ventional sense. Rather, its instruc-
tion set can be said to consist of a
single instruction with a multitude
of options. The instruction with its"
options is shown in Figure 4.

DIGITAL MULTIMEDIA SYSTEMS

Instruction Field Definitions
Each of the various instruction
fields will be described in prepara-
tion for examining actual coding
examples of motion video decom-
pression, memory-to-memory block
transfers, and other common rou-
tines.

Bus transfer operations are of
the form:

adst = asrc, bdst = bsrc

These two fields specity register
transfers using two internal data
buses. The first transfer uses the
“A” bus and the second uses the “B”
bus. Most of the registers on PB are
connected to both buses, but some
are connected to just one.

The term “register” here has a
rather broad meaning, referring to
any of the bus-addressable objects
of PB. These include the 16 gen-
eral-purpose and a number of spe-
cial-purpose registers which pro-
vide access to the PB’s special
hardware units (the pixel inter-
polator, FIFOs, and statistical de-
coder, for example). Registers
available for bus transfers include:

rN (N =0 to 15)
(16 general-purpose registers)

dramN (N =1 to 4}

Hardware
for Video
Encoding

and
Decoding

range of horizontal resolution R EEIEGE (data RAM (DRAM) pointer regis-
choices. i750PB Instruction Syntax ters)
adst = asrc bdst = bsrc alu = aval OP bval << >> <> cnt2]-- JCOND Iabel
A-Bus B-Bus ALU Shifter Loop Jump
Transfer Transfer Operation Operation Counters Condition
adst, asrc, bdst, bsrc = 82750PB aval = alatchora <<= 1-bitleft cnt-- jmp = always
internal registers; e.g., N, dramN, bval =blatchorb >>=1-bitright c¢nt2-- COND =

*dramN[++][--], inN-c, inN-lo, inN-hi,
*inN, outN-c, outN-lo, outN-hi, *outN,
stat-c, stat-lo, stat-hi, *stat, cnt[2],
pixint

ALU opcodes =

a, b, ~a, ~b, -a, -b,
a++, b++, a--, b--,
& |, M+, ++, 4], -]
~&, &~, -, -+, +<,

<> = byte swap cnc,znz, nnn,
0 no, rs nrs, Is nis,

€z ncz, ¢z2 ncz2

-<,

73

COMMUNICATIONS OF THE ACM/ A pini 1991/ Vol 34, No.4

These registers are used to access
on-chip DRAM. First, a DRAM
address is loaded into one of the
pointer registers. Then, DRAM it-
self can be written or read by using
one of the “DRAM contents” regis-
ters, which are denoted
“*dramN[++][——].” Doing a bus
transfer using these names causes
the DRAM entry currently pointed
to by the pointer register to be read
or written with an optional post-
increment or -decrement opera-
tion.

inN-c, inN-ig, inN-hi, *inN

OUtN-c, outN-lo, outN-hi, *outN
These registers are used for input
and output to external memory
using the PB external memory
FIFOs. The “lo” and "hi” registers
are loaded with a 32-bit memory
address, after which the *in or *out
registers can be specified to input
or output a value to external mem-
ory. The “¢” register is a control
register which specifies byte or
word mode, post-increment or
post-decrement, and several other
options.

stat-c, stat-hi, stat-lo, stat-ram,
*stat

These registers read from external
memory using the statistical de-
coder. The “¢,” “hi,” and “lo” regis-
ters are similar to PB’s FIFOs; the
stat-ram register is used to load a
small RAM in the statistical decoder
that specifies the variable-length
code book. Reading the *stat regis-
ter causes the statistical decoder to
decode the next variable-length bit
string and return its index in the
code book.

pixint
(the pixel interpolator)

To perform a 2-D bilinear inter-
polation between four 8-bit pixel
values (or values of any kind), two
writes are performed to the 16-bit
“pixint” register (each write con-
taining two 8-bit values). A few cy-
cles later, the “pixint” register can
be read and will return the interpo-
lated result. The pixel interpolator
can also be programmed to return

74

B N W N s o o s o 8 e e ey a a s an o p e ey

its results in pairs, so that all pro-
cessing can be performed on pairs
of pixels for maximum efficiency.

