D951, JANUARY 1971-REVISED MAY 1990

- Satisfies Requirement of EIA Standard RS-232-C
- Withstands Sustained Output Short-Circuit to any Low-Impedance Voltage Between - 25 V and 25 V
- 2-μs Max Transition Time Through the 3 V to -3 V Transition Region Under Full 2500-pF Load
- Inputs Compatible With Most TTL Families
- Common Strobe Input
- Inverting Output
- Slew Rate Can Be Controlled With an External Capacitor at the Output
- Standard Supply Voltages . . . ± 12 V

description

The SN75150 is a monolithic dual line driver designed to satisify the requirements of the standard interface between data terminal equipment and data communication equipment as defined by EIA standard RS-232-C. A rate of 20,000 bits per second can be transmitted with a full 2500-pF load. Other applications are in data-transmission systems using relatively short single lines, in level translators, and for driving MOS devices. The logic input is compatible with most TTL families. Operation is from 12-V and -12-V power supplies.

The SN75150 is characterized for operation from $0\,^{\circ}\text{C}$ to $70\,^{\circ}\text{C}$.

D, JG, OR P PACKAGE (TOP VIEW)

logic symbol†

 † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC publication 617-12.

logic diagram (positive logic)

schematic (each line driver)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC+ (see Note 1)
Supply voltage, V _{CC}
Input voltage
Applied output voltage
Continuous total power dissipation See Dissipation Rating Table
Operating free-air temperature range
Storage temperature range65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package 260 °C
Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds: JG package 300 °C

NOTE 1: Voltage values are with respect to network ground terminal.

DISSIPATION RATING TABLE

	$T_A \leq 25$ °C	DERATING FACTOR	T _A = 70°C
PACKAGE	POWER RATING	ABOVE TA = 25°C	POWER RATING
D	725 mW	5.8 mW/°C	464 mW
JG	825 mW	6.6 mW/°C	528 mW
Р	1000 mW	8.0 mW/°C	640 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC+}	10.8	12	13.2	V
Supply voltage, V _{CC} -	- 10.8	-12	-13.2	V
High-level input voltage, VIH	2		5.5	V
Low-level input voltage, VIL	0		0.8	V
Applied output voltage, VO			±15	V
Operating free-air temperature, TA	0		70	°C

SN75150 **DUAL LINE DRIVER**

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP [†]	MAX	UNIT	
Voн	High-level output voltage	$V_{CC+} = 10.8 \text{ V},$ $V_{IL} = 0.8 \text{ V},$			5	8		٧	
VOL	Low-level output voltage (see Note 2)	$V_{CC+} = 10.8 \text{ V},$ $V_{IH} = 2 \text{ V},$		$V_{CC-} = -10.8 \text{ V},$		-8	-5	٧	
ЧН	High-level input current	$V_{CC+} = 13.2 \text{ V},$ $V_{CC-} = -13.2 \text{ V},$		Data input		1	10	μ Α	
"'		V _I = 2.4 V		Strobe input		2	20		
կլ	Low-level input current	$V_{CC+} = 13.2 \text{ V},$ $V_{CC-} = -13.2 \text{ V},$		Data input		- 1	-1.6	mA	
		$V_{l} = 0.4 \text{ V}$		Strobe input		-2	-3.2		
	Short-circuit output current [‡]		Vo :	$V_0 = 25 V$		2	8	mA	
loc		$V_{CC+} = 13.2 \text{ V}, V_0$		= -25 V		-3	-8		
los		$V_{CC-} = -13.2 \text{ V}$	$V_0 = 0, V_1 = 3 V$ $V_0 = 0, V_1 = 0$		10	15	30		
					-10	- 15	- 30		
ICCH+	Supply current from V _{CC+} , high-level output	V _{CC+} = 13.2 V,				10	22	^	
ICCH-	Supply current from V _{CC-} , high-level output	$V_I = 0,$ $T_A = 25$ °C	$R_L = 3 k\Omega$,		- 1	- 10	mA		
ICCL+	Supply current from V _{CC+} , low-level output	V _{CC+} = 13.2 V,				8	17	4	
ICCL-	Supply current from V _{CC-} , low-level output	$V_I = 3 V,$ $T_A = 25 ^{\circ}C$	HL =	= 3 kΩ,		-9	-20	mA	

switching characteristics, $V_{CC+} = 12 \text{ V}$, $V_{CC-} = -12 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$ (see Figure 1)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tTLH	Transition time, low-to-high-level output	C _L = 2500 pF,	0.2	1.4	2	μS
tTHL	Transition time, high-to-low-level output	$R_L = 3 k\Omega \text{ to } 7 k\Omega$	0.2	1.5	2	μS
†TLH	Transition time, low-to-high-level output	C _L = 15 pF,		40		ns
†THL	Transition time, high-to-low-level output	$R_L = 7 k\Omega$		20		ns
tPLH	Propagation delay time, low-to-high-level output	C _L = 15 pF,	T	60		ns
tPHL	Propagation delay time, high-to-low-level output	$R_L = 7 k\Omega$		45		ns

[†] All typical values are at V_{CC+} = 12 V, V_{CC-} = -12 V, T_A = 25 °C.

[‡] Not more than one output should be shorted at a time.

NOTE 2: The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for logic levels only, e.g., when -5 V is the maximum, the typical value is a more negative voltage.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: duty cycle \leq 50%, Z₀ \approx 50 Ω . B. C_L includes probe and jig capacitance.

FIGURE 1. SWITCHING CHARACTERISTICS

TYPICAL CHARACTERISTICS

OUTPUT CURRENT

APPLIED OUTPUT VOLTAGE

APPLICATION INFORMATION

FIGURE 3. DUAL-CHANNEL SINGLE-ENDED INTERFACE CIRCUIT MEETING MIL-STD-188C, PARAGRAPH 7.2.