
COMPUTING PRACTICES

44	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

Mac OS versus
FreeBSD:
A Comparative
Evaluation
Stergios Papadimitriou and Lefteris Moussiades, Technology
Education Institute of Eastern Macedonia and Thrace

FreeBSD—an open source Unix-like OS—and
Apple’s Mac OS both implement similar BSD
Unix functionality but use radically different
approaches. BSD stands for Berkeley Software

Distribution and refers to the version of Unix developed
at the University of California, Berkeley.

Mac OS uses the xnu kernel—xnu stands for “xnu is
not Unix.”1–3 It consists of the Mach core, the BSD layer,
and the I/O Kit (an object-oriented device driver develop-
ment framework).3 Specifically, xnu uses a modified Mach
microkernel2,3 for the lower-level functionality. On top of
the Mach primitives, it implements BSD functionality. In
essence, it layers BSD on top of the Mach infrastructure.

FreeBSD uses a custom modular kernel,4 which is
organized as a traditional Unix monolithic kernel. The
FreeBSD kernel creates and manages processes, provides

functions to access the filesys-
tem, and supplies communica-
tion facilities.

In this article, we compare
the core kernel architecture and
functionality of the two OSes, pro-
viding some theoretical insights
along with supportive perfor-
mance benchmarks that high-
light the relative advantages and
disadvantages of each approach.

BASIC ARCHITECTURE
Both xnu and FreeBSD are
monolithic kernels. This orga-

nization allows for efficient execution because kernel
components interact with direct procedure calls without
involving message passing and the associated switches
between user and kernel mode code. The Mach kernel is
actually a microkernel design, but performance demands
forced Apple to implement the BSD component within
the same kernel address space and with direct function
calls that utilize Mach’s functionality. Although it is well
optimized, the elegant infrastructure of ports and mes-
sage passing that Mach implements cannot compete with
the efficiency of pure function calls.

Most OSes present a complete model on top of which
user mode processes can be implemented. Instead, Mach
provides a bare-bones model on top of which a full OS can
be structured. Mac OS’s xnu is one specific implementa-
tion of BSD on top of Mach.

FreeBSD (an open source Unix-like OS) and

Apple’s Mac OS use similar BSD functionality

but take different approaches. FreeBSD

implements a traditional compact monolithic

Unix kernel, whereas Mac OS builds the

BSD Unix functionality on top of the Mach

microkernel. The authors provide an in-depth

technical investigation of both approaches.

	 F E B R U A R Y 2 0 1 8 � 45

The xnu kernel has a modular
design with distinct kernel compo-
nents in different modules. However,
because all the modules operate in
the same kernel space, routines of one
module can directly call routines from
other modules. Actually, many mod-
ifications of the original Mach code
made by Apple replace Mach’s message
passing with direct function calls. This
way, the xnu kernel avoids a great deal
of overhead (as do the pure monolithic
kernels of Linux, Windows, FreeBSD,
and Solaris). The modular yet mono-
lithic design of the xnu kernel is some-
times referred to as a hybrid design.

The xnu kernel includes the Mach
microkernel, which provides a power-
ful port-based interprocess communi-
cation (IPC). It also implements core
primitives as threads/tasks and sched-
ules threads. Virtual memory (VM)
is another core functionality imple-
mented with Mach. On top of Mach
and at the same kernel address space
(for efficiency), the BSD layer imple-
ments the virtual file system (VFS),
specific file systems, and network-
ing, and provides a BSD-style Portable
Operating System Interface (POSIX)
functionality. Finally, the I/O Kit pro-
vides an object-oriented framework
for simplified driver development. It
consists of header files and libraries
that provide the services required for
kernel driver development, as well as
header files and libraries that are used
by user space code to locate a kernel
driver and interact with it.3

The usual practice of monolithic
OSes is to provide efficient access to
objects through the method calls of a
well-defined programming interface.
This practice is not followed by xnu’s
Mach core. Instead, Mach organizes

communication between objects with
message passing. Messages are passed
between end points, or ports. These
are 32-bit integer identifiers, although
they are used as opaque objects. Mes-
sages are sent from one port to another
port. Multiple senders can send mes-
sages to the same port, and these
messages are enqueued until they are
received by the designated receiver for
that port.

OSes usually use some kind of
descriptor or handle to access objects.5

Instead, Mach accesses primitive
objects through corresponding ports.
This kind of structuring is very mod-
ular and flexible, allowing ports and
rights to be passed from one entity to
another. For example, complex Mach
messages can contain ports delivered
from one task to another, a mech-
anism akin to mainstream Unix’s
domain sockets, which allow passing
file descriptors between processes.