cnt, cnt2
(two loop counters)

These can be decremented and
tested in parallel with instruction
execution, to produce a zero-over-
head looping capability.

alu = aval OP bval

This instruction field specifies an
ALU operation. There are only two
possibilities for aval (and similarly
for bval). The symbol “a” tells the
ALU to get its input by “eavesdrop-
ping” on the “A” bus and extracting
whatever value is being transferred
there on this instruction. The word
“alatch” tells it to reuse the value in
its A input latch. The OP specifies
one of the ALU opcodes shown in
Figure 4. These include standard
arithmetic and logical operations
plus some special opcodes such as
the dual-add-with-saturate opera-
tion: +].

<< >> <>

These operations specify a single-
bit left shift, single-bit right shift, or
byte swap using a special shifter
register. The 82750PB also has a
barrel shifter for multibit shifts, but
the advantage of the single-bit
shifter is that its shifts can be done
in parallel.

cnti2l—

This operation decrements one of
the two loop counters. In combina-
tion with the conditional jump
field, this provides the zero-over-
head looping feature of PB.

jmp label jJCOND label

These fields specify an uncondi-
tional or conditional jump. Various
conditions can be used for condi-
tionals, including ALU condition
codes (zero, overflow, etc.), shifter
conditions, and loop counter condi-
tions.

Microprogramming
A program consists of a series of

these instructions. Each instruction
executes in a single clock cycle, no
matter how many fields are used.
In other words, all the available
options execute in parallel.

Figure 4 also illustrates several
additional features of the PB pro-
gramming language. Although PB
is programmed in microcode—an
even lower-level language than as-
sembly code—the programming
language has a high-level, C-like
syntax. The motivation for this
approach is to make complex
microcode programs as readable
and maintainable as possible. For
example, instead of writing:

MOV Y, X MOV Z, NUL INA INB
ADD DCNT

as might be done in some
microcode-level languages, simply
write:
X=y, nul =z,
cnt——;

alu = A + B,

which gives a much clearer picture
of what is going on. The PB
microcode assembler works in con-
junction with a C preprocessor,
which provides the usual macros,
conditional assembly, and other
features found in the preprocessor.

Microprogram Performance

The 82750PB is typically 5-t0-10
times faster than a conventional
microprocessor at the same clock
speed (even faster for operations
such as image decompression and
manipulation which take advantage
of its special hardware assists).
There are two reasons for its effi-
ciency: single-cycle instruction exe-
cution and the inherent parallelism
of the dual-bus, multifield instruc-
tion. Single-cycle execution means
that instructions execute faster and
parallelism means that fewer in-
structions are required.

The dual-bus nature of PB per-
mits elegant constructs such as the
following instruction to swap the
values in two registers: X = y,y = x;

Or, consider the “butterfly,” a
key component of Fast Fourier

April 1991/Vol.34, No.4/COMMUNICATIONS OF THE ACM

L n e g et R R R R TS E R R R N R N R e EEr E EnE e

Transform and Fast Cosine Trans-
form algorithms; two variables “x”
and “y” are replaced with the values
x +y and x — vy, respectively. This

DIGITAL MULTIMEDIA SYSTEMS

are then added to the motion-
compensated array to produce the
final reconstructed region. In PLV,
the difference array for a given

Hardware
tor Video
Encoding

and
Decoding

can be accomplished in three in-
structions on PB, which is fewer
than required on most conventional
CISC processors:

nul = x, nul =y, alu = A + B;
x = alu, alu = Alatch — Blatch;
y = alu;

Decoding Motion Video

Now consider a more complex ex-
ample of PB coding, such as decod-
ing digital motion video using vec-
tor quantization and motion
compensation.

One of the algorithms used for
creating full-screen motion video
from compressed data files is called
Production Level Video (PLV). In
this algorithm, most images are
encoded as difference images; that
is, the encoded data represents the
difference between the current
image and the previous image in
the video sequence. To provide fur-
ther compression, the image is sub-
divided into rectangular regions.

The compressed data contains
information for each region; this
tells the decoder where, in the pre-
vious image, a region can be found
to serve as the basis for constructing
the region in the image being cre-
ated. This location will usually be
spatially near the location of the
region in the current image, but it
need not be exactly coincident.