Unlike xnu, the FreeBSD kernel is
organized as a traditional Unix mono-
lithic kernel.4 Logically, the kernel can
be divided into a top half and a bottom
half. The top half of the kernel pro-
vides services in response to system
calls or traps. In essence, it is a library
of routines shared by all processes.
The bottom half of the kernel consists

of routines that handle hardware
interrupts.

The FreeBSD kernel consists of pro-
cesses that execute in kernel mode
and routines that execute periodically
within the kernel. Mach’s kernel is
organized as a kernel task with multi-
ple kernel threads.

PROCESSES AND THREADS
FreeBSD implements a multithreaded
process design.4 Each FreeBSD pro-
cess keeps a linked list of its threads.

These threads are scheduled by the
kernel, and they own their kernel
stacks onto which they can execute sys-
tem calls simultaneously. The process
state in FreeBSD supports threads
that can select the set of resources to
be shared; in other words, the concept
of variable-weight processes is imple-
mented.4 FreeBSD has the rfork() sys-
tem call that behaves like Linux’s clone()
system call. Xnu also implements
variable-weight processes within its
BSD layer, but with a different mecha-
nism—by implementing multi-branch
functionality at the fork() system call.

FreeBSD elegantly divides the ker-
nel state of a process in two primary
structures: the process structure and
the thread structure. The process
structure contains information that

THE FREEBSD KERNEL CONSISTS OF
PROCESSES THAT EXECUTE IN KERNEL
MODE AND ROUTINES THAT EXECUTE
PERIODICALLY WITHIN THE KERNEL.

COMPUTING PRACTICES

46	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

must always reside in main memory,
whereas the thread structure tracks
information that needs to reside only
when the process is executing, such as
its kernel runtime stack. Specifically,
the thread structure represents just
the information needed to run in the
kernel: information about schedul-
ing, a stack to use when running in the
kernel, a thread state block, and other
machine-dependent states.

FreeBSD implements an elaborate
priority-inversion mechanism using
turnstile queues.4 It organizes its

sleep and turnstile queues effectively
by keeping them in a data structure
hashed by an event identifier. The
hashing provides efficient search for
the threads that need to be awakened
for an event. When a high-priority
thread blocks a contested resource, its
turnstile queue is used to detect the
lock holder thread and to raise the pri-
ority of that thread to release the lock.
This priority-inversion mechanism
significantly facilitates the implemen-
tation of applications with real-time
constraints.

FreeBSD frequently explores adap-
tive spinning,6 where the thread spins
if the lock holder is currently executed
on some CPU (with the hope that it will
release the lock soon). When the lock

holder is not in execution, however,
it is wasteful to spin, so the thread is
sleeping—waiting for the lock to be
released. Mutexes of FreeBSD can be
acquired recursively, and therefore a
second acquisition of the same lock
does not deadlock the thread.

FreeBSD’s timeshare scheduling
avoids preempting threads running in
kernel mode, thus the worst-case real-
time response to events is defined by
the longest path through the top half
of the kernel. However, FreeBSD pro-
vides real-time threads and interrupt

threads that can preempt the timeshare
threads, even in kernel mode. There-
fore, no upper bounds on the duration
of a system call, when running with
just the timeshare scheduler, are guar-
anteed. Thus, the timeshare-scheduling
algorithm is definitely not a hard real-
time system.

However, FreeBSD can service real-
time workloads. In other words, it can
implement hard real-time tasks by
using real-time and interrupt threads.
These threads preempt lower-priority
threads. The longest path that preemp-
tion is disabled for real-time and inter-
rupt threads is defined by the longest
time a spinlock is held and the longest
duration of code within a critical sec-
tion. Real-time applications should

(and usually can) impose worst-case
bounds on these times.

Concerning the synchronization
primitives, both Mach and FreeBSD
kernels offer efficient implementations
of mutexes, read-write lock objects,
spinlocks, and semaphores. Mach also
implements lock-set objects—arrays of
locks that can be acquired by a given
lock ID. An interesting aspect of lock-
sets is that they allow the handoff of
locks—the passing of a lock from one
task to another. Mach implements the
flexibility of the handoff in the context
of scheduling decisions. Specifically,
a thread can yield the processor vol-
untarily, but can also specify which
thread to run in its stead.

Another advanced feature imple-
mented by the Mach kernel is that
of continuation. A continuation is
an optional resumption function
along with a parameter to it, which a
thread might specify if it voluntarily
requests a context switch. Continua-
tions improve significantly on the con-
text switch time, because the thread is
reloaded from the point of continua-
tion with a new stack and no previous
state was saved.

Mach also provides an abstraction
of the machine with a host object and
a useful API that provides informa-
tion about kernel modules, memory
tables, and other aspects that xnu’s
POSIX-based BSD layer does not offer.
Mach selectively implements sched-
uler algorithm indirection. If only one
algorithm is enabled at compile time, a
direct function call is used; otherwise,
calls are dispatched to the selected
scheduling algorithms through a
function pointer table.

Mach avoids spurious timer inter-
rupt processing by using a tickless

FREEBSD ELEGANTLY DIVIDES THE KERNEL
STATE OF A PROCESS IN TWO PRIMARY

STRUCTURES: THE PROCESS STRUCTURE
AND THE THREAD STRUCTURE.

	 F E B R U A R Y 2 0 1 8 � 47

kernel. Specifically, at every timer
interrupt, the timer is reset to schedule
the next interrupt only when the sched-
uler decides that it is necessary. The
xnu interrupt handler performs a fast
pass over the list of pending deadlines
(which usually are sleep timeouts set
by threads), acts on them if necessary,
and schedules the next timer interrupt
according to these pending deadlines.

A BSD-style thread in xnu is not
implemented independently but
instead is mapped to a Mach thread.
Like FreeBSD threads, Mach threads
also represent the atomic unit of exe-
cution—both xnu and FreeBSD kernels
schedule threads and not processes.
As with threads, xnu builds BSD-style
processes on top of Mach. Specifically,
Mach tasks provide the machinery for
implementing processes. Mach rep-
resents the kernel itself as a task. In
essence, Mach provides primitives such
as threads, tasks, scheduling, and VM
as low-level abstractions with a deliber-
ately basic and incomplete API, on top
of which xnu builds rather efficiently.

The Mach kernel is organized as a
set of kernel threads that run within
a single task—the kernel task. The
kernel threads perform all the kernel
operations, such as scheduling, mem-
ory allocation, paging, and exception
handling. Although the FreeBSD ker-
nel also performs a lot of operations
with kernel threads, it is not struc-
tured by itself as a process.

TRAP AND INTERRUPT
STRUCTURE
Modern interrupt controllers perform
a kind of prioritization on the inter-
rupt request lines (IRQ). Generally,
interrupts on the lower-priority lines
are disabled whenever the processing

of an interrupt request on a higher-
priority line is pending.

Both FreeBSD and xnu use a system
table called the Interrupt Descriptor
(or Dispatch) Table (IDT). The IDT asso-
ciates each interrupt or exception vec-
tor with the address of the correspond-
ing interrupt or exception handler.
The IDT must be properly initialized
before the kernel enables interrupts.
At system boot, the IDT is filled with
pointers to the kernel routines that
handle each interrupt and exception.

Xnu provides three ways to perform
kernel requests: BSD traps, Mach traps,
and Mach remote procedure calls
(RPCs). The Mach kernel implements
very few system call entry points. Most
Mach operations are implemented
as Mach RPCs, including operations
for VM and for thread and task con-
trol. The IPC-based implementation of
traps, although elegant, imposes per-
formance overhead.

Similarly to most other OSes, a
system call number argument that is
checked at kernel entry identifies the
system call. However, xnu differs—a
positive argument identifies a BSD
system call, whereas a negative one
indexes the Mach system call table.

A common practice for processing
an interrupt is to store all the con-
text required to resume a nested ker-
nel control path in the kernel mode
stack of the current process. With this
design, we cannot reschedule from
an interrupt handler. This is because
interrupts can be arbitrarily nested,
stacking multiple contexts on the ker-
nel stack of the interrupted thread.
If we reschedule, the stack with the
saved interrupt frames is lost, and it is
problematic to restore those contexts
after the interrupt handler finishes.

Both systems on return from trap-
interrupt processing check for the exis-
tence of ASTs (Asynchronous System
Traps). Mach represents a particular
AST with a reason bit. These reason
bits are set by the software to trig-
ger the corresponding trap. When a
processor is about to return from an
interrupt context, including returns
from system calls, it checks for these
bits and takes a trap if it finds one. The
pending of such traps is checked in
many cases when a thread is to change
its execution state; for example, being
suspended from running. Also, the
kernel’s clock-interrupt handler peri-
odically checks for ASTs.

Mach implements a unique exception-
processing approach, layering it on top
of its message-passing architecture.
Actually, Mach does not handle the
exception but leaves exception han-
dling to the upper software layers (for
example, the BSD layer for xnu).

Mach exceptions are handled via the
primary facility of the kernel—its mes-
sage passing. An exception is wrapped
to a message, which is raised via the
msgsend() and caught by a handler
through msg-recv(). Unlike the tradi-
tional models, which run the exception
handler in the context of the faulting
thread, Mach runs the exception han-
dler in a separate context by making
the faulting thread send a message to a
predesignated exception port and wait
for a reply.