Furthermore, the best compres-
sion is achieved when the location
of the previous-image region is
specified in fractional pixel coordi-
nates. This means that the decoder
must interpolate between pixel val-
ues in the previous image to derive
the starting region—a prime appli-
~cation for the PB pixel interpolator.
This process of deriving an array of
initial values from a spatially shifted
region in the previous image is re-
ferred to as motion compensation.

After deriving the motion-
compensated array, the decoder
must somehow construct an array
of (signed) difference pixels, which

April 1991/Vol.34, No.4/COMMUNICATIONS OF THE ACM

region can be constructed using
one of several algorithms. The al-
gorithm illustrated here is known as
“2 X 1 vector quantization.”

In 2X 1 vector quantization,
each horizontally adjacent pair of
pixels in the difference array is
quantized to one of a finite set of
number pairs (vectors). Each vector
in the set is identified by a unique
integer which is then statistically
encoded. (Of course, the vectors in
the vector table are sorted by ex-
pected frequency of occurrence.)
The decoder simply decodes a
Huffman code and does a lookup
into the current table of vectors.
The pair of numbers retrieved
from the table is then written to the
difference array.

Figure 5 illustrates the preceding

process diagrammatically. A region
in the previous image (located at
fractional pixel coordinates) is
added to a difference array pro-
duced by statistical decoding and
vector table lookup to produce a
region of the current image being
constructed.

Motion Video Decode Example

Listing 1 presents the actual PB
code to perform the inner loop of
this algorithm. It uses a line buffer
in on-chip DRAM. The reason for
this is that two lines must be read
from the previous image in order to
perform pixel interpolation. The
straightforward implementation
requires reading each line from
external memory twice (once as the

i1750 Video Processor

The major design goal of the
1750 video processor was to
deliver multimedia functional-
Ity and performance at a cost
that would make broad accept-
ance possible In desktop ma-
chines. Following are some of
the key parameters that were
considered in making perfor-
mance/cost trade-offs.

The key performance require-
ment was to compress, de-
code, and display motion video
with special effects In popular
high-resolution formats such
as NTSC, PAL, VGA, and SVGA. To
meet the requirements of
these and future display for-
mats, such as XGA, innovative
circuit design techniques were
employed that fully utilize In-
tel's unique design tools and
advanced CHMOS*-IV technol-
ogy and fabrication capabillities.

System Cost

In today's desktop machines,
there is a high cost assoclated
with component count and the
resuitant use of board area.
Reducing system component
count Is as Important as reduc-
ing chip cost. A conscious ef-
fort was made to integrate
system-level and peripheral
functions on the chip to re-
duce overall system cost. Some
of these functions include a
YUV-RGB converter, triple
video-rate digital-to-analog
converters, an on-chip bilinear
Interpolator, and a statistical
decoder.

Component cost Is directly
related to die size and packag-
Ing options. Die size was signif-
Icantly reduced by using intel's
custom layout tools and
CHMOS-IV one-micron “design
rules.” A plastic, 132-pin leaded
quad-flat package was chosen
to provide the lowest cost sur-
face-mount capability.

75

Previous image

Current image

(Frame N-1) (Frame N)
= &[]
] Difference
e ﬁL
Motion-compensated region Reglon being
(fractional-pixel coordinates) constructed
Table lookup
Vector table
Huffman decode
11001011001001...

Interframe Motion-Compensated Vector Quantization

I* Define some names for PB hardware objects */

#define input in1

#define output out1

#define readouf dram1
#define writebuf dram2
fidefine vector dram3

" Here Is the actual code */

f* inputFIFO for reading pixels */

f* output FIFO for writing pixels */

/" Points to previous-line buffer in DRAM */

/* Points to same butfer; for reading */

I* Points to vector table at DRAM address 0 */

LOOP:

pixint = *readbuf++, *output = alu, cnt -;

pixint = “Input, alu=A;

vector = “stat, *writebuf++ = alu;

nul = pixint, nul = *vector, alu= A +]B, Jeploop;

Interframe Motion-Compensated Vector Quantization Decoding

bottom line of a pair of lines and
once as the top line of the next pair
of lines). By buffering each input
line in on-chip DRAM, extra mem-
ory reads are saved and execution
time is reduced.