Mach exception handling using
thread and task exception ports for
every type of exception is versatile
and elegant. The thread that causes an
exception is called the victim thread,
whereas the thread that runs the
exception handler is called the han-
dler thread. When a victim raises an

COMPUTING PRACTICES

48	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

exception, the kernel suspends it and
sends a message to the appropriate
exception port, which can be either a
thread exception or a task exception
port. Subsequently, the handler thread
processes the exception.

 FreeBSD creates a thread context
for each interrupt handler, making
it impossible to access the context of
another interrupt handler. Also, each
interrupt handler has its own stack on
which it runs.

In FreeBSD, interrupt handlers
are composed of a filter routine, an
ithread routine, or both. The filter
routine executes in primary inter-
rupt context—it does not have its
own context. Therefore, it cannot
block or switch the context, and spin
mutexes should be used instead of
sleep mutexes. These constraints
impose the utilization of filter routines
only with devices that require a non-
preemptive interrupt handler.

A filter routine can either com-
pletely handle an interrupt or relocate
the computationally expensive work to
its associated ithread routine, if it has
one. An ithread routine, unlike a fil-
ter routine, executes in its own thread
context. The ithread routine can sleep
or wait on a condition variable.

Mach ASTs are like Linux soft-
irqs.1,7,8 They are a powerful vehicle
used mainly to perform any interrupt-
related work not performed by the
interrupt handlers. The AST mecha-
nism allows one or more reason bits
to be set for a processor or thread.
Each bit represents a particular soft-
ware trap. When a processor is about
to return from an interrupt context,
including returns from system calls, it
checks for those bits and takes a trap if
it finds one.

SCHEDULING
The mechanisms that Mac OS and
FreeBSD use for scheduling have much
in common.

FreeBSD provides restartable sys-
tem calls (as Mach does) and separates
wait channel priority from user mode
priority. FreeBSD assigns a higher pri-
ority to the threads sleeping in the
kernel because they typically hold
shared kernel resources when they are
awakened.

FreeBSD initially assigns a high
execution priority to each thread
and allows that thread to execute for
a fixed time slice. Threads that exe-
cute for the duration of their time
slice have their priority lowered,
whereas threads that give up the CPU
(usually because they perform I/O)
are allowed to remain at their prior-
ity. Inactive threads have their pri-
ority raised. This dynamic priority-
adjustment scheme favors interac-
tive I/O-bound threads over compute-
bound ones.

FreeBSD uses high-priority inter-
rupt threads. The highest-priority
threads of class ITHD serve the
time-critical demands for interrupt
processing, tasks that on single proces-
sor systems were usually performed
within the interrupt service routine by
disabling the CPU interrupts. Because
FreeBSD uses threads to implement
bottom-half interrupt processing,
interrupt handlers have their context
and thus can sleep.

In terms of priority, the REALTIME
class follows the ITHD scheduling
class. Therefore, with the prerequisite
of small and bounded overhead for the
ITHD thread processing, engineers
can design and implement real-time
processing workloads with FreeBSD.

The KERN class follows REALTIME in
priority, and performs deferred inter-
rupt processing. Time-consuming
parts of interrupt service tasks should
be implemented within the threads of
the KERN class. TIMESHARE, the class
that runs the “normal” user applica-
tions, follows KERN in priority. The
kernel dynamically adapts the prior-
ity of the threads of this class to pro-
vide a better response to the interac-
tive tasks. The priorities of threads
running in the TIMESHARE class
are adjusted by the kernel based on
resource usage and recent CPU utiliza-
tion. A thread of the TIMESHARE class
has two scheduling priorities: one for
scheduling user-mode execution (top-
half priority) and one for scheduling
kernel-mode execution (bottom-half
priority). Finally, the IDLE class con-
sumes the CPU time when no useful
task exists.

Xnu’s scheduling is implemented
within the Mach subsystem, which
schedules threads as FreeBSD does.
Generally, the two systems follow
similar algorithms and concepts.
For time-sharing threads, Mach also
uses adaptive adjustment of priorities
according to the amount of computa-
tion they perform, favoring interac-
tive tasks. Like FreeBSD, it organizes
threads into priority queues (with a
real-time priority class).

Xnu uses a tickless-style timer
for interrupt processing. A deadline
queue keeps the events that will trigger
timer interrupts in ascending order.
The scheduler produces the deadline
queue. The tickless style avoids the
overhead of processing many spuri-
ous timer interrupts, if the traditional
periodic processing of timer interrupts
(based on Hz frequency) is used.

	 F E B R U A R Y 2 0 1 8 � 49

VIRTUAL MEMORY
Xnu uses the Mach VM subsystem
(with a few modifications). FreeBSD is
also heavily based on Mach. Thus, VM
implementation is similar in xnu and
FreeBSD.

›› Both systems isolate the imple-
mentation of the machine-
dependent physical map to a
pmap module. The machine-
independent data structures
that implement abstractions as
virtual address space maps (VM
maps), VM objects (vm_object),
named entries, and resident
pages are isolated to a vmap
module.

›› Because the entire virtual
address space is not mapped at
any given moment, the VM map
is divided into several entries.
Each entry (vm_map_entry) rep-
resents a virtually continuous
block of mapped memory that
shares common protection and
inheritance attributes.

›› The virtually continuous
address space that a vm_map_
entry represents can span multi-
ple pages, but always has a single
backing store (such as physical
memory or a hard drive). The
source of data is represented by a
vm_object.

›› Every vm_map_entry points to
a chain of vm_object structures
that describe sources of data
(objects) that are mapped at
the indicated address range. At
the tail of the vm_object chain
is the original mapped data
object, usually representing a
persistent data source, such as
a file. Interposed between that

vm_object and the map entry are
zero or more transient shadow
objects that represent modi-
fied copies of the original data.
Both Mach and FreeBSD use
submaps—for kernel address
space only—to isolate and
constrain address space allo-
cation for kernel subsystems.
Specifically, a kernel address
space vm_map_entry can point
recursively to a submap instead
of a vm_object. This is useful for
constraining memory alloca-
tions in the kernel.

›› The lowest-level data structure
that represents the physical
memory being used by the VM
system is described by a vm_page
structure. Each vm_page is
identified within the vm_object
by its offset from the start of the
object. A vm_object keeps a list
of residents in physical memory
pages, which are described by a
vm_page structure.

In essence, a vm_object contains
information about accessing mem-
ory from its source. Physical mem-
ory caches are the most frequently or
recently accessed contents of the vm_
object. Some or all of the VM objects’

memory might not be resident in physi-
cal memory. Instead, they can reside in
a backing store—for example, a regular
file, a swap file, or a hardware device.

 Mach’s IPC features are unified with
its VM subsystems, which leads to var-
ious optimizations and simplifications.
Specifically, Mach’s IPC implementa-
tion uses the VM subsystem to effi-
ciently transfer large amounts of data
using copy-on-write (COW) optimiza-
tions. Out-of-line (OOL) data transfer
is an optimization for large transfers.
The kernel allocates a memory region
for the message in the receiver’s virtual

address space without making a phys-
ical copy of the message. The shared
memory pages are marked COW.

Mach takes an object-oriented
approach and uses a memory object
for managing the backing store. The
memory object is a Mach port to which
messages can be sent by the kernel to
retrieve the missing data.

Sharing resources in Mach becomes
a matter of providing access to their
corresponding ports. In Mach, tasks
can send parts of their address spaces
to one another in IPC messages.

 The owner of a memory object is
a memory manager, or a pager. Xnu
implements the pager as a specialized
task that supplies data to the kernel

SHARING RESOURCES IN MACH BECOMES
A MATTER OF PROVIDING ACCESS TO

THEIR CORRESPONDING PORTS.

COMPUTING PRACTICES

50	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

and saves modified pages selected for
eviction to the backing store.

Departing from the Mach design
that allows user-space implementa-
tion, Xnu realizes all pagers as kernel
threads. Also, instead of messages,
Xnu implements the pager interface
with direct function calls. Therefore,
FreeBSD and Mac OS theoretically can
demonstrate similar performance con-
cerning VM operations, as they utilize
similar architecture and algorithms.
Indeed, both Mac OS and FreeBSD dis-
played excellent performance with the
mallocMemCopy benchmark (see Table
1). This benchmark exercises VM oper-
ations, as it allocates and accesses a
very large area of dynamically heap-
allocated memory.

In Mach, the pager communicates
with the kernel and with the memory
object port. The message-passing inter-
face permits pagers to be completely
implemented in user space. However,
the involved overhead is significant,

and two switches between user and
kernel mode are required—as well as
the housekeeping operations for the
relevant message queues. FreeBSD also
has pagers that perform similar chores,
but they reside completely in kernel
space and are accessible through direct
routine calls (C functions).

Specifically, Mach handles page faults
by having the kernel communicate with
the memory manager by sending it a
message requesting the missing data.
The memory manager responds asyn-
chronously by fetching the data from
the backing store it is managing.

 Although Apple has replaced much
of its message passing with direct func-
tion calls, there remains strong port-
based infrastructure. The rather poor
performance of Mac OS at the fork() and
exec() system calls can possibly be alle-
viated by replacing the rest of the port-
based implementations from the VM
subsystem with a FreeBSD-like direct
procedure call implementation.