The first line of code in Listing 1

pixint = *readbuf++,
alu, cnt——;

*output =

loads a 16-bit value, containing two
pixels, from the line buffer into the
pixel interpolator. Simultaneously,
it outputs the final result (also two
pixels) from the last time through
the loop to memory. The loop
counter, cnt, is also decremented.
The second instruction

76

pixint = *input, alu = A;

loads two pixels from the next line
of the source region into the pixel
interpolator, and also passes it
through the ALU. This is done so it
can be saved in the line buffer on
the next instruction.

The third instruction

vector = *stat, *writebuf++ = alu;

reads the statistical decoder into a
DRAM pointer. This puts the de-
coded code book index for the vec-
tor into the DRAM pointer. The
vector table has been located in
DRAM starting at address 0, so the
required table lookup can be per-

formed on the next instruction by
simply reading the value of *vector.
Also on this instruction, the pixels
read on the previous instruction are
put into the line buffer.

The final instruction

nul = pixint, nul = *vector, alu =
A +] B, jep loop

reads the output of the pixel inter-
polator (which produces 2 values in
the motion-compensated array)
and adds this to the difference-
image vector (which is obtained by
the table lookup through *vector).
The ALU +] opcode is used, which
independently adds the upper and
lower bytes in the two 16-bit words,
and also restricts each result to the
limits 0 and 255. Finally, this in-
struction performs a zero-overhead
conditional branch based on the
loop counter.

Decode Performance

Since this loop processes two pixels
every four instructions, at 25 MHz
it can process about 200,000 pixels
in 1/60 of a second. Decompression
of an entire image includes other
processing steps; total execution
speed is typically about 70,000 pix-
els per 1/60 of a second, which is
sufficient for good quality full-
screen video. Note that for stan-
dard 30 frame/second video, this
means that only about one-half the
PB cycles are used for reconstruct-
ing each image. The remaining cy-
cles can be used to apply video ef-
fects, graphics overlays, and other
operations which are useful in an
interactive environment.

Other Applications and
Performance

In addition to motion video com-
pression and decompression, PB
can be programmed to do image
manipulation, video special effects,
2-D and 3-D graphics, text, and
digital audio algorithms [1].

For example, a piece of an image
can be copied in external memory
(such as a “raster-op” or “bit-blit”
operation) by the following inner
loop:

April 1991/Vol.34, No.4/COMMUNICATIONS OF THE ACM

LOOP:
tmp = *inl, cnt——

*outl = tmp, jcp loop

This requires two instructions
rather than one because only one
mMemory access per instruction is
permitted in PB. For an 8-bit bit-

An Example of Three-Dimensional
Texture-Mapped Solids Drawn
with PB

COMMUNICATIONS OF THE ACM/ April 1991/Vol.34, No.4

map (or bitmap plane), this pro-
vides a “blit” speed of 12.5M pixels/
second.

Now, an arbitrary transforma-
tion of the pixel values can be
achieved at no cost, using a lookup
table in DRAM, as follows:

LOOP:
draml = *inl, cnt——
*outl = *draml, jep loop

This can be used for example,
for real-time adjustment of image

DIGITAL MULTIMEDIA SYSTEMS

brightness, contrast, or tint, by ap-
plying the appropriate transforma-
tion of values for each color compo-
nent.

Standard 2-D and 3-D graphics
primitives have also been imple-
mented. Figure 6 shows an example
of 3-D texture-mapped solids
drawn with PB, including Z-buffer-

Iardware
for Video
Foreoding
and

Decading

ing for hidden-surface removal
Drawing speed for this picture is
approximately 1 million pixels/
second,

Although PB does not have a
hardware multiplier, algorithms
involving multiplication can often
be implemented efficiently, using
combinations of the two shifters
available (single-bit parallel shifter
and multibit barrel shifter). For
example, a recent implementation
of the CCITT/ISO JPEG image-
compression algorithm based on
the Discrete Cosine Transform
(DCT) was found to be very multi-
ply intensive.