BENCHMARKS
We ran benchmarks on an iMac and
an HP PC (both had equivalent hard-
ware). We also evaluated the tests on a
Linux iMac with OpenSuSE 42.3 Leap,
Linux kernel version 4.4.76-1. The
results we obtained were very close
to the HP PC results (actually slightly
better, but with no significant differ-
ence). This is expected from the simi-
lar hardware configuration of the two
machines. Both the iMac and HP PC
had a 3200 MHz Intel i5 processor with
8192 Mbytes of memory. It is inter-
esting that Linux displayed the best
overall performance, especially com-
pared with other OSes such as Solaris
and Windows.9 FreeBSD was close to
Linux in terms of performance, but
Mac OS was notably slower at some
benchmarks.

The first set of benchmarks we
evaluated were from Byte magazine
(github.com/kdlucas/byte-unixbench;
see Table 1).

TABLE 1. Unix Byte benchmarks (absolute counts of operations over 20 seconds).

Benchmark Mac OS FreeBSD iMac FreeBSD HP PC Linux HP PC

execl 20 7139 24110 33347 49469

syscall 20 12884110 10620877 14665300 28773938

spawn 20 35638 71768 120943 168546

context switching 20 1597858 2484023 3261091 2312248

hanoi 20 4603145 5025719 4575185 4364714

pipe throughput 25591689 44677193 39667978 45399029

mcopy 20 56937707 375264695 309153485 1906408815

threadsWithComputation no joining 38642 30279 28103 21126

threadsWithSmallComputation no joining 74551 48152 40782 106691

threadsPerformingAtomicOps 73579 47262 42472 107903

threadsComp 10 16 joining 21102 26025 27135 11194

threadsComp 10 32 joining 11098 14667 24244 5932

mallocMemCopy 1331726526 1243759142 802439723 572844647

fstime write 20 1686255 102547 187417 1211860

fstime read 20 1862444 1752057 512512 4140431

fstime copy 20 812984 96719 126403 862759

	 F E B R U A R Y 2 0 1 8 � 51

The execl column in Table 1 displays
the average count of execl calls over 20
seconds, measuring the effectiveness
of creating a process from an execut-
able. Mac OS was about three times
slower than FreeBSD at this bench-
mark. The process that executed with
exec is the executable file of the execl
benchmark program itself.

The syscall benchmark evaluates
the overhead of performing system
calls. Here, Mac OS was slightly faster
than FreeBSD, but Linux was about
two times faster than both. The syscall
benchmark performs the following
system calls sequentially: close(), dup(),
getpid(), getuid(), and umask(). Xnu
implements the Mach system calls in
a conventional way without involving
message passing.1 Therefore, Mac OS
obtained competent (and sometimes
better) system call performance with
OSes that have fast system calls, such
as Linux and FreeBSD.

The spawn benchmark exercises
the fork() system call and measures the
efficiency of creating processes. Mac
OS can be considered to have a slow
fork() system call. Linux was the most
efficient, followed by FreeBSD.

The context switching benchmark
measures the number of times two
processes can exchange an increas-
ing integer through a pipe. The test
program spawns a child process with
which it communicates via a bidirec-
tional pipe. FreeBSD had the best per-
formance in terms of context switch-
ing times. Linux came close, but Mac
OS was notably slower. This bench-
mark creates two pipes, p1 and p2. It
then proceeds by forking a child pro-
cess. The parent process closes the
input descriptor of p1 (p1[0]) and the
output descriptor of p2 (p2[1]). The child

process does the reverse. Then, the two
processes communicate using these
pipes. The information from parent to
child is transferred using the p1 pipe,
and the p2 pipe transfers the informa-
tion from the child to the parent.

The hanoi is a purely computational
benchmark on which all OSes display
similar performance (FreeBSD was
slightly faster).

The pipe is the simplest form of
communication between processes.
Pipe throughput is the number of
times (per second) a process can write
512 bytes to a pipe and read them back.
FreeBSD performed more efficiently
than Mac OS, and Linux displayed sim-
ilar performance to FreeBSD.

 The mcopy benchmark consists of
code adapted from W.R. Stevens and
S.A. Rago’s Advanced Programming in
the UNIX Environment.10 It measures the
performance of file-copying operations
using shared memory. At this bench-
mark, Linux outperformed FreeBSD by
about six times, and xnu was about six
times slower than FreeBSD.

The threadsWithComputation no join-
ing benchmark creates a large number
of threads that perform some compu-
tation without joining their execu-
tion. The threadsWithSmallComputation
benchmark is similar, but the amount
of computation that each thread per-
forms is significantly smaller. Mac OS
outperformed FreeBSD, demonstrating
excellent multithreading performance.
It is interesting that Linux did not
perform well with the computational
threads—it does much better with
threads involving light computations.

At the threadsPerformingAtomic
Ops benchmark, the threads per-
form atomic (and thus possibly block-
ing) operations on counters. Mac OS

outperformed FreeBSD in this thread-
ing performance test, and Linux was
the overall winner.

The threadsComp 10 16 joining
benchmark operates a 10-second loop
that creates 16 threads and then joins
with their execution before proceed-
ing with the next iteration. The next
benchmark with 32 threads is similar.
At these two benchmarks, Mac OS and
FreeBSD performed similarly and sig-
nificantly better than Linux.

The mallocMemCopy benchmark
allocates two memory buffers with
the malloc() library function. It then
copies a few bytes from one buffer to
another simply to exercise the buffers.
Finally, the buffers are freed with the
free() library routine. At this bench-
mark, Mac OS outperformed the other
systems, presenting the most efficient
C-library heap allocation/deallocation
performance.

The fstime benchmarks measure file
system–related performance aspects.
FreeBSD demonstrated rather poor
performance at the fstime benchmarks
for write operations, but this was due
to the synchronous writes of directory
operations to maintain consistency.

The next set of benchmarks we
used was the lmbench set (see Table
2).11 The simple syscall measures a
nontrivial entry into the kernel by
repeatedly writing one word to /dev/
null, a pseudo-device driver that does
nothing except discard the data. At
this benchmark, all OSes were nearly
equivalent.

The simple read, simple write, simple
open/close, simple stat, and simple fstat
benchmarks measure the efficiency of
the corresponding operations. Here,
Mac OS and FreeBSD performed simi-
larly, but Linux was most efficient.

COMPUTING PRACTICES

52	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

Here, pipe bandwidth is measured
by creating two processes: a writer and
a reader, which transfer 50 Mbytes of
data in 64-Kbyte transfers. TCP band-
width is measured similarly but using
1 Mbyte page-aligned transfers.

The process fork+exit and process
fork+execve tests measure the number
of times a process can fork and reap a
child that immediately exits. Process
creation refers to creating process con-
trol blocks and memory allocations for
new processes, so this applies directly
to memory bandwidth. Typically, this

benchmark would be used to compare
various implementations of OS process-
creation calls. The shells script (for
example, process fork+/bin/sh) test
measures the number of times per
minute a process can start and reap
a set of one, two, four, and eight con-
current copies of a shell script where
it applies a series of transformations
to a data file.

Unix pipes create a one-way byte
stream on which one process has a
write descriptor and the other has a
read descriptor. TCP sockets differ in

that they are bidirectional and can
cross machine boundaries.12

The interprocess communication
latency benchmarks (AF_UNIX socket
stream latency, UDP latency using
localhost, and TCP latency using local-
host) measure the time it takes to pass
a small message (perhaps a byte in
size) back and forth between two pro-
cesses. The microseconds needed to
make one round trip are reported in
Table 2. At this benchmark, FreeBSD
was the most efficient, while Mac OS
was rather slow.

TABLE 2. Lmbench benchmarks (in microseconds).

Benchmark Mac OS FreeBSD iMac FreeBSD HP PC Linux HP PC Linux iMac

simple syscall 0.1061 0.1015 0.11098 0.1022 0.071

simple read 0.3750 0.1670 0.19080 0.1663 0.145

simple write 0.3222 0.1374 0.16430 0.1318 0.090

simple stat 1.1455 1.2639 3.23270 0.5105 0.560

simple fstat 0.3858 0.2521 0.53070 0.1098 0.170

simple open/close 2.1956 1.6104 3.65570 1.0097 1.070

select on 10 fds 1.0893 0.3352 0.46590 0.2411 0.270

select on 100 fds 18.6181 2.8129 8.76470 0.8377 0.760

select on 10 tcp fds 0.9444 0.3772 0.41380 1.2411 1.280

select on 100 tcp fds 17.1393 5.0446 6.15760 2.2007 1.810

signal handler installation 0.2382 0.1904 0.19470 0.1269 0.155

signal handler overhead 1.6820 1.3483 1.47840 0.6557 0.950

page fault 4.4007 0.0300 0.01190 0.1785 0.330

pipe latency 5.7449 3.2599 3.02500 4.3439 3.540

process fork+exit 262.9545 95.1455 105.24000 81.5161 90.730

process fork+execve 1859.0000 335.5333 401.70650 264.9545 460.230

process fork+/bin/sh 3081.5000 757.2500 1348.88610 1398.0000 4426.400

AF_UNIX sock stream latency 7.3108 3.5611 3.79670 4.0548 3.390

UDP latency using localhost 18.1897 6.7410 7.66220 8.0423 4.200

TCP latency using localhost 18.6043 7.3267 9.05000 9.6713 6.260

pipe bandwidth 5301.4400 9951.7100 9252.23000 13251.0500 6942.800

TCP bandwidth 1421.8100 2182.8100 2276.84000 5291.8800 3769.900

AF_UNIX socket bandwidth 1421.8100 2182.8100 2276,84.00000 5291.8800 14107.050

	 F E B R U A R Y 2 0 1 8 � 53

The majority of OSes use a well-
defined interface for each sub-
system and direct function calls.