Nevertheless, PB is able to de-
compress a 640 X 480 JPEG en-
coded image in less than] second—
about 10 times faster than typical
25MHz microprocessors {even
those with a hardware multiply ca-
pability). This illustrates the power
and flexibility of programming PB
at the microcode level.

The PB can also be used for digi-
tal audio decompression. Algo-
rithms such as CD-ROM/XA, which
are based on time-domain ADPCM
techniques, can be decoded in 5%
to 10% of PB’s available cycles. This
permits the design of very low-cost
multimedia systems in which a sin-
gle PB dces both the video and
aundio processing.

Conclusion, Prediction, and
Challenge

This article has described a low-cost
VLSI solution for delivering full
multimedia to personal computers
and workstations. The i750 video
processor’s substantial increase in
multimedia performance results
from a new video-rate DSP archi-
tecture that has been well matched
to key video-oriented processing
requirements.

Programmability at the
microcode level offers hardware
OEM’s and application developers
complete flexibility in the face of
uncertain and evolving end-user
requirements without compromis-
ing system cost or performance.

The new elements of multi-
media—motion and still video, spe-

78

e L e

cial effects, synthetic video, fast
graphics—will result in a new para-
digm for personal computers of
greater impact than the 1980s shift
from the “command-line” to the
graphical user interface.

Along with the advantages and
benefits of multimedia comes the
challenge to system and application
developers to create new, friendlier
and more effective user interfaces
that fully leverage all the multime-
dia elements now possible with the
i750 video processor.

Acknowledgments

The authors would like to acknowl-
edge the contributions made to the
design and development of the i750
video processor and this article:
Tuan Bui, Ken Caviasca, Alfred
Frim, Don Garrett, Judi Goldstein,
Ei-Ichi Kowashi, Joseph Kraus-
kopf, Kai Lee, Michael Patti, Hy
Rao, Mark Ross, David Sprague,
Sanjay Vinekar and Gini Volini.[3

References

1. Foley and Van Dam, A. Fundamentals
of Interactive Computer Graphics. Ad-
dison-Wesley, Reading, Mass.

2. Lavelle, G.J. and Harney, K., et aL
The 82750DB Display Processor.
Intel Teck. J. (Jan. 1991).

3. Luther, A.C. Digital Video in the PC
Environment. McGraw-Hill, Second
Ed, 1990.

4. Patti, M.F. and Sprague, D.L. The
82750PB Pixel Processor. Intel Tech.
J. (Jan. 1991).

8. Pritchard, D. Worldwide color televi-
sion standards—Similarities and dif-
ferences. [. Soc. of Motion Picture and
Television Eng. (Feb. 1980).

CR Categories and Subject Descrip-
tors: B.4.2 [Input/Output and Data
Communications]: Input/Output De-
vices—Image display, C.1.2 [Processor
Architectures]: Muliiple Data Stream
Architectures—Parallel processors; C.3
[Computer Systems Organization]:
Special-Purpose and Application-Based
Systems—~>Microprocessorimicrocompter

applications; 1.4.2 [Image Processing]:
Compression {coding)—Approximate
methods

General Terms: Design

Additional Key Words and Phrases:
DVI, digital video, multimedia

About the Authors:

KEVIN HARNEY is a chip designer at
Intel Corporation.

His research interests include image
processing.

MIKE KEITH is a software engineer at
Intel Corporation.

His research interests include digital
video algorithms and applications.

GARY LAVELLE is a chip designer at
Intel Corporation. His research inter-
ests include computer architectures and
display processors.

LAWRENCE D. RYAN is a design man-
ager at Intel Corporation.

His research interests include DSPs,
parallel processing and multimedia
applications.

DANIEL J. STARK is a chip designer at
Intel Corporation.

His research interests include computer
architectures,

Authors’ Present Address: Intel Cor-
poration, 313 Enterprise Drive,
Plainsboro, NJj 08536

Trademarks used in this article: DVI and i750
are registered trademarks of Intel Corpora-
tion. CHMOS is a patented process of Intel
Corporation. ActionMedia is a trademark of
Intel Corporation. Macintosh is a registered
trademark of Apple Computer, Inc.

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

© ACM 0002-0782/91/0400-064 $1.50

April 1991/Vol.34, No.4/COMMUNICATIONS OF THE ACM