However, Mach organizes its subsys-
tems as objects and is based exclu-
sively on message passing. Therefore,
Mach’s objects cannot directly invoke
one another. This design is definitely
more modular but, as our benchmark
results illustrated, can impose signif-
icant overhead on some operations.
Apple made a lot of modifications to
the original Mach design to improve
performance, and our results demon-
strate that Apple has rather success-
fully achieved this goal. However, Mac
OS is significantly slower on process
creation (fork) and at the execution of
a binary image (execl). Also, the sys-
tem call overhead is higher compared
to FreeBSD and Linux. However, xnu
outperforms on multithreading per-
formance and on heap-allocated mem-
ory operations. Because most modern
applications are structured on threads
instead of processes, the outstanding
multithreading and dynamic memory
allocation performance of Mac OS has
great practical benefits. Mac OS’s port-
based message passing is the main
operation that makes it significantly
slower than FreeBSD. It is expected
that Apple will replace these function-
alities with implementations based on
direct procedure calls in future ver-
sions of Mac OS. In this aspect, the xnu
kernel will be as fast as the efficient
FreeBSD and Linux monolithic ker-
nels, retaining the high modularity
of structuring the implementation on
top of the Mach microkernel.

REFERENCES
1.	 J. Levin, Mac OS and iOS Internals: To

the Apple’s Core, Wrox, 2012.

2.	 A. Singh, Mac OS Internals: A Systems
Approach, Addison-Wesley Profes-
sional, 2016.

3.	 O.H. Halvovsen and D. Clarke, OSvX
and iOS Kernel Programming, Apress,
2011.

4.	 M.K. McKusick, G.V. Neville-Neil,
and Robert N.M. Watson, The Design
and Implementation of the FreeBSD
Operating System, 2nd ed., Addison-
Wesley Professional, 2014.

5.	 A.S. Tanenbaum and Herbert Bos,
Modern Operating Systems, 4th ed.,
Pearson, 2014.

6.	 R. McDougall and J. Mauro, Solaris
Internals: Solaris 10 and OpenSolaris
Kernel Architecture, 2nd ed., Prentice
Hall, 2006.

7.	 D.P. Bovet and M. Cesati, Understand-
ing the Linux Kernel, 3rd ed., O’Reilly
Media, 2005.

8.	 R. Love, Linux Kernel Development,
3rd ed., Addison-Wesley Profes-
sional, 2010.

9.	 S. Papadimitriou and L. Moussiades,
“A Comparative Evaluation of Core
Kernel Features of the Recent Linux,
FreeBSD, Solaris, and Windows
Operating Systems,” Proc. World Con-
gress on Eng. (WCE 16), 2016; www
.iaeng.org/publication/WCE2016
/WCE2016_pp387-392.pdf.

10.	 W.R. Stevens and S.A. Rago,
Advanced Programming in the UNIX

Environment, 3rd ed., Addison-Wesley
Professional, 2013.

11.	 L. McVoy and C. Staelin, “lmbench:
Portable Tools for Performance Anal-
ysis,” Proc. 1996 USENIX Ann. Techni-
cal Conf. (ATEC 96), 2006; www
.usenix.org/legacy/publications
/library/proceedings/sd96/full
_papers/mcvoy.pdf.

12.	 W.R. Stevens, UNIX Network Pro-
gramming, Volume 1: The Sockets Net-
working API, 3rd ed., Addison-Wesley
Professional, 2003.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

WWW.COMPUTER.ORG

/COMPUTER

ABOUT THE AUTHORS

STERGIOS PAPADIMITRIOU is a professor of computer science in the Depart-

ment of Informatics and Computer Engineering at the Technology Education

Institute of Eastern Macedonia and Thrace. His research interests include OSes,

programming languages, scientific computation, bioinformatics, and machine

learning. Papadimitriou received a PhD in computer engineering and informat-

ics from the University of Patras. Contact him at sterg@teiemt.gr.

LEFTERIS MOUSSIADES is an associate professor of computer science in

the Department of Informatics and Computer Engineering at the Technology

Education Institute of Eastern Macedonia and Thrace. His research interests

include graph algorithms, programming languages, OSes, and web application

development. Moussiades received a PhD in computer science from the Aristo-

tle University of Thessaloniki. Contact him at lmous@teiemt.gr.

